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Abstract

In this thesis volatility forecasting of financial assets is studied. We consider
first the time series of returns and present its main characteristics and styl-
ized facts. The behaviour of the variance of return series is explained, and
the time series models for conditional volatility forecasting are presented.
Then, we consider a multilayer artificial neural network and present a back
propagation algorithm. In the empirical study, we test artificial neural net-
works for realized volatility forecasting of the monthly returns of S&P 500
and NASDAQ stock indexes. As a benchmark for the results obtained by
artificial neural networks, ARCH models are tested on the same problems.
ARCH models are ARCH (1,1), GARCH (1,1) and EGARCH(1,1).

Key words: Realized Volatility Forecasting; Return Time Series; Artificial
Neural Networks; GARCH Models
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Abstrakt

In dieser These werden sprunghafte / unbeständige Vorhersagen von finanziellen
Vermögenswerten untersucht. Wir betrachten zunächst die Zeitreihe der
Returns und stellen ihre Hauptmerkmale und stilisierten Fakten vor. Das
Verhalten der Varianz von Return-Reihen wird erklärt und die Zeitreihen-
modelle für die bedingte Volatilitätsvorhersage werden vorgestellt. Dann
betrachten wir ein mehrschichtiges künstliches neuronales Netz und stellen
einen Rückpropagationsalgorithmus vor. In der empirischen Studie testen wir
künstliche neuronale Netze zur realisierten Volatilitätsprognose des monatlichen
Returns von S&P 500 und NASDAQ-Aktienindizes. Als Maßstab für die mit
künstlichen neuronalen Netzen erzielten Ergebnisse werden ARCH-Modelle
an denselben Problemen getestet. ARCH-Modelle sind ARCH (1,1), GARCH
(1,1) and EGARCH(1,1).

Schlüsselwörter: Realisierte Volatilitätsvorhersage; Return-Zeitreihen, Künstliche
Neuronale Netze, GARCH-Modelle
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Introduction

Prediction of future volatility movements of financial assets has been ana-
lyzed for decades. Future volatility of stocks, cash, bonds, etc. is usually
estimated based on historical data such as times series of prices. This prob-
lem is tackled within the field of financial time series analysis and a large
number of models has been developed so far.

In the early eighties Engel [8] developed the so-called auto regressive condi-
tional heteroscedastic (ARCH) model which was the basis for further devel-
opment and generalizations. A few years later Borellslev [5] introduced gen-
eralized ARCH (GARCH) models which are nowadays widely in use. These
models are known to be reliable and are often used in financial institutions
for volatility modeling of financial assets.

Artificial neural network algorithms are dating back to 1960s. Since then
various types of networks have been developed and algorithms are improved
using novel optimization methods. Artificial neural networks become in-
creasingly popular in various fields of the science, but are still not standard
in financial forecasting.

The goal of the thesis is to investigate how well artificial neural networks
perform when implemented for non-linear prediction problems. The main
focus of the thesis is the structure and the performance of neural networks
which are used for volatility forecasting of financial assets. The empirical
study is centered around the future prediction of the realized volatility for
the closing prices of S&P 500 and NASDAQ stock indexes. In order to evalu-
ate the result obtained by neural networks, we implemented GARCH models
on the same problems and compared the results.
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The thesis is divided into three main chapters. Chapter 1 explains and
describes financial time series. In this chapter, a definition of volatility is
presented and GARCH models are explained. Artificial neural networks are
introduced in Chapter 2 together with their structure and the back propaga-
tion algorithm. The implementation of both models is presented in Chapter
3. This chapter contains the data description, results of the models and dis-
cussion on the results.

The empirical part of this thesis is done in the programming language Python,
version 3.7(64-bit). Neural networks are implemented in Keras (high level
neural networks application programming interface), while GARCH models
are done with the ARCH toolbox (tool for financial econometrics in Python).
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Chapter 1

Financial time series

1.1 Return

Return is defined as a profit or loss of a portfolio. A portfolio is a collection
of financial assets, such as stocks, bonds, cash and cash equivalents, or other
investments. Return at the time t, t ≥ 0 of a single asset can be expressed
as a simple gross return

1 +Rt =
Pt
Pt−1

, (1.1)

where Pt is the price of the underlying asset. From equation (1.1), a simple
net return can be obtained and is given by formula

Rt =
Pt − Pt−1

Pt−1

. (1.2)

The return of the whole portfolio is a weighted sum of single returns at the
time t given by

Rp,t =
N∑
i=1

wiRit (1.3)

where N is the number of assets in the portfolio, Rit is the net return of
individual assets, wi is the fraction of the portfolio’s value in that asset.

The return rt is usually given as a continuously compounded return or a
logarithmic return. It is calculated as a natural logarithm of the simple gross
return such that

rt = ln(1 +Rt) = ln(
Pt
Pt−1

). (1.4)
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1.2 Return Time Series

A time series is a stretch of values on the same scale indexed by a time-like
parameter [6].

In order to define a financial return time series, we will first introduce a
couple of definitions. The definitions can be found in [20].

Definition 1 Let Ω be a nonempty set, let F be a collection of subsets of Ω.
F is a σ-algebra if the following is satisfied:

(i) ∅ ∈ F
(ii) for each set A, if A ∈ F , then Ac ∈ F
(iii) for each sequence of the sets A1, A2, ... such that A1, A2, ... ∈ F , then⋃∞

n=1An ∈ F .

Definition 2 Let Ω be a nonempty set and F be a σ− algebra of subsets of
Ω. A probability measure P is a function that, to every set A ∈ F , assigns a
number in [0, 1], called the probability of A and written P (A). It is required
that:

(i) P (Ω) = 1

(ii) if A1, A2, ... is a sequence of disjoint sets in F , then

P (
∞⋃
n=1

) =
∞∑
n=1

P (An), (1.5)

Then, the triple (Ω,F , P ) is called a probability space.

Definition 3 Let (Ω,F , P ) be a probability space and I ∈ R is an index set.
Assume that for each α ∈ I, there is a random variable Xα : Ω→ R defined
on (Ω,F , P ). The function X : I × Ω → R defined by X(α, ω) = Xα(ω),
ω ∈ Ω, is called a real-valued stochastic process with index set I and it is
written {Xα}α∈I .

Definition 4 A real-valued stochastic process {rt}t∈[0,∞) is called return stochas-
tic process (or return time series) if rt is the return random variable observed
at time t. It is simply a collection of return random variables indexed by time
and will be denoted by {rt}t≥0.

11



1.2.1 Stylized Facts about Return Series

Return series obtained from different assets and different markets can exhibit
similar statistical properties. Such properties common across the wide range
of instruments, markets and time periods are called stylized empirical facts
[7]. The main facts are explained below.

• The distribution of a probability density function of a time series devi-
ates from a normal distribution, often returns have thicker tails. One
way to quantify the deviation from the normal distribution is to calcu-
late kurtosis of the time series distribution. Gaussian distribution has
a value of the kurtosis around 0, where a large positive value of the
kurtosis defines fat tails. But, as the time scale increases, the return
distribution gets closer to the normal distribution [18].

• Linear autocorrelation function of the underlying price changes in asset
returns is decaying rapidly and in a short time, the function is getting to
zero. The absence of the correlation is explained as if the price changes
exhibited significant correlation, this correlation could be used to obtain
a strategy with positive earnings, which is known as an arbitrage [7].
This type of strategy tends to reduce the correlation except for a short
time period, needed for the market to react to the new information
[7]. If the time scale is increasing, weekly and monthly returns are
indicating a slightly significant autocorrelation.

