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Abstract
The reason for the variability of the luminousity of T Tauri stars is still under de-
bate. A possible explanation is a episodic accretion of protostellar disk mass onto
the central protostar. In this scenario, a bi-stable disk alters between a phase of
low and high accretion rate several times during it’s lifetime. In the latter a huge
amount of matter is accreted onto the star in comparable short time, causing an
accretion outburst notable as steep rise in accretion luminousity. The FU Orionis
(FUOR) and EX Orionis (EXOR) objects are well studied examples of this phe-
nomenon. A mechanism that can be responsible for the onset of a burst is thermal
instability causing a fast rise in temperature. Following the Shakura-Sunyaev vis-
cosity description, a high temperature results in a higher local viscosity and thus
in an enhanced accretion rate. In this context it is important to conduct simu-
lations that consistently treat the inner regions of the disk, where sufficient high
temperatures are achieved.

Currently applied numerical codes that facilitate the simulation of protostellar
disks, utilize explicit integration schemes to solve the necessary differential equa-
tions. Such codes are not able to deal with the regions close to the star due to
the Courant–Friedrichs–Lewy (CFL) condition and thus unable to consistently
show the detailed time evolution of accretion outbursts.

This thesis gives an overview about stellar formation and the corresponding equa-
tions of radiation hydrodynamics (RHD), to describe viscous protostellar disks.
It reviews how accretion is connected to viscosity of the disk and how magneto
rotational instability (MRI) acts as viscosity. The long term evolution of the disk
is calculated with an implicit 1+1D code (TAPIR). It utilizes axial-symmetry to
solve the equations of radiation hydrodynamics in radial direction. The results
present thermal instability as reason for a fast rise of the gas temperature close to
the star. This leads to a enhanced accretion rate in a short time which manifests
itself as an enhanced accretion luminousity by releasing gravitational energy. Fur-
thermore, a detailed evolution of the accretion burst and the long-term evolution
of the entire disk is presented.
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Zusammenfassung
Die Ursache für die Variabilität der Leuchtkraft von T Tauri Sternen ist noch
immer nicht vollständig geklärt. Eine mögliche Erklärung bietet die episodische
Akkretion von Masse aus der Protoplanetaren Scheibe auf den zentralen Pro-
tostern. In diesem Zusammenhang wechselt eine bi-stabile Scheibe mehrmals
während ihrer Lebenszeit zwischen einer Phase von niedriger und hoher Akkre-
tionsrate. Im zweiten Fall wird eine große Menge an Masse in vergleichbar kurzer
Zeit auf den Stern akkretiert, was einen Akkretionsausbruch zur Folge haben
kann, der als merklicher Anstieg der Leuchtkraft beobachtet werden kann. Die FU
Orionis (FUOR) und EX Orionis (EXOR) Objekte sind gut untersuchte Beispiele
für dieses Phänomen. Ein Mechanismus, der für den Beginn eines solchen Aus-
bruchs verantwortlich sein kann, ist eine thermische Instabilität in der Scheibe,
die für einen schnellen Anstieg der Temperatur sorgt. Folgt man der Shakura-
Sunyaev-Beschreibung der Viskosität, so führt eine Erhöhung der Temperatur
zu einer Erhöhung der Viskosität und damit zu einer größeren Akkretionsrate.
In diesem Zusammenhang ist es wichtig Simulationen durchzuführen, die den
Innenbereich der Protoplanetaren Scheiben vollständig berücksichtigen, da dort
eine ausreichend hohe Temperatur erreicht werden kann.

Zurzeit verwendete numerische Schemata, die Protoplanetare Scheiben simulieren,
nutzen explizite Integrations-Schemata um die nötigen Differentialgleichungen zu
lösen. Mit solchen Codes ist es jedoch aufgrund der Courant–Friedrichs–Lewy
(CFL) Bedingung nicht möglich, den Innenbereich der Scheibe zu berechnen und
daher kann eine detaillierte zeitliche Entwicklung der Akkretionsausbrüche in
diesem Ausmaß nicht gezeigt werden.

Diese Arbeit liefert einen Überblick über die Sternentstehung samt den entsprechen-
den Gleichungen der Strahlungshydrodynamik (RHD), die verwendet werden um
viskose Protoplanetare Scheiben zu beschreiben. Sie wiederholt wie Akkretion
mit der Viskosität der Scheibe zusammenhängt, und wie eine Magnetorotation-
sinstabilität (MRI) ähnlich wie Viskosität wirkt. Die Langzeitentwicklung der
Scheibe wird mit Hilfe eines impliziten 1+1D Codes (TAPIR) berechnet. Dieser
nutzt Axialsymmetrie um die Gleichungen der Strahlungshydrodynamik in radi-
aler Richtung zu lösen. Die Resultate zeigen thermische Instabilitäten als Ursache
für einen rapiden Anstieg der Temperatur nahe am Stern. Das führt in kurzer
Zeit zu einer erhöhten Akkretionsrate, die sich in einem Leuchtkraftausbruch
durch Freisetzen von Gravitationsenergie manifestieren. Zusätzlich wird eine de-
taillierte Entwicklung der Akkretionsausbrüche sowie eine Langzeitentwicklung
der gesamten Scheibe präsentiert.
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Chapter 1

Introduction

Stars are important and well studied objects in the universe and thus of great
interest in astrophysics. These objects are born in slow rotating, dense and cold
molecular clouds as a result of a gravitational collapse (Jeans 1902). The conser-
vation of angular momentum leads to the development of a differential rotating
disk of gas and dust around the still forming star (e.g Armitage 2010). In the
following this disk is assumed to be the birthplace of planets.

Since stars are assumed to gain their bulk mass from accretion (Armitage 2010),
and accretion is tightly coupled with the redistribution of angular momentum in
the protostellar disk (DeSouza & Basu 2017), it is important to understand the
physics, that drives these mechanisms. A possible explanation next to gravita-
tional effects can be given by viscous torques. In this context magneto rotational
instabilities (MRI) (Pringle 1981) are widely suggested to be responsible for tur-
bulent viscosity in protostellar disks (Balbus & Hawley 1991). A common method
to parameterize the turbulent viscosity is by using the α-viscosity according to
Shakura & Sunyaev (1973).

A method to treat effects of MRI on accretion, is to divide the disk into two
or more vertical layers (layered disk, Turner et al. 2014), a surface layer, where
X-rays or cosmic rays are the dominant source of ionization (close to the surface)
and a deep layer, where external radiation is unable to contribute to the heating
and thermal ionization is prevalent. These layers can be defined by utilizing an
viscosity model by means of the surface density and the disk temperature. A
commonly used value range for the existence of a deep layer is a surface density
of > 10 − 100 g cm-2 (e.g Armitage 2010, p. 99). While it is assumed that the
surface layer is always ionized to some degree, ionization within the deep layer of
the disk can only occur at a sufficient high temperature.

Parts of the disk are called MRI-active if ionized gas and dust couples with the
magnetic field. Magnetic field lines are dragged along with the rotating material
in the disk and thus get convoluted. Magnetic tensions try to straighten the lines
again. This acts like viscosity and appears as transport of angular momentum
(Balbus & Hawley 1991). MRI-inactive regions within the disk are commonly
known as dead-zones. In such regions of low viscosity, material is likely to be

11
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accumulated and hardly any angular momentum is transported. However, if the
temperature in these dead-zones exceeds a certain threshold, e.g. Tactive = 1500
K (Bae et al. 2013), material is rapidly ionized and a thermal instability (Bell &
Lin 1994) occurs. This thermal instability is responsible for a steep rise in tem-
perature, resulting in an enhanced mass flow (e.g. Audard et al. 2014) and the
onset of a MRI in this region. If the material within the dead-zone is removed,
during this phase of high accretion rate, the mass transport efficiency is reverted
to its initial low value.

A rapid accretion of material onto the star eventually results in an accretion
outburst (noticeable as a spike in the stellar luminosity) that are already ob-
served (e.g. Semkov et al. 2017). The accretion outbursts are assumed to have
periodical nature (Herbig 1977) what supports the assumption of a two phase
mechanism (e.g. thermal instabilities) where the disk changes from a quiet phase
into a eruptive phase (e.g. Turner et al. 1997).



Chapter 2

Stellar Formation

Today it is assumed (e.g. Mihalas & Binney 1981) that the interstellar medium
(ISM) consists of at least 5 phases mainly depending on temperature, density,
extension and degree of ionization. Prerequisite for the formation of molecular
gas is atomic gas and cold, dense, molecular gas is needed to form stars. If
taking the standard formation paradigm for low mass stars into account, stars
form within the cores of molecular clouds of gas and dust. Molecular clouds are
interstellar clouds, high in density and size. Due to these properties they provide
shielding from dissociating radiation (e.g. ultra violet radiation) and permit the
formation of molecules, in general H2 (molecular hydrogen).

Figure 2.1: Color composite of optical (VIS) and near-infrared (NIR) images of the molecular
cloud Bernard 68 by the 8.2m VLT ANTU telescope. Since the dust particles in the cloud
absorb light at these wavelength it is completely opaque. Credits: ESO

The stability of large molecular clouds is supported by magnetic fields (affect-
ing charged particles, ions), thermal pressure (related to the temperature by the
equation of stat for gas) and rotation (outward centrifugal forces, perpendicular
to the rotation axis). Two common mechanisms for the collapse are known as the
Parker (e.g. Parker (1966), Parker (1967)) and Jeans instability (Jeans 1902).
While Parker deals with differential vertical buoyancy of varying-density regions

13



2.1. FIRST COLLAPSE 14

along magnetic field lines parallel to the mid-plane, the theory of Jeans is about
differential in-plane self-gravity of regions with varying surface density (McKee &
Ostriker 2007), without consideration of magnetic field lines. It has shown, that
instability mechanisms without inclusion of magnetic fields are too efficient. How-
ever to trigger a disturbance of the pressure equilibrium and thus the formation
of such overdensities an initial perturbation (e.g. shocks or pressure waves from a
distant supernova or a passing star) is needed. Due to that partial overdensities,
different regions in the cloud satisfy the collapse criterion individually and start
to collapse. This phenomenon is called fragmentation, where many small stars
are formed out of one giant molecular cloud. While not on the main-sequence,
the stellar system is referred to as young stellar object (YSO). The following two
subsection describe the collapse of a molecular cloud to a low/intermediate-mass
main-sequence star.

2.1 First collapse
The first collapse can be divided into two phases, the isothermal collapse (where
fragmentation occurs) and the adiabatic collapse (where fragmentation stops).
The virial theorem (Clausius 1870) which describes the equilibrium between ki-
netic and potential energy, reads as

2Ekin + Epot = 0 . (2.1.1)

By assuming an ideal gas and setting the kinetic energy equal to the thermal
energy Ekin = Eth one can write

Ekin = Eth =
3

2
nkT =

3

2

M

µmH

kT , (2.1.2)

where n is the number density, k Boltzmann’s constant and T the temperature.
For the potential energy, hydrostatic equilibrium of a rotational symmetric spher-
ical cloud

∂P

∂r
= −Gm(r)ρ(r)

r2
, (2.1.3)

and a constant density is assumed so that

m(r) =
4

3
πρ̄r3 . (2.1.4)

An infinitesimal mass element dm thus writes as

dm = 4πρ̄r2dr , (2.1.5)

and the gravitational potential energy can be solved by using Eq. 2.1.4 and Eq.
2.1.5 so that

Epot = Egrav = −
ˆ M

0

Gm(r)

r
dm = −3

5

GM2

R
. (2.1.6)

Substituting Epot and Ekin into the virial theorem (Eq. 2.1.1) and solving Eq.
2.1.5, delivers (for a given chemical composition, density ρ and temperature T )
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the Jeans stability criterion for a non-magnetized cloud. A cloud that exceeds
the Jeans mass MJ (Jeans 1902) will undergo a gravitational collapse.

M > MJ =

(
3

4πρ̄

) 1
2
(

5kT

GµmH

) 3
2

∝ ρ−
1
2T

3
2 (2.1.7)

Given that the majority of young stars is found in multiple star systems (Good-
win et al. 2007) the turbulent fragmentation of clouds into individual collapsing
clumps is preferred over the monolithic collapse scenario where a single cloud
collapses into a giant protostar.

In the first phase, the thermal energy, that is caused by the conversion of grav-
itational potential energy, can be easily radiated away because dust and gas in
the center of the cloud is optically thin and thus transparent to infrared wave-
lengths. The energy is transported radiatively what provides efficient cooling and
thus the temperature of the optically thin cloud persists approximately constant
(isothermal collapse). The timescale on which the gravitational collapse appears,
is the free-fall timescale τff (e.g. McKee & Ostriker 2007).

τff =

√
3π

32Gρ
∝ 1
√
ρ

(2.1.8)

Layers of a collapsing pressure-free, spherical cloud just feel the gravitational po-
tential (collapse under self-gravity), thus falling with higher velocities than the
local speed of sound towards the center. Because the core is initially more dense
than the envelope, the interior collapses much faster than the surrounding. The
collapse spreads from inside to outside and is often referred to as "inside-out-
collapse", where a hot collapsing core is embedded in an envelope of cold molec-
ular gas. The increase in density means a decrease of Jeans-mass for isothermy

MJ ∝ ρ−
1
2 , (2.1.9)

and a declining free-fall time. This means that the small dense fragments start
collapsing on their own and much faster than the overall cloud itself. The con-
traction and (the further fragmentation) also highly depends on the cooling time
scale τc which is dependent on the so called cooling function Λ(T).

Ėth =
d

dt

(
3

2
nkT

)
= −n2Λ(T)→ τc =

3kT

2nΛ(T )
∝ 1

ρ
(2.1.10)

As described by Rees & Ostriker (1977) and later Omukai et al. (1998) the ratio
of the free-fall time scale and the cooling time scale give an important insight to
the further dynamical evolution of the collapsing cloud. As long τff > τc the gas
cools too quick and dynamical processes are unable to adjust the pressure config-
uration in a way that a hydrodynamical equilibrium can be established. Pressure
that acts against gravity gets "lost" and the collapse continues at free-fall time.
But as τff < τc (ineffective cooling) while the cloud cools, the cloud has enough
time to regulate a stable hydrostatic configuration.

The cooling time actually decreases during the collapse as the number density
increases.
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• If the medium is optical thin, the energy can be radiated→ efficient cooling,
rapid contraction

• If the medium gets optically thick, radiation is trapped in the interior and
can only escape from the surface → inefficient cooling, slow contraction

As time passes, the density of the core rises continuously and certainly the cloud
gets opaque to its own infrared radiation. At this point fragmentation also stops
since the rising temperature causes a rise in the Jeans mass MJ and the object
developed a cold photosphere. The heat can no more be radiated and thus the
temperature of the cloud increases. This phase where heat is not exchanged with
the environment and increasing temperature, is called adiabatic collapse. The
rising core temperature eventually is the source of thermal pressure and balances
the gravitational pressure until the dynamical collapse of the core is stopped as
it reaches hydrostatic equilibrium (see Eq. 2.1.3) while the outer layers continue
to collapse isothermal. The YSO (young stellar object) is now called quasi-
static protostellar core (protostar) and appears on the H-R-diagram (Hertzsprung
Russel diagram). Shock waves, generated by still free-falling matter onto the core,
cause further heating of the core. At this time accretion provides the luminosity
of the protostar by converting the gravitational energy into radiation (accretion
luminosity Lacc) and thermal energy (heats the core).

Lacc = η
GMṀ

r
(2.1.11)

The factor η denotes the amount of accretion energy radiated (Hartmann et al.
2016). This parameter is often set to η = 1

2
(Hartmann et al. 2011) and arises

from the assumption that only half of the energy is converted into luminosity and
the other half into thermal energy. The quantity Ṁ is the mass accretion rate.
The accretion of the surrounding gas, generally happens through an accretion
disk. Due to the conservation of angular momentum the initially slow rotating
cloud is accelerated and centrifugal forces build up a disk rather than an spherical
envelope around the small and fast rotating protostar.

2.2 Second Collapse
The shock waves increase the temperature to about 2000 K, high enough to cause
the molecular hydrogen H2 to dissociate into atomic hydrogen H (e.g Bate 2011).
This causes a rise in the specific heat (rise in the degrees of freedom f) and the
first adiabatic exponent Γ1 (that is 7

5
for diatomic molecules such as H2) drops

below 4
3
. This is a critical value for dynamic stability of the equilibrium of the

spherically symmetric core

Γ1 =

(
∂ log P

∂ log ρ

)
S

=
f + 2

f
, (2.2.1)

meaning that the energy which is used for the dissociation does not contribute
to the stabilization of the core against the gravitational collapse anymore. The
so called second collapse sets in. After the dissociation stops and Γ1 = 5

3
(for
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mono-atomic gas) the collapse stops as stability is restored. Further dynamical
collapses can occur e.g. when H or He are ionized (T ≈ 104 K) until the core
of the protostar again reaches a hydrostatic equilibrium. The second hydrostatic
core (stellar core) has developed inside the first core (e.g. Mo et al. 2010). The
dynamical collapse slows down to a quasi-static contraction. This contraction
is much slower than the initial collapse and happens on Kelvin-Helmholtz time
scales. Thus that phase is also often referred to as Kelvin-Helmholtz contraction
(e.g. Kippenhahn et al. 2012).

τKH =
GM2

RL
≫ τff . (2.2.2)

The following phase is a phase of approximately constant (slightly rising) temper-
ature but decreasing luminosity because of less surface area (decreasing radius)
due to the contraction. At that point also accretion slows down and finally stops.
The star is visible in optical wavelengths as its dusty envelope is dispersed, has
nearly acquired its total mass and is now called a pre-main-sequence star as hy-
drogen burning is not just yet ignited. The main contributor to the luminosity
at this stage is no more accretion but gravitational contraction (e.g. Kippenhahn
et al. 2012)

L = 4πr2σSBT
4
eff . (2.2.3)

If the temperature exceeds 5 × 105 − 106 K (e.g Chabrier et al. 2000) nuclear
reactions start and deuterium (in low mass stars M⋆ > 0.1 M⊙) or hydrogen
(for M⋆ > 0.8 M⊙) is fused into helium (3He) by proton capture. The core
heats while the surface cools causing the interior of the protostar to be fully
convective. From Deuterium burning and only in the photosphere the energy
transport remains radiative. The YSO evolves along the Hayashi line in the
H-R-diagram as ∇ > ∇ad. The nuclear energy participates in the heating of
the core and thus in the core’s pressure balance until the deuterium supply is
exhausted and the contraction takes over again. The former convective core
slowly gets dominated by radiative energy transport as the opacity κ̄ ∝ ρT−3.5

(Kramers’ opacity law) decreases due to high temperatures. A star with M >
0.5 M⊙ will now enter the so called Henyey track. Here, the temperature rises
at approximately constant until the luminosity is dominated by nuclear fusion
rather then gravitational energy. Stars with lower mass will directly enter the
main-sequence after leaving the Hayashi line when hydrogen burning starts. As
the core gets dense and the central temperature reaches about 107 K, hydrogen
burning starts in the core and nuclear fusion generates the pressure that finally
stops the collapse. Since pressure balances the gravitational force, hydrostatic
equilibrium is now maintained over the lifetime of the star and the interior of the
star is in radiative and thermal equilibrium.
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Chapter 3

Eruptive Stars: Observation and
Burst Mechanisms

A protostar is a young star, still embedded in its primordial molecular cloud and
gaining mass due to accretion of material within its circuumstellar disk (e.g. Kip-
penhahn et al. 2012). That earliest phase in the stellar evolution lasts for about
0.5 Myr (e.g Dunham et al. 2014) for low-mass stars. The phase starts with the
gravitational collapse of the molecular cloud to stellar densities and ends when
the protostar has developed into a pre-main-sequence star.

