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Abstract

Based on Archimedes’ principle, we model and investigate the behaviour of immersed
hyperelastic bodies. We derive an energy functional, and use the Direct Method of
the calculus of variations to prove existence of minimizers of this energy functional. In
the first part of the thesis, we will study the theoretical foundations, namely introduce
the Direct Method, polyconvex, and quasiconvex materials and summarize the most
important and well-known results. In the second part, we prove existence of minimizers
in the case of Dirichlet boundary conditions and in the case of the specimen being tied
to a fixed anchor by an elastic rope. Moreover, we examine the case, where the specimen
can move freely, and give an existence result for slightly compressible materials. Lastly,
we prove existence of local minima, regardless of the choice of density parameters.

Zusammenfassung

In Anlehnung an das Prinzip des Archimedes untersuchen wir das Verhalten von schwim-
menden, hyperelastischen Kérpern. Dazu leiten wir ein Energie-Funktional her, welches
anschlieflend mit Hilfe der direkten Methode der Variationsrechnung minimiert wird. Im
ersten Teil dieser Masterarbeit legen wir die mathematischen Grundlagen und studieren
die direkte Methode, sowie polykonvexe und quasikonvexe Materialien. Im zweiten,
angewandten, Teil beweisen wir die Existenz von Minima in diversen Gegebenheiten.
Wir betrachten den Fall von Dirichlet Randbedingnungen, sowie die Situation, in der
das Objekt mit einem elastischen Seil an einem fixen Punkt gebunden ist. Weiters
untersuchen wir das Verhalten des Objekts, wenn sich dieses frei bewegen kann und
geben ein Existenzresultat im Falle, dass das Objekt nur geringfiigig kompressibel ist.
Des Weiteren zeigen wir die Existenz eines lokalen Minimums, unabhéngig von der Wahl
der Dichte des Fluids und des Korpers.
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Introduction

Consider an object submerged in some fluid, e.g., think of a submarine under water, which,
therefore, is subjected to two forces, gravity and buoyancy. We know by Archimedes’
principle that the buoyancy is the weight of the displaced fluid. Thus, if the object is
incompressible, we can simply compare the density of the fluid to the density of the
gravity to determine, whether the object sinks, stays or floats.

If, however, the object is compressible, the situation changes entirely. Now, the volume
of the displaced fluid depends on the current deformation. Although the gravitational
force always stays the same, the buoyancy will change with the deformation. For example,
if the object sinks, the water pressure rises, the volume of the body may decrease, which
then leads to a decrease of buoyancy.

To examine the behaviour of the body, we derive an energy functional from physical
considerations. We then minimize this energy functional by the Direct Method of the
calculus of variations. We consider hyperelastic, and polyconvex materials. For these we
try to give a comprehensive theoretical background, which we will rely on, when giving
the existence results.

We will prove existence of minimizers in the case of Dirichlet boundary conditions
and give a new existence result in the case, where the body is tied to a fixed anchor
by an elastic rope. Furthermore, we consider the problem of a freely moving body, and
introduce a material locking condition yielding an existence result for bodies rising to the
surface. This material locking condition is already well-known in the literature (e.g. refer
to |3]), but has been considered as additional side constraint so far, whereas here, it is
crucially used to prove the result. At last, we will check the existence of local minimizers

in the case of compressible bodies.

In Chapter [T} we introduce our main mathematical tool, the Direct Method, guaranteeing
the existence of a minimizer of a coercive and lower semicontinuous functional. A
prototypical existence result will be given. After having introduced the mathematical
tools, in Chapter [2| we look at deformations, and how the specimen reacts to applied

forces. This will also lead to the introduction of the Cauchy stress tensor and hyperelastic



materials, where the Cauchy stress tensor can be obtained from a stored energy function.
To ensure that the deformation energy is weakly lower semicontinuous, we define in
Chapter [3] the notion of polyconvexity, a weaker form of convexity, which incorporates the
minors of the deformation gradient. This chapter is dedicated to prove that polyconvexity
is sufficient for weak lower semicontinuity, relying crucially on weak convergence of minors.
A first general existence result is given here. In Chapter [} we introduce an even weaker
form of convexity, the so-called, quasiconvexity, which turns out to be also necessary for
weak lower semicontinuity under polynomial growth. As the main tool, we work with
Young measures, hint at open problems and current research. The last Chapter [5] is of
theoretical nature and dedicated to examine the invertibility of deformations, which is
ensured by the so-called Ciarlet-Necas condition. Chapters [f] to [9] are of more applied
nature and deal with specific problems. In Chapter [6] we derive the energy functional
from physical considerations and prove that the terms, which model the applied forces,
are weak lower semicontinuous. Then, in Chapter [7], we give an existence result for a
classical Dirichlet problem and the case, where the specimen is fixed along an inner beam.
In Chapter 8] we will consider the situation, where the specimen is tied to a fixed anchor
with an elastic rope. This calls for checking a Poincaré-type inequality and eventually
proving the existence of minimizers. The final Chapter [J] is dedicated to the case of a
freely moving object, where the energy is not bounded from below. We illustrate the
difficulties and give and existence result in the case of a slightly compressible specimen

rising to the surface. In the general case, we prove the existence of local minima.



1. The Direct Method

In this section, we introduce the main tool to prove existence and uniqueness of minimizers:
the Direct Method of the calculus of variations. After defining the main notions, namely
coercivity and lower semicontinuity, and working out the central idea of the Direct
Method, we will present a prototypical existence result. Moreover, this exemplary result
will point out certain difficulties, which will also arise during the later sections of this
thesis. The main sources of this chapter are [8], and [27], although we sometimes refer to

[9] as well.

1.1. The Direct Method of the calculus of variations

In many physical problems, as including elasticity, one seeks to minimize a functional
F : X — RU{+o0}, mapping from a complete metric space X into the extended
real numbers, under given boundary values or other constraints (for a comprehensive
overview of applications, see [27], Chap. I). The Direct Method guarantees the existence

of minimizers, if F satisfies the following conditions:
o Coercivity: F is coercive, i.e., there exists A € R such that
{ye X : F(y) <A} is nonempty and sequentially precompact,

i.e., the sequence (y;) C X with F(y;) < A has a converging subsequence.

o Lower semicontinuity (l.c.s.): F is lower semicontinuous, i.e., for all sequences

(yj) € X with y; — y we have that

F(y) < liminf F(y;).

Theorem 1.1.1 (The Direct Method). If F is coercive and lower semicontinuous, then

the minimization problem

Minimize F over X



has at least one solution, i.e., there is a y* € X with F(y*) = minyex F(y).

Proof. Assume that there is a y such that F(y) < oo, as otherwise all y € X would be a
solution. By the definition of the infimum there is a minimizing sequence (y;) C X, i.e.,
lim; 00 F(yj) = a :=infyex F(y) < co. Therefore, « < A € R and F(y;) < A for all 7,
which in turn implies, by coercivity, the existence of a subsequence (not extra relabelled)
and a y* € X, with

yj —y"

Thus, by the lower semicontinuity, we conclude
a < F(y*) < liminf F(y)) = o
J—00

Therefore, F(y*) = o and y* is a minimizer. O

Remark 1.1.1. We defined the notions above and proved the Direct Method in a sequential
form, which is not necessary, but will be in accordance to the rest of the thesis. One
could, however, do this in arbitrary topological spaces, with only slight modifications, as
long as it is ensured, that the coercivity and the lower semicontinuity are with respect
to the same topology. To find a suitable topology is here the main issue, as these two
notions oppose each other (to establish coercivity one would prefer a coarse topology,
whereas verifying lower semicontinuity is easier in a fine topology). As a rule of thumb,
the weak topology is a good candidate, if X is a Banach space. For more on this topic,
see [27], Sect. 2.1.

The gist of the Direct Method is that one has to prove coercivity and lower semicontinu-
ity, which can be done separately. We will see that coercivity for functionals of the form
F(y) = [ f(y(z))dx is closely related to certain growth-conditions on f, whereas lower
semicontinuity is connected with some convexity of the integrand f, which are entirely
different assumptions. Thus, one can develop different tools for each of the problems,
independent of the fact, that one actually wants to minimizes a functional. Note, that by
the Direct Method, coercivity and lower semicontinuity are sufficient, but not necessary

for the existence of minimizers. Still non of these conditions can be dispensed of.

Ezample 1.1.1 (Not coercive). Consider the exponential function ezp : R — R, having no
minimizer. It is bounded from below by the x-axis, but it is clearly not coercive, as for
all A > 0, there is a sequence x,, with exp(z,) < A with no converging subsequence (e.g.
take zp, ;= —n+1InA, n € N). A



Intuitively speaking, coercivity means that the function-values are “large”, if the

argument is “far” outside. This is obviously violated by the example above.

Ezample 1.1.2 (Not lower semicontinuous). Consider the function f : R — R given by

—x if x<0
f(x) = .
z+1 if x>0

This function is not lower semicontinuous in xg = 0, since for an infimizing sequence
Ty = —% — 0, we have
0 =liminf f(an) # f(0) = 1.

Hence, although we have an infimizing sequence, the function value at point, where the

minimum “should” be, is not minimal. A

We give two examples of existence of minimizers where the Direct Method can not be

applied.

Ezample 1.1.3. Consider the function f(z) = 22 exp(—2?). Clearly, f is not coercive, but

still has a minimum at the origin. A

Ezample 1.1.4. The function

0 if z€Q@Q

f(@) = Irnel®) = { 1 if zeR\Q

has a minimum at each x € Q, but is not lower semicontinuous. A

In Banach spaces, which are dual to Banach spaces, we know that bounded sets are
sequentially pre-compact in the weak topology by the Banach-Alaoglu theorem (for more
details, see Appendix, Rem . For coercivity, we demand that the set of points in
the space with bounded energy, is sequentially precompact. Therefore, if the space X is
the dual of a Banach space, we coercivity follows by verifying that this set is bounded
in norm. This is in general easier. In this thesis, we always will verify that the set
{y : F(y) < A} is bounded in norm. Obviously, this implies, that we also need a weak
form of sequential lower semicontinuity to apply the Direct Method.

We mainly work with the Sobolev space WP, which is the dual of a Banach space
for 1 < p < oo (for the definition of Sobolev spaces and the most important results, see
Appendix, Sec. . Thus, to establish coercivity, one seeks to bound the minimizing
sequence in the W'P-norm. In our applications this can usually be done, having the

physical background of the problem in mind.



We will now state the Direct Method, for the weak form of coercivity and lower

semicontinuity, which will used for the rest of the thesis.

Theorem 1.1.2 (Direct Method). Let X be a Banach space or a closed affine subset of
a Banach space and let F : X — RU {+o0}, satisfying

(i) Weak coercivity of F: for some A € R the sublevel set
{y e X : F(y) < A} is nonempty sequentially weakly precompact,

i.e., the sequence (y;) C X with F(y;) < A has a weakly convergent subsequence,
and
(i) Weak lower semicontinuity of F: If a sequence (y;) C X is weakly convergent to
ye X,y —vy, then
F(y) < liminf F(y;).

J—00

Then, there is a minimizer y* of F.

The proof is analogous to the one of Theorem Often, we minimize over a set of
functions, which also should satisfy some additional side constraints. Therefore, we also
have to ensure that the minimizer fulfils these side constraints, which requires some kind

of closure of the side constraints and has to be proven extra.

1.2. The Direct Method in the scalar case

In this thesis we only consider functionals of the form

Fly) = /Q f (@ y(x), Vy(z))d,

where y € WHP(Q) and Q C R with sufficiently smooth boundary.

In order to highlight the most important ideas and difficulties arising when applying
the Direct Method, we present at general (but clearly not the most general) version of
an existence theorem (cf. [9], Thm. 3.3), and prove it by the Direct Method. Before
formulating the theorem, we need to introduce the some important notions and results.

As we already mentioned, we bound the minimizing sequence in terms of the W' -norm.

The main tool to do so is the Poincaré inequality (cf. [9], Thm. 1.47).



Theorem 1.2.1 (Poincaré inequality). Let @ C R™ be a bounded, open, Lipschitz set
and 1 < p < oo. Then, there is a v =v(€,p) > 0 such that

19
Iyllie <AIVYle, Yy e WyP(Q),
or, equivalently, a 4 such that
~ 1,
Iyllwre < AVYlle, Yy e WyP(Q).

Moreover, we need weak the lower semicontinuity of F. The main ingredient of

establishing this is convexity of the integrand f.

Definition 1.2.1. (i) A set Q C R™ is called conwveuz, if for every z,y € Q and every
A € [0,1], we have Az + (1 — \)y € Q.
(ii) Let © C R™ be convex. The function f : @ — R is called convez, if for every
z,y € Q and every A € [0, 1], the following inequality holds

fOz+ (1 =XNy) <Af(z)+ (1= N)f(y).

Theorem 1.2.2. Let f: Q CR" = R and f € €1 (). Then the function f is convez,
if and only if
fy) = fx) +(VI(y),y —x) Vo,yeR" (1.2.1)

Proof. If f is convex, we have after rewriting the definition

fly+ Az —y) < fly) + A (f(@) - fly) Vz,y e QVA€[0,1].

Thus, we get

fly+ A\ - I =IW) _ py— f),

which yields
V()@ —y) < f@) - f(y)

after letting A — 0.
Assume that ([1.2.1)) holds for all z,y €  and take A € [0, 1] arbitrary. Since {2 is
convex z = Az + (1 — A)y belongs to Q2. We have

fl@) = f(2) + VT (2)(@ —2) (1.2.2)
Fy) = f(2) + V()Y — 2)- (1.2.3)



Multiplying (1.2.2)) by A, (1.2.3) by (1 — A), and adding, we obtain

M (@) + 1= Nfy) = f(2) + V() Qe+ (1= Ny = 2)
=0

= f(z) =[x+ (1= Ay). O

Now, we state and prove the prototypical result providing the existence of minimizers
in the scalar case (cf. [9], Sec. 3.3). We highlight all important notions by underlining
them.

Theorem 1.2.3. Let Q C R" be bounded, and open with a Lipschitz boundary and let
f €€ QxR xR such that

Hi+ Convezity: (y,F) — f(x,y, F) is convez for all x
H2+ Coercivity: 3p > 1,a1 > 0,a3 € R:  f(x,y, F) > a1|F|P + a3

H3+ 3b> 0 such that for all (z,y, F)
|fy(,y ) | fr(z,y, )] < 6L+ [ylP~t + [FP7).

Let
m =it {F(0) = [ flop(e). Vota)dn s y € yo+ (@)
for a given yo € WHP(Q) with F(yo) < co. Then, there is a minimizer y* of F.

Proof. Step 1: Coercivity

X H2+ assump. .
By assumption, we have that —co < m < I(ug) < oo. Thus, there exists a

minimizing sequence (y,) C yo—H/VO1 P ie. F(y,) — inf F(y). By the coercivity condition
[H2+] one can find n large enough such that

H2+ »
m+1>Fyn) = a1l|[Vyall, — laz|meas(€).

Therefore, there exists ag > 0 such that | Vyy,||zr < as. By employing the Poincaré inequality,

we infer that there exist as, ag > 0 such that

as||ynllwre — asllyollwir < |[VynllLe < ag,

so that

”ynHWLP < az,



for some a7 > 0. Hence, we have shown that (y,) is bounded in the separable and
reflexive Banach space WP, Therefore, there exists a y* € yg + Wol P and a (not-
relabelled) subsequence (y,,) such that

Yn — y* in whp,

which verifies that F indeed is coercive in the sense of Definition [L1l
Step 2: Lower semicontinuity
We will show that y,, — y* in W1? implies lim inf F(y,,) > F(y*).
Since f is convex and f € €', Theorem is applicable, and thus,

F(@,yn, Vyn) = f(z,y", Vy*) + fulz,y", VY*) (yn — v*) +{fr(z,y", Vy*), Vyn — Vy).
L eLr
cLp

Integrating the above relation yields

Flyn) > Fly") + /Q £y, V") (yn — 57 + /Q (Fr(@, 4", V"), Vyn — Vy*)da.

We now would like to invoke the weak convergence of v, — y*, to deduce lim inf F(y,,) >

F(y*), but we need to check that the integrals above are defined. Therefore, we need to

verify
1. fy, fr € Lp/, where p’ is the Holder conjugate of p, and use this to prove

2. fy Wn—y*), (fr, Vyn — Vy*) € L%

Let us prove fy(z,y*, Vy*) € L¥' | as the other statement analogously follows. To do so,
we use the growth estimate [H3+] and that y* € WP to obtain

_p_
[ itat T de <o [ (141 419007 do < b ) < .

The second assertion follows directly from Holder’s inequality (see [A.1.4)).
Step 3: Combining steps 1 and 2
Now are we in the position to apply the Direct Method as in Thm. Since (yp)

is a minimizing sequence, i.e. F(y,) — m = inf F(y) and we have established lower

semicontinuity, we deduce liminf F(y,) > F(y*) and thus F(y*) = m. O
Remark 1.2.1. We know want to summarize the proof above and recapitulate.

o To prove coercivity we use growth conditions and the Poincaré inequality.



e To prove the l.s.c. we use convexity, weak convergence of the minimizing sequence,

and a bound on f.

In the following, all of these notions will reappear in a more general setting. We need to
find appropriate generalizations of convexity, weak enough to be applicable to a large
class of functions, but still strong enough to allow us to infer weak lower semicontinuity.
Also, the classical Poincaré inequality, as used in this proof, requires given boundary
values. We will need to generalize this later on for such a boundary condition will not be

available in some of the problems attacked in later sections.

1.3. Weak lower semi-continuity - A first result

As mentioned, one problem in the vector-valued case is to establish a form of lower
semicontinuity using a proper notion of convexity. We conclude this section by presenting
a result for vector valued functions y : 2 — R™ which indicates the difficulties occurring
in the vector-valued case. To make our life easier at first, we assume that our integrand

only depends on the Jacobian of y, i.e.is of the form

F(y) —/Qf(a:,Vy(x))d:c.

Eventually, it is our goal to minimize a functional F(y) := [, f(z,y(x), Vy(x))dz with
certain additional conditions and y € WP (€, R%). To be able to treat this mathematically

we will introduce so called Carathéodory functions (cf. [8], Definition 3.5).

Definition 1.3.1. The function
fOxR™ x R™4 5 R

is called a Carathéodory function, if

(i) x — f(z,y, z) is measurable for all (y, z) and
(i) (y,2)+— f(x,y,z) is continuous Y,z € 2.

Here we abbreviate “for almost all z” with the symbol V.

The statement is due to Tonelli and Serrin and can be found in [27], Theorem 2.6.

Theorem 1.3.1. Let f : Q x R™*% — [0,00) be a Carathéodory integrand such that
f(x,-) is convex for almost all x € Q. Then F(y) = [q f(x, Vy(z))dx is weakly lower

semicontinuous on W1P(Q,R™) for any p € (1,00).

10



Proof. The proof consist of two steps, in the first step we establish strong l.s.c., which
we will use in the second step to conclude weak l.s.c.

Step 1: Claim: F is (strongly) lower semicontinuous.

Let y, — y in WP, By the Rellich-Kondrachov theorem, see Thm. we can select
a subsequence (nonrelabelled) such that Vy, — Vy almost everywhere. By assumption
M — f(z,M) is continuous, and thus, f(z,Vyr) — f(x,Vy) a.e. Furthermore, we
assumed f to be non-negative, and therefore, Fatou’s lemma, Thm. is applicable,

and we get

Fly) = / F@, Vy) = / liminf f(z, Vyy) < liminf / £, V).

Note that we passed to a subsequence, and hence, have proved the inequality above

only for this subsequence. Fortunately, this does not spoil the argument, as is shown in

proposition

Step 2: Claim: F is weakly l.s.c.

Let y, — y in WP, We need to show F(y) < liminf F(y,) =: a. Take a subsequence
(nonrelabelled) realizing the liminf, i.e. F(y,) — a. By Mazur’s lemma there are

convex combinations
N, Ny
Up = Z )\k,nyka Z )\k,n =1,
k=n k=n

such that v, — u strongly in WP, By assumption we know that f(z,-) is convex.

Therefore, we can apply Jensen’s inequality [8.1.2] to obtain

Flop) = /f (3«"7 > )\k,nVyk) dr < / > Xewf (2, Vyr)de =Y AenF ()
k=n k=n k=n

Since F(yr) — a as k — oo and chv;n Ak = 1 for all n, passing to the limit yields
lim inf F(v,) < a.
n

Because we have that v, — wu strongly we can use the Step 1 to obtain F(y) <
lim inf,, F(v,) and finally

F(y) < liminf F(vy,) < a = liminf F(u,),

which finishes the proof. O

Remark 1.3.1. For integrands also depending on y the proof is more involved. The

11



problem is that we still want to assume convexity in the last argument only. But then,

we cannot “pull out” the sum coming from Mazur’s lemma

/f (367 Z)\k,nyk, Z /\k,nVyk> .

Quite a bit of measure theory is needed in order to do an elementary proof (cf. [8], Chap.
3.2.6). A way to circumvent this is to introduce Young measures, which we will do in
chapter [4]

In the scalar case, one can show that convexity is also a necessary condition for weak

lower semicontinuity.

Theorem 1.3.2. Let Q C R be a bounded set and F : WHP(Q;R™) — R, p € [1,00) be
an integral functional with continuous integrand f : R™*? — R (not z-dependent). If F
is weakly lower semicontinuous on WIP(Q,R™), and if either d =1 or m =1 (i.e. the

one-dimensional case, and the scalar case), then f is convex.

For the proof see [27], Prop. 2.9. At this point, we only want to mention, that if
d,m # 1, convexity is not necessary for weak lower semicontinuity. The naturally arising
question is, what is the right weaker notion of convexity, which preserve this result in
higher dimensions. In fact, it turns out that the appropriate condition is quasiconvexity,

a weaker form of convexity, which we will examine in chapter [4

12



2. Elements of continuum mechanics of
solids

In the previous section, we discussed the minimization of an energy functional. The
energy functional, which is considered later on in this thesis, depends on the actual
deformation of a solid. Therefore, we will denote this chapter to introduce the most
important notions to describe deformations and examine how the material react to applied
forces. The central definition is that of the Cauchy stress tensor, which is used to describe
the internal stress of a specimen in relation to the external applied forces. Furthermore,
elastic materials will be introduced, with the focus on hyperelasticity, where the internal

stresses can be described via a energy function. We follow [7] and [17].

2.1. Deformations

Let us consider a bounded domain (:= open and connected)  C RY, where we assume
that either d = 2 or d = 3, and that R? is equipped with a right-handed orthonormal
bases eq,...,eq. Furthermore, we assume the boundary I' := 99 of 2 to be smooth
enough, and specify this wherever needed.

The closure Q describes the body before it is deformed, and is therefore called reference
configuration. A point z € Q in the reference configuration is called material point.

A deformation of Q is a mapping y : @ — R? that is smooth enough, injective except
possibly on the boundary of 2, and orientation-preserving, see Fig. The reason why
we exclude injectivity at the boundary is that we allow self-contact at the boundary. We

denote the deformed configuration by y(2) and introduce the notation
Wimye), Q= (@)

to distinguish between material points and spatial points z¥ € QY. Throughout the
whole thesis we will stick to this convention and mark quantities defined in the deformed

configuration with a superscript y. The description in terms of material coordinates
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z € Q is called Lagrangian description, the description in terms of spatial coordinates is

called Fulerian description.

Lagrangian description Eulerian description
3 Y O =y(Q)
~
n
w

Figure 2.1.: Deformation
A central notion is the deformation gradient, defined as the Jacobian of y,

o) 0
Yl T ap Yt
Vy(z) = o :

el o)
P Yd T P, Yd

Orientation preservation is the condition
det Vy(x) >0 for all z € Q,

if y is smooth enough. Under this condition Vy is invertible. It’s sometimes convenient

to introduce the displacement as u : Q — R

with displacement gradient
Vu(z) = Vy(z) -1,

where I denotes the identity matrix.

2.2. The Piola transform

We have now seen two configurations of the specimen: the deformed configuration and
the reference configuration. Later on, when dealing with applied forces we will work in
the deformed configuration, whereas working in the reference configuration is often more
convenient, as it is a fixed domain. Therefore, we will need a tool to transform quantities

form one configuration into the other. This is the Piola transform.
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Definition 2.2.1. If 7Y(z¥) denotes a tensor field over y(€2), then its Piola transform is
the matrix-valued map T : Q — R4 defined by

T(x) := (det Vy(2))T¥(2¥) (Vy(x)) ™" = T¥(2¥) Cof(Vy(x)).

Here, the cofactor matrix and the determinant are defined as usual. They are particular
examples of minors, whose general definition can be found e.g.in [27], Sec. 5.2, or [§],
Sec. 5.4.

We need the divergence of a matrix-valued map is used, which is defined as follows.

Definition 2.2.2. If M : Q — R%*9 is a smooth matrix-valued map, then the divergence
of M, denoted by div(M), is a vector, defined by

(div(M)); := zd: O ; M. (2.2.1)
j=1
Let’s have a look at properties of the Piola transform which will be used later on.
Lemma 2.2.1 (Piola’s identity). If y € €2(Q;R?), then for all x € Q we have
div (Cof (Vy(x))) = 0.

Proof. We only prove this in the three-dimensional case, as for d = 2 its even simpler.

