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Chapter 1

Introduction

This diploma thesis deals with the comparison of the analytical and numerical solutions of
the ”Sod Shock Tube Problem”, which is a test for the accuracy of computational fluid codes.
In physics, fluid dynamics describes the flow of fluids, such as liquids and gases. It is said
that a computational code works well, if it can resolve shocks and shock waves at different
scales and magnitudes.
Shocks occur on many occasions in nature. Ben-Dor et al. (2000) states that the most natu-
ral shock wave is the sound produced by a lightning, i.e. the thunder, or sound made by
a falling meteor that breaches the sound barrier. Another example for the generation of a
natural shock wave is a volcanic explosion. A shock wave artificially produced by man is for
example the cracking of a whip and an explosion of gunpowder (Ben-Dor et al., 2000), or by
a strong electrical discharge (Zel’dovich and Raizer, 1966).
Despite the different origins of shock waves, either natural or man made, there have been
several different definitions and descriptions of a shock wave made over time!
Ben-Dor et al. (2000) give a historical overview to shocks and their nomenclature. The au-
thors state that in the 19th century Riemann used the term shock compression and compression
wave for his illustration of the jump-like steepening of a wave front. Toepler was the first to
use the term shock wave in the literature. Rankine used the term abrupte disturbance, while
Hugoniot used the term discontinuity. Mach, on the other hand, used also the term shock
wave, but also Riemann wave, bang wave and explosion wave. One can see that some expres-
sions are still used nowadays, e.g. shock wave and discontinuity. Those two terms also appear
in this thesis later on. The above selection of facts and persons is made by the author due to
their relevance to the literature and to this thesis.
A more modern description by Ben-Dor et al. (2000) tries to define a shock wave from a
physical point of view:

”Shock waves are mechanical waves of finite amplitudes and arise when matter is subjected to a rapid
compression.”
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Silber et al. (2018), on the other hand, state that

”any object moving at velocities higher than the local speed of sound of the medium creates a
disturbance which is called a shock wave.”,

whereas Lequeux (2010) defines a shock

”as a result of violent increase of pressure, which produces supersonic motions.”

Furthermore, Zel’dovich and Raizer (1966) write

”From a mathematical point of view, a discontinuity can be regarded as the limiting case of very
large but finite gradients in the flow variables across a layer whose thickness tends to zero.”

Lequeux (2010) moreover distinguishes between a discontinuity where a flow of matter is
present, called a shock wave, and a discontinuity without any flow of matter, called a contact
discontinuity.
Despite this variety of definitions, most of them involve velocity or pressure and the follow-
ing compression of a fluid.
Therefore, a shock wave is typically generated when the velocity of a fluid, e.g. a gas or
liquid, is faster than the local speed of sound. This can be quantified by the Mach number,
which is the ratio of the fluid velocity and the local sound speed. A Mach number lower than
1 results in a sub-sonic flow, whereas a Mach number larger than 1 results in a super-sonic
flow, with the occurrence of a shock wave.
Besides the different ways to define or name a shock wave, there are also different types
of shock waves, depending on their environment. Lequeux (2010) distinguishes between
shocks with or without a magnetic field and a multi-fluid shock. Shocks without a magnetic
field can be described with the jump-shock or Rankine-Hugoniot conditions. If a magnetic
field is present, the description of a shock becomes more complicated due to appearance of
the Alfvén waves. A multi-fluid shock consists of a neutral or molecular component and
a partly ionised gas component, which interacts with magnetic fields. If the ion density is
very low, collisions are rare between these two components, and they can be considered as
dynamically distinct components.
For simplicity, only ”normal” shocks without a magnetic field and a single fluid are consid-
ered in this thesis.

Chapter 2 describes the basic mathematical principles which describe the motion of a fluid.
This will be done in two different ways.
Firstly, for the continuous description of the fluids motion, the reader will get an overview of
what kind of differential equations will be used. There the author refers to Ferziger and Peric
(2002); Trangenstein (2009); Durran (2010) and Rieutord (2015). Further on, for the derivation
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CHAPTER 1. INTRODUCTION

of the Euler equations from the basic physical principles, the author refers to Christodoulou
and Miao (2012) and Rieutord (2015) for the conservation of mass, to Landau and Lifshitz
(1987) and Christodoulou and Miao (2012) for the conservation of momentum and to Toro
(2009) for the conservation of energy.
Secondly, for the discrete description of a fluids motion, for the use in numerical simulations,
the author refers to Ferziger and Peric (2002) and Durran (2010) for the description on the
discretisation and the use of the finite volume method. The description of the method by
Gudonov for solving the discretised equations, follows Sod (1978); Toro (2009) and Durran
(2010).
Also the author refers to Toro (2009) and Durran (2010) for the explanations on how to cal-
culate the time step in numerical codes.
As an independent part to this diploma thesis, the author has written a computational code
in Fortran90 to calculate the numerical solution of the underlying continuous problem. Im-
portant parts of this code will be included at the respective places within this thesis.

In chapter 3 the author will give an overview of occurrences of shocks on different scales of
spacial magnitudes, and discuss how to study shocks.
Beginning at the smallest scale, the author refers to Silber et al. (2018) for meteors. For the
application on stellar winds, the author refers to Raymond (2018), and on the interstellar
medium to Lequeux (2010); Zajacek et al. (2019). At the largest scale of galaxies, the author
will refer to Chung et al. (2009) and Yun et al. (2019).
For a brief explanation on how to study shocks now and then, the author will refer to
Zel’dovich and Raizer (1966); Sod (1978) and Ben-Dor et al. (2000).

In chapter 4 the actual ”Sod Shock Tube Problem” will be described, and the initial condi-
tions selected according to Sod (1978). Moreover, the derivation of the analytical solution to
this problem will be described. There the author refers mainly to Sod (1978) and Toro (2009).

In chapter 5 the results of the numerical solutions will be explained and compared graphi-
cally to the analytical solution, and discussed in chapter 6.
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Chapter 2

Fundamental Principles

In this chapter the reader will get a mathematical background to hydrodynamics, as well
as to its continuous and discrete (numerical) description. Furthermore, it will be explained
how to build a hydrodynamical grid code in the discrete setting using the Euler equations
and some examples how to implement the required equations with FORTRAN (F90).

2.1 Used Variables

Table 2.1 provides the reader with a list of frequently used variables within this diploma the-
sis. The units of these variables are given in the cgs-system, as widely used in astrophysics.

Table 2.1: Descriptions of used variables and their units.

Variable Unit Description

x cm position
t s time
ρ g cm−3 mass density
p dyne cm−2 pressure
u cm s−1 velocity
e erg g−1 specific internal energy
E erg g−1 specific total energy
h erg g−1 specific enthalpy
γ − adiabatic index
a cm s−1 sound speed
V cm3 volume
S cm2 surface

continued on the next page
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Table 2.1: continued.

Variable Unit Description

F N force
v cm s−1 velocity vector
p dyne cm−2 pressure vector
~p g cm s−1 momentum vector

2.2 Continuous Description

For the continuous description the Euler method is used, which uses the Euler equations
for compressible, inviscid fluids, which correspond to the Navier-Stokes equations with zero
viscosity and without heat conduction (Steyrleithner, 2015). The Euler equations are a sys-
tem of first order nonlinear hyperbolic partial differential equations.
Ferziger and Peric (2002) state that most methods to solve the Euler equations are of a hy-
perbolic form and Trangenstein (2009) says that hyperbolic equations are most commonly
associated with advection.
A first-order quasi-linear hyperbolic equation is given by (Durran, 2010)

A(x, t, u)
∂u
∂t

+ B(x, t, u)
∂u
∂x

= C(x, t, u) , x ∈ R, t > 0 , (2.1)

where A, B, C are real-valued functions, of space x, time t and velocity u(x, t), and have
continuous first derivatives. Durran (2010) further states that ”the evolution of the solution
is particularly simple when C = 0 and B/A = c” is some constant, where Eq. 2.1 reduces to,
also given by Trangenstein (2009),

∂u
∂t

+ c
∂u
∂x

= 0 , x ∈ R, t > 0 . (2.2)

The mathematical description of the state of a moving fluid is determined by the three di-
mensional velocity v = v(x, t) = (u, v, w) and two thermodynamical quantities, such as the
pressure p = p(x, t) and the mass density ρ = ρ(x, t), where x is the three dimensional posi-
tion x = (x, y, z) (Christodoulou and Miao, 2012).
The Euler equations are derived (subsections 2.2.1, 2.2.2 and 2.2.3) from the general princi-
ples of the conservation of mass, momentum and energy (Rieutord, 2015), and are given by
equation 2.9, 2.17 and 2.26, respectively.
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CHAPTER 2. FUNDAMENTAL PRINCIPLES

2.2.1 Mass Conservation

Considering a fixed volume V in R3, the mass within this volume can be described as

M(t) =
∫
V

ρ(x, t) dV , t > 0 . (2.3)

The change of mass through a volume is given by the mass flux ρv crossing the volumes
surface S. Therefore,

dM(t)
dt

= −
∫
S

ρ(x, t)v dS , (2.4)

d
dt

∫
V

ρ(x, t) dV = −
∫
S

ρ(x, t)v dS, (2.5)

where the negative sign describes a mass flux out of the volume through its surface. By in-
terchanging the order of the differentiation and integration and applying the Gauss theorem
(Bartsch, 2007, page 555) which states∫

V

∇ · V dV =
∫
S

V dS , dS = n dS , (2.6)

where V is a vector and n is the normal vector to the surface. The right hand side of Eq. 2.5
transforms into a volume integral,

