

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Forecasting the Development of XML-based Intrusions
Using Models of Attack Patterns “

verfasst von / submitted by

Luka Plepel Markovic, univ. bacc. inf.

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2019 / Vienna 2019

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 926

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Wirtschaftsinformatik

Betreut von / Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. Dr. Gerald Quirchmayr

Zusammenfassung

Viele Unternehmen verwenden täglich Extensible Markup Language (XML) und

diese Abhängigkeit von XML führt zu unterschiedlichen Angriffsvektoren. Das

Auffinden dieser potenziellen Angriffsvektoren ist ein entscheidender Schritt bei der

Entwicklung eines sicheren Systems, da ein erfolgreicher Angriff erheblichen Schaden

verursachen kann. Die Ziele dieser Angriffe können Denial of Service (DoS), das

Erhöhen von Berechtigungen, das Zugreifen auf, Lesen und Schreiben von Daten und

das Ausführen nicht autorisierter Befehle sein. Sozio-Technische Systeme machen die

Angriffsanalyse zu einer besonderen Herausforderung, da sich komplexe Systeme aus

Personen, Software und physischen Infrastrukturen zusammensetzen. Daher muss

bei einer gründlichen Angriffsanalyse jeder Aspekt des Sozio-Technischen Systems

berücksichtigt werden. Umfangreiche Sicherheitskenntnisse sind erforderlich um das

gesamte System zu verstehen. Diese Arbeit befasst sich mit allen oben genannten

Herausforderungen. Nach einer umfassenden Literaturanalyse haben wir das ge-

sammelte Wissen genutzt, um elf realistische und detaillierte XML Angriffe zu

identifizieren, die dann modelliert und weiter erläutert wurden. Jedes der elf Angriffs-

muster wurde aus Sicht des Angreifers erstellt. Hierzu wurde ein dreischichtiges

Model Framework zusammen mit einem umfassenden Repository für Angriffswissen

verwendet. In dieser Arbeit werden die einzelnen Angriffsmustermodelle detailliert

modelliert und erläutert. Das Ergebnis unserer Arbeit ist ein in Python integrierter

Prognoseprototyp in einem Jupyter Notebook-Dokument, in dem alle relevanten

Informationen zusammen mit den Modellen der Angriffsmuster gespeichert sind. Die

Funktionen des Prototyps lauten wie folgt: Manuelle Prognosefunktion basierend auf

Aufgaben, automatische Prognosefunktion basierend auf einer Windows Log Datei,

Anzeige einer Angriffsmustermodellfigur und Zugriff auf relevante Informationen

zu einem Angriffsmuster. Ziel dieser Arbeit ist es, Sicherheitsexperten bei der

forensischen Analyse nach einem Angriff zu unterstützen und dabei zu helfen, den

Schaden während eines Angriffs zu erkennen und zu mindern.

1

Abstract

Many businesses use Extensible Markup Language (XML) daily and, this reliance

on XML creates distinct attack vectors. Discovering these potential attack vectors

is a crucial step in engineering a secure system since a successful attack could cause

significant damage. The goals of these attacks can be a Denial of Service (DoS),

elevating privileges, accessing, reading and writing data, and executing unauthorized

commands. Socio-Technical Systems make attack analysis particularly challenging

since any complex systems are composed of people, software, as well as physical

infrastructures. As such, a thorough attack analysis needs to consider every aspect

of Socio-Technical Systems. To take the whole system into account, a large amount

of security knowledge is required. This thesis tackles all the challenges mentioned

earlier. After a comprehensive literature analysis was conducted, we used the

available knowledge to identify eleven realistic and detailed XML attacks, which

were then modeled and explained further. Each of the eleven attack patterns

was created from the attacker’s perspective. The models were created by using

a three-layer modeling framework, along with a comprehensive attack knowledge

repository. In this thesis, we model and explain each attack pattern model in detail.

The result of our work is a forecasting prototype programmed in Python in a Jupyter

Notebook document, which stores all the relevant information along with the models

of the attack patterns. The prototype’s functions are as follows: manual forecasting

function based on tasks, automatic forecasting function based on a windows log file,

displaying an attack pattern model figure, and access to relevant information about

an attack pattern. This thesis aims to aid security professionals in their forensic

analysis after an attack. Additionally, the goal is to help detect and mitigate the

damage while an attack is happening.

2

Acknowledgment

This thesis was written and carried out during the summer of 2019 at the University

of Vienna as part of the Master’s degree program Business Informatics. The year

of research and hard work spent have been a fascinating period that helped me

understand much of today’s security field. This thesis presents an implementation

of a three-layer modeling framework for modeling attack patterns with the aim of

assisting system professionals and administrators.

Furthermore, this thesis could not have succeeded without the helpful advice of

others, and therefore, I wish to express my sincere gratitude to every single person

who supported me in the completion of this thesis. First and foremost, I would like

to thank my supervisor, Univ.-Prof. Dipl.-Ing. Dr. Dr. Gerald Quirchmayr at the

University of Vienna, Faculty of Computer Science, Research Group of Multimedia

Information Systems. He has provided me with inspiration, guidance, perspective,

and insight in the security field throughout the writing of this thesis.

At this point, I would also like to sincerely thank my family and friends for their

encouragement, helpfulness, and for believing in me.

November 2019

Luka Plepel Markovic

3

Contents

Zusammenfassung 1

Abstract 2

Acknowledgment 3

1 Introduction 7

2 Literature Analysis 10

2.1 Attack Pattern for Voice over Internet Protocol (VoIP) 10

2.2 Three-Layer Model . 12

2.3 Computer Aided Threat Identification 14

2.4 Matching Attack Patterns . 15

2.5 Assessing and Exploiting XML Schema 18

2.5.1 Malformed XML Documents 18

2.5.2 Invalid XML Documents . 19

2.6 Detecting Anomalous Patterns in XML Documents 20

2.7 Common Attack Pattern Enumeration and Classification 23

3 Modeling Approach 25

4 Modeling Attack Patterns 28

4.1 Modeling the Problem . 28

4.2 Modeling the Context . 29

4.3 Modeling the Solution . 29

4.4 Detailed XML Model Descriptions 30

4.4.1 XML Routing Detour Attacks 33

4.4.2 XML External Entities Blowup 35

4.4.3 XML Entity Linking . 37

4.4.4 XQuery Injection . 39

4.4.5 XPath Injection . 41

4.4.6 DTD Injection . 43

4

4.4.7 XML Attribute Blowup . 45

4.4.8 XML Quadratic Expansion 47

4.4.9 XML Entity Expansion . 48

4.4.10 XML Ping of the Death . 50

4.5 Model Extension . 52

5 Prototype Implementation and Results 53

5.1 Variable Initialization and Environment Setup 54

5.2 Core Functions . 54

5.3 Prototype Main Body . 60

5.4 Prototype Results . 60

6 Conclusion 63

Glossary 65

Acronyms 67

References 69

Web References 72

5

List of Figures

1 Attack pattern model for XML schema poisoning [32] 25

2 Attack pattern XML database template 31

3 Attack pattern XML database . 31

4 Attack pattern XML database validation schema 32

5 Attack pattern model for XML Routing Detour Attacks [33] 33

6 Attack pattern model for XML External Entities Blowup [34] 35

7 Attack pattern model for XML Entity Linking [35] 37

8 Attack pattern model for XQuery Injection [36] 39

9 Attack pattern model for XPath Injection [37] 41

10 Attack pattern model for DTD Injection [38] 43

11 Attack pattern model for XML Attribute Blowup [39] 45

12 Attack pattern model for XML Quadratic Expansion [40] 47

13 Attack pattern model for XML Entity Expansion [41] 48

14 Attack pattern model for XML Ping of the Death [42] 50

15 Jupyter Notebook variables and environment 54

16 Jupyter Notebook find function . 55

17 Jupyter Notebook forecast initialisation function 56

18 Jupyter Notebook forecast XPath function 56

19 Jupyter Notebook forecast function 57

20 Jupyter Notebook function for displaying the relevant information . 58

21 Jupyter Notebook function for relevant information error handling . 59

22 Jupyter Notebook function for displaying model image 59

23 Jupyter Notebook prototype core functions 60

24 Jupyter Notebook forecasting function results 61

25 Jupyter Notebook function for relevant information results 62

6

1 Introduction

The goal of this thesis is to develop a tool-supported framework to forecast the

development of intrusions based on attack patterns and to create a library of said

attack patterns. The first primary source of inspiration for this framework is the

Common Attack Pattern Enumeration and Classification repository [31]. The second

source of inspiration are the collective papers written by Li et al. [10, 11, 12, 13, 14].

Based on these sources, a proof of concept was developed in Python. The current

state of an intrusion can be guessed by matching the gathered information against

the attack pattern repository. The underline assumption of this thesis is that a series

of snapshots will allow the forecasting of an intrusion’s development. Furthermore,

in the early stages of pattern matching, an attack may match a more significant

number of possible attacks. A more advanced stage of an attack reduces the number

of alterations to a small enough number that a most likely candidate can be forecast.

The framework will, therefore, be more efficient after each stage of an attack. In the

first step, a literature analysis was conducted to get an overview of the research which

this thesis builds on, mainly in the field of attack pattern matching, information

gathering, and information fusion. The literature analysis, which forms the basis of

the research contribution made by this thesis, covers the following areas:

1. Attack pattern libraries in use

2. Intrusion detection

3. Modeling of security mechanisms

4. Variation test of security solutions

The literature analysis concluded by identifying the primary building blocks

needed to develop and implement a prototype.

7

The framework built in this thesis consists of a set of core intrusion analysis models,

as well as modeling guidelines and the accompanying prototype tool. The modeling

approach used in this thesis is based on standard Unified Modeling Language (UML)

diagrams. The models were created with the help of an attack pattern repository,

and they have been validated against the existing literature. Finally, a proof of

concept prototype was written in Python in a Jupyter Notebook container and

tested. The achieved results are discussed in a later chapter. A conclusion and

future work can be found at the end of this thesis.

