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Abstract

As the trend in financial industries to include alternative data into invest-
ment decision making continues, social sentiment analysis has become an
active field of research. The challenge is to quantify public announcements
which have significant impact on financial assets in order to predict price
changes. In this study a generic technique, that combines sentiment anal-
ysis with short-text topic modelling called Sentiment Biterm Topic Model
(sBTM) is proposed. sBTM expands mood time series with topic dimen-
sions. It performs sentiment analysis on latent topic portions, extracted
by the Biterm Topic Model, which is specifically designed to classify short-
texts such as tweets. A long-ranging collection of tweets is leveraged to
investigate if Twitter activities influence cryptocurrency price formation.
Multiple baseline forecasts are explored and finally it is tested whether
topic-specific analysis can enhance prediction accuracy. It is shown that
the topic based approach is more effective than its non-topic counterpart.
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Zusammenfassung

Während sich der Trend um alternative Daten in der Finanzindustrie
fortsetzt, wurde die Messung öffentlicher Meinungen zu einem populären
Forschungsgebiet. Die Herausforderung besteht darin, Meinungen, die si-
gnifikanten Einfluss auf die Preisentwicklung von Finanzwerten haben, zu
quantifizieren. In dieser Arbeit wird eine generische Technik namens Senti-
ment Biterm Topic Model (sBTM) vorgestellt, die Sentiment-Analyse mit
Kurztext-Themen-Modellierung vereint. sBTM erweitert Meinungen um
eine Themen-Dimension. Dabei wird eine Sentiment-Analyse an der Wahr-
scheinlichkeitsverteilung der Themen vorgenommen. Diese Wahrscheinlich-
keitsverteilung wird mit dem Biterm Topic Model, welches speziell für
Kurztexte konzipiert ist, extrahiert. Ein Datensatz über eine Zeitspanne
von 1.264 Tagen wird verwendet um herauszufinden ob Twitteraktivitäten
Kryptowährungen beinflussen. Es werden mehrere Benchmark-Modelle er-
stellt um zu testen ob anhand Themen-spezifischer Analyse Kryptowäh-
rungen besser vorausgesagt werden können. Es wird bestätigt, dass der
Themen-spezifische Ansatz besser funktioniert als das herkömmliche Pen-
dant.
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Summary

The value of cryptocurrencies is determined by people’s believe in the currency
itself, which explains why their price is sensitive to public announcements, news
and opinions. In this work Twitter data is used to extract public mood in order
to predict future price changes.

The debate whether news or public opinion can be used to predict financial
assets has a long history that is summarized in Ch. 2. The influential work of
[1] suggested that markets work efficiently. The efficient market theory states,
that it is impossible to use news to predict stocks. This dogma is questioned by
behavioral economics, where emotional behavior of market participant is sup-
posed. The work of nobel prize winner Daniel Kahneman [2] provides theoretic
foundation why investors’ emotions play a key role in assets’ price formation.
[3] suggested a crude measure to quantify investors’ emotions, known as lex-
ical sentiment analysis. This method has since been widely adopted, as it is
easy to use and easy to reproduce by other researchers. In contrast, supervised
machine learning methods [4] involve subjectivity as data is usually labeled
manually. [5] shows that Twitter is a useful source to measure public mood and
further demonstrates that stocks are influenced by it. Traditionally all docu-
ments in a corpus are treated with equal importance, although some topics are
intuitively of higher importance than others. [6] combines topic modelling with
sentiment analysis to retrieve a finer grained measure of Twitter mood. While
he successfully demonstrates that topic-specific sentiment analysis outperforms
a non-topic approach, the topic model used is suboptimal in classifying short-
texts such as tweets.

The theoretic foundation of probabilistic topic modelling is given in Ch. 3. A
topic model especially designed for short-text classification called Biterm Topic
Model is introduced. The BTM captures word co-occurrence within a corpus.
The strength of BTM is depicted in Tab. 2, where the BTM outperforms the
conventional LDA with respect to the coherence score defined by [7]. A novel ap-
proach to combine BTM with sentiment analysis called Sentiment Biterm Topic
Model (sBTM) is formulated in Ch. 4. The sBTM works on timestamped doc-
uments and generates multiple time series of topic-specific mood. Each time
series corresponds to one topic.

In this study’s practical part (Ch. 5) nearly 600,000 tweets over a time period
of 1,264 days are gathered. Experiments are conducted on the currencies Bit-
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coin, Ethereum, Litecoin and Ripple. It is explored whether past prices, Twitter
activity (number of tweets per week), topic-specific Twitter activity (number of
tweets per topic per week), mood or topic-specific mood helps predicting ab-
normal weekly returns. Significant autocorrelation is inspected on Ethereum
and Litecoin returns, yielding that past price has predictive power. It is shown
that Twitter activity effects Litecoin and Ripple. For Bitcoin it is the other way
round, price change effects Twitter activity. This proves that media attention
and cryptocurrency pricing is linked, but the causal direction varies across cur-
rencies. Although overall Twitter activity has no impact on price, activity of
certain topics has. This underpins the notion of topic-specific analysis. Further,
it is shown that negative, positive, uncertain and modal mood influences Bitcoin
price formation. Surprisingly, altcoins are hardly influenced by Twitter mood,
neither does topic-specific mood influence altcoins. It is argued that this is due
to Bitcoin’s dominance in cryptocurrency price formation. Mood regarding par-
ticular altcoins is overruled by investors sentiment about Bitcoin. For Bitcoin,
the mood of 15 out of 20 topics is influential. Coherently, those 5 irrelevant
topics are comprised of typical spam words (like, follow, retweet, . . . ). This
demonstrates that sBTM can be effectively used to separate important from
minor important topics.

Finally, a VAR-model is used to measure predictive performance. Up-down
accuracy is calculated across currencies and across multiple time lags. While
activity (55%), topic-specific activity (56%) and mood (56%) can hardly improve
the most basic forecast based on historic price (55%), topic-specific mood does
(59%). As stated, mood has most influence on Bitcoin. Weekly price change is
predicted with 62% accuracy on average. The topic extended mood works even
better with an accuracy of 66% on average, underpinning the effectiveness of
sBTM.
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1 Introduction

1.1 Problem Statement

The efficient market hypothesis states that financial markets incorporate all ex-
isting information at any point of time. Traders act as homo oeconomicus, that
behaves purely rational and seeks to maximize profits. In contradiction behav-
ioral finance emerged which has underpinned the role of emotions in financial
investment. As a consequence, market makers try to incorporate public mood
into their investment decision process. The rise of social networks made it pos-
sible to measure public mood. Measuring investor and social mood has become
a popular field of research. Social media, such as blogs, forums, and social
networks have become a primary data source as they are ubiquitous platforms
for social networking and content sharing. The microblogging platform Twitter
plays a predominant role when it comes to social, political and economic events.
Ordinary people but more importantly people of public interest and news wires
provide information on this channel, producing massive amounts of data every
day.

Meanwhile virtual currencies called cryptocurrencies emerged. Their value
is mostly determined by the believe of buyers and sellers into the currency itself.
The more people believe in a currency, the more value it has. This explains why
cryptocurrencies are extremely sensitive to public mood. The objective of this
study is to exploit Twitter data to predict cryptocurrency returns.

1.2 Terminology

Twitter is by definition [8] a social network that provides, a) a virtual space in
which users can make and present their own profile, b) the possibility to create
a network with other users and c) the possibility to see the network connections
of other participants. Twitter users are people of public interest, journalists,
news agencies and private persons who post and share content especially about
current events. A post is called tweet, which is at maximum 280 characters
long. Sharing ones content is called retweeting. Connections on Twitter are uni-
directional and made by following a user. Twitter provides tools to annotate
content with so called hashtags and cachtags. While hashtags are designed for
overall categorization, cashtags are ment to denote specific assets and financial
instruments. For instance a tweet “Bitcoin is a bubble? #crypto $btc $eth”
belongs to the topic of cryptocurrencies expressed by the hashtag #cryto and
corresponds to the assets Bitcoin and Ethereum expressed by the cashtags $btc
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$eth.

A cryptocurrency is a digital currency that is based on a distributed ledger. It
can be traded on various exchanges against legal currencies or other cryptocur-
rencies. The most popular and most traded1 cryptocurrency is called Bitcoin.
Alternatives to Bitcoin are called altcoins. Their price is highly correlated with
Bitcoin [9], suggesting that Bitcoin is a valid benchmark index for altcoins.
Therefore, the abnormal or adjusted return radj of an altcoin is defined as fol-
lows,

radj = ralt − rbtc (1)

, where rbtc denotes the return of Bitcoin and ralt of an altcoin. For Bitcoin
the abnormal return is simply its return, because no valid Bitcoin-benchmark
exists at the time of inspection. When further speaking about returns, adjusted
returns a meant.

A corpus denotes a collections of documents. In this study the expression doc-
ument and tweet is used interchangeable. In the domain of natural language
processing a word is commonly defined as a delimited string of characters in
a document. A "normalized" word, a word which represents all its variations
(case, spelling, morphology, singular or plural, etc.) is denoted as term. An
instance of a term occurring in a document is a token. For example, after re-
moving decimals and punctuation, which is a popular preprocessing technique,
the document “I bought 2 bitcoins. Bitcoin will rise.” contains six words {I,
bought, bitcoins, Bitcoin, will, rise}. It contains five terms {I, buy, bitcoin, will,
rise} and six tokens {I, buy, bitcoin, bitcoin, will, rise}. In this study word and
term are often used interchangeable. It will be clear from the context, when
they are used distinctive.

Sentiment analysis automatically extracts structured, subjective information
from textual content. The expression sentiment is a wage attitude, thought,
or judgment, which can be expressed in arbitrary levels of intensity such as +1
for positive and -1 for negative or as a 1-5 stars system used by popular review
sites. In a multidimensional setting various sentiment dimensions are quantified.
Opinion mining or aspect based sentiment analysis extends sentiment analysis by
extracting a view, judgment, or appraisal formed in the mind about a particular

1https://coinmarketcap.com/de/ - 4.03.2019
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matter. More formally an opinion is a quintuple,

(e, ae, h, t, saeht), (2)

where e is an entity, ae is an aspect of e, h is the opinion holder, t denotes the
time when the opinion is expressed and saeht is the sentiment on aspect ae of
entity e from h at time t. For example Bloomberg tweeted “Bitcoin is worth less
than the cost to mine it, JPMorgan says” on Jannuary the 25th, 2019. Then
Bitcoin is the entity, Mining is an aspect of that entity and the sentiment re-
ferring to that aspect is negative (mining cost is too high). The opinion holder
is JPMorgan and t is the time when JPMorgan announced their opinion (not
necessarily the time when the tweet was published).

While sentiment and mood are usually used as synonyms, in this study they
are used distinctive. It is common in sentiment analysis and opinion mining to
aggregate the sentiment of multiple documents. Since the Merriam-Webster2

defines mood as “predominant emotion”, it is argued that sentiment refers to a
single document’s sentiment and mood to the aggregated, overall sentiment of
many documents.

1.3 Synopsis

In Ch. 2 an overview of related work is provided, covering news trading, senti-
ment analysis and topic modelling. The section dealing with sentiment analysis
is focused on sentiment analysis in finance. Next, it is summarized how topic
models are used in price prediction tasks. Existing approaches that combine
sentiment analysis and topic modelling are introduced.

Chapter 3 provides the theoretic background. Gibbs Sampling is explained
and further demonstrated on the topic models LDA and BTM. Both models
are introduced in detail. At first the generative process is specified, next the
sampling procedure is given and lastly the algorithm is explained. Finally, the
VAR-framework is introduced. It is shown how VAR is used to model multi-
variate time series, to perform predictions and to analyze Granger-causality.

In Chapter 4 the sBTM is formalized. The high-level concept is depicted, the
sampling procedure and the algorithm is explained. Two variants of the sBTM
are introduced, an univariate and a multivariate one.

