Lniversitat
wien

DISSERTATION / DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

,Design of Metamodels for Domain-Specific Modelling
Methods using Conceptual Structures*®

verfasst von / submitted by
Mag. Wilfrid Utz

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der Wirtschaftswissenschaften (Dr.rer.oec.)

Wien, 2020 / Vienna, 2020

Studienkennzahl It. Studienblatt / UA 796 305 175
degree programme code as it appears on
the student record sheet:

Studienrichtung It. Studienblatt / Wirtschaftsinformatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: 0. Univ.-Prof. Prof.h.c. Dr. Dimitris Karagiannis

Declaration of Authorship

I declare that this thesis titled, "Design of Metamodels for Domain-Specific
Modelling Methods using Conceptual Structures and the work presented in

it are my own. I confirm that:

— This work was done wholly or mainly while in candidature for a re-

search degree at the University of Vienna.

— Where any part of this thesis has previously been submitted for a
degree or any other qualification at the University of Vienna or any
other institution, this has been clearly stated.

— Where I have consulted the published work of others, this is always
clearly attributed.

— Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my

own work.
— I have acknowledged all main sources of help.

— Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have

contributed myself.

Date/Signature:

i

Abstract

Digital transformation has become the leading topic in recent years to re-
invent and re-structure enterprises. The need for transformation is attributed
to the availability of novel and innovative technologies, defining the abilities
(internal or external) an organisation can build upon in order to elevate/a-
lign its offerings, adapt its organisational structure and quickly respond to
changing market, legal or technological trends. Agility in these transform-
ation and innovation process is regarded as a key organisational capability.
Stakeholders need to trace and understand design decisions taken, evaluate
and assess potential business cases based on common artefacts developed and
capture the innovation process that has led to its development. Conceptual
models and their underlying metamodels are considered the foundational

building blocks for these intelligence considerations.

Within this thesis, the conceptual approach and technological realisa-
tion to support the harmonisation and alignment of metamodels applied
during these transformative processes is discussed. Based on the assump-
tion that stakeholders from different backgrounds require varying domain-
specific expressiveness to contribute and collaborate, the need to align and
couple these models and provide intelligence functionalities individually or
on a global scope is manifested. The contribution targets these needs by
defining a formal representation of metamodels using conceptual structures.
A graph-based representation is proposed that defines a common, abstract
vocabulary for metamodels and an extendible framework for syntactic and
semantic knowledge operation to support the

— Harmonisation of Metamodels within distributed modelling ecosystems
applying similarity matching techniques and to identify virtual relation
between the nodes of the environment,

— Alignment o f Intelligence Capabilities to dynamically attach model
processing functionalities to the participating metamodels and their

harmonisation links.

The conceptual approach developed has been evaluated in the context of
the OMiLAB environment for completeness and adequacy, accompanied by a
prototypical implementation coined DeMoMa for domain-specific metamodel

design, harmonisation and alignment of functionality.

i

Zusammenfassung

Der Begriftf "Digitale Transformation" hat sich in den letzten Jahren zum
bestimmenden Element in der strategischen Ausrichtung von Unternehmen
entwickelt. Technologische, organisatorische und rechtliche Rahmenbedin-
gungen, die von innen und aussen auf ein Unternehmen wirken, fordern
eine kontinuierliche Evaluation der strategischen Ausrichtung. Die Art und
Weise wie Produkte und Dienstleistungen in einem globalen Umfeld ange-
boten werden, ist einem konstanten Wandel unterworfen. Agilitdt, in al-
len funktionalen Ebenen einer Organisation, hat sich als bestimmende Not-
wendigkeit entwickelt um eine Neuausrichtung systematisch zu bewerkstel-
ligen. Das Thema "Innovation", als organisatorische Fahigkeit auf Ver-
anderungen vorausschauen zu reagieren bzw. vorwegzunehmen, hast sich
von einer exotischen Randerscheinung zu einem bestimmenden Instrument
fiir alle Geschéftsbereiche positioniert. Im Rahmen der hier présentierten
Forschungsarbeit wird auf diese Herausforderung eingegangen: basierend
auf der Annahme, dass Innovationsprozesse durch Ansédtze der Modellier-
ung unterstiitzt werden konnen (im Sinne einer Externalisieren von Wissen),
stellt sich diese Arbeit der Frage, wie unterschiedliche Modellierungsansétze,
reprasentiert durch ihre Metamodelle, kombiniert und als gemeinsame Wis-

sensbasis fiir die Innovation verstanden werden konnen.

Der Beitrag dieser Arbeit baut auf Erkenntnissen der formalen Wissens-
repriasentation auf. Als Grundlage werden "Conceptual Structures" her-
angzogen und fiir die Entwick von Metamodelle entwickelt. Dieser formale
Reprasentation ermdoglicht einen systematischen Designprozess mit der Ziel-

setzung der:

— Harmonisierung von Metamodellen um verteilte Modellierungssysteme

zu entwickeln, und

— "Intelligence" Funktionalitdt, die auf Basis der Resultate der Harmon-
isierung, die Zusammenhéange in komplexen Systemen verstandlich und

nachvollziehbar machen.

Das entwickelte, konzeptionelle Ansatz und deren technologische Realis-
ierung wurde im Rahmen der Ergebnisse des OMiLLABs auf Addquanz und
Vollstandigkeit evaluiert.

iv

Acknowledgement

This doctoral project has been supervised by o. Univ.-Prof. Prof.h.c. Dr.
Dimitris Karagiannis, head of the research group Knowledge Engineering and
the Open Models Initiative Laboratory (OMiLAB) at the Faculty of Com-
puter Science, University of Vienna. I would like to thank Prof. Karagiannis
for his patience, guidance and willingness to discuss, support and enable the
research work throughout the whole period of problem identification, con-
ceptualisation, development and evaluation in an inspiring and motivational
manner. Without his ideas, guidance, freedom/liberty and possibilities to
"work" and "concentrate", focus and participate in scientific events, projects
and conference, this research work and the writing of the thesis would not

have been possible.

In addition to the guidance received by my supervisor, I would like to
thank the team at the Research Group Knowledge Engineering, my profes-
sional environment at BOC and OMiLAB as well as the ADOxx.org com-
munity for their support (implicit or explicit) in the development of this
research project. Observations, discussions, feedback received and collabor-
ative work performed with Dr. Robert Woitsch and team in Béckerstrafe,
Operngasse and now Faulmanngasse have impacted the understanding of the
problem space and guided the results established. Insights and viewpoints
from the ADOxx.org community, documented in various interactions online
and offline, refined and developed the understanding of the necessity of con-
ceptual modelling, the importance of metamodels and digital intelligence
thought after in this research project.

Last but not least, I thank my family and friends, who provided the eco-
nomical and emotional support to follow my academic studies from the early
days, already during my master’s degree and the years following thereafter.
This includes my parents who supported and educated me to follow my own
path, to think freely and openly, and my family, that has been understand-
ing and supportive throughout the whole period of research, and especially

during the final phase of writing this thesis.

I have no special talents. I am only passionately curious.

Albert Einstein

Contents

Abstract
Zusammenfassung
Acknowledgement L Lo
Contents
List of Figures
List of Tables
List of Definitions/Equations
List of Abbreviations L oL

1 Introduction

1.1 Motivation. L

1.2 Observations

1.3 Problem Statemento
1.3.1 Challenge 1: Adequate Metamodels
1.3.2 Challenge 2: Heterogenous Modelling Environments
1.3.3 Challenge 3: Digital Intelligence

1.4 Research Objective,

1.5 Research Methodology

1.6 Structure

2 Foundations and Related Work
2.1 Digital Intelligence oL
2.2 Digital Ecosystems L
2.3 Information Systems
2.4 Design Thinking
2.5 Models and Modelling
2.6 Metamodels and Metamodelling
2.7 Knowledge Representation: Conceptual Structures
2.8 Metamodels as Conceptual Graphs
2.9 Federated Architecture in Information Systems Design
2.10 Software System Behaviour Analysis

3 Design of Digital Intelligence Ecosystems
3.1 Problem Space: Digital Intelligence Environment
3.1.1 Motivational Case: Smart On-Demand Mobility

1ii
v
vii

ix

xii

XV

34
34
36
39
43
44
48
54
o7
58
61

66
67
71

3.1.2 Motivational Case: Smart Battery Management
3.1.3 Requirements for Digital Intelligence Ecosystems . . .
3.2 Metamodel Federation for Digital Intelligence Ecosystems . .
3.3 CoChaCo Metamodels as Conceptual Structures.
3.3.1 CoChaCo Metamodel
3.3.2 Metamodelling using CoChaCo: Grammar
3.4 Foundation: Conceptual Graphs.
3.4.1 Structure of Conceptual Graph
3.4.2 Basic Operations on Conceptual Graph

Metamodels as Conceptual Structures
4.1 Abstract Conceptual Vocabulary for Metamodels
4.2 CoChaCo Metamodels as CGs

Modelling Ecosystems
5.1 Harmonisation Concepts for Metamodels
5.1.1 Harmonisation of Metamodels during Design
5.1.2 Harmonisation Concept: Metamodel Alignment
5.1.3 Harmonisation Concept: Operational Metamodels
5.2 Federation Concepts in Heterogenous Modelling Ecosystems .
5.2.1 Digital Intelligence Building Blocks: Anatomy
5.2.2 Operation of Digital Intelligence Building Blocks

Technical Realisation Concept

6.1 Architecture of DeMoMa

6.2 DeMoMa:IDE (Integrated Development Environment)

6.3 DeMoMa:Harmony
6.3.1 DSL Programming Interface (CoChaCo)
6.3.2 Alignment Calculator
6.3.3 Import/Export Adaptors
6.3.4 Conceptual Graph Transformer
6.3.5 Conceptual Graph Visualizer

6.4 DeMoMa:Intel
6.4.1 Intelligence Services
6.4.2 Retrieval and Adaptation
6.4.3 Functional Building Blocks Repository
6.4.4 Configuration and Deployment Adapter

6.5 DeMoMa::Shared Modules,
6.5.1 Conceptual Graph Query Interface

vi

76
78
79
81
81
83
91
91
95

100
102
108

117
118
118
123

. 132

134
135

. 137

6.5.2

Conceptual Graph Reasoning Interface

6.6 Technology Assessment

7 Evaluation

7.1 Structural Evaluation: OMIiLAB Metamodels

7.1.1
7.1.2
7.1.3
7.14
7.1.5

Information Acquisition
Assessmento
Mapping and Transformation
Knowledge Operations for Metamodelling
Publishing

7.2 Environment Evaluation: IBPM

7.2.1
7.2.2
7.2.3
7.2.4

Requirements: IBPMo
Metamodelling using Building Blocks for IBPM
Instantiation of Building Blocks
Assessment and Evaluation

8 Conclusions

81 Summary

8.2 SWOT

Analysis

8.3 Discussion and Outlook

References
Appendices

A CoChaCo EBNF Railroad Diagrams

B Prototype Technology

B.1 Overview Prototype Technologies

A
B

Development Environments
Development Languages

B.2 Prototype Code Fragments

C OMIiLAB Modelling Methods

vii

165
166

168
168
170
170
171
176
182
183
184
186
187
189

192
192
195
197

200
218

218

226
226
226
227
227

235

viil

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3

Problem Overview: Information Systems Modelling 9
Challenge: Metamodel Selection 11
Challenge: Metamodel Design/Creation 12
Motivational Example: BPMN 2.0 Process Metamodels . . . 15
Challenge: Heterogenous Metamodel Environments 16
Challenge: Metamodel Software System Analysis 18
Research Objectives 20
Design-Science Research Methodology 27
Roadmap of the Thesis 32
Relation Information Systems and Conceptual Modelling . . . 41
Conceptual Modelling: Observation and Design 47
Generic Modelling Method Framework 49
Agile Modelling Method Engineering Framework and Lifecycle 52
Example: Conceptual Graph of a Modelling Construct 57
Federated Modelling Environment 61
Software Analytics from a Temporal Perspective 62
Digital Product Design Framework 68
Motivational Case: Initial Requirements 70
From Business Model to Feasibility Study 73
From Product Innovation to Business Model Feasibility 77
Intelligent Operations in a Federated Environment 80
CoChaCo Metamodel 82
Mapping CoChaCo to Conceptual Graphs 102
Concept Types: Abstract Metamodel CG Vocabulary 105
Relation Types: Abstract Metamodel CG Vocabulary 106
Example Metamodel in CGDF: Language-based Approach . . 110
Type Identification Rule 112

Example Metamodel in CGDF: Semantic-based Approach . . 113

Harmonisation towards Modelling Ecosystems 117
Metamodel Design Techniques 119
Similarity Matching of Metamodels 124

5.4
9.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

C.1

ix

Semantic Alignment of Metamodels 124
Harmonisation Example 129
Harmonisation of Operational Metamodels 132
Anatomy of a Digital Intelligence Building Block 136
Federated Functionality as Metamodel Building Blocks 137
DeMoMa Architecture 142
DeMoMa User Interface (Mockup) 144
DeMoMa::Harmony Architecture 146
DSL Programming Interface (CoChaCo) Architecture 149
Alignment Calculator Architecture 150
Import/Export Adaptors Architecture 152
Conceptual Graph Transformer 153
Conceptual Graph Visualizer 154
Conceptual Graph Visualizer: Mockup 155
DeMoMa::Intel Architecture 156
DeMoMa::Intel::Log Architecture 158
DeMoMa::Intel:: Trace Architecture 159
DeMoMa::Intel::Impact Architecture 160
DeMoMa::Retrieval and Adaptation 161
DeMoMa::Functional Building Blocks Repository 162
Structural Evaluation Process 169
Screenshot: ALL in DSL Programming Interface 172
Screenshot: CoChaCo DSL Programming Interface 174
Screenshot: CoChaCo Grammer CG Transformation 175
Screenshot: Conceptual Graph Visualisation (CoGUI, CGDF) 177
Screenshot: Conceptual Graph Projections 181
GOODMAN Distributed System Architecture 185
Knowledge Operations on Building Blocks for IBPM 188
GOODMAN IBM Metamodel Building Blocks 190

OMILAB Project Space: Modelling Methods and Tools 235

List of Tables

3.1
3.2
3.3

5.1
5.2

6.1

7.1
7.2

C.1
C.2
C.3
C4

CoChaCo Grammar: Metamodel

CoChaCo: Notation of Structural and Behavioural Constructs

CoChaCo Notation: Relations

Similarity Scores

Refined Definition: Similarity Scores
Technology Concept Modules: Specification Template

Overview: ALL Code Base for Evaluation
Mapping: ALL Syntax to CoChaCo Grammar

Descriptive Overview: OMiLLAB Modelling Methods
Availability Assessment: OMiLAB Modelling Methods

Artefacts and Namespaces: OMiLAB Modelling Methods .
Code Statistics: ALL Repository for Evaluation

85

. 143

171
173

251

. 233
. 235

X1

List of Definitions

3.1
3.2
3.3
3.4
3.3
3.5
3.6
3.7
3.8
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1
4.2
4.3
4.4
4.5
4.6
4.8

Metamodel Definition 83
Construct Definition 83
Structural Construct Definition 83
Relation Definition 84
Behavioural Construct Definition 84
Structural Element L. 86
Concept Definitiono oL 86
Connector Definition 87
CoChaCo Characteristics Definition 87
Type Definition oo 88
Relation: connect 88
Relation: custom 88
Relation: specialises 89
Relation: flows 89
Relation: has 89
Relation: uses 90
Conceptual Graph: Definition. 92
Conceptual Graph: Type Definition 92
Conceptual Graph: Referent Definition 93
Conceptual Graph: Argument Definition 93
Conceptual Graph: Conformance relation 93
Conceptual Graph: Canonical Basis Function 93
Conceptual Graph Canon: Definition 93
Conceptual Graph Canon: Subsumption 94
Conceptual Graph Canon: Conformance 94
Conceptual Graph Canon: Canonical Basis Function 94
CoChaCo: Abstract Vocabulary 103
CoChaCo: Concept Types. 103
CoChaCo: Relation Types 103
CoChaCo: Instances/Markers 103
CoChaCo: Concept Type Hierarchy 104
CoChaCo: Relation Type Hierarchy 105
CoChaCo: Canonical Basis Function 107

4.9
4.10
4.11

5.1
5.2
5.3

7.1
7.2
7.3
7.4
7.5

xii

Example Metamodel: Conceptual Graph 110
Example Metamodel: CG Derived Types 111
Example Metamodel: CGIF Representation 115
Similarity Matching using Interest Functions 125
Similarity Matching: Wu-Palmer Relatedness 126
Similarity Matching: Conceptual Graph Merge 127
Scene2Model Metamodel: CGIF 179
Query: Container Concepts 180
Query: Instantiable Concepts 180
Reasoning: Inverse Relations 181

Reasoning: Typeso 182

xiii

List of Abbreviations

ABL ADOxx Library Language (binary format).
ADL ADOxx Definition Language.