• Volatility clustering. This phenomenon was introduced by Mandelbrot
[14], who stated: ”Large changes tend to be followed by large changes,
and small changes tend to be followed by small changes”. Volatility
clustering is related to the autocorrelation of the return series, that is,
while returns rt, t ≥ 0, themselves are uncorrelated, their squares or
absolute returns are showing a positive, significant and slowly decaying
autocorrelation function: corr(|rt|, |rt+τ |) > 0. Volatility clustering
is the tendency of the large changes in prices of financial assets to
cluster together. In the practice, this means that when receiving a
new information the market is responding with large price movements
and these changes last for some time. Volatility clustering allows us to
make some predictions about the future movements in the price that
are based on the recent changes, although the process is random.
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• Heteroscedasticity. Most of the financial (return) time series are having
a time-dependent variance. This means that the variance of the return
series is not constant and changes over the time as the series evolves.

• Leverage effect. It is empirically observed that volatility and asset re-
turns are negatively correlated. Volatility bursts are more likely related
to the negative past returns [2].

1.2.2 Variance of Return Series

Let us consider a sequence of return random variables {rt}t≥0 where rt ∈ R.

Definition 5 A real-valued stochastic process {rt}t≥0 is defined to be covari-
ance or weak stationary if the first moment (expectation) and covariance of
the process do not vary with respect to time and the second moment is finite
for all times [9].

The definition implies the following

E[rt] = µ

Cov[rt, rt+τ ] = γ(τ)

E[|rt|2] <∞.

Any covariance stationary process can be expressed as the sum of two pro-
cesses: deterministic process and infinitive moving average process. That is
stated in Wold’s decomposition theorem given below [10]:

Theorem 1 Let the process {rt}t≥0 be covariance stationary, then the pro-
cess at time t has the following representation

rt = µt +
∞∑
j=0

bjεt−j (1.6)

with b0 = 1.

In equation (1.6) µt is deterministic part and
∑∞

j=0 bjεt−j is stochastic part

called infinite moving average process and
∑∞

j=0 b
2
j <∞. εt is a sequence of

uncorrelated random variables with mean zero and variance σ2. εt is called
white noise. Processes µt and

∑∞
j=0 bjεt−j are uncorrelated.
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Wold’s decomposition shows that a return time series, that happens to be a
weak stationary process, can be approximated by a linear model. In prac-
tice, time series models are more complex with a time-varying variance (non-
stationary processes) requiring non-linear models relating the process {rt}t≥0

to its past observations.

Let us now assume a stronger condition on εt, namely that the process εt
is i.i.d. (independent identically distributed) with mean zero and variance
σ2. For the sake of simplicity let the µt be zero. This reduces the process to
the following form

rt =
∞∑
j=0

bjεt−j. (1.7)

The unconditional mean of the process {rt}t≥0 is the following

E[rt] = 0, (1.8)

and the unconditional variance is given by

V ar[rt] = V ar[
∞∑
j=0

bjεt−j] = E[(
∞∑
j=0

bjεt−j − E(
∞∑
j=0

bjεt−j))
2]

= E[
∞∑
j=0

b2
jε

2
t−j + 2

∑
j<l

bjblεt−jεt−l]

= E[
∞∑
j=0

b2
jε

2
t−j] + 2E[

∑
j<l

bjblεt−jεt−l]

= E[
∞∑
j=0

b2
jε

2
t−j] =

∞∑
j=0

b2
jE[

∞∑
j=0

ε2t−j] = σ2

∞∑
j=0

b2
j .

(1.9)

Due to the conditions on bj, the unconditional variance given in (1.9) is finite.

Now, let us investigate how the conditional mean and the variance of the
process defined in (1.7) behave. Before doing so, we shall introduce the
following definitions.
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Definition 6 Let Ω be a nonempty set. Let T be a fixed positive number
and T ∈ N, and assume that for each t ∈ [0, T ] there is a σ − algebra F(t).
Assume further that if s ≤ t, then every set in F(s) is also in F(t). Then
the collection of σ − algebras F(t) where t ∈ [0, T ] is a filtration [20].

The σ-algebra F(t) represents the information available at time t.

A real-valued random variable rt is said to be F(t)-measurable if the in-
formation in F(t) at time t is sufficient to determine the value of rt. [20].

Definition 7 Let {εt}0≤t≤T be a collection of random variables and F(t) is
a filtration. This collection of random variables is an adapted stochastic
process, if for each t, the random variable εt is F(t)-measurable. [20].

The conditional mean and the variance depending on the information up to
time t of the process given by (1.7) are the following

E[rt|Ft−1] =
∞∑
j=1

bjεt−j (1.10)

where E[b0εt|Ft−1] = 0 since b0 = 1,

and

V ar[rt|Ft−1] = E[(rt − E(rt|Ft−1))2|Ft−1]

= E[(
∞∑
j=0

bjεt−j −
∞∑
j=1

bjεt−j)
2|Ft−1]

= E[ε2t |Ft−1] = σ2,

(1.11)

with the process {εt}t≥0 adapted to filtration Ft−1.

From (1.11) it can be seen that the conditional variance, depending on the
previous observations, of the process that is assumed to be weak stationary
is constant. This is opposite to the presence of the heteroscedasticity that is
empirically observed in the financial return series.

Even more, let us consider the conditional prediction error variance at the
step k + 1 which is given as follows

E[rt+k|Ft] =
∞∑
j=1

bj+kεt−j, (1.12)
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rt+k − E[rt+k|Ft] =
k−1∑
j=0

bjεt+k−j, (1.13)

V ar[rt+k|Ft] = E[(rt+k − E(rt+k|Ft])2|Ft] = σ2

k−1∑
j=0

b2
j . (1.14)

If k → ∞ then a conditional prediction error variance tends to the uncon-
ditional variance [18]. A conclusion is that assuming a linear process for
the financial time series results in a variance independent of time, which
contradicts the fact of time-dependent variance in the financial return time
series.

1.2.3 Distribution of Return Series

To determine the distribution of high volatile return series such as stock
return or stock price change is a cumbersome task and admits deep statis-
tical analysis. In [7] it was investigated that there are numerous parametric
models fitting the distribution of returns, e.g. normal inverse Gaussian dis-
tributions, stable distribution, Student distribution, hyperbolic distribution,
exponentially truncated stable distributions.

Practice showed that return series often have distributions with fat tails and
excess kurtosis. As an example that deviates from the normal distribution
consider Figure 1.1 below. The figure shows a histogram of returns of NAS-
DAQ stock index based on the closing prices at the end of the month in the
time period from February 1971 until October 2019.
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Figure 1.1: Distribution of the return series of NASDAQ index from February 1971 until
October 2019

[18] states that recent researches showed that the mixture of the normal
distributions is able to capture the complex structure of the return series.

1.3 Volatility forecasting

The volatility of asset returns is a measure of how much the return fluctuates
around its mean and it is measured as the standard deviation of asset returns
over a particular time period [15].