Protostars belong to the family of variable stars. A variable star is an object
that changes brightness as seen from earth, thus a variety of objects fit in the
classification of Samus et al. (2001). Two different main categories, namely in-
trinsic and extrinsic stars, exist. While intrinsic stars alter their luminosity due
to processes within the star (e.g. pulsation, explosion, accretion) extrinsic stars
change because of an eclipsing event (e.g. a planet or a companion stars darkens
the object as it moves in front of it). Hence, protostars belong to the class of
intrinsic variable stars.

Observations show a variety in the morphology of the burst and different duration
(Herbig 1977). It is assumed, that this variation depends on the mechanism that
causes the outburst (Hartmann & Kenyon 1996).

19
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3.1 Eruptive Stars
It is assumed that FU Orionis (FUOR) and EX Orionis (EXOR) stars are pro-
tostars, showing large and abrupt increases in their brightness (e.g. Nayakshin &
Lodato 2012) due to a variability in the accretion rate onto the star. Depending
on physical parameters of the star and the disk, the rate and luminosity of the
bursts change.

Figure 3.1: The x-Axis shows the duration of the burst and the y-axis the magnitude of the
burst. A variety of eruptive variable stars showing differences in duration and burst behavior
(Herbig 1977).

They show a large and abrupt increase in their brightness (Nayakshin & Lodato
2012) of about 5 mag or more (Herbig 1977), notable in the optical wavelength
range. Spectral features show strong similarities to F-G super-giants in the opti-
cal (VIS) and to K-M super-giants in the near-infrared (NIR) wavelength range
(Zhu et al. 2007). Both spectra are dominated by a CO overtone absorption (Zhu
et al. 2007), what traces the inner hot (1000−5000 K) disk region (Lee et al. 2016).

It is assumed (Hartmann & Kenyon 1996) that FUOR burst are related with
the transition between T Tauri stars (TTS) with disks disks and TTS with disks
and envelopes, while EXOR burst are associated to instabilities within the disk.

3.1.1 Outbursts Mechanisms

A paradigm behind these outbursts is assumed to be a viscous unstable accretion
disk that alters between a stable (quiescent) and an unstable (eruptive or out-
burst) phase (e.g. Nayakshin & Lodato 2012). Following Hartmann & Kenyon
(1996), the accretion rate can alter between ∼ 10−7 − 10−4 M⊙yr

−1.

The range for the origin of the burst, alters with the utilized model (Zhu et al.
2007).

• Thermal instabilities due to H− opacity in (partially) ionized inner regions
< 0.1 AU of the accretion disk. Since the effective viscosity is propor-
tional to the temperature, mass transfer can be modulated in this way to
reproduced observe outbursts (Bell & Lin 1994).

• Combination of magneto-rotational instability (MRI) and gravitational in-
stabilities (GI), where the region with higher accretion rates extend up to
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0.5 AU (Armitage et al. 2001).

• Accretion of larger clumps in highly gravitational unstable accretion disks
predict an inner radius of 10 AU where increased accretion rates occur
(Vorobyov & Basu 2007).

Spectroscopic analysis suggests, that the innermost disk < 1 AU (Zhu et al. 2008)
is the source of this variable behavior. It is assumed that such bursts can last
about 10− 100 yr (Nayakshin & Lodato 2012) while the time for the onset of the
outburst is in the order of 1 − 10 yr (Zhu et al. 2007). Statistics suggest that a
protostar undergoes about 10 − 20 burst in its life, what is assumed to be the
lower limit (Hartmann & Kenyon 1996).

3.1.2 Thermal Instabilities

Disks with low and intermediate masses (minor percentage of the stellar mass)
will hardly exhibit regions that sustain gravitational instabilities. Hence, thermal
instabilities are widely accepted to account as origin for FU Orionis outbursts (e.g.
Turner et al. (1997), Bell & Lin (1994)). In this scenario, the protostellar disk is in
an early evolution stage, still embedded in its birth cloud, while matter still falls
from the cloud onto the outer edge of the disk. The distribution of mass is highly
coupled to viscosity. At a certain radius close to the star, material piles up and
is irradiated more effectively by the light of the central star due to the increased
scale height. Hence, temperature rises up to approximately 1500 K (Bae et al.
2013) where hydrogen starts to be ionized. Following Beuther et al. (2014) the
thermal instability is connected to a thermal runaway process when the hydrogen
starts to be ionized. The viscous protostellar disk is thermally stable as long as
the opacity changes slowly with temperature. The ionization of hydrogen leads
to drastically increase in opacity with temperature. Hence, a slight increase in
temperature leads to an huge amount of energy trapped with in the disk. This
leads again to an increase in temperature and results in a thermal runaway. Since
viscosity is proportional to temperature (Shakura & Sunyaev 1973)

ν = α
c2S
Ω
∝ α

T

Ω
, (3.1.1)

a high disk temperature can lead to a high accretion rate.
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3.2 Protostellar Disk
As described in the previous chapter, disks are assumed to form as a natural result
of the star formation. As described by e.g. Vorobyov & Pavlyuchenkov (2017),
massive disks change between gravitative stable and unstable periods. While
their stable state the disks appear to be radial symmetric. Even if they become
unstable in outer parts of the disk, the inner most parts still stay stable, because
they hardly become Toomre unstable (Toomre 1964) due to high temperatures
and velocities in these regions. Hence, it is assumed, that they still preserve radial
symmetry. A recent ALMA survey (see. Figure 3.2) supports this assumption.
About 80% of the observed disks show radial symmetry. The remaining 20% are
either too large and heavy and became gravitational unstable or the star resides
in a multi-star system and gravitational or tidal forces disrupted the disk.

Figure 3.2: Sample of high-resolution images of near-by protoplanetary disks observed by
ALMA. Credit: ALMA (ESO/NAOJ/NRAO), S. Andrews et al.; N. Lira



Chapter 4

Basic Physics

Hydrodynamics, or fluid dynamics in general, is governed by conservation equa-
tions for mass, momentum and energy, also known as continuity equations, Navier-
Stokes equations and energy equations (e.g. Tey et al. 2017). Further constituents
can be added for non-homogeneous fluids e.g the conservation of charge. A de-
tailed derivation for the conservation equations can be seen in Landau & Lifschitz
(2019).

4.1 Lagrangian and Eulerian Derivertives
In continuum mechanics the Lagrangian (material) derivative describes the rate
of change of a physical field at the place of the fluid element while carried through
this field by a flux. Therefore, this derivative includes the change of the strength
of the field depending on the spatial location of the particle and a time dependent
change of the field at the spatial location of the particle in the field.

• Eulerian time derivative - temporal rate of change of a given physical prop-
erty of the fluid at a fixed point in a stationary reference system

• Lagrangian time derivative - temporal rate of change of a given physical
property of the fluid within a certain fluid element and thus in a moved
reference system along the fluid with flow velocity

For any macroscopic tensor field ϕ = ϕ(u, t) the Lagrangian derivative is defined
as

Dϕ

Dt
=
∂ϕ

∂t
+ (u · ∇)ϕ , (4.1.1)

where ∂ϕ
∂t

is the local change of the field and describes the explicit time dependency
of the field at a fixed location x while (u · ∇)ϕ denotes the convective change of
the field. Furthermore it describes the additional change which occurs due to the
movement of the fluid element with the flow velocity u = u(x, t).

4.2 System vs. Control Volume
In fluid dynamics the term "system" is used to describe a continuous and ho-
mogeneous mass of fluid, that is conserved within a closed boundary. However,
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the boundary may change and move over time. This refers to the Lagrangian
description.
A mathematically abstract but more convenient description is given by the control
volume approach. Its a fixed region in space where mass, momentum and energy
cross the boundaries of that region, something like a window through which we
can observe the properties of the flow. Performing a balance of mass, momentum
and energy gives a possibility to deduct the net change of properties within this
region. Commonly a fixed control volume is used but in general it can be moving
rotating and also rigid or deformable. The control volume V is bordered by the
control surface S(V ) or ∂V . This description refers to the Eularian description.

4.3 Conservative Axioms in Conservative Form
All governing equations can be written in an differential or integral form. A major
advantage of conservative differential equations is, that they can be integrated at
once on a control volume. The consevative form shows the net change in flux and
the conservation of flux quantities through the control surface

df

dx
= g(x)  

diff. form

←→ f(b)− f(a) =
ˆ b

a

g(x) dx  
int. form

, (4.3.1)

in the one dimensional case. Using common field variables, f = f(t, x1, x2, x3) and
g = g(t, x1, x2, x3) are functions of time and the three dimensional space. Hence,
partial derivatives ∂

∂t
= ∂t for temporal and the ∇-operator (Nabla-operator) for

spatial derivatives are used. To change differentials to surface flux integrals, the
integral theorem of Gauss

ˆ

V

(∇ · F) dV =

˛

S(V )

(F · n̂) dS , (4.3.2)

is suitable.

The quantity F is an arbitrary vector and n̂ again is the unit-normal vector
on the surface element dS. The general equation of continuity for any integrated
physical quantity Φ (also accounts for sinks and sources s), acting on or in this
volume that can contribute to or withdraw something from this quantity.

∂tΦ +∇ · (Φu−D∇Φ) + s(Φ) = 0 (4.3.3)

∂t

ˆ

V

ΦdV = −
˛

S(V)

(Φu−D∇Φ) n̂ dS−
ˆ

V

s(Φ) dV (4.3.4)

The left part of Eq. 4.3.4 represents the rate change of the quantity Φ (scalar
or vector) in the control volume. The middle part of the equation is a flux term
(advection and diffusion) with diffusivity D, showing the amount of Φ moving
across through the boundary surface of the volume S(V ). The right-hand part
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is the so called sink or source term that shows how much of the property Φ is
lost or gained inside the boundary S(V ). In the case of mass, the equation of
continuity states, that the change of the mass inside a given volume only depends
on the mass flux over the boundary of the control volume because there are no
existing sinks or sources where mass is destroyed or produced. Any system that
does not fulfill this requirement (differential operators are "outside" all terms
involving dependent variables) is a non-conservative form. An explanation of the
advantages of the conservative form is given in the Appendix 10.1.1.

4.4 Conservation of Mass

Assuming a control volume filled with a fluid. Since there are neither sinks nor
sources for the mass, the change of mass in time can be simply expressed as

ṁ =
∂m

∂t
= ∂tm . (4.4.1)

The integrated mass is defined as

m =

ˆ

V

ρ dV . (4.4.2)

As a result of the conservation of mass, the mass contained within the volume can
only decrease if a mass flux over the boundary of the volume is established. The
escaping fluid describes a flux written as ρu in the direction n̂ (outward-pointing
unit-normal vector), ˆ

V

∂tρ dV = −
˛

S(V)

ρu · n̂ dS. (4.4.3)

By applying the divergence theorem of Gauss and a short reposition Eq. 4.4.3
can be written as

ˆ

V

(∂tρ+∇ · ρu) dV = 0 . (4.4.4)

This integral yields zero only if

∂tρ+∇ · ρu = 0 (4.4.5)

is valid. This equation is called equation of continuity and shows that the
rate change of the mass inside any control volume V is equal to the amount of
mass that flows in or out this volume across the boundary surface of this volume.
This form is already a conservative form. For an incompressible fluid, where the
density ρ = const., the equation simplifies to ∇ · u = 0. This states that for an
incompressible fluid the volume is conserved.
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4.5 Conservation of Momentum
With similar considerations about a control volume one can derive the equation
of motion (Newton’s second law). Assuming a control volume and a pressure
exerted on a surface element dS on the boundary of the volume. The divergence
theorem of Gauss aims

F = −
˛

S(V )

P n̂ dS = −
ˆ

V

∇ · PdV (4.5.1)

The force F accelerates a mass m within the control volume with Du
Dt

(since the
mass element is inside the control volume the material derivative is used). Using
Newton’s second law F = ma, the integral can be rewritten as

ˆ

V

ρ
Du

Dt
dV = −

ˆ

V

∇ · P dV→
ˆ

V

(
ρ
Du

Dt
+∇ · P

)
dV = 0 . (4.5.2)

Thus the equation of momentum in non-conservative (convective) form reads
as follows

ρ
Du

Dt
+∇ · P = ρ [∂tu+ (u · ∇)u] +∇P = 0 . (4.5.3)

These equations state for a force equilibrium and links the temporal change of
velocity at a certain location with the ambient pressure gradient. Now we can add
several other external forces such as forces due to gravity e.g. the gravitational
force density −ρg. In absence of viscosity the fluid is an ideal fluid without
conduction or dissipation. This can be changed by adding the divergence of the
viscous shear stress tensor ∇ · τ . After some calculations (see Appendix 10.1.2)
the Navier-Stokes momentum equation

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + ρν∇2u+ ρg . (4.5.4)

is attained. The pressure term −∇P denotes that the fluid flow points on the
direction of the largest pressure gradient. The viscous force term accounts for
viscosity controlled velocity diffusion. The gravitational force term contributes
for gravity as external force. Further external forces can be e.g. electromagnetic
forces or forces due to radiation.

A possibility to derive the conservative form of the equation of motion is by
utilizing the mass conservation and reshaping Eq. 4.4.5 to units of momentum.
Adding this to Eq. 4.5.4 gives

u ∂tρ+ u ∇ · (ρu)  
u ·Eq.4.5.4

+ρ ∂tu+ ρ (u · ∇)u = −∇P + ρν∇2u+ ρg . (4.5.5)

Using the chain rule for derivative twice, this equation simplifies to the expression

∂t(ρu) +∇ · (ρuu) = −∇P + ρν∇2u+ ρg . (4.5.6)
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Using the Poisson equation for the gravitational potential in radial symmetry,

△ψ =
1

r2
d

dr

(
r2

d

dr
ψ

)
= 4πGρ , (4.5.7)

the gravitational acceleration can be defined as

∇ψ = −g (4.5.8)

and Eq. 4.5.6 can be written as

∂t(ρu) +∇ · (ρuu) +∇P +∇ ·Q+ ρ∇ψ = 0 (4.5.9)

where Q = −τ is viscous pressure tensor.

4.6 Conservation of Energy
The total energy in a closed control volume remains constant, even if energy
is transformed from one form to another. In general the equation of energy
conservation is suggested by the first law of thermodynamics

∆U = δQ− δW , (4.6.1)

where ∆U is the change in inner energy of a system, δQ is the heat added to the
system and ∆W is the work that is applied by this system to its surroundings.

Following (Landau & Lifschitz 2019) (or in short Appendix 10.1.3) the energy
equation reads

∂t(ρe) +∇ · (ρue) + P∇ · u+Q : ∇u+∇ · q− 4πρκ (J− S) = 0 . (4.6.2)

Here, ρκ is the absorption coefficient, ϵq = Q : ∇u is the viscous energy dissipa-
tion, J is the radiation energy density,and S is the source function.

4.7 Equation of State
To describe the internal structure of gas, an equation of state is necessary. It
relates a set of thermodynamic variables, describing the state of matter under
the conditions given. In the case of an ideal gas it connects pressure P, volume
V and temperature T in the following form

PV = nRT , (4.7.1)

where n is the number of particles and R the universal gas constant. Another
way to express this equation is by using the density ρ and Boltzmann’s constant
k

P = nkT . (4.7.2)

This equation can be rewritten by using n = ρm̄−1 (with the average mass per
particle m̄ = µmH where µ is the unit-less mean molecular weight and hydrogen
atom mass mH)

P = ρ
kT

m̄
(4.7.3)



4.7. EQUATION OF STATE 28

The equation of the speed of sound reads

cs =

√
Γ1
kT

m̄
(4.7.4)

where Γ1 is the first adiabatic exponent (see Eq. 2.2.1) that links the isochoric
cV and isobaric cP heat capacity, thus also known as heat capacity ratio.

Γ1 =
cP
cV
→ PVΓ1 = const. (4.7.5)

Applying Γ1 = 1 for isothermy on Eq. 4.7.4 and substituting this into Eq. 4.7.3
the isothermal equation of state for an ideal gas,

P = ρc2S (4.7.6)

can be obtained. Eq. 4.7.6 is widely used in stellar astrophysics and in this thesis.



Chapter 5

Physics of Circuumstellar Disks

Because of the conservation of angular momentum, the interstellar cloud is not
capable to collapse immediately to stellar densities and thus forms an accretion
disk as natural consequence of the gravitational collapse. A usable quantity
to describe the formation and evolution of a protoplanetary disk is the specific
angular momentum

l = rvϕ,gas = r2Ω =
√

GM⋆r , (5.0.1)

where M⋆ is the mass of the central star, Ω is the angular velocity, r is the dis-
tance from the Star and G is the gravitational constant. For a geometrically thin
disk the angular velocity is equal to that of a Keplarian orbit (Armitage 2010).
Additionally, the specific angular momentum is increasing with the radius of the
disk.

For the disk to evolve, gas has to be accreted inwards towards the central star and
thus has to lose angular momentum. Since angular momentum is a conservative
quantity it cannot be lost but redistributed outwards (Pringle 1981).

In this chapter, I closely follow Armitage (2010).

5.1 Conservation of Angular Momentum

The following chapter illustrates, that a cloud collapses if centrifugal forces are
negligible in the beginning and that this collapse leads to a protostellar disk,
if centrifugal forces become important in the later stages of the collapse. In
this content, the collapse is divided into an initial (collapse of an initial stable
configuration) and final phase (collapse onto a dîsk).

5.1.1 Initial State

The equation of motion consists of terms for inertia, flux, pressure (thermal and
magnetic), magnetic friction and gravity (from left to right).