Note that we can write

Cof(VYy)ij = 0i41¥j4+10i42Yj+2 — Oit1¥j1+20i42Yj+1,

if we count the indices modulo 3, i.e. 4 — 1,5 — 2. We abbreviated the partial derivative

w.r.t. the j-th coordinate by writing 9; = 0., = a%j.
Then, formula (2.2.1]) yields the claim. O

Theorem 2.2.2 (Properties of the Piola transform). Let Q C R? be a bounded domain,
y € €2(Q;RY) be injective, and let T : Q — R*? be the Piola transform of a tensor field
TY € € (y(Q); R*). Then

(i) divT(z) = (det Vy(x)) div¥ TY(x¥) for all z¥ = y(z), z € Q, and

(i) For all subsets w C Q with smooth boundary we have

/ T(emdS = [ TY(¥)nvasy, (2.2.2)
ow owY
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where n and nY are outer unit normals to Ow and OwY, respectively. In particular,
the area elements dS and dSY at the points x € OS2 and x¥ € 0V are related by

setting TV = id in equation (2.2.2)), i.e.
det Vy(z)|Vy(z) " Tn|dS = | Cof (Vy(z))n|dS = [n¥|dSY = dSY. (2.2.3)

The proof of the first claim can be obtained by elementary yet trivial calculations, the
one for the second claim is based on a change of variables and Gauf’ divergence theorem.
It can be found in [17], Thm. 1.1.9.

Remark 2.2.1 (Relating normal vectors). The calculations above imply the following
formula relating the normal vectors of the deformed configuration to the normal vectors
of the reference configuration. If y is a deformation and = € 99, z¥ = y(z) € dy(Q?), then
the following equation holds

Cof Vy(z)n(z) _ (Vy(z)) ")n(z)

) = et Vy@n@)] ~ [(Vy(a) Tyl (2.24)

2.3. Volume, area, and length elements in the deformed

configuration

The goal of this section is to give a correspondence between quantities defined in the
deformed configuration and quantities defined in the reference configuration by employing
the Piola transform. In particular, this will lead to the introduction of the strain.

If y : Q — R is a deformation and dz is volume element around z in the reference
configuration, then the volume element dz¥ in the deformed configuration is formally
given by

dz¥ = det Vy(x)dzx. (2.3.1)

We can use this to calculate volumes of deformed regions. So, if w C € is measurable,

then the volumina of w and of its deformation w? := y(w) are given by

vol(w) := measy(w) = / dz,

w

vol ") i= meas (") = |

w

dxy:/det Vy(x)dz.
Y w

The last identity is due to the change of variables formula and thus, only holds
under certain assumptions. This is the reason why the relation (2.3.1) is only formal.

For brevity we use the notation | - | to denote the d-dimensional Lebesgue-measure of a
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set, i.e. |w| = measy(w).

As we have seen in Thm. [2.2.2] the following correspondence holds for area elements

(see also Fig.
det Vy(z)|Vy(x) Tn|dS = | Cof Vy(z)n|dS = |n¥|dSY = dSY.

Therefore, a measurable subset A of the boundary 02 and its deformation AY := y(A)
fulfil

area(A) := measy_1(A) = / as
A

area(AY) := measy_1(AY) = /

ds¥ = / (det Vy)|Vy~Tn|dS = / | Cof Vyn|dS.
Av A A

We write dS to indicate that the integrals above are surface integrals.

Finally, considerations of how a length element is deformed under a sufficiently smooth
deformation will lead to the introduction of strain tensors. If y is differentiable at a point

x € Q, we can write for all points = + 2’ € Q for a suitable 2’/ €

y(@') - y(z) = Vy(a)(@' — ) + of|2’ — ),
and therefore,

ly(2') = y(@)* = (2 — )" Vy(2) Vy(2) (@ — 2) + (|2’ - z|).

Definition 2.3.1. The symmetric tensor
C = vVyl'vy

is called the right Cauchy-Green strain tensor.

Since by assumption Vy(z) is invertible, the quadratic form associated to the Cauchy-

Green strain tensor is positive definite:

(£, — TCa)E = [Vy(z)€? =0,  VEA£0.

This quadratic form appears when calculating the length of deformed curves. Let
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v : I — Q be a curve in the reference configuration. The length of ~ is given by

vl :=/Ih'(t)|dt:/](Z%{%{)I/th.

Hence the length of the deformed curve v¥ = y(7) is

1/2

= [ oy ola = [ () cwn) " a

The tensor C is indeed a measure of strain and can be used to measure how much the

underlying deformation y differs from being only a rotation and translation.

Definition 2.3.2. A deformation y : Q — R? is called rigid, if there is a ¢ € R? and a
R € SO(d) such that
y(z) = c+ R,

i.e. it is only a rotation followed by a translation. We denote by SO(d) := {4 € GL(d) :
ATA = AAT =1, det(A) = 1} the special orthogonal group.

Obviously, if y is rigid, then Vy = R and hence C = Vy'Vy = id. The converse
statement is also true: If C' = id on Q and det Vy > 0, then y is necessarily rigid (cf. [7],
Thm. 1.8.-1). This tells us that y is rigid, if and only if C' = id, and therefore the tensor

B %(C—id)

measures the “deviation” of y from being a rigid deformation. The tensor FE is called
Green-Lagrange or Green-St. Vernant strain tensor.
There is another remarkable property of the Cauchy-Green strain tensor: It completely

determines the deformation up to composition with rigid motions.

Theorem 2.3.1. Let Q C R be open and connected and assume that the two mappings
y,§ € CHQRY) fulfil

Vy(z) Vy(z) = Vi(z) Vij(z) Vo e,

i is injective, and dety(x) # 0 for all x € Q. Then, there is a vector ¢ € R% and an
orthogonal matriz R € O(d) such that

y(xz) =c+ Ry(z) Vo e

For the proof refer to |7], Thm. 1.8-2.
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Remark 2.3.1 (Summary). As we have seen, volume elements in the deformed and the
reference configuration are related by the determinant of the deformation gradient, and
surface elements are related by the cofactor matriz, both minors of Vy. This indicates
the importance of the behaviour of minors, which will reappear in the Chapter [3| in

relation with polyconvexity.

2.4. Applied forces and the Cauchy stress tensor

Forces acting on the body cause stresses and deformations. In this section, we will
elaborate on the applied forces and how the specimen will react on them.

We will consider two kind of applied forces

1. applied body forces defined through a force density f¥ : Q¥ — R? per unit volume

in the deformed configuration in the physical unit Nm™3;

2. applied surface forces defined by ¢¥ : T'Y, — R? on a measurable subset (w.r.t. the

surface measure) I'Y; C 'V as density per unit area in the physical unit Pa = Nm~2.

Under the following axioms due to Euler and Cauchy on can deduce the existence of

the Cauchy stress tensor.

Axiom (Stress principle of Euler and Cauchy). Let QY be the deformed configuration of
a body subjected to applied forces represented by f¥ : Q¥ — R% and ¢¥ : Y — R?. Let

St c RY be the unit sphere. We assume the existence of a vector field
QY x ST 5 RY,
called Cauchy’s stress vector, such that

1. For any subdomain w¥ C Q¥ and any point z¥ € 'Y, N Ow? where the joint outer

unit vector nY exists, it holds
(2, w) = g (a).
2. Aziom of balance of forces: For any subdomain w¥ C QY, it holds
/ fY(z¥)dx? z/ t¥(2¥,n¥)dSY = 0.
wy

owY
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(a) Isotropic pressure (b) Pure tension (c) Pure shear

Figure 2.2.: Examples of loads

3. Aziom of balance of momenta: For any subdomain w¥ C Q¥ with the outer unit

normal nY, it holds

/ ¥ x fY(x¥)dzY —i—/ ¥ x tY(x¥,n¥)dSY = 0.
wY

owy

The axioms of balance of forces and momenta express that the deformed configuration

is in static equilibrium.

Theorem 2.4.1 (Cauchy’s theorem). Let Q¥ C R? be open and let the applied force
density f¥ : QU — R? be continuous. Furthermore, let tY(-,n) € €1 (QY;R?) for every
ne ST and tY(a¥,-) € €(STHRY) for any x¥ € QY. Then, there is a symmetric tensor
TY : Q¥ — R4 belonging to € (QV; R with

tY(x¥,n) =TY(xY)n VeY e QY. Vn e S,
—divTY(x¥) = fY(xY) va¥ € QY,
TY(z¥)nY = g¥(xY) Va¥ e 'Y,

where wY is the outer unit normal to T'%,. The tensor TY is called Cauchy’s stress tensor.

The proof relies on the axioms of Euler and Cauchy and can be found in [17], Thm. 1.2.2.

Ezxample 2.4.1. Let us consider three basic examples, illustrated in Fig. to understand
the Cauchy stress tensor (cf. [7], Sect. 2.3).
First, for a p € R we set

—-p 0 0
TY(2zY) = —pl = 0 —-p 0 )
0 0 -—p
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where p is a pressure. Then, also t¥(z¥,nY) = —pn¥, and thus, the Cauchy stress vector

is always normal to the elementary surface element. This defines a pressure load on €Y.

Second, let e € R3, with |e|] = 1 be a unit vector, 7 € R, and recall the following

notation (a ® b);; = a;b;. If we set
TY(zY) = e ® e,

then the Cauchy stress tensor is called a pure tension if 7 > 0 or a pure compression if
7 < 0 in the direction e. For the stress vector we get t¥(z¥,n¥) = TY(z¥)n¥ = 7(e - n¥)e,
which is always parallel to e and is directed outward (resp. inward) for 7 > 0 (resp.
7 < 0) on the faces with normals n¥ = +e and vanishes on the faces orthogonal to e.
Furthermore, if we assume that e = e; equals the first basis vector, then TV takes the

form

~

<

I
o o N
o o o
o o o

As third example, let e, f € R?, both unit vectors, orthogonal to each other, e - f = 0,
and o € R. Then
TY(2Y)=o0(e®@ f+ fRe)

is called pure shear, with shear stress o relative to directions e and f. The Cauchy stress
vector takes the form tY(2¥,n¥) = o ((e-n¥)f + (f - n¥)e). If we now assume that e = e;

and f = eo, then TY reads as follows

TV =

o Q9 o

S O 9

o o o
>

Since the choice of the reference configuration is arbitrary, the description of the
equilibrium should be independent of the chosen reference. Formally, this is described in
the aziom of frame-indifference (or frame-invariance), which states that, if a deformation
z of W is z(z) := Ry(x) for all € Q and some rotation R € SO(d), then for all z € Q
and any n € S, it holds that

#*(2%, Rn) = RtY(a¥, n).
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Since
t*(x*, Rn) = T*(x*)Rn = RtY(xY,n) = RTY(xY)n

one immediatelly gets by setting Rn = i € S*~! the identity

T?(z*) = RTY(z¥)RT.

2.5. Equilibrium equations and the principle of virtual work

Before we start, we clarify some notation. The simple dot denotes the Euclidean product
u-v =Y u;v; and the colon symbolizes the matrix inner product A : B = Zij AijB;j =
tr (ATB).

We need the following lemma, cf. [24] Sec. 3.1.2.
Lemma 2.5.1 (Green’s formula). Let Q@ C R? be bounded, measurable, and with Lipschitz

boundary 0Q. Furthermore, let u € W1P(Q), v € WH4(Q) where 1/p+1/q < (d+1)/d,
ifd>p>1,d>q>1 withq>11ifp>d, and withp > 1 if g > d. Then,

Ou vdx = / uon;dS — / u Ov dx, (2.5.1)
o Or; 0 o O
where n = (ny,...,ng) is the exterior normal.

Using the formula above we can prove an analogous result for tensor fields.

Lemma 2.5.2 (Green’s formula for tensor fields). Let Q C R? be bounded, measurable,
and with Lipschitz boundary 0. Let T € WhP(Q;R¥>?) be a tensor field and v €
Wha(Q;RY) be a vector field where 1/p+1/q < (d+1)/d, ifd>p>1,d>q> 1 with
q>1ifp>d, and withp > 1 if ¢ > d. Then the following relation holds

/divT'vdx: —/ T:Vvda:—l—/ (Tm) - vdz, (2.5.2)
Q Q o9

where n is the exterior normal. Note that divT is a vector defined via
d
(diV T)l = Z ajﬂj.
j=1

Proof. By the definition of vector-valued Sobolev functions we can apply (2.5.2)) compo-
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nentwise and obtain
/ divT - vdr = /Z ZajTijUi dr = Z/ 9;Tijvi
-222 Z/ TijnjvidS — Z/ Tijajvidl‘

= Z/ (Tm);v;dS — / T : Voudz. O
i 400 Q

Theorem 2.5.3 (Principle of virtual work in the deformed configuration). Let Q¥ C R?
be bounded, measurable, and with Lipschitz boundary 0. Let TY € WhP(QV; RX?) be
a tensor field. Furthermore, let f¥ € LP(QY;RY) and g¥ € LP(OS/;RY). If TV is a weak

solution of the following equations

—divVTY = fY in QY,
TYnY = ¢¥ on T'Y,, (2.5.3)

i.e., satisfies the identity
/ TY : VYudaz? = / fY - vdx? —l—/ g? - vdS? (2.5.4)
Qv Qv ry

for all vector fields v € WH9(Q;RY) where 1/p+1/q¢ < (d+1)/d, ifd>p>1,d>q>1
with ¢ > 1 if p > d, and with p > 1 if ¢ > d with v =0 on I\I'};, then it also satisfies

(2.5.3) in a weak sense.

Proof. Let v be as in the theorem. Then integrating the product of div¥T¥ 4+ f¥ =0

with v over Y yields

0= / (div?y TY + fY) - vdz? =TY : VY% + fY - vda? —I—/ TY9nY - vdSY,
Qv

QY r

Y
N

which yields the integral identity after recalling that T%nY = ¢¥ on I'};. Conversely,

(2.5.4)) reduces to
/ TY : VYvdzY = / fY - vdz?,
Qu Qv

if v =0 on I'Y, and hence by ([2.5.2)) we obtain div¥ TY 4+ f¥ = 0. Using this equation and

23



the Green’s formula once again, the integral identity reduces to

J

which implies that the boundary condition 7%n¥ = g¥ holds on I'}. O

TnY - vdSY = / g¥ - vdSY,

Yy Y
N 1—‘N

Remark 2.5.1. To prove Thm. 2.5:3] we relied on Lemma [2.5.2] Its assumptions, however,
are not realistic even for very regular bodies under regular loadings. Therefore, the
principle of virtual work is sometimes stated in a formal way, see for instance [17], Thm.
1.2.4, [7], Thm. 2.4-1.

Definition 2.5.1. The equations

—divV TY = fY in QY,
TYnY = ¢¥ on I'{;,

7Y = (T")T  in QY
are called the equations of equilibrium in the deformed configuration. The variational

We now have formulated equilibrium equations in the deformed configuration, which is
not known a priori, but part of the sought solution. To resolve this issue, we will rewrite
these equations in Lagrangian variables. This can be done by mapping the Cauchy stress
tensor to the reference configuration with the aid of the Piola transform. We will see that
the boundary value in the reference configuration has the same form as in the deformed

configuration.

Definition 2.5.2. We shall define the 1t Piola-Kirchhoff stress tensor S : Q — R% as

the Piola transform of the Cauchy stress tensor 7Y, i.e.
S(x) :=TY(x¥) Cof Vy(x) = (det Vy(z))T¥(2¥)Vy(z) "7,

where z¥ = y(z), z € Q.
The properties of the Piola transform, Thm. imply
div S(x) = (det Vy(z)) div¥ TY(zY).
This means that the equilibrium equations of the deformed configuration are still of

“divergence structure” when being transformed into the equations over the reference
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configuration. Since this was the crucial ingredient to apply Green’s formula and establish
the equivalence between the variational formulation and the formulation as boundary
value problem, we will have a similar result for the principle of virtual work in the

reference configuration.

Note that, while the Cauchy stress tensor is symmetric, the 15¢ Piola-Kirchhoff tensor
is not symmetric in general. Therefore, one defines the 2" Piola-Kirchhoff stress tensor
> by

S(x) = Vy(z)'S(2) = (Vy(2)) " T (2¥) Cof Vy(),

which is symmetric.

As we have already transformed the Cauchy stress tensor, we only need to transform
the applied force densities to formulate the principle of virtual work in the reference
configuration. Firstly, if we are given a body force density f¥ : Q¥ — R¢ we are looking
for a force density f : Q — R? such that for every subdomain w C € it holds that

/wf(x)dxz/wy fY(x¥)dz?,

i.e.the total force acting on subsets of the specimen must be the same. Since we already
have derived dz¥ = det Vy(x)dx, we obtain

f(z) = fY(2¥) det Vy(z). (2.5.5)

Similarly, we have for mass densities p : 2 — R and p¥ : Q¥ — R the following
correspondence

p(x) = pY(x¥) det Vy(z). (2.5.6)

Note that this implies

[ otwrte = [ pranis,

and thus, that the total mass of the body is conserved.

Secondly, for a given surface force density g¥ : I'{, — R?, we look for g : I'y — R,
y(Tn) =: T'%, such that for all ¥ C 'y we have that

/g(m)ds = Y (x¥)dSY.
vy Y

By the properties of the Piola transform, Thm. [2.:2.2] and in particular the correspondence

25



between area elements, we arrive at
g(z) = ¢¥(2¥)| Cof Vy(z)n(x)], z e€ly. (2.5.7)

The description of the forces in the reference configuration enables us to introduce a

new notion.

Definition 2.5.3. An applied body force fY is a dead load, if its associated density in

the in reference configuration f is independent of the deformation y.

This is, for instance, the case of gravity field, for which the body force in the reference

configuration is given by

f(z) = —gp(x)es = (0,0, —gp(x)).

Then, for the body force in the deformed configuration we have f¥(z¥) = (0,0, —gp¥(z¥)).
Analogously, an applied surface force is a dead load, if its associated density in the
reference configuration is independent of the deformation y. Note that, applied forces are
very rarely dead loads in reality, but instead the force densities f, g usually appear not
only as functions of x € 2, but also of the deformation itself. As an example consider

the pressure load, where the surface force in the deformed configuration is given by
9%(x¥) = —pn?(z¥),

for a 2¥ € T'Y;, and p € R, called pressure. The minus sign indicates that the vector gV
points inwards for p > 0. To show that the pressure load cannot be a dead load, recall

the correspondence between g and ¢¥, equation (2.5.7), and the respective outer unit
normals, equation (2.2.4)), to derive

9(x) = | Cof Vy()n(a)|g" (a")
— —p| Cof Vy(a)n(2)|n?(2") = —p Cof Vy(a)n(x)
— —p(det Vy(2))Vy(x) Tn(a), (2.5.8)

for a x € I'y. Thus, g takes the form

9(z) = g(z, Vy(z)),

where the mapping § : I'y x R4 — R? is given by j(x, F) = —p Cof (F)n(z).
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Having all transformations at hand, we can formulate the principle of virtual work in

the reference configuration.

Theorem 2.5.4 (Principle of virtual work in the reference configuration). Let Q C R?
be bounded, measurable, and with Lipschitz boundary 0. If 15t Piola-Kirchhoff tensor
S(z) = (det Vy(z))TY(x¥)Vy(xz)~T belong to WHP(Q; RIX?), then it satisfies the following

equations in the reference configuration:

—divS=f in €,
Sn=g onI'y. (2.5.9)

Moreover, if v € Wh4(;R?) is a vector field with v = 0 on T\I'y where 1/p+1/q <
(d+1)/d, ifd>p>1,d>q>1withq>1ifp>d, and with p> 1 if ¢ > d, then the
equations (2.5.9)) are equivalent to the variational formulation

/S:Vvd:v:/f'vdx—i—/ g -vdS.
Q Q I'n

Proof. This follows from the equations (2.5.3)) and the definitions of f,g and S. The
assertion on the equivalence is then established as in the proof of Thm. 2.5.3] O

Remark 2.5.2 (on the terminology). The equation on I'y is called a boundary condition

of traction. Later boundary condition of place of the form

y=yp onlp,

where yp is a given mapping, will appear. If this is the case, one can define the set of
admissible configurations as A := {y : @ — R? : det Vy > 0; y = yp on I'y} of which the
tangent space at yo is given by Ty, A := {v:Q — R?® : v =0 on I'p}. This means the
vector fields occurring in the principle of virtual work are to be understood as variations,
and are essentially mathematical, “virtual” quantities, which explains the name of the
principle. For additional considerations, see [7], Sec. 2.6. and further sources mentioned
there.

Remark 2.5.3 (Summary). The axioms of Euler and Cauchy imply the existence of the
Cauchy stress tensor 7Y, which unifies all applied forces into one tensor. The divergence
structure of the Cauchy Stress tensor divT = f allows us to give a variational formulation,
called the principle of virtual work. Unfortunately, the forces (and thus, the Cauchy stress

tensor) are defined in the deformed configuration in terms of the unknown deformation y.
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To resolve this issue, one needs the Piola transform to express TY in terms of reference
configuration. Here, the nice properties of the Piola transform come into play, which
tell us that the also 7Y maintains its divergence structure. This allows us to obtain
the analogous variational formulas over the reference configuration as well as over the

deformed configuration.

2.6. Conservative forces

Recall from the example of the pressure load, that the density in the reference configuration
was of the form g(z) = §(z, Vy(x)). This serves as motivation to only consider applied

forces, which are either dead loads, or are of the form

f(ID) = f(xay(x)7vy(x))7 T €,
x €y,

=
2
|
@
—~
&
=
=
<
<
—
8
N—

where f: Q x R x R¥™*% 5 R? and g : Q x R% x R™*4 — R? are given.

Definition 2.6.1. An applied body force with density f : @ — R? in the reference
configuration is called conservative, if for all smooth v : Q — R? vanishing on I'p = My

the integral
| #@)-v@ys = | fo.p(@). Ty(@) - v(@de
can be written as Gateaux derivative
oo = [ Flapla), V@) - ofa)ds

of a functional of the form

F:{y:Q-R} SR

F) = [ Flaula), Ty(@)de.
Then, the function F : Q x R% x R¥*4 — is called potential of the applied body force.

Example 2.6.1. A dead load is conservative, with

F(z,n,€) = f(z) .

Thus, the gravitational force density f(z) = —gps(x)es is a conservative force. More
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generally, a density f(z) = f(x,y(z)) is conservative, if
f(z,n) = grad,, F(:c, n) VreQneRd A

Analogously, an applied surface force with density ¢ : I'y — R? in the reference

configuration is conservative, if the integral

/F o(2)-v(@)dS = [ 3 y(x), Vy()) - v(z)dS

I'n

can be written as the Gateaux derivative
G (y)o = /F 3w, y(x), Vy(z) - v(x)dS
N
of a functional

G:{y:Ty - R} =R

Gl = | G(z,y(x), Vy(z))ds,

where G : T'y x R% x R — R is called potential of g.

Next, we will show that the pressure load is conservative. Thinking of a submerged
object, which experiences an increasing pressure as it sinks further, the assumption that
p is constant is not very realistic. Instead, we will assume that p depends on the position

in the deformed configuration.

Theorem 2.6.1. Let p : R? — [0;00) be smooth and let y : Q — QY be a given
deformation. Then, then pressure force g¥(a¥) := —p(x¥)n¥(z¥), 2¥ € TY is conservative

(after being transformed to the reference configuration).
Proof. As already derived in equation , we have

9(x) = g(x,y(x), Vy(z)) = —p(y(z)) Cof Vy(z)n(x).
Consider I'y := I' and the functional

F(y) = —/Qp(y(x))det Vy(z)dz. (2.6.1)

Then, via tedious calculations, the use of Green’s formula, and Piola identity, one can
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show that
F(yy = — /Q /F p(y(x)) Cof Vy(x)n(z) - v(x)dS

and thus that the Gateaux derivative can indeed be written as integral over g(z,y, Vy) -
v(z). The details can be found in in full rigour. O

2.7. Physical properties and elastic materials

Elastic materials

The balance of forces in the deformed configuration consists of d equations, whereas
we have to find d(d + 3)/2 unknowns in total, namely d components of y and, exploiting
the symmetry of 7Y, d(d + 1)/2 components of 7. In order the problem to be solvable,
we complete the system with a constitutive model for the material response. In particular,

we will consider elastic materials.

Definition 2.7.1. A material is called elastic (or sometimes Cauchy-elastic), if the
Cauchy stress tensor at any point ¥ = y(x) € Q¥ is completely determined by the
deformation gradient Vy(z) at the corresponding point = € . Formally, the material is
called elastic, if there is a mapping
TP : Q x GL*(d) — REXS,
such that
TY(zY) = TP (z, Vy(z)) (2.7.1)

for all z € Q. In this definition the mapping TP is called response function to the stress
tensor, and the relation given by is the so-called constitutive equation of the
material. The superscript D indicates that we consider the Cauchy stress tensor in the
deformed configuration. A material is called homogeneous if its response function does

not depend on z. Otherwise it is called inhomogeneous.

Remark 2.7.1. By definition, the response function at any point must be defined for all
matrices in GL'(d). This implicitly means that the definitions only holds for materials,
with the property that for a given 2 € Q and a F' € GL™(d) there is a deformation y
such that F' = Vy(z). Therefore, this definition rules out materials subjected to internal

constraints such as incompressible materials (see [7], Sec. 5.7).
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By virtue of the Piola-transform one can also define response function S for the 1°¢

Piola-Kirchhoff stress tensor in terms of the response function of 1Y
S(z,F) = (det F)TP(z, F)FT, (2.7.2)
with z € Q and F € GLT(d). The 1%* Piola-Kirchhoff stress tensor can be written as
S(z) = S(z, Vy(z)). (2.7.3)

Remark 2.7.2. For some materials one needs more refined models. For instance, sometimes
its necessary to relate the Cauchy stress tensor not only to Vy, but to higher order
gradients. Such materials are called nonsimple materials. A different approach is to
relate the Cauchy stress tensor to the gradient Vy in the whole deformed configuration.
This is called nonlocal elasticity. A brief introduction and various examples can be found
in |17], Sec. 2.5.

The response function of an elastic material does not depend on the choice of a
particular reference configuration. Therefore, as in the case of the Cauchy stress tensor,
we want the response function to be invariant under rotations, i.e., to be frame-indifferent.
Recall that for the Cauchy stress tensor the axiom of frame-indifference means that for a
deformation y and a rotation R € SO(d) the Cauchy stress tensor of the deformation z
given by z(x) := Ry(z) satisfies T?(2*) = RTY(2¥)R”. Therefore, we have for all z € Q,
and for all R € SO(d) and any deformation y that

RTY(z¥)RT = T%(2*) = TP (2, VRy(z)) = TP (z, RVy(z)),
and thus the response function satisfies for any F' € GL™(d) the relation
TP (x, RF) = RTP(z, F)RT.
Consequently, the axiom of frame-indifference implies the identity
RTS(z, RF) = S(x, F).

Hyperelastic materials

Now we introduce the notion of hyperelasticity. This captures the idea that deformations
are reversible, in the sense that the deformation energy can be stored in the material

and used later to do work without any loss. One could imagine dropping a rubber ball.
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When the ball hits the ground, it gets deformed, and deformation energy will be stored
inside the ball, which then causes the ball to regain its original form and bounce back

into the air.

Definition 2.7.2 (Hyperelasticity, stored energy). An elastic material is called hypere-
lastic, if there exits a stored energy function o : Q x GL*(d) — [0, 00) such that

S(z, F) = 0pp(x, F).

Proposition 2.7.1 (Frame-indifference for hyperelastic materials). The aziom of frame-

indifference is equivalent the following identity
oz, RF) = ¢(z, F), (2.7.4)

for all rotations R € SO(d) and all F € GL™(d).

Proof. We prove the assertion in two steps. First, we show that frame-indifference is
equivalent to Opp(x, RF') = Opp(x, F'). In the second step we check that dpp(z.RF) =
Oryp(z, F') is equivalent to p(z, RF') = ¢(x, F).

Step 1. By the definition of hyperelasticity, S is frame-indifferent, namely R”'S(x, RF) =
S(x, F), if and only if RTdpp(z, RF) = dpp(z, F) holds for any R € SO(d). To compute
the partial derivative of the mapping ¢r : F' — ¢gr(z, F) := ¢(x, RF') we fix R € SO(d)

and use Taylor’s theorem to obtain

or(x, F+ G) = p(x, RF + RG)
= ¢(x, RF) + 0pp(z, RF) : RG + o(|RG|)
=gz, F)+ RTOFQO(RF) : G+ o(|G])-

Therefore, we get Oppr(z, F) = RT0pp(z, RF) for all F € GL*(d). Thus, we have
R"0pp(z, RF) = Opp(z, F) <= O (pr(x, F) — ¢(z, F)) = 0. (2.7.5)

This proves the first claim.

Step 2. Clearly, if is satisfied, then also O (¢r(z, F') — ¢(z, F')) = 0 holds for all
F € GL*(d). For the converse statement, note that the set GL™(d) is connected (cf. [17], p.
29). Therefore, the relation Op (pr(x, F) — ¢(x, F)) = 0 implies that ¢gr(z, F') — ¢(x, F)
is a constant K = K(R) depending on R. Hence, there exists a mapping K : SO(d) — R
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such that we have
o(x, RF) — ¢(z,F) = K(R) VF € GL*(d). (2.7.6)
Testing successively for F =1, F = R, F = R?, etc. we find that
o(x, R") = p(z,I) + nK(R)

and thus, |¢(x, R™)| > n|K(R)|—|p(x,I)|. If K(R) # 0, we would get that lim,, o |p(z, R™)| =
oo. Since {R"} is compact and ¢ is continuous for almost all z (since ¢(z,-) is differen-
tiable), it takes a maximum on {R"}, which yields a contradiction. Thus, K(R) =0. O

Since we do not allow the material to deform to a point, or a plane, or even intersect

itself, we set up the natural condition on ¢

— 400 if detF — 04

(2.7.7)
=400 if detF <O0.

p(z, F) {
One can extend @(x,-) by +o0o to the set of matrices with nonpositive determinants. This
extension makes ¢ continuous as a map R¥*¢ — R U {+o0}.
For the rest of the thesis we will assume a special form of ¢, which is in accordance
with . Let us suppose there are constants ¢,p, g, > 0, such that, for all z € Q
and all F € R™¥4 ¢ satisfies the following inequality

e(|FIP 4+ |Cof F|7+ (det F)") if detF >0

+00 if  otherwise.

o(z, F) > { (2.7.8)
Again, this means that large deformation gradients and changes of volume and surface
contribute to the energy stored in the material.

This assumption on ¢ covers examples such as neo-Hookean, or Ogden materials, which
are used to model materials like rubber, polymers, and similar biological tissue (for a
definition refer to [17], Sec. 2.4).

Furthermore, the assumption (2.7.8]) allows us to conclude coercivity of the functional
E(y) = [qe(x, Vy)dx, which is necessary to apply the direct method (the precise
argument will be given in Sec. .

An issue here, however, is that such a natural physical property clashes with convexity of
the stored energy function, which is desirable property as it implies lower semicontinuity.

Therefore, we cannot apply the direct method naively and have to circumvent this

33



nonconvexity of ¢ by other, more suitable, notions of convexity. Let us make this point

precise (cf. [7], Thm. 4.8-1) via the following
Theorem 2.7.2. Let d > 2.

(i) There is no function ¢ : Q x R4 — RU {400} such that p(x,-) is convexr and

finite on GLY(d) for x € Q and satisfies (2.7.7).
(i) Let x € Q such that the function

o(z,) :GLT(3) = R
F— oz, F)

is convex. The axiom of frame-indifference implies that for any deformation y of
the reference configuration 0, the eigenvalues 7; of the Cauchy stress tensor TY(xY)

at a point x¥ = y(x) of the deformed configuration satisfy the inequalities

T+ 72 >0,
To + 13 > 0,
73+ 711 2> 0. (2.7.9)

The proof can be found in [7], Thm. 4.8-1. For the first assertion only, see [17],
Prop. 2.3.4.

The first statement rules out the convexity of stored energy function with explicit
dependence on det F'. The second assertion says that it cannot be expected that the
eigenvalues of the Cauchy stress tensor satisfy the inequalities at all points in all
deformed configurations. This fails even in very simple examples: for instance in the
case of an object subjected to uniform pressure (cf. Ex. , in which case the Cauchy
stress tensor is of the form TY(z¥) = —pl.

In order to stress that the stored energy function cannot be convex, in the mathematical
elasticity literature (e.g. [7]) the symbol W is used instead of ¢, as it resembles the graph
of a non-convex function. We will adopt this notion.

The goal of the next section is to find a suitable, weaker notion of convexity respect-
ing the coercivity assumption but still allowing us to conclude (weak) lower

semicontinuity.
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3. Existence of minimizers for polyconvex
materials

As discussed in chapter [2 our goal is to minimize a functional of the form

Ey) = /ﬂ o(z, Vy(x))dz — F.

To do so, we are aiming at employing the direct method. However, we have that the stored
energy ( is in general not convex, so we have to use another notion of convexity ensuring
weak lower semicontinuity. The right concept is polyconvexity, which we introduce in
Section We examine the advantages of polyconvexity and prove that polyconvexity
implies weak lower semicontinuity. These results will be used in section where we
eventually prove the existence of minimizers of the energy functional for polyconvex,

hyperelastic materials.

3.1. Polyconvexity

The definition of polyconvexity was originally introduced by Morrey in [21] but then
used by Ball |2 in the frame of elasticity. For defining polyconvex functions we need the
minors of a matrix. As we mainly work in dimension d = 3, and thus, only have to deal

with 3 X 3-matrices, we will give the definition of polyconvexity in this particular case.

Definition 3.1.1. Let F € R?*9 be a square matrix and denote the vector of all minors
of F with M(F). In particular, we have M (F') = (F,Cof F,det F') for d = 3.

A function ¢ : R¥4 — RU {+o0} is said to be polyconvez, if there exists a convex and
continuous function ¢ : R2°H1 L, RU {+0o0}, such that

p(F) = (M(F)). (3.1.1)

An elastic material, whose stored energy functional is given by a polyconvex function,

is also called polyconvez.
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Remark 3.1.1. One can generalize the definition of polyconvexity to higher dimensions.
To do so, one keeps the defining property (3.1.1]), but considers minors of higher order,
check [§8], Def. 1.5.

We want to remind the reader of the following fact: The cofactor matrix can be used

to calculate the inverse of an invertible matrix

1
- det M

Cof MT.

In other words: The product of a matrix with the transposed cofactor matrix yields a

diagonal matrix with the determinant as entries
M Cof (M) = det(M)I.

We saw in Section that given a deformation y, the cofactor matrix and the
determinant of the Jacobian Vy of this deformation describe how the area and volume

change under the deformation.

Example 3.1.1. Convex functions are clearly polyconvex. The map F' +— det F' is polycon-

vex, but not convex. Thus, polyconvexity is indeed a weaker notion of convexity. A

Similar to the scalar case of the direct method, we are given a weakly converging
minimizing sequence (y,) and need to conclude (weak) lower semicontinuity of the
functional. For a sufficiently nice function ¢(z, z,v) one can show that, if z — z almost
everywhere and v, — v weakly in L', then the functional (z,v) — [ ¢(z,z,v) is lower
semicontinuous (using Mazur’s Lemma). Although we only know that y,, — y, we can
show that also Cof(Vy,) and det Vy,, converge in a weak sense. This is due to the fact
that we can rewrite the minors of Vy,, in divergence form and then apply the Gaufl
divergence theorem. Setting zp := yi, v := M (Vyr) = (Vyg, Cof (Vyi),det(Vyg)) and
©(x, z,y) as in the definition of polyconvexity yields the fact that the energy functional is
weak lower semicontinuous. Let’s make the above statement precise (see also [17], Thm.
3.3.1).

Theorem 3.1.1 (Weak lower semicontinuity). Let £ : QX R* xR — RU{+o0} satisfying

the following properties:

(i) &(+,z,v) : Q@ — RU {400} is measurable for all (z,v) € R® x R?,
(ii) &(z,-,-) : R® x RT — RU {+0o0} is continuous for almost every x € Q,
(iii) &(x, z,-) : R — RU {+o0} is convex. Assume further that for all (z,v) € R® x R?
£(-,z,v) > for some 1 € L1 ().
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Furthermore, let z, — z almost everywhere in 0 and vy, — v weakly in L*(;R%). Then

/fx z(x )dx<hm1nf/§ac zi(x), vg(x))de.

k—o00

The proof can be found in [17], Thm. 3.3.1. We will only sketch it here.

Proof-Sketch. W.l.o.g. one can assume £ > 0, otherwise just use & — 1. Let (zx,vr) be a

(nonrelabelled) subsequence realizing the liminf, i.e.,

klirgo/ﬂf(x,zk(x),vk(x))dx =: .
Set gi(x) = &(w, 2k (), vg(x)) — &(x, 2z(x), vk (x)). Then gi converges to zero in measure.
We will not proof this claim here, but refer to [17]. By the convergence in measure, there
is a subsequence (gx) (again not relabelled) with g — 0 almost everywhere.

Apply Mazur’s lemma to v, — v in L' to obtain a sequence of convex combina-

tions

N, Ny
Wy = Z Ak,jVj, Z Ak =1,
Jj=k j=k

such that wy, — w strongly in L'. By applying Jensen’s inequality to the concave function

—¢(x, z,-) one obtains
&z, 2(x), wi(x)) + Z Ak jgj(x) < Z A& (@, 2(x), v;(x)).

Passing to the limit for k — oo, integrating over ) and applying Fatou’s lemma
yields the result. O

Remark 3.1.2. We only sketched the proof for two reasons. First, we want to point out
the similarity to the proof of Theorem However, £ depending on z makes everything
much more problematic. We simplified the proof by claiming that g; converges to 0 in
measure. This construction takes care of, or cancels out respectively, the z-dependence
and allows us to proceed in the already familiar manner. Secondly, we will give a rigorous
proof later on, where we will show that polyconvexity implies quasiconvexity and establish
that the functional is weak lower semicontinuous if the integrand is quasiconvex. To do
so, we will need new tools, in particular Young measures, and therefore we postpone this
to chapter [

Eventually, we want to apply this theorem in the case of a polyconvex integrand. In

37



particular, we set z = yr and vy = M (Vy) = (Vyg, Cof Vi, det Vyi). Hence, we need
to make sure that we have weak convergence of the minors if 3, — y in WP, This is
the goal of the next theorems, i.e. we now are about to prove that the cofactor matrix as
well as the determinant of Vy, converge nicely, if we only know that y, — y weakly in
WP, To illustrate the idea of the proof, we sketch it for the case y : R? — R? before
proving everything in detail. The proof is based on the fact, that minors can be written
in a divergence form, which allows us to use the Gaufl divergence theorem. We refer to

[27], Chap. 5.2, for a thorough general treatment.

Vy = < Y11 Y12 ) ’
Y21 Y22

Suppose y : R? — R2. Then

where y; j = gi’; Then

det Vy = y1,192.2 — Y1,242,2 = div(y192,2; —11y2,1) = V - (192,25 —Y192,1)5

where (-; -) denotes the components of a vectorfield. If y™ — y weakly in WP, then

multiplying with a test function ¢ and employing the Gaufl divergence theorem yields

/ det V"o = / Vo (Y — Y YE) ¢ = — / (U152 ¥ Y31) VY
- —/(y1y2,2;—y1y2,1)v¢ = /det Vyo.

The general theorem (and the respective proof) for arbitrary minors can be found in
[27], Lemma 5.10 (or [§], Theorem 8.20) and reads as:

Theorem 3.1.2 (General weak convergence of minors). Let Q C R? be a domain and
M :R™? 5 R be an (r x r)-minor, r € {1,...,min{d,m}}, and let (y,) C WHP(Q,R™),
where p € (r,00). If
yk =y in WP,
then
M (Vy) = M(Vy) in LP/"

Remark 3.1.3. In the proof we are going to use the Rellich-Kondrachov theorem, Thm.
to conclude (strong) LP-convergence from the given weak W!P-convergence. To
do so, one has to select a subsequence (because of the compact embedding). Therefore,

the conclusion of the theorem has to be stated as follows: there is a subsequence y,,
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such that
M(Vy,) = M(Vy).

Since we eventually apply this theorem in the context of the direct method, where we
nevertheless pass to subsequences, it does not matter and we use the same formulation
as in [27].

Let us state and prove the result rigorously in the case @ C R? for the cofactor matrix
(I7], Thm. 7.5-1. and [17], Thm. 3.2.1) and the determinant ([7], Thm. 7.6-1 and [17],
Thm. 3.2.2).

Theorem 3.1.3 (Weak convergence of Cof). Let Q C R? be a domain and let p > 2.
Then the mapping y € WP — Cof Vy is well-defined and continuous. Furthermore, if
yr — y weakly in WIP(Q;R3) and Cof Vy, — H in L1(Q), for some q > 1, then

Cof Vy = H.

Proof. For the proof a number technical lemmata will be needed. These are either stated

and proved either directly after the proof or in the appendix.
Step 1: Claim: the bilinear mapping

A (LP(Q))?* = LP2(Q)
(&mn)—¢&n

is well-defined and continuous.

To prove that A is well-defined one uses Holder’s inequality

[z = [rermare < ([ (er2)) " (] (ee)) " = temmmy? < o

With the step above, we also have proved that the bilinear map A is bounded, which
implies by Lemma the continuity of A.

Step 2: Claim: the map

WP — [P2(Q)
y — Cof Vy

is well defined and continuous. The Cofactor matrix in 3d has the form (do not sum over
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repeated indices and count them modulo three, [17], Thm. 3.2.1)

2 0yjrr _ OYjv2 Oyin
Cof V), ; = So+2 SVl GUye2 ZUicl,
(Cof V), 0Tiyo Oxi11  Oxip1 OTiqo

Since y € WP we know that % € LP for all 1 < k,I < 3. Therefore, the Cofactor
matrix is a linear combination of products of LP-functions, and thus, the first step implies

the claim.

Step 3: Now we use the representation of Cof as divergence. Let y be smooth enough,

e.g.y € €%(Q). By Schwarz Theorem we can write

(COf Vy)ij - 6$i+2 (yj+26&?i+1yj+1) - 6171‘-4—1 (yj+28$i+2yj+1) s

and consequently, by Gauf-Green Theorem (integration by parts) we have for all y € €
and all test functions ¢ € 2 that

/Q(COf vy)ij¢dx = /Q (aﬂfi+2 (yj+28$i+1yj+1) - axiJrl (yj+28$i+2yj+1)) pdx
== /Q (Yj+20m; 11 Yj+1) On,pn® + /Q (Yj+20r: 2Yj+1) O,y G- (3.1.2)

Moreover, we have that

(%)
\ /Q (Cof V)i jode| < [|(Cof V)il [0l < ex(@)l|y]3ms

‘ /Q Y;0;yrO1pdx

< ol /Q 0l < ca(6)lylms.

The estimate (x) is not a problem, because one could argue with (using Cauchy’s estimate
and L? C L' since Q bounded)

/ 3] < ¢ ( / |aiyj12) ( / razyu?) < B2 < | VylEa

Since €2 is dense in W12 and we have continuity, the equation (3.1.2)) is valid in W2
as well, and by Sobolev embeddings, even in WP, for p > 2.

Step 4: Claim: for p > 2 and ¢ € & fixed, we have

Yy —yin whr — / Y; 05y Ompdr — /yl@jyk@mgb.
Q
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This would then imply by step 3
Yt =y in WP = /Q(COnyn)ing)d:U — /(Cony)iqud:c.
To prove the claim consider the bilinear mapping
(& x) € L™(Q) x WHP(Q) — / £0;xOmddz.
Now, if % + % =1, we can apply Holder’s inequality to obtain

<t o <o 1) (fo)”

Since, if # < r and L™ C L7, the calculation above also holds if % + % < 1, and thus, the

‘/ £0iXOmpdx

bilinear mapping is continuous. Therefore, Prop. [3.1.5 is applicable, and we have

& —¢ in L'(Q)

g i WP (Q) } == /5 05X mqbdﬂ:—)/f@jxamgbd:p.

From the Rellich-Kondrachov compact embedding Theorem [A.2.3] we obtain

2L if p<3
WP eL foralll<r<p‘={ 3P wp
+o0o if p>3.

Thus, we get that, if y, — y in WP, then y, — y in L” for all 1 < r < p* (possibly

passing to a subsequence).
Since it is possible to find a number r that simultaneously satisfies

1 1
-+-<1 and r<p*
p T

for p < 2, our claim is proved.

Step 5: We will combine the steps above to prove the assertion of the theorem. Let

(yn) € WHP, p > 2 such that Cof Vy, € L7, ¢ > 1 and such that y, — y in WP and
Cof Vy, — H in LY.

By Step 4, we know

/(Cof Vyn)ijode — /(Cof Vy)ij¢ Vo€ P,
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and by assumption

/(Conyn)ijgbdx — /Hijcbda?.

Therefore (Cof Vy — H) € L*(2) and
/(Cony—H)gbdx =0 ¢€9.

Hence, by the fundamental theorem of calculus of variations (cf. [28], Lemma 10.21), we

get Cof Vy = H almost everywhere in € and the proof is complete. O

We state and prove the necessary lemmata now.

Lemma 3.1.4. Let X,Y,Z be normed vector spaces and B : X XY — Z be a bilinear

mapping. Then the following are equivalent:

(i) B is continuous
(ii) B is continuous at (0,0)
(iii) B is bounded, i.e. there is a ¢ > 0 such that

1B(z,y)llz < cllzllxllylly  V(z,y) € X xV

Moreover, if at least one of the spaces X,Y is a Banach Space, then the above properties

are equivalent to:
(i) B is separately continuous, i.e. continuous in each coordinate.

Proof. (i) = (%) is trivial.
(11) = (i4i) by contradiction. Suppose (7i7) is false. Then, for each n € N there is

(0,0) # (wn, yn) € X x Y such that || B(wn, yn)llz > n®||lzn| xlyally. Set
~ Tn - Un

Ty 1= — 0, Un ©
n|zn||

= — 0.
nlynll

By the bilinearity of B we have

1 1

e e A Pt R P PP e ,

||B(jna ?]n)HZ =

and thus, a contradiction.

(¢it) = (i): Let (i4i) hold and assume z,, — z, y, — y. Then, there isa M > 0
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such that ||z,|x < M and |lyn|ly < M. Therefore, we have

HB(xnvyn) - B(x,y)Hz < HB(xmyn) - B(xnyy)HZ + ”B(xnay) - B(.’E,y)HZ
= | B(@n, yn — y)llz + [ B(zn — z,9)llz
< cllaallxllyn — ylly + cllzn —zlx|lylly

< eM (||lzn = zllx + l[yn = ylly) = 0,

which proves the claim.

The last statement can be proved by using the Banach-Steinhaus Theorem. O

We also will need the following fact about continuous bilinear forms, cf. [7], Thm. 7.1-5,

for the proof.

Proposition 3.1.5. Let V' be a normed space and W be a Banach space. Furthermore,

let B:V xW — R be a continuous bilinear mapping. Then
vg = v inV oand wy = w in W = B(vg,w) — B(v, k).

Next, we are going to establish a result similar to Thm. [3.1.3] for the determinant of

Vy. Notice that
3

1
det Vy=— > cik€imnOyiOmy;Onyk

i7j7k7l7m7n:1

and Holder’s inequality implies that the trilinear mapping

(&m,¢) € (LP(Q))* = &n¢ € LPP(Q)
is continuous. This suggests that we need at least p > 3 for the mapping

wht — L1(Q)
y — det Vy

to be well-defined and continuous. However, we can even do better! If we have additional

information on the Cof, we can weaken the requirement on p, by realizing that

det Vy = Z 0;y1 (Cof Vy)lj .
J

Then Hoélder’s inequality shows that det Vy is well defined in L*, if y € WP for p > 2
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and Cof Vy € L9 with
1 1 1
- =—-4+-<1
S p q
Under these assumptions we can get the desired convergence properties for the determinant

as well, as stated in the following theorem.

Theorem 3.1.6 (Weak convergence of determinant). Let € be a bounded Lipschitz
domain in R3. For each p > 2 and each q such that /s = 1/p+ 1/q < 1 is satisfied, the

mapping

(y, Cof Vy) € WHP(Q; R?) x LU RY?) s det Vy := Y 51 (Cof Vy),; € L*(Q)
J

is well-defined and continuous. Moreover, if y, — vy in WP, Cof Vy, — H in L? and
det Vyr — § in L" for r > 1, then Cof Vy = H and det Vy = 4.

We only present the proof ideas for p > 3, the whole prove can be found in [17],
Thm. 3.2.2 in full rigour.

Proof-sketch. By Thm. [3.1.3] we have the convergence result for the Cof. The continuity
of the mapping follows by Holder’s inequality similarly to the proof of Thm. The
identity det Vy := 3=, 91 (Cof Vy)lj can be proved for y € ¢? using the identity
(det A)T = A(Cof A)” and Piola’s identity, and thus, we get for every test function ¢ € &

/ 911 (Cof V), ; ¢pda = —/ y1 (Cof Vy),; 0;¢dx.
Q Q

Now, if p > 3 the mapping y — fQ 0;y1 (Cof Vy)lj ¢dz is continuous w.r.t the W1 P-norm.
Therefore, one can proceed as in the proof of Thm. [3.1.3] O

Corollary 3.1.7. Let Q C R3 be a bounded Lipschitz domain and let p > 3. If y — y
weakly in WP (Q;R3), then det Vyy, — det Vy weakly in LP/3(Q).

Remark 3.1.4 (On the choice of p). As opposed to the general case of Thm. where
we need p > r strictly to conclude weak continuity of a r x r-minor, we could choose
p > 2, with equality allowed, in the case of the Cof in Thm. [3.1.3] However, this does not
work for the determinant, where in general, we need p > 3. A counterexample for p = 3
can be found in [17], directly after Cor. 3.2.3., showing that the sequential continuity
breaks down if {|Vyx|?} C L' concentrates at the boundary of the half plane. If one
assumes, that det Vy, > 0 almost everywhere, for all k, then one can choose p = 3. In

fact, one could prove an even better result. These remarks show, that the optimal choice
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of p is a very subtle issue. A rigorous treatment is not in the scope of this thesis, but

instead we refer to the papers of Miiller, [22], [23], and further resources mentioned there.

Summarizing the above results, we have that polyconvexity implies weak lower semi-

continuity of the functional.

Corollary 3.1.8. Let Q C R? be a bounded Lipschitz domain and let ¢ = Q x R3*3 —
R U {0} be a polyconvex stored energy function, i.e. assume there is a Carathéodory

integrand @ : Q x RP¥1 5 RU {oo} such that ¢(x, -) is convex Yooz € Q and such that
Yoo € WVE € R¥3 . (2, F) = ¢(M(F)).

Furthermore, assume p > 3. Then, the functional given by E(y) == [, ¢(x, Vy(x))dz is

sequentially lower semicontinuous with respect to the weak W1P(Q; R3)-topology.

Proof. Let (yi) € W'P(Q;R3) be a weakly convergent subsequence, i.e., let y &
WLP(Q;R?) such that y, — y in WP, By Thm. we know that also Cof(Vyy) —
Cof (Vy) in LP/? and det Vy;, — det Vy in LP/3. Now, we can apply Thm. setting
v := M (Vyk), 2 :=y and {(z, 2,v) := @(z, M(Vy)) = p(z, Vy). 0

Remark 3.1.5. Noting that polyconvexity is a sufficient condition for weak lower semicon-
tinuity, we can ask ourself the question: is it also a necessary condition? The answer is
no and the search for a necessary condition will lead to the notion of quasiconvexity as

we will see in Chapter [

3.2. Existence result

We have all the ingredients now to state our first existence result for hyperelastic,

polyconvex materials.

Theorem 3.2.1. Let Q C R? be a bounded domain with Lipschitz boundary, and ¢ :
Q x R3*3 5 RU {400} a stored energy function satisfying

(i) Polyconveity: let there be a Carathéodory integrand @ : Q x R9*9*1 — R U {+o0}
such that

o(x, ) is convex for almost all x € Q and

o(x, F) = ¢(x, M(F)) Vaex € QVF € R33,
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(i) Coercivity and frame-indifference:

— o0 if detF —0
oz, F) = )
=00 if detF <0

o(z, RF) = ¢(z,F) VR € SO(d).

Vaax € £, and (3.2.1)

Furthermore assume that 3¢ > 0,p >2,q > p/(p— 1), r > 1 such that

c(|FP+|Cof F|1+ (det F)") if detF >0
+00 if  otherwise.

sO(w,F)Z{

(iii) Admissibility: Let 9Q =T =Tp Uy a measurable partition of the boundary with
measy(Tp) > 0, let yp € WIP(Q,RY) be given and let

A= {y e W'P(Q,R?) : Cof Vy € LY(Q,R>?), det Vy € L"(Q),
y=yp onTp,det Vy >0 a.e. } #0.

(iv) y — F(y) be such that —F is weak lower semicontinuous, and F(y) < K (Il +1)
for < s <p.
(v) Let there be a y € A such that E(y) < oco.

Then the minimum of

E(y) = /Q o, Vy())de — F(y)

over A exists.

Proof. Since ¢ is a Carathéodory integrand, the mapping = — @(z, M (Vy)) is measurable.

By the coercivity assumption and the growth condition on F, we get
€)= ¢ [ V9P +] Cof Vyl" + (et V) = Kyl ~ K.
Applying Poincaré’s inequality yields
£) = ¢ (91, + 1| Cof V|4 + || det V5, ) — K.

for a constant ¢ > 0 and all y € A. Let (yx) C A be a minimizing sequence, i.e.,
satisfying lim (yx) = inf4 € < oo. The previous coercivity estimates yield that the
sequence (Vyy,, Cof Vi, det Vi) is bounded in the reflexive Banach space WP x L x L",

and thus, has subsequence weakly converging to some element (y, A,8) € WP x L4 x L".
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By the Thms. [3.1.3] and [3.1.6], we can conclude Cof Vy, — A = Cof Vy in L9 and
det Vyr — 0 = det Vy in L". Theorem implies that £ is sequentially weakly lower
semicontinuous. We are left with verifying that y is admissible. The boundary conditions
are satisfied by the continuity of the trace, Thm. Moreover, det Vy > 0 is satisfied,
for if not, then £(y) = oo, because the stored energy would be co, by . But this
contradicts £(y) = liminf £(yx) < oo. O
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4. Quasiconvexity and existence results for

quasiconvex materials

As we already mentioned, polyconvexity of the integrand is sufficient, but not necessary
for weak lower semicontinuity of an integral functional. In this section, we will treat
the notion of quasiconvexity, first introduced by Morrey in [21]. As it will turn out,
quasiconvexity is necessary for weak lower semicontinuity. To prove this we will introduce
a general tool, so called Young measures (or parametrized measures). Furthermore,
the relation between polyconvexity and quasiconvexity is examined, which makes, as

a by-product, the assertion about polyconvexity and weak lower semicontinuity, i.e.

Thm. rigorous.

4.1. Quasiconvexity

We follow [17], cf. Definition 4.1.1. (as opposed to the definition provided in [27], Sec. 5.1).

Definition 4.1.1. Let Q € R? be a bounded Lipschitz domain. We say that ¢ : R4 —
R U {00} is quasiconver, if for any A € R%*? and every y € VVO1 °(Q;RY) it holds that

1

plA) = measg(2)

/ (A + Vy(a))de,
Q

whenever the integral on the right hand side exists.

Remark 4.1.1. The definition of quasiconvexity is independent of the choice of a particular
Lipschitz domain, i.e. in the above definition €2 could be replaced by an arbitrary bounded
Lipschitz domain and the set of quasiconvex functions would still be the same. For the
proof of this claim see [17], Section 4.1 or |27], Lemma 5.2.

Moreover, in the definition of quasiconvexity, if ¢ satisfies a p-growth condition, one
could use Wy test functions instead of Wy, cf. [27], Lemma 5.2.

Remark 4.1.2. An issue in the definition of quasiconvexity is whether to allow ¢ to

take the value oo or not. If we allow ¢ to take oo, we could run into problems. In
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fact, it cannot be shown that for such functions quasiconvexity is equivalent to weak
lower semicontinuity. It has not yet been proven, that quasiconvexity for such functions
is a sufficient condition, cf. [8], Rem. 5.2. Furthermore, quasiconvex functions taking
the value 400 are not necessarily rank-one convex as this would be in the case for
quasiconvex functions into R, see [17], Prop. 4.1.6. However, defining quasiconvexity only
for ¢ : R?>*? — R conflicts with the choice we made to extend the stored energy function
to {oo} to make it continuous (cf. formula and the following paragraph). To solve
this issue, and in accordance with the focus on mathematical elasticity, we follow [17]

and define quasiconvexity for functions into the extended real numbers.

Before we start discussing the properties of quasiconvex functions, we want to give
a intuition of why quasiconvexity is somehow a natural notion. Quasiconvexity of an
energy functional means that affine deformation amount to less energy than internally

distorted deformations. Let

Fly) = /Q o(Vy(z))da

be given with quasiconvex integrand ¢. Furthermore, let y be an affine deformation, i.e.
Y, is of the form y,(z) = yo + Az, for yo € R3 and A € R**3 and thus, Vy, = A. Then,

quasiconvexity of ¢ implies that
Flo) = [ o4) < [ o4+ Vola)de = Flu+ ).

As quasiconvexity is not a pointwise notion, it can be difficult to verify if a given
function is quasiconvex or not. To circumvent this problem we will introduce another,

weaker concept of convexity, which can be easily checked.

Definition 4.1.2. A function ¢ : R¥¢ — R U {+oc0} is called rank-one convez, if for all
A, B € R¥™9 with rank(A — B) <1 and all X € [0, 1] the following inequality is satisfied

P(AA+ (1= A)B) < Ap(A) + (1 = X)e(B).
Note, that rank(A — B) < 1 if and only if there are a,b € R? with A — B=a®b.

Rank-one convexity is related to ellipticity of partial differential equations. In fact, if
@ € €?(R¥*?), then rank-one convexity is equivalent to the so-called Legendre-Hadamard
condition

d d 2

07p(§
> Y 5o AN oty 2 0.
i,j=1a,8=1 1,aUG5,8
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for every A\, u € R?, and ¢ € R¥4, We will not go into detail but instead refer to [8],
Chapter 5.

Whereas in the one-dimensional case all notions of convexity introduced so far are
equivalent, this is not the case for d < 2. For higher dimensions only the following

implications hold.

Theorem 4.1.1. Let ¢ : R 5 R. Then the following chain of implications holds true
@ conver => ¢ polyconver = @ quasiconver =—>  rank-one conver.

For the proof, see [27], Prop. 6.1, or [8], Theorem 5.3. The converse implications do
not hold in general.

As it may cause trouble considering functions which can have the value oo (see Rem.
, we stated the previous result for functions into R. For functions ¢ : R¥*?¢ —
R U {+o0}, the implications

p convex =—> ¢ polyconvex = ¢ rank-one convex,

still hold true (refer to [8], Thm. 5.3).
Theorem provides a necessary and sufficient condition for quasiconvexity, which

are in general easier to verify.

4.2. Young measures

Young measures, named after its inventor L.C. Young [30], are a major tool in nowadays
theory of calculus of variations. We are going to use them to prove that quasiconvexity of
the integrand is a necessary condition for weak lower semicontinuity. In the first section,
we want to lay out the main ideas of the proof and the importance of Young measures in

a very informal fashion, which we will make more precise in the following parts.

Introduction

Suppose we are given a functional F(v) := [, f(2,v(z))dx where f : @ x R — R is
continuous and bounded and  C R? is a bounded Lipschitz domain. Consider a sequence
v; — v in L*(Q). Then, (F(v;)) is bounded and contains a convergent subsequence. But
how to compute this limit for an arbitrary integrand f7 Or, equivalently, what is the
weak-* limit in L°° of the sequence (f(x,v;(x)));? The problem is that, although v; — v,

in general f(z,v;)/A"f(z,v). Formulated differently, if we have v; — v and f(vj)—*g,
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then in general g # f(v). Thus, we have no chance to pass to the limit for nonlinear f!

As an example consider

v;(z) ::{ -1 if  jz—[jz] € (0,1/2]

1 if gz — |jz] €(1/2,1)

on Q= (0,1). Then v; — v =0, but for f(z) = 22, we get that f(v;) =1+#0= f(v).
Young measures contribute in clarifying this, for they provide a finer description of

the limit of the sequence (F(v;));. Informally, this due to the fact that Young measures

encode the oscillations, so that the information about the oscillations does not get lost.

We give a precise definition below. For the moment let a Young measure be a family
of probability measures v = (v,)zcq associated to the sequence v; such that for any

continuous function f : Q x RY — R we have
Flo) = [ 1o, Ay (4)

is measurable. The crucial observation is that the weak-* limit of f; is exactly f, ie.

Jim [ favie)de = [ o) [ fo )i = [o@fe. @2

If we absorb the test function into f and set f(z, A) = A, then implies that
v; = [ Adv,(A).

The idea is the following: Consider a highly oscillating sequence (e.g., take a sequence
jumping between —1 and 1 with increasing frequency as above) and a fixed point zy € Q.
Then, the value of the function at z( is 1 with probability 1/2 or —1 with probability
1/2. This concept of introducing a measure at a point, telling us the probability of a

function value to be attained, yields the Young measures.

Using Young measures we show that quasiconvexity is sufficient for weak lower semi-
continuity. The proof relies on two properties of Young measures, namely a lower
semicontinuity result resembling Fatou’s lemma, presented in Prop. and a Jensen-
type inequality for quasiconvex functions, given in Prop. We give an idea how to
apply these results to prove that quasiconvexity implies weak lower semicontinuity, for
the rigorous result see Thm. If we assume that the following lower semicontinuity

result for Young measures hold

Jim inf /Q F(Vi(2))dz > /Q ( 5 f(f)duz(§)> dz, (4.2.2)
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we get weak lower semicontinuity of v — [, f(v(z))dx by

lim inf /Q Floa)ds 2D /Q ( Rdf(&)dux@)) da

Jegsen/Qf </§duz(§)> da /Qf(v(:c))dm.

In the next sections we make these arguments precise.

Fundamental properties of Young measures

Before we start with the treatment of Young measures we need to introduce the notion

of equiintegrability (from [27], A.3 Measure Theory).

Definition 4.2.1. A family (f;) C LP(2;R™) is called LP-equiintegrable (sometimes also

called uniformly integrable), if one of the following equivalent conditions hold

(i) imp ~oo supjen [y 7= gy | fiPdz = 0,
(i) limpg s limsup;_, f{\fg‘\>R} |fj|Pdx =0,
(iii) for every e > 0, there is a § > 0 such that for all Borel sets B C {2 with meas(B) < ¢

we have

sup/ |[filPdx < e.
B

jEN
The following theorem gives us an equivalent description of equiintegrability for the

particular case of p = 1.

Theorem 4.2.1 (Dunford-Pettis). Let Q C R? be bounded and open. A norm-bounded
family (f;) € LY(R) is equiintegrable if and only if it is weakly sequentially precompact in
LY(9).

For the proof refer to [4], Thm. 4.7.18 and note that we additionally employed the
Eberlein-Smulian Theorem [A.4.4] here.
The following theorem states the existence of a Young measure, as well as the conver-

gence result, we claimed in the introduction.

Theorem 4.2.2 (Fundamental theorem of Young measures). Let (v;) C LP(Q,RY) be
a norm-bounded sequence, where p € [1,00]. Then, there exists a subsequence (non-

relabelled) of (vj) and a family of probability measures

(V;t)xGQ C Ml(RN)a
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called the (LP-)Young measure generated by the (sub)sequence (v;), such that the following

assertions are true:

(i) The family (vy)zeq is weakly-* measurable, that is, for all Carathéodory integrands

f: QxRN = R, the compound function
z = (f(z,),vz) == /f(:c,A)dyx(A)

is Lebesgue-measurable.
(ii) If p € [1,00), then

/ /]A]pdu$(A)dm < 0,
Q

or, in the case of p = oo, there is a compact set K C RY such that
suppv; C K VaeaX € €.

(iii) For all Carathéodory integrands f : Q x RN — R with the property that the family
(f(z:,vj))j is uniformly L'-bounded and equiintegrable, it holds that

Fla,vy) — (:UH / f(x,A)dux(A)) in L (4.2.3)

Parametrized measures v = (v, ), satisfying items (i) and (ii) above are called Young
measures and we write v = (v,), € YP(Q,RY).

Writing out (iii) yields

flx,v;) = (:c — /f(w,A)dym(A)) in L!

e
/Qf(:v,vj(m))w(z)dx%/gz/w(x)f(x,A)duz(A)dw Vi € L.

Since (f(z,v;)); is uniformly L'-bounded and equiintegrable if and only if (¢ (z) f(z,v;));
is L'-bounded and equiintegrable, we can absorb the test function 1 into f. Then, we

can express (4.2.3) equivalently as

[ t@vs@nds > [ [ s dyivaarde = [ (e give) = (f0).

We do not present the proof of the Fundamental Theorem here, as it would go beyond
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the scope of this thesis. Instead, the reader may refer to [27], Chapter 4.1.

Definition 4.2.2. Young measures generated by gradients of LP functions are called
gradient Young measures. More precisely, let v € YP(;R™*9) p € [1,00]. We say
that v is a WP-gradient Young measure, and write v € GYP(Q, R™*%), if there is a

norm-bounded sequence (u;); C WHP(2, R™) such that (Vu;) generates v.

Note, that not every Young measure is a gradient Young measure. This leads to the
question whether we can characterize all gradient Young measures. This question is
positively answered by the theorem of Kinderlehrer and Pedregal, which will be stated
later in this section.

Now we summarize some properties of (gradient) Young measures, which will be needed

to prove that quasiconvexity implies lower semicontinuity.

Lemma 4.2.3. Let (v;) C LP(;RY), p € (1,00), be a sequence generating the Young
measure v € YP(Q; RN). Then,

vi =v in LP,
where v(z) = [V](z) = [vz] = (id, vy) = [ Advy(A).

Proof. Since LP is reflexive (p € (1,00) by assumption), bounded sequences are weakly
compact, and thus, by the Dunford-Pettis theorem also L'-equiintegrable. Therefore,
we can apply the assertion (iii) in the Fundamental Theorem of Young measures for
the integrand f(x, A) =id(A4) = A. O

4.3. Lower semicontinuity

Now, we are about to prove the equivalence of weak lower semicontinuity and quasicon-
vexity of the integrand. Recall that in the proof of Thm. where we established
weak lower semicontinuity for a convex integrand, we used two main ingredients: Fatou’s
Lemma and Jensen’s inequality. This will also be the goal in the case of quasiconvex
integrands, as we already indicated in the introduction. Therefore, we want to state and
prove similar results for Young measures.

We start with a lower semicontinuity result for the duality pairing, which in some sense

will replace Fatou’s Lemma.

Proposition 4.3.1 (Lower semicontinuity result for Young measures). Let (v;) C

LP(Q;]RN), p € [1,00), be a norm-bounded sequence, generating the Young measure
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v € YP(Q;RY) and let f: Q x RN — [0,00) be a Carathéodory integrand (not necessarily
equiintegrable). Then,

MMMAf@W@Wm=@g§WJMWE«ﬂW.

Jj—o0

Proof. For k € N set fi(z,A) := min{f(x, A), k}. This ensures equiintegrability of (f%)
and thus (iii) of the Fundamental Theorem is applicable, which yields

/Q Fol, vy (@))da = (o v) = /Q / Fo(, AV (A)da.

Since f > fi, we have

liminf/gf(a:,vj(a:))dx > (fx,v).

Jj—00
By letting k — oo and using the monotone convergence theorem we obtain the

assertion. O

Now, we state a Jensen-type inequality. Whereas the classical Jensen inequality holds
for convex integrands only (and therefore, also for quasiconvex integrands), this result
will work for quasiconvex, but not necessarily convex, functions as well. In this sense, it
extends the classical Jensen inequality. Still, one needs a certain growth condition on the

integrand.

Definition 4.3.1. We say a Carathéodory function f : Q x R™*% — R has p-growth, if
there is an M > 0 such that

[f(z, A)| < M (1 + |A]").

Additionally, one needs to assume the following property on the Young measure.

Definition 4.3.2. A Young measure (1), = v € YP(;RY) is called homogeneous, if

v, is constant almost everywhere in = € €.

Proposition 4.3.2 (Jensen-type inequality). Let v € GYP(B(0,1), R™*%) with p €
(1,00) be a homogeneous gradient Young measure. Then, for all quasiconvez functions
f: R™ 4 5 R with p-growth it holds that

ﬂwns/fw.

We only want to sketch the proof here. For all details, refer to [27], Lemma 5.11.
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Proof. For convex integrands the conclusion holds by the classical Jensen inequality. Set
F = [v].

We claim, that there is a (u;) C W}’f(B(O, 1); R™) (meaning ulgp(o,1) = F'z in a trace
sense), such that (Vu;) generates v, and that this sequence (Vu;) is LP-equiintegrable
(cf. |27], Lemma 4.13).

Note: u; € W};xp & u; — Fx € Wol’p and VF = F. By the definition of quasicon-
vexity (with y = u; — Fx) we have

WF) < —1 /Q W(Vuy () da

meas ()

for all j € N.
The growth assumption on h yields that (h(Vwu;)) is equiintegrable, and thus, by

passing to the Young measure limit as j — oo, we obtain for the right-hand side

h(F) < meals(m /Q / hdvdz = / hdw.

(Here, the homogeneity of v plays an important role.) O

To apply the Jensen-type inequality above, one needs a homogeneous Young measure.
Therefore, the last ingredient for proving lower semicontinuity is a localization (also

called blow-up) technique, which allows us to work with homogeneous measures.

Proposition 4.3.3 (Blow-up technique). Let v = (1), € GYP(;R™ ), p € [1,00), be
a gradient Young measure. Then, for almost all xoy € Q the probability measure vy, is a

homogeneous gradient Young measure, vy, € GYP(B(1,0); R™*4).

We will not repost the proof here, but instead refer to |27, Prop. 5.14.

After we collected the necessary tools, we are now able to verify that quasiconvexity
implies weak lower semi continuity, a result which was proved by Morrey in 1952 in [21]
under stronger assumptions, and later by Acerbi and Fusco in 1984 in [1] using different

methods. For simplicity, we will only consider functionals not depending on wu.

Theorem 4.3.4 (Quasiconvexity = w.l.s.c). Let p € (1,00) and let f : Q x R™*4 —
[0,00) be a Carathéodory integrand with p-growth and such that f(x,-) is quasiconvez
for almost every x € Q. Then, the functional F(u) := [q, f(x, Vu(z))dz is weakly lower

semicontinuous on WP,

For u-dependent functionals we will need an additional lemma, stated in [27], Lemma
5.19.
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Proof. Let (u;) C W1P(Q,R™) such that u; — u in WP, This means Vu; — Vu
in LP. Therefore, (Vu;) is bounded (cf. Thm. [A.4.5). Thus, it generates a gradient
Young measure v € GYP(£2;R™*4). By Lemma we have that Vu; — [v] and by
the uniqueness of the weak limit Vu = [v]. From the result on lower semicontinuity for

Young measures, Prop. [£.3.1], we get

liminf/ f(z, Vuj(x))dz > (f,v) //f x, A)dvy(A)dz (4.3.1)

J—00

Now, by the blow-up technique from Prop.4.3.3, we can consider v, € GY?(B(0;1); R™*%)

as homogeneous Young measure for almost all x € Q2. Thus, the Jensen-type inequality
Prop. applies and yields

/f(l‘,A)dI/x(A) > f(z,Vu(z)) Veex € . (4.3.2)

Combining (4.3.1)) and (4.3.2]), we obtain

lim inf F(u;) > F(u),

Jj—0o0
and thus, have proved the assertion. O
As already mentioned, quasiconvexity is actually equivalent to weak lower semiconti-
nuity.

Rmxd

Theorem 4.3.5 (w.l.s.c = quasiconvexity). Let f : — R be continuous with

— / F(Vy())dz
Q

where y € WHP(Q,R™), is weakly lower semicontinuous, then f is quasiconver.

p—growth. If the functional

Proof. By Remark [.1.1] we have to verify that
1
A< o | fA+ V)
1B(0,1)| /50,1
where A € R™*4 ) € WS’OO(B(O, 1),R™), and B(0,1) denotes the ball with radius 1

centred at 0. One can assume (after a possible translation and scaling of the domain)
that B(0,1) € Q holds.
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By Thm. m there exists for all j € N a Vitali covering of B(0,1) in disjoint balls,
i.e. afj) € B(0,1) and 7“(]) > 0, with the additional property that r,(c < 1/j, such that

B0,1) =290 B, ),
k=1

where |ZU)| = 0. Since B(0,1) € Q we can find a smooth function h : Q\B(0,1) — R™
with h(x) = Az for x € 9B(0,1). Define

, e
Az + a4 (zrggf ) it zeB@ )
h(z) if xeQ\B(0,1).

yj(w) =

Since 1) is bounded, we can conclude that y; — y in WP, where

( )__{ Az if  z € B ru(j)
P70 ) it e \B(O,1).

Therefore, by the weak lower semicontinuity, we get

[ty <timint [ f(Ty()ds
B(0,1) B(0,1)

j—o0
e z—a’
N hjnllolgf; /B(am 9y F\A+ve r,(j) da
= lim inf Z / f(A+ V(2'))da'
J—roo B(0,1)
[ s Ve (4.3.3)
B(0,1)

where we used a change of variables, indicated by a change in notation, and the fact that
Zi":l(r,(f ))d = 1. To see this, we write out the equality of the volume of the ball and the
volume of the Vitali covering. Denoting with wy the volume of the unitary d-sphere, we

get

e}

wqg = |B(0,1)] U ak,rk |—de

Looking at the result of the calculation in (4.3.3), we see that this is exactly the

definition of quasiconvexity. O

At this point, we want to give an example of a Young measure, which is not a gradient
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Young measure. As the barycenter of a gradient Young measure is again a gradient, and
thus, curl-free, it is enough to consider a the Young measure §(v) for a v with curlv # 0,
to get a counterexample. Although it is outside the scope of this thesis, we want to
emphasize the importance of the Jensen-type inequality, since it characterizes all gradient

Young measures in the class of Young measures.

Theorem 4.3.6 (Kinderlehrer-Pedregal). Assume that v € YP(Q; R™*9), for p € (1, 0],
is a Young measure with [v] = Vy for some y € WIP(Q;R™). Then, v is a gradient
Young measure, i.e.v € GYP(Q;R™*Y), if and only if for almost all x € Q and all
quasiconver functions h : R™*4 — R with p-growth (no growth condition for p = 00), the

Jensen-type inequality
W(Vy(a)) < [ hav,

holds.

The proof can be found in [27], Thm. 7.15.
Eventually, we summarize the results of this chapter by giving the following existence

result for quasiconvex integrands.
Theorem 4.3.7. Let f: Q x R™*¢ — [0,00) be a Carathéodory integrand satisfying

(i) f has p-growth, for p € (1,00),
(ii) there exists ¢ > 0 such that the following p-coercivity estimate holds

c|A[P < f(z, A),
(iii) f is quasiconvex in the second argument.

Then, the functional
F) = [ 1l V@)

has a minimizer in
W, P(Q,R™) = {y € WHP(QR™) : ugg = 9} :
with g € Wl_l/p’p(aQ;Rm) and the equality at the boundary in the trace sense.

Proof. By the work done above, leading ultimately to Thm. [£.3.4] the claim follows from
the direct method, as soon as we have established coercivity. Therefore, we have to show

that any sequence (y;) C W, P(Q; R™) such that sup; F(y;) < oo is weakly precompact,
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i.e. admits a weak W1P-convergent subsequence. By the p-growth condition, we get
oo > sup F(y;) > csup/ |Vy;|Pdx.
J Jj JQ

If we fix yo € ng’p (Q;R™), then y; —yo € Wol P and thus, by the Poincaré inequality
we get

sup [[y;llwrr < suplly; — vollwre + l|yollwrr < oo
J J

Since W1P(Q;R™) is a separable and reflexive Banach space for p € (1, 00), this uniform
bound on ||y;|[y 1., implies the existence of a weakly convergent subsequence, and we
have verified coercivity. The direct method implies the existence of a minimizer and
the continuity of the trace operator ensures that the minimizer satisfies the boundary

condition. 0
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5. Invertibility of deformations

By the Inverse Function Theorem, the condition of orientation-preservation det Vy > 0
implies that y is at least locally invertible. This, however, does not ensure global

invertibility as the following example shows.

Ezample 5.0.1. Consider the set  := (1,2) x (0,47) C R? and the deformation y : Q — R?
given by y(z1,x2) := (x1 cos(z2), x1 sin(xz)). Then (—z1,0) = y(z1,7) = y(z1,37) and
therefore y is not injective and cannot be invertible everywhere. Still the orientation is
preserved

cosxyg —x1Sinxy

det Vy = det ( > = 21 cos® Ty + x1 sin® x9 = 11 > 0. AN

sinxg 1 cCOSx9
The so called Ciarlet-Necas condition entail no self-penetration instead.

Definition 5.0.1. We say a deformation y satisfies the Ciarlet-Necas-condition if

/Qdet Vy(x)dz < measq(y(2)) (5.0.1)

holds.

We sometimes abbreviate “Ciarlet-Necas-condition” by CN.

Remark 5.0.1. To see that this condition indeed prevents self-penetration, consider Fig.
where the Ciarlet-Necas condition is violated. The right-hand side of gives us
the area of y(£2), where the grey part is counted once. But since the determinant of the
Jacobian describes the local stretching and rotation caused by the deformation y, the
left hand side of the Ciarlet-Necas condition (considering the integral as “infinitesimal
sum”) adds up all of these local changes and thus, gives us the area of the deformed
configuration if we would “unbend” y(€2). This means, the grey part is counted twice,
which makes the left-hand side larger and violates .

The Ciarlet-Necas condition, combined with orientation-preservation, ensures global

injectivity almost everywhere.
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(a) No self-penetration  (b) Self-contact, but no (c) Self-penetration
CN holds self-penetration CN violated
CN holds

Figure 5.1.: Ciarlet-Necas condition.

The proof relies on the change of variables formula, which uses the so-called Banach

indicatrix.

Definition 5.0.2. For any 2z € R? and Q C R? the Banach indicatriz N(z,y,) is the

number of elements in €2, which are mapped to z by y, formally

N(zy, Q) = #{r € Q ¢ y(a) = 2},

where the right-hand side is the counting measure.

Theorem 5.0.1. Let Q be a bounded Lipschitz domain in R%, let p > d and y €
WP (Q,RY) satisfying

(i) Orientation-preservation: det Vy > 0 almost everywhere in ), and
(ii) Ciarlet-Necas:

/Qdet Vy(x)dz < measq(y(2)).

Then, for almost every x¥ € QY there is only one x € Q satisfying y(x) = x¥. Using the
Banach indicatriz (defined in[5.0.3), this means N(z¥,y,Q) =1 for almost all z¥ € QY.

Proof. By the change of variables formula from Thm. and the Ciarlet-Necas

condition, we have

/ N(z¥,y, Q)dxY = / det Vy(x)dx < meas;(y(Q2)) = / ldz¥.
y(Q) Q y(Q)

Since N (z¥,y,Q) < 1 must hold for all z¥ € QY we get N(z¥,y,Q) = 1 for almost all
¥ e Qv O
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Fortunately, the CN condition is compatible with the existence result established in
the previous sections. This means, when imposing the CN condition, in addition to
the assumptions of the existence result Thm. [3.2.1] yields almost everywhere invertible
minimizers of the energy functional. Before we prove this claim, we will make precise the

notion of almost everywhere invertibility.

Definition 5.0.3. A deformation y : @ — R? is injective almost everywhere in a bounded
domain Q C RY, if there is w C Q such that measy(w) = 0 and y(z1) # y(x2) for every
x1,x2 € QN\w, with 1 # xa.

Another important notion in this context is Lusin’s N-condition.

Definition 5.0.4 (Lusin’s conditions). Let £ C R™ be a bounded domain. Then
y: Q — R% is said to satisfy Lusin’s condition N, if for every w C  with measg(w) =0
it holds that meas,(y(w)) = 0.

Of course, one can consider functions whose pre-image of null sets as again a null set.
The function y : Q@ — R? is said to satisfy Lusin’s condition N~ if for every & C y(2)
with meas(@) = 0 it holds that measy(y~1(@)) = 0.

Regular Sobolev functions on bounded sets automatically satisfy Lusin’s condition V.

Lemma 5.0.2. Let Q C R? be bounded and y : Q — R3 such that y € WHP(Q;R3), with
p > 3. Then y satisfies Lusin’s condition N.

The proof can be found in |20], Cor. 1.
If an almost everywhere injective deformation y satisfies Lusin’s condition N, then
measy(y(Q)) = measy(y(2\w)), and y as a map y : Q\w — y(Q\w) is injective.

Now we have all tools to prove the main theorem of this section.

Theorem 5.0.3 (Injectivity almost everywhere). Let all assumptions of Theoremm
hold and p > d. Furthermore, let

Aini = AN {y € WHP(Q;RY) : y satisfies the Ciarlet-Necas condition (5.0.1)}.

Then, there is a minimizer of € on Ay, which is injective almost everywhere in Q. In

particular, this minimizer also satisfies the Ciarlet-Necas condition.

The core of the proof of this statement is to verify weak continuity of the Ciarlet-Necas
condition, i.e. if (y,) C WP satisfies CN and weakly converges to some y, ¥, — ¥, then y
satisfies CN. One way to prove this, is to employ the regularity of the Lebesgue measure

and compactness of the set y(§2) as presented here (cf. [17], Thm. 3.4.6).
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Proof. We will show that a minimizer of £ is also injective. Since p > d, by Morrey’s
inequality in Thm. |A.2.2] we can embed WP C C%7, with v =1 — %. By Arzela-Ascoli’s
Theorem (Thm. [A.2.4)), we have the compact embedding €7 € ¥, and thus, W!? € €.

This means that a minimizing sequence 1y, — ¥y, which is of course bounded, contains

a subsequence (not relabelled) converging uniformly, i.e. ||yx — y||r~ — 0. By Lemma
5.0.2, y satisfies Lusin’s condition N, and thus, meas;(y(92)) = 0 as measy(02) = 0,
since (2 is a Lipschitz domain. Therefore, one gets |y(2)| = |y(Q)|. Moreover, the set
y(Q) is compact, and hence, by the regularity of the Lebesgue measure, for any € > 0

there exists an open set O, with y(2) C O, and

|0\y(Q)] < e. (5.0.2)

Next we want to show that there is a N € N, such that y;(2) C O, for all kK > N. To do

so, we claim that there is a 6 = §(¢) such that

J B(xz,6) coO.. (5.0.3)
zey(Q)

If this was not the case, we could find some ¢ > 0 and sequences J, with dp — 0 as

k — oo, and (zx) C y(€), such that there is a z € B(xy, dx), but zx ¢ O.. Since y(Q) is

compact, there is some x € y(€2) and a (nonrelabelled) subsequence, such that z — x
and thus, also zx — z. But R\ O, is closed, and therefore, 2 € R\ O,, which contradicts
the fact that y(Q) C O.. Hence, inclusion holds. We infer, by the definition of
uniform continuity, the existence of a N such that for all |yg(z) — y(z)| < ¢ for all 2 € Q
and all k¥ > N. Thus, by , also y,(Q) C O. for all k > N. Since yj, satisfies the

CN-condition, we can conclude

A@N%M§m@ﬂgau

for all K > N. By the weak convergence of the determinant Thm. we get
/ det Vy = lim/ det Vyi, < O,. (5.0.4)
Q Q
Since |Oc| = [y(Q)] +[0:\y(Q)| (Lemma|A.5.6), we obtain by (5.0.2) and (5.0.4) and the

fact that € was arbitrary
| detvy < @] = y@)1
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Therefore, we have proved that also the weak limit satisfies the Ciarlet-Necas condition.

The last step is to use this to show that the limit is also injective almost everywhere.
This follows from the change of variable formula Thm.

9(©)| = / e / o NGy = | detVyla)do <y

which implies that N(z¥,y,y(2)) = 1 for almost all 2¥ € y(92). Now, if w C y(f) is a
null-set on which N(z¥ y,w) > 1, then also {z €  : y(z) € w} is a null-set, since y
satisfies Lus O]

The idea of the proof above can be used to prove another useful result.

Lemma 5.0.4. Let y,,y € W'P(Q,R3), with p > 3, such that y, — y. Then, there is a

(non-relabelled) subsequence y,, such that
Q" AQY| -0 asn — 0.

The idea of the proof is as follows: since p > 3 we can assume uniform convergence

and thus can bound QY AQY between two sets whose measure are arbitrarily close.

Proof. As in the proof of Thm. we can assume that y, — y uniformly (passing
to a subsequence), and for each € > 0 we find an open set O, such that |O.\y(Q)| < e.
Furthermore, there is a N € N such that y(2) C O, for all k > N.

By a similar argument one can also find a closed set A. such that |y(Q)\A.| < ¢ and
such that A, C yx(Q2) for k large enough.

Thus, one concludes (using Lemma and the monotonicity of the measure) with

QU AQY| = (2% UQY)\ (@ A1 QY)|
= Q¥ UQY| — Q¥ N QY| < |O.] — |AL| = |0:\AL| < 2.

Note, that we need to assume |y(€2)| < oo to apply Lemma However, this is
satisfied, because p > 3, by the lemma below. O

Lemma 5.0.5. Let Q C R? and assume that y € WP(Q), with p > 3. Then, we can
bound the measure of y(2) in terms of the WYP-norm of y, i.e. there is a ¢ > 0, not

depending on y, such that
y( )] < ellyllfyr-
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Proof. Recall the identity

det Vy = j5n05iOkyiOnym

where €, denotes the Levi-Civita symbol. Note that, because y € WP(Q;R3) and
p > 3, we automatically get 0;yx € L3(9), for all 1 < j,k < 3. Thus, generalized Hélder’s
inequality, Thm. yields

()] = / o= /Q | det Vy|dz < e / 103311031l || < Tyl = / Vyle.
Yy

By Hoélder’s inequality, we get ||[Vy[|3; < ¢[|Vy||3, for any p > 3 and thus by the Sobolev
Embedding Theorem we get

y()] < | Vol O
Remark 5.0.2. One could proceed differently to prove the weak continuity of the Ciarlet-
Necas condition, after obtaining the result above.

First, note the trivial statements

ANBCB = |ANB| < |B|
(ANB%) C (ANB°) U (BN A®) = |AN B < |AAB|,

which leads us to
Al =[(ANB)U(ANB°)|<|ANB|+|ANB°| < |B|+ |AAB|,

and thus,
|A| — |B| < |AAB|.

Because of symmetry, one can interchange A and B in the above calculations.

This preliminary considerations allow us to conclude

yn (] < ly(Q)] + [yn(2)Ay(2)] and
Y] < [yn ()] + [yn () Ay(Q)].

Lemma implies that |y, (Q)Ay(Q)| — 0 as n — oo, which implies lim inf |y, (Q)| >
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ly(©2)| and hence, by symmetry,
i ()] = ()],

The theorem on convergence of minors, Thm. implies that det Vy,, — det Vy in
LP/d e, [, det Vy,g — [, det Vyg for all g € (LP/4)*. In particular this must hold for
g = id (assuming p # oo, to be sure that g is an L9¢-function).

Therefore, we have
/det Vyn — /det Vy < liminf |y,(Q)] = |y(Q)]

and have proved that also y satisfies the Ciarlet-Necas condition.
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6. The model

In this section, we will consider the two applied forces, which appear in our problem:
gravity and buoyancy. In particular, we will model the buoyancy and derive an integral
formulation of the work done by the applied forces, using our calculations from Section

This will eventually lead to a functional £ incorporating all necessary information.

6.1. Starting Point: Archimedes’ principle

Consider a compressible object submerged under water (or a different medium). We
consider two forces acting on this object: gravity and buoyancy. Gravity can be modelled

by the gravitational force density in the deformed configuration f¥ : Q¥ — R? given by

YY) = —gpg(a¥)es,

where g is the gravitational acceleration, p%(z¥) the density of the specimen at a point
z¥ € QY and ez denotes the vertical unit vector of the standard basis in R?, which
means that eg points “upwards”, and thus, fY points “downwards”. To calculate the

corresponding force in the reference configuration, we recall the formulas (2.5.5) and

(2.5.6)), which were derived in Section

f(z) = [¥(z¥) det Vy(z),
p(x) = pY(a¥) det Vy(z).

For simplicity, we choose the density in the reference configuration pg : 2 — R to be

constant, i.e, pg(x) = pg. Thus, we get p%(y(x))det Vy(z) = pg, which implies
() = [Y(2") det Vy(z) = —gp5(y(x)) det Vy(x)es = —gpses.
Recall from Section that f is a dead load, and thus a conservative body force with

potential F(:c, y) = f(z) - y(x). For dead loads the corresponding functional describing
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the work is given by
Foo) = | Fayis = [ f@)-yade =~ [ apsin(a)da.

To model the buoyancy (cf. [29], Sec. 2.6), we note that the pressure conditions in the
fluid (due to gravity) cause a force. To determine this force consider the fluid in static
equilibrium. In this case, each portion of the fluid is in equilibrium, i.e. the buoyancy
exactly compensates the gravitational force. If we replace the portion of the fluid by
some object, then the buoyancy is unchanged and only the gravitational force changes.

Therefore, we arrive at the following

Axiom (Archimedes’ Principle). The buoyancy force that is exerted on an immersed

body is in absolute value equal to the weight of the displaced fluid.

It has been suggested by the famous antique mathematician, physicist, and inventor
Archimedes of Syracuse in his treatise “On Floating Bodies”, Book I, cf. [15]. By
the Archimedes’ principle, the buoyancy would then be given by F, = pw Viispges,
where Vs is the volume of the displaced fluid and py > 0 is the density of the
fluid. The volume of the displaced fluid is the volume of the deformed configuration, i.e.
Viispt = |y(Q)| = fy(ﬂ) dx¥. Consequently, one could guess that the work could be given
by

Fo(y) = / pwgxidz?.
y(2)

To make this precise, we have to take a different approach (following [19]), starting
from the hydrostatic equation (cf. [26], eq. (3.3))

Vp(z¥) = —pwyes. (6.1.1)

Here, p denotes the pressure and we additionally assume that the gravitational field
is uniform and vertically pointing downwards. Note that we have to work in Eulerian
(spatial) coordinates, as we want to determine the pressure experienced by the actual
deformed specimen. Equation can be deduced from physical considerations and
Newton’s second law (see [26], Chap. 3.1). If we write component wise we obtain

W _o O _y O
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Let us now integrate over €2Y, to get
p(2¥) = —pwgas.

Since the pressure load is conservative, with work functional given by formula (2.6.1)),

we obtain
Fo(y) = /Q pw gy3(x) det Vy(z)dx = /Q pw gzida’.
Y

Thus, all forces experienced by the submerged object can be modelled by the following

functional

F=Fg+Fp=— / gpsys(x)dz + / pwgzsda’.
Q v

Remark 6.1.1 (on pg, pw). In this thesis we assume pg and py to be constant, as it
simplifies the calculations in next chapters. For more evolved models, however, this may
be too restricting. In particular, for inhomogeneous materials one needs to look at pg
depending on z € . Moreover, for a gaseous medium a density increasing in direction
—e3 may be considered. However, these interesting cases are not in the scope of the

thesis.

6.2. Well-definedness

We now check that the functional F is well-defined and make sure that F is indeed weak
lower semicontinuous, which is crucial to apply the direct method.

We prove that both integrals are well-defined separately. Whereas in the buoyancy
integral the integrand f (omitting the constants) is of the form f;(y) = 1,q)ys det Vy,
the integrand in the gravitational integral looks like f4(y) = y3(z).

Well-definedness for F, follows from a measure-theoretic result, which is here just
sketched. For the detailed discussion, we refer to [13], Sec. 5.1, where the proof can be
found (check Thm. 5.1).

Theorem 6.2.1 (Well-definedness). Let Q C R? be a measurable set with finite measure
and let 1 < p < co. Furthermore, assume f : R4 — [—00, 0] be a measurable function.
Then,

[ <o

for every y € LP(Q;R?) if and only if there is a constant ¢ > 0 such that

f(2) > —c(]zP+1) VzeR% (6.2.1)
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The superscript minus sign indicates the negative part of the function, defined by
St :=max{+f,0} and f* := max{—f,0}, respectively. This convention implies that
f_7f+207 a‘ndf:f+_f—'

Setting f(z) := z3, and omitting the constants, we get

1 1
flz,2) =23 > —|z3] > —;}\z\p s (6.2.2)

after applying Young’s inequality with 1/p + 1/¢ = 1. Thus, we get (6.2.1)).

To check well-definedness of F, we will verify that 1,q)ysdet Vy € LY(Q) directly.
By assumption y € WHP(€; R3), and thus det Vy € LP/3(Q). If p > d we can use the
Sobolev Embedding Theorem, Thm. and obtain

/Ql]ly(mlly:a(ﬂf)!\det Vyl < [lyllze<ll det Vyl[ s

< cllyllwroll det Vyll o) < cllyllfyrpoo.

6.3. Weak lower semicontinuity

In the following chapters, we will try to find a minimizer to the functional £(y) =
Jo W (Vy) — F(y) by employing the direct method. Therefore, we need to check, that
—F is indeed weakly lower semicontinuous. It it will prove useful to be able to treat

both integrals separately, which is admissible by the superadditivity of the lim inf.

Lemma 6.3.1 (Superadditivity of liminf). For any two sequences ay, by, the following
inequality holds
lim inf a,, + lim inf b,, < liminf(a, + b,),

whenever the left-hand side is well-defined.

For a proof check [11], Thm. 3.127.
Thus, we will show that —F;(y) < liminf,, —F;(y,), for i € {b,¢g} and a sequence

Yn — Y in WP and conclude

—F(y) = —F4(y) — Fo(y)
< lim inf —Fy (yn) — lim inf 7 (yn)

< lim inf (= Fy(yn) — Fo(yn)) < lim inf —F (yn).

To prove weak lower semicontinuity of —F,(y) = fQ gpsys(x)dz, we use the following
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theorem.

Theorem 6.3.2 (Weak lower semicontinuity). Let  C R be a measurable set, 1 <
p < o0, and f : R? — (—00,00] be a measurable and lower semicontinuous function.

Furthermore, assume that there is a constant ¢ > 0 such that

f(z) > —c(1+]2]P) VzeR3. (6.3.1)
Then, the functional

ve @R~ [ flu@)ds
is LP-weakly sequentially lower semicontinuous if and only if f is convex.

The proof can be found in [13], Sec. 5.2.2.

The theorem provides us with weak lower semicontinuity with respect to the weak
LP-topology, whereas we actually want to conclude w.l.s.c. for the weak-W!P-topology.
This, however, is not a problem, since by Thm. yn — y in WP implies that
yYn — y in LP. Therefore, we only have to check whether the assumptions of the previous

theorem are satisfied for f(y) := y3(x), again omitting the constants. First, notice that

the calculation in (6.2.2)) implies (6.3.1)). Moreover, the mapping y — f(y) is linear, and
thus, convex and continuous. Hence, we can apply Thm. and get the weak lower

semicontinuity of —JF,.
For —Fy, we use that 1, ) — 1) in L'(Q), provided y, — y, which can be proved
using the Lemma [5.0.4] which states that |y, (2)Ay(€2)| — 0. Thus, we have

1Ly, ) — Lyl = / 1y, @) — Lyl

= [ Lo = lm(@ 24| 0.

Therefore, we obtain for the liminf (which is even a lim in this case)

lim inf (—/ pracgd:(:> = lim inf (—/ pwgmg]lyn(g)(:c)dw)
n(S2) R3

= —/ pw g3y (v)dr = —/ Pwgrsdr.
R3 y(Q)

We summarize the results of this section in the following

75



Corollary 6.3.3. The functional
~F=-Fy—Fp= / gps(z)ys(z)dr — / prgrida?
Q y(Q)

is lower semicontinuous with respect to the weak W1P-topology.

6.4. The barycentre

We introduce the barycentre of Q¥ which will turn up in different occasions during this

thesis.

Definition 6.4.1. The barycentre S = (s1, s2, s3) of a body B C R? is defined via

1 /‘d
5T Sol(B) S T

where i = 1,2,3 and vol(B) = [zdx = |B| is the volume and dz indicates that the

integrals have to be understood as volume integrals.

Notation: We will often denote the barycentre of y; with the bar, i.e. ; = [ Jo yi(z)da.

The barycentre is often called centroid, or centre of mass, because it is the particle
equivalent of the object for the application of Newton’s laws. Formulated differently, at
the barycentre we would apply the gravitational force to get a linear acceleration with
no angular acceleration. Note, that this definition assumes that B has uniform density.

Now we want to calculate the barycentre of a deformed body. Let y : Q@ — R3 be a

deformation and y(2) be the deformed body. If we set z¥ := y(x), then the coordinates

s? of the barycentre of y(Q) are given by

st = 1_/ zdaY.
vol(y(€2)) Jy()

By the change of variables formula, we obtain

1 / 1
s = ———— zldz¥ = / yi(x) det Vy(z)dz.
vol(y(9)) Jy(@) 2] Jo

Remark 6.4.1. In the formula above det Vy appears. This is to be expected, as also the
density of Q¥ is not uniform anymore (as it was in the reference configuration). The
density of the medium, however, is assumed to be constant, which means that the centre

of mass of the deformed configuration, i.e. the point where the gravitational force applies
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and the centre of mass of the displaced fluid, i.e. the point where the buoyancy would
apply, are not the same. If they are not vertically aligned, one would have an angular
acceleration, which would rotate the object and drive the object towards a position,
where the application point of the forces are vertically aligned. We therefore assume
for the rest of the thesis that no such rotation occurs, which is part of the Archimedes’

principle.

Moreover, the energy functional given by
E(y) = / W(Vy(z))dx —|—/ psges - y(z)dr — / pwgxidaY,
Q Q y(Q)

is invariant under e; and ey translations, i.e., for a deformation with additional translation

in directions ey, es, expressed as §(z) = y(x) + (t1,t2,0), we obtain

E(y) = E(y)- (6.4.1)

To see this, note that the second and third term in &, describing the potential energy
coming from gravity and buoyancy, do not depend on y; and y. Thus, we only have to
check the claim for the first term. Since V§(z) = V(y(z) + (t1,t2,0) = Vy(z) + 0, also
[ Vi = [ Vy and therefore holds.

This means, that we can w.l.o.g. choose t1,t2 in such a way that

Y Y
51 =85 =0,

i.e. the barycentre lies on the z-axis.
Thus, by the result above and Remark we are left with the question of how s}

behaves. We impose additional conditions, guaranteeing that y3 stays bounded.
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7. Existence results for fixed conditions

In the previous sections, we have collected a variety of mathematical tools, we want to
bring to application in this section. The problem is as follows: Consider a hyperelastic
specimen fully submerged into water, but fixed at the boundary. How will this object
behave? To answer this question, we will minimize the energy functional describing the
deformation energy and the potential energy coming from gravity and buoyancy. The
existence of minimizers will be guaranteed by the direct method as soon as we have

verified coercivity and lower semicontinuity of the corresponding energy functional.

7.1. Dirichlet boundary conditions

At first, we consider an object with prescribed boundary values. In particular, we fix a
part of the boundary. Problems with prescribed Dirichlet boundary values, as this one,
are called problems of place (cf. [7], Sec. 2.6.) or pure displacement problems (cf. [17],
Chap. 3), whereas for Neumann boundary conditions, on speaks of a problems of traction.

Mixed boundary conditions are called displacement-traction problems.

We start with defining the energy functional we want to minimize. We assume © C R?
with || < oo, where | - | denotes the d-dimensional Lebesgue measure. Furthermore, we
assume €2 to have a Lipschitz boundary I" = 09, (cf. [18], Def. 9.57 for the definition),
with subset I'p C I' such that I'p has positive surface measure as in Fig. [7.I] For
y € WIP(Q;R?) define

ew = [ W@+ [ psoé-y@do— [ pwgatdst,
Q Q y(©)
where pg > 0 denotes the density of the solid and py > 0 the density of the surrounding
medium (e.g. water), respectively. The first term of £ describes the deformation energy,

the second term models the energy coming from the gravitational force acting on the

material and the third term corresponds to buoyancy.
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[49)

Figure 7.1.: Boundary Value Problem

Let p > 4 and set
A= {yGWl’p(Q) :y=1id on I'p, C’N},

to be the set of admissible functions. In the above definition we abbreviated CN to
denote that y satisfies the Ciarlet-Necas condition. Note that A is not empty since the
identity satisfies all given conditions. The choice p > 4 may seem to be arbitrary at the
first glance, but it will be apparent why we need to choose p > 4 in the proof.
Moreover, we assume that the material is hyperelastic and polyconvex, i.e., there is a

stored energy function W : GL™(d) — [0, 00) satisfying

(i) W is polyconvex, (7.1.1)
(ii) W(F') — 400 as det F' \, 0+, and (7.1.2)
(iii) W(F) > c1|F|P — ca, (7.1.3)

for some constants ¢q,cy > 0.

Remark 7.1.1 (on dealing with constants). Over the course of some lengthy calculations
many different constants will appear, for instance from Sobolev embeddings, Holder’s
inequality, etc. We will not keep track of all these constants and we will denote different
constants with the symbol ¢, possibly changing from line to line. However, when ever

necessary, we will add subscripts. For example, we would write for the coercivity condition

above (7.1.3)
W(F) > c|F|P — ¢,

although the two appearing constants are not necessarily the same.

Theorem 7.1.1. Under the assumptions above the minimization problem
Minimize E(y) fory e A

has a solution.
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Before we start with the proof, we want to point out a major tool of establishing

coercivity, namely the Poincaré inequality.

Lemma 7.1.2 (Generalized Poincaré inequality). Let Q C R? as above and p > 1. Then,

there is a constant ¢ > 0 such that
Illwie < e (198l + Iy = id oy ) - (7.1.4)

The proof can be found in [16], Lemma 3.3. Since we assume y = id on I'p, in our

case relation ((7.1.4]) reduces to

1Yllwrr < el VYllLe)- (7.1.5)

Proof of Thm.[7.1.1. We have that id € A and £(id) < oo. Notice that Vid = I and
hence, det Vid = 1, which yields

&) = [ W)+ [ psgrads — [ pwgeads < [ W)+ 10lg(s — pu).

By assumption we know that W (I) < oo, which implies that also [, W (I)dz < co.

We aim to apply the direct method, so let y,, € A realizing the inf, i.e. E(y,) — inf4 E.

We now are going to prove coercivity and weak lower semicontinuity.

Step 1: Coercivity: We need to show that the set {€ < A} € A w.r.t. to the weak
WP topology. Since WP is reflexive, it is sufficient to show that the set {€ < A} is

bounded in the WP-norm. As we will do throughout the thesis, we will consider each

term of the energy functional separately, i.e. set

E(y) Z/W(Vy(ﬁv))dﬂﬂJr/psges-y(w)dﬂ?—/ pwgrsdz? .
Q Q y(Q)

| S —
=1 =:1 =:I3

By the coercivity condition ((7.1.3)) and the reduced Poincaré inequality ((7.1.5) we get
that

I :/ W(Vy(z))dz > / o| Vy(@)[Pdz — | = eplyllfy 1) — ¢
QO Q

For the second term, we use the Cauchy-Schwarz inequality and Young’s inequality
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(with 1/p+1/q = 1) to conclude
I = / psges - y(x)dx > —/ cles - y(z)|dx
Q Q
> —c [ |y(z)|dx
9]

> [ (P + )

> —cd?|lyll7, —c.

We will need the notion of the diameter of a nonempty set M C R, given by

O(M) = sup |z — yl,
z,yeM

. d 2 1/2 . . . . d
with |z| := (Zi:l %) denoting the Euclidean distance in R®.

For the third term I3, we use a geometrical argument. As the points on I'p are fixed
by the boundary condition, a point in the deformed configuration cannot get mapped
further afar than the diameter of y(€2). Thus, for a fixed point z¢ € I'p, and any point
x¥ € y(Q) we have

2% — o] < O(y(2)).

Since for any two points z, z € Q, we have |y(z) —y(2)| < |y(z) —z|+ |z —z|+|z—y(z)| <

2|y —id || oo (@) + D(€2), we can take the supremum and obtain

D(y(€) < 2[ly —id [ (o) + O().

In particular, for 2¥ € y(€2) one arrives at
28] < |@o| + 2[ly — id || Lo () + D().

Recall that xg € I'p is fixed. It hence only depends on the reference configuration, as

well as O(€2). Therefore, we can further simplify the equation above to
|25 < ¢+ 2[ly —id | e (q),

which holds true for all 2¥ € y(Q).
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Using this geometrical observation, we get

> — / o PoOlEIdeY 2 ~ely(@)] = ey @y~ id
Y

dist(€2,0)

Figure 7.2.: Estimate | id ||z

By Lemma we know that |y(Q)| < ¢|ly[[31.,. Moreover, we can estimate
[id [|oe () < D(2) + dist(£2,0) (see Fig. , which is a constant only depending
on the reference configuration. W.l.o.g we can assume that dist(2,0) = 0, and thus
[id || Lo (@) < D(£2). We use the Sobolev Embedding Theorem and obtain

ly —id || oo (@) < Yoo (@) + [1id [|oo ()
< |yl zeo () + ()

<c+clyllwrra)
Therefore, we bound I3 as follows
Iy > —cly( )] = cly(@)] (e + llyllwre) = —ellyliyre — eyl

Applying Young’s inequality, Lemma to each of the summands, would eventually
yield the desired result. This is the point, where p > 4 comes into play, and so we
are going to present the precise argument for the second summand to emphasize our
assertion. Set p := &. Then p > 1, since p > 4 and so Young’s inequality is applicable
with 1/p+ 1/q¢ = 1. Thus, we get

1 . p/4 1
yllfyee < =07 (IIyllfen ) + == = e ylB, +c
D d1q
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The analogous result holds for the first summand.

Putting everything together, we arrive at

A>Ey)=hL+1+13
> collulynagy — ¢ — Il — ¢ — B ylBnigy — P Nl

> (cp+ 5PC)H?JH€V1,17(Q) —-C

Since § > 0 is arbitrary, we can make it sufficiently small, so that (cp — 0P¢) is positive,
and thus, we have verified that {£ < A} is bounded in the Sobolev-norm, and coercivity
follows.

Step 2: Now we are going to prove weak lower semicontinuity, i.e., we verify that for a

weakly convergent sequence vy, C WP(Q), y, — v, the following inequality
E(y) < liminf E(yy)

is satisfied. We will prove weak lower semicontinuity for the different integral terms
separately, and then add them up again. This procedure is legitimate, by the super-
additivity of the lim inf, Lemmal6.3.1] i.e., for two sequences a,,, b,, one has that lim inf a,,+
liminf b,, < liminf(a, + b,), whenever this expression is defined.

For the first term, we make use of the results from the theory Section [3] and get

/S]W(Vy)gliminf/QW(Vyn),

because of polyconvexity of W, which allows us to use Cor.

The integral term related to the forces were treated in Sec. [6, where we proved weak
lower semicontinuity for I + I3 in Cor.

Step 3: By coercivity and weak lower semicontinuity, we can apply the Direct Method
of Thm. to prove the existence of a minimizer.

This minimizer also satisfies the Ciarlet-Necas condition by Thm.

Moreover, the minimizer fulfils the boundary condition by the continuity of the trace

operator O

7.2. Existence result for internally fixed bodies

In the previous section we considered an object fixed at a part of its boundary. Now we

look at objects, which are fixed internally.
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Again, we prove the existence of minimizers for the following functional
E(y) = / W(Vy(:v))da:+/ psgeg-y(ﬁ)dx/ pw gzidzY,
Q Q y(Q)

but now, the set € is assumed to have a certain structure. Let w C R? be a bounded,
open domain and wp C w, with measy(wp) > 0. We consider the 3-dimensional set
Q := w x [a,b], where a,b € R,0 < |b —a|] < oo and assume that y = id on the set
Qp =wp x[a,b] C Q, see Fig.[7.3| By this definition, the set {2 is bounded (and therefore,
has finite measure), and has a Lipschitz boundary.

Figure 7.3.: Structure of (2

Furthermore, we again assume that the stored energy W : GLT(d) — [0, 00) satisfies

(i) W is polyconvex,
(ii) W(F') — 400 as det F' \, 0+ and,
(iii) W(F) > ¢|F|P — c.

Theorem 7.2.1. Under the assumptions above, the functional £ has a minimum in
the set of admissible functions A := {y € WIP(Q;R3) : y =id on Qp, CN}, where CN
denotes that, y € A fulfils the Ciarlet-Necas condition.

Proof. Note that id € A and thus A # (). Moreover, £(id) < oo by the same argumenta-
tion as before.

As in the previous section, we will split the proof in three parts: Establishing coercivity,
proving weak lower semicontinuity, and applying the direct method. Moreover, we have
to verify that the minimizer is an admissible function. For simplification, we will split
the energy functional in three separate terms, which we can treat on their own, whenever

it is convenient to do so.

E(y) = / W(Vy(;v))dx+/ pggeg-y(a:)dm—/ pwgzidz .
9 Q y(2)

=:I =:Is =I5

Step 1: Coercivity.
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Again, we have to show that the set {€ < A} is sequentially precompact in the weak-
W1P_topology. As in the previous section, we will treat each term separately, starting
with the second one. The reason is, that for this term everything is exactly the same as

before, and we can write without more ado

I = / psges - y(x)dr > —c5pHyH72p —c.
Q

By definition of 2 we have wp C 992 and meass(wp) > 0 . This puts us in the same
position as in Section [7], allowing us to apply Poincaré’s inequality, Lemma [7.1.2], and

the coercivity condition to obtain for the term Iy

B [ WTs@)do > [ dValrde =l > colylfung, e

The third term is more difficult, although the geometrical idea is very simple: Since
the y = id on Qp, each point z¥ = y(x) € QY is at most O(y(Q2))-far away from Qp.

Thus, we can say
|z¥] < dist(0,Qp) + O(2p) + O(2Y),

where dist(0,p) and O(Q2p) only depend on the reference configuration, and therefore,
can be considered as constant. The hardest part here, is to estimate @(QY) in terms of
the norm of y. To see this, note that by Morrey’s inequality and the Poincaré inequality
(see Section in the appendix), we have

ly —yllze <clly = yllwre < clly —yllze + [|Vyllze < cl|Vyl|Le,

and thus,

D(y(Q2)) = sup. ly(x) —y(2)| < 281618 ly(x) — y| < 4cl|Vyllze < cllyllwrp.

By Lemma we have [y(Q)| < ¢|ly||%1.,, which allows us to conclude

AZ_LgWW%WE—WMﬁWmﬂ
Y

> —c(O(y(D) + ) lylliyre = —cllylliyrs — cllylli.
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Applying Young’s inequality to each term separately as in Section [7.1], we finally get

A>EYW)=hL+ L+
4
> CPH?JH%/l,p(Q) —Cc— 65PHZ~/H’2p —Cc— C(Sp/BHZ/HeVl,p(Q) — co?/ HyH};Vl,p(Q)
> (cp +070)[Yly1m(q) —
The coefficient (cp + 0Pc) can be made positive, by choosing § arbitrarily small, and
thus, we have shown that {E < A} is sequentially precompact. Therefore, every sequence

(yn) C A realizing the inf £ has a subsequence weakly converging in WP,

Step 2: Weak lower semicontinuity. By assumption, W is polyconvex, and thus, I

is weakly lower semicontinuous, by Cor. [3.1.8] Moreover, I + I3 is also weakly lower

semicontinuous, as has been shown in Sec. The superadditivity of the lim inf, Lemma

[6.37] yields the claim.
Step 3: The Direct Method. After establishing coercivity and weak lower semicontinu-

ity, we can apply the direct method and obtain the existence of a minimizer 4,,;,, where
we still have to make sure, that it belongs to the set of admissible functions.

By Thm. 5.0-3] ymn satisfies the Ciarlet-Necas condition, so we are left with proving
that ¥, = id on Qp. However, this is not difficult. By Morrey’s inequality, Thm.
and the Arzela-Ascoli theorem, Thm. we know that there is a subsequence y,,,
converging uniformly to ymin, in Q. Thus, also Yy, = id on wp x (a,b). For the parts
on the boundary, we conclude with the continuity of the trace operator, see O
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8. Existence results with elastic conditions

As we saw in the previous sections, we need some additional information of the problem
to be able to apply Poincaré’s inequality and conclude coercivity. In this section, we
provide this information by considering bodies tied to a fixed point or some kind of an
anchor by an elastic rubber band. Thus, the specimen gets pulled towards the fixed
anchor. For example, one could imagine a helium balloon held by a children. Therefore,
we will add a new term to the energy functional modelling the spring energy of the
rubber band. This term, coming from physical considerations, will allow us to prove a

Poincaré-type inequality from which we eventually can conclude coercivity.

8.1. Poincaré inequality

As we have already seen in the previous chapter, we need a Poincaré-type inequality to
be able to prove coercivity. The following theorem provides such inequality, incorporating
the term ||y —id || 2(,) Which is relevant as elastic energy of the rubber band. This means,
the Poincaré inequality is already tailored in such a way, that we can easily apply it in

the coming sections.

Theorem 8.1.1 (Poincaré-type inequality). Assume that Q C R is non-empty, bounded,
open, and connected. Moreover, let w C Q with meas(w) > 0. If p > 2, then for all
y € WHP(Q) the following inequality holds

19llzo) < e (IV9llme + Iy — il ) - (8.1.1)

Proof. Aiming at a contradiction, let us assume the opposite, i.e., that there exists a
sequence (yx)r C WHP(Q;RY), such that

. 1
IVykllLe) + [y —id || 2 < EH?JkHLP(Q)- (8.1.2)

Claim 1: ||y zr(q) — oo
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Assume otherwise, i.e., ||yrl[zp() < M for all k € N. This implies by (8.1.2)) that

1 1
ooy = ol ooy + [Vl ooy < M + Fluelley < M (14 1)

But since 1 + % < 2 for all £ € N, we conclude
”kaWl,p(Q) < 2M.

Therefore, there is a (not relabelled) subsequence such that gz — y in WP, In particular,
by Thm. this implies that Vy, — Vy in LP(Q) and by the weak lower semicontinuity
of the norm, Thm. [A47] we obtain

IVYll o) < liminf [Vyellzs o).

We know that [|ykl|e(w) < [[Ykllr) < M. By Hélder’s inequality, the boundedness of

2, and the assumption p > 2, we can conclude

Nyl 22wy < cllyrllirw) < cllyllr@) < M.

Thus, we are able to select a subsequence (again not relabelled) such that y; — y in
L?(w), and hence (y, —id) — (y —id) in L?(w). Again, by the weak lower semicontinuity

of norms in Banach spaces, we eventually arrive at
ly —id [|r2) < liminf [[yx —id || 22 ().

Recall the superadditivity of the lim inf: lim inf a,, +1lim inf b,, < liminf(a, +b,,). Putting
everything together and using the boundedness of y; yields

IVl ey + |y — id || L2 () < liminf [[Vyg||Leq) + liminf [Jyx —id || 120
< lim inf (||Vyk||Lp(Q) + [lyr —id HL%))

1
< lim inf <kHyk||LP(Q)> <0.

This means that Vy = 0 almost everywhere, and by the connectedness of €2, we get that
y is constant. On the other hand, we also have ||y —id||z2(,) = 0, and hence, y = id

almost everywhere on w, a contradiction.
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Since Claim 1 holds, we can divide yi by ||yx|/zr(q) for k large enough. Thus,

Yk

Wy = ————
Ykl e ()

is well-defined and has norm ||wi||r) = 1. By dividing into (8.1.2) by |[yk|/zrq) we
obtain

1
id

<
vkl Lr (@)

L2 (w)

(8.1.3)

| =

Vw||pr) + ||w

Since (wy)s is bounded in W1P(Q), there is a (not relabelled) subsequence (wy) with
wy, — w in WY, In particular, we have Vwy — Vw in LP (by Thm. |[A.4.8), and thus,

by the weak lower semicontinuity of the norm
|[Vw| < liminf [|[Vwg]|.

Moreover, wy, — w in WP implies the existence of a strongly converging subsequence in

LP(Q) (by the compact embedding theorem). Therefore, this subsequence also satisfies
Jwe — wllr2@) < llwk — wl2(0) < cllwk — wl[ L) — 0.

Since — 0, we have

1
Hyk”LP(Q)

1
||< 1d> —w < ||wk—w||L2(w)+‘ —id — 0.
”kaLP(Q 12() ykllzo@) [ 120
Altogether, this subsequence (wy,) fulfils
o 1 .
IVwl| ey + lwll 22wy < lminf | [Vwgl[r@) + ||wp — 77— id
ykllzo@) |l 120
(SR o f1
im inf - = 0.

Thus, we arrive at

[Vwl @) + lwlz2@w) < 0,

and therefore, Vw = 0 almost everywhere on €2, and w = 0 almost everywhere on w.
Since €2 is connected, Vw = 0 implies that w is constant and we can conclude that w = 0
almost everywhere on €2, which is in contradiction to ||w|[z»(q) = 1. This proves the

assertion. O
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Remark 8.1.1. To be completely rigorous one also has to verify the following details:

— 1 2
o Is Vuwy = Tonlle Vuyi? Yes, because

1 1
[owo=- [woo=— [ Moo= [uoo— v
1yl e sl e 1yl Lo

o Why can we conclude wy, — w in LP and ||wg||z» = 1 is a contradiction to ||w|| = 07

We have the following trivial conclusion: Convergence in norm implies convergence

of the norms. The proof is the reverse triangle inequality:

llwll = lwll] < lwg — wl]| — 0.

Before we start using the inequality above to proof coercivity, we want to recall Jensen’s

inequality and one particular implication.

Theorem 8.1.2 (Jensen). For a convex function f : R? — R, x; € RY, and nonnegative
Ai with Y711 A = 1 we have

The proof for a general version of this inequality can be found in [4], Thm. 2.12.19.
Recall Definition A function f:C — R is convex, if C' is convex and, if for all
xz,y € C, t € [0,1], the following inequality holds

fltr+ (1 —t)y) <tf(z) + (1 —1t)f(y).

As a particularly useful example, we want to mention the power function. The map
x +— aP is convex for x e RT :={z € R : x >0} and all p > 1.

Hence, we can conclude using Jensen’s inequality
1 1, \? 1 1
(Ja + [p])? = 2'/7 <2!a\ + Q\b\) < ol/p (2!a\p + 2|b\p> =c(la]P + |b]P), (8.1.4)

where ¢ = 21/7=1 > (.
To be precise, (8.1.4]) follows directly from the definition of convexity, because it only
includes two summands. One can get the analogous result by Jensen’s inequality for an

arbitrary number of summands.
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8.2. First existence result

As a first result, we consider the case where a part of the material w C € is tied to a fixed
anchor by a rubber band, i.e., only this part will be pulled back and contributes to the
energy. This example is illustrated in Fig. where w is the anchor and the connection
via the rubber band is indicated by the dashed line.

Figure 8.1.: Elastic Conditions

Formally, let Q C R? be an open, bounded, connected set with Lipschitz boundary and
w C £ nonempty, open, and with positive measure, as in Fig. The goal is to prove

the existence of minimizers for the following functional
vy F 2
E(y)= | W(Vy(x))dz+ | psges-y(x)dx — pwgxsdx? + 5 ly(z) — x|*dz,
Q Q y(92) w

where g is the constant of gravity, pg, pw are the densities of the solid and the water (or
a different medium), respectively, and k denotes the elastic modulus of the rubber band.

As usually, we additionally assume W : GL™(d) — [0, c0) satisfies

(i) W is polyconvex,
(ii) W(F') — 400 as det F' \, 0+, and
(iii) W(F) > ¢|F|P — 1.

Theorem 8.2.1. Let p > 4. Under the assumptions above, the functional £ takes a
minimum in the set of admissible functions A := {y € WIP(Q;R3) : CN}.

Note that id € A and thus A # () and £(id) < co. As in the previous sections we will
establish coercivity and verify weak lower semicontinuity of each term in £. Moreover,

we consider each integral term of the energy separately

B = [ Wit [ psoes y@de— [ pwoasdas 5 [ o) ol

——_———
=:1 =:1s =T =y
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Step 1: Coercivity. Note that by Poincaré’s inequality (8.1.1) we get

Ilwro@ < ¢ (IVollzo@ + lly = id 120 »
and thus, by Jensen’s inequality (8.1.4)),
. p / D /
19110y < @ (1981l oy + 1y = 120 ) < VY00 +Clly —id B
Using this, we can infer
L = / W(Vy)dz > 01/ |VylP —
Q
= a1l VYl o) — 2 = esllyllyamiq) — cally —id |72, — co- (8.2.1)
The term I can be estimated as
I, = / psges - y(x)dx > —/C|€3 cy(z)|de> — c/ ly(x)|dz
Q
Young p(‘jp 1 » » » » ,
2 e [ (w@P S+ =) = =l = eyl =~ ol —

Figure 8.2.: Measuring the maximal displacement

For the term I3, we use a geometrical argument, see Fig. 8.2

Basically, 2% expresses how “deep” a point z¥ € y() is, regarding the fixed anchor
point w (this is where the virtual spring is attached). We are going to estimate the depth
of y(Q) in terms of y and w based on a purely geometrical argument: A point x € Q can,
at most, be as deep as the “depth”, i.e. the vertical expanse, of the deformed object (¢1),
plus the length of the string (¢2), plus possibly the length of the anchor (¢3). This yields
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the mathematical expression

|25] < O(y(Q)) + lly — id || L () + O(w) .
—— N—~—

—_— —
(1) (02) (03)
Therefore, for z, z € ) we have
(@) —y(2)| < ly(@) =z + |z — 2| + [z — y(2)| < 2|y —id || <o) + D(D),

and thus O(y(Q2)) = sup |y(z) — y(2)| < 2||y — id || Lo + O(2). Without more ado, we can
assume O (w) < O(N), which gives us

28] < 3|ly —id || Lo () + D(Q),
and hence,

/ zYda < / 3ly —id | () + D) < (3lly — id 1= (o) + O(2)) [5(2)].
y(2) y(Q)

By Lemma we have |y(Q)| < ¢|ly|[%1.,- Therefore, we can proceed as in Chap.

and eventually conclude
Iy > —cly( Q)] = cly(@)] (e + llyllwre) = —=cllyliyrs — cllyllia,
which yields after applying Young’s inequality
Iy > —c (873 + 61 [y 0y —

For the last term we use the triangle inequality, Jensen’s inequality for the particular

case of the power function, Young’ inequality, and the fact, that

[ lads = id g < ).

To see this, note that for all z € Q we have that |z| < O(Q) + dist(2,0) and, thus,
5 By = Jo 2P de < supye, o o] < o] (O(w) + dist(w, 0))2 = c(w). The term Iy
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can be now handled as follows.

I, = S/w ly(z) — 2*dz = clly —id H%z(w) triangle ineq.
> —c/ (Jy(x)| + |z])? dz Jensen
>~ [ (y@P + [of?) da Young
> —cd? [ ly(a)l = e(w) 2 eyl (8.2.2)

We will estimate the term ||y —id H]ZQ(w), also appearing in (8.2.1]), using Young’s inequality
and bring it to the same form as in (8.2.2)).

- Hy —id ”Izz(w) Young

p N p
> — §||y_1dHL2(w) ) (82.2)

2
> — co?/ HyHZ[),P(Q) - ¢
Recall, that we always can estimate Hy||§p(m < ”3/”%;1,;;(9)-

Now we are able to combine the estimates on [;, i = 1,2, 3,4, to obtain

Ey)=L+L+13+1
> ep|yllroi0) — elly = id[Bagy = l1Y150i0) = ¢ (8772 + /%) [ylBpiq) — [l q) — C
> (cp = ) [y, — C.

By choosing ¢ sufficiently small, we obtain a positive coefficient of ||y||y1.» and, thus,

coercivity.

Step 2: Weak lower semicontinuity. Again, by the superadditivity of the lim inf, one

can verify weak lower semicontinuity for each integral separately and then combine these

results. Weak lower semicontinuity for I + Iy + I3 is already proved, cf. Chap. [7}

A proof for weak lower semicontinuity of Iy can be given, using Fatou’s Lemma
Let y, — y in W1P(Q). Then, by the compact embedding, there is a subsequence (not
relabelled) y,, — y pointwise almost everywhere. Set f,, () := |y,(x) — x| as a function

from €2 into the real numbers. Then f, is nonnegative and measurable. Furthermore,
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fn(x) = f(z) :=|y(x) — z|? almost everywhere. Thus, by Fatou’s Lemma

Ii(y) = c/Q ly(z) — xo|?dz = c/ﬂliminf fn(z)dx

< clim inf/ fn(z)dz = liminf I4(y).
Q

By the argument in Section where we have verified that passing to a subsequence

does not destroy weak lower semicontinuity, we have proved the assertion.
Step 3:

The direct method implies the existence of a minimizer, and Thm. [5.0.3] confirms that

this minimizer also satisfies the Ciarlet-Necas condition.

8.3. Second existence result - rope with clearance

Now we are going to consider a slight variation of the previous result. Instead of requiring
that a certain portion of the reference configuration w C §2 serves as anchor, we only
take one point zg € {2 to fix the imaginary rubber band. Moreover, we consider the case
where this rubber band has a certain clearance, i.e., it develops a retraction force only
if it gets extended further than a certain length [, see Fig. [8.3] Since this problem is a

variation of the one above, we also need a slightly different Poincaré inequality.

Theorem 8.3.1 (Poincaré-type inequality). Assume that Q C R is non-empty, bounded,
open, and connected and let w C ) be a nonempty, measurable set. Moreover, let xy € €.
If p > 2, then for all y € WP(Q) the following inequality holds

1yllzo) < ¢ (1Vyll ey + Iy = zollz2w) ) -
The proof is analogous to the one of Thm. [81.1]

Remark 8.3.1. In the theorem above one identifies z¢ with the class of functions being
equal to z¢ almost everywhere. Since 2 has finite measure, 2o € L?(Q2). In principle, one

could generalize this result to arbitrary function in L? in the same manner.

Theorem 8.3.2. Under the same assumptions as in Thm. the following energy
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Zo Zo

(a) Rope not outstreched (b) Outstrechted rope, retraction
force applies

Figure 8.3.: Elastic condition

functional has a minimizer

E(y) :/QW(Vy(a;))dx—i-/nggeg-y(x)d:c

:;Il 2212
k 2
[ pwastaar+ 5 [ ((vte) = 2ol - 1)) da,
y(£2) w
—_—————
:;]3 :Zi4

where [ > 0 is some constant, f+(z) := max{f(z),0} and zo € Q.

This functional models the potential energy of a balloon, filled with a gas with density
ps (e.g., Helium), surrounded by some medium with density pw (e.g., air), which is
attached to a rubber band fixed a zg, which pulls back only if the band is stretched out

more than [, see Fig. 8.3

Proof. For the proof, we proceed as for Theorem [8.2.1] We will only mention the major
changes.

Step 1: Coercivity

The terms I; and Is can be handled as above. The term I3 is also not a problem,
since we can simply add the length [ in our geometric considerations, which only adds an

additional constant to the estimate. For the term Iy we consider
(ly(z) = xo| = )" = max{|y(z) — xo| — 1,0} < ||y(z) — xo| — 1| < |y(x) — wo| + 1.

By the convexity of the mapping x — x> we get

((yt@) =20l =) < (@) = a0l + 1 < elylw) = ol +

98



Therefore, one gets

I = c/ <(|y(x) —xo| — l)+)2dx > c/ ly(z) — zo|?dx — c'/l2daz.

——
const.

Thus, we are able to estimate the both “elasticity”-terms, appearing from Poincaré
and the last integral, in a similar fashion as we did in the example above.

Step 2: Weak lower semicontinuity.

Weak lower semicontinuity for the integrals I, Io, I3 follows from the same calculations
as in the proof of Thm. [8:2.1] The only thing left to check is that the different choice of
the integrand in I does not spoil lower semicontinuity.

Fortunately this is not the case, as we will show by employing the Fatou’s Lemma, Thm.
Let y, — y in WP(Q). Then, by the compact embedding, there is a subsequence
(not relabelled) y, — y pointwise almost everywhere. Set f,(x) := (Jyn(z) — 20| — 1)
as a function from €2 into the real numbers. Then f, is non-negative and measurable.
Furthermore, f,(z) = f(z) = (Jy(x) — x| — 1)? almost everywhere, because everything

is continuous here. Thus, by Fatou’s Lemma

Ii(y) = C/Q (Jy(x) — zo| — 1)* da = c/Qlim inf f,,(z)dzx
< clim inf/ fn(z)dz = liminf I4(y,).
Q

Therefore, the direct method is applicable, and we conclude the existence of an

admissible minimizer. O
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9. Existence results without boundary

conditions

So far we have controlled the position of the body by extended conditions, as boundary
conditions or the elastic condition. In this section, we will treat the case, where we do
not have such external conditions, i.e., the specimen is able to move freely in the medium.
As it turns out, this will cause trouble, letting inf £ = —oo and, thus, preventing us from
proving existence of minimizers. The first goal is to make this statement precise.

Then, we investigate the easy case of incompressible objects and study under which
assumptions we still can give an existence result. Secondly, we will turn to the case of
compressible objects, where we introduce the concept of slightly compressible objects,
which then allows us to prove existence of minimizers. The condition of slight com-
pressibility is a particular example of material locking, which is also studied in [3] or
[14]. There, the authors introduce a way of variationally characterising this condition.
However, this approach cannot be applied in our case, as we will see. While inf & = —o0,
it is still possible that there are local minima of £. This is the content of Sec. where

we eventually prove the existence of such a local minimum.

9.1. Incompressible bodies

Definition 9.1.1. A deformation y is called incompressible if, for all z € Q2 the deforma-

tion gradient equals to 1, i.e., det Vy(x) = 1.

The volume stays constant under incompressible deformations: || = |y(£2)|, following
from the change of variables formula. Naturally, also the density stays unchanged under
incompressible deformations, p¥(y(z)) = p(z).

If the body is incompressible, Archimedes’ law is applicable, which tells us that the
buoyancy equals to the gravitational force of the displaced medium.

For now, we also assume that the whole space is filled by the fluid, which simplifies
the argument. Then, by Archimedes’ law, the forces acting on the body are gpw |Q|es —
gps|Qes. This term entirely describes the behaviour of the body:
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1. If gpw || — gps|2| < 0, or equivalently py < pg, then the body sinks (i.e., the

energy decreases for transitions in the —es direction).

2. If gow Q] — gps|2| = 0, or equivalently pyr = pg, then the body stays at its position

(i.e., the energy is invariant by transitions in the ez direction).

3. If gpw || — gps|2| > 0, or equivalently py > pg, then the body rises (i.e., the

energy decreases by translating the body in the es direction).

Note, that the behaviour of the body is completely determined by the relation of py
and pg.

In the first case, namely for py < pg, the energy does not have a minimum. More
rigorously, suppose ¢ is a minimum of £, then we can show that £(§ — ce3) < £(9), a
contradiction. For proving this claim in the case, we use the change of variables formula,

and obtain
£(j — ces) = / W(V(§ - ces)) + / psg(ils —¢) — / (el — ¢)da?
Q Q y(2)

=&(9) - / psgc + / pw geda?
Q y(2)

25(@)—/psgc+/pwgc
Q Q
=5(@))+/pwgc—psg0<5(?))-
Q@ 0
<

Note that the energy can be lowered arbitrarily, by choosing ¢ sufficiently large. For any
M € R, we can get E(§ — ce3) < E(§) — M, by letting ¢ > m. Thus, we have
that infye 4 £(y) = —oo, with A := {y € WIP(Q;R3) : det Vy = 1}. The analogous
result holds in the third case, namely for py > pg, but taking ¢ + ce3 instead. In the
equilibrium case, pyw = pg, the energy no longer depends on ys, i.e., we can choose the
barycentre arbitrarily, w.l.o.g. we set y3 = 0. Therefore, one has the additional condition

of y; =0, for i = 1,2, 3, and thus can solve minimization problem.

Proposition 9.1.1. Under the usual assumptions on the stored energy function W, as
stated in Sec.[7, and the in the case of pw = ps and det Vy = 1, there exists a minimizer

of the energy functional

Ely) = /Q W(Vy) — /Q gz pwdz? + /Q ys3(z)gpsde.
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Proof. By the assumption py = pg and det Vy = 1, we see that £ reduces to E(y) =
[ W (Vy). Furthermore, we can assume that (y1,72,%3) = (0,0,0), since the energy is
invariant under translations of y3. By the coercivity assumptions, we get € > ¢||Vy||}, —¢
and, due to Poincaré’s inequality , we can conclude £(y) > clly|[¥1, — ¢, which
yields coercivity of £. Since W is assumed to be polyconvex, & is also W!P-weakly lower

semicontinuous by the results from Chapter [3] Hence, the direct method applies. O

We now change our assumption and introduce a transition between the medium and air.
Recall that the buoyancy is the weight of the displaced fluid, and therefore, if the body
is only partially submerged, only the submerged part will be taken into account. We
assume the fluid to cover the whole lower half space H™ := {(z1, 72, 23) € R® : 23 < 0}.
It is easy to calculate the buoyancy, as we only have to consider those spacial points,
which also lie in H, i.e., ¥ € Q¥ N H~. Hence, after a change of variable, and using

det Vy = 1, the energy functional will take the form

E(y) = /Q W(Vy) + /Q y3(z)gpsdr + /Q 9y3 (v)pwdz,

where f* = max(0,£f), and hence, f = f+ — f~. If the fluid does not fill the whole
space, it is not enough to compare the densities only, but we also have to take into
account the volume of the deformed configuration, which does depend on the deformation.

We therefore have the following behaviour:
1. If gpw | N H™| — gps|©?| < 0, then the body sinks.
2. If gpw|QY N H™| — gps|Q2| = 0, then the body stays at its position.
3. If gow QY N H™| — gps|Q2| > 0, then the body rises.

Again, in the case of the sinking body we have inf £(y) = —oo. The proof is analogous
to the one of Prop. [9.2.1 However, due to the fluid-air-transition, we are able to
show existence of minimizers for the third case, where py > pg, i.e., the object floats.
Intuitively, this is clear, because if minys > 0 (namely, the body is fully above water),
the energy would decrease by partially submerging the solid. If the object was submerged
deeply, it would rise to the surface. We can also see this, when looking at the energy &,
neglecting deformation energy. Then, if infys > 0 (the specimen flies), we can assume

ys = 0, and hence, F(y) = [, gpsys(x)dz + [o gpwys (z)dz = gps|Qys > 0. On the

other hand, if sup y3 < 0 (the specimen is deep under water), we can assume (y3)~ = —ys,
which yields F(y) = [, gpsys(z)dz + [, gpwys (z)dz = g|Q| (ps — pw) ys > 0. We see
5 0
<
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that the energy JF is proportional to g3, or —¥s, respectively. To make this argument
precise, we will bound |y3| in terms of the energy, which means that g3 can only be large,
if also £ is large. This enables us to prove coercivity and eventually the existence of
minimizers. We claim there is a ¢ > 0 such that for all deformations with det Vy = 1 the
following inequality holds

sl < £ (). (9.1.1)

Clearly, pw |QY N H™| > pg|Q| implies py > pg. Just divide by |2Y N H~| and use
QYN H™| < |9Y] = |2|. Therefore, we get

E(y) = /Q W(Vy) + /Q ys(@)gpsde + /ﬂ g5 (2)pwdz
>0

> /Q ys (2)gpsdz — /Q ys (z)gpsdr + /Q gpsys (z)dz

> [ gpsui @)+ [ glow = ps) s (x)d. (9.1.2)
Q Q ‘/—’>0

Moreover, we have |ys| = y3 + y3 , and thus

1 1 1
3| < — =— [yfde+ = [ y5d
ol < |m/g‘y3’ |Q/y3 “\m/gy?’ ’

1 / N 1 _
< ——= [ 9psy xdx+/gp — ps)ys (x)dx = (*
g5 Jo 9598 O g J 9w pslus (@)de = (1)

1
PW —pPSs

Setting K := max{gpsl|m, T 73 > 0 we get

()< K [ gpsui e+ K [ glow —ps)us (e S KW

Proposition 9.1.2. Let Q C R3 be an open, bounded set with Lipschitz boundary

and assume that the material is hyperelastic and polyconvex, i.e., there exists a stored

energy function W satisfying (7.1.1) - (7.1.3). Furthermore, let pw > ps and set
A= {y € WEP(Q;R3) : det Vy = 1}. Then, the minimization problem

Minimize E(y) fory e A
has a solution.

Proof. We aim to apply the direct method. By the analysis of Chapter [3] and [6], we know
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that £ is weakly lower semicontinuous. Since we assume py > pg, we have

/Q y3(x)gpsde + /Q gy3 (z)pwdx

PW >pPs

> / y3(x)gpsdx + / gpsys (v)dr = gps/ (y3 +y3 ) dx > 0. (9.1.3)
Q Q Q) N ———

=y3 >0
To show coercivity, we apply Poincaré’s inequality, Thm. and get

A>E@) = dlVylh, —c

)
>yl —clyslP —c.

By (9.1.1)), we obtain —c|ys|P > —cE(y)? > —cAP, and hence, all deformations in the set
{€ < A} satisfy
HyH%/l,p S c (A + Ap) ’

i.e., are bounded. Therefore, we have shown coercivity and the direct method is applicable.
O

9.2. The compressible case

Consider now the compressible case, i.e., 0 < det Vy, not necessarily det Vy = 1. In
this case, the buoyancy will also depend on the deformation, because the volume of the
deformed body changes with .

In particular, if gow|QY| — gps|Q| < 0 or equivalently, |Q¥|pw < |Q|ps for a certain
deformation y, then the body will sink. Therefore, we will expect inf £ = —oo in this

case. The next proposition will describe this phenomenon rigorously.

Proposition 9.2.1. If the body is compressible and |Qy1\PW < |Q|ps for a deformation
y' with maxyi(z) < 0, then there is another deformation y?, such that £(y?) < E(y')
and |V |pw < |Qps. In particular, we have

inf £(y) = —o0.

Proof. Set y? := y' — ce3, with ¢ > 0 constant. Note that det Vy' = det Vy2. Then,

105



using the change of variables formula twice, we obtain
pW|Qy2| = pW/ dz¥ = pW/ det V(y' — ce3)dx
y2(Q) Q
= pW/ det Vy' (z)dz = pw|Q¥| < ps|€].
Q
We can use the calculation above in the following computation and get
£6?) = [ W e+ [ psgh—o)— [ pwoe) - clda”
Q Q v3(Q)
— [ W)+ [ psot = [ psge— [ pwotuia) - odet Vi)
Q Q Q Q
= / W(Vy') + / PSgYs — / psgc — / gpwxidr? + / gpweda?
Q Q Q y1(©) ¥ (Q)

= £(y") — (I20psge — 19 loweg) < £

>0

As before, the difference between the energies of y' and y? can be made arbitrarily large

by choosing ¢ sufficiently large. O

Remark 9.2.1. The analogous result holds true, if [Q¥'[py > [Q|ps and the whole space
is filled with the fluid, i.e., the energy is of the form

S(y):/QW(Vy(x))dx—l—/Qy?)(a:)gpgd:c—/ngg(x)pwdx.

To see this, just define y? := y' + ces. Invoking the physical picture, this amounts to
the body floating, driven by the buoyancy. Therefore, the only case, where the energy is
bounded, is if |QY|pw = |Q|ps holds true for all deformations. Then, we are again in the

case of incompressible materials and the equilibrium of forces.

If we suppose, that not the whole space is filled by the fluid, but there is a transition
between the fluid and air, then we can show that the energy is bounded from below,
provided the material is only slightly compressible. In this case, we can prove the existence

of minimizers.

Slightly compressible materials

We introduce the notion of slightly compressible materials and give an existence result,

when |QY|pw > |Q|ps. From now on, we will write J := det Vy for brevity.
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Definition 9.2.1. We say a deformation is a slight compression, if there is a constant

¢ > 0, such that for all deformations satisfy

J =detVy > ¢ > 0. (9.2.1)

This condition means that the deformations cannot compress arbitrarily. Using this, we

can show that the energy is bounded from below, if the specimen satisfies |Q¥|pw > |Q|ps.

Proposition 9.2.2. Let ¢ > 0 and define A = {y € WLP(QR3) : |Q|py >
1 ps, and det Vy > c > 0} the set of admissible functions. Then infye 4 E(y) > —o0.

Proof. By the change of variables we get
|QY] = / dx¥ = / det Vy(z)dzx > ¢[Q].
Qv Q

Moreover, we have that ps < pwJ holds, for if ps > pwJ, then |Q|ps = fQ psdxr >
Jo pwd (x)dx = |QY|pw, which is a contradiction. Thus,

ps < pwd < pwe, (9.2.2)

and hence,

E(y) =/W(Vy)+/ys(:v)gpsder/gyz(x)_pdew
Q - Q Q

. _ _
> / y3(x)gpsdx + / gpsys(x)~dz = gps / (y3 +yz ) dz > 0. O
Q Q Q\—+— v
=Y3 >0

Remark 9.2.2 (on condition ) The condition det Vy > ¢ > 0 is a very specific
case of material locking, which originally was introduced by Prager in [25]. The specific
condition was studied by BeneSova, Krucik, and Schlémerkemper in [3], and
ultimately leads to the introduction of gradient polyconvexity. There, the authors showed
that Holder continuity of the det Vy implies the existence of such a ¢ = ¢(y) > 0 with
det Vy > ¢ > 0, which will yield a uniform bound on ¢, and thus, the condition , if
a energy functional of the form I(y) := [, W(Vy(z))dx + [, (det Vy(x)) *dz is bounded.
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However, this approach cannot be used in our case, because, for the given energy

5(y)+/g(detVy(1:))_sdx
:/QW(Vy)—l—/Q(detVy(:v))Sda:+/ng(a:)gpsdzc—i—/ngg(:I:)pWJd:c,

we cannot conclude that, if £(y) < A, then [, (det Vy(z)) *dz < C, because the term
modelling the forces may may be unbounded from below.

Another way to obtain by bounding a certain energy functional is provided
by Healey and Kromer in [14]. They, however, assume second gradients and Holder
continuous boundary conditions, which is not compatible with the setting of a freely

moving specimen.

Proposition 9.2.3. Let Q C R? be an open, bounded set with Lipschitz boundary and
assume that the material is hyperelastic and polyconvez, i.e., there exists a stored energy
function W satisfying - (7.1.3). Furthermore, assume |QY|pw > |Q|ps and set
Ac = {y e WHP(Q;R3) : det Vy > ¢ > 0}. Then the minimization problem

Minimize E(y) fory € A

has a solution.

Proof. The proof is analogous to the one of Prop.[9.1.2] First, we claim that |y3| < kE(y).
We have that

Y / Y / Fdr+ — /y dx
1
gpsy dzx + / cpw — ps)ys (x)dx = (*).
gps\m/ sy (@) o — s Jo 9P~ Ps)s (@) = ()

By (9.2.2]) we have K := max{ gpsIQ\ ‘Q‘Q(pr 53] } > 0 and, hence, get

() <K /Q gpsyt (z)dz + K /Q o(cpw — ps)ys (@)dz

= g /Q gpsyt (@)dz — K /Q gpsyy (@)dz + K /Q gpwys (z) det Vy(z)da

<KE&(y).

Now we can apply the Poincaré inequality and conclude coercivity as in Prop. [0.1.2]
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The weak lower semicontinuity follows by the analysis of Chapters [3] and [6] O

9.3. Local Minimum

So far, the results we obtained are of global nature, where we considered minima over all
admissible deformations. Moreover, we saw, that if |QY|pw < |Q|ps, i.e., the specimen
sinks, the infimum of the energy will be —oo. It is anyhow considerable, that local
minima may exist. Consider for example the case, where the specimen is located barely
under the water surface. In this case compressing the specimen so that it sinks, costs
In this

section, we make these considerations above precise and prove the existence of such local

a lot of energy, and thus, it may be more favourable for the specimen to float.

minimizers. To be able to do so, we specify further the structure of the energy.

The energy functional considered now, will be of the form

&) = [ woy@yds+ [ o [ (st owan).

for a constant £ > 0 and s > 0.

Let yg : © — R? be the deformation chosen in such a way, that it only consists of
a rotation and a translation, i.e. yo(z) = Rz + ¢, for R € SO(d), t € R, and such that
maxys = 0, as depicted in Fig. [0.1] By definition of yy we have det Vyy = 1 and,
therefore, |yo(€2)| = |Q].

Yo(92)

Figure 9.1.: Position of g

If we furthermore assume that |Q%[py, > [Q|pg, or equivalently pw > pg (note
Vy = R, det R = 1), i.e. the body rises, it is clear that the energy of yy is not optimal,

and there are more favourable states when the object rises above the surface. Introducing

fo(w)dx = ﬁ/ﬂf(:c)dx,

a new notation
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we can rewrite the condition |QY|pyw > [Q|ps as

][J > PS5 (9.3.1)

w

In this case, we already have shown existence of minimizers. However, this condition is

not closed, and therefore, we use a slight modification of it:

][J >7> P35 (9.3.2)
PW

for 0 < 7 < 1. This choice is in accordance with our assumptions, since we are assuming
that py > pg, and therefore, #s/py < 1. This new assumption implies the old one ,
under which we already proved the existence of a minimum in Section [9.2] Let us denote
this minimum by y*.

We will prove that all deformations close to this minimum, will admit the condition
([9-3.2), even if do not assume that [Q¥|pw > [Q|pg. Hence, this minimum is a local one,

considered over admissible deformations. More precisely, we state the following lemma.

Lemma 9.3.1. There exists a € > 0 such that all deformations § with () < E(yo),
and |93 — v5 ||~ < €, automatically satisfy (9.3.2), i.e., setting J := det V.J, we have

][j>7'>ps.
Q 4%

Proof. Aiming for a contradiction, we assume f J <7 < 1. Then,

. . k . A
Eyo) > E() = / W(V3) + / ~ / (psis + pw Ji5 )z = (x)
>0 ’ ’

Since, || — y*|lw1» < &, we can estimate the term above using y* with an error of order

€. The application of Jensen’s inequality and the assumption on 7 yields

k * * )\ —
(%) > A+g/ (psys + pwJ*(y3) ") dz+0(e)
0 Js 0

=G
k
10—+ G+ 0()
()
K[ Ti 4G+ 0(). (9.3.3)

~—
>1

Jensen

assumpt.
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Moreover E(yo) = kI + g [o(ps — pw)(y0)3dz, as Viyo = R € SO(d), with det Vyo = 1.
This implies, that g [(ps — pw)yosdz = ¢ = ¢(g, ps, pw, L, yo) can be considered to be a
constant, which does not depend on k. Hence, we can write £(yo) = k|| + c.

If G = 0, we would have found a contradiction, since

1
E(yo) > k| pr +0(e) > K|Q| + ¢ = E(yo),
ey

choosing k large enough.

However, if G # 0, we have to bound G in terms of the energy to get to a contradiction.
First, note that by the coercivity assumption on W and Poincaré’s inequality, we get
E(y*) = c||Vy* b — ¢ > clly*||%,. Trivially, we can bound @(€2¥) < 2||y||p=. Therefore,

we have

G < 1Q0gpslly*llee + D) gpw < c|ly*|loo < cE(y™)7.

Since E(y*) < E(yo) we can infer
G > —cE(y")' " > —cE(yo) ",
Relation ({9.3.3) entails that

1 *
E(yo) > K[| — cE(y")"" + O(e)
1 1
> kIO — c€(40)'* +O(e)
1 1
= k|0 — e (k|2 +0) " 4+ 0(e).
This is a contradiction: Since E(yp) is linear in k, and kv tends to infinity much slower

than k, as k — oo, we can make the right hands side arbitrarily large, choosing k large

enough. O

Proposition 9.3.2. Under the usual assumptions, there exists a local minimizer of € in

(fr2r- 22}

Proof. Step 1: Energy is bounded from below.

Note that f J > 7 > rs /oy implies that pyw § J—pg > 0. Since we can write ps = f pg,
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we obtain

1
0<PW][J_PS:’Q‘/QPWJ_PS-

Thus, we have that pg < pwJ holds, for if pg > pwJ, then |Qps = [, psdz >
Jo pwJ (x)dz = [Q¥|py, which is a contradiction. We make use of the identity

Y3 =yy — s,

and get

E(y) = / W(Vy) + / ys(@)gpsda + / gys(z) ™ pw Jdz
Q - Q Q

> / y3(z)gpsdr + / gpsys(z) dx = gps/ (y3 +y3)dx > 0.
Q 9] Q) ——

=y3 >0

Step 2: Local Minimum.
Next, we want to put ourselves in the setting of Lemma Any deformation y

with £(y) > E(yo) > £(y*) cannot be a minimizer. Thus, we can w.l.o.g assume that
E(y) < E(yo), and therefore, by Lemma we know that there exists € > 0 such that for
such deformations with additionally ||y — y*||z < €, the condition J > 7 > rs/py holds.

Therefore, y* is indeed a minimizer over all deformations y with ||y — y*||r~ < e. O
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A. Appendix

We provide an overview of notions and results used over the course of the thesis.

Let Q C R? be open, connected, and with Lipschitz-boundary (for a definition refer
to [18], Def. 9.57). Furthermore, we assume €2 to be of finite d-dimensional Lebesgue
measure, denoted as || < co. From now on we will use these assumptions on (2, although

further generalizations would be possible.

A.1. [P-spaces

We define LP-functions in the case of p € [1, 00], and recall the most important results

used in the thesis. Let f: Q — R™, m € N, be a Lebesgue-measurable function. We set

C/fQ |f(z)|Pde  for 1<p<oo
||f||LP(Q;Rm) =

esssup,cq | f(z)] for  p=o0,

where | - | denotes the Euclidean norm in R™ and the integral is to be understood as
Lebesgue integral. The class of all measurable functions with || f||L»(;rm) < 00, up to

a.e. identification, is denoted with LP(£2;R™). The essential supremum is defined as

esssup f := inf sup f(x).
zeQ IN|=0 zeQ\ N
Here, the | - | denote the d-dimensional Lebesgue measure. It should not lead to confusion

with the Euclidean norm, as in this case, we are considering sets.

Remark A.1.1 (on the notation). During the thesis, for brevity we often omit to specify
the domain or the target space, when subscripting the norm, whenever it is clear what is
meant. Moreover, when needed to distinguish the d and (d — 1)-dimensional Lebesgue
measure (e.g. when considering the boundary of €2), we will denote the measure of the

set with meas;(€2), or measg_1(09€2) respectively.

It will often be useful to interchange the limit and integral, which is allowed under the

conditions of the following important theorems.
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Theorem A.1.1 (Fatou). Let (€2, A, 1) be a measure space. For each sequence (fy) of

non-negative, measurable functions fp : Q@ — R U {oo} it holds that

/lim inf f,du < liminf/ fndp.
Q " " Q

Theorem A.1.2 (Monotone convergence). Let (f,) be a sequence of Lebesgue-integrable
functions with f, < foy1 almost everywhere, for all n € N. Moreover, suppose that
sup,, [q fa(x)dz < co. Then,

g&An@m:Aﬂmm

Theorem A.1.3 (Dominated convergence). Let (fy,) be a sequence of Lebesgue-integrable
functions, converging almost everywhere to f. If there exists a g € LY(Q), with |f,] < g

almost everywhere, then f is integrable and

g&énwmzéﬂmm

The proofs can be found in [4], Sec. 2.8.

Another important tool is Hélder’s inequality.

Theorem A.1.4 (Hoélder’s inequality). Let 1 < p < oo and let f € LP(Q,R™) and
g € LY(Q,R™) with % + % = 1. Then the function f - g is in L*(Q,R) and

1f - gl om) < 1 fllzemrmyllgll Lo rm)-

Theorem A.1.5 (Generalized Holder inequality). Let 1 < py,--- ,pn,p < 00 such that
p% 4+... L= % and let f; € LPi(Q) fori=1,...,N. Then, the following inequality holds

PN

N
I/
i=1

N
< T I fillze.
=1

Lr

The proof of the Generalized Hélder inequality follows by induction.

A.2. Sobolev spaces

We recall the basic definitions and most important results regarding Sobolev spaces, such
as the embedding theorems, the existence of the trace, and compact embeddings. See
also [17], B.3, and [18], [12].
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Basic Definitions

Infinitely differentiable functions with compact support are called test functions, denoted
by 2 = €. For a multi-index a € N¢, with order |a| := a; + - - + ag, and a function
y € LP(2), we define the a-distributional derivative of y as the distribution satisfying

9y p)lel /
d
<8w . O‘d’¢> 833 . s

for all test functions ¢ € 9. We call d-tuple of distributional derivatives of order 1 the

o)

gradient and write Vy = (%y, ceey T%y) For p < oo we define the Sobolev space

WP(Q):={y € LP(Q) : Vy € LP(Q;Rd)},

which is a Banach space, when equipped with the norm

1/p
lllwro = (I¥150 ) + 1Vl qza) -

The spaces of R™-valued Sobelev functions are defined as WHP(Q;R™) = {y =
(Y15, Ym) : yi EWIP(Q),i=1,...,m}.

Lebesgue spaces LP and Sobolev spaces WP are separable for 1 < p < oo and reflexive

for 1 < p < o0.

Since Sobolev functions are LP functions, and thus, insensitive to changes of sets
of measure zero, we cannot evaluate these functions at the boundary. This, however,
prevents us from considering problems with prescribed boundary values. A way out is

given by the following trace theorem.

Theorem A.2.1 (Trace theorem). Let Q C R? be open, connected, of finite measure,
and with Lipschitz boundary I' := 0. Then, there exists a unique linear continuous

operator, called trace operator,
T:Wwhr(Q) — LY(T)
such that, for anyy € € (), it holds that

Ty = ylr.

115



Moreover, the operator T

T:Whr(Q) — LIYT) . { continuous if 1< q<ph,
is

y +— ulp compact if 1<q<p,

where pt is the so-called Sobolev trace exponent with values

% for p<d,
P =1 an arbitraryr €R  for p=d,
50 for p>d.

See [17], Theorem B.3.6, [12], Chap. 5.5. Theorem 1, or [18], Chap. 18.1. We
consistently consider boundary values of Sobolev functions in the trace sense, given by
the trace operator above. Moreover, we define VVO1 P(Q) to be the set of Sobolev functions
with zero trace (cf. [12], Sec. 5.5, Thm. 2).

Embedding theorems

Definition A.2.1. For 1 < p < n we define the Sobolev conjugate px as

pn
n—op

px =

We summarize the embedding theorem of Gagliardo-Nierenberg-Sobolev ([12], Sec. 5.6,
Thm. 1) and the embedding theorem of Morrey (|12], Sec. 5.6, Thm. 4) into the following
Theorem ([12], Sec. 5.6, Thm. 6)

Theorem A.2.2 (General Sobolev inequalities). Let Q be a bounded open subset of R™
with a €' boundary. Assume u € WHP(Q).

(i) If

k<

|3

then u € L4(Q), where

3|

| =
=

and we have the estimate

[ullogoy < Ck,pyn, Q) |Jullyrs-
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(ii) If

n
k> —,
p
then u € €*~ 5] Q) where
Y= bJ +1-— » if o 18 not an integer
any positive number <1 if % is an integer

Additionally, we have the estimate
||u||<gk— L%J —1,7((2) < C(k¢p7 n,7, Q)HUHWIW’

Theorem A.2.3 (Rellich-Kondrachov, [12], Sec. 5.7, Thm. 1). Assume € to be a bounded
open subset of R™ with €1 boundary 0. Suppose 1 < p < n. Then we have the compact

embedding
WhP(Q) € LY(Q)

for each 1 < g < px.

A family of continuous functions F' C € (X,Y’) between metric spaces is called equicon-
tinuous, if for every ¢ > 0 and every = € X, there is a neighbourhood U(z) of x such
that

dy (f(z), f(y)) <e VyeU(x),VfeF

Theorem A.2.4 (Arzela-Ascoli). Let X be a compact metric space and Y be a metric
space, satisfying the Heine-Borel property. Let F C €(X,Y) be a family of continuous
functions. Then every sequence from F has a uniformly convergent subsequence, if and
only if F is equicontinuous and the set {f(x) : f € F} is bounded for every x € X.

For the proof refer to |28, Thm. B.39.

Poincaré inequalities

Theorem A.2.5 ([12], Sec. 5.6, Thm. 3). Assume § to be a bounded, open subset of R™
and 1 < p < n. Then, there exists ¢ > 0 such that

lullre < el|Vulle  Yu € WyP(Q)

for each q € [1,p*], the constant ¢ depending on p,q,n, and §Q.
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Notation: Introducing the barycentre of a function u over its domain €2

_ 1/
u:=— [ u(x)dz,
i Jo "

we can formulate the following Poincaré inequality.

Theorem A.2.6 ([12], Sec. 5.8, Thm. 1). Let Q be a bounded, connected, open subset
of R™ with a €' boundary 0Q. Assume 1 < p < co. Then, there exists a constant c,
depending only on n,p, and  such that

|u— @l pr < c||Vullpr Yu € WHP.

A powerful generalization is the following (cf. Theorem B.3.15, [17], p. 519).

Theorem A.2.7 (Generalized Poincaré). Let Q C R™ be an open bounded Lipschitz
domain and let 1 < p < co. Let further I'p C 0 be such that meass—1(I'p) > 0. Then,
there exists a constant k > 0 such that for all v € WIP(Q,R") the following inequalities

e /Q (@) Pdz < k </Q Vo(z)Pdz + ’/Qv(x)dx ) .

And if T C 0 is measurable and such that measq_1 (') > 0, then

/Q|v(x)|pdx <k (/Q |Vo(z)[Pdr + ‘/FD v(:c)dSD .

A.3. Integral identities

We will collect a few integral formulas and introduce further necessary notions, like
Lusin’s condition. Aside the commonly known Green formula, we will mention two

change of variable formulas and preliminary notions to formulate them.

Theorem A.3.1 (Green’s formula). Let Q be a Lipschitz domain and n = n(zx) € R?

the outward unit normal to the boundary I' = 02 at the point x € I'. Then, for all
v € WHP(Q) and z € WH4(Q;R?), the following formula holds

/Q(v(divz)—i—z~Vv) dx:/v(z.n)dS.

r

Before we get to the change of variables, we introduce the Lusin’s conditions and the

Banach indicatrix.
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Definition A.3.1 (Lusin’s conditions). Let 2 C R™ be a bounded measurable domain.
Then, y : @ — R? is said to satisfy Lusin’s condition N if for every w C Q with
measg(w) = 0 it holds that measy(y(w)) = 0.

Of course, one can consider functions whose pre-image of null sets as again a null set.
The function y : © — R? is said to satisfy Lusin’s condition N~ if for every @ C y(f2)
with meas(&) = 0 it holds that measy(y~!(@)) = 0.

We recall that smooth Sobolev functions on bounded sets automatically satisfy Lusin’s

condition N.

Lemma A.3.2. Let Q C R3? be bounded and y € WHP(Q;R3), with p > 3. Then y

satisfies Lusin’s condition N.

The proof can be found in [20], Cor. 1. A result on Lusin’s condition N~! is the
following (cf. [5], Lemma 8.3).

Theorem A.3.3. Let Q be a bounded domain and y : Q — R% be a continuous mapping
satisfying Lusin’s condition N. Assume that y is differentiable almost everywhere in  and
that det Vy is integrable in R¢ and positive a.e. in Q. Then y satisfies Lusin’s condition
N~Y. In particular, if y € WHP(Q; RY) for some p > d is a continuous representative of

the equivalence class and det Vy > 0 a.e. in § then y satisfies Lusin’s condition N1

To formulate the change of variables formula, we need one additional ingredient, the

Banach indicatrix.

Definition A.3.2. For any z € R? and Q C R? the Banach indicatriz N(z,y, ) is the

number of elements in {2, which are mapped to z by y, formally

N(z,y,Q) = #{z € Q : y(z) = 2},

where the right hand side is the counting measure.

Theorem A.3.4 (Change of Variables). Let @ C RY be a bounded domain and let
y: Q2 — RY be continuous, satisfying Lusin’s condition N. Assume that y is differentiable
a.e. in Q and that det Vy is integrable in RY. Then, the Banach indicatriz N(-,y, ) is

integrable and we have
/ | det Vy(x)|dz = / N(z,y,Q)dz = / N(z,y,Q)dz.
Q R4 y(Q)

Note that any y € WHP(Q;R?) satisfies the hypothesis of the above theorem. For a
proof of this assertion and Thm. refer to [5].
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Theorem A.3.5 (Change of Variables 2). Let Q C RY be a bounded domain and let
y € WHHQ; RY) be continuous, satisfying Lusin’s condition N, and such that det Vy > 0
Vaa® € Q2. Then for every f € L*(y(2)) it holds that

[ @) derTyydn = [ NG e
Q y(Q)

The proof can be found in [5], Thm. 8.4.

A.4. Weak Topology

Given a real Banach Space X we define its dual space X’ as the set of all bounded linear
functional into R. The weak topology is the initial topology on X with respect to X',

i.e., it is the coarsest topology on X such that all functionals f € X’ are continuous.

Definition A.4.1. A sequence (r,) C X converges weakly to x € X, in symbols:
T, — z, if

lim f(x,) = f(z) VfeX.

A sequence (f,) C X’ converges weak-* to f € X', if
fu(z) = f(2) Vo € X.

Proposition A.4.1. If (f,) C X' converges weakly, then it also converges weak-*, i.e.
weak convergence implies weak-* convergence. So, weak-* convergence is indeed weaker

than weak convergence.

If, however, the Banach Space X is reflexive these to notions of convergence are

equivalent. We will make this precise later on.

Theorem A.4.2. Let X be a Banach space. Then X is reflexive, if and only if each

bounded sequence has a weakly convergent subsequence.
This theorem is a special case of the

Theorem A.4.3 (Banach-Alaoglu). Let E be a normed space and E' its topological dual
space. Then the unit sphere D := {f € E' : ||f||gr < 1} is compact with respect to the
weak-* topology.

This means that every bounded set S C E’ contains a bounded subnet (f,),e; such
that f,(x) — f(x) for all z € E. Important: For general metric spaces this does not

imply sequential compactness!
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Example A.4.1. The unit ball in the dual of [*° is weak-* compact by the Banach-Alaoglu

theorem. It is, however, not sequentially compact. To see this consider

pn: IP(N) = R

(l‘k)k = T

Then (pg)r does not have a convergent subsequence. A

On the contrary, for a Banach space weak-compactness and weak-sequential com-

pactness are the same. This is not obvious, as the weak topology is not metrizable.

Theorem A.4.4 (Eberlein-Smulian). Let X be a Banach space. Then the following are

equivalent:

(i) Weak sequential compactness: Every sequence has a weakly convergent subsequence.
(ii) Weak compactness: Every weakly open (open sets in the weak topology) cover

contains a finite subcover.

For a proof, see [10], Chap. V.6. This result is incredibly useful, as it guarantees that

we can work with sequences in weak compact sets.

Remark A.4.1 (Putting all together). Recall: A Banach space is reflexive if X = (X') =
X", i.e. when the Banach space and its bidual are isometrically isomorphic via the Riesz
isomorphism. In general, the weak-* topology on X’ is strictly weaker than the weak
topology on X’ (cf. Prop. . If, however, the Banach space is reflexive, then the weak
topology on X is identical to the weak-* topology on (X') = X”. By the Banach-Alaoglu
theorem, we know that the unit sphere is weak-* compact in the dual of a normed
space, so applying this to the dual of X', we have that the unit sphere in (X’)’ is weak-*
compact, and thus, it is weak compact in X! This means that every bounded subset of a
reflexive Banach space is weak compact! Since, by Eberlein-Smulian, this is equivalent
to being weak sequential compact, we have: In a reflexive Banach space every bounded
sequence has a convergent subsequence! In fact, this is even an “if and only if”: If the

every bounded sequence has a convergent subsequence the Banach space is reflexive.

Boundedness of weak converging sequences and lower semicontinuity

Similar to the simple case of converging sequences of real numbers, weak converging

sequences in Banach spaces are norm-bounded.
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Theorem A.4.5 (Boundedness of weak converging sequences). Let X be a Banach space

and (z,,) C X converging weakly to x € X, i.e. x,, — x. Then (x,) is bounded.

Proof. Let x,, be weakly convergent: z, — = < f(z,) — f(z) for all f € X'. Define
T, € X" by T,(f) = f(xy,) for all f € X’ and a fixed f € X'. Since x, is weakly
convergent f(z,) is bounded, and thus, (T,,(f))n is in a bounded set. By the Uniform

Boundedness principle we obtain
sup [|zn|| = sup || T, < oo.

Hence, (z,,) is bounded. O

Before we state another important property of the norm, we recall the following

consequence of the Hahn-Banach Theorem.

Lemma A.4.6. Let X be Banach space. For every v € X, there is a f € X' such that
Ifllx = llzllx and f(z) = ||=]>.

The proof can be found in [6], Corollary 1.3.
Theorem A.4.7 (Norm is w.l.s.c.). Let X ba a Banach space and (x,) C X an weakly
converging sequence T, — x. Then the following holds

||| < liminf |zy]|.

Proof. By Lemma there is a functional fy € X' such that ||fo|lx» = 1 and
|fo(x)| = ||z||. Since z, — x, we have f(x,) — f(x) for all f € X’. In particular,
fo(zn) — fo(x) and thus | fo(zn)| — |fo(z)| = ||z||. Putting all this together we obtain

]| = [fo(2)| = lim | fo(zn)| < liminf | fo(zn)| < liminf || fol[x- ||z || = liminf [[z,[]. O

Results on weak and strong convergence

We now recall different notions of convergence and collect a few statements on the
connection of weak and strong convergence in Sobolev and L? spaces.

Weak convergence of a sequence (u;) means that for all elements f in the dual space
the sequence f(uj) converges. For the space WP it is not very handy to work with this
definition, but we would like to have a characterization of weak convergence in terms of

uj and Vu;.

Theorem A.4.8. In the space WP, 1 < p < oo the following are equivalent:
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(i) uj — u in WYP, d.e., f(u;) — f(u) for all f € (WLP)*

(71) uj — w in LP and Vu; — Vu in L.

Theorem A.4.9 (Weak Sobolev convergence implies strong L? convergence). Suppose
yr — y weakly in WIP(Q), Q C R"™. Then the sequence converges strongly in LP, that is,
Yk, —> Y as n — oo.

Proof. yi — y in WL implies, that (y;) is bounded in W'P. By the compact embedding
(Rellich-Kondrachov) WP cc L7 for 1 < ¢ < p* = % there is a subsequence yy,
converging strongly in L?. By Thm. we also have y; — y in LP. Therefore, the
limit of yg, is y, as strong convergence implies weak convergence and weak limit are
unique. The following fact on Hausdorff spaces concludes the proof: If y, ¢y, are such that
every subsequence of y; has a subsubsequence converging to y, then also ¥y, converges to
1. ]

Corollary A.4.10. If y, — y weakly in WP, then it converges almost everywhere to y.

Theorem A.4.11 (Mazur). Let X be a normed vector space and (x,) a sequence weakly
converging to x. Then, there is a sequence (y,) of convexr combinations of x,, i.e.,
Yn = ZZN:”l XinZi with Zfi”l Xin =1, such that (y,) convergences strongly to x (namely,
[yn — z[| = 0).

A proof can be found in [28], Cor. 5.12.

A.5. A Mathematician’s toolbox

We collect some important tools, including some useful inequalities.

Inequalities

Lemma A.5.1 (Cauchy’s inequality). We have
2ab < a®> +b* Va,beR.

Using this one can now prove:
Proposition A.5.2. If f,g € LP(R2), then their product fg belongs to LP/Q(Q).

In fact, we have that

[isar <5 [ (502 5 [ (9P2) < el + gl < o0
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Another way to prove this result is using Hoélder’s inequality:

[isarrz = [isemgrz < ([ Qo) (] (o)) = isgiony <

Lemma A.5.3 (Young’s inequality). Let a,b,6 > 0 and p,q > 1 such that 1/p+1/q = 1.
Then, the following inequality holds

b dPaP b1

< — 4+ —.

ab < » + 5ig

Proof. By the identities exp(In(z)) = = for x > 0 and In(ab) = In(a) + In(b), we get

ab = exp(In(da 1/6b)) = exp (;pln(éa) + ;qln(b/é))

Ly

1 1 1
=exp | — In(6PaP) + = In(b?/6¢ ) < Z6Pa? 4
(p (§7a)+ - In@/8)) < o+ -

where we used in the last step the definition of convexity applied to the strictly convex

function exp. O

For two matrices A,B € R%*¢ we define the matrix dot-product by A : B :=
szzl A;;B;i;. The Frobenius norm of a matrix A € R%*? is the norm induced by
this product, i.e., |A|% := A : A.

Lemma A.5.4 (Hadamard’s inequality). Let | - |p denote the Frobenius norm and let
A € R¥™4. Then,
|det A| < d¥?|A|p°.

Measure theory

Theorem A.5.5 (Vitali convering theorem). Let Q, D C R? be open and bounded. Then,
there exist a € Q,r,, > 0, for k € N, such that Q) is the disjoint union

o0
O=ZU U D(ag, k),
k=1
with D(ag, i) == a + D, and Z C Q is a Lebesgue-null set, i.e. |Z| = 0. Moreover,
is for almost all x € Q, we are give an real number r(x) > 0, then one can require that
r < r(ag) for all k € N.
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Lemma A.5.6. Let (X, A, 1) be a measure space and A, B € A such that A C B. Then,
u(B\A) + p(A) = p(B).
Moreover, if u(A) < oo, we have u(B\A) = pu(B) — p(A).
Proof. Clearly, by the inclusion,
B=(B\A)U(BNA)=(B\A)NA.
Since B\ A and A are disjoint, we get

w(B) = u(B\A) + pu(A). O

A.6. Auxiliary Calculations

Passing to subsequences when proving weak lower semicontinuity

We often prove lower semicontinuity for some subsequence. Fortunately, this also imply
the statement for the original sequence, as we will show now.
Assume we have already proved

up — u == 3 subsequence of (uy) : f(u) < liminf f(uy,), (A.6.1)

J]—00

then also
flu) < limninff(un).

In other words: If we know that f is lower semicontinuous for a particular subsequence
of an arbitrary converging sequence, we know that f is lower semicontinuous. This result
is very important, as the described procedure is exactly the one, we carry out for proving
lower semicontinuity in the case of the existence results. There, we often consider an
arbitrary sequence y, — vy in WP, and then apply embedding theorems which give
us subsequences of y,, for which we prove lower semicontinuity. If this would not hold,
proving lower semicontinuity would become extremely cumbersome.

We state this again with all needed assumptions (cf. [27], Problem 2.1).

Proposition A.6.1. Let X be a complete metric space and f : X — R. If for every
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sequence u, — u there is a subsequence (un;) such that
) < i f o, ),

then also

flu) < limninff(un).

Proof. Recall the definition of the limes inferior: lim inf f(x,,) is the smallest accumulation

point of the sequence f(x,). Therefore, there is subsequence x,, such that
liminf f(z,) = li]]gfn f(zn,).
n

Step 1: We know by the definition of the lim inf, that there is a subsequence of (f(uy,))n

realizing this lim inf, i.e.
a = liminf f(u,) = lim f(up,). (A.6.2)
n J

So, although we do not know that f(u,) — f(u), we do know that f(u,,) — a and
un,; — u (since it is a subsequence).
Step 2: By applying to the sequence (uy,), we also know that there is a subse-

quence (un; )i of (uy;) such that
flu) < limkinff(unjk). (A.6.3)

Step 3: Since (up;, ) is a subsequence of (uy, ), we have that f(u,;, ) is a subsequence
of f(un,), and therefore, also converges to o, i.e. f(un, ) = a =lim; f(un,).

Step 4: Combining these steps:

463 As52
flu) < limkinff(unjk) = lim f(uy,) 02 im inf f(uy). O
7 n

Pressure Load is conservative

We start by defining the Gateaux differential (cf. [13], Definition 4.60). Let V be a
Banach space. A function F : V — (—o00,+00] is Gateauz differentiable at vy € V if
F(vp) € R and there exists a v" € V'’ such that for every v € V,

F(vg + ev) — F(v)

: . . /
Elg& . =v'(v) = F'(vo)v.
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The element v' =: F'(vg) is called Gateauz differential of F' at vy.

Some authors prefer to define the Gateaux differential as F'(vg)v := lir()glJr w
e—

given the limit exists. In this case, however, the map F’(vg) is not necessarily linear. For

Y

a counterexample check [28], Example 16.3.

Now, we prove that the pressure load is conservative. We are given the functional

Fly) = - /Q p(y(x)) det Vy(z)dz.

Thus, the Gateaux derivative of F' at y in direction v is given by

Fly)o = <dF(y+tv)> _ <—jt /Q p(y(m)+tv(m))detV(y(m)+tv(z))dx> (%),

dt t=0 =0

Differentiating under the integral, we get

(%) = <_ /Q (jtp(y i tv)) det V(y + tv) + p(y + tv)% det(Vy + th)dm) -

= <— /Q(det V(y+tv)VVp(y + tv) - v + p(y + tv) Cof V(y + tv) : Vvdx) .
=— /(det Vy)V(y) - v+ P(y) Cof Vy : Vodz = (xx).

The first identity follows from the formula for the Gateaux derivative of the determinant
det’(A)H = Cof A : H, which can be found in [7], Sec. 1.2. This enables us to use the

Gauf3-Green Theorem, which already appeared in the principle of virtual work:
/ H : Vudx = —/(divH) . vdx—i—/Hn-vdS,
Q Q r

where the divergence of a tensor field is a vector field given by (div H); = Z;-lzl Ox; Hij.
Therefore, setting H := p(y) Cof Vy in the formula, we get

(xx) = — /(det Vy)Vip(y) - v+ /Qdiv(p(y) Cof Vy) - v + /Fp(y) Cof Vyn - vdS = ( * *).

Now, we can use the formula for the divergence of a tensor field and Piola identity
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div(Cof Vy) = 0 to calculate
(div(p(y(x)) Cof Vy(x Z% )(Cof Vy(x))i;)
—Z( ) Cof Vy(x U—i—Zp 8y, (Cof Vy(x))i;

= ((Cof Vy)Vp(y)); + p(y(x ))dIV(Cony),
=0

and thus, finally get

(x % %) = — /(det Vy)Vip(y) - v+ /Q(Cof Vy)Vp(y) - v+ /Fp(y) Cof Vyn - vdS. (%)

We are left with proving that the right-hand side of (%) equals — fr p(y) Cof Vyn - vdS.

/Q((Cof Vy)Vp(y)) - vdx = / Z ((Cof Vy)Vp(y))iv;

/ ZZ Cof Vy);;0;p(y)v; = / Z (Cof Vy)ij ; (VYp(y))k0jyrvi

/ 2% (Cof Vy)i; (VYp(y))k0jyrvi = / Z (VYp(y)) kvzz (Cof Vy)ij0jyk
i.J,

/ Z (VYp( kvz( (Cof Vy)(Vy)T @ )/ (VYp(y))kvi(det Vy)dix

:/ Z (det Vy) (VYp(y))iv; :/(det Vy)VVp(y) - vdz.
Q% Q

In the step (2), we use the identity Cof FFT = FT Cof F = (det F)IL.
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