

MAGISTERARBEIT / MASTER’S THESIS

Titel der Magisterarbeit / Title of the Master‘s Thesis

„A Generic Approach for Clustering and Classification of
Text Documents“

verfasst von / submitted by

Sebastian Knigge, BSc BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Wien, 2019 / Vienna 2019

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 951

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Magisterstudium Statistik

Betreut von / Supervisor:

Univ.-Prof. i.R. Dr. Wilfried Grossmann

Abstract
Many scientific disciplines overlap in the field of Natural Language Pro-
cessing. This paper examines statistical approaches to Natural Language
Processing. It analyses the statistical models Latent Dirichlet Allocation
and Artificial Neural Networks. A theoretical introduction will be given to
the reader and two different examples will be used to illustrate the models
and their use.

This thesis aims at developing and evaluating a generic methodology for
clustering and effectively classifying documents. In the first step I use text-
books as documents to adapt two models. These documents are already
categorized by the initiators of the free online library Project Gutenberg.
Thus it is possible to evaluate the clustering algorithm on a man-made
grouping principle. As second step, the models developed in this manner
will be tested on regulatory documents and guidelines of EUROSTAT (an
authority of the EU) and compared with an already existing grouping.

The open source software used is R. All codes used can be found in the
appendix of this paper and are entirely reproducible.

Keywords: NLP, natural language processing, latent Dirichlet allocation,
LDA, text mining, VEM, bayes, deep learning, neural networks, R, Keras,
classification, clustering

Acknowledgement
I would like to express my thanks and esteem to my supervisor and mentor
of this thesis Prof. Grossmann. Many suggestions, extensive and inspiring
conversations have made this work possible.

Many thanks to my friends from Duke University (Durham, NC) Catherine
and Joseph, to my sister Fiona and of course to Sarah-Ann from University
of Vienna for proof reading.

After all, my deepest gratitude goes to my parents, who always supported
me in all situations during my studies. I owe you way more than dedicating
this thesis to you.

Contents
1 Introduction and Organization of the Thesis 6

2 Natural Language Processing and Information Retrieval 7

3 Discussed Models 9
3.1 LDA Model . 10

3.1.1 Variational EM Algorithm 12
3.1.2 Gibbs Sampling . 13
3.1.3 Implementation . 14

3.2 Artifical Neural Networks . 14
3.2.1 Development . 14
3.2.2 Backpropagation . 16
3.2.3 Implementation . 18

4 Analysis of Gutenberg Data 18
4.1 LDA applied to Textbook Chapters 21
4.2 ANN applied to Textbook Chapters 27

5 Analysis of EUROSTAT Documents 30
5.1 LDA applied to EUROSTAT Documents 32
5.2 ANN applied to EUROSTAT Documents 36

6 Conclusions 37

A Appendix 41
A.1 Documentation of LDA - Gutenberg Data Examples 44
A.2 Documentation of ANN - Gutenberg Data Examples 69
A.3 Documentation of LDA - EUROSTAT Documents Example . 81
A.4 Documentation of ANN - EUROSTAT Documents Example . 103

B Zusammenfassung 112

4

ANN Artificial Neural Net

API Application-Programming-Interface

CPU Central Processing Unit

DNA Deoxyribonucleic Acid

EM algorithm Expectation–Maximization algorithm

ESS European Statistical System

EUROSTAT European Statistical Office

GPU Graphics Processing Unit

IR Information Retrieval

KL divergence Kullback–Leibler divergence

LDA Latent Dirichlet Allocation

M-P neuron McCulloch-Pitts neuron

NLP Natural Language Processing

tf term frequency

tf-idf term frequency inverse document frequency

VEM algorithm Variational Expectation–Maximization algorithm

5

1 Introduction and Organization of the Thesis
Even if the amount of data increases inexorably due to the permanent col-
lection of online data, plus there are always new and better methods to
derive good forecasts from big data, it is still difficult for algorithms to ex-
tract information from unstructured data. The amount of text data does
not increase as quickly as the amount of structured user data. However,
it should not be ignored that the written word still has an immensely high
-if not the highest- information density for the human mind. Text is the
primary and most accurate way to transfer and store complex information.
In a nutshell: while machines and algorithms think in numbers, humans still
think in words and text. A major challenge of machine learning will be to
extract and link information from unstructured data such as text.

One field of computer science is already addressing the topic of text data.
This is Natural Language processing and Information Retrieval (see Chap-
ter 2). In the past, probabilistic approaches have been considered especially
promising by researchers (see e.g. [Manning, 1999]). However, the success
of methods depends greatly upon the text data to which they are applied
and on the desired output. It is therefore equally important to address the
methods and models used, as well as to describe the use case in detail when
conducting research in this area. Winter et al. for example characterized
regulatory documents and guidelines via k-means [Winter, 2017]. In this
thesis, I would like to follow Winter’s work thematically. I will examine
related procedures and new, completely different methods and approaches
to characterize regulatory documents.1

In this work I adhere to the paradigms of DeJong’s 1979 work in the field
of natural language processing. He was the first researcher in this area to
move away from the story-specific approach by testing the accuracy of his
program to develop a more robust model [DeJong, 1979]. I will even go a
step further by optimizing my model with completely different data than
that of what it will later be tested on. By doing so I try to reduce the
overfitting of the model to the chosen topic and develop a universal tool for
text classification. Specifically, I will train my approach for classifying text
documents on a relatively large set of textbook chapters. I will optimize
the models and their hyperparameters and test the optimized models with
a smaller set of regulatory documents from EUROSTAT.

In Chapter 2 I will discuss the evolution of natural language processing.
The different approaches and methods will be summarized and the reader

1When comparing the two works, however, note the difference in the topic of the
documents analyzed.

6

will be given a general overview of the context of this work.
Chapter 3 presents the models used and the form of application is de-
scribed in detail. The two methods used do not only differ in terms of their
underlying models, but also their different tasks. Different methods of fit-
ting and the implementation are covered.
In the following sections of this paper, two examples (respectively in Chap-
ter 4 and Chapter 5) are presented. First, an introductory example with
data from various textbooks is analyzed. In 4 an LDA model is adapted to
cluster the data. In 4.2 a neural network is built up piece by piece, in order
to classifiy new books or chapters.
Based on the models in Chapter 4, in 5.1 another LDA model is developed
to logically organize a collection of 28 regulatory documents and guidelines.
In a second step (section 5.2), new documents are to be classified according
to these groups.
To conclude, in Chapter 6 the results of both examples are summarized
and the importance of such a process of clustering and classification is out-
lined.
In order to give the reader a deeper insight into the examples and results and
to ensure reproducibility, the Appendix contains four Documentation-pdfs
in which the entire code and all results are presented in an edited form.

2 Natural Language Processing and Information
Retrieval

The reason for the current relevance of the topic NLP is obvious. However
what does the concept of natural language processing actually cover and
into which research field is it to be classified? It is worth looking at how
NLP has evolved over the years and where it originated in order to better
understand what this area encompasses and what it does not. Since the
origins of NLP lie in computer science, especially in Artificial Intelligence,
NLP and AI share the same approaches. For a short review of the motiva-
tion of AI, see section 3.2.1.

“Between about 1960 and 1985, most of linguistics, psychology, artificial
intelligence, and natural language processing was completely dominated by
a rationalist approach” [Manning, 1999, p. 4]. In other words, procedures
for NLP were completely static, fix-programmed solutions for processing
text data. Books like [Noble, 1988] followed this approach until the late 80s.
Whereby the enthusiasm gradually, just like for artificial intelligence itself,
decreased and arose cyclical.

The second school of thought mentioned by Manning and Schütz is the em-
piristic approach. This is based upon the assumption, that one “can learn

7

the structure of language by specifying a general model and then learning
the values of the parameters by applying statistical modeling and machine
learning methods to large amount of observed language” [Martinez, 2010,
p. 253]. What finally led to the breakthrough of NLP in its current form,
is what Manning defines as statistical NLP. I.e. all quantitative approaches
for automatization NLP, which includes probabilistic modeling, as well as
information theory, and linear algebra. This thesis will focus on methods
related to this approach.
Some of this work could even advance a step further. Deep learning (see
3.2.1) was indeed already invented in 1999 - at the time of the division of the
definition Mannings in its basic outlines - but still received far less attention
than today. One could therefore call NLP via deep learning a subcategory of
the empirical approach in its own right, and possibly even list “deep NLP”
alongside Statistical NLP.

Statistical NLP always considers recurring patterns and structures in the
context of certain texts and does not examine the whole language as such.
This approach is no new invention by NLP researchers, but has been used
by linguists even prior to computer science (see [Harris, 1951]). A collection
or body of texts is called a corpus, which means “body” in Latin. In the
course of this work we will also mention several corpora, which refers to
multiple collections of texts.

In this thesis so called topic models are studied and applied. David M.
Blei defines topic models “as algorithms for discovering the main themes
that pervade a large and otherwise unstructured collection of documents.
Topic models can organize the collection according to the discovered themes”
[Blei, 2012]. This definition may therefore apply to both clustering and clas-
sification algorithms, even if many authors will refer to clustering algorithms
in the context of topicmodels. You will find a brief introduction to clustering
and classification models in the use case in Chapter 4.

Another important term in the research area of this thesis is information
retrieval (IR). IR means to give access to a subset of documents of a cor-
pus, which are relevant to a user’s query. This deals with computer-aided
searches for complex contents and belongs to the fields of information sci-
ence, computer science and computational linguistics. According to David
Grossmann et al. IR refers to a search that might cover information of
any kind, e.g. text data as well as video-, image-, sound data, or even
DNA sequences. The field where LDA and IR overlap is document retrieval
[Grossmann, 2004]. Thus, most procedures we are discussing in this thesis
might not solely fall into the topic NLP but also IR. By veering into this
direction, it is intended for the reader to better understand the connection
to this topic and at which intersection it is located.

8

In addition, there is a further differentiation of methods concerning nat-
ural language processing. One can also distinguish text interpretation with
regard to the tasks one intends to accomplish with it. [Jacobs, 1993] distin-
guishes between three common tasks:

1. Information Retrieval: The task to find a subset of a corpus, which
contains information concerning a user’s query.

2. Data extraction: The task to bring texts of a corpus of a particular
domain into a pre-defined key structure, suitable for use in a traditional
database.

3. Text categorization: Separating documents of a corpus into meaningful
groups.

The tasks dealt with in this paper may perhaps be best assigned to the last
area. On the one hand, I specifically target the task text categorization by
dividing a corpus of documents into a predefined number of groups. On the
other hand, I try to assign new documents to these groups.

In Chapter 2, the evolution of natural language processing is discussed.
The different approaches and methods will be summarized and the reader
will give a general overview regarding the context of this work.
Chapter 3 presents the models used and describes the form of application
in detail. The two methods used here do not only differ in terms of their
underlying models, but also by their different tasks.

3 Discussed Models
This section will discuss the two topic modeling approaches which will be
studied in this thesis. The aim of both procedures is to assign one or more
topics to different documents. Even if the vocabulary and the notation are
similar for both approaches, the notation should be resumed at the beginning
of the description of each model. The basic structural notation of the data
consists of the following variables.

A collection of documents is called corpus D = (w1, . . . ,wM). It con-
sists of M documents w = (w1, . . . , wN) which represents each of the N
words wi in the vocabulary. These words are vectors of length V . V refers
to the length of a vocabulary which holds all the words occurring in the
corpus. The vector for a specific word wi contains all 0 except for index
j ∈ {1, ..., V } which represents this very one word in the vocabulary. This
specific system for storing the corpus is called bag-of-words format. This
notation may be extended through the addition of indices for documents,
but this is done neither here nor in the standard literature on topic models
due to its unnecessary complexity.

9

3.1 LDA Model
Latent Dirichlet Allocation is a Bayesian approach and is often associated
with hierarchical models [A. Gelman, 2014]. This idea is based on the rep-
resentation of exchangeable random variable as mixtures of distributions as
discussed by de Finetti. Given that documents w and words wi in each doc-
ument - both considered as random variables in this setting - are exchange-
able in such a way, a mixed model such as the LDA model is appropriate
[Blei, 2003].

The following notation is used in conjunction with the LDA model. Let
zj be the topics with j ∈ {1, . . . , k}. In the LDA setting we assume for every
topic zj there is a term distribution

βj ∼ Dir(δ)

We further assume each document w has a distribution of topics.

θ ∼ Dir(α)

Then each word wi of w is generated by the following process:

1. Choose zi ∼Mult(θ)

2. Choose wi ∼Mult(βi) This distribution will be referred to as p(wi|zi, β)

You can summarize this setup in a plate diagram as shown in Figure 1. The
notation above, which is also used within the diagram, coincides with the
notation of [Hornik, 2011].

Figure 1: Well-established plate diagram for the standard LDA model extended
by the parameter δ. The slightly bigger box represents the generative
model of the corporis M documents. The smaller plate represents the
iterative generation process of the N words of each document with the
aid of the topics. See also “smoothed LDA model” in [Blei, 2003] for
comparisons.

In order to estimate the model’s parameters, the first step is to calculate

10

posterior distribution, which can be done by dividing the joint distribution
by the marginal distribution.

p(θ, z|w, α, β) = p(θ, z,w|α, β)
p(w|α, β) (1)

Note that the Dirichlet distribution is the conjugate prior to the multino-
mial distribution. Conjugate prior means, that it is possible - using a certain
distribution - to update the prior in such a way, that the posterior is of the
same family of distribution as the prior. The so called, theory of conjugate
prior distributions was introduced by [Raiffa and Schlaifer, 1961]. In many
cases a closed form solution of the posterior can be easily derived. For a
multivariate distribution, which is a multivariate extension of the binomial
distribution it is intuitive that the Dirichlet distribution is the conjugate
prior, since Dirichlet is again a multivariate extension of the beta distribu-
tion. Note that the beta distribution is the conjugate prior for a Bernoulli
distribution. In this case the posterior can’t be derived in closed form, de-
spite the conjugate property of the Dirichlet distribution, as shown below.

The joint distribution numerator can be derived with the following calcula-
tion:

p(θ, z,w|α, β) = p(θ|α)
N∏
i=1

p(wi|zi, β) p(zi|θ) (2)

One can obtain the marginal distribution of a document w, by integrat-
ing out the parameter θ and summing up the topics zj . Nevertheless, this
expression is intractable.

p(w|α, β) =
∫
p(θ|α)

(
N∏
i=1

∑
zi

p(zi|θ)p(wn|zi, β)
)
dθ (3)

The literature divides the approaches to calculating posterior distribution
into two main categories.[Blei, 2012] distinguishes between-sampling based
algorithms and variational algorithms. [Powieser, 2012] lists a total of 6
algorithms that can be used to estimate parameters in the LDA model.
This thesis will be confined to the two most cited and most used members
of the two main groups. One approach is to simulate the posterior density
by iteratively sampling - the so-called Gibbs Sampling method. The second
approach is a deterministic method, a modified version of the well-known
EM algorithm [AP Dempster, 1977]: the Variational EM algorithm (VEM
algorithm) [Wainwright and Jordan, 2008]. In the following two sections the
both approaches are roughly outlined to give the reader some insight into
the Bayesian inference underlying the algorithms.

11

3.1.1 Variational EM Algorithm

In the VEM algorithm for the LDA model is a mean field approach which
varies the steps E and M of the EM algorithm in a way such that this
algorithm becomes solvable. Note that the main problem in calculating
marginal distribution lies in deriving the conditional probability of hidden
variables in the observed values (’evidence’). Variation in the EM algorithms
arises mainly from approximating the directly intractable E step. Rewriting
the log of the border density of w as follows in (4), results in a downward
estimation of marginal density given Jensen’s inequality.

log p(w|α, β) = log
∫ ∑

z

p(θ, z,w|α, β)dθ (4)

= log
∫ ∑

z

p(θ, z,w|α, β)q(θ, z)
q(θ, z) dθ (5)

≥
∫ ∑

z

q(θ, z) log p(θ, z,w|α, β)dθ −
∫ ∑

z

q(θ, z) log q(θ, z)dθ

(6)
= Eq[log p(θ, z,w|α, β)]− Eq[log q(θ, z)] (7)

Here q(θ, z) is an arbitrary distribution which can be called the variational
distribution. When factorizing the latent variable z into N groups, the
calculation of q(θ, z) with the aid of the product of N individual probabilities
q(zi|φi) is feasible. Since independence needs to be assumed in this approach,
the resulting probability is rather an approximation than a true posterior
(so called mean field approximation).

q(θ, z)=̂q(θ, z|γ, φ) = q(θ|γ)
N∏
i=1

q(zi|φi) (8)

The right hand side L(γ, φ, α, β) := Eq[log p(θ, z,w|α, β)] − Eq[log q(θ, z)]
is referred to as the ’lower bound’. It can be shown that log p(w|α, β) −
L(γ, φ, α, β) is the Kullbak Leibler divergence (DKL) of the true posterior
and the variational distribution. From equations (4)-(7) follows that:

log p(w|α, β) = DKL(q(θ, z|γ, φ)||p(θ, z,w|α, β)) + L(γ, φ, α, β) (9)

Since the marginal distribution is fixed, we conclude that minimizing the KL-
divergence is equivalent to maximizing the lower bound (see [Jordan, 1999]
and [Wainwright and Jordan, 2008], for details of the derivation of the lower
bound see [Blei, 2003]).

(γ∗, φ∗) = argmin
γ,φ

DKL(q(θ, z|γ, φ)||p(θ, z,w|α, β)) (10)

= argmax
γ,φ

L(γ, φ, α, β) (11)

12

The EM algorithm thus is to use the variational distribution q(θ, z|γ∗(w), φ∗(w))
instead the posterior distribution p(θ, z,w|α, β). Now the two steps of the
VEM algorithm are:

(1) E step Optimize the variational parameters θ and φ for every doc-
ument in the corpus. This can be done analytically by deriving the
derivatives of the KL divergence. And set them to zero.

(2) M Step Maximize the lower bound using the optimized parameter of
the E step with respect to α and β.

3.1.2 Gibbs Sampling

The second method to approximate the posterior distribution is Gibbs sam-
pling, a form of the Monte Carlo method. Instead of calculating the distri-
butions for β and θ, the primary task is to find the posterior distribution
over z given the document w. Gibbs sampling is also known as a Markov
Chain Monte Carlo method. The name refers to the simulation process by
which a chain of values is simulated whose limiting distribution desirably
converges against the true distribution [M. Steyvers, 2006]. (12) shows the
distribution, which is sampled from iteratively.

p(zi = j|z−i, w) ∝
n

(l)
−i,j + δ∑

t n
(t)
−i,j + V δ

n
(di)+α
−i,j

n
(di)
−i + kα

(12)

zi = j ... word-topic assignment of word i to topic j
z−i ... vector of word-topic assignments without the entry for word i

n
(l)
−i,j ... number of times the lth word in the vocabulary is assigned to

topic j, not including the assignment for word i
di ... document in the corpus which includes word i
δ, α ... parameters of the prior distributions for β and θ

The word-topic distributions β(l)
j for the words l = 1, ..., V and topics j =

1, .., k and topic-document distributions θ(d)
j for the documents d = 1, ..., D

and the topics j = 1, ..., k will be of particular interest. (13) and (14) shows
the predictive distributions denoted as “estimators”.

β̂
(l)
j =

n
(l)
−i,j + δ∑

t n
(t)
−i,j + V δ

(13)

θ̂
(d)
j =

n
(di)+α
−i,j

n
(di)
−i + kα

(14)

13

For derivation and more details regarding the Gibbs sampling procedure see
[M. Steyvers, 2006].

3.1.3 Implementation

In this thesis, the implementation of the LDA model and its estimation
is mainly based on using the package topicmodels of Kurt Hornik. The
package topicmodels can apply both the VEM algorithm as well as Gibbs
sampling in order to fit the model. In addition, the package tidytext is
used for text structuring and embedding. Whereby there are other packages
besides this implementation of the LDA model, topicmodels is particularly
convenient, because tidytext was designed by its developers to work per-
fectly in combination with topicmodels [Silge and Robinson, 2017, p. 89].

3.2 Artifical Neural Networks
Artificial neural networks (ANN) are much more versatile than the LDA
model. There are not only various forms of artificial neural networks, but
also a very large number of application areas. Much like machine learning
procedures in general, also deep learning algorithms are divided into two
broad categories: supervised learning, where a superset instance provides
the algorithm with the output required to learn, and unsupervised proce-
dures that internally train predefined models to find patterns in the input
signals. In this chapter we will focus heavily on the former group of ANNs.
Also, this chapter is intended to give the reader an overview of the research
on neural networks as well as the background of their development.

3.2.1 Development

Research on ANNs dates back to the 1940s, when [McCulloch and Pitts, 1943]
introduced the so called “M-P neuron”. Whereby this neuron had only a bi-
variate input and output, Rosenblatt later extended this idea to a network
of M-P neurons, which allowed to set up a simple classification algorithm
[Rosenblatt, 1958]. A perceptron in its basic form (single perceptron) is a
binary classifier.

Imagine input data of a simple perceptron in the form of a matrix.

X =

 x11 . . . x1k
...

xn1 . . . xnn

 =

 x1
...

xn

The dependent variable thus is a vector y = y1, . . . , yn, with yi ∈ {0, 1}.
Consider the lines of the X mtrix as vectors x1, . . . ,xn, with xi ∈ Rk. The

14

entries of each of the vectors are weighted with w = w1, . . . , wk with wj ∈ R
and aggregated in a function h e.g. a sum.

h(x,w) =
k∑
j=1

xjwj

Using a so called “activation function” h is mapped to the output space,
which is in this case O = {0, 1}. At this point a step function serves as
activation function.

a ◦ h(x,w) =
{

0 if h(x,w) ≤ 0
1 else

The matrix X is passed vector by vector to the percepron and the output
is compared with the values for y. During this procedure the weights are
iteratively tuned by a simple updating algorithm using the pairs xi and yi.

The algorithm of the simple perceptron is schematically shown in Figure
2. This diagram corresponds to the common representation in education
[Mukherjee, 2019], although a horizontal perspective is often chosen.

If this basic perceptron is used in a clever way, designs can be developed
that have many different application possibilities. For example, a sigmoid
function can be used as an activation function instead of the step function.
So the output layer will not project into the {0, 1} space, but into a proba-
bility space. If you add several nodes with the sigmoid activation function
rather than a single output, you basically obtain the architecture that is also
called multivariate logistic regression [Bahjat, 2006]. In that case the model
can be estimated by an individual calculation of logistic regressions for each
node in the output layer. This allows to classify not only two classes, but
an arbitrary number (see the network architecture of Figure 3). 2

Shortly following the publication of these results, which would lay the foun-
dation for later neural networks, ANN research had to suffer a severe setback
after Minsky and Papert [Minsky and Papert, 1969] were able to prove that
perceptrons cannot provide a suitable solution in certain basic scenarios.
It is possible to separate two clusters by a hyperplane with the percep-
tron. However, if the two groups could not be separated completely, the
perceptron fails. For instance, it was impossible to find a solution for data
generated with an x-or function (also called “exclusive or” function).

Although the researchers Minsky and Papert showed that the perceptron
in this form cannot solve the “xor problem”, they argued that extending the

2Note that in this setting the dependent variable must be one-hot encoded.

15

x2 xk

w1 w2 wk

a

Figure 2: Schematic diagram of a simple perceptron by [Rosenblatt, 1958]

simple perceptron to a multi layer perceptron solves this problem, if it was
feasible to train this model. Instead of just one input layer and one output
layer, an MLP may include an arbitrary number of hidden layers in between.
Figure 4 shows the structure of such an network. However, training a model
using Rosenblatt’s naive optimization algorithm of the perceptron would not
have been feasible.

3.2.2 Backpropagation

The procedure used to optimize the weights of a multilayer perceptron is
called backpropagation. This method was first applied to neural networks by
Webos - as part of his dissertation [Werbos, 1974]- and still works the same
way to this day. It is important to use a sigmoid function instead of the step

16

Input

Output layer

Figure 3: Schematic diagram of an adapted Rosenblatt-perceptron network

function which is used in the perceptron, as this function is differentiable.
Assume a random initial distribution of the weights w1, . . . , wd for a network
with d layers, which are the starting values for the update procedure. Let
τi be the number of units in layer i. So layer i can be denoted as function
fwi and the whole network as a chain of functions.