Various statistical models that are explaining the behavior of the variance
and predicting future movements of financial time series have been developed.
In Chapter 1.2.2 above, we have introduced a weak stationary process. Mod-
els suitable for this type of processes are the group of autoregressive moving
average (ARMA) models. These models allow for future prediction of the
returns in dependence on the weighted past return values. But, weak sta-
tionary processes assume a constant variance which contradicts the stylized
facts of return time series. Thus variance modeling is crucial for making ac-
curate forecasts of return series [18] and this is the main drawback of ARMA
models. In the next chapter, we shall introduce a class of time series models
that are able to overcome these shortcomings.
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1.4 Time Series Models

One of the main stylized fact about the return series, introduced in Chapter
1.2.1, is heteroscedasticity. It describes the situation in which the variance
of the asset return is not constant and is changing over the time. Figure
1.2 is showing how the variance of NASDAQ monthly returns is evolving
over the time period from January 2000 until October 2019. The variance is
calculated based on formula (3.3) which will be introduced in Chapter 3.

Figure 1.2: Variance of NASDAQ monthly returns in the period from January 2000 until
October 2019

Time series models that assume a conditional variance which is changing
over time, belong to the group of autoregressive conditional heteroscedastic
(ARCH) models. ARCH models have been further improved which led to
generalized ARCH (GARCH) models.

1.4.1 GARCH Model

As the name of generalized autoregressive conditional heteroscedastic model
(GARCH) suggests, we deal here with a generalization of ARCH models.
The ARCH model introduced by Engle [8] allows for a time dependent vari-
ance.

Let us considers the return process at the time t, t ≥ 0

rt = xt
>b + εt, (1.15)

rt is a dependent variable, xt
> is a vector of exogenous variables (independent

variables), b is the vector of unknown parameters, εt is an error term (return
residual). Engel [8] proposes to use the previous information for εt. Hence,

18



εt is an adapted stochastic process which is a product of the i.i.d. random
variables zt and the time-dependent standard deviation σt such that

εt = ztσt (1.16)

where zt is a white noise, and

E(εt|Ft−1) = 0 (1.17)

V ar(εt|Ft−1) = σ2
t . (1.18)

Deterministic part of the process given in equation (1.15) is xt
>b, while εt

is the random part which contains the conditional variance σt. The equation
(1.15) can be written in the following form

εt = rt − xt
>b. (1.19)

Assuming that εt is an adapted, normally distributed random process with
mean 0 and variance σ2

t

εt|Ft−1 ∼ N(0, σ2
t ), (1.20)

the conditional variance of the return process rt given by an ARCH (q) model
is expressed as follows

σ2
t = α0 +

q∑
i=1

αiε
2
t−i. (1.21)

To ensure a positive conditional variance α0 > 0 and αi ≥ 0 for i = 1, ..., q.

The ARCH (q) model explicitly recognizes the difference between conditional
and unconditional variance, allowing the conditional variance to change over
time as a function of the past errors [5]. The generalization of the ARCH
model is introduced by Borellslev in his paper from 1986 [5]. There, he states
that in empirical applications of the ARCH model a relatively long lag in the
conditional variance equation is often needed. To overcome the problem with
negative variance parameter estimates, a fixed lag structure is imposed. This
naturally requires an extension of the ARCH models to allow for a long mem-
ory and a more flexible lag structure.

Again, assuming a normal distribution of the adapted process εt

εt|Ft−1 ∼ N(0, σ2
t ), (1.22)
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the conditional variance of the return process rt given by a GARCH (p, q)
model is expressed as follows

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j (1.23)

where p ≥ 0 and q > 0. To ensure that a variance is positive α and β are
vectors of unknown parameters such that α0 > 0, αi ≥ 0 where i = 1, ..., q,
βj ≥ 0 and j = 1, ..., p.

If p = 0 the process reduces to the ARCH (q) process and if p = q = 0
the process is simply a white noise.

The difference between ARCH and GARCH models is that the variance mod-
eled by ARCH is defined as a function of past sample variances only, wheres
the GARCH model allows lagged conditional variances to enter as well [5].

1.4.2 Estimation of GARCH (p, q) Parameters

This chapter is based on the optimization method presented in [5].

Let us recall the return process at time t

rt = xt
>b + εt (1.24)

where
εt|Ft−1 ∼ N(0, σ2

t ). (1.25)

Let θ = (b>, α0, α1, ..., αq, β1, ..., βp) be the vector of the parameters to be
estimated. θ ∈ Θ where Θ is a compact parameter space. To estimate the
parameters of the GARCH (p, q) model, maximum likelihood (ML) algorithm
can be used. Let lt(θ) be the likelihood function of the observation at time t,
then the maximum likelihood estimator for a sample of T observations with
respect to the parameters in the vector θ is the following

θ̂T = arg max
θ∈Θ

T∏
t=1

lt(θ). (1.26)
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Let us rewrite (1.24) in the following form

εt = rt − xt
>b and put σ2

t = zt
>ω (1.27)

where zt
> = (1, ε2t−1, ..., ε

2
t−q, σ

2
t−1, ..., σ

2
t−p) and ω = (α0, α1, ..., αq, β1, ..., βp).

Now, the vector of the parameters to be estimated becomes θ = (b>, ω>).

Assuming that εt is normally distributed with mean 0 and variance σ2
t , the

likelihood function at time t is derived from the probability density and it is
given by

lt(θ) =
1√

2πσ2
t

exp
− 1

2

ε2t
σ2t . (1.28)

Instead, we will consider a logarithm of the likelihood function and it is
calculated as follows

log lt(θ) = log lt(θ) = log(
1√

2πσ2
t

exp
− 1

2
ε2

σ2t )

= log
1√

2πσ2
t

+ log exp
− 1

2

ε2t
σ2t

= log 1− log(2πσ2
t )

1
2 − 1

2

ε2t
σ2
t

= 0− 1

2
log(2π)− 1

2
log σ2

t −
1

2

ε2t
σ2
t

,

(1.29)

finally we have

log lt(θ) = −1

2
log σ2

t −
1

2

ε2t
σ2
t

. (1.30)

The likelihood for a sample of T observations is now defined as the following

LT (θ) =
1

T

T∑
t=1

log lt(θ), (1.31)

and the maximum likelihood estimator becomes

θ̂T = arg max
θ∈Θ

Lt(θ). (1.32)

An iterative gradient method is applied to obtain the set of the optimal
GARCH (p, q) parameters. The gradient method is explained in [3]. Con-

sider the gradient of LT (θ), ∇LT = ∂LT (θ)
∂θ

, then any vector d in the same
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halfspace as ∇LT (such that dT∇LT > 0) is a direction vector of increase of
LT (θ) such that LT (θ + λd) is an increasing function of the scalar λ.

A set of the directions d is given by

d = ∇LTH
−1 (1.33)

where H−1 is the inverse of the Hessian matrix (a second order partial deriva-
tive matrix of LT (θ) with respect to the parameters θ). This method is known
as the Quasi-Newton method. Computing the Hessian is costly and within
the iterations, the matrix can become singular, hence not invertible. An al-
ternative to the Hessian matrix is choosing a covariance matrix QT of the
estimates which is necessarily positive definite, hence invertible.

The first order partial derivative of log lt(θ) with respect to the parameters
in vector ω is given as follows

∂ log lt
∂ω

= −1

2

1

σ2
t

∂σ2
t

∂ω
− 1

2
ε2t (−

1

σ4
t

)
∂σ2

t

∂ω

=
1

2

1

σ2
t

∂σ2
t

∂ω
(
ε2t
σ2
t

− 1).