An attack pattern is a type of pattern that is created from an attacker’s viewpoint. It

consists of what the attacker wants to achieve called the ”problem”, what functions

an attacker needs to use to accomplish the goal called a ”context” and lastly, the

steps an attacker performs to attack our system called the ”solution”. Based on these

three parts of an attack pattern, we have identified relevant elements that specify

the problem, context, and solution, and we have included them in our model [23, 24].

We predict this will assist in stopping the attack or hindering it. A Socio-Technical

System (STS) is a complex system that consists of people, processes, software, and

hardware. These systems are diverse and constantly changing due to many goals and

restrictions that have to be met for a business to operate smoothly and successfully.

One of the main reasons for successful breaches is the complexity of the organization

itself. These components raise several security concerns and present a larger attack

surface compared to just software systems.

For this reason, the works of Li et al. [10, 11, 12, 13, 14] propose a three-layer

requirements framework, which models and analyzes requirements of STS at the

business layer, software application layer, and physical infrastructure layer. This

approach is considered a holistic approach since it should encapsulate the business

and the security requirements in their entirety. The model aims to set goals from

the perspective of the attacker, which then helps identify attack vectors. The goals

8

from an attacker’s perspective are also called anti-goals.

Sun Tzu [20] said:

”If you know the enemy and know yourself, you need not fear the result

of a hundred battles. If you know yourself but not the enemy, for every

victory gained you will also suffer a defeat. If you know neither the

enemy nor yourself, you will succumb in every battle.”

After all, if we know what the aim of the attacker is, then we can compensate for

the attack or even prevent it outright.

The following chapter will discuss relevant related work. Chapter 3 will be a

modeling approach that will involve the explanation of the proposed modeling frame-

work. Chapter 4 will consist of detailed explanations of each of the eleven XML

attack pattern models. Following this, chapter 5 describes the usage, workings, and

results of the prototype. This thesis concludes with our findings.

9

2 Literature Analysis

The modeling framework used in this thesis consists of three layers: the business

layer, the application layer, and the physical layer. These three interconnected

layers are sufficient to capture the complexity of an STS. They are used to model and

analyze the requirements for each layer. The end model [12] resembles a UML model

with domain assumptions, tasks, and goals from the perspective of the attacker. The

reason why this method was chosen is described in detail below.

2.1 Attack Pattern for Voice over Internet Protocol (VoIP)

In the paper by Fernandez et al. [6], they use UML class and sequence diagrams to

explain attack patterns, and as an example, they use a Denial of Service attack on

an instance of the Voice over Internet Protocol. They do this by going into very fine

detail. Each pattern is described using ten attributes. These attributes are: name

of the attack, disruption intent, context, problem, solution to the problem, known

uses, consequences of the attack, countermeasures and forensics, evidence locations

and related patterns.

The name of the attack describes what the attack is about. The intent is a short

description of the purpose of the intended attacks. Context is a description of

the conditions in which the attack takes place and encompasses the environment,

parameters, conditions, defenses, and in some cases, known vulnerabilities. Further-

more, the paper describes the ”problem” which is the goal of the attack pattern, also

referred to as the anti-goal. The reason why this is defined as the ”problem” is that

the attacker has the problem of wanting to attack a target system, or rather how

to get into the system. The problem can then be further divided up into smaller

sub-problems. The attacker might need to create sub-problems to address different

aspects of the problem, such as hard to breach defenses of the system, exploits to

target, how to navigate the system, and so on. All of these obstruct or delay the

10

success of the attacker and his anti-goals. The ”solution” segment describes the

solutions an attacker may use to solve his problem of getting in, how the attack is

performed, and the results of these actions. UML class and sequence diagrams

are used to explain the system before and during the attack and the messages

exchanged during the attack, respectively. Additionally, Fernandez et al. [6] describe

known uses for attacks, where to find evidence, consequences, and the benefits and

drawbacks of the attack for the attacker, with detailed attention given to the effort,

cost, and possible sources of failure. In the segment on countermeasures and forensics

where the description of measures taken to stop, mitigate, and trace the attacker

is described. This chapter also includes where to obtain information on each stage

when determining the attacker’s steps. This information can be used to help identify

the specific action taken by the attacker. In the segment titled, evidence locations,

UML class diagrams, and associations of the relevant parts are used for forensic

investigation purposes.

Since UML class diagrams abstract well, they are used for showing only parts of the

system relevant to the investigation. The related patterns chapter of the modeling

method includes patterns that have different anti-goals but are performed similarly

and attacks that have a similar objective but differ in the approach of the attack.

Fernandez et al. [6] additionally use this modeling method to describe an example of

a VoIP Denial of Service attack with every part of the mentioned modeling method

used to describe and examine the attack pattern in detail. The paper concludes with

a discussion where they propose that forensic investigators could use this method

to search for evidence. Fernandez et al. [6] state that investigators often find it

challenging to determine which data should be collected and that collecting this

data is arduous. The reason for this is that it involves identifying all the components

involved in the attack, deciding which are most likely of interest, finding the location

of the components, and collecting the data from each component [6, 9]. The value of

this proposed method is in the fact that combining the class and sequence diagrams

11

guides forensic investigators on what evidence can be found after an attack and

where to look for the evidence. The two diagrams need to be combined due to

an attack being described dynamically in a sequence diagram but making direct

reference to the system components, which are described in the class diagram of the

modeling method.

2.2 Three-Layer Model

Security patterns are similar to software engineering design patterns but incorporate

security knowledge that helps analysts tackle security problems. Li et al. [15] state

that these security patterns are quite thoroughly researched and that this research

has produced an impressive collection of patterns. The issue is that in practice,

these security patterns are not widely applied. To solve this problem, they propose

to integrate security patterns with goal-oriented security requirements analysis [15].

Since there is a lot of existing research in this field, we will instead focus on attack

patterns from the perspective of attackers and the attackers’ anti-goals.

In comparison to the modeling framework by Fernandez et al., the framework

developed by Li et al. [12] is more streamlined. Their framework consists of a

context, a problem, and a solution that can be applied to solve that problem in

the given context. This thesis builds upon the modeling framework described in

papers by Li et al. [10, 11, 12, 13, 14] because it is more straightforward and

easy to explain, which makes is ideal for beginners in the security field and for

highlighting the importance of including security measures in every part of software

development. Analyzing attack vectors from an attacker’s perspective has been

accepted as a practical approach for dealing with security requirements for complex

systems. The problem is that there is no systematic approach to constructing attack

scenarios. This results in the attack scenarios being subject to the knowledge and

experience of experts to be complete. Li et al. [14] propose a systematic process

for identifying attack scenarios to support security analysis, founded on anti-goal

12

refinement. This comprehensive anti-goal refinement framework would consist of

five anti-goal refinement patterns and an analysis process for using the patterns as

part of an encompassing security design [14].

In another paper, Li et al. [16] outline a toolkit that would enable semi-automatic

anti-goal refinement requiring only the attack vectors as input. In the security

requirements analysis in each layer, related threat information is necessary to identify

critical security requirements. For this purpose, a toolkit was created, and they used

it to model several attack patterns as a proof of concept. The models created with the

toolkit can provide information about the system under attack and help to identify

realistic attacks on the system across all three layers. The identified attacks can

then be transferred back to the three-layer security requirements framework, aiding

the analysis of critical security requirements and enabling the creation/generation

of security solutions. The prototype tool used by Li et al. is a Java application that

incorporates a powerful diagramming application called OmniGraffle. The prototype

is called the Multi-layer Security Requirements analysis tool (MUSER). For this

thesis, the MUSER tool is not used. Instead, a new Python-based prototype was

implemented in a Jupyter Notebook document that works for XML attack patterns.

Attack patterns are similar to security patterns but differ in that they show the

event from the viewpoint of the attacker, i.e., what an attacker wants to attack and

how the attacker performs the attack. Based on the semantics of attack pattern

attributes, we have identified relevant attack pattern attributes that specify the

problem, the context, and the solution, and indirectly map them to the contextual

goal model elements. This modeling method looks similar to the model framework

proposed by Ali et al. [2]. A detailed explanation of the model layers and objects

used in the models in this thesis will be provided in chapters 3 and 4, followed

by an overview of ten more XML attack patterns also used in the thesis. These

models were created as part of this thesis and are based on information found in

13

the Common Attack Pattern Enumeration and Classification repository. All eleven

models are stored in an XML database file. This database acts as a repository for

our prototype and can be added to if more models are created. This is done to

increase the modularity and extensibility of the prototype for future work purposes.

2.3 Computer Aided Threat Identification

In their paper, Asnar et al. [3] state that a need for automation of global threat

identification exists. The paper states that there has been an increase in reported

security threats hitting organizations. Logically, the larger the organization, the

more attacks it experiences. Some originated from giving inappropriate permissions

on sensitive organizational data to users that should not possess such permission

in the first place. Thus, organizations must recognize as early as possible the risks

deriving by inappropriate access right management and identify the solutions that

they need to prevent such risks.

Asnar et al. [3] propose a framework to identify threats during the requirements

analysis of an organization’s IT systems. They state that their framework does not

rely on the level of expertise of the security analyst to detect threats, but allows

to automatically identify threats that derive from improper access management, in

contrast to other existing frameworks. To capture the organization’s setting and

the system stakeholders’ requirements, they adopt a framework called SI*. This is a

requirement engineering framework focused on the concepts of actors, goals, tasks,

and resources. This framework is similar to the one used in our thesis, but it focuses

more on attacks themselves and how to solve them from the perspective of the system

holders. Due to this, the framework is not suitable to model our intended attacker’s

point of view. Asnar et al. extend the SI* with a technique that identifies potential

security threats that might impact resources management and other relevant goals.