AT Artificial Intelligence.

ALL ADOxx Library Language.

AMME Agile Modelling Method Engineering.

API Application Programming Interfaces.

BG Basic Graph.

BPMN Business Process Model and Notation.

CD Continuous Deployment.

CG Conceptual Graph.

CGDF Conceptual Graph Display Format.
CGIF Conceptual Graph Interchange Format.
CI Continuous Integration.

CoChaCo Concept-Characteristic-Connector.

CPS Cyber-Physical System.

DeMoMa Design-Model-Make.
DeMoMa-(*) Design-Model-Make Analysis Framework.

DSML Domain-Specific Modelling Language.

EAM Enterprise Architecture Management.
EBNF Extended Backus—Naur form.

EG Existential Graphs.

EIS Executive Information Systems.
FOL First Order Logic.
GPML General Purpose Modelling Language.

IBPM Industrial Business Process Management.

ICT Information and Communication Technology.

IDE Integrated Development Environment.
IOT Internet of Things.

IT Information Technology.
JSON JavaScript Object Notation.

MDD Model-Drive Development.
MEMO Multi-perspective Enterprise MOdeling.
MFG Metamodel Foundation Graph.

MIS Management Information Systems.

MOF Meta-Object Facility.

OMG Object Management Group.

OMIiILAB Open Models Initiative Laboratory.

PIM Platform Independent Model.

PSM Platform Specific Model.

RDF Resource Description Framework.

ReST Representational State Transfer.

SOA Service-Oriented Architecture.

SuS System-Under-Study.

Xiv

UT User Interface.

UML Unified Modelling Language.

XMI Extensible Markup Language (XML) Metadata Interchange.

XML Extensible Markup Language.

YAML YAML Ain’t Markup Language.

XV

Xvi

- This page is intentionally left blank -

Chapter 1

Introduction

Digital transformation initiatives have become a crucial element in the strategy
definition of enterprises in almost all industries (Andal-Ancion et al., 2003).
In the era of "constant customer connectivity" (Berman, 2012), organisations
need to restructure or re-invent themselves constantly, supported by and
resulting from the availability of digital technologies. According to (Petry,
2019), an intelligent enterprise needs to focus on three complementary activ-

ities:

(a) define Intelligent Offerings for the market that create customer and
business value as a combination of digital and physical products or

services capabilities,

(b) enable Intelligent Customer Interactions, considering location and time,
collaborative relations with the client, and

(c) establish Intelligent Processes, as a transformative activities within the
organisation to handle value-adding operations and adapt these model
to domain-specific needs.

As stated by (Matt et al., 2015), such activities involve a transformation
of "key business operations and affects products and processes, as well as
organisational structures and management concepts; digital transformation
strategies need to be formulated and aligned with corporate management
practices to govern these complex transformations". Consequently, enter-
prises need to develop a new "portfolio of capabilities for flexibility and re-
sponsiveness to fast-changing [customer| requirements" (Berman, 2012) that
are defined as organisational digital innovation competences.

In the scope of the research work performed, the above mentioned trans-
formative activities and digital innovation capabilities are assessed in the
context of information systems analysis and design. Building upon the defin-
ition of (Wand et al., 1995, p. 286), information systems are "viewed as a

representation, or a model of another system". These representations needs

1 of 257

CHAPTER 1. INTRODUCTION

to evolve and consider the impact of digital innovation already on model and
metamodel level used. Within the research work performed, temporal and
evolutionary aspects of these models and underlying metamodels are con-
sidered. Organisational aspects define the way knowledge is represented and

to what extend a combination of structures is applicable for specific cases.

The contribution resulting from this research work is within the field of
design, conceptualising a metamodelling environment to support temporal
and organisational dynamics. The environment is capable to support a fed-
erated design and application of metamodels building on conceptual struc-
tures as a formal knowledge representation. Global functionalities that span
across the boundaries of a specific metamodel become feasible using ab-
stract patterns of metamodel structures. As a contribution to the field of
digital innovation, a layered approach has been developed based using the
categorisation of modelling techniques introduced by Walch in (Walch and
Karagiannis, 2019, p. 7244). These layer are applicable as a means to define

abstraction/decomposition of artefacts.

In the following section the motivation, as introduced above, is detailed.
Observations on current trends and developments are discussed and their
impact on the research scope is clarified.

1.1 Motivation

Enterprise operate today in fast changing environments. External factors
influence and disrupt business models and objectives of enterprises. As tech-
nology advances at a rapid pace and changes the way organisations offer
their products and services, legal/regulatory requirements need to be re-
viewed continuously and respected (Utz, 2018b, p. 47), agility already dur-
ing design is a necessity. The environmental agility stems from trends how
technological developments impact society in general, and enterprises and
organisations in a narrow sense. Observations are introduced in the follow-
ing section, motivating the research on the conceptual modelling framework

for digital innovation.

2 of 257

CHAPTER 1. INTRODUCTION

1.2 Observations

Digital Economy and Innovation. At this stage, it is not necessary to
question whether digital transformation will impact us or not, as develop-
ments within this field have significantly changed our life and the environ-
ment surrounding us. Statistical reports show that the economical footprint
of the digital economy is increasing year by year and according to the World
Economic Forum "by 2022, over 60% of global GDP will be digitized" (World
Economic Forum, 2019). This development is attributed to the fact, that
digital transformation can not be assigned to a specific sector but impacts
all industries in developed and developing countries alike (UNCTAD, 2019).
Evidence for these statements can be found in statistical reports on eco-
nomic figures, that show the current state of the transformation: according
to a study by PriceWaterhouseCoopers in (PriceWaterhouseCooper, 2019,
p. 23), seven of the ten most valuable companies are directly related to
the digital sector. In August 2019, Apple was the first company to reach a
market capitalisation of 1 trillion US dollar (Davies, 2018).

Considering the societal dimension, the OECD report on digital eco-
nomy argues a potential that "digital technologies can democratise innov-
ation" (OECD, 2019, p. 15). Their assessment is based on the considera-
tion, that the reduced cost of information and communication technologies
now enable small and credit-constrained firms to develop innovative and
novel business models, products, services and processes employing techno-

logy.

Observation 1

Digital innovation transforms whole economic sectors and disrupts the
way enterprise operate, independent of industrial domain, maturity,
age, or origin. Information systems analysis and design methodolo-
gies are a relevant and adequate technique to organise transformative
change systematically, but need to consider the characteristics of con-
vergence and generativity (Yoo, Boland et al., 2012) as innovation

principles.

Digital innovation, its relation to digital transformation and characterist-
ics are discussed from an information systems perspective in (Ciriello et al.,

2018). The authors define the term as "innovating products, processes, or

3 of 257

CHAPTER 1. INTRODUCTION

business models using digital technology platforms as a means or end within
and across organisations". The definition shows the relevance for the field of
information systems analysis and design. The characteristic of convergence
is directly related to the use of pervasive digital technologies. As product
and service artefacts are digitised, they can be combined and reprogrammed
flexibly, building on homogenisation of data and self-referential nature (Yoo,
Henfridsson et al., 2010, p. 4). New and intelligent product/service of-
ferings can be realised without any limiting factors related to location and
time. Generativity as a complementary characteristic "points to the fact
that digital technologies are inherently dynamic, extensible, and malleable"
(Ciriello et al., 2018, p. 564).

Disruption and Agility. Disruptive innovation, as a process,plays an im-
portant role in today’s digital business model transformations. In contrast
to continuous improvement or sustaining innovation strategies, that per-
form small, incremental changes in an environment that is well understood,
disruptive innovation takes a radical step in an effort to promote change
and develop market opportunities/organisational capabilities unknown be-
fore (Haemisch, 2013).

The term has been defined initially in (Bower and C. M. Christensen,
1995) as "disruptive technologies" and is closely related to the dynamics of
new market entrants and their capabilities to adapt and respond to cus-
tomer requirements at a faster pace than large cooperations, even though
they might lack the organisational capabilities or resources to compete in a

classical model.

Observation 2

In the context of information systems analysis and design methodolo-
gies, disruptive innovation impacts the way modelling techniques are
employed in design phases. To design business models that are radic-
ally different, a design methodology is required that supports flexibility
on a high abstraction level to a) involve stakeholders from any back-
ground, b) express non-conformant ways an enterprise could operate,
and c) can quickly provide analytical feedback.

Transforming an existing organisation by applying disruptive innova-

tion strategies requires a radical organisational separation as introduced in

4 of 257

CHAPTER 1. INTRODUCTION

(Clayton M. Christensen et al., 2016). This separation is required to de-
velop novel business models, unbiased from existing sustainable innovation

processes that follow a systematic approach.

Exploration not Exploitation. Innovation practices are typically run in
a multidisciplinary setting that involve stakeholders from different domains
and backgrounds. Exploitation considerations to incrementally improve ex-

isting systems and operations are replaced by exploration approaches.

Observation 3

Exploration and experimentation establish the feasibility layer of an
information systems design that supports and enables digital innov-
ation. The feasibility layer provides the technical environment and
Cyber-Physical System (CPS)s and its devices to evaluate whether
a design is effective from an operational perspective. For this pur-
pose it is required to establish abstraction of technical capabilities as
a creativity-supporting mitigation principle between the layers defined
in (Walch, 2019).

Exploration encompasses the assessment of new design results in the
context of the innovation processes, looking at feasibility from a business,
organisational and technological standpoint. This tension between explora-
tion and exploitation as a phenomena is discussed in (Ciriello et al., 2018,
p. 567).

Conceptual Model Awareness at Run-Time. The role of conceptual
modelling has shifted from a documentation and communication purpose, as
discussed in (Mylopoulos, 1992, p. 2) to enable "human communication and

understanding", towards machine-interpretable knowledge representations.

Observation 4

Metamodels can enable run-time awareness of conceptual models as
they make sure that sufficient (machine-readable) richness and granu-
larity in their knowledge representation is exposed to adapt and per-

form the behaviour accordingly (Karagiannis, 2015).

5 of 257

CHAPTER 1. INTRODUCTION

This observation is in close relation with the view on exploration and
feasibility assessment, as the run-time system interprets the knowledge rep-
resentation embodied in the conceptual models and adapts the behaviour
accordingly. This observation needs to be reflected when designing underly-

ing metamodels and their capabilities (structure/behaviour).

Sharing and Re-use of Concepts. Re-use is a prominent concept in
software engineering. Software components are not developed from scratch
anymore but composed using openly available subcomponents and librar-
ies, resulting in an increased productivity and (debatable) software quality
level. Software reuse patterns have been employed since the beginning of
programming. (Frakes and Kang, 2005) discusses reuse patterns and archi-
tecture to enable the characteristics of collaboration, sharing, software reli-
ability, maintainability and support of domain specific analysis. The open
source community has been built upon this characteristics as a movement
that gained importance since the end of the 1990s. On GitHub, the self-
proclaimed "leading software development platform", 40 million users have
been active, resulting in 44 million repositories available publicly (GitHub,
2019).

In the field of conceptual modelling, the re-use pattern has evolved his-
torically from sharing of content as reference models (Koch et al., 2006),
collaboration processes in conceptual modelling (Vom Brocke, 2004) towards
the open development of modelling methods, metamodels, model processing

techniques and their operationalisation (Gotzinger et al., 2016).

Observation 5

The re-use pattern is a relevant concept in the design of metamodels
that are adequate for a specific domain purpose. Metamodel struc-
tures, processing techniques and procedures are considered open arte-
facts that can be composed dynamically and specialised to the design
and analysis requirements of enterprises. As a collaborative effort,
conceptual modelling needs to provide means to overcome limitations

in semantic distance and provide re-use on an abstract level.

The above observation have contributed the formulation of the problem
statement and establish initial requirements for the conceptualisation of

the envisioned metamodelling environment. The observations establish the

6 of 257

CHAPTER 1. INTRODUCTION

broad characteristics as:

— Relevance: the observation on digital innovation processes has re-
confirmed the research direction and its relevance. The domain-specific
requirements on information systems design need to be reflected in the

metamodelling system as an outcome.

— Responsiveness and Agility: derived from the observation on disrupt-
ive innovation processes, the responsiveness to change of the envisioned
environment is crucial. Agile method engineering processes encompass
that a) the conceptual modelling approach is dynamic in a sense that
it adapt, resulting in b) that the validity of results is time-restricted
and only applicable for the specific project/phase or situation. Situ-
ational method engineering approaches and mechanisms introduced in
(Becker et al., 2007) influence the conceptualisation. Re-use patterns
in metamodel engineering support on one hand the collaborative pro-
cesses and enable the specialisation of pre-exiting artefacts for domain-

specific needs.

— Global and Local Model Processing: the involvement of different stake-
holders is important. They require specialised representation formats
and collaboration processes on their specific level of abstraction of the
domain, nevertheless a harmonisation needs to be support to realise
global and integrated capabilities, vertically across and horizontally

among the artefacts created.

— Exploration of Feasibility: early testing and evaluation of results needs
to be supported. Such feasibility assessment contribute to the explor-
ative nature of innovation processes. It is not sufficient to assess a
system after it has put in operation, but different scenarios need to be
explored during design and prototypical operation to find innovative

solutions for a problem unknown in advance.

— Visualisation and Software Analysis of Metamodel Interactions: visual-
isation of the behaviour of run-time aware conceptual models provides
an analytical input for the system to be implemented and deployed.
Interactions between heterogenous metamodels need to become trans-
parent to understand current implicit (e.g. correlation between a busi-
ness model representation and the operational process) links between
those models.

7 of 257

CHAPTER 1. INTRODUCTION

In the following section, the problem statement is described, deriving the
research gap from the observations discussed above. A motivational case
acts as the guiding example for the problem definition.

1.3 Problem Statement

Information systems design and analysis methodologies are characterised by
its knowledge intense nature: analysts review, assess and analyse enterprise
following defined perspectives, designers build on this analysis to create novel
solutions and evaluate the impact of change required. Implementation ex-
perts transform designs into operation on an organisational or technological
level. The foundation for these tasks relates to the available, externalised
knowledge of the System-Under-Study (SuS). The quality of a new design is
directly correlated to the availability of these knowledge artefacts, express-
iveness and interrelations. Conceptual modelling is an accepted approach in
literature to perform the externalisation task.