2https://www.merriam-webster.com/dictionary/mood (14.04.2019)
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In Ch. 5 it is explained how the data is gathered and filtered to extract high-
quality Twitter data over multiple currencies. A comparison of LDA and BTM
is conducted on the data. Next, multiple baseline forecasts are explored. Topic-
specific mood extraction is accomplished via sBTM and a VAR framework is
used to perform price prediction.

In Ch. 6 the insights according to cryptocurrency price formation are recapped
and strengths and weaknesses of sBTM are formulated. Some interesting use-
cases for sBTM along with promising improvements are outlined.

2 Related Work

2.1 News Trading

News trading denotes a trading strategy where financial news are interpreted as
trading signals. The underlying assumption that financial news reveal predic-
tive insight on future stock price movements is controversially debated. With
respect to the efficient market hypothesis this assumption does not hold. The
strong efficient market hypothesis is based on a "fair game"[1] where a) no trad-
ing fees exist, b) all information is freely available to all participants and c) all
participants agree on the impact of information on corresponding financial in-
struments. It states that a financial time series j fully reflect its value at each
time t, formally expressed as

f(rj,t+1|Φt) = f(rj,t+1) (3)

where r denotes the return and Φ all relevant information. This equation asserts
that news do not yield any predictive power since the information is already in-
corporated into the price. The efficient market hypothesis was widely accepted
since [10] inspected the adjustment of prices to new information. They assumed
that stock splits indicate new public information and modelled price changes
with an least square regression model. If a stock split is associated with ab-
normal behavior, this would be reflected in the estimated regression residuals
for the months surrounding the split. However, the residuals increased prior
to stock splits indicating that the information at the time of the split was al-
ready incorporated into the price. [11] showed that a set of 115 mutual funds in
the period from 1955 to 1964 could not acquire excess return. Assuming that
fund managers have access to exclusive information he argues that even insider
knowledge has no predictive power.
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In contradiction to the efficient market hypothesis behavioral finance emerged.
Anomalies such as the January effect or the day-of-the-week effect provide evi-
dence that price is rather driven by irrational behavior of share holders. Feed-
back models [12] describe the importance of information diffusion and share
holders emotional bias. In contradiction to the believe of an homo oeconomicus
as a fundamental condition for an efficient market, [2] showed that people are
irrationally biased in decision making. Subjects were asked to guess the occupa-
tions of a person whose characteristics were given. They guessed the occupation
that was closest to the given characteristics, neglecting the statistical probabil-
ity for that occupation. [13] examined a extraordinary 330% price jump of an
biotechnology company in one day. The jump was caused by an news report of
the New York Times about a breakthrough in cancer research associated with
that company. In fact the article did not reveal new information. All relevant
facts had been published on a scientific journal months before. While the theo-
retic ground of news trading remains ambivalent there is little doubt that news
and financial markets are interlinked.

2.2 Sentiment Analysis

Sentiment analysis is one of the most trending research areas in natural language
processing this century. The aim of sentiment analysis is to extract subjective
information from texts. Due to the variation of texts in language, length, style,
format and context a lot of different methods have arisen. The most prominent
ones are lexical and supervised machine learning methods. In what follows, a
selective overview of these methods with application in accounting and finance
is provided.

In the highly influential paper [3] the Harvard IV-4 Dictionary is used to
measure sentiment from Wall Street Journal’s daily stock news. They measured
the overall mood with an accumulation window of 30 days prior, until 3 days
after an earning announcement. They found that negative mood is related to
both lower stock returns and to higher stock market volatility. The impact of
journalistic pessimism is highest when focused on firm fundamentals. Following
[3], much investigation in financial sentiment analysis is based on the Harvard
dictionary. [14] examines initial public offering3 prospects on the basis of the
Harward IV-4 negative and positive dictionary. They found out that positive
sentiment is associated with lower returns after the first trading day and smaller
changes in the offer price revision. [15] criticize the use of general purpose

3An Initial Public Offering (IPO) is a stock market launch
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dictionaries in the financial domain. They inspected that about 74% of the
Harvard negative word count typically does not have negative meaning in a
financial context. In more recent studies the Loughran and McDonald dictionary
(LM) became predominant [16].

As an alternative to lexical approaches supervised machine learning is used
to classify the sentiment of documents. The influential work from [4] applied
Naive Bayes in financial sentiment analysis. They selected 1000 messages from
online message boards to train their algorithm. The found out that those mes-
sages have impact on stock return volatility. Higher disagreements among the
postings is linked with higher subsequent trading volume. [17] directly labeled
messages according to subsequent market fluctuation within an Bayesian frame-
work. Based on this language model forthcoming trends in the stock prices can
be predicted. Similarly, using a multivariate regression, [18] formulated an word
weighting scheme according to subsequent market reactions. They showed that
their method reliably quantifies the sentiment of IPO prospectuses.

Social Media Sentiment: The focus of research consequently shifted from
analyzing news documents to analyzing short texts from social media, especially
Twitter. [19] found out that Twitter captures most real-world events. 95% of
News from 8 popular news sources are covered on Twitter. 52% of events have
been reported exclusively on Twitter. But tweets are intrinsically different from
traditional news documents. They are shorter and have special notations like
emoticons, hashtags and cashtags. Further, the authors are rather private per-
sons than professional journalists. Much work is done to detect spammers [20],
to quantify users reputation [21] and influence in the network [22] or their in-
fluence on corresponding financial time series [23]. The amount of social media
content is enormous and continually increasing. Hence, it is more representative
of general mood and public opinion than news articles written by journalists.
In a highly influential work [5] used a multidimensional Twitter mood to pre-
dict the Dow Jones Industrial Average (DJIA). It is demonstrated that mood
dimensions correspond to public events (election, thanksgiving) and that DJIA
daily price change is Granger-caused by various mood dimensions (subjectivity,
calmness, happiness). Further, a Self-organizing Fuzzy Neural Network predicts
DJIA daily up-down movement with an accuracy of 87,6% for a 20 day time
window. [24] used a manually labeled corpus in combination with a Naive Bayes
for sentiment extraction of 250,000 stock-related tweets to examine their rela-
tion with market returns, trading volume, and volatility. They found out that
market features have higher impact on tweet features than the other way round.

6



They further inspected that financial experts gain more retweets and followers.
However, the analysis of individual tweets shows that higher quality information
is not retweeted more frequently.

2.3 Topic Modelling

Topic models are methods to discover topics in a collection of documents, where
a topic is traditionally viewed as as a mixture of words. One initial approach
in topic modelling is Latent Semantic Analysis (LSA) where a weighted term-
document matrix is reduced using Singular Value Decomposition (SVD). Search
engines early adopted LSA to provide thematic relevant documents based on
search queries. LSA evolved to a Probabilistic Latent Semantic Analysis (pLSA)
[25], which uses Maximum Aposteriori over SVD to extract latent topics. [26]
used a modified version of pLSA to extract latent sentiment factors from blog
entries. Further an autoregressive model was proposed to leverage the extracted
sentiment factors for product sales prediction. [27] introduced a Bayesian ver-
sion of pLSA called Latent Dirichlet Allocation (LDA), which uses Dirichlet
priors for the document-topic and word-topic mixture. With the introduction
of Dirichlet priors the notion of topic evolution over time was tackled success-
fully [28]. In a dynamic topic model, documents are timestamped and divided
into discrete time slices, for example by year, month or day. By chaining to-
gether multiple LDA models for sequential time frames, where each model uses
the posterior distribution of the preceding model as priors, online inference is
possible. The critical assumption of [28] is that a fixed number of topics is
present along the complete duration of analysis. Hierarchical LDA also called
Hierarchical Dirichlet Process (HDP) [29] is an non-parametric generalization
of LDA, where the number of topics is not known apriori but instead learned
from the data. Using HDP to analyse topic evolution needs some linkage mech-
anism to detect constant, emerging and ending topics across time slices. [6]
suggests such a mechanism and further extracts topic-specific mood for stock
market prediction. Since the linkage mechanism provides a variable set of top-
ics for each time frame (day), the five most active topics chains are separately
tested in an autoregressive stock prediction model. Finally, the best performing
topic-sentiment series gives an up-down accuracy of 61%. [6] is closest related
to this study, but here a constant number of topics is assumed. Therefore, no
topic-linking has to be performed. This study leverages a Twitter-optimized
topic model and circumvents the manual selection of topic-mood time series to
be used for prediction. Instead Granger causality is used to select relevant time
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series. [30] designed a model that jointly captures topics and sentiment, by in-
corporating sentiment analysis into the generative process of LDA. LDA works
on a document-level while this study is based on a corpus-wide model, better
suited for short-text topic modelling.

Short Text Models: A constraint of LSA, pLSA, LDA and HDP is that they
all work best when applied on large documents [31], as they reveal topics within
a text corpus by implicitly capturing the document-level word co-occurrence
patterns. A lot of research is done to overcome the sparsity problem for short-
text topic modelling. An intuitive way to cope with the sparsity problem is to
assume a document belongs to only one topic, as short text often does. Under
this assumption [32] provided a Gibbs sampling procedure that captures latent
topics. However, [33] showed that the strong assumption of short-text having
only one topic decreases performance. Another way of circumventing the spar-
sity problem is to extend a short text with background information, where a
larger pseudo document is created. [31] grouped tweets containing same words
to large pseudo documents and trained LDA on them. [22] treated all tweets
from a twitter user as one document and trained an LDA to find out the the-
matic influence of a twitter user. Similarly, [34] extended the generative process
of the conventional LDA with an latent author distribution, as a probability
distribution over topics. However, these methods are highly domain and task
dependent. First of all, the aggregation of background information is challeng-
ing. For example what if a user/author does not provide further documents to
incorporate? And most important, the authors are assumed to have a strong
topical preference, which is not true for interdisciplinary authors/news wires.
[33] proposed the Biterm Topic Model (BTM) which models the generation of
word co-occurrence in the corpus and inferences topics using Gibbs sampling.
The BTM outperformed the LDA, the user-aggregated LDA version and the
mixture of unigrams across various data sets including a tweet corpus. [35], [36]
noted that the BTM is prone to background words. Non-informative words, like
stop words are treated with equal importance than more informative once. The
first tackled this problem by adapting the generative process of the model, the
latter applied a rule-based approach to remove background words before topic
modelling is applied.

8



3 Methodological Basis

3.1 Lexical Sentiment Analysis

A document, a corpus or any textual unit in sentiment analysis is typically rep-
resented as a vector d = (fwi

, fwi+1
, . . . , fwV

), where wi denotes a word and
fwi

specifies how many tokens of wi occur in d. The critical assumption of
independence is made, which means that the order, and thus direct context, of
tokens in a text is irrelevant. This is a so-called bag-of-words model. Under a
bag-of-words model big collections of data can easily and efficiently be summa-
rized. Sentiment dictionaries can be used to quantify the emotional content of
text. [5] demonstrated an straight-forward approach to extract multiple mood
dimensions. However, their lexicon data is not publicly available. This study
follows their methodology in sentiment analysis but uses the publicly available
Loughran and McDonald (LM) dictionary. The LM-dictionary is designed to
be used in the financial context and has become the state-of-the-art dictionary
in this domain [16]. The LM-dictionary contains six different word lexicons
containing either negative, positive, uncertain, litigious, modal or constraining
words. In this study the sentiment of a text is simply measured by counting
the words occurring in that text. Another popular way of expressing sentiment
is called polarity, where the ratio between positive and negative words is cal-
culated. Traditionally the polarity is normalized to be in between -1 and +1,
where -1 indicates that a text is negative and +1 that a text is positive. In
this study, the polarity of a document is the difference of positive and negative
words.These crude quantitative measures do not extract an opinion (as defined
in Ch. 1.2 Eq. 2) nor do they capture negotiations or irony and sarcasm, but
they are efficient measures that scale to large collections. They can be easily
extended to extract sentiment of multiple documents, of a complete corpus or
any coherent textual unit. And most importantly, the researcher’s subjectivity
is avoided and no resources and domain knowledge is needed to label collections.
Publicly available dictionaries make research straightforward to reproduce.
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3.2 Topic Modelling

A generative topic model is based on a probabilistic sampling scheme that de-
scribes how words are generated based on latent variables. Most common, these
are bag-of-words models, neglecting the order of tokens. The only relevant in-
formation is the number of tokens. Further, the generative process does not
restrict words to exclusively belong to one topic. This allows topic models to
capture polysemy. Polysemy denotes the fact that words can have different
meanings in different context.