The second order partial derivative is given by

∂2 log lt
∂ω∂ω>

= (
ε2t
σ2
t

− 1)
∂

∂ω>
(
1

2

1

σ2
t

∂σ2
t

∂ω
)− 1

2

1

σ2
t

∂σ2
t

∂ω

∂σ2
t

∂ω>
ε2t
σ2
t

where
∂σ2

t

∂ω
= zt +

p∑
i=1

βi
∂σ2

t−i

∂ω
. (1.34)

The first order partial derivative of log lt(θ) with respect to the parameter
vector b is the following

∂ log lt
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= −1
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ε2t
σ4
t

∂σ2
t

∂b
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1

σ2
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(
ε2t
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The second order partial derivative is given by

∂2 log lt
∂b∂b>

= − 1

σ2
t

xtxt
> − 1

2

1

σ4
t

∂σ2
t

∂b

∂σ2
t

∂b>
(
ε2t
σ2
t

)− 2
1

σ4
t

εtxt
∂σ2

t

∂b
+ (

ε2t
σ2
t

− 1)
∂

∂b>
(
1

2

1

σ2
t

σ2
t

∂b
)

where
∂σ2

t

∂b
= −2

q∑
i=1

αixt−iεt−i +

p∑
j=

βj
∂σ2

t−j

∂b
. (1.35)

Now, let θ(i) be the ith iteration of the parameter vector θ of LT (θ), then the
parameter vector in the next iteration is given by

θ(i+1) = θ(i) + λiQ
−1
T

>∑
t=1

∂ log lt
∂θ

(1.36)

where λi is the scalar value at step i that maximizes LT (θ) and ensures a
convergence of the iterations to the point where the gradient is zero (for
the criterion of choosing λ see [3]). λ is called learning rate and it will be
described in Chapter 2. Q−1

T is the covariance matrix of the gradient given
by

Q−1
T = E[

>∑
t=1

∂ log lt
∂θ

∂ log lt
∂θ>

] (1.37)

= E[
>∑
t=1

∂2 log lt
∂θ∂θ>

] (1.38)

where ∂ log lt
∂θ

is evaluated at θ(i). The set of initial parameters θ can be ran-
domly assigned.

Non-linearity of the likelihood function can lead to obtain a local maximum
instead of a global one. The derivative of the likelihood function is 0 at both,
local and global maxima and also at saddle points, thus the vector of the pa-
rameters θ does not necessarily lead to the global maximum of the likelihood.
If LT (θ) reaches a local maximum, the process will stop, as the gradient ∇LT

is zero at this point. This problem is difficult to overcome. As a precaution,
several initial values of θ can be chosen. If those initial values do not lead to
the same convergence point, then the actual shape of the function should be
investigated ensuring that the global maximum is located [3].

23



1.4.3 Exponential GARCH (EGARCH)

In Chapter 1.2.1 the leverage effect is introduced as a stylized fact of the
returns. Exponential GARCH (EGARCH) models are formulated with a
variance equation depending on the sign and size of the lagged residuals,
whereas GARCH models take only the magnitudes of the lagged residuals
and not their signs into consideration [18]. The advantage of the EGARCH
models is its ability to capture the leverage effect. Consider equations given
by (1.15) - (1.18), then the conditional variance given by EGARCH (p,q)
model is the following

ln(σ2
t ) = α0 +

p∑
j=1

βj ln(σ2
t−j) +

q∑
i=1

(αi|
εt−i
σt−i
−
√

2

π
|+ γi

εt−i
σt−i

). (1.39)

The leverage effect is described by the parameter γ such that γ > 0. The
logarithmic function in equation (1.39) implies that the conditional variance
given by an EGARCH (p,q) model is positive no matter what sign the resid-
uals have.

There are many extensions of the GARCH models, but they will not be
subject of this thesis.
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Chapter 2

Artificial Neural Networks

2.1 Introduction to Artificial Neural Networks

Artificial neural networks (ANNs) are inspired by the learning process of the
human brain [12]. They are constructed as a network of connected units
called nodes or neurons where the connections are carrying certain weights
which are giving an information on the importance of the neurons. The net-
work has three basic sorts of layers: input, hidden and the output layer. The
input layer is a vector containing values of given data observation (indepen-
dent variable), the hidden layer represents the transformation of the input
data and the output layer contains the result of the neural network (depen-
dent variables). Figure 2.1 is showing a network consisting of one hidden
layer that contains three neurons.
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Figure 2.1: Structure of the network with one hidden layer [11]

The topology of the network is determined by the number of hidden layers,
the number of the neurons in each layer and the nature of the activation
function (the term will be explained later in the text) [12]. The number of
hidden layers, as well as the number of neurons in each hidden layer, can be
different and can influence the network’s (model’s) performance.

ANN is based on two processes, namely forward propagation and back prop-
agation. For prediction modeling problems such is regression, in forward
propagation, the input is taken and processed through multiple neurons in
the hidden layers, retrieving the result in the output layer. The predicted
result is compared to the actual one (called target output) and the error is
calculated. The aim is to minimize the error, which is achieved in the back
propagation step. The error is minimized ”traveling” back to the neurons
in the network and adjusting the weights of the neurons such that the error
becomes as small as possible.

2.1.1 Structure of the Network

The simplest type of the neural network is a feed-forward network. In the
feed-forward neural networks, all neurons of a particular layer are connected
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to the neurons in the layer next to it [12]. In this network, the information
moves in only one direction, from the input nodes, through the hidden layers
to the output nodes, there are no cycles or loops in the network [22].

Let us start with introducing a term so-called perceptron. A perceptron can
be seen as a binary classifier that produces output 0 or 1. The perceptron is
a linear classifier or a linear function.

Let x = (x1, x2, ..., xn)> be an input vector, xi ∈ R. To each element of
the input vector x a certain weight is assigned w = (w1, w2, ..., wn), wi ∈ R.
The weights give information on the importance of the respective inputs.
The weighted sum of the input x is

s =
n∑
i=1

xiwi. (2.1)

The weighted sum is then compared to some threshold b, b ∈ R and the
perceptron is given as binary function f(s) such that

f(s) = 1 if s ≥ b

f(s) = 0 if s < b

The above expressions can be written as follows

f(s) = 1 if s− b ≥ 0

f(s) = 0 if s− b < 0

In this case, b is often called bias. The bias can be considered as a measure
of how easy is for perceptron to achieve the output 1.

Making small changes in the weights of the neurons should result in small
changes in the output and having the predicted result closer to the actual
one. A problem with the perceptron, however, is that small changes in its
weights can cause large changes in the output (e.g. from 0 to 1). Another
issue is that adjusting the weights can change the behaviour of the whole
network, meaning that the network can produce the desired output for cer-
tain data observations but make wrong predictions for all other observations.
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Therefore, activation functions, also called transfer functions, were intro-
duced. The argument of the activation function is a weighted sum of inputs
plus a bias term. Having an activation function allows for adjustments in the
weights in order to obtain better predictions. Another difference, comparing
to the perceptron, is that the outputs are not only binary, but can take any
continuous value. The most common activation functions are the following
[18]:

• binary function (perceptron): f : R→ {0, 1}

f(s) =

{
1, s+ b ≥ 0

0, s+ b < 0

• bipolar function: f : R→ {−1, 1}

f(s) =

{
1, s+ b ≥ 0

−1, s+ b < 0

• sigmoid function: f : R→ [0, 1], c ∈ R

f(s) =
1

1 + e−cs

• tangent hyperbolic: f : R→ [−1, 1], c ∈ R

f(s) = tanh(
cs

2
)

• ReLU (Rectified liner unit): f : R→ [0,∞)

f(s) =

{
0, s+ b ≤ 0

s, s+ b > 0

For non-linear prediction problems, activation functions such as sigmoid or
tangent hyperbolic are often used.

Consider Figure 2.2 which shows the activation function of a perceptron
[12]. This is a step function that takes as values either 0 or 1. This is a
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discontinuous function and not differentiable, therefore it is not suitable for
the gradient optimization method which will be introduced later in the thesis.

Figure 2.2: Figure on the left represents the perceptron function. Figure on the right
represents the symbol of the perceptron function [12]

The sigmoid activation function is shown in Figure 2.3. This is a smooth
nonlinear function that is differentiable and approximates well any value be-
tween 0 and 1 for the output [12].

Figure 2.3: Figure on the left represents the sigmoid function. Figure on the right
represents the symbol of the sigmoid function [12]

As already stated, the structure of the network can be complex, containing
more than one hidden layer and a large number of neurons in each of them.
This type of a neural network is called multilayer neural network. To deter-
mine the number of hidden layers in the network and the number of neurons
in each layer, there is no universal approach or rule. For less complex tasks,
one or two hidden layers can be used, but even for some highly complex
problems a small number of hidden layers can result in a good performance
of the network. These decisions depend on the specifications of the problem.
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2.2 Estimation of the Network’s Parameters

We will now consider a higher dimensional case of the input parameters.
Hence, assume an input data set that contains independent variables. The
input data set is a n×m matrix denoted by X whose entries are real numbers
xi,j where i, j are elements of the index set I, and each column of the matrix
represents one independent variable (one attribute),

X =


x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

. . . . . .

. . . . . .

. . . . . .
xn,1 xn,2 . . . xn,m

 . (2.2)

Each row of the matrix represents one observation of the data set. Each
observation can be written in the form of the real valued vector xd ∈ Rm

such that d = 1, ..., n.

A dependent variable is a vector of the length n denoted by t and it repre-
sents the desired output for each observation of the matrix X which is given
by

t = (t1, t2, ..., tn)>. (2.3)

The output vector t is called a target vector and t ∈ Rn.

The aims is to ”predict” the values of the target vector t applying a neural
network algorithm that is ”trained” on the input data set X.

Assume that the network has L layers, where L ∈ N+/{0}. Let ald,j be

the output in the layer l of the neuron j with respect to the observation xd.
Then the output in the first layer of the neuron j given the input vector xd

is given as

a1
d,j = f(

m∑
i=1

w1
i,jxd,i + b1

j) (2.4)

where w1
i,j is the weight connecting ith neuron from the input, in this case

input xd,i to the jth neuron in the first layer, d = 1, ..., n. Replacing an
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argument of the activation function f with the following

o1
d,j =

m∑
i=1

w1
i,jxd,i + b1

j , (2.5)

then the output a1
d,j becomes

a1
d,j = f(o1

d,j), d = 1, ..., n. (2.6)

Analogously output in the layer l + 1 of the neuron j given layer l is

al+1
d,j = f(old,j), (2.7)

d = 1, ..., n, l = 1, ..., L−1 is the number of hidden layers and L is an output
layer.

To estimate the performance of the network, an error function is calculated.
The error is usually called cost or loss function and gives an information
about how well the predicted output approximates the target output. In the
empirical part of the thesis we implemented the mean squared error (MSE)
and mean absolute error (MAE).

The MSE of the whole data set is calculated as an average of the errors
for each observation d

E =
1

n

n∑
d=1

Ed, (2.8)

such that

Ed =
1

2
(td − aLd )2 (2.9)

where td is the target output and aLd is the output of the neural network in
the last layer L.

The MAE of the whole data set is given as follows

E =
1

n

n∑
d=1

Ed, (2.10)

such that

Ed =
1

2
|td − aLd |. (2.11)

After calculation of the error function, the algorithm ”goes back” through
the network to adjust the weights in order to minimize the error.
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2.2.1 Gradient descent optimization

A standard method to obtain the optimal weights is the gradient descent
algorithm in which network weights are moved in the direction in which the
performance function (the error) is decreasing rapidly [12]. The gradient de-
scent algorithm will give the new set of adjusted weights so that minimization
of the error function is performed.

The gradient of the error function E with respect to each weight wi,j in
each layer is calculated and ∆wi,j is obtained for each i, j ∈ I. This shows
how a change in that weight will affect the error function. Since the total
error of the entire data set can be calculated as the sum of the errors in each
observation

E =
n∑
d=1

Ed, (2.12)

then the gradient of the entire data set can be calculated as the sum of the
gradients in each data observation.

The gradient algorithm is introduced in Chapter 1.4.2 and it is based on
the following: the initial set of the weights (or parameters) is assigned (usu-
ally randomly), then the iteration on the set of the parameters is performed
by calculating first order derivatives with respect to the weights of the net-
work until the error function is minimized. The new updated weight after k
iterations is the weight

wk+1
i,j = wki,j + η∆wki,j (2.13)

where η is a learning rate which determines how much the weights are
changed in each step.

There are several variants of the gradient descent and the most common
ones are the following [21]:

i batch gradient - the gradient contributions for all data observations
are accumulated before updating the weights. All observations of the
training data set are passed through the network at once, the average
loss is calculated and the weights are updated.

ii stochastic gradient - the weights are updated immediately after process-
ing each data observation. One training observation is passed trough
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the neural network at the time, loss is calculated and the weights in
each layer are updated. The process is done for each training observa-
tion.

iii mini-batches - compromise between batch and stochastic gradient where
the weights are updated after every n observations such that the train-
ing data set is partitioned into n parts (mini-batches).

ANNs are complex non-linear models, and while minimizing the error func-
tion the same problem that is occurring while maximizing the likelihood
function for the statistical models, arises as well. This is the problem related
to finding the local optimal solutions instead of the global ones. This prob-
lem is explained in [16]. Consider Figure 2.4 which illustrates the problem
of globally optimal or globally minimal points for a non-linear function. A
minimum of the function has a slope (derivative) equal to zero and a second
derivative is positive, wheres a maximum of the function has a slope zero
too, but the second derivative is negative. A saddle point has a slope and
a second derivative both equal to zero. Figure 2.4 shows that the set of the
initial weights may lie anywhere on the x− axis close to the local or global
maximum rather than the minimum. Updating and adjusting the weights,
one can easily end up at one of the many positions where the derivative is
zero and the curve has a flat slope [16].

Figure 2.4: Optimization problem with respect to the local minimum and maximum [16]
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2.2.2 Back Propagation Algorithm

The weights of the network are able to store the knowledge acquired during
the learning process. A method that is used in learning processes is called
learning algorithm and can be described as a function to adjust the weights
to achieve the desired objective [21].

The most common learning algorithm is back propagation which is an it-
erative gradient based algorithm that minimizes an error between the target
and the predicted output [21]. In this paper the back propagation which is
based on batch gradient will be described.

Let us consider a generalized case, such that each observation in the input
data set can have multiple outcomes. This leads to a target matrix instead
of the target vector introduced in Chapter 2.2. Thus, the target matrix has
the following form

t =


t1,1 t1,2 . . . t1,kL
t2,1 t2,2 . . . t2,kL
. . . . . .
. . . . . .
. . . . . .
tn,1 tn,2 . . . tn,kL

 . (2.14)

The Mean Squared Error function is then given by

E =
1

2n

n∑
d=1

kL∑
j=1

(td,j − aLd,j)2 (2.15)

where td,j is a target output with respect to the observation d, aLd,j is an
output of the neural network with respect to the observation d, and kL is
the number of outputs in the output layer L. The change in the weight in
each layer l is a partial derivative of the error function with respect to that
weight, i.e.

∆wli,j = −η ∂E

∂wli,j
. (2.16)

The following back propagation algorithm is explained based on the calcula-
tion in [21].
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The back propagation starts updating the weights in one to last layer L− 1
and the change in the weight wL−1

i,j is then

∆wL−1
i,j = − η

2n

n∑
d=1

kL∑
j=1

∂

∂wL−1
i,j

(td,j − aLd,j)2 (2.17)

where kL is the number of the neurons in the output layer. Since for the
given j only the output aLd,j has a relation to the weight wL−1

i,j , it follows

∆wL−1
i,j =

η

n

n∑
d=1

(td,j − aLd,j)
∂aLd,j

∂wL−1
i,j

. (2.18)

Knowing that aLd,j = f(oL−1
d,j ), the chain rule is applied to calculate the partial

derivative in the equation (2.18)

∂aLd,j

∂wL−1
i,j

=
∂aLd,j

∂oL−1
i,j

oL−1
d,j

∂wL−1
i,j

. (2.19)

The result is then
∂aLd,j

∂oL−1
i,j

= f ′(oL−1
d,j ) (2.20)

and
oL−1
d,j

∂wL−1
i,j

=
∂

∂wL−1
i,j

kL−1∑
i=1

aL−1
d,i w

L−1
i,j = aL−1

d,i (2.21)

where kL−1 is the number of the neurons in the layer L − 1. From the
equations (2.18) - (2.21) one can see the final result for the change of the
weights wL−1

i,j

∆wL−1
i,j =

η

n

n∑
d=1

(td,j − aLd,j)f ′(oL−1
d,j )aL−1

d,i (2.22)

=
η

n

n∑
d=1

δL−1
d,j a

L−1
d,i (2.23)

where
δL−1
d,j = (td,j − aLd,j)f ′(oL−1

d,j ). (2.24)
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To make a generalization for the change of the weights in any layer l, one
needs to calculate the change of the weights in L− 2 layer too. That is the
the following

∆wL−2
i,j = −η ∂E

∂wL−2
i,j

. (2.25)

Let us recall that the weights from the layer L−2 are connected to the output
j in layer L− 1

oL−2
d,j =

kL−2∑
i=1

ad,iw
L−2
i,j + bL−2

j (2.26)

and
aL−1
d,j = f(oL−2

d,j ). (2.27)

Hence there is the following

−η ∂E

∂wL−2
i,j

= −η
n∑
d=1

∂E

∂oL−2
d,j

∂oL−2
d,j

∂wL−2
i,j

. (2.28)

From the previous calculation in (2.21) one knows that

∂oL−2
d,j

∂wL−2
i,j

= aL−2
d,i . (2.29)

Further there is the following

∂E

∂oL−2
d,j

=
∂E

∂aL−1
d,j

∂aL−1
d,j

∂oL−2
d,j

. (2.30)

Again from the previous calculation in (2.20) one knows that

∂aL−1
d,j

∂oL−2
d,j

= f ′(oL−2
d,j ). (2.31)

Now, ∂E

∂aL−1
d,j

needs to be calculated. Since the algorithm goes backwards the

following is obtained

∂E

∂aL−1
d,j

=

kL∑
z=1

∂E

∂oL−1
d,z

∂oL−1
d,z

∂aL−1
d,j

(2.32)

= − 1

n

kL∑
z=1

δL−1
d,z w

L−1
j,z . (2.33)
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From the equations (2.27)-(2.32) follows that the change of the weight in the
layer L− 2 is

∆wi,j =
η

n

n∑
d=1

(

kL∑
z=1

δL−1
d,z w

L−1
j,z )f ′(oL−2

d,j )aL−2
d,i . (2.34)

Writing

δL−2
d,j = (

kL∑
z=1

δL−1
d,z w

L−1
j,z )f ′(oL−2

d,j ), (2.35)

the equation (2.34) becomes

∆wL−2
i,j =

η

d

n∑
d=1

δL−2
d,j a

L−2
d,i . (2.36)

Finally the generalization of the change of weights in any layer l, l = 1, ..., L−
1 is obtained and it is given by

∆wli,j =
η

n

n∑
d=1

δld,ja
l
d,j (2.37)

where

δld,j = (

kl+2∑
z=1

δl+1
d,z w

l+1
j,z )f ′(old,j), (2.38)

such that l = 1, ..., L− 2.

The learning rate η has an important role. If η is too small then the al-
gorithm will take a long time for the error to converge, on the other hand,
if η is too large then the algorithm will end up bouncing around the error
function, i.e. the algorithm diverges, see Figure 2.5.
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Figure 2.5: Figure on the left represents a small learning rate which implies slow con-
vergence. Figure on the right represents large learning rate which implies divergence [21]
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Chapter 3

Implementation of the Models

3.1 Data

In order to analyze the properties of returns and stylized facts of volatility on
real data, we examined volatility of S&P 500 and NASDAQ stock indexes.
We use S&P 500 data in the period of January 1970 until October 2019,
while NASDAQ data is used from February 1971 until October 2019. The
data consists of daily closing prices. S&P 500 contains 12571 and NASDAQ
contains 12293 daily closing prices which are the basis for return and realized
volatility calculation. The aim is to predict future values for the volatility
based on historical data of returns and realized volatility.

An empirical part of the thesis is based on the implementation of two mod-
els, a neural network and GARCH models. The time frame taken for the
prediction is one month, in average 20 trading days. In the neural net-
work implementation, past observations of the monthly realized variance are
used to predict the future, one month ahead variance. For GARCH models
monthly returns are used in the variance prediction. The return at time t is
calculated as a log return of the closing prices given by

rt = ln(
Pt
Pt−1

) (3.1)

where Pt is the closing price at the time t.

Volatility is a latent variable and not directly observable [18]. Assuming
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the return innovation is given by rt = εt and εt = σtzt where zt is a white
noise, zt ∼ N(0, 1), and it is independent of Ft−1, then

E[r2
t |Ft−1] = E[σ2

t z
2
t |Ft−1] = E[σ2

t |Ft−1] = σ2
t (3.2)

and σ2
t is Ft−1 measurable. Equation (3.2) appears to justify r2

t as a proxy
for the true variance and it results in a very noisy measurement [18]. Relying
on r2

t for the variance measure in terms of σ2
t , realized monthly variance is

then calculated as follows

RVt =
n∑

m=1

r2
t+m (3.3)

where

• n is the number of trading days in a month

• rt+m is the return at the trading day m in the month t.

In the sequel we shall refer to realized variance because the calculation is
based on the formula in equation (3.3).

After applying the formula given by (3.3), a time series contains 597 for
S&P 500, and 584 observations for NASDAQ of monthly realized variances.
The data sample in both cases is not large which is an additional challenge
for the neural network. In case of both models, 20% of the data is set aside
for the purpose of the out-of-sample testing and the rest, 80% represents a
training data set. Out-of-sample results will be used to compare performance
of the neural network and GARCH models.

3.1.1 Basic Statics about Data

Statics about monthly returns calculated based on the closing prices at the
end of each month for S&P 500 and NASDAQ is given in Table 3.1.
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Table 3.1: Basic statistics about S&P 500 and NASDAQ monthly returns

S&P 500 NASDAQ
Number 597 584
Mean 0.00599 0.00754
Standard deviation 0.043608 0.060527
Min -0.24542 -0.31792
Max 0.15104 0.19865
Kurtosis 2.67248 3.02367
Skew -0.72354 -0.86932

In Figure 3.1 monthly returns of S&P 500 are shown.

Figure 3.1: Monthly returns of S&P 500 in the time period from January 1970 until
October 2019

NASDAQ monthly returns are shown in Figure 3.2.

Figure 3.2: Monthly returns of NASDAQ in the time period from February 1971 until
October 2019

A distribution function of S&P 500 monthly returns is shown in Figure 3.3.
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Figure 3.3: Distribution function of S&P 500 monthly returns

A distribution function of NASDAQ monthly returns is shown in Figure 3.4.

Figure 3.4: Distribution function of NASDAQ monthly returns

S&P 500 realized monthly variance calculated as in formula (3.3) can be seen
in Figure 3.5.
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Figure 3.5: Monthly realized variance for S&P 500 in period from January 2000 until
October 2019

NASDAQ realized monthly variance calculated as in formula (3.3) can be
seen in Figure 3.6.

Figure 3.6: Monthly realized variance for NASDAQ in period from January 2000 until
October 2019

From the Figures above, one can witness characteristics of the returns and
realized variance as described in Chapter 1. Presence of the noise in the
returns is observed from Figures 3.1 and 3.2, while the distribution that
deviates from the normal can be seen in Figures 3.3 and 3.4. In the years
2008 and 2009, sudden jumps in the volatility development of S&P 500 and
NASDAQ are observable (Figures 3.5 and 3.6) which is the result of the
financial crisis in that period.

3.2 Results

Prediction of the future values for the variance in the case of neural network
is based on the past observations of monthly realized variance calculated
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as in equation (3.3), while the predicted variance with GARCH models is
calculated by taking past observations of the monthly returns. Two metrics
are implemented to evaluate the performance of the models. Those metrics
are Mean Squared Error (MSE) given by (2.8) and Mean Absolute Value
(MAE) given by (2.10). The results which are obtained by predicting a
realized variance for the out-of-sample testing data, given by neural network
and GARCH models, are compared.

3.2.1 Neural Network Results

There is no universal approach to determine the structure of the neural net-
work suitable for the various problems, classification, prediction, clustering,
etc. Hence, in order to get ”the best” result of the network we used the
”technique” of trials and error.

A time series consisting of the past monthly realized variances is transformed
into the data set. We decided to create a data set that contains 6 variables
(attributes/columns) out of which 5 variables are representing independent
ones and the 6th variable is dependent or target variable. This means that
we would like to predict the variance on the basis of the last 6 observations.
This decision comes from an experimentation with the different number of
variables. It is also a consequence of the fact that the time series (conse-
quently data set) is not large, and a large number of variables would increase
complexity of the network which could lead to the wrong generalization and
wrong prediction.

The data set is created as follows: the first observation (row) of the data
set is obtained by taking a consecutive sequence of 6 observations (realized
variances) from the series, staring at the first position. Then, the second
observation (row) is obtained by taking a consecutive sequence of 6 obser-
vations (realized variances) from the series starting at the second position.
This procedure is done until the series is exhausted.

The data set created for S&P 500 has 592 observations of monthly realized
variances, 5 independent variables and 1 dependent variable (target variable).
The data set created for NASDAQ has 579 observations of monthly realized
variances, 5 independent variables and 1 dependent variable.
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The predicted realized variance at the month t, RVt is given by

RVt = f(RVt−1, RVt−2, ..., RVt−5) (3.4)

where f is the function of the neural network.

A feed forward multiple layer network with a back propagation algorithm
is implemented in the thesis for the prediction problem. We trained the net-
work with 1 and 2 hidden layers because the larger number of hidden layers
would result in the complex structure and would increase the running time.
Hamid and Iqbal state in [11] that typically one hidden layer may be suffi-
cient to map an input to the output in the financial forecasting. A number
of neurons in each layer depends on the dimension of an input vector. An
input vector has 5 variables, hence 5 neurons in the input layer. Too few neu-
rons can affect the network to map incorrectly input into the output, while
the large number of neurons can make the network to memorize the trivial
patterns that can lead to the wrong generalization [11]. Our approach for
choosing the number of neurons in hidden layer is the one proposed in [17],
between the half the number and two times the number of input variables.

An activation function for the first hidden layer is sigmoid, described in
Chapter 2.1.1. The second layer (if exists) has ReLU as an activation func-
tion (Chapter 2.1.1). ReLU activation function is chosen because it gives a
positive output due to the fact that variance can not have negative values. A
predicted result in the output layer is not processed through the activation
function, it is a direct weighted input from the hidden layer.

Results of the neural network for the future S&P 500 realized variance predic-
tion are given in Table 3.2. The data set for S&P 500 has 592 observations.
The network is trained on 354 and validated on 119 samples (in-sample test-
ing). Out-of-sample testing is done for the 20% of the data set, that is 119
samples taken as the last observations in the data set.

Results of the neural network for the future NASDAQ realized variance pre-
diction are given in Table 3.3. The data set for NASDAQ has 579 observa-
tions. The network is trained on 347 and validated on 116 samples (in-sample
testing). Out-of-sample testing is done for the 20% of the data set, that is
116 samples taken as the last observations in the data set. In both cases, the
algorithm is taking around 25% of the training data for the in-sample testing
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(validation data).

A k-fold cross validation method is chosen to train the network. The num-
ber of splits (folds) is k = 4, which means that the algorithm is shuffling
the training data sets, each time taking 3 set to train and the 4th one to
validated, Figure 3.7.

Figure 3.7: k-fold cross validation method, k = 4

Each step from Figure 3.7 is repeated a certain number of times. We choose
200 iterations for S&P 500 and NASDAQ, the larger number did not decrease
the error.

3.2.2 GARCH Results

GARCH models are empirically proven to give the good results for the volatil-
ity (variance) prediction problems and in this thesis they are implemented
in order to benchmark the result of the neural network.

GARCH models which are implemented in the thesis are: ARCH (1,1),
GARCH (1,1) and EGARCH (1,1). These three models are implemented
with a normal distribution and a Student-t distribution. Approximately
80% of the time series consisting of monthly returns is used to fit the models
in order to estimate the parameters α0, α and β. From Table 3.1 one can
see that the mean of the monthly return time series is around zero, thus we
decided to take the return process with a zero mean. Parameters are p = 1
and q = 1 for GARCH and EGARCH, and q = 1 for ARCH. Estimated
parameters α0, α, β and γ are then implemented in formulas (1.21), (1.23)
and (1.39) and the future, one step ahead, conditional variance is predicted.
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Predicted variance is then compared with the calculated realized variance
as in formula (3.3), and MSE and MAE for the out-of-sample testing are
calculated.

Table 3.4 is showing the performance of the GARCH models for S&P 500
tested on the out-of-sample data. Table 3.5 is showing the performance of
the GARCH models for NASDAQ tested on the out-of-sample observations.
In order to keep the consistency with the neural network out-of-sample re-
sults, we are producing the same number of the future predicted variances
with GARCH models as with the neural network.

3.3 Discussion of the Results

In Table 3.6 ”the best” results of the out-of-sample testing for neural net-
work and GARCH models are presented for S&P 500 and NASDAQ predic-
tion problems. ”The best” results are based on the smallest value for Mean
Squared Error and the smallest value for Mean Absolute Error.

Table 3.6: Comparison of the results obtained by neural network and GARCH models
for the out-of-sample test data

Model MSE MAE
S&P 500 ANN (1 hidden layer, 10 neurons) 4.6103E-06 1.0927E-03
S&P 500 ANN (1 hidden layer, 15 neurons) 4.8886E-06 1.2809E-03

S&P 500 GARCH (1,1) (Student-t distribution) 4.9354E-06 1.2286E-03
S&P 500 EGARCH (1,1) (Student-t distribution) 4.9472E-06 1.2478E-03

NASDAQ ANN (1 hidden layer, 15 neurons) 7.2131E-06 1.4762E-03
NASDAQ ANN (2 hidden layer, 20 and 10 neurons) 7.4107E-06 1.5100E-03

NASDAQ GARCH (1,1) (Student-t distribution) 7.2740E-06 1.6886E-03
NASDAQ EGARCH (1,1) (Student-t distribution) 7.6420E-06 1.7748E-03

In the case of S&P 500 prediction problem, the smallest MSE and MAE are
obtained by the neural network (1 hidden and 10 neurons). In the case of
NASDAQ prediction problem, the neural network (1 hidden and 15 neurons)
has the smallest MSE followed by the MSE of GARCH (1,1) with a Student-t
distribution. The smallest MAE is obtained by neural network (1 hidden and
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15 neurons). It is worth to mention that the implementation of the models
is basic and the goal is to investigate how well the neural networks would
perform when approximating a realized variance of the financial instruments.
Based on the results in the thesis we cannot make a generalization and decide
which model is performing better but, we can see that the neural networks
are able to deal with a non-linear prediction problems and a noisy data. Ad-
vanced approach in the empirical part of the study would improve the results
for both implemented models, neural networks and GARCH models.

Figure 3.8 is showing a plot of the target vector (calculated realized variance
- formula (3.3)) against the neural network predicted result in the out-of-
sample testing for S&P 500. The neural network consists of 1 hidden layer
and 10 neurons. The predicted result obtained by the GARCH (1,1) model
with a Student-t distribution can be seen in Figure 3.9.

Figure 3.8: Out-of-sample testing for S&P 500. Calculated realized variance (in blue)
and predicted realized variance by neural network (in red). Neural network has 1 hidden
layer and 10 neurons
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Figure 3.9: Out-of-sample testing for S&P 500. Calculated realized variance (in blue)
and predicted realized variance by GARCH (1,1) (in red). GARCH (1,1) model with a
Student-t distribution

Figure 3.10 is showing a plot of the target vector (calculated realized variance
- formula (3.3)) against the neural network predicted result in the out-of-
sample testing for NASDAQ. The neural network consists of 1 hidden layer
and 15 neurons. The predicted result obtained by the GARCH (1,1) model
with a Student-t distribution can be seen in Figure 3.11.

Figure 3.10: Out-of-sample testing for NASDAQ. Calculated realized variance (in blue)
and predicted realized variance by neural network (in red). Neural network has 1 hidden
layer and 15 neurons
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Figure 3.11: Out-of-sample testing for NASDAQ. Calculated realized variance (in blue)
and predicted realized variance by GARCH (1,1) (in red). GARCH (1,1) model with a
Student-t distribution

Plots of the in-sample testing are presented too. For the neural network
in-sample testing we took a validation data set from the cross validation
method. The validation data set is the end part of the whole data set used
in the training procedure. The GARCH in-sample results are given by calcu-
lating the variance based on formulas (1.21), (1.23) and (1.39), implementing
the estimated parameters and return time series that is used in the fitting
procedure. In this case, we take the observations from the beginning of the
series. Figures 3.12, 3.13, 3.14 and 3.15 are showing the plots of the calcu-
lated realized variance (formula (3.3)) against predicted variance obtained by
neural network and GARCH models for S&P 500 and NASDAQ respectively.
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Figure 3.12: In-sample testing for S&P 500. Calculated realized variance (in blue) and
predicted realized variance (in red). Neural network has 1 hidden layer and 10 neurons.

Figure 3.13: In-sample testing for S&P 500. Calculated realized variance (in blue) and
predicted realized variance (in red). GARCH (1,1) model with a Student-t distribution.
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Figure 3.14: In-sample testing for NASDAQ. Calculated realized variance (in blue) and
predicted realized variance (in red). Neural network has 1 hidden layer and 15 neurons.

Figure 3.15: In-sample testing for NASDAQ. Calculated realized variance (in blue) and
predicted realized variance (in red). GARCH (1,1) model with a Student-t distribution.
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Conclusion

An objective of the thesis was to investigate how well the neural network
algorithm would perform in the case of realized volatility forecasting of fi-
nancial assets. An implementation of the neural network model is based on
the simple feed forward network with a back propagation algorithm. The
forecasting performance of the network is compared with the forecasting
performance of the well known GARCH models. Given the results in the
preceding chapter it is concluded that the neural network is performing sim-
ilar to the GARCH models. It is important to state that the implementation
of the neural network in the thesis is done having a very basic and simple
model, and the training and testing data sets are not large. The simple feed
forward network can be extended to the special form of the neural network
called recurrent network. Recurrent networks have one or more feedback
loops such that every loop can appear between any two neurons or layers,
and it usually involves unit delay element [21]. These characteristics make
recurrent neural networks advantageous in handling time series related prob-
lems over the feed forward networks [21].

Beyond the basic feed forward network, neural networks have been devel-
oped into more sophisticated and complex algorithms. The problem of the
volatility forecasting is subject to many research papers where the scientists
implemented advanced types of the networks which increased their perfor-
mance. Authors in [1] and [4] implemented Radial Basis Function (RBF) neu-
ral networks where the results showed flexibility of RBF neural networks as a
good modeling tool for the non-linear data. In [13] Hybrid neural networks-
GARCH model are investigaded and it is shown that the neural networks
can improve forecasting performance of the GARCH models for the given
problem. [18] studied Mixture Density Networks (MDN) model, which is a
combination of the neural networks and statistical model, mixture of den-
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sity functions. The results of the MDN model outperformed GARCH models.

The advantage of the neural networks approach compared to the statistical
models is that the networks are data-driven, no prior distribution assumption
for the variables is needed, no necessary prior knowledge of the relationship
between variables in the data and they are easily extended [18].

The results given by neural network for the volatility forecasting problems
in the thesis can be significantly improved by choosing more suitable types
of networks, increasing the complexity and tuning the parameters, and of
course working with the larger training and testing data sets.
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