The reasoning is based on Answer Set Programming (ASP) logic rules that take

into account the relationships between resources and the delegation of permission

14

relations between actors. Generally, they focus more on the intricacies of controls

and permission assignments. These intricacies typically become more complex as

the size of the company increases, the number of systems that are implemented

expands, and the granularity of access rights within the enterprise spanning systems

grows.

They continue that in organizations, the managing of access rights while protecting

sensitive organizational information, is a daunting process for security administrators,

where we tend to agree with them. Many users may not be aware of their access

rights or conflicts and issues that their rights could create. In most cases, users are

granted access to sensitive information, but the owner of that information does not

trust them. It is relatively simple for the users to misuse their permissions, which can

then cause security compromises in the organization’s assets. Examples of threats

that can hit an organization because of an inappropriate access management rule are

unintended data editing, unintentional or intentional disclosure of secret information,

or internal misuse for personal gain. It is crucial to identify pitfalls in permissions

assigned to users in the early phases of an information system engineering process

and manage the level of risk by adopting suitable security solutions so that these

types of threats are avoided. As stated above, Asnar et al. [3] propose the use

of a framework to identify threats that are caused by inappropriate permission

assignments. They identify the relevant threats that occur during the requirement

analysis of the organization’s settings and its IT systems [3].

2.4 Matching Attack Patterns

Gegick et al. [7] state that in general, the cost of finding and fixing software bugs in

completed products can be 100 times more expensive than solving the problems while

in the design and implementation stages of a project [7]. The path usually taken

to fix such issues is with patches that come out at a later date, after the initial

release. This can incur problems since patches could introduce new, unforeseen

15

vulnerabilities. Another problem is that someone could find and exploit the original

weakness that needed patching in the first place. Another technique is to rely

on external devices or software systems such as intrusion detection systems and

firewalls. Patching is the preferred method today, but there are glaring issues when

using this method. For example, the biggest issue is that such protections only work

when the end software project is complete. A question then arises, what happens

when those solutions also have weaknesses or can not detect a particular attack.

Usually, attacks are based on a few known variations, which in turn gives the

impression that there should also be few weaknesses, or at least that they should

share many similarities. Alexander’s [1] idea:

”A pattern describes a situation where a problem recurs and provides a

solution that can be applied regardless of the environment in which the

problem occurs.” [7]

This general pattern definition Alexander coined can be stated even today. Alexander

used this definition in the context of building architecture in 1977, but the general

concept can be used in any field, and thus, computer science and security adopted

this approach as well. As stated before, many authors use security patterns and

define them as a particular recurring security problem that arises in specific contexts

and presents a well-proven solution.

In the paper Gegick et al. [7] propose a method for early identification of system

vulnerabilities that they call regular expressions based on the descriptions of attack

patterns and using those regular expressions as general representations of those

attacks. Attack pattern expressions are events that are symbolized by components

in the system triggering the attack event [7]. Gegick et al. reference a paper from

1975 by Carlstedt et al. [4] that proposes abstracting system calls, data stores,

and other entities in operating system source code into generalized patterns, so that

16

they can be applied to any operating system. The aim of this abstraction is that

each operating system would fundamentally work the same, but could then have

different names for those parts. The findings proved that if done correctly, experts

could impart needed knowledge of security flaws to those who had little to no prior

understanding or experience with them. This was done to prove that the same

abstracting to regular expressions was not a new idea.

Furthermore, they mention attack trees and attack nets could be used as graphical

representations of attack patterns, but ultimately decide to steer clear. Gegick et

al. mention that attack trees do not mimic software system design closely enough.

Attack trees are tree diagrams where the nodes show the goals of an attacker. For

our thesis, this could be useful and thus was looked more into. The conclusion is that

our models have a similarity with attack trees, but no further use was found. Attack

trees show the point of view of an attacker completing steps toward the final goal.

Software engineers can use attack trees to determine if such a sequence of objectives

is possible in their software systems [19]. The second mentioned graphical structure

are Attack nets, which are an abstract representation of exposing vulnerabilities in

software systems. Attack nets are different from attack trees because attack trees

are more interested in the attacker’s anti-goal, while attack nets are focused on

specific places in the system where penetration testing should be carried out to find

weaknesses. Another difference is that Attack nets show more detail of a particular

software system part that is of interest but also incorporate the knowledge of the

system architects as well as the attacker’s point of view, thus being narrower in

scope, but deeper in detail [17]. The paper continues to explain how to create the

needed regular expressions and how Gegick et al. use them. For this thesis, the

regular expressions and attack nets are not used.

17

2.5 Assessing and Exploiting XML Schema

Both Righetto [26] and Arnaboldi [27] state that the specifications for both XML and

XML schema, like XML Schema Definition (XSD) and RelaxNG (RNG) [30], include

multiple security flaws, but also at the same time, these specifications provide the

tools necessary to protect XML applications. Even though we use the XML schema

to define the security of XML documents, they can be used to perform a variety of

attacks: file retrieval, server-side request forgery, port scanning, or brute-forcing to

name just a few. Righetto wrote up a beautiful and concise ”cheat sheet” to expose

how to exploit the different possibilities in libraries. Arnaboldi wrote a much more

extensive paper that takes an in-depth look at the same problems. Both divide the

issues into two sections:

• Malformed XML Documents: vulnerabilities using documents that do not

adhere to proper formatting,

• Invalid XML Documents: vulnerabilities using documents that do not have

the expected structure.

2.5.1 Malformed XML Documents

The World Wide Web Consortium (W3C) XML specification defines a set of principles

that XML documents must follow to be considered well-formed. When a document

violates any of these principles, it must be considered a fatal error, and the data it

contains is deemed to be malformed [29]. Multiple tactics will cause a malformed

document, some of which are: removing an ending tag, rearranging the order of

elements into a nonsensical structure, introducing forbidden characters. The XML

parser should stop the execution of the XML document once it detects a fatal

error. The parser should stop any ongoing processing of the document, and the

application should display an error message. The recommendations to avoid these

vulnerabilities are to use an XML processor that follows W3C specifications and does

not take significant additional time to process malformed documents. Also, use only

18

well-formed documents and validate the contents of each element and attribute to

process only valid values within predefined boundaries [26, 27, 29].

A malformed document may affect the consumption of CPU resources since it would

take significantly more time to process that document. In specific scenarios, the

amount of time required to process malformed documents may be higher than that

required for well-formed documents. In our experience, the larger the document is,

the longer the parser takes. This increases even further with malformed documents.

This process is highly dependent on the speed of the CPU, as well as the number

of threads the application can use to run in parallel. An attacker may exploit this

in what is knows as an asymmetric resource consumption attack to take advantage

of the more significant processing time, which is a type of Denial of Service (DoS).

To analyze the likelihood of this attack, one can analyze the time taken to parse

a regular XML document vs. the time taken by a malformed version of that same

document, then consider how an attacker could use this vulnerability in conjunction

with an XML flood attack using multiple documents to amplify the effect. Individual

XML parsers can recover malformed documents. They can be instructed to try

their best to return a valid tree with all the content that they can manage to parse,

regardless of the document’s noncompliance with the specifications. Since there

are no predefined rules for the recovery process, the approach and results may not

always be the same. Using malformed documents might lead to unexpected issues

related to data integrity and information leakage [26, 27].

2.5.2 Invalid XML Documents

Attackers may introduce unexpected values in documents to take advantage of an

application that does not verify whether the document contains a valid set of values.

XML schemas specify restrictions that help identify whether documents are valid

and comply with the formative rules. A valid document is well-formed and complies

with the restrictions of a schema, and more than one schema can be used to validate

19

a document. These restrictions may appear in multiple files, either using a single

schema language or relying on the strengths of the different schema languages. The

recommendation to prevent these vulnerabilities is that each XML document must

have a precisely defined XML schema with every piece of information adequately

restricted to avoid problems of improper data validation. It is recommended to use

a local copy or a known excellent repository instead of the schema reference supplied

in the XML document. Performing an integrity check of the XML schema file being

referenced is advised, bearing in mind the possibility that the repository could

be compromised. In cases where the XML documents are using remote schemas,

configuring servers to use only secure, encrypted communications like Hypertext

Transfer Protocol Secure (HTTPS) to prevent attackers from eavesdropping on

network traffic [26, 27] is strongly advised.

In this thesis, we will heavily lean on the XML standard and specification for both

XML schema and the general XML standard. Righetto’s [26] and Arnaboldi’s [27]

papers were of use in the identification of problems and attack vectors and thus were

used in the completion of attack patterns where needed.

2.6 Detecting Anomalous Patterns in XML Documents

XML transactions could become victim to cyber-attacks, or even benign mistakes

could happen where the integrity of the XML becomes questionable. This alteration

in the structure and content of XML documents is the aim of this thesis. The goal is

to prevent or at least reduce damage, the impact of errors, and attacks. Regardless

of whether the origin of these attacks is malicious or benign, the altered XMLs are,

in fact, attack vectors that could cause real harm. Especially XML documents that

adhere to an XSD schema since they can potentially be used to exploit vulnerabilities

of the interacting information systems. Menahem et al. [18] state that the state of

the art end-to-end security protocols for XML transactions, such as XML encryption

[8], XML signature [5], and XML canonization [25] provide little protection against

20

such threats. They state that the reason for this is that, for the most part, the

actions which result in deformation of the XML documents take place before such

protective measures are applied at the endpoint’s system. The XML documents that

are bound to an XSD schema can vary in great detail. Two XML documents that

adhere to the same XSD schema rules can have very different attributes regarding

both their content and structure [18]. Thus, the importance of well-designed XSD

schemas is highlighted.