ŷi = fwd
(fwd−1(...(fw1(xi)))) = fwd

◦ fwd−1 ◦ · · · ◦ fw1(xi) (15)

The goal is to update the weights of each layer in such a way as to minimise a
selected loss function L(w1, . . . , wd). A common loss function is for example
quadratic loss: L = 1

2
∑n
i=1(ŷi − yi)2

The backpropagation algorithm consists of the 3 following roughly outlined
steps.

1. forward pass: Calculation of the result yi for all units at the set
weights

2. backward-sweep: Each layer’s derivatives are now calculated using
the chain rule, step by step - starting with the output layer. For the
output layer this is:

∂L

∂wd
= ∂L

∂fd(xi)
∂fd(xi)
∂wd

3. updating: Update the weights by an arbitrary optimization algo-
rithm. E.g. steepest descent: ∆wd = α ∂L

∂wd
,where α is the learning

rate

Thanks to current software, the derivatives no longer have to be calculated
for each node by hand, but the standard packages are capable of “symbolic
differentiation” for certain network structures, which makes training neural
networks comfortable [Chollet, 2018, p. 47].

17

Input layer

Output layer

Hidden layer 2

Hidden layer 1

Figure 4: Schematic diagram of an multi layer perceptron (MLP)

Note: While Rosenblatt for the perceptron was actually inspired by the bi-
ological structure of the neurons in the brain, more complex “networks used
by engineers are only loosely based upon biology”[Hecht-Nielsen, 1988].

3.2.3 Implementation

This thesis uses the Keras R package to create neural networks, a deep
learning API (Application-Programming-Interface) to deep learning backend
engines, designed for R by Allaire in 2017. Keras is a so called “model-
level” library, designed to set up complex neural net architectures using
well arranged, high-level building blocks. As backend-engine the users are
provided with TensorFlow, Theano and Microsoft Cognitive Toolkit. Using
these backend engines computation may be processed seamlessly via CPU
or GPU [Chollet, 2018].

4 Analysis of Gutenberg Data
In this first example, the chapters of individual books are classified, all of
which are sourced from the freely distributed Project Gutenberg. Project
Gutenberg is a provider of over 60,000 free electronic books with the primary
aim to “encourage the creation and distribution of eBooks”[Hart,]. The
package Gutenbergr [Robinson, 2018] preprocesses the ebooks text data
and downloads it. This convenient package in combination with the free
repository allows for the analysis of a large number of text documents with
a secure source and en extensive amount of meta information. For this

18

analysis, interesting information is e.g. Gutenberg ID as key variable for fast
identification of books, title, author and more importantly the categorization
of project Gutenberg, the so-called Gutenberg bookshelf. Table 1 lists all
this information for a random sample of books downloaded from the Project
Gutenberg. This sample represents actually the six books sampled in one of
the studies examples (Example 1). After splitting the books into chapters,
the total number of documents amounts to 117 in this example. This number
depends highly on the sampled books. In the course of this thesis a second
sample of six different books was drawn for Example 2. In this case one
can obtain only 86 books even if the same number of books was sampled.
The last sample studied, a sample of ten books was drawn. The number of
documents for this example (Example 3) amounts to 230. All these samples
and tables of the sampled books (like Table 1) can be found in the appendix.

Table 1: Example book corpus

gutenb. ID title author gutenberg bookshelf
2095 Clotelle: A Tale of the Southern States Brown, William African American Writers
6315 The Awakening of Helena Richie Deland, Margaret Bestsellers, American
6971 Judaism Abrahams, Israel Judaism
7635 The Disowned — Volume 05 Lytton, Edward and Baron Historical Fiction

10319 Dave Darrin’s Third Year at Annapolis Hancock, Harrie Irving Children’s Book Series

In order to test NLP models, two questions may be examined on the basis
of these simple text documents. Firstly (Q1), are LDA cluster text
documents similar to human-driven classification? In this case, this
could be validated by the categorization into Gutenberg bookshelves. And
secondly (Q2), what is the best approach in reproducing such a
classification using an ANN as a classification model?
Since large amounts of data have to be processed and analyzed in order to
model the bookshelf classification for a vast collection of books, a somewhat
reduced approach will be used here. One breaks down a collection of books
of different categories into chapters in order to cluster respectively classify
these chapters as independent documents. Similarly you could suggest an
example, using N books and by separating their chapters and shuffling them.
Is it possible to use models to reassemble the chapters into stacks that could
be assigned to individual books?

The raw text record is now transformed into the orderly format of tidy-
text (i.e. one word per row). Now it is possible to remove unnecessary
stop-words. These words are predefined and can be modified for the ap-
propriate use case if necessary. The words stem from three sources, “onix”,
“SMART” and “snowball”, whereas the latter two are pulled from the tm
package [Silge, 2019]. Additionally the Onix stop words are taken from the
publicly accessible site lextec.com. An example of stop words can be found
in Table 2.

19

Table 2: Example of stop words from tidytext package

word lexicon
many SMART
mrs onix
was snowball
sure onix

you’re snowball
go onix
c SMART

where snowball
then SMART

Both models studied in this thesis use bag-of-words data sets as input data.
This means a matrix with the documents in the M lines and the frequencies
of the V used words in the entries of the columns. The dimension - i.e. the
number of words in this “dictionary” V - may be reduced for two reasons.
Firtsly, a dimension reduction may decrease the fitting time of the model,
secondly, the diversity of the documents may be increased by skilfully re-
ducing certain words, which occur equally as often in all documents. This
requires a special measure in which we decide which words to exclude. One
may call this reduction “embedding”. Throughout the course of this work
three different embedding methods were tested.

1. The reduction by the words that occur with a low frequency.

2. No dimension reduction, i.e. use of the full dictionary of all occurring
words.

3. The reduction with the aid of the measure tf-idf.

tf-idf is a combination of the term frequency and the inverse document
frequency, defined as follows.

tf-idf (t, d) := tf(t, d)× idf(t)

tf(t, d) := ft,d∑V
ti=1 fti,d

idf(t) := ln
(
M

nd′∈t

)

t ... term (word)
d ... document
ft,d ... frequency of term t in document d
M ... number of documents
nd′∈t ... number of documents containing term t

20

Even if “its theoretical foundations are considered less than firm by informa-
tion theory experts”, tf-idf “has proved useful in text mining” [Silge and Robinson, 2017].
In this thesis the term frequency and the tf-idf are not to be used directly
for the analysis of the texts but mainly for setting up the bag-of-words
datasets. It will be investigated whether the use of different embeddings has
an influence on the text analysis itself.

4.1 LDA applied to Textbook Chapters
As LDA is a classification algorithm, the research question Q1 should be
addressed first. I.e. to what extent does the clustering of the LDA model
correspond to the mapping of chapters to books? In the first attempt only
six books are sampled. That is, there are six categories, because as men-
tioned in 4 all these six have been taken from different bookshelves.

As described in Chapter 3.1, it is possible to calculate the LDA model by
means of various algorithms. The two most common ones are the VEM
algorithm and Gibbs sampling. In this study, we examined both methods.
Clearly, the algorithms may differ in the speed of the calculation. However,
it does not have to be the case that both calculation methods deliver the
same results.

Three fundamentally different approaches should be distinguished for em-
bedding:

1. the entire dictionary, i.e. all words occurring in the corpus are used
for the bag-of-words.

2. for the bag-of-words, only words are used which occur at least 2 times
in the whole corpus. This reduces the number of used words and
therefore the dimension of the data by nearly 50%.

3. the bag-of-words is reduced by 50% according to tf-idf.

To be more specific, in the first example studied the full bag of words con-
tains 15186 words whereas the set is reduced to 8597 and 7593 words with
tf -2 and tf-idf embedding respectively. In the course of this work a second
example with six books was studied. The dimensions of the bag-of-words
with the three different embedding methods were similar to the first example
(i.e. 15328, 8565 and 7664). Another example was studied when sampling 10
books from the Gutenberg library. In this case the bag-of-words amounted
to 29101 for the full embedding 17742 via tf -2 and 14550 for the tf-idf em-
bedding.

These three embedding approaches are reviewed in regard to the goodness

21

of the fit and the speed of the computation. One may intuitively assume
that the calculation takes longer for data with higher dimensionality.

For a clustering model there are two contrasting methods to evaluate the
fit. First, it is possible to fit the model with training data and to evaluate
the goodness of the fit using the test data. Second, it is a comparison of the
classification of the model with the categories given by the data, whereby the
model does not learn from these categories. The latter evaluation method
is clearly less computationally intensive, and the comparison of the entire
data set instead of only the test part of the data has a positive effect on
the variance. When starting this analysis, the second approach will be used
primarily.

The findings of this study relating to the LDA model are documented in
detail. You will find the documentation regarding the LDA model as well
as the other models in the appendix. For the purpose of clarity, a sepa-
rate document with the corresponding results was created for each analyzed
example and each model respectively. To ensure reproducibility, the entire
code is attached to the work by means of these documentations, and will be
published on GitHub as well.3

The computation of the LDA model via VEM takes somewhat longer in
the two samples evaluated. In all cases investigated, i.e. across the two
samples taken and for both VEM and Gibbs sampling, the calculation for
the tf-idf embedding appeared to be the fastest. The calculation time for
embedding according to term frequency and full embedding differs less and
the calculation of the term frequency embedding is not faster in every case.
While a reduction via term frequency only cuts the most rarely used words,
a reduction via tf-idf also cuts out frequent words as long as they occur often
in all documents. Thus, tf-idf reduction has more impact on the distribution
within each document compared to the effect of the term frequency reduc-
tion, which only affects the tails of the marginal distribution. This supports
the assumption that a higher degree of difference in the documents has a
positive effect on the calculation speed. Figure 5 visualizes how the fitting
time changes when reducing the bag-of-words to an arbitrary size via tf-idf.

With regard to the quality of the fit, it is apparent that Gibbs sampling per-
forms much better than models fitted by VEM. The best fit using VEM still
shows a higher misclassification rate than the poorest fit using Gibbs sam-
pling in the examples examined. It is reasonable to focus on Gibbs sampling
in further analyses. For this reason, we will only consider Gibbs sampling

3https://github.com/SebastianKnigge/Master_Thesis/tree/master/
Documentations

22

https://github.com/SebastianKnigge/Master_Thesis/tree/master/Documentations
https://github.com/SebastianKnigge/Master_Thesis/tree/master/Documentations

5

10

15

20

25

0.25 0.50 0.75 1.00
fraction

tim
e

Fitting time for different types of tfidf−embeddings
 Example 1 (6 Books)

Now let us study Example 2.
set up the fractions we want to use
we use 0.1, 0.2, ..., 1
fractions <- seq(0.1,1,0.01)

Use parallelization
registering cluster
cl <- parallel::makeCluster(useable_cores)
doParallel::registerDoParallel(cl)
embedding_performance_matrix_sec <- foreach(i = 1:length(fractions), .combine = 'rbind', .export = ls(.GlobalEnv), .packages = c("dplyr", "udpipe", "topicmodels", "tidyr", "tidytext")) %dopar% {

evaluation_for_embedding(word_counts_sec, frac=fractions[i]) %>%
c(.,fractions[i])

}

Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already
exporting variable(s): convert_to_dtm_2, evaluation_for_embedding,
ext_gamma_matrix, fractions, M2, n, n_books, validate_LDAclassification,
word_counts_sec
parallel::stopCluster(cl)

adjust the resulting matrix to a data frame for plotting
colnames(embedding_performance_matrix_sec) <- c("misc.rate","time","fractions")

Figure 5: Fitting time of Example 1 (6 Books) depending on the reduction of
the bag-of-words. A big number of fraction stands for a bigger bag-of-
words, i.e. less reduction. The blue smoothed curve is a Loess kernel.
The drop in fitting time for the last few values of fraction might result
from parallelization reasons.

in Chapter 5.1.

Surprisingly, the models with tf-idf embedding do not perform significantly
better than the other approaches. As one might expect that more differen-
tiated word distributions of documents not only allow a faster calculation,
but also result in a higher accuracy. In fact, frequency 2 embedding provides
better accuracy results some of the studied examples.
It may be interesting to test embedding via tf-idf for different values of re-
duction. So far, a reduction of 50% has been considered. In this case we
measure fraction = 1 − reduction (i.e. what fraction of the original bag-of-
word remains after tf-idf embedding). Figure 6 shows the misclassification
rate for different values of fraction. We can obtain a general negative trend
of the misclassification rate, for bigger values of fraction. This means the
accuracy of the model increases with a larger bag-of-words, for the reduction
via tf-idf. However, there are also values of fraction where the accuracy for
both examples improves compared to full embedding (i.e. fraction 1). This

23

may also be overfitting of the parameter fraction, if for other samples re-
garding this value of fraction the accuracy is worse. This parameter needs to
be optimized very carefully, taking into account the underlying documents
and the application. In summary, tf-idf embedding can achieve very good
results if the fraction parameter is tuned. For a generic approach, however,
this method is too vulnerable to over-fit and it is recommended to choose a
reduction using either tf-idf with fixed 50% or term frequency 2 as embed-
ding method, if there is no further information about the data set.

0.0

0.2

0.4

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Misclassification rates for different types of tfidf−embeddings
 Example 1 (6 Books)

ggplot(data=embedding_performance_matrix,
aes(x=fractions, y=time)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="blue", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Fitting time for different types of tfidf-embeddings \n Example 1 (6 Books)")+
xlab("fraction")

embedding_performance_matrix_sec <- as.data.frame(embedding_performance_matrix_sec)

ggplot(data=embedding_performance_matrix_sec,
aes(x=fractions, y=misc.rate)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="red", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Misclassification rates for different types of tfidf-embeddings \n Example 2 (6 Books)")+
xlab("fraction")

0.1

0.2

0.3

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Misclassification rates for different types of tfidf−embeddings
 Example 2 (6 Books)

ggplot(data=embedding_performance_matrix_sec,
aes(x=fractions, y=time)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="red", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Fitting time for different types of tfidf-embeddings \n Example 2 (6 Books)")+
xlab("fraction")+
xlab("fraction")

Figure 6: Misclassification rate depending on the reduction of the bag-of-words.
Examples 1 and 2 with six books each are considered here. A big
number of fraction stands for a bigger bag-of-words, i.e. less reduction.
The colored smoothed curves are a Loess kernels.

It was also analyzed how the accuracy will change when using more cate-
gories. For this purpose the number of books was increased to 10. The fit
via VEM was still far worse than the fit via Gibbs sampling. The model
fitted with VEM showed a misclassification rate almost twice as high as the

24

one fitted with Gibbs sampling. For both methods, the accuracy deterio-
rated when more topics were used.4 This seems intuitive since the clustering
algorithm now has to distinguish between more topics. The box plot in Fig-
ure 7 illustrates the LDA algorithm in the different use cases. Clearly, the
difference in the misclassification rate between the examples with 10 and 6
categories becomes apparent. It also illustrates how different the two calcu-
lation methods - Gibbs sampling and VEM - are.

plot_DF2 %>% ggplot(aes(x=Use_Case, y=accuracy, fill=Procedure))+
geom_boxplot() + xlab("") + ylab("misclassification rate")

0.1

0.2

0.3

0.4

0.5

10 books 6 books

m
is

cl
as

si
fic

at
io

n
ra

te

Procedure

Gibbs

VEM

For this example we can study one more time the optimal value of “fraction”. I.e. which fraction should
remain after tfidf embedding.
set up the fractions we want to use
we use 0.1, 0.2, ..., 1
fractions <- seq(0.1,1,0.01)

Use parallelization
registering cluster
cl <- parallel::makeCluster(useable_cores)
doParallel::registerDoParallel(cl)
embedding_performance_matrix_10 <- foreach(i = 1:length(fractions), .combine = 'rbind', .export = ls(.GlobalEnv), .packages = c("dplyr", "udpipe", "topicmodels", "tidyr", "tidytext")) %dopar% {

evaluation_for_embedding(word_counts10, frac=fractions[i]) %>%
c(.,fractions[i])

}

Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already
exporting variable(s): convert_to_dtm_2, evaluation_for_embedding,
ext_gamma_matrix, fractions, M2, n, n_books, validate_LDAclassification,
word_counts10

Figure 7: Boxplot of the all examples analyzed. Split for the number of categories
(books) as well as for the calculation procedures (VEM algorithm and
Gibbs sampling).

When plotting the misclassification rate of Example 3 versus the fraction
parameter, the shape of the curve is significantly different. For the sample
of 10 books, the same analysis with regards to different embedding methods
were performed. Figure 8 shows the equivalent plot as in Figure 6. This time
the misclassification rate of 10 books (Example 3) was plotted for different
fractions of tf-idf embeddings. Surprisingly, we can’t obtain a continuous

4For the LDA model accuracy is defined as how good the model reproduces the cate-
gorization given by the books (see section).

25

negative trend for bigger values of fraction. The loess estimator indicates
a local maximum for values around 0.65 and a local minimum in the area
0.45. Even if volatility is quite big at this point, materially smaller average
values of misclassification rate can be found compared to embeddings with
slightly higher dimension. This drop will be referred to as “ low-dimension
embedding anomaly”. It is remarkable that this phenomenon only occurs
with models featuring more categories. We will return to the different form
of this plot when we analyze the EUROSTAT documents in section 5.1.

parallel::stopCluster(cl)

adjust the resulting matrix to a data frame for plotting
colnames(embedding_performance_matrix_10) <- c("misc.rate","time","fractions")
embedding_performance_matrix_10 <- as.data.frame(embedding_performance_matrix_10)

ggplot(data=embedding_performance_matrix_10,
aes(x=fractions, y=misc.rate)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="magenta4", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Misclassification rates for different types of tfidf-embeddings \n Example 3 (10 Books)")+
xlab("fraction")

0.52

0.56

0.60

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Misclassification rates for different types of tfidf−embeddings
 Example 3 (10 Books)

5.1 In Model Evaluation

In the first place, we try the in-model-validation procedure, for each of the 3 embeddings. Table 11 displays
the results of each validation.
chapters_dtm2 <- convert_to_dtm(word_counts, minfq=2)
tim1 <- Sys.time()
chapters_lda_Gibbs2 <- LDA(chapters_dtm2, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_1_Gibbs2 <- tim2-tim1

Figure 8: Misclassification rate depending on the reduction of the bag-of-words.
Example 3 using 10 books is considered here. A big number of frac-
tion stands for a bigger bag-of-words, i.e. less reduction. The violet
smoothed curve is a Loess kernel. Nothe, that the local minumum in
the misclasfication rate will be referred to as “low-dimension embedding
anomaly”

Considering the second approach for evaluation - mentioned in the begin-
ning of this section - results regarding this procedure should be discussed
as well. The classical method to evaluate the model is to split the data set
into a training set and a test set in order to fit the model to the training
data and to evaluate it with the aid of the test data. To calculate valid
results, 59 random clustered samples were used with splits of 90% training
sample and 10% test sample. The results for the models which were only
fitted to a subset of the data were significantly worse than the comparable
models that were trained and tested on the entire dataset. However, since
a clustering model is discussed that does not rely on training data, such
as a classification model, it is technical correct to evaluate the model using
training data.
But what do these results mean for the LDA model? Since this method
aims to evaluate the fit on the basis of classifying new documents, it is ba-
sically an evaluation method for classification problems. It follows that the

26

LDA model is a poor classification model for the use case analyzed. For this
reason, I use another model to classify new documents, which is a neural
network (see following section).

4.2 ANN applied to Textbook Chapters
In what context is it now possible to apply an artificial neural network to
this data? Obviously neural networks are a very versatile tool, but here we
focus on the reproduction of a known classification of the documents (chap-
ters) by a suitable model. With the help of such networks in the sense of a
classification algorithm, research question 2 will be addressed in this section.
Again, for the purpose of reproducibility the entire code including outputs
of the computations can be found in the documentation in the appendix.

Primarily, the question shall be addressed whether a neural network is suit-
able as a classification algorithm for NLP with bag-of-words data. First of
all, the architecture of the network used will be explained (see Figure 9 for
comparison). The used network essentially consists of three layers. The low-

Input

Output layer

46

64

k

V

Hidden layer 2

Hidden layer 1

Softmax

Figure 9: The network contains 3 layers. The input data is the the bag-of-words,
which has dimension V . The first two layers are hidden, containing 64
and 46 neurons respectively. The last layer leads to the k classes (here
the number of topics or books). The activation function is softmax.

est V circles represent the dimension of the input. I.e. V is the dimension

27

of the bag-of-words input vectors rather than an actual layer. The network
contains two hidden layers, each containing 64 and 46 neurons. The last
output layer contains k neurons, which is the number of topics - in this case
books - to classify. Note that the architecture of the network was arbitrarily
chosen and that there may be room for improvement. Based on experience
with this data set, however, this architecture provides good results.

Whether a network is a classification system or e.g. a regression system
depends almost exclusively on the activation function in the last so-called
output layer. The “softmax function”, also known as the “normalized expo-
nential function” [Bishop, 2006, p. 115] is commonly used for classification
networks. The softmax function maps to a (0, 1) space, where the sum of
the vector in the image space equals to 1. Thus, the output corresponds to
a discrete distribution over the different classes. The classification is made
using the maximum probability within this distribution per instance.

P (y = i|x) = extwi∑k
j=1 e

xtwj
(16)

Where x is the vector of the output of the second hidden layer, and wi are
the weights of the i-th neuron in the output layer.

Considering the computing power of the used machine and the required
computing time combined with overfitting, a training using five epochs and
a batch size of 512 turned out to be suitable. In contrast to the LDA model,
however, this procedure must be fitted using training data and evaluated
using test data. For this purpose, a proportion of 10% test data, 70% train-
ing data and 20% validation data for learning has been used. Note that
in a deep learning setting a validation set is essential to prevent overfitting
during learning. The test set is then used to evaluate the model via repeated
sampling with 59 iterations.

Recap: The evaluation procedure of the model for this data set was con-
ducted as follows:

1. Bring the whole corpus into the tidytext format. Split at each chapter
to receive a list of words for each chapter of each book labelled with
the book ID (Gutenberg ID) and the chapter.

2. Exclude stop words

3. Convert the labeled list of words into a “document term matrix”. This
is a word count for each document (i.e. combination of chapter and
Gutenberg ID) including all unique words in the corpus. Either use
term frequency (tf), tf -2 or tf-idf as measure.

28

4. Convert the documents to the tensor format and the dependent vari-
able (Book) to a one-hot encoded format.

5. Evaluate the model iteratively 59 times. Each time the documents are
split randomly in 10% test data, 70% training data and 20% validation
data, by adjusting the randomness parameter (seed) in every iteration.
Thus, each model is trained, validated and tested (i.e. evaluated) at
different documents.

Table 3: Example 1 (6 books): Performance for different embeddings

embeding method tf -2 full bag-of-words tfidf 0.5
misc. rate 0.014 0.007 0.034

time 4.353 11.241 17.4170

Table 4: Example 2 (6 books): Performance for different embeddings

embeding method tf -2 full bag-of-words tfidf 0.5
misc. rate 0.121 0.103 0.100

time 24.758 31.371 37.566

The results of the repeated sampling show that a large part of the classifica-
tions by the ANN have an exact match to the true values of the test data set.
In very few samples was the classification incorrect. In these few cases the
miscalssification rate amounted 10-20% (i.e. almost perfect classification).
Therefore, misclassification rates over all samples are in the range of 1-12%.
Classification for Example 1 shows better results. The variances of each
simulation amounts to 0.1-0.2%. The results in this rather small sample
support the claim that classification via ANN with bag-of-words data works
very well. Tables 3 and 4 show the results of the simulations for each embed-
ding method. According to the differences in accuracy for this embedding
method it is not possible to obtain a preferred method. We can observe that
embedding via tf -2 and full embedding gives very similar results. In Exam-
ple 1 the full embedding shows the lowest misclassification ratio, whereas
in Example 2 tf-idf embedding appears to be the best method. Note that
there comes a small amount of uncertainty with the evaluation of the ac-
curacy of ANNs, despite the iterative sampling approach used in this case.
In other simulations I conducted the tf -2 embedding was found to be the
most accurate. Considering a classification model, it is possible to choose
the optimal embedding procedure for each use case.

29

5 Analysis of EUROSTAT Documents
In this application, we would like to focus on the classification of techni-
cal, regulatory documents and guidelines. The ESS Vision 2020 ADMIN
(Administrative data sources) project aims to “guarantee the quality of the
output produced using administrative sources, in particular the comparabil-
ity of the statistics required for European purposes”[Eurostat, 2019]. This
project contains a collection of 28 official Eurostat documents, i.e. guide-
lines, methodological definitions, and manuals, e.g. on data access. Table 5
displays the full corpus including all documents.

This chapter will examine how the two methodologies investigated so far
can be efficiently applied to the type of documents described above, in order
to gain informational value. In this case, the research questions are slightly
modified and work towards a more specific problem solving approach in the
context of the evaluated data. Q3: To what extent can the LDA al-
gorithm support a decision maker in clustering the ESS Vision
2020 ADMIN documents? Question Q4 builds directly on question Q2,
however differs regarding the documents examined. Q4: How well may
the classification of ESS Vision 2020 ADMIN documents be repro-
duced using an ANN? In this case, we particularly focus on the setups of
the two methods we already optimized for the application to the Gutenberg
text data. Since the aim of the example tested and proven in Chapter 4 was
to find an optimal generic architecture for problems of this kind, the same
hyper-parameters and fitting methods will be used here

Only a very small amount of preprocessing was necessary for the documents
that were taken directly from the website. The table of contents had to be
removed (for certain documents) in order to prevent their reoccurrence. The
same stop words were excluded as in Chapter 4.5 Consideration must be
given to further circumstances of the regulatory documents. It is important
to note that there are many formulas and technical abbreviations in the
documents, so each variable, each estimator, and each index is included as a
single word in the bag-of-words. These terms sometimes have a big influence
on the documents, because they are very specific for individual documents
and occur quite often. To avoid this, all mixed words which include char-
acters and numeric attributes, and all terms with special characters (e.g.
Greek letters) are also excluded.

5The stop word dictionaries ”onix”, ”SMART” and ”snow- ball” are used, as they are
provided by the tm package [Silge and Robinson, 2017].

30

Table 5: Entire list of documents

Doc. No. Document Title
1 admin-wp1.1 analysis legal institutional environment final.pdf
2 admin-wp1.2 good practices final.pdf
3 admin-wp2.1 estimation methods1.pdf
4 admin-wp2.2 estimation methods2.pdf
5 admin-wp2.3-estimation methods3.pdf
6 admin-wp2.4 examples.pdf
7 admin-wp2.5 alignment.pdf
8 admin-wp2.5 editing.pdf
9 admin-wp2.5 greg.pdf
10 admin-wp2.5 imputation.pdf
11 admin-wp2.5 macro integration.pdf
12 admin-wp2.5 matching.pdf
13 admin-wp2.6 good practices.pdf
14 admin-wp2.6 guidelines.pdf
15 admin-wp3.1 quality1.pdf
16 admin-wp3.2 quality2.pdf
17 admin-wp3.3 quality.pdf
18 admin-wp3.4 quality.pdf
19 admin-wp3.5 quality measures.pdf
20 admin-wp3 coherence.pdf
21 admin-wp3 growth rates.pdf
22 admin-wp3 suitability1.pdf
23 admin-wp3 suitability2.pdf
24 admin-wp3 suitability3.pdf
25 admin-wp3 uncertainty.pdf
26 admin-wp5 frames.pdf
27 admin-wp5 frames examples.pdf
28 admin-wp5 frames recommendation.pdf

31

5.1 LDA applied to EUROSTAT Documents
A fundamental problem when clustering text documents is that for certain
corpora there may not be a unique grouping of the documents, even if the
number of clusters is fixed. Logical, thematic clustering always has a cer-
tain degree of uncertainty depending on the aspects according to which it
is clustered. Therefore, it is reasonable to compare the statistical clustering
to a human-made grouping. This corresponds to the procedure of Chapter
4, where the clustering of books by the LDA algorithm was compared with
the man-made classification of Gutenberg bookshelves (in fact - due to the
long computing time - the approach was adopted for comparing chapters
with the allocation to books of different bookshelves).

Note: The terminology used in this chapter refers to the expert assessment
when mentioning groups and to the clusters of the LDA model when dis-
cussing topics.

In this case it is reasonable to consult an expert to get a suitable initial
thematic grouping. Univ.-Prof. Dr. Wilfried Grossmann from the Faculty
of Computer Science at University of Vienna is an accredited expert in this
field and based on his expertise he established a grouping of 7 groups for
the documents described here. He proposed the grouping into the following
thematic clusters:

1. Legal documents

2. Methods

3. Examples

4. Details

5. Quality

6. Tests

7. Frames

The model was used with the same specifications as already known from the
example in Chapter 4. This means that 7 categories were used, and Gibbs
sampling was chosen for the fit, after it turned out that the LDA model
clustered better when used with the Gutenberg data. Also the embedding
via minimum term frequency 2 was used, since in the course of the work
for the LDA model it appeared to be a robust method in terms of accu-
racy. Once again, the comparison to a man-made grouping is not trivial
for clustering, since the algorithm can recognize patterns other than those

32

assigned by humans in a certain context. Instead of evaluating the fit using
a very strict measure, such as accuracy or misclassification ratio, a logical
comparison of the two classifications seems to be more appropriate.

In a first step, it is reasonable to determine the aspects responsible for the
algorithm clustering, i.e. which topics are dominant in the found clusters.
I am using word clouds to illustrate the contents of the individual clusters.
In this case I made use of the package wordcloud which automatically ren-
ders wordclouds based on a frequency distribution which is passed to the
wordcloud() function along with the terms. Analogous to [Winter, 2017] the
tf-idf measure is used instead of the absolute term frequency. This is ad-
vantageous as the wordclouds differentiate when deploying tf-idf, especially
since the documents all originate from the underlying topic statistics.

page
deductive

memobust

imputation

matching
donor

latent

method

turnover

contract

edits

edit

models

greg
generalised

deliverable

privacy

temporal
benchmarking

record

re
ci

pi
en

t

chow

preserving

ras
sae

regression
fay

herriot

bayesian

accident

estimator

lin

variable

eb
lu

p

fienberg

waal

macro

bakker

hashing

disaggregation

probabilistic

van

space

bell

falorsi

Topic 1

ns
icooperation

access

owners practices
accessing

obstacles
peerinstitutional

legal

ex
ch

an
ge

sharing

success

contributing

ministry

law

pr
ov

is
io

ns

mechanisms
owner

public

databases

successful bg

lt
lu

pt

ex
em

pl
ar

y

management

es

recommendations

cy

el

fi

lv

pl

sk

wider

go
ve

rn
in

g

re
vi

ew
er

s

ee

act

nl
discontinuing

exploitation

cz

chacts

signed

bureaucracy

board

Topic 2

ibp
lma

yeibv
br

scalar

earners

yek
yg

permutation

variance
projection

wage

erwlfwk

var

industry

frozen

pooled

covariance

configuration

qmcmsbip

yep

gbr

keywords

stratum

growth

m
at

rix
es

tim
at

or

yk

mk

ze

continuing

st

bias

suitability latent

sga

test

car

probabilities

m
ar

ko
v

classification

additive

Topic 3

qgfss
frames

gopa
frame

consultants

ess
dwellings

nsi actions

force

buildings

recommendations

standardisation

grants

regular

implementation

guidelines

sampling

ehis

master

recommends

adoption

recommended

dedicated

development
metadata

registers

fu
tu

re

dissemination

governance

update objectives

construction

updates

monitoring

beneficiary

co
nc

is
e

endorsed

mono

admin

timetable
feed

coverage

dwelling

maintenance

av
ai

la
bi

lit
y aes

ad
dr

es
si

ng

learned

lessons

Topic 4

gsbpm
adspr

ac
tic

es

workflow
usages
configuration

ece

csa

rev

su
bs

tit
ut

io
n

al
ig

nm
en

t

indicator

m
ia

d

confrontation

matching

supplementation

options

option
maintenance

guidelinesusage
replacement

brackstone

processes

measurements

indirect

objects

production

creation
phase

republic

tasks
farm

frames

memobust

re
gi

st
er

s

ha
rm

on
is

at
io

n

validate

basic

integrated

Topic 5

coherence

co
m

pa
ra

bi
lit

y hqr

admin
sga

interstatistical
essnet

indicator

intrastatistical
komuso

indicators

integrability

qaf

incoherence
constructspertains

multi

accessed

ets

abs
ehling

thagard

dimension

checklist

items

assessment

wallgren
conceptualisation

italics

ob
sc

ur
e

conceptual

hungary

dimensions

daas

reliably

ha
nd

bo
ok

suggestion

checks

ess

package

Topic 6

frame
frames

contactcu
dse

dwelling

bu

guide

master
dp

tdse

bus

par
epd

guidelines

cus

coverage

address

domain

text
requirement

al
ig

ne
d

ngh

ss

phone

rate

child
sol

household

le

products

xx

composite

komuso

parent
qis

telephone

dwellings

cpr

correctly

children

penetration

sampling
glossary

minimum

Topic 7

Now using the second approach, when applying the tf-idf measure to the mapped corpus.
par(mfrow=c(2,4))
par(mar=c(1,1,1,1))
set.seed(123)
plot_wordcloud_topic(corpus, topic_select=1, scale=c(1.9,0.0006),

max.words = 40)
plot_wordcloud_topic(corpus, topic_select=2)
plot_wordcloud_topic(corpus, topic_select=3, scale=c(1.6,0.005),

max.words = 40)
plot_wordcloud_topic(corpus, topic_select=4, max.words = 50, scale=c(2.3, 0.2))
plot_wordcloud_topic(corpus, topic_select=5, scale=c(1.8,0.01),

max.words = 40)
plot_wordcloud_topic(corpus, topic_select=6, scale=c(2,0.1),

max.words = 45)
plot_wordcloud_topic(corpus, topic_select=7, scale=c(2.5,0.5),

max.words = 50)

Figure 10: Wordclouds for the clustered topics via LDA – using tfidf word pro-
portions

Some groups can be recognized very well in the clusters detected by the
LDA. For example, the group “legal documents” corresponds exactly to one
cluster. The group “Frames” can also be identified from the wordclouds as
a separate topic. Group 4 is also extracted relatively well, but due to the
wordcloud it may rather be viewed as topic “documents on Bayesian statis-
tics”, rather than “Details”. Other groups such as “Quality” and “Tests”
are mixed together and divided into two new clusters. Obviously, the model
sticks in this case much more to the individual words than to the latent

33

groups as they were assessed by the expert.

The descriptive results of this example mainly concern embedding. Due
to the number of documents (28 documents) the dimension of the bag of
words is smaller. It amounts to almost 8,600 words for the full embedding
compared to 15,000 words for the analogous dictionary of the Gutenberg
data. However, the pruning of the bag of words by the frequency 2 embed-
ding is less in comparison. While the dimension of the full bag of words to
the frequency 2 bag of words decreased by about 40% for the Gutenberg
data, the dimension for the Eurostat data decreased by only 30%.

Even though in the last example tf -2 embedding turned out to be the most
robust approach in terms of accuracy, in this example we will investigate once
again whether the tf-idf method possibly provides better results. Specifi-
cally, I applied tf-idf embedding, then fitted and evaluated the model for
different values of fraction. Fraction is the ratio of the bag-of-word’s dimen-
sion remaining when shrinking via tf-idf embedding. This is visualized in
the plot of Figure 11. Considering this plot, fraction 0.5 is no wise choice
for two reasons. The Loess estimator indicates a higher misclassification
rate in this area in general and variance appears to be higher in this area
as well. Similar to figure 8, the ”low-dimension embedding anomaly” can
also be observed in this plot. A range of lower misclassification rates for
values of fraction between 0.3 and 0.4 shows slightly lower misclassification
rates. Note, that this choice of the fraction parameter might cause overfit-
ting. Nevertheless, we will now compare the different embedding methods
in the following paragraph.

Comparing the tf-ifd embedding method to the frequency 2 embedding,
there are several reasons for using the more robust tf -2 embedding. Be-
cause the LDA model is not repeatedly fitted in general, the fitting time is
negligible. Thus, the focus is primarily on the misclassification rate. Table
6 shows 3 different embedding methods in comparison. Term frequency 2
embedding, tf-idf embedding with fraction 0.5 and tf-idf embedding with
fraction 0.35. Fitting a LDA model using tf-idf 0.35 embedding shows the
lowest misclassification ratio. The highest one in this comparison is observed
for the fit of the tf-idf 0.5 embedding. In between is the accuracy of the
model with tf -2 embedding. This is consistent to the Gutenberg examples
tf -2 embedding outperforms tf-idf embedding with fraction 0.5. Due to the
lack of results of a man-made clustering in a real life example, there is no way
to optimize the parameter for every use case. In summary, tf -2 embedding
remains the better robust alternative in case of a generic problem.

Still, these results are worse than what experienced in the Gutenberg data
examples. But note that the use case differs considerably from the first ex-

34

0.3

0.4

0.5

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Missclassification rates for different types of tfidf−embeddings

We can find an optimal value for fraction at the value aroung 0.35, so it might be interesting to campare the
results of a fit using this optimized value of fraction to the other embeddings.
tim1_tfidf0.85 <- Sys.time()
dtm_0.85 <- dtm %>% dtm_remove_tfidf(top=(0.35*M))
set.seed(123)
documents_lda_0.85 <- LDA(dtm_0.85, method="Gibbs",

k = 7, control = list(seed = 1234))
tim2_tfidf0.85 <- Sys.time()
u0.85 <- tim2_tfidf0.85 - tim1_tfidf0.85

prediction0.85 <- predict(documents_lda_0.85, newdata=dtm_0.85, type="topic")
prediction0.85 <- merge(prediction0.85, classes, by.x="doc_id", by.y="No")

predict_table0.85 <- prediction0.85 %>% select(doc_id, topic) %>%
merge(y=classes, by.x=1, by.y=1)

(misc.rate_embedding_0.85 <- validate_LDAclassification(predict_table0.85))

[1] 0.3157895

In Table 27 you will find an overview of the performace of the different embedding methods including tfidf
embedding of fraction 0.35.
performance_matrix <- data.frame(freq2.embedding=c(misc.rate_embedding2, u1),

tfidf_0.5.embedding=c(misc.rate_embedding_tfidf, u2),
tfidf_0.85.embedding=c(misc.rate_embedding_0.85, u0.85))

rownames(performance_matrix) <- c("missc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F,

Figure 11: Fitting LDA via tf-idf embeding to EUROSTAT documents. Misclas-
sification rates depending on the reduction of the bag-of-words. A big
number of fraction stands for a larger bag-of-words, i.e. less reduction.
The green smoothed curve is a Loess kernel.

Table 6: LDA via Gibbs Sampling - different embedding methods

embedding method tf -2 tf-idf 0.50 tf-idf 0.35
misc. rate 0.342 0.359 0.316

time 14.818 17.878 14.818

35

ample, and that there are fewer documents analyzed. The fact that fewer
documents are used for training has a strong effect on the accuracy of the
model, especially if there are more groups. In comparison to the Gutenberg
examples there are fewer documents and more clusters. It needs to be em-
phasized that LDA is even less suitable for classification in this case, because
there are already fewer documents in general.

It is advisable not to leave the entire clustering process of the corpus to
LDA itself, but to find a suitable solution together with the assessment of
an expert. This approach requires an expert, simply to determine how many
categories are to be distinguished. Usually the user of the model coincides
with the expert, but this does not have to be the case. In this instance
I applied the model to the data and the expert is Prof. Grossmann. He
stated, that “a clustering with LDA makes sense and is useful as a reference
point for a classification for experts and provides important guidance [for
the user]”. It is recommended to use this clustering model alongside with
the assessment of an expert.

5.2 ANN applied to EUROSTAT Documents
For a generic approach, to group and classify documents it already turned
out, that LDA is not the best choice when it comes to the classification part.
This is especially true for corpora with few documents, as in the case of EU-
ROSTAT data. This is why I recommend using ANNs for classification. In
the examples examining Gutenberg data, I outline a specific net structure,
that performed very well for this type of problem. The aim of this section
is to evaluate if the net structure performs equally for this type of problem.

In this example the same approach is used as in section 4.2. The network
contains two hidden layers, each containing 64 and 46 neurons. The output
layer contains as many neurons as groups in the training data. The network
was trained using five epochs and a batch size of 512. To illustrate the fitting
and evaluation process I refer to the recap in Chapter 4.2. In this process
there are some minor changes within step 5) (Iterative evaluation of the
model). Due to the number of documents a split of 10% testing data, 17%
validation data and 63% training data was used. To improve the computing
time only 49 iterations instead of 59 iterations were used. Certainly, these
hyperparameters might be improved with the aid of more computational
power. But the aim is to outline that ANN are the primary choice for the
classification process. This assumption is supported by the fact that the
classification using ANNs provides fairly good results even for a corpus of
regulatory documents.

The results of the fits are promising considering, that we face a rather small

36

corpus. The misclassification rates for the different approaches amount be-
tween 0.37 and 0.42 (see Table 7). Compared to section 4.2, in this example
it was even more apparent that the models with tf-2 and full embedding pro-
vide very similar results. Athough these results are satisfying, this model
may be further optimized in order to potentially obtain even better results.
More documents might even have a positive impact on the accuracy.

Table 7: ANN for EUROSTAT documents - different embedding methods

embedding method tf -2 full bag-of-words tf-idf
misc. rate 0.418 0.418 0.367
variance 0.108 0.149 0.133

time 2.666 7.668 11.792

The learning process of the architecture of a neural network found here as
the most promising is illustrated in Figure 12.In the Chapter 3.2 the learning
of neural networks has only been discussed at a very high level. To illus-
trate this process, the learning for the EUROSTAT document classification
network that I proposed was visualized once again. In Figure 12 there are
two plots, showing the trial of the accuracy and of the loss for each epoch
(iteration in the learning process), for the training- and the validation set.
Even if a single path of such a net is hardly meaningful - because a new
fit can differ clearly from it - the plot still shows, for example, that the net
does not yet overfit for five epochs.

Since the purpose of this paper is to find a generic approach for clustering
and classifying documents, this does not preclude tuning the hyperparame-
ters of the ANN. In contrast to clustering, there is already a categorization
for the task of classifying. This gives the user the possibility to tune the
classification model (in this case an ANN) as desired. As with any type of
statistical model, it must naturally be ensured that overfitting is prevented.
In this paper I tried to tackle this problem by splitting the data set into
training-, validation- and testing sets. Due to the limited computational
power, it was not possible to try many different net structures and optimize
the hyperparameters. However, I recommend this procedure when applying
this clustering and classifying approach.

6 Conclusions
In the course of this thesis the reader has already received a comprehensive
introduction to NLP and its importance has been outlined. Two statistical

37

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
epoch

ac
cu

ra
cy

acc

val_acc

ggplot(subset(plot_df, measure %in% c("loss", "val_loss")), aes(V5, value)) +
geom_line(aes(color=factor(measure))) +
geom_point(aes(color=factor(measure)))+
xlab("epoch")+
ylab("loss")+
theme(legend.title = element_blank())

0

5

10

15

20

1 2 3 4 5
epoch

lo
ss loss

val_loss

Figure 12: Plot of the learning process for the used neural network to classify the
EUROSTAT documents.

38

models - NLP and ANN - to analyze text documents were explained in de-
tail. At this point, the attentive reader should know the exact differences,
weaknesses, and strengths of each model. The individual advantages and
disadvantages were explained using two examples. In Chapter 4 exemplary
textbooks were analyzed and in Chapter 5 technical, regulatory documents
and guidelines of the ESS Vision 2020 ADMIN project of EUROSTAT were
examined.

The two cases are not only examples to illustrate the methods, but serve
for developing a generic approach for clustering and classifying text docu-
ments. Based on the Gutenberg book-documents, both models - LDA for
clustering and artificial neural net for classifying new documents - were op-
timized. The free project Gutenberg offers a very good basis as it allows
you to work with many different text documents of different sizes. Valida-
tion of a clustering model is challenging. Through the use of the Gutenberg
documents and their metainformation, it was possible to tackle this issue
and set up a well-proven LDA model. In the course of this analysis it was
possible to show the weak performance of the LDA model for classifying
new documents. For this reason, I applied a new, very versatile model for
the classification of text documents. A simple but highly effective neural
network has been adapted to classify text documents. The second use case
- regulatory EUROSTAT documents - served to evaluate the previously es-
tablished approach. In spite of the different nature of the documents, the
methods were shown to be successful.

It can be concluded that the approach presented in this thesis - as a combina-
tion of methods - is a new process in the field of natural language processing.
LDA is a well-known model in statistic text analysis. Neural networks in
the form as applied in this thesis, are established and supported by different
packages. Still, the combination of both methods is most likely scientifically
evaluated the first time in this context. Although I believe this approach is
a very promising process for special cases, more research in this field might
help improving and optimizing it.

Further research in this field is required to improve this approach in the
future. With this thesis only one approach to cluster and classify text docu-
ments was created, there is still a gap in knowledge to be explored. Research
could be directly linked to the presented process, or it could concern the in-
dividual two models. However, in my opinion the following questions are
very interesting and should be addressed in more detail.

• The impact of the bag-of-word’s embedding method – by optimiz-
ing the fraction parameter for tf-idf embedding - on the clustering
method’s performance was analyzed. This analysis could not be con-

39

ducted with regards to the classification ANN due to a lack of compu-
tational power. It would be a worthwhile task to examine this hyper-
parameter and its effect on the performance of the classification model.

• In the work [Winter, 2017] k-means was used to classify text docu-
ments. It would be very interesting to investigate a direct comparison
to the LDA model.

40

A Appendix

References
[A. Gelman, 2014] A. Gelman, J. Carlin, H. S. D. D. A. V. D. R. (2014).

Bayesian Data Analysis. Chapman and Hall/CRC.

[AP Dempster, 1977] AP Dempster, NM Laird, D. R. (1977). Maximum
likelihood from incomplete data via the em algorithm. Journal of the
Rojal Statistical Society.

[Bahjat, 2006] Bahjat, F., e. a. (2006). Multivariate logistic models.
Biometrika Trust, 93(4):1011–1017.

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer.

[Blei, 2012] Blei, D. (2012). Probabilistic topic models. Communications of
the ACM, 55(4):77.

[Blei, 2003] Blei, D., N. N. J. M. (2003). Latent dirichlet allocation. Journal
of Machine Learning Research, 3.

[Chollet, 2018] Chollet, F., A. W. (2018). Deep Learning with R. Manning.

[DeJong, 1979] DeJong, G. (1979). Prediction and substantiation: a new
approach to natural language processing. Cogn. Sci., 3(3):251–271.

[Eurostat, 2019] Eurostat (2019). Ess vision 2020 admin (administrative
data sources).

[Grossmann, 2004] Grossmann, D., F. O. (2004). Information Retrival -
Algorithms and Heuristics. Springer, 2 edition.

[Harris, 1951] Harris, Z. (1951). Methods in structural linguistics. Linguistic
Society of America.

[Hart,] Hart, M. Project gutenberg.

[Hecht-Nielsen, 1988] Hecht-Nielsen, R. (1988). Neurocomputing: picking
the human brain. IEEE Spectrum, 25(3):36–41.

[Hornik, 2011] Hornik, K., B. G. (2011). topicmodels: An r package for
fitting topic models. Journal of Statistical Software, 40(13).

[Jacobs, 1993] Jacobs, P., R. L. (1993). Innovations in text interpretation.
Artificial Intelligence, 63:143–191.

41

[Jordan, 1999] Jordan, M., e. a. (1999). An introduction to variational
methods for graphical models. Kluwer Academic Publishers - Machine
Learning, 37:183–233.

[M. Steyvers, 2006] M. Steyvers, T. G. (2006). Probabilistic topic models.
Latent Semantic Analysis: A Road to Meaning.

[Manning, 1999] Manning, C., S. H. (1999). Foundations of Natural Lan-
guage Processing. MIT press.

[Martinez, 2010] Martinez, A. (2010). Natural language processing. John
Wiley and Sons, Inc., 2:253–257.

[McCulloch and Pitts, 1943] McCulloch, W. and Pitts, W. (1943). A log-
ical calculus of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics.

[Minsky and Papert, 1969] Minsky, M. and Papert, S. (1969). Perceptrons:
An Introduction to Computational Geometry. MIT press.

[Mukherjee, 2019] Mukherjee, S. (2019). Lecture notes for probabilistic ma-
chine learning. Duke University.

[Noble, 1988] Noble, H. (1988). Natural LAnguage Processing. Blackwell
Scientific Publications.

[Powieser, 2012] Powieser, M. (2012). Latent dirichlet allocation in r. Mas-
ter’s thesis, Vienna University of Economics and Business.

[Raiffa and Schlaifer, 1961] Raiffa, H. and Schlaifer, R. (1961). Applied Sta-
tistical Decision Theory. Harvard University Press.

[Robinson, 2018] Robinson, D. (2018). Package ’gutenbergr’.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron, a probabilistic
model for information storage and organization in the brain. The Psy-
chological Review.

[Silge and Robinson, 2017] Silge, J. and Robinson, D. (2017). Text Mining
with R: A Tidy Approach. O‘Reilly Media.

[Silge, 2019] Silge, J. e. a. (2019). Package ’itdytext’.

[Wainwright and Jordan, 2008] Wainwright, M. J. and Jordan, M. I. (2008).
Graphical models, exponential families, and variational inference. Foun-
dations and Trends in Machine Learning, 1(1–2):1–305.

[Werbos, 1974] Werbos, P. (1974). Beyond Regression: New Tools for Pre-
diction and Analysis in the Behavioral Sciences. PhD thesis, Harvard
University.

42

[Winter, 2017] Winter, K., R.-M. S. G. W. F. I. M. W. (2017). Character-
izing regulatory documents and guidelines based on text mining. Lecture
Notes in Computer Science, 10573.

List of Figures
1 Well-established plate diagram for the standard LDA model

extended by the parameter δ. The slightly bigger box rep-
resents the generative model of the corporis M documents.
The smaller plate represents the iterative generation process
of the N words of each document with the aid of the topics.
See also “smoothed LDA model” in [Blei, 2003] for comparisons. 10

2 Schematic diagram of a simple perceptron by [Rosenblatt, 1958] 16
3 Schematic diagram of an adapted Rosenblatt-perceptron net-

work . 17
4 Schematic diagram of an multi layer perceptron (MLP) . . . 18
5 Fitting time of Example 1 (6 Books) depending on the reduc-

tion of the bag-of-words. A big number of fraction stands for
a bigger bag-of-words, i.e. less reduction. The blue smoothed
curve is a Loess kernel. The drop in fitting time for the last
few values of fraction might result from parallelization reasons. 23

6 Misclassification rate depending on the reduction of the bag-
of-words. Examples 1 and 2 with six books each are consid-
ered here. A big number of fraction stands for a bigger bag-
of-words, i.e. less reduction. The colored smoothed curves
are a Loess kernels. 24

7 Boxplot of the all examples analyzed. Split for the number
of categories (books) as well as for the calculation procedures
(VEM algorithm and Gibbs sampling). 25

8 Misclassification rate depending on the reduction of the bag-
of-words. Example 3 using 10 books is considered here. A
big number of fraction stands for a bigger bag-of-words, i.e.
less reduction. The violet smoothed curve is a Loess kernel.
Nothe, that the local minumum in the misclasfication rate
will be referred to as “low-dimension embedding anomaly” . . 26

9 The network contains 3 layers. The input data is the the
bag-of-words, which has dimension V . The first two layers
are hidden, containing 64 and 46 neurons respectively. The
last layer leads to the k classes (here the number of topics or
books). The activation function is softmax. 27

10 Wordclouds for the clustered topics via LDA – using tfidf
word proportions . 33

43

11 Fitting LDA via tf-idf embeding to EUROSTAT documents.
Misclassification rates depending on the reduction of the bag-
of-words. A big number of fraction stands for a larger bag-
of-words, i.e. less reduction. The green smoothed curve is a
Loess kernel. 35

12 Plot of the learning process for the used neural network to
classify the EUROSTAT documents. 38

List of Tables
1 Example book corpus . 19
2 Example of stop words from tidytext package 20
3 Example 1 (6 books): Performance for different embeddings . 29
4 Example 2 (6 books): Performance for different embeddings . 29
5 Entire list of documents . 31
6 LDA via Gibbs Sampling - different embedding methods . . . 35
7 ANN for EUROSTAT documents - different embedding meth-

ods . 37

44

Gutenberg Data via LDA - Documentation
Sebastian Knigge

6 8 2019

Contents
1 Setup

2 Example 1 (6 Books)
2.1 Get Data (Sampling) .
2.2 Reduction of Dimensionality .
2.3 Application of LDA Model to Full Corpus .

2.3.1 Fitting via VEM .
2.3.2 Comparison to Fit via Gibbs Sampling .

2.4 Evaluate Model on Test Set .

3 Optimal tf-idf reduction

4 Definition of Validation

5 Example 3 (10 books)
5.1 In Model Evaluation .

1 Setup

Following packages were used in this script:
loading packages
library(gutenbergr)
library(dplyr)
library(tidyr)
library(stringr)
library(tidytext)
library(udpipe)
library(topicmodels)
library(ggplot2)
library(parallel)
library(foreach)

2 Example 1 (6 Books)

2.1 Get Data (Sampling)

Sampling of the books and converting it to the tidytext-format is the essential step for setting up the LDA
model. Following functions include the sampling procedure of the gutenbergr library.
sampling_books <- function(seed=1234, n=20){
sample n books from the whole library
set.seed(seed)

45

gutenberg_works() %>%
select works with title
dplyr::filter(!is.na(title)&!is.na(gutenberg_bookshelf)) %>%
set the sample sitze
sample_n(n) %>%
set a special download link
gutenberg_download(

mirror = "http://mirrors.xmission.com/gutenberg/")
}

set_up_books <- function(n_books=4, seed=1992){
initial book sample
books <- sampling_books(n=n_books, seed=seed)
by_chapter <- books %>%

group_by(gutenberg_id) %>%
split in chapters
mutate(chapter = cumsum(str_detect(text, regex("^chapter ", ignore_case = TRUE)))) %>%
ungroup() %>%
exclude books without chapters
dplyr::filter(chapter > 0)

return(by_chapter)
}

shorten_titles <- function(titles){
shorten very long book titles by setting
a subset of characters of the first line
of the title
sub_inds <- titles %>%

regexpr(pattern="\\n|\\r")-1
sub_inds[sub_inds<0] <- nchar(titles)[sub_inds<0]
sub_inds <- pmin(sub_inds, 45)
titles %>%

substr(1,sub_inds)
}

get_titles <- function(x, n_books){
get the sampled gutenberg_ids
unique_ids <- x %>%

select(gutenberg_id) %>%
unique() %>% unlist()

get the titles
titles <- gutenberg_works() %>%

dplyr::filter(gutenberg_id %in% unique_ids) %>%
select(gutenberg_id, title, author) %>%
mutate(title=shorten_titles(title))

get the number of gutenberg ids
len <- nrow(titles)
if(n_books!=len) warning(paste("--- ",n_books-len,

" books have 0 chapters --- "))
the output as a list
ret <- list(

titles=titles,
len=len

46

)
return(ret)

}

append_by_chapter <- function(x=by_chapter, n_books, seed_index=1){
append the books matrix until
we get the desired number of books n_books
titles <- get_titles(x, n_books)
n <- titles$len
while (n<n_books) {

book2add <- sampling_books(n=1, seed=seed_index)
by_chapter_add <- book2add %>%

group_by(gutenberg_id) %>%
split in chapters
mutate(chapter = cumsum(str_detect(text, regex("^chapter ", ignore_case = TRUE)))) %>%
ungroup() %>%
exclude books without chapters
dplyr::filter(chapter > 2)

titles2add <- get_titles(by_chapter_add, 1)
adding the book to by_chapter if there are chapters in the
book plus it is not in the data already
if (titles2add$len==1) if(!titles2add$titles$gutenberg_id%in%titles$titles$gutenberg_id) {

x <- bind_rows(x, by_chapter_add)
}
n<-get_titles(x, n)$len
seed_index <- seed_index+1

}
return(x)

}

exclude_stop_words <- function(x){
unite chapter and document title
by_chapter_word <- x %>%

unite(document, gutenberg_id, chapter) %>%
split into words
unnest_tokens(word, text)

import tibble stop words
data(stop_words)
find document-word counts
word_counts <- by_chapter_word %>%
exclude stop words
anti_join(stop_words) %>%
count each word by chapter
count(document, word, sort = TRUE) %>%
ungroup()

return(word_counts)
}

convert_to_dtm <- function(x, minfq = 2){
get into a format lda can handle
chapters_dtm <- x %>%

select(doc_id=document, term=word, freq=n) %>%
document_term_matrix() %>%

47

reduce by low frequencies
dtm_remove_lowfreq(minfreq = minfq)

return(chapters_dtm)
}

convert_to_dtm_2 <- function(x, n=n, minfq = 2, top=10000){
get into a format lda can handle
chapters_dtm <- x %>%

select(doc_id=document, term=word, freq=n) %>%
document_term_matrix() %>%
reduce by low frequencies
dtm_remove_tfidf(top=top)

return(chapters_dtm)
}

Now we can use these functions to get to the initial corpus sample. In this example 6 books are choosen.
n_books <- 6
by_chapter <- set_up_books(n_books=n_books, seed=222)
get_titles(by_chapter, n_books)

Warning in get_titles(by_chapter, n_books): --- 5 books have 0 chapters ---

$titles
A tibble: 1 x 3
gutenberg_id title author
<int> <chr> <chr>
1 2095 Clotelle: A Tale of the Southern States Brown, William Wells
##
$len
[1] 1

The function set_up_books() returns a warning that several books seem to consist of only one chapter. In
order to get a corpus consisting out of 6 books, the function append_by_chaper() is used, which fills up the
corpus to the desired number of books.
appended_by_chapter <- append_by_chapter(x=by_chapter, n_books = n_books)
word_counts <- exclude_stop_words(appended_by_chapter)

Joining, by = "word"

In table 7 the sampled titles for the book sample with the seed 222 are displayed. It appears through the
function append_by:chapter() one book was added, called “Clotelle: A Tale of the Southern States”.
titles <- get_titles(appended_by_chapter, n_books)
titles$titles %>% stargazer(summary=FALSE, font.size = "footnotesize",

header=FALSE, title="Book-titles", rownames=FALSE,
label="titles:6books")

We also want to check if the book categories (i.e. gutenberg bookshelfes) are different. See Table (2) for
comparison.
gbids <- titles$titles$gutenberg_id
categories <- gutenberg_works() %>%

filter(gutenberg_id %in% gbids) %>%
select(gutenberg_id, gutenberg_bookshelf)

categories %>% stargazer(summary=FALSE, font.size = "footnotesize",

48

Table 1: Book-titles
gutenberg_id title author

2095 Clotelle: A Tale of the Southern States Brown, William Wells
6315 The Awakening of Helena Richie Deland, Margaret Wade Campbell
6971 Judaism Abrahams, Israel
7635 The Disowned — Volume 05 Lytton, Edward Bulwer Lytton, Baron
10319 Dave Darrin’s Third Year at Annapolis; Or, Le Hancock, H. Irving (Harrie Irving)
21039 Boycotted, and Other Stories Reed, Talbot Baines

header=FALSE, title="Book-categories", rownames=FALSE,
label="categories:6books")

Table 2: Book-categories

gutenberg_id gutenberg_bookshelf
2095 African American Writers
6315 Bestsellers, American, 1895-1923
6971 Judaism
7635 Historical Fiction
10319 Children’s Book Series
21039 School Stories

Obviously the corpus is very diverse. It is a good sample, in order to try to cluster the chapters of the books
with the aid of LDA.

2.2 Reduction of Dimensionality

In the set up we have another parameter to adjust. The function convert_to_dtm takes the parameter minfq,
which is used to reduce the “bag of words” (i.e. dimensionality). minfq is the minimum frequency for the
bag of words dictionary. I will refer to this as “embedding”. Let us set it to 2 in this case, meaning that we
include a word only if the frequency is 2 or more.
chapters_dtm <- convert_to_dtm(word_counts, minfq=2)
(M_f2 <- ncol(chapters_dtm))

[1] 8597
number of documents
nrow(chapters_dtm)

[1] 117

Let us compare it to the case including all words.
chapters_dtm_all <- convert_to_dtm(word_counts, minfq=0)
(M <- ncol(chapters_dtm_all))

[1] 15186

We also want to compare this to a reduction of the word dictionary by the tf-idf. We are using a reduction by
50% of the dimension of the original bag of words.
chapters_dtm_tfidf <- convert_to_dtm_2(word_counts, top=(0.5*M))
ncol(chapters_dtm_tfidf)

[1] 7593

49

2.3 Application of LDA Model to Full Corpus

2.3.1 Fitting via VEM

We set up the LDA model for the shrinked embedding corpus via frequency=2. In a first try we are using the
default “VEM-Algorithm” to fit the model.
tim1 <- Sys.time()
chapters_lda <- LDA(chapters_dtm,

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_1 <- tim2-tim1

In comparison we will set up the LDA model for the full word embedding corpus.
tim1 <- Sys.time()
chapters_lda_all <- LDA(chapters_dtm_all,

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_all <- tim2-tim1

The third LDA fit builds up on data from the shrinked dictionary/bag of words by tf-idf.
tim1 <- Sys.time()
chapters_lda_tfidf <- LDA(chapters_dtm_tfidf,

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf <- tim2-tim1
chapters_lda

A LDA_VEM topic model with 6 topics.

Now we evaluate the model all in once - that is - we analyze the clustering on the entire data set.
ext_gamma_matrix <- function(model){
get gamma matrix for chapter probabilities
chapters_gamma <- tidy(model, matrix = "gamma")
split joint name of book and chapter
chapters_gamma <- chapters_gamma %>%

separate(document, c("gutenberg_id", "chapter"), sep = "_", convert = TRUE)
get matrix with probabilities for each topic per chapter
this matrix is just information and will in this form of the function
not be returned
gamma_per_chapter <- chapters_gamma %>%

spread(topic, gamma)
return(chapters_gamma)

}

validate_LDAclassification <- function(gamma_matrix){
gamma_matrix is an object of the function ext_gamma_matrix()

#First we’d find the topic that was most associated with
each chapter using top_n(), which is effectively the
“classification” of that chapter
chapter_classifications <- gamma_matrix %>%

group_by(gutenberg_id, chapter) %>%
top_n(1, gamma) %>%

50

ungroup()

We can then compare each to the “consensus”
topic for each book (the most common topic among its chapters),
and see which were most often misidentified.
book_topics <- chapter_classifications %>%

count(gutenberg_id, topic) %>%
group_by(gutenberg_id) %>%
just keep the most frequent one
top_n(1, n) %>%
ungroup() %>%
keep title called census and topic
transmute(consensus = gutenberg_id, topic)

check the fraction of misclassification
Join <- chapter_classifications %>%

inner_join(book_topics, by = "topic")
missmatches
Join %>% dplyr::filter(gutenberg_id != consensus) %>%
nrow()/nrow(Join)

}

Now we exclude for each of the 3 embedings the - so called - beta matrix and compare the most likely result
with the real results. Depending on how good the LDA will seperate the books, this influences the goodness
of the fit.
misc.rate_1 <- ext_gamma_matrix(chapters_lda) %>%

validate_LDAclassification()

misc.rate_all <- ext_gamma_matrix(chapters_lda_all) %>%
validate_LDAclassification()

misc.rate_tfidf <- ext_gamma_matrix(chapters_lda_tfidf) %>%
validate_LDAclassification()

The following matrix gives an overview of the fitting time and the results of the 3 different fits.
performance_matrix <- data.frame(freq2.embedding=c(misc.rate_1, u_1),

all.embedding=c(misc.rate_all, u_all),
tfidf=c(misc.rate_tfidf, u_tfidf))

rownames(performance_matrix) <- c("misc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F, title = "LDA via VEM")

Table 3: LDA via VEM

freq2.embedding all.embedding tfidf
misc. rate 0.385 0.462 0.374

time 12.800 9.911 1.882

We run the same calculations for a different sample. This means that we set up a new random sample from
the Gutenberg books by again using the sample function with another randomness factor (seed). Again, it
has to be a sample that is as diverse as possible, i.e. contains books from different categories. In the following
we set up again three bag of words, each using the three embeding methods mentioned above. Lastly, we
perform the same evaluation method as just seen to evaluate the method for this sample as well.

51

n_books_sec <- 6
by_chapter_sec <- set_up_books(n_books=n_books_sec, seed=101)
appended_by_chapter_sec <- append_by_chapter(x=by_chapter_sec, n_books = n_books_sec)
word_counts_sec <- exclude_stop_words(appended_by_chapter_sec)

Joining, by = "word"
titles_sec <- get_titles(appended_by_chapter_sec, n_books)
gbids_sec <- titles_sec$titles$gutenberg_id
categories_sec <- gutenberg_works() %>%

filter(gutenberg_id %in% gbids_sec) %>%
select(gutenberg_id, gutenberg_bookshelf)

embedding 1
chapters_dtm_sec <- convert_to_dtm(word_counts_sec, minfq=2)
ncol(chapters_dtm_sec)

[1] 8565
number of documents
nrow(chapters_dtm_sec)

[1] 86
embedding 2
chapters_dtm_all_sec <- convert_to_dtm(word_counts_sec, minfq=0)
(M2 <- ncol(chapters_dtm_all_sec))

[1] 15328
embedding 3
chapters_dtm_tfidf_sec <- convert_to_dtm_2(word_counts_sec, top=(M2*0.5))
ncol(chapters_dtm_tfidf_sec)

[1] 7664
embedding 1
tim1 <- Sys.time()
chapters_lda_sec <- LDA(chapters_dtm_sec,

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_1 <- tim2-tim1

embedding 2
tim1 <- Sys.time()
chapters_lda_all_sec <- LDA(chapters_dtm_all_sec,

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_all <- tim2-tim1

embedding 3
tim1 <- Sys.time()
chapters_lda_tfidf_sec <- LDA(chapters_dtm_tfidf_sec,

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf <- tim2-tim1

52

embedding 1
misc.rate_1_sec <- ext_gamma_matrix(chapters_lda_sec) %>%

validate_LDAclassification()

embedding 2
misc.rate_all_sec <- ext_gamma_matrix(chapters_lda_all_sec) %>%

validate_LDAclassification()

embedding 3
misc.rate_tfidf_sec <- ext_gamma_matrix(chapters_lda_tfidf_sec) %>%

validate_LDAclassification()

overview
performance_matrix <- data.frame(freq2.embedding=c(misc.rate_1_sec, u_1),

all.embedding=c(misc.rate_all_sec, u_all),
tfidf=c(misc.rate_tfidf_sec, u_tfidf))

rownames(performance_matrix) <- c("misc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F, title = "LDA via VEM second sample")

Table 4: LDA via VEM second sample

freq2.embedding all.embedding tfidf
misc. rate 0.227 0.362 0.222

time 7.986 7.496 1.468

Surprisingly, the run-time to fit the LDA model for the embedding using all words, does not take way longer
than the embedding using a lower frequency. The fit of the model with the reduced bag of words via tfidf
takes considerably less time.

2.3.2 Comparison to Fit via Gibbs Sampling

For comparison, we will check the results and the run-time for the fit via Gibbs Sampling.
tim1 <- Sys.time()
chapters_lda_Gibbs <- LDA(chapters_dtm, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_1_Gibbs <- tim2-tim1

tim1 <- Sys.time()
chapters_lda_all_Gibbs <- LDA(chapters_dtm_all, method = "Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_all_Gibbs <- tim2-tim1

tim1 <- Sys.time()
chapters_lda_tfidf_Gibbs <- LDA(chapters_dtm_tfidf, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf_Gibbs <- tim2-tim1

53

misc.rate_1_Gibbs <- ext_gamma_matrix(chapters_lda_Gibbs) %>%
validate_LDAclassification()

misc.rate_all_Gibbs <- ext_gamma_matrix(chapters_lda_all_Gibbs) %>%
validate_LDAclassification()

misc.rate_tfidf_Gibbs <- ext_gamma_matrix(chapters_lda_tfidf_Gibbs) %>%
validate_LDAclassification()

performance_matrix <- data.frame(freq2.embedding=c(misc.rate_1_Gibbs, u_1_Gibbs),
all.embedding=c(misc.rate_all_Gibbs, u_all_Gibbs),
tfidf=c(misc.rate_tfidf_Gibbs, u_tfidf_Gibbs))

rownames(performance_matrix) <- c("misc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F, title = "LDA via Gibbs sampling")

Table 5: LDA via Gibbs sampling

freq2.embedding all.embedding tfidf
misc. rate 0.051 0.043 0.077

time 18.359 22.408 7.649

Apparently Gibbs Sampling takes a bit longer than the VEM algorithm, but its results with regards to the
correct “classification” (misclassification rate) are way better.

Again we try the second sample, using a different seed. Only Gibbs Sampling is evaluated in this section.
tim1 <- Sys.time()
chapters_lda_Gibbs_sec <- LDA(chapters_dtm_sec, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_1_Gibbs <- tim2-tim1

tim1 <- Sys.time()
chapters_lda_all_Gibbs_sec <- LDA(chapters_dtm_all_sec, method = "Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_all_Gibbs <- tim2-tim1

tim1 <- Sys.time()
chapters_lda_tfidf_Gibbs_sec <- LDA(chapters_dtm_tfidf_sec, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf_Gibbs <- tim2-tim1

misc.rate_1_Gibbs_sec <- ext_gamma_matrix(chapters_lda_Gibbs_sec) %>%
validate_LDAclassification()

misc.rate_all_Gibbs_sec <- ext_gamma_matrix(chapters_lda_all_Gibbs_sec) %>%
validate_LDAclassification()

misc.rate_tfidf_Gibbs_sec <- ext_gamma_matrix(chapters_lda_tfidf_Gibbs_sec) %>%
validate_LDAclassification()

performance matrix

54

performance_matrix_sec <- data.frame(freq2.embedding=c(misc.rate_1_Gibbs_sec, u_1_Gibbs),
all.embedding=c(misc.rate_all_Gibbs_sec, u_all_Gibbs),
tfidf=c(misc.rate_tfidf_Gibbs_sec, u_tfidf_Gibbs))

rownames(performance_matrix) <- c("misc. rate", "time")
performance_matrix_sec %>% stargazer(summary=FALSE, header=F, title = "Gibbs second sample")

Table 6: Gibbs second sample

freq2.embedding all.embedding tfidf
1 0.058 0.146 0.179
2 15.460 20.365 7.150

2.4 Evaluate Model on Test Set

First we split the data randomly into training- and test-sample.
split_for_fit <- function(data, test_ratio=0.03, seed=1234){
function to set up the training
and the testing set from the input data which
is an object from the function convert_to_dtm()
set.seed(seed)
N <- nrow(data)
n_test <- (N*test_ratio) %>% ceiling
test_ind <- sample(1:N, n_test)
train_ind <- (1:N)[-test_ind]
ret <- list(train=data[train_ind,],

test=data[test_ind,])
return(ret)

}

The fit_n_evaluate() function will fit the LDA model and evaluate the goodness of fit for an object of the
function split_for_fit. The section Validation gives insights in the procedure of how the “consensus” is set up.
fit_n_evaluate <- function(split, k=n_books){

LDA_model <- LDA(split$train, method="Gibbs",
k = k, control = list(seed = 1234))

use the predict function of udpipe
the topic predict funtion already extract the most likely topics
prediction <- predict(LDA_model, newdata=split$test) %>% .$topic
get "consensus" via maximum likelihood
first extract the gamma matrix of the model fitted on the training
data
chapters_gamma <- ext_gamma_matrix(LDA_model)
spreaded_gamma <- chapters_gamma %>% spread(topic, gamma)
get pdfs
plotm <- spreaded_gamma %>%

group_by(gutenberg_id) %>%
note: pdfs are unnormalized
summarise_at(2:(titles$len+1), sum)

topic_link <- plotm %>%
apply(1, function(x) which.max(x[2:length(x)])) %>%
cbind(plotm$gutenberg_id) %>%

55

as.data.frame()
exclude the
consensus <- split$test %>%

rownames() %>%
substr(1,regexpr("_",.)-1) %>%
as.numeric() %>%
as.data.frame() %>%
merge it to the topic
merge(topic_link, by.y="V2", sort=FALSE) %>%
select(..y)

misclassification rate will be returned
sum(consensus!=prediction)/length(prediction)

}

We now can evaluate several fits of a model for different splits. Here is a parallelization for the individual for
loops applied. In this case only embeding via tf-idf is used.
setting up how many cores to be used
useable_cores <- parallel::detectCores() - 1
registering cluster
cl <- parallel::makeCluster(useable_cores)
doParallel::registerDoParallel(cl)
n <- 59
results <- foreach(i = 1:n, .combine = 'c', .export = ls(.GlobalEnv), .packages = c("dplyr", "udpipe", "topicmodels", "tidyr", "tidytext")) %dopar% {

chapters_dtm_tfidf %>%
split_for_fit(seed=12*i) %>%
fit_n_evaluate()

}

Warning in e$fun(obj, substitute(ex), parent.frame(), e$data):
already exporting variable(s): chapters_dtm_tfidf, ext_gamma_matrix,
fit_n_evaluate, n_books, split_for_fit, titles
parallel::stopCluster(cl)

This is the output of the simulation over 59 splits and fits. The mean is the final result:
results %>% summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.2500 0.3093 0.5000 1.0000

3 Optimal tf-idf reduction

We want to visualize what the best values for a reduction of the original bag-of-words via tfidf is. I.e. by
what % should the bag-of-words be reduced for the best results (lowest misclassification ratio).
evaluation_for_embedding <- function(word_counts, frac=0.5) {
embedding 3
chapters_dtm_tfidf <- convert_to_dtm_2(word_counts, top=(M2*frac))
fitting

56

tim1 <- Sys.time()
chapters_lda_tfidf_Gibbs <- LDA(chapters_dtm_tfidf, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf_Gibbs <- tim2-tim1
calculating misclassification rate
misc.rate_tfidf_Gibbs <- ext_gamma_matrix(chapters_lda_tfidf_Gibbs) %>%

validate_LDAclassification()
function returns a vector including the misc. ratio and the fitting time
return(c(misc.rate_tfidf_Gibbs,

as.numeric(u_tfidf_Gibbs)))
}

set up the fractions we want to use
we use 0.1, 0.2, ..., 1
fractions <- seq(0.1,1,0.01)

Use parallelization
registering cluster
cl <- parallel::makeCluster(useable_cores)
doParallel::registerDoParallel(cl)
embedding_performance_matrix <- foreach(i = 1:length(fractions), .combine = 'rbind', .export = ls(.GlobalEnv), .packages = c("dplyr", "udpipe", "topicmodels", "tidyr", "tidytext")) %dopar% {

evaluation_for_embedding(word_counts, frac=fractions[i]) %>%
c(.,fractions[i])

}

Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already
exporting variable(s): convert_to_dtm_2, evaluation_for_embedding,
ext_gamma_matrix, fractions, M2, n, n_books, validate_LDAclassification,
word_counts
parallel::stopCluster(cl)

adjust the resulting matrix to a data frame for plotting
colnames(embedding_performance_matrix) <- c("misc.rate","time","fractions")
embedding_performance_matrix <- as.data.frame(embedding_performance_matrix)

ggplot(data=embedding_performance_matrix,
aes(x=fractions, y=misc.rate)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="blue", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Misclassification rates for different types of tfidf-embeddings \n Example 1 (6 Books)") +
xlab("fraction")

57

0.0

0.2

0.4

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Misclassification rates for different types of tfidf−embeddings
 Example 1 (6 Books)

ggplot(data=embedding_performance_matrix,
aes(x=fractions, y=time)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="blue", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Fitting time for different types of tfidf-embeddings \n Example 1 (6 Books)")+
xlab("fraction")

58

5

10

15

20

25

0.25 0.50 0.75 1.00
fraction

tim
e

Fitting time for different types of tfidf−embeddings
 Example 1 (6 Books)

Now let us study Example 2.
set up the fractions we want to use
we use 0.1, 0.2, ..., 1
fractions <- seq(0.1,1,0.01)

Use parallelization
registering cluster
cl <- parallel::makeCluster(useable_cores)
doParallel::registerDoParallel(cl)
embedding_performance_matrix_sec <- foreach(i = 1:length(fractions), .combine = 'rbind', .export = ls(.GlobalEnv), .packages = c("dplyr", "udpipe", "topicmodels", "tidyr", "tidytext")) %dopar% {

evaluation_for_embedding(word_counts_sec, frac=fractions[i]) %>%
c(.,fractions[i])

}

Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already
exporting variable(s): convert_to_dtm_2, evaluation_for_embedding,
ext_gamma_matrix, fractions, M2, n, n_books, validate_LDAclassification,
word_counts_sec
parallel::stopCluster(cl)

adjust the resulting matrix to a data frame for plotting
colnames(embedding_performance_matrix_sec) <- c("misc.rate","time","fractions")

59

embedding_performance_matrix_sec <- as.data.frame(embedding_performance_matrix_sec)

ggplot(data=embedding_performance_matrix_sec,
aes(x=fractions, y=misc.rate)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="red", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Misclassification rates for different types of tfidf-embeddings \n Example 2 (6 Books)")+
xlab("fraction")

0.1

0.2

0.3

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Misclassification rates for different types of tfidf−embeddings
 Example 2 (6 Books)

ggplot(data=embedding_performance_matrix_sec,
aes(x=fractions, y=time)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="red", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Fitting time for different types of tfidf-embeddings \n Example 2 (6 Books)")+
xlab("fraction")+
xlab("fraction")

60

5

10

15

20

0.25 0.50 0.75 1.00
fraction

tim
e

Fitting time for different types of tfidf−embeddings
 Example 2 (6 Books)

4 Definition of Validation

Since the LDA algorithm just clusters into k topics, it is necessary to evaluate which “topic” refers to which
book, in order to calculate a misclassification rate. For each of the books we naively derive a distribution
of the assignment to the topics. This is done by accumulating the distributions for each chapter of the
book. The most likely assignment of the LDA model is chosen as the “correct” topic. Now calculating the
misclassification rate is basically the fraction of those chapters/documents not coinciding with the most likely
assignment.
LDA_model <- LDA(chapters_dtm_tfidf, method="Gibbs",

k = n_books, control = list(seed = 1234))
get gamma matrix for chapter probabilities
chapters_gamma <- tidy(LDA_model, matrix = "gamma") %>%
split joint name of book and chapter

separate(document, c("gutenberg_id", "chapter"), sep = "_", convert = TRUE)
spreaded_gamma <- chapters_gamma %>% spread(topic, gamma)
get pdfs

plotm <- spreaded_gamma %>%
group_by(gutenberg_id) %>%
note: pdfs are unnormalized
summarise_at(2:(titles$len+1), sum)

topic_link <- plotm %>%
apply(1, function(x) which.max(x[2:length(x)])) %>%
cbind(plotm$gutenberg_id) %>%
as.data.frame()

61

par(mfrow=c(2,3))
for (i in 1:n_books){

vec <- plotm[i,2:n_books] %>% unlist()
barplot(vec/sum(vec), main=paste("Gutenberg ID", plotm[i,1]))

}

1 2 3 4 5

Gutenberg ID 2095

0.
0

0.
2

0.
4

0.
6

1 2 3 4 5

Gutenberg ID 6315

0.
0

0.
2

0.
4

0.
6

1 2 3 4 5

Gutenberg ID 6971

0.
00

0.
10

0.
20

1 2 3 4 5

Gutenberg ID 7635

0.
0

0.
2

0.
4

1 2 3 4 5

Gutenberg ID 10319

0.
0

0.
2

0.
4

0.
6

0.
8

1 2 3 4 5

Gutenberg ID 21039

0.
0

0.
2

0.
4

This procedure does not exclude the fact that two books are assigned to the same topic (in this case e.g. 2
books are assigned to chapter 1 and none to chapter 6). But still, from each of the plots of the “distributions”
you can obtain how good the chapters of a single book are classified. The more of the mass of the distribution
is on a single topic, the better the chapters of this topic are predicted.

5 Example 3 (10 books)

First we will sample the books, the same way as is it was done in Example 1.
n_books_10 <- 10
by_chapter10 <- set_up_books(n_books=n_books_10, seed=54321)
appended_by_chapter10 <- append_by_chapter(x=by_chapter10, n_books = n_books_10)
word_counts10 <- exclude_stop_words(appended_by_chapter10)

Joining, by = "word"
titles <- get_titles(appended_by_chapter10, n_books)

Warning in get_titles(appended_by_chapter10, n_books): --- -4 books have 0
chapters ---
titles$titles %>% stargazer(summary=FALSE, font.size = "footnotesize",

header=FALSE, title="Book-titles Example with 10 Books", rownames=FALSE,
label="titles:6books")

62

Table 7: Book-titles Example with 10 Books

gutenberg_id title author
1401 Tarzan the Untamed Burroughs, Edgar Rice
6315 The Awakening of Helena Richie Deland, Margaret Wade Campbell
6971 Judaism Abrahams, Israel
7635 The Disowned — Volume 05 Lytton, Edward Bulwer Lytton, Baron
10319 Dave Darrin’s Third Year at Annapolis; Or, Le Hancock, H. Irving (Harrie Irving)
11113 Principal Cairns Cairns, John
13145 Lippincott’s Magazine of Popular Literature a Various
15735 History of the Negro Race in America From 161 Williams, George Washington
21039 Boycotted, and Other Stories Reed, Talbot Baines
21710 The Crew of the Water Wagtail Ballantyne, R. M. (Robert Michael)

gbids <- titles$titles$gutenberg_id
categories <- gutenberg_works() %>%

filter(gutenberg_id %in% gbids) %>%
select(gutenberg_id, gutenberg_bookshelf)

categories %>% stargazer(summary=FALSE, font.size = "footnotesize",
header=FALSE, title="Book-categories", rownames=FALSE,
label="categories:10books")

Table 8: Book-categories

gutenberg_id gutenberg_bookshelf
1401 Adventure/Movie Books
6315 Bestsellers, American, 1895-1923
6971 Judaism
7635 Historical Fiction
10319 Children’s Book Series
11113 Famous Scots Series
13145 Lippincott’s Magazine
15735 Slavery
21039 School Stories
21710 Children’s Fiction

embedding 1
chapters_dtm_10 <- convert_to_dtm(word_counts10, minfq=2)
(M3_f2 <- ncol(chapters_dtm_10))

[1] 17742
number of documents
nrow(chapters_dtm_10)

[1] 230
embedding 2
chapters_dtm_all_10 <- convert_to_dtm(word_counts10, minfq=0)
(M3 <- ncol(chapters_dtm_all_10))

[1] 29101
embedding 3
chapters_dtm_tfidf_10 <- convert_to_dtm_2(word_counts10, top=(0.5*M3))
ncol(chapters_dtm_tfidf_10)

[1] 14550
63

embedding 1
tim1 <- Sys.time()
chapters_lda_10 <- LDA(chapters_dtm_10, method="Gibbs",

k = n_books_10, control = list(seed = 1234))
tim2 <- Sys.time()
u_1 <- tim2-tim1

embedding 2
tim1 <- Sys.time()
chapters_lda_all_10 <- LDA(chapters_dtm_all_10, method="Gibbs",

k = n_books_10, control = list(seed = 1234))
tim2 <- Sys.time()
u_all <- tim2-tim1

embedding 3
tim1 <- Sys.time()
chapters_lda_tfidf_10 <- LDA(chapters_dtm_tfidf_10, method="Gibbs",

k = n_books_10, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf <- tim2-tim1

embedding 1
misc.rate_1_10 <- ext_gamma_matrix(chapters_lda_10) %>%

validate_LDAclassification()

embedding 2
misc.rate_all_10 <- ext_gamma_matrix(chapters_lda_all_10) %>%

validate_LDAclassification()

embedding 3
misc.rate_tfidf_10 <- ext_gamma_matrix(chapters_lda_tfidf_10) %>%

validate_LDAclassification()

overview
performance_matrix_10_Gibbs <- data.frame(freq2.embedding=c(misc.rate_1_10, u_1),

all.embedding=c(misc.rate_all_10, u_all),
tfidf=c(misc.rate_tfidf_10, u_tfidf))

rownames(performance_matrix_10_Gibbs) <- c("misc. rate", "time")
performance_matrix_10_Gibbs %>% stargazer(summary=FALSE, header=F, title = "LDA via Gibbs 10 books example")

Table 9: LDA via Gibbs 10 books example

freq2.embedding all.embedding tfidf
misc. rate 0.341 0.322 0.317

time 1.227 1.332 32.043

embedding 1
tim1 <- Sys.time()
chapters_lda_10_VEM <- LDA(chapters_dtm_10, method="VEM",

k = n_books_10, control = list(seed = 1234))
tim2 <- Sys.time()
u_1 <- tim2-tim1

64

embedding 2
tim1 <- Sys.time()
chapters_lda_all_10_VEM <- LDA(chapters_dtm_all_10, method="VEM",

k = n_books_10, control = list(seed = 1234))
tim2 <- Sys.time()
u_all <- tim2-tim1

embedding 3
tim1 <- Sys.time()
chapters_lda_tfidf_10_VEM <- LDA(chapters_dtm_tfidf_10, method="VEM",

k = n_books_10, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf <- tim2-tim1

embedding 1
misc.rate_1_10_VEM <- ext_gamma_matrix(chapters_lda_10_VEM) %>%

validate_LDAclassification()

embedding 2
misc.rate_all_10_VEM <- ext_gamma_matrix(chapters_lda_all_10_VEM) %>%

validate_LDAclassification()

embedding 3
misc.rate_tfidf_10_VEM <- ext_gamma_matrix(chapters_lda_tfidf_10_VEM) %>%

validate_LDAclassification()

overview
performance_matrix_10_VEM <- data.frame(freq2.embedding=c(misc.rate_1_10_VEM, u_1),

all.embedding=c(misc.rate_all_10_VEM, u_all),
tfidf=c(misc.rate_tfidf_10_VEM, u_tfidf))

rownames(performance_matrix_10_VEM) <- c("misc. rate", "time")
performance_matrix_10_VEM %>% stargazer(summary=FALSE, header=F, title = "LDA via VEM 10 books example")

Table 10: LDA via VEM 10 books example

freq2.embedding all.embedding tfidf
misc. rate 0.483 0.497 0.420

time 53.366 51.926 16.110

The following box-plot should illustrate the misclassification rate of the LDA algorithm in the different use
cases.
plot_DF <- data.frame(VEM=c(misc.rate_1_10_VEM, misc.rate_all_10_VEM, misc.rate_tfidf_10_VEM,

misc.rate_1, misc.rate_all, misc.rate_tfidf,
misc.rate_1_sec, misc.rate_all_sec, misc.rate_tfidf_sec),

Gibbs=c(misc.rate_1_10, misc.rate_all_10, misc.rate_tfidf_10,
misc.rate_1_Gibbs, misc.rate_all_Gibbs, misc.rate_tfidf_Gibbs,
misc.rate_1_Gibbs_sec, misc.rate_all_Gibbs_sec, misc.rate_tfidf_Gibbs_sec),

Use_Case=c(rep("10 books",3),
rep("6 books",3),
rep("6 books",3)))

plot_DF2 <- gather(plot_DF, key="Procedure", value="accuracy", VEM, Gibbs)

65

plot_DF2 %>% ggplot(aes(x=Use_Case, y=accuracy, fill=Procedure))+
geom_boxplot() + xlab("") + ylab("misclassification rate")

0.1

0.2

0.3

0.4

0.5

10 books 6 books

m
is

cl
as

si
fic

at
io

n
ra

te

Procedure

Gibbs

VEM

For this example we can study one more time the optimal value of “fraction”. I.e. which fraction should
remain after tfidf embedding.
set up the fractions we want to use
we use 0.1, 0.2, ..., 1
fractions <- seq(0.1,1,0.01)

Use parallelization
registering cluster
cl <- parallel::makeCluster(useable_cores)
doParallel::registerDoParallel(cl)
embedding_performance_matrix_10 <- foreach(i = 1:length(fractions), .combine = 'rbind', .export = ls(.GlobalEnv), .packages = c("dplyr", "udpipe", "topicmodels", "tidyr", "tidytext")) %dopar% {

evaluation_for_embedding(word_counts10, frac=fractions[i]) %>%
c(.,fractions[i])

}

Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already
exporting variable(s): convert_to_dtm_2, evaluation_for_embedding,
ext_gamma_matrix, fractions, M2, n, n_books, validate_LDAclassification,
word_counts10

66

parallel::stopCluster(cl)

adjust the resulting matrix to a data frame for plotting
colnames(embedding_performance_matrix_10) <- c("misc.rate","time","fractions")
embedding_performance_matrix_10 <- as.data.frame(embedding_performance_matrix_10)

ggplot(data=embedding_performance_matrix_10,
aes(x=fractions, y=misc.rate)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="magenta4", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Misclassification rates for different types of tfidf-embeddings \n Example 3 (10 Books)")+
xlab("fraction")

0.52

0.56

0.60

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Misclassification rates for different types of tfidf−embeddings
 Example 3 (10 Books)

5.1 In Model Evaluation

In the first place, we try the in-model-validation procedure, for each of the 3 embeddings. Table 11 displays
the results of each validation.
chapters_dtm2 <- convert_to_dtm(word_counts, minfq=2)
tim1 <- Sys.time()
chapters_lda_Gibbs2 <- LDA(chapters_dtm2, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_1_Gibbs2 <- tim2-tim1

67

ncol(chapters_dtm2)

[1] 8597
chapters_dtm_all2 <- convert_to_dtm(word_counts, minfq=0)
tim1 <- Sys.time()
chapters_lda_all_Gibbs2 <- LDA(chapters_dtm_all2, method = "Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_all_Gibbs2 <- tim2-tim1
M2 <- ncol(chapters_dtm_all2)

chapters_dtm_tfidf2 <- convert_to_dtm_2(word_counts, top=0.5*M2)
tim1 <- Sys.time()
chapters_lda_tfidf_Gibbs2 <- LDA(chapters_dtm_tfidf2, method="Gibbs",

k = n_books, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf_Gibbs2 <- tim2-tim1
ncol(chapters_dtm_tfidf)

[1] 1518
misc.rate_1_Gibbs2 <- ext_gamma_matrix(chapters_lda_Gibbs2) %>%

validate_LDAclassification()

misc.rate_all_Gibbs2 <- ext_gamma_matrix(chapters_lda_all_Gibbs2) %>%
validate_LDAclassification()

misc.rate_tfidf_Gibbs2 <- ext_gamma_matrix(chapters_lda_tfidf_Gibbs2) %>%
validate_LDAclassification()

performance_matrix <- data.frame(freq2.embedding=c(misc.rate_1_Gibbs2, u_1_Gibbs2),
all.embedding=c(misc.rate_all_Gibbs2, u_all_Gibbs2),
tfidf=c(misc.rate_tfidf_Gibbs2, u_tfidf_Gibbs2))

rownames(performance_matrix) <- c("misc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F, title="In-Model-Validation for the 3 embeddings", label = "in-model_val")

Table 11: In-Model-Validation for the 3 embeddings

freq2.embedding all.embedding tfidf
misc. rate 0.169 0.116 0.042

time 22.425 21.171 7.622

68

Gutenberg Data via Neural Net Documentation
Sebastian Knigge

5 8 2019

Contents
1 Setup

2 Example 1 (6 books)
2.1 Get data - Sampling .
2.2 Reduction of the dimensionality .
2.3 Splitting and Fitting .

3 Example 2 (6 Books)

1 Setup

Following packages were used in this script:
loading packages
library(keras)
library(gutenbergr)
library(dplyr)
library(tensorflow)
library(tidyr)
library(stringr)
library(tidytext)
library(udpipe)
library(sampling)

2 Example 1 (6 books)

2.1 Get data - Sampling

This is the essential step for setting up the neural net. These functions include the sampling procedure of the
gutenbergr library.
sampling_books <- function(seed=1234, n=20){

sample n books from the whole library
set.seed(seed)
gutenberg_works() %>%

select works with title
dplyr::filter(!is.na(title)) %>%
set the sample sitze
sample_n(n) %>%
set a special download link
gutenberg_download(

mirror = "http://mirrors.xmission.com/gutenberg/")

69

}

set_up_books <- function(n_books=4, seed=1992){
initial book sample
books <- sampling_books(n=n_books, seed=seed)
by_chapter <- books %>%

group_by(gutenberg_id) %>%
split in chapters
mutate(chapter = cumsum(str_detect(text, regex("^chapter ", ignore_case = TRUE)))) %>%
ungroup() %>%
exclude books without chapters
dplyr::filter(chapter > 0)

return(by_chapter)
}

shorten_titles <- function(titles){
shorten very long book titles by setting
a subset of characters of the first line
of the title
sub_inds <- titles %>%

regexpr(pattern="\\n|\\r")-1
sub_inds[sub_inds<0] <- nchar(titles)[sub_inds<0]
titles %>%

substr(1,sub_inds)
}

get_titles <- function(x, n_books){
get the sampled gutenberg_ids
unique_ids <- x %>%

select(gutenberg_id) %>%
unique() %>% unlist()

get the titles
titles <- gutenberg_works() %>%

dplyr::filter(gutenberg_id %in% unique_ids) %>%
select(gutenberg_id, title, author) %>%
mutate(title=shorten_titles(title))

get the number of gutenberg ids
len <- nrow(titles)
if(n_books!=len) warning(paste("--- ",n_books-len,

" books have 0 chapters --- "))
the output as a list
ret <- list(

titles=titles,
len=len

)
return(ret)

}

append_by_chapter <- function(x=by_chapter, n_books, seed_index=1){
append the books matrix until
we get the desired number of books n_books
titles <- get_titles(x, n_books)
n <- titles$len

70

while (n<n_books) {
book2add <- sampling_books(n=1, seed=seed_index)
by_chapter_add <- book2add %>%

group_by(gutenberg_id) %>%
split in chapters
mutate(chapter = cumsum(str_detect(text, regex("^chapter ", ignore_case = TRUE)))) %>%
ungroup() %>%
exclude books without chapters
dplyr::filter(chapter > 2)

titles2add <- get_titles(by_chapter_add, 1)
adding the book to by_chapter if there are chapters in the
book plus it is not in the data already
if (titles2add$len==1) if(!titles2add$titles$gutenberg_id%in%titles$titles$gutenberg_id) {

x <- bind_rows(x, by_chapter_add)
}
n<-get_titles(x, n)$len
seed_index <- seed_index+1

}
return(x)

}

exclude_stop_words <- function(x){
unite chapter and document title
by_chapter_word <- x %>%

unite(document, gutenberg_id, chapter) %>%
split into words
unnest_tokens(word, text)

import tibble stop words
data(stop_words)
find document-word counts
word_counts <- by_chapter_word %>%

exclude stop words
anti_join(stop_words) %>%
count each word by chapter
count(document, word, sort = TRUE) %>%
ungroup()

return(word_counts)
}

convert_to_dtm <- function(x, minfq = 2){
get into a format lda can handle
chapters_dtm <- x %>%

select(doc_id=document, term=word, freq=n) %>%
document_term_matrix() %>%
reduce by low frequencies
dtm_remove_lowfreq(minfreq = minfq)

return(chapters_dtm)
}

convert_to_dtm_2 <- function(x, n=n, minfq = 2, top=10000){
get into a format lda can handle
chapters_dtm <- x %>%

71

select(doc_id=document, term=word, freq=n) %>%
document_term_matrix() %>%
reduce by low frequencies
dtm_remove_tfidf(top=top)

return(chapters_dtm)
}

convert x matrix into a form such that it can be used for tensorflow
adjust_tensor_format <- function(x){

x_chapters <- apply(x, 1, function(x) as.matrix(x)) %>% t()
topics <- x %>% rownames() %>% as_tibble() %>%

separate(value, c("gutenberg_id", "chapter"), sep = "_", convert = TRUE) %>%
select(gutenberg_id) %>%
split joint name of book and chapter
as.matrix %>% as.factor() %>% as.integer()

one hot encoding for the chapters (y)
topics_categorical <- topics %>% -1 %>%

to_categorical()
ret <- list(

x=x_chapters,
y=topics_categorical,
topics=topics

)
return(ret)

}

Now we can use all these functions to get to the initial corpus sample. the corpus of this example is equivalent
to the corpus in Example 1 of the LDA Gutenberg Documentation.
n_books <- 6
by_chapter <- set_up_books(n_books=n_books, seed=222)
get_titles(by_chapter, n_books)

Warning in get_titles(by_chapter, n_books): --- 1 books have 0 chapters ---

$titles
A tibble: 5 x 3
gutenberg_id title author
<int> <chr> <chr>
1 11 Alice's Adventures in Wonderland Carroll, Lewis
2 3096 Beatrice Haggard, H. Rider~
3 25603 Detailed Minutiae of Soldier life in the~ McCarthy, Carlton
4 47402 Along Alaska's Great River Schwatka, Frederi~
5 49675 Hawkins Electrical Guide v. 5 (of 10) Hawkins, N. (Nehe~
##
$len
[1] 5

The function set_up_books() (defined above) returns a warning that one book seems to consist of only one
chapter. In order to get a copus consisting out of 6 books, the function append_by_chaper() is used, which
fills up the corpus to the desired number of books.
appended_by_chapter <- append_by_chapter(x=by_chapter, n_books = n_books)
word_counts <- exclude_stop_words(appended_by_chapter)

Joining, by = "word"

72

In table 1 the sampled titles for the book sample with the seed 222 are displayed. It appears through the
function append_by_chapter() one book was added, called “My Novel” — Volume 04“.
titles <- get_titles(appended_by_chapter, n_books)
titles$titles %>% stargazer(summary=FALSE, font.size = "footnotesize",

header=FALSE, title="Book-titles", rownames=FALSE,
label="titles:6books")

Table 1: Book-titles
gutenberg_id title author

11 Alice’s Adventures in Wonderland Carroll, Lewis
3096 Beatrice Haggard, H. Rider (Henry Rider)
7705 "My Novel" — Volume 04 Lytton, Edward Bulwer Lytton, Baron
25603 Detailed Minutiae of Soldier life in the Army of Northern Virginia, 1861-1865 McCarthy, Carlton
47402 Along Alaska’s Great River Schwatka, Frederick
49675 Hawkins Electrical Guide v. 5 (of 10) Hawkins, N. (Nehemiah)

2.2 Reduction of the dimensionality

As mentioned in the documentation for the LDA using Gutenberg data, also here there are different possible
embedding methods. The function convert_to_dtm takes the parameter minfq, which is used to reduce the
“bag of words” (i.e. dimensionality). minfq is the minimum frequency for the bag of words dictionary. I will
refer to this as “embedding”. Let us set it to 2 in this case, meaning that we include a word only if the
frequency is 2 or more.
chapters_dtm <- convert_to_dtm(word_counts, minfq=2)
adjusted_format <- adjust_tensor_format((chapters_dtm))
(M2 <- ncol(chapters_dtm))

[1] 10685

Let us compare it to the case if we include all words.
chapters_dtm_all <- convert_to_dtm(word_counts, minfq=0)
adjusted_format_all <- adjust_tensor_format((chapters_dtm_all))
(M <- ncol(chapters_dtm_all))

[1] 17961

We also want to compare this to a reduction of the word dictionary by tf-idf. We reduce to 50% of the original
size of the bag-of-words.
chapters_dtm_tfidf <- convert_to_dtm_2(word_counts, top=(M*0.5))
adjusted_format_tfidf <- adjust_tensor_format((chapters_dtm_tfidf))
ncol(chapters_dtm_tfidf)

[1] 8980

2.3 Splitting and Fitting

The following function splits the sample in an manner, such that each cluster is eually to its size represented
in the test data and the validation data.
sample_cluster_wise <- function(data, test_ratio=0.1, val_ratio=0.2, seed=1234){

X <- data$x; y <- data$y

73

cluster=data$topics
set.seed(seed)
{
setting the absolute number of observations for the sample of each cluster
n_test <- (table(cluster)*test_ratio) %>% floor() %>%

use at least one observation of each cluster
sapply(., function(x) max(x,1))

n_val <- (table(cluster)*val_ratio) %>% floor() %>%
use at least one observation of each cluster
sapply(., function(x) max(x,1))

function to get the correct sample indices for validation and test sample
samp_ind <- function(i, n_list) which(cluster==i) %>% sample(n_list[i])
test_indices <- unique(cluster) %>% sort() %>%

sapply(function(i) samp_ind(i, n_test)) %>%
unlist()

val_indices <- unique(cluster) %>% sort() %>%
sapply(function(i) samp_ind(i, n_val)) %>%
unlist()

}
ret <- list(partial_x_train=X[-c(val_indices,test_indices),],

partial_y_train=y[-c(val_indices,test_indices),],
x_val=X[val_indices,], y_val = y[val_indices,],

x_test=X[test_indices,], y_test = y[test_indices,])
return(ret)

}

The following two functions are setting up the model in training, validation and testing sets and evaluate the
goodness of fit.
The whole model is set up and trained within this function
set_up_n_fit <- function(split, books_n=n_books){

starting with 64 neurons and scaling it down to 46 in the
mid layer turned out to be a well predicting model
model <- keras_model_sequential() %>%

layer_dense(units=64, activation="relu", input_shape=ncol(split$partial_x_train)) %>%
layer_dense(units=46, activation="relu") %>%
we want to classify for as many categories as books
layer_dense(units=books_n, activation="softmax")

model %>% compile(
optimizer="rmsprop",
loss="categorical_crossentropy",
metrics=c("accuracy"))

history <- model %>% fit(
split$partial_x_train,
split$partial_y_train,
from experience the model tends to
overfit for more than 5 epochs
epochs=5,
batch_size=512,
validation_data=list(split$x_val,split$y_val)

)

74

return(
list(history=history,

model=model))
}

making a prediction on the test data and calculating the
mispecification rate; we also want to save the true categories and the predicted ones
evaluate_model <- function(model_fit, y=split$y_test, x=split$x_test) {

prediction <- model_fit %>% predict(x)
pred <- apply(prediction, 1, which.max)
true_value <- apply(y, 1, which.max)
mispecified <- sum(!pred==true_value)/length(pred)
ret <- list(mispecified=mispecified,

the function also dicloses the true and the predicted
values for exact evaluation, if needed
pred=pred, true_value=true_value)

return(ret)
}

Now we can start applying the model. We will measure the misclassification ratio, the fitting time and store
the results for evaluation.
tim1 <- Sys.time()
n <- 59
results <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(adjusted_format, seed=i*2)
results[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model() %>% .$mispecified
}
tim2 <- Sys.time()

We will present some statistics of the results of the evaluation. We consider the misclassification rate als
primary measure to evaluate the fit. The results of the misclassification rate over 59 splits and fits of the
model are:
results %>% summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.01356 0.00000 0.20000
results %>% var

[1] 0.001537113

A histogram might be helpful in visualizing the results.
hist(results, breaks = 20)

75

Histogram of results

results

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40
50

The fitting time might be interesting as well.
mfreq=2
(u1 <- tim2-tim1)

Time difference of 4.353287 mins

We now apply this very same procedure using the full bag of words:
tim1_all <- Sys.time()
n <- 59
results_all <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(adjusted_format_all, seed=i*2)
results_all[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model() %>% .$mispecified
}
tim2_all <- Sys.time()

results_all %>% summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.00678 0.00000 0.10000
results_all %>% var

[1] 0.0006428989

76

hist(results_all, breaks = 20)

Histogram of results_all

results_all

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

mfreq=2
(u2 <- tim2_all-(tim1_all))

Time difference of 11.24102 mins

In this step we use the embeding via tf-idf and fit the model. The tf-idf embedding equals a reduction by
50%.
tim1_tfidf <- Sys.time()
n <- 59
results_tfidf <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(adjusted_format_tfidf, seed=i*2)
results_tfidf[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model() %>% .$mispecified
}
tim2_tfidf <- Sys.time()

results_tfidf %>% summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.0339 0.1000 0.2000
results_tfidf %>% var

[1] 0.003313852
hist(results_tfidf, breaks = 20)

77

Histogram of results_tfidf

results_tfidf

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40

mfreq=2
(u3 <- tim2_tfidf-(tim1_tfidf))

Time difference of 17.41653 mins

Table 2 summarises the results of all 3 different embeding mthods.
performance_matrix <- data.frame(freq2.embedding=c(results%>%mean, u1),

all.embedding=c(results_all%>%mean, u2),
tfidf=c(results_tfidf%>%mean, u3))

rownames(performance_matrix) <- c("misc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F,

title="Performance of embeddings",
label="performancematrix")

Table 2: Performance of embeddings

freq2.embedding all.embedding tfidf
misc. rate 0.014 0.007 0.034

time 4.353 11.241 17.417

The time for the embedding using more than frequency 2 is very short. Whereas the embedding via tf-idf
with the same dimensionality takes very long. It certainly makes sense that the mislcassification rate is better
for embedding with the full vocabulary than for the other two embeddings.

78

3 Example 2 (6 Books)

Also the second example is based on the same sample of Example 2 of the LDA Gutenberg Documentation.
This is seed = 101. We will use the same calculations as done for Example 1. This second example shall halp
providing more valid results.
n_books_sec <- 6
by_chapter_sec <- set_up_books(n_books=n_books_sec, seed=101)
appended_by_chapter_sec <- append_by_chapter(x=by_chapter_sec, n_books = n_books_sec)
word_counts_sec <- exclude_stop_words(appended_by_chapter_sec)

Joining, by = "word"
titles_sec <- get_titles(appended_by_chapter_sec, n_books)
gbids_sec <- titles_sec$titles$gutenberg_id
categories_sec <- gutenberg_works() %>%

filter(gutenberg_id %in% gbids_sec) %>%
select(gutenberg_id, gutenberg_bookshelf)

Table 3 displays the sampled books for this example.
titles <- get_titles(appended_by_chapter_sec, n_books)
titles$titles %>% stargazer(summary=FALSE, font.size = "footnotesize",

header=FALSE, title="Book-titles for Example 2 (6 Books)", rownames=FALSE,
label="titles:6books_sec")

Table 3: Book-titles for Example 2 (6 Books)

gutenberg_id title author
2029 Lahoma Ellis, J. Breckenridge (John Breckenridge)
12035 Progressive Morality: An Essay in Ethics Fowler, Thomas
14625 Military Instructors Manual
18633 My Lady of Doubt Parrish, Randall
34037 Under the Southern Cross Ballou, Maturin Murray
36697 Revisiting the Earth Hill, James Langdon

chapters_dtm_sec <- convert_to_dtm(word_counts_sec, minfq=2)
adjusted_format_sec <- adjust_tensor_format((chapters_dtm_sec))
(M2 <- ncol(chapters_dtm_sec))

[1] 12704
chapters_dtm_all_sec <- convert_to_dtm(word_counts_sec, minfq=0)
adjusted_format_all_sec <- adjust_tensor_format((chapters_dtm_all_sec))
(M <- ncol(chapters_dtm_all_sec))

[1] 20634
chapters_dtm_tfidf_sec <- convert_to_dtm_2(word_counts_sec, top=(M*0.5))
adjusted_format_tfidf_sec <- adjust_tensor_format((chapters_dtm_tfidf_sec))
ncol(chapters_dtm_tfidf_sec)

[1] 10317
tim1 <- Sys.time()
n <- 59
results_sec <- rep(NA,n)
for(i in 1:n){

79

split <- sample_cluster_wise(adjusted_format_sec, seed=i*2)
results_sec[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model() %>% .$mispecified
}
tim2 <- Sys.time()
evaluate fitting time
(u1_sec <- tim2-tim1)

Time difference of 24.758 mins
tim1 <- Sys.time()
n <- 59
results_all_sec <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(adjusted_format_all_sec, seed=i*2)
results_all_sec[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model() %>% .$mispecified
}
tim2 <- Sys.time()
evaluate fitting time
(u2_sec <- tim2-tim1)

Time difference of 31.37081 mins
tim1 <- Sys.time()
n <- 59
results_tfidf_sec <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(adjusted_format_tfidf_sec, seed=i*2)
results_tfidf_sec[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model() %>% .$mispecified
}
tim2 <- Sys.time()
evaluate fitting time
(u3_sec <- tim2-tim1)

Time difference of 37.56571 mins

A overview of the results will be found in Table 4.
performance_matrix <- data.frame(freq2.embedding=c(results_sec%>%mean, u1_sec),

all.embedding=c(results_all_sec%>%mean, u2_sec),
tfidf=c(results_tfidf_sec%>%mean, u3_sec))

rownames(performance_matrix) <- c("misc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F,

title="Performance of embeddings for Example 2",
label="tab:sec_results")

Table 4: Performance of embeddings for Example 2

freq2.embedding all.embedding tfidf
misc. rate 0.121 0.103 0.100

time 24.758 31.371 37.566

80

Regulatory Documents via LDA - Documentation
Sebastian Knigge

18 8 2019

Contents
1 Setup

2 Import data

3 LDA
3.1 Wordclouds .

3.1.1 Wordclouds using tf-idf .
3.1.2 Wordclouds using tf .

3.2 Embedding via tf-idf .
3.3 Missclassification Rates .

4 Optimal value of Reduction via tfidf

5 Coherence Cloud

1 Setup

Following libraries are used in the code:
library(dplyr)
library(tidytext)
library(pdftools)
library(tidyr)
library(stringr)
library(tidytext)
library(udpipe)
library(topicmodels)
library(ggplot2)
library(wordcloud)
library(tm)
library(SnowballC)
library(RColorBrewer)
library(RCurl)
library(XML)
library(openxlsx)
library(keras)
library(foreach)
library(doParallel)

81

2 Import data

The Documents had to be preprocessed. For the documents wp2.5 all list of contents had to be deleted,
because they were the same in each of these documents. No more adjustments had to be made.

In this code reulatory documents are red in and processed via LDA. This first part focusses on reading in the
pdf documents.
getting the right order
setwd('..')
documents <- read.xlsx("Docs_classes.xlsx")[,2]
classes <- read.xlsx("Docs_classes.xlsx")[,c(1,3)]
documents <- paste0(documents,".pdf")
documents %>% as.data.frame() %>% stargazer(summary=FALSE,

header = FALSE,
title="Document Titles")

Table 1: Document Titles

.
1 admin-wp1.1_analysis_legal_institutional_environment_final.pdf
2 admin-wp1.2_good_practices_final.pdf
3 admin-wp2.1_estimation_methods1.pdf
4 admin-wp2.2_estimation_methods2.pdf
5 admin-wp2.3-estimation_methods3.pdf
6 admin-wp2.4_examples.pdf
7 admin-wp2.5_alignment.pdf
8 admin-wp2.5_editing.pdf
9 admin-wp2.5_greg.pdf
10 admin-wp2.5_imputation.pdf
11 admin-wp2.5_macro_integration.pdf
12 admin-wp2.5_matching.pdf
13 admin-wp2.6_good_practices.pdf
14 admin-wp2.6_guidelines.pdf
15 admin-wp3.1_quality1.pdf
16 admin-wp3.2_quality2.pdf
17 admin-wp3.3_quality.pdf
18 admin-wp3.4_quality.pdf
19 admin-wp3.5_quality_measures.pdf
20 admin-wp3_coherence.pdf
21 admin-wp3_growth_rates.pdf
22 admin-wp3_suitability1.pdf
23 admin-wp3_suitability2.pdf
24 admin-wp3_suitability3.pdf
25 admin-wp3_uncertainty.pdf
26 admin-wp5_frames.pdf
27 admin-wp5_frames_examples.pdf
28 admin-wp5_frames_recommendation.pdf

getting the right directory
library(here)
setwd("../")
path <- getwd() %>%

file.path("TextDocs")

82

setwd(path)

Following functions are used to set up and analyze the pdfs. When cleaning up data, we have to take into
account certain circumstances of the regulatory documents. For example, there are many formulas and
technical abbreviations in the documents. Every variable, every estimator, and every index is included as a
single word in the bag of words. These terms sometimes have a big influence on the documents, because they
are very specific for individual documents and occur quite often. To avoid this, we exclude all mixed words
with characters and numeric values, as well as all terms with special characters (e.g. Greek letters).
read_pdf_clean <- function(document){

This function loads the document given per name
and excludes the stop words
pdf1 <- pdf_text(file.path(path, document)) %>%

strsplit(split = "\n") %>%
do.call("c",.) %>%
as_tibble() %>%
unnest_tokens(word,value) %>%
also exclude all words which include numbers and special characters
filter(grepl("^[a-z]+$", word))

load stopword library
data(stop_words)
stop words are excluded via anti_join
pdf1 %>%

anti_join(stop_words)
}

plot_most_freq_words <- function(pdf, n=7){
plots a bar plot via ggplot
pdf %>% count(word) %>% arrange(desc(n)) %>% head(n) %>%

ggplot(aes(x=word,y=n)) +
geom_bar(stat="identity")+
no labels for x and y scale
theme(axis.title.y=element_blank(),

axis.title.x=element_blank())
}

Now we can read in all documents using a for loop:
setwd(path)
inital set up for the corpus
pdf1 <- read_pdf_clean(documents[1])
corpus <- tibble(document=1, word=pdf1$word)
adding the documents iteratively
for (i in 2:length(documents)){

pdf_i <- read_pdf_clean(documents[i])
corpus <- tibble(document=i, word=pdf_i$word) %>% bind_rows(corpus,.)

}

3 LDA

The LDA model is applied. First the document term matrix has to be set up.
dtm <- corpus %>% count(document, word, sort = TRUE) %>%

select(doc_id=document, term=word, freq=n) %>%

83

document_term_matrix()
dimensions
c(N,M) %<-% dim(dtm)
N; M

[1] 28

[1] 8254

We use term frequency 2 embedding because in the example with the Gutenberg Data, it turned out to be
advantageous with regard to the “predictive power” of the LDA algorithm.
dtm_tf2 <- dtm %>%

reduce by low frequencies
dtm_remove_lowfreq(minfreq = 2)

ncol(dtm_tf2)

[1] 5842

Using the function LDA sets up the model and prediction/evaluation is done via predict(). But first of all it
shall be verified whether the Predict function actually delivers the same classification as the export of the
gamma matrix directly from the LDA model. Therefore both gamma matrices of the single functions are
compared. Table 2 displays the output of the gamma matrix received by the predict() function and Table 3
displays the gamma matrix returned by the LDA model itself.
tim1 <- Sys.time()
set.seed(123)
documents_lda <- LDA(dtm_tf2, method = "Gibbs",

k = 7, control = list(seed = 1234))
tim2 <- Sys.time()
u1 <- tim2 - tim1

prediction5 <- predict(documents_lda, newdata=dtm_tf2, type="topic")

prediction5 <- merge(prediction5, classes, by.x="doc_id", by.y="No")

prediction5 %>%
select(doc_id,topic_001,topic_002,topic_003,topic_004,topic_005,

topic_006, topic_007) %>%
mutate_each(funs(as.numeric),

doc_id,topic_001,topic_002,topic_003,topic_004,
topic_005, topic_006, topic_007) %>%

arrange(desc(-doc_id)) %>%
round(2) %>%
stargazer(summary=F, rownames = F, header = F,

title="Gamma matrix for predict function", label="predict")

ext_gamma_matrix <- function(model=documents_lda){
get gamma matrix for chapter probabilities
chapters_gamma <- tidy(model, matrix = "gamma")
get matrix with probabilities for each topic per chapter
spreaded_gamma <- chapters_gamma %>% spread(topic, gamma)
spreaded_gamma %>%

mutate_each(funs(as.numeric), document,1,2,3,4,5,6,7) %>%
arrange(desc(-document))

}

84

Table 2: Gamma matrix for predict function

doc_id topic_001 topic_002 topic_003 topic_004 topic_005 topic_006 topic_007
1 0 0.950 0 0.030 0.010 0 0.010
2 0.010 0.760 0.010 0.160 0.030 0.030 0.010
3 0.160 0.020 0.060 0.030 0.630 0.050 0.050
4 0.180 0.010 0.030 0.020 0.710 0.020 0.040
5 0.720 0 0.080 0.010 0.160 0.020 0.010
6 0.600 0.010 0.230 0.030 0.120 0.010 0.010
7 0.830 0.010 0.080 0.010 0.040 0.020 0.020
8 0.760 0.020 0.030 0.010 0.130 0.030 0.020
9 0.750 0.010 0.090 0.030 0.060 0.030 0.030
10 0.900 0 0.030 0.010 0.050 0.010 0.010
11 0.690 0.010 0.170 0.010 0.100 0.020 0.010
12 0.800 0.010 0.030 0.010 0.120 0.030 0.010
13 0.010 0.080 0.010 0.410 0.470 0.020 0.010
14 0.170 0.010 0.030 0.030 0.730 0.020 0.010
15 0.010 0.020 0.010 0.020 0.180 0.750 0.010
16 0.010 0 0.770 0 0.120 0.080 0.010
17 0.010 0.010 0.100 0.030 0.050 0.040 0.760
18 0.010 0 0.770 0 0.130 0.080 0.010
19 0.060 0 0.450 0.010 0.100 0.320 0.060
20 0.030 0.010 0.040 0.020 0.040 0.840 0.020
21 0.010 0 0.940 0.010 0.020 0.010 0.010
22 0.010 0.010 0.910 0.020 0.030 0 0.010
23 0.010 0.010 0.820 0.030 0.040 0.050 0.050
24 0.010 0.010 0.860 0.010 0.080 0.010 0.010
25 0.130 0 0.820 0.010 0.010 0.020 0.010
26 0.010 0.010 0.010 0.100 0.160 0.060 0.650
27 0 0.100 0.010 0.690 0.020 0.010 0.180
28 0.010 0.060 0.010 0.670 0.020 0.180 0.050

85

ext_gamma_matrix(documents_lda) %>%
round(2) %>%
stargazer(summary=F, rownames = F, header=F,

title="Gamma matrix extracted from model",
label="extract")

Table 3: Gamma matrix extracted from model

document 1 2 3 4 5 6 7
1 0 0.94 0 0.03 0.01 0 0.01
2 0.01 0.75 0 0.16 0.03 0.03 0.01
3 0.15 0.02 0.07 0.03 0.62 0.05 0.05
4 0.18 0.01 0.03 0.03 0.7 0.02 0.04
5 0.71 0.01 0.09 0 0.16 0.02 0.01
6 0.59 0.02 0.23 0.02 0.12 0.01 0.01
7 0.8 0.01 0.07 0.01 0.04 0.03 0.03
8 0.73 0.01 0.05 0.01 0.14 0.04 0.02
9 0.73 0.01 0.09 0.02 0.07 0.03 0.05
10 0.88 0 0.04 0.01 0.06 0 0.02
11 0.67 0.01 0.19 0.01 0.1 0.01 0.01
12 0.79 0.01 0.04 0.01 0.12 0.02 0.01
13 0.01 0.08 0.01 0.4 0.47 0.02 0.01
14 0.18 0.01 0.03 0.04 0.72 0.02 0.01
15 0.02 0.02 0.02 0.02 0.18 0.73 0.02
16 0.01 0.01 0.76 0.01 0.13 0.08 0.01
17 0.01 0.01 0.1 0.03 0.05 0.05 0.74
18 0.01 0 0.76 0 0.13 0.08 0.01
19 0.07 0.01 0.45 0.01 0.1 0.31 0.06
20 0.05 0.01 0.03 0.02 0.05 0.82 0.03
21 0.01 0 0.92 0.01 0.02 0.02 0.01
22 0.01 0 0.89 0.02 0.04 0.01 0.02
23 0.01 0.01 0.82 0.03 0.04 0.05 0.04
24 0.02 0.01 0.87 0.01 0.08 0.01 0.01
25 0.13 0.01 0.81 0.02 0.01 0.02 0.01
26 0.01 0.02 0.01 0.11 0.16 0.06 0.64
27 0.01 0.09 0.01 0.68 0.03 0.01 0.17
28 0.01 0.06 0.02 0.66 0.02 0.19 0.05

The tables below summarize which document refers to which topic, according to the LDA model (term
frequency 2 embedding).

3.1 Wordclouds

To check what topics tackle which context, we produce wordclouds using the tf-idf and the tf itself.
plot_wordcloud <- function(corpus, selection="ALL",

max.words=50, i, freq="tfidf",
scale=c(3,0.2)){

setting up a tibble which returns tfidf and tf and frequency for
the whole corpus
tfidf <- corpus %>% count(document, word, sort = TRUE) %>%

bind_tf_idf(word, document, n)

86

Table 4: Documents for Topic 1

Topic doc_id Group
1 10 4
1 11 4
1 12 4
1 5 2
1 6 3
1 7 4
1 8 4
1 9 4

Table 5: Documents for Topic 2

Topic doc_id Group
2 1 1
2 2 1

Table 6: Documents for Topic 3

Topic doc_id Group
3 16 5
3 18 5
3 19 5
3 21 6
3 22 6
3 23 6
3 24 6
3 25 6

Table 7: Documents for Topic 4

Topic doc_id Group
4 27 7
4 28 7

Table 8: Documents for Topic 5

Topic doc_id Group
5 13 3
5 14 4
5 3 2
5 4 2

87

Table 9: Documents for Topic 6

Topic doc_id Group
6 15 5
6 20 5

Table 10: Documents for Topic 7

Topic doc_id Group
7 17 5
7 26 7

include all documents for selection if selection="ALL"
if (all(selection=="ALL")) {

selection <- corpus %>%
select(document) %>%
unique() %>%
unlist() %>%
sort()}

filter for all selected documents
use either ft or tfidf
if (freq=="tfidf"){

dtm_selected <- tfidf %>% filter(document%in%selection) %>%
select(word, tf_idf) %>% count(word, wt=tf_idf, sort=TRUE)

} else {
dtm_selected <- tfidf %>% filter(document%in%selection) %>%

select(word, tf) %>% count(word, wt=tf, sort=TRUE)
}
plotting
wordcloud(words = dtm_selected$word, freq = dtm_selected$n,

min.freq = 1,max.words=max.words, random.order=FALSE,
colors=brewer.pal(8, "Dark2"), scale=scale,
main="Title", use.r.layout = TRUE)

set a title = document
text(x=0.5, y=1, paste("Topic", i))

}

A second possibility is to extract the tf-idf s of the words linked to the topics directly. First you have to map
the topics to the documents within the tidytext format. This is the only way the tfidf_tf matrix can be set
up for the individual topics.
plot_wordcloud_topic <- function(corpus, topic_select=1, prediction=prediction5,

max.words=50,
scale=c(3,0.2)){

get the correct topic mapping via the first two columns
of the prediction matrix
new_corpus <- prediction %>%

transmute(doc_id=as.numeric(doc_id), topic) %>%
right_join(corpus, c("doc_id"="document"))

setting up a tibble which returns tfidf and tf and frequency for
the whole corpus

88

tfidf <- new_corpus %>% count(topic, word, sort = TRUE) %>%
bind_tf_idf(word, topic, n) %>%
filter for all selected topics
use either ft or tfidf
filter(topic==topic_select)

plotting
wordcloud(words = tfidf$word, freq = tfidf$tf_idf,

min.freq = 1,max.words=max.words, random.order=FALSE,
colors=brewer.pal(8, "Dark2"), scale=scale,
main="Title", use.r.layout = TRUE)

set a title = document
text(x=0.5, y=1, paste("Topic", topic_select))

}

3.1.1 Wordclouds using tf-idf

For getting specific and more individual words for each cloud, we use the tf-idf in the first step. Now there
are two methods to create the word clouds for the tf-idf measure. Once by aggregating the individual tf-idf s
of the documents, as it is done in the following.
par(mfrow=c(2,4))
par(mar=c(1,1,1,1))
set.seed(123)
plot_wordcloud(corpus, selection=ind1[,1], i=1, scale=c(1.7,0.001),

max.words = 45)
plot_wordcloud(corpus, selection=ind2[,1], i=2)
plot_wordcloud(corpus, selection=ind3[,1], i=3, scale=c(1.6,0.005),

max.words = 45)
plot_wordcloud(corpus, selection=ind4[,1], i=4)
plot_wordcloud(corpus, selection=ind5[,1], i=5, scale=c(1.8,0.001),

max.words = 40)
plot_wordcloud(corpus, selection=ind6[,1], i=6, scale=c(1.8,0.001),

max.words = 40)
plot_wordcloud(corpus, selection=ind7[,1], i=7, scale=c(2.1,0.3),

max.words = 45)

89

page
deductive

memobust

imputation

matching
donor

latent

method

turnover

contract

edits

edit

models

greg
generalised

deliverable

privacy

temporal
benchmarking

record
re

ci
pi

en
t

chow

preserving

ras
sae

regression
fay

herriot

bayesian

accident

estimator

lin

variable

eb
lu

p

fienberg

waal

macro

bakker

hashing

disaggregation

probabilistic

van

space

bell

falorsi

Topic 1

ns
icooperation

access

owners practices
accessing

obstacles
peerinstitutional

legal

ex
ch

an
ge

sharing

success

contributing

ministry

law

pr
ov

is
io

ns

mechanisms
owner

public

databases

successful bg

lt
lu

pt

ex
em

pl
ar

y
management

es

recommendations

cy

el

fi

lv

pl

sk

wider

go
ve

rn
in

g

re
vi

ew
er

s

ee

act

nl
discontinuing

exploitation

cz

chacts

signed

bureaucracy

board

Topic 2

ibp
lma

yeibv
br

scalar

earners

yek
yg

permutation

variance
projection

wage

erwlfwk

var

industry

frozen

pooled

covariance

configuration

qmcmsbip

yep

gbr

keywords

stratum

growth

m
at

rix
es

tim
at

or

yk

mk

ze

continuing

st

bias

suitability latent

sga

test

car

probabilities

m
ar

ko
v

classification

additive

Topic 3

qgfss
frames

gopa
frame

consultants

ess
dwellings

nsi actions

force

buildings

recommendations

standardisation

grants

regular

implementation

guidelines

sampling

ehis

master

recommends

adoption

recommended

dedicated

development
metadata

registers

fu
tu

re

dissemination

governance

update objectives

construction

updates

monitoring

beneficiary

co
nc

is
e

endorsed

mono

admin

timetable
feed

coverage

dwelling

maintenance

av
ai

la
bi

lit
y aes

ad
dr

es
si

ng

learned

lessons

Topic 4

gsbpm
adspr

ac
tic

es

workflow
usages
configuration

ece

csa

rev

su
bs

tit
ut

io
n

al
ig

nm
en

t

indicator

m
ia

d

confrontation

matching

supplementation

options

option
maintenance

guidelinesusage
replacement

brackstone

processes

measurements

indirect

objects

production

creation
phase

republic

tasks
farm

frames

memobust

re
gi

st
er

s

ha
rm

on
is

at
io

n

validate

basic

integrated

Topic 5

coherence

co
m

pa
ra

bi
lit

y hqr

admin
sga

interstatistical
essnet

indicator

intrastatistical
komuso

indicators

integrability

qaf

incoherence
constructspertains

multi

accessed

ets

abs
ehling

thagard

dimension

checklist

items

assessment

wallgren
conceptualisation

italics

ob
sc

ur
e

conceptual

hungary

dimensions

daas

reliably

ha
nd

bo
ok

suggestion

checks

ess

package

Topic 6

frame
frames

contactcu
dse

dwelling

bu

guide

master
dp

tdse

bus

par
epd

guidelines

cus

coverage

address

domain

text
requirement

al
ig

ne
d

ngh

ss

phone

rate

child
sol

household

le

products

xx

composite

komuso

parent
qis

telephone

dwellings

cpr

correctly

children

penetration

sampling
glossary

minimum

Topic 7

Now using the second approach, when applying the tf-idf measure to the mapped corpus.
par(mfrow=c(2,4))
par(mar=c(1,1,1,1))
set.seed(123)
plot_wordcloud_topic(corpus, topic_select=1, scale=c(1.9,0.0006),

max.words = 40)
plot_wordcloud_topic(corpus, topic_select=2)
plot_wordcloud_topic(corpus, topic_select=3, scale=c(1.6,0.005),

max.words = 40)
plot_wordcloud_topic(corpus, topic_select=4, max.words = 50, scale=c(2.3, 0.2))
plot_wordcloud_topic(corpus, topic_select=5, scale=c(1.8,0.01),

max.words = 40)
plot_wordcloud_topic(corpus, topic_select=6, scale=c(2,0.1),

max.words = 45)
plot_wordcloud_topic(corpus, topic_select=7, scale=c(2.5,0.5),

max.words = 50)

90

models
deductive
matching

imputation

latent
donor

memobust

edits
preserving

contract
page

turnover
univalent

regression

mauro
nicoletta

tiziana

macro
chow

hashing

m
od

el

recipient

gathers

scanu

lin

variable

coutinho

ras

accident

configurations

temporal

edit

fabrice

ja
cq

ue
tlaurent

sanja

unobserved

vujackov

contextual

shlomo

Topic 1

obstacles
peer

cooperation
discontinuing

es

bg

lt

luptcy
el fi

lv pl sk eehu

rarely

m
in

is
tr

y

difficulties

consult

nl

cz

hr
mt

ro

si

dk

fo
rm

al
ity

exploit

promoting

exchange

Topic 2

configuration
yg

keywords

ea
rn

er
s

var

scalar

erwlf

estimator
stratum

variance

frozen

projection

probability

qmcms

matrix

measurement

sgabr
rmtlatent

growth

industry

analytical

variable

error

car

lma suitability
ibp

wage

gbr

ye

ibv

qm
cm

po
ol

ed

overlapping

yek

covariance

probabilities

permutation

Topic 3

qgfss
gopa

consultants
frame

frames
ehis

master

aes

dwellings

stakeholders

continuously

ministry

hetus

des

recommendations

adoption

malta
hbs

actions

duplicates

censal

ctie

emzot

fna
ings

invest

pling

recommends

rate

bulgarian

cleansing
mobility

ict

update
grants

typology

feed

go
ve

rn
an

ce

polish

spain

standardisation

dwelling
updates

force

czech

beneficiary

cn
af

concise

infor

popula

Topic 4

workflow
gsbpm

al
ig

nm
en

t

configuration
rev

csa
matching

practices

macro

ads

utmostoptions

ec
e urs

option

imputation

memobust
measurements

deck us
ag

es

ho
t

supplementation

ur
v

connection
farm

ras

workflows
variable

univalency

miad

object

configurations

donor
sfr

univalent

substitution

models

model

tasks

validate

Topic 5

sga
hqr

comparability

interstatistical

integrability ch
ec

kl
is

t

intrastatistical

undercoverage ets
retrieved

hyperdimension co
ns

tr
uc

ts

discontinuity
pertains

komuso

failitems

measurement

daas

abs

ehling

fileadmin suggestion

thagard

misclassification

sims

incoherence

calculated
consolidated

bella

conceptualisation

discovery

italics

obscure

qaf

al

arrival

documenti

dunstan

ex
pr

es
se

s

iwig

marking

rar
ryan

wallgren

Topic 6

fr
am

e
cu

bu

ds
e

bus

epd

par

cus

master
dp

tdse

frames

ngh

correctly

guide

alignment

ss
rate

xx

child

sol

le

mh
error

dwelling

mgh

pa
re

nt

qis

frozen

glossary
composite

children

parents

penetration

requirement

phone

constructing

diagnostics

gh

msf

north
update

probability

rich

signs

decisive

kalsbeek

lessler

notations
trimmingTopic 7

Although the second procedure, using tf-idf distributions for the individual topics, seems to be more intuitive,
the two figures are surprisingly similar.

3.1.2 Wordclouds using tf

The same can be done using the regular term frequency.
par(mfrow=c(2,4))
par(mar=c(1,1,0.5,1))
set.seed(123)
plot_wordcloud(corpus, selection=ind1[,1], i=1, freq="tf", scale=c(2,0.05))
plot_wordcloud(corpus, selection=ind2[,1], i=2, freq="tf", scale=c(2,0.05))
plot_wordcloud(corpus, selection=ind3[,1], i=3, freq="tf", scale=c(2,0.03),

max.words = 40)
plot_wordcloud(corpus, selection=ind4[,1], i=4, freq="tf", scale=c(2,0.3))
plot_wordcloud(corpus, selection=ind5[,1], i=5, freq="tf", scale=c(2.5,0.1))
plot_wordcloud(corpus, selection=ind6[,1], i=6, freq="tf")
plot_wordcloud(corpus, selection=ind7[,1], i=7, freq="tf", scale=c(2.5,0.2),

max.words = 45)

91

data
methods

estimation

method

statistical

imputation

variables

model

editing

variable

statistics

sources

based

values

integration

survey

administrative

estimates models
level

re
co

rd

population

matching

errors

series

set

deliverable
units

linkage

page

macro

latent

observed

tu
rn

ov
er

micro

approach
estimated

target

time

de

estimator

edit
error unit

characteristics

related

contract

van

information

regression

Topic 1

data
administrative

nsistatistics
statistical

so
ur

ce
s

owners

access

legal

quality

cooperation

in
fo

rm
at

io
n

register

public

practices

source

framework

nationalpurposes

business

owner

sy
st

em

nsis

issues

exchange

population
institutional

social

specificre
gi

st
er

s

accessing

law

ta
x

id
en

tif
ie

d

databases

technical

contributing

authorities

environment

reported

management

level

aspects sharing

census

re
la

te
d

collection

metadata

examples

confidentiality

Topic 2

data
statistics

errors
model

error

variabletime

quality

estimates

sources

units classification

register

population
administrative

variables

variance

based

level
measures

bias

survey

approach

va
lu

es

m
ea

su
re

m
en

t

estimated
estimator

truemeasure

source

information

account

basic

total

probabilities

accuracy

enterprises

ta
rg

et

matrix

sample

Topic 3

frames
qgfss

frame

quality

sampling
ess

report

statistics

data

social
force

task

register

coverage

survey

population development

nsi

registers

dwellings

final

information

sources

implementation

persons

based

methodological

fu
tu

re standard
census

indicators
section

guidelines

buildings

availability

gopa

de
riv

ed

statisticalmetadata

essnet

process

deliverable

regular

so
ur

ce

surveys

update

actions

Topic 4

data
administrative

st
at

is
tic

al

sources

variables

units

statistics

methods

estimation

in
te

gr
at

io
n

su
rv

ey

process

po
pu

la
tio

n

register micro

gsbpm

production

usages

imputation

editing

source

based

basic

quality
business

information

configuration

indicator

variable

values

specific

targetdirect
matching

census

pr
ac

tic
es

le
ve

l

processes

description

integrated

registers

m
ac

ro

alignment

un
it

practice

m
od

el

usage

cr
ea

tio
n

tasks

combining

Topic 5

data
coherence

quality

statistics

essnet
source

indicators

indicator
statistical

comparability

sources

admin

administrative

komuso
package methods

assessment

sga

units

re
le

va
nt

method
based

multi

measurement

accuracy

tim
e

eurostat

output

level survey

register

di
ffe

re
nc

es

definitions

variables
input

handbook

process

ess

di
m

en
si

on

consistency

list

approach

metadata

internal

single
population

dimensions values

methodology

ht
tp

Topic 6

frame
qu

al
ity

population

units
data

statistics
coverage

frames

statistical

errors

survey

social

unit

informationsampling

domain

contact

error

register

samplehousehold

sources

variables

based

persons

cl
as

si
fic

at
io

n guidelines

census
total

surveys

address

person
rate

time

target

householdsadministrative

source

guide

komuso

list version

design

essnet

methods

Topic 7

3.2 Embedding via tf-idf

Now it is interesting to see if embedding via tf-idf will cluster other groups or the same. So we will reduce
the Document Term Matrix to 5717 words, which amounts to a reduction by 50%.
tim1_tfidf <- Sys.time()
dtm_50 <- dtm %>% dtm_remove_tfidf(top=(0.5*M))
set.seed(123)
documents_lda_2 <- LDA(dtm_50, method="Gibbs",

k = 7, control = list(seed = 1234))
tim2_tfidf <- Sys.time()
u2 <- tim2_tfidf - tim1_tfidf

prediction5_2 <- predict(documents_lda_2, newdata=dtm_50, type="topic")
prediction5_2 <- merge(prediction5_2, classes, by.x="doc_id", by.y="No")
compare topic 1 with topic 2, 3, 4 and 5
ind1_2 <- prediction5_2 %>% filter(topic==1) %>% select(doc_id, Group)
ind2_2 <- prediction5_2 %>% filter(topic==2) %>% select(doc_id, Group)
ind3_2 <- prediction5_2 %>% filter(topic==3) %>% select(doc_id, Group)
ind4_2 <- prediction5_2 %>% filter(topic==4) %>% select(doc_id, Group)
ind5_2 <- prediction5_2 %>% filter(topic==5) %>% select(doc_id, Group)
ind6_2 <- prediction5_2 %>% filter(topic==6) %>% select(doc_id, Group)
ind7_2 <- prediction5_2 %>% filter(topic==7) %>% select(doc_id, Group)

ext_gamma_matrix(documents_lda_2) %>%
round(2) %>%
stargazer(summary=F, rownames = F, header=F,

title="Gamma matrix extracted from model for embedding with tfidf",
label="extract2")

92

Table 11: Documents for Topic 1

Topic_embedding_0.8 doc_id Group
1 10 4
1 11 4
1 12 4
1 5 2
1 6 3
1 7 4
1 8 4
1 9 4

Table 12: Documents for Topic 2

Topic_embedding_0.8 doc_id Group
2 15 5
2 25 6

Table 13: Documents for Topic 3

Topic_embedding_0.8 doc_id Group
3 13 3
3 14 4
3 3 2
3 4 2

Table 14: Documents for Topic 4

Topic_embedding_0.8 doc_id Group
4 1 1
4 2 1

Table 15: Documents for Topic 5

Topic_embedding_0.8 doc_id Group
5 16 5
5 18 5
5 19 5
5 21 6
5 22 6
5 23 6
5 24 6

93

Table 16: Documents for Topic 6

Topic_embedding_0.8 doc_id Group
6 20 5
6 28 7

Table 17: Documents for Topic 7

Topic_embedding_0.8 doc_id Group
7 17 5
7 26 7
7 27 7

Table 18: Gamma matrix extracted from model for embedding with tfidf

document 1 2 3 4 5 6 7
1 0 0 0 0.99 0 0 0
2 0.01 0.02 0.03 0.86 0.01 0.07 0.01
3 0.16 0.02 0.54 0.01 0.18 0.03 0.05
4 0.2 0.02 0.68 0.02 0.02 0.02 0.04
5 0.85 0.03 0.04 0.01 0.07 0.01 0.01
6 0.69 0 0.02 0.01 0.25 0.01 0.01
7 0.85 0.04 0.02 0.01 0.05 0.01 0.03
8 0.86 0.02 0.03 0.02 0.03 0.01 0.03
9 0.72 0.06 0.08 0.01 0.06 0.03 0.05
10 0.95 0 0.01 0 0.02 0.01 0
11 0.73 0.01 0.03 0.01 0.19 0.01 0.01
12 0.9 0.02 0.03 0.01 0.02 0.01 0.01
13 0.01 0.02 0.76 0.15 0 0.01 0.04
14 0.24 0.02 0.68 0.02 0.02 0.01 0.01
15 0.01 0.83 0.09 0.02 0.02 0.01 0.02
16 0.01 0.06 0.01 0.01 0.9 0.01 0.01
17 0.01 0.05 0.01 0.01 0.07 0.01 0.84
18 0.01 0.06 0.01 0 0.89 0.01 0.02
19 0.04 0.42 0.02 0.01 0.43 0.02 0.07
20 0.01 0.05 0.02 0.01 0.01 0.88 0.01
21 0.01 0.01 0.01 0.01 0.96 0.01 0.01
22 0.01 0.01 0.01 0.01 0.94 0.01 0.01
23 0 0.02 0.03 0.01 0.9 0 0.03
24 0.02 0.01 0.02 0.01 0.92 0.01 0.01
25 0.01 0.91 0.01 0.01 0.05 0.01 0.01
26 0.01 0.01 0.06 0.03 0.02 0.05 0.82
27 0.01 0.01 0.03 0.19 0 0.02 0.75
28 0.01 0.03 0.04 0.05 0.01 0.73 0.13

94

We want to give an overview over the clustered documents using the tf-idf embedding.

Table 19: Documents for Topic 1

Topic doc_id Group
1 10 4
1 11 4
1 12 4
1 5 2
1 6 3
1 7 4
1 8 4
1 9 4

Table 20: Documents for Topic 2

Topic doc_id Group
2 15 5
2 25 6

Table 21: Documents for Topic 3

Topic doc_id Group
3 13 3
3 14 4
3 3 2
3 4 2

Table 22: Documents for Topic 4

Topic doc_id Group
4 1 1
4 2 1

Table 23: Documents for Topic 5

Topic doc_id Group
5 16 5
5 18 5
5 19 5
5 21 6
5 22 6
5 23 6
5 24 6

We want to produce wordclouds again. This time using the tf-idf embedding for clustering via LDA. The
first plot shows the aggregated tf-idf s.

95

Table 24: Documents for Topic 6

Topic doc_id Group
6 20 5
6 28 7

Table 25: Documents for Topic 7

Topic doc_id Group
7 17 5
7 26 7
7 27 7

par(mfrow=c(2,4))
par(mar=c(1,1,0.5,1))
set.seed(123)
plot_wordcloud(corpus, selection=ind1_2[,1], i=1, scale=c(1.7,0.002),

max.words = 35)
plot_wordcloud(corpus, selection=ind2_2[,1], i=2, scale=c(2.5,0.1))
plot_wordcloud(corpus, selection=ind3_2[,1], i=3, scale=c(1.5,0.001),

max.words = 30)
plot_wordcloud(corpus, selection=ind4_2[,1], i=4, scale=c(1.9,0.05),

max.words = 40)
plot_wordcloud(corpus, selection=ind5_2[,1], i=5, scale=c(2,0.02),

max.words = 35)
plot_wordcloud(corpus, selection=ind6_2[,1], i=6, scale=c(2,0.1),

max.words = 40)
plot_wordcloud(corpus, selection=ind7_2[,1], i=7, scale=c(2,0.03),

max.words = 35)

96

page
deductive

memobust

imputation

matching
donor

latent

method

turnover

contract

edits

edit

models

greg
generalised

deliverable

privacy

temporal
benchmarking

record
re

ci
pi

en
t

chow

preserving

ras
sae

regression
fay

herriot

bayesian

accident

estimator

lin

variable

eb
lu

p

fienberg

Topic 1

ibp
ye ib

v

yek
permutation

wk
scalar

bip

yep
mk
ze

covariance
admin

bi
v

additive

yk

ibq

log

iev

ip

constraint

essnet

vector
invariant

sga
trace

weakly

uncertainty
multiplicative

indicators

quantum

ie
q

yijk

indicator
deviation

adjustment

fernandez

yj

unadjusted

biq
deflation

eiq

ep

invariance

choletteeiv

hy

norm

np

scale

Topic 2

gsbpm
ads

practices
workflow

usages co
nf

ig
ur

at
io

n

ece

csa

rev

substitution

alignment

indicator

miad

confrontation
matching

su
pp

le
m

en
ta

tio
n

options
option

maintenance

guidelines

us
ag

e

replacement
brackstone

processes
measurements

indirect

objects

production

cr
ea

tio
n

phase

Topic 3

nsi
cooperation

access
owners

practices

accessing

obstacles

peer

in
st

itu
tio

na
l

legal exchange

sh
ar

in
g

su
cc

es
s

contributing

ministry
law

provisions

mechanisms

owner

public

databases

successful

bglt
lu

pt

ex
em

pl
ar

y

management

es

recommendations

cy

el

fi

lv

pl

sk

wider

governing

reviewers
ee

Topic 4

lm
a

br

earners
yg

projection

wage
erwlf

var

variance

industry

frozen

pooled

configuration

qmcms

gbr

stratum

ke
yw

or
ds

growthestimator

continuing

st

suitability

bias
latent

sga

test
car

probabilities

markov

expressions

classification

qmcm

hm
m

scenario

comp

Topic 5

qgfss
coherence

comparability

fr
am

es

ess hqr

interstatistical

actions
force

intrastatistical

standardisation

grants

guidelines

metadata

integrabilityframe

qaf

implementation

incoherence

constructs

pertains

re
co

m
m

en
ds

recommended

regular

sga
multi

standards

accessed

dedicated

komuso

adoption

abs

ehling

th
ag

ar
d

dissemination

recommendations

essnet

governance

monitoring

future

Topic 6

frame
frames

gopa
consultants

dwellings

contact
master

dwelling

cu

nsi

dse

buildings

sampling
coverage

bu

ehis
guide
address

dptdse

guidelines

bus

par

epd registers
rate

cus
duplicates

domain
text

cpr

aes

continuously

phone

household

Topic 7

The second plot shows the tf-idf s for each individual topic.
par(mfrow=c(2,4))
par(mar=c(1,1,1,1))
set.seed(123)
plot_wordcloud_topic(corpus, topic_select=1, scale=c(1.9,0.0006),

max.words = 40, prediction=prediction5_2)
plot_wordcloud_topic(corpus, topic_select=2, prediction=prediction5_2,

scale=c(1.9,0.0006))
plot_wordcloud_topic(corpus, topic_select=3, scale=c(1.6,0.005),

max.words = 40, prediction=prediction5_2)
plot_wordcloud_topic(corpus, topic_select=4, max.words = 40,

scale=c(2.3, 0.02), prediction=prediction5_2)
plot_wordcloud_topic(corpus, topic_select=5, scale=c(1.8,0.01),

max.words = 40, prediction=prediction5_2)
plot_wordcloud_topic(corpus, topic_select=6, scale=c(2,0.1),

max.words = 45, prediction=prediction5_2)
plot_wordcloud_topic(corpus, topic_select=7, scale=c(2.5,0.5),

max.words = 50, prediction=prediction5_2)

97

models
deductive
matching

latent

donor
memobust

edits

preserving
contract

page

alignment

turnover

univalent

regression

mauro

nicoletta

tiziana
chow

hashing

recipient

ga
th

er
s

scanu

lin

variable

coutinho

ras

accident
configurations

temporal
edit

fabrice
jacquet

laurent

sa
nj

a
unobserved

vujackov
contextual

shlomo

cibella

probabilistic

Topic 1

ibp
ye

ibvyek

permutation
wk

scalar
bip

ye
p

sga

mk

ze

biv

checklist
covariance

ibq

additive

undercoverage

iev
ip

constraint

weakly

vector

trace

retrieved

hyperdimension

di
sc

on
tin

ui
ty

ieq

yijkinvariant

multiplicative

yk

chow

lin

log

misclassification

biq

deflation

eiq
ep

invariance

quantum

sims

calculated

scale

consolidated

fe
rn

an
de

zyj

komuso

hy

Topic 2

w
or

kf
lo

w

alignment
practices

configuration rev
csa

matching

gsbpm

ads
utmostop

tio
ns

ece
urs

option
memobust

su
bs

tit
ut

io
n

measurements

deck

usages

hot

supplementation

urv

connection

re
pu

bl
ic

farm

ras

workflows

auxiliary

macro

variable

univalency

miad

object

census

configurationsdo
no

r

sfr

univalent

weighting

models

Topic 3

obstacles
peer

owners
difficulties

cooperation

discontinuing

es

bg

ltlu

ptcy

el
fi

lv

pl

sk

ee

hu signed

access
governing

effectively

ministry

databases

exploitation

successful

public

sharing

consult

nl

excessive

czlaw

institutional

hr

ro

Topic 4

configuration

yg

earners

var erwlf

stratum

frozen
projection

keywords
probability

qmcms
br

estimator

rmt

latent

growthindustry

an
al

yt
ic

al

variable

car

er
ro

r

lma

suitability

gbr qmcm
classification

pooled

probabilities

sga

bootstrap

markov

scalar
expressions

configurations

m
od

el
s

variance

macrodata

quarter

matrix

approximation

Topic 5

qgfss

hq
r

interstatistical
intrastatistical

constructs
pertains

integrability

comparability
abs

ehling

thagard

incoherence

sga

co
nc

ep
tu

al
is

at
io

n

italics

obscure
qaf

frame

actions

expresses
recommends

grants

frames

addressing

governance

suggestion

standardisation

hc
so

astrology

beneficiary

concise

conflating

differentiation

dummy

elegant

endorsed

harmony

interpretable

m
on

o pointers

vagueness
warnsmulti

force

measurement

Topic 6

frame
cu

master

bu

gopa
dse

frames
busepd

par

cus guide

dwelling

alignment

dp

tdse

ngh
correctly

consultants
ehis
rate

ss
phone

xx

ae
s ch

ild

sol

contact

lac

le

m
h

duplicates

error
census

mgh
parent

qis

continuouslyfrozen
glossary

composite

children

he
tu

s

parentspe
ne

tr
at

io
n

lfs

update
living

county

urban

Topic 7

3.3 Missclassification Rates

Now we use the validation measure we used for Example 1.
validate_LDAclassification <- function(predict_table){

gamma_matrix ... an object of the function ext_gamma_matrix()
First we’d find the topic that was most associated with
each chapter
conversion <- predict_table %>%

select(Group, topic) %>%
group_by(Group) %>%
top_n(1,topic) %>%
unique()

consensus <- predict_table %>%
left_join(conversion, by=c("topic"))

consensus %>% filter(Group.x!=Group.y) %>%
nrow()/nrow(consensus)

}

On both full bag of words and 50% embedding via tf-idf
predict_table <- prediction5 %>% select(doc_id, topic) %>%

merge(y=classes, by.x=1, by.y=1)

(misc.rate_embedding2 <- validate_LDAclassification(predict_table))

[1] 0.3421053
predict_table2 <- prediction5_2 %>% select(doc_id, topic) %>%

merge(y=classes, by.x=1, by.y=1)

98

(misc.rate_embedding_tfidf <- validate_LDAclassification(predict_table2))

[1] 0.3589744
performance_matrix <- data.frame(freq2.embedding=c(misc.rate_embedding2, u1),

tfidf.embedding=c(misc.rate_embedding_tfidf, u2))
rownames(performance_matrix) <- c("missc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F, title = "LDA via Gibbs Sampling")

Table 26: LDA via Gibbs Sampling

freq2.embedding tfidf.embedding
missc. rate 0.342 0.359

time 41.608 17.878

4 Optimal value of Reduction via tfidf

In this example we want to know if there is a better value for the reduction of tfidf than 50%. We will
examine it using the same approach as for the Gutenberg examples.
evaluation_for_embedding <- function(word_counts, frac=0.1, M=8254) {

embedding 3
chapters_dtm_tfidf <- dtm %>% dtm_remove_tfidf(top=(frac*M))
fitting
tim1 <- Sys.time()
chapters_lda_tfidf_Gibbs <- LDA(chapters_dtm_tfidf, method="Gibbs",

k = 7, control = list(seed = 1234))
tim2 <- Sys.time()
u_tfidf_Gibbs <- tim2-tim1
prediction5_2 <- predict(chapters_lda_tfidf_Gibbs,

newdata=chapters_dtm_tfidf, type="topic")
prediction5_2 <- merge(prediction5_2, classes, by.x="doc_id", by.y="No")
calculating missclassification rate
predict_table <- prediction5_2 %>% select(doc_id, topic) %>%
merge(y=classes, by.x=1, by.y=1)

misc.rate_tfidf_Gibbs <-validate_LDAclassification(predict_table)

function returns a vector including the misc. ratio and the fitting time
return(c(misc.rate_tfidf_Gibbs,

as.numeric(u_tfidf_Gibbs)))
}

set up the fractions we want to use
we use 0.1, 0.2, ..., 1
fractions <- seq(0.1,1,0.01)

Use parallelization
setting up how many cores to be used
useable_cores <- parallel::detectCores() - 1
registering cluster

99

cl <- parallel::makeCluster(useable_cores)
doParallel::registerDoParallel(cl)
embedding_performance_matrix <- foreach(i = 1:length(fractions), .combine = 'rbind', .export = ls(.GlobalEnv), .packages = c("dplyr", "udpipe", "topicmodels", "tidyr", "tidytext")) %dopar% {

evaluation_for_embedding(dtm, frac=fractions[i]) %>%
c(.,fractions[i])

}

Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already
exporting variable(s): classes, dtm, evaluation_for_embedding, fractions,
validate_LDAclassification
parallel::stopCluster(cl)

adjust the resulting matrix to a data frame for plotting
colnames(embedding_performance_matrix) <- c("misc.rate","time","fractions")
embedding_performance_matrix <- as.data.frame(embedding_performance_matrix)

ggplot(data=embedding_performance_matrix,
aes(x=fractions, y=misc.rate)) +

geom_line(col="grey") +
geom_point() +
geom_smooth(col="green3", method="loess", span=0.7) +
theme_minimal() +
ggtitle("Missclassification rates for different types of tfidf-embeddings") +
xlab("fraction")

100

0.3

0.4

0.5

0.25 0.50 0.75 1.00
fraction

m
is

c.
ra

te

Missclassification rates for different types of tfidf−embeddings

We can find an optimal value for fraction at the value aroung 0.35, so it might be interesting to campare the
results of a fit using this optimized value of fraction to the other embeddings.
tim1_tfidf0.85 <- Sys.time()
dtm_0.85 <- dtm %>% dtm_remove_tfidf(top=(0.35*M))
set.seed(123)
documents_lda_0.85 <- LDA(dtm_0.85, method="Gibbs",

k = 7, control = list(seed = 1234))
tim2_tfidf0.85 <- Sys.time()
u0.85 <- tim2_tfidf0.85 - tim1_tfidf0.85

prediction0.85 <- predict(documents_lda_0.85, newdata=dtm_0.85, type="topic")
prediction0.85 <- merge(prediction0.85, classes, by.x="doc_id", by.y="No")

predict_table0.85 <- prediction0.85 %>% select(doc_id, topic) %>%
merge(y=classes, by.x=1, by.y=1)

(misc.rate_embedding_0.85 <- validate_LDAclassification(predict_table0.85))

[1] 0.3157895

In Table 27 you will find an overview of the performace of the different embedding methods including tfidf
embedding of fraction 0.35.
performance_matrix <- data.frame(freq2.embedding=c(misc.rate_embedding2, u1),

tfidf_0.5.embedding=c(misc.rate_embedding_tfidf, u2),
tfidf_0.85.embedding=c(misc.rate_embedding_0.85, u0.85))

rownames(performance_matrix) <- c("missc. rate", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F,

101

title = "LDA via Gibbs Sampling", label="comp0.85")

Table 27: LDA via Gibbs Sampling

freq2.embedding tfidf_0.5.embedding tfidf_0.85.embedding
missc. rate 0.342 0.359 0.316

time 41.608 17.878 14.818

5 Coherence Cloud

dtm_50 %>% as.matrix() %>% t() %>% comparison.cloud(scale=c(2,.05),
max.words=50, title.size = 1)

Warning in brewer.pal(max(3, ncol(term.matrix)), "Dark2"): n too large, allowed maximum for palette Dark2 is 8
Returning the palette you asked for with that many colors

1

26

14

2

16
18151713

19

3

5

10

20

12

21

4

27

6
8 23 7 11

28

25

9

22

24
coherence

frame
nsi

imputation

qg
fs

s

essnet

editing

indicators

sampling

basicco
nf

ig
ur

at
io

n

gsbpm
ess

admin

indicator

ownerscomparability

frames

industry
record

bias

model

practices

latent
variable

probability

access

linkage

variance
usages

tasks

estimator

probabilities
deliverable

un
ce

rt
ai

nt
y

force
measure

register

task

matching

social

m
et

ho
d

processes

yg

errors
legal

cooperation

dw
el

lin
gs

registers

wage

102

Regulatory Documents via Neural Nets - Documentation
Sebastian Knigge

18 9 2019

Contents
1 Setup

2 Import data

3 Apply ANN
3.1 Splitting and Fitting .
3.2 Different Architecture .

4 Training of the most Promising Structure

1 Setup

Following libraries are used in the code:
library(dplyr)
library(tidytext)
library(pdftools)
library(tidyr)
library(stringr)
library(tidytext)
library(udpipe)
library(topicmodels)
library(ggplot2)
library(wordcloud)
library(tm)
library(SnowballC)
library(RColorBrewer)
library(RCurl)
library(XML)
library(openxlsx)
library(keras)

2 Import data

The Documents had to be preprocessed like for the LDA part. This first part - again - focusses on reading in
the pdf documents.
getting the right order
setwd('..')
documents <- read.xlsx("Docs_classes.xlsx")[,2]
classes <- read.xlsx("Docs_classes.xlsx")[,c(1,3)]
documents <- paste0(documents,".pdf")

103

Following functions are used to set up and analyze the pdfs.
getting the right directory
library(here)
setwd("../")
path <- getwd() %>%

file.path("TextDocs")
setwd(path)

When cleaning up data, we have to take into account certain circumstances of the regulatory documents.
For example, there are many formulas and technical abbreviations in the documents. Every variable, every
estimator, and every index is included as a single word in the bag of words. These terms sometimes have
a big influence on the documents, because they are very specific for individual documents and occur quite
often. To avoid this, we exclude all mixed words with characters and numeric values, as well as all terms
with special characters (e.g. Greek letters).
read_pdf_clean <- function(document){

This function loads the document given per name
and excludes the stop words inclusive numbers
pdf1 <- pdf_text(file.path(path, document)) %>%

strsplit(split = "\n") %>%
do.call("c",.) %>%
as_tibble() %>%
unnest_tokens(word,value) %>%
also exclude all words including numbers and special characters
filter(grepl("^[a-z]+$", word))

load stopword library
data(stop_words)
add own words to stop word library - here the numbers from 1 to 10
new_stop_words <- tibble(word=as.character(0:9),

lexicon=rep("own",10)) %>%
bind_rows(stop_words)

stop words are excluded via anti_join
pdf1 %>%

anti_join(new_stop_words)
}

plot_most_freq_words <- function(pdf, n=7){
plots a bar plot via ggplot
pdf %>% count(word) %>% arrange(desc(n)) %>% head(n) %>%

ggplot(aes(x=word,y=n)) +
geom_bar(stat="identity")+
no labels for x and y scale
theme(axis.title.y=element_blank(),

axis.title.x=element_blank())
}

Now we can read in all documents in a for loop:
inital set up for the corpus
pdf1 <- read_pdf_clean(documents[1])
corpus <- tibble(document=1, word=pdf1$word)
adding the documents iteratively
for (i in 2:length(documents)){

pdf_i <- read_pdf_clean(documents[i])
corpus <- tibble(document=i, word=pdf_i$word) %>% bind_rows(corpus,.)

104

}

3 Apply ANN

dtm <- corpus %>% count(document, word, sort = TRUE) %>%
select(doc_id=document, term=word, freq=n) %>%
document_term_matrix()

c(N,M) %<-% dim(dtm)

We will reduce the dimensionality again (i.e. performing embedding).
dtm_embedding2 <- dtm %>%

dtm_remove_lowfreq(minfreq = 2)
ordering
dtm_embedding2 <- dtm_embedding2[order(as.numeric(rownames(dtm_embedding2))),]

dtm_embedding_all <- dtm %>%
dtm_remove_lowfreq(minfreq=0)

ordering
dtm_embedding_all <- dtm_embedding_all[order(as.numeric(rownames(dtm_embedding_all))),]

dtm_embedding_tfidf <- dtm %>%
dtm_remove_tfidf(top=M*0.5)

ordering
dtm_embedding_tfidf <- dtm_embedding_tfidf[order(as.numeric(rownames(dtm_embedding_tfidf))),]

convert x matrix into a form such that it can be used for tensorflow
adjust_tensor_format <- function(classes, dtm){

x_chapters <- apply(dtm, 1, function(x) as.matrix(x)) %>% t()
one hot encoding for the Groups (y)
topics_categorical <- classes$Group %>% -1 %>%

to_categorical()
ret <- list(

x=x_chapters,
y=topics_categorical,
topics=classes$Group

)
return(ret)

}

dtm_tensor_2 <- adjust_tensor_format(classes, dtm_embedding2)
dtm_tensor_all <- adjust_tensor_format(classes, dtm_embedding_all)
dtm_tensor_tfidf <- adjust_tensor_format(classes, dtm_embedding_tfidf)

3.1 Splitting and Fitting

The following function splits the sample in an manner, such that each cluster is eually to its size represented
in the test data and the validation data.
sample_cluster_wise <- function(data, test_ratio=0.2, val_ratio=0.2, seed=1234){

X <- data$x; y <- data$y
cluster=data$topics

105

set.seed(seed)
{
setting the absolute number of observations for the sample of each cluster
n_test <- (table(cluster)*test_ratio) %>% floor()
n_val <- (table(cluster)*val_ratio) %>% floor()
function to get the correct sample indices for validation and test sample
samp_ind <- function(i, n_list) which(cluster==i) %>% sample(n_list[i])
test_indices <- unique(cluster) %>% sort() %>%

sapply(function(i) samp_ind(i, n_test)) %>%
unlist()

val_indices <- unique(cluster) %>% sort() %>%
sapply(function(i) samp_ind(i, n_val)) %>%
unlist()

}
ret <- list(partial_x_train=X[-c(val_indices,test_indices),],

partial_y_train=y[-c(val_indices,test_indices),],
x_val=X[val_indices,], y_val = y[val_indices,],

x_test=X[test_indices,], y_test = y[test_indices,])
return(ret)

}

The following two functions are setting up the model and evaluate the goodness of fit.
The whole model is set up and trained within this function
set_up_n_fit <- function(split, books_n=n_books, epochs=5, batchsize=2^9){

starting with 64 neurons and scaling it down to 46 in the
mid layer turned out to be a well predicting model
model <- keras_model_sequential() %>%

layer_dense(units=64, activation="relu", input_shape=ncol(split$partial_x_train)) %>%
layer_dense(units=46, activation="relu") %>%
we want to classify for 7 categories
layer_dense(units=7, activation="softmax")

model %>% compile(
optimizer="rmsprop",
loss="categorical_crossentropy",
metrics=c("accuracy"))

history <- model %>% fit(
split$partial_x_train,
split$partial_y_train,
from experience the model tends to
overfit for more than 5 epochs
epochs=epochs,
batch_size=batchsize,
validation_data=list(split$x_val,split$y_val)

)
return(

list(history=history,
model=model))

}

106

making a prediction on the test data and calculating the
misspecification rate; we also want to save the true categories and the predicted ones
evaluate_model <- function(model_fit, split) {

y=split$y_test
x=split$x_test
prediction <- model_fit %>% predict(x)
pred <- apply(prediction, 1, which.max)
true_value <- apply(y, 1, which.max)
misspecified <- sum(!pred==true_value)/length(pred)
ret <- list(misspecified=misspecified,

the function also dicloses the true and the predicted
values for exact evaluation, if needed
pred=pred, true_value=true_value)

return(ret)
}

Now we can start applying the model. Here we use a split of 20% validation-, 17% test- and 60% training-set.
All 3 embeddings are evaluated. We use 49 simulations to test each embedding.
tim1 <- Sys.time()
n <- 49
results <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(dtm_tensor_2, seed=i*201, test_ratio = 0.17)
results[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model(split=split) %>% .$misspecified
}
tim2 <- Sys.time()

u_2 <- tim2-tim1
results_2 <- results
misc.rate_2 <- results_2 %>% mean
var_2 <- results_2 %>% var

tim1 <- Sys.time()
n <- 49
results <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(dtm_tensor_all, seed=i*201, test_ratio = 0.17)
results[i] <- set_up_n_fit(split) %>% .$model %>%

evaluate_model(split=split) %>% .$misspecified
}
tim2 <- Sys.time()

u_all <- tim2-tim1
results_all <- results
misc.rate_all <- results_all %>% mean
var_all <- results_all %>% var

tim1 <- Sys.time()
n <- 49
results <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(dtm_tensor_tfidf, seed=i*201, test_ratio = 0.17)
results[i] <- set_up_n_fit(split) %>% .$model %>%

107

evaluate_model(split=split) %>% .$misspecified
}
tim2 <- Sys.time()

u_tfidf <- tim2-tim1
results_tfidf <- results
misc.rate_tfidf <- results_tfidf %>% mean
var_tfidf <- results_tfidf %>% var

overview
performance_matrix <- data.frame(freq2.embedding=c(misc.rate_2, var_2, u_2),

all.embedding=c(misc.rate_all, var_all, u_all),
tfidf=c(misc.rate_tfidf, var_tfidf, u_tfidf))

rownames(performance_matrix) <- c("missc. rate", "variance", "time")
performance_matrix %>% stargazer(summary=FALSE, header=F, title = "ANN for Reg. Docs.")

Table 1: ANN for Reg. Docs.

freq2.embedding all.embedding tfidf
missc. rate 0.418 0.418 0.367
variance 0.108 0.149 0.133
time 2.666 7.668 11.792

3.2 Different Architecture

In this section we want to try a different architecture. Using batch size 25 instead of 29 In Table 2 the results
of this architecture are shown, including the variances of the missclassification rates over all 49 simulations.
n <- 49
results_2_d <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(dtm_tensor_2, seed=i*201, test_ratio = 0.17)
results_2_d[i] <- set_up_n_fit(split, batchsize = 2^5) %>% .$model %>%

evaluate_model(split=split) %>% .$misspecified
}

n <- 49
results_all_d <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(dtm_tensor_all, seed=i*201, test_ratio = 0.17)
results_all_d[i] <- set_up_n_fit(split, batchsize = 2^5) %>% .$model %>%

evaluate_model(split=split) %>% .$misspecified
}

n <- 49
results_tfidf_d <- rep(NA,n)
for(i in 1:n){

split <- sample_cluster_wise(dtm_tensor_tfidf, seed=i*201, test_ratio = 0.17)
results_tfidf_d[i] <- set_up_n_fit(split, batchsize = 2^5) %>% .$model %>%

evaluate_model(split=split) %>% .$misspecified
}

108

overview
performance_matrix <- data.frame(freq2.embedding=c(results_2_d %>% mean, results_2_d %>% var),

all.embedding=c(results_all_d %>% mean, results_all_d %>% var),
tfidf=c(results_tfidf_d %>% mean, results %>% var))

rownames(performance_matrix) <- c("missc. rate", "variance")
performance_matrix %>% stargazer(summary=FALSE, header=F, title = "ANN for Reg. Docs. Different Architecture (7 epochs)", label="different_results")

Table 2: ANN for Reg. Docs. Different Architecture (7 epochs)

freq2.embedding all.embedding tfidf
missc. rate 0.418 0.418 0.388
variance 0.118 0.118 0.125

4 Training of the most Promising Structure

In the course of training and optimizing, many hundret models were fitted. In the following I want to show
the training-plot of the most promising approach of the ANN for the regultory documents.
{
set.seed(1234)

split <- sample_cluster_wise(dtm_tensor_2, test_ratio=0)
hist <- set_up_n_fit(split, batchsize = 2^9) %>% .$history

plot_df <- hist$metrics %>% do.call("cbind",.) %>% cbind(.,1:5) %>% as.data.frame()

plot_df <- plot_df %>% gather(value, key=measure, acc, loss, val_acc, val_loss)

}

ggplot(subset(plot_df, measure %in% c("acc", "val_acc")), aes(V5, value)) +
geom_line(aes(color=factor(measure))) +
geom_point(aes(color=factor(measure))) +
ylim(c(0,1))+
xlab("epoch")+
ylab("accuracy")+
theme(legend.title = element_blank())

109

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
epoch

ac
cu

ra
cy

acc

val_acc

ggplot(subset(plot_df, measure %in% c("loss", "val_loss")), aes(V5, value)) +
geom_line(aes(color=factor(measure))) +
geom_point(aes(color=factor(measure)))+
xlab("epoch")+
ylab("loss")+
theme(legend.title = element_blank())

110

0

5

10

15

20

1 2 3 4 5
epoch

lo
ss loss

val_loss

111

B Zusammenfassung
Im Forschungsfeld Natural Language Processing überschneiden sich viele
wissenschaftliche Disziplinen. Diese Arbeit beleuchtet statistische Herange-
hensweisen des Natural Language Processing. Untersucht werden die beiden
Modelle Latent Dirichlet Allocation und Künstliche Neuronale Netze. Dem
Leser wird eine Einführung in die Theorie gegeben und anhand zweier unter-
schiedlicher Beispiele sollen die Modelle und deren Einsatz veranschaulicht
werden.

Ziel der Arbeit ist die Entwicklung und Evaluierung einer generischen Methodik
zum Clustern und effektiven Klassifizieren von Dokumenten. Dazu ver-
wende ich in einem grundliegenden Schritt Textbücher als Dokumente, um
die beiden Modelle anzupassen. Diese Dokumente sind bereits durch die
Initiatoren der freien Online-Bibliothek Project Gutenberg kategorisiert.
Somit ist es möglich den Clustering Algorithmus an einem menschgemachten
Gruppierungsprinzip zu evaluieren. Die so entwickelten Modelle werden im
zweiten Schritt an regulatorischen Dokumenten und Anleitungen der EU-
ROSTAT (einer Behörde der EU) letztlich getestet und ebenfalls mit einer
bereits existierenden Einteilung abgeglichen.

Bei der verwendeten Open Source Software handelt es sich um R. Alle ver-
wendeten Codes sind im Anhang dieser Arbeit zu finden und vollständig
reproduzierbar.

Schagworte: NLP, Natural Language Processing, Latent Dirichlet Alloca-
tion, LDA, Text Mining, VEM, Bayes, Deep Learning, Neuronale Netzwerke,
R, Keras, Klassifizierung, Clustering

112

	Introduction and Organization of the Thesis
	Natural Language Processing and Information Retrieval
	Discussed Models
	LDA Model
	Variational EM Algorithm
	Gibbs Sampling
	Implementation

	Artifical Neural Networks
	Development
	Backpropagation
	Implementation

	Analysis of Gutenberg Data
	LDA applied to Textbook Chapters
	ANN applied to Textbook Chapters

	Analysis of EUROSTAT Documents
	LDA applied to EUROSTAT Documents
	ANN applied to EUROSTAT Documents

	Conclusions
	Appendix
	Documentation of LDA - Gutenberg Data Examples
	Documentation of ANN - Gutenberg Data Examples
	Documentation of LDA - EUROSTAT Documents Example
	Documentation of ANN - EUROSTAT Documents Example

	Zusammenfassung