3.2.1 Gibbs Sampling

The challenge in generative topic modelling is posterior inference, which is the
process of learning the posterior distribution of the latent variables given ob-
served data. In LDA and BTM the posterior latent distributions cannot be
computed exactly, which is why approximation techniques are used to infer the
parameters. Among them is Gibbs Sampling, which is very popular due to its
simplicity. Gibbs sampling is applicable in situations where a multivariate prob-
ability distribution needs to be approximated. The basic idea is to make a sep-
arate probabilistic choice for each of the dimensions, where each choice depends
on the other dimensions. For example, one wants to know a K-dimensional
probability distribution p(z) = p(z1, ..., zK), where no closed form solution ex-
ists but conditional distributions are available. Then p(z) can be approximated
by iterative sampling, where each iteration the value of one variables is replaced
by a value drawn from the conditional distribution of the remaining variables.
In other words, zk is replaced by a value drawn from the distribution p(zk|z−k),
where z−k denotes z1, . . . , zK but with zk omitted. The procedure looks as
follows:

1. Randomly initialize each zk

2. For t = 1, . . . , T :

2.1 z
(t+1)
1 ∼ p(z1|z(t)2 , z

(t)
3 , . . . , z

(t)
K )

2.2 z
(t+1)
2 ∼ p(z2|z(t)1 , z

(t)
3 , . . . , z

(t)
K )

2.K z
(t+1)
K ∼ p(zK |z(t)1 , z

(t)
2 , . . . , z

(t)
K−1)

This sampling process is repeated T times, where the samples begin to converge
to the true distribution. The convergence is theoretically guaranteed with an
infinite number of iterations, but there is no way to find out how many iterations
are exactly required to reach the true distribution.
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3.2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model, where
documents are represented as random mixtures over latent topics and a topic is
defined as a distribution over words.

β

ϕk

wi

α
θd

zi

ND

VD

K

Figure 1: LDA Plate Notation: The parameters α and β are corpus-level pri-
ors. ϕk are topic-level variables which are sampled once per topic.
θd are document-level variables, sampled once per document, where
ND is the total number of documents. zi is a word-level variable
which is sampled once for each word in each document, where VD

is the number of words in a document. wi is filled because it is an
observable variable, the other empty variables are not observable,
hence are latent variables.

Generative Process: Supposing a corpus with ND different documents D =

{di}ND
i=1, the generative process is as follows:

1. For k = 1, . . . ,K:

(a) ϕk ∼ Dirichlet(β)

2. For each d ∈ D:

(a) θd ∼ Dirichlet(α)

(b) For each wi ∈ d:

11



i. zi ∼Multinomial(θd)

ii. wi ∼Multinomial(ϕzi)

, where K is the number of topics in the collection, ϕk is the discrete probability
distribution over words of topic k, θd is a document-topic distribution, zi is the
topic of word wi

4, α and β5 are the priors of the Dirichlet distributions. The
process can be summarized as follows: First, the topic-word distribution ϕk is
conditioned on the prior β, which is the prior believe of word-topic distributions.
To generate a document multiple steps are required. First, a document-topic
distribution θd is drawn, defining how topics are distributed in a document.
Again, θd is conditioned on its prior α, which represents the initial believe
of how document-topic distributions are expected to be. To generate tokens
belonging to a document, a topic zi conditioned on the document-topic distri-
bution is drawn. Then, zi is used to actually draw a token from the word-topic
distribution ϕk. In essence, LDA captures topics within a corpus by implicitly
modelling the document-level word co-occurrence patterns. Short texts, hav-
ing a sparse vector representation, do not provide enough words to learn the
document-level variables effectively. Hence, the estimation of zi and θd is poor,
inhibiting also the learning of the topic-word distributions ϕk. This is called the
sparsity problem in topic modelling.

Sampling: The latent variables ϕk, θd and zi are initially unknown and cannot
be computed in a closed form. While conditional distributions can be derived
for each of them and therefore each variable can be approximated by separately
Gibbs-sampling them, the procedure can be simplified. ϕk and θd can be calcu-
lated from zi. After integrating out ϕk and θd

6, sampling only zi is sufficient.
This procedure of collapsing variables by integration to apply simplified Gibbs
sampling is called collapsed Gibbs sampling. In A.1 it is shown that,

p(zi = k|z−i, w) ∝ (n−i,d|k + αk)
n−i,wi|k + βwi

n−i,.|k + βV
(4)

, where z−i denotes z1, . . . , zK with zi omitted, n−i,d|k is the number of times
words of document d excluding wi have been assigned to topic k, n−i,wi|k denotes
how many times word wi has been assigned to topic k excluding the current
assignment and n−i,.|k denotes how many times words excluding the current

4In fact, wi is a token (instance of a word), however word is common in literature.
5They are also called hyperparameters as they are parameters of a prior, which is itself

used to draw parameters.
6 Integrating out ϕk and θd means, that all possible values of ϕk and θd are taken into

account, which circumvents to use them as variables explicitly.
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one has been assigned to a topic. The first term of the equation describes the
probability of a document for a particular topic and the second term describes
the probability of a topic for a particular word.

Algorithm 1 LDA
Input: K,α, β, w ∈ d ∈ D

Output: ϕk,w, θd,k

1: Randomly assign topics to words
2: for each iteration do
3: for each d ∈ D do
4: for each wi ∈ d do
5: Draw zi ∼ p(zi = k|z−i, wi)

6: Update nd|k, nw|k and nk

7: end for
8: end for
9: end for

10: Compute ϕk,w (Eq. 5) and θd,k (Eq. 6)

Algorithm: The implementation of an LDA Gibbs sampler is surprisingly
concise (see Alg. 1). First, each token wi gets a topic assigned randomly.
Therefore, an iteration over each document and each word of that document is
applied to pick a topic assignment from a multinomial distribution with α as
prior. According to the topic assignment, the count variables nd|k, nw|k and nk

are updated on each iteration, where nd|k are the number of words assigned to
topic k in document d, nw|k are the number of times word w is assigned to topic
k and nk are number of words assigned to topic k. This initialization procedure
is summarized in Line 1. Next, Gibbs sampling is applied. In each Gibbs
sampling iteration all tokens in the corpus are processed. Each token gets an
topic assigned, which is sampled from Eq. 4. According to that topic assignment
nd|k, nw|k and nk are updated. After all Gibbs iterations are completed ϕk,w

and θd,k can be estimated as follows,

ϕk,w =
nw|k + βw∑V
i=1 nw|k + βw

(5)

θd,k =
nd|k + αk∑K
k=1 nd|k + αk

. (6)
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In many applications the estimates of ϕk,w and θd,k are required as they are the
predictive distributions of sampling a new token from a topic, and sampling a
new token in a document from a topic. But most importantly, θd,k is often used
for document classification.

3.2.3 Biterm Topic Model

The Biterm Topic Model (BTM) was designed with the sparsity problem in
mind. It is a generative probabilistic model, which learns topics by directly
modelling the generation of biterms in the whole corpus, as depicted in Fig. 2.
Biterms are co-occurring word-pairs. Considering a document d = (w1, w2, w3)

with three distinct words, biterms are generated, such that,

d⇒ {(w1, w2), (w2, w3), (w1, w3)}. (7)

The key idea is that two frequently co-occuring words are more likely to belong
to a same topic and the assumption is made that both words of a biterm share
the same topic.

Generative Process: A topic is defined as a distribution over words but
instead of modelling the document generation process, the biterm generation
process is modeled:

1. Draw θ ∼ Dirichlet(α)

2. For k = 1, . . . ,K:

(a) ϕk ∼ Dirichlet(β)

3. For each biterm bi ∈ B:

(a) zi ∼Multinomial(θ)

(b) wi,1, wi,2 ∼Multinomial(ϕzi)

, where K is the number of topics in the collection, ϕk is the discrete probability
distribution over words of topic k, θ is a corpus-level topic distribution, zi is
the topic of biterm bi = (wi,1, wi,2). α and β are single valued priors of a
Dirichlet distribution. The process can be summarized as follows: A corpus-level
topic distribution θ conditioned on the prior α is drawn. Then, a topic-word
distribution ϕk conditioned on β is drawn for each topic k. For each biterm
in the corpus a topic assignment zi is drawn conditioned on the topic-word
distribution θ. According to the topic distribution of zi, a biterm is drawn.

14



β

ϕk

bi

α
θ

zi

NB

K

Figure 2: BTM Plate Notation: The parameters α and β are corpus-level pri-
ors and ϕk are topic-level variables, zi and bi are sampled NB times,
once for each biterm occurring in the corpus. Opposed to LDA, θ
is a corpus-level topic distribution, which is favourable in classifying
short-texts.

Sampling: Similar to LDA, the topic distribution θ, the topic-word distribu-
tions ϕk and the topic assignments for each biterm zi need to be inferred. While
an Gibbs sampling algorithm can be derived for each of these variables, both
θ and ϕk can (again) be calculated using just the topic assignemnts zi. Col-
lapsed Gibbs sampling is used by integrating out the multinomial parameters
and sampling only zi (derivation see A.2).

p(zi = k|z−1, B) ∝ (n−i,k + α)
(n−i,wi,1|k + β)(n−i,wi,2|k + β)

(n−i,.|k + V β + 1)(n−i,.|k + V β)
, (8)

where z−i are the topic assignments for all biterms except the current biterm
bi, n−i,k is the number of biterms of topic k excluding bi, n−i,wi,1|k is how often
any word excluding wi,1 has been assigned to topic k, similarly n−i,wi,2|k is how
often any word excluding wi,2 has been assigned to topic k, n−i,.|k is how often
words have been assigned to topic k and V is the number of distinct words in
the corpus. The first factor in the equation corresponds to the probability for a
particular topic in the corpus. The second factor corresponds to the probability
of a biterm belonging to that topic.
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Algorithm 2 BTM
Input: K,α, β,B

Output: ϕk,w, θk

1: Randomly assign topics to biterms
2: for each iteration do
3: for each bi = (wi,1, wi,2) ∈ B do
4: Draw zi ∼ p(zi = k|z−1, B)

5: Update nwi,1|k, nwi,2|k and nk

6: end for
7: end for
8: Compute ϕk,w (Eq. 10) and θk (Eq. 9)

Algorithm: Before actually starting the sampling process, the corpus consist-
ing of documents need to be transformed into a set of biterms B (see Eq. 7),
which can be computed in one pass over a document. Next, each biterm bi gets
a topic assigned randomly and the count variables nwi,1|k, nwi,2|k and nk are
set up accordingly, where nwi,1|k are the number of times word wi,1 has been
assigned to topic k, nwi,1|k are the number of times word wi,2 has been assigned
to topic k and nk are number of words assigned to topic k (see Algorithm 2,
Line 1). In each Gibbs sampling iterations all biterms are passed, where each
biterm gets a topic assignment sampled from Eq. 8. Finally ϕk,w and θk are
calculated as follows,

ϕk,w =
nw|k + β

n.|k + V β
, (9)

θk =
nk + α

NB +Kα
. (10)

As the BTM does not generate a document-topic distribution, p(z|d) has to be
calculated in additional steps. A document is defined as {b(d)i }

Nd
i=1, where Nd

is the number of biterms contained in document d. The rules of conditional
probability state that,

p(z|d) =
Nd∑
i=1

p(z, b
(d)
i |d) =

Nd∑
i=1

p(z|b(d)i , d)p(b
(d)
i |d). (11)

It is assumed that a biterm’s topic is conditionally independent from d, leading
to,

p(z|d) =
Nd∑
i=1

p(z|b(d)i )p(b
(d)
i |d). (12)
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Based on the parameters learned by Gibbs sampling,

p(z = k|b(d)i ) =
θkϕk,w

(d)
i,1

ϕ
k,w

(d)
i,2∑

k′ θk′ϕ
k′,w

(d)
i,1

ϕ
k′,w

(d)
i,2

. (13)

While the original paper of the BTM suggests an estimation for P (b
(d)
i |d)7,

practically it is assumed to be uniform and therefore it is neglected. The final
topic distribution p(z|d) =

∑Nd

i=1 p(z = k|b(d)i ).

7[33] estimates P (b
(d)
i |d) as the frequency of bi in d divided by the total frequency of bi
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3.3 Vector Autoregression

Autoregressive models deal with time series data, where each observation of a
variable, usually denoted as yt of any point in time t = 1, . . . , T is given. A
data generating process or more specifically a time-series process is a stochastic
process and therefore a statistical, constructed entity. The basic idea of time-
series analysis is that the observed time series is a (partial) realization of such
a stochastic process. An autoregressive process assumes that a time series is
linearly dependent on its past values. Autoregressive models are a popular
choice for explorative analysis, structural analysis and for time series prediction.
In a one dimensional setting, an autoregressive model (AR) is denoted as follows,

yt = β0 + β1yt−1 + · · ·+ βpyt−p + ϵt, (14)

where (yt−1, . . . , yt−p) are lagged values of the dependent variable yt, which
are called regressors. (β0, . . . , βp) are the model parameters, where β0 is called
intercept. p is the maximum of lagged values incorporated into the model,
which defines the order of an autoregressive model. The error terms ϵt are
also called residuals or innovations. The errors are the difference between the
expected value of the data generating process and its realization. In other words,
they express the random portion of the time series process. The multivariate
extension, namely the vector autoregressive model (VAR) incorporates m =

1, . . . ,M time series in the form,

y
(m)
t = β

(m)
1 + β

(m)
1,1 y1,t−1 + · · ·+ β

(m)
M,1y1,t−1+

+ · · ·+ β
(m)
1,p y1,t−p + · · ·+ β

(m)
M,pyM,t−p + ϵt.

(15)

Conceptually, multiple lagged time series are chained to regress each of them.
The regressors are shared among them but parameters are different. The time
series are assumed to be stable. A stable time series is one whose statistical
characteristics such as mean, variance, autocorrelation, are constant over time.
More precisely, the errors are expected to have the following properties:

1. E(ϵt) = 0, where ϵ is expected to be normally distributed.

2. E(ϵtϵ
T
s ) = 0, s ̸= t, which states that there is no correlation over time

(autocorrelation) of individual error terms.

3. The contemporaneous covariance matrix E(ϵtϵ
T
t ) of error terms is positive

semidefinite and all elements off the main diagonal are expected to be zero
indicating that errors across time series are uncorrelated.
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Usually financial data, such as stock prices do not fulfill these properties. One
common technique to stabilize a non-stationary time series is to take the first
difference which is,

∆yt = yt − yt−1. (16)

Intuitively, a VAR-model can be formalized as a multivariate regression model.
Therefore, a more compact notation is used:

y(m) = (y
(m)
1 , . . . , y

(m)
T )′, (T × 1)

yt = (y
(1)
t , . . . , y

(M)
t )′, (M × 1)

xt−1 = (1, yt−1, . . . , yt−p), (1× (Mp+ 1))

X = (x0, . . . , xT ), (T × (Mp+ 1))

βm = (β
(m)
0 , β

(m)
1,1 , . . . , β

(m)
M,1, . . . , β

(m)
1,p , . . . , β

(m)
M,p)

′, ((Mp+ 1)× 1)

ϵ(m) = (ϵ
(m)
t , . . . , ϵ

(m)
T )′, (T × 1)

Then, the VAR-model for m different time series can be rewritten as m distinct
regression models:

y(1) = Xβ(1) + ϵ(1),

. . .

y(M) = Xβ(M) + ϵ(M).

Since there usually is no exact solution to obtain the model parameters βm, the
"best" βm is obtained by minimizing the error, or more precisely the Sum of
Squared Residuals (SSR), which is defined as,

S(β(m)) = ||ϵ(m)||2 = ||y −Xβ(m)||2. (17)

Minimizing the SSR is accomplished with an Ordinary Least Square estimation,
where the best fit β̂(m) is determined by differentiating S(β(m)) with respect to
β(m) and setting to zero (see A.3),

β̂(m) = argminβ(m)S(β(m)) = (X ′X)−1X ′y(m). (18)

After retrieving β̂m a (one-step) forecast is made as follows,

y
(m)
T+1 = Xβ̂(m) (19)
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Granger Causality: Within a VAR framework the connection between mul-
tiple time series can be inspected. Granger causality determines whether one
time series has a weak causal dependency on another. A time series X Granger-
causes another time series Y if predictions on the value of Y based on its own
past values and on the past values of X are better than predictions based merely
on its own past values. Considering a bivariate (M = 2) VAR-model in the form
of Eq. 15, the time series y

(1)
t is Granger-causing y

(2)
t if at least one of the el-

ements (β2,1, . . . , β2,p) is significantly larger than zero. The null hypothesis is
that no Granger-cause exists and the alternative hypothesis states that it does:

H0 : β2,1, β2,2, . . . , β2,p = 0

H1 : β2,i ̸= 0, for at least one of i = (1, . . . , p)
(20)

A F-test is used to determine whether to keep or reject the null hypothesis,
where the test statistic F = MS

MSE . The explained variance in the nominator
called Mean Squares (MS) is SSE

DF , where the Sum of Squared Error (SSE) is∑T
i=t ϵt and the Degree of Freedom (DF) is Mp− 1. The unexplained variance

in the denominator called Mean Squared Error (MSE) is SSE
EDF , where the Error

Degree of Freedom (EDF) is T −Mp. The p-value is the probability for the test
statistic to occur by chance. In this study a significance level of 0.05 is used.
p-values below that level are considered to be statistically significant because
their probability to occur by chance is less than 5%.
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4 Sentiment Biterm Topic Model

The Sentiment Biterm Topic Model (sBTM) combines sentiment analysis and
topic modelling, to capture topic-specific mood. With BTM as a basis, it is
designed to deal with short texts such as tweets. The sBTM is based on the
online version of the BTM and works on timestamped documents. It uses the
topic-word distribution to extract topic-specific mood. sBTM is a two pass
method [37], where topic modelling is performed before sentiment analysis is
applied. As opposed to conventional, document-level approaches it learns topics
and extracts sentiment on a corpus-level.

β(t)

ϕ
(t)
k

b
(t)
i

α(t)
θ(t)

z
(t)
i

N
(t)
B

K

ϕ
(t+1)
k

b
(t+1)
i

θ(t+1)

z
(t+1)
i

N
(t+1)
B

K

Calculate sentiment
and priors

s
(t)
k,c, s

(t)
k

n
(t)
w|k

n
(t)
k

α(t+1)

β(t+1)

Figure 3: sBTM: For each time slice t = (1, . . . , T ) a BTM is trained, where the
topic-word counts n

(t)
w|k and the topic counts n

(t)
k are obtained. The

topic-word counts are used to calculate univariate or multivariate
topic-mood (Eq. 22, 23). n

(t)
w|k and n

(t)
k are also used to calculate

the Dirichlet priors α(t+1) and β(t+1) for the subsequent time slice
(Eq. 24, 25).
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4.1 Sampling

The sBTM is designed to cope with time-stamped documents, where documents
are divided into rigid time slices. In essence, the sBTM fits one BTM model
for one time slice and uses the posterior Dirichlet parameters as priors for the
subsequent time slice. Let t denote the current time slice, then B(t) are all
biterms occurring in time slice t. α(t) are K-dimensional Dirichlet priors of
time slice t, β(t) are V × K-dimensional Dirichlet priors of time slice t, ϕ

(t)
k

is the Dirichlet topic-word distribution of time slice t and θ(t) is the Dirichlet
topic distribution of time slice t. V is the length of the vocabulary and K is
the number of topics. For the first time slice uniform priors are set. A biterm’s
topic is distributed as follows,

p(zi = k|z(t)−1, B
(t), α(t), β(t))

∝ (n
(t)
−i,k + α(t))

(n
(t)
−i,wi,1|k + β(t))(n

(t)
−i,wi,2|k + β(t))

[
∑V

w=1(n
(t)
−i,w|k + β

(t)
k,w) + 1][

∑V
w=1(n

(t)
−i,w|k + β

(t)
k,w)]

.
(21)

Again n−i,w|k is the topic-word count with the word wi omitted. After the
sampling procedure of a time slice t is completed, n(t)

k , the number of times a
topic k has been sampled and n

(t)
w|k, the number of times a word w has been

sampled among topic k are obtained.

4.2 Algorithm

Two methods are formulated to calculate topic-mood, a multivariate and an
univariate one. The multivariate version takes all sentiment categories c =

(1, . . . , C) of LM-dictionary into account. By parsing these lexicons a multi-
dimensional sentiment index lw,c = {(uwi|c, uwi+1|c, . . . , uwV |c)}Cc=1 is created,
where uwi|c = 1 if the word wi is of sentiment c, uwi|c = 0 otherwise. Multivari-
ate topic-mood is calculated as follows,

s
(t)
k,c = lw,cn

(t)
w|k. (22)

The univariate version is based on the concept of sentiment polarity that con-
siders the ratio between positive and negative words. The polarity lexicon
pw = (uwi

, uwi+1
, . . . , uwV

) is created, where uwi
= 1 if word wi is positive,

uwi
= −1 if word wi is negative and uwi

= 0 if it is not contained in the
dictionary. Univariate topic-mood is calculated as follows,

s
(t)
k = pwn

(t)
w|k. (23)
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Next, the priors for the subsequent time slice t+ 1 have to be estimated,

α
(t+1)
k = α

(t)
k + λn

(t)
k , (24)

β
(t+1)
k,w = β

(t)
k,w + λn

(t)
w|k. (25)

The parameter λ ∈ [0, 1] is a decay weight that controls how much influence past
assignments have on future sampling. When λ = 0 sampling across time slices
is independent, if λ = 1 past assignments are accumulated. In other words, λ
defines the memory of the model. The higher λ, the longer past assignments
will be influential. The influence for 0 < λ < 1 decreases exponentially.

Algorithm 3 Sentiment BTM

Input: K,α, β, λ,B1, . . . , BT

Output: {s(t)k }Tt=1

1: Set α(1) = (α, . . . , α), β(1) = {β(1)
k = (β, . . . , β)}Kk=1

2: for t← 1 to T do
3: Randomly assign topics to biterms
4: for each iteration do
5: for each bi = (wi,1, wi,2) ∈ B(t) do
6: Draw topic zi ∼ p(zi = k|z(t)−1, B

(t), α(t), β(t))

7: Update n
(t)
wi,1|k, n

(t)
wi,2|k and n

(t)
k

8: end for
9: end for

10: Compute s
(t)
k (Eq. 23)

11: Update α
(t+1)
k , β

(t+1)
k,w (Eq. 24, 25)

12: end for

Alg. 3 shows the univariate variant of sBTM. Line 1 shows that sBTM deals
with multidimensional priors. They are randomly initialized for the first time
slice according to the single-valued hyperparameters α and β. Lines 3-9 are
similar to the BTM (see Alg. 2), where the topic-word distribution of a time
slice is calculated. In line 10 topic-specific mood is retrieved. In line 11 the
priors for the next time slice are calculated.

sBTM draws a topic for each biterm in each iteration over a time slice. It needs∑T
t NiterKN

(t)
B iterations to complete, where Niter is the number of Gibbs-

iterations, K the number of topics and N
(t)
B is the number of biterms of time
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slice t. Each biterm is passed NiterK times, giving a runtime complexity of,

O(NiterKNB), (26)

where NB is the overall number of biterms. A document containing l distinct
words will generate l(l−1)/2 biterms. Under the assumption that all documents
have the same number of distinct words, the overall number of biterms NB =
NDl(l−1)

2 , where ND is the number of documents in the corpus. Since sBTM is
an online algorithm that iterates over each time slice separately, the memory
usage is kept low. sBTM has K+V K+N

(t)
B variables in memory with V being

the vocabuary size.
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5 Empirical Study

Although the sBTM is a generic model for topic based mood extraction, its
performance is evaluated in application of financial time series prediction. The
target assets are cryptocurrencies since there is evidence that these assets are
sensitive to public mood [38][39]. Cryptocurrencies are expected to be a ho-
mogeneous asset group. The idea is, that sBTM can be applied over multiple
currencies to increase the validity of this experiment.

5.1 Data

The cryptocurrencies are chosen according to their market capitalization and
release date. Currencies with high market capitalization are expected to be
more present on Twitter than low-cap coins. A (relatively) long coin history is
essential to get data over a long period of time. The currencies of choice are
Bitcoin, Etherum, Litecoin and Ripple, with the target currency being USD.
The data is scraped from Yahoo! Finance, a financial news site that provides
pricing data from a variety of financial assets.

The official, non-premium Twitter API does not provide historical tweets rang-
ing back beyond a 7-day period, forcing one to find roundabout ways to collect
the data. A scraper is built to extract tweets accessible through the Twitter Ad-
vanced Search8, a web-interface by Twitter, which allows one to search historic
tweets based on certain filter criteria. The scraper retrieves HTML by mak-
ing REST-Requests. Tweets are parsed from HTML using the Python library
Beautiful Soup. This way, tweets ranging from August, 8th 2015 to Jannuary,
24th 2019 are retrieved. The filter of the Twitter Advanced Search was chosen
to exclusively provide English tweets including the full name of the currencies
(case-insensitive). Tweets provided by the Twitter Advanced Search are already
filtered to exclude spam-content: “In order to keep your search results relevant,
Twitter filters search results for quality Tweets and accounts. Material that
jeopardizes search quality or creates a bad search experience for other people
may be automatically removed from Twitter search”9. In comparison to existing
work [5][40], this data set spans over a wider time range and consists of higher
quality tweets.

8https://twitter.com/search-advanced (25.01.2019)
9https://help.twitter.com/en/rules-and-policies/twitter-search-policies - (27.04.2019)
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Table 1: Tweets referring to Bitcoin, Ethereum, Litecoin and Ripple are
scraped from the Twitter Advanced Search. The data ranges from
August, 8th 2015 to Jannuary, 24th 2019. Low quality tweets are
removed from the corpus.

Currency Bitcoin Ethereum Litecoin Ripple Total

tweets 455,829 100,861 55,702 76,254 599,964
quality tweets 123,133 20,459 12,204 26,749 182,545

5.1.1 Preprocessing

In a first iteration irrelevant and noisy content is removed. As it is common
in the Crypto-community to mention multiple coins as hash- and cashtags (e.g.
“Crypto is the future #bitcoin #litecoin #ripple”), tweets with more than four
hashtags or cashtags are removed. The number of retweets indicates the pop-
ularity of a tweet. Under the assumption that popular tweets are more influ-
ential in financial markets than unpopular ones, tweets with little retweets are
dropped. As depicted in Fig. 4, the popularity of cryptocurrencies increased
during the inspection period, which is why the number of retweets has to be set
in temporal context. Here, the median of retweets was calculated over a moving
window of 30 days and all tweets below are dropped.

sBTM has a relatively high runtime complexity10 which depends on the
number of biterms in the corpus. Therefore, the number of distinct words in
the corpus is reduced. Under the bag-of-words assumption irrelevant words can
be easily eliminated. The most common 1,000 words of each coin corpus are
extracted and supplemented by the 4,135 opinion words defined by Loughran
and McDonald11. Next, stop words as defined by Loughran and McDonald11

are removed, since these words (and, the, of, ...) do not provide any information
content. The search keywords and single character "words", hashtags, cashtags
and URLs are stripped as well. Finally, the Porter stemming algorithm [41]
is used to remove unnecessary word variations, leading to a final vocabulary
of approximately 2,300 distinct terms. Tweets which contain less than four
indexed terms are dropped. In the end 182,545 out of 599,964 tweets are left.
With respect to the relative sparse data set, tweets are grouped on a weekly
basis. The average number of tweets per week are 684 for Bitcoin, 113 for

10BTM has l(l− 1)/2 times the runtime complexity of LDA, where l is the avg. number of
distinct words in a tweet

11https://sraf.nd.edu/textual-analysis/resources (23.03.2019)
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Ethereum, 234 for Dash, 67 for Litecoin and 147 for Ripple.

5.1.2 Topic Exploration

For LDA and BTM the number of topics needs to be known beforehand. Some
experiments have been conducted with multiple numbers of topics. A small
number (5,10) lead to unbalanced topic clusters, which is why the number of
topics has been set to 20. To check whether LDA or BTM performs best on the
given data set, one week of data12 is picked. Both algorithms are applied with
the same hyperparameters, K = 20, α = 1, β = 0.01 and 100 Gibbs sampling
iterations. The quality of clustering is determined based on the coherence score
introduced by [7],

C(k,Q(k)) =

M∑
m=2

m−1∑
n=1

log
D(q

(k)
m , q

(k)
n ) + 1

D(q
(k)
n )

, (27)

where Q(k) = (q
(k)
m , . . . , q

(k)
M ) are the M most probable words of topic k, D(q

(k)
n )

is the number of times word q
(k)
n occurs in a document and D(q

(k)
m , q

(k)
n ) is the

number of times words q
(k)
m and q

(k)
n co-occur in a document. The assumption

is that a topic is more coherent if its most probable words often co-occur in
the corpus. Numbers closer to zero indicate higher coherence of topics. Tab. 2
suggests that the BTM is the right choice for the given data.

12The last full week ranging from 14.01.2019 until 20.01.2019
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Table 2: LDA and BTM is applied on a subset of the corpus to extract 20
topics. The coherence score of Eq. 27 with M = 20 is calculated.
BTM does produce more coherent topics (smaller coherence score)
across all currencies.

Topic Bitcoin Ethereum Dash Litecoin Ripple
BTM LDA BTM LDA BTM LDA BTM LDA BTM LDA

0 -113 -106 -91 -75 -76 -77 -52 -40 -83 -69
1 -110 -120 -56 -70 -65 -66 -33 -44 -69 -68
2 -113 -121 -69 -79 -63 -87 -48 -38 -47 -74
3 -106 -114 -77 -90 -76 -81 -53 -51 -49 -70
4 -105 -123 -57 -81 -62 -70 -48 -49 -58 -58
5 -110 -125 -58 -86 -66 -66 -15 -56 -46 -70
6 -105 -113 -72 -93 -61 -81 -31 -39 -43 -65
7 -81 -113 -75 -80 -45 -84 -36 -37 -65 -49
8 -108 -116 -75 -87 -88 -73 -29 -32 -45 -74
9 -112 -118 -67 -90 -67 -73 -11 -61 -38 -64
10 -112 -116 -55 -91 -79 -78 -18 -49 -75 -62
11 -98 -108 -74 -86 -87 -73 -38 -46 -49 -58
12 -114 -117 -64 -79 -69 -72 -41 -43 -69 -62
13 -107 -126 -78 -87 -43 -87 -39 -25 -47 -78
14 -107 -106 -74 -83 -84 -81 -2 -54 -15 -81
15 -99 -121 -78 -95 -63 -80 -35 -50 -82 -66
16 -103 -113 -67 -81 -53 -90 13 -48 -47 -67
17 -108 -123 -66 -74 -68 -79 -21 -47 -47 -75
18 -93 -112 -79 -82 -78 -83 -38 -55 -73 -76
19 -61 -110 -19 -87 -34 -76 0 -42 -26 -72
avg. -103 -116 -67 -84 -66 -78 -29 -45 -54 -68

To apply sBTM, λ needs to be determined. A rather high λ is chosen. The
aim is to have consistent topic over the complete time period. A small λ would
lead to a more dynamic topic evolution, which would complicate exploratory
analysis. sBTM is applied with λ = 0.95, K = 20, α = 1, β = 0.01 and 100
Gibbs iterations per time slice. The sBTM is implemented in python/cython and
open-sourced on Github13. Topics are often inspected by looking at the most
probable words. Tab. 3 shows the 20 most probable words for each Bitcoin
topic. Since preprocessing involves Porter-stemming, the words are shortened.

13https://github.com/markoarnauto/biterm - 16.05.2019
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Multiple, little informative modal verbs are present (will, can, should) indicating
that BTM is prone to background words. While most topics seem fuzzy, which
is typical in sub-topic modelling, some patterns can be recognized. For example,
topic 6 covers automated price updates, which are usually of the form "The latest
Bitcoin Price Index is xxxx USD". Topic 19 covers tweets of the alleged unveiling
of the Bitcoin inventor Satoshi Nakamoto, that had high Twitter attraction in
early 2016. Topics of other currencies are provided in the Appendix B.
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Table 3: The 20 most probable words for each of 20 Bitcoin topics.

Topics Top 20 words

0 will, use, can, blockchain, your, peopl, world, like, us, crypto, one, what,
exchang, money, say, time, new, make, bank, get

1 crypto, blockchain, currenc, new, digit, money, news, invest, via, can, say,
launch, other, make, week, valu, fund, asset, read, technolog

2 will, make, like, exchang, could, time, commun, great, support, project,
should, even, still, today, open, fork, thank, block, via, real

3 will, can, market, get, use, buy, like, btc, cash, day, today, back, want,
trade, look, commun, know, take, coin, week

4 what, bank, currenc, use, market, would, peopl, go, central, see, btc, crypto,
big, next, there, govern, time, news, may, im

5 your, here, crypto, buy, get, time, what, go, market, peopl, use, there, btc,
year, good, start, us, read, look, still

6 price, usd, latest, index, exchang, across, averag, here, market, btc, news,
crypto, last, day, live, watch, sinc, follow, trade, volum

7 like, follow, retweet, money, want, notif, peopl, crypto, there, us, rt, year,
see, everyon, one, followback, everyoneturn, day, make, what

8 exchang, can, your, buy, trade, new, will, btc, user, card, payment, sell,
want, say, launch, store, cash, transact, coinbas, give

9 market, will, exchang, price, year, trade, time, go, first, new, next, currenc,
what, global, becom, week, cap, month, could, one

10 market, one, like, would, futur, new, develop, say, exchang, work, want,
great, token, major, user, coin, start, project, contract, compani

11 will, what, can, here, crypto, day, peopl, know, one, use, us, fork, make,
come, block, hard, week, follow, happen, futur

12 will, your, follow, first, token, btc, announc, make, wallet, network, trade,
cash, use, launch, blockchain, platform, there, payment, time, mine

13 today, trade, market, get, join, day, price, year, us, crypto, valu, use, sup-
port, commun, go, block, dont, mine, month, live

14 will, new, your, one, price, there, here, world, market, come, want, today,
year, know, see, dont, follow, commun, first, currenc

15 price, new, high, time, your, can, go, what, buy, week, there, one, hit, token,
look, hour, month, wallet, updat, everi

16 will, like, market, your, day, price, money, dont, back, time, look, currenc,
can, new, get, us, transact, year, work, next

17 will, like, new, day, world, one, price, valu, million, here, first, cash, everyon,
make, start, coin, thing, back, adopt, take

18 your, will, payment, first, accept, get, wallet, bank, new, news, use, becom,
via, adopt, see, user, transact, retweet, way, good

19 satoshi, he, craig, wright, nakamoto, creator, claim, us, australian, say, man,
creat, scheme, founder, report, ponzi, regul, take, fraud, back
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Table 4: The autocorrelation coefficients of weekly abnormal return is shown.
The bold autocorrelation coefficients are statistically significant.
Ethereum’s abnormal return is autocorrelated at lag 3 and beyond.
Litecoin has autocorrelation on lag 1 and 2.

Lag Bitcoin Ethereum Litecoin Ripple

1 0.033 0.013 -0.182 0.122
2 0.055 0.053 0.034 0.022
3 0.095 0.275 0.014 -0.028
4 -0.064 -0.056 0.009 0.023
5 0.001 -0.072 0.062 0.156
6 0.069 0.089 -0.005 0.159
7 -0.055 -0.123 -0.079 -0.046

5.2 Baselines

The effectiveness of the sBTM in cryptocurrency price prediction is compared
against baseline forecasts. The idea is to find some metrics that yield predictive
value and test whether sBTM outperforms those. First, it is tested whether
historic price yields insight on future price movement by inspecting autocorre-
lations. Then it is tested whether mere Twitter activity or topic-specific Twitter
activity is predictive. Next, one-dimensional and multidimensional mood is an-
alyzed.

5.2.1 Price

A popular and simple baseline in price prediction tasks is to use past prices
to predict future prices. If prices yield systematic pattern this is the case. A
popular method to check for linear patterns is to inspect the autocorrelation.
Since correlation works on stable time series, the weekly abnormal return of
altcoins (as defined in Eq. 1) is used instead of the absolute price. Tab. 4 shows
that Ethereum and Litecoin are autocorrelated across multiple lags/weeks, with
bold-lettered p-values being significant. The significance of autocorrelation is
determined with the Ljung Box Test. Usually, financial time series do not yield
autocorrelation. A possible explanation for the autocorrelation of Ethereum and
Litecoin is the systematic relation to Bitcoin price [9], as the abnormal return
is defined as the difference to Bitcoin’s return.
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5.2.2 Activity

Figure 4: The number of tweets about a currency (red) and the price (blue) is
depicted. Twitter activity and asset prices are closely aligned. The
price peaked at the end of 2017 before the so-called crypto-bubble
burst.
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Table 5: Return → Activity: The p-values of Granger causality analysis indi-
cate whether price movement impacts Twitter activity. The lag indi-
cate the order of the VAR-model used for Granger-causality testing.
Statistically significant Granger-cause is indicated by bold-lettered p-
values. Price movement effects Twitter activity for Bitcoin, Litecoin
and Ripple.

Lag Bitcoin Ethereum Litecoin Ripple

1 0.001 0.989 0.013 0.270
2 0.001 0.656 0.051 0.052
3 0.000 0.695 0.145 0.005
4 0.000 0.617 0.214 0.001
5 0.000 0.657 0.020 0.011
6 0.000 0.654 0.056 0.013
7 0.000 0.570 0.110 0.008

It is well known that publicity can effect price formation [42][13][38]. Here the
number of tweets14 (Twitter activity) serves as metric for public attention. Fig.
4 suggests that there is correlation between Twitter activity and price forma-
tion. It also shows that Twitter activity is not stable over time. With the rise
of attention regarding cryptocurrencies the activity increased and peaked at the
end of 2017. The first difference of Twitter activity is tested to Granger-cause
returns and the other way round. The Granger causality test is conducted on 7
weekly lags. P-values are tested on significance with a significance-level of 0.05
throughout this study. It is observed that Twitter activity regarding Bitcoin
does not lead price movement but the other way round, price jumps accelerate
Twitter activity. In the case of Litecoin and Ripple, Twitter activity does lead
price movements and the other way round. This bidirectional relation between
Twitter and financial markets has already been observed by [24]. Here it is
argued, that Twitter has an feedback effect on cryptocurrencies. E.g. Lite-
coin’s return increases Twitter activity and Twitter activity again effects price
formation.

14More precise, it is the number of tweets obtained from the web-scraper. This quantity
only approximates the true Twitter activity.
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Table 6: Activity → Return: The p-values show that Twitter activity has sig-
nificant impact on Litecoin and Ripple. Statistically significant p-
values are bold-lettered.

Lag Bitcoin Ethereum Litecoin Ripple

1 0.543 0.631 0.019 0.023
2 0.139 0.713 0.000 0.045
3 0.328 0.656 0.000 0.027
4 0.607 0.797 0.000 0.124
5 0.764 0.862 0.000 0.057
6 0.169 0.913 0.000 0.010
7 0.056 0.906 0.000 0.002

The next baseline is topic specific Twitter activity. A novel approach of extend-
ing Twitter activity by topic modelling is tested. Under the assumption that
some topics are more influential on price formation than others, it is checked
whether topic specific activity has predictive power. The topic word count nz

from the sBTM is used as a measure of topic-specific activity. nz denotes how
many tokens are assigned to a topic. Topic-activity (see appendix Fig. 8) is not
stable over time and the first difference is used with a lag of 7 for Granger anal-
ysis. Tab. 7 shows which topics are significantly influential. Although, Bitcoin’s
overall Twitter activity is not influential, topic-activity of topic 2, 3, 11, 12, 14
and 16 are influential. Interestingly, the most probable word of these topics is
"will". Obviously, tweets dealing with the future of Bitcoin have impact on fu-
ture returns. It is argued that topic-specific activity yields finer-grained insight
than non-topic activity.
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Table 7: Topic activity → return: Topic modelling via BTM is applied yield-
ing 20 distinct topics for each currency. The weekly change in topic-
activity is tested to Granger-cause price movements. Certain topic-
activities yield predictive insight on Bitcoin, Litecoin and Ripple
price movement indicated by bold-lettered p-values. Ethereum’s price
movement is not influenced by any topic-activity.

Topic Bitcoin Ethereum Litecoin Ripple

0 0.116 0.999 0.000 0.032
1 0.316 0.544 0.021 0.058
2 0.036 0.926 0.838 0.080
3 0.049 0.680 0.007 0.026
4 0.424 0.953 0.056 0.011
5 0.120 0.908 0.000 0.008
6 0.148 0.989 0.032 0.002
7 0.119 0.675 0.007 0.006
8 0.104 0.953 0.004 0.026
9 0.105 0.944 0.001 0.000
10 0.365 0.977 0.395 0.028
11 0.046 0.665 0.001 0.091
12 0.045 0.604 0.053 0.005
13 0.287 0.777 0.059 0.011
14 0.037 0.994 0.053 0.005
15 0.105 0.732 0.002 0.007
16 0.030 0.149 0.005 0.001
17 0.051 0.310 0.005 0.003
18 0.066 0.539 0.011 0.000
19 0.400 0.282 0.898 0.080

5.2.3 Mood

In multivariate mood analysis it is tested if mood dimensions Granger-cause
price formation. Mood is extracted as described in Ch. 4 and normalized15.
Each dimension corresponds to a sentiment dimension defined in the LM-dictionary.
Fig. 5 depicts that the public discourse about cryptocurrencies has been grad-
ually charged with emotions. It is also shown that constraining mood is absent.
Tab. 8 shows that Bitcoin is most sensitive to Twitter mood while altcoins are

15Divided by the number of tweets within a time slice
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hardly influenced by Twitter mood.
Tab. 8 suggests that positive and negative mood are useful mood dimension.

In form of a polarity score, as the difference between positive and negative
words, these dimensions are inspected more closely. The average polarity score
of all currencies is depicted in the Appendix 9. As indicated by multivariate
mood analysis, polarity does have significant impact on Bitcoin (see Tab. 9).
Surprisingly, Litecoin is neither caused by negative nor positive mood, but it is
caused by polarity. To conclude the findings on multivariate mood and polarity
analysis, Bitcoin is driven by Twitter emotions while there is little evidence
that alcoins are. It is argued that particular altcoins do not attract enough
public attention to be decoupled from overall crypto mood. It is important to
note, that this study investigates dependencies regarding a currencies individual
mood. Nevertheless, it might be possible that altcoins are driven by Twitter
mood referring to Bitcoin or the overall Blockchain-technology which is not
inspected here.

Table 8: Mood → return: Granger causality is applied with an VAR-model
of order 7. Bold-lettered p-values indicate significant Granger-cause.
Bitcoin is Granger-caused by negative, positive, uncertain and modal
mood and Ripple by positive mood. Ethereum and Litecoin are not
driven by Twitter mood.

Sentiment Bitcoin Ethereum Litecoin Ripple

negative 0.000 0.716 0.300 0.783
positive 0.016 0.125 0.703 0.016
uncertain 0.040 0.563 0.751 0.159
litigous 0.062 0.308 0.871 0.893
modal 0.037 0.286 0.549 0.474
constraining 0.076 0.405 0.219 0.269
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Table 9: Polarity → return: Polarity is the difference of positive and negative
mood. It is tested whether polarity Granger-causes returns across 7
lags. Bitcoin is significantly Granger-caused by polarity, indicated by
bold-lettered p-values. Litecoin is Granger-caused by polarity on lag
3 and 4. Ethereum and Ripple are not caused by polarity.

Sentiment Bitcoin Ethereum Litecoin Ripple

1 0.000 0.141 0.767 0.629
2 0.000 0.307 0.296 0.748
3 0.000 0.077 0.028 0.660
4 0.000 0.161 0.043 0.725
5 0.000 0.187 0.057 0.757
6 0.000 0.179 0.091 0.505
7 0.000 0.265 0.111 0.448
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Figure 5: Mood is measured by counting sentimental words as defined in the
LM-dictionary. More precisely, mood is the average number of sen-
timental words occurring in a tweet. The magnitude of mood is
dependent on the number of sentimental words available per mood
dimension. The LM-dictionary provides 2355 negative, 354 positive,
297 uncertain, 903 litigous, 60 modal and 184 constraining words.
Constraining words do hardly appear which is why this mood di-
mension is of little use.
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5.3 Topic Mood

Figure 6: Topic-mood: The topic based mood of Bitcoin topic 19, which refers
to the alleged unveiling of the Bitcoin inventor on Mai 2016. Multi-
variate sBTM is depicted above. The negative and litigous portions
are predominant and the positive portions faded almost completely
as the unveiling was more and more doubted by the Twitter commu-
nity. The difference between negative and positive mood is expressed
by univariate sBTM beneath.

Applying multivariate sBTM on a corpus results in K×C time series, where K

is the number of topics and C is the number of mood dimensions. Univariate
sBTM results in K time series, each expressing the polarity of a topic. Fig. 6
exemplifies the difference between multivariate and univariate sBTM on Bitcoin
topic 19, which refers to the alleged unveiling of the Bitcoin inventor on Mai
2016. While the multivariate sBTM extracts various mood dimensions, the
univariate sBTM extracts topic polarity.
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Tab. 10 depicts the effect of univariate sBTM on the currencies. It shows
that there is one influential topic on Ripple and none on Ethereum and Litcoin.
This again demonstrates that altcoins are almost independent from Twitter
mood. In contrast, Bitcoin is effected by most topics. 15 out of 20 Bitcoin-
topics Granger-cause price formation. The remaining topics are considered to
be irrelevant or spam. Indeed Topic 7 covers spam content indicated by its most
probable words: ’like, follow, retweet, money . . . ’ (see Tab. 3). Topic 19 refers
to the unveiling of Satoshi Nakamoto, which is obviously also not influential
over the complete testing period.

Table 10: Topic polarity → return: It is tested whether topic-specific mood
Granger-causes price formation. The lag of the VAR-model used for
Granger analysis is 7. Significant p-values are bold-lettered. Bit-
coin’s price movement is Granger-caused by each topic’s polarity
except that of topic 5, 7, 12, 18 and 19. Altcoins are hardly influ-
enced by Twitter mood.

Topic Bitcoin Ethereum Litecoin Ripple

0 0.000 0.711 0.585 0.213
1 0.000 0.560 0.502 0.489
2 0.000 0.536 0.755 0.061
3 0.000 0.641 0.443 0.536
4 0.000 0.185 0.278 0.007
5 0.134 0.770 0.767 0.428
6 0.000 0.090 0.365 0.288
7 0.052 0.749 0.177 0.834
8 0.000 0.864 0.339 0.097
9 0.000 0.811 0.716 0.327
10 0.001 0.106 0.671 0.339
11 0.000 0.964 0.477 0.414
12 0.856 0.769 0.664 0.088
13 0.000 0.220 0.647 0.451
14 0.010 0.942 0.732 0.494
15 0.000 0.515 0.185 0.847
16 0.004 0.594 0.161 0.315
17 0.000 0.594 0.270 0.955
18 0.055 0.748 0.369 0.098
19 0.561 0.190 0.301 0.474

40



5.4 Prediction

In the prediction task the baselines and the sBTM are compared against each
other. Of special interest is the comparison between non-topic and topic-specific
approaches. The high dimensional data provided by multivariate sBTM is diffi-
cult to incorporate in a prediction task with a limited number of observations.
Therefore the univariate (polarity) sBTM is preferred. Univariate sBTM still
gives K (number of topics) dimensional data, which is critical to incorporate
into a VAR-based prediction. [6] selected relevant topics by examining the most
prominent words of a topic. In this study a systematic selection criterion is used.
The data set is split by half, yielding 90 weeks of training data and 90 weeks of
test data. Granger causality is applied on the training data to tag each dimen-
sion with a p-value indicating the probability of a time series to Granger-cause
price formation. For this Granger-testing, a VAR-model of order 2 is used two
minimize spurious causality yielded by higher order models. Then, 4 dimensions
having the smallest p-values are selected as features. This selection procedure
does not guarantee to pick all significant dimensions nor does it guarantee that
any of the selected dimension is significant but it can be easily applied across
multiple currencies. The selected dimensions for Bitcoin and their impulse re-
sponses (based on the training data) are depicted in Fig. 7. As expected, an
increase in topic-polarity results in increased subsequent return.
There is no easy way to determine the optimal lag for multiple models over
multiple currencies. Therefore, prediction is performed over multiple lags. 1 up
to 3 lags are used to predict abnormal return. Similar to [6], a moving-window
approach is applied, where VAR-models are fit on a window with the size of the
training data (90 weeks) and a one-step forecast is performed. Then the window
is shifted by one time slice and another model is trained giving the next one-
step forecast. This moving-window approach is favourable in economic forecasts.
Due to the dynamic nature of financial time series (and public mood) it is more
effective in learning short term relationship. This approach also increases the
size of the test data. The most basic forecast based on price is performed using
an AR-model. The remaining models, namely Activity, Topic Activity, Senti-
ment and sBTM are based on a VAR-model that additionally incorporates past
prices. The conventional evaluation metric in economic time series prediction
is up-down accuracy. It denotes how often the direction of price movement is
predicted in percent. Topic-activity as well as sBTM outperform their non-topic
baselines suggesting that topic-specific analysis is favourable. The best predic-
tion accuracy is achieved by Litecoin’s topic-activity with 71%. A notable 69%
prediction accuracy was achieved by sBTM on Bitcoin outperforming the best
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Figure 7: The impulse response of polarity on Bitcoin returns is shown. These
4 topics (2,5,0,1) are most influential in the training set, which is
why they are chosen as input features for the prediction task. It is
shown that an increase in polarity causes latent increase in price.

conventional method by 3% prediction accuracy.

42



Table 11: All baselines as well as the sBTM are used in an prediction task.
Prediction is accomplished within a VAR-Framework. Each method
is tested on multiple currencies over multiple lags. The average
accuracy for each method is presented at the bottom.

Currency Lag Price Activity Topic Activity Sentiment sBTM

Bitcoin 1 0.54 0.59 0.57 0.66 0.66
2 0.53 0.58 0.57 0.63 0.69
3 0.54 0.53 0.60 0.58 0.64

Ethereum 1 0.50 0.48 0.59 0.54 0.53
2 0.50 0.53 0.50 0.53 0.60
3 0.60 0.54 0.49 0.51 0.54

Litecoin 1 0.66 0.63 0.69 0.68 0.64
2 0.63 0.64 0.69 0.67 0.62
3 0.59 0.66 0.71 0.61 0.62

Ripple 1 0.51 0.49 0.43 0.43 0.54
2 0.49 0.50 0.44 0.50 0.51
3 0.53 0.48 0.43 0.43 0.49

0.55 0.55 0.56 0.56 0.59
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6 Discussion

6.1 Conclusion

The experiment has been setup with the assumption that the results among
cryptocurrencies are similar. This assumption did not hold. Ethereum and
Litecoin price yield systematic pattern, which is why the most basic AR-model
achieved extraordinary accuracy. The best accuracy of the AR-model on Ethereum
is 60% and on Litecoin 66%. Since abnormal return of altcoins has been defined
as the deviation from Bitcoin’s return, these patterns might be explained by
the correlation of altcoins and Bitcoin [9]. This suggests that statistical arbi-
trage strategies between Bitcoin and alctoins are profitable. It is shown that
Litecoin’s and Ripple’s return is Granger-caused by Twitter-activity. The fact
that mere publicity impacts price formation is coherent with existing literature
[42][4]. It was demonstrated that the connection of Twitter activity and price
change can also be the other way round. In the case of Bitcoin, Litecoin and
Ripple, Twitter activity is accelerated by price movements. This bi-directional
causality of asset pricing and publicity is well known [24], which underpins the
validity of so-called feedback models. Feedback models suggest that e.g. public-
ity accelerates price movements, price movements in turn accelerates publicity
and so on and so forth.

The novel approach to use topic-activity slightly outperformed it’s non-topic
counterpart, mostly because of the high performance on Litecoin. Granger
analysis (Tab. 5, 7) indicates that activity and topic-activity are also influential
on Ripple, nevertheless Ripple’s return is predicted badly. Slight discrepancies
between Granger analysis and the final prediction is due to the fact that Granger
analysis was performed on the complete 180 weeks of data while the prediction
model was performed on 90 weeks of data (due to training and test split).
The relation between Twitter activity and Ripple price formation must have
changed in that time. While topic-specific activity might be a promising subject
for further research, there are better models than the BTM. Algorithms that
capture topic burstiness, such as [43][44] might be better suited.

Fig. 8 indicates that dynamics drastically changed after the burst of the
crypto-bubble in the end of 2017. [5] simply eliminates irregular, abnormal
economic episodes. Here the complete time period of the test data is predicted
which confirms the robustness of the provided method. The moving VAR-model
adapts well to dynamic economics.

Mood of altcoins does not impact price formation. Probably, because alt-
coins are too closely tied on Bitcoin, which is dominant in cryptocurrency price
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formation. The public mood regarding particular altcoins might be overruled
by the mood about Bitcoin. But Twitter mood is influential on Bitcoin. Topic-
mood of Bitcoin achieved a maximum of 69% accuracy and an average accuracy
of 66%. The average non-topic mood prediction was outperformed by 4%. This
is because sBTM successfully separates relevant from irrelevant topics. The
most characteristic words of irrelevant topics are typical spam-words, such as
like, follow, retweet. sBTM is proven to be an effective method in extracting
topic-specific mood.

6.2 Further Work

The strength of BTM in short-text modelling is undoubted. Nevertheless, in
this experiment topics are dense and background words are shared across most
of the topics. It is argued that BTM performance is improved if the generation
of background-words will be incorporated into the generative process.
It is shown that most topics Granger-cause Bitcoin price. Probably because the
topics are extremely similar. sBTM might work best when a thematically diverse
data set is inspected. Considering a corpus of global news headlines referring
to a broad spectrum of topics, sBTM can be exploited to better forecast assets
like the DJIA, which is influenced by various, highly diverse topics.

In principle sBTM is a two-pass method, where topics are extracted before
sentiment. But, sentiment analysis is highly dependent on the domain to which
it is applied, such that the sentimental value of a word can change across topics.
For instance, the word low in low cost and low salary have opposite polarity. It
might be beneficial to incorporate sentiment analysis in the probabilistic process
of BTM. Similar to [30] and [45], topic and sentiment modelling could be done
in parallel.

This study sheds light on Bitcoin and altcoin price formation. While there
is significant research on Bitcoin price formation [46][47], there is little inves-
tigation done on altcoins. Since altcoins are highly influenced by Bitcoin and
Bitcoin is influenced by its Twitter-mood it might be worth testing if Bitcoin
mood influences altcoins.

BTM has a relatively long runtime-complexity. As Gibbs sampling is diffi-
cult to parallelize, it might be worth investigating into more efficient sampling
procedures. A faster version is presented by [48], which could serve as a basis
for a faster sBTM.
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A Theory

A.1 LDA sampling-derivation

For collapsed Gibbs sampling the probability of a topic z being assigned to a
word wi, given all other topic assignments, is needed:

p(zi|z−i, α, β, w). (28)

By the rules of conditional probability, this can be rewritten such that:

p(zi|z−i, α, β, w) =
p(zi, z−i, w|α, β)
p(z−i, w|α, β)

∝ p(zi, z−i, w|α, β)

= p(z, w|α, β) =
∫ ∫

p(z, w, θ, ϕ|α, β)dθdϕ.
(29)

Considering the LDA model definition, the equation can be expanded to get:

p(w, z|α, β) =
∫ ∫

p(ϕ|β)p(θ|α)p(z|θ)p(w|ϕz)dθdϕ (30)

Then, terms with dependent variables are seperated:

p(w, z|α, β) =
∫

p(z|θ)p(θ|α)dθ
∫

p(w|ϕz)p(ϕ|β)dϕ (31)

Both terms are multinomial distributions. The Dirichlet distribution is conju-
gate to the multinomial distribution. Therefore both terms can be reformulated
with the beta function being B(.) =

∏
k Γ(.)

Γ(
∑

k .) . Γ(.) is the gamma function. Start-
ing with the first term,∫

p(z|θ)p(θ|α)dθ =

∫ ∏
i

θd,zi
1

B(α)

∏
k

θαk

d,kdθd

=
1

B(α)

∫ ∏
k

θ
nd,k+αk

d,k dθd

=
B(nd,. + α)

B(α)
.

(32)

Similarly, the second term can be reformulated as follows,∫
p(w|ϕz)p(ϕ|β)dθ =

∫ ∏
d

∏
i

ϕzd,i,wd,i

∏
k

1

B(β)

∏
w

ϕβw

k,wdϕk

=
∏
k

1

B(β)

∫ ∏
w

ϕ
βw+nk,w

k,w dϕk

=
∏
k

B(nk,. + β)

B(β)
.

(33)
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Substituting these equations into 31 gives,

p(w, z|α, β) =
∏
d

B(nd,. + α)

B(α)

∏
k

B(nk,. + β)

B(β)
. (34)

Then the chain rule is applied. The hyperparameters α and β are left out for
clarity.

p(zi|z−i, w) =
p(w, z)

p(w, z−i)
=

p(z)

p(z−i)
.

p(w|z)
p(w−i|z−i)p(wi)

∝
∏
d

B(n.|d + α)

B(n−i,.|d + α)

∏
k

B(nk|. + β)

B(n−i,.|k + β)

∝
Γ(nd|k + αk)Γ(

∑K
k=1 nd|k + αk)

Γ(n−i,d|k + αk)Γ(
∑K

k=1 n−i,d|k + αk)
.
Γ(nw|k + βw)Γ(

∑W
w=1 n−i,w|k + βw)

Γ(n−i,w|k + βw)Γ(
∏W

w=1 nw|k + βw)

∝ (n−i,d|k + αk)
n−i,w|k + β∑

w′ n−i,w|k + βw′

(35)

A.2 BTM sampling-derivation

For Gibbs sampling the probability of a topic z being assigned, given all biterms
and all other topic assignments, is needed

p(zi|z−1, B) =
p(z,B)

p(z−i, B)
∝ p(B|z)p(z)

p(B−i|z−i)p(z−i)
. (36)

To use collapsed Gibbs sampling ϕ is integrated out:

p(B|z) =
∫

p(B|z, ϕ)p(ϕ)dϕ

=

∫ (NB∏
i=1

p(bi|zi, ϕzi)

)
p(ϕ)dϕ

=

∫ K∏
k=1

(
Γ(Wβ)

Γ(β)W

W∏
w=1

ϕ
nw|k+β−1
k,w dϕk

)

=

(
Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nw|k + β)

Γ(n.|k +Wβ)
,

(37)
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where Γ(.) is the Gamma function. Next, θ is integrated out:

p(z) =

∫
p(z|θ)p(θ)dθ

=

∫ (NB∏
i=1

p(zi|θ)

)
p(θ)dθ

=

∫
Γ(Kα)

Γ(α)K

K∏
k=1

θnk+α−1
k dθ

=
Γ(Kα)

Γ(α)K

∏
k Γ(nk + α)

Γ(NB +Kα)
.

(38)

Similarly,

p(B−i|z−i) =

(
Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(n−i,w|k + β)

Γ(n−i,.|k +Wβ)
,

p(z) =
Γ(Kα)

Γ(α)K

∏
k Γ(n−i,k + α)

Γ(NB − 1 +Kα)

(39)

The Gamma function satisfies Γ(x+1) = xΓ(x) and n.|k = n−i,.|k+2. It follows
that,

Γ(n.|k +Wβ) = (ni, .|k +Wβ + 1)(n−i,.|k +Wβ)Γ(n−i,.|k +Wβ). (40)

By substituting into Eq. 36 the final conditional distribution is obtained,

p(zi = k|z−i, B) ∝ (n−i,k + α)
(n−i,wi,1|k + β)(n−i,wi,2|k + β)

(n−i,.|k +Wβ + 1)(n−i,.|k +Wβ)
. (41)

A.3 OLS derivation

The matrix notation of 3.3 is used. The sum of squared residuals can be ex-
pressed as follows,

S(b) = (y −Xb)′(y −Xb). (42)

The global minimum can be retrieved by differentiating with respect to β and
setting equal to zero,

0 =
dS

dβ
(β) =

d

db
(y′y − b′X ′y − y′Xbn+ b′X ′Xb) = −2X ′y + 2X ′Xβ (43)

It is assumed that X is of full rank and X ′X us invertible. Then the least square
estimator is given as„

β = (X ′X)−1X ′y (44)
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B Experiment

Topics Top 20 words (Ethereum)

0 will, that, use, your, blockchain, crypto, like, what, network, project, one, transact,
contract, other, time, platform, classic, secur, smart, us

1 new, token, wallet, launch, releas, announc, can, vitalik, commun, here, buterin,
work, soon, first, app, pleas, talk, see, avail, develop

2 that, network, new, blockchain, day, one, will, time, updat, secur, pleas, go, block,
peopl, could, contract, follow, ecosystem, issu, decentr

3 blockchain, will, platform, token, can, launch, project, develop, one, user, servic,
build, first, crypto, see, announc, secur, microsoft, base, offer

4 new, post, updat, project, read, blog, check, develop, here, blockchain, support,
vitalikbuterin, crypto, first, announc, scale, news, vitalik, follow, futur

5 token, will, blockchain, transact, use, updat, work, can, project, new, commun,
go, here, week, get, time, year, make, team, come

6 blockchain, will, your, join, get, use, new, that, us, like, here, network, look, today,
world, develop, work, dont, first, launch

7 your, smart, world, contract, what, start, platform, check, develop, get, peopl,
new, go, dapp, build, decentr, futur, marketplac, run, learn

8 your, blockchain, use, can, contract, decentr, network, smart, work, classic, app,
transact, token, support, user, what, see, want, chain, peopl

9 that, price, will, can, classic, token, like, eth, make, work, fork, develop, hard,
crypto, other, here, etc, go, blockchain, trade

10 that, market, classic, get, network, one, develop, what, see, price, take, today,
start, us, need, th, want, go, month, futur

11 will, join, what, come, like, see, token, th, here, next, live, open, meetup, peopl,
today, vitalikbuterin, decentr, ico, interest, crypto

12 team, day, new, first, ico, thank, commun, well, next, develop, great, sale, futur,
rais, million, what, excit, post, investor, th

13 blockchain, join, new, us, platform, come, support, develop, build, market, smart,
one, other, year, day, trade, dapp, contract, live, start

14 will, that, token, crypto, support, market, can, get, time, exchang, trade, world,
come, eth, next, classic, project, rippl, first, list

15 your, new, get, platform, decentr, first, exchang, support, that, ico, trade, what,
wallet, classic, make, open, commun, mine, contract, go

16 that, contract, smart, blockchain, use, develop, platform, network, decentr, make,
world, can, build, see, your, code, support, futur, technolog, via

17 that, will, use, can, token, market, smart, work, via, transact, eth, commun, wallet,
run, one, project, user, take, secur, erc

18 token, market, day, your, eth, ico, launch, cap, here, start, announc, trade, plat-
form, via, million, one, hour, network, address, follow

19 platform, news, articl, interview, featur, live, ethereumbas, publish, bank, analysi,
ceo, take, digit, internet, ico, point, goe, medium, stellar, mobil
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Topics Top 20 Words (Litecoin)

0 will, that, market, crypto, new, payment, coin, your, us, day, rippl, price,
make, want, btc, ltcfoundat, give, world, soon, first

1 like, here, can, today, support, come, buy, make, one, day, see, go, year,
time, know, there, look, payment, futur, first

2 get, follow, peopl, accept, today, price, want, use, give, retweet, think, im,
one, day, look, payment, thank, what, can, cash

3 like, coin, use, satoshilit, other, buy, your, currenc, futur, come, money,
way, digit, make, exchang, next, thank, good, trade, gold

4 will, like, satoshilit, want, can, peopl, make, great, look, us, follow, dont,
need, day, get, work, what, other, take, accept

5 that, live, will, market, time, futur, use, buy, price, get, btc, day, think, im,
show, bet, trade, start, lee, charli

6 satoshilit, will, that, charli, lee, ltc, like, go, support, accept, ltcfoundat,
time, he, trade, work, would, adopt, new, thank, follow

7 payment, ltc, your, accept, like, cash, use, crypto, satoshilit, wallet, btc,
buy, card, start, also, run, see, bank, soon, support

8 price, analysi, will, technic, support, market, break, see, time, can, buy,
bull, new, come, high, cash, look, chart, continu, like

9 new, guid, digit, surviv, west, wild, ebook, thrive, crypto, rt, currenc, un-
derstand, ultim, get, beginn, here, trade, want, buy, start

10 your, will, can, here, use, want, that, what, one, coin, need, good, time,
help, also, everyon, us, work, adopt, retweet

11 will, ltc, day, go, next, price, first, here, what, year, block, network, segwit,
can, mine, start, use, today, think, other

12 that, your, can, ltc, crypto, support, peopl, go, dont, great, like, one, here,
what, there, wallet, coin, commun, think, payment

13 will, crypto, dogecoin, mine, get, live, best, cash, rippl, great, exchang, last,
transact, wallet, time, via, today, support, money, currenc

14 that, get, your, go, dont, time, other, buy, ltc, year, new, see, also, start,
would, trade, us, first, soon, futur

15 free, faucet, everi, best, get, minut, site, moon, daili, new, your, that, bonu,
high, list, come, via, decid, payment, claim

16 that, satoshilit, get, your, ltc, crypto, time, buy, good, look, peopl, come,
can, im, today, coin, new, next, great, dont

17 will, go, that, see, can, know, one, there, use, make, would, what, still, work,
ltc, year, adopt, lightn, let, new

18 support, pleas, polit, canada, exil, will, your, peopl, news, say, sell, project,
coin, test, sourc, store, code, number, design, keep

19 ltcfoundat, coinbas, foundat, partnership, trade, receiv, johnkim, via, york,
deal, tokenpay, know, ufc, bank, ecurrencyhodl, jonnylitecoin, hope, regul,
wait, profit
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Topics Top 20 words (Ripple)

0 rippl, that, effect, can, will, one, like, your, world, day, creat, get, other,
dont, time, see, peopl, mani, chang, today

1 rippl, that, will, xrp, go, effect, your, market, get, like, take, us, price,
exchang, compani, talk, global, real, still, xrapid

2 rippl, that, effect, world, use, look, market, new, price, what, global, see,
chang, one, say, move, around, come, creat, take

3 rippl, hope, time, he, send, lot, tini, kennedi, man, person, effect, ideal,
forth, robert, stand, improv, against, world, xrp, can

4 rippl, effect, will, xrp, that, go, new, could, get, day, crypto, like, what,
take, say, week, kind, caus, start, other

5 rippl, time, what, send, hope, act, improv, anoth, forth, life, will, societi,
appear, someon, day, here, need, like, stand, via

6 rippl, bank, xrp, payment, use, will, blockchain, technolog, new, crossbord,
that, asset, ledger, compani, via, xrapid, digit, can, financi, network

7 xrp, go, one, new, make, will, next, get, compani, week, use, follow, here,
also, first, xrptrump, crypto, should, run, two

8 rippl, effect, xrp, make, commun, can, go, good, think, invest, what, see,
news, posit, trade, first, your, year, famili, there

9 rippl, make, dont, xrp, what, go, think, world, look, peopl, your, time, get,
want, payment, know, even, bgarlinghous, way, real

10 rippl, creat, act, kind, thing, there, everi, small, end, rememb, logic, adam,
scott, that, effect, can, simpl, one, care, endless

11 rippl, will, use, today, see, come, effect, make, us, broad, dont, thank, bank,
work, last, support, great, day, peopl, compani

12 xrp, bank, payment, global, money, year, blockchain, market, like, partner,
via, exchang, make, ledger, billion, currenc, could, system, transfer, custom

13 rippl, effect, across, us, go, could, via, new, financi, global, one, work,
blockchain, also, here, industri, other, watch, system, see

14 rippl, that, make, one, will, like, money, payment, use, can, peopl, price,
crypto, get, work, know, want, effect, thing, team

15 rippl, that, effect, will, can, your, world, what, other, peopl, creat, chang,
work, use, live, year, caus, kind, thing, love

16 rippl, xrp, bank, time, one, payment, here, what, can, day, crypto, work,
money, global, say, come, great, digit, first, new

17 rippl, that, make, will, your, like, use, would, think, today, effect, year,
come, wave, follow, im, never, take, made, caus

18 rippl, will, crypto, use, that, other, global, coin, exchang, money, market,
world, partner, digit, currenc, ceo, today, bank, sbi, trade

19 xrptrump, haydentiff, hodor, bankxrp, xrpnew, coinbas, rabbitkickclub, ex-
chang, new, ad, joelkatz, xrphodler, list, add, ckjcryptonew, sourc, rip-
plexrp, exclus, justmoon, regul
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Figure 8: The topic-activity is the number of words sampled per topic. Topic-
activity drastically changed with the burst of the crypto-bubble at
the end of 2017.
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Figure 9: The polarity is the average difference of positive and negative words
per tweet. Tweets regarding Bitcoin have a more negative wording
than tweets regarding altcoins.
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