Anomalous patterns are related to both the structure and content of an XML

document. Such patterns can be generated by either malicious cyber-attacks, benign

user mistake, or an error. Menahem et al. [18] name the most prominent XML

attacks, which are generally subdivided into two parts: real XML attacks and benign

anomalies. These attacks are weaknesses in the XML processing mechanism, such

as the vulnerability of XML parsers or the weak points of input verification in

the target server application. The attacks named are: input validation attacks,

probing, malware infiltration, buffer overflow, XML parameter poisoning, Character

Data (CDATA) field attacks, Structured Query Language (SQL) injection, cross-site

scripting, schema poisoning, Denial of Service, Distributed Denial of Service (DDoS)

XML bombardment, Document Object Model (DOM) parser DoS attacks, XML

bomb and repetition attack [18]. These XML attacks are the main culprits that result

in XML anomalies, since the attacks are expressed through string expressions that,

concerning the standard XML transaction collections, are inherently very unlikely

to be obtained. Another threat to modern information systems comes from data

leakage. Among the causes of data leakage are Trojan attacks, SQL injection attacks,

or simply human error. Not all XML anomalies are a product of a cyber-attack or a

malicious action [18]. There are many ways in which XML documents might become

anomalous. User mistakes, application errors, and communication errors are typical

examples of how benign anomalies might be manifested in XML documents. It is

necessary to keep in mind that these are still XML documents that are bound to an

21

XSD schema from the receiver.

Menahem et al. [18] state that it is vital to detect both types of anomalies. Mainly

because XML anomalies have the potential to result in unwanted effects in the

information processing system, regardless if they are benign or malicious. Anomaly

detection is a process aimed at discovering patterns in data sets that deviate from

the general behavior or the expected behavior of the majority of the data. Today,

anomaly detection can commonly be found in various fields since it has a broad

spectrum of applications. Some of the fields are general cyber-security, intrusion

detection, fraud detection, financial systems, and military surveillance. Anomaly

detection methods employ a wide range of techniques that are based on statistics,

classification, clustering, the nearest neighbor search, spectral analysis, information

theory, and many more.

The conclusion of their paper Menahem et al. [18] state that despite the risk

XML documents anomalies impose, very little relevant research has been done in

this area to date. They go on to name a few of the papers their research was

based on and write about the contribution they propose the paper brings to the

security field. The stated contribution of the paper is three-fold. First, it presents a

general and automatic method for extracting structural and content features from

XML transactions. Second, it provides a practical method for transforming XML

features into vectors of fixed dimensions and hence enables the use of non-proprietary

machine-learning algorithms for the XML anomaly detection task. Lastly, they

present an anomaly detection algorithm, Attribute Density Function Approximation

(ADIFA) [18].

22

2.7 Common Attack Pattern Enumeration and Classification

The Common Attack Pattern Enumeration and Classification (CAPEC) dictionary

and classification repository is another significant building block of this thesis. It

features over 500 different attack patterns described in detail, including how they

work. Each attack patter also has additional references to external sources on a

dedicated page for that attack. The CAPEC effort provides a publicly available

catalog of common attack patterns that helps users understand how attackers exploit

weaknesses in applications and other cyber-enabled capabilities [31]. Attack patterns

are descriptions of the common attributes and approaches employed by adversaries

to exploit known vulnerabilities in cyber-enabled capabilities [28].

Attack patterns define the problems laid out in the works of both Fernandez et al. [6]

and Li et al. [12]. An attacker may face issues such as how to breach the security of

organizations and how they go about creating solutions to those problems. Attack

patterns are derived from the concept of design patterns applied in a disruptive

fashion rather than a constructive one. An in-depth analysis of specific real-world

exploits on specific examples needs to be done to create a formal attack pattern.

Each attack pattern captures knowledge about how particular parts of an attack are

designed and executed. Additionally, the attack pattern generally gives guidance on

ways to mitigate the attack’s effectiveness.

Attack patterns are created to help the development of applications and tools for

administrating cyber-enabled capabilities to better understand the specific elements

of an attack and how to stop them from succeeding, thus preventing damage [31].

Attack patterns captured in such a formalized way can bring considerable value to

the development and maintenance of cyber-enabled capabilities, including [31]:

23

1. Training - Educate software developers, testers, buyers, and managers,

2. Requirements - Define potential threats,

3. Design - Provide context for architectural risk analysis,

4. Implementation - Prioritize review activities,

5. Verification - Guide appropriate penetration testing,

6. Release - Understand trends and attacks to monitor,

7. Response - Leverage lessons learned into preventative guidance.

Of course, attack patterns are not the only useful tool for building secure cyber

enabled capabilities. Many other tools, such as misuse/abuse cases, security require-

ments, threat models, knowledge of common weaknesses and vulnerabilities, and

attack trees, can help. Attack patterns play a unique role in this broader architecture

of security knowledge and techniques [31].

24

3 Modeling Approach

In this chapter of the thesis, the modeling approach is explained. One of the models

used in the thesis is provided as an example. This thesis will be focused on XML

attack vectors. CAPEC lists several attack patterns, each of which was modeled,

explained, and implemented in the Python forecasting prototype developed as part

of this thesis. Every model will be shown and described in detail in the following

chapter. The first model explained in this segment will also serve as an example to

demonstrate the layers of the modeling framework. This model is an XML schema

poisoning [32] attack. This model will be explained layer by layer and can be seen

in Figure 1.

Figure 1: Attack pattern model for XML schema poisoning [32]

25

The main goal of this attack is to corrupt or modify the content of XML schema

information passed between a client and server to undermine the security of the

targeted system. XML schemas are essential since they provide the structure and

content rules for XML documents. XML Schema poisoning [32] is an attack that

aims to manipulate a schema either by replacing or modifying it to compromise the

programs that process documents that use this schema.

In the first layer of the modeling framework, we describe the possible anti-goals of the

attacker. The reasonable goals for this type of attack are Denial of Service, general

damage to the system, and causing unnecessary recourse consumption. Damage

to the system is a blanket term for possible damages that were not foreseen by

the CAPEC attack pattern repository. These three anti-goals are modeled in the

problem layer. They can be achieved by modifying the schema so that it does not

contain the required information, which will then cause the XML document to be

rejected by the XML schema.

The second layer in our framework is named the context layer. This layer consists of

all the methods that can be used by an attacker in order to achieve his anti-goals. A

method can also lead to more than one anti-goal, but for our purposes, it is sufficient

to model a function. Going into details for each function in each attack pattern is

outside of the scope of this thesis.

The third and final layer of our framework is named the solution layer. This layer is

the most interesting to us since it describes the steps an attacker needs to take for

him to achieve the stated anti-goals. These steps are called tasks in the model. Every

solution layer should have at least one task called a general task. This general task

is the task of performing the said attack, such as ”Perform XML Schema Poisoning”

in our example, and can be seen in every attack pattern in the following chapters.

Furthermore, to be able to complete this general task, more prerequisite supporting

26

tasks need to be completed first. In our example, these are three supporting tasks.

To complete these three tasks, further supporting tasks need to be completed. This

creates a hierarchy of tasks that resembles a tree structure.

For an example of what damage this specific attack pattern in Figure 1 can cause, the

original schema may require a @name attribute in all submitted documents. If the

attacker removes this attribute from the schema, then documents created using the

new modified schema could lack this attribute field. This small and simple change

could cause the processing application to enter an unexpected state and stop working

since there is data missing in the submitted XML. Another form of manipulation

is with the data types described in the schema. If the data type were changed

from float to string, calculations might fail to execute correctly, leading to errors in

the system. An attacker may also change the encoding of individual fields, defined

in the schema, allowing the contents to bypass filters used to filter out dangerous

strings. For example, an attacker might change the schema encoding from American

Standard Code for Information Interchange (ASCII) to Uniform Resource Locator

(URL), which would result in a filter meant to catch a semicolon (;) failing to detect

its URL encoding (%3B) [31]. The likelihood of this kind of attack is estimated to

be low by CAPEC, but the severity of the attack is very high. Due to the minute

changes required for this attack, it is safe to assume it would be challenging to

identify in an extensive system.

27

4 Modeling Attack Patterns

The model in Figure 1 depicts a proposed three-layer model of the XML schema

poisoning [32] attack pattern. As explained in chapter 3, the goal of this attack is

to undermine the security of the targeted system by corrupting of modifying the

XML schema information passed between a client and server. XML schemas are

essential since they provide the structure and content rules for XML documents.

XML Schema poisoning [32] is an attack that aims to manipulate a schema either

by replacing or modifying it to compromise the programs that process documents

that use this schema. It is possible that the model could change in the future due

to new requirements and information. Currently, this model is based on up-to-date

information. The model in Figure 1 was modeled with the visual elements proposed

by Li et al. [12] and with the help of information from the CAPEC repository [31].

4.1 Modeling the Problem

The problem segment of the model in figure 1 is the malicious anti-goal that an

attacker wants to achieve. For our model, this is modeled as a goal. With that

goal in mind, we depict the motivation and consequences that the attacker wants

to achieve. We focus on the threat and target that are summarized in the attack

pattern repository, and which will be used in our prototype for automatic pattern

matching. In our model, we have three problems that the attacker wants to achieve.

Denial of Service is a well-known goal, the aim of which is to prevent the system

from responding to legitimate requests. Damage to the system is a more general

blanket term in use since it is hard to foresee all the damage this attack pattern

could do. The last goal is to create highly resource-intensive changes that would

cause the target damage over time due to higher operating costs and lost processing

times.

28

4.2 Modeling the Context

The context of an attack pattern specifies under which situation the attack can be

used to achieve an attacker’s anti-goal. As can be seen in the context section of

the model in Figure 1, our attacker uses functions to edit XML schemas he has

access to, intending to make them unusable. We model such context and associate

it with the operationalization link between Goals and tasks. We obtain the context

information of an attack pattern by looking up the attack pattern attributes, attack

prerequisites, and technical context from the CAPEC repository [31]. If some of

the data is missing, it might be defined by some other reference. Thus we search

the available references for the needed data and incorporate it into our model. As

the context information is specified in natural language, analysts have to check such

context during the application of attack patterns manually. This thesis aims to fill in

any missing data needed to complete the eleven attack patterns from the repository

and model them accordingly.

4.3 Modeling the Solution

The solution of attack patterns are specific attack actions that are performed by

attackers using concrete attack techniques. We obtain the needed information from

the CAPEC attack pattern repository [31] and model each attack action as a task

in the goal model. The focus is placed on modeling every action needed to execute

an attack successfully. When modeling the solution of the pattern, we first create a

main general task to summarize the overall attack that has the attacker’s anti-goals

in mind. In our example, this is ”Perform XML Schema Poisoning” as is shown in

Figure 1 Next is to add tasks to the model that help or support the main general task.

In our example, those are ”Obtain knowledge of systems available XML schema”,

”Obtain some level of access to XML schema” and finally ”Improperly secured XML

schema” [32]. These tasks are required in order for the main general tasks to be

accomplished, since the attacker needs to know what schema exist in the system, the

29

attacker has to test if the schema is not secured to modification and to be able to

change them the attacker needs access to the schema, so he can execute the required

methods and functions. These tasks are then supported by other tasks that enable

the general execution. To be able to access the XML schema, the attacker has to

have access to the system in general. An XML schema might not be adequately

secured because the project which uses that XML schema might be ongoing, and

thus not adequately secured. It is also possible that an XML schema was not secured

when it was done because of a lack of attention from the creator’s part. Not all tasks

must be executed for the connected task to work. In some other models, such as

the ”XML Routing Detour Attacks” [33] depicted in Figure 5, some tasks have two

or more connections to the parent task. In these cases, this can be understood as

a logical ”or” relationship, so either of the ”Explore” child tasks could cause the

parent task to be executable. These cases will be described in detail for each model

separately.

4.4 Detailed XML Model Descriptions

Every attack pattern that was created for this thesis is described in this chapter. The

figures showing the models were created with the help of the web tool Draw.io [21].

The modeling process is based on the three-layer modeling framework by Li et al. [10,

11, 12, 13, 14]. Each of the models was created by hand based on the descriptions of

attack patterns from the CAPEC repository [31]. Additionally, a Python prototype

was created in a Jupyter Notebook container to create a forecasting function along

with other functionality. Jupyter Notebook is a web browser-based framework that

enables the user to have a mix of Python code blocks as well as standard markdown

text for easy reading. The information gained from the models is stored in an XML

database file. This database is needed for the prototype to function correctly. In

addition to this, a RelaxNG validation schema was created to validate the database

file if new attack patterns need to be added to it. A template XML file containing

all the necessary elements of a well-formed database was created to help users add

30

new attack patterns. Figure 2 shows this template.

Figure 2: Attack pattern XML database template

Figure 3 shows a snapshot of the XML database file. As stated before, this

database is meant to be modular, so adding new attack patterns should be straight-

forward.

Figure 3: Attack pattern XML database

31

Figure 4 shows the RelaxNG validation schema that is needed to validate the

accuracy of the XML database. Validation can be done online with the help of the

web validation tool from Liquid Technologies [22].

Figure 4: Attack pattern XML database validation schema

In the following ten chapters, every model will be explained in detail. The

explanation will contain a short description of the attack pattern, the model and a

detailed explanation of the goals, and tasks of the attack pattern.

32

4.4.1 XML Routing Detour Attacks

A model of the ”XML Routing Detour Attacks” attack pattern is depicted in Figure

5. The reference number for this attack pattern in the CAPEC repository is 219

[31, 33]. The likelihood of this attack is high, and severity is medium, so care

is needed to ensure that the system is not vulnerable to it. The model shows

that the attack pattern has three goals, which are: ”Read and modify Data”,

”Gain Privileges” and ”Bypass Protection Mechanism”, and that the ”Perform XML

Routing Detour Attacks” task has to be completed in order for these goals to be

reached.

Figure 5: Attack pattern model for XML Routing Detour Attacks [33]

33

Before the general task can be completed, a series of five tasks need to be

completed first. These five tasks are: ”Use compromised route for a man in the

middle attack”, ”Modify the responses so that the attack is hidden”, ”Explore”,

”Target system must have multiple stage processing of XML content” and ”Experi-

ment”. For the first task, a series of tasks have to complete, starting at ”Be

able to insert or compromise a system processing path”, ”Insert an intermediate

system used to process XML”, and lastly, ”Forces the intermediate to modify and/or

re-route the processing”. The second task also has a chain of tasks that need to be

completed: ”Have route that benefits attacker” and ”Alter the header information

to fool forwarding and processing”. The ”Explore” task is distinct since either of

the child tasks can be completed for the parent task to be achievable. The fourth

task has no children tasks, and the fifth task has the child task ”Inspect the SOAP

message routing head to see whether the XML processing has multiple stages”.

Going forward, each instance where a logical ”or” relationship is present will be

explained.

34

4.4.2 XML External Entities Blowup

The model in Figure 6 is called XML External Entities Blowup. The reference

number for this attack pattern in the CAPEC repository is 221 [31, 34]. The

likelihood of this attack is medium, and the severity is high. This attack can do

significant damage, so care is needed to ensure that the system is not vulnerable

to it. The model shows that the attack pattern has three goals: ”Consume a large

amount of resources”, ”Force system to freeze or crash”, and ”Execute arbitrary

malicious code”. For these goals to be reached, the general task ”Perform XML

External Entities Blowup” has to be completed. These goals are the reason that

this attack can cause significant damage, especially the third goal.

Figure 6: Attack pattern model for XML External Entities Blowup [34]

35

Before the general task can be completed, much like the model for XML Schema

Poisoning, a series of three tasks need to be completed first. The first task, ”Take

advantage of the entity replacement property of XML”, has the child task, ”Have

malicious URI for replacement”, which has to be completed before the parent. The

second task, ”Server that has an implementation that accepts entities containing URI

values”, also has the child task, ”Have server”. Lastly, the third task, ”Application

or service must rely on web service protocols”, has the child task ”Able to manipulate

the communications to the targeted application or service”.

36

4.4.3 XML Entity Linking

The reference number for this attack pattern in the CAPEC repository is 201 [31, 35].

The likelihood of this attack is high, and the severity is high. This attack can do

significant damage and is also very likely to occur, so additional care is needed to

ensure that the system is not vulnerable to it. Figure 7 shows that the model has

two goals ”Reveal sensitive information” and ”Allow the opening of arbitrary files

or connections”. For the attacker to achieve these goals the general task ”Perform

XML Entity Linking” has to be completed.

Figure 7: Attack pattern model for XML Entity Linking [35]

37

Before the general task can be completed, five tasks need to be completed. The

first task is to ”Explore”. This is a task that has two child tasks either of which

can be completed. The child tasks are ”Automated tool records all instances of

URLs and XML request processing” and ”Manually exploring site and analyzing

XML request processing”. ”Automated tool records all instances of URLs and XML

request processing” is an automatic task meaning a tool does the work for the

attacker with little input needed. ”Manually exploring site and analyzing XML

request processing” is a manual task meaning an attacker has to explore the target

by hand. The second and third tasks for the general task are ”Craft XML document

that contains an external entity reference” and ”Have server”. The fourth task is

”No checks on the nature of the reference”. This task has the child task ”Processor

may not validate documents with external entities” that needs to complete before

the parent can complete. The fifth task is ”Application or service must rely on web

service protocols” with the child task ”Able to manipulate the communications to

the targeted application or service” were analogous to the fourth task, the child task

needs to complete first.

38

4.4.4 XQuery Injection

The model depicted in Figure 8 is the attack pattern known as ”XQuery Injection”.

The reference number for this attack pattern in the CAPEC repository is 84 [31, 36].

This is the first type of injection-based attack pattern. The likelihood of this

attack is high, and the severity is very high. The model shows that the attack

pattern has three goals: ”Read and modify Data”, ”Gain Privileges”, and ”Execute

Unauthorized Commands”. For these goals to be reached, the general task ”Perform

XQuery Injection” has to be completed.

Figure 8: Attack pattern model for XQuery Injection [36]

39

A set of five tasks needs to be completed before the completion of the general

task is possible. The first task is ”Use malicious commands to traverse and execute

commands with XQuery routines” with a child task ”Improperly validate data that

is passed to XQuery routines” that has to be completed first. The second task is

”Inject commands to the local host, or execute queries to remote files and data

sources”. The third task is ”Experiment”. The third task has five child tasks in

an ”or” relationship, meaning at least one has to complete before the parent task

can complete. These child tasks are: ”Use web browser to inject input through text

fields or through HTTP GET parameters”, ”Use a web application debugging tool

to modify HTTP POST parameters, hidden fields, etc”, ”Use XML files to inject

input”, ”Use network-level packet injection tools to inject input” and ”Use reverse

engineering and modified client to inject input”. The fourth task is ”Explore to find

entry points”, which also has three child task in an ”or” relationship. These tasks

are: ”Use a spidering tool to follow and record all links and analyze sites”, ”Use a

proxy tool to record all user input during a manual traversal of the sites” and ”Use a

browser with plugins to manually explore the website and analyze its construction”.

The final task needed in order to complete the general task is ”XQL must execute

unvalidated data”.

40

4.4.5 XPath Injection

The model depicted in Figure 9 is a model of the ”XPath Injection” attack pattern.

The reference number for this attack pattern in the CAPEC repository is 83 [31, 37].

This is the second type of injection-based attack pattern. The likelihood of this

attack is high, and the severity is high as well, so special care is needed to ensure

that the system is not vulnerable to it. The model shows that the attack pattern

has two goals, that being ”Read Data” and ”Gain Privileges”, and for these goals

to be reached, the general task ”Perform XPath Injection” has to be completed.

Figure 9: Attack pattern model for XPath Injection [37]

41

A set of six tasks needs to be completed before the completion of the general task

is possible. The first task is ”Craft special input consisting of XPath expressions to

inject the XML database”. The second is ”Bypass the application completely with

XPath”. The third is ”Not properly sanitized input used as part of dynamic XPath

expressions”. The fourth task is ”Explore”, and this task has four child tasks. At

least one of them must be completed because these tasks have an ”or” relationship.

These tasks are: ”Use an automated tool to record all instances of user-controllable

XPath input”, ”Use a browser to manually explore the website and analyze how

the application processes inputs”, ”Use an automated tool automatically probe

the inputs for XPath weaknesses” and ”Manually probe the inputs using special

characters can cause XPath-related errors”. The fifth task is ”Support use of XPath

queries to retrieve information stored in XML”. The last task needed for the general

task is ”User-controllable input not properly sanitized before being used as part of

XPath queries”.

42

4.4.6 DTD Injection

The model depicted in Figure 10 is the attack pattern known as Document Type

Definition (DTD) Injection. The reference number for this attack pattern in the

CAPEC repository is 228 [31, 38]. This is the third type of injection-based attack

pattern. The likelihood of this attack is high, and the severity is medium, so care is

needed to ensure that the system is not vulnerable to it. The model shows that the

attack pattern has two goals: ”Negative technical impact” and ”Consume a large

amount of resources”.

Figure 10: Attack pattern model for DTD Injection [38]

43

The general task can be seen in Figure 10 as the task ”Perform DTD Injection”.

A set of four tasks needs to be completed before the completion of the general task

is possible. The first task is ”Inject malicious content into an application’s DTD”.

The second is ”XML parsers that process the DTDs”. The third task is ”Explore”,

which has four child tasks where either of them must be completed before the parent

task can complete. These four child tasks are: ”Use an automated tool to record all

instances of URLs to process XML”, ”Use a browser to manually explore the site

and analyze how the site processes XML”, ”Examine any available documentation

for the application that discusses expected XML input” and ”Confirm that without

DTD the site fails which likely indicates use of DTD”. The fourth child task has

another child task that has to complete first called ”Use the application using XML

input with and without a DTD”. The last task is called ”Must be running an

XML based application that leverages DTDs”. Once these tasks are completed, the

general task can proceed.

44

4.4.7 XML Attribute Blowup

This model is called XML Attribute Blowup. The reference number for this attack

pattern in the CAPEC repository is 229 [31, 39]. This attack pattern has the

likelihood of occurring high and the severity at high. Since the likelihood of this

attack pattern is high and even more critical, the severity is also high, special

attention must be given to secure the system against it. This is the only model

among the eleven that has four possible goals. The possible goals are: ”Consume

a large amount of resources”, ”Read Data”, ”Execute Unauthorized Commands”,

and ”Gain Privileges”.

Figure 11: Attack pattern model for XML Attribute Blowup [39]

45

The model in Figure 11 depicts the attack pattern. The goals can be achieved

by performing the general task ”Perform XML Attribute Blowup”. A set of three

tasks needs to be completed before the completion of the general task is possible.

The first is ”Craft XML document with many attributes in the same XML node”.

This task also has a child task that must be completed first called ”XML parser

manages data in an inefficient manner”. The second task is ”Explore” and this task

has two child tasks: ”Use an automated tool to record all instances of URLs to

process XML” and ”Use a browser to manually explore the website and analyze how

the site processes XML” where either of them can be completed. The last task is

”The server accepts XML input and is using a parser with a runtime longer than

O(n)”. Each of the goals has its separate function or method which the attacker

uses in the context layer.

46

4.4.8 XML Quadratic Expansion

This attack pattern is not very detailed as opposed to the other models. The reason

for this is that this is a very new attack pattern based on the CAPEC reference

number. The reference number for this attack pattern in the CAPEC repository is

491 [31, 40]. The CAPEC repository states that this attack pattern has a medium

likelihood of occurring, and the severity is high. Based on the reference number, the

chance that this model will change in the future is almost assured as new information

about the attack pattern becomes known. Figure 12 shows the present state.

Figure 12: Attack pattern model for XML Quadratic Expansion [40]

Goals for this model are: ”Denial of Service” and ”Excessive memory allocation”.

The attacker achieves this trough the task ”Perform XML Quadratic Expansion”.

Before this task can be completed, the tasks ”Exploit substitution entities and inline

DTDs XML properties” and ”Requires a server that accepts XML data and parses

the data” need to be completed.

47

4.4.9 XML Entity Expansion

The reference number for this attack pattern in the CAPEC repository is 197 [31, 41].

This attack pattern has the likelihood at high, and the severity is medium. The

likelihood of this attack is high, so attention is needed in securing the system.

Figure 13: Attack pattern model for XML Entity Expansion [41]

This model features the task ”Explore”, as well as ”Target must receive XML

input”. These tasks have child tasks that are in a logical ”or” relationship therefore

only one of the two has to be fulfilled in order for the parent task to be executable.

The attack pattern is straight forward and has two goals: ”Unreliable Execution”

and ”Unnecessary resource consumption”.

48

To succeed in the attack and achieve the goals, the attacker must perform the task

”Perform XML Entity Expansion”. For this task to be executable, the child tasks

”Create excessive demands on a processor’s CPU and memory”, ”Explore”, and

”Target must receive XML input” must first be completed. For ”Create excessive

demands on a processor’s CPU and memory” to complete, the attacker first has to

complete ”Craft an XML document that uses nested entity expansion”, which has

the parent task ”Submit the XML document to produce an excessively large output

XML”. The task ”Explore” has the child tasks ”Use an automated tool to record

all instances of URLs to process XML” and ”Use a browser to manually explore

the website and analyze how the site processes XML” where either of them can be

completed. The task ”Target must receive XML input” also has two child tasks,

”Fail to provide an upper limit for entity expansion” and ”Provide a limit that is

so large that it does not preclude significant resource consumption”, where either of

them can also be completed for the parent task to complete.

49

4.4.10 XML Ping of the Death

The reference number for this attack pattern in the CAPEC repository is 147 [31, 42].

This attack pattern has the likelihood of low and the severity at medium. The model

itself is similar to other models since it features the task ”Explore”. As before, this

task has child tasks that are in a logical ”or” relationship. Either of the two has

to be completed in order for the parent task to be executable. Aside from this, the

model is straight forward and has two goals: ”Denial of Service” and ”Unnecessary

resource consumption”.

Figure 14: Attack pattern model for XML Ping of the Death [42]

50

To achieve these goals, the attacker has to perform the general task ”Perform

XML Ping of the Death”. Before this, the attacker has to perform the child tasks:

”Initiate a resource depletion attack by using numerous small XML messages”,

”Explore”, and ”The target must receive and process XML transactions”. To

perform the task ”Initiate a resource depletion attack by using numerous small XML

messages”, the attacker first has to have completed the child task ”Craft small XML

that uses up extra processing power” and verified that the crafted XML does use

up extra CPU time. As explained in other models, the task ”Explore” has the child

tasks ”Use an automated tool to record all instances of URLs to process XML” and

”Use a browser to manually explore the website and analyze how the site processes

XML”. Either of these can be completed, and they can be run in tandem as one is

a manual task, and the other is an automated one.

51

4.5 Model Extension

The above attack patterns are specific attacks that are connected to XML attacks.

We obtained the needed information from the CAPEC attack pattern repository

[31] and created the models described above using that information. Other attack

patterns can also be modeled and included in the database used by our prototype

application in the same fashion as the eleven we modeled. In order to extend the

functionality of the prototype, a model for each attack pattern that is to be added

needs to be created so that the tasks, goals, and methods are easily added to the

XML database file. When modeling the solution of the attack pattern, we first

need to create a main general task to summarize the overall attack that has the

attacker’s anti-goals in mind. Next, we need to add tasks to the model that help

enable or support the main general task. These tasks are required to complete first

in order for the main general tasks to be accomplished. These supporting tasks are

then supported by other additional tasks that enable the task execution, creating

a hierarchy of tasks. As explained in chapter 4, not all tasks must be executed for

the connected task to work. In some models such as the ”XML Routing Detour

Attacks” [33] depict above, some tasks have two or more connections to the parent

task. In these cases, this can be understood as a logical ”or” relationship, so either

of the ”Explore” child tasks could cause the parent task to be executable.

In case a model needs to be changed, e.g., to reflect an update in the CAPEC

repository [31], the changes should also be made in the XML database. Once the

changes or additions have been made, it is advised that the XML database file be

validated with the included RelaxNG XML schema to check if it is well-formed and

correct.

52

5 Prototype Implementation and Results

This chapter of the thesis is devoted to the prototype. Here we will showcase

relevant excerpts of code, explain the intended usage of the prototype application,

and provide our reasoning for the usage of certain functions during development.

We will also discuss the problems we encountered during development. Parts of the

code will also contain comments explaining their function. Everything written here

can also be found in the Jupyter Notebook document that contains the prototype

for this thesis. This prototype was created to prove that a forecasting system based

on data from the CAPEC repository can be built. The modeling method used for

modeling the attacks was devised by Li et al. [10, 11, 12, 13, 14] and is called

the three-layer modeling framework. This framework was also used to model the

eleven models described in chapter 4. The information gained from those models

was then stored in a local database file for attack patterns and is used in this

prototype. The information needed for each model is as follows: the name of the

attack pattern, the likelihood of the attack happening, the severity of the damage

done, the CAPEC or another source, the problem (including the attacker’s goals),

the context (including the attacker’s functions), and lastly the solution (including

the attacker’s tasks needed for a successful attack). The problem, context, and

solution each must at least have one of goal, function, and task element respectively,

but usually, have more than one. The Jupyter Notebook document summary is as

follows:

1. Variable Initialization and Environment Setup

2. Core Functions

3. Prototype Main Body

53

5.1 Variable Initialization and Environment Setup

Below are the libraries and the variables needed for the normal functioning of the

prototype. Before running this code block, the user has to make sure that an XML

file called ”AP library” is located in the same folder as this Jupyter Notebook

document. Along with this file, there should be a sub-folder called ”img” where

every model image will be placed upon creation.

Figure 15: Jupyter Notebook variables and environment

Assuming the database and img sub-folder are present, running the next block

of code should set up the environment needed to run the other code blocks.

5.2 Core Functions

This chapter features the core functions that make up the prototype. Each code

block features a small description of the implemented function, as well as comments

within the code itself.

54

The code block shown in Figure 16 features the function for finding similarly named

attack patterns. This is a quality of life function that is used in the ”Relevant

information for an attack pattern” and ”Display image of a model for an attack

pattern” functions so that the user does not need to write the exact full name of

attack pattern. In the case of more than one attack pattern match to the given

input, the attack patterns are listed, and the user is asked for additional input. The

user can also choose an attack pattern that isn’t in the provided list. In case no

attack pattern is found, the function returns False.

Figure 16: Jupyter Notebook find function

The code block shown in Figure 17 features the function for the forecasting of

attack patterns. This function generates a dictionary consisting of key-value pairs

where the key is the name of the matched attack pattern, and the value is the

number occurrences of that attack pattern in the detection list. This dictionary is

then displayed to the user.

55

Figure 17: Jupyter Notebook forecast initialisation function

The forecasting is first done by XPath query matching answers to tasks in the

XML database (Figure 18). Once a query is made for a task, all of the results are

aggregated in a list. Once the list is completed, every attack pattern is counted and

the attack pattern with the highest number of counts is the one the user is looking

for, or rather the one that has the highest probability of having occurred.

Figure 18: Jupyter Notebook forecast XPath function

A list is used because there is no native implementation of XPath that supports

logical operators ”and” and ”or” and thus a workaround needed to be created.

56

Figure 19: Jupyter Notebook forecast function

Figure 19 shows the rest of the function. There are two possible cases here. The

first case is that there can only be one attack, so the function returns that single

possible attack pattern. The second case is that there is more than one possible

attack. A list of possible attacks is converted to a dictionary through the Counter

function mentioned above. As mentioned before, this dictionary is a sorted array of

key-value pairs where the key is the name of the possible attack pattern, and the

value is the number of occurrences in the list. The function will ask the user if he

wishes to add more tasks to try to refine the forecasting even more. In case the

user wishes to refine the forecasting, the function starts from the beginning with

the additional tasks. In case the user does not wish to add more tasks, the function

displays the dictionary result.

There is also an automatic version of the forecasting function above. This function,

just like the one above, generates a dictionary consisting of key-value pairs where

the key is the name of the matched attack pattern, and the value is the number

57

occurrences of that attack pattern in the detection list. This dictionary is then

displayed to the user. The forecasting is done by XPath query matching answers to

tasks in the XML database. The tasks are gathered from a windows log file that is

exported into an XML format. Once a query is made for a task, all of the results are

aggregated in a list. Once the list is completed, every attack pattern is counted, and

the attack pattern with the highest number of counts is the one the user is looking

for, or rather the one that has the highest probability of having occurred. A list is

used because natively, there is no implementation support of XPath that supports

logical operators ”and” and ”or” and thus a workaround needed to be created.

The code block shown in Figure 20 features the function that retrieves relevant

information needed for a specific attack pattern. This function is meant for use

after the above forecasting system predicts which attack pattern is probably the

attacker’s aim. In order for this function to work, a detailed description of the

attack pattern needs to be present in the XML database.

Figure 20: Jupyter Notebook function for displaying the relevant information

58

This function also includes error handling, as shown in Figure 21 This is done

so that in case the database is not included, the Jupyter Notebook container does

not crashes.

Figure 21: Jupyter Notebook function for relevant information error handling

The code block shown in Figure 22 features the function for getting the relevant

image of the model for a specific attack pattern. The images are located in a

sub-folder that must be at the same location as this Jupyter Notebook container.

This function is used as a quality of life feature because the XML database does not

include the hierarchy of the exact attack pattern procedure.

Figure 22: Jupyter Notebook function for displaying model image

This function also includes error handling, as shown in Figure 21. This function

opens the operating systems default image viewer and displays the selected model.

59

As stated in this chapter, functions for displaying model images and displaying

relevant information both have the function ”find” integrated as a small quality of

life improvement.

5.3 Prototype Main Body

The Code block in Figure 23 depicts the main body of the prototype.

Figure 23: Jupyter Notebook prototype core functions

Once run, the main menu of the prototype will greet the user. It will ask for an

input on what options the user would like to use. Once an option is selected, it will

describe what it does in detail, as well as what is expected from the user. After the

main body is exited, the author, date, and mentor are displayed.

5.4 Prototype Results

After a user has selected a function from the main menu of the prototype, a detailed

explanation of that function will be given. The functions require input, and after the

user gives said input, the prototype will run the function. In our case, we have chosen

the function for automatic attack pattern forecasting from a Windows Log file. After

we provide the prototype with the required log file name, we get a dictionary as an

output. The dictionary consists of a set of possible attack patterns that may have

60

occurred and are depicted in Figure 24. The higher the number in the dictionary

key-value pair, the higher the likelihood that that specific attack pattern occurred,

so for our example, it would most likely be ”XML Routing Detour Attacks”. After

every function, the prototype gives us the option of going back to the main menu.

In our example, we would like to know more about said attack pattern, so once we

know which attack pattern is responsible, we go back to the main menu and look

for the function for relevant information.

Figure 24: Jupyter Notebook forecasting function results

Back in the main menu, we go to the relevant information function, and as the

input, we give the name of the found attack pattern. We do not need to write the

full name of the attack pattern since there is a quality of life function to help us

find the appropriate attack pattern with only part of the name. For the output, the

function gives the included relevant information from the XML database file.

61

Figure 25: Jupyter Notebook function for relevant information results

In Figure 25 we can see the relevant information about the ”XML Routing Detour

Attacks” attack pattern: a reference number to the CAPEC repository [31], the

likelihood of the attack, the severity of the damage the attack could cause, the

goals, Functions and lastly the tasks that the attack pattern model.

The last option we have is to display an image of the model through the appropriate

function, and this would display the model seen in Figure 5. These results match

the results we expected based on our modifications to the test.xml log file.

62

6 Conclusion

The end goal of this thesis was to develop a tool-supported framework for forecasting

the development of intrusions based on existing libraries of attack patterns. The

underlying assumption of this thesis is that in the early stages of an attack, attack

pattern matching will lead to a more significant number of potential attacks and that

this number of possible attacks will significantly decrease in advanced stages of an

attack. This can easily be pictured as a pyramid where the base of the pyramid are

early stages, and the higher we go, the more advanced the stages are. The framework

will, therefore, be more efficient with each stage of an attack. These stages can be

seen as tasks in the appropriate images of the attack pattern models, so as more

tasks are completed, the higher the likelihood that an attack pattern is forecast and

others are ruled out. The framework consists of the core intrusion analysis model

and the accompanying tool created in a Python Jupyter Notebook document. The

modeling approach used in the thesis follows slightly adapted UML standards, just

like the shown three-layer modeling framework by Li et al. [10, 11, 12, 13, 14]. All

eleven models were developed as part of this thesis and integrated into the proof of

concept prototype. The prototype has four core functionalities: a manual forecasting

function based on tasks and automatic forecasting function based on XML windows

logs, a function for displaying the image of an attack pattern model, and a function

for showing the relevant information about an attack pattern. This thesis has proven

that a prototype based on anti-goals can be created and could be used in the future

to further understanding the attacker’s point of view.

Additionally, the created prototype was made to be modular, so that extension

of the framework and integration of all 516 attack patterns listed in the CAPEC

repository is possible and feasible. If more attack patterns are added to the CAPEC

repository in the future, they could also be added to our prototype. This would be

a task for the future as each model has to be created, and the XML database file

63

has to be extended. We have provided the tool used in this thesis as well as the

instructions on how to use it, which could help in future extensions. This thesis

should help analyze and build more secure systems and make the use of XML in

daily business more reliable and safe. The aim is to prevent even a slight amount of

damage or reduce the resource cost and scope of a forensic analysis after an attack

was carried out. This will lead to savings over a long period. As Sun Tzu [20] wrote,

we have to know our enemy as well as ourselves so that we can win in every battle.

64

Glossary

anomaly detection A process aimed at discovering patterns in data sets that

deviate from the general behavior or the expected behavior of the majority

of the data. 22

anti-goal A goal from the perspective of an attacker. 9–13, 17, 26, 28, 29, 52, 63

attack pattern Is a type of pattern that is created from an attacker’s viewpoint,

i.e. what his goals are and how he gets to those goals. 2, 3, 6–13, 16, 20,

23–33, 35, 37, 39, 41, 43, 45–48, 50, 52, 53, 55, 57, 58, 60–63

attack vector A possible vulnerability that enables an attacker to compromise the

security of a system. 2, 8, 12, 13, 20, 25

class diagram is the UML diagram that describes the structure of a system by

showing the system’s classes, their attributes, methods, and the relationships

among objects. 10–12

dictionary A special Python datatype that consists of a key and value pair in each

section. 55, 57, 58, 60

encoding The way in which symbols are mapped onto bytes, e.g. in the rendering

of a particular font, or in the mapping from keyboard input into visual text.

27

float Data type for floating-point values, i. e. number values that have potential

decimal places. 27

Jupyter Notebook A web browser based framework that enables the user to have

a mix of Python code blocks as well as normal markdown text for easy reading.

2, 6, 8, 13, 30, 53–63

65

Python A programming language commonly used for data analysis. 2, 7, 8, 13, 25,

30, 63

regular expression A set of rules that define what the input should look like,

regularly used in passwords. 16, 17

repository A large accumulation of data stored in a single place. 7, 8, 14, 20, 23,

26, 28–30, 33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 53, 62, 63

sequence diagram is the UML diagram that shows object interactions arranged

in time sequence. 10–12

Socio-Technical System Is a system created from humanware, hardware, software

and orgware of a company. 2

string Data type for a sequence of characters or symbols. 21, 27

three-layer modeling framework Is a framework that is composed by Li et al.

and which models and analyzes requirements of STS at the business layer,

software application layer, and physical infrastructure layer, respectively. 2, 3,

30, 53, 63

XML schema A set of rules that are used to validate that the input XML is well

formed and fits those rules. 6, 18–20, 25, 26, 28–30, 52

XPath Is a query language that is used to retrieve information from an XML. 6,

41, 56, 58

66

Acronyms

ADIFA Attribute Density Function Approximation. 22

ASCII American Standard Code for Information Interchange. 27

ASP Answer Set Programming. 14

CAPEC Common Attack Pattern Enumeration and Classification. 14, 23, 25–30,

33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 53, 62, 63

CDATA Character Data. 21

CPU Central Processing Unit. 51

DDoS Distributed Denial of Service. 21

DOM Document Object Model. 21

DoS Denial of Service. 2, 11, 19, 21, 26, 28, 47, 50

DTD Document Type Definition. 43, 47

HTTPS Hypertext Transfer Protocol Secure. 20

MUSER Multi-layer Security Requirements analysis tool. 13

RNG RelaxNG. 18, 30, 32, 52

SQL Structured Query Language. 21

STS Socio-Technical System. 2, 8, 10

UML Unified Modeling Language. 8, 10, 11, 63

URL Uniform Resource Locator. 27

67

VoIP Voice over Internet Protocol. 4, 10, 11

W3C World Wide Web Consortium. 18

XML Extensible Markup Language. 1, 2, 6, 9, 13, 14, 18–22, 25–28, 30–33, 35, 37,

45, 47, 48, 50–52, 54, 58, 61, 63, 64

XSD XML Schema Definition. 18, 20–22

68

References

[1] Alexander, C. (1977). A pattern language: towns, buildings, construction.

Oxford university press.

[2] Ali, R., Dalpiaz, F., & Giorgini, P. (2010). A goal-based framework for contextual

requirements modeling and analysis. Requirements Engineering, 15(4), 439-458.

[3] Asnar, Y., Li, T., Massacci, F., & Paci, F. (2011, September). Computer aided

threat identification. In 2011 IEEE 13th Conference on Commerce and Enterprise

Computing (pp. 145-152). IEEE.

[4] Carlstedt, J., Bisbey, I. I., & Popek, G. (1975). Pattern-Directed Protection

Valuation (No. ISI/RR-75-31). UNIVERSITY OF SOUTHERN CALIFORNIA

MARINA DEL REY INFORMATION SCIENCES INST.

[5] Eastlake 3rd, D., Reagle, J., & Solo, D. (2001). XML-signature syntax and

processing (No. RFC 3075).

[6] Fernandez, E., Pelaez, J., & Larrondo-Petrie, M. (2007, January). Attack

patterns: A new forensic and design tool. In IFIP International Conference on

Digital Forensics (pp. 345-357). Springer, New York, NY.

[7] Gegick, M., & Williams, L. (2005, May). Matching attack patterns to security

vulnerabilities in software-intensive system designs. In ACM SIGSOFT Software

Engineering Notes (Vol. 30, No. 4, pp. 1-7). ACM.

[8] Imamura, T., Dillaway, B., Simon, E., Kelvin, Y., Nyström, M., Eastlake, D., ...

& Roessler, T. (2013). XML encryption syntax and processing version 1.1. W3C,

Recommendation.

[9] Kent, K., Chevalier, S., Grance, T., & Dang, H. (2006). Guide to integrating

forensic techniques into incident response. NIST Special Publication, 10(14),

800-86.

69

[10] Li, T., Paja, E., Mylopoulos, J., Horkoff, J., & Beckers, K. (2015, August).

Holistic security requirements analysis: An attacker’s perspective. In 2015 IEEE

23rd International Requirements Engineering Conference (RE) (pp. 282-283).

IEEE.

[11] Li, T., Horkoff, J., Beckers, K., Paja, E., & Mylopoulos, J. (2015). A holistic

approach to security attack modeling and analysis. In Proceedings of the Eighth

International i* Workshop (pp. 49-54).

[12] Li, T., Paja, E., Mylopoulos, J., Horkoff, J., & Beckers, K. (2016, June).

Security attack analysis using attack patterns. In 2016 IEEE Tenth International

Conference on Research Challenges in Information Science (RCIS) (pp. 1-13).

IEEE.

[13] Li, T., & Horkoff, J. (2014, June). Dealing with security requirements for

socio-technical systems: A holistic approach. In International Conference on

Advanced Information Systems Engineering (pp. 285-300). Springer, Cham.

[14] Li, T., Horkoff, J., Paja, E., Beckers, K., & Mylopoulos, J. (2015, November).

Analyzing attack strategies through anti-goal refinement. In IFIP Working

Conference on The Practice of Enterprise Modeling (pp. 75-90). Springer, Cham.

[15] Li, T., Horkoff, J., & Mylopoulos, J. (2014, November). Integrating security

patterns with security requirements analysis using contextual goal models. In

IFIP Working Conference on The Practice of Enterprise Modeling (pp. 208-223).

Springer, Berlin, Heidelberg.

[16] Li, T., Horkoff, J., & Mylopoulos, J. (2014). A Prototype Tool for Modeling

and Analyzing Security Requirements from A Holistic Viewpoint. In CAiSE

(Forum/Doctoral Consortium) (pp. 185-192).

[17] McDermott, J. P. (2000, September). Attack net penetration testing. In NSPW

(pp. 15-21).

70

[18] Menahem, E., Schclar, A., Rokach, L., & Elovici, Y. (2012). Securing your

transactions: Detecting anomalous patterns in xml documents. arXiv preprint

arXiv: 1209.1797.

[19] Saini, V., Duan, Q., & Paruchuri, V. (2008). Threat modeling using attack

trees. Journal of Computing Sciences in Colleges, 23(4), 124-131.

[20] Tzu, S. (2008). The art of war. In Strategic Studies (pp. 63-91). Routledge.

71

Web References

[21] Draw.io, https://about.draw.io/about-us/, last available September 2019.

[22] Liquid Technologies (2019), Online relaxNG Validator,

https://www.liquid-technologies.com/online-relaxng-validator, last

available September 2019.

[23] Amit Sethi and Sean Barnum, Department of Homeland

Security (2013). Introduction to Attack Patterns

https://www.us-cert.gov/bsi/articles/knowledge/attack-patterns

/introduction-to-attack-patterns, last available September 2019.

[24] Amit Sethi and Sean Barnum, Department

of Homeland Security (2013). Attack Patterns,

https://www.us-cert.gov/bsi/articles/knowledge/attack-patterns,

last available September 2019.

[25] Boyer, J. (2001). Canonical XML version 1.0 (No. RFC 3076),

https://tools.ietf.org/html/rfc3076, last available September 2019.

[26] Dominique Righetto (2016). XML Security Cheat Sheet,

https://github.com/OWASP/CheatSheetSeries/blob/master/

cheatsheets/XMLSecurityCheatSheet.md, lastavailableSeptember2019.

[27] Fernando Arnaboldi IOActive (2016). Assessing and Exploiting XML Schema’s

Vulnerabilities, https://ioactive.com/wp-content/uploads/2018/

05/Arnaboldi-XML-Schema-Vulnerabilities-1.pdf, last available September

2019.

[28] John Franco, Dept. Electrical Engineering and Computer

Science, Cyber Defense Overview, Attack Patterns,

http://gauss.ececs.uc.edu/Courses/c6055/lectures/PDF/

attackpatterns.pdf, last available September 2019.

72

[29] Quin L. & XML Core Working Group (2016) Extensible Markup Language

(XML) Standard, https://www.w3.org/TR/2009/REC-xmlbase-20090128/,

last available September 2019.

[30] RELAX NG Technical Committee, OASIS (2014) https://relaxng.org/, last

available September 2019.

[31] The MITRE Corporation (2018). Common Attack Pattern

Enumeration and Classification dictionary and classification,

https://capec.mitre.org/data/definitions/3000.html, last available

September 2019.

[32] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XML Schema Poisoning,

https://capec.mitre.org/data/definitions/146.html, last available

September 2019.

[33] The MITRE Corporation (2018). Common Attack Pattern Enumeration and

Classification dictionary and classification, XML Routing Detour Attacks,

https://capec.mitre.org/data/definitions/219.html, last available

September 2019.

[34] The MITRE Corporation (2018). Common Attack Pattern Enumeration and

Classification dictionary and classification, XML External Entities Blowup,

https://capec.mitre.org/data/definitions/221.html, last available

September 2019.

[35] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XML Entity Linking,

https://capec.mitre.org/data/definitions/201.html, last available

September 2019.

73

[36] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XQuery Injection,

https://capec.mitre.org/data/definitions/84.html, last available

September 2019.

[37] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XPath Injection,

https://capec.mitre.org/data/definitions/83.html, last available

September 2019.

[38] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, DTD Injection,

https://capec.mitre.org/data/definitions/228.html, last available

September 2019.

[39] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XML Attribute Blowup,

https://capec.mitre.org/data/definitions/491.html, last available

September 2019.

[40] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XML Quadratic Expansion,

https://capec.mitre.org/data/definitions/229.html, last available

September 2019.

[41] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XML Entity Expansion,

https://capec.mitre.org/data/definitions/197.html, last available

September 2019.

[42] The MITRE Corporation (2018). Common Attack Pattern Enumeration

and Classification dictionary and classification, XML Ping of the Death,

74

https://capec.mitre.org/data/definitions/147.html, last available

September 2019.

75