ρ
∂v

∂t
+ ρ(v∇)v = −∇

(
P +

B2

8π

)
+

(B∇)B
4π

+ ρ∇Ψ (5.1.1)
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It is assumed, that magnetic fields are insignificant shortly before the collapse
due to ambipolar diffusion ("B = 0", see e.g. Armitage 2010) and so magnetic
terms are negligible. Assuming rotational symmetry (spherical symmetry), v ≈ 0
for the flux term. Centrifugal forces are non-relevant for the stability of the core
of the cloud which simplifies Eq. 5.1.1 to

ρ
∂v

∂t
+
∂P

∂r
= ρ∇Ψ = −ρGMr

r2
. (5.1.2)

Taking into account the following assumptions and simplifications

• hydrostatic equilibrium
∂P

∂r
= −ρGMr

r2
(5.1.3)

• the integrated mass

Mr =

ˆ r

0

ρ(r′)4πr′2dr′ (5.1.4)

• the isothermal equation of state.

P = ρc2S (5.1.5)

(where cS is the isothermal speed of sound) the following differential equation can
be obtained.

c2S
∂ρ

∂r
= −ρG

r2

ˆ r

0

ρ(r′)4πr′2dr′ (5.1.6)

The solution in equilibrium yields

ρ(r) =
c2S

2πGr2
∝ 1

r2
, (5.1.7)

a density profile for a state of equilibrium for a non-magnetized, isothermal,
spherical cloud. The cloud rotates and contracts. The conservation of angular
momentum leads to an increase in rotational speed and thus centrifugal forces
are increasing and become more important. At larger distances the gravitational
influence is negligible and thus the equation of motion simplifies to

ρ
∂v

∂t
+
∂P

∂r
≈ 0 . (5.1.8)

Thermal pressure and centrifugal force both tend to expand the system. An
equilibrium van be established when taking Eq. 5.1.8 into account

∂P

∂r
= −ρ∂v

∂t
= ρ

v2rot
r
. (5.1.9)

For the rotational velocity vrot = Ωr a Keplerian orbit is assumed and the cloud
(gas sphere) is treated as rigid rotator Ω ≈ const. By applying Eq. 5.1.5 and Eq.
5.1.7, the thermal radius

Rth =
√
2
cS
Ω
, (5.1.10)
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is obtained. At this radius thermal pressure and centrifugal force are equal.
Values for a stable rotating cloud like T = 10 K, m̄ = 2.33 mp, Ω = 10−14s−1

(τrot = 2× 107 yr) lead to cS = 190 m/s and so Rth ≈ 0.9 pc. This is much larger
than typical radii for collapsing clouds and justifies the assumption of negligible
centrifugal forces in the initial state of a rotational symmetric, non-magnetized,
isothermal cloud. If this would not be the case, the centrifugal forces will prevent
the cloud from collapsing onto a star.

In the initial state of the star formation, gravity overtakes centrifugal forces
to enable a collapse in a molecular cloud. Due to ambipolar diffusion, even
magnetic fields are unable to prevent the collapse.

In the initial state of a collapse, centrifugal forces are negligible because based
on the hydrostatic equilibrium and isothermy a density profile for this state of
equilibrium can be calculated. The conservation of angular momentum yields to
an increase in the rotational velocity. At a certain radius (thermal radius Rth)
the centrifugal force and the thermal pressure, both expanding forces, are equal.
Under realistic circumstances, Rth ≈ 1 pc, that is larger than the extension of the
initial collapsing cloud. Hence, centrifugal forces are initially insignificant and
cannot prevent the cloud from the collapse.

5.1.2 Final State

Due to the assumption of ambipolar diffusion and a low degree of ionization,
magnetic fields are irrelevant during the collapse. Additionally, the pressure in-
creases not as fast as negligible gravitational forces and only centrifugal forces
act against gravity. A mass element forced onto a Keplerian orbit thus complies
an equilibrium between centrifugal and gravitational forces FC = FG

∂P

∂r
= −ρ∂v

∂t
= −ρv

2
rot

r
= −GρMr

r2
. (5.1.11)

The rotational velocity vrot = Ωr for a Keplerian orbit leads to the radius RK and
the velocity vK of a body on such an orbit.

RK =

(
GMr

Ω2

)1/3

(5.1.12)

vK =

√
GMr

r
= Ωr (5.1.13)

Ω =

√
GMr

r3
(5.1.14)

Analyzing Eq. 5.1.14, that the orbital velocity vK(r) is a function of the radius
r. This leads to velocity gradients and thus to friction within the disk. Hence,
viscosity will take a leading part in the further evolution of the protostellar disk.
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Figure 5.1: Geometry of a mass element dm (yellow cube) orbiting a central star (yellow circle)
at a distance r with an orbital velocity vrot = Ωr. The orthogonal radius r⊥ = r sinθ is used to
calculate the differential angular momentum dJ

If not discharged, the angular momentum of an infinitely small mass element dm
is conserved while the collapse goes on. Following the geometry in Figure 5.1,
the differential angular momentum reads

dJ = r⊥vrotdm = r sin θ vrot ρd
3x , (5.1.15)

where the mass element is rewritten as dm = ρdV = ρd3x at a distance of
r sin(θ) of the axis of rotation. In spherical geometry d3x = r2 sin θ dθdϕdr and
vrot = Ωr sin(θ), Eq. 5.1.15 can be solved by using Eq. 5.1.7.

J(r) =

ˆ R

0

dJ =
c2SΩ

G

r3

3

ˆ π

0

sin3 θ dθ =
c2SΩ

G

4r3

9
(5.1.16)

Solving Eq. 5.1.4 by inserting the density profile (see Eq. 5.1.7) leads to

Mr =

ˆ r

0

ρ(r′)4πr′2dr′ =
2c2S
G

r (5.1.17)

By substituting Eq. 5.1.17 into Eq. 5.1.16 the angular momentum can be rewrit-
ten (the leading 2

9
defines a structure factor for the sphere)

J(r) =
2

9
Mrr

2Ω =
2

9
Mrrvrot . (5.1.18)

The mass element dm travels from its initial position at radius ri to its final
position at radius rf . Along its path, the angular momentum is conserved

vrot(ri)ri = v(rf)rf . (5.1.19)

The quantity v(rf) defines the tangential velocity of the mass element at its new
position, and can be written by using vrot(ri) = Ωiri sin θ as

v(rf) =
r2i sin θΩi

rf
. (5.1.20)
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The mass element falls freely from ri until centrifugal FC(rf) and gravitational
forces FG(rf) are equal at the final position rf (until a Keplerian orbit is reached).

FC(rf) = FG(rf)→ sin θ
v2(rf)

rf sin θ
=

GM(rf)

r2f
(5.1.21)

Substituting Eq. 5.1.20 into Eq. 5.1.21 the radius rf of the new position is
obtained. For this step it is considered, that during the collapse onto the disk
the entire mass falls from ri to rf which leads to M(rf) = M(ri).

rf =
(r2iΩi)

2 sin2 θ

GM(ri)
(5.1.22)

At this position the mass element is forced onto a circular orbit (Keplerian orbit)
and cannot exceed this radius because beyond rf the centrifugal force is larger
than the inwards pulling gravitational force. If ri = R is the initial radius of the
initial gas sphere (cloud) then radius rf = RC, is the centrifugal radius RC(θ) and
is a function of the inclination θ of the direction vector to the axis of rotation

RZ(θ) =
(R2Ω)2 sin2 θ

GM
. (5.1.23)

Figure 5.2: The blue contour represents the centrifugal radius for a given orbit and inclination
of the infalling mass element. Mass elements, located perpendicular to r have no angular
momentum (θ = 0) while mass elements at the equator (θ = π/2) have maximal angular
momentum. Thus, the formation of a disk is a natural consequence of the contraction of a
rotating sphere.

A further contraction can now only happen in z-direction.

In the final state, the collapsing cloud enters a gravitational runaway, so neither
magnetic fields nor thermal pressure can act against gravity. Only centrifugal
forces operate as counterpart to gravitational forces. In equilibrium (FG = FC)
an initial (in direction of the star) free falling mass element must reach a certain
radius (centrifugal radius RC(θ) as function of inclination θ in the direction of
the axis of rotation) where it is forced onto a Keplerian orbit. The mass element
cannot exceed RC(θ) because beyond this point FZ > FG. The dependency of
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the angular momentum on θ additionally shows, that an infalling mass element
at θ = 0 has no angular momentum, thus falling in free fall onto the star, while
an element at θ = π/2, has maximal angular momentum and is forced onto the
maximal distance. This process ultimately leads to a disk-like structure.

5.2 Conservation of Energy

During the collapse a reallocation of potential and kinetic energy takes place.
Initially the potential energy dominates in the form of gravitational energy which
is transformed into 50% kinetic energy (orbital energy) and 50% thermal energy
(friction). For the sake of simplicity, radiation due to heat conduction is not taken
into account. The following equation defines the conservation of energy from an
initial state i to a final state f.

Epot,i + Ekin,i = Epot,f + Ekin,f +∆E (5.2.1)

Since the cloud collapses from i to f, the enclosed mass Mr is conserved.

− GMr∆m

ri
+

1

2
∆m(Ωiri)

2 = −GMr∆m

rf
+

1

2
∆m(Ωfrf)

2 +∆E (5.2.2)

By using the Keplerian velocity (see Eq. 5.1.13) the virial theorem is obtained.

Ekin =
1

2
∆m(Ωr)2 =

GMr∆m

2r
=

1

2
Epot (5.2.3)

To permit a collapse FC < FG has to be valid.

(Ωri)
2

ri
<

GMr

r2i
(5.2.4)

During the collapse the cloud contracts considerably which means that rf ≪ ri.
Hence, Ekin,i < |Epot,i| ≪ |Epot,f | and utilizing Eq. 5.2.1, Ekin,i + Epot,i ≈ 0.
Therefore, the right side of 5.2.1 has to cancel out

0 ≈ −GMr∆m

rf
+

1

2
∆m(Ωfrf) + ∆E , (5.2.5)

GMr∆m

rf
≈ 1

2
∆m(Ωfrf) + ∆E . (5.2.6)

This shows that during the collapse half of the potential energy is transformed
into kinetic energy and the other half, namely ∆E, corresponds to the energy
that is radiated due to friction (viscosity)

∆E =
1

2

GMr∆m

r
. (5.2.7)
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5.3 Accretion in Protoplanetary Disks

The accretion disk can be considered as an axis-symmetric, geometrically thin
disk and can be divided into annuli with a certain thickness ∆r at different radii
r. Considering Eq. 5.1.13 different radii rotate at different radial velocities vr =
rΩ(r, t) (assumed to be small) around the star, thus leading to friction between
the annuli, since the disk is a viscous fluid. Friction is energy conservation into
heat and leads to a change in energy, momentum and accretion (inwards moving
of mass). The disk can be described by the density profile Σ(r, t)

Σ =

ˆ +∞

−∞
ρ(z) dz . (5.3.1)

Using the thickness ∆r, the mass within a differential annulus ∆m and the mo-
mentum can be defined as follows

∆m = 2πr∆rΣ(r, t) , (5.3.2)

∆p = 2πr∆rΣ(r, t) r2Ω(r, t) . (5.3.3)

5.3.1 Change of Mass

Due to the conservation of mass, the gas content in one annulus only changes
by an in- or out-flow of gas over the boundaries with the radial velocity vr (per
definition vr < 0). The change of mass δmis defined positive if mass leaves the
annulus and defined negative if mass is added to the mass content in the annulus
(Armitage 2010). Mass enters the annulus over the outer boundary r + ∆r and
leaves it in δt over the inner boundary r in the direction of the star. In this way
mass travels in from one ring to the other and will finally fall onto the star. Using
Eq. 5.3.2 and substituting ∆r → vr(r, t)δt, the evolution of Σ(r, t) can be written
as (e.g. Pringle 1981).

δ

δt
(2πr∆rΣ(r, t)) = 2πr Σ(r, t)vr(r, t)− 2π(r + ∆r)Σ(r + ∆r, t)vr(r + ∆r, t) .

(5.3.4)
Applying further simplifications (e.g. see Appendix 10.1.5), leads to the Equa-
tion of Continuity

r
∂Σ

∂t
+

∂

∂r
(Σ vrr) = 0 , (5.3.5)

where r is the radius of the annulus, Σ is the surface density and vr is the radial
velocity.

5.3.2 Change of Angular Momentum

The change of angular momentum depends on the flow of mass through an an-
nulus. Additionally, a momentum of inertia acts between the differential rotating
annuli due to friction (e.g. Pringle 1981). Using Eq. 5.3.3 and by substituting
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∆r→ vr(r, t)δt, the change of angular momentum reads

δ

δt
(2πr∆rΣ(r, t) r2Ω(r, t)) = 2πr vr(r, t)Σ(r, t) r

2Ω(r, t)

−2π(r +∆r) vr(r +∆r, t)Σ(r +∆r, t) (r +∆r)2Ω(r +∆r, t)

−G(r) +G(r +∆r) .

(5.3.6)

The first two lines in Eq. 5.3.6 resemble for the radial angular momentum, while
the third line stands for the torque exerted from one ring to the adjacent ring due
to viscous friction. Applying further simplifications (see Appendix 10.1.5) lead
to the Equation of Motion

r
∂

∂t
(Σr2Ω) +

∂

∂r
(Σr2Ωvrr) =

1

2π

∂G

∂r
, (5.3.7)

where r is the radius of the annulus, Σ is the surface density, vr is the radial
velocity, Ω is the Keplerian angular velocity and G is the torque.

5.3.3 Viscous Accretion

The friction that is responsible for the torque G is assumed to be caused by viscos-
ity. A liquid that is moving with differential velocity can be divided into multiple
shearing layers with surfaces A at distances ∆x. The difference in velocity and
distance leads to a velocity gradient ∆v/∆x. The force of friction F acts at A,
perpendicular to the x-axis and against the velocity ∆v. This leads to Newton’s
law of friction

F = µQA
∆v

∆x
. (5.3.8)

The viscosity constant is a material property that acts as proportionality constant
µQ and is called dynamic viscosity

µQ = νρ , (5.3.9)

where ν is the kinematic viscosity and ρ the mass density. In an accretion disk
v = vrot and utilizing A = 2πr

´
dh and ∆v

∆r
= rdΩ

dr
("shearing") and Eq. 5.3.1 the

force of friction can be written as

F = 2πr ν

ˆ
dh ρ  
Σ

r
dΩ

dr
. (5.3.10)

As a consequence the torque becomes

G = F r = 2πr Σν r
dΩ

dr
r . (5.3.11)

For Keplerian orbits (by substituting Eq. 5.1.14 in Ω) this leads to

∂G

∂r
= −π

3

∂

∂r

(
νΣ

√
GM⋆r

)
. (5.3.12)
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The substitution (Eq. 5.3.12 into Eq. 5.3.7) leads to a diffusive partial differ-
ential equation for Σ(r, t)

∂Σ

∂t
=

3

r

∂

∂r

[√
r
∂

∂r

(
νΣ
√
r
)]
. (5.3.13)

This can be interpreted as an evolution equation of the surface density in an axis-
symmetric, thin disk with internal angular momentum transport. The diffusive
character of this equation can easily be seen by applying a variable substitution
and assumption of constant viscosity ν Armitage (2010). By defining

X = 2
√
r ,

f =
3

2
ΣX ,

(5.3.14)

Eq. 5.3.13 takes the form of a typical diffusion equation

∂f

∂t
= D

∂2f

∂X2
, (5.3.15)

where D is the diffusion coefficient given by

D =
12ν

X2
. (5.3.16)

Although, a constant viscosity is not necessarily realistic for a protoplanetary
disk, a Green’s function solution and the qualitative illustration of the behavior
of Eq. 5.3.13 is possible. Initial conditions at t = 0 for this problem are given
in (Armitage 2010) where all matter is embedded in a tenuous ring of mass m at
radius r0

Σ(r, t = 0) =
m

2πr0
δ(r− r0) , (5.3.17)

where δ(r − r0) is the Dirac delta function. Boundary conditions that enforce
zero-torque at r = 0 and free expansion at r → ∞ yield (Lynden-Bell & Pringle
1974)

Σ(x, τ) =
m

πr20

1

τ
x−

1
4 exp

[
−(1 + x2)

τ

]
I1/4

(
2x

τ

)
, (5.3.18)

for the time-dependent solution for Eq. 5.3.13. The variables x and τ represent
unitless variables

x =
r

r0
,

τ = 12νr−2
0 t ,

and I1/4 the modified Bessel function of the first kind .

The Equation Eq. 5.3.13 leads to the following conditions:

• An initial annulus of mass broadens in time.

• The major part of mass flows in direction of the star→ accretion. Angular
momentum is transported outwards along with a small amount of mass,
since angular momentum is coupled with mass.
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• For t → ∞ all mass moves to r → 0 and all angular momentum shifts to
r→∞

Figure 5.3 shows the numerical and analytical (e.g Pringle 1981) solution for the
diffusion equation Eq. 5.3.13. The numerical solution was calculated by the
TAPIR code for protoplanetary disks (see e.g. Stoekl & Dorfi 2014).
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Figure 5.3: This figure shows the difference between the analytical (e.g Pringle 1981) and the
numerical solution of the diffusion equation Eq. 5.3.13 for four different time-steps τ0 to τ3.
The horizontal axis shows the radius, normalized to the initial radius of the ring of mass and the
vertical axis shows the normalized surface density. The numerical solution was calculated with
the TAPIR code. It shows how an arbitrary annulus of mass spreads, beginning at an distance
r = r0 from the star. The viscosity ν is constant in this example. Each line represents the disk
advanced in time. The ring spreads in both directions but primary to the left. This represents
that some of the mass travels away from the star (since angular momentum is coupled to mass)
but the net flow of mass is accreted inwards.

5.4 Viscosity in Protoplanetary Disks

A possibility to quantify the efficiency of viscous transport of material is the
viscous timescale (derivation see Eq. 5.5.21). Assuming only molecular viscosity,
and using characteristic values for protostellar disks (see e.g. Armitage 2010, p.
79), the viscous timescale yields

tν ≈
r2

ν
≈ 3× 1013yr . (5.4.1)

This is about 6-7 orders of magnitude higher than the estimated lifetime of the
protoplanetary disk which is of the order of 106 yr (e.g. Armitage 2011). This
emphasizes that if viscosity is important for the evolution of the disk, another
source of viscosity has to exist. A common accepted solution for this problem is
turbulent viscosity (Shakura & Sunyaev 1973).

Usually a variety of instabilities (e.g. gravitational, magentorotational, hydro-
dynamical or convective instabilities) can occur in an accretion disk. Such in-
stabilities cause turbulences that allow an outwards transportation of angular
momentum. The effect of turbulence on angular momentum transport can be
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characterized by the turbulent viscosity, which can be parameterized in the α-
disk prescription (Shakura & Sunyaev 1973). Turbulence plays two significant
roles in protoplanetary disks

1. Turbulence can be responsible for the redistribution of angular momentum
towards the outer edge of the disk due to the exertion of torques on the
disk. This enables accretion towards the central object.

2. Turbulence provide the conversation of gravitational energy into thermal
energy as the mass falls onto the star. This energy dissipation contributes
to the total luminosity and is observable.

The main processes that drive the transport or redistribution of mass and angular
momentum within the disk are

• viscous torques due to turbulences, triggered by magneto-rotational insta-
bility (MRI) (Balbus & Hawley 1991) in the inner regions of the disk and

• gravitational torques due to gravitational instabilities in massive disks, de-
scribed e.g. by Lin & Pringle (1987).

A brief overview of these processes will be given in the following sections.

5.4.1 Shakura-Sunyaev Viscosity Description

In absence of a complete turbulence theory, turbulence is simulated by the kine-
matic viscosity ν (Canuto et al. 1984). At first one can assume that ν is related
to the standard molecular viscosity. Hence, it is the consequence of thermal
collisions between individual fluid elements in the protoplanetary disk. In this
case

ν ≈
√

kBT

m̄
λ = vTλ , (5.4.2)

describes the viscosity as function of a typical thermal velocity vT and the mean-
free path λ of an arbitrary molecule.

The standard Reynolds number for molecular viscosity reads as

Re =
Λυ

ν
, (5.4.3)

where Λ is the characteristic length and υ a characteristic velocity of the fluid.
If Re is sufficiently high, hydrodynamic turbulence sets in. The random eddies
(swirling of a fluid) of this turbulence would cause viscosity, just as random ther-
mal motions cause viscosity on molecular scales. From dimensional arguments,
the turbulent viscosity can be written as

ν ∼ Λtυt , (5.4.4)

where Λt is the size of the largest eddy and υt is the characteristic turbulent
velocity. Assuming a thin disk, the largest eddy cannot exceed the pressure scale
height λ ≤ H (H represents the thickness of the disk). Furthermore, it is unlikely
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that the turbulences will be supersonic because otherwise shocks would form and
the kinetic energy of the turbulent motions would tend to be thermalized. As a
result, the characteristic velocity will stay below the local speed of sound υt ≤ cS.
In their prescription Shakura & Sunyaev (1973) used the dimensionless value
0 ≤ α ≤ 1 to scale these upper limits in the equation for the turbulent, kinematic
viscosity

ν = αcSH . (5.4.5)

Usually the value of α is much lower than unity (Hartmann & Bae 2018).

5.4.2 Magneto-rotational Instability (MRI)

Pringle (1981) stated, that the ordinary molecular viscosity is to inefficient to ex-
plain the angular momentum transfer within the protoplanetary disk. Assuming
a magnetized and perfectly conductive fluid, magnetic forces connect fluid ele-
ments (Chandrasekhar 1960). This can be interpreted as elastic band or spring,
that tend to cause an attractive force proportional to a force exerted onto the
element to displace it. Although this seems to stabilize a stationary system, it
can cause a destabilization in differential rotating systems. This destabilization
mechanism is known as the magneto-rotational instability (MRI) and work only
if the ionization fraction is high enough so that the magnetic field can couple with
the gas. On the other hand, the field has to be weak enough so that in such a
way magnetic tension is not dominant (Armitage 2015). The mechanism behind
MRI is illustrated in Figure 5.4. The importance of this behavior for the theory
of accretion disk and in particular for the generation of a turbulent viscosity was
firstly described by Balbus & Hawley (1991): Assuming a protostellar disk and an
vertical magnetic field that penetrates it. The disk is assumed to rotate deferen-
tially at constant Keplerian angular velocity Ω(r). The magnetic field lines tend
to establish rigid rotation between outwards (in radial direction) displaced fluid
elements, elastically connected by the magnetic field. This happens due to resist-
ing sharing forces. The field now tries to force the element farther away from the
star to rotate at higher velocity than predetermined by its current orbit (and vice
versa for the element closer to the star). Hence, the centrifugal forces, increase
proportional to the velocity, drive the outer fluid element further away, while the
inner element is drawn towards the star. This leads to an interchange in both
mass and angular momentum. However, regions, near the disk mid-plane, are
shielded from external radiation, remain neutral and are not magnetized. These
parts of the disk are of low viscosity and are referred to as dead zone (Gammie
1996).
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Figure 5.4: This figure shows the development of a magentorotational instability within an
Keplarian disk. Initially a uniform vertical magnetic fields penetrates the disk and connects
two fluid elements. The field has to weak enough that magnetic tension is not dominant. Due
to viscous shearing (and differential rotation) in the disk, the inner fluid element advances
(azimuthally) faster than the outer element. Due to magnetic tension along the field line,
angular momentum is transferred from the inner to the outer fluid element, causing further
radial displacement that eventually leads to an radial displacement of the elements and finally
to an instability (e.g Armitage 2015).

MRI and non-linear MHD

Following Latter & Balbus (2012), the protoplanetary disk (PPD) can be divided
in three regions with respect to MRI. Gas in the mid-plane is thermally ionized
by stellar radiation to sufficient levels for MRI to operate but only very close to
the star (< 0.1 AU). From about 0.1 to 1.0 AU, where stellar radiation fails to
ionize the gas, turbulent heating succeeds in providing temperatures needed for
MRI (Gammie 1996; Riols & Lesur 2018). However, this requires initially high
temperatures in this region but if it starts cold (poorly ionized) it will remain
inactive (Latter & Balbus 2012). Beyond 1 AU non-thermal sources are necessary
for ionization e.g. external radiation. It is assumed that this is the inner edge
of the dead zone but as described by Latter & Balbus (2012) the dead zone
can also extend into the “bi-stable” region between 0.1 and 1.0 AU. Moreover, it
is assumed, that at radii beyond 1 AU, non-linear MHD effects like ambipolar
diffusion and Ohmic dissipation tend to quench the effect of MRI (e.g. Lesur et al.
2014). However, in this thesis no non-linear MHD effects are included.

5.4.3 MRI and the Layered Disk Model

The protoplanetary disk can be divided into several vertical layers due to the
temperature, viscosity and MRI-activity (e.g. Armitage 2011).

A simple schematic structure of a layered disk is presented in Figure 5.5. Because
of the low ionization fraction, the angular momentum transport due to MRI is
quenched at radii larger than approximately 1 AU for solar like stars. At these
distances, dead-zone (regions of low viscosity) can form within the protoplanetary
disk. The surface layer of the disk is always partially ionized, either by stellar
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radiation (e.g. X-rays, produced from the generated flares as as consequence of
releasing magnetic energy by reconnection) or external radiation (e.g. cosmic
rays). However, these sources of ionization fail to penetrate to the mid-plane, so
other mechanisms, for example collisional ionization or thermal instabilities (see
Section 3.1.2), are required to increase the transport of matter in these regions.

Figure 5.5: Schematic vertical profile of a layered disk including a dead-zone. The surface layer
is always MRI-active due to stellar or external radiation, while the deep layer close to the star
only becomes MRI-turbulent if it is partially ionized (Armitage 2011).

An example for the numerical implementation of the layered disk model is de-
scribed in Section 8.2.

5.5 Stationary Disk Discussion

For a better understanding of the evolution of the accretion disk one can imagine
the life of the disk as series of snapshots. Looking at one arbitrary snapshot,
all physical quantities remain constant in time. Such a disk model is called
steady-state disk and implies undermost that Ṁ = const. The solution of the
hydrodynamic equations in the steady state leads to the equilibrium structure of
gas, that is orbiting a star in a disk.

5.5.1 Structure

This section describes the structure of a stationary disk in radial and vertical
direction.

Radial Structure

In the steady-state, the equation of continuity can be written as

∂

∂r
(Σvrr) = 0→ 2πΣvrr = Ṁ = const. (5.5.1)
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The radial part of the equation of momentum delivers the orbital velocity of the
disk gas. Using Eq. 5.1.1 for an unmagnetized and inviscid fluid, the equation of
momentum for a stationary, axis-symmetric flow within a gaseous protoplanetary
disk, where the potential is dominated by the star, can be written as (Armitage
2010)

v2rot
r

=
GM⋆

r2
+

1

ρ

∂P

∂r
. (5.5.2)

Substituting the Keplerian velocity (Eq. 5.1.13) the equation reads

v2rot
r

=
v2K
r

+
1

ρ

∂P

∂r
. (5.5.3)

In general, the pressure close to the mid-plane decreases with increasing radius,
leading to a negative pressure gradient. Hence, the rotational velocity of the gas
is slightly less than the Keplarian velocity of a point mass at the same orbit.
Writing the pressure as a power-law

P = P0

(
r

r0

)−n

, (5.5.4)

at reference radius r0 with pressure P0 = ρ0c
2
S yields

vrot = vK

(
1− n

c2S
v2K

)1/2

, (5.5.5)

where
M =

vk
cS

=
r

H

is the Mach number, cS the speed of sound and H the pressure scale height.
Concluding, the deviation of the rotation velocity of the gas from the Keplerian
velocity is of order O(H/r)2. When considering geometrical thin disks, where
H ≪ r and the motion of gas alone, the difference is altogether negligible and
vrot ≈ vK. However, the slightly lower gas velocity results in an aerodynamic
drag and in a decreasing orbital distance of an arbitrary mass element. This is
important for the evolution of solid bodies within the disk (Armitage 2010).

Vertical Structure

The structure of a stationary disk results from radial and angular momentum
conservation and the assumption that the vertical component of gravity from
the star is balanced by the vertical gas pressure gradient → vertical hydrostatic
equilibrium (e.g. Dominik 2015). For the vertical hydrostatic structure two sim-
plifications are necessary (e.g. Armitage 2010):

• Only stellar gravity contributes to the overall potential of the system Mdisk ≪
M⋆, the potential of disk is neglected.

• The vertical scale height is small compared to the radius of the disk, aiming
a geometrically thin disk H≪ r.
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Figure 5.6: Simplified vertical structure of a geometrical thin disk, developed by an equilib-
rium between the vertical component of the stellar gravitation acceleration gz and the vertical
pressure gradient ∂P

∂z (Armitage 2010)
.

In a disk around a star with mass M⋆, a force balance between the vertical com-
ponent of the gravitational potential and vertical pressure gradient at any radius
r is considered at an arbitrary height z above the mid-plane of the disk

∂P

∂z
= gzρ = g sin(θ) ρ , (5.5.6)

Applying the geometry given in Figure 5.6, leads to an equation for the vertical
component of the gravitational, potential and reads

gz = g sin(θ) = − GM

r2 + z2
z√

r2 + z2
. (5.5.7)

Assuming a thin disk (z≪ r), Eq. 5.5.7 can be simplified to

1

ρ

∂P

∂z
= − GMz

(r2 + z2)3/2
≈ −GMz

r3
. (5.5.8)

With the equation of state P = ρc2S, the Keplarian angular velocity Ω and the
vertical scale height H = cS/Ω = rcS/vrot = r/M, Eq. 5.5.8 can be rewritten and
reads

dρ

ρ
=

1

c2S

GM

r3
z dz =

Ω2

c2S
z dz =

1

H2
z dz . (5.5.9)

Integration of Eq. 5.5.9 over z, results in the vertical density profile of the disk

ρ(z) = ρ0e
− z2

2H2 . (5.5.10)

This equation is comparable with the barometric formula. Implementing Eq.
5.5.10 into Eq. 5.3.1 results in

Σ(r) =

ˆ +∞

−∞
ρ0e

− z2

2H2 dz =
√
2πρ0H , (5.5.11)

where the mid-plane density ρ0 can be derived (see. Appendix 10.1.4) as

ρ0 =
Σ

H
√
2π

. (5.5.12)
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5.5.2 Accretion

For a physical explanation of accretion (the process of mass transport towards
the star), we start with the equation of momentum Eq. 5.3.7, neglecting the time
dependent derivative due to stationarity

∂

∂r
(Σr2Ωvrr) =

1

2π

∂G

∂r
. (5.5.13)

Substituting Eq. 5.3.11 into Eq. 5.5.13 and integration leads to the expression,

Σr3Ωvr = r3νΣ
∂Ω

∂r
− C

2π
(5.5.14)

where C is an integration constant.

To obtain C, it is assumed that the magnetic fields of the star couple with the
innermost parts of the disk. Due to this connection and the transport of angular
momentum, the star and the inner parts of the disk start to co-rotate. This is the
transition between the disk and the magnetosphere of the star, and the radius
at this location is called co-rotation radius rco so that r ≥ rco leads to ∂Ω

∂r
= 0

because below rco every annulus of the disk rotates with the same angular velocity
as the star. This assumption defines C, which can be interpreted as like a flux of
angular momentum.

C = −2πrΣvr r rΩ
⏐⏐⏐⏐
r=rco

= Ṁ r vrot

⏐⏐⏐⏐
r=rco

= Ṁ
√

GMrco (5.5.15)

In Eq. 5.5.15 one can use a simple definition for the mass accretion rate Ṁ e.g.
by the equation of continuity in cylindrical symmetry (integrating over the height
of the disk) as written in Eq. 5.3.5.

In the steady-stat disk all temporal derivatives vanish leading to rΣvr = const.
Thus, multiplying rΣvr by 2π results in a constant mass accretion rate Ṁ in a
steady-state disk. The negative sign states negative sign states for the inwards
orientated accretion flow, vr < 0. Therefore, we can define the accretion rate

Ṁ = −2πrΣvr . (5.5.16)

According to e.g Armitage (2010) the integration constant C is often defined as
the flux of angular momentum that is accreted onto the star together with the
mass. For r > rco the rotation is still Keplarian. Substituting Eq. 5.1.14 and Eq.
5.5.15 into Eq. 5.5.14 the mass flux Ṁ and thus by using Eq. 5.5.16, the radial
velocity component vr can be written as

Ṁ = 3πνΣ
1

1−
√

rco
r

= −2πrΣvr , (5.5.17)

vr = −
3ν

2r
(
1−

√
rco
r

) . (5.5.18)



5.5. STATIONARY DISK DISCUSSION 46

Since the co-rotation radius rco is very close to the star, the assumption that
rco ≪ r simplifies Eq. 5.5.17 and Eq. 5.5.18

vr ≈ −
3ν

2r
, (5.5.19)

νΣ ≈ Ṁ

3π
= const. , (5.5.20)

which means that, the accretion rate in a steady-state disk is equal in every
annulus.
In a viscous accretion disk, the viscosity ν adjusts itself to induce the required
mass flux Ṁ at a given surface density Σ and vice versa.

For example, high viscosity in an arbitrary ring causes more friction which leads
to a deceleration of the encapsulated mass and thus a higher accretion rate onto
the star. Typical time scales can be derived by using Eq. 5.5.18.

tν ≈
r

vr
≈ r2

ν
(5.5.21)

The higher the viscosity of the fluid, the smaller tν becomes and thus the viscous
transport is more efficient.



Chapter 6

Complete Set of Physical Equations

The conservation equations and the equation of state, described in Chapter 4,
define a complete system of non-linear, time-dependent equations, which can be
solved numerically. Within the scope of this thesis, self gravity of the protostellar
disk is neglected. More details on the physical content of the equations can be
found in the appendix.

Equation of Continuity

The equation of continuity describes the conservation of mass.

∂tρ+∇ · ρu = 0

In this equation ρ is the density and u is the velocity.

Equation of Motion

The equation of motion describes the conservation of momentum.

∂t(ρu) +∇ · (ρuu) +∇P +∇ ·Q+ ρ∇ψ = 0

In this equation ρ is the density, u is the velocity, P is the pressure, Q is the
viscous pressure tensor and ψ is the gravitational potential.

Equation of Energy

The equation of energy describes the conservation of energy.

∂t(ρe) +∇ · (ρue) + P∇ · u+Q : ∇u+∇ · q− 4πρκ (J− S) = 0

In this equation ρ is the density, u is the velocity, e is the specific energy, Q is the
viscous pressure tensor, q is heat flux due to diffusion, J is the zeroth moment of
the radiation field and S is the source function.
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Equation of State

The isothermal equation of state describes the internal structure of gas.

P = ρc2S

In this equation P is the pressure, ρ is the density and cS is the sound speed. The
equation of state is used to calculate all quantities in z-direction.



Chapter 7

Numerical Methods

Complex systems of partial-differential equations can be solved by using numer-
ical methods. The differential equations of hydrodynamics describe fluid flows
in space and time. The numerical integration of these equations requires the
discretization of space and time and also an adequate discretization of all equa-
tions. A discretization method utilizes a grid to divide the simulated domain into
discrete and finite grid-cells. The integration can be done either by using an im-
plicit or explicit numerical integration schemes. In the first section the numerical
methods for solving physical equations are presented. The second section shows
how physical equations are discretized so that they can be solved by utilizing the
discussed numerical methods.

7.1 Explicit and Implicit Integration Schemes

The system of non-linear, time-dependent differential equations in a simulation
can be solved either by utilizing explicit or an implicit integration schemes. The
main difference between these two methods is how the solution at the new time-
step is obtained. In the explicit case only values at the previous time-steps are
used, while in the implicit case, also values at the new time-steps are applied to
calculate the new values.

Figure 7.1: The variable i denotes for the grid point t for the current time and δt for the time-
step. The picture shows, that the explicit method (left) uses values at three different spacial
grid-pints (i−1, i and i+1) from the old time t to calculate the value at the i− th point for the
new time t+1. In the opposite the implicit method (right) uses old and new values to calculate
the solution for the new time. Credits: Florian Ragossnig

49
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Assuming that xi is the solution vector at the i − th grid point, then the dis-
cretization for a set of equation reads

xi = (x1,i, x2,i, x3,i, ..., xM,i) ,

x = (x1,x2,x3, ...,xN) ,
(7.1.1)

where i ∈ [1,N] is the number of grid points and M is the number of vari-
ables/equations (density, energy, velocity, ...) defined for each grid point.

7.1.1 Explicit Method

For explicit methods assume the following differential equation where F(xi) is an
arbitrary function only of the old solution vector

dx

dt
= F(x) . (7.1.2)

To define the temporal change for the solution vector x in the explicit way, the
differential equation can be rewritten in discretized form as(

dx

dt

)old

≈ xnew − xold

δt
= F(xold) . (7.1.3)

Rewriting this equation, the solution vector for the new time-step xnew yields

xnew = xold + δt F(xold) . (7.1.4)

It can be seen, that the new solution is an extrapolation of the old one, what
makes this method highly dependable from the size of the time-step δt, that is
limited by the Currant-Friedrichs-Levy (CFL) condition (e.g. LeVeque 2002, p.
52),

δt ≤ δx

|u|+ cS
, (7.1.5)

where cS is the local speed of sound and δx the length interval between the grid
points, here in one dimension (note, that the minimal value of the right part
of Eq. 7.1.5 for all grid points is decisive). This condition is a necessary, but
not necessarily sufficient stability criteria while solving the partial differential
equations in this science case. A heuristic description can be done by an example
e.g. a shock that is advected through a grid. The time step is neither allowed to
be as large as the time for the shock needed to be transported to the adjacent grid
point nor to exceed the maximal time for the transport of information defined by
cS. Otherwise, the numerical solution will diverge highly from the true one. As
stated in LeVeque (2002) the numerical solution will change to the true one in
the limit δx→ 0 and δt→ 0.

7.1.2 Implicit Method

On the other hand implicit methods use both, the old and the new solution to
solve the set of equations. Formally this can be written as(

dx

dt

)old

≈ xnew − xold

δt
= F(xold,xnew) . (7.1.6)
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Such systems of equations are usually non-linear and thus cannot be solved in
an explicit way. However, the solution can be approximated iteratively by a root
searching algorithm, e.g. by a Newton-Rhapson iteration. For this reason the
entire system of equations has to be known for the old time (initial value problem).
A set Gm of M equations per grid point can be rewritten for an arbitrary grid
point i ∈ N and at current time (t) as

Gm,i

(
x(t)

)
= 0 m ∈ [1,M] , (7.1.7)

so that they equal zero. This yields a system of N × M equations. For each
grid-point i ∈ [1,N] all equations m ∈ [1,M] have to be solved. Since this system
also has to be valid for the new time (t+1),

Gm,i

(
x(t+1)

)
= 0 m ∈ [1,M] , (7.1.8)

has to be valid too. This system of equations is not linear, hence it cannot be
solved explicitly. However, a Taylor expansion around the old solution xn can
be done to approximate the solution. For an arbitrary gird point i this can be
written as

Gm,i

(
x(t+1)

)
= Gm,i

(
x(t)

)
+

N∑
j=1

∂Gm,i

(
x(t)

)
∂x

(t)
j

(
x
(t+1)
j − x

(t)
j

)
+O

[(
x(t+1) − x(t)

)2]
≈ Gm,i

(
x(t)

)
+

N∑
j=1

∂Gm,i

(
x(t)

)
∂x

(t)
j  

Jm,i

(
x
(t+1)
j − x

(t)
j

) .

(7.1.9)

Where the derivatives denote for elements of the Jacobin matrix Jm,i. This is
clear by writing this in detail

Gm
(
x(t+1)

)
=

⎛⎜⎜⎜⎝
Gm,1

(
x(t+1)

)
Gm,2

(
x(t+1)

)
...

Gm,N

(
x(t+1)

)
⎞⎟⎟⎟⎠

≈

⎛⎜⎜⎜⎝
Gm,1

(
x(t)

)
Gm,2

(
x(t)

)
...

Gm,N

(
x(t)

)
⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
∂Gm,1(x(t))

∂x1
. . .

∂Gm,1(x(t))
∂xN... . . . ...

∂Gm,N(x(t))
∂x1

. . .
∂Gm,N(x(t))

∂xN

⎞⎟⎟⎟⎠
  

Jm

⎛⎜⎜⎜⎝
δx1
...

δxN

⎞⎟⎟⎟⎠ = 0

(7.1.10)

the Jacobian-matrix for a variable m is denoted as Jm and δxi = x
(t+1)
i − x

(t)
i .

By inversion of matrix Jm the solution vector x(t+1)
i for an arbitrary grid-point i

at the new time can be computed by

x
(t+1)
i = x

(t)
i − J −1

m,iGm,i

(
x(t)

)
. (7.1.11)
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Since this is an first order approximation, the above described procedure is re-
peated until a certain accuracy ϵ is attained (e.g. LeVeque et al. 1997)(

|δxi,m|
|xi,m|+ ηi,m

)
≤ ϵ , (7.1.12)

where m = 1...M is the number of the variable/equation (see Eq. 7.1.1). The
value ηi,m ≪ xi,m is introduced to avoid a division by zero.

7.2 Discretization

The numerical integration of differential equations requires a discretization of
space, time and all equations. Therefore, a physical system like a protoplanetary
disk is divided into a number of cells which define a radial grid. The conservative
quantitities (mass, energy and momentum) are redistributed form one cell to
an other during the simulation. To ensure, that the conservation laws are not
violated, an adequate advection scheme has to be utilized. In this section, I
closely follows Stökl & Dorfi (2014) but without taking advantage of the adaptive
grid.

7.2.1 Computational Domain

The computational domain is the space, that extends from the inner boundary
to outer boundary of the protoplanetary disk. Gridpoints are logarithmically
distributed, where the innermost grid point is denoted as i = 1 and the outermost
as i = N. A grid cell can be seen as the minimum spatial resolution which spans
from a grid point i to an adjacent gridpoint i + 1. The discretization of the given
system of time-dependent partial differential equations (see Chapter 6) at a given
grid point i needs (e.g. for the derivatives and differences) also needs solutions
of neighboring grid points. In this thesis a 5-point stencil is utilized to relate the
next two adjacent grid points (see Figure 7.2).

Figure 7.2: Shematic view of a 5-point stencil for a 1D simulation. The term ri represents the
radius at the i− th grid point. Credits: Alexander Stökl.

Following LeVeque (2002), the values calculated in the simulation are defined

• in the middle of a grid cell, if the value is a scalar quantity (e.g. density ρ,
volume ∆V, energy e or temperature T) or

• on the cell boundaries, if the value is a vectorial quantity (e.g. velocity u
or flux).

This method is known as "staggered mesh" and can be seen as two different
grids that superpose as shown in Figure 7.3. The vectorial grid cell or vectorial
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volumina (see Figure 7.3, vect. Vol.) are shifted with respect to the scalar grid
or scalar volumina (see Figure 7.3, scal. Vol.).

Figure 7.3: This figure represents an overall picture of a cylindrical (or spherical) configuration
in one dimension. In this notation npt stands for "number of points" and is referred to as N in
this thesis. Commonly, for a staggered mesh, a scalar quantity, like the density ρ1 for the grid
point i = 1, is defined in the middle of the 1st grid cell. Credits: Alexander Stökl

Figure 7.3 shows that the 5-point stencil extends the physical domain (Gridpoint
i = 3 to i = N − 2) of the protoplanetary disk by two additional grid points at
the inner and outer boundary. The first tow grid points i = 1, 2 and the last two
grid points i = N − 1,N are referred to as "ghost cells" and are not part of the
physical disk but keep the Jacobi-matrix structure simple. Ghost cells have zero
volume and are described via a set of boundary conditions (see Section 7.2.2).

7.2.2 Boundary Conditions

In reality, the protostellar disk, the central star and the environment oft this sys-
tem are highly coupled. In disk simulations it is elaborate to consistently simulate
a star and the interstellar environment. Instead of that, the numerical domain
is limited to the protostellar disk and boundary conditions are utilized to specify
the equations on the outer edge of the disk.

The boundary conditions have to be chosen carefully since they have high impact
on the evolution of the protoplanetary disk (Ragossnig et al. 2019a). The proper
definition of the inner and outer boundary of the protostellar disk is hard to
specify. The inner boundary of the disk is highly coupled to the stellar magnetic
field and rotational speed of the star. Inevitably, the disk eventually couples to
the central star, so additionally stellar parameters like, stellar mass, radius and
luminousity have high impact onto the inner edge of the disk. The outer bound-
ary is in principle defined by the transition to ISM (interstellar medium) values
and the ambient temperature. Moreover, the implicit nature of the code and the
associated matrix inversion (see. Chapter 7.1) requires boundary conditions that
keep the matrix regular. Otherwise an inversion would not be possible.

The definition of the boundary conditions depends on the actual problem and
thus multiple interpretations are possible. This work implements the following
definitions.
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• Constant boundary values: In this case the innermost (i = 1) and outermost
(i = N) grid points are set to a constant value xinner and xouter, respectively.
This has to be defined for each equation m.

Gm,1 = 0 = x1 − xinner

Gm,N = 0 = xN − xouter

• Zero gradient at the outer boundary: In this case the values for two adjacent
cells are set equal, to ensure a zero gradient.

Gm,1 = 0 = x1 − x2

Gm,N = 0 = xN − xN−1

An example for the zero gradient boundary is to ensure a pressure-less flow over
the boundaries of the disk.

7.2.3 Advection

The equations of hydrodynamics (see Chapter 6) are formulated as conservative
equations. Hence, the quantitities (mass, momentum and energy) described by
these equations, are conserved during any physical process. Considering a phys-
ical process of a flowing fluid it is important to use methods that do not violate
the conservation laws if this process is described in a finite numerical space. This
advection step is illustrated in Figure 7.4.

Figure 7.4: A conservative quantity q within a cell (space between the dashed lines) is trans-
ported to the adjacent cell from time t = t0 → t1. During that flux from one to an other
cell (denoted with the arrows in the middle plot) this quantity has to be conserved. Credits:
Florian Ragossnig

The simplest scheme, that facilitates the conservation of flux, is the Donor-Cell
advection (e.g. LeVeque 2002). This scheme assumes, that the conserved quantity
q remains constant within a cell. Considering a flux Fi across the boundary
of a cell i with a velocity ui, the direction of the flow depends on the sign of
the velocity. Depending on the selected coordinate system, the matter flows
in the positive direction if ui > 0 or in the negative direction if ui < 0. For
explicit integration schemes, the time-step t = t0 → t1 is limited due to the CFL
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condition (see Chapter 7.1) to ensure, that the time-step is is smaller than the
velocity/sound-crossing time through a computational cell.

Fi =

{
q̃iui for ui < 0

q̃i−1ui for ui > 0

where q̃ is the advected quantity. In this case a positive direction of counting (left
to right) from x1 at the inner to xN at the outer boundary is utilized. Note that
scalar quantities (e.g. mass, energy, ...) are defined in the middle of a grid cell, so
q̃ = qi+1/2 (see staggered mesh, Subsection 7.2.1). The calculation of the flux for
the Donor-Cell advection scheme is illustrated in Figure 7.5. For the transport of
a scalar quantity with a velocity ui < 0 across the cell boundary i, the quantity
to the right of this border is used to calculate the flux F− = q̃iui (e.g. mass is
accreted towards the star, if the radius increases from the center of the star to
the outer edge of the disk).

Figure 7.5: A conserved quantity q̃ remains constant within a cell. Depending on the direction
of flow across an arbitrary cell boundary i, the quantity left (q̃i−1) or right (q̃i) is used to
calculate the flux Fi. Credits: Florian Ragossnig

Although this scheme is easily applicable it is a first order advection scheme and
thus very diffusive. In this thesis, the a second order advection scheme developed
by van Leer (1977) is used to compute the flux, which modifies the advected
quantities by constructed internal slopes.

7.2.4 Scalar Discretization

Figure 7.6: Discretization of a volume for scalar quantities (in the following section, VS = Svol,i).
Credits: Alexander Stökl

Scalar volume element

Figure7.6 shows the scalar discretization of the integration volume. The arrows
indicate the direction the flow (positive velocities). The volume inside a cell
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between ri and ri+1 reads
Svol,i = π

(
r2i+1 − r2i

)
. (7.2.1)

Scalar flux element

The advected volume, which is transported over the cell boundaries a flux element
is defined as

Sflux,i = 2πriuiδt = Siuiδt , (7.2.2)

where δt represents the time step and Si = 2πri the element of the annulus at ri

7.2.5 Vectorial Discretization

Figure 7.7: Discretization of a volume for vectorial quantitities (in the following section, VV =
Vvol,i). Credits: Alexander Stökl

Vectorial volume element

Vvol,i = π
(
r2
i+ 1

2
− r2

i− 1
2

)
=
π

2

(
r2i+1 − r2i−1

)
(7.2.3)

where

r2
i+ 1

2
=

1

2

(
r2i + r2i+1

)
(7.2.4)

By adding π
2
(r2i − r2i ) to the left and right hand side of Eq. 7.2.3 gives

π

2

(
r2i+1 − r2i−1

)
+
π

2
(r2i − r2i ) =

π

2
(r2i+1 − r2i  

Svol,i/π

+ r2i − r2i−1  
Svol,i−1/π

) , (7.2.5)

and thus Vvol can be expressed with the corresponding scalar volumes

Vvol,i =
1

2
(Svol,i + Svol,i−1) . (7.2.6)

Vectorial flux element

The advective volume flux is calculated analogous to Sflux,i

ui+ 1
2
ri+ 1

2
=

1

2
(uiri + ui+1ri+1) , (7.2.7)

Vflux,i = 2πri+ 1
2
ui+ 1

2
δt = π (uiri + ui+1ri+1) δt . (7.2.8)
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7.2.6 Integrated and Derived Quantities

The discretization of the integrated complete set of conservative equations (see
Chapter 6) requires also the discretization of volume integrated, derived and
advected quantities. This is possible by utilizing the discretization rules described
in the subsections 7.2.4 and 7.2.5. If Φ is a scalar quantity Svol,i (the scalar volume
element) and Sflux,i (the scalar flux element) are used and vice versa for a vectorial
quantity.

Integral over the Control Volume

The integral of a scalar quantity over the control volume readsˆ

V

ΦdV⇒ ΦiSvol,i . (7.2.9)

Partial Temporal Derivative

The partial temporal derivative of a scalar quantity can be expressed as

∂

∂t
Φ = ∂tΦ⇒

δ

δt
Φi =

1

δt

(
Φi − Φold

i

)
, (7.2.10)

where stands δt for the time step, Φi for the value at the new, Φold
i the value at

the old time at the grid point i.

Volume and Advection Term

The conservation of mass, momentum and energy is basically described by a
volume and an advection term (e.g. Landau & Lifschitz 2019). The volume term
can be discretized as

∂

∂t

ˆ

V

ΦdV ≈ 1

δt

⎡⎢⎣
⎛⎝ˆ

V

ΦdV

⎞⎠−
⎛⎝ˆ

V

ΦdV

⎞⎠old
⎤⎥⎦ (7.2.11)

where Φ stands for the value at the new and Φold the value at the old time step.
Utilizing Eq. 7.2.9 to discretize the remaining integral leads to an expression for
the discretized volume term, that reads

∂

∂t

ˆ

V

ΦdV⇒ δ

δt
ΦiSvol,i =

1

δt

(
ΦiSvol,i − Φold

i Sold
vol,i

)
. (7.2.12)

The advection term is defined as the integral over the boundary surface of the
integration volume with flux Φu. The replacement S→ Sflux is done by utilizing
Eq. 7.2.2.˛

∂V=S(V)

Φu · n dS⇒ Φi+1ui+1Si+1 − ΦiuiSi = Φi+1
Sflux,i+1

δt
− Φi

Sflux,i

δt
(7.2.13)

Using this scheme, all equations of RHD (see Chapter 6) can be discretized.
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7.2.7 Discretization of the Equation of Continuity

The procedure when discretizing the physical equations (see Chapter 6) will be
first demonstrated on basis of the equation if continuity. Thus, utilizing the
integrated form and identifying temporal difference and the advection form, Eq.
4.4.3 reads

∂

∂t

ˆ

V

ρ dV

  l1
+

˛

∂V=S(V )

ρu · n dS

  l2
= 0 . (7.2.14)

Applying the discretization of the volume term l1 (Eq. 7.2.12) and the advection
term l2 (Eq. 7.2.13) gives

l1 :
1

δt

(
ρiSvol,i − ρoldi Sold

vol,i

)
, (7.2.15)

l2 : ρ̃i+1
Sflux,i+1

δt
− ρ̃i

Sflux,i

δt
. (7.2.16)

After reorganizing and multiplying by δt, the discrete form of the equation of
continuity reads

ρiSvol,i − ρoldi Sold
vol,i + ρ̃i+1Sflux,i+1 − ρ̃iSflux,i = 0 . (7.2.17)

A quantity Φ̃ is advected with the flux Svol depending on the used advection
scheme (see Subsection 7.2.3).

7.2.8 Discretization of the Equation of Motion

Due to the geometry of a protostellar disk, the equations are written in cylindri-
cal coordinates. Hence, the equation of motion is splitted into an r-component
(radial) and φ-component (toroidal). Since similar considerations are done for
both, just the radial component is discussed in the following. The integration
form of Eq. 4.5.9 reads

∂t

ˆ

V

ρu dV

  l1
+

ˆ

V

∇ · (ρuu)ndS

  l2
+

ˆ

V

∇P dV

  l3
+

ˆ

V

ρ∇ψ dV

  l4
+

ˆ

V

∇ ·Q dV

  l5
= 0 ,

(7.2.18)
where

∇ψ = −GM⋆

r2
. (7.2.19)

The discussed discretization scheme is utilized on l1 to l5 . Due to the staggered
mesh, spatial differences are defined between gird points (i + 1) and (i) for scalar
and between (i) and (i− 1) for vectorial volume elements.

l1 :
δ

δt
(ρiuiVvol,i) =

1

δt

(
ρiuiVvol,i − ρoldi uold

i Vold
vol,i

)
(7.2.20)



7.2. DISCRETIZATION 59

The equations are solved in cylindrical coordinates, thus the divergence in l2 has
to be rewritten. The r-component reads

[∇(ρuu)]r =
1

r
∂r (rρurur)−

ρuφuφ

r
, (7.2.21)

if skipping the derivatives ∂φ and ∂z. Integration over the cell volume leads to

ˆ

V

[∇(ρuu)]r dV =

r̄iˆ

r̄i−1

1

r
∂r (rρurur) 2πrdr−

ˆ

V

ρuφuφ

r
dV , (7.2.22)

where the first term can be identified as advection term and the second one as
centrifugal force. Discretization aims

2π∆(r̄ρūr)−
ρuφuφ

r
Vvol , (7.2.23)

for the right part of Eq. 7.2.22, where r̄ and ūr denote for radii and velocities at
half indices. The spatial difference ∆ denotes for the difference between values
at grid point i and i − 1, because the velocity is a vectorial quantity. By using
Eq. 7.2.8 the first part can be written as

p̃i
Vflux,i

δt
− p̃i−1

Vflux,i−1

δt
where p̃n = ρnun . (7.2.24)

For the second part Vvol is expressed by the scalar volume element Svol using Eq.
7.2.6 and thus reads

1

2ri

(
u2
φ,iSvol,i + u2

φ,i−1Svol,i−1

)
ρi . (7.2.25)

For the discretization of the gas pressure term it is necessary to write the gra-
dient in cylindrical coordinates and dropping every derivation besides the radial
component. Utilizing an isotropic gas pressure, the gradient in l3 reads

∇P = ∂rP =
∂P

∂r
. (7.2.26)

Integration is easier if the transformation dV = 2πr dr is done, the integral can
be rewritten asˆ

V

∂P

∂r
dV =

ˆ
r

∂P

∂r
2πr dr ≈ 2πr

ˆ
r

∂P

∂r
dr⇒ 2πri(Pi − Pi−1) . (7.2.27)

The gas pressure P has to be integrated in z-direction in principle. This can
be done by using the scale height HP and the same procedure utilized for the
calculation if the mid-plane density (see Eq. 5.5.12). Hence, the z-integrated gas
pressure in the disk can be expressed by the mid-plane gas pressure P0 using

Pi = P0,i

√
2πHP,i , (7.2.28)

for an arbitrary grid point i. Thus

l3 : 2πri
√
2π (P0,iHP,i − P0,i−1HP,i−1) , (7.2.29)
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l4 : −ρi
GM⋆

r2i
Vvol,i . (7.2.30)

In the following the viscous pressure term is discretized. The definition of the
viscous pressure tensor (see 10.1.12) reads

Q = µQ

[
[∇u]s − 1

1

2
∇ · u

]
, (7.2.31)

where [∇u]s is the symmetric velocity gradient. Utilizing the description of
Tscharnuter & Winkler (1979) in cylindrical coordinates, the radial component
of the divergence of the viscous pressure tensor can be written as(

∇ ·Q
)
r
= −2

r

∂

∂r2

[
r2µQ

1

2

(
∂ur
∂r
− ur

r

)]
, (7.2.32)

where µQ is the dynamic viscosity. To discretize the differential operator in the
equation above Eq. 7.2.3 is used and rewritten as difference,

Vvol,i = π
(
r2
i+ 1

2
− r2

i− 1
2

)
→ Vvol = π∆(r̄2) , (7.2.33)

where r̄ denotes for radii at half indices. Thus, the differential operator in Eq.
7.2.34 can be discretized as

∂

∂r2
→ ∆

∆r̄2
=

π

Vvol

∆ . (7.2.34)

To calculate vectorial and scalar quantities at the same discrete location, it is
important to treat quantities in spatial differences (denoted by ∆) in Eq. 7.2.32
correctly if replacing the differential operator by Eq. 7.2.34. The ∆ alternates
between whole and half indices. Hence, defining Eq. 7.2.32 at the i − th grid
point, the expression 2

r
outside the brackets becomes 2

ri
, while the radius in the

brackets needs to be a half quantity (r2 → r̄2 = r2
i+ 1

2

) so that the same discrete
location i is attained after taking the difference. The velocity term has to be
treated the same way. Thus Eq. 7.2.32 can be approximated by(

∇ ·Q
)
r
≈ −2

r

π

Vvol

∆

[
r̄2µQ

1

2

(
∆ur

∆r
− ūr

r̄

)]
. (7.2.35)

We can approximate the integral l5 and substitute Eq. 7.2.35 afterwards into
this equation.

ˆ

V

∇ ·QdV ≈
(
∇ ·Q

)
r
Vvol = −

π

r
∆

[
r̄2µQ

(
∆ur

∆r
− ūr

r̄

)]
(7.2.36)

l5 :
π

ri

[
µQ,i

(
r2i+1 + r2i

2

)
Ur,i − µQ,i−1

(
r2i + r2i−1

2

)
Ur,i−1

]
(7.2.37)

where Ur,n for n either i or i − 1 denotes for the velocity term. Recalling Eq.
7.2.7, the velocity at half index i + 1

2
can be written as

ui+ 1
2
=

1

2

(uiri + ui+1ri+1)

ri+ 1
2

→
ui+ 1

2

ri+ 1
2

=
1

2

(uiri + ui+1ri+1)

r2
i+ 1

2

(7.2.38)
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Substituting Eq. 7.2.4 into the equation above gives

ui+ 1
2

ri+ 1
2

=
uiri + ui+1ri+1

r2i + r2i+1

(7.2.39)

for the ratio between the velocity and the radius for half indices. Using this
formalism the velocity term in r-direction can be discretized as follows.

Un =
un+1 − un

rn+1 − rn
− unrn + un+1rn+1

r2n + r2n+1

(7.2.40)

The discretization of µQ is also described by Tscharnuter & Winkler (1979), read-
ing

µQ = −q1λcS + q22λ
2max(−∇ · u, 0) (7.2.41)

where λ is a typical viscous length. The variables q1 and q2 are weights for linear
and quadratic viscosity, respectively.

7.2.9 Discretization of the Equation of Energy

Ignoring the heat due to diffusion q, the integration of Eq. 4.6.2 leads to

∂t

ˆ

V

ρe dV

  l1
+

˛

∂V=S(V )

ρuen dS

  l2
+

ˆ

V

P∇ · u dV

  l3
+

ˆ

V

Q : ∇u dV

  l4
− 4π

ˆ

V

ρκ (J− S) dV

  l5
= 0 .

(7.2.42)

Since the energy is a scalar quantity, the scalar volume element for the i− th cell
VS,i is used for the discretization. The terms l1 and l2 in discretized form read

l1 :
δ

δt
(ρieiSvol,i) =

1

δt

(
ρieiSvol,i − ρoldi eoldi Sold

vol,i

)
, (7.2.43)

l2 : b̃i
Sflux,i

δt
− b̃i−1

Sflux,i−1

δt
where bn = ρnen . (7.2.44)

For term l3 , the pressure P is considered as averaged value for the respective
discretized volume. Hence, P can be drawn out of the integration and thus reads

ˆ

V

P∇ · u dV ≈ P

ˆ

V

∇ · u . (7.2.45)

Since the equations are calculated in cylindrical geometry,∇·u has to be rewritten
as

∇ · u =
1

r
∂r (rur) . (7.2.46)
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Using these results, integration of over the scalar cell volume in cylindrical geom-
etry yields

P

ˆ

V

∇ · u = P

ri+1ˆ

ri

1

r
∂r (rur) dr⇒ 2Piπ (ri+1ur,i+1 − riur,i) . (7.2.47)

Utilizing Eq. 7.2.28 to represent the z-integrated gas pressure by the mid-plane
gas pressure the last equation can be assigned as

2πP0,i

√
2πHP,i (ri+1ur,i+1 − riur,i) . (7.2.48)

The last step to complete l3 is to add a term describing the expansion in z-
direction.l3 : 2πP0,i

√
2πHP,i (ri+1ur,i+1 − riur,i) + P0,iSvol,i

(
HP,i − Hold

P,i

)
(7.2.49)

For l4 the velocity tensor ∇u and Eq. 7.2.31 are used. Simplification aims

Q : ∇u ≈ −µQ

2

[(
∂rur −

ur

r

)2

+
(
∂ruφ −

uφ

r

)2
]
. (7.2.50)

The discretization is similar to Eq. 7.2.32 by rewriting the differential operator
into differences. The right part of the last equation reads,

− µQ

2

[(
∆ur

∆r
− ūr

r̄

)2

+

(
∆uφ

∆r
− ūφ

r̄

)2
]
. (7.2.51)

Further discretization yields,

l4 : −µQ,i

2

(
U2

r,i +U2
φ,i

)
Svol,i , (7.2.52)

where the velocity terms Ur,i and Uφ,i are discretized using Eq. 7.2.40.

For l5 some simplifications are necessary (Ragossnig et al. 2019a). If only con-
sidering the dominant terms of the radiation equations the simplification

κρ(J− S) = −∇ ·H (7.2.53)

and
κρH = −∇ ·K ≈ ∇ (feddJ) (7.2.54)

where fedd is the Eddington factor, H is the first moment (radiation flux) and K
is the second (radiation pressure) moment of the radiation transport. Skipping
all derivatives beside the radial, Eq. 7.2.54 reads

∇ ·H ≈ 1

r
∂r (rHr) . (7.2.55)

Utilizing Eq. 7.2.53, the integral l5 reads

− 4π

ˆ

V

ρκ (J− S) dV = 4π

ˆ

V

∇ ·H dV =

ri+1ˆ

ri

dr

πˆ

−π

r∇ ·Hdφ , (7.2.56)
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and can be solved by substituting Eq. 7.2.55

ri+1ˆ

ri

1

r
∂r (rHr) 2πr dr = 4π2π∆(rHr) . (7.2.57)

This equation can be expressed by the mid-plane radiation flux H0 in the station-
ary limit. After further simplifications Eq. 7.2.57 reads

4π2π∆(rHr)→ 8π2
√
2πHP∆(rH0) , (7.2.58)

where HP is the pressure scale height. Assuming, that pure radiation diffusion
terms are more significant then time depended terms in the radiation flux equa-
tion, its simplified discretized version for and isotropic flux, fedd = 1

3
reads

2

3
rσ∆

(
T4

)
+ κRρ0H0Vvol = 0 . (7.2.59)

This gives an expression for H0 by rearranging Eq. 7.2.59 equation

H0 = −
2
3
rσ∆(T4)

κRρ0Vvol

. (7.2.60)

Substituting Eq. 7.2.60 into Eq. 7.2.58 the discretization of l5 is obtained

l5 : 8π2
√
2πHP∆

( 2
3
r2σ∆(T4)

κRρ0Vvol

)
. (7.2.61)

In the last step, the difference operator ∆ has to be discretized (see e.g. Section
7.2.8).

Additionally, a term,

∆E = Eirr − Ecool + Eamb + Fvert , (7.2.62)

considering the contribution of the stellar radiation Eirr, energy loss due to cooling
Ecool, the influence of the ambient temperature, covered in Eamb and the vertical
energy transfer Fvert has to be added to the equation of energy. Assuming the
optical thin case, where the temperature within the disk adjusts to the value of
the mid-plane temperature, as well as black body radiation, the vertical energy
term can be neglected and the individual discretized energy terms can be written
as

Eirr = 4πκPρ0
√
2πHP

σ

π
T4

⋆Svolδt (7.2.63)

Eamb = 4πκPρ0
√
2πHP

σ

π
T4

ambSvolδt , (7.2.64)

Ecool = 4πκPρ0
√
2πHP

σ

π
T4

0Svolδt and (7.2.65)

where κP is Planck’s opacity and Tamb is the ambient temperature. In the optical
thin case, the gas within the disk cools according to the mid-plane temperature
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T0, there is no explicit surface temperature Tsurf . T⋆ is the temperature of the
stellar radiation field an can be expressed by

σT4
⋆ =

L⋆

4πr2
, (7.2.66)

and also the equilibrium temperature if heating and cooling happens in the same
cross-section. Summarizing the individual contributors to the energy and after
some simplifications the additional energy term ∆E can be written as

∆E = 4πκPρ0
√
2πHP

(
σT4

0 − σT4
amb +

L⋆

4πr2

)
. (7.2.67)



Chapter 8

Simulation and Model Description

In this chapter the setup of the numerical simulation and model of the protoplan-
etary disk are described.

The TAPIR (The AdaPtive Implicit Radiation-hydrodynamics) Code (e.g. Ragoss-
nig et al. (2019a); Stoekl & Dorfi (2014)) is an implicit 1+1D code. It uti-
lizes axial-symmetry to solve the equations of radiation hydrodynamics (RHD,
see Chapter 6) in radial direction. Even though the model is limited to axis-
symmetry, recent ALMA observations (see Section 3.2) and other disk model
results (e.g. Boss & Hartmann (2001); Vorobyov (2010); Yorke & Bodenheimer
(1999)) suggest, that protostellar disks spend most of their lifetime in an axis-
symmetric state.
In further assumption the protostellar disk is geometrically thin (H ≪ R), so
that a vertical force balance (hydrostatic equilibrium) above the disk mid-plane
defines the vertical structure of the disk. Hence, the physical quantities can
be calculated by integration in z-direction utilizing the equation of state (EOS)
(Ragossnig et al. 2019a).
For geometrical thin disks and high stellar radiation flux, the temperature rises
to several 1000 K in the inner region of the disk (Kamp & Dullemond 2004). This
high temperatures and low disk masses (Mdisk/M⋆ ≈ 1%), ensure no gravitational
instabilities (Q > 1, Toomre (1964)) and thus a 1+1D description is sufficient to
investigate the long term evolution of disks (Ragossnig et al. 2019a).
The aim of the simulation is to show, that accretion outbursts (e.g. FU-Ori
bursts, see Section 3.1) can be triggered by thermal instabilities. This requires a
non-constant disk viscosity to account for regions of low viscosity (dead-zones).
The viscosity model follows the description of Shakura & Sunyaev (1973) and is
described in Section 8.2.

8.1 Initial Model

An implicit integration scheme requires an initial model, that represents a solu-
tion which is a full solution of the underlying RHD equations of the numerical
problem. The convergence of the simulation to a physical solution can be ensured
by a well choosed initial model (Dorfi & Drury 1987; LeVeque et al. 1997).

65
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Note, that the following methods are only pseudo-iterations to generate a proper
initial model. This is rather a numerical trick than actual physics.

The initial disk is assumed to exhibit a constant density distribution (e.g Bath
& Pringle 1981)

Σ(r) = Σ0 r
−n ,

where n = 0, r is the radius and Σ0 is the surface density at the outer boundary
of the disk. Stellar parameters, like luminousity L⋆, mass M⋆ and radius R⋆ are
specified according to e.g. Palla & Stahler (1991). An initially constant radial
velocity ur = const. and an angular velocity equally to the Keplarian velocity
(uφ = uK) is assumed. The position of the inner and outer boundary is hard to
specify (see Subsection 7.2.2). In this thesis the outer radius is set to the position
where the disk density drops below the averaged density of the ISM. The inner
radius is set to the co-rotation radius rco. At this point the stellar rotation is
equal to the angular velocity of the disk and mass is assumed to be accreted onto
the star in free-fall. This represents a physical boundary of the disk. Following
Ragossnig et al. (2019b), the stellar rotation period can be defined as fraction of
the Keplarian orbital period on the stellar surface ΩK,⋆

Ω⋆ = βΩK,⋆ , (8.1.1)

where β = 0.1 for stars with masses between 0.1 M⊙ < M⋆ < 2.0 M⊙. Hence, the
co-rotation radius reads

rco =

[
GM⋆

(βΩK,⋆)
2

]1/3

. (8.1.2)

For T Tauri stars, stellar periods of 2 days (Herbst et al. 2001) are usual. This
yields rco = 0.025 AU for a star with M⋆ = 1 M⊙.

A stepwise adjustment of an initially arbitrary model ensures a convergence to-
wards the final physical solution. The first step enables the disk to adjust ther-
mally to the stellar environment (thermal relaxation) without considering a fluid
flow. In the second step pressureless in and outflow conditions are established so
the disk can evolve thermally and dynamically until a steads state, viscous initial
disk is achieved (cf. Ragossnig et al. 2019b).

All initial disks in this thesis contain 1% of the host stars mass to prohibit the
existence of gravitational unstable regions within the disk (Toomre 1964).

8.2 Viscosity Model

The dynamic viscosity µ (see Eq. 5.3.9) is linked to the kinematic viscosity ν by
the column density of the fluid in the disk Σ (since the disk is calculated by a
1+1D code, volumes are reduced to areas thus ρ→ Σ).

µQ = ν Σ (8.2.1)
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The description of the viscosity follows Eq. 5.4.5 and can be written according
to Shakura & Sunyaev (1973) as

ν =
αc2S
Ω

= αcSHP , (8.2.2)

where α is the viscous parameter, cS the isothermal sound speed and Ω the
Keplarian angular momentum. Applying cSH

−1
P , where HP is the pressure scale

height of the vertical hydrostatic structure and an isothermal equation of state
(EOS) Pgas,0 = ρ0c

2
S (where the index 0 is referring to values in the mid-plane of

the disk at z = 0) the dynamical viscosity can be rewritten as

µQ = αHPΣ

√
Pgas,0

ρ0
, (8.2.3)

what defines the linear term of the viscosity as function of the scale height of
the disk. The total viscosity parameter α accounts for different transport mech-
anisms, similar to Hartmann & Bae (2018). Therefore the disk is divided into
two layers, an active surface and a deep layer (layered disk model, see Subsection
5.4.3) regarding the transport associated with the MRI. This gives a possibility
to artificially add a dead-zone region in the disk.

The assembled total viscosity parameter of the disk thus is

α = αbase + αsurf + αdeep + αgrav , (8.2.4)

where αsurf accounts for the MRI viscosity in active surface layers, ionized by
external radiation and αdeep for the MRI viscosity in deep disk layers thermally
ionized when the temperature exceeds for example Tactive = 1500K (Bae et al.
2013) for thermal ionization. The exact value for Tactive depends on the dust-to-
gas ration, the grain size and the gas density (Desch & Turner 2015). However,
this threshold value for magneto-rotational turbulences is assumed to be higher
then 1000 K (Flock et al. 2016). The αgrav quantifies the viscosity in parts of
the disk that become gravitational unstable (GI) and αbase accounts for any non-
GI/MRI transport (base value of the viscosity within the dead-zone).

The separation of the two layers is controlled by the density profile Σ(r) of the
disk and a fixed parameter Σ0 that specifies the column density for the MRI-
active surface layer. If the column density Σ(r) at a given radius r exceeds a
certain value of Σ0 ≈ 100 g cm-2 (e.g. Armitage 2010, p. 99), the disk consists
of an additional deep layer. This is numerically solved by the implementation of
a switch s that is s = 1 if there is an additional deep layer, and else is s = 0.
Taking that in account, the viscosity parameters read

αsurf(r) = αMRI

[
s

Σ0

Σ(r)
+ (1− s)

]
, (8.2.5)

for the surface layer and

αdeep(r) = αMRI s

(
1− Σ0

Σ(r)

)
ε(Tgas,z) , (8.2.6)
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for the deep layer, where

ε(Tgas,z) =
1

2

[
1 + tanh

(
Tgas,z − Tactive

Twidth

)]
, (8.2.7)

is utilized for convergence reasons during the Newton-Raphson-iteration. Eq.
8.2.7 smooths an otherwise step-like transition between MRI-inactive and MRI-
active layers. Here, Tgas,z is the vertical integrated gas temperature, Tactive the
temperature for thermal ionization of hydrogen. The parameter Twidth = 10−100
K (Armitage 2010) establishes a smooth transition between an MRI active and
inactive deep layer if Tgas,z > Tactive (similar to Flock et al. 2016).

Looking at these equations we can summarize, that in regions with lower density,
and thus only consisting of a surface layer, external radiation is sufficient to ionize
parts of the disk while regions with higher density, and thus with an additional
deep layer, are partially ionized by external radiation and stellar radiation (if
the activation temperature is reached). The viscosity parameter for gravitational
instabilities is defined by the Toomre parameter QT

αgrav = αGI ζ

(
Q2

T,crit

Q2
T

− 1

)
, (8.2.8)

where ζ = 1 if QT,crit > QT and otherwise ζ = 0. This means that the gravita-
tional viscosity parameter is only non-zero if the disk is gravitational unstable. In
this simulation QT,crit = 1.5 although QT,crit = 1 (Toomre 1964) would have been
sufficient. The masses of all disks were chosen so that they remain gravitationally
stable throughout their lifetime. As described by Toomre (1964) the equation for
the Toomre parameter can be written as

QT =
cSΩ

πGΣ
. (8.2.9)

In this equation cS =
√
P/ρ is the isothermal speed of sound, Ω =

√
GM⋆/R3

is the Keplerian angular velocity, G is the gravitational constant and Σ is the
surface density. This equation can be rewritten by an energy equation and the
adiabatic index Γ1.

e =
1

Γ1 − 1

P

ρ
=

1

Γ1 − 1
c2S → cS =

√
e(Γ1 − 1) (8.2.10)

By multiplying the equation above with Ω we get the following expression for the
sound speed

cSΩ =

√
e(Γ1 − 1)M⋆G

R3
. (8.2.11)

By substituting this term into Eq. 8.2.9 and drawing G into the square root the
Toomre parameter reads

QT =

√
e(Γ1 − 1)M⋆

R3G

1

πΣ
. (8.2.12)

Usual values for the viscosity parameters are αMRI = 0.01 (Hartmann & Bae
(2018); Zhu et al. (2010)), αbase ≈ 10−5 − 10−4 (Hartmann & Bae 2018) and
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αGI = 0.01 (only if the disk gets gravitational unstable), thus resulting in an
overall value of α ≈ 0.01. As mentioned by Rafikov (2017) a value of α ≈ 0.01
corresponds to the explanation of observed averaged properties of protoplanetary
disks by their viscous evolution, which was primarily found by Hartmann et al.
(1998) and Calvet et al. (2000).
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Chapter 9

Results and Discussion

In this chapter the results of the simulation are presented. I will show, how the
onset of the stellar outburst is connected to a thermal instability close to the star
and how disk parameters like scale height HP, surface density Σ, gas temperature
Tgas and viscosity parameter α. evolve from the on- to the off-set of the burst.
Further, I present some examples of long term evolution of a protostellar disk,
to show the periodical nature of the stellar burst. At last I will present the
comparison of the simulation with observational data.

9.1 Burst Onset
It is assumed that variable accretion, such as stellar outbursts (e.g. FU-Ori out-
burst), requires the accumulation of material (e.g. Latter & Balbus 2012) within
an region of low viscosity (dead-zone) at radii r < 0.5AU (Bae et al. 2013). A
possible scenario for the onset of a burst is that a thermal instability (see Sub-
section 3.1.2) rapidly increases the accretion rate by releasing the stored mass
within dead-zone. As expected the results (see Figure 9.2) show a rapid increase
of Tgas as soon as a critical temperature Tcrit = 1500 K (see Section 8.2) is ex-
ceeded. Additionally, the rise in viscosity within the dead-zone (see Figure 9.3)
is demonstrated

The physical constraint for the onset of an accretion burst is demonstrated for
a M⋆ = 0.1 M⊙ star and a disk that extents from r = 0.02 − 1.54 AU. The
time-evolution shows the development from a MRI inactive to a fully MRI active
deep disk layer. For the viscosity parameters αMRI = 0.01 for MRI active regions,
αGI = 0.01 for gravitative unstable regions and αbase = 10−5 for a base viscosity
are used. The following subsections show the evolution of the scale height HP,
surface density Σ, gas temperature Tgas and viscosity parameter α in 8 time steps
(τ0 to τ7, see Table 9.1). The duration from τ0 to τ7 is about 8.8 kyrs and from
τ5 to τ7 about 1.5 yrs.

71
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Table 9.1: Summary of the time steps used for the demonstration of the onset of the accretion
outburst. I emphasize, that these time steps are only valid for a given set of parameters and
are only of qualitative nature.

Age Description
τ0 MRI inactive deep layer
τ1 Mass piles up close to the star → HP ↑
τ2 Tgas starts to rise since the surface heated by L⋆

is larger due to the increased HP

τ3 A enhanced temperature is attended by expansion → HP ↑ → Tgas ↑
parts of the inner disk reached temperatures close to Tactive = 1500 K

τ4 Tgas > Tactive in some parts of the disk
τ5 Σ ↑ as mass is rapidly transported to the inner edge of the disk

as the viscosity ν in the former dead zone has increased due to Eq. 5.4.5
τ6 A run away process (thermal instability) has developed as

ν ↑ → Ṁ ↑ → Σ ↑ → HP ↑ → Tgas ↑ → ν ↑
τ7 The inner regions of the disk where Σ > 100 g/cm2 and Tgas > 1500 K have

developed a fully MRI active deep layer

A more detailed description of these results can be found in the Appendix 10.2.

The simulation shows, that the following conditions are important requirements
for FU-Ori bursts due to pure MRI and in absence of GIs.

• A region of low viscosity (dead-zone) has to exist in the quiet phase (phase
of low accretion rate) of the disk. The temperature in this region is below
the critical temperature Tactive = 1500 K for MRI.

• Thermal instabilities cause Tgas > Tactive in this formally viscous inefficient
regions results in an outburst phase (phase of enhanced mass flow).
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9.1.1 Scale Height

In Figure 9.1 the evolution of the pressure scale height HP between 0.02 to 0.05
AU at the onset of the burst is described. Initially (Figure 9.1; τ0; solid, red) the
disk is in its quiet phase, where mass is slowly redistributed in direction of the
central star. Due to a limited mass transfer efficiency in regions with low viscosity,
material piles up in such dead-zones, leading to an increase in HP (Figure 9.1;τ1 to
τ2; solid, green to solid, blue). From τ3 (Figure 9.1; solid, yellow) to τ4 (Figure 9.1;
dashed, red) the temperature in the mid-plane reaches the activation temperature
Tactive = 1500 K for MRI. This leads to thermal instability causing an extreme
rise in Tgas (see Figure 9.2) and thus Pgas. This leads to an expansion of the disk
causing HP to rise further (Figure 9.1; τ5 to τ7; dashed, green to dashed, yellow).
A larger scale height aims a more efficient heating by the star because a larger
irradiated surface area is available. Hence, a further rise of Tgas happens.
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Figure 9.1: Evolution of the pressure scale height HP between 0.02 to 0.05 AU at the onset of
the burst. Solid lines represent models before and dashed lines models after the onset of the
thermal instability. The scale height rises as the gas temperature rises. This corresponds to
an expansion of the disk in z-direction. Therefore a larger surface irradiated surface area is
available, what causes Tgas to rise further.
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9.1.2 Gas Temperature

In Figure 9.2 the evolution of the gas temperature Tgas between 0.02 to 0.05 AU
at the onset of the burst is described. Note, that the plot shows only a section of
the overall temperature profile. Due to the increase in HP, the available surface
to be irradiated by the star increases and thus formally cold regions are efficiently
heated by the star. From τ3 to τ4, the gas temperature Tgas reaches the activation
temperature Tactive = 1500 K for MRI. This leads to thermal instability causing
an extreme and fast (the duration between τ5 and τ7 is about 1.5 yrs) rise of Tgas.
Since viscosity is proportional to temperature (see Eq. 3.1.1), a high temperature
will lead to a high accretion rate due to a linear sound speed dependence.
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Figure 9.2: Evolution of the gas temperature Tgas between 0.02 to 0.05 AU at the onset of the
burst. Solid lines represent models before and dashed lines models after the onset of the thermal
instability. The vertical line resembles the activation temperature Tactive = 1500 K. The plot
shows, that the temperature rises initially slowly within the dead-zone. As Tgas exceeds the
threshold, the thermal instability sets in. The duration between τ5 and τ7 is about 1.5 yrs.
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9.1.3 Viscosity

In Figure 9.3 the evolution of the viscosity parameter α (see Eq. 5.4.5) between
0.02 to 0.05 AU at the onset of the burst is pictured. As the gas temperature
Tgas rises, the deep viscosity does, as described in Section 8.2. If the temperature
reaches the activation temperature Tactive = 1500 K for MRI from τ3 to τ4, the
efficiency of viscosity rapidly increases. Mass accumulates where α has its minima.
It is notable, that this minimum shrinks while it moves towards the central star.
Hence, the accumulated mass within this minimum of viscosity (dead-zone) is
eventually accreted onto the star (see τ5 to τ6) as the viscosity rises.
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Figure 9.3: Evolution of the viscosity parameter α between 0.02 to 0.05 AU at the onset of the
burst. Solid lines represent models before and dashed lines models after the onset of the thermal
instability. Mass accumulates where α is minimal. This plot shows, that one minimum shrinks
while it moves towards the central star. That can be interpreted as mass that has accumulated
within the dead-zone is now efficiently transported towards the star.
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9.1.4 Surface Density

In Figure 9.4 the evolution of the surface density Σ between 0.02 to 0.05 AU at
the onset of the burst is illustrated. The redistribution of mass in the direction
of the star and the development of a deep layer closer to th star can be tracked
in this plot. The dotted line resembles the transition between a layered and a
non-layered disk. At densities below 100 g/cm2 (e.g Armitage 2010) no deep layer
exists within the disk. As a result of the high accretion rate during the outburst,
mass is transported efficiently towards the star, causing an increase of the surface
density at small radii (Figure 9.4, τ0 to τ3; solid, red to solid, yellow). Although
this leads to the development of a deep layer close to the star (Figure 9.4; τ4 to
τ7; dashed, red to dashed, yellow), high temperatures (see Figure 9.2) however
preserve a high viscosity (see Figure 9.3) and thus an efficient mass transfer onto
the star.
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Figure 9.4: Evolution of the surface density Σ between 0.02 to 0.05 AU at the onset of the
burst, showing how mass is transported towards the star. Solid lines represent models before
and dashed lines models after the onset of the thermal instability. The vertical line resembles
100 g/cm2, the density value that divides between layered and non-layered disk. This mass
transfer results from the increase of viscosity within the dead-zone (see Figure 9.3).
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9.2 Eruptive Phase: Disk Evolution
In the previous section the physical process of the onset of the burst was dis-
cussed by presenting the evolution of the scale height HP, surface density Σ, gas
temperature Tgas and viscosity parameter α. In this section I want to describe
the evolution of the disk from the onset of an typical burst (eruptive phase, high
accretion rate) until the quiet phase (low accretion rate) is attained again.

For this simulation the same configuration as described in Section 9.1 was adopted
(stellar mass M⋆ = 0.1 M⊙; disk radius from r = 0.02−1.54 AU; viscosity param-
eters: αMRI = 0.01 for MRI active regions, αGI = 0.01 for gravitative unstable
regions and αbase = 10−5 for the base viscosity; no further matter enters the disk
over the outer boundary).
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Figure 9.5: This figure shows a typical accretion outburst from the onset of the thermal insta-
bility until a stable configuration is obtained again. The y-axis shows the accretion rate onto
the star in 10−6M⊙/yr, the x-axis shows the time. The duration between τ0 and τ1 is about
2.5 kyrs and between τ1 and τ6 about 50 yrs. A zoom-in of this burst is presented in Figure
9.6.

Figure 9.5 illustrates an accretion outburst. It shows 8 time-steps (τ0 to τ7) where
the disk is in the quite phase at τ0 and τ7. Figure 9.6 shows a zoom in for the
same burst, that represents a detailed evolution. At τ1 the thermal instability
sets in until the maximal temperature of the disk is reached at τ3 (Figure 9.7; τ1;
solid line, yellow). At this point also the accretion rate Maccr has its maximum.
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Figure 9.6: This figure illustrates the detailed evolution of the accretion rate onto the star
during the accretion outburst showed in Figure 9.5. It shows an steep increase, a plateau like
structure and a comparable slow decrease.

The accretion luminousity Laccr, and thus the increase in luminousity due to the
outburst, is proportional to the accretion rate Maccr = Ṁ, utilizing (e.g. Dunham
et al. 2014)

Laccr = faccr
GM⋆Maccr

R
, (9.2.1)

where faccr ≈ 0.8 is the accretion efficiency (to consider the fraction of energy that
is radiated away in the accretion shock), M⋆ is the mass of the protostar and R
is the stellar radius.

From τ4 to τ7 the accretion rate decreases again until a thermal stable config-
uration is attained again.

9.2.1 Gas Temperature

Figure 9.7 illustrates the evolution of the temperature for these 8 time steps (see
Figure 9.5) from the onset of the thermal instability and the MRI (Figure 9.7;
τ1; solid line, green) until a stable configuration is attained again. The figure
shows the outwards propagation of a thermal wave (e.g. visible by following
Figure 9.7; τ2 to τ5; solid line, blue to dashed line, green). The morphology of
the temperature profile in a system with a fast rise in temperature close to the
star as well as thermal waves are described by Ragossnig et al. (2019a). After the
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eruptive phase a stable temperature profile (Figure 9.7; τ7; dashed line, yellow),
similar to the initial profile, is attained.
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Figure 9.7: This figure shows the evolution of the gas temperature TGas during the eruptive
phase from R = 0.02 − 0.4 AU. Solid lines represent models while the accretion rate is still
rising and dashed lines represent models where the accretion rate is declining again. The
thermal instability starts at τ1 until the maximum temperature is reached at τ3. At this point
the instability ends (cf. Audard et al. 2014) and the temperature settles to an profile (τ7)
similar to the initial temperature profile (τ0). The temperature wave (see τ2 to τ5) is described
in Ragossnig et al. (2019a).

9.2.2 Surface Density

Figure 9.8 shows the evolution of the surface density for the same 8 time steps
and represents the redistribution of matter within the disk. The high accretion
rate onto the star results in an fast increase in stellar mass. As described by
Ragossnig et al. (2019a), a fast change of stellar mass results in a density wave.
The wave emerges close to the star (Figure 9.8; τ1; solid line, green) propagates
radial outwards (Figure 9.8; τ2 to τ4; solid line, green to dashed line, red) and
pushes material away from the star. After the burst reaches its maximum (Figure
9.8; τ3; solid line, yellow) the thermal instability ends. The surface density profile
(Figure 9.8; τ4 to τ7; dashed line, red to dashed line, yellow) settles as expected
to a solution representing a lower disk mass than before the outburst.
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Figure 9.8: This figure shows the evolution of the surface density of the disk Σdisk during the
eruptive phase from R = 0.02− 0.4 AU. Solid lines represent models while the accretion rate is
still rising and dashed lines represent models where the accretion rate is declining again. This
plot shows the redistribution of matter during the eruptive phase. The fast increase of stellar
mass results in an outwards propagating density wave (τ1 to τ5). After the eruptive phase, the
density profile settles to a solution similar to the initial profile but representing a disk with
lower mass.

9.3 Global Disk Study: Viscosity Model
The aim of this section is to test the viscosity model, in particular the response
of the disk onto a change of the base viscosity αbase. This value can also be
understood as the viscous transport efficiency within the dead zone of the disk.

9.3.1 Different Dead Zone Viscosities

In this subsection I present the solution of the density profile for 4 different base
values of the viscosity αbase. This parameter represents the viscosity within the
dead-zone. As supposed the density profile of the disk steepens (Figure 9.9a) with
decreasing αbase as the dead zone gets deeper (= the viscosity decreases, Figure
9.9b). Since the dead-zone is a region within the disk where mass accumulates, a
deep dead-zone "holds" more mass locally. Contrary, a high value for for the base
viscosity allows for a globally good mass transfer, so the disk density is nearly
even distributed over the entire disk.
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All models presented in the following section are calculated with a M⋆ =
1.0M⊙ star and disk masses of Mtot ≈ 0.01M⋆. No additional mass enters the
disk over the outer boundary. The viscosity parameters for MRI and GI are set to
αMRI = αGI = 0.01. The disk are gravitational stable over the entire simulation
time (Q > 1.5).
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Figure 9.9: (a) Surface density Σ and (b) viscosity parameter α for 4 different values for αbase.
The horizontal line represents the limit (100 g/cm2) for the development of a deep layer. This
figure shows that the density distribution changes with the value of the dead-zone viscosity
parameter αbase. The density profile broadens with increasing dead-zone viscosity but the
maximal density decreases.
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9.3.2 Time-Evolution

In this subsection I present the long term evolution of the protostellar disk for
two different stars and base viscosity parameters αbase. Since a constant viscosity
parameter results in no episodic accretion and thus no stellar outbursts, I utilized
the viscosity model described in Chapter 8.2. Also viscosity parameters below
10−6 do not result in any burst. As expected higher values for the viscosity
parameter result in more periodic but less luminous bursts than lower values.
Table 9.2 additionally shows stellar masses and viscosity parameters for MRI and
GI active regions.

Table 9.2: Values for the study of the viscosity model. The viscosity parameters αMRI and
αGI account for mass transport due to magneto-rotational and gravitational instabilities.

Stellar Mass αbase αMRI αGI

0.1 M⊙ 10−5 0.01 0.01
0.1 M⊙ 10−4 0.01 0.01
1.0 M⊙ 10−5 0.01 0.01
1.0 M⊙ 10−4 0.01 0.01

The accretion rates for FU-Ori objects during outburst are between 10−6 and
10−4 M⊙ yr-1 (Audard et al. 2014, p. 4) and are comparable with the simulation
results. Outbursts that show smaller values ∼ 10−7 M⊙ yr-1 belong rather to the
family of EX-Ori than FU-Ori objects (Audard et al. 2014).

The following plots represent disks according to Table 9.2, containing masses
of 1% of the mass of the host star. The initial disk is always calculated as pre-
sented in Section 8.1. No further mass enters the disk during the simulation.
Each figure consists of (a) the evolution of the accretion rate during the entire
lifetime of the disk and (b) a zoom-in of an arbitrary burst where "onset" rep-
resents the (approximate) start of the thermal instability (see Section 9.1) and
"offset" represents the (approximate) moment where the disk entered the quies-
cent phase. The zoom-in shows that the sequence of the burst strongly depends
on the dead-zone viscosity. This seems comprehensible since the material, that
accumulates within the dead zone, is released onto the star during the outburst.

Although the details of the morphology of the burst structure is still under in-
vestigation, I emphasize, that the dead-zone viscosity is primary responsible for
structure and periodicity of the accretion outbursts. A more effective viscosity
results in a higher outburst rate but a lower luminousity and the structure ap-
pears more detailed. Additionally, I note, that a higher temporal and spacial
resolution is necessary to show the distinct burst structure.

Low-mass Star

The mass of the star is set to 0.1 M⊙. The disk contains 1% of the stellar
mass. The structure of the burst shows a steep rise in the accretion rate, that
remains in an elevated state, which typically lasts according to observations for
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several decades (Audard et al. 2014). For the selected parameters, two maxima
in the accretion rate and thus in the luminousity are visible. The duration of the
eruptive phase is about 100 yrs. As expected a higher viscosity (larger value of α)
aims a higher periodicity and lower luminousity. Additionally the burst behavior
of a low-mass stars shows less bursts compared to as solar like star. However, this
is is due to the more massive disk around the solar-like star (each disk contains
1% of the stellar mass). If the disk is depleted, it has no more mass to produce
accretion outbursts anymore.
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Figure 9.10: (a) Entire lifetime of the disk: evolution of the accretion rate for M⋆ = 0.1M⊙
and αbase = 10−4. (b) Zoom in to show the detailed morphology of a typical burst. In this
plot "onset" represents the (approximate) start of the thermal instability (see Section 9.1) and
"offset" represents the (approximate) moment where the disk entered the quiescent phase. The
accretion rate rises from about 5.0× 10−9 to 5.0× 10−7M⊙/yr.
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Figure 9.11: (a) Entire lifetime of the disk: evolution of the accretion rate for M⋆ = 0.1M⊙ and
αbase = 10−5. (b) Zoom in to show the detailed morphology of a typical burst. The accretion
rate rises from about 3.0× 10−9 to 3.0× 10−6M⊙/yr.
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Solar-like Star

The mass of the star is now set to 1.0 M⊙, again surrounded by a disk with
0.01 M⋆. The structure of the burst shows a steep rise in the accretion rate.
For the selected parameters, several maxima in the accretion rate and thus in
the luminousity are visible. I emphasize, that the presented structure of a single
burst is biased due to a low resolution and should rather show differentiated
high-frequency bursts. The duration of the eruptive phase is about 1 kyr. As
expected a higher viscosity (larger value of α) aims a higher periodicity and lower
luminousity.
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Figure 9.12: (a) Entire lifetime of the disk: evolution of the accretion rate for M⋆ = 1.0 M⊙
and αbase = 10−4 (the simulation is not complete due to an computer error). (b) Zoom in to
show the detailed morphology of a typical burst. The accretion rate rises from about 4.0×10−9

to 5.0× 10−7M⊙/yr.
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Figure 9.13: (a) Entire lifetime of the disk: evolution of the accretion rate for M⋆ = 1.0M⊙ and
αbase = 10−5. (b) Zoom in to show the detailed morphology of a typical burst. The accretion
rate rises from about 2.0× 10−9 to 7.0× 10−6M⊙/yr.
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9.4 Comparison with Observation
The outburst of the classical T Tauri star V 2493 Cyg (HBC 722) happened in
summer 2010 and was observed in a wide spectral range (e.g. Semkov et al. 2012).
After reaching its first maximum in October 2010, the objects brightness starts
to weaken slowly until a new light increase occurred in 2011.

In this section I present a comparison of the observational data of V 2493 Cyg
(see Figure 9.14) with a snapshot of the time evolution of a M⋆ = 0.1 M⊙ star
and a base disc viscosity parameter αbase = 10−4 (see Figure 9.15).

Figure 9.14: Observational data of V 2493 Cyg (HBC 722) (Semkov et al. 2014)
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Figure 9.15: Section of Figure 9.10a to show comparability between observation and simulation
(M⋆ = 0.1M⊙ and αbase = 10−4).

The magnitude is calculated by the relationship to luminosity given by

Mbol = −2.5 log10
L⋆

L0

, (9.4.1)
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where L0 = 3.0128 1028 W (Mamajek et al. 2015) is defined as the zero point
luminosity. Although the differences of the magnitude between quiet and burst
phase is not comparable, the general morphology and duration are similar. Sim-
ilar to the observational data, presented in Figure 9.14, the luminosity rises to
its first maximum, and weakens slowly. After about 1 yr the luminosity increases
again and remains on this level for ∼ 4 yrs. A more detailed comparison will be
given in an accompanying publication.

9.5 Discussion
In this thesis I have presented 1+1D simulations of the long term evolution of
viscous protostellar disks. Although the 1D restriction is a simplification of this
problem, it is sufficient to simulate the inner regions of the disk as described in
Chapter 8. The aim is to demonstrate, that the occurrence of accretion outburst
due to thermal instabilities is highly coupled with the viscosity model. This pre-
suppose the existence of regions of low viscosity (dead zones) within the disk. I
showed that adopting the layered disk model leads to episodic accretion events for
comparatively low-mass disks without the occurrence of gravitational instabilities.

The results are in good agreement with observational data (Semkov et al. 2014).
Since, the outburst behavior strongly depends on the inner boundary, I empha-
size that a consistent treatment of the inner region of the disk is necessary. This
finding is supported by Bae et al. (2013) who suggests that for an appropriate in-
vestigation of the detailed time evolution of an accretion burst the regions below
r < 0.5 AU have to be included in the model.

Moreover, one can see that the viscosity parameter α (low α’s represent less ef-
fective viscosity and vice versa) effects the periodic accretion frequency. A more
effective viscosity results in a higher outburst but a lower luminousity (see Sec-
tion 9.3.2). Additionally with higher viscosity the burst structure appears more
detailed. This is still under debate and will be subject to further investigations.

The influence of the gravitational potential of the disk (see Ragossnig et al. 2019a)
on accretion outburst has already been tested and showed only a time shift for
the onset of the burst. Additionally, I aim to present simulation results that in-
clude the adaptive grid and higher time resolution in accompanying publications.
Maybe they will help to understand how the accretion outburst are related to
the disk structure. Moreover, I want to show the impact of different boundary
condition as well as different stellar parameters.

It is still important to improve the numerical implementation of the boundary
conditions and the connection between star and disk. A possible method is in-
cluding stellar magnetic fields to determine the position of the inner boundary
and to simulate magentospheric boundary accretion.

The TAPIR Code for disks and the simulation results provide new insights in
the evolution of protoplanetary disks. However, it is necessary to extend the
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code from 1+1D to two spatial dimensions to calculate more consistently the
physical nature of these disk instabilities.
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Chapter 10

Appendix

10.1 Auxiliary Calculation

10.1.1 Numerical advantages of the conservative form

The advantage in computational physics can be shown with an easy example.
Imagine the conservative form of the partial derivative of f g where f = f(t, x)
and g = g(t, x) in one dimension.

∂

∂x
(fg) (10.1.1)

If discretizing this derivative in a simple numerical way, the following expression
is obtained.

∂

∂x
(fg) ≈ (fg)i − (fg)i−1

∆x
(10.1.2)

On the other hand, the non-conservative form

f
∂g

∂x
+ g

∂f

∂x
(10.1.3)

can be discretized as follows

f
∂g

∂x
+ g

∂f

∂x
≈ fi

gi − gi−1

∆x
+ gi

fi − fi−1

∆x
. (10.1.4)

Obviously both differentials are mathematically equal, but the discretized forms
are not equal. In conservative form, as the name says, the quantity advected
through a numerical grid has to be conserved. That means that a flux that enters
one side, leaves the other side and everything that happens in between these
boundaries has to be negligible. Mathematically a conservative derivative thus
has to form a so called telescoping series. According to that, each term ak of a
series can be written as ak = bk − bk−1 for k = 1, 2, 3, ..., n and the sum

a1+a2+a3+ ...+an = (b1− b0)+(b2− b1)+(b3− b2)+ ...+(bn− bn−1) = bn− b0 ,
(10.1.5)

is only dependent on the boundary values. If using an e.g. 4 point grid k =
0, 1, 2, 3 the conservative form expands as follows.

(fg)1 − (fg)0
∆x

+
(fg)2 − (fg)1

∆x
+

(fg)3 − (fg)2
∆x

=
(fg)3 − (fg)0

∆x
(10.1.6)
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Clearly the internal points (i = 1 and i = 2) have canceled out. Looking at the
non-conservative form

f1
g1 − g0
∆x

+ g1
f1 − f0
∆x

+ f2
g2 − g1
∆x

+ g2
f2 − f1
∆x

+ f3
g3 − g2
∆x

+ g3
f3 − f2
∆x

, (10.1.7)

shows, that such a canceling of terms is not possible - in contrary: the number
of terms grows with the number of grid-points. Physically spoken, the incoming
flux doesn’t balance the outgoing flow - the equation is not conservative.

10.1.2 Momentum Equation

Starting with the equation of momentum in non-conservative (convective)

ρ
Du

Dt
+∇ · P = ρ [∂tu+ (u · ∇)u] +∇P = 0 , (10.1.8)

and adding other external forces e.g. gravitational forces and viscosity to the
conservation of momentum, the Cauchy momentum equation

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P +∇ · τ + ρg = ∇ · σ + ρg , (10.1.9)

is attain. The deviatoric stress tensor τ can be expressed by using the total
Cauchy stress tensor σ for a moving fluid as follows.

τij = Pδij + σij (10.1.10)

The general form of the conservation of momentum is the Navier-Stokes momen-
tum equation. To write this equation we write the viscous stress tensor as

τij = µQ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
+ ξδij

∂uk
∂xk

(10.1.11)

in literature often found in index notation or otherwise as follows.

τ = µQ

[
∇u+ (∇u)T − 2

3
(∇ · u) 1

]
  

shear viscosity

+ ξ(∇ · u) 1  
bulk viscosity

(10.1.12)

The first part of the equation denotes for the shear stress where µQ = ρν is the
dynamic viscosity and the other part for the second viscosity (or bulk viscosity)
- but this is rarely used in astronomy. The factor 2

3
was found by Stokes and

takes care, that the part containing the shear stress vanishes for self similar flows
(means a flow whose shape doesn’t change in time e.g. a spherical expansion,
u = x k for k = const.) and 1 is the uniform tensor. Substituting this expression
into the Cauchy momentum equation gives

ρ

⎡⎣∂u
∂t

+ (u · ∇)u  
convection

⎤⎦ = −∇P +

(
1

3
µQ + ξ

)
∇(∇ · u) + µQ∇2u  

diffusion

+ ρg
external source

(10.1.13)
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the Navier-Stokes momentum equation. For incompressible fluids where
changes in pressure and temperature stay constant along a line of flow, all terms
with ∇ ·u vanish. This certainty arises by writing the equation of continuity Eq.
4.4.5 in Lagrangian (material) derivative

∂tρ+∇ · (ρu) = ∂tρ+ u · ∇ρ  
Dρ
Dt

+(ρ∇)u = 0 (10.1.14)

what shows that
Dρ

Dt
= −(ρ∇)u (10.1.15)

If ∇ · u ̸= 0 applies, the density would change in time what is attended by a
change of mass in the constant control volume, a compression or expansion of
the fluid. Since this is prohibited for incompressible flows, the material derivative
of the density and thus the divergence of the velocity has to vanish for non-zero
density values. This leaves the following equation.

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇P + ρν∇2u+ ρg (10.1.16)

10.1.3 Energy Equation

For the conservation of energy the total specific energy of the system is assumed
to consist only of the thermal specific energy eth and the kinetic specific energy
ekin = |u|2/2.

etot = ρ

(
eth +

|u|2

2

)
(10.1.17)

Since etot = const. the temporal change in a closed control volume is zero.

∂tetot = ∂t

(
ρeth + ρ

|u|2

2

)
= 0 (10.1.18)

Using the specific enthalpy h = e+ P
ρ
, the first law of thermodynamic (in specific

values) de = Tds−Pdv (with v as the specific volume) with dv = d(1
ρ
) = − 1

ρ2
dρ,

the fact that ds
dt

= 0 (conservation of entropy) the equations of continuity, motion
and some algebra the equation of energy is obtained.

∂t

(
ρeth + ρ

|u|2

2

)
  
total energy density

+∇ ·
[
ρu

(
|u|2

2
+ h

)]
  

energy flux density

= 0 (10.1.19)

This equation can again be simplified by substituting the specific enthalpy and
the total energy etot = e.

∂t(ρe) +∇ · (ρue) +∇ · (Pu) = 0 (10.1.20)

This is a conservative form of the inviscid equation of energy. If viscosity is
included into the equation of state, a viscous force is exerted onto the fluid,
acting against the fluid flow, and a viscous work is done. Thus the equation of
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energy has to be modified in a way that this energy dissipation is considered.
In this case kinetic energy is transformed to heat that contributes to the total
energy due to friction and viscosity.

∂t(ρe) +∇ · (ρue) +∇ · (Pu) +∇ ·
(
Qu

)
  

viscosity

+ ∇ · q  
diffusion

= 0 (10.1.21)

Here q = −D∇T is heat due to diffusion where D is the diffusion or conduction
coefficient. To calculate the inner energy, the equation of motion times u is
subtracted from the total energy. To achieve this Eq. 4.5.9 is used and the
gravitation term is dropped. This leaves

∂t(ρe) +∇ · (ρue) + P∇ · u+Q : ∇u+∇ · q = 0 (10.1.22)

If considering radiation transport this equation is extended to

∂t(ρe) +∇ · (ρue) + P∇ · u+Q : ∇u+∇ · q− 4πρκ (J − S) = 0 . (10.1.23)

10.1.4 Mid-plane density

Substituting z =
√
2H u → dz =

√
2H du, the integral in Eq. 5.5.11 can be

rewritten as follows.
ˆ +∞

−∞
ρ0e

− z2

2H2 dz⇒
√
2H ρ0

ˆ +∞

−∞
e−u2

du =
√
2H ρ0

√
π

2
erf(u)

⏐⏐⏐⏐+∞

−∞  
solution of the integral

Since the erf(∞) = 1 and the error function is an odd function erf(−x) = −erf(x),
erf(−∞) = −1 what aims:

√
π

2
erf(u)

⏐⏐⏐⏐+∞

−∞  
= 2

=
√
π (10.1.24)

10.1.5 Equation of Continuity - Protoplanetary Disk

The following equation in Section 5.3.1 (e.g. Pringle 1981)

δ

δt
(2πr∆rΣ(r, t)) = 2πrΣ(r, t)vr(r, t)− 2π(r +∆r) Σ(r +∆r, t)vr(r +∆r, t)

(10.1.25)
can be simplified by a first order Taylor expansion for Σ(r+∆r, t) and vr(r+∆r, t)
at small δt

vr(r +∆r) = vr(r) +
∂vr
∂r

∆r (10.1.26)

Σ(r +∆r) = Σ(r) +
∂Σ

∂r
∆r (10.1.27)

This aims
δm = −2π∆r

(
∂vr
∂r

Σr + Σvr +
∂Σ

∂r
rvr

)
δt (10.1.28)
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δm

δtl1
= −2π∆r

(
∂vr
∂r

Σr + Σvr +
∂Σ

∂r
rvr

)
  l2

(10.1.29)

Using the following assumptions and simplifications

• The total mass in an annuli is m = 2πr∆rΣ.

• At small time-steps δt we can change δm
δt
→ ∂m

∂t
.

• So l1 can be written as

δm
δt

= ∂m
∂t

= 2πr∆r ∂Σ
∂t

and the chain rule for derivatives aims the following expression for l2 .

∂vr
∂r

Σr + Σvr +
∂Σ
∂r
rvr =

∂vr
∂r

Σr + ∂r
∂r
Σvr +

∂Σ
∂r
rvr =

∂
∂r
Σvrr
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10.2 Burst Onset in Detail
Initially (τ0) there is no distinct MRI active deep layer within the disk. This
is characterized by an exiguous value for the deep viscosity parameter α deep

(Figure 10.1e). Due to accretion, mass continuously flows in the direction of the
star. The efficiency of the transport is limited by a viscous time scale tν defined
by Eq. 5.5.21. A low viscosity ν yields a higher tν and thus an inefficient mass
transport Ṁ also seen in Eq. 5.5.20. Hence, mass accumulates at these regions
in the disk and piles up resulting in an increase of the pressure scale height HP

(τ1) see Figure 10.1a. As HP increases, a larger surface is illuminated by the star
and initially colder regions start to heat up. This leads to an increase of the gas
temperature Tgas (τ2). The rising temperature leads to an expansion of the disk
and thus again to a rising HP and thus Tgas increases further. Parts of the inner
disk gain temperatures close to the MRI activation temperature Tactive = 1500 K
(Fig 10.1c, dotted line), where gas is ionized and magnetic field lines couple to
the disk (τ3). Eventually Tgas > Tactive (Fig 10.1c) in some parts of the inner disk
(τ4). Since ν rises direct proportional with temperature and scale height, regions
with initial inefficient mass transport now exhibit an enhanced mass flux. Mass,
that accumulated in the former dead zone, now is efficiently transported closer
to the star, again resulting in and rising HP and Tgas (τ5). The inner disk enters
a runaway process (thermal instability) as the temperature rises and most parts
of the inner disk reach α ≈ 0.01, the maximum value for α in this simulation of
a gravitational stable disk (τ6). The overall viscosity α remains at its maximum
value (τ7) until the dead zone is depleted and the burst is over.
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Figure 10.1: Series of important parameters that represent the onset of a burst. Solid lines
represent an MRI inactive protoplanetary disk, while dashed lines represent a MRI active disk.
The models τ3 and τ4 represent the transition between an MRI inactive and active deep layer.
This is best seen in 10.1c as the gas temperature exceeds the critical temperature and a thermal
instability sets in.
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10.3 Notation

Table 10.1

α unit-less viscosity parameter (Shakura & Sunyaev 1973) −
cS sound speed ms−1
Ekin, T kinetic energy J
Epot, U potential energy J
f degree of freedom −
G gravitational constant 6.674 10−11Nkg−2m2

Γ1 first adiabatic index −
HP pressure scale height m
k Boltzmann’s constant 1.381 10−23JK−1

lr radial momentum kgms−1

lϕ angular momentum kgm2s−1

L luminosity (in general) W
Lrad radiation luminosity W
Lsurf surface luminosity W
L⊙ solar luminosity 3.828 1026W
Λ(T) cooling function Jm3s−1

M,m integrated mass kg
MJ Jeans mass kg
M⊙ solar mass 1.989 1030kg
M⋆ stellar mass kg
Mmol molar mass kgmol−1

mH hydrogen atom mass kg
m̄ average mass per particle kg
µ unit-less mean molecular weight −
µQ dynamic viscosity kgm−1s−1

n number density m−3

nmol amount of substance mol
N number of particles in a system −
NA Avogadro constant 6.022 1023mol−1

∇rad radiative temperature gradient −
∇ad adiabatic gradient, convection if ∇rad > ∇ad −
ν kinematic viscosity m2s−1
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Table 10.2

P pressure Pa
R integrated radius m
R⊙ solar radius 6.957 108m
R⋆ stellar radius m
rco co-rotation radius m
ρ mass density kgm−3

σSB Stefan Boltzmann’s constant 5.670 10−8Wm−2K−4

Σ surface/column deńsity kgm−2

T Temperature K
τc cooling timescale s
τff free-fall timescale s
τKH Kelvin-Helmholtz timescale s
uϕ, vϕ toroidal velocity ms−1

ur, vr radial velocity ms−1

uK, vK Keplarian velocity ms−1

Ω orbital frequency s−1
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