∫
V

∂ρ

∂t
dV = −

∫
V

∇ · (ρv) dV (2.7)

where ∇ · (ρv) is the divergence ∇ · v = ∂vx
∂x +

∂vy
∂y + ∂vz

∂z . Rearranging Eq. 2.7, one gets

∫
V

∂ρ

∂t
+∇ · (ρv) dV = 0. (2.8)

Equation 2.8 holds for any volume V, thus, the integrand in Eq. 2.8 must vanish (Rieutord,
2015; Christodoulou and Miao, 2012), leading to

∂ρ

∂t
+∇ · (ρv) = 0, x ∈ R3, t > 0. (2.9)

Equation 2.9 is also known as the continuity equation.
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2.2.2 Momentum Conservation

The conservation of momentum can be derived from the Newton’s law

d~p
dt

= F(x, t), (2.10)

where ~p = ρv(x, t) is the momentum and F the force (Christodoulou and Miao, 2012). The
total force acting on the volume V can be written as the surface integral of the pressure
(Landau and Lifshitz, 1987). The Eq. 2.10 reads then

d
dt

∫
V

ρv dV = −
∫
S

p dS. (2.11)

Transforming the right hand side of Eq. 2.11 into a volume integral, by applying Gauss’s
theorem (Eq. 2.6), and interchanging the order of the differentiation and integration, one
gets

∫
V

∂ρv
∂t

dV = −
∫
V

∇p dV, (2.12)

where ∇p is the pressure gradient ∇p = ( ∂p
∂x , ∂p

∂y , ∂p
∂z ). Analogously to the conservation of

mass, the volume integrand vanishes, resulting in

ρ
dv
dt

= −∇p , x ∈ R3, t > 0 . (2.13)

The equation of motion (Eq. 2.13) can be written now as the force −∇p equal to the product
of the acceleration dv

dt and the volume density ρ. Landau and Lifshitz (1987) state, that this
derivative does not describe the change of the fluid velocity at a fixed point in space but the
change of velocity of a moving particle within the fluid. Therefore, the change of velocity dv
can be written as

dv =
∂v
∂t

dt + (dr ·∇)v , (2.14)

where dv can be separated into the change of velocity at a fixed point in space during the
time dt and the difference between the velocities at two points that are the distance dr apart.
dr is the distance that a moving particle travelled during the time dt (Landau and Lifshitz,
1987). Equation 2.14 can be rewritten as

dv
dt

=
∂v
∂t

+ (v ·∇)v . (2.15)
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CHAPTER 2. FUNDAMENTAL PRINCIPLES

Equation 2.15 can be substituted into Eq. 2.13, resulting in

ρ
∂v
∂t

+ (v ·∇)v = −∇p , (2.16)

or by bringing the pressure gradient to the left side one gets the equation of momentum
conservation

ρ
∂v
∂t

+ (v ·∇)v +∇p = 0 , x ∈ R3, t > 0. (2.17)

2.2.3 Energy Conservation

The total energy within a given volume is given by

Etot(t) =
∫
V

E(x, t) dV , t > 0 , (2.18)

where E(x, t) is the energy within a volume element dV of the volume V. If one considers
the energy

ES(t) = −
∫
S

pv(x, t) dS , t > 0 , (2.19)

at the surface of a given volume, which corresponds to the work done by the pressure p
(Toro, 2009), one gets the energy flux ES through the volumes surface. The change of the
total energy Etot per unit time is given by the derivative

dE(t)
dt

=
∂E
∂t

+ v ·∇E , t > 0 , (2.20)

which arises from the total derivative, given for a scalar valued function φ(x, t), by

d
dt

φ(x, t) =
∂φ

∂t
+ v ·∇φ , (2.21)

where v is the fluid velocity. The left-hand side of Eq. 2.20 transforms in the integral form
into

dEtot(t)
dt

=
∫
V

∂E
∂t

dV +
∫
S

Ev dS , t > 0 . (2.22)
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According to the preservation of energy, the energy surface flux out of the volume in Eq. 2.19
must be equal to the change of the energy within the volume and the energy flux inwards.

ES = −
∫
S

pv dS =
∫
V

∂E
∂t

dV +
∫
S

Ev dS . (2.23)

Equation 2.23 can be rearranged to

∫
V

∂E
∂t

dV = −
∫
S

v(E + p) dS . (2.24)

By applying Gauss’s theorem (Eq. 2.6), Eq. 2.24 transforms into

∫
V

∂E
∂t

dV = −
∫
V

∇ · [v(E + p)] dV . (2.25)

Analogously to the conservation of mass and momentum, the integrand vanishes and by
rearranging one gets the equation of the conservation of energy

∂E
∂t

+∇ · [v(E + p)] = 0 , x ∈ R3, t > 0. (2.26)

2.2.4 Hydrodynamic Equations

For simplicity, in the rest of this thesis only the one dimensional case (1D) will be considered.
Therefore, the hydrodynamic Euler equations, given by Eq. 2.9, 2.17 and 2.26 can be written
as (Toro, 2009; Steyrleithner, 2015)

∂U
∂t

+
∂F(U)

∂x
= 0 , (2.27)

U =

 ρ

ρu
ρE

 , F(U) =

 ρu
ρu2 + p

u(ρE + p)

 , (2.28)

or, written out separately as

∂ρ

∂t
+

∂(ρu)
∂x

= 0 , (2.29)

∂(ρu)
∂t

+
∂

∂x
(ρu2 + p) = 0 , (2.30)

∂(ρE)
∂t

+
∂

∂x
[u(ρE + p)] = 0 , x ∈ R, t > 0 , (2.31)
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CHAPTER 2. FUNDAMENTAL PRINCIPLES

Figure 2.1: Illustration of the cell size ∆x of a computational domain on the interval [a, b].

with an additional initial condition

u(x, 0) = u0(x) , x ∈ R . (2.32)

2.3 Discrete Description: weak solution

To evaluate the Euler equations 2.9, 2.17 and 2.26 numerically, their continuous forms need
to be transferred into discrete counterparts, at a grid of equally spaced points on the intervals
[0, T] in time and [a, b] in space.

To calculate the physical states of a fluid such as the density ρ, the pressure p, the velocity u
and the total energy E, the computational domain in space [a, b] is divided into single cells
(Fig. 2.1). To get the size ∆x of a single cell, e.g. [xi−2, xi−1], the length of a computational
domain is divided by the number of cells ncell ,

∆x =
b− a
ncell

, (2.33)

where a is the left and b the right boundary. If one assumes a unity length, then b− a = 1.
The discretisation in time will be described later in subsection 2.3.3.
In fluid dynamics, many partial differential equations can be expressed as a system of con-
servation laws (Durran, 2010). To calculate the surface integrals of the conservation of mass,
momentum and energy exactly, one needs to know the integrand of the flux everywhere on
the surface. This information is not available, because only the spacial average of a state
variable is know at the centre of a computational cell. Therefore the cell-face values must be
approximated in terms of the central values (Ferziger and Peric, 2002). For these approxi-
mations, the finite volume method is used (Durran, 2010; Ferziger and Peric, 2002), where each
point of the computational grid is surrounded by a small volume.
The position of the centre of a computational cell is given by

xi = a + (2i− 1) ·
∆x
2

, i = 1, . . . , ncell , (2.34)
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whereas the position of the cell surfaces is given by xi+ 1
2
= xi +

∆x
2 with i = 1, . . . ncell − 1.

Durran (2010) says that ”if a function contains a discontinuity, it cannot be the solution to
a partial differential equation in conventual sense, because derivatives are not defined at the
discontinuity”. Durran (2010) continues that ”the solution is required to satisfy a family of
related integral equations”. According to Durran (2010), integrating the scalar form of the
conservation law (Eq. 2.27) over the intervals [xi, xi+1] and [t, t + ∆t], one obtains

xi+1∫
xi

U(x, t + ∆t)dx =

xi+1∫
xi

U(x, t)dx +

t+∆t∫
t

F (U(xi, t)) dt−
t+∆t∫
t

F (U(xi+1, t)) dt , (2.35)

where t is the current time and t + ∆t is advanced time (see subsection 2.3.3). ”An approxi-
mation to the scalar conservation law (Eq. 2.27) is in conservation form if” (Durran, 2010)

Un+1
i −Un

i
∆t

+
Fi+ 1

2
− Fi− 1

2

∆x
= 0 , (2.36)

where Fi± 1
2

are numerical approximations of the fluxes F(U(xi± 1
2
, t)).

By using the finite-volume method, Durran (2010) says, that if Un
i approximates the spacial

average of a state variable U over a grid cell xi, then the approximation at a time tn is given
by

Un
i ≈

1
∆x

x
i+ 1

2∫
x

i− 1
2

U(x, tn) dx , n ∈N . (2.37)

The flux Fi± 1
2

is the approximation of the time-averaged flux through the interface xi± 1
2

be-
tween cells with centres xi and xi±1, given by

Fi± 1
2
≈ 1

∆t

tn+1∫
tn

F
(
U(xi± 1

2
, t)
)

dt . (2.38)

Averaging the conservation law (Eq. 2.27) over an i-th cell and integrating over a single time
step, where tn+1 = t + ∆t, the integral form of Eq. 2.35 can then be written as

x
i+ 1

2∫
x

i− 1
2

U(x, tn+1) dx =

x
i+ 1

2∫
x

i− 1
2

U(x, tn) dx−

 tn+1∫
tn

F
(
U(xi+ 1

2
, t)
)

dt−
tn+1∫
tn

F
(
U(xi− 1

2
, t)
)

dt

 . (2.39)
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Figure 2.2: The flux vector Fi− 1
2

denotes to the flux through the cell interface xi− 1
2

between the cells
xi−1 and xi (red), and the flux vector Fi+ 1

2
denotes to the flux through the cell interface xi+ 1

2
between

the cells xi and xi+1 (blue).

By using the approximations 2.37 and 2.38, the above expression can be written as

Un+1
i ∆x = Un

i ∆x− ∆t
(

Fi+ 1
2
− Fi− 1

2

)
. (2.40)

By dividing Eq. 2.40 with the cell size ∆x, the scalar form of the conservation law (Eq. 2.27)
can be approximated by

Un+1
i = Un

i −
∆t
∆x

(
Fi+ 1

2
− Fi− 1

2

)
, (2.41)

i = 1, . . . , ncell ,

n ∈N0 .

2.3.1 Hydrodynamic Solver

To further on describe the discretisation of the Euler equations (2.29− 2.30) with the approx-
imation of Eq. 2.41, Gudonov’s first-order upwind method (Toro, 2009; Durran, 2010) is used.
In Eq. 2.41, Un

i is the state vector at the xi-th cell at time tn, Un+1
i is the state vector at the

new time tn+1. F is the flux vector, ∆t is the time step and ∆x the size of a computational cell.
The flux vector Fi− 1

2
denotes to the flux through the cell interface between the cells xi−1 and

xi, and the flux vector Fi+ 1
2

through the interface between the cells xi and xi+1 (see Fig. 2.2).
The value Un

i at time tn will then be updated to the new value Un+1
i at time tn+1.

For the data at the time tn one assumes that they are a pair of constant states separated by
a discontinuity, the cell interface (Toro, 2009). Each cell represents then two Riemann prob-
lems, one for each interface, left and right.
A Riemann problem is an initial value problem given by a partial differential equation, e.g.
Eq. 2.27, with a set of initial conditions, e.g. Eq. 4.1. For this initial value problem, the initial
conditions consist of piecewise constant initial data that has a discontinuity.
There are two possible values at each interface which can be chosen from. For example at the
interface xi− 1

2
, the flux can be positive or negative, moving to the right or left, respectively.

Figure 2.3 illustrates the two possibilities.
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Figure 2.3: The blue horizontal lines indicate the different values of the momentum and the red
arrows indicate the direction of the movement. Left: The centred velocity ui of the central cell is
positive, therefor the fluid moves to the right through the interface xi− 1

2
between the cells xi−1 and

xi; Right: The centred velocity ui of the central cell is negative, therefor the fluid moves to the left
through the interface xi+ 1

2
between the cells xi and xi+1.

To advect the fluid properly, one must chose the correct flux based on the fluids velocity.
Therefore Sod (1978) proposed the following method depending on the velocity of the fluid
in the central cell that one is solving for.

Fi− 1
2
=

Fi if ui > 0

Fi−1 if ui < 0
(2.42)

Fi+ 1
2
=

Fi+1 if ui > 0

Fi if ui < 0
(2.43)

The advection of the new values of the density, pressure and energy for a single cell are then
given by

ρn+1
i = ρn

i +
∆t
∆x

{
(ρu)i− 1

2
− (ρu)i+ 1

2

}
(2.44)

(ρu)n+1
i = (ρu)n

i +
∆t
∆x

{(
ρu2)

i− 1
2
−
(
ρu2)

i+ 1
2

}
− ∆t∇pi (2.45)

(ρE)n+1
i = (ρE)n

i +
∆t
∆x

{
(uρE)i− 1

2
− (uρE)i+ 1

2

}
− ∆t

2∆x

{
(up)i+1 − (up)i−1

}
. (2.46)
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CHAPTER 2. FUNDAMENTAL PRINCIPLES

The pressure gradient is given by

∇pi =
pi+1 − pi−1

2∆x
, (2.47)

where the pressure will be expressed through the components of the state vector 2.28

p = (γ− 1) ρ

(
E− 1

2
u2
)

(2.48)

= (γ− 1)
[
(ρE)− 1

2
(
ρu2)] (2.49)

= (γ− 1)

[
(ρE)− 1

2
(ρu)2

ρ

]
. (2.50)

Code 2.1: Advection of the density, momentum and energy of a fluid.

1 ! checking in which d i r e c t i o n the f l u i d moves
2 IF ( U( 2 , i ) .GE. 0 . ) THEN
3 a = 1 ; b = 0 ! i f the f l u i d moves to the r i g h t
4 ELSE
5 a = 0 ; b = −1 ! i f the f l u i d moves to the l e f t
6 END IF
7

8 ! −−− densi ty −−− !
9 ! c a l c u l a t i n g the f l u x e s

10 f l u x L e f t = U( 2 , i−1*a )
11 f luxRight = U( 2 , i−1*b )
12 ! c a l c u l a t i n g the new values of the densi ty
13 U new ( 1 , i ) = U( 1 , i ) + ( dt / dx ) * ( f l u x L e f t − f luxRight )
14

15 ! −−− momentum −−− !
16 ! c a l c u l a t i n g the pressure gradient
17 gradP ( i ) = ( pres ( i ) + pres ( i −1) ) / ( 2 . * dx )
18 ! c a l c u l a t i n g the f l u x e s
19 f l u x L e f t = U( 2 , i−1*a ) * * 2 / U( 1 , i−1*a )
20 f luxRight = U( 2 , i−1*b ) * * 2 / U( 1 , i−1*b )
21 ! c a l c u l a t i n g the new values f o r the momentum
22 U new ( 2 , i ) = U( 2 , i ) + ( dt / dx ) * ( f l u x L e f t − f luxRight ) − dt * gradP ( i )
23

24 ! −−− energy −−− !
25 ! c a l c u l a t i n g the fuxes
26 f l u x L e f t = U( 2 , i−1*a ) * U( 3 , i−1*a ) / U( 1 , i−1*a )
27 f luxRight = U( 2 , i−1*b ) * U( 3 , i−1*b ) / U( 1 , i−1*b )
28 ! c a l c u l a t i n g the new values f o r the momentum
29 U new ( 3 , i ) = U( 3 , i ) + ( dt / dx ) * ( f l u x L e f t − f luxRight )
30 ! adding the pressure component

15



31 f l u x L e f t = U( 2 , i +1) * pres ( i +1) / U( 1 , i +1)
32 f luxRight = U( 2 , i −1) * pres ( i −1) / U( 1 , i −1)
33 ! updating the new values with the pressure component
34 U new ( 3 , i ) = U new ( 3 , i ) − ( dt / ( 2 . * dx ) ) * ( f l u x L e f t − f luxRight )

2.3.2 The Courant-Friedrichs-Lewy Condition

The Courant number or CFL coefficient (Durran, 2010; Toro, 2009) is given by

Cc f l = c
∆t
∆x

(2.51)

=
c

∆x/∆t
(2.52)

where c is the speed of a wave within the fluid, ∆t is the time step and ∆x is the size of a
computational cell. The Courant number Cc f l gives the ratio between the fluid speed and
the effective grid speed, the speed the fluid would need to travel at to cross the cell in a
single time step. The current scheme to advect the fluid would be unstable if Cc f l > 1, which
means that the fluid would travel across more than one cell in a single time step. With this
and the fact that the size of a computation cell ∆x and the time step ∆t are positive, the CFL
condition can be written as

0 ≤ Cc f l ≤ 1 . (2.53)

2.3.3 Time Step

To compute the advection time step, the CFL condition is used to guarantee that no wave
present in the fluid travels more than the distance ∆x in the time ∆t (Durran, 2010; Toro,
2009). The time step is then given by

∆t = Cc f l
∆x

Sn
max

, (2.54)

where Cc f l is the Courant number in 2.53 and Sn
max is the largest speed of wave present in

the entire computational domain. To ensure that ∆t > 0, the CFL coefficient is chosen to be
larger than zero. The estimate of the largest wave speed is given by (Durran, 2010)

Sn
max = max {|un

i |+ an
i } , (2.55)

where un
i is the velocity of the fluid and an

i the sound speed at time tn. Durran (2010) states
that Eq. 2.55 may underestimate Sn

max, e.g. in a shock tube, where initial velocity is zero and
only the sound speed is taken into account. This underestimation will lead to a time step that

16
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is too large, resulting in instabilities. This can be prevented by adjusting the CFL coefficient.
The sound speed a in Eq. 2.55 is given by

a =

√
γ

p
ρ

, (2.56)

where γ is the adiabatic index, ρ the density and p the pressure of the fluid. The pressure p
will be calculated by Eq. 2.50 and the velocity of a fluid will then be expressed as followed.

u =
(ρu)

ρ
(2.57)

The following code 2.2 is an example how to calculate the time step ∆t numerically according
to Eq. 2.54 and 2.55. U is the state vector in Eq. 2.27 and 2.28, gamma is the adiabatic index γ,
dx the size of a cell and cfl the CFL coefficient.

Code 2.2: Calculation of the time step ∆t (dt).

1 ! c a l c u l a t i n g the pressure ’ pres ’ , the sound speed ’ sound ’ and the f l u i d v e l o c i t y ’ velx ’
2 ! in each c e l l
3 DO i = 1 , nCel l
4 pres ( i ) = (gamma − 1) * ( U( 3 , i ) − 0 . 5 * U( 2 , i ) * * 2 / U( 1 , i ) )
5 sound ( i ) = SQRT( gamma * pres ( i ) / U( 1 , i ) )
6 velx ( i ) = U( 2 , i ) / U( 1 , i )
7 END DO
8

9 ! c a l c u l a t i n g the time step ’ dt ’
10 dt = c f l * dx / MAXVAL( ABS( velx ( : ) ) + sound ( : ) )
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Chapter 3

Description of Physical Phenomena

In the following subsections, the applications and study of shocks will be presented. For the
application of shocks, a short historical background will be given and the use in astrophysical
phenomena. Table 3.1 provides some used abbreviations in astrophysics.

Table 3.1: Astrophysical abbreviations and their descriptions.

Abbreviations Term Description

AGN active galactic nucleus compact central region of a galaxy that
emits large amounts of radiation

ICM intracluster medium the medium within a galaxy cluster, typi-
cally hot gas

ISM interstellar medium medium between stars
SN supernova explosion of a star
SNR supernova remnant a structure of expanding material after

the explosion of a star

3.1 Shock Applications

The scientific interest in shock waves arises around World War I and II, where new dis-
ciplines in physics arises, such as hypersonic aerodynamics, cosmic gas dynamics, reentry,
detonations and nuclear explosions, and others (Ben-Dor et al., 2000).
Although Ben-Dor et al. (2000) state that shock waves have been observed in all four states
of matter (solids, liquids, gases and plasma), only applications of shock waves to gases are
mentioned in this thesis.
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A quite interesting application of shocks can be applied in astrophysics at different scales.
From a shock wave of a meteor moving through a planets atmosphere (Silber et al., 2018),
e.g. the earth, to shock waves in a star and its corona and vicinity (Raymond, 2018), as well as
stellar winds. Shock waves generated in the interstellar medium (ISM) due to stars moving
with a high velocity (Zajacek et al., 2019) or supernovae (SNe), the explosion of a star. From
shock waves produced by a galactic wind or active galactic nuclei (AGN), to shock waves in
the intracluster medium (ICM) produced by an infalling galaxy or the collision of two galaxy
clusters (Chung et al., 2009).
These astrophysical applications shall be explained briefly.

Meteor: A meteor is a blunt body, consisting of rocks and metals, generates a shock wave
when it is moving through a gas, typically an atmosphere of a planet. Meteors, falling onto
the earth, have typically velocities of around 20− 70 km s−1 (Silber et al., 2018), while the
speed of sound of air is about 0.343 km s−1. Therefore, a meteor moves with a supersonic
velocity through the earths atmosphere, creating a shock wave, a so called bow shock in front
of it (Silber et al., 2018).
While the results of an impact of a meteor are visible, as impact craters, on many planets
and moons in our solar system, the direct observation a falling meteor through the earths
atmosphere is sparse. But thanks to many security cameras and car cameras, the sitings of
meteors is rising since a few years. The most famous Chelyabinsk meteor entered the earths
atmosphere over Russia in 2013 and damaged buildings due to its air burst 30 km above
Chelyabinsk (Wikipedia contributors, 2019).

Stellar Winds: A stellar or solar wind consists of charged particles, which are released from
the stars upper atmosphere. Most shocks in astrophysics are collisionless, because of the
magnetic fields and the interaction with charged particles (Raymond, 2018), such as protons,
electrons and Helium-cores. In a close vicinity to a star, a shock can produce cosmic rays by
acceleration of charged particles. Raymond (2018) states that these shocks can be produced
by coronal mass ejections of a star, and can therefore affect satellites and astronauts. This is
an example where ”cosmic” shocks can directly affect human kind and their technology.
These stellar winds expand into the undisturbed ISM and creates then a shock wave.

ISM: During the lifetime of a star it will loose mass by stellar winds, which happens con-
tinuously over time. A star with a mass M∗ > 8 M� will explode at the end of its lifetime
as a type II supernova, where a significant amount of its mass will be ejected into the ISM,
resulting in a supernova remnant (SNR). According to Lequeux (2010), the evolution a SNR
can be distinguished into three phases. Starting with the free expansion phase, which ends
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CHAPTER 3. DESCRIPTION OF PHYSICAL PHENOMENA

when the mass of the swept up matter equals the ejected mass. Followed by the adiabatic
expansion phase, also called the Sedov-Taylor phase, where the shocked gas has a such high
temperature that the SNR is pressure driven. The evolution of a SNR ends with the isother-
mal phase due to the energy loss by radiation, where the shell dispersed by reaching about
the same velocity as the ISM.
A star also produces a shock wave, during its lifetime, when it is moving through the ISM,
e.g. near to the galactic centre (Zajacek et al., 2019). The created bow shock can be used to
determine the motion of the star around the galactic centre by analysing the symmetry axis
of the bow shock.

Galaxies: Shock waves can also be observed at a larger, galactic scale. Galaxies with active
star formation experience a galactic wind or galaxies with AGN often experience a bipolar
jet, resulting in a shock wave in the galaxies hot halo gas. Moreover, galaxies themselves
can produce a shock wave, when they fall into a galaxy cluster and move through the hot
ICM. These bow shocks can be sometimes observed in the surface density of the ICM. This
phenomena can also be shown in simulations of infalling galaxies (Yun et al., 2019).
Even galaxy clusters can produce shock waves, when two of them merge together. Chung
et al. (2009) show that the Bullet cluster, two merging galaxy clusters of unequal mass, expe-
rience a shock wave driven by the subcluster and propagating through the hot ICM of the
main cluster.

3.2 Studying Shocks

To study shocks, one needs to produce a shock wave, which then can be studied. At first
this was not easy, but in the late 19th century this became easier with a strong electrical dis-
charge. In science one has to execute the same experiment over and over again under the
same conditions. To apply this to shocks, one can use the shock tube.
The Shock Tube was invented by Paul Vieille, which is the most important measuring and
testing device of gas dynamics (Ben-Dor et al., 2000). He tried to demonstrate that shock
waves generated by explosions propagate analogously to a shock wave generated by a burst-
ing diaphragm.
Such a shock tube usually has a circular or rectangular cross section and is separated by a
thin diaphragm in two parts, a low and high pressure chamber (Zel’dovich and Raizer, 1966).

Nowadays fluid dynamics can be studied by numerical simulations. To ensure that a code
works well, it has to be assured that it can capture and resolve shocks properly. Sod (1978)
compared the performance of different numerical codes by using the numerical version of
the shock tube and compare the results to the well known analytical solution. Only by this,
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one can assure that the results of a numerical simulation of e.g. a supernova are physically
correct.

22



Chapter 4

The Sod Shock Tube Problem

4.1 Initial Conditions

The ”Sod Shock Tube Problem” (Sod, 1978) consists of a fluid with two different states as
initial conditions, which are separated by a diaphragm at position d = b−a

2 [cm] within the
interval [a, b]. The initial conditions are given by ρ

p
u

 (x, 0) =

 1.0
1.0
0.0

 x ∈ [a, d) ,

 ρ

p
u

 (x, 0) =

 0.125
0.1
0.0

 x ∈ [d, b] (4.1)

where ρ, p and u are the density, pressure and velocity, respectively, as listed in table 2.1.

4.2 Analytical Solution

At time t > 0 , the diaphragm is broken. Considering the situation that no wave has reached
the left or right boundary. The time dependant variables xhd(t) and x f t(t) represent the head
and tail of the rarefaction wave. The variable xcd(t) is the contact discontinuity, the position
that an element of the fluid initially at d has reached by time t > 0. The variable xsh(t) is the
position of the shock wave, at which all the quantities (e.g. ρ and p) are discontinuous (Sod,
1978).
Figure 4.1 shows the position of the head xhd(t) and foot x f t(t) of the rarefaction wave, the
contact discontinuity xcd(t) and the shock wave xsh(t) as a function of time. One can see,
that the rarefaction wave (dotted lines enclosed by xhd(t) and x f t(t) in Fig. 4.1) is moving
to the left, while the contact discontinuity and the shock wave are moving to the right.
As shown in Fig. 4.1, one can divide computational domain into five regions, separated by
the head and tail of the rarefaction wave, the contact discontinuity and the shock wave. To
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Figure 4.1: Analytic solution of the position of the head xhd(t) and foot x f t(t) of the rarefaction
wave, the contact discontinuity xcd(t) and the shock wave xsh(t) as a function of time for the Sod
shock tube. The dotted lines represent the rarefaction wave. The computational domain is chosen to
be the interval [a, b] = [0, 1], and the diaphragm is initially positioned at d = 0.5 cm.

derive the analytical solution it is prudent to derive the individual analytical solutions for
each region. Furthermore, those shall be described in dependence of the initial conditions,
which are represented by region I and V.

4.2.1 Region I and V

The solution for the states in region I and V are the initial states left and right, respectively,
of the diaphragm at the time t = 0.

Solution for Region I: ρ

p
u

 (x, t) =

 1.0
1.0
0.0

 x ∈ [0, xhd(t)], t > 0 (4.2)

Solution for Region V: ρ

p
u

 (x, t) =

 0.125
0.1
0.0

 x ∈ [xsh(t), 1], t > 0 (4.3)
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ush
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ρ5
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ρ5

p5

u
∧

5

Figure 4.2: (a) shock wave in a stationary reference system (a) with the velocity of ush; (b) reference
system moves with the velocity ush so that the shock front moves with zero velocity.

4.2.2 The Shock Wave

Assuming that the shock wave is moving to the right side, (ρ5, u5, p5) denote the quantities
ahead of the shock front and (ρ4, u4, p4) behind the shock front (see Fig. 4.2). To calculate
the speed of the shock wave ush, one is moving with the shock. Therefore, the new relative
velocities are

û4 = u4 − ush (4.4)

û5 = u5 − ush . (4.5)

The Rankine-Hugoniot conditions or jump-shock conditions (Lequeux, 2010) describe a re-
lation between the states ahead and behind the shock. Normally the the quantities ahead of
the shock are indicated with the index 1 and those behind the shock with the index 2. In this
case the author choses to use the indices denoting the different regions of the solution of the
Sod Shock Tube Problem. Therefore, the quantities ahead of the shock have the index 5 and
those behind the shock the index 4.

ρ4 û4 = ρ5 û5 (4.6)

ρ4 û2
4 + p4 = ρ5 û2

5 + p5 (4.7)

û4
(
Ê4 + p4

)
= û5

(
Ê5 + p5

)
(4.8)
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Introducing the total energy

E = ρ

(
1
2

u2 + e
)

(4.9)

and substituting into Eq. 4.8,

u (E + p) = u
[

ρ

(
1
2

u2 + e
)
+ p

]
(4.10)

= u ρ

[
1
2

u2 + e +
p
ρ

]
, (4.11)

resulting in

û4 ρ4

[
1
2

û2
4 + e4 +

p4

ρ4

]
= û5 ρ5

[
1
2

û2
5 + e5 +

p5

ρ5

]
(4.12)

Substituting the specific enthalpy

h = e +
p
ρ

(4.13)

into Eq. 4.12 and using Eq. 4.6 gives

1
2

û2
4 + h4 =

1
2

û2
5 + h5 . (4.14)

Rearranging Eq. 4.6 gives

û5 =
ρ4 û4

ρ5
(4.15)

and rearranging Eq. 4.7 gives

ρ4 û2
4 = ρ5 û2

5 + p5 − p4 (4.16)

= (ρ5 û5) û5 + p5 − p4 | Eq. 4.15 (4.17)

= (ρ5 û5)
ρ4 û4

ρ5
+ p5 − p4 (4.18)

Using Eq. 4.6

ρ4 û2
4 = (ρ4 û4)

ρ4 û4

ρ5
+ p5 − p4 (4.19)

=
ρ2

4 û2
4

ρ5
+ p5 − p4 (4.20)
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Bringing all terms with û2
4 on the left side gives

ρ4 û2
4 −

ρ2
4 û2

4
ρ5

= p5 − p4 (4.21)

û2
4

[
ρ4 −

ρ2
4 û2

4
ρ5

]
= p5 − p4 (4.22)

û2
4

[
ρ4 −

ρ2
4

ρ5

]
= p5 − p4 (4.23)

û2
4

[
ρ4ρ5 − ρ2

4
ρ5

]
= p5 − p4 (4.24)

û2
4

[
ρ4

ρ5

ρ5 − ρ4

ρ5

]
= p5 − p4 (4.25)

(4.26)

Isolating the velocity û2
4 on the left side gives

û2
4 =

(
ρ5

ρ4

)(
p5 − p4

ρ5 − ρ4

)
. (4.27)

The same can be done for the velocity û2
5

û2
5 =

(
ρ4

ρ5

)(
p5 − p4

ρ5 − ρ4

)
. (4.28)

Rearranging Eq. 4.14 yields

h4 − h5 =
1
2
[
û2

5 − û2
4
]

(4.29)

Substituting the velocities Eq. 4.27 and 4.28, bringing to the same denominator and rearrang-
ing yields in

h4 − h5 =
1
2
(p5 − p4)�����(ρ5 − ρ4) (ρ

2
4 − ρ2

5)

ρ4 ρ5 (ρ5 − ρ4)�2
, (4.30)

and using a binomial expansion gives

h4 − h5 =
1
2
(p5 − p4)

ρ4 + ρ5

ρ4 ρ5
. (4.31)
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Re-substituting the specific enthalpy, Eq. 4.13, to get an expression for the specific energy e
gives after rearranging and bringing to the same denominator:

e4 − e5 =
1
2
(p5 − p4) (ρ4 + ρ5)

ρ4 ρ5
− p4 ρ5 + p5 ρ4

ρ4 ρ5
(4.32)

=
1
2
(p5 + p4)

ρ4 − ρ5

ρ4 ρ5
. (4.33)

By substituting the specific energy

e =
p

(γ− 1) ρ
, (4.34)

where γ is the ratio of specific heats, one gets an expression for the ratio of the densities
behind and ahead of the shock front, dependent of the ratio of the pressure behind and
ahead of the shock front and the ratio of specific heats.

p4

(γ− 1)ρ4
− p5

(γ− 1)ρ5
=

1
2
(p5 + p4)

ρ4 − ρ5

ρ4 ρ5
(4.35)

Bringing the left side to the same denominator and multiplying out the nominator on the
right side gives

����(γ− 1) p4 ρ5 +����(γ− 1) p5 ρ4

(γ− 1)�2���ρ4 ρ5
=

1
2

p4 ρ4 − p4 ρ5 + p5 ρ4 − p5 ρ5

���ρ4 ρ5
. (4.36)

Multiplying with (γ− 1) and dividing both sides with (p5 ρ5) gives

p4

p5
− ρ4

ρ5
=

γ− 1
2

[
p4

p5

ρ4

ρ5
− p4

p5
+

ρ4

ρ5
− 1
]

. (4.37)

Isolating all terms with the ratio of densities on the left side.

−ρ4

ρ5
− γ− 1

2
p4

p5

ρ4

ρ5
− γ− 1

2
ρ4

ρ5
= − p4

p5
− γ− 1

2
p4

p5
− γ− 1

2
(4.38)

ρ4

ρ5

[
−1− γ− 1

2

(
p4

p5
+ 1
)]

=
p4

p5

[
−1− γ− 1

2

]
− γ− 1

2
(4.39)

Isolating the ratio of densities behind and ahead of the shock front on the left side.

ρ4

ρ5
=

p4
p5

[
−1− γ−1

2

]
− γ−1

2

−1− γ−1
2

(
p4
p5
+ 1
) (4.40)
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Using the algebraic manipulation

−1− γ− 1
2

=
−2− γ + 1

2
= −γ + 1

2
(4.41)

gives

ρ4

ρ5
=

p4
p5

(
−γ+1

2

)
− γ−1

2

−1− γ−1
2

(
p4
p5
+ 1
) (4.42)

= −
p4
p5

γ+1
2 + γ−1

2

−1− γ−1
2

(
p4
p5
+ 1
) (4.43)

=

p4
p5

γ+1
2 + γ−1

2

1 + γ−1
2

(
p4
p5
+ 1
) (4.44)

Dividing nominator and denominator with γ−1
2 gives

ρ4

ρ5
=

p4
p5

γ+1
γ−1 + 1

2
γ−1 +

p4
p5
+ 1

. (4.45)

By using the algebraic manipulation

2
γ− 1

+ 1 =
2 + γ− 1

γ− 1
=

γ + 1
γ− 1

(4.46)

gives

ρ4

ρ5
=

p4
p5

γ+1
γ−1 + 1

γ+1
γ−1 +

p4
p5

, (4.47)

which gives the same results as the equation by Toro (2009)

ρ4

ρ5
=

p4
p5
+ γ−1

γ+1
γ−1
γ+1

p4
p5
+ 1

. (4.48)

By introducing the Mach number

M5 =
u5

a5
(4.49)

Msh =
ush

a5
(4.50)
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one can write the ratio of the density and pressure, respectively, behind and ahead of the
shock front (Toro, 2009) as

ρ4

ρ5
=

(γ + 1) (M5 −Msh)
2

(γ− 1) (M5 −Msh)2 + 2
(4.51)

p4

p5
=

2γ (M5 −Msh)
2 − (γ− 1)

(γ + 1)
. (4.52)

Re-arranging the pressure ratio and re-substituting the Mach number yields to the speed of
the shock wave.

ush = u5 + a5

√
γ + 1

2γ

p4

p5
+

γ− 1
2γ

(4.53)

Position of the shock front:
The position of the shock front is given by

xsh(t) = d + ush t , t > 0 . (4.54)

4.2.3 Region II

Region II is bound by the head xhd(t) and foot x f t(t) of the rarefaction wave. If one con-
siders a ray from the point (d, t0) to (x, t) within the rarefaction wave, then the slope would
be (Sod, 1978; Toro, 2009)

dx
dt

=
x
t
= u− a , (4.55)

where u is the fluid velocity and a sound speed

a =

√
γ

p
ρ

. (4.56)

Sod (1978); Toro (2009); Zel’dovich and Raizer (1966) state, that the Riemann invariant is
constant and therefor

u1 +
2 a1

γ− 1
= u2 +

2 a2

γ− 1
. (4.57)

The isentropic law (Sod, 1978; Toro, 2009) gives an relation between the pressure and the
density of the fluid

p = C ργ . (4.58)
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The constant C can be evaluated through the initial conditions (Toro, 2009) and, therefor,
resulting in

p2 = p1

(
ρ2

ρ1

)γ

. (4.59)

By solving the equations 4.55, 4.56, 4.57 and 4.59 simultaneously, one finds the solution for
the density, pressure and velocity within the rarefaction wave.

Solve for the velocity u2:
Equation 4.55 can be rearranged to the velocity u2,

u2 =
x
t
+ a2 . (4.60)

Equation 4.56 can be rearranged to the sound speed a2,

a2 =
γ− 1

2

[
u1 +

2 a1

γ− 1
− u2

]
(4.61)

and replacing a2 in Eq. 4.60 gives

u2 =
x
t
+

γ− 1
2

[
u1 +

2 a1

γ− 1
− u2

]
. (4.62)

By multiplying out the brace and collecting all terms with u2 on the left side, one gets

u2

(
1 +

γ− 1
2

)
=

x
t
+

γ− 1
2

u1 + a1 . (4.63)

Isolating u2 on the left side and using

1 +
γ− 1

2
=

γ + 1
2

(4.64)

the final expression for the velocity is

u2 =
2

γ + 1

[
x
t
+

γ− 1
2

u1 + a1

]
. (4.65)
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Solve for the density ρ2:
By inserting Eq. 4.60 in Eq. 4.57 one gets

u1 +
2 a1

γ− 1
=

x
t
+ a2 +

2 a2

γ− 1
(4.66)

=
x
t
+ a2

(
1 +

2
γ− 1

)
. (4.67)

By using

1 +
2

γ− 1
=

γ + 1
γ− 1

(4.68)

and rearranging to a2 results in

a2 =
γ− 1
γ + 1

u1 +
2 a1

γ + 1
− γ− 1

γ + 1
x
t

(4.69)

=
2 a1

γ + 1
+

γ− 1
γ + 1

(
u1 −

x
t

)
. (4.70)

Now one evaluates the sound speed by inserting Eq. 4.59 in Eq. 4.56:

a2 =

(
γ

p2

ρ2

) 1
2

(4.71)

=

(
γ

p1

ρ
γ
1

ρ
γ
2

ρ2

) 1
2

. (4.72)

Using the algebraic manipulation

ρ
γ
2

ρ2
= ρ

γ−1
2 (4.73)

ρ
γ
1 = ρ1 ρ

γ−1
1 (4.74)

one gets

a2 =

[
γ

p1

ρ1

(
ρ2

ρ1

)γ−1
] 1

2

(4.75)

=

√
γ

p1

ρ1

(
ρ2

ρ1

) γ−1
2

(4.76)

= a1

(
ρ2

ρ1

) γ−1
2

(4.77)
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Inserting Eq. 4.77 in Eq. 4.70

a1

(
ρ2

ρ1

) γ−1
2

=
2 a1

γ + 1
+

γ− 1
γ + 1

(
u1 −

x
t

)
| : a1 (4.78)(

ρ2

ρ1

) γ−1
2

=
2

γ + 1
+

γ− 1
(γ + 1) a1

(
u1 −

x
t

)
. (4.79)

Rearranging to ρ2 on the left side gives the final expression for the density

ρ2 = ρ1

[
2

γ + 1
+

γ− 1
(γ + 1) a1

(
u1 −

x
t

)] 2
γ−1

. (4.80)

Solve for the pressure p2:
Rearranging Eq. 4.59 to a ratio between pressures and densities:

p2 =
p1

ρ
γ
1

ρ
γ
2 ⇔

(
p2

p1

) 1
γ

=
ρ2

ρ1
(4.81)

and using

(
ρ2

ρ1

) γ−1
2

=

[(
p2

p1

) 1
γ

] γ−1
2

=

(
p2

p1

) γ−1
2γ

(4.82)

gives

(
p2

p1

) γ−1
2γ

=
2

γ + 1
+

γ− 1
(γ + 1) a1

(
u1 −

x
t

)
(4.83)

Isolating p2 on the left side gives the final expression for the pressure:

p2 = p1

[
2

γ + 1
+

γ− 1
(γ + 1) a1

(
u1 −

x
t

)] 2γ
γ−1

. (4.84)

To take into account that the initial position of the diaphragm at t = 0 is at d > 0, the
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equations 4.65, 4.80 and 4.84 have to be modified to

u2 =
2

γ + 1

[
(x− d)

t
+

γ− 1
2

u1 + a1

]
(4.85)

ρ2 = ρ1

[
2

γ + 1
+

γ− 1
(γ + 1) a1

(
u1 −

(x− d)
t

)] 2
γ−1

(4.86)

p2 = p1

[
2

γ + 1
+

γ− 1
(γ + 1) a1

(
u1 −

(x− d)
t

)] 2γ
γ−1

. (4.87)

Position of the head and foot of the rarefaction wave:
To calculate the position of the head and foot of the rarefaction wave, the Eq. 4.55 is used,
and modified to a form where the initial position of the diaphragm is not at zero. Region II

is on the left side enclosed by region I, in that the head of the rarefaction wave is moving,
therefor

xhd(t) = d + (u1 − a1) t , t > 0 . (4.88)

The same can be done for the foot, where region II is on the right side enclosed by region
III, in that the foot of the rarefaction wave is moving, therefor

x f t(t) = d + (u3 − a3) t , t > 0 . (4.89)

4.2.4 Region III

Sod (1978) states that the velocity and pressure are constant over a contact discontinuity,
therefor:

u3 = u4 (4.90)

p3 = p4 (4.91)

Starting from the isentropic law (Eq. 4.59), an expression for the density can be obtained.

p3 = p4 =
p1

ρ
γ
1

ρ
γ
3 (4.92)

Rearranging to ρ3 gives

ρ3 = ρ1

(
p4

p1

) 1
γ

(4.93)
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The sound speed of a fluid in region III can also be expressed as a ration of the pressures.
Using the definition of the sound speed (Eq. 4.56), and inserting the density (Eq. 4.93).

a3 =

(
γ

p4

ρ3

) 1
2

(4.94)

=

[
γ

p4

ρ1

(
p1

p4

) 1
γ

] 1
2

(4.95)

=

γ
p

1
γ

1
ρ1

p4

p
1
γ

4


1
2

(4.96)

Using the algebraic manipulation

p
1
γ

1 = p1 p
1
γ−1
1 (4.97)

p4

p
1
γ

4

= p
1− 1

γ

4 , (4.98)

one gets

a3 =

√
γ

p1

ρ1

(
p

1
γ−1
1 p

1− 1
γ

4

) 1
2

. (4.99)

Using the algebraic manipulation

1
γ
− 1 =

1− γ

γ
= −γ− 1

γ
(4.100)

1− 1
γ
=

γ− 1
γ

, (4.101)

Eq. 4.99 transforms into

a3 = a1

[(
p4

p1

) γ−1
γ

] 1
2

(4.102)

= a1

(
p4

p1

) γ−1
2γ

. (4.103)

4.2.5 Region IV

To calculate the density, pressure and velocity behind the shock wave, one needs to find a
relation between the states in region IV and the initial states. Following Toro (2009), one can
evaluate the quantities (ρ, p, u)4 on the left and right border of region IV.
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Rarefaction Wave:
Starting on the left border of region IV, region III. Considering that the Riemann invariant is
constant (Sod, 1978; Toro, 2009; Zel’dovich and Raizer, 1966), one gets a relation between the
velocity in region I and III, and since the velocities on both sides of the contact discontinuity
are equal (Sod, 1978), a relation between the states in in region I and IV.

u1 +
2 a1

γ− 1
= u4 +

2 a3

γ− 1
(4.104)

Inserting Eq. 4.103 and solving for the velocity u4.

u4 = u1 +
2 a1

γ− 1
− 2 a1

γ− 1

(
p4

p1

) γ−1
2γ

(4.105)

= u1 +
2 a1

γ− 1

[
1−

(
p4

p1

) γ−1
2γ

]
(4.106)

= u1 −
2 a1

γ− 1

[(
p4

p1

) γ−1
2γ

− 1

]
, as given in Toro (2009). (4.107)

Shock Wave:
Now, starting on the right border of region IV, region V, separated by a shock wave. Using
the relative velocities Eq. 4.4 and 4.5, and introducing the mass flux Q (Toro, 2009) through
the Rankine-Hugoniot condition (Eq. 4.6).

Q5 ≡ −ρ4 û4 = −ρ5 û5 (4.108)

Now, rearranging Eq. 4.7 to

(ρ4 û4) û4 + p4 = (ρ5 û5) û5 + p5 (4.109)

and inserting the mass flux

−Q5û4 + p4 = −Q5û5 + p5 . (4.110)

Rearranging to an expression for the mass flux gives

Q5 =
p4 − p5

û4 − û5
(4.111)
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and re-substituting Eq. 4.4 and 4.5 gives

Q5 =
p4 − p5

u4 − u5
. (4.112)

From the mass flux one gets the relative velocities

û4 = −Q5

ρ4
(4.113)

û5 = −Q5

ρ5
(4.114)

and inserting them in Eq. 4.111 gives

Q5 =
p4 − p5

Q5

(
1
ρ5
− 1

ρ4

) (4.115)

⇔ Q2
5 =

p4 − p5
1
ρ5
− 1

ρ4

. (4.116)

Inserting the relation 4.48 (Toro, 2009) gives the expression for the mass flux

Q5 =

[
ρ5

2

(
γ + 1
γ− 1

p4

p5
+ 1
)] 1

2

. (4.117)

By rearranging Eq. 4.112 to the velocity u4 and inserting the new expression for the mass
flux gives

u4 = u5 +
p4 − p5

Q5
(4.118)

= u5 + (p4 − p5)

 2

ρ5

(
γ+1
γ−1

p4
p5
+ 1
)
 1

2

. (4.119)
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Now, one has an expression for the velocity u4 behind the shock front as a function of the
initial states (ρ1, p1, ρ5, p5) (Toro, 2009).

f (p4) = Eq. 4.107− Eq. 4.119 (4.120)

= f1(p4, ρ1, p1) + f5(p4, ρ5, p5) + ∆u (4.121)

=
2 a1

γ− 1

[(
p4

p1

) γ−1
2γ

− 1

]
︸ ︷︷ ︸

f1(p4,ρ1,p1)

+ (p4 − p5)

 2

ρ5

(
γ+1
γ−1

p4
p5
+ 1
)
 1

2

︸ ︷︷ ︸
f5(p4,ρ5,p5)

+ u5 − u4︸ ︷︷ ︸
∆u

(4.122)

= 0 (4.123)

This equation can be solved numerically for the pressure p4 behind the shock front with
a root finding method, such a the bisection method or the Newton-Raphson method. The
actual velocity behind the shock front is the mean of the two velocities given by Eq. 4.107
and 4.119.

u4 =
1
2
(
u5 + f5(p4, ρ5, p5)

)
+

1
2
(
u1 − f1(p4, ρ1, p1)

)
(4.124)

=
1
2
(
u1 + u5

)
+

1
2
[

f5(p4, ρ5, p5)− f1(p4, ρ1, p1)
]

(4.125)

The final density ρ4 behind the shock front can be evaluated by Eq. 4.48.

Position of the contact discontinuity
Since the contact discontinuity separates region III from region IV and the velocity is the
same in both regions (Sod, 1978), its position can be calculated as follows.

xcd(t) = d + u4 t , t > 0 (4.126)

4.3 Complete Solution

This section gives an overview of the complete solution for the density ρ, pressure p and ve-
locity u for each region, as well as the positions of the head and foot of the rarefaction wave,
of the contact discontinuity and the shock front. Figure 4.3 displays the analytic solution for
the density, pressure, velocity and internal energy of a fluid.
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Solution: Region I

ρ1 = 1.0 | p1 = 1.0 | u1 = 0.0 (4.127)

Solution: Region II

ρ2 = ρ1

[
2

γ + 1
γ− 1

(γ + 1) a1

(
u1 −

x− d
t

)] 2
γ−1

(4.128)

p2 = p1

[
2

γ + 1
γ− 1

(γ + 1) a1

(
u1 −

x− d
t

)] 2γ
γ−1

(4.129)

u2 =
2

γ + 1

(
a1 +

γ− 1
2

u1 +
x− d

t

)
(4.130)

Solution: Region III

ρ3 = ρ1

(
p4

p1

) 1
γ

| p3 = p4 | u3 = u4 (4.131)

Solution: Region IV

ρ4 = ρ5

[
p4

p5
+

γ− 1
γ + 1

] [
γ− 1
γ + 1

p4

p5
+ 1
]−1

(4.132)

p4 : f (p4) =
2 a1

γ− 1

[(
p4

p1

) γ−1
2γ

− 1

]
︸ ︷︷ ︸

f1(p4,ρ1,p1)

+ (p4 − p5)

 2

ρ5

(
γ+1
γ−1

p4
p5
+ 1
)
 1

2

︸ ︷︷ ︸
f5(p4,ρ5,p5)

+ u5 − u4︸ ︷︷ ︸
∆u

= 0 (4.133)

u4 =
1
2
(u1 + u5) +

1
2
[

f5(p4, ρ5, p5)− f1(p4, ρ1, p1)
]

(4.134)
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Solution: Region V

ρ5 = 0.125 | p5 = 0.1 | u5 = 0.0 (4.135)

Positions:

xhd(t) = d + (u1 − a1) t (4.136)

x f t(t) = d + (u3 − a3) t (4.137)

xcd(t) = d + u3 t (4.138)

xsh(t) = d + ush t , t > 0 (4.139)

Toro (2009) provides results for the solution of the density pressure and velocity in region IV

(Toro, 2009, table 4.1 and 4.3, Test 1). Table 4.1 gives a comparison of the solutions by Toro
(2009) and by this work. The solutions for region II will not be compared, since it is not only
time dependant but also depending on the position. As one can see, the derivation of the
solution by this work agrees with those by Toro (2009).

Table 4.1: Comparison of the solution for the density ρ, pressure p and velocity u for the region IV

by this work and Toro (2009). For this comparison, the same initial conditions (Eq. 4.1) are used and
an adiabatic index of γ = 7

5 . The evaluation time is set to t = 0.2 s.

variable unit analytic solution Toro (2009)

ρ4 [g cm−3] 0.2655737 0.26557

p4 [dyne cm−2] 0.3031301 0.30313

u4 [cm s−1] 0.9274526 0.92745

Table 4.2 gives the positions of the head and foot of the rarefaction wave, the contact discon-
tinuity and the shock front at a simulation time of t = 0.2 s. The shock wave has a speed of
ush = 1.75215 cm s−1.

Table 4.2: Position of the head and foot of the rarefaction wave, the contact discontinuity and the
shock front at a simulation time of t = 0.2 s.

xhd [cm] x f t [cm] xcd [cm] xsh [cm]

0.26335 0.48594 0.68549 0.85943
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Figure 4.3: Analytic solution of the fluid density, pressure, velocity and internal energy at the time
t = 0.2 s.
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Chapter 5

Results

This chapter analyzes the results of the numerical simulation for the Sod Shock Tube Prob-
lem. Table 5.1 gives an overview of the various combinations of parameters for the different
simulations that are performed. The simulation 4 (sim4 ref ) is chosen to be the reference
simulation for further comparisons.

Table 5.1: List of simulations with the following parameters: simulation ID simID, Courant num-
ber CFL, number of cells ncells. The suffix ” ref” denotes to the reference simulation for the further
comparisons.

simID CFL ncells

sim1 0.2 100

sim2 0.2 300

sim3 0.2 500

sim4 ref 0.2 1000

sim5 0.4 1000

sim6 0.6 1000

sim7 0.8 1000

5.1 Analytical vs. Numerical Solution

For the comparison of the analytical and numerical solutions, simulation sim4 ref will be
used. Figure 5.1 - 5.4 shows the results of the density, pressure, velocity and internal energy
for the comparison of the analytical and numerical solutions of sim4 ref for the Sod Shock
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Tube Problem. As one can see, the positions of the head and tail of the rarefaction wave,
the contact discontinuity and the shock wave are relatively well captured. To quantify the
results, the relative error (bottom panels of Fig. 5.1 - 5.4), given by

erel =
sn − sa

sa
, (5.1)

is calculated, where sn and sa are the numerical and analytical solution, respectively.
Looking closer at the head of the rarefaction wave, one can see that the position is not well
computed. It is lacking behind the analytical solution and dropping rapidly. The relative
error amounts up to 10 %, for the density and pressure. While it is lower for the internal
energy, only up to 5 %, the error is relatively large for the velocity up to 100 %. For the foot of
the rarefaction wave, the relative errors are quite low, up to almost 5 %. There, the values of
the density, pressure and internal energy are slightly above those of the analytical solution,
whereas it is for the velocity the other way around. There the values are slightly below the
analytical ones.
Comparing the results for the contact discontinuity, one can see, that the relative errors are
much larger. For the density the relative error amounts to 20 % shortly before the contact
discontinuity and almost 30 % right after it. In the case of the internal energy, the error is
around 23 %. It also is visible that the contact discontinuity is smeared out over a larger
computational domain. Strictly speaking, it is a continuous change in density an energy, and
not a discontinuous change in these quantities.
On the other hand, the shock wave is captured quite well, compared to the contact disconti-
nuity. It spreads over a much smaller computational domain, but the relative errors a quite
large for the density and pressure with an error larger than 60 %. The error is smaller for the
velocity and internal energy of around 20 %.
Interestingly, the numerical solution of the rarefaction wave for the internal energy exhibits
a peculiar behaviour. The rarefaction wave looks not continuously, but step wise.

5.2 Dependency on the Resolution

For the comparisons between simulations of different number of computing cells, the simu-
lations sim1, sim2, sim3 and sim4 ref will be compared. Figure 5.5 shows the density, pressure,
velocity and internal energy for different number of cells. It can be seen that the numerical
solution gets closer to the analytical solution with increasing number of computational cells.
Figure 5.6 shows the relative errors of the state variables for different numbers of cells. For
better comparison Fig. 5.7 shows a closeup of the head (left panel) and the foot (right panel)
of the rarefaction wave.
For the head of the rarefaction wave, one can see that with increasing number of cells, that
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Figure 5.1: Top: Comparison of the results between the analytical (black) and numerical (blue) so-
lution of the Sod shock problem for the density of a fluid at a simulation time of t = 0.2 s; Bottom:
Relative error of the numerical solution in relation to the analytical solution.
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Figure 5.2: Same as figure 5.1 but for the pressure.
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Figure 5.3: Same as figure 5.1 but for the velocity.
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Figure 5.4: Same as figure 5.1 but for the internal energy.
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another discontinuity is emerging. This can be seen for the density, pressure, velocity and
energy. But also with increasing number of cells, the numerical solution gets closer to the
analytical one.
For the foot of the rarefaction wave, the numerical solution gets closer to the analytical one
with increasing number of cells. While the solution for the simulation sim1 with only 100 cells
clearly smears out the foot of the rarefaction wave and underestimates the density, pressure
and energy (and overestimates the velocity), this quickly gets suppressed with increasing
cell numbers.
Interestingly, the internal energy exhibits a stepwise numerical solution for the rarefaction
wave. This gets more prominent with increasing number of computational cells.
Figure 5.8 shows a closeup of the shock wave of the density for different number of compu-
tational cells. The results for the pressure, velocity and internal energy look quite alike. It
can clearly be seen, that for increasing number of cells the numerical solution gets closer to
the analytical one. One can see, that the tipping point of the shock front gets closer to that
of the analytical solution with increasing number of cells. Equally the thickness of the shock
front is decreasing with increasing number of cells. Table 5.2 lists the position and the range
of the shock front. Interestingly, the shock front is always resolved by five cells, although the
thickness decreases with increasing number of cells. While the error for the solution of the
density reaches quite large values right after the shock front, almost 65 % for the simulation
sim4 ref, the error of the position of the shock front is decreasing with increasing resolution
of the simulations. While the error is larger than 2 % for the run with the lowest resolution,
it is smaller than 0.3 % for the run with the highest resolution.

Table 5.2: Position of the shock front xsh(t), i.e. the ’head’ and ’tail’ of the shock wave, the number
of cells ncells,sh over that the shock front is spread and the error of the position of the shock front for
different models with their representative number of computational cells ncells and the size of a single
cell ∆x at the simulation time t = 0.2 s.

model ncells ∆x xsh(t) ncells,sh error

analytic − − 0.8504 − −

sim1 100 0.010 0.8300 − 0.8900 5 2.39%

sim2 300 0.003 0.8433 − 0.8633 5 0.84%

sim3 500 0.002 0.8460 − 0.8580 5 0.52%

sim4 ref 1000 0.001 0.8480 − 0.8540 5 0.28%
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Figure 5.5: Comparison of the numerical solutions for different number of grid cells for the density,
pressure, velocity and internal energy (from top to bottom) at the simulation time t = 0.2 s.
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Figure 5.6: Comparison of the relative error of the numerical solutions for different number of grid
cells for the density, pressure, velocity and internal energy (from top to bottom) at the simulation time
t = 0.2 s.
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Figure 5.7: Zoom in on the head (left panel) and foot (right panel) of the rarefaction wave for a
comparison of the numerical solutions for different number of grid cells for the density, pressure,
velocity and internal energy (from top to bottom) at the simulation time t = 0.2 s.
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Figure 5.8: Zoom-in on the shock wave for a comparison of the numerical solutions for different
number of grid cells for the density (top panel) and the relative errors (bottom panel) at the simulation
time t = 0.2 s. The symbols (coloured crosses) represent the position of each cell. The vertical dotted
line represents the position of the shock front and the horizontal dashed line (bottom panel) represents
a relative error of zero.

5.3 Dependency on the CFL coefficient

For the comparison of the results for different CFL coefficients, the simulation sim4 ref, sim5,
sim6 and sim7 are compared. Here, all simulations have the same number of computational
cells of ncell = 1000, but the CFL coefficient is varying, from 0.2 to 0.8.
Figure 5.9 shows the results for the density, pressure, velocity and internal energy for differ-
ent values of the CFL coefficient and Fig. 5.10 its relative errors. As one can see, the results
show two prominent effects with varying CFL coefficient. First, the formed discontinuity
at the head of the rarefaction wave does not only get larger with increasing CFL coefficient,
it also moves further away from the analytical solution. Second, the solution at the shock
wave exhibits not only a peak, but an oscillation behind it which gets more prominent with
increasing CFL coefficient.
Figure 5.11 shows a zoom-in of the shock front, where these oscillations are better visible.
One can see, that the oscillations getting quickly damped with decreasing CFL coefficient.
The solution of the run with a CFL coefficient of 0.8 exhibits right before the shock front a
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Figure 5.9: Comparison of the numerical solutions for different values of the CFL coefficient for the
density, pressure, velocity and internal energy (from top to bottom) at the simulation time t = 0.2 s.
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Figure 5.10: Comparison of the relative error of the numerical solutions for different values of the
CFL coefficient for the density, pressure, velocity and internal energy (from top to bottom) at the
simulation time t = 0.2 s.
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Figure 5.11: Zoom-in on the shock wave for a comparison of a different CFL coefficient for the
density (top panel) and the relative errors (bottom panel) at the simulation time t = 0.2 s. The symbols
(coloured crosses) represent the position of each cell. The vertical dotted line represents the position
of the shock front and the horizontal dashed line (bottom panel) represents an relative error of zero.

quite large relative error of more than 150 %. This is due to the oscillation, which causes a
peak at the shock front, which it is overshooting. This density peak (also counting for the
other state variables) is resolved by two cells, where one cell is behind the shock front and
the second one before, resulting in this large error.
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Chapter 6

Discussion

This thesis presents an application of the ”Sod Shock Tube Problem” to numerical stud-
ies by comparing the analytical solution with the numerical one. Therefore, a simple one-
dimensional code is written to provide numerical data.

By comparing the solutions with different numbers of computational cells, one can quickly
see that a larger number is desired for better results. The smaller the cell size, the smaller
is the difference between two cells for a state variable. Therefore, by increasing the number
of cells, thus decreasing the size of a computational cell, the results get more accurate and
closer to the analytical solution. Mostly a small cell size is desired, which gets quickly com-
putationally demanding, because it takes longer to loop over all cells. This can be avoided
by using adaptive mesh refinement (AMR), which increases the resolution only there where
the state variables are quickly changing. In case for the numerical description of the Sod
Shock Tube Problem the resolution would only increase around the contact discontinuity,
the shock front and along the rarefaction wave. One must emphasise that the higher resolu-
tion by AMR also depends on the level of refinement.
By comparing the solutions with different CFL coefficients, one can immediately see that a
smaller CFL coefficient results in a more stable scheme. Durran (2010) states that a scheme
with a CFL coefficient larger than one gets unstable. The comparison shows, that the scheme
gets more unstable with increasing CFL coefficient, resulting with Cc f l = 0.8 in prominent
oscillations behind the shock front. Furthermore, a larger CFL coefficient also causes a peak
in the state variables at the position of the shock front. This can be prevented by implement-
ing an artificial viscosity, which artificially damps emerging oscillations.
To overcome the short comes mentioned above, a better scheme can be used, that is second
order accurate both in space and time. Nowadays, there are many sophisticated numeri-
cal codes. One example is the FLASH code (Fryxell et al., 2000; ASC FLASH Center, 2010).
The FLASH code is a highly parallel code which uses the Massage-Passing Interface (MPI)
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Figure 6.1: Comparison of the numerical solution of the run sim3 with the FLASH code at the same
resolution of ncells = 500 and a simulation time of t = 0.2 s.

and AMR, and provides the user with several physical modules capable of dealing with hy-
drodynamics, self-gravity, thermal processes etc. Figure 6.1 shows a comparison between
the analytical solutions of the run sim3 and the FLASH code. For the simulation with the
FLASH code, a uniform grid in 1D with an equal number of computational cells to the run
sim3 is used. Furthermore, the FLASH code uses the PPM (piecewise-parabolic method) hy-
dro solver, where the flow variables are represented by piecewise-parabolic functions, which
is second order accurate in space and time (ASC FLASH Center, 2010). As one can see, the
position of the shock front calculated by the FLASH code is the same as those by the run sim3
(xsh(0.2 s) = 0.8460− 0.8540), but the shock wave is resolved by only three computational
cells and much thinner.
Since shocks are quite common in nature, their treatment in numerical simulations must not
be neglected. Sod (1978) provides a simple test to ensure that a numerical code can indeed
resolve shocks. By adjusting basic parameters such as the number of computational cells or
the Courrant-Friedrichs-Lewy condition one can improve the outcome. Advanced options
like AMR and MPI can be used to minimise the computational effort and to maximise the
efficiency.
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Abstract English

Nowadays, numerical simulations are widely used to investigate questions in physics in
more detail. Most of these questions deal with the behaviour of fluids, such as gases and
liquids. A quite interesting application for this is the field of astrophysics. Many phenom-
ena in astrophysics are violent, for example the explosion of a star at the end of its lifetime
as a supernova, where the surrounding material will be compressed. Such a compression
results in a shock wave (Stoßwelle in german), which is propagating through the interstellar
medium. Since shock waves are common in many applications, it is essential that numerical
simulations are able to resolve and detect them. Because different kinds of codes use differ-
ent numerical methods, they have to be tested in order to be certain that their solution is a
acceptable. The ”Sod Shock Tube Problem” is a method to test numerical codes, whether or
not they can detect shock waves.
In this Diploma thesis the analytical and numerical solutions of the ”Sod Shock Tube Prob-
lem” are compared. Therefore, first the analytical form of the continuous Euler equations is
derived from major physical conservation principles. Further on, the change from the con-
tinuous to the discrete form of the Euler equations is explained, for that purpose the finite
volume method is used. Based on this discrete description, a numerical code is written to
simulate the ”Sod Shock Tube Problem”. The analytical solution of the corresponding prob-
lem will be derived in dependency on the initial conditions and compared graphically with
the numerical solution. Furthermore, the dependency of the accuracy of the numerical code
is investigated and discussed.
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Abstract Deutsch

Heutzutage werden numerische Simulationen oft benutzt um bestimmte physikalische Frage-
stellungen genauer untersuchen zu können. Meistens beschäftigen sich solche Simulationen
mit dem Verhalten von Gasen oder Flüssigkeiten. Ein sehr interessantes Anwendungsgebiet
ist hierbei die Astrophysik. Viele Phänomene in der Astrophysik sind sehr energieintensiv,
zum Beispiel die Explosion eines Sterns als Supernova, welche eine Verdichtung des um-
liegenden Gases verursacht. Solch eine Verdichtung bildet typischerweise eine Stoßwelle
(shock wave im englischen), welche sich weiter ausbreitet. Da Stoßwellen in vielen Bereichen
vorkommen, ist es essentiell, dass numerische Simulationen diese auch auf feinen Skalen
beschreiben und erkennen können. Da unterschiedliche Codes verschiedene numerische
Verfahren benutzen, muss getestet werden ob dieser eine physikalisch akzeptable Lösung
liefert. Das ”Sod Shock Tube Problem” ist ein Testverfahren um numerische Codes zu testen,
ob sie Stoßwellen erkennen und korrekt beschreiben können.
In dieser Diplomarbeit werden die analytische und numerische Lösungen miteinander ver-
glichen. Hierfür wird zuerst die analytische Lösung der stetigen Euler-Gleichung aus den
wichtigsten physikalischen Erhaltungsprinzipien hergeleitet. Weiters wird mit Hilfe des
Finite-Volumen-Verfahrens der Übergang von der stetigen zur diskreten Beschreibung der
Euler-Gleichung erklärt. Ausgehend von der diskreten Beschreibung der Euler-Gleichungen
wird dann ein numerischer Code geschrieben, um das ”Sod Shock Tube Problem” com-
putergestützt numerisch zu berechnen. Die analytische Lösung dieses Problems wird dann
in Abhängigkeit der Anfangsbedingungen hergeleitet und graphisch mit der numerischen
Lösung verglichen. Des Weiteren wird die Abhängigkeit der Genauigkeit der numerischen
Lösung untersucht und diskutiert.
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