Current practices in the field show, that integration efforts are an essen-
tial component, already discussed in (Olle et al., 1988, p. 36). Submodels
created during the planning, analysis and design phases may be fully or
loosely integrated with each other to impact an efficient and holistic inform-
ation systems management strategy. Such integration pose a critical chal-
lenge for the evolution of information systems management environment as,
in times of digital innovation transformation, they are exposed to uncertainty
with respect to the SuS, the stakeholder’s expertise and involvement as well
as combinational complexity of arbitrary modelling techniques selected and

used.

Fig. 1.1 shows graphically the activities, roles and artefacts involved in
information systems analysis/design, highlighting the research challenges on
three distinct dimensions, introduced below.

1. Adequate Metamodels: the challenge relates to the identification or
design process of adequate metamodels for a specific task. As shown
in Fig. 1.1, this challenge is regarded a cross-layered issue independ-
ent of abstraction considerations. The gap in research relates to the
availability /accessibility of repositories and knowledge representation
formats to identify and match requirements with available results and

support a design process of a domain-specific realisation /instantiations.

8 of 257

CHAPTER 1. INTRODUCTION

7 7 [.
£ MM, /7 creates Design Layer
“orse- selectiuses N T > L] | Design et
------------ L| Model 1 T,

/2" MMy, o Designer o
-------- ' ¥ s |
v/ <implicit> (2 ‘
A p o—l Decom| § = i
o= '
ot I v 3 :

select/uses creates @
e SEECIUSSS > % ______ > ||} concept Conceptual > S }
(oo Sy 7 Model 1 Layer = = !
D o |
/...A_M_AE‘/ /___WE_ Analyst 0 5 3 H
7, <implicit> @ 1
/4 SmP TAbstrac .
\ i
pre— - 1 e I 1
MM, e i
,,,,,, 2P _ freates | cPS Feasibility !
,,,,,,, Model 1 i

select/uses Layer
g MM o7 220Es sl -» Implementor Y

Metamodels o [] eeeee- » ---
«"__+_ MMpfor Design E interaction .
“ MMcfor Conceptual Modelling Tmommo processing
27 MM for Feasibility Exploration Abstraction system relation fynctionalty
Actor Decomposition Mode!

Layer

Figure 1.1: Problem Overview: Information Systems Modelling (inspired

by (Olle et al., 1988, p. 36)

2. Interaction within heterogenous metamodel environments: differing ab-

straction requirements result in a set of metamodels that are, without
considering their cross-layer dependencies, relevant for the design and
analysis. A combination is needed as dependencies need to be resolved
to provide interrelated structures that can be assessed and queried.
Following the work of (Walch and Karagiannis, 2019), a layered ap-
proach is introduced that distinguishes design, conceptual and feasib-
ility level interactions. Integration and combinations of metamodels
(full or loosely) has been considered following the discussion in (Olle
et al., 1988). In light of a responsive adaptation and agility as a novel
concept is required that supports federated functionalities in hetero-

genous settings.

. Metamodel Software System Analysis: the analysis of models at runtime

and their interrelation is considered a challenge in current information
system practices. Technology to visualise data interchange streams,
transformations, Application Programming Interfaces (API) calls or
model evolution are only available implicitly through the embedded

knowledge of the model and metamodel engineer.

9 of 257

CHAPTER 1. INTRODUCTION

A detailed discussion of these research challenges is provided in the follow-
ing subsections (considering the relevant background and identified research
gap) as input for the definition of research objectives.

1.3.1 Challenge 1: Adequate Metamodels

Background. As metamodelling concepts and technologies have evolved
to an established approach to realise domain-specific modelling methods, a
plethora of approaches, frameworks and implementations exist for various
application and industrial fields. (Karagiannis, Mayr et al., 2016) present
the research results in this field within a global community. The publica-
tion introduces 24 modelling methods that are individually applicable for
a specific purpose, reflect the requirements of stakeholders and provide the
needed expressiveness on a certain, well-defined abstraction level. Modelling
methods and underlying metamodels cover aspects such as design think-
ing, security, creative service design, production process planning, enterprise

modelling, and many more.

Broadening the scope of the challenge, from Domain-Specific Modelling
Language (DSML) towards General Purpose Modelling Language (GPML),
industrial initiatives can be identified as relevant. These initiatives follow a
standardisation and unification approach. The most prominent example is
Unified Modelling Language (UML) that aims to be recognised as a language
that "provide system architects, software engineers, and software developers
with tools for analysis, design, and implementation of software-based systems
as well as for modelling business and similar processes" (Object Management
Group (OMG), 2011b). The example of UML shows the evolution of a
dedicated domain-environment for software engineers to a unifying approach
for information systems design. In the current version 2.5, 14 diagram types
are provided, categorised in a structural and behavioural views of a software-
based system. The same logic can be observed in the field of business process
modelling: Business Process Model and Notation (BPMN) provides not only
diagrammatic support for processes, but nowadays integrates operational
aspects for workflow design, choreography and orchestration.

Gap: Metamodel Selection. Considering the role of a designer, ana-
lyst or implementation expert of an information system, in an initial phase

(and then re-iterating in an agile manner), adequate metamodels have to

10 of 257

CHAPTER 1. INTRODUCTION

be selected to from available sources. The selection criteria should relate
to the expressiveness for the given domain of the SuS and how it supports
the purpose and goal defined by involved stakeholders. In contrast to quality
consideration as discussed in (Ma et al., 2013; Lopez-Fernandez et al., 2014),
that consider metamodels from the software engineering domain, a semantic
matching approach for domain requirements to capabilities of a metamodel

is currently not available.

For the example shown in Fig. 1.2, it is assumed that the modeller (as
a designer, analyst or system implementation expert) identifies the require-
ments of the SuS from a semantic, application and technology perspective. In
the motivation example provided, the domain is "Telecommunication", the
application is "Process Architecture Design and Optimization" and as func-
tionalities "Simulation" techniques are to be used. These criteria define the
search and matching strategy for adequate metamodels. Candidate meta-
models are retrieved and evaluated. Based on the selection, it is applied on
the SuS. In case specific requirements can not be satisfied, they are realised
explicitly through customisation (adaptation of the metamodel) or implicitly
through model fitting (semantic alignment on interpretation level).

o apply / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .
evaluate/select]: 4 ConS'tufe
1
@ Modelling Requirements v
MM derstand - Domain: Telecommunication
Renosito D — < undersiand Application: Process Architecture and Optimization
pository search domainneeds | Technology: Simulation, Executable Semantics,
Modeller Graphical
o @

o Desgn Phase <50 == Metamodel candidates Available metamodels
Application phase 7N

Figure 1.2: Challenge: Metamodel Selection

As we can see from the example in Fig. 1.2, this selection process is a
knowledge intense task. The modeller needs to be aware of available results
(sources), have the capability to understand the impact of a decision and
needs to align with the domain in focus. As an analogy to open source
software development processes, semantically rich repositories are required
that can be queried using similarity matching mechanisms to recommend

adequate metamodels or metamodel fragments/patterns.

11 of 257

CHAPTER 1. INTRODUCTION

Gap: Metamodel Design. The design process of metamodels, as the
core element of a modelling method, is considered a challenging issue: the
task to derive a consistent metamodel that is adequate (see above) for a
specific domain and application, enables model value and provides interpret-
ation support for stakeholders involved, requires conceptual, technological
and domain-specific knowledge as a foundation for design decisions (Utz,

2018b).

Design patterns influence the process (e.g. design from scratch, semantic
elevation and appropriation, alignment, composition). At its core, the design
of a novel metamodel is considered a knowledge challenge. Results achieved
strongly depend on the experience and knowledge of the metamodel engineer.
Reviewing the current practices in the field of metamodel design and engin-
eering, the following phases and steps can be observed, graphically shown in
Fig. 1.3. In the discussion a focus is set on design activities.

Alternati
Constructs Usage ° emfi:éisisnc
(Which constructs (How the constructs o Ontological
select @ are provided) are/have been used) o LogicRules
technique o ..
Metamodelling Technique
defines Semantical | © 95"9?_0 |
— s enables o speclic |
@ : Artefact: Metamodel (MM) ——> | MM Operations o hybrid
_]
MM] structure & behavior) i
Engineer @ L Syntactical
understand Requirements: Domain-Specific 5
domain needs Modelling Methods
@ instantiate
communicate requirements T
]
T~ i System-Under-Study
Modeller ‘ 77777777777777777777
[D-A]

© Design acivities #/7== Metamodel candidates O Available metamodels %

Z
- . A
Application activity Actor

Figure 1.3: Challenge: Metamodel Design/Creation

1. Understand requirements: similar to the selection process, in order to
develop an adequate and useful metamodel, the requirements of the do-
main, application and technology have to be captured and understood.

Knowledge on the application and industrial domain is required to

12 of 257

CHAPTER 1. INTRODUCTION

trigger the design process, e.g. simulation of manufacturing processes,
dependency analysis of community networks, verification of deadlocks
in automated workflows, integration of metamodel on different form-
alisation levels into a consistent state for enterprise architecture man-

agement in the domain of trabsportation.

2. Select a meta-modelling technique: based on these requirements, the
appropriate meta-modelling technique has to be selected. The tech-
nique provides generic constructs to develop a metamodel. Construc-
tion principle and usage patterns define functionalities e.g. code gen-
eration, reasoning techniques on ontological metamodels, deduction
in logic based environments. The functionalities offered by the tech-
nique are mapped to the requirement of the domain. Knowledge on
metamodelling techniques applicable is needed.

3. Design the metamodel: having accomplished these 2 prerequisites, the
metamodel is designed in conformance with the selected metamodelling
approach. The design techniques are typically adjustment, mapping or
re-use patterns. The resulting metamodel is strongly influenced by the
expertise and creativity of the metamodel engineer.

4. Enable metamodel operations: knowledge operations realise the value
of models supported/enabled by the metamodel. These operations
are functionalities like composition (e.g. in case of sliced metamodel
as discussed in (Bork, Karagiannis et al., 2018)), binding of model
processing algorithms through reference alignment, transformation and
semantic lifting (Hrgovcic, Karagiannis et al., 2013) and operate on the
structure and semantics provided by the metamodel. This steps verifies
the applicability of the metamodel.

The knowledge-based challenges introduced above, strongly influences
the efficiency during the design of an adequate metamodel. The selection of
a meta-modelling technique is currently driven by the metamodel engineers
knowledge on a specific approach rather than the requirements elicited; dur-
ing this phase adjustments are performed to overcome potential mis-selection
as workarounds. It is assumed that these adjustment have an impact on the
usefulness of the resulting metamodel as well as its efficiency. As a descrip-
tion framework of specific, existing metamodels or its abstract fragments

is currently not available, re-use of results is limited. As a consequence, it

13 of 257

CHAPTER 1. INTRODUCTION

results in a re-implementation of similar structures (using the same or a dif-
ferent technique), demonstrated below for the implementation of the BPMN
2.0 metamodel, graphically shown in Fig. 1.4 as an example. The meta-
model has been selected as it is extensively discussed in literature in the
past years and demonstrates how different metamodelling techniques impact

conceptualisation results.

The representation shows the aspect of "sequence flows" (highlighted in
red, dashed line) of the BPMN metamodel and how it has been designed
using three different meta-modelling techniques: a) the formal specification
from the BPMN 2.0 standardisation deliverable using class diagrams (Object
Management Group (OMG), 2011a, p. 144), b) an ontology-based approach
to conceptualise the specification (Rospocher et al., 2014, p. 140) and c) a
logic-based representation using rules mapped to petri net constructs (intro-
duced in (Jeusfeld, 2016, p. 51) extended in (Jeusfeld, 2017)).

1. Metamodel using UML Class Diagrams: intends a formal representa-
tion that can be used to generate code as it can be mapped to elements
of object-oriented programming languages. This is in line with the
BPMN 2.0 specification, that defines that "execution semantics have
been fully formalised" (Object Management Group (OMG), 2011a,
p. 10) and allow conformance verification as well as runtime interpret-

ation.

2. Metamodel using OWL Representation: using ontology concepts en-
ables verification and checks of model artefacts e.g. by "checking the
compliance of a process against the BPMN specification" (Rospocher
et al., 2014, p. 136), reasoning and detection mechanisms. The se-

quence logic is implemented as object properties in the ontology.

3. Metamodel using TELOS": using logic and rules that are bound to the
petri net meta-structure provide simulation capabilities as the beha-
viour is described already in the abstract meta-model. The sequencing
possibilities are represented as a self-referential loop on the root ele-

ment.

The selected meta-modelling technique does not only impact the way
concepts are represented, but is also related to the functionality required and
supported by the approach. Currently the intrinsic capabilities of multiple

14 of 257

CHAPTER 1. INTRODUCTION

| Conceptual Structure for
i Sequence Flow ‘

T VAR J

Figure 1.4: Motivational Example: BPMN 2.0 Process Metamodel
represented as a) UML 2.0 Class Diagram, b) OWL Ontology, ¢)
Logic/Rules using TELOS(Mylopoulos et al., 1990)

metamodelling techniques are not externalised in a way that non-expert users
can identify which approach to choose for a given challenge. It is therefore
required to clearly align the knowledge representation on metamodel level
with the metamodelling technique that was used to realise them.

1.3.2 Challenge 2: Heterogenous Modelling Environments

Background. The combination of models between different abstraction is
an essential element in a comprehensive analysis of an information systems.
The elements are related to operational and organisation aspects, and fur-
ther decomposed on the feasibility layer, that connects with APIs exposed
by physical elements. Such an approach manifests a top-down methodology
where design influences and controls operation. A reverse viewpoint is also
applicable where physical/device capabilities are abstracted from the feasib-
ility layer and the conceptual modelling layer as shown in Fig. 1.1 acts as
a mitigation layer between the execution semantics and the abstract design
artefacts. Considering multiple instantiations per layer, the complexity of
combination is further exaggerated as each composition or integration (inde-
pendent of the strategy) needs to cope with an any-to-any interfacing issue.

15 of 257

CHAPTER 1. INTRODUCTION

Gap. Current approaches for the operationalisation of heterogenous meta-
model environment follow either a) an integration and composition technique
(combining all metamodels into a common superstructure) as discussed in
(Zivkovic and Karagiannis, 2015), b) a semantic lifting approach of relevant
fragments (Hrgovcic, Karagiannis et al., 2013), ¢) model transformation tech-
niques prominently discussed for the software engineering domain in (Mens
and Van Gorp, 2006; Czarnecki and Helsen, 2003) (specifically focusing on
semantic loss) or d) a combination of the previously mentioned techniques,
classified as a hybrid integration. A common denominator for all techniques
is that the control of interaction is assigned to a specific element within
the system that binds, synchronises, retrieves or calls functionalities of the
opponent (e.g. in case of transformation from a source to a target, for com-
munication, push and pull mechanisms).

E Composed MM ' Integrated MM | Semantic Lifting Transformation

,,,

Figure 1.5: Challenge: Interaction in Heterogenous Metamodel

Environments

Fig. 1.5 shows abstract examples of the combination approaches re-
viewed, considering the layers introduced earlier: a) a composed metamodel
is constructed in a modular fashion. Pointing concepts establish the interrela-
tions between the modules. The prerequisite for such a modular composition
is that the concerned metamodels are semantically close to each other; b)
integration of metamodels where overlaps and extensions act as the binding
parts. For such an integration, available metamodels need to be assessed for
overlapping, similar meaning to create strong integration links; c) semantic
lifting supports the aforementioned approaches and in addition allows for
elevation of domain semantics to create e.g. tunnel/umbrella structures for
integration. The main difference to a) and b) is the distributed nature in

16 of 257

CHAPTER 1. INTRODUCTION

such a case; d) model transformation (uni-directional or bi-directional) sup-
port the transformation of one layer to the other. The semantic distance has
to be bridged within the mapping rules and strategies to handle semantic
loss need to be employied.

Any of these approaches result in a complex modelling environment that
is inefficient with respect to responsiveness to change and therefore lack
the required flexibility to exchange elements, extend and modify structures

and /or functionality.

1.3.3 Challenge 3: Digital Intelligence

Background. As outlined above, the multi-disciplinary nature of inform-
ation systems design processes result in a disperse landscape of modelling
approaches, techniques, metamodels and tools. Knowledge operations for
analytical purposes are well-establish on local instances within a specific
layer, but global views across layers and metamodels require complex map-
ping/translation mechanisms. This observation is specifically valid for opera-
tionalisation where various software artefacts are made available, interfacing
technologies are used to realise combinations and user interactions become
transparent, independent of the underlying complex stack of services and
tools.

This hinders the externalisation of knowledge within the composed nature
of such systems. (Bihanic and Polacsek, 2012) discuss introduce information
systems as "heterogeneous and interrelated subsystems including interac-
tions" and introduce visualisation options as viewpoints that allow for a
change in granularity and also a "shift in semantic universe" (Bihanic and
Polacsek, 2012, p. 131). In the paper, the authors introduce visualisation
options for such systems and discuss three representation patterns: tree-
based for hierarchical representations, maps for reticular representation of
e.g. networks and landscapes that support "multi-scale representations of
planar shapes"; these patterns are deemed relevant for the visualisation of
the structural aspects of a complex, software-based system.

(Pacione et al., 2004) discuss the term "software comprehension" and in-
troduce a multi-faceted, three-dimensional abstraction model for the visual-
isation of software systems, in line with the classification performed in (Petre
and Quincey, 2006). The authors argue, that different tasks require inform-

17 of 257

CHAPTER 1. INTRODUCTION

ation and visualisation within the software development lifecycle, ranging
from design, comprehension of large systems, performance tuning or debug-
ging. A relevant consideration in their publication relates to the observation
with respect to visualisation. Visualisation target "multiple, linked, dynamic
visualisations of the interaction of system components at runtime" (Petre and
Quincey, 2006, p. 1) as an elevation of human understanding and effective

use of technology.

& P
o
1 ' =N ?g\
Design Layer @ N
) e) &
______ 5 S
Lol MMy ’ Design —>
Model 1 MP,,
: <->| masasasaas
I N ! Visualisation | %
|]
| %
> 3 + Query]
g. PN] Analyst
w I---'----'-I
2 ! Interaction
o 1
= 1

Pattern

Feasibility Layer
. -
MMy e N
Ay CPS e
Model 1 !

h
i

i

i

i

i

i

i

n 1

i

i

:

i

Conceptual Layer i
L. |

Lo MM Concept |
Model 1 MPg, 1
E

i

i

i

i

i

i

i

i

i

i

i

i

i

Figure 1.6: Challenge: Metamodel Software System Analysis

Gap. The techniques in software engineering for visualisation and analysis
of complex systems have been considered in research but only partially are
considered in application. As a scientific challenge, the knowledge to enable
analytical viewpoints on a runtime system are still implicit to a large extend
i.e. the software engineer is well aware of the interrelation of the system, its
dependencies and interaction path but does not externalise these trajector-
ies in an analytical way. This is specifically true for information systems as
the SuS is typically represented in a visual manner applying diagrammat-
ic/graphical modelling techniques but the visualisation of interdependencies
and runtime characteristics, especially across different formalisms and ab-
straction layers is limited. The analysis and visualisation needs to support

real-time visualisation of interaction streams on metamodel level to follow

18 of 257

CHAPTER 1. INTRODUCTION

the responsiveness and intelligence requirements.

The challenges and gaps outlined above contribute to the formulation of
the objectives of the research performed and contribution made to the field
of conceptual modelling in information systems design, specifically in digital

innovation settings. They are summarised as:

— Knowledge externalisation support is required in the field of metamod-
elling to design and implement adequate modelling environments, whereas

the focus of the contribution is on design techniques,

— Homogenisation of interaction on metamodel level is considered as an
aspect to support analytical algorithms. For this challenge, the pro-
posed knowledge representation needs to support human and machine

interpretation alike,

— Visualisation of information systems at run-time is regarded a building
block to enable transparent analytical capabilities and bridge the gap
between high level designs and analytical levels.

A flexible toolbox of design techniques, patterns and fragments supports
the metamodel engineer to overcome the above challenges in an efficient way.
The flexibility characteristic is positioned as a requirement derived from the
agile nature of the SuS in times of (digital) transformation. Agile approaches
for metamodelling have been initially discussed in (Karagiannis, 2015) as the
Agile Modelling Method Engineering (AMME) framework considered as a

guiding procedure for the concept development phase of this thesis.

1.4 Research Objective

Based on the challenges introduced in the previous section, the research ob-
jectives are outline. In current practices (design, selection and (continuous)
adaptation/evolutions of metamodels) are a tedious, inefficient and error-
prone task that requires expertise on meta-modelling techniques, domain
knowledge, an understanding of existing results and creativity to perform
the adjustment and interpretation of requirements to an evolving/changing
metamodels stack. To address this gap, it is proposed to extend the no-
tion of metamodels towards conceptual structures as a formal knowledge

representation approach and its graph representation to define and describe

19 of 257

CHAPTER 1. INTRODUCTION

metamodels independent of the technique used and collect these conceptual
structures for re-use in the engineering process of metamodels in an open re-
pository as input for a) the elevation of local modelling method mechanisms
and algorithms to a global level and support overarching analytical capabil-
ities (including an assessment of interrelation at runtime), and b) enable the

visualisation of these interaction in a common framework.

The need for adequate, useful and purposeful metamodels on different

levels and during different phases of digital innovation /transformation influ-
ence the research objectives.

i Metamodelling

N\ i Techniques
N L
. Linguistic

o unguswc N _

o> ' o Ontological .
<77 | DS Metamodels/ | LogicRules | Metamodel
o .. i Functionalities

,,,,,,,,,,,,,,,,

N
N
N
N

Il) \L B l
1 N

/) N
! commit N

| Metamodels as a Conceptual Structure Knowledge Operations
! (formal, mathematical knowledge ROS (syntactic, semantic)
‘.| representation) RO2 N >
“‘ instantiate P S
K% design
adapt bind
Artefact: Domain-Specific Metamodels
Metamodel (MM)
Engineer
\L implement
applies
Operationalized Metamodel <
Modeller

Figure 1.7: Research Objectives:
Metamodels as Conceptual Structures

This section introduces the research objectives based on hypothesis and
assumptions (derived from the observations, challenges and gaps) and defines
the intended contribution in the field of conceptual modelling.

Fig. 1.7 shows graphically the relation between objectives and the re-
search topic. Following the broad theme of "Metamodels as Conceptual

Structures", three research objectives have been formulated that guided the

20 of 257

CHAPTER 1. INTRODUCTION

work performed! Underlying hypothesis and assumptions for the formulation
are introduced.

Hypothesis 1

A metamodel is a knowledge representation of a specific industrial or
application domain on type level. A formalisation of this knowledge
for machine interpretation supports the operationalisation of the meta-
model. Intelligent support mechanisms are required to design or align
metamodels to these semantics.

Initial evidence for Hypothesis 1 is available in the engineering approaches
for modelling tools as a potential operationalisation of metamodels. For the
realisation of tools, a transformation of the conceptual representation of a
metamodel into its formal, operationalised format is typically performed by

an experienced metamodel engineer.

Software engineering processes support the transformation from a Plat-
form Independent Model (PIM) into a Platform Specific Model (PSM). Based
on design decisions a mapping of requirements to platform specific character-
istics is performed. As such, the formalisation process and its results are an
implicit artefact. Consequently, re-implementations (of the same, or slightly
different aspects) happen instead of re-use, as the interaction between stake-
holders happen on source code level rather than on a (formal) conceptual

representation.

Literature that supports this hypothesis conisders metamodelling as an
engineering discipline. Various approaches are introduced in (Bork, Karagi-
annis et al., 2018); an evaluated technique established in the context of the
OMILAB is AMME, discussed in detail in (Karagiannis, Burzynski et al.,
2019), graphically introduced in Fig. 2.4. AMME defines as an engineering
lifecycle iterative engineering phases, that enforces formalisation, develop-
ment and deployment of smart models based on the outcomes of creative

phases.

! As a design science research approach is followed (introduced in detail in section 1.5),
feedback received during the presentation of (Utz, 2018b) has been reflected to formulate
research objectives as broad themes rather than concrete research questions.

21 of 257

CHAPTER 1. INTRODUCTION

Hypothesis 2

A single metamodel cannot fulfil the requirements of a multi-layered
approach for digital innovation as different foci of stakeholders have to
be considered. Dynamics in the domain are evident and as a response,

dispersed, heterogenous modelling environments are evolving.

Standardisation efforts follow a unification and continuous extension strategy.
This means that various levels of abstraction are integrated, combined and
made available. Examples for this observation can be found in e.g. in the
field of enterprise architecture modelling that spans multiple dimensions from
strategy to infrastructure (Gill, 2015), the usage dimensions of UML as dis-
cussed in (Dobing and Parsons, 2011) or scientific results such as MEMO
(Frank, 2014; Bock and Frank, 2016).

Hypothesis 3

Harmonisation in a heterogenous information system landscape is a
critical factor in in today’s digital economy. Concepts to realise such
harmonisation attempts are well-established on layers of low semantic
expressiveness (e.g. data transformation). The need for feasibility as-
sessment /experimental exploration is required, visualisation of inter-
actions of domain-specific information systems components contribute

to this challenge.

For data-level harmonisation approaches, research is well advanced. Con-
cepts have been established e.g. for interoperability of autonomous databases
in (Litwin et al., 1990) on syntax and format level, to schema evolution as dis-
cussed in (Roussopoulos and Karagiannis, 2009) that introduces the concept
of "schema-during" as a bridging element between conceptual modelling and
data collection and manipulation.

In the field of model-driven approaches in general, and conceptual model-
ling in particular, harmonisation techniques within distributed, heterogenous
systems are addressed by integration, transformation or composition tech-
niques, mainly concerned with interoperability aspects. (Woitsch, 2013) dis-
cusses this aspect by reviewing metamodel characteristics from (a) a domain
perspective, (b) the level of technical granularity, (c) the degree of formal-
isation and finally (d) the cultural dependency of the applying community.

A review of potential patterns for merging metamodels are introduced: (a)

22 of 257

CHAPTER 1. INTRODUCTION

loose integration of meta models, (b) strong integration and (c) hybrid in-
tegration based on (Kiihn, 2004). The argumentation presented as "loose
coupling is flexible, whereas tight coupling enables the realisation of addi-
tional functionality" (Woitsch, 2013, p. 300) contributes to the research

objectives of this thesis.

Based in the hypothesis above, the research question has been defined.

Which form of knowledge representation is appropriate and can be identified

to support the analysis of information systems defined using metamodels?

The breakdown of the question, in the context of metamodel design and

operationalisation of heterogenous modelling environments, is identified as

— Which formalisation technique is appropriate for metamodels pertain-
ing different abstraction levels? Which patterns can be imposed on
existing ones and support the design of new metamodel or their evol-
ution?

Research themes: integration of metamodels through alignment of
metamodel capabilities, re-use of metamodel fragments and their ad-

aptation, input for "from-scratch" developments, design patterns

— To what extend is the operationalisation supported in the sense of

model value processing algorithms and mechanisms?

Research themes: operationalisation and usage, instantiation of the
AMME framework for re-use on implementation level, requirements
from the analysis viewpoint, homogenisation strategies and operation-
alisation patterns

— Which analysis techniques are required to assess interrelation on soft-
ware level and the feasibility on software/tool level?

Research themes: visualisation techniques for conceptual modelling en-

vironment, software-based analysis (exploration during run-time)

As an outcome of the research work, a conceptual design environment is
proposed as a contribution to the field of domain-specific modelling method
engineering, more specifically to the design of metamodels. The notion of
metamodel is extended and elevated towards conceptual structures. The en-
vironment support the method engineering in the harmonisation of hetero-

genous modelling systmes and its operationalisation, embedded in a defined,

23 of 257

CHAPTER 1. INTRODUCTION

agile development approach based on the AMME framework. The charac-
teristics and advantages of the design framework build on the assumptions
that an increased productivity and efficiency can be realised as a high ex-

pressiveness and narrowed down design with less model fitting is created.

Objective 1

A design environment for metamodels is conceptually defined and
builds on re-use and combination patterns, supported by conceptual
structures as a knowledge representation format. Conceptual struc-
tures, due to their close relation to linguistics and available knowledge
operation via their formal representation as conceptual graphs are val-
idated for their applicability to support design operations.

Research objective 1 aims to develop an environment for knowledge rep-
resentation as conceptual structures that is adequate to describe metamodels.
The underlying assumption is that metamodels can be represented as con-
ceptual graphs. As sources and evidence for this assumption a) the definition
of the term "metamodel" in the scientific community, b) existing metamodels
from academia and industry and their characteristics and construction prin-
ciples, ¢) meta-modelling techniques and patterns that are currently applied,
and d) knowledge operation as requirements of metamodels are considered.
The assessment of the foundation has resulted in the viewpoint that multiple
dimensions can be identified on syntactical, semantical, behavioural and op-
erational level that are applicable to categorise and structure metamodel

patterns.

Objective 2

Based on the challenge of harmonisation and responsiveness to change,
visualisation techniques are sought after that are useful to support an
explorative experimentation in digital innovation strategies/processes.
This objective targets the usefulness of metamodels for digital innova-
tion: as discussed above, it can be observed that interrelation between
models are mostly implicit and software artefacts such as API inter-
action are not transparent within heterogenous systems. Visualisation
techniques support this transparency consideration in a way that any
involved stakeholder is aware of the interaction a system needs to es-

tablish early in the development process during experiments.

24 of 257

CHAPTER 1. INTRODUCTION

Research objective 2 targets harmonisation and transparency needs re-
quired to a) describe and b) collect/support re-use of metamodels as con-
ceptual structure within heterogenous modelling systems. Visualisation is
needed as a principle to externalise knowledge and provide an assessment
of interrelations among model artefacts, whereas the concept is realised on

metamodel level.

As a "summarising" objective, the analysis results and their evaluation
constitute value for the metamodelling community and therefore a collection

of metamodels as libraries within a common repository is suggested.

Objective 3

Metamodels analysed as part of this thesis are categorised accord-
ing to their characterising dimensions using the formal representation
proposed in objective 1. The collection is made available to the com-
munity for use and further extension. The necessary interaction cap-

abilities with such a metamodel repository are defined.

Having the motivational example as shown in Fig. 1.4 in mind, objective
3 targets the identification of patterns based on the derived dimensions and
their exposure. Metamodels developed using modelling techniques of similar
or varying expressiveness and functionality have been reviewed to identify
techniques to describe patterns and provide means for e.g. generalisation/-
abstraction of these patterns or fragments.

The thesis focuses on domain-specific modelling methods, more specific-
ally on their metamodels as they constitute the domain-specific knowledge
involved. The challenge of designing "adequate" metamodels to support
dynamic (in the sense of quickly evolving and responsive) and complex (ver-
tically and horizontally integrated) environments is considered.

Based on an initial understanding of "adequate" in relation with a domain-
specific metamodels as derived through observation and discussion in (Kar-
agiannis, 2015), where usefulness defines the scope of the abstraction per-
formed in the design process (Karagiannis, 2015, p. 5). Requirements elicited
during the design process (influenced by the metamodel designers knowledge
and experience) and runtime aspects influence the process.

As a theoretical foundations, conceptual structures are applied. Within

this thesis, the term conceptual structure is understood and closely linked

25 of 257

CHAPTER 1. INTRODUCTION

to the work performed by Sowa in (Sowa, 1984) as a logic-based knowledge
representation technique. Derived from linguistics, a conceptual structure al-
lows the representation of concepts in terms of a small number of conceptual
primitives (‘Conceptual Structure’ 2019) that can be expressed mathemat-
ically as a conceptual graph, following the discussion in (Jackendoff, 1992).

1.5 Research Methodology

The research methodology is developed in accordance with the memorandum
for design-driven business informatics in (Osterle et al., 2010). The memor-
andum enforces research work as a design process/phases. Relevance and
rigor of results are considered as foundational elements in the research pro-
cess. For the work performed in this thesis, this memorandum is applicable,
detailed as the research framework developed and continuously refined. The
framework considers the research process, the definition of the artefact and
its evaluation criteria as well as diffusion and dissemination channels and
considers the methodology discussed in (A. Hevner and Chatterjee, 2010) as

a concretisation.

Fig. 1.8 presents the research framework as an instantiation of the above

principles, applicable for the work presented.

Artefact. The Design-Model-Make Analysis Framework (DeMoMa-(*)) de-
veloped in this thesis as an artefact is characterised by its knowledge rep-
resentation formalism for heterogenous modelling environments in inform-
ation systems design and visualisation of interrelation of metamodels on
operational level. The artefact is considered on a conceptual level as a con-
struct and a method that aims to establish re-use patterns in the design
of metamodels and visualisation techniques, and its applicability for design
processes.

Research Process. The research process is discussed in 4 distinct phases.
The research process follows the design guidelines articulated by Hevner
et.al. in (A. R. Hevner et al., 2004, p. 83), condensed in (Osterle et al.,
2010, p. 4-5).

1. Analysis: the trigger and motivation for the work performed is related
to the practices of digital innovation processes of information systems
in industrial and academic settings and has been discussed in sections

26 of 257

CHAPTER 1.

INTRODUCTION

Environment

Relevance
IS Research Knowledge Base

People

— Challenges observed in
metamodel engineering
(knowledge gap on
techniques, constructs)

— Domain expertise

Organization

— Agile concepts for quick
iterations required (proof-
of-concept, iterations)
Collaboration in
metamodel engineering

Business
Needs

)

Develop/Build

— Knowledge representation
formalism and dimensions

— Visualisation technique for
heterogenous MM
environments

Assess Refine

Justify/Evaluate
— Laboratory evaluation
using metamodels from

Applicable
Knowledge

=

Foundations

Body of knowledge in
metamodeling
Metamodels in industry
and academia
Metamodelling Platforms
and Technologies

Methodologies

— Engineering approaches
for metamodels (e.g.
AMME)

Formalization and
conceptualization

Technology OMILAB frameworks (e.g. FDMM)
— Prevent lock-in on specific — Explorative assessment
technology

using metamodels and
operations from
academia/industry cases

— Utilize capabilities of
technology appropriately

Additions to the
Knowledge Base

Application in the
Appropriate Environment

Figure 1.8: Design-Science Research Methodology based on (A. R. Hevner
et al., 2004, p. 80)

1.1 and 1.2 defining the relevance for the work performed. Charac-
teristics of agility, re-use and responsiveness to change are considered.
The gap in current practices has been identified and is related to re-

search objectives and directions.

Design: the design phase covers the construction of the artefact on a
conceptual level. The knowledge base relevant for the design is defined
as its foundation and influences the development process. Iterative

cycles adapt the specification of the concept.

FEvaluation: the artefact is evaluated using prototyping as a method.
The applicability of the prototype is evaluated in an experimental set-
ting assessing whether the artefact is adequate for the specific purpose
of designing digital innovation and amalgamating heterogenous mod-
elling system components.

Diffusion: Results of the iterative design and evaluation cycle are re-
ported in relevant conferences and journals; the metamodelling com-
munity is addressed by the contribution made.

Evaluation methods. Evaluation methods and criteria for DeMoMa-(*)

27 of 257

CHAPTER 1. INTRODUCTION

have been defined in advance to assess the applicability of the result in design-
driven innovation scenarios. The following criteria are selected, criteria are
defined in accordance with (A. R. Hevner et al., 2004, p. 86)

— Analytical Evaluation: an assessment of the artefact is performed ap-
plying "static analysis". The criteria associated with the method is
complexity to design and operationalise the a heterogenous modelling
environment. The fitness to embed the artefact into existing technical
information system architecture is assessed following an "Architecture
Analysis".

— Experimental Evaluation: the usability of the artefact is demonstrated
in the experimental, laboratory setting of the OMILAB. Arbitrary
modelling methods and their metamodels are selected as elements of
a heterogenous modelling environment and extended with the concept

of visualisation.

— Observational Evaluation: The applicability and relevance of the arte-
fact is evaluated by applying it to a real business environment in the

context of a collaborative research project.

Concrete evaluation criteria are defined in the evaluation chapter 7, fol-
lowing and scoping the work of (Prat et al., 2014) in the context of the
developed artefact.

Dissemination. The result achieved during the different phases of the
research process have been published in relevant conferences to disseminate
the artefact, refine and integrate feedback in the iterative design - develop -
evaluate phases.

An indicative list of selected publications is provided below.

Problem Relevance: Publications related to the exploration of the problem

relevance.

— Wilfrid Utz and Dimitris Karagiannis (2009). ‘Towards business and it
alignment in the future internet; managing complexity in e-business’.
In: Proceedings - 2009 1st International Conference on Advances in
Future Internet, AFIN 2009

— Wilfrid Utz, Robert Woitsch and Dimitris Karagiannis (2011). ‘Con-

ceptualisation of hybrid service models: An open models approach’.

28 of 257

CHAPTER 1. INTRODUCTION

In: Proceedings - International Computer Software and Applications

Conference

— Vedran Hrgovcic, Wilfrid Utz and Dimitris Karagiannis (2011). ‘Ser-
vice modeling: A model based approach for business and I'T alignment’.
In: Proceedings - International Computer Software and Applications

Conference

— Wilfrid Utz, Peter Reimann and Dimitris Karagiannis (2014). ‘Captur-
ing learning activities in heterogeneous environments: A model-based
approach for data marshalling’. In: Proceedings - IEEE 14th Interna-
tional Conference on Advanced Learning Technologies, ICALT 2014

— Wilfrid Utz, Robert Woitsch and Zbigniew Misiak (Nov. 2016). ‘Plan-
ning for integration: A meta-modelling approach using ADOxx’. In:
Measuring and Visualizing Learning in the Information-Rich Classroom.
Routledge, pp. 183-195

— Robert Woitsch and Wilfrid Utz (Feb. 2016). ‘Business Process as a
Service: Model Based Business and IT Cloud Alignment as a Cloud
Offering’. In: Proceedings - 2015 3rd International Conference on En-
terprise Systems, ES 2015. Institute of Electrical and Electronics En-
gineers Inc., pp. 121-130

Design as an Artefact: Publications related to the ideation and design of
the artefact.

— Nesat Efendioglu, Robert Woitsch and Wilfrid Utz (2016). ‘A toolbox
supporting agile modelling method engineering: ADOxx.org modelling
method conceptualization environment’. In: Lecture Notes in Business

Information Processing

— Peter Reimann and Wilfrid Utz (2016). ‘Modeling learning data for
feedback and assessment’. In: Domain-Specific Conceptual Modeling:
Concepts, Methods and Tools. Cham: Springer International Publish-
ing, pp. 555574

— Wilfrid Utz and Robert Woitsch (2017). ‘A model-based environment
for data services: Energy-aware behavioral triggering using ADOxx’.

In: IFIP Advances in Information and Communication Technology

29 of 257

CHAPTER 1. INTRODUCTION

— Nesat Efendioglu, Robert Woitsch, Wilfrid Utz and Damiano Fal-
cioni (2017). ‘A Product-Service System Proposal for Agile Modelling
Method Engineering on Demand: ADOxx . org’. In: Digital Enter-
prise Computing 2017, pp. 199-212

— Hisashi Masuda, Wilfrid Utz and Yoshinori Hara (2013). ‘Context-
Free and Context-Dependent Service Models Based on "Role Model”
Concept for Utilizing Cultural Aspects’. In: Proceedings - Knowledge
Science, Engineering and Management. KSEM 2013. Ed. by Ming-
zheng Wang. Springer Berlin Heidelberg, pp. 591-601

— Christoph Moser, Robert Andrei Buchmann, Wilfrid Utz and Dimitris
Karagiannis (2017). ‘CE-SIB: A modelling method plug-in for man-
aging standards in enterprise architectures’. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics)

Design Evaluation: Publications related to the evaluation of the design arte-
fact.

— Wilfrid Utz and Moonkun Lee (July 2017). ‘Industrial Business Pro-
cess Management Using Adonis Towards a Modular Business Process
Modelling Method for Zero-Defect-Manufacturing’. In: 2017 Inter-
national Conference on Industrial Engineering, Management Science
and Application, ICIMSA 2017. Institute of Electrical and Electronics

Engineers Inc.

— Wilfrid Utz (2018b). ‘Design metamodels for domain-specific model-
ling methods using conceptual structures’. In: CEUR Workshop Pro-
ceedings. Vol. 2234, pp. 47-60

— Wilfrid Utz and Damiano Falcioni (Sept. 2018). ‘Data Assets for De-
cision Support in Multi -Stage Production Systems Industrial Business
Process Management using ADOxx’. In: Proceedings - IEEE 16th In-
ternational Conference on Industrial Informatics, INDIN 2018. Insti-
tute of Electrical and Electronics Engineers Inc., pp. 809-814

— Dimitris Karagiannis, Dominik Bork and Wilfrid Utz (2019). ‘Meta-
models as a Conceptual Structure: Some Semantical and Syntactical
Operations’. In: The Art of Structuring. Cham: Springer Interna-
tional Publishing, pp. 75-86

30 of 257

CHAPTER 1. INTRODUCTION

— Dominik Bork, Hans-Georg Fill, Dinitris Karagiannis and Wilfrid Utz
(2018). ‘Simulation of Multi-Stage Industrial Business Process Using
Mmetamodelling Building Blocks with ADOxx’. In: Journal of Enter-

prise Modelling and Information Systems Architectures 13.2, pp. 333—
344

— Hisashi Masuda and Wilfrid Utz (2019). ‘Visualization of Customer
Satisfaction Linked to Behavior Using a Process-Based Web Question-
naire’. In: Proceedings - 2019 12th International Conference on Know-

ledge Science, Engineering and Management, pp. 596-603

— Wilfrid Utz (2019a). ‘Design of a Domain-Specific Metamodel for In-
dustrial Business Process Management’. In: Proceedings - 2019 8th
International Congress on Advanced Applied Informatics (IIAI-AAI).
vol. 2019. Toyama: ITAI, pp. 821-826

— Wilfrid Utz (2019b). ‘Support of Collaborative Design Thinking using
ADOxx’. In: Proceedings - 2019 International Conference on Innova-
tion and Management. Hiroshima

— Dimitris Karagiannis, Patrik Burzynski, Wilfrid Utz and Robert An-
drei Buchmann (2019). ‘A Metamodeling Approach to Support the
Engineering of Modeling Method Requirements’. In: Proceedings -
2019 27th IEEFE International Requirements Engineering Conference,
pp. 199-210

As a summary, the characteristics of the artefact are introduced to provide
the necessary context for the foundation and related work chapters. The
DeMoMa-(*) artefact developed is considered as a concept to support the
design and visualisation of model interrelation and functionality in hetero-
genous environment. As such it consists of the following elements:

— Abstract metamodel patterns for visualisation support as constructs:
patterns considered elevate existing and support the design of new

metamodels for homogenisation.

— A method for design and combination within heterogenous modelling

environments, and

— Instances for an experimental evaluation according to the evaluation

criteria of applicability, usability and fit for use in complex settings.

31 of 257

CHAPTER 1. INTRODUCTION

In the following section, the structure of the thesis is introduced to guide
the reader along the "red-thread" of chapters and sections. Fig. 1.9 shows
graphically the dependencies (inputs and outputs), including the design/e-

valuation cycle.

1.6 Structure

The thesis is structure in seven chapters following the research process defined
previously. Chapter 1 introduces the observations made and formulates the
problem statement. The problem statement is input to the relevance con-
sideration of the research methodology. Chapter 2 establishes the rigor,
reviewing and discussing the foundations and related work in the field.

)

Introduction

Motivation &
Problem Statement

Relevan

‘ ‘ Objective ‘ ‘ Methodology ‘ ‘ Structure

Foundations and Related Work

Rigor

Digital (Modelling) Information Design Models &
Intelligence Ecosystems Systems Thinking Modelling

‘ & ‘ KR: Conceptual ‘ u s ‘ Federated ‘ System
. Behaviour

Concept: Design of Metamodels (Harmonisation/Federation)

Modelling
Design of Digital
Int%lli enc?e Metamodels as Ecosystems
9 Conceptual Graphs
Ecosystems - Harmonisation Concept
Federation Concept 8
£
[
[
c
<
Concept design iterations
Technology Concept: DeMoMa::* n

‘ Architecture ‘

Functional Building Blocks ‘ Technology Assessment
-
Evaluation

‘ Structural i ‘ ‘ i { ‘

Conclusions n

p Further Research
Summary and Conclusions ‘ ‘ Directions ‘

Figure 1.9: Roadmap of the Thesis

32 of 257

CHAPTER 1. INTRODUCTION

Both chapters (motivation and related work) are input to the artefact/-
concept development chapters. Chapter 3 develops the artefacts as a con-
ceptualisation of design techniques of metamodels considering harmonisa-
tion and federated functionality, iteratively defining the conceptual structure,
patterns, interaction behaviour and development methods, whereas chapter
6 transforms the results into a technological realisation concept as input for

evaluation.

The evaluation chapter introduces in its subsections the different types
of evaluation performed (prototype feasibility, laboratory assessment and
application on a real-world case in the field of Industrial Business Process
Management (IBPM)). Feedback loops to the conceptualisation phase stem-
ming from prototypical cases and their evaluation are cross-referenced in
chapter 7.

Summary and concluding remarks are discussed in chapter 8, defining
further research fields and directions based on the observations during the
evaluation phase.

33 of 257

Chapter 2

Foundations and Related Work

The chapter on foundations and related work discusses the relevant body of
knowledge for the research work presented. A literature review of related
work has been performed for the artefacts of digital ecosystems, intelligence
information systems, conceptual models, metamodels, knowledge represent-
ation, visualisation techniques of software-based systems and federation con-

cepts in computer science. Each subsection is divided into two parts:

1. Foundations: for the specific field definitions are introduced in light
of the observations and the problem statement. The technical and

conceptual perspectives are considered.

2. Related Work is discussed for each thematic field identified. The re-
lated work is reviewed for pre-existing knowledge as input for the
concept development /design of the artefact. The discussion of related
work introduces the building blocks of the design artefacts, its recep-

tion in scientific literature and industry.

The thematic fields discussed below, have been derived from the research
objective to develop an artefact that is adequate to a) support information
systems design, using b) metamodels represented as conceptual structures
for the purpose of explicating interrelations and interactions in heterogenous,
complex systems for the purpose of ¢) digital intelligence within modelling

ecosystems.

2.1 Digital Intelligence

Foundation. The term "digital intelligence" has become popular in recent
years, describing the literacy requirements of human actors in a digital world.
It stems from the field of digital education, summarised by the DQ Institute
as "a comprehensive set of technical, cognitive, meta-cognitive, and socio-

emotional competencies that are grounded in universal moral values and

34 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

that enable individuals to face the challenges and harness the opportunities
of digital life" (DQ Institute, 2020). The educational aspect of the above
citation demonstrates the multi-dimensional aspects considered within the
term. This is also articulated in the publications of (Adams, 2010; Adams,
2004) who relates the technology advances with the need to grasp and un-

derstand the underlying systems cognitively.

This view of cognitive understanding of a system, its structure and beha-
viour is applicable for the work performed in this thesis: information systems
are not a monolithic environment, handled by experts in close collaboration
with business experts, but continuously evolve beyond the controlled bound-
aries of an enterprise. Systems are directly used for a single, temporal pur-
pose impacting related fields. The term intelligence is therefore used in a
broad sense, denoting the capability to understand, relate and interact with
systems/actors in a heterogenous setting, but maintaining the syntactical
and semantic links between the artefacts.

Related Work. Related work in the field of information systems and mod-
elling is can be retrieved for the development of intelligent systems and ser-
vices. The related term is "Business Intelligence" that has been defined
in (Negash and P. Gray, 2008) as an emphasis on the "analysis of large
volumes of data about the firm and its operations"(Negash and P. Gray,
2008, p. 175) as input for decision support systems. This viewpoint is too
narrow for the cognitive aspect introduced above: to understand/assess a
complex, connected system and provide functionality to grasp the meaning
of these interactions of these systems rather than on analysing the historical
perspective of events and actions that have already taken place.

Definition 2.1: Digital Intelligence

Digital intelligence is defined as a cognitive function on an information
system that supports a systematic approach to enable human actors to
understand the impact of technological advances within transformat-
ive innovation processes. The explorative nature of these intelligence
function is considered a building block in the development of digital
literacy skills and competences (intelligence as a cause and effect rela-

tion within an information system).

Digital intelligence platforms as assessed by Forrester in (Mccormick et

35 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

al., 2019) follow the technology-centred viewpoint. These platforms provide
essentially functionalities to transform data into actionable, customer-centric
insights - a marketing-oriented offering on digital data management, ana-
lytics, experience optimisation, Artificial Intelligence (AI)/machine learning
and integration capabilities. The 2019 leader in the report has been Adobe,
interestingly without any domain-specific assessment of the enterprise’s of-

fering.

In the context of this work, and in line with the definition above, the
term "digital intelligence" is understood in a broad sense, as discussed in
(Adams, 2004), "resulting from human interaction with digital computers"
(Adams, 2004, p. 94). Based on Gardners, seven theories and classification
of intelligence, initially defined in (Gardner, 1993) and extended in (Gard-
ner, 1999) are applicable. The author claims that the combination of these
categories result in the emergence of a novel, meta-intelligence. It is not
sufficient to understand the functional aspects of a program or technology
service, but assess and evaluate continuously the "hidden" elements dynam-

ically composing the behaviour of socio-technical systems in a digital world.

2.2 Digital Ecosystems

The term ecosystem, stemming from the discipline of biology, is applied as
an analogy to the distributed manner and their dependencies among and
contributions of participants towards a common objective/offering. Nodes
in the ecosystem act according to their hierarchical position and cause-effect
relations towards sustaining the overall system. Translating this viewpoint
to the digital domain (and excluding business ecosystem of technological
offerings such as the famously cited ecosystem-based business models of IT
giants), a focus for the review of related work is set on the functional aspect

in co-creation of capabilities in a digital world.

As such, digital ecosystems are considered in literature as an evolution of
the service-oriented paradigm: distributed functionalities (exposed as ser-
vices) act autonomously, harmonisation and integration is based on the
semantic annotation of service functionalities (as exposed by their APIs).
Abstracting from this technical viewpoint, enterprises that act in a collab-
orative fashion, need to clarify how such interaction (on strategical, tactical
and operational level) influence their operation and which role they play at a

36 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

given point in time. Understanding these relations from an internal and ex-
ternal perspective is essential and in-line with the discussion on intelligence
capabilities of any enterprise.

Foundation. (Briscoe and De Wilde, 2006) discuss the above observation.
By adding evolutionary computing concepts to Service-Oriented Architec-
ture (SOA), self-organising systems are established. Services (as functional-
ities) in these system align themselves within the ecosystem, adapt to user
interaction and behaviour aiming at "increasing the effectiveness of the user
base"(Briscoe and De Wilde, 2006, p. 1) continuously. At the core, two
optimisation schemes/levels for this re-adaptation are introduced - services
understood as agents operate in a peer-to-peer collaborative manner and
optimisation aims at the network structure and negotiation between nodes,
whereas these inputs feed into the self-organising/evolutionary algorithm
within each node.

This technology view is derived from the understanding that has evolved
in the business world. The adoption of the term "ecosystem" is attributed to
the work of James Moore on competition. In (Moore, 1993), which is referred
to as the "birth of business ecosystem", Moore describes the evolutionary
steps and phases of such an ecosystem in relation to its biological counterpart.
Referring to "Gregory Bateson’s definition of co- evolution in both natural
and social systems" (Moore, 1993, p. 75), the organisational and structuring
aspect are introduced. The leadership aspect are a crucial element in this

self-organising process of an ecosystem.

Related Work. Related work in relation to ecosystems and the topic of
this thesis is available with respect to the evolution of modelling ecosystem
services. (Burkhard et al., 2013; Crossman et al., 2013) introduce the concept
of modelling for ecosystem services. The modelling and mapping of these
services is required to capture the value flows within the ecosystem and
quantify those. Modelling is applicable to enable a dynamic and flexible
assessment of the enterprises and organisations taking part in the system
and therefore assess how value is distributed within the network of nodes.
A core aspect within the papers is related to the domain-specifics of each
service offering and how such aspects can be mapped. Assuming that an
abstraction (via modelling) explicates the knowledge captured by the service,

a domain-specific modelling technique is required.

Combining the technical viewpoint on SOA and its evolution towards eco-

37 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

systems with the domain-specific aspects in business/enterprise terms, poses
a semantic challenge. Modelling and mapping techniques are specific to the
node type, industry background and technical abstraction. (Blanc et al.,
2005) introduce a technical contribution towards this challenge: modelling
services (in the field of software engineering) are combined and composed
using a common model bus as an integration layer. Such a bus though, con-
tradicts the idea of an ecosystem as a self-organising system as a controlling
instance is introduced. Loose-coupling approaches have been introduced in
(Woitsch, 2013), nevertheless these techniques build on the content (models)
rather than on the metamodel representation and a conceptual alignment - a
gap that the work presented in this thesis aims to narrow. Since metamodels
constitute the knowledge (in abstract terms), modelling services need to ex-
pose these semantics for a semantically-rich combination and integration,
resulting in the below definition

Definition 2.2: Digital Ecosystem

A digital ecosystem is defined as a network of nodes that are involved
in the provision of value. Each of these nodes or entities affects or
is affected by the behaviour of related nodes; specific characteristics
and types of nodes in the system can be recognised. Due to these
relation, an ecosystem has self-organisation and optimisation capab-
ilities. Digitalisation reinforces the possibilities of interaction in the

environment. Relations become location and time-independent.

Following the above definition, a specialisation has been derived for mod-

elling ecosystem.

Definition 2.3: Modelling Ecosystem

The viewpoint is based on the assumption that it is possible to under-
stand domain-specific aspects of modelling as nodes within an ecosys-
tem of enterprise hierarchies and beyond its organisational boundaries.
This means that each aspect that is relevant for intelligence and under-
standing are the result of a modelling services that interact autonom-
ously with each other. Such a system is coined modelling ecosystem;
the phases of "Birth", "Expansion", "Leadership", "Self-Renewal" as
introduced in (Moore, 1993, p. 77) are applicable for individual nodes
or modelling services, sets or the whole ecosystem.

38 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

The abstract view on digitalisation from an intelligence and ecosystem
perspective is detailed, focusing on the purpose of information systems design
and the interactions with such services.

2.3 Information Systems

The objective of this thesis is to support the metamodel engineer in defining
an adequate environment for the design and analysis of an information sys-
tem. Digital innovation trends disrupt the way the term information systems
is understood.

Foundations. The Oxford Dictionary of Computer Science defines an
information system as "the branch of knowledge concerning the purpose,
design, uses, and effects of information systems in organisations" (Informa-
tion Systems, 2016). The aspect of interdisciplinary is considered important
as it draws, as a concept, from the field of computer science as a technical
perspective and business/economical studies from an organisational view-
point.

A similar definition of the term, also derived from the viewpoint of com-
bination, is presented in (Alter, 1991), who characterises information systems
as "a combination of work practices, information, people and information
technologies organised to accomplish goals in an organisation" (Alter, 1991,
p. 7). As such an information system is a socio-technical system that con-
siders the collection, processing and interpretation of information by human
and machine actors, "improving the effectiveness and efficiency of that or-
ganisation" (Silver et al., 1995).

A comprehensive definition, considering the information/knowledge in-
tense nature of an information systems is presented the Encyclopaedia Brit-
annica. The definition positions the term as an "integrated set of components
for collecting, storing, and processing data and for providing information,
knowledge, and digital products" (Zwass, 2017). The distributed nature be-
comes obvious from definition, as integration of systems on different levels
of abstractions have to be considered and a single system supporting an
information system holistically is not feasible (see (Vazquez, 2012, p. 21)).

39 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Definition 2.4: Information System

An information system is understood as a collection of systems tar-
geting specific needs of an enterprise with respect to information man-
agement considering the aspects of processes, information/data, people
and technology in a holistic and integrated manner. Different types
of information systems are distinguished in literature, traditionally
ranging from Executive Information Systems (EIS), Decision Support
Systems, Management Information Systems (MIS) to Transaction Pro-
cessing systems, extended towards intelligence information systems
that enable collaboration and interaction. It provides information
about the organisation and its environment (Avison and Fitzgerald,
2006).

For this thesis a distinct understanding of an information system is ap-
plied, namely the knowledge management perspective of intelligent inform-
ation systems to support innovation processes and strategies. These tasks
are understood as knowledge intense (such as digital innovation processes
and strategies) and require approaches for creativity, consistency, and inter-

related evaluation.

Based on the observation on complexity as system-of-systems, the man-
agement of such systems is considered a challenge as the methodologies for
design, analysis, specification and implementation have to be understood in
the context of evolving environment and varying stakeholder needs.

Fig. 2.1 shows the phases/processes and artefacts in information sys-
tems design in relation to conceptual modelling. An enterprise is represented
by its structure and semantics of the underlying information system. The
design (forward-looking) and analysis (historical perspective) of an informa-
tion system utilises information modelling that is understood as a subfield of
conceptual modelling. Information models are conceptual models, that are
created, employing various modelling methods (structured according to the
fields and levels of the enterprise).

The challenge of human interpretation and combination is addressed in
(Wand et al., 1995) as the authors investigate into three theories to sup-
port the idea on using human knowledge as the foundation for conceptual
modelling in systems development: ontology, concept theory and speech-act

theory. The discussion of these theories build on the assumption that con-

40 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

External influences
Dimensions: Business,
Technology, Legal

creates - Enterprise —
C,;ggzmt:al Conceptual Models o
9 £
Zf represents
creates |
: 5
I?Vflzgzmtrgn > Information Models ~[<—
rocesses defines/implements
Data .
Information System
Analysis/Design

applies

— Information System —

is described as

consists of

i

Behaviour

employs

L li implement
’% Modelling Methods

Metamodelling
/\
consists of —{ Modelling Technique E J—{ Modeling Language ‘ Multi-Level
Metamodelling
Mechanisms & Algorithms ‘ Modelling Language ‘

Figure 2.1: Relation Information Systems and Conceptual Modelling

consists of

ceptual models are an essential element in the design process to capture the
knowledge and interactions required. Methodologies to support the process
systematically are discussed in literature influenced by changing trends and
influences. In the following the common characteristics of the methodologies
are assessed and a definition applicable for this thesis is derived.

The traditional viewpoint of information systems methodologies is de-
scribed in (Olle et al., 1988) as "a methodological approach to information
systems planning, analysis and design". The term methodology is considered
synonymously to method; the constituting elements of planning, analysis
and design distinguish temporal aspect of the process from understanding
of the current system, to detailing change requirements and specification to-
wards implementation and operation. The requirements for methodologies
has shifted from requirements and documentation support for a computer-
based, digital system towards collaboration and comprehension of design
decisions. This viewpoint is discussed already in (Avison and Fitzgerald,
2006) as a shift in roles of people the process. The authors discuss tech-
niques, tools and methodologies that are applicable resulting in a "jungle"
of methodologies. Therefore, the definition of the term is presented from an

41 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

abstract standpoint. A common characteristic is the externalisation demand
of knowledge during the phases of the methodology.

In relation with the research objectives defined, the design phase of in-
formation systems methodologies are in scope.

Definition 2.5: Information Systems Methodology

Information systems methodologies describe, in a broad sense, as a
method the tasks and results for the analysis, design and specification
of an information system. The methodologies vary depending on do-
main requirements and are adapted in the context of the environmental

trends.

Related Work. The approach to use conceptual models for the develop-
ment and management of information systems has already been articulate
in (Olle et al., 1988) discussing information systems methodologies. The au-
thors distinguish in their discussion between the analytical (looking at the
existing systems) and design aspects (creating a new system or components).
The combination of both parts, named "Design product" is considered the

input for system specification and implementation.

From the background of innovation processes, the aspect of information
systems design, especially in the digital transformation age, has been studied
in (Delmond et al., 2017). The author argue that the notion of information
systems has evolved in the past from "inter-organisational to value nets" to
support processes carried out jointly and enable the sharing of knowledge.

In line with the value net considerations, (Kim et al., 2010) review the
role of I'T within business ecosystems and discuss the four characteristics of
a) robustness, b) creativity, c) interoperability and d) productivity along the
dimensions of knowledge intensity and environmental velocity. The impact
of Information Technology (IT) as an "Intelligent Service Platform" is intro-
duced, that has to "respond to internal and external stimulation", "senses
external changes", enables actionability, "analyses intelligent information"
and "protects the flow of health information and knowledge". These require-
ments on intelligence of information systems has been reflected historically
in (Brodie, 1989), who argues in 1989 for a combined view on data and Al
to support collaborative work in enterprises. Smart and intelligent systems

are a trending topic in computer science in various domains and application

42 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

fields (e.g. in (Meder et al., 2015) for an collection of articles in different

domains).

As an interdisciplinary field, not only technological evolution impacts the
way information systems are understood. The trend in business to follow a
service logic in providing "intelligent offerings" has changed the way system
support is required. (Bohmann et al., 2014) discuss the relevance to the
field of information systems research, as service-dominant logic emphasises
collaboration and contextualisation. The context-specific value is co-created
by the value network. Such considerations impact the design and engin-
eering of information systems. The authors discuss three dimensions to be
considered in the systematic, knowledge intense design process of such in-
formation systems to define the a) service architectures, b) service systems
interactions and c¢) resource mobility. Such aspects influence the way design
methodologies are defined and applied.

The need for models and modelling is well established in literature. Meth-
odologies, independent whether they are analytical, design or specification
related, employ modelling as a tool and the resulting models are an essential
building artefact for system comprehension. The requirements of collabora-
tion, co-creation and contextualisation are reflected upon in the next section.

2.4 Design Thinking

Design thinking has gained in popularity in recent years as a set of methods
and tools, inspired by product design and development, have evolved to
support strategic alignment of enterprises towards market demands. From
an organisational point of view, the involvement of stakeholders is regarded
as a key aspect. Co-creation of innovative approaches in multi-disciplinary
teams is, according to (Brown, 2008), a "principal source of differentiation
and competitive advantage” and design thinking builds upon this need by
matching methods of designer with needs of stakeholders.

From a temporal perspective, design thinking targets to develop future
states and outcomes, building on the expertise and experience of involved
participants. This includes the historical evolution implicitly.

Foundation. The foundation of design thinking approaches are prominently

introduced in (Rowe, 1987). Rowe’s work defines and accounts toward the

43 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

systematic approach followed in design thinking to establish a novel and
innovative artefact based on a well-defined problem space within the field
of architectural design. A new take on design thinking, applicable for the
business domain, is presented in (Brown, 2008), positioning the approach
as an iterative process for innovation. The problem space is explored in co-
creation manner, resulting in prototypes that can be tested, explored and its

feasibility becomes assessable.

Related Work. Related work in the context of the research topic is con-
cerned with the explorative nature to enable cognition and understanding of
complex systems, their evolution and the manifestation of innovative ideas
in a distributed and multi-disciplinary setting. (Plattner et al., 2011) discuss
the applicability of design thinking in general, and introduce specific meth-
ods and tools for application domains such as co-evolution, collaboration and
prototyping. At the core of the contribution, the exploration of a potentially
complex problem space, following a systematic approach that spans across
functional and organisational borders is positioned.

Definition 2.6: Design Thinking

Design thinking is positioned in the context of the work presented as
an explorative method that enables the iterative systematic assessment
of a system and its evolution involving the knowledge and expertise

distributed in an enterprise ecosystem.

As it can be seen from the definition above, design thinking requires
flexible tools and capabilities to adapt to the problem space and its specif-
ics. Modelling is considered an approach that enables the externalisation
of knowledge and expertise in a domain-specific manner, especially in the
context of information systems design as discussed in (Wieringa, 2014). The
theoretical foundations for modelling in information systems as discussed in
(Wand et al., 1995) is therefore applicable.

2.5 Models and Modelling

The definition of the term "model" in computer science, has according to
Stachowiak in (Stachowiak, 1973, p. 129) a double meaning: a model in
its descriptive nature, representing a phenomena of the real world as well

44 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

as a prescriptive meaning as a design artefact, defining how a system or
environment could look like. The German terms "Abbild" and "Vorbild"

describe this distinction of the term.

Modelling as an activity is concerned with the creation, analysis and
assessment of models. In the following the relevant literature within the field
of computer science is presented. Views on models and modelling in other
fields such as economics, psychology, etc. are excluded from the discussion

below and the foundation section focuses on conceptual models/modelling.

Foundation. According to (Thomas, 2005), four definition approaches can

be observed in literature for the term model:

1. General definition: according to (Stachowiak, 1973), three generic
characteristics are established. A model is a representation of a natural
or artificial originals (which can be a model as well, therefore becomes
a model of a model), models reduce complexity, commonly translated
to "truncation" and follow a pragmatic approach in its construction
and application, considering the subjective view of the modeller, the
purpose for creation and temporal validity.

2. Model as representation: the view of a model as a representation has
a long tradition in business/economics and business informatics. The
assumption is that a model is an adequate representation of the original
that exists in reality (in contrast to above, where representation is
also considered for virtual/artificial objects). The definition assumes
that reality already exists in a pre-structured way to be represented.
According to (Thomas, 2005), this definition is subject to criticism as

the value of observation and design are neglected.

3. Model as construction: In contrast to the representation definition, the
models as constructions consider the complex construction and design
process of models. The modeller acts as an observer of phenomena in

reality as well as constructs/designs possible solutions as a model.

4. Axiomatic understanding: following the mathematical tradition in lo-
gic, a set of axioms construct an axiomatic system that, according to
the definition of model theory in (Marker, 2002) can be understood as
a model.

For the purpose of this thesis, the general approach is followed, elev-

45 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

ated by considerations on models as constructions, further extended by the
viewpoint on models in (Thalheim, 2011), who details the common charac-
teristics of models as a "Purpose", "Mapping", its "Language as a Carrier",
and "Value", resulting in additional characteristics for models as amplific-
ation, distortion and idealisation. Especially, the additions on language, to
structure and also limits the expressiveness of models and value considera-

tions impacted the research work presented in this thesis.

Definition 2.7: Conceptual Model

A model is defined as the subjective construction, that results from
a specific/real or artificial phenomena, following a specific purpose
and therefore reduces and scopes the complexity using a language for
representation. A model pertains value based on its utility, capability

and quality characteristic.

Modelling is the activity to create models, applying a specific modelling
language. From a conceptual perspective, it is defined in literature as "the
activity of formally describing some aspects of the physical and social world
around us for the purposes of understanding and communication" (Mylo-
poulos, 1992, p. 3). The formal aspect of modelling in this definition relates

to the application of a modelling language, represented as a metamodel.

Definition 2.8: Conceptual Modelling

Modelling as an embedded activity, within a method, is concerned with
the creation of models of any kind of abstraction and is considered
an analytical as well as design task. Modelling applies a modelling
language that is appropriate for the specific need and creates models
using the defined expressiveness of the language.

Each model created conforms formally to the language used and the
underlying metamodel of the language. Historically, modelling in computer
science has evolved from the design and specification of database systems
towards software systems engineering and is now broadly understood and
deemed essential in the field of information systems methodology. (Olle et
al., 1988) describe modelling as an essential element within any methodology
related to the analysis and design as a knowledge-intense task to externalise

and structure the SuS. Fig. 2.2 shows graphically the differentiation between

46 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

observation and design (called Construction or "Gestaltung" in the original).

Visualized Model

Observation Design

Modeller (Observer + Designer)

Observation Design

Subject/System-under-study

Figure 2.2: Conceptual Modelling: Observation and Design
(translated and adapted from (Krcmar, 2015))

Related Work. Conceptual modelling, concerned with the process to de-
velop a graphical, human interpretable graphical representation derived from
the real-world phenomena has been characterised by the ability to abstract,
truncate and structure relevant aspects observed. The design and planning
aspect of the abstraction activity in the field is well-received in the scientific

world and industrial applications.

A challenge observed relates to the development of adequate modelling
languages to support the rigor required for implementing a system (Frank,
1999, p. 696), a challenge discussed in detail in section 2.6. Typically,
such abstraction activities require the involvement of two roles: the domain
expert, who possesses the knowledge of the field/SuS and the knowledge
engineer in a supporting role to select and transform the knowledge into a
representation that is appropriate for the purpose, respecting the formalisms
decided for (Walch, 2019, p. 46). The level of knowledge engineering relates
to the formality of the modelling language, the purpose of modelling (in

relation with processing techniques that create value).

Considering different stakeholders involved in the process, that need to
express their view on the system using differing formalities (e.g. a business
model designer, describing a new way to offer services and products, a busi-

ness analyst reviewing the operational practices and rules related to them,

47 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

and an implementation expert defining the Information and Communication
Technology (ICT) elements, the modelling process and models created vary
in formality, expressiveness and value considerably. Creative approaches as
stimulated by the design thinking community are contrasted by classical

software engineering methods.

2.6 Metamodels and Metamodelling

This section covers the understanding of metamodels and their construction
principles, identified as the activity of metamodelling.

Foundation. Metamodels define the domain-specific expressiveness of the
models created with them. The metamodel can therefore be understood
as a knowledge representation of the domain in focus, provides the formal
structure as syntax, the meaning in the form of semantics - both relevant
for processing capabilities - and notational aspects for comprehension. The
literature on metamodels and metamodelling is diverse, in a sense that dif-
ferent fields in computer science have established distinct viewpoints and

understanding on the topic.

These views are introduced below as the foundation of the definition

presented.

Language-based Metamodels: Strahinger investigates in (Strahringer, 1995)
the term "metamodel" and how it is used in scientific literature. 24 defin-
itions have been assessed, showing the ambiguity of the term and its ap-
plication in scientific literature of the domain. The author concludes by
constructing the term using a language-oriented approach called "Metaisier-
ungsprinzips", detailed in (Strahringer, 1998) as a generalisation.

The language-based understanding of a metamodel builds on the classi-
fication of models and specifically has linguistic models in graphical or verbal
form in scope. Applying language-level theory or metalanguage theory, as
introduced by Essler, it can be stated, that metamodels can be considered
as a model of a model. This higher level model is a linguistic model, that
represents the language of the lower level. As an abstraction, there is no
limits to the hierarchical levels.

48 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Definition 2.9: Metamodel

A metamodel is defined as a model of a model. Following a linguistic
definition, the metamodel provides the language constructs that are
available to construct the model. The hierarchisation of models to
metamodel, meta’models as an abstraction enables generalisation and
specialisation of language constructs. Expressiveness of a metamodel
is a result from the structural, syntactical definition and its semantic
anchoring within the domain.

Situative Metamodels: The purpose considerations of metamodels have been
discussed in (Brinkkemper, 1996), reflecting the method and tooling in in-
formation systems developments from a situational perspective. Specific
needs of the development process require methods that are enabled by tools
(in a broad sense, not only IT tools). The construction of tool support is
demand-driven and needs to respect the specific situation, resulting in lan-
guage elements and constructs that are applicable. Semantic soundness dis-
cussed as "ontological anchoring" of method fragments in (Brinkkemper et
al., 1999) is required: "Method fragments should be anchored, i.e. described
in terms of unambiguously defined concepts and, possibly, associations of
an anchoring system". An extended view on situational method engineer-
ing that influenced this thesis is available in (Henderson-Sellers and Ralyté,

2010), and the explicated composition process in (Ralyté and Rolland, 2001).

<« used for

mechanisms
& algorithms

usedin

generic
mechanisms &
algorithms

modelling
procedure

- "
modelling LBl

language

defines visualization B

specific
&
algorithms

]
]
" 1 steps
semantic ’0—‘ (design logic) | results |
'
| i
]
]
]

Considers »- connects | A i {
semantic | amanges semantic
mapping LERUL L) domain

notation

hybrid
mechanisms &
algorithms

Figure 2.3: Generic Modelling Method Framework
(Karagiannis and Kiihn, 2002)

Metamodels in Model-Driven Development Atkinson/Kiihne review in (Atkin-
son and Kiihne, 2003) types of metamodels used in Model-Drive Devel-

49 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

opment (MDD). They identify abstraction techniques that are currently
used and applied by software engineers to write higher-level code: tradi-
tional, OMG based modelling infrastructures such as the UML superstruc-
ture and Meta-Object Facility (MOF), linguistic metamodelling and onto-
logical metamodelling are applicable. In the field of software engineering,
metamodels are used to provide a) domain-specific languages that are closer
to the domain (as DSML in contrast to GPML and b) establish the formality
for model transformation, for software engineers, the generation of execut-

able source code.

Ontological View on Metamodels: The ontological representation of meta-
models has been extensively researched in the past following the objective to
enrich metamodels (type semantics) and models (inherent semantics) with
elevated expressiveness e.g. to cover semantic interoperability requirements
(see (Hofferer, 2007)). The ontological representation is discusses as a syn-
ergy to metamodels as it is assumed that a formal foundation for a domain
can be established (Wand, 1996). In general, these synergies are discussed in
literature with ambiguity, as summarised in (Hofferer, 2007, p. 1624-1625) as
some authors consider them equivalent and of the same nature, others argue
for a distinction of syntax (within the metamodel) and semantics (within an

ontological representation).

Definition 2.10: Metamodelling

Metamodelling is defined as the design and construction process of
a metamodel that applies abstraction of concepts in a specific do-
main into appropriate meta-types, provided by the hierarchical meta-x
level above. As such metamodelling considers the meta-x constructs,
applies applicable abstraction techniques (e.g. association, general-
isation, specialisation and hierarchisation) to define the syntax of a
language. Ontological anchoring provides the semantic alignment and

mapping to the domain.

The viewpoint of elevated semantics is followed within this thesis as on-
tologies are understood as a knowledge representation, as a model, that

supports processing techniques due to its representation format.

The above views on metamodels are the reduced set of definitions, applic-

able for the work performed and related to the research objective. Specific-

50 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

ally, the related work presented targets adaptivity and semantics/intelligence
in metamodels. The contribution in the field of software engineering and the
applicability of metamodels in (Walter and Ebert, 2009; Ebert and Franzke,
1995; Ebert, Siittenbach et al., 1997) as well as the approach by (Jeusfeld
et al., 2010) on a logic-based metamodel derived from data interoperability

concerns is relevant.

Metamodelling Platforms: Karagiannis/Kiihn introduce in (Karagiannis and
Kiihn, 2002) a generic framework for the structure of modelling methods and
establish the definition of a metamodel on meta? level. Following the notion
of language-based metamodels, the framework is composed of the model
technique (consisting of the modelling procedure and modelling language)
and processing functionalities as mechanisms and algorithms to be considered
during the conceptualisation. The framework is considered as the guiding
thinking model for the thesis as it provides a formal structure for the elements
and their dependencies/associations to be considered.

As an aggregation of the language-based definition within the syntactical
element, situational aspects in the form of modelling procedures, ontological
foundation as the semantic mapping and domain and operationalisation as
mechanisms and algorithms its relevance is given. Fig. 2.3 shows the ele-
ments that result in a modelling method graphically. The relevant part for
the thesis, concerning structural aspects is the modelling language, high-
lighted in the figure.

Related Work. Related work considered for the theme of metamodels and
metamodelling has been reviewed in the scope of multi-layer and -perspective
modelling in combined environments. As the objective set forth is on an
artefact that supports the interrelation of different layers of abstractions in
information systems design, a review of literature establishes the foundation
for the development of the concept of DeMoMa-(*).

The challenge of combining metamodels for different stakeholder needs
has been discussed in literature extensively. This can be related on one hand
to the issue of DSML, that aim to be close to the modeller and address the
specific needs of a domain and increase productivity; on the other hand,
effort and economics of scale considerations impact the design and develop-
ment of such language artefacts, introduced in (Almeida et al., 2018, p. 24).
The need for techniques to compose and integrate DSMLs appropriately is
discussed from various viewpoints. (Kiihn, 2004) has developed in his PhD

51 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

thesis an integration framework for metamodels, and identified types of in-
tegration approaches from loose coupling to strong integration of metamodels
and hybrid forms. The discussion is based on the modelling method frame-
work presented in Fig. 2.3 and considers syntactical and semantical consid-
erations. From the viewpoint of a distributed environment, such forms of
integration are understood as a composition of multiple metamodels into a
common structure. This guarantees operationalisation as interrelations are
well-defined syntactically and semantically but the drawback is related to
responsiveness to change and flexibility considerations. Assuming a new or
change in requirements of stakeholders on a specific conceptual level, the
overall structure is impacted and results in a re-engineering of the integrated

metamodel.

&

Application
Environment

People
Roles
Skills

Knowledge
Organizations
Processes
Strategies
Resources
Motivators
Capabilities

Systems
Model-aware
systems
Enterprise
architecture

| —

&

Produce-Use Cycle

3
i

aneeplyalizate”
7

Models that
Use Concepts
(Application
knowledge)

Goal: usefulness

Models of Concepts
(Domain knowledge)

&

Knowledge Assets &

Accumulate
Goal: reuse

Foundations

Technology

Reference content

Methodologies

| —

Resource Repository

Conceptual
Framework
Formalisms (FDMM)

Metamodelling
platforms
Platform-independent
MM-DSL

Reference models
Reference metamodels
Algorithms

Evaluation methdology

Concepts and
semantics

Intra-teration

Metamodels Formal

4 descriptions

g Domain specific Model thod

s knowledge Metamode! Formal lodeling metho:

w Requirements management definitions compiler evaluation protocol
ge
BE n " N
ES g Design Formalize Develop Deploy/ Validate

= s

g \ >/

Intra-iteration

Intra-iteration

Intra-iteration

(for method
onsistency)

Inter-iteration evaluation
for method evolution,

Figure 2.4: Agile Modelling Method Engineering

Framework (a) and Conceptualisation Lifecycle (b)
(Karagiannis, 2015)

52 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Another example for the combination of multiple modelling levels into a
common structure can be observed within the Multi-perspective Enterprise
MOdeling (MEMO) approach discussed in (Frank, 2014; Bock and Frank,
2016). The approach builds on a common meta? level called "MEMO MML".
All metamodels considered in MEMO are derived through instantiation and
specialisation, covering the requirements on maintainability of the composed
results and enable "self-referential systems which clearly contributes to more
flexible systems and promote user empowerment" (Almeida et al., 2018, p.
24). Tooling of the metamodels in MEMO is an aspect that elevates efficiency
and integrity.

From an industrial viewpoint, standardisation initiatives and the evolu-
tion of GPML have focused on the multi-level requirements. An example for
this observation can be found in the work performed by committees such as
Object Management Group (OMG) or the OpenGroup and their modelling
approaches. Instead of focusing on a specific aspect or stakeholder, standards
are defined and continuously extended to include any relevant aspect for a
specific field. This is exemplified in the evolution of the BPMN notation in
(Object Management Group (OMG), 2011a) from a modelling environment
to support the "executable semantics of business process" towards an exten-
ded set of constructs for business analysts and implementation specialists
in a common environment. A similar observation is applicable in the field
of Enterprise Architecture Management (EAM). The standardisation done
by the OpenGroup for ArchiMate (Open Group, 2019): ArchiMate spans
from strategy to operational aspects of an organisation and aims to provide
modelling constructs for any need of an involved stakeholder.

For the all the above cases on metamodel integration as customisation
as a design concept is applied to adapt a metamodel element to changing
requirements. These design patterns typically cover the abstraction of a
specific domain into a conceptual representation. (Cho and J. Gray, 2011)
discuss metamodel design patterns for the application in metamodel com-
position, where a new metamodel is created by re-using all constructs or
parts of pre-existing metamodels, or metamodel inference, where metamodels
are identified from existing model instances. The design patterns discussed
consider base metamodel representation, typed relations and containment

patterns.

Such patterns are relevant for the work performed, as the identification

of commonalities is needed to provide alignment, matching and operations

53 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

on an abstract level. In contrast to the integration and composition work
discussed in literature, metamodels and their combination are understood
as networked entities. This means that each metamodel required represents
a node in the modelling environment for information systems design; these
nodes are not strongly or loosely integrated with each other, but interrelation

are defined as edges in a modelling ecosystem.

In (Selway et al., 2015) the authors discuss the implications of such con-
siderations and propose a relationship framework for ecosystem modelling.
The relationships between abstraction layers are extended by typing the
instantiation and specialisation types towards extendibility, support for cat-
egories of external /secondary entities and subsetting specification links. This
distinction is considered relevant for the identification of a common concep-
tual structures and interrelations between metamodels.

2.7 Knowledge Representation:

Conceptual Structures

The foundations on knowledge representation, and specifically using con-
ceptual structures, are relevant for the purpose of the artefact developed as
a harmonisation layer for heterogenous modelling environments is required
to enable global processing functionalities for analysis. In the following the
theoretical foundation of knowledge representation is introduced and the un-
derstanding of conceptual graphs and its applicability in metamodel design
and combination is discussed.

Foundation. Knowledge representation has been discussed thoroughly in
(Davis et al., 1993) as the foundation for AI. It aims at representing in-
formation and knowledge about the SuS in a form, that machine-processing
becomes feasible. The authors characterise the term according to its role
as a) a "surrogate", that replaces or substitutes for reasoning and interfer-
ence purposes, b) an "ontological commitment", even though abstraction is
applied resulting in imperfection, it truncates a domain to purposeful ele-
ments, ¢) based on "fragmentation theory to support intelligent reasoning,
supporting inference as a knowledge base, d) pragmatic computation sup-
port as efficiency are reflected in the representation and e) enable human

expression and interpretation as a medium for communication.

54 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Definition 2.11: Knowledge Representation
Knowledge representation is concerned with the design of a computer
representation of a specific domain for the purpose of machine infer-

ence/human cognition in a problem space.

Conceptual structures, as a form of knowledge representation, have been
prominently discussed in (Jackendoff, 1992) and (Sowa, 1984). The theoret-
ical foundation is grounded as a logic-based technique. The term is derived
from linguistics, where "a conceptual structure allows the representation
of concepts in terms of a small number of conceptual primitives (‘Concep-
tual Structure’ 2019) that can be expressed mathematically as a conceptual
graph."

Sowa defines in (Sowa, 2009) a conceptual graph as the "notation for rep-
resenting the conceptual structures that relate language to perception and
action", where the structure must exist and their properties are inferred.
The notation has evolved over time, from semantic networks with the quan-
tifiers of predicate calculus to the application of Peirce’s Existential Graphs
(EG). Conceptual graphs can be visually illustrated in the so-called "Concep-
tual Graph (CG) display form", the linear representation called Conceptual
Graph Interchange Format (CGIF) has been standardised as one one of the
three standard dialects for Common Logic (ISO/IEC 24707).

Definition 2.12: Conceptual Graph

A conceptual graph, as the formal representation of a conceptual struc-
ture, is a knowledge representation formalism that constructs the do-
main using conceptual primitives to support knowledge operations

such as inference.

The applicability of the conceptual graphs for metamodelling and con-
ceptual modelling in line with the motivational example presented in Fig.
1.4. Tt is assumed that the notion of metamodels as a conceptual graph
(syntactical and semantical) could provide value during the design of a meta-
model as capabilities of a specific metamodelling techniques are abstracted as
a conceptual structure. Considering multi-level modelling environments, the

representation of the contributing metamodels as conceptual graphs would

55 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

support the definition of federated functionality spanning across the different

layers identified.

Related Work. Metamodels as conceptual structures/graphs are intro-
duced in (Gerbé, G. W. Mineau et al., 2001). The authors discuss a "CG
based metamodeling framework for the modeling of information systems".
The definition of CG structures to represent modelling constructs and its
relational types have influences the development of the artefact. Using prim-
itive relation types, a modelling construct is defined as a conceptual graph

that can be mapped to first-order-logic.

— csubt: is used to represent sub-typing in the form or specialisation
— sntz: is applied to use a concept type on data level
— def: defining the concept, in relation to other constructs identified

— rstret: two types of restriction graphs that impose constraints on the

concept are distinguished: restrictions and rule graphs.

Fig. 2.5 shows the use of these relation types to construct an example of
a modelling construct. The same approach is applicable for relation types.
The mapping to first-order-logic results in knowledge/logic based operations
that can be executed on these graphs. Basic operations on such graphs are
introduced in (Chein and M.-L. Mugnier, 2008) for basic conceptual graphs
and (Montes-Y-Gomez et al., 2001) for matching techniques. Both areas of
knowledge operations are relevant to the work performed as they support
the verification and validation of towards consistent modelling ecosystems

and provide input for required matching approaches on metamodel level.

Related work on conceptual structures (in a rather abstract sense) for
the design of information systems are discussed in (Wieringa, 2014, p. 73-
78). The author provide the definition of a conceptual framework relevant
for information systems and related decomposition techniques. An open
question worked on, relates to the abstract conceptual structure required to
represent metamodels - the proposal made by for business process on (Gerbé,
Keller et al., 1998) and refined/abstracted to metamodels in (Gerbé, G. W.
Mineau et al., 2001) needs to be validated for the purpose of this thesis.

56 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

ConceptType:Driver
% ConceptType Person

| CTDefinitionGraph:

Person: ’7x

Restr|ct|onGraph

ek
o) ONC=N

Then:

e)

Figure 2.5: Example: Conceptual Graph (Conceptual Graph Display
Format (CGDF)) of a Modelling Construct
(Gerbé, G. W. Mineau et al., 2001)

2.8 Metamodels as Conceptual Graphs

The formal representation of metamodel has been analysed through an as-
sessment of literature and existing metamodels within the OMiLAB context.
As a result from this analysis, requirements have been established, initially
published in (Utz, 2018b), further refined and concretised in (Karagiannis,
Burzynski et al., 2019) and implemented as a graphical modelling notation
using the Concept-Characteristic-Connector (CoChaCo) modelling environ-
ment as a foundation for the work on the federated metamodel. The following

requirements have been considered:

— Support Human Interpretation of Conceptual Structure (derived from
linguistics, from language to formal structure):
The conceptual structure needs to be readable and interpretable. This
means that the co-design lifecycle is enabled in a way, that the meta-

model engineer and the user are supported in their requirements elicit-

57 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

ation endeavour. From an external and knowledge sharing perspective,
design artefacts are accessible for others to support re-use patterns.

— Realise the Ability to transform/generate formal representation into ar-
bitrary metamodel representations:
The conceptualisation results should be independent of existing form-
alisms but rather support the transformation/generation into a rep-
resentation required for the operationalisation. This requirement also

considers different levels of abstraction.

— Combination and Composition through Formation Rules of Conceptual
Structures
Metamodel operations are enabled by formation rules provided through
conceptual structures and their formal representation as conceptual
graphs.

— Provide Similarity Matching based on Conceptual Structures: The design
concept enables detection of formal structures within artefacts and
provide matching techniques to bind processing mechanisms and al-
gorithms as needed. This requirement builds on the assumption, that
a) the integration of processing mechanisms contributes to the model
value consideration of the metamodel and b) implementation of mech-
anisms follows a binding approach. This means that existing algorithmic
solutions can be discovered and dynamically attached to the meta-
model.

— Verification and Validation Approaches: verification mechanisms are
required to guarantee a smooth translation between design and oper-
ation phases. Validation mechanisms are established to evaluate the

expressiveness and adequance of the result.

2.9 Federated Architecture in

Information Systems Design

Federated architectures have been studies initially for database systems,
with the requirement to establish an architecture where "components must
maintain as much autonomy as possible, but the components must be able
to achieve a reasonable degree of information sharing" (Heimbigner and

McLeod, 1985). As an architectural pattern, interoperability and sharing

58 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

of decentralised information, in the sense of distributed systems, is in scope.
The term "federation" means minimised central authority, yet support for
partial sharing and coordination among participating elements.

Considering a distributed modelling ecosystems, federated architectures
are a candidate to overcome the limitations of integration and composition
approaches introduced earlier. The participating modelling systems stay
autonomous with their specific expressiveness but information sharing for
the purpose of externalising integration links and holistic behaviour analysis

can be realised.

Foundation. In information systems design, specifically enterprise archi-
tecture management, the concept of federated architectures has been es-
tablished, as a principle to tackle interoperability and integration issues.
(Goethals, 2011) distinguishes two types of frameworks: the classic enter-
prise architecture frameworks, that are established through centralisation,
whereas federated frameworks link their building blocks by "a kind of um-
brella". (Chen et al., 2008) have defined the baseline for this consideration
by classifying three approaches to enable interoperability: a) integrated ap-
proach, where a common format for all models exist, b) unified approach,
where a common format on meta-level exists and c¢) federated approach,
where no common format is imposed by participating blocks on model, lan-
guage or method level and interoperability aspects are considered "on-the-
fly".

Definition 2.13: Federated Architecture

A federated architecture enforced autonomy of individual components
of a system and, as a pattern, enables decentralised interoperability
and information sharing. Individual capabilities of specific components
are extended by global functionalities in a homogenous way, overcom-

ing the limitations of distributed system design.

Related Work. Federation approaches have a long tradition in computer
science in relation to information sharing and interoperability of application
systems. In (Heimbigner and McLeod, 1985) the concept has been estab-
lished for database system, defining the field of federated database systems.
The architectural pattern has been extended and adapted to various applic-
ation fields such as enterprise architecture management as discussed in the
foundation part of this section. Related to this work, relevant literature

59 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

with respect to concrete federation patterns is reviewed that provide instan-
tiations and refinements for the concept. (Fernandez et al., 2003) discuss in
their article three distinct design patterns for federated architecture that are

considered for the research work presented:

1. Federation aims to have a "homomorphism between the organisation
and system architecture"(Fernandez et al., 2003, p. 140), in broad
terms, the information systems. Through homomorphism, the applic-
ations independence and data integrity is preserved, and access to each
information of other systems happens in a controlled manner.

2. Dependency separation is concerned with the dependencies that ex-
ist between architectural components due to the way an organisation
works. As such these dependencies are the result of the process archi-
tecture. A distinction is made between processing and informational
dependencies whereas processing dependencies between different do-
main needs to be resolved so that inter-domain and inter-application

dependencies are removed.

3. Interface connection establishes the domain-based communication mech-
anism. Communication channels can be resolved through direct inter-

faces within a domain or syndication, meaning via a coordinating node.

Complementing the view on federation, (Guychard et al., 2013) introduce
observations that have motivated the development of "model-federation" for
conceptual interoperability. The authors list four observations that a design-
er/analyst of any type of system faces: "a) multiplicity of views: any stake-
holder of the system needs a set of custom views, expressing his viewpoint,
to be sure that each of his concerns has been documented; b) multiplicity of
concerns: the space of functional and non-functional concerns often does not
fit with the organisation of views, as any view on the system might address
several concerns; c¢) multiplicity of models: depending on the modelling in-
tention, one has to choose the right formalisms and representations; and d)
heterogeneity of modelling artefacts: those can come in the form of struc-
tured diagrams or text (requirements), drawings, spreadsheets, process-flow
data, etc." (Guychard et al., 2013, p. 2). The authors introduce a separa-
tion of the modelling environment into three spaces: conceptual modelling,
design and projection. A graphical representation of this separation is shown
in Fig. 2.6.

60 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Design Space Concept Space Information Space
- P M/‘
— g’
—r
& -1 - —
L *i‘zi <?txml?> Iv\JI—:-

Figure 2.6: Federated Modelling Environment
(Guychard et al., 2013, p. 6)

2.10 Software System Behaviour Analysis

Based on the assumption that understanding the behaviour of a modelling
system contributes to the explorative needs in the design process, the ter-
minology and foundation related to software system analysis is reviewed in
the following, specifically focusing on behaviour and visualisation aspects.
The precondition for this assessment is that the metamodel has been oper-

ationalised in a modelling tool.

Foundation. The analysis of software-based systems has been studied in lit-
erature from different viewpoints and perspectives. The editors of (Menzies
and Zimmermann, 2013) provide an overview on the objectives of software
analytics and position it as a field of high demand and impact from the per-
spective of knowledge management and the impact such analytical techniques
have on an organisation. Their definition of the term "software analytics" is
based on the work of (Buse and Zimmermann, 2012) and follows the objective
to understand the question of information of "What happened", but also the
question of insight "How did it happen and why" (Buse and Zimmermann,
2012, p. 987). The generalised definition that builds on quantitative and also
qualitative views, discussed as "insights" derived from software analytics is

presented below.

61 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Definition 2.14: Software Analytics

Software analytics is analytics on software data for managers and soft-
ware engineers with the aim of empowering software development in-
dividuals and teams to gain and share insight from their data to make

better decisions. (Menzies and Zimmermann, 2013, p. 32)

The article of (Menzies and Zimmermann, 2013) presents the use cases for
software analytics, ranging from performance, security and interaction cap-
abilities of software artefacts to visualisation for comprehension. A possible
categorisation of such scenarios is introduced in (Buse and Zimmermann,
2012) from a temporal perspective as a result of a quantitative and qualit-
ative study performed with 110 experts from the field, graphically show in
Fig. 2.7

Past Present Future

T
Alerts :Forecasting
Reports unusual changes in artifacts \Predicts events based on current

Exploration | Trