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Abstract
Based on Archimedes’ principle, we model and investigate the behaviour of immersed
hyperelastic bodies. We derive an energy functional, and use the Direct Method of
the calculus of variations to prove existence of minimizers of this energy functional. In
the first part of the thesis, we will study the theoretical foundations, namely introduce
the Direct Method, polyconvex, and quasiconvex materials and summarize the most
important and well-known results. In the second part, we prove existence of minimizers
in the case of Dirichlet boundary conditions and in the case of the specimen being tied
to a fixed anchor by an elastic rope. Moreover, we examine the case, where the specimen
can move freely, and give an existence result for slightly compressible materials. Lastly,
we prove existence of local minima, regardless of the choice of density parameters.

Zusammenfassung
In Anlehnung an das Prinzip des Archimedes untersuchen wir das Verhalten von schwim-
menden, hyperelastischen Körpern. Dazu leiten wir ein Energie-Funktional her, welches
anschließend mit Hilfe der direkten Methode der Variationsrechnung minimiert wird. Im
ersten Teil dieser Masterarbeit legen wir die mathematischen Grundlagen und studieren
die direkte Methode, sowie polykonvexe und quasikonvexe Materialien. Im zweiten,
angewandten, Teil beweisen wir die Existenz von Minima in diversen Gegebenheiten.
Wir betrachten den Fall von Dirichlet Randbedingnungen, sowie die Situation, in der
das Objekt mit einem elastischen Seil an einem fixen Punkt gebunden ist. Weiters
untersuchen wir das Verhalten des Objekts, wenn sich dieses frei bewegen kann und
geben ein Existenzresultat im Falle, dass das Objekt nur geringfügig kompressibel ist.
Des Weiteren zeigen wir die Existenz eines lokalen Minimums, unabhängig von der Wahl
der Dichte des Fluids und des Körpers.
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Introduction

Consider an object submerged in some fluid, e.g., think of a submarine under water, which,
therefore, is subjected to two forces, gravity and buoyancy. We know by Archimedes’
principle that the buoyancy is the weight of the displaced fluid. Thus, if the object is
incompressible, we can simply compare the density of the fluid to the density of the
gravity to determine, whether the object sinks, stays or floats.

If, however, the object is compressible, the situation changes entirely. Now, the volume
of the displaced fluid depends on the current deformation. Although the gravitational
force always stays the same, the buoyancy will change with the deformation. For example,
if the object sinks, the water pressure rises, the volume of the body may decrease, which
then leads to a decrease of buoyancy.
To examine the behaviour of the body, we derive an energy functional from physical

considerations. We then minimize this energy functional by the Direct Method of the
calculus of variations. We consider hyperelastic, and polyconvex materials. For these we
try to give a comprehensive theoretical background, which we will rely on, when giving
the existence results.
We will prove existence of minimizers in the case of Dirichlet boundary conditions

and give a new existence result in the case, where the body is tied to a fixed anchor
by an elastic rope. Furthermore, we consider the problem of a freely moving body, and
introduce a material locking condition yielding an existence result for bodies rising to the
surface. This material locking condition is already well-known in the literature (e.g. refer
to [3]), but has been considered as additional side constraint so far, whereas here, it is
crucially used to prove the result. At last, we will check the existence of local minimizers
in the case of compressible bodies.

In Chapter 1, we introduce our main mathematical tool, the Direct Method, guaranteeing
the existence of a minimizer of a coercive and lower semicontinuous functional. A
prototypical existence result will be given. After having introduced the mathematical
tools, in Chapter 2 we look at deformations, and how the specimen reacts to applied
forces. This will also lead to the introduction of the Cauchy stress tensor and hyperelastic
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materials, where the Cauchy stress tensor can be obtained from a stored energy function.
To ensure that the deformation energy is weakly lower semicontinuous, we define in
Chapter 3 the notion of polyconvexity, a weaker form of convexity, which incorporates the
minors of the deformation gradient. This chapter is dedicated to prove that polyconvexity
is sufficient for weak lower semicontinuity, relying crucially on weak convergence of minors.
A first general existence result is given here. In Chapter 4, we introduce an even weaker
form of convexity, the so-called, quasiconvexity, which turns out to be also necessary for
weak lower semicontinuity under polynomial growth. As the main tool, we work with
Young measures, hint at open problems and current research. The last Chapter 5 is of
theoretical nature and dedicated to examine the invertibility of deformations, which is
ensured by the so-called Ciarlet-Nečas condition. Chapters 6 to 9 are of more applied
nature and deal with specific problems. In Chapter 6, we derive the energy functional
from physical considerations and prove that the terms, which model the applied forces,
are weak lower semicontinuous. Then, in Chapter 7, we give an existence result for a
classical Dirichlet problem and the case, where the specimen is fixed along an inner beam.
In Chapter 8, we will consider the situation, where the specimen is tied to a fixed anchor
with an elastic rope. This calls for checking a Poincaré-type inequality and eventually
proving the existence of minimizers. The final Chapter 9 is dedicated to the case of a
freely moving object, where the energy is not bounded from below. We illustrate the
difficulties and give and existence result in the case of a slightly compressible specimen
rising to the surface. In the general case, we prove the existence of local minima.
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1. The Direct Method

In this section, we introduce the main tool to prove existence and uniqueness of minimizers:
the Direct Method of the calculus of variations. After defining the main notions, namely
coercivity and lower semicontinuity, and working out the central idea of the Direct
Method, we will present a prototypical existence result. Moreover, this exemplary result
will point out certain difficulties, which will also arise during the later sections of this
thesis. The main sources of this chapter are [8], and [27], although we sometimes refer to
[9] as well.

1.1. The Direct Method of the calculus of variations

In many physical problems, as including elasticity, one seeks to minimize a functional
F : X → R ∪ {+∞}, mapping from a complete metric space X into the extended
real numbers, under given boundary values or other constraints (for a comprehensive
overview of applications, see [27], Chap. I). The Direct Method guarantees the existence
of minimizers, if F satisfies the following conditions:

• Coercivity: F is coercive, i.e., there exists Λ ∈ R such that

{y ∈ X : F(y) ≤ Λ} is nonempty and sequentially precompact,

i.e., the sequence (yj) ⊂ X with F(yj) ≤ Λ has a converging subsequence.

• Lower semicontinuity (l.c.s.): F is lower semicontinuous, i.e., for all sequences
(yj) ⊂ X with yj → y we have that

F(y) ≤ lim inf F(yj).

Theorem 1.1.1 (The Direct Method). If F is coercive and lower semicontinuous, then
the minimization problem

Minimize F over X
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has at least one solution, i.e., there is a y∗ ∈ X with F(y∗) = miny∈X F(y).

Proof. Assume that there is a y such that F(y) <∞, as otherwise all y ∈ X would be a
solution. By the definition of the infimum there is a minimizing sequence (yj) ⊂ X, i.e.,
limj→∞F(yj) = α := infy∈X F(y) <∞. Therefore, α ≤ Λ ∈ R and F(yj) ≤ Λ for all j,
which in turn implies, by coercivity, the existence of a subsequence (not extra relabelled)
and a y∗ ∈ X, with

yj → y∗.

Thus, by the lower semicontinuity, we conclude

α ≤ F(y∗) ≤ lim inf
j→∞

F(yj) = α.

Therefore, F(y∗) = α and y∗ is a minimizer.

Remark 1.1.1. We defined the notions above and proved the Direct Method in a sequential
form, which is not necessary, but will be in accordance to the rest of the thesis. One
could, however, do this in arbitrary topological spaces, with only slight modifications, as
long as it is ensured, that the coercivity and the lower semicontinuity are with respect
to the same topology. To find a suitable topology is here the main issue, as these two
notions oppose each other (to establish coercivity one would prefer a coarse topology,
whereas verifying lower semicontinuity is easier in a fine topology). As a rule of thumb,
the weak topology is a good candidate, if X is a Banach space. For more on this topic,
see [27], Sect. 2.1.

The gist of the Direct Method is that one has to prove coercivity and lower semicontinu-
ity, which can be done separately. We will see that coercivity for functionals of the form
F(y) =

�
f(y(x))dx is closely related to certain growth-conditions on f , whereas lower

semicontinuity is connected with some convexity of the integrand f , which are entirely
different assumptions. Thus, one can develop different tools for each of the problems,
independent of the fact, that one actually wants to minimizes a functional. Note, that by
the Direct Method, coercivity and lower semicontinuity are sufficient, but not necessary
for the existence of minimizers. Still non of these conditions can be dispensed of.

Example 1.1.1 (Not coercive). Consider the exponential function exp : R→ R, having no
minimizer. It is bounded from below by the x-axis, but it is clearly not coercive, as for
all Λ > 0, there is a sequence xn with exp(xn) ≤ Λ with no converging subsequence (e.g.
take xn := −n+ ln Λ, n ∈ N). 4
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Intuitively speaking, coercivity means that the function-values are “large”, if the
argument is “far” outside. This is obviously violated by the example above.

Example 1.1.2 (Not lower semicontinuous). Consider the function f : R→ R given by

f(x) =
{

−x if x < 0
x+ 1 if x ≥ 0

This function is not lower semicontinuous in x0 = 0, since for an infimizing sequence
xn = − 1

n → 0, we have
0 = lim inf

n→∞
f(xn) � f(0) = 1.

Hence, although we have an infimizing sequence, the function value at point, where the
minimum “should” be, is not minimal. 4

We give two examples of existence of minimizers where the Direct Method can not be
applied.

Example 1.1.3. Consider the function f(x) = x2 exp(−x2). Clearly, f is not coercive, but
still has a minimum at the origin. 4

Example 1.1.4. The function

f(x) = 1R\Q(x) =
{

0 if x ∈ Q
1 if x ∈ R\Q

has a minimum at each x ∈ Q, but is not lower semicontinuous. 4

In Banach spaces, which are dual to Banach spaces, we know that bounded sets are
sequentially pre-compact in the weak topology by the Banach-Alaoglu theorem (for more
details, see Appendix, Rem A.4.1). For coercivity, we demand that the set of points in
the space with bounded energy, is sequentially precompact. Therefore, if the space X is
the dual of a Banach space, we coercivity follows by verifying that this set is bounded
in norm. This is in general easier. In this thesis, we always will verify that the set
{y : F(y) ≤ Λ} is bounded in norm. Obviously, this implies, that we also need a weak
form of sequential lower semicontinuity to apply the Direct Method.
We mainly work with the Sobolev space W 1,p, which is the dual of a Banach space

for 1 < p <∞ (for the definition of Sobolev spaces and the most important results, see
Appendix, Sec. A.2). Thus, to establish coercivity, one seeks to bound the minimizing
sequence in the W 1,p-norm. In our applications this can usually be done, having the
physical background of the problem in mind.
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We will now state the Direct Method, for the weak form of coercivity and lower
semicontinuity, which will used for the rest of the thesis.

Theorem 1.1.2 (Direct Method). Let X be a Banach space or a closed affine subset of
a Banach space and let F : X → R ∪ {+∞}, satisfying

(i) Weak coercivity of F : for some Λ ∈ R the sublevel set

{y ∈ X : F(y) ≤ Λ} is nonempty sequentially weakly precompact,

i.e., the sequence (yj) ⊂ X with F(yj) ≤ Λ has a weakly convergent subsequence,
and

(ii) Weak lower semicontinuity of F : If a sequence (yj) ⊂ X is weakly convergent to
y ∈ X, yj ⇀ y, then

F(y) ≤ lim inf
j→∞

F(yj).

Then, there is a minimizer y∗ of F .

The proof is analogous to the one of Theorem 1.1.1. Often, we minimize over a set of
functions, which also should satisfy some additional side constraints. Therefore, we also
have to ensure that the minimizer fulfils these side constraints, which requires some kind
of closure of the side constraints and has to be proven extra.

1.2. The Direct Method in the scalar case

In this thesis we only consider functionals of the form

F(y) =
�

Ω
f(x, y(x),∇y(x))dx,

where y ∈W 1,p(Ω) and Ω ⊂ Rn with sufficiently smooth boundary.
In order to highlight the most important ideas and difficulties arising when applying

the Direct Method, we present at general (but clearly not the most general) version of
an existence theorem (cf. [9], Thm. 3.3), and prove it by the Direct Method. Before
formulating the theorem, we need to introduce the some important notions and results.

As we already mentioned, we bound the minimizing sequence in terms of theW 1,p-norm.
The main tool to do so is the Poincaré inequality (cf. [9], Thm. 1.47).
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Theorem 1.2.1 (Poincaré inequality). Let Ω ⊂ Rn be a bounded, open, Lipschitz set
and 1 ≤ p ≤ ∞. Then, there is a γ = γ(Ω, p) > 0 such that

‖y‖Lp ≤ γ‖∇y‖Lp , ∀y ∈W 1,p
0 (Ω),

or, equivalently, a γ̃ such that

‖y‖W 1,p ≤ γ̃‖∇y‖Lp , ∀y ∈W 1,p
0 (Ω).

Moreover, we need weak the lower semicontinuity of F . The main ingredient of
establishing this is convexity of the integrand f .

Definition 1.2.1. (i) A set Ω ⊂ Rn is called convex, if for every x, y ∈ Ω and every
λ ∈ [0, 1], we have λx+ (1− λ)y ∈ Ω.

(ii) Let Ω ⊂ Rn be convex. The function f : Ω → R is called convex, if for every
x, y ∈ Ω and every λ ∈ [0, 1], the following inequality holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Theorem 1.2.2. Let f : Ω ⊂ Rn → R and f ∈ C 1(Ω). Then the function f is convex,
if and only if

f(y) ≥ f(x) + 〈∇f(y), y − x〉 ∀x, y ∈ Rn. (1.2.1)

Proof. If f is convex, we have after rewriting the definition

f(y + λ(x− y)) ≤ f(y) + λ (f(x)− f(y)) ∀x, y ∈ Ω ∀λ ∈ [0, 1].

Thus, we get
f (y + λ(x− y))− f(y)

λ
≤ f(x)− f(y),

which yields
∇fT (y)(x− y) ≤ f(x)− f(y)

after letting λ→ 0.
Assume that (1.2.1) holds for all x, y ∈ Ω and take λ ∈ [0, 1] arbitrary. Since Ω is

convex z = λx+ (1− λ)y belongs to Ω. We have

f(x) ≥ f(z) +∇fT (z)(x− z) (1.2.2)

f(y) ≥ f(z) +∇fT (z)(y − z). (1.2.3)
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Multiplying (1.2.2) by λ, (1.2.3) by (1− λ), and adding, we obtain

λf(x) + (1− λ)f(y) ≥ f(z) +∇fT (z) (λx+ (1− λ)y − z)︸ ︷︷ ︸
=0

= f(z) = f(λx+ (1− λ)y).

Now, we state and prove the prototypical result providing the existence of minimizers
in the scalar case (cf. [9], Sec. 3.3). We highlight all important notions by underlining
them.

Theorem 1.2.3. Let Ω ⊂ Rn be bounded, and open with a Lipschitz boundary and let
f ∈ C 1(Ω̄× R× Rn) such that

H1+ Convexity: (y, F ) 7→ f(x, y, F ) is convex for all x

H2+ Coercivity: ∃p > 1, a1 > 0, a3 ∈ R : f(x, y, F ) ≥ a1|F |p + a3

H3+ ∃b ≥ 0 such that for all (x, y, F )

|fy(x, y, F )|, |fF (x, y, F )| ≤ b(1 + |y|p−1 + |F |p−1).

Let
m := inf

{
F(y) =

�
Ω
f(x, y(x),∇y(x))dx : y ∈ y0 +W 1,p

0 (Ω)
}

for a given y0 ∈W 1,p(Ω) with F(y0) <∞. Then, there is a minimizer y∗ of F .

Proof. Step 1: Coercivity

By assumption, we have that −∞
H2+
< m ≤ I(u0)

assump.
< ∞. Thus, there exists a

minimizing sequence (yn) ⊂ y0 +W 1,p
0 , i.e. F(yn)→ inf F(y). By the coercivity condition

[H2+] one can find n large enough such that

m+ 1 ≥ F(yn)
H2+
≥ a1‖∇yn‖pLp − |a3|meas(Ω).

Therefore, there exists a4 > 0 such that ‖∇yn‖Lp ≤ a4. By employing the Poincaré inequality,
we infer that there exist a5, a6 > 0 such that

a5‖yn‖W 1,p − a6‖y0‖W 1,p ≤ ‖∇yn‖Lp ≤ a4,

so that
‖yn‖W 1,p ≤ a7,
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for some a7 > 0. Hence, we have shown that (yn) is bounded in the separable and
reflexive Banach space W 1,p. Therefore, there exists a y∗ ∈ y0 + W 1,p

0 and a (not-
relabelled) subsequence (yn) such that

yn ⇀ y∗ in W 1,p,

which verifies that F indeed is coercive in the sense of Definition 1.1.
Step 2: Lower semicontinuity
We will show that yn ⇀ y∗ in W 1,p implies lim inf F(yn) ≥ F(y∗).
Since f is convex and f ∈ C 1, Theorem 1.2.2 is applicable, and thus,

f(x, yn,∇yn) ≥ f(x, y∗,∇y∗) + fu(x, y∗,∇y∗) (yn − y∗)︸ ︷︷ ︸
∈Lp

+〈fF (x, y∗,∇y∗),∇yn −∇y∗︸ ︷︷ ︸
∈Lp

〉.

Integrating the above relation yields

F(yn) ≥ F(y∗) +
�

Ω
fy(x, y,∇y∗)(yn − y∗)dx+

�
Ω
〈fF (x, y∗,∇y∗),∇yn −∇y∗〉dx.

We now would like to invoke the weak convergence of yn ⇀ y∗, to deduce lim inf F(yn) ≥
F(y∗), but we need to check that the integrals above are defined. Therefore, we need to
verify

1. fy, fF ∈ Lp
′ , where p′ is the Hölder conjugate of p, and use this to prove

2. fy · (yn − y∗), 〈fF ,∇yn −∇y∗〉 ∈ L1.

Let us prove fy(x, y∗,∇y∗) ∈ Lp
′ , as the other statement analogously follows. To do so,

we use the growth estimate [H3+] and that y∗ ∈W 1,p to obtain
�

Ω
|fy(x, y∗,∇y∗)|p

′
dx ≤ b

� (
1 + |y∗|p−1 + |∇y∗|p−1

) p
p−1 dx ≤ b1(1 + ‖y∗‖pW 1,p) <∞.

The second assertion follows directly from Hölder’s inequality (see A.1.4).
Step 3: Combining steps 1 and 2
Now are we in the position to apply the Direct Method as in Thm. 1.1.1. Since (yn)

is a minimizing sequence, i.e. F(yn) → m = inf F(y) and we have established lower
semicontinuity, we deduce lim inf F(yn) ≥ F(y∗) and thus F(y∗) = m.

Remark 1.2.1. We know want to summarize the proof above and recapitulate.

• To prove coercivity we use growth conditions and the Poincaré inequality.
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• To prove the l.s.c. we use convexity, weak convergence of the minimizing sequence,
and a bound on f .

In the following, all of these notions will reappear in a more general setting. We need to
find appropriate generalizations of convexity, weak enough to be applicable to a large
class of functions, but still strong enough to allow us to infer weak lower semicontinuity.
Also, the classical Poincaré inequality, as used in this proof, requires given boundary
values. We will need to generalize this later on for such a boundary condition will not be
available in some of the problems attacked in later sections.

1.3. Weak lower semi-continuity - A first result

As mentioned, one problem in the vector-valued case is to establish a form of lower
semicontinuity using a proper notion of convexity. We conclude this section by presenting
a result for vector valued functions y : Ω→ Rm which indicates the difficulties occurring
in the vector-valued case. To make our life easier at first, we assume that our integrand
only depends on the Jacobian of y, i.e. is of the form

F(y) =
�

Ω
f(x,∇y(x))dx.

Eventually, it is our goal to minimize a functional F(y) :=
�

Ω f(x, y(x),∇y(x))dx with
certain additional conditions and y ∈W 1,p(Ω,Rd). To be able to treat this mathematically
we will introduce so called Carathéodory functions (cf. [8], Definition 3.5).

Definition 1.3.1. The function

f : Ω× Rm × Rm×d → R

is called a Carathéodory function, if

(i) x 7→ f(x, y, z) is measurable for all (y, z) and
(ii) (y, z) 7→ f(x, y, z) is continuous ∀aax ∈ Ω.

Here we abbreviate “for almost all x” with the symbol ∀aa.
The statement is due to Tonelli and Serrin and can be found in [27], Theorem 2.6.

Theorem 1.3.1. Let f : Ω × Rm×d → [0,∞) be a Carathéodory integrand such that
f(x, ·) is convex for almost all x ∈ Ω. Then F(y) =

�
Ω f(x,∇y(x))dx is weakly lower

semicontinuous on W 1,p(Ω,Rm) for any p ∈ (1,∞).

10



Proof. The proof consist of two steps, in the first step we establish strong l.s.c., which
we will use in the second step to conclude weak l.s.c.

Step 1: Claim: F is (strongly) lower semicontinuous.
Let yk → y inW 1,p. By the Rellich-Kondrachov theorem, see Thm. A.2.3, we can select

a subsequence (nonrelabelled) such that ∇yk → ∇y almost everywhere. By assumption
M 7→ f(x,M) is continuous, and thus, f(x,∇yk) → f(x,∇y) a.e. Furthermore, we
assumed f to be non-negative, and therefore, Fatou’s lemma, Thm. A.1.1, is applicable,
and we get

F(y) =
�
f(x,∇y) =

�
lim inf f(x,∇yk) ≤ lim inf

�
f(x,∇yk).

Note that we passed to a subsequence, and hence, have proved the inequality above
only for this subsequence. Fortunately, this does not spoil the argument, as is shown in
proposition A.6.1.

Step 2: Claim: F is weakly l.s.c.
Let yn ⇀ y in W 1,p. We need to show F(y) ≤ lim inf F(yn) =: α. Take a subsequence

(nonrelabelled) realizing the lim inf, i.e. F(yn)→ α. By Mazur’s lemma A.4.11 there are
convex combinations

vn =
Nn∑
k=n

λk,nyk,
Nn∑
k=n

λk,n = 1,

such that vn → u strongly in W 1,p. By assumption we know that f(x, ·) is convex.
Therefore, we can apply Jensen’s inequality 8.1.2 to obtain

F(vn) =
�
f

(
x,

Nn∑
k=n

λk,n∇yk

)
dx ≤

� Nn∑
k=n

λk,nf(x,∇yk)dx =
Nn∑
k=n

λk,nF(yk).

Since F(yk)→ α as k →∞ and ∑Nn
k=n λk,n = 1 for all n, passing to the limit yields

lim inf
n
F(vn) ≤ α.

Because we have that vn → u strongly we can use the Step 1 to obtain F(y) ≤
lim infnF(vn) and finally

F(y) ≤ lim inf
n
F(vn) ≤ α = lim inf

n
F(un),

which finishes the proof.

Remark 1.3.1. For integrands also depending on y the proof is more involved. The
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problem is that we still want to assume convexity in the last argument only. But then,
we cannot “pull out” the sum coming from Mazur’s lemma

�
f
(
x,
∑

λk,nyk,
∑

λk,n∇yk
)
.

Quite a bit of measure theory is needed in order to do an elementary proof (cf. [8], Chap.
3.2.6). A way to circumvent this is to introduce Young measures, which we will do in
chapter 4.

In the scalar case, one can show that convexity is also a necessary condition for weak
lower semicontinuity.

Theorem 1.3.2. Let Ω ⊂ Rd be a bounded set and F : W 1,p(Ω;Rm)→ R, p ∈ [1,∞) be
an integral functional with continuous integrand f : Rm×d → R (not x-dependent). If F
is weakly lower semicontinuous on W 1,p(Ω,Rm), and if either d = 1 or m = 1 (i.e. the
one-dimensional case, and the scalar case), then f is convex.

For the proof see [27], Prop. 2.9. At this point, we only want to mention, that if
d,m 6= 1, convexity is not necessary for weak lower semicontinuity. The naturally arising
question is, what is the right weaker notion of convexity, which preserve this result in
higher dimensions. In fact, it turns out that the appropriate condition is quasiconvexity,
a weaker form of convexity, which we will examine in chapter 4.

12



2. Elements of continuum mechanics of
solids

In the previous section, we discussed the minimization of an energy functional. The
energy functional, which is considered later on in this thesis, depends on the actual
deformation of a solid. Therefore, we will denote this chapter to introduce the most
important notions to describe deformations and examine how the material react to applied
forces. The central definition is that of the Cauchy stress tensor, which is used to describe
the internal stress of a specimen in relation to the external applied forces. Furthermore,
elastic materials will be introduced, with the focus on hyperelasticity, where the internal
stresses can be described via a energy function. We follow [7] and [17].

2.1. Deformations

Let us consider a bounded domain (:= open and connected) Ω ⊂ Rd, where we assume
that either d = 2 or d = 3, and that Rd is equipped with a right-handed orthonormal
bases e1, . . . , ed. Furthermore, we assume the boundary Γ := ∂Ω of Ω to be smooth
enough, and specify this wherever needed.

The closure Ω̄ describes the body before it is deformed, and is therefore called reference
configuration. A point x ∈ Ω̄ in the reference configuration is called material point.

A deformation of Ω̄ is a mapping y : Ω̄→ Rd that is smooth enough, injective except
possibly on the boundary of Ω, and orientation-preserving, see Fig. 2.1. The reason why
we exclude injectivity at the boundary is that we allow self-contact at the boundary. We
denote the deformed configuration by y(Ω̄) and introduce the notation

xy := y(x), Ω̄y := y(Ω̄)

to distinguish between material points and spatial points xy ∈ Ω̄y. Throughout the
whole thesis we will stick to this convention and mark quantities defined in the deformed
configuration with a superscript y. The description in terms of material coordinates
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x ∈ Ω̄ is called Lagrangian description, the description in terms of spatial coordinates is
called Eulerian description.

n

ny

x

Ω̄ Ω̄y = y(Ω̄)

xy = y(x)

Lagrangian description Eulerian description
y

Figure 2.1.: Deformation

A central notion is the deformation gradient, defined as the Jacobian of y,

∇y(x) =


∂
∂x1

y1 · · · ∂
∂xd

y1
... . . . ...

∂
∂x1

yd · · · ∂
∂xd

yd

 .
Orientation preservation is the condition

det∇y(x) > 0 for all x ∈ Ω̄,

if y is smooth enough. Under this condition ∇y is invertible. It’s sometimes convenient
to introduce the displacement as u : Ω̄→ Rd

u(x) := y(x)− x,

with displacement gradient
∇u(x) = ∇y(x)− I,

where I denotes the identity matrix.

2.2. The Piola transform

We have now seen two configurations of the specimen: the deformed configuration and
the reference configuration. Later on, when dealing with applied forces we will work in
the deformed configuration, whereas working in the reference configuration is often more
convenient, as it is a fixed domain. Therefore, we will need a tool to transform quantities
form one configuration into the other. This is the Piola transform.
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Definition 2.2.1. If T y(xy) denotes a tensor field over y(Ω̄), then its Piola transform is
the matrix-valued map T : Ω̄→ Rd×d defined by

T (x) := (det∇y(x))T y(xy) (∇y(x))−T = T y(xy) Cof(∇y(x)).

Here, the cofactor matrix and the determinant are defined as usual. They are particular
examples of minors, whose general definition can be found e.g. in [27], Sec. 5.2, or [8],
Sec. 5.4.

We need the divergence of a matrix-valued map is used, which is defined as follows.

Definition 2.2.2. If M : Ω→ Rd×d is a smooth matrix-valued map, then the divergence
of M , denoted by div(M), is a vector, defined by

(div(M))i :=
d∑
j=1

∂xjMij . (2.2.1)

Let’s have a look at properties of the Piola transform which will be used later on.

Lemma 2.2.1 (Piola’s identity). If y ∈ C 2(Ω̄;Rd), then for all x ∈ Ω̄ we have

div (Cof(∇y(x))) = 0.

Proof. We only prove this in the three-dimensional case, as for d = 2 its even simpler.
Note that we can write

Cof(∇y)ij = ∂i+1yj+1∂i+2yj+2 − ∂i+1yj+2∂i+2yj+1,

if we count the indices modulo 3, i.e. 4 7→ 1, 5 7→ 2. We abbreviated the partial derivative
w.r.t. the j-th coordinate by writing ∂j = ∂xj = ∂

∂xj
.

Then, formula (2.2.1) yields the claim.

Theorem 2.2.2 (Properties of the Piola transform). Let Ω ⊂ Rd be a bounded domain,
y ∈ C 2(Ω̄;Rd) be injective, and let T : Ω̄→ Rd×d be the Piola transform of a tensor field
T y ∈ C (y(Ω̄);Rd×d). Then

(i) divT (x) = (det∇y(x)) divy T y(xy) for all xy = y(x), x ∈ Ω̄, and
(ii) For all subsets ω ⊂ Ω̄ with smooth boundary we have

�
∂ω
T (x)ndS =

�
∂ωy

T y(xy)nydSy, (2.2.2)
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where n and ny are outer unit normals to ∂ω and ∂ωy, respectively. In particular,
the area elements dS and dSy at the points x ∈ ∂Ω and xy ∈ ∂Ωy are related by
setting T y = id in equation (2.2.2), i.e.

det∇y(x)|∇y(x)−Tn|dS = |Cof(∇y(x))n|dS = |ny|dSy = dSy. (2.2.3)

The proof of the first claim can be obtained by elementary yet trivial calculations, the
one for the second claim is based on a change of variables and Gauß’ divergence theorem.
It can be found in [17], Thm. 1.1.9.

Remark 2.2.1 (Relating normal vectors). The calculations above imply the following
formula relating the normal vectors of the deformed configuration to the normal vectors
of the reference configuration. If y is a deformation and x ∈ ∂Ω, xy = y(x) ∈ ∂y(Ω), then
the following equation holds

ny(xy) = Cof∇y(x)n(x)
|Cof∇y(x)n(x)| = (∇y(x))−T )n(x)

|(∇y(x))−T )n(x)| . (2.2.4)

2.3. Volume, area, and length elements in the deformed
configuration

The goal of this section is to give a correspondence between quantities defined in the
deformed configuration and quantities defined in the reference configuration by employing
the Piola transform. In particular, this will lead to the introduction of the strain.
If y : Ω̄ → Rd is a deformation and dx is volume element around x in the reference

configuration, then the volume element dxy in the deformed configuration is formally
given by

dxy = det∇y(x)dx. (2.3.1)

We can use this to calculate volumes of deformed regions. So, if ω ⊂ Ω̄ is measurable,
then the volumina of ω and of its deformation ωy := y(ω) are given by

vol(ω) := measd(ω) =
�
ω
dx,

vol(ωy) := measd(ωy) =
�
ωy
dxy =

�
ω

det∇y(x)dx.

The last identity is due to the change of variables formula A.3.5, and thus, only holds
under certain assumptions. This is the reason why the relation (2.3.1) is only formal.
For brevity we use the notation | · | to denote the d-dimensional Lebesgue-measure of a
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set, i.e. |ω| = measd(ω).
As we have seen in Thm. 2.2.2, the following correspondence holds for area elements

(see also Fig. 2.1)

det∇y(x)|∇y(x)−Tn|dS = |Cof∇y(x)n|dS = |ny|dSy = dSy.

Therefore, a measurable subset A of the boundary ∂Ω and its deformation Ay := y(A)
fulfil

area(A) := measd−1(A) =
�
A
dS

area(Ay) := measd−1(Ay) =
�
Ay
dSy =

�
A

(det∇y)|∇y−Tn|dS =
�
A
|Cof∇yn|dS.

We write dS to indicate that the integrals above are surface integrals.
Finally, considerations of how a length element is deformed under a sufficiently smooth

deformation will lead to the introduction of strain tensors. If y is differentiable at a point
x ∈ Ω̄, we can write for all points x+ x′ ∈ Ω̄ for a suitable x′ ∈ Ω

y(x′)− y(x) = ∇y(x)(x′ − x) + o(|x′ − x|),

and therefore,

|y(x′)− y(x)|2 = (x′ − x)T∇y(x)T∇y(x)(x′ − x) + o(|x′ − x|).

Definition 2.3.1. The symmetric tensor

C := ∇yT∇y

is called the right Cauchy-Green strain tensor.

Since by assumption ∇y(x) is invertible, the quadratic form associated to the Cauchy-
Green strain tensor is positive definite:

(ξ, ξ) 7→ ξTC(x)ξ = |∇y(x)ξ2| ≥ 0, ∀ξ 6= 0.

This quadratic form appears when calculating the length of deformed curves. Let
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γ : I → Ω̄ be a curve in the reference configuration. The length of γ is given by

|γ| :=
�
I
|γ′(t)|dt =

�
I

(∑
γ′iγ
′
i

)1/2
dt.

Hence the length of the deformed curve γy = y(γ) is

|γy| =
�
I
|(y ◦ γ)′(t)|dt =

�
I

(
(γ′)TC(γ)γ′

)1/2
dt.

The tensor C is indeed a measure of strain and can be used to measure how much the
underlying deformation y differs from being only a rotation and translation.

Definition 2.3.2. A deformation y : Ω̄→ Rd is called rigid, if there is a c ∈ Rd and a
R ∈ SO(d) such that

y(x) = c+Rx,

i.e. it is only a rotation followed by a translation. We denote by SO(d) := {A ∈ GL(d) :
ATA = AAT = I, det(A) = 1} the special orthogonal group.

Obviously, if y is rigid, then ∇y = R and hence C = ∇yT∇y = id. The converse
statement is also true: If C = id on Ω̄ and det∇y > 0, then y is necessarily rigid (cf. [7],
Thm. 1.8.-1). This tells us that y is rigid, if and only if C = id, and therefore the tensor

E := 1
2(C − id)

measures the “deviation” of y from being a rigid deformation. The tensor E is called
Green-Lagrange or Green-St. Vernant strain tensor.

There is another remarkable property of the Cauchy-Green strain tensor: It completely
determines the deformation up to composition with rigid motions.

Theorem 2.3.1. Let Ω ⊂ Rd be open and connected and assume that the two mappings
y, ỹ ∈ C 1(Ω;Rd) fulfil

∇y(x)T∇y(x) = ∇ỹ(x)T∇ỹ(x) ∀x ∈ Ω,

ỹ is injective, and det y(x) 6= 0 for all x ∈ Ω. Then, there is a vector c ∈ Rd and an
orthogonal matrix R ∈ O(d) such that

y(x) = c+Rỹ(x) ∀x ∈ Ω.

For the proof refer to [7], Thm. 1.8-2.
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Remark 2.3.1 (Summary). As we have seen, volume elements in the deformed and the
reference configuration are related by the determinant of the deformation gradient, and
surface elements are related by the cofactor matrix, both minors of ∇y. This indicates
the importance of the behaviour of minors, which will reappear in the Chapter 3 in
relation with polyconvexity.

2.4. Applied forces and the Cauchy stress tensor

Forces acting on the body cause stresses and deformations. In this section, we will
elaborate on the applied forces and how the specimen will react on them.

We will consider two kind of applied forces

1. applied body forces defined through a force density fy : Ω̄y → Rd per unit volume
in the deformed configuration in the physical unit N m−3;

2. applied surface forces defined by gy : ΓyN → Rd on a measurable subset (w.r.t. the
surface measure) ΓyN ⊂ Γy as density per unit area in the physical unit Pa = N m−2.

Under the following axioms due to Euler and Cauchy on can deduce the existence of
the Cauchy stress tensor.

Axiom (Stress principle of Euler and Cauchy). Let Ω̄y be the deformed configuration of
a body subjected to applied forces represented by fy : Ω̄y → Rd and gy : ΓyN → Rd. Let
Sd−1 ⊂ Rd be the unit sphere. We assume the existence of a vector field

ty : Ω̄y × Sd−1 → Rd,

called Cauchy’s stress vector, such that

1. For any subdomain ωy ⊂ Ω̄y and any point xy ∈ ΓyN ∩ ∂ωy where the joint outer
unit vector ny exists, it holds

ty(xy, ny) = gy(xy).

2. Axiom of balance of forces: For any subdomain ωy ⊂ Ω̄y, it holds
�
ωy
fy(xy)dxy =

�
∂ωy

ty(xy, ny)dSy = 0.
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(a) Isotropic pressure

e

(b) Pure tension

f

e

(c) Pure shear

Figure 2.2.: Examples of loads

3. Axiom of balance of momenta: For any subdomain ωy ⊂ Ω̄y with the outer unit
normal ny, it holds

�
ωy
xy × fy(xy)dxy +

�
∂ωy

xy × ty(xy, ny)dSy = 0.

The axioms of balance of forces and momenta express that the deformed configuration
is in static equilibrium.

Theorem 2.4.1 (Cauchy’s theorem). Let Ωy ⊂ Rd be open and let the applied force
density fy : Ω̄y → Rd be continuous. Furthermore, let ty(·, n) ∈ C 1(Ω̄y;Rd) for every
n ∈ Sd−1 and ty(xy, ·) ∈ C (Sd−1;Rd) for any xy ∈ Ω̄y. Then, there is a symmetric tensor
T y : Ω̄y → Rd×d belonging to C 1(Ω̄y;Rd×d) with

ty(xy, n) = T y(xy)n ∀xy ∈ Ω̄y, ∀n ∈ Sd−1,

−divT y(xy) = fy(xy) ∀xy ∈ Ω̄y,

T y(xy)ny = gy(xy) ∀xy ∈ ΓyN ,

where ny is the outer unit normal to ΓyN . The tensor T y is called Cauchy’s stress tensor.

The proof relies on the axioms of Euler and Cauchy and can be found in [17], Thm. 1.2.2.

Example 2.4.1. Let us consider three basic examples, illustrated in Fig. 2.2, to understand
the Cauchy stress tensor (cf. [7], Sect. 2.3).
First, for a p ∈ R we set

T y(xy) = −pI =


−p 0 0
0 −p 0
0 0 −p

 ,
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where p is a pressure. Then, also ty(xy, ny) = −pny, and thus, the Cauchy stress vector
is always normal to the elementary surface element. This defines a pressure load on Ωy.

Second, let e ∈ R3, with |e| = 1 be a unit vector, τ ∈ R, and recall the following
notation (a⊗ b)ij = aibj . If we set

T y(xy) = τe⊗ e,

then the Cauchy stress tensor is called a pure tension if τ > 0 or a pure compression if
τ < 0 in the direction e. For the stress vector we get ty(xy, ny) = T y(xy)ny = τ(e · ny)e,
which is always parallel to e and is directed outward (resp. inward) for τ > 0 (resp.
τ < 0) on the faces with normals ny = ±e and vanishes on the faces orthogonal to e.
Furthermore, if we assume that e = e1 equals the first basis vector, then T y takes the
form

T y =


τ 0 0
0 0 0
0 0 0

 .

As third example, let e, f ∈ R3, both unit vectors, orthogonal to each other, e · f = 0,
and σ ∈ R. Then

T y(xy) = σ(e⊗ f + f ⊗ e)

is called pure shear, with shear stress σ relative to directions e and f . The Cauchy stress
vector takes the form ty(xy, ny) = σ ((e · ny)f + (f · ny)e). If we now assume that e = e1

and f = e2, then T y reads as follows

T y =


0 σ 0
σ 0 0
0 0 0

 . 4

Since the choice of the reference configuration is arbitrary, the description of the
equilibrium should be independent of the chosen reference. Formally, this is described in
the axiom of frame-indifference (or frame-invariance), which states that, if a deformation
z of Ω̄y is z(x) := Ry(x) for all x ∈ Ω̄ and some rotation R ∈ SO(d), then for all x ∈ Ω̄
and any n ∈ Sd−1, it holds that

tz(xz, Rn) = Rty(xy, n).
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Since
tz(xz, Rn) = T z(xz)Rn = Rty(xy, n) = RT y(xy)n

one immediatelly gets by setting Rn = ñ ∈ Sd−1 the identity

T z(xz) = RT y(xy)RT .

2.5. Equilibrium equations and the principle of virtual work

Before we start, we clarify some notation. The simple dot denotes the Euclidean product
u · v = ∑

uivi and the colon symbolizes the matrix inner product A : B = ∑
ij AijBij =

tr
(
ATB

)
.

We need the following lemma, cf. [24] Sec. 3.1.2.

Lemma 2.5.1 (Green’s formula). Let Ω ⊂ Rd be bounded, measurable, and with Lipschitz
boundary ∂Ω. Furthermore, let u ∈W 1,p(Ω), v ∈W 1,q(Ω) where 1/p+ 1/q ≤ (d+ 1)/d,
if d > p ≥ 1, d > q ≥ 1 with q > 1 if p ≥ d, and with p > 1 if q ≥ d. Then,

�
Ω

∂u

∂xi
vdx =

�
∂Ω
uvnidS −

�
Ω
u
∂v

∂xi
dx, (2.5.1)

where n = (n1, . . . , nd) is the exterior normal.

Using the formula above we can prove an analogous result for tensor fields.

Lemma 2.5.2 (Green’s formula for tensor fields). Let Ω ⊂ Rd be bounded, measurable,
and with Lipschitz boundary ∂Ω. Let T ∈ W 1,p(Ω;Rd×d) be a tensor field and v ∈
W 1,q(Ω;Rd) be a vector field where 1/p+ 1/q ≤ (d+ 1)/d, if d > p ≥ 1, d > q ≥ 1 with
q > 1 if p ≥ d, and with p > 1 if q ≥ d. Then the following relation holds

�
Ω

divT · vdx = −
�

Ω
T : ∇vdx+

�
∂Ω

(Tn) · vdx, (2.5.2)

where n is the exterior normal. Note that divT is a vector defined via

(divT )i :=
d∑
j=1

∂jTij .

Proof. By the definition of vector-valued Sobolev functions we can apply (2.5.2) compo-
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nentwise and obtain

�
Ω

divT · vdx =
� ∑

i

∑
j

∂jTijvi

 dx =
∑
ij

�
Ω
∂jTijvi

(2.5.2)=
∑
ij

�
∂Ω
TijnjvidS −

∑
ij

�
Ω
Tij∂jvidx

=
∑
i

�
∂Ω

(Tn)ividS −
�

Ω
T : ∇vdx.

Theorem 2.5.3 (Principle of virtual work in the deformed configuration). Let Ωy ⊂ Rd

be bounded, measurable, and with Lipschitz boundary ∂Ωy. Let T y ∈W 1,p(Ωy;Rd×d) be
a tensor field. Furthermore, let fy ∈ Lp(Ωy;Rd) and gy ∈ Lp(∂Ω;Rd). If T y is a weak
solution of the following equations

−divy T y = fy in Ωy,

T yny = gy on ΓyN , (2.5.3)

i.e., satisfies the identity
�

Ωy
T y : ∇yvdxy =

�
Ωy
fy · vdxy +

�
ΓyN

gy · vdSy (2.5.4)

for all vector fields v ∈W 1,q(Ω;Rd) where 1/p+ 1/q ≤ (d+ 1)/d, if d > p ≥ 1, d > q ≥ 1
with q > 1 if p ≥ d, and with p > 1 if q ≥ d with v = 0 on Γ\ΓyN , then it also satisfies
(2.5.3) in a weak sense.

Proof. Let v be as in the theorem. Then integrating the product of divy T y + fy = 0
with v over Ωy yields

0 =
�

Ωy
(divy T y + fy) · vdxy (2.5.2)=

�
Ωy
−T y : ∇yv + fy · vdxy +

�
ΓyN

T yny · vdSy,

which yields the integral identity after recalling that T yny = gy on ΓyN . Conversely,
(2.5.4) reduces to �

Ωy
T y : ∇yvdxy =

�
Ωy
fy · vdxy,

if v = 0 on Γy, and hence by (2.5.2) we obtain divy T y + fy = 0. Using this equation and
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the Green’s formula once again, the integral identity reduces to
�

ΓyN
T yny · vdSy =

�
ΓyN

gy · vdSy,

which implies that the boundary condition T yny = gy holds on ΓyN .

Remark 2.5.1. To prove Thm. 2.5.3 we relied on Lemma 2.5.2. Its assumptions, however,
are not realistic even for very regular bodies under regular loadings. Therefore, the
principle of virtual work is sometimes stated in a formal way, see for instance [17], Thm.
1.2.4, [7], Thm. 2.4-1.

Definition 2.5.1. The equations

−divy T y = fy in Ωy,

T yny = gy on ΓyN ,

T y = (T y)T in Ωy

are called the equations of equilibrium in the deformed configuration. The variational

We now have formulated equilibrium equations in the deformed configuration, which is
not known a priori, but part of the sought solution. To resolve this issue, we will rewrite
these equations in Lagrangian variables. This can be done by mapping the Cauchy stress
tensor to the reference configuration with the aid of the Piola transform. We will see that
the boundary value in the reference configuration has the same form as in the deformed
configuration.

Definition 2.5.2. We shall define the 1st Piola-Kirchhoff stress tensor S : Ω̄→ Rd as
the Piola transform of the Cauchy stress tensor T y, i.e.

S(x) := T y(xy) Cof∇y(x) = (det∇y(x))T y(xy)∇y(x)−T ,

where xy = y(x), x ∈ Ω̄.

The properties of the Piola transform, Thm. 2.2.2, imply

divS(x) = (det∇y(x)) divy T y(xy).

This means that the equilibrium equations of the deformed configuration are still of
“divergence structure” when being transformed into the equations over the reference
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configuration. Since this was the crucial ingredient to apply Green’s formula and establish
the equivalence between the variational formulation and the formulation as boundary
value problem, we will have a similar result for the principle of virtual work in the
reference configuration.

Note that, while the Cauchy stress tensor is symmetric, the 1st Piola-Kirchhoff tensor
is not symmetric in general. Therefore, one defines the 2nd Piola-Kirchhoff stress tensor
Σ by

Σ(x) = ∇y(x)−1S(x) = (∇y(x))−1T y(xy) Cof∇y(x),

which is symmetric.

As we have already transformed the Cauchy stress tensor, we only need to transform
the applied force densities to formulate the principle of virtual work in the reference
configuration. Firstly, if we are given a body force density fy : Ω̄y → Rd we are looking
for a force density f : Ω→ Rd such that for every subdomain ω ⊂ Ω it holds that

�
ω
f(x)dx =

�
ωy
fy(xy)dxy,

i.e. the total force acting on subsets of the specimen must be the same. Since we already
have derived dxy = det∇y(x)dx, we obtain

f(x) = fy(xy) det∇y(x). (2.5.5)

Similarly, we have for mass densities ρ : Ω → R and ρy : Ωy → R the following
correspondence

ρ(x) = ρy(xy) det∇y(x). (2.5.6)

Note that this implies �
Ω
ρ(x)dx =

�
Ωy
ρy(xy)dxy,

and thus, that the total mass of the body is conserved.

Secondly, for a given surface force density gy : ΓyN → Rd, we look for g : ΓN → Rd,
y(ΓN ) =: ΓyN , such that for all γ ⊂ ΓN we have that

�
γ
g(x)dS =

�
γy
gy(xy)dSy.

By the properties of the Piola transform, Thm. 2.2.2, and in particular the correspondence

25



between area elements, we arrive at

g(x) = gy(xy)|Cof∇y(x)n(x)|, x ∈ ΓN . (2.5.7)

The description of the forces in the reference configuration enables us to introduce a
new notion.

Definition 2.5.3. An applied body force fy is a dead load, if its associated density in
the in reference configuration f is independent of the deformation y.

This is, for instance, the case of gravity field, for which the body force in the reference
configuration is given by

f(x) = −gρ(x)e3 = (0, 0,−gρ(x)).

Then, for the body force in the deformed configuration we have fy(xy) = (0, 0,−gρy(xy)).
Analogously, an applied surface force is a dead load, if its associated density in the
reference configuration is independent of the deformation y. Note that, applied forces are
very rarely dead loads in reality, but instead the force densities f, g usually appear not
only as functions of x ∈ Ω, but also of the deformation itself. As an example consider
the pressure load, where the surface force in the deformed configuration is given by

gy(xy) = −pny(xy),

for a xy ∈ ΓyN , and p ∈ R, called pressure. The minus sign indicates that the vector gy

points inwards for p > 0. To show that the pressure load cannot be a dead load, recall
the correspondence between g and gy, equation (2.5.7), and the respective outer unit
normals, equation (2.2.4), to derive

g(x) = |Cof∇y(x)n(x)|gy(xy)

= −p|Cof∇y(x)n(x)|ny(xy) = −pCof∇y(x)n(x)

= −p(det∇y(x))∇y(x)−Tn(x), (2.5.8)

for a x ∈ ΓN . Thus, g takes the form

g(x) := ĝ(x,∇y(x)),

where the mapping ĝ : ΓN × Rd×d → Rd is given by ĝ(x, F ) = −pCof(F )n(x).
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Having all transformations at hand, we can formulate the principle of virtual work in
the reference configuration.

Theorem 2.5.4 (Principle of virtual work in the reference configuration). Let Ω ⊂ Rd

be bounded, measurable, and with Lipschitz boundary ∂Ω. If 1st Piola-Kirchhoff tensor
S(x) = (det∇y(x))T y(xy)∇y(x)−T belong toW 1,p(Ω;Rd×d), then it satisfies the following
equations in the reference configuration:

−divS = f in Ω,

Sn = g on ΓN . (2.5.9)

Moreover, if v ∈ W 1,q(Ω;Rd) is a vector field with v = 0 on Γ\ΓN where 1/p + 1/q ≤
(d+ 1)/d, if d > p ≥ 1, d > q ≥ 1 with q > 1 if p ≥ d, and with p > 1 if q ≥ d, then the
equations (2.5.9) are equivalent to the variational formulation

�
Ω
S : ∇vdx =

�
Ω
f · vdx+

�
ΓN

g · vdS.

Proof. This follows from the equations (2.5.3) and the definitions of f, g and S. The
assertion on the equivalence is then established as in the proof of Thm. 2.5.3.

Remark 2.5.2 (on the terminology). The equation on ΓN is called a boundary condition
of traction. Later boundary condition of place of the form

y = yD on ΓD,

where yD is a given mapping, will appear. If this is the case, one can define the set of
admissible configurations as A := {y : Ω̄→ R3 : det∇y > 0; y = yD on Γ0} of which the
tangent space at y0 is given by Ty0A := {v : Ω̄→ R3 : v = 0 on ΓD}. This means the
vector fields occurring in the principle of virtual work are to be understood as variations,
and are essentially mathematical, “virtual” quantities, which explains the name of the
principle. For additional considerations, see [7], Sec. 2.6. and further sources mentioned
there.

Remark 2.5.3 (Summary). The axioms of Euler and Cauchy imply the existence of the
Cauchy stress tensor T y, which unifies all applied forces into one tensor. The divergence
structure of the Cauchy Stress tensor divT = f allows us to give a variational formulation,
called the principle of virtual work. Unfortunately, the forces (and thus, the Cauchy stress
tensor) are defined in the deformed configuration in terms of the unknown deformation y.
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To resolve this issue, one needs the Piola transform to express T y in terms of reference
configuration. Here, the nice properties of the Piola transform come into play, which
tell us that the also T y maintains its divergence structure. This allows us to obtain
the analogous variational formulas over the reference configuration as well as over the
deformed configuration.

2.6. Conservative forces

Recall from the example of the pressure load, that the density in the reference configuration
was of the form g(x) = ĝ(x,∇y(x)). This serves as motivation to only consider applied
forces, which are either dead loads, or are of the form

f(x) = f̃(x, y(x),∇y(x)), x ∈ Ω,

g(x) = g̃(x, y(x),∇y(x)), x ∈ ΓN ,

where f̃ : Ω× Rd × Rd×d → Rd and g̃ : Ω× Rd × Rd×d → Rd are given.

Definition 2.6.1. An applied body force with density f : Ω → Rd in the reference
configuration is called conservative, if for all smooth v : Ω̄→ Rd vanishing on ΓD = Γ\ΓN
the integral �

Ω
f(x) · v(x)dx =

�
Ω
f̃(x, y(x),∇y(x)) · v(x)dx

can be written as Gâteaux derivative

F ′(y)v =
�

Ω
f̃(x, y(x),∇y(x)) · v(x)dx

of a functional of the form

F : {y : Ω̄→ Rd} → R

F (y) =
�

Ω
F̂ (x, y(x),∇y(x))dx.

Then, the function F̂ : Ω× Rd × Rd×d → is called potential of the applied body force.

Example 2.6.1. A dead load is conservative, with

F̂ (x, η, ξ) = f(x) · η.

Thus, the gravitational force density f(x) = −gρS(x)e3 is a conservative force. More
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generally, a density f(x) = f̃(x, y(x)) is conservative, if

f̃(x, η) = gradη F̂ (x, η) ∀x ∈ Ω, η ∈ Rd. 4

Analogously, an applied surface force with density g : ΓN → Rd in the reference
configuration is conservative, if the integral

�
ΓN

g(x) · v(x)dS =
�

ΓN
g̃(x, y(x),∇y(x)) · v(x)dS

can be written as the Gâteaux derivative

G′(y)v =
�

ΓN
g̃(x, y(x),∇y(x)) · v(x)dS

of a functional

G : {y : ΓN → Rd} → R

G(y) =
�

ΓN
Ĝ(x, y(x),∇y(x))dS,

where Ĝ : ΓN × Rd × Rd×d → R is called potential of g.
Next, we will show that the pressure load is conservative. Thinking of a submerged

object, which experiences an increasing pressure as it sinks further, the assumption that
p is constant is not very realistic. Instead, we will assume that p depends on the position
in the deformed configuration.

Theorem 2.6.1. Let p : Rd → [0;∞) be smooth and let y : Ω̄ → Ω̄y be a given
deformation. Then, then pressure force gy(xy) := −p(xy)ny(xy), xy ∈ Γy is conservative
(after being transformed to the reference configuration).

Proof. As already derived in equation (2.5.8), we have

g(x) = g̃(x, y(x),∇y(x)) = −p(y(x)) Cof∇y(x)n(x).

Consider ΓN := Γ and the functional

F (y) = −
�

Ω
p(y(x)) det∇y(x)dx. (2.6.1)

Then, via tedious calculations, the use of Green’s formula, and Piola identity, one can
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show that

F ′(y)v = −
�

Ω

�
Γ
p(y(x)) Cof∇y(x)n(x) · v(x)dS

and thus that the Gâteaux derivative can indeed be written as integral over g̃(x, y,∇y) ·
v(x). The details can be found in A.6 in full rigour.

2.7. Physical properties and elastic materials

Elastic materials

The balance of forces in the deformed configuration (2.5.3) consists of d equations, whereas
we have to find d(d+ 3)/2 unknowns in total, namely d components of y and, exploiting
the symmetry of T y, d(d+ 1)/2 components of T y. In order the problem to be solvable,
we complete the system with a constitutive model for the material response. In particular,
we will consider elastic materials.

Definition 2.7.1. A material is called elastic (or sometimes Cauchy-elastic), if the
Cauchy stress tensor at any point xy = y(x) ∈ Ω̄y is completely determined by the
deformation gradient ∇y(x) at the corresponding point x ∈ Ω̄. Formally, the material is
called elastic, if there is a mapping

T̃D : Ω̄×GL+(d)→ Rd×dsym ,

such that
T y(xy) = T̃D(x,∇y(x)) (2.7.1)

for all x ∈ Ω̄. In this definition the mapping T̃D is called response function to the stress
tensor, and the relation given by (2.7.1) is the so-called constitutive equation of the
material. The superscript D indicates that we consider the Cauchy stress tensor in the
deformed configuration. A material is called homogeneous if its response function does
not depend on x. Otherwise it is called inhomogeneous.

Remark 2.7.1. By definition, the response function at any point must be defined for all
matrices in GL+(d). This implicitly means that the definitions only holds for materials,
with the property that for a given x ∈ Ω̄ and a F ∈ GL+(d) there is a deformation y
such that F = ∇y(x). Therefore, this definition rules out materials subjected to internal
constraints such as incompressible materials (see [7], Sec. 5.7).
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By virtue of the Piola-transform one can also define response function S̃ for the 1st

Piola-Kirchhoff stress tensor in terms of the response function of T y

S̃(x, F ) = (detF )T̃D(x, F )F−T , (2.7.2)

with x ∈ Ω̄ and F ∈ GL+(d). The 1st Piola-Kirchhoff stress tensor can be written as

S(x) = S̃(x,∇y(x)). (2.7.3)

Remark 2.7.2. For some materials one needs more refined models. For instance, sometimes
its necessary to relate the Cauchy stress tensor not only to ∇y, but to higher order
gradients. Such materials are called nonsimple materials. A different approach is to
relate the Cauchy stress tensor to the gradient ∇y in the whole deformed configuration.
This is called nonlocal elasticity. A brief introduction and various examples can be found
in [17], Sec. 2.5.

The response function of an elastic material does not depend on the choice of a
particular reference configuration. Therefore, as in the case of the Cauchy stress tensor,
we want the response function to be invariant under rotations, i.e., to be frame-indifferent.
Recall that for the Cauchy stress tensor the axiom of frame-indifference means that for a
deformation y and a rotation R ∈ SO(d) the Cauchy stress tensor of the deformation z
given by z(x) := Ry(x) satisfies T z(xz) = RT y(xy)RT . Therefore, we have for all x ∈ Ω̄,
and for all R ∈ SO(d) and any deformation y that

RT y(xy)RT = T z(xz) = T̃D(x,∇Ry(x)) = T̃D(x,R∇y(x)),

and thus the response function satisfies for any F ∈ GL+(d) the relation

T̃D(x,RF ) = RT̃D(x, F )RT .

Consequently, the axiom of frame-indifference implies the identity

RT S̃(x,RF ) = S̃(x, F ).

Hyperelastic materials

Now we introduce the notion of hyperelasticity. This captures the idea that deformations
are reversible, in the sense that the deformation energy can be stored in the material
and used later to do work without any loss. One could imagine dropping a rubber ball.

31



When the ball hits the ground, it gets deformed, and deformation energy will be stored
inside the ball, which then causes the ball to regain its original form and bounce back
into the air.

Definition 2.7.2 (Hyperelasticity, stored energy). An elastic material is called hypere-
lastic, if there exits a stored energy function ϕ : Ω̄×GL+(d)→ [0,∞) such that

S̃(x, F ) = ∂Fϕ(x, F ).

Proposition 2.7.1 (Frame-indifference for hyperelastic materials). The axiom of frame-
indifference is equivalent the following identity

ϕ(x,RF ) = ϕ(x, F ), (2.7.4)

for all rotations R ∈ SO(d) and all F ∈ GL+(d).

Proof. We prove the assertion in two steps. First, we show that frame-indifference is
equivalent to ∂Fϕ(x,RF ) = ∂Fϕ(x, F ). In the second step we check that ∂Fϕ(x.RF ) =
∂Fϕ(x, F ) is equivalent to ϕ(x,RF ) = ϕ(x, F ).
Step 1. By the definition of hyperelasticity, S̃ is frame-indifferent, namelyRT S̃(x,RF ) =

S̃(x, F ), if and only if RT∂Fϕ(x,RF ) = ∂Fϕ(x, F ) holds for any R ∈ SO(d). To compute
the partial derivative of the mapping ϕR : F 7→ ϕR(x, F ) := ϕ(x,RF ) we fix R ∈ SO(d)
and use Taylor’s theorem to obtain

ϕR(x, F +G) = ϕ(x,RF +RG)

= ϕ(x,RF ) + ∂Fϕ(x,RF ) : RG+ o(|RG|)

= ϕR(x, F ) +RT∂Fϕ(RF ) : G+ o(|G|).

Therefore, we get ∂FϕR(x, F ) = RT∂Fϕ(x,RF ) for all F ∈ GL+(d). Thus, we have

RT∂Fϕ(x,RF ) = ∂Fϕ(x, F ) ⇐⇒ ∂F (ϕR(x, F )− ϕ(x, F )) = 0. (2.7.5)

This proves the first claim.
Step 2. Clearly, if (2.7.4) is satisfied, then also ∂F (ϕR(x, F )− ϕ(x, F )) = 0 holds for all

F ∈ GL+(d). For the converse statement, note that the set GL+(d) is connected (cf. [17], p.
29). Therefore, the relation ∂F (ϕR(x, F )− ϕ(x, F )) = 0 implies that ϕR(x, F )− ϕ(x, F )
is a constant K = K(R) depending on R. Hence, there exists a mapping K : SO(d)→ R
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such that we have

ϕ(x,RF )− ϕ(x, F ) = K(R) ∀F ∈ GL+(d). (2.7.6)

Testing (2.7.6) successively for F = I, F = R, F = R2, etc. we find that

ϕ(x,Rn) = ϕ(x, I) + nK(R)

and thus, |ϕ(x,Rn)| ≥ n|K(R)|−|ϕ(x, I)|. IfK(R) 6= 0, we would get that limn→∞ |ϕ(x,Rn)| =
∞. Since {Rn} is compact and ϕ is continuous for almost all x (since ϕ(x, ·) is differen-
tiable), it takes a maximum on {Rn}, which yields a contradiction. Thus, K(R) = 0.

Since we do not allow the material to deform to a point, or a plane, or even intersect
itself, we set up the natural condition on ϕ

ϕ(x, F )
{
→ +∞ if detF → 0+

= +∞ if detF ≤ 0.
(2.7.7)

One can extend ϕ(x, ·) by +∞ to the set of matrices with nonpositive determinants. This
extension makes ϕ continuous as a map Rd×d → R ∪ {+∞}.
For the rest of the thesis we will assume a special form of ϕ, which is in accordance

with (2.7.7). Let us suppose there are constants ε, p, q, r > 0, such that, for all x ∈ Ω̄
and all F ∈ Rd×d, ϕ satisfies the following inequality

ϕ(x, F ) ≥
{
ε (|F |p + |Cof F |q + (detF )r) if detF > 0
+∞ if otherwise.

(2.7.8)

Again, this means that large deformation gradients and changes of volume and surface
contribute to the energy stored in the material.

This assumption on ϕ covers examples such as neo-Hookean, or Ogden materials, which
are used to model materials like rubber, polymers, and similar biological tissue (for a
definition refer to [17], Sec. 2.4).

Furthermore, the assumption (2.7.8) allows us to conclude coercivity of the functional
E(y) =

�
Ω ϕ(x,∇y)dx, which is necessary to apply the direct method (the precise

argument will be given in Sec. 3.2).
An issue here, however, is that such a natural physical property clashes with convexity of

the stored energy function, which is desirable property as it implies lower semicontinuity.
Therefore, we cannot apply the direct method naively and have to circumvent this
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nonconvexity of ϕ by other, more suitable, notions of convexity. Let us make this point
precise (cf. [7], Thm. 4.8-1) via the following

Theorem 2.7.2. Let d ≥ 2.

(i) There is no function ϕ : Ω̄ × Rd×d → R ∪ {+∞} such that ϕ(x, ·) is convex and
finite on GL+(d) for x ∈ Ω̄ and satisfies (2.7.7).

(ii) Let x ∈ Ω̄ such that the function

ϕ(x, ·) :GL+(3)→ R

F 7→ ϕ(x, F )

is convex. The axiom of frame-indifference implies that for any deformation y of
the reference configuration Ω̄, the eigenvalues τi of the Cauchy stress tensor T y(xy)
at a point xy = y(x) of the deformed configuration satisfy the inequalities

τ1 + τ2 ≥ 0,

τ2 + τ3 ≥ 0,

τ3 + τ1 ≥ 0. (2.7.9)

The proof can be found in [7], Thm. 4.8-1. For the first assertion only, see [17],
Prop. 2.3.4.
The first statement rules out the convexity of stored energy function with explicit

dependence on detF . The second assertion says that it cannot be expected that the
eigenvalues of the Cauchy stress tensor satisfy the inequalities (2.7.9) at all points in all
deformed configurations. This fails even in very simple examples: for instance in the
case of an object subjected to uniform pressure (cf. Ex. 2.4.1), in which case the Cauchy
stress tensor is of the form T y(xy) = −pI.

In order to stress that the stored energy function cannot be convex, in the mathematical
elasticity literature (e.g. [7]) the symbol W is used instead of ϕ, as it resembles the graph
of a non-convex function. We will adopt this notion.
The goal of the next section is to find a suitable, weaker notion of convexity respect-

ing the coercivity assumption (2.7.8) but still allowing us to conclude (weak) lower
semicontinuity.
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3. Existence of minimizers for polyconvex
materials

As discussed in chapter 2, our goal is to minimize a functional of the form

E(y) =
�

Ω
ϕ(x,∇y(x))dx−F .

To do so, we are aiming at employing the direct method. However, we have that the stored
energy ϕ is in general not convex, so we have to use another notion of convexity ensuring
weak lower semicontinuity. The right concept is polyconvexity, which we introduce in
Section 3.1. We examine the advantages of polyconvexity and prove that polyconvexity
implies weak lower semicontinuity. These results will be used in section 3.2, where we
eventually prove the existence of minimizers of the energy functional for polyconvex,
hyperelastic materials.

3.1. Polyconvexity

The definition of polyconvexity was originally introduced by Morrey in [21] but then
used by Ball [2] in the frame of elasticity. For defining polyconvex functions we need the
minors of a matrix. As we mainly work in dimension d = 3, and thus, only have to deal
with 3× 3-matrices, we will give the definition of polyconvexity in this particular case.

Definition 3.1.1. Let F ∈ Rd×d be a square matrix and denote the vector of all minors
of F with M(F ). In particular, we have M(F ) = (F,Cof F,detF ) for d = 3.

A function ϕ : Rd×d → R∪ {+∞} is said to be polyconvex, if there exists a convex and
continuous function ϕ̃ : R2d2+1 → R ∪ {+∞}, such that

ϕ(F ) = ϕ̃(M(F )). (3.1.1)

An elastic material, whose stored energy functional is given by a polyconvex function,
is also called polyconvex.
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Remark 3.1.1. One can generalize the definition of polyconvexity to higher dimensions.
To do so, one keeps the defining property (3.1.1), but considers minors of higher order,
check [8], Def. 1.5.

We want to remind the reader of the following fact: The cofactor matrix can be used
to calculate the inverse of an invertible matrix

M−1 = 1
detM Cof MT .

In other words: The product of a matrix with the transposed cofactor matrix yields a
diagonal matrix with the determinant as entries

M Cof(M) = det(M)I.

We saw in Section 2.3 that given a deformation y, the cofactor matrix and the
determinant of the Jacobian ∇y of this deformation describe how the area and volume
change under the deformation.

Example 3.1.1. Convex functions are clearly polyconvex. The map F 7→ detF is polycon-
vex, but not convex. Thus, polyconvexity is indeed a weaker notion of convexity. 4

Similar to the scalar case of the direct method, we are given a weakly converging
minimizing sequence (yn) and need to conclude (weak) lower semicontinuity of the
functional. For a sufficiently nice function ϕ(x, z, v) one can show that, if zk → z almost
everywhere and vk ⇀ v weakly in L1, then the functional (z, v) 7→

�
ϕ(x, z, v) is lower

semicontinuous (using Mazur’s Lemma). Although we only know that yn ⇀ y, we can
show that also Cof(∇yn) and det∇yn converge in a weak sense. This is due to the fact
that we can rewrite the minors of ∇yn in divergence form and then apply the Gauß
divergence theorem. Setting zk := yk, vk := M(∇yk) = (∇yk,Cof(∇yk),det(∇yk)) and
ϕ(x, z, y) as in the definition of polyconvexity yields the fact that the energy functional is
weak lower semicontinuous. Let’s make the above statement precise (see also [17], Thm.
3.3.1).

Theorem 3.1.1 (Weak lower semicontinuity). Let ξ : Ω×Rs×Rσ → R∪{+∞} satisfying
the following properties:

(i) ξ(·, z, v) : Ω→ R ∪ {+∞} is measurable for all (z, v) ∈ Rs × Rσ,
(ii) ξ(x, ·, ·) : Rs × Rσ → R ∪ {+∞} is continuous for almost every x ∈ Ω,
(iii) ξ(x, z, ·) : Rσ → R ∪ {+∞} is convex. Assume further that for all (z, v) ∈ Rs × Rσ

ξ(·, z, v) ≥ ψ for some ψ ∈ L1(Ω).
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Furthermore, let zk → z almost everywhere in Ω and vk ⇀ v weakly in L1(Ω;Rσ). Then
�

Ω
ξ(x, z(x), v(x))dx ≤ lim inf

k→∞

�
Ω
ξ(x, zk(x), vk(x))dx.

The proof can be found in [17], Thm. 3.3.1. We will only sketch it here.

Proof-Sketch. W.l.o.g. one can assume ξ ≥ 0, otherwise just use ξ − ψ. Let (zk, vk) be a
(nonrelabelled) subsequence realizing the lim inf, i.e.,

lim
k→∞

�
Ω
ξ(x, zk(x), vk(x))dx =: α.

Set gk(x) := ξ(x, zk(x), vk(x))− ξ(x, z(x), vk(x)). Then gk converges to zero in measure.
We will not proof this claim here, but refer to [17]. By the convergence in measure, there
is a subsequence (gk) (again not relabelled) with gk → 0 almost everywhere.

Apply Mazur’s lemma A.4.11 to vk ⇀ v in L1 to obtain a sequence of convex combina-
tions

wk =
Nk∑
j=k

λk,jvj ,
Nk∑
j=k

λk,j = 1,

such that wk → w strongly in L1. By applying Jensen’s inequality to the concave function
−ξ(x, z, ·) one obtains

ξ(x, z(x), wk(x)) +
∑
j

λk,jgj(x) ≤
∑
j

λk,jξ(x, zj(x), vj(x)).

Passing to the limit for k →∞, integrating over Ω and applying Fatou’s lemma A.1.1
yields the result.

Remark 3.1.2. We only sketched the proof for two reasons. First, we want to point out
the similarity to the proof of Theorem 1.3.1. However, ξ depending on z makes everything
much more problematic. We simplified the proof by claiming that gk converges to 0 in
measure. This construction takes care of, or cancels out respectively, the z-dependence
and allows us to proceed in the already familiar manner. Secondly, we will give a rigorous
proof later on, where we will show that polyconvexity implies quasiconvexity and establish
that the functional is weak lower semicontinuous if the integrand is quasiconvex. To do
so, we will need new tools, in particular Young measures, and therefore we postpone this
to chapter 4.

Eventually, we want to apply this theorem in the case of a polyconvex integrand. In
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particular, we set zk = yk and vk = M(∇yk) = (∇yk,Cof∇yk,det∇yk). Hence, we need
to make sure that we have weak convergence of the minors if yk ⇀ y in W 1,p. This is
the goal of the next theorems, i.e. we now are about to prove that the cofactor matrix as
well as the determinant of ∇yn converge nicely, if we only know that yn ⇀ y weakly in
W 1,p. To illustrate the idea of the proof, we sketch it for the case y : R2 → R2 before
proving everything in detail. The proof is based on the fact, that minors can be written
in a divergence form, which allows us to use the Gauß divergence theorem. We refer to
[27], Chap. 5.2, for a thorough general treatment.
Suppose y : R2 → R2. Then

∇y =
(
y1,1 y1,2

y2,1 y2,2

)
,

where yi,j = ∂yi
∂xj

. Then

det∇y = y1,1y2,2 − y1,2y2,2 = div(y1y2,2;−y1y2,1) = ∇ · (y1y2,2;−y1y2,1),

where ( · ; · ) denotes the components of a vectorfield. If yn ⇀ y weakly in W 1,p, then
multiplying with a test function φ and employing the Gauß divergence theorem yields

�
det∇ynφ =

�
∇ · (yn1 yn2,2;−yn1 yn2,1)φ = −

�
(yn1 yn2,2;−yn1 yn2,1)∇φ

→ −
�

(y1y2,2;−y1y2,1)∇φ =
�

det∇yφ.

The general theorem (and the respective proof) for arbitrary minors can be found in
[27], Lemma 5.10 (or [8], Theorem 8.20) and reads as:

Theorem 3.1.2 (General weak convergence of minors). Let Ω ⊂ Rd be a domain and
M : Rm×d → R be an (r×r)-minor, r ∈ {1, . . . ,min{d,m}}, and let (yk) ⊂W 1,p(Ω,Rm),
where p ∈ (r,∞). If

yk ⇀ y in W 1,p,

then
M(∇yk) ⇀M(∇y) in Lp/r.

Remark 3.1.3. In the proof we are going to use the Rellich-Kondrachov theorem, Thm.
A.2.3, to conclude (strong) Lp-convergence from the given weak W 1,p-convergence. To
do so, one has to select a subsequence (because of the compact embedding). Therefore,
the conclusion of the theorem has to be stated as follows: there is a subsequence ykn
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such that
M(∇ykn) ⇀M(∇y).

Since we eventually apply this theorem in the context of the direct method, where we
nevertheless pass to subsequences, it does not matter and we use the same formulation
as in [27].

Let us state and prove the result rigorously in the case Ω ⊂ R3 for the cofactor matrix
([7], Thm. 7.5-1. and [17], Thm. 3.2.1) and the determinant ([7], Thm. 7.6-1 and [17],
Thm. 3.2.2).

Theorem 3.1.3 (Weak convergence of Cof). Let Ω ⊂ R3 be a domain and let p ≥ 2.
Then the mapping y ∈W 1,p 7→ Cof∇y is well-defined and continuous. Furthermore, if
yk ⇀ y weakly in W 1,p(Ω;R3) and Cof∇yk ⇀ H in Lq(Ω), for some q ≥ 1, then

Cof∇y = H.

Proof. For the proof a number technical lemmata will be needed. These are either stated
and proved either directly after the proof or in the appendix.

Step 1: Claim: the bilinear mapping

A : (Lp(Ω))2 → Lp/2(Ω)

(ξ, η) 7→ ξη

is well-defined and continuous.
To prove that A is well-defined one uses Hölder’s inequality
�
|ξη|p/2 =

�
|ξ|p/2|η|p/2 ≤

(� (
|ξ|p/2

)2
)1/2 (� (

|η|p/2
)2
)1/2

= ‖ξ‖p/2p ‖η‖p/2p <∞.

With the step above, we also have proved that the bilinear map A is bounded, which
implies by Lemma 3.1.4 the continuity of A.

Step 2: Claim: the map

W 1,p → Lp/2(Ω)

y 7→ Cof∇y

is well defined and continuous. The Cofactor matrix in 3d has the form (do not sum over
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repeated indices and count them modulo three, [17], Thm. 3.2.1)

(Cof∇y)i,j = ∂yj+2
∂xi+2

∂yj+1
∂xi+1

− ∂yj+2
∂xi+1

∂yj+1
∂xi+2

.

Since y ∈ W 1,p we know that ∂yk
∂xl
∈ Lp for all 1 ≤ k, l ≤ 3. Therefore, the Cofactor

matrix is a linear combination of products of Lp-functions, and thus, the first step implies
the claim.

Step 3: Now we use the representation of Cof as divergence. Let y be smooth enough,
e.g. y ∈ C 2(Ω). By Schwarz Theorem we can write

(Cof∇y)ij = ∂xi+2

(
yj+2∂xi+1yj+1

)
− ∂xi+1

(
yj+2∂xi+2yj+1

)
,

and consequently, by Gauß-Green Theorem (integration by parts) we have for all y ∈ C 2

and all test functions φ ∈ D that
�

Ω
(Cof∇y)ijφdx =

�
Ω

(
∂xi+2

(
yj+2∂xi+1yj+1

)
− ∂xi+1

(
yj+2∂xi+2yj+1

))
φdx

= −
�

Ω

(
yj+2∂xi+1yj+1

)
∂xi+2φ+

�
Ω

(
yj+2∂xi+2yj+1

)
∂xi+1φdx. (3.1.2)

Moreover, we have that
∣∣∣∣�

Ω
(Cof∇y)i,jφdx

∣∣∣∣ ≤ ‖(Cof∇y)i,j‖L1‖φ‖L∞
(∗)
≤ c1(φ)‖y‖2W 1,2∣∣∣∣�

Ω
yi∂jyk∂lφdx

∣∣∣∣ ≤ ‖∂lφ‖L∞ �
Ω
|yj∂jyk|dx ≤ c2(φ)‖y‖2W 1,2 .

The estimate (∗) is not a problem, because one could argue with (using Cauchy’s estimate
and L2 ⊂ L1 since Ω bounded)

�
|∂iyj∂kyk| ≤ c

(�
|∂iyj |2

)(�
|∂lyk|2

)
≤ c′‖∂iyj‖2L2 ≤ c′′‖∇y‖2W 1,2 .

Since C 2 is dense in W 1,2 and we have continuity, the equation (3.1.2) is valid in W 1,2

as well, and by Sobolev embeddings, even in W 1,p, for p ≥ 2.

Step 4: Claim: for p ≥ 2 and φ ∈ D fixed, we have

yn ⇀ y in W 1,p =⇒
�

Ω
yni ∂jy

n
k∂mφdx→

�
yi∂jyk∂mφ.
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This would then imply by step 3

yn ⇀ y in W 1,p =⇒
�

Ω
(Cof∇yn)ijφdx→

�
(Cof∇y)ijφdx.

To prove the claim consider the bilinear mapping

(ξ, χ) ∈ Lr(Ω)×W 1,p(Ω)→
�
ξ∂jχ∂mφdx.

Now, if 1
p + 1

r = 1, we can apply Hölder’s inequality to obtain

∣∣∣∣� ξ∂jχ∂mφdx

∣∣∣∣ ≤ ‖∂mφ‖L∞ �
|ξ∂jχ| ≤ c

(�
|ξ|r

)1/r (�
|∂jχ|p

)1/p

Since, if r̃ < r and Lr ⊂ Lr̃, the calculation above also holds if 1
p + 1

r ≤ 1, and thus, the
bilinear mapping is continuous. Therefore, Prop. 3.1.5 is applicable, and we have

ξn → ξ in Lr(Ω)
χn ⇀ ξ in W 1,p(Ω)

}
=⇒

�
ξn∂jχ

n∂mφdx→
�
ξ∂jχ∂mφdx.

From the Rellich-Kondrachov compact embedding Theorem A.2.3 we obtain

W 1,p b Lr for all 1 ≤ r < p∗ =


3p

3−p if p < 3
+∞ if p ≥ 3.

Thus, we get that, if yn ⇀ y in W 1,p, then yn → y in Lr for all 1 ≤ r < p∗ (possibly
passing to a subsequence).

Since it is possible to find a number r that simultaneously satisfies

1
p

+ 1
r
≤ 1 and r < p∗

for p ≤ 2, our claim is proved.

Step 5: We will combine the steps above to prove the assertion of the theorem. Let
(yn) ⊂ W 1,p, p ≥ 2 such that Cof∇yn ∈ Lq, q ≥ 1 and such that yn ⇀ y in W 1,p and
Cof∇yn ⇀ H in Lq.

By Step 4, we know
�

(Cof∇yn)ijφdx→
�

(Cof∇y)ijφ ∀φ ∈ D ,

41



and by assumption �
(Cof∇yn)ijφdx→

�
Hijφdx.

Therefore (Cof∇y −H) ∈ L1(Ω) and
�

(Cof∇y −H)φdx = 0 φ ∈ D .

Hence, by the fundamental theorem of calculus of variations (cf. [28], Lemma 10.21), we
get Cof∇y = H almost everywhere in Ω and the proof is complete.

We state and prove the necessary lemmata now.

Lemma 3.1.4. Let X,Y, Z be normed vector spaces and B : X × Y → Z be a bilinear
mapping. Then the following are equivalent:

(i) B is continuous
(ii) B is continuous at (0, 0)
(iii) B is bounded, i.e. there is a c > 0 such that

‖B(x, y)‖Z ≤ c‖x‖X‖y‖Y ∀(x, y) ∈ X × Y

Moreover, if at least one of the spaces X,Y is a Banach Space, then the above properties
are equivalent to:

(i) B is separately continuous, i.e. continuous in each coordinate.

Proof. (i) =⇒ (ii) is trivial.
(ii) =⇒ (iii) by contradiction. Suppose (iii) is false. Then, for each n ∈ N there is

(0, 0) 6= (xn, yn) ∈ X × Y such that ‖B(xn, yn)‖Z > n2‖xn‖X‖yn‖Y . Set

x̃n := xn
n‖xn‖

→ 0, ỹn := yn
n‖yn‖

→ 0.

By the bilinearity of B we have

‖B(x̃n, ỹn)‖Z = 1
n2‖xn‖X‖yn‖Y

‖B(xn, yn)‖Z >
1

n2‖xn‖X‖yn‖Y
n2‖xn‖X‖yn‖Y = 1 9 0,

and thus, a contradiction.
(iii) =⇒ (i): Let (iii) hold and assume xn → x, yn → y. Then, there is a M > 0
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such that ‖xn‖X ≤M and ‖yn‖Y ≤M . Therefore, we have

‖B(xn, yn)−B(x, y)‖Z ≤ ‖B(xn, yn)−B(xn, y)‖Z + ‖B(xn, y)−B(x, y)‖Z
= ‖B(xn, yn − y)‖Z + ‖B(xn − x, y)‖Z
≤ c‖xn‖X‖yn − y‖Y + c‖xn − x‖X‖y‖Y
< cM (‖xn − x‖X + ‖yn − y‖Y )→ 0,

which proves the claim.
The last statement can be proved by using the Banach-Steinhaus Theorem.

We also will need the following fact about continuous bilinear forms, cf. [7], Thm. 7.1-5,
for the proof.

Proposition 3.1.5. Let V be a normed space and W be a Banach space. Furthermore,
let B : V ×W → R be a continuous bilinear mapping. Then

vk → v in V and wk ⇀ w in W =⇒ B(vk, wk)→ B(v, k).

Next, we are going to establish a result similar to Thm. 3.1.3 for the determinant of
∇y. Notice that

det∇y = 1
6

3∑
i,j,k,l,m,n=1

εijkεlmn∂lyi∂myj∂nyk

and Hölder’s inequality implies that the trilinear mapping

(ξ, η, ζ) ∈ (Lp(Ω))3 7→ ξηζ ∈ Lp/3(Ω)

is continuous. This suggests that we need at least p ≥ 3 for the mapping

W 1,p → L1(Ω)

y 7→ det∇y

to be well-defined and continuous. However, we can even do better! If we have additional
information on the Cof, we can weaken the requirement on p, by realizing that

det∇y =
∑
j

∂jy1 (Cof∇y)1j .

Then Hölder’s inequality shows that det∇y is well defined in Ls, if y ∈W 1,p for p ≥ 2
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and Cof∇y ∈ Lq with
1
s

:= 1
p

+ 1
q
≤ 1.

Under these assumptions we can get the desired convergence properties for the determinant
as well, as stated in the following theorem.

Theorem 3.1.6 (Weak convergence of determinant). Let Ω be a bounded Lipschitz
domain in R3. For each p ≥ 2 and each q such that 1/s = 1/p + 1/q ≤ 1 is satisfied, the
mapping

(y,Cof∇y) ∈W 1,p(Ω;R3)× Lq(Ω;R3×3) 7→ det∇y :=
∑
j

∂jy1 (Cof∇y)1j ∈ L
s(Ω)

is well-defined and continuous. Moreover, if yk ⇀ y in W 1,p, Cof∇yk ⇀ H in Lq and
det∇yk ⇀ δ in Lr for r ≥ 1, then Cof∇y = H and det∇y = δ.

We only present the proof ideas for p ≥ 3, the whole prove can be found in [17],
Thm. 3.2.2 in full rigour.

Proof-sketch. By Thm. 3.1.3 we have the convergence result for the Cof. The continuity
of the mapping follows by Hölder’s inequality similarly to the proof of Thm. 3.1.3. The
identity det∇y := ∑

j ∂jy1 (Cof∇y)1j can be proved for y ∈ C 2 using the identity
(detA)I = A(Cof A)T and Piola’s identity, and thus, we get for every test function φ ∈ D

�
Ω
∂jy1 (Cof∇y)1j φdx = −

�
Ω
y1 (Cof∇y)1j ∂jφdx.

Now, if p ≥ 3 the mapping y 7→
�

Ω ∂jy1 (Cof∇y)1j φdx is continuous w.r.t theW 1,p-norm.
Therefore, one can proceed as in the proof of Thm. 3.1.3.

Corollary 3.1.7. Let Ω ⊂ R3 be a bounded Lipschitz domain and let p > 3. If yk ⇀ y

weakly in W 1,p(Ω;R3), then det∇yk ⇀ det∇y weakly in Lp/3(Ω).

Remark 3.1.4 (On the choice of p). As opposed to the general case of Thm. 3.1.2, where
we need p > r strictly to conclude weak continuity of a r × r-minor, we could choose
p ≥ 2, with equality allowed, in the case of the Cof in Thm. 3.1.3. However, this does not
work for the determinant, where in general, we need p > 3. A counterexample for p = 3
can be found in [17], directly after Cor. 3.2.3., showing that the sequential continuity
breaks down if {|∇yk|d} ⊂ L1 concentrates at the boundary of the half plane. If one
assumes, that det∇yk > 0 almost everywhere, for all k, then one can choose p = 3. In
fact, one could prove an even better result. These remarks show, that the optimal choice
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of p is a very subtle issue. A rigorous treatment is not in the scope of this thesis, but
instead we refer to the papers of Müller, [22], [23], and further resources mentioned there.

Summarizing the above results, we have that polyconvexity implies weak lower semi-
continuity of the functional.

Corollary 3.1.8. Let Ω ⊂ R3 be a bounded Lipschitz domain and let φ : Ω̄ × R3×3 →
R ∪ {∞} be a polyconvex stored energy function, i.e. assume there is a Carathéodory
integrand ϕ̃ : Ω̄×R9×9×1 → R∪ {∞} such that ϕ̃(x, · ) is convex ∀aax ∈ Ω and such that

∀aax ∈ Ω∀F ∈ R3×3 : ϕ(x, F ) = ϕ̃(M(F )).

Furthermore, assume p > 3. Then, the functional given by E(y) :=
�

Ω ϕ(x,∇y(x))dx is
sequentially lower semicontinuous with respect to the weak W 1,p(Ω;R3)-topology.

Proof. Let (yk) ⊂ W 1,p(Ω;R3) be a weakly convergent subsequence, i.e., let y ∈
W 1,p(Ω;R3) such that yk ⇀ y in W 1,p. By Thm. 3.1.2 we know that also Cof(∇yk) ⇀
Cof(∇y) in Lp/2 and det∇yk ⇀ det∇y in Lp/3. Now, we can apply Thm. 3.1.1, setting
vk := M(∇yk), zk := yk and ξ(x, z, v) := ϕ̃(x,M(∇y)) = ϕ(x,∇y).

Remark 3.1.5. Noting that polyconvexity is a sufficient condition for weak lower semicon-
tinuity, we can ask ourself the question: is it also a necessary condition? The answer is
no and the search for a necessary condition will lead to the notion of quasiconvexity as
we will see in Chapter 4.

3.2. Existence result

We have all the ingredients now to state our first existence result for hyperelastic,
polyconvex materials.

Theorem 3.2.1. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary, and ϕ :
Ω̄× R3×3 → R ∪ {+∞} a stored energy function satisfying

(i) Polyconvexity: let there be a Carathéodory integrand ϕ̃ : Ω̄× R9×9×1 → R ∪ {+∞}
such that

ϕ̃(x, · ) is convex for almost all x ∈ Ω and

ϕ(x, F ) = ϕ̃(x,M(F )) ∀aax ∈ Ω ∀F ∈ R3×3.
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(ii) Coercivity and frame-indifference:

ϕ(x, F ) =
{
→∞ if detF → 0
=∞ if detF ≤ 0

∀aax ∈ Ω, and (3.2.1)

ϕ(x,RF ) = ϕ(x, F ) ∀R ∈ SO(d).

Furthermore assume that ∃c > 0, p ≥ 2, q ≥ p/(p− 1), r > 1 such that

ϕ(x, F ) ≥
{
c (|F |p + |Cof F |q + (detF )r) if detF > 0
+∞ if otherwise.

(iii) Admissibility: Let ∂Ω = Γ = ΓD ∪ ΓN a measurable partition of the boundary with
meas2(ΓD) > 0, let yD ∈W 1,p(Ω,Rd) be given and let

A =
{
y ∈W 1,p(Ω,Rd) : Cof∇y ∈ Lq(Ω,Rd×d), det∇y ∈ Lr(Ω),

y = yD on ΓD, det∇y > 0 a.e.
}
6= ∅.

(iv) y 7→ F(y) be such that −F is weak lower semicontinuous, and F(y) ≤ K̃
(
‖y‖sW 1,p + 1

)
for ≤ s < p.

(v) Let there be a y ∈ A such that E(y) <∞.

Then the minimum of
E(y) =

�
Ω
ϕ(x,∇y(x))dx−F(y)

over A exists.

Proof. Since ϕ̃ is a Carathéodory integrand, the mapping x 7→ ϕ̃(x,M(∇y)) is measurable.
By the coercivity assumption and the growth condition on F , we get

E(y) ≥ c
�

Ω
|∇y|p + |Cof∇y|q + (det∇y)r − K̃‖y‖sW 1,p − K̃.

Applying Poincaré’s inequality A.2.7 yields

E(y) ≥ c′
(
‖y‖pW 1,p + ‖Cof∇y‖qLq + ‖det∇y‖rLr

)
− K̃,

for a constant c′ > 0 and all y ∈ A. Let (yk) ⊂ A be a minimizing sequence, i.e.,
satisfying lim E(yk) = infA E < ∞. The previous coercivity estimates yield that the
sequence (∇yk,Cof∇yk,det∇yk) is bounded in the reflexive Banach spaceW 1,p×Lq×Lr,
and thus, has subsequence weakly converging to some element (y,A, δ) ∈W 1,p×Lq ×Lr.
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By the Thms. 3.1.3 and 3.1.6, we can conclude Cof∇yk ⇀ A = Cof∇y in Lq and
det∇yk ⇀ δ = det∇y in Lr. Theorem 3.1.1 implies that E is sequentially weakly lower
semicontinuous. We are left with verifying that y is admissible. The boundary conditions
are satisfied by the continuity of the trace, Thm. A.2.1. Moreover, det∇y > 0 is satisfied,
for if not, then E(y) =∞, because the stored energy would be ∞, by (3.2.1). But this
contradicts E(y) = lim inf E(yk) <∞.
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4. Quasiconvexity and existence results for
quasiconvex materials

As we already mentioned, polyconvexity of the integrand is sufficient, but not necessary
for weak lower semicontinuity of an integral functional. In this section, we will treat
the notion of quasiconvexity, first introduced by Morrey in [21]. As it will turn out,
quasiconvexity is necessary for weak lower semicontinuity. To prove this we will introduce
a general tool, so called Young measures (or parametrized measures). Furthermore,
the relation between polyconvexity and quasiconvexity is examined, which makes, as
a by-product, the assertion about polyconvexity and weak lower semicontinuity, i.e.
Thm. 3.1.1, rigorous.

4.1. Quasiconvexity

We follow [17], cf. Definition 4.1.1. (as opposed to the definition provided in [27], Sec. 5.1).

Definition 4.1.1. Let Ω ⊂ Rd be a bounded Lipschitz domain. We say that ϕ : Rd×d →
R ∪ {∞} is quasiconvex, if for any A ∈ Rd×d and every y ∈W 1,∞

0 (Ω;Rd) it holds that

ϕ(A) ≤ 1
measd(Ω)

�
Ω
ϕ(A+∇y(x))dx,

whenever the integral on the right hand side exists.

Remark 4.1.1. The definition of quasiconvexity is independent of the choice of a particular
Lipschitz domain, i.e. in the above definition Ω could be replaced by an arbitrary bounded
Lipschitz domain and the set of quasiconvex functions would still be the same. For the
proof of this claim see [17], Section 4.1 or [27], Lemma 5.2.
Moreover, in the definition of quasiconvexity, if ϕ satisfies a p-growth condition, one

could use W 1,p
0 test functions instead of W 1,∞

0 , cf. [27], Lemma 5.2.
Remark 4.1.2. An issue in the definition of quasiconvexity is whether to allow ϕ to
take the value ∞ or not. If we allow ϕ to take ∞, we could run into problems. In
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fact, it cannot be shown that for such functions quasiconvexity is equivalent to weak
lower semicontinuity. It has not yet been proven, that quasiconvexity for such functions
is a sufficient condition, cf. [8], Rem. 5.2. Furthermore, quasiconvex functions taking
the value +∞ are not necessarily rank-one convex as this would be in the case for
quasiconvex functions into R, see [17], Prop. 4.1.6. However, defining quasiconvexity only
for ϕ : Rd×d → R conflicts with the choice we made to extend the stored energy function
to {∞} to make it continuous (cf. formula (2.7.7) and the following paragraph). To solve
this issue, and in accordance with the focus on mathematical elasticity, we follow [17]
and define quasiconvexity for functions into the extended real numbers.

Before we start discussing the properties of quasiconvex functions, we want to give
a intuition of why quasiconvexity is somehow a natural notion. Quasiconvexity of an
energy functional means that affine deformation amount to less energy than internally
distorted deformations. Let

F(y) =
�

Ω
ϕ(∇y(x))dx

be given with quasiconvex integrand ϕ. Furthermore, let y be an affine deformation, i.e.
ya is of the form ya(x) = y0 +Ax, for y0 ∈ R3 and A ∈ R3×3, and thus, ∇ya = A. Then,
quasiconvexity of ϕ implies that

F(ya) =
�

Ω
ϕ(A) ≤

�
Ω
ϕ(A+∇ψ(x))dx = F(ya + ψ).

As quasiconvexity is not a pointwise notion, it can be difficult to verify if a given
function is quasiconvex or not. To circumvent this problem we will introduce another,
weaker concept of convexity, which can be easily checked.

Definition 4.1.2. A function ϕ : Rd×d → R ∪ {+∞} is called rank-one convex, if for all
A,B ∈ Rd×d with rank(A−B) ≤ 1 and all λ ∈ [0, 1] the following inequality is satisfied

ϕ(λA+ (1− λ)B) ≤ λϕ(A) + (1− λ)ϕ(B).

Note, that rank(A−B) ≤ 1 if and only if there are a, b ∈ Rd with A−B = a⊗ b.

Rank-one convexity is related to ellipticity of partial differential equations. In fact, if
ϕ ∈ C 2(Rd×d), then rank-one convexity is equivalent to the so-called Legendre-Hadamard
condition

d∑
i,j=1

d∑
α,β=1

∂2ϕ(ξ)
∂i,α∂ξj,β

λiλjµαµβ ≥ 0,
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for every λ, µ ∈ Rd, and ξ ∈ Rd×d. We will not go into detail but instead refer to [8],
Chapter 5.
Whereas in the one-dimensional case all notions of convexity introduced so far are

equivalent, this is not the case for d ≤ 2. For higher dimensions only the following
implications hold.

Theorem 4.1.1. Let ϕ : Rd×d → R. Then the following chain of implications holds true

ϕ convex =⇒ ϕ polyconvex =⇒ ϕ quasiconvex =⇒ ϕ rank-one convex.

For the proof, see [27], Prop. 6.1, or [8], Theorem 5.3. The converse implications do
not hold in general.
As it may cause trouble considering functions which can have the value ∞ (see Rem.

4.1.2), we stated the previous result for functions into R. For functions ϕ : Rd×d →
R ∪ {+∞}, the implications

ϕ convex =⇒ ϕ polyconvex =⇒ ϕ rank-one convex,

still hold true (refer to [8], Thm. 5.3).
Theorem 4.1.1 provides a necessary and sufficient condition for quasiconvexity, which

are in general easier to verify.

4.2. Young measures

Young measures, named after its inventor L.C.Young [30], are a major tool in nowadays
theory of calculus of variations. We are going to use them to prove that quasiconvexity of
the integrand is a necessary condition for weak lower semicontinuity. In the first section,
we want to lay out the main ideas of the proof and the importance of Young measures in
a very informal fashion, which we will make more precise in the following parts.

Introduction

Suppose we are given a functional F(v) :=
�

Ω f(x, v(x))dx where f : Ω × R → R is
continuous and bounded and Ω ⊂ Rd is a bounded Lipschitz domain. Consider a sequence
vj ⇀ v in L2(Ω). Then, (F(vj)) is bounded and contains a convergent subsequence. But
how to compute this limit for an arbitrary integrand f? Or, equivalently, what is the
weak-* limit in L∞ of the sequence (f(x, vj(x)))j? The problem is that, although vj ⇀ v,
in general f(x, vj) 6⇀∗f(x, v). Formulated differently, if we have vj ⇀ v and f(vj)⇀∗g,
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then in general g 6= f(v). Thus, we have no chance to pass to the limit for nonlinear f !
As an example consider

vj(x) :=
{
−1 if jx− bjxc ∈ (0, 1/2]
1 if jx− bjxc ∈ (1/2, 1)

on Ω = (0, 1). Then vj ⇀ v ≡ 0, but for f(x) = x2, we get that f(vj) ≡ 1 6= 0 = f(v).
Young measures contribute in clarifying this, for they provide a finer description of

the limit of the sequence (F(vj))j . Informally, this due to the fact that Young measures
encode the oscillations, so that the information about the oscillations does not get lost.
We give a precise definition below. For the moment let a Young measure be a family

of probability measures ν = (νn)x∈Ω associated to the sequence vj such that for any
continuous function f : Ω× RN → R we have

f̄(x) =
�
f(x,A)dνx(A)

is measurable. The crucial observation is that the weak-* limit of fj is exactly f̄ , i.e.

lim
j→∞

�
f(x, vj)ψ(x)dx =

�
ψ(x)

�
f(x,A)dνx(A)dx =

�
ψ(x)f̄(x). (4.2.1)

If we absorb the test function into f and set f(x,A) = A, then (4.2.1) implies that
vj ⇀

�
Adνx(A).

The idea is the following: Consider a highly oscillating sequence (e.g., take a sequence
jumping between −1 and 1 with increasing frequency as above) and a fixed point x0 ∈ Ω.
Then, the value of the function at x0 is 1 with probability 1/2 or −1 with probability
1/2. This concept of introducing a measure at a point, telling us the probability of a
function value to be attained, yields the Young measures.
Using Young measures we show that quasiconvexity is sufficient for weak lower semi-

continuity. The proof relies on two properties of Young measures, namely a lower
semicontinuity result resembling Fatou’s lemma, presented in Prop. 4.3.1, and a Jensen-
type inequality for quasiconvex functions, given in Prop. 4.3.2. We give an idea how to
apply these results to prove that quasiconvexity implies weak lower semicontinuity, for
the rigorous result see Thm. 4.3.4. If we assume that the following lower semicontinuity
result for Young measures hold

lim inf
�

Ω
f(Vn(x))dx ≥

�
Ω

(�
Rd
f(ξ)dνx(ξ)

)
dx, (4.2.2)
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we get weak lower semicontinuity of v 7→
�

Ω f(v(x))dx by

lim inf
�

Ω
f(vn)dx

(4.2.2)
≥

�
Ω

(�
Rd
f(ξ)dνx(ξ)

)
dx

Jensen
≥

�
Ω
f

(�
ξdνx(ξ)

)
dx

(4.2.1)=
�

Ω
f(v(x))dx.

In the next sections we make these arguments precise.

Fundamental properties of Young measures

Before we start with the treatment of Young measures we need to introduce the notion
of equiintegrability (from [27], A.3 Measure Theory).

Definition 4.2.1. A family (fj) ⊂ Lp(Ω;Rm) is called Lp-equiintegrable (sometimes also
called uniformly integrable), if one of the following equivalent conditions hold

(i) limR↗∞ supj∈N
�
{|fj |>R} |fj |

pdx = 0,
(ii) limR↗∞ lim supj→∞

�
{|fj |>R} |fj |

pdx = 0,
(iii) for every ε > 0, there is a δ > 0 such that for all Borel sets B ⊂ Ω with meas(B) < δ

we have
sup
j∈N

�
B
|fj |pdx < ε.

The following theorem gives us an equivalent description of equiintegrability for the
particular case of p = 1.

Theorem 4.2.1 (Dunford-Pettis). Let Ω ⊂ Rd be bounded and open. A norm-bounded
family (fj) ⊂ L1(Ω) is equiintegrable if and only if it is weakly sequentially precompact in
L1(Ω).

For the proof refer to [4], Thm. 4.7.18 and note that we additionally employed the
Eberlein-Šmulian Theorem A.4.4 here.

The following theorem states the existence of a Young measure, as well as the conver-
gence result, we claimed in the introduction.

Theorem 4.2.2 (Fundamental theorem of Young measures). Let (vj) ⊂ Lp(Ω,RN ) be
a norm-bounded sequence, where p ∈ [1,∞]. Then, there exists a subsequence (non-
relabelled) of (vj) and a family of probability measures

(νx)x∈Ω ⊂M1(RN ),
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called the (Lp-)Young measure generated by the (sub)sequence (vj), such that the following
assertions are true:

(i) The family (νx)x∈Ω is weakly-* measurable, that is, for all Carathéodory integrands
f : Ω× RN → R, the compound function

x 7→ 〈f(x, ·), νx〉 :=
�
f(x,A)dνx(A)

is Lebesgue-measurable.
(ii) If p ∈ [1,∞), then �

Ω

�
|A|pdνx(A)dx <∞,

or, in the case of p =∞, there is a compact set K ⊂ RN such that

supp νx ⊂ K ∀aax ∈ Ω.

(iii) For all Carathéodory integrands f : Ω× RN → R with the property that the family
(f(x, vj))j is uniformly L1-bounded and equiintegrable, it holds that

f(x, vj) ⇀
(
x 7→

�
f(x,A)dνx(A)

)
in L1. (4.2.3)

Parametrized measures ν = (νx)x satisfying items (i) and (ii) above are called Young
measures and we write ν = (νx)x ∈ Yp(Ω,RN ).

Writing out (iii) yields

f(x, vj) ⇀
(
x 7→

�
f(x,A)dνx(A)

)
in L1

⇐⇒�
Ω
f(x, vj(x))ψ(x)dx→

�
Ω

�
ψ(x)f(x,A)dνx(A)dx ∀ψ ∈ L∞.

Since (f(x, vj))j is uniformly L1-bounded and equiintegrable if and only if (ψ(x)f(x, vj))j
is L1-bounded and equiintegrable, we can absorb the test function ψ into f . Then, we
can express (4.2.3) equivalently as

�
Ω
f(x, vj(x))dx→

�
Ω

�
f(x,A)dνx(A)dx =

�
Ω
〈f(x, ·); νx〉 =: 〈〈f, ν〉〉.

We do not present the proof of the Fundamental Theorem here, as it would go beyond
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the scope of this thesis. Instead, the reader may refer to [27], Chapter 4.1.

Definition 4.2.2. Young measures generated by gradients of Lp functions are called
gradient Young measures. More precisely, let ν ∈ Yp(Ω;Rm×d), p ∈ [1,∞]. We say
that ν is a W 1,p-gradient Young measure, and write ν ∈ GYp(Ω,Rm×d), if there is a
norm-bounded sequence (uj)j ⊂W 1,p(Ω,Rm) such that (∇uj) generates ν.

Note, that not every Young measure is a gradient Young measure. This leads to the
question whether we can characterize all gradient Young measures. This question is
positively answered by the theorem of Kinderlehrer and Pedregal, which will be stated
later in this section.

Now we summarize some properties of (gradient) Young measures, which will be needed
to prove that quasiconvexity implies lower semicontinuity.

Lemma 4.2.3. Let (vj) ⊂ Lp(Ω;RN ), p ∈ (1,∞), be a sequence generating the Young
measure ν ∈ Yp(Ω;RN ). Then,

vj ⇀ v in Lp,

where v(x) := [ν](x) = [νx] = 〈id, νx〉 =
�
Adνx(A).

Proof. Since Lp is reflexive (p ∈ (1,∞) by assumption), bounded sequences are weakly
compact, and thus, by the Dunford-Pettis theorem 4.2.1 also L1-equiintegrable. Therefore,
we can apply the assertion (iii) in the Fundamental Theorem of Young measures 4.2.2 for
the integrand f(x,A) = id(A) = A.

4.3. Lower semicontinuity

Now, we are about to prove the equivalence of weak lower semicontinuity and quasicon-
vexity of the integrand. Recall that in the proof of Thm. 1.3.1, where we established
weak lower semicontinuity for a convex integrand, we used two main ingredients: Fatou’s
Lemma and Jensen’s inequality. This will also be the goal in the case of quasiconvex
integrands, as we already indicated in the introduction. Therefore, we want to state and
prove similar results for Young measures.

We start with a lower semicontinuity result for the duality pairing, which in some sense
will replace Fatou’s Lemma.

Proposition 4.3.1 (Lower semicontinuity result for Young measures). Let (vj) ⊂
Lp(Ω;RN ), p ∈ [1,∞), be a norm-bounded sequence, generating the Young measure
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ν ∈ Yp(Ω;RN ) and let f : Ω×RN → [0,∞) be a Carathéodory integrand (not necessarily
equiintegrable). Then,

lim inf
j→∞

�
Ω
f(x, vj(x))dx = lim inf

j→∞
〈〈f, δ(vj)〉〉 ≥ 〈〈f, ν〉〉.

Proof. For k ∈ N set fk(x,A) := min{f(x,A), k}. This ensures equiintegrability of (fk)
and thus (iii) of the Fundamental Theorem 4.2.2 is applicable, which yields

�
Ω
fk(x, vj(x))dx→ 〈〈fk, ν〉〉 =

�
Ω

�
fk(x,A)dνx(A)dx.

Since f ≥ fk, we have
lim inf
j→∞

�
Ω
f(x, vj(x))dx ≥ 〈〈fk, ν〉〉.

By letting k →∞ and using the monotone convergence theorem A.1.2, we obtain the
assertion.

Now, we state a Jensen-type inequality. Whereas the classical Jensen inequality holds
for convex integrands only (and therefore, also for quasiconvex integrands), this result
will work for quasiconvex, but not necessarily convex, functions as well. In this sense, it
extends the classical Jensen inequality. Still, one needs a certain growth condition on the
integrand.

Definition 4.3.1. We say a Carathéodory function f : Ω× Rm×d → R has p-growth, if
there is an M > 0 such that

|f(x,A)| ≤M (1 + |A|p) .

Additionally, one needs to assume the following property on the Young measure.

Definition 4.3.2. A Young measure (νx)x = ν ∈ Yp(Ω;RN ) is called homogeneous, if
νx is constant almost everywhere in x ∈ Ω.

Proposition 4.3.2 (Jensen-type inequality). Let ν ∈ GYp(B(0, 1),Rm×d) with p ∈
(1,∞) be a homogeneous gradient Young measure. Then, for all quasiconvex functions
f : Rm×d → R with p-growth it holds that

f([ν]) ≤
�
fdν.

We only want to sketch the proof here. For all details, refer to [27], Lemma 5.11.
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Proof. For convex integrands the conclusion holds by the classical Jensen inequality. Set
F := [ν].

We claim, that there is a (uj) ⊂W 1,p
Fx (B(0, 1);Rm) (meaning u|∂B(0,1) = Fx in a trace

sense), such that (∇uj) generates ν, and that this sequence (∇uj) is Lp-equiintegrable
(cf. [27], Lemma 4.13).

Note: uj ∈ W 1,p
Fx ⇐⇒ uj − Fx ∈ W 1,p

0 and ∇F = F . By the definition of quasicon-
vexity (with y = uj − Fx) we have

h(F ) ≤ 1
meas(Ω)

�
Ω
h(∇uj(x))dx

for all j ∈ N.
The growth assumption on h yields that (h(∇uj)) is equiintegrable, and thus, by

passing to the Young measure limit as j →∞, we obtain for the right-hand side

h(F ) ≤ 1
meas(Ω)

�
Ω

�
hdνdx =

�
hdν.

(Here, the homogeneity of ν plays an important role.)

To apply the Jensen-type inequality above, one needs a homogeneous Young measure.
Therefore, the last ingredient for proving lower semicontinuity is a localization (also
called blow-up) technique, which allows us to work with homogeneous measures.

Proposition 4.3.3 (Blow-up technique). Let ν = (νx)x ∈ GYp(Ω;Rm×d), p ∈ [1,∞), be
a gradient Young measure. Then, for almost all x0 ∈ Ω the probability measure νx0 is a
homogeneous gradient Young measure, νx0 ∈ GYp(B(1, 0);Rm×d).

We will not repost the proof here, but instead refer to [27], Prop. 5.14.
After we collected the necessary tools, we are now able to verify that quasiconvexity

implies weak lower semi continuity, a result which was proved by Morrey in 1952 in [21]
under stronger assumptions, and later by Acerbi and Fusco in 1984 in [1] using different
methods. For simplicity, we will only consider functionals not depending on u.

Theorem 4.3.4 (Quasiconvexity =⇒ w.l.s.c). Let p ∈ (1,∞) and let f : Ω× Rm×d →
[0,∞) be a Carathéodory integrand with p-growth and such that f(x, ·) is quasiconvex
for almost every x ∈ Ω. Then, the functional F(u) :=

�
Ω f(x,∇u(x))dx is weakly lower

semicontinuous on W 1,p.

For u-dependent functionals we will need an additional lemma, stated in [27], Lemma
5.19.
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Proof. Let (uj) ⊂ W 1,p(Ω,Rm) such that uj ⇀ u in W 1,p. This means ∇uj ⇀ ∇u
in Lp. Therefore, (∇uj) is bounded (cf. Thm. A.4.5). Thus, it generates a gradient
Young measure ν ∈ GYp(Ω;Rm×d). By Lemma 4.2.3 we have that ∇uj ⇀ [ν] and by
the uniqueness of the weak limit ∇u = [ν]. From the result on lower semicontinuity for
Young measures, Prop. 4.3.1, we get

lim inf
j→∞

�
Ω
f(x,∇uj(x))dx ≥ 〈〈f, ν〉〉 =

�
Ω

�
f(x,A)dνx(A)dx. (4.3.1)

Now, by the blow-up technique from Prop. 4.3.3, we can consider νx ∈ GYp(B(0; 1);Rm×d)
as homogeneous Young measure for almost all x ∈ Ω. Thus, the Jensen-type inequality
Prop. 4.3.2 applies and yields

�
f(x,A)dνx(A) ≥ f(x,∇u(x)) ∀aax ∈ Ω. (4.3.2)

Combining (4.3.1) and (4.3.2), we obtain

lim inf
j→∞

F(uj) ≥ F(u),

and thus, have proved the assertion.

As already mentioned, quasiconvexity is actually equivalent to weak lower semiconti-
nuity.

Theorem 4.3.5 (w.l.s.c =⇒ quasiconvexity). Let f : Rm×d → R be continuous with
p−growth. If the functional

F(y) =
�

Ω
f(∇y(x))dx,

where y ∈W 1,p(Ω,Rm), is weakly lower semicontinuous, then f is quasiconvex.

Proof. By Remark 4.1.1 we have to verify that

f(A) ≤ 1
|B(0, 1)|

�
B(0,1)

f(A+∇ψ(z))dz,

where A ∈ Rm×d, ψ ∈ W 1,∞
0 (B(0, 1),Rm), and B(0, 1) denotes the ball with radius 1

centred at 0. One can assume (after a possible translation and scaling of the domain)
that B(0, 1) b Ω holds.
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By Thm. A.5.5, there exists for all j ∈ N a Vitali covering of B(0, 1) in disjoint balls,
i.e. a(j)

k ∈ B(0, 1) and r(j)
k > 0, with the additional property that r(j)

k ≤ 1/j, such that

B(0, 1) = Z(j) ∪
∞⋃
k=1

B(a(j)
k , r

(j)
k ),

where |Z(j)| = 0. Since B(0, 1) b Ω we can find a smooth function h : Ω\B(0, 1)→ Rm

with h(x) = Ax for x ∈ ∂B(0, 1). Define

yj(x) :=

 Ax+ a
(j)
k ψ

(
x−a(j)

k

r
(j)
k

)
if x ∈ B(a(j)

k , r
(j)
k )

h (x) if x ∈ Ω\B(0, 1).

Since ψ is bounded, we can conclude that yj ⇀ y in W 1,p, where

y(x) :=
{

Ax if x ∈ B(a(j)
k , rk(j))

h(x) if x ∈ Ω\B(0, 1).

Therefore, by the weak lower semicontinuity, we get
�
B(0,1)

f(A)dx ≤ lim inf
j→∞

�
B(0,1)

f(∇yj(x))dx

= lim inf
j→∞

∞∑
k=1

�
B(a(j)

k
,r

(j)
k

)
f

(
A+∇ψ

(
x− a(j)

k

r
(j)
k

))
dx

= lim inf
j→∞

∞∑
k=1

(r(j)
k )d

�
B(0,1)

f(A+∇ψ(x′))dx′

=
�
B(0,1)

f(A+∇ψ(x′))x′, (4.3.3)

where we used a change of variables, indicated by a change in notation, and the fact that∑∞
k=1(r(j)

k )d = 1. To see this, we write out the equality of the volume of the ball and the
volume of the Vitali covering. Denoting with ωd the volume of the unitary d-sphere, we
get

ωd = |B(0, 1)| =
∞⋃
k=1
|B(a(j)

k , r
(j)
k )| =

∞∑
k=1

ωd(r(j)
k )d.

Looking at the result of the calculation in (4.3.3), we see that this is exactly the
definition of quasiconvexity.

At this point, we want to give an example of a Young measure, which is not a gradient
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Young measure. As the barycenter of a gradient Young measure is again a gradient, and
thus, curl-free, it is enough to consider a the Young measure δ(v) for a v with curl v 6≡ 0,
to get a counterexample. Although it is outside the scope of this thesis, we want to
emphasize the importance of the Jensen-type inequality, since it characterizes all gradient
Young measures in the class of Young measures.

Theorem 4.3.6 (Kinderlehrer-Pedregal). Assume that ν ∈ Yp(Ω;Rm×d), for p ∈ (1,∞],
is a Young measure with [ν] = ∇y for some y ∈ W 1,p(Ω;Rm). Then, ν is a gradient
Young measure, i.e. ν ∈ GYp(Ω;Rm×d), if and only if for almost all x ∈ Ω and all
quasiconvex functions h : Rm×d → R with p-growth (no growth condition for p =∞), the
Jensen-type inequality

h(∇y(x)) ≤
�
hdνx

holds.

The proof can be found in [27], Thm. 7.15.
Eventually, we summarize the results of this chapter by giving the following existence

result for quasiconvex integrands.

Theorem 4.3.7. Let f : Ω× Rm×d → [0,∞) be a Carathéodory integrand satisfying

(i) f has p-growth, for p ∈ (1,∞),
(ii) there exists c > 0 such that the following p-coercivity estimate holds

c|A|p ≤ f(x,A),

(iii) f is quasiconvex in the second argument.

Then, the functional
F(y) =

�
Ω
f(x,∇y(x))dx

has a minimizer in

W 1,p
g (Ω,Rm) =

{
y ∈W 1,p(Ω;Rm) : u|∂Ω = g

}
,

with g ∈W 1−1/p,p(∂Ω;Rm) and the equality at the boundary in the trace sense.

Proof. By the work done above, leading ultimately to Thm. 4.3.4, the claim follows from
the direct method, as soon as we have established coercivity. Therefore, we have to show
that any sequence (yj) ⊂W 1,p

g (Ω;Rm) such that supj F(yj) <∞ is weakly precompact,
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i.e. admits a weak W 1,p-convergent subsequence. By the p-growth condition, we get

∞ > sup
j
F(yj) ≥ c sup

j

�
Ω
|∇yj |pdx.

If we fix y0 ∈ W 1,p
g (Ω;Rm), then yj − y0 ∈ W 1,p

0 and thus, by the Poincaré inequality
A.2.5, we get

sup
j
‖yj‖W 1,p ≤ sup

j
‖yj − y0‖W 1,p + ‖y0‖W 1,p <∞.

Since W 1,p(Ω;Rm) is a separable and reflexive Banach space for p ∈ (1,∞), this uniform
bound on ‖yj‖W 1,p implies the existence of a weakly convergent subsequence, and we
have verified coercivity. The direct method implies the existence of a minimizer and
the continuity of the trace operator ensures that the minimizer satisfies the boundary
condition.
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5. Invertibility of deformations

By the Inverse Function Theorem, the condition of orientation-preservation det∇y > 0
implies that y is at least locally invertible. This, however, does not ensure global
invertibility as the following example shows.

Example 5.0.1. Consider the set Ω := (1, 2)×(0, 4π) ⊂ R2 and the deformation y : Ω→ R2

given by y(x1, x2) := (x1 cos(x2), x1 sin(x2)). Then (−x1, 0) = y(x1, π) = y(x1, 3π) and
therefore y is not injective and cannot be invertible everywhere. Still the orientation is
preserved

det∇y = det
(

cosx2 −x1 sin x2

sin x2 x1 cosx2

)
= x1 cos2 x2 + x1 sin2 x2 = x1 > 0. 4

The so called Ciarlet-Nečas condition entail no self-penetration instead.

Definition 5.0.1. We say a deformation y satisfies the Ciarlet-Nečas-condition if
�

Ω
det∇y(x)dx ≤ measd(y(Ω)) (5.0.1)

holds.

We sometimes abbreviate “Ciarlet-Nečas-condition” by CN.

Remark 5.0.1. To see that this condition indeed prevents self-penetration, consider Fig.
5.1, where the Ciarlet-Nečas condition is violated. The right-hand side of (5.0.1) gives us
the area of y(Ω), where the grey part is counted once. But since the determinant of the
Jacobian describes the local stretching and rotation caused by the deformation y, the
left hand side of the Ciarlet-Nečas condition (considering the integral as “infinitesimal
sum”) adds up all of these local changes and thus, gives us the area of the deformed
configuration if we would “unbend” y(Ω). This means, the grey part is counted twice,
which makes the left-hand side larger and violates (5.0.1).

The Ciarlet-Nečas condition, combined with orientation-preservation, ensures global
injectivity almost everywhere.
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(a) No self-penetration
CN holds

(b) Self-contact, but no
self-penetration
CN holds

(c) Self-penetration
CN violated

Figure 5.1.: Ciarlet-Nečas condition.

The proof relies on the change of variables formula, which uses the so-called Banach
indicatrix.

Definition 5.0.2. For any z ∈ Rd and Ω ⊂ Rd the Banach indicatrix N(z, y,Ω) is the
number of elements in Ω, which are mapped to z by y, formally

N(z, y,Ω) := #{x ∈ Ω : y(x) = z},

where the right-hand side is the counting measure.

Theorem 5.0.1. Let Ω be a bounded Lipschitz domain in Rd, let p > d and y ∈
W 1,p(Ω,Rd) satisfying

(i) Orientation-preservation: det∇y > 0 almost everywhere in Ω, and
(ii) Ciarlet-Nečas: �

Ω
det∇y(x)dx ≤ measd(y(Ω)).

Then, for almost every xy ∈ Ωy there is only one x ∈ Ω satisfying y(x) = xy. Using the
Banach indicatrix (defined in 5.0.2), this means N(xy, y,Ω) = 1 for almost all xy ∈ Ωy.

Proof. By the change of variables formula from Thm. A.3.4 and the Ciarlet-Nečas
condition, we have

�
y(Ω)

N(xy, y,Ω)dxy =
�

Ω
det∇y(x)dx ≤ measd(y(Ω)) =

�
y(Ω)

1dxy.

Since N(xy, y,Ω) ≤ 1 must hold for all xy ∈ Ωy, we get N(xy, y,Ω) = 1 for almost all
xy ∈ Ωy.
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Fortunately, the CN condition is compatible with the existence result established in
the previous sections. This means, when imposing the CN condition, in addition to
the assumptions of the existence result Thm. 3.2.1, yields almost everywhere invertible
minimizers of the energy functional. Before we prove this claim, we will make precise the
notion of almost everywhere invertibility.

Definition 5.0.3. A deformation y : Ω→ Rd is injective almost everywhere in a bounded
domain Ω ⊂ Rd, if there is ω ⊂ Ω such that measd(ω) = 0 and y(x1) 6= y(x2) for every
x1, x2 ∈ Ω\ω, with x1 6= x2.

Another important notion in this context is Lusin’s N -condition.

Definition 5.0.4 (Lusin’s conditions). Let Ω ⊂ Rn be a bounded domain. Then
y : Ω→ Rd is said to satisfy Lusin’s condition N, if for every ω ⊂ Ω with measd(ω) = 0
it holds that measd(y(ω)) = 0.

Of course, one can consider functions whose pre-image of null sets as again a null set.
The function y : Ω→ Rd is said to satisfy Lusin’s condition N−1, if for every ω̃ ⊂ y(Ω)
with meas(ω̃) = 0 it holds that measd(y−1(ω̃)) = 0.

Regular Sobolev functions on bounded sets automatically satisfy Lusin’s condition N .

Lemma 5.0.2. Let Ω ⊂ R3 be bounded and y : Ω→ R3 such that y ∈W 1,p(Ω;R3), with
p > 3. Then y satisfies Lusin’s condition N.

The proof can be found in [20], Cor. 1.
If an almost everywhere injective deformation y satisfies Lusin’s condition N , then

measd(y(Ω)) = measd(y(Ω\ω)), and y as a map y : Ω\ω → y(Ω\ω) is injective.
Now we have all tools to prove the main theorem of this section.

Theorem 5.0.3 (Injectivity almost everywhere). Let all assumptions of Theorem 3.2.1
hold and p > d. Furthermore, let

Ainj := A ∩ {y ∈W 1,p(Ω;Rd) : y satisfies the Ciarlet-Nečas condition (5.0.1)}.

Then, there is a minimizer of E on Ainj, which is injective almost everywhere in Ω. In
particular, this minimizer also satisfies the Ciarlet-Nečas condition.

The core of the proof of this statement is to verify weak continuity of the Ciarlet-Nečas
condition, i.e. if (yn) ⊂W 1,p satisfies CN and weakly converges to some y, yn ⇀ y, then y
satisfies CN. One way to prove this, is to employ the regularity of the Lebesgue measure
and compactness of the set y(Ω̄) as presented here (cf. [17], Thm. 3.4.6).
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Proof. We will show that a minimizer of E is also injective. Since p > d, by Morrey’s
inequality in Thm. A.2.2, we can embed W 1,p ⊂ C0,γ , with γ = 1− d

p . By Arzelà-Ascoli’s
Theorem (Thm. A.2.4), we have the compact embedding C 0,γ b C , and thus, W 1,p b C .
This means that a minimizing sequence yk ⇀ y, which is of course bounded, contains
a subsequence (not relabelled) converging uniformly, i.e. ‖yk − y‖L∞ → 0. By Lemma
5.0.2, y satisfies Lusin’s condition N , and thus, measd(y(∂Ω)) = 0 as measd(∂Ω) = 0,
since Ω is a Lipschitz domain. Therefore, one gets |y(Ω)| = |y(Ω̄)|. Moreover, the set
y(Ω̄) is compact, and hence, by the regularity of the Lebesgue measure, for any ε > 0
there exists an open set Oε with y(Ω̄) ⊂ Oε and

|Oε\y(Ω̄)| < ε. (5.0.2)

Next we want to show that there is a N ∈ N, such that yk(Ω̄) ⊂ Oε for all k ≥ N . To do
so, we claim that there is a δ = δ(ε) such that

⋃
x∈y(Ω̄)

B(x, δ) ⊂ Oε. (5.0.3)

If this was not the case, we could find some ε > 0 and sequences δk with δk → 0 as
k →∞, and (xk) ⊂ y(Ω̄), such that there is a zk ∈ B(xk, δk), but zk /∈ Oε. Since y(Ω̄) is
compact, there is some x ∈ y(Ω̄) and a (nonrelabelled) subsequence, such that xk → x

and thus, also zk → x. But Rd\Oε is closed, and therefore, x ∈ Rd\Oε, which contradicts
the fact that y(Ω̄) ⊂ Oε. Hence, inclusion (5.0.3) holds. We infer, by the definition of
uniform continuity, the existence of a N such that for all |yk(x)− y(x)| ≤ δ for all x ∈ Ω̄
and all k ≥ N . Thus, by (5.0.3), also yk(Ω̄) ⊂ Oε for all k ≥ N . Since yk satisfies the
CN-condition, we can conclude

�
Ω

det∇ykdx ≤ |yk(Ω̄)| ≤ |Oε|,

for all k ≥ N . By the weak convergence of the determinant Thm. 3.1.6, we get
�

Ω
det∇y = lim

�
Ω

det∇yk ≤ Oε. (5.0.4)

Since |Oε| = |y(Ω̄)|+ |Oε\y(Ω̄)| (Lemma A.5.6), we obtain by (5.0.2) and (5.0.4) and the
fact that ε was arbitrary �

Ω
det∇y ≤ |y(Ω̄)| = |y(Ω)|.
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Therefore, we have proved that also the weak limit satisfies the Ciarlet-Nečas condition.
The last step is to use this to show that the limit is also injective almost everywhere.

This follows from the change of variable formula Thm. A.3.4

|y(Ω)| =
�
y(Ω)

dxy ≤
�
y(Ω)

N(xy, y, y(Ω))dxy =
�

Ω
det∇y(x)dx ≤ |y(Ω)|,

which implies that N(xy, y, y(Ω)) = 1 for almost all xy ∈ y(Ω). Now, if ω ⊂ y(Ω) is a
null-set on which N(xy, y, ω) > 1, then also {x ∈ Ω : y(x) ∈ ω} is a null-set, since y
satisfies Lus

The idea of the proof above can be used to prove another useful result.

Lemma 5.0.4. Let yn, y ∈W 1,p(Ω,R3), with p > 3, such that yn ⇀ y. Then, there is a
(non-relabelled) subsequence yn such that

|Ωyn∆Ωy| → 0 as n→∞.

The idea of the proof is as follows: since p > 3 we can assume uniform convergence
and thus can bound Ωyn∆Ωy between two sets whose measure are arbitrarily close.

Proof. As in the proof of Thm. 5.0.3, we can assume that yn → y uniformly (passing
to a subsequence), and for each ε > 0 we find an open set Oε such that |Oε\y(Ω̄)| < ε.
Furthermore, there is a N ∈ N such that yk(Ω) ⊂ Oε for all k ≥ N .
By a similar argument one can also find a closed set Aε such that |y(Ω̄)\Aε| < ε and

such that Aε ⊂ yk(Ω) for k large enough.
Thus, one concludes (using Lemma A.5.6 and the monotonicity of the measure) with

|Ωyn∆Ωy| = |(Ωyn ∪ Ωy) \ (Ωyn ∩ Ωy)|

= |Ωyn ∪ Ωy| − |Ωyn ∩ Ωy| ≤ |Oε| − |Aε| = |Oε\Aε| < 2ε.

Note, that we need to assume |y(Ω)| < ∞ to apply Lemma A.5.6. However, this is
satisfied, because p > 3, by the lemma below.

Lemma 5.0.5. Let Ω ⊂ Rd and assume that y ∈ W 1,p(Ω), with p > 3. Then, we can
bound the measure of y(Ω) in terms of the W 1,p-norm of y, i.e. there is a c > 0, not
depending on y, such that

|y(Ω)| ≤ c‖y‖3W 1,p .
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Proof. Recall the identity

det∇y =
∑

εjkn∂jyi∂kyl∂nym,

where εjkn denotes the Levi-Civita symbol. Note that, because y ∈ W 1,p(Ω;R3) and
p ≥ 3, we automatically get ∂jyk ∈ L3(Ω), for all 1 ≤ j, k ≤ 3. Thus, generalized Hölder’s
inequality, Thm. A.1.5, yields

|y(Ω)| =
�
y(Ω)

dxy =
�

Ω
|det∇y|dx ≤ c

�
|∂jyi||∂kyl||∂nym| ≤ c‖∇y‖3L3 = c

�
|∇y|3.

By Hölder’s inequality, we get ‖∇y‖3L3 ≤ c‖∇y‖3Lp for any p > 3 and thus by the Sobolev
Embedding Theorem A.2.2, we get

|y(Ω)| ≤ c‖∇y‖3W 1,p .

Remark 5.0.2. One could proceed differently to prove the weak continuity of the Ciarlet-
Nečas condition, after obtaining the result above.

First, note the trivial statements

A ∩B ⊂ B =⇒ |A ∩B| ≤ |B|,

(A ∩Bc) ⊂ (A ∩Bc) ∪ (B ∩Ac) =⇒ |A ∩Bc| ≤ |A∆B|,

which leads us to

|A| = |(A ∩B) ∪ (A ∩Bc)| ≤ |A ∩B|+ |A ∩Bc| ≤ |B|+ |A∆B|,

and thus,
|A| − |B| ≤ |A∆B|.

Because of symmetry, one can interchange A and B in the above calculations.

This preliminary considerations allow us to conclude

|yn(Ω)| ≤ |y(Ω)|+ |yn(Ω)∆y(Ω)| and

|y(Ω)| ≤ |yn(Ω)|+ |yn(Ω)∆y(Ω)|.

Lemma 5.0.4 implies that |yn(Ω)∆y(Ω)| → 0 as n→∞, which implies lim inf |yn(Ω)| ≥
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|y(Ω)| and hence, by symmetry,

lim inf
n→∞

|yn(Ω)| = |y(Ω)|.

The theorem on convergence of minors, Thm. 3.1.2, implies that det∇yn ⇀ det∇y in
Lp/d, i.e.

�
Ω det∇yng →

�
Ω det∇yg for all g ∈ (Lp/d)∗. In particular this must hold for

g = id (assuming p 6=∞, to be sure that g is an Lq-function).
Therefore, we have

�
det∇yn →

�
det∇y ≤ lim inf |yn(Ω)| = |y(Ω)|

and have proved that also y satisfies the Ciarlet-Nečas condition.
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6. The model

In this section, we will consider the two applied forces, which appear in our problem:
gravity and buoyancy. In particular, we will model the buoyancy and derive an integral
formulation of the work done by the applied forces, using our calculations from Section
2.4. This will eventually lead to a functional E incorporating all necessary information.

6.1. Starting Point: Archimedes’ principle

Consider a compressible object submerged under water (or a different medium). We
consider two forces acting on this object: gravity and buoyancy. Gravity can be modelled
by the gravitational force density in the deformed configuration fy : Ωy → R3 given by

fy(xy) = −gρyS(xy)e3,

where g is the gravitational acceleration, ρyS(xy) the density of the specimen at a point
xy ∈ Ωy and e3 denotes the vertical unit vector of the standard basis in R3, which
means that e3 points “upwards”, and thus, fy points “downwards”. To calculate the
corresponding force in the reference configuration, we recall the formulas (2.5.5) and
(2.5.6), which were derived in Section 2.5:

f(x) = fy(xy) det∇y(x),

ρ(x) = ρy(xy) det∇y(x).

For simplicity, we choose the density in the reference configuration ρS : Ω → R to be
constant, i.e, ρS(x) ≡ ρS . Thus, we get ρyS(y(x)) det∇y(x) = ρS , which implies

f(x) = fy(xy) det∇y(x) = −gρyS(y(x)) det∇y(x)e3 = −gρSe3.

Recall from Section 2.6 that f is a dead load, and thus a conservative body force with
potential F̂ (x, y) = f(x) · y(x). For dead loads the corresponding functional describing
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the work is given by

Fg(y) =
�

Ω
F̂ (x, y(x))dx =

�
Ω
f(x) · y(x)dx = −

�
Ω
gρSy3(x)dx.

To model the buoyancy (cf. [29], Sec. 2.6), we note that the pressure conditions in the
fluid (due to gravity) cause a force. To determine this force consider the fluid in static
equilibrium. In this case, each portion of the fluid is in equilibrium, i.e. the buoyancy
exactly compensates the gravitational force. If we replace the portion of the fluid by
some object, then the buoyancy is unchanged and only the gravitational force changes.
Therefore, we arrive at the following

Axiom (Archimedes’ Principle). The buoyancy force that is exerted on an immersed
body is in absolute value equal to the weight of the displaced fluid.

It has been suggested by the famous antique mathematician, physicist, and inventor
Archimedes of Syracuse in his treatise “On Floating Bodies”, Book I, cf. [15]. By
the Archimedes’ principle, the buoyancy would then be given by Fb = ρWVdisplge3,
where Vdispl is the volume of the displaced fluid and ρW > 0 is the density of the
fluid. The volume of the displaced fluid is the volume of the deformed configuration, i.e.
Vdispl = |y(Ω)| =

�
y(Ω) dx

y. Consequently, one could guess that the work could be given
by

Fb(y) =
�
y(Ω)

ρW gx
y
3dx

y.

To make this precise, we have to take a different approach (following [19]), starting
from the hydrostatic equation (cf. [26], eq. (3.3))

∇p(xy) = −ρW ge3. (6.1.1)

Here, p denotes the pressure and we additionally assume that the gravitational field
is uniform and vertically pointing downwards. Note that we have to work in Eulerian
(spatial) coordinates, as we want to determine the pressure experienced by the actual
deformed specimen. Equation (6.1.1) can be deduced from physical considerations and
Newton’s second law (see [26], Chap. 3.1). If we write (6.1.1) component wise we obtain

∂p

∂x
= 0, ∂p

∂y
= 0, ∂p

∂z
= −ρW g.
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Let us now integrate over Ωy, to get

p(xy) = −ρW gxy3.

Since the pressure load is conservative, with work functional given by formula (2.6.1),
we obtain

Fb(y) =
�

Ω
ρW gy3(x) det∇y(x)dx =

�
Ωy
ρW gx

y
3dx

y.

Thus, all forces experienced by the submerged object can be modelled by the following
functional

F = Fg + Fb = −
�

Ω
gρSy3(x)dx+

�
Ωy
ρW gx

y
3dx

y.

Remark 6.1.1 (on ρS , ρW ). In this thesis we assume ρS and ρW to be constant, as it
simplifies the calculations in next chapters. For more evolved models, however, this may
be too restricting. In particular, for inhomogeneous materials one needs to look at ρS
depending on x ∈ Ω. Moreover, for a gaseous medium a density increasing in direction
−e3 may be considered. However, these interesting cases are not in the scope of the
thesis.

6.2. Well-definedness

We now check that the functional F is well-defined and make sure that F is indeed weak
lower semicontinuous, which is crucial to apply the direct method.
We prove that both integrals are well-defined separately. Whereas in the buoyancy

integral the integrand f (omitting the constants) is of the form fb(y) = 1y(Ω)y3 det∇y,
the integrand in the gravitational integral looks like fg(y) = y3(x).
Well-definedness for Fg follows from a measure-theoretic result, which is here just

sketched. For the detailed discussion, we refer to [13], Sec. 5.1, where the proof can be
found (check Thm. 5.1).

Theorem 6.2.1 (Well-definedness). Let Ω ⊂ Rd be a measurable set with finite measure
and let 1 ≤ p <∞. Furthermore, assume f : Rd → [−∞,∞] be a measurable function.
Then, �

Ω
(f(x))−dx <∞

for every y ∈ Lp(Ω;Rd) if and only if there is a constant c > 0 such that

f(z) ≥ −c (|z|p + 1) ∀z ∈ Rd. (6.2.1)
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The superscript minus sign indicates the negative part of the function, defined by
f+ := max{+f, 0} and f+− := max{−f, 0}, respectively. This convention implies that
f−, f+ ≥ 0, and f = f+ − f−.

Setting f(z) := z3, and omitting the constants, we get

f(x, z) = z3 ≥ −|z3| ≥ −
1
p
|z|p − 1

q
, (6.2.2)

after applying Young’s inequality with 1/p+ 1/q = 1. Thus, we get (6.2.1).
To check well-definedness of Fb, we will verify that 1y(Ω)y3 det∇y ∈ L1(Ω) directly.

By assumption y ∈ W 1,p(Ω;R3), and thus det∇y ∈ Lp/3(Ω). If p > d we can use the
Sobolev Embedding Theorem, Thm. A.2.2 and obtain

�
Ω
|1y(Ω)||y3(x)||det∇y| ≤ ‖y‖L∞‖ det∇y‖L1

≤ c‖y‖W 1,p‖ det∇y‖Lp/3(Ω) ≤ c‖y‖
2
W 1,p∞.

6.3. Weak lower semicontinuity

In the following chapters, we will try to find a minimizer to the functional E(y) =�
ΩW (∇y)− F(y) by employing the direct method. Therefore, we need to check, that
−F is indeed weakly lower semicontinuous. It it will prove useful to be able to treat
both integrals separately, which is admissible by the superadditivity of the lim inf.

Lemma 6.3.1 (Superadditivity of lim inf). For any two sequences an, bn, the following
inequality holds

lim inf an + lim inf bn ≤ lim inf(an + bn),

whenever the left-hand side is well-defined.

For a proof check [11], Thm. 3.127.
Thus, we will show that −Fi(y) ≤ lim infn−Fi(yn), for i ∈ {b, g} and a sequence

yn ⇀ y in W 1,p and conclude

−F(y) = −Fg(y)−Fb(y)

≤ lim inf
n
−Fg(yn)− lim inf

n
Fb(yn)

≤ lim inf
n

(−Fg(yn)−Fb(yn)) ≤ lim inf
n
−F(yn).

To prove weak lower semicontinuity of −Fg(y) =
�

Ω gρSy3(x)dx, we use the following
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theorem.

Theorem 6.3.2 (Weak lower semicontinuity). Let Ω ⊂ R3 be a measurable set, 1 ≤
p < ∞, and f : R3 → (−∞,∞] be a measurable and lower semicontinuous function.
Furthermore, assume that there is a constant c > 0 such that

f(z) ≥ −c (1 + |z|p) ∀z ∈ R3. (6.3.1)

Then, the functional
y ∈ Lp(Ω;R3) 7→

�
Ω
f(y(x))dx

is Lp-weakly sequentially lower semicontinuous if and only if f is convex.

The proof can be found in [13], Sec. 5.2.2.
The theorem provides us with weak lower semicontinuity with respect to the weak

Lp-topology, whereas we actually want to conclude w.l.s.c. for the weak-W 1,p-topology.
This, however, is not a problem, since by Thm. A.4.8, yn ⇀ y in W 1,p implies that
yn ⇀ y in Lp. Therefore, we only have to check whether the assumptions of the previous
theorem are satisfied for f(y) := y3(x), again omitting the constants. First, notice that
the calculation in (6.2.2) implies (6.3.1). Moreover, the mapping y 7→ f(y) is linear, and
thus, convex and continuous. Hence, we can apply Thm. 6.3.2 and get the weak lower
semicontinuity of −Fg.

For −Fb we use that 1yn(Ω) → 1y(Ω) in L1(Ω), provided yn ⇀ y, which can be proved
using the Lemma 5.0.4, which states that |yn(Ω)∆y(Ω)| → 0. Thus, we have

‖1yn(Ω) − 1y(Ω)‖L1 =
�
|1yn(Ω) − 1y(Ω)|

=
�
R3
1yn(Ω)∆y(Ω) = |yn(Ω)∆y(Ω)| → 0.

Therefore, we obtain for the lim inf (which is even a lim in this case)

lim inf
(
−
�
yn(Ω)

ρW gx3dx

)
= lim inf

(
−
�
R3
ρwgx31yn(Ω)(x)dx

)
=−

�
R3
ρW gx31y(Ω)(x)dx = −

�
y(Ω)

ρwgx3dx.

We summarize the results of this section in the following
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Corollary 6.3.3. The functional

−F = −Fg −Fb =
�

Ω
gρS(x)y3(x)dx−

�
y(Ω)

ρMgx
y
3dx

y

is lower semicontinuous with respect to the weak W 1,p-topology.

6.4. The barycentre

We introduce the barycentre of Ωy, which will turn up in different occasions during this
thesis.

Definition 6.4.1. The barycentre S = (s1, s2, s3) of a body B ⊂ R3 is defined via

si = 1
vol(B)

�
B
xidx,

where i = 1, 2, 3 and vol(B) =
�
B dx = |B| is the volume and dx indicates that the

integrals have to be understood as volume integrals.

Notation: We will often denote the barycentre of yi with the bar, i.e. ȳi = |Ω|−1 �
Ω yi(x)dx.

The barycentre is often called centroid, or centre of mass, because it is the particle
equivalent of the object for the application of Newton’s laws. Formulated differently, at
the barycentre we would apply the gravitational force to get a linear acceleration with
no angular acceleration. Note, that this definition assumes that B has uniform density.
Now we want to calculate the barycentre of a deformed body. Let y : Ω̄ → R3 be a

deformation and y(Ω̄) be the deformed body. If we set xy := y(x), then the coordinates
syi of the barycentre of y(Ω̄) are given by

syi = 1
vol(y(Ω̄))

�
y(Ω)

xyi dx
y.

By the change of variables formula, we obtain

syi = 1
vol(y(Ω̄))

�
y(Ω)

xyi dx
y = 1
|Ω̄y|

�
Ω
yi(x) det∇y(x)dx.

Remark 6.4.1. In the formula above det∇y appears. This is to be expected, as also the
density of Ωy is not uniform anymore (as it was in the reference configuration). The
density of the medium, however, is assumed to be constant, which means that the centre
of mass of the deformed configuration, i.e. the point where the gravitational force applies
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and the centre of mass of the displaced fluid, i.e. the point where the buoyancy would
apply, are not the same. If they are not vertically aligned, one would have an angular
acceleration, which would rotate the object and drive the object towards a position,
where the application point of the forces are vertically aligned. We therefore assume
for the rest of the thesis that no such rotation occurs, which is part of the Archimedes’
principle.

Moreover, the energy functional given by

E(y) =
�

Ω
W (∇y(x))dx+

�
Ω
ρSge3 · y(x)dx−

�
y(Ω)

ρW gx
y
3dx

y,

is invariant under e1 and e2 translations, i.e., for a deformation with additional translation
in directions e1, e2, expressed as ỹ(x) = y(x) + (t1, t2, 0), we obtain

E(ỹ) = E(y). (6.4.1)

To see this, note that the second and third term in E , describing the potential energy
coming from gravity and buoyancy, do not depend on y1 and y2. Thus, we only have to
check the claim for the first term. Since ∇ỹ(x) = ∇(y(x) + (t1, t2, 0) = ∇y(x) + 0, also�
∇ỹ =

�
∇y and therefore (6.4.1) holds.

This means, that we can w.l.o.g. choose t1, t2 in such a way that

sy1 = sy2 = 0,

i.e. the barycentre lies on the z-axis.
Thus, by the result above and Remark 6.4.1 we are left with the question of how sy3

behaves. We impose additional conditions, guaranteeing that ȳ3 stays bounded.
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7. Existence results for fixed conditions

In the previous sections, we have collected a variety of mathematical tools, we want to
bring to application in this section. The problem is as follows: Consider a hyperelastic
specimen fully submerged into water, but fixed at the boundary. How will this object
behave? To answer this question, we will minimize the energy functional describing the
deformation energy and the potential energy coming from gravity and buoyancy. The
existence of minimizers will be guaranteed by the direct method as soon as we have
verified coercivity and lower semicontinuity of the corresponding energy functional.

7.1. Dirichlet boundary conditions

At first, we consider an object with prescribed boundary values. In particular, we fix a
part of the boundary. Problems with prescribed Dirichlet boundary values, as this one,
are called problems of place (cf. [7], Sec. 2.6.) or pure displacement problems (cf. [17],
Chap. 3), whereas for Neumann boundary conditions, on speaks of a problems of traction.
Mixed boundary conditions are called displacement-traction problems.

We start with defining the energy functional we want to minimize. We assume Ω ⊂ R3

with |Ω| <∞, where | · | denotes the d-dimensional Lebesgue measure. Furthermore, we
assume Ω to have a Lipschitz boundary Γ = ∂Ω, (cf. [18], Def. 9.57 for the definition),
with subset ΓD ⊂ Γ such that ΓD has positive surface measure as in Fig. 7.1. For
y ∈W 1,p(Ω;R3) define

E(y) :=
�

Ω
W (∇y(x))dx+

�
Ω
ρSg~e3 · y(x)dx−

�
y(Ω)

ρW gx
y
3dx

y,

where ρS > 0 denotes the density of the solid and ρW > 0 the density of the surrounding
medium (e.g. water), respectively. The first term of E describes the deformation energy,
the second term models the energy coming from the gravitational force acting on the
material and the third term corresponds to buoyancy.
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Ω

∂ΩΓD

Figure 7.1.: Boundary Value Problem

Let p > 4 and set

A :=
{
y ∈W 1,p(Ω) : y = id on ΓD, CN

}
,

to be the set of admissible functions. In the above definition we abbreviated CN to
denote that y satisfies the Ciarlet-Nečas condition. Note that A is not empty since the
identity satisfies all given conditions. The choice p > 4 may seem to be arbitrary at the
first glance, but it will be apparent why we need to choose p > 4 in the proof.

Moreover, we assume that the material is hyperelastic and polyconvex, i.e., there is a
stored energy function W : GL+(d)→ [0,∞) satisfying

(i) W is polyconvex, (7.1.1)
(ii) W (F )→ +∞ as detF ↘ 0+, and (7.1.2)
(iii) W (F ) ≥ c1|F |p − c2, (7.1.3)

for some constants c1, c2 > 0.
Remark 7.1.1 (on dealing with constants). Over the course of some lengthy calculations
many different constants will appear, for instance from Sobolev embeddings, Hölder’s
inequality, etc. We will not keep track of all these constants and we will denote different
constants with the symbol c, possibly changing from line to line. However, when ever
necessary, we will add subscripts. For example, we would write for the coercivity condition
above (7.1.3)

W (F ) ≥ c|F |p − c,

although the two appearing constants are not necessarily the same.

Theorem 7.1.1. Under the assumptions above the minimization problem

Minimize E(y) for y ∈ A

has a solution.
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Before we start with the proof, we want to point out a major tool of establishing
coercivity, namely the Poincaré inequality.

Lemma 7.1.2 (Generalized Poincaré inequality). Let Ω ⊂ R3 as above and p ≥ 1. Then,
there is a constant c > 0 such that

‖y‖W 1,p ≤ c
(
‖∇y‖Lp(Ω) + ‖y − id ‖Lp(ΓD)

)
. (7.1.4)

The proof can be found in [16], Lemma 3.3. Since we assume y = id on ΓD, in our
case relation (7.1.4) reduces to

‖y‖W 1,p ≤ c‖∇y‖Lp(Ω). (7.1.5)

Proof of Thm. 7.1.1. We have that id ∈ A and E(id) < ∞. Notice that ∇ id = I and
hence, det∇ id = 1, which yields

E(id) =
�

Ω
W (I) +

�
Ω
ρSgx3dx−

�
Ω
ρW gx3dx ≤

�
Ω
W (I) + |Ω|g(ρS − ρW ).

By assumption 7.1.2, we know that W (I) <∞, which implies that also
�

ΩW (I)dx <∞.

We aim to apply the direct method, so let yn ∈ A realizing the inf, i.e. E(yn)→ infA E .
We now are going to prove coercivity and weak lower semicontinuity.

Step 1: Coercivity: We need to show that the set {E ≤ Λ} b A w.r.t. to the weak
W 1,p topology. Since W 1,p is reflexive, it is sufficient to show that the set {E ≤ Λ} is
bounded in the W 1,p-norm. As we will do throughout the thesis, we will consider each
term of the energy functional separately, i.e. set

E(y) =
�

Ω
W (∇y(x))dx︸ ︷︷ ︸

=:I1

+
�

Ω
ρSge3 · y(x)dx︸ ︷︷ ︸

=:I2

−
�
y(Ω)

ρW gx
y
3dx

y

︸ ︷︷ ︸
=:I3

.

By the coercivity condition (7.1.3) and the reduced Poincaré inequality (7.1.5) we get
that

I1 =
�

Ω
W (∇y(x))dx ≥

�
Ω
c|∇y(x)|pdx− c|Ω| ≥ cP ‖y‖pW 1,p(Ω) − c.

For the second term, we use the Cauchy-Schwarz inequality and Young’s inequality
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(with 1/p+ 1/q = 1) to conclude

I2 =
�

Ω
ρSge3 · y(x)dx ≥ −

�
Ω
c|e3 · y(x)|dx

≥ −c
�

Ω
|y(x)|dx

≥ −c
�

Ω

(
|y(x)|p δ

p

p
+ 1
qδq

)
≥ −cδp‖y‖pLp − c.

We will need the notion of the diameter of a nonempty set M ⊂ Rd, given by

Ø(M) := sup
x,y∈M

|x− y|,

with |x| :=
(∑d

i=1 x
2
i

)1/2
denoting the Euclidean distance in Rd.

For the third term I3, we use a geometrical argument. As the points on ΓD are fixed
by the boundary condition, a point in the deformed configuration cannot get mapped
further afar than the diameter of y(Ω). Thus, for a fixed point x0 ∈ ΓD, and any point
xy ∈ y(Ω) we have

|xy − x0| ≤ Ø(y(Ω)).

Since for any two points x, z ∈ Ω, we have |y(x)−y(z)| ≤ |y(x)−x|+ |x−z|+ |z−y(z)| ≤
2‖y − id ‖L∞(Ω) + Ø(Ω), we can take the supremum and obtain

Ø(y(Ω)) ≤ 2‖y − id ‖L∞(Ω) + Ø(Ω).

In particular, for xy ∈ y(Ω) one arrives at

|xy3| ≤ |x0|+ 2‖y − id ‖L∞(Ω) + Ø(Ω).

Recall that x0 ∈ ΓD is fixed. It hence only depends on the reference configuration, as
well as Ø(Ω). Therefore, we can further simplify the equation above to

|xy3| ≤ c+ 2‖y − id ‖L∞(Ω),

which holds true for all xy ∈ y(Ω).
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Using this geometrical observation, we get

I3 ≥−
�
y(Ω)

ρwg|xy3|dx
y ≥ −c|y(Ω)| − c|y(Ω)|‖y − id ‖L∞ .

Ω

dist(Ω, 0)

Ø(Ω)

Figure 7.2.: Estimate ‖ id ‖L∞

By Lemma 5.0.5, we know that |y(Ω)| ≤ c‖y‖3W 1,p . Moreover, we can estimate
‖ id ‖L∞(Ω) ≤ Ø(Ω) + dist(Ω, 0) (see Fig. 7.2), which is a constant only depending
on the reference configuration. W.l.o.g we can assume that dist(Ω, 0) = 0, and thus
‖ id ‖L∞(Ω) ≤ Ø(Ω). We use the Sobolev Embedding Theorem A.2.2 and obtain

‖y − id ‖L∞(Ω) ≤ ‖y‖L∞(Ω) + ‖ id ‖L∞(Ω)

≤ ‖y‖L∞(Ω) + Ø(Ω)

≤ c+ c‖y‖W 1,p(Ω).

Therefore, we bound I3 as follows

I3 ≥ −c|y(Ω)| − c|y(Ω)| (c+ ‖y‖W 1,p) ≥ −c‖y‖3W 1,p − c‖y‖4W 1,p .

Applying Young’s inequality, Lemma A.5.3, to each of the summands, would eventually
yield the desired result. This is the point, where p > 4 comes into play, and so we
are going to present the precise argument for the second summand to emphasize our
assertion. Set p̃ := p

4 . Then p̃ > 1, since p > 4 and so Young’s inequality is applicable
with 1/p̃+ 1/q = 1. Thus, we get

‖y‖4W 1,p ≤
1
p̃
δp̃
(
‖y‖4W 1,p

)p/4
+ 1
δqq

= cδp/4‖y‖pW 1,p + c.
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The analogous result holds for the first summand.
Putting everything together, we arrive at

Λ > E(y) = I1 + I2 + I3

≥ cP ‖y‖pW 1,p(Ω) − c− cδ
p‖y‖pLp − c− cδ

p/3‖y‖pW 1,p(Ω) − cδ
p/4‖y‖pW 1,p(Ω)

≥ (cP + δpc)‖y‖pW 1,p(Ω) − c.

Since δ > 0 is arbitrary, we can make it sufficiently small, so that (cP − δpc) is positive,
and thus, we have verified that {E < Λ} is bounded in the Sobolev-norm, and coercivity
follows.
Step 2: Now we are going to prove weak lower semicontinuity, i.e., we verify that for a

weakly convergent sequence yn ⊂W 1,p(Ω), yn ⇀ y, the following inequality

E(y) ≤ lim inf E(yn)

is satisfied. We will prove weak lower semicontinuity for the different integral terms
separately, and then add them up again. This procedure is legitimate, by the super-
additivity of the lim inf, Lemma 6.3.1, i.e., for two sequences an, bn one has that lim inf an+
lim inf bn ≤ lim inf(an + bn), whenever this expression is defined.

For the first term, we make use of the results from the theory Section 3, and get
�

Ω
W (∇y) ≤ lim inf

�
Ω
W (∇yn),

because of polyconvexity of W , which allows us to use Cor. 3.1.8.
The integral term related to the forces were treated in Sec. 6, where we proved weak

lower semicontinuity for I2 + I3 in Cor. 6.3.3.
Step 3: By coercivity and weak lower semicontinuity, we can apply the Direct Method

of Thm. 1.1.1 to prove the existence of a minimizer.
This minimizer also satisfies the Ciarlet-Nečas condition by Thm. 5.0.3.
Moreover, the minimizer fulfils the boundary condition by the continuity of the trace

operator A.2.1.

7.2. Existence result for internally fixed bodies

In the previous section we considered an object fixed at a part of its boundary. Now we
look at objects, which are fixed internally.
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Again, we prove the existence of minimizers for the following functional

E(y) =
�

Ω
W (∇y(x))dx+

�
Ω
ρSge3 · y(x)dx−

�
y(Ω)

ρW gx
y
3dx

y,

but now, the set Ω is assumed to have a certain structure. Let ω ⊂ R2 be a bounded,
open domain and ωD ⊂ ω, with meas2(ωD) > 0. We consider the 3-dimensional set
Ω := ω × [a, b], where a, b ∈ R, 0 < |b − a| < ∞ and assume that y = id on the set
ΩD = ωD× [a, b] ⊂ Ω, see Fig. 7.3. By this definition, the set Ω is bounded (and therefore,
has finite measure), and has a Lipschitz boundary.

ωD

Ω

Figure 7.3.: Structure of Ω

Furthermore, we again assume that the stored energy W : GL+(d)→ [0,∞) satisfies

(i) W is polyconvex,
(ii) W (F )→ +∞ as detF ↘ 0+ and,
(iii) W (F ) ≥ c|F |p − c.

Theorem 7.2.1. Under the assumptions above, the functional E has a minimum in
the set of admissible functions A :=

{
y ∈W 1,p(Ω;R3) : y = id on ΩD, CN

}
, where CN

denotes that, y ∈ A fulfils the Ciarlet-Nečas condition.

Proof. Note that id ∈ A and thus A 6= ∅. Moreover, E(id) <∞ by the same argumenta-
tion as before.

As in the previous section, we will split the proof in three parts: Establishing coercivity,
proving weak lower semicontinuity, and applying the direct method. Moreover, we have
to verify that the minimizer is an admissible function. For simplification, we will split
the energy functional in three separate terms, which we can treat on their own, whenever
it is convenient to do so.

E(y) =
�

Ω
W (∇y(x))dx︸ ︷︷ ︸

=:I1

+
�

Ω
ρSge3 · y(x)dx︸ ︷︷ ︸

=:I2

−
�
y(Ω)

ρW gx
y
3dx

y

︸ ︷︷ ︸
=:I3

.

Step 1: Coercivity.
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Again, we have to show that the set {E < Λ} is sequentially precompact in the weak-
W 1,p-topology. As in the previous section, we will treat each term separately, starting
with the second one. The reason is, that for this term everything is exactly the same as
before, and we can write without more ado

I2 =
�

Ω
ρSge3 · y(x)dx ≥ −cδp‖y‖pLp − c.

By definition of Ω we have ωD ⊂ ∂Ω and meas2(ωD) > 0 . This puts us in the same
position as in Section 7, allowing us to apply Poincaré’s inequality, Lemma 7.1.2, and
the coercivity condition to obtain for the term I1

I1 =
�

Ω
W (∇y(x))dx ≥

�
Ω
c|∇y|pdx− c|Ω| ≥ cP ‖y‖pW 1,p(Ω) − c.

The third term is more difficult, although the geometrical idea is very simple: Since
the y = id on ΩD, each point xy = y(x) ∈ Ωy is at most Ø(y(Ω))-far away from ΩD.
Thus, we can say

|xy| ≤ dist(0,ΩD) + Ø(ΩD) + Ø(Ωy),

where dist(0,ΩD) and Ø(ΩD) only depend on the reference configuration, and therefore,
can be considered as constant. The hardest part here, is to estimate Ø(Ωy) in terms of
the norm of y. To see this, note that by Morrey’s inequality and the Poincaré inequality
(see Section A.2, in the appendix), we have

‖y − ȳ‖L∞ ≤ c‖y − ȳ‖W 1,p ≤ c‖y − ȳ‖Lp + ‖∇y‖Lp ≤ c‖∇y‖Lp ,

and thus,

Ø(y(Ω)) = sup
x,z∈Ω

|y(x)− y(z)| ≤ 2 sup
x∈Ω
|y(x)− ȳ| ≤ 4c‖∇y‖Lp ≤ c‖y‖W 1,p .

By Lemma 5.0.5, we have |y(Ω)| ≤ c‖y‖3W 1,p , which allows us to conclude

I3 ≥ −
�

Ωy
gρW |xy3|dx

y ≥ −ρW g|xy3| |y(Ω)|

≥ −c (Ø(y(Ω)) + c) ‖y‖3W 1,p ≥ −c‖y‖3W 1,p − c‖y‖4W 1,p .
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Applying Young’s inequality to each term separately as in Section 7.1, we finally get

Λ > E(y) = I1 + I2 + I3

≥ cP ‖y‖pW 1,p(Ω) − c− cδ
p‖y‖pLp − c− cδ

p/3‖y‖pW 1,p(Ω) − cδ
p/4‖y‖pW 1,p(Ω)

≥ (cP + δpc)‖y‖pW 1,p(Ω) − c.

The coefficient (cP + δpc) can be made positive, by choosing δ arbitrarily small, and
thus, we have shown that {E < Λ} is sequentially precompact. Therefore, every sequence
(yn) ⊂ A realizing the inf E has a subsequence weakly converging in W 1,p.

Step 2: Weak lower semicontinuity. By assumption, W is polyconvex, and thus, I1

is weakly lower semicontinuous, by Cor. 3.1.8. Moreover, I2 + I3 is also weakly lower
semicontinuous, as has been shown in Sec. 6.3. The superadditivity of the lim inf, Lemma
6.3.1, yields the claim.

Step 3: The Direct Method. After establishing coercivity and weak lower semicontinu-
ity, we can apply the direct method and obtain the existence of a minimizer ymin, where
we still have to make sure, that it belongs to the set of admissible functions.

By Thm. 5.0.3, ymin satisfies the Ciarlet-Nečas condition, so we are left with proving
that ymin = id on ΩD. However, this is not difficult. By Morrey’s inequality, Thm. A.2.2,
and the Arzelà-Ascoli theorem, Thm. A.2.4, we know that there is a subsequence ynk
converging uniformly to ymin, in Ω. Thus, also ymin = id on ωD × (a, b). For the parts
on the boundary, we conclude with the continuity of the trace operator, see A.2.1.
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8. Existence results with elastic conditions

As we saw in the previous sections, we need some additional information of the problem
to be able to apply Poincaré’s inequality and conclude coercivity. In this section, we
provide this information by considering bodies tied to a fixed point or some kind of an
anchor by an elastic rubber band. Thus, the specimen gets pulled towards the fixed
anchor. For example, one could imagine a helium balloon held by a children. Therefore,
we will add a new term to the energy functional modelling the spring energy of the
rubber band. This term, coming from physical considerations, will allow us to prove a
Poincaré-type inequality from which we eventually can conclude coercivity.

8.1. Poincaré inequality

As we have already seen in the previous chapter, we need a Poincaré-type inequality to
be able to prove coercivity. The following theorem provides such inequality, incorporating
the term ‖y− id ‖L2(ω) which is relevant as elastic energy of the rubber band. This means,
the Poincaré inequality is already tailored in such a way, that we can easily apply it in
the coming sections.

Theorem 8.1.1 (Poincaré-type inequality). Assume that Ω ⊂ Rd is non-empty, bounded,
open, and connected. Moreover, let ω ⊂ Ω with meas(ω) > 0. If p > 2, then for all
y ∈W 1,p(Ω) the following inequality holds

‖y‖Lp(Ω) ≤ c
(
‖∇y‖Lp(Ω) + ‖y − id ‖L2(ω)

)
. (8.1.1)

Proof. Aiming at a contradiction, let us assume the opposite, i.e., that there exists a
sequence (yk)k ⊂W 1,p(Ω;Rd), such that

‖∇yk‖Lp(Ω) + ‖yk − id ‖L2(ω) <
1
k
‖yk‖Lp(Ω). (8.1.2)

Claim 1: ‖yk‖Lp(Ω) →∞.
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Assume otherwise, i.e., ‖yk‖Lp(Ω) ≤M for all k ∈ N. This implies by (8.1.2) that

‖yk‖W 1,p(Ω) = ‖yk‖Lp(Ω) + ‖∇yk‖Lp(Ω) ≤M + 1
k
‖yk‖Lp(Ω) ≤M

(
1 + 1

k

)
.

But since 1 + 1
k ≤ 2 for all k ∈ N, we conclude

‖yk‖W 1,p(Ω) ≤ 2M.

Therefore, there is a (not relabelled) subsequence such that yk ⇀ y in W 1,p. In particular,
by Thm. A.4.8, this implies that∇yk ⇀ ∇y in Lp(Ω) and by the weak lower semicontinuity
of the norm, Thm. A.4.7, we obtain

‖∇y‖Lp(Ω) ≤ lim inf
k
‖∇yk‖Lp(Ω).

We know that ‖yk‖Lp(ω) ≤ ‖yk‖Lp(Ω) < M . By Hölder’s inequality, the boundedness of
Ω, and the assumption p > 2, we can conclude

‖yk‖L2(ω) ≤ c‖yk‖Lp(ω) ≤ c‖yk‖Lp(Ω) < M.

Thus, we are able to select a subsequence (again not relabelled) such that yk ⇀ y in
L2(ω), and hence (yk − id) ⇀ (y− id) in L2(ω). Again, by the weak lower semicontinuity
of norms in Banach spaces, we eventually arrive at

‖y − id ‖L2(ω) ≤ lim inf ‖yk − id ‖L2(ω).

Recall the superadditivity of the lim inf: lim inf an+lim inf bn ≤ lim inf(an+bn). Putting
everything together and using the boundedness of yk yields

‖∇y‖Lp(Ω) + ‖y − id ‖L2(ω) ≤ lim inf ‖∇yk‖Lp(Ω) + lim inf ‖yk − id ‖L2(ω)

≤ lim inf
(
‖∇yk‖Lp(Ω) + ‖yk − id ‖L2(ω)

)
≤ lim inf

(1
k
‖yk‖Lp(Ω)

)
≤ 0.

This means that ∇y = 0 almost everywhere, and by the connectedness of Ω, we get that
y is constant. On the other hand, we also have ‖y − id ‖L2(ω) = 0, and hence, y = id
almost everywhere on ω, a contradiction.

90



Since Claim 1 holds, we can divide yk by ‖yk‖Lp(Ω) for k large enough. Thus,

wk := yk
‖yk‖Lp(Ω)

is well-defined and has norm ‖wk‖Lp(Ω) = 1. By dividing into (8.1.2) by ‖yk‖Lp(Ω) we
obtain

‖∇wk‖Lp(Ω) +
∥∥∥∥∥wk − 1

‖yk‖Lp(Ω)
id
∥∥∥∥∥
L2(ω)

<
1
k
. (8.1.3)

Since (wk)k is bounded in W 1,p(Ω), there is a (not relabelled) subsequence (wk) with
wk ⇀ w in W 1,p. In particular, we have ∇wk ⇀ ∇w in Lp (by Thm. A.4.8), and thus,
by the weak lower semicontinuity of the norm

‖∇w‖ ≤ lim inf ‖∇wk‖.

Moreover, wk ⇀ w in W 1,p implies the existence of a strongly converging subsequence in
Lp(Ω) (by the compact embedding theorem). Therefore, this subsequence also satisfies

‖wk − w‖L2(ω) ≤ ‖wk − w‖L2(Ω) ≤ c‖wk − w‖Lp(Ω) → 0.

Since 1
‖yk‖Lp(Ω)

→ 0, we have

∥∥∥∥∥
(
wk −

1
‖yk‖Lp(Ω)

id
)
− w

∥∥∥∥∥
L2(ω)

≤ ‖wk − w‖L2(ω) +
∥∥∥∥∥ 1
‖yk‖Lp(Ω)

id
∥∥∥∥∥
L2(ω)

→ 0.

Altogether, this subsequence (wk) fulfils

‖∇w‖Lp(Ω) + ‖w‖L2(ω) ≤ lim inf

‖∇wk‖Lp(Ω) +
∥∥∥∥∥wk − 1

‖yk‖Lp(Ω)
id
∥∥∥∥∥
L2(ω)


(8.1.3)
≤ lim inf 1

k
= 0.

Thus, we arrive at
‖∇w‖Lp(Ω) + ‖w‖L2(ω) ≤ 0,

and therefore, ∇w = 0 almost everywhere on Ω, and w = 0 almost everywhere on ω.
Since Ω is connected, ∇w = 0 implies that w is constant and we can conclude that w = 0
almost everywhere on Ω, which is in contradiction to ‖wk‖Lp(Ω) = 1. This proves the
assertion.
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Remark 8.1.1. To be completely rigorous one also has to verify the following details:

• Is ∇wk = 1
‖yk‖Lp

∇yk? Yes, because

�
∂jwkφ = −

�
wk∂jφ = −

�
yk
‖yk‖Lp

∂jφ = − 1
‖yk‖Lp

�
yk∂jφ = 1

‖yk‖Lp
∇yk.

• Why can we conclude wk → w in Lp and ‖wk‖Lp = 1 is a contradiction to ‖w‖ = 0?
We have the following trivial conclusion: Convergence in norm implies convergence
of the norms. The proof is the reverse triangle inequality:

|‖wk‖ − ‖w‖| ≤ ‖wk − w‖ → 0.

Before we start using the inequality above to proof coercivity, we want to recall Jensen’s
inequality and one particular implication.

Theorem 8.1.2 (Jensen). For a convex function f : Rd → R, xi ∈ Rd, and nonnegative
λi with

∑n
i=1 λi = 1 we have

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

The proof for a general version of this inequality can be found in [4], Thm. 2.12.19.
Recall Definition 1.2.1: A function f : C → R is convex, if C is convex and, if for all

x, y ∈ C, t ∈ [0, 1], the following inequality holds

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

As a particularly useful example, we want to mention the power function. The map
x 7→ xp is convex for x ∈ R+ := {x ∈ R : x ≥ 0} and all p ≥ 1.

Hence, we can conclude using Jensen’s inequality

(|a|+ |b|)p = 21/p
(1

2 |a|+
1
2 |b|

)p
≤ 21/p

(1
2 |a|

p + 1
2 |b|

p
)

= c (|a|p + |b|p) , (8.1.4)

where c = 21/p−1 > 0.
To be precise, (8.1.4) follows directly from the definition of convexity, because it only

includes two summands. One can get the analogous result by Jensen’s inequality for an
arbitrary number of summands.
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8.2. First existence result

As a first result, we consider the case where a part of the material ω ⊂ Ω is tied to a fixed
anchor by a rubber band, i.e., only this part will be pulled back and contributes to the
energy. This example is illustrated in Fig. 8.1 where ω is the anchor and the connection
via the rubber band is indicated by the dashed line.

Ω

ω

y(Ω) = Ωy

y(ω)

y

Figure 8.1.: Elastic Conditions

Formally, let Ω ⊂ R3 be an open, bounded, connected set with Lipschitz boundary and
ω ⊂ Ω nonempty, open, and with positive measure, as in Fig. 8.1. The goal is to prove
the existence of minimizers for the following functional

E(y) =
�

Ω
W (∇y(x))dx+

�
Ω
ρSge3 · y(x)dx−

�
y(Ω)

ρW gx
y
3dx

y + k

2

�
ω
|y(x)− x|2dx,

where g is the constant of gravity, ρS , ρW are the densities of the solid and the water (or
a different medium), respectively, and k denotes the elastic modulus of the rubber band.

As usually, we additionally assume W : GL+(d)→ [0,∞) satisfies

(i) W is polyconvex,
(ii) W (F )→ +∞ as detF ↘ 0+, and
(iii) W (F ) ≥ c|F |p − 1

c .

Theorem 8.2.1. Let p > 4. Under the assumptions above, the functional E takes a
minimum in the set of admissible functions A :=

{
y ∈W 1,p(Ω;R3) : CN

}
.

Note that id ∈ A and thus A 6= ∅ and E(id) <∞. As in the previous sections we will
establish coercivity and verify weak lower semicontinuity of each term in E . Moreover,
we consider each integral term of the energy separately

E(y) =
�

Ω
W (∇y(x))dx︸ ︷︷ ︸

=:I1

+
�

Ω
ρSge3 · y(x)dx︸ ︷︷ ︸

=:I2

−
�
y(Ω)

ρW gx3dx︸ ︷︷ ︸
=:I3

+ k

2

�
ω
|y(x)− x|2dx︸ ︷︷ ︸

=:I4

.
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Step 1: Coercivity. Note that by Poincaré’s inequality (8.1.1) we get

‖y‖W 1,p(Ω) ≤ c
(
‖∇y‖Lp(Ω) + ‖y − id ‖L2(ω)

)
,

and thus, by Jensen’s inequality (8.1.4),

‖y‖pW 1,p(Ω) ≤ c
(
‖∇y‖Lp(Ω) + ‖y − id ‖L2(ω)

)p
≤ c′‖∇y‖pLpΩ + c′‖y − id ‖pL2(ω).

Using this, we can infer

I1 =
�

Ω
W (∇y)dx ≥ c1

�
Ω
|∇y|p − c2

= c1‖∇y‖pLp(Ω) − c2 ≥ c3‖y‖pW 1,p(Ω) − c4‖y − id ‖pL2(ω) − c2. (8.2.1)

The term I2 can be estimated as

I2 =
�

Ω
ρSge3 · y(x)dx ≥ −

�
c|e3 · y(x)|dx≥− c

�
|y(x)|dx

Y oung
≥ −c

� (
|y(x)|p δ

p

p
+ 1
qδq

)
≥ −c|Ω| − cδp‖y‖pLp = −cδp‖y‖pLp(Ω) − c

′

ω

y(Ω)

y(ω)

(�2)

(�3)

(�1)

Figure 8.2.: Measuring the maximal displacement

For the term I3, we use a geometrical argument, see Fig. 8.2.
Basically, xy3 expresses how “deep” a point xy ∈ y(Ω) is, regarding the fixed anchor

point ω (this is where the virtual spring is attached). We are going to estimate the depth
of y(Ω) in terms of y and ω based on a purely geometrical argument: A point x ∈ Ω can,
at most, be as deep as the “depth”, i.e. the vertical expanse, of the deformed object (�1),
plus the length of the string (�2), plus possibly the length of the anchor (�3). This yields
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the mathematical expression

|xy3| ≤ Ø(y(Ω))︸ ︷︷ ︸
(�1)

+ ‖y − id ‖L∞(Ω)︸ ︷︷ ︸
(�2)

+Ø(ω)︸ ︷︷ ︸
(�3)

.

Therefore, for x, z ∈ Ω we have

|y(x)− y(z)| ≤ |y(x)− x|+ |x− z|+ |z − y(z)| ≤ 2‖y − id ‖L∞(Ω) + Ø(Ω),

and thus Ø(y(Ω)) = sup |y(x)− y(z)| ≤ 2‖y− id ‖L∞ +Ø(Ω). Without more ado, we can
assume Ø(ω) ≤ Ø(Ω), which gives us

|xy3| ≤ 3‖y − id ‖L∞(Ω) + Ø(Ω),

and hence,
�
y(Ω)

xy3dx ≤
�
y(Ω)

3‖y − id ‖L∞(Ω) + Ø(Ω) ≤
(
3‖y − id ‖L∞(Ω) + Ø(Ω)

)
|y(Ω)|.

By Lemma 5.0.5, we have |y(Ω)| ≤ c‖y‖3W 1,p . Therefore, we can proceed as in Chap. 7
and eventually conclude

I3 ≥ −c|y(Ω)| − c|y(Ω)| (c+ ‖y‖W 1,p) ≥ −c‖y‖3W 1,p − c‖y‖4W 1,p ,

which yields after applying Young’s inequality

I3 ≥ −c
(
δp/3 + δp/4

)
‖y‖pW 1,p(Ω) − c.

For the last term we use the triangle inequality, Jensen’s inequality for the particular
case of the power function, Young’ inequality, and the fact, that

�
ω
|x|2dx = ‖ id ‖2L2(ω) ≤ c(ω).

To see this, note that for all x ∈ Ω we have that |x| ≤ Ø(Ω) + dist(Ω, 0) and, thus,
‖ id ‖2L2(ω) =

�
ω |x|

2dx ≤ supx∈ω |x|2 |ω| ≤ |ω| (Ø(ω) + dist(ω, 0))2 =: c(ω). The term I4
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can be now handled as follows.

I4 = k

2

�
ω
|y(x)− x|2dx = c‖y − id ‖2L2(ω) triangle ineq.

≥ −c
�
ω

(|y(x)|+ |x|)2 dx Jensen

≥ −c
�
ω

(
|y(x)|2 + |x|2

)
dx Young

≥ −cδp/2
�
|y(x)|p − c(ω) ≥ −cδp/2‖y‖pLp(Ω) − c. (8.2.2)

We will estimate the term ‖y−id ‖pL2(ω), also appearing in (8.2.1), using Young’s inequality
and bring it to the same form as in (8.2.2).

− ‖y − id ‖pL2(ω) Young

≥− p

2‖y − id ‖2L2(ω) −
p

p− 2 (8.2.2)

≥− cδp/2‖y‖pLp(Ω) − c.

Recall, that we always can estimate ‖y‖pLp(Ω) ≤ ‖y‖
p
W 1,p(Ω).

Now we are able to combine the estimates on Ii, i = 1, 2, 3, 4, to obtain

E(y) = I1 + I2 + I3 + I4

≥ cP ‖y‖pW 1,p(Ω) − c‖y − id ‖pL2(ω) − cδ
p‖y‖pLp(Ω) − c

(
δp/3 + δp/4

)
‖y‖pW 1,p(Ω) − cδ

p/2‖y‖pLp(Ω) − C

≥ (cP − cδp) ‖y‖pW 1,p − C.

By choosing δ sufficiently small, we obtain a positive coefficient of ‖y‖W 1,p and, thus,
coercivity.

Step 2: Weak lower semicontinuity. Again, by the superadditivity of the lim inf, one
can verify weak lower semicontinuity for each integral separately and then combine these
results. Weak lower semicontinuity for I1 + I2 + I3 is already proved, cf. Chap. 7.

A proof for weak lower semicontinuity of I4 can be given, using Fatou’s Lemma A.1.1.
Let yn ⇀ y in W 1,p(Ω). Then, by the compact embedding, there is a subsequence (not
relabelled) yn → y pointwise almost everywhere. Set fn(x) := |yn(x)− x|2 as a function
from Ω into the real numbers. Then fn is nonnegative and measurable. Furthermore,
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fn(x)→ f(x) := |y(x)− x|2 almost everywhere. Thus, by Fatou’s Lemma

I4(y) = c

�
Ω
|y(x)− x0|2dx = c

�
Ω

lim inf fn(x)dx

≤ c lim inf
�

Ω
fn(x)dx = lim inf I4(y).

By the argument in Section A.6, where we have verified that passing to a subsequence
does not destroy weak lower semicontinuity, we have proved the assertion.

Step 3:

The direct method implies the existence of a minimizer, and Thm. 5.0.3 confirms that
this minimizer also satisfies the Ciarlet-Nečas condition.

8.3. Second existence result - rope with clearance

Now we are going to consider a slight variation of the previous result. Instead of requiring
that a certain portion of the reference configuration ω ⊂ Ω serves as anchor, we only
take one point x0 ∈ Ω to fix the imaginary rubber band. Moreover, we consider the case
where this rubber band has a certain clearance, i.e., it develops a retraction force only
if it gets extended further than a certain length l, see Fig. 8.3. Since this problem is a
variation of the one above, we also need a slightly different Poincaré inequality.

Theorem 8.3.1 (Poincaré-type inequality). Assume that Ω ⊂ Rd is non-empty, bounded,
open, and connected and let ω ⊂ Ω be a nonempty, measurable set. Moreover, let x0 ∈ Ω.
If p > 2, then for all y ∈W 1,p(Ω) the following inequality holds

‖y‖Lp(Ω) ≤ c
(
‖∇y‖Lp(Ω) + ‖y − x0‖L2(ω)

)
.

The proof is analogous to the one of Thm. 8.1.1.

Remark 8.3.1. In the theorem above one identifies x0 with the class of functions being
equal to x0 almost everywhere. Since Ω has finite measure, x0 ∈ L2(Ω). In principle, one
could generalize this result to arbitrary function in L2 in the same manner.

Theorem 8.3.2. Under the same assumptions as in Thm. 8.2.1 the following energy
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x0

y(x0) y(Ω)

(a) Rope not outstreched

x0

y(x0)

y(Ω)

(b) Outstrechted rope, retraction
force applies

Figure 8.3.: Elastic condition

functional has a minimizer

E(y) =
�

Ω
W (∇y(x))dx︸ ︷︷ ︸

=:I1

+
�

Ω
ρSge3 · y(x)dx︸ ︷︷ ︸

=:I2

−
�
y(Ω)

ρW gx
y
3dx

y

︸ ︷︷ ︸
=:I3

+ k

2

�
ω

(
(|y(x)− x0| − l)+

)2
dx︸ ︷︷ ︸

=:Ĩ4

,

where l ≥ 0 is some constant, f+(x) := max{f(x), 0} and x0 ∈ Ω.

This functional models the potential energy of a balloon, filled with a gas with density
ρS (e.g., Helium), surrounded by some medium with density ρW (e.g., air), which is
attached to a rubber band fixed a x0, which pulls back only if the band is stretched out
more than l, see Fig. 8.3.

Proof. For the proof, we proceed as for Theorem 8.2.1. We will only mention the major
changes.
Step 1: Coercivity
The terms I1 and I2 can be handled as above. The term I3 is also not a problem,

since we can simply add the length l in our geometric considerations, which only adds an
additional constant to the estimate. For the term I4 we consider

(|y(x)− x0| − l)+ = max{|y(x)− x0| − l, 0} ≤ ||y(x)− x0| − l| ≤ |y(x)− x0|+ l.

By the convexity of the mapping x 7→ x2 we get(
(|y(x)− x0| − l)+

)2
≤ (|y(x)− x0|+ l)2 ≤ c|y(x)− x0|2 + c′l2.

98



Therefore, one gets

Ĩ4 = c

� (
(|y(x)− x0| − l)+

)2
dx ≥ −c

�
|y(x)− x0|2dx− c′

�
l2dx︸ ︷︷ ︸

const.

.

Thus, we are able to estimate the both “elasticity”-terms, appearing from Poincaré
and the last integral, in a similar fashion as we did in the example above.

Step 2: Weak lower semicontinuity.
Weak lower semicontinuity for the integrals I1, I2, I3 follows from the same calculations

as in the proof of Thm. 8.2.1. The only thing left to check is that the different choice of
the integrand in I4 does not spoil lower semicontinuity.

Fortunately this is not the case, as we will show by employing the Fatou’s Lemma, Thm.
A.1.1. Let yn ⇀ y in W 1,p(Ω). Then, by the compact embedding, there is a subsequence
(not relabelled) yn → y pointwise almost everywhere. Set fn(x) := (|yn(x)− x0| − l)2

as a function from Ω into the real numbers. Then fn is non-negative and measurable.
Furthermore, fn(x)→ f(x) = (|y(x)− x0| − l)2 almost everywhere, because everything
is continuous here. Thus, by Fatou’s Lemma

I4(y) = c

�
Ω

(|y(x)− x0| − l)2 dx = c

�
Ω

lim inf fn(x)dx

≤ c lim inf
�

Ω
fn(x)dx = lim inf I4(yn).

Therefore, the direct method is applicable, and we conclude the existence of an
admissible minimizer.
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9. Existence results without boundary
conditions

So far we have controlled the position of the body by extended conditions, as boundary
conditions or the elastic condition. In this section, we will treat the case, where we do
not have such external conditions, i.e., the specimen is able to move freely in the medium.
As it turns out, this will cause trouble, letting inf E = −∞ and, thus, preventing us from
proving existence of minimizers. The first goal is to make this statement precise.
Then, we investigate the easy case of incompressible objects and study under which

assumptions we still can give an existence result. Secondly, we will turn to the case of
compressible objects, where we introduce the concept of slightly compressible objects,
which then allows us to prove existence of minimizers. The condition of slight com-
pressibility is a particular example of material locking, which is also studied in [3] or
[14]. There, the authors introduce a way of variationally characterising this condition.
However, this approach cannot be applied in our case, as we will see. While inf E = −∞,
it is still possible that there are local minima of E . This is the content of Sec. 9.3, where
we eventually prove the existence of such a local minimum.

9.1. Incompressible bodies

Definition 9.1.1. A deformation y is called incompressible if, for all x ∈ Ω the deforma-
tion gradient equals to 1, i.e., det∇y(x) = 1.

The volume stays constant under incompressible deformations: |Ω| = |y(Ω)|, following
from the change of variables formula. Naturally, also the density stays unchanged under
incompressible deformations, ρy(y(x)) = ρ(x).
If the body is incompressible, Archimedes’ law is applicable, which tells us that the

buoyancy equals to the gravitational force of the displaced medium.
For now, we also assume that the whole space is filled by the fluid, which simplifies

the argument. Then, by Archimedes’ law, the forces acting on the body are gρW |Ω|e3 −
gρS |Ω|e3. This term entirely describes the behaviour of the body:
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1. If gρW |Ω| − gρS |Ω| < 0, or equivalently ρW < ρS , then the body sinks (i.e., the
energy decreases for transitions in the −e3 direction).

2. If gρW |Ω|−gρS |Ω| = 0, or equivalently ρW = ρS , then the body stays at its position
(i.e., the energy is invariant by transitions in the e3 direction).

3. If gρW |Ω| − gρS |Ω| > 0, or equivalently ρW > ρS , then the body rises (i.e., the
energy decreases by translating the body in the e3 direction).

Note, that the behaviour of the body is completely determined by the relation of ρW
and ρS .
In the first case, namely for ρW < ρS , the energy does not have a minimum. More

rigorously, suppose ŷ is a minimum of E , then we can show that E(ŷ − ce3) < E(ŷ), a
contradiction. For proving this claim in the case, we use the change of variables formula,
and obtain

E(ŷ − ce3) =
�

Ω
W (∇(ŷ − ce3)) +

�
Ω
ρSg(ŷ3 − c)−

�
y(Ω)

ρW g(xy3 − c)dxy

= E(ŷ)−
�

Ω
ρSgc+

�
y(Ω)

ρW gcdx
y

= E(ŷ)−
�

Ω
ρSgc+

�
Ω
ρW gc

= E(ŷ) +
�

Ω
ρW gc− ρSgc︸ ︷︷ ︸

<0

< E(ŷ).

Note that the energy can be lowered arbitrarily, by choosing c sufficiently large. For any
M ∈ R, we can get E(ŷ − ce3) < E(ŷ) −M , by letting c > M

g|Ω|(ρW−ρS) . Thus, we have
that infy∈A E(y) = −∞, with A := {y ∈ W 1,p(Ω;R3) : det∇y = 1}. The analogous
result holds in the third case, namely for ρW > ρS , but taking ŷ + ce3 instead. In the
equilibrium case, ρW = ρS , the energy no longer depends on y3, i.e., we can choose the
barycentre arbitrarily, w.l.o.g. we set ȳ3 = 0. Therefore, one has the additional condition
of ȳi = 0, for i = 1, 2, 3, and thus can solve minimization problem.

Proposition 9.1.1. Under the usual assumptions on the stored energy function W , as
stated in Sec. 7, and the in the case of ρW = ρS and det∇y = 1, there exists a minimizer
of the energy functional

E(y) =
�

Ω
W (∇y)−

�
Ωy
gxy3ρWdx

y +
�

Ω
y3(x)gρSdx.
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Proof. By the assumption ρW = ρS and det∇y = 1, we see that E reduces to E(y) =�
W (∇y). Furthermore, we can assume that (ȳ1, ȳ2, ȳ3) = (0, 0, 0), since the energy is

invariant under translations of y3. By the coercivity assumptions, we get E ≥ c‖∇y‖pLp−c
and, due to Poincaré’s inequality A.2.6, we can conclude E(y) ≥ c‖y‖pW 1,p − c, which
yields coercivity of E . Since W is assumed to be polyconvex, E is also W 1,p-weakly lower
semicontinuous by the results from Chapter 3. Hence, the direct method applies.

We now change our assumption and introduce a transition between the medium and air.
Recall that the buoyancy is the weight of the displaced fluid, and therefore, if the body
is only partially submerged, only the submerged part will be taken into account. We
assume the fluid to cover the whole lower half space H− := {(x1, x2, x3) ∈ R3 : x3 < 0}.
It is easy to calculate the buoyancy, as we only have to consider those spacial points,
which also lie in H−, i.e., xy ∈ Ωy ∩H−. Hence, after a change of variable, and using
det∇y = 1, the energy functional will take the form

E(y) =
�

Ω
W (∇y) +

�
Ω
y3(x)gρSdx+

�
Ω
gy−3 (x)ρWdx,

where f± = max(0,±f), and hence, f = f+ − f−. If the fluid does not fill the whole
space, it is not enough to compare the densities only, but we also have to take into
account the volume of the deformed configuration, which does depend on the deformation.
We therefore have the following behaviour:

1. If gρW |Ωy ∩H−| − gρS |Ω| < 0, then the body sinks.

2. If gρW |Ωy ∩H−| − gρS |Ω| = 0, then the body stays at its position.

3. If gρW |Ωy ∩H−| − gρS |Ω| > 0, then the body rises.

Again, in the case of the sinking body we have inf E(y) = −∞. The proof is analogous
to the one of Prop. 9.2.1. However, due to the fluid-air-transition, we are able to
show existence of minimizers for the third case, where ρW > ρS , i.e., the object floats.
Intuitively, this is clear, because if min y3 ≥ 0 (namely, the body is fully above water),
the energy would decrease by partially submerging the solid. If the object was submerged
deeply, it would rise to the surface. We can also see this, when looking at the energy E ,
neglecting deformation energy. Then, if inf y3 > 0 (the specimen flies), we can assume
y−3 = 0, and hence, F(y) =

�
Ω gρSy3(x)dx +

�
Ω gρW y

−
3 (x)dx = gρS |Ω|ȳ3 > 0. On the

other hand, if sup y3 < 0 (the specimen is deep under water), we can assume (y3)− = −y3,
which yields F(y) =

�
Ω gρSy3(x)dx+

�
Ω gρW y

−
3 (x)dx = g|Ω| (ρS − ρW )︸ ︷︷ ︸

<0

ȳ3︸︷︷︸
<0

> 0. We see
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that the energy F is proportional to ȳ3, or −ȳ3, respectively. To make this argument
precise, we will bound |ȳ3| in terms of the energy, which means that ȳ3 can only be large,
if also E is large. This enables us to prove coercivity and eventually the existence of
minimizers. We claim there is a c > 0 such that for all deformations with det∇y = 1 the
following inequality holds

|ȳ3| ≤ cE(y). (9.1.1)

Clearly, ρW |Ωy ∩H−| > ρS |Ω| implies ρW > ρS . Just divide by |Ωy ∩H−| and use
|Ωy ∩H−| ≤ |Ωy| = |Ω|. Therefore, we get

E(y) =
�

Ω
W (∇y)︸ ︷︷ ︸
≥0

+
�

Ω
y3(x)gρSdx+

�
Ω
gy−3 (x)ρWdx

≥
�

Ω
y+

3 (x)gρSdx−
�

Ω
y−3 (x)gρSdx+

�
Ω
gρSy

−
3 (x)dx

≥
�

Ω
gρSy

+
3 (x) +

�
Ω
g (ρW − ρS)︸ ︷︷ ︸

>0

y−3 (x)dx. (9.1.2)

Moreover, we have |y3| = y+
3 + y−3 , and thus

|ȳ3| ≤
1
|Ω|

�
Ω
|y3| =

1
|Ω|

�
y+

3 dx+ 1
|Ω|

�
Ω
y−3 dx

≤ 1
gρS |Ω|

�
Ω
gρSy

+
3 (x)dx+ 1

|Ω|g(ρW − ρS)

�
Ω
g(ρW − ρS)y−3 (x)dx = (∗)

Setting K := max{ 1
gρS |Ω| ,

1
|Ω|g(ρW−ρS)} > 0 we get

(∗) ≤ K
�

Ω
gρSy

+
3 (x)dx+K

�
Ω
g(ρW − ρS)y−3 (x)dx

(9.1.2)
≤ KE(y).

Proposition 9.1.2. Let Ω ⊂ R3 be an open, bounded set with Lipschitz boundary
and assume that the material is hyperelastic and polyconvex, i.e., there exists a stored
energy function W satisfying (7.1.1) - (7.1.3). Furthermore, let ρW > ρS and set
A := {y ∈W 1,p(Ω;R3) : det∇y = 1}. Then, the minimization problem

Minimize E(y) for y ∈ A

has a solution.

Proof. We aim to apply the direct method. By the analysis of Chapter 3 and 6, we know
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that E is weakly lower semicontinuous. Since we assume ρW > ρS , we have

�
Ω
y3(x)gρSdx+

�
Ω
gy−3 (x)ρWdx

ρW>ρS
≥

�
Ω
y3(x)gρSdx+

�
Ω
gρSy

−
3 (x)dx = gρS

�
Ω

(y3 + y−3 )︸ ︷︷ ︸
=y+

3 ≥0

dx ≥ 0. (9.1.3)

To show coercivity, we apply Poincaré’s inequality, Thm. A.2.6, and get

Λ ≥ E(y)
(9.1.3)
≥ c‖∇y‖pLp − c
A.2.6
≥ c‖y‖pW 1,p − c|ȳ3|p − c.

By (9.1.1), we obtain −c|ȳ3|p ≥ −cE(y)p ≥ −cΛp, and hence, all deformations in the set
{E ≤ Λ} satisfy

‖y‖pW 1,p ≤ c (Λ + Λp) ,

i.e., are bounded. Therefore, we have shown coercivity and the direct method is applicable.

9.2. The compressible case

Consider now the compressible case, i.e., 0 < det∇y, not necessarily det∇y = 1. In
this case, the buoyancy will also depend on the deformation, because the volume of the
deformed body changes with y.
In particular, if gρW |Ωy| − gρS |Ω| < 0 or equivalently, |Ωy|ρW < |Ω|ρS for a certain

deformation y, then the body will sink. Therefore, we will expect inf E = −∞ in this
case. The next proposition will describe this phenomenon rigorously.

Proposition 9.2.1. If the body is compressible and |Ωy1 |ρW < |Ω|ρS for a deformation
y1 with max y1

3(x) ≤ 0, then there is another deformation y2, such that E(y2) < E(y1)
and |Ωy2 |ρW < |Ω|ρS. In particular, we have

inf E(y) = −∞.

Proof. Set y2 := y1 − ce3, with c > 0 constant. Note that det∇y1 = det∇y2. Then,
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using the change of variables formula twice, we obtain

ρW |Ωy2 | = ρW

�
y2(Ω)

dxy = ρW

�
Ω

det∇(y1 − ce3)dx

= ρW

�
Ω

det∇y1(x)dx = ρW |Ωy1 | < ρS |Ω|.

We can use the calculation above in the following computation and get

E(y2) =
�

Ω
W (∇(y1 − ce3)) +

�
Ω
ρSg(y1

3 − c)−
�
y2(Ω)

ρW g(xy3 − c)dxy

=
�

Ω
W (∇y1) +

�
Ω
ρSgy

1
3 −

�
Ω
ρSgc−

�
Ω
ρW g(y1

3(x)− c)(det∇y2)dx

=
�

Ω
W (∇y1) +

�
Ω
ρSgy

1
3 −

�
Ω
ρSgc−

�
y1(Ω)

gρWx
y
3dx

y +
�
y1(Ω)

gρW cdx
y

= E(y1)−
(
|Ω|ρSgc− |Ωy1 |ρW cg

)
︸ ︷︷ ︸

>0

< E(y1).

As before, the difference between the energies of y1 and y2 can be made arbitrarily large
by choosing c sufficiently large.

Remark 9.2.1. The analogous result holds true, if |Ωy1 |ρW > |Ω|ρS and the whole space
is filled with the fluid, i.e., the energy is of the form

E(y) =
�

Ω
W (∇y(x))dx+

�
Ω
y3(x)gρSdx−

�
Ω
gy3(x)ρWdx.

To see this, just define y2 := y1 + ce3. Invoking the physical picture, this amounts to
the body floating, driven by the buoyancy. Therefore, the only case, where the energy is
bounded, is if |Ωy|ρW = |Ω|ρS holds true for all deformations. Then, we are again in the
case of incompressible materials and the equilibrium of forces.

If we suppose, that not the whole space is filled by the fluid, but there is a transition
between the fluid and air, then we can show that the energy is bounded from below,
provided the material is only slightly compressible. In this case, we can prove the existence
of minimizers.

Slightly compressible materials

We introduce the notion of slightly compressible materials and give an existence result,
when |Ωy|ρW > |Ω|ρS . From now on, we will write J := det∇y for brevity.

106



Definition 9.2.1. We say a deformation is a slight compression, if there is a constant
c > 0, such that for all deformations satisfy

J = det∇y ≥ c > 0. (9.2.1)

This condition means that the deformations cannot compress arbitrarily. Using this, we
can show that the energy is bounded from below, if the specimen satisfies |Ωy|ρW > |Ω|ρS .

Proposition 9.2.2. Let c > 0 and define A := {y ∈ W 1,p(Ω,R3) : |Ωy|ρW >

|Ω|ρS , and det∇y ≥ c > 0} the set of admissible functions. Then infy∈A E(y) > −∞.

Proof. By the change of variables A.3.4, we get

|Ωy| =
�

Ωy
dxy =

�
Ω

det∇y(x)dx > c|Ω|.

Moreover, we have that ρS ≤ ρWJ holds, for if ρS > ρWJ , then |Ω|ρS =
�

Ω ρSdx >�
Ω ρWJ(x)dx = |Ωy|ρW , which is a contradiction. Thus,

ρS ≤ ρWJ ≤ ρW c, (9.2.2)

and hence,

E(y) =
�

Ω
W (∇y)︸ ︷︷ ︸
≥0

+
�

Ω
y3(x)gρSdx+

�
Ω
gy3(x)−ρWJdx

(9.2.2)
≥

�
Ω
y3(x)gρSdx+

�
Ω
gρSy3(x)−dx = gρS

�
Ω

(y3 + y−3 )︸ ︷︷ ︸
=y+

3 ≥0

dx ≥ 0.

Remark 9.2.2 (on condition (9.2.1)). The condition det∇y ≥ c > 0 is a very specific
case of material locking, which originally was introduced by Prager in [25]. The specific
condition (9.2.1) was studied by Benešová, Kručík, and Schlömerkemper in [3], and
ultimately leads to the introduction of gradient polyconvexity. There, the authors showed
that Hölder continuity of the det∇y implies the existence of such a c = c(y) > 0 with
det∇y > c > 0, which will yield a uniform bound on c, and thus, the condition (9.2.1), if
a energy functional of the form I(y) :=

�
ΩW (∇y(x))dx+

�
Ω(det∇y(x))−sdx is bounded.
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However, this approach cannot be used in our case, because, for the given energy

E(y) +
�

Ω
(det∇y(x))−sdx

=
�

Ω
W (∇y)︸ ︷︷ ︸
≥0

+
�

Ω
(det∇y(x))−sdx+

�
Ω
y3(x)gρSdx+

�
Ω
gy−3 (x)ρWJdx,

we cannot conclude that, if E(y) ≤ Λ, then
�

Ω(det∇y(x))−sdx < C, because the term
modelling the forces may may be unbounded from below.
Another way to obtain (9.2.1) by bounding a certain energy functional is provided

by Healey and Krömer in [14]. They, however, assume second gradients and Hölder
continuous boundary conditions, which is not compatible with the setting of a freely
moving specimen.

Proposition 9.2.3. Let Ω ⊂ R3 be an open, bounded set with Lipschitz boundary and
assume that the material is hyperelastic and polyconvex, i.e., there exists a stored energy
function W satisfying (7.1.1) - (7.1.3). Furthermore, assume |Ωy|ρW > |Ω|ρS and set
Ac := {y ∈W 1,p(Ω;R3) : det∇y ≥ c > 0}. Then the minimization problem

Minimize E(y) for y ∈ A

has a solution.

Proof. The proof is analogous to the one of Prop. 9.1.2. First, we claim that |ȳ3| ≤ kE(y).
We have that

|ȳ3| ≤
1
|Ω|

�
Ω
|y3| =

1
|Ω|

�
y+

3 dx+ 1
|Ω|

�
Ω
y−3 dx

≤ 1
gρS |Ω|

�
Ω
gρSy

+
3 (x)dx+ 1

|Ω|g(cρW − ρS)

�
Ω
g(cρW − ρS)y−3 (x)dx = (∗).

By (9.2.2) we have K := max{ 1
gρS |Ω| ,

1
|Ω|g(cρW−ρS)} > 0 and, hence, get

(∗) ≤ K
�

Ω
gρSy

+
3 (x)dx+K

�
Ω
g(cρW − ρS)y−3 (x)dx

(9.2.1)
≤ K

�
Ω
gρSy

+
3 (x)dx−K

�
Ω
gρSy

−
3 (x)dx+K

�
Ω
gρW y

−
3 (x) det∇y(x)dx

≤KE(y).

Now we can apply the Poincaré inequality and conclude coercivity as in Prop. 9.1.2.
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The weak lower semicontinuity follows by the analysis of Chapters 3 and 6.

9.3. Local Minimum

So far, the results we obtained are of global nature, where we considered minima over all
admissible deformations. Moreover, we saw, that if |Ωy|ρW < |Ω|ρS , i.e., the specimen
sinks, the infimum of the energy will be −∞. It is anyhow considerable, that local
minima may exist. Consider for example the case, where the specimen is located barely
under the water surface. In this case compressing the specimen so that it sinks, costs
a lot of energy, and thus, it may be more favourable for the specimen to float. In this still not optimal

–> just reformu-
late

section, we make these considerations above precise and prove the existence of such local
minimizers. To be able to do so, we specify further the structure of the energy.

The energy functional considered now, will be of the form

E(y) =
�

Ω
W (∇y(x))dx+

�
Ω

k

Js
+ g

�
Ω

(
ρSy3 + ρWJy3

−) ,
for a constant k > 0 and s > 0.
Let y0 : Ω → R3 be the deformation chosen in such a way, that it only consists of

a rotation and a translation, i.e. y0(x) = Rx + t, for R ∈ SO(d), t ∈ R, and such that
max y3 = 0, as depicted in Fig. 9.1. By definition of y0 we have det∇y0 = 1 and,
therefore, |y0(Ω)| = |Ω|.

y0(Ω)

Figure 9.1.: Position of y0

If we furthermore assume that |Ωy0 |ρW > |Ω|ρS , or equivalently ρW > ρS (note
∇y = R, detR = 1), i.e. the body rises, it is clear that the energy of y0 is not optimal,
and there are more favourable states when the object rises above the surface. Introducing
a new notation  

Ω
f(x)dx := 1

|Ω|

�
Ω
f(x)dx,
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we can rewrite the condition |Ωy|ρW > |Ω|ρS as
 
J >

ρS
ρW

. (9.3.1)

In this case, we already have shown existence of minimizers. However, this condition is
not closed, and therefore, we use a slight modification of it:

 
J ≥ τ > ρS

ρW
, (9.3.2)

for 0 < τ < 1. This choice is in accordance with our assumptions, since we are assuming
that ρW > ρS , and therefore, ρS/ρW < 1. This new assumption implies the old one (9.3.1),
under which we already proved the existence of a minimum in Section 9.2. Let us denote
this minimum by y∗.
We will prove that all deformations close to this minimum, will admit the condition

(9.3.2), even if do not assume that |Ωy|ρW > |Ω|ρS . Hence, this minimum is a local one,
considered over admissible deformations. More precisely, we state the following lemma.

Lemma 9.3.1. There exists a ε > 0 such that all deformations ŷ with E(ŷ) ≤ E(y0),
and ‖ŷ3 − y∗3‖L∞ < ε, automatically satisfy (9.3.2), i.e., setting Ĵ := det∇Ĵ , we have

 
Ω
Ĵ ≥ τ > ρS

ρW
.

Proof. Aiming for a contradiction, we assume
�
Ĵ ≤ τ < 1. Then,

E(y0) ≥ E(ŷ) =
�
W (∇ŷ)︸ ︷︷ ︸
≥0

+
�

Ω

k

Ĵs
+ g

�
Ω

(ρS ŷ3 + ρW Ĵ ŷ
−
3 )dx = (∗)

Since, ‖ŷ − y∗‖W 1,p < ε, we can estimate the term above using y∗ with an error of order
ε. The application of Jensen’s inequality and the assumption on τ yields

(∗) ≥
�

Ω

k

Ĵs
+ g

�
Ω

(
ρSy

∗
3 + ρWJ

∗(y∗3)−
)
dx︸ ︷︷ ︸

=:G

+O(ε)

Jensen
≥ |Ω| k(�

Ĵ
)s +G+O(ε)

assumpt.
≥ k|Ω| 1

τ s︸︷︷︸
>1

+G+O(ε). (9.3.3)
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Moreover E(y0) = k|Ω|+ g
�

Ω(ρS − ρW )(y0)3dx, as ∇y0 = R ∈ SO(d), with det∇y0 = 1.
This implies, that g

�
(ρS − ρW )y03dx = c = c(g, ρS , ρW ,Ω, y0) can be considered to be a

constant, which does not depend on k. Hence, we can write E(y0) = k|Ω|+ c.
If G = 0, we would have found a contradiction, since

E(y0) ≥ k|Ω| 1
τ s︸︷︷︸
>1

+O(ε) > k|Ω|+ c = E(y0),

choosing k large enough.
However, if G 6= 0, we have to bound G in terms of the energy to get to a contradiction.

First, note that by the coercivity assumption on W and Poincaré’s inequality, we get
E(y∗) ≥ c‖∇y∗‖pp − c ≥ c‖y∗‖p∞. Trivially, we can bound Ø(Ωy) ≤ 2‖y‖L∞ . Therefore,
we have

G ≤ |Ω|gρS‖y∗‖∞ + Ø(Ωy)gρW ≤ c‖y∗‖∞ ≤ cE(y∗)1/p.

Since E(y∗) ≤ E(y0) we can infer

G ≥ −cE(y∗)1/p ≥ −cE(y0)1/p.

Relation (9.3.3) entails that

E(y0) > k|Ω| 1
τ s
− cE(y∗)1/p +O(ε)

≥ k|Ω| 1
τ s
− cE(y0)1/p +O(ε)

= k|Ω| 1
τ s
− c (k|Ω|+ c)1/p +O(ε).

This is a contradiction: Since E(y0) is linear in k, and k
1
p tends to infinity much slower

than k, as k →∞, we can make the right hands side arbitrarily large, choosing k large
enough.

Proposition 9.3.2. Under the usual assumptions, there exists a local minimizer of E in{ 
J ≥ τ > ρS

ρW

}
.

Proof. Step 1: Energy is bounded from below.
Note that

�
J ≥ τ > ρS/ρW implies that ρW

�
J−ρS > 0. Since we can write ρS =

�
ρS ,
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we obtain
0 < ρW

 
J − ρS = 1

|Ω|

�
Ω
ρWJ − ρS .

Thus, we have that ρS ≤ ρWJ holds, for if ρS > ρWJ , then |Ω|ρS =
�

Ω ρSdx >�
Ω ρWJ(x)dx = |Ωy|ρW , which is a contradiction. We make use of the identity

y3 = y+
3 − y

−
3 ,

and get

E(y) =
�

Ω
W (∇y)︸ ︷︷ ︸
≥0

+
�

Ω
y3(x)gρSdx+

�
Ω
gy3(x)−ρWJdx

≥
�

Ω
y3(x)gρSdx+

�
Ω
gρSy3(x)−dx = gρS

�
Ω

(y3 + y−3 )︸ ︷︷ ︸
=y+

3 ≥0

dx ≥ 0.

Step 2: Local Minimum.
Next, we want to put ourselves in the setting of Lemma 9.3.1. Any deformation y

with E(y) > E(y0) ≥ E(y∗) cannot be a minimizer. Thus, we can w.l.o.g assume that
E(y) ≤ E(y0), and therefore, by Lemma 9.3.1, we know that there exists ε > 0 such that for
such deformations with additionally ‖y − y∗‖L∞ < ε, the condition J ≥ τ > ρS/ρW holds.
Therefore, y∗ is indeed a minimizer over all deformations y with ‖y − y∗‖L∞ < ε.
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A. Appendix

We provide an overview of notions and results used over the course of the thesis.
Let Ω ⊂ Rd be open, connected, and with Lipschitz-boundary (for a definition refer

to [18], Def. 9.57). Furthermore, we assume Ω to be of finite d-dimensional Lebesgue
measure, denoted as |Ω| <∞. From now on we will use these assumptions on Ω, although
further generalizations would be possible.

A.1. Lp-spaces

We define Lp-functions in the case of p ∈ [1,∞], and recall the most important results
used in the thesis. Let f : Ω→ Rm, m ∈ N, be a Lebesgue-measurable function. We set

‖f‖Lp(Ω;Rm) :=

 p

√�
Ω |f(x)|pdx for 1 ≤ p <∞

ess supx∈Ω |f(x)| for p =∞,

where | · | denotes the Euclidean norm in Rm and the integral is to be understood as
Lebesgue integral. The class of all measurable functions with ‖f‖Lp(Ω;Rm) <∞, up to
a.e. identification, is denoted with Lp(Ω;Rm). The essential supremum is defined as

ess sup
x∈Ω

f := inf
|N |=0

sup
x∈Ω\N

f(x).

Here, the | · | denote the d-dimensional Lebesgue measure. It should not lead to confusion
with the Euclidean norm, as in this case, we are considering sets.

Remark A.1.1 (on the notation). During the thesis, for brevity we often omit to specify
the domain or the target space, when subscripting the norm, whenever it is clear what is
meant. Moreover, when needed to distinguish the d and (d− 1)-dimensional Lebesgue
measure (e.g. when considering the boundary of Ω), we will denote the measure of the
set with measd(Ω), or measd−1(∂Ω) respectively.

It will often be useful to interchange the limit and integral, which is allowed under the
conditions of the following important theorems.
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Theorem A.1.1 (Fatou). Let (Ω,A, µ) be a measure space. For each sequence (fn) of
non-negative, measurable functions fn : Ω→ R ∪ {∞} it holds that

�
Ω

lim inf
n

fndµ ≤ lim inf
n

�
Ω
fndµ.

Theorem A.1.2 (Monotone convergence). Let (fn) be a sequence of Lebesgue-integrable
functions with fn ≤ fn+1 almost everywhere, for all n ∈ N. Moreover, suppose that
supn

�
Ω fn(x)dx <∞. Then,

lim
n→∞

�
Ω
fn(x)dx =

�
Ω
f(x)dx.

Theorem A.1.3 (Dominated convergence). Let (fn) be a sequence of Lebesgue-integrable
functions, converging almost everywhere to f . If there exists a g ∈ L1(Ω), with |fn| ≤ g
almost everywhere, then f is integrable and

lim
n→∞

�
Ω
fn(x)dx =

�
Ω
f(x)dx.

The proofs can be found in [4], Sec. 2.8.
Another important tool is Hölder’s inequality.

Theorem A.1.4 (Hölder’s inequality). Let 1 ≤ p ≤ ∞ and let f ∈ Lp(Ω,Rm) and
g ∈ Lq(Ω,Rm) with 1

p + 1
q = 1. Then the function f · g is in L1(Ω,R) and

‖f · g‖L1(Ω;R) ≤ ‖f‖Lp(Ω;Rm)‖g‖Lq(Ω,Rm).

Theorem A.1.5 (Generalized Hölder inequality). Let 1 ≤ p1, · · · , pN , p ≤ ∞ such that
1
p1

+ · · · 1
pN

= 1
p and let fi ∈ Lpi(Ω) for i = 1, . . . , N . Then, the following inequality holds

∥∥∥∥∥
N∏
i=1

fi

∥∥∥∥∥
Lp

≤
N∏
i=1
‖fi‖Lpi .

The proof of the Generalized Hölder inequality follows by induction.

A.2. Sobolev spaces

We recall the basic definitions and most important results regarding Sobolev spaces, such
as the embedding theorems, the existence of the trace, and compact embeddings. See
also [17], B.3, and [18], [12].
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Basic Definitions

Infinitely differentiable functions with compact support are called test functions, denoted
by D = C∞c . For a multi-index α ∈ Nd0, with order |α| := α1 + · · ·+ αd, and a function
y ∈ Lp(Ω), we define the α-distributional derivative of y as the distribution satisfying〈

∂αy

∂xα1
1 . . . ∂xαdd

, φ

〉
= (−1)|α|

�
Ω
y

∂αφ

∂xα1
1 . . . ∂xαdd

dx,

for all test functions φ ∈ D . We call d-tuple of distributional derivatives of order 1 the
gradient and write ∇y =

(
∂
∂x1

y, . . . , ∂
∂xd

y
)
. For p <∞ we define the Sobolev space

W 1,p(Ω) := {y ∈ Lp(Ω) : ∇y ∈ Lp(Ω;Rd)},

which is a Banach space, when equipped with the norm

‖y‖W 1,p(Ω) :=
(
‖y‖pLp(Ω) + ‖∇y‖p

Lp(Ω;Rd)

)1/p
.

The spaces of Rm-valued Sobelev functions are defined as W 1,p(Ω;Rm) := {y =
(y1, . . . , ym) : yi ∈W 1,p(Ω), i = 1, . . . ,m}.

Lebesgue spaces Lp and Sobolev spaces W 1,p are separable for 1 ≤ p <∞ and reflexive
for 1 < p <∞.

Since Sobolev functions are Lp functions, and thus, insensitive to changes of sets
of measure zero, we cannot evaluate these functions at the boundary. This, however,
prevents us from considering problems with prescribed boundary values. A way out is
given by the following trace theorem.

Theorem A.2.1 (Trace theorem). Let Ω ⊂ Rd be open, connected, of finite measure,
and with Lipschitz boundary Γ := ∂Ω. Then, there exists a unique linear continuous
operator, called trace operator,

T : W 1,p(Ω)→ L1(Γ)

such that, for any y ∈ C (Ω̄), it holds that

Ty = y|Γ.

115



Moreover, the operator T

T : W 1,p(Ω) → Lq(Γ)
y 7→ u|Γ

is
{

continuous if 1 ≤ q ≤ p],
compact if 1 ≤ q < p],

where p] is the so-called Sobolev trace exponent with values

p] :=


dp−p
d−p for p < d,

an arbitrary r ∈ R for p = d,

∞ for p > d.

See [17], Theorem B.3.6, [12], Chap. 5.5. Theorem 1, or [18], Chap. 18.1. We
consistently consider boundary values of Sobolev functions in the trace sense, given by
the trace operator above. Moreover, we define W 1,p

0 (Ω) to be the set of Sobolev functions
with zero trace (cf. [12], Sec. 5.5, Thm. 2).

Embedding theorems

Definition A.2.1. For 1 ≤ p < n we define the Sobolev conjugate p∗ as

p∗ := pn

n− p
.

We summarize the embedding theorem of Gagliardo-Nierenberg-Sobolev ([12], Sec. 5.6,
Thm. 1) and the embedding theorem of Morrey ([12], Sec. 5.6, Thm. 4) into the following
Theorem ([12], Sec. 5.6, Thm. 6)

Theorem A.2.2 (General Sobolev inequalities). Let Ω be a bounded open subset of Rn

with a C 1 boundary. Assume u ∈W k,p(Ω).

(i) If
k <

n

p
,

then u ∈ Lq(Ω), where
1
q

= 1
p
− k

n

and we have the estimate

‖u‖Lq(Ω) ≤ C(k, p, n,Ω)‖u‖Wk,p .
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(ii) If
k >

n

p
,

then u ∈ C k−
⌊
n
p

⌋
−1,γ(Ω̄), where

γ =


⌊
n
p

⌋
+ 1− n

p if n
p is not an integer

any positive number < 1 if n
p is an integer

Additionally, we have the estimate

‖u‖
C
k−bnp c−1,γ(Ω̄)

≤ C(k, p, n, γ,Ω)‖u‖Wk,p .

Theorem A.2.3 (Rellich-Kondrachov, [12], Sec. 5.7, Thm. 1). Assume Ω to be a bounded
open subset of Rn with C 1 boundary ∂Ω. Suppose 1 ≤ p < n. Then we have the compact
embedding

W 1,p(Ω) b Lq(Ω)

for each 1 ≤ q < p∗.

A family of continuous functions F ⊂ C (X,Y ) between metric spaces is called equicon-
tinuous, if for every ε > 0 and every x ∈ X, there is a neighbourhood U(x) of x such
that

dY (f(x), f(y)) < ε ∀y ∈ U(x), ∀f ∈ F.

Theorem A.2.4 (Arzelà-Ascoli). Let X be a compact metric space and Y be a metric
space, satisfying the Heine-Borel property. Let F ⊂ C (X,Y ) be a family of continuous
functions. Then every sequence from F has a uniformly convergent subsequence, if and
only if F is equicontinuous and the set {f(x) : f ∈ F} is bounded for every x ∈ X.

For the proof refer to [28], Thm. B.39.

Poincaré inequalities

Theorem A.2.5 ([12], Sec. 5.6, Thm. 3). Assume Ω to be a bounded, open subset of Rn

and 1 ≤ p < n. Then, there exists c > 0 such that

‖u‖Lq ≤ c‖∇u‖Lp ∀u ∈W 1,p
0 (Ω)

for each q ∈ [1, p∗], the constant c depending on p, q, n, and Ω.
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Notation: Introducing the barycentre of a function u over its domain Ω

ū := 1
|Ω|

�
Ω
u(x)dx,

we can formulate the following Poincaré inequality.

Theorem A.2.6 ([12], Sec. 5.8, Thm. 1). Let Ω be a bounded, connected, open subset
of Rn with a C 1 boundary ∂Ω. Assume 1 ≤ p ≤ ∞. Then, there exists a constant c,
depending only on n, p, and Ω such that

‖u− ū‖Lp ≤ c‖∇u‖Lp ∀u ∈W 1,p.

A powerful generalization is the following (cf. Theorem B.3.15, [17], p. 519).

Theorem A.2.7 (Generalized Poincaré). Let Ω ⊂ Rn be an open bounded Lipschitz
domain and let 1 ≤ p <∞. Let further ΓD ⊂ ∂Ω be such that measd−1(ΓD) > 0. Then,
there exists a constant k > 0 such that for all v ∈W 1,p(Ω,Rn) the following inequalities
hold �

Ω
|v(x)|pdx ≤ k

(�
Ω
|∇v(x)|pdx+

∣∣∣∣�
Ω
v(x)dx

∣∣∣∣) .
And if Γ ⊂ ∂Ω is measurable and such that measd−1(Γ) > 0, then

�
Ω
|v(x)|pdx ≤ k

(�
Ω
|∇v(x)|pdx+

∣∣∣∣∣
�

ΓD
v(x)dS

∣∣∣∣∣
)
.

A.3. Integral identities

We will collect a few integral formulas and introduce further necessary notions, like
Lusin’s condition. Aside the commonly known Green formula, we will mention two
change of variable formulas and preliminary notions to formulate them.

Theorem A.3.1 (Green’s formula). Let Ω be a Lipschitz domain and n = n(x) ∈ Rd

the outward unit normal to the boundary Γ = ∂Ω at the point x ∈ Γ. Then, for all
v ∈W 1,p(Ω) and z ∈W 1,q(Ω;Rd), the following formula holds

�
Ω

(v(div z) + z · ∇v) dx =
�

Γ
v(z · n)dS.

Before we get to the change of variables, we introduce the Lusin’s conditions and the
Banach indicatrix.
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Definition A.3.1 (Lusin’s conditions). Let Ω ⊂ Rn be a bounded measurable domain.
Then, y : Ω → Rd is said to satisfy Lusin’s condition N if for every ω ⊂ Ω with
measd(ω) = 0 it holds that measd(y(ω)) = 0.

Of course, one can consider functions whose pre-image of null sets as again a null set.
The function y : Ω→ Rd is said to satisfy Lusin’s condition N−1 if for every ω̃ ⊂ y(Ω)
with meas(ω̃) = 0 it holds that measd(y−1(ω̃)) = 0.

We recall that smooth Sobolev functions on bounded sets automatically satisfy Lusin’s
condition N .

Lemma A.3.2. Let Ω ⊂ R3 be bounded and y ∈ W 1,p(Ω;R3), with p > 3. Then y

satisfies Lusin’s condition N.

The proof can be found in [20], Cor. 1. A result on Lusin’s condition N−1 is the
following (cf. [5], Lemma 8.3).

Theorem A.3.3. Let Ω be a bounded domain and y : Ω→ Rd be a continuous mapping
satisfying Lusin’s condition N. Assume that y is differentiable almost everywhere in Ω and
that det∇y is integrable in Rd and positive a.e. in Ω. Then y satisfies Lusin’s condition
N−1. In particular, if y ∈W 1,p(Ω;Rd) for some p > d is a continuous representative of
the equivalence class and det∇y > 0 a.e. in Ω then y satisfies Lusin’s condition N−1.

To formulate the change of variables formula, we need one additional ingredient, the
Banach indicatrix.

Definition A.3.2. For any z ∈ Rd and Ω ⊂ Rd the Banach indicatrix N(z, y,Ω) is the
number of elements in Ω, which are mapped to z by y, formally

N(z, y,Ω) := #{x ∈ Ω : y(x) = z},

where the right hand side is the counting measure.

Theorem A.3.4 (Change of Variables). Let Ω ⊂ Rd be a bounded domain and let
y : Ω→ Rd be continuous, satisfying Lusin’s condition N. Assume that y is differentiable
a.e. in Ω and that det∇y is integrable in Rd. Then, the Banach indicatrix N(·, y,Ω) is
integrable and we have

�
Ω
| det∇y(x)|dx =

�
Rd
N(z, y,Ω)dz =

�
y(Ω)

N(z, y,Ω)dz.

Note that any y ∈ W 1,p(Ω;Rd) satisfies the hypothesis of the above theorem. For a
proof of this assertion and Thm. A.3.4 refer to [5].
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Theorem A.3.5 (Change of Variables 2). Let Ω ⊂ Rd be a bounded domain and let
y ∈W 1,d(Ω;Rd) be continuous, satisfying Lusin’s condition N, and such that det∇y > 0
∀aax ∈ Ω. Then for every f ∈ L∞(y(Ω)) it holds that

�
Ω
f(y(x)) det∇y(x)dx =

�
y(Ω)

f(z)N(z, y,Ω)dz.

The proof can be found in [5], Thm. 8.4.

A.4. Weak Topology

Given a real Banach Space X we define its dual space X ′ as the set of all bounded linear
functional into R. The weak topology is the initial topology on X with respect to X ′,
i.e., it is the coarsest topology on X such that all functionals f ∈ X ′ are continuous.

Definition A.4.1. A sequence (xn) ⊂ X converges weakly to x ∈ X, in symbols:
xn ⇀ x, if

lim f(xn) = f(x) ∀f ∈ X ′.

A sequence (fn) ⊂ X ′ converges weak-* to f ∈ X ′, if

fn(x)→ f(x) ∀x ∈ X.

Proposition A.4.1. If (fn) ⊂ X ′ converges weakly, then it also converges weak-*, i.e.
weak convergence implies weak-* convergence. So, weak-* convergence is indeed weaker
than weak convergence.

If, however, the Banach Space X is reflexive these to notions of convergence are
equivalent. We will make this precise later on.

Theorem A.4.2. Let X be a Banach space. Then X is reflexive, if and only if each
bounded sequence has a weakly convergent subsequence.

This theorem is a special case of the

Theorem A.4.3 (Banach-Alaoglu). Let E be a normed space and E′ its topological dual
space. Then the unit sphere D := {f ∈ E′ : ‖f‖E′ ≤ 1} is compact with respect to the
weak-* topology.

This means that every bounded set S ⊂ E′ contains a bounded subnet (fι)ι∈I such
that fι(x) → f(x) for all x ∈ E. Important: For general metric spaces this does not
imply sequential compactness!
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Example A.4.1. The unit ball in the dual of l∞ is weak-* compact by the Banach-Alaoglu
theorem. It is, however, not sequentially compact. To see this consider

pn : l∞(N)→ R

(xk)k 7→ xn

Then (pk)k does not have a convergent subsequence. 4

On the contrary, for a Banach space weak-compactness and weak-sequential com-
pactness are the same. This is not obvious, as the weak topology is not metrizable.

Theorem A.4.4 (Eberlein-Šmulian). Let X be a Banach space. Then the following are
equivalent:

(i) Weak sequential compactness: Every sequence has a weakly convergent subsequence.
(ii) Weak compactness: Every weakly open (open sets in the weak topology) cover

contains a finite subcover.

For a proof, see [10], Chap. V.6. This result is incredibly useful, as it guarantees that
we can work with sequences in weak compact sets.

Remark A.4.1 (Putting all together). Recall: A Banach space is reflexive if X = (X ′)′ =
X ′′, i.e. when the Banach space and its bidual are isometrically isomorphic via the Riesz
isomorphism. In general, the weak-* topology on X ′ is strictly weaker than the weak
topology on X ′ (cf. Prop. A.4.1). If, however, the Banach space is reflexive, then the weak
topology on X is identical to the weak-* topology on (X ′)′ = X ′′. By the Banach-Alaoglu
theorem, we know that the unit sphere is weak-* compact in the dual of a normed
space, so applying this to the dual of X ′, we have that the unit sphere in (X ′)′ is weak-*
compact, and thus, it is weak compact in X! This means that every bounded subset of a
reflexive Banach space is weak compact! Since, by Eberlein-Smulian, this is equivalent
to being weak sequential compact, we have: In a reflexive Banach space every bounded
sequence has a convergent subsequence! In fact, this is even an “if and only if”: If the
every bounded sequence has a convergent subsequence the Banach space is reflexive.

Boundedness of weak converging sequences and lower semicontinuity

Similar to the simple case of converging sequences of real numbers, weak converging
sequences in Banach spaces are norm-bounded.
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Theorem A.4.5 (Boundedness of weak converging sequences). Let X be a Banach space
and (xn) ⊂ X converging weakly to x ∈ X, i.e. xn ⇀ x. Then (xn) is bounded.

Proof. Let xn be weakly convergent: xn ⇀ x ⇔ f(xn) → f(x) for all f ∈ X ′. Define
Tn ∈ X ′′ by Tn(f) = f(xn) for all f ∈ X ′, and a fixed f ∈ X ′. Since xn is weakly
convergent f(xn) is bounded, and thus, (Tn(f))n is in a bounded set. By the Uniform
Boundedness principle we obtain

sup ‖xn‖ = sup ‖Tn‖ <∞.

Hence, (xn) is bounded.

Before we state another important property of the norm, we recall the following
consequence of the Hahn-Banach Theorem.

Lemma A.4.6. Let X be Banach space. For every x ∈ X, there is a f ∈ X ′ such that
‖f‖X′ = ‖x‖X and f(x) = ‖x‖2.

The proof can be found in [6], Corollary 1.3.

Theorem A.4.7 (Norm is w.l.s.c.). Let X ba a Banach space and (xn) ⊂ X an weakly
converging sequence xn ⇀ x. Then the following holds

‖x‖ ≤ lim inf ‖xn‖.

Proof. By Lemma A.4.6, there is a functional f0 ∈ X ′ such that ‖f0‖X′ = 1 and
|f0(x)| = ‖x‖. Since xn ⇀ x, we have f(xn) → f(x) for all f ∈ X ′. In particular,
f0(xn)→ f0(x) and thus |f0(xn)| → |f0(x)| = ‖x‖. Putting all this together we obtain

‖x‖ = |f0(x)| = lim |f0(xn)| ≤ lim inf |f0(xn)| ≤ lim inf ‖f0‖X′‖xn‖ = lim inf ‖xn‖.

Results on weak and strong convergence

We now recall different notions of convergence and collect a few statements on the
connection of weak and strong convergence in Sobolev and Lp spaces.
Weak convergence of a sequence (uj) means that for all elements f in the dual space

the sequence f(uj) converges. For the space W 1,p it is not very handy to work with this
definition, but we would like to have a characterization of weak convergence in terms of
uj and ∇uj .

Theorem A.4.8. In the space W 1,p, 1 ≤ p <∞ the following are equivalent:
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(i) uj ⇀ u in W 1,p, i.e., f(uj)→ f(u) for all f ∈ (W 1,p)?

(ii) uj ⇀ u in Lp and ∇uj ⇀ ∇u in Lp.

Theorem A.4.9 (Weak Sobolev convergence implies strong Lq convergence). Suppose
yk ⇀ y weakly in W 1,p(Ω), Ω ⊂ Rn. Then the sequence converges strongly in Lp, that is,
ykn → y as n→∞.

Proof. yk ⇀ y in W 1,p implies, that (yk) is bounded in W 1,p. By the compact embedding
(Rellich-Kondrachov) W 1,p ⊂⊂ Lq for 1 ≤ q ≤ p∗ = np

n−p there is a subsequence ykn
converging strongly in Lq. By Thm. A.4.8 we also have yk ⇀ y in Lp. Therefore, the
limit of ykn is y, as strong convergence implies weak convergence and weak limit are
unique. The following fact on Hausdorff spaces concludes the proof: If y, yk are such that
every subsequence of yk has a subsubsequence converging to y, then also yk converges to
y.

Corollary A.4.10. If yn ⇀ y weakly in W 1,p, then it converges almost everywhere to y.

Theorem A.4.11 (Mazur). Let X be a normed vector space and (xn) a sequence weakly
converging to x. Then, there is a sequence (yn) of convex combinations of xn, i.e.,
yn = ∑Nn

i=1 λi,nxi with
∑Nn
i=1 λi,n = 1, such that (yn) convergences strongly to x (namely,

‖yn − x‖ → 0).

A proof can be found in [28], Cor. 5.12.

A.5. A Mathematician’s toolbox

We collect some important tools, including some useful inequalities.

Inequalities

Lemma A.5.1 (Cauchy’s inequality). We have

2ab ≤ a2 + b2 ∀a, b ∈ R.

Using this one can now prove:

Proposition A.5.2. If f, g ∈ Lp(Ω), then their product fg belongs to Lp/2(Ω).

In fact, we have that
�
|fg|p/2 ≤ 1

2

� (
|f |p/2

)2
+ 1

2

� (
|g|p/2

)2
≤ c‖f‖p + c‖g‖p <∞
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Another way to prove this result is using Hölder’s inequality:
�
|fg|p/2 =

�
|f |p/2|g|p/2 ≤

(� (
|f |p/2

)2
)1/2 (� (

|g|p/2
)2
)1/2

= ‖f‖p/2p ‖g‖p/2p <∞

Lemma A.5.3 (Young’s inequality). Let a, b, δ > 0 and p, q ≥ 1 such that 1/p+ 1/q = 1.
Then, the following inequality holds

ab ≤ δpap

p
+ bq

δqq
.

Proof. By the identities exp(ln(x)) = x for x > 0 and ln(ab) = ln(a) + ln(b), we get

ab = exp(ln(δa 1/δb)) = exp
(1
p
p ln(δa) + 1

q
q ln(b/δ)

)
= exp

(1
p

ln(δpap) + 1
q

ln(bq/δq)
)
≤ 1
p
δpap + 1

δqq
bq,

where we used in the last step the definition of convexity applied to the strictly convex
function exp.

For two matrices A,B ∈ Rd×d we define the matrix dot-product by A : B :=∑d
i,j=1AijBij . The Frobenius norm of a matrix A ∈ Rd×d is the norm induced by

this product, i.e., |A|2F := A : A.

Lemma A.5.4 (Hadamard’s inequality). Let | · |F denote the Frobenius norm and let
A ∈ Rd×d. Then,

|detA| ≤ dd/2|A|F d.

Measure theory

Theorem A.5.5 (Vitali convering theorem). Let Ω, D ⊂ Rd be open and bounded. Then,
there exist ak ∈ Ω, rk > 0, for k ∈ N, such that Ω is the disjoint union

Ω = Z ∪
∞⋃
k=1

D(ak, rk),

with D(ak, rk) := ak + rkD, and Z ⊂ Ω is a Lebesgue-null set, i.e. |Z| = 0. Moreover,
is for almost all x ∈ Ω, we are give an real number r(x) > 0, then one can require that
rk < r(ak) for all k ∈ N.
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Lemma A.5.6. Let (X,A, µ) be a measure space and A,B ∈ A such that A ⊂ B. Then,

µ(B\A) + µ(A) = µ(B).

Moreover, if µ(A) <∞, we have µ(B\A) = µ(B)− µ(A).

Proof. Clearly, by the inclusion,

B = (B\A) ∪ (B ∩A) = (B\A) ∩A.

Since B\A and A are disjoint, we get

µ(B) = µ(B\A) + µ(A).

A.6. Auxiliary Calculations

Passing to subsequences when proving weak lower semicontinuity

We often prove lower semicontinuity for some subsequence. Fortunately, this also imply
the statement for the original sequence, as we will show now.

Assume we have already proved

un → u =⇒ ∃ subsequence of (un) : f(u) ≤ lim inf
j→∞

f(unj ), (A.6.1)

then also

f(u) ≤ lim inf
n

f(un).

In other words: If we know that f is lower semicontinuous for a particular subsequence
of an arbitrary converging sequence, we know that f is lower semicontinuous. This result
is very important, as the described procedure is exactly the one, we carry out for proving
lower semicontinuity in the case of the existence results. There, we often consider an
arbitrary sequence yn ⇀ y in W 1,p, and then apply embedding theorems which give
us subsequences of yn for which we prove lower semicontinuity. If this would not hold,
proving lower semicontinuity would become extremely cumbersome.

We state this again with all needed assumptions (cf. [27], Problem 2.1).

Proposition A.6.1. Let X be a complete metric space and f : X → R. If for every
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sequence un → u there is a subsequence (unj ) such that

f(u) ≤ lim inf
j

f(unj ),

then also
f(u) ≤ lim inf

n
f(un).

Proof. Recall the definition of the limes inferior: lim inf f(xn) is the smallest accumulation
point of the sequence f(xn). Therefore, there is subsequence xnk such that

lim inf
n

f(xn) = lim
k
f(xnk).

Step 1: We know by the definition of the lim inf, that there is a subsequence of (f(un))n
realizing this lim inf, i.e.

α = lim inf
n

f(un) = lim
j
f(unj ). (A.6.2)

So, although we do not know that f(un) → f(u), we do know that f(unj ) → α and
unj → u (since it is a subsequence).

Step 2: By applying A.6.1 to the sequence (unj ), we also know that there is a subse-
quence (unjk )k of (unj ) such that

f(u) ≤ lim inf
k

f(unjk ). (A.6.3)

Step 3: Since (unjk ) is a subsequence of (unj ), we have that f(unjk ) is a subsequence
of f(unj ), and therefore, also converges to α, i.e. f(unjk )→ α = limj f(unj ).

Step 4: Combining these steps:

f(u)
A.6.3
≤ lim inf

k
f(unjk ) = lim

j
f(unj )

A.6.2= lim inf
n

f(un).

Pressure Load is conservative

We start by defining the Gâteaux differential (cf. [13], Definition 4.60). Let V be a
Banach space. A function F : V → (−∞,+∞] is Gâteaux differentiable at v0 ∈ V if
F (v0) ∈ R and there exists a v′ ∈ V ′ such that for every v ∈ V ,

lim
ε→0+

F (v0 + εv)− F (v0)
ε

= v′(v) =: F ′(v0)v.
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The element v′ =: F ′(v0) is called Gâteaux differential of F at v0.

Some authors prefer to define the Gâteaux differential as F ′(v0)v := lim
ε→0+

f(v0+εv)−f(v)
ε ,

given the limit exists. In this case, however, the map F ′(v0) is not necessarily linear. For
a counterexample check [28], Example 16.3.

Now, we prove that the pressure load is conservative. We are given the functional

F (y) = −
�

Ω
p(y(x)) det∇y(x)dx.

Thus, the Gâteaux derivative of F at y in direction v is given by

F ′(y)v =
(
d

dt
F (y + tv)

)
t=0

=
(
− d

dt

�
Ω
p(y(x) + tv(x)) det∇(y(x) + tv(x))dx

)
t=0

= (∗).

Differentiating under the integral, we get

(∗) =
(
−
�

Ω

(
d

dt
p(y + tv)

)
det∇(y + tv) + p(y + tv) d

dt
det(∇y + t∇v)dx

)
t=0

=
(
−
�

Ω
(det∇(y + tv))∇yp(y + tv) · v + p(y + tv) Cof∇(y + tv) : ∇vdx

)
t=0

= −
�

(det∇y)∇yp(y) · v + P (y) Cof∇y : ∇vdx = (∗∗).

The first identity follows from the formula for the Gateaux derivative of the determinant
det′(A)H = Cof A : H, which can be found in [7], Sec. 1.2. This enables us to use the
Gauß-Green Theorem, which already appeared in the principle of virtual work:

�
Ω
H : ∇vdx = −

�
Ω

(divH) · vdx+
�

Γ
Hn · vdS,

where the divergence of a tensor field is a vector field given by (divH)i = ∑d
j=1 ∂xjHij .

Therefore, setting H := p(y) Cof∇y in the formula, we get

(∗∗) = −
�

(det∇y)∇yp(y) · v +
�

Ω
div(p(y) Cof∇y) · v +

�
Γ
p(y) Cof∇yn · vdS = (∗ ∗ ∗).

Now, we can use the formula for the divergence of a tensor field and Piola identity
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div(Cof∇y) = 0 to calculate

(div(p(y(x)) Cof∇y(x)))i =
∑
j

∂xj (p(y(x))(Cof∇y(x))ij)

=
∑
j

(
∂xjp(y(x))

)
(Cof∇y(x))ij +

∑
j

p(y(x))∂xj (Cof∇y(x))ij

= ((Cof∇y)∇p(y))i + p(y(x)) div(Cof∇y)︸ ︷︷ ︸
=0

,

and thus, finally get

(∗ ∗ ∗) = −
�

(det∇y)∇yp(y) · v +
�

Ω
(Cof∇y)∇p(y) · v +

�
Γ
p(y) Cof∇yn · vdS. (F)

We are left with proving that the right-hand side of (F) equals −
�

Γ p(y) Cof∇yn · vdS.
�

Ω
((Cof∇y)∇p(y)) · vdx =

�
Ω

∑
i

((Cof∇y)∇p(y))ivi

=
�

Ω

∑
i

∑
j

(Cof∇y)ij∂jp(y)vi =
�

Ω

∑
i,j

(Cof∇y)ij
∑
k

(∇yp(y))k∂jykvi

=
�

Ω

∑
i,j,k

(Cof∇y)ij(∇yp(y))k∂jykvi =
�

Ω

∑
i,k

(∇yp(y))kvi
∑
j

(Cof∇y)ij∂jyk

=
�

Ω

∑
i,k

(∇yp(y))kvi
(
(Cof∇y)(∇y)T

)
ik

(2)=
�

Ω
(∇yp(y))kvi(det∇y)δik

=
�

Ω

∑
i

(det∇y)(∇yp(y))ivi =
�

Ω
(det∇y)∇yp(y) · vdx.

In the step (2), we use the identity Cof FF T = F T Cof F = (detF )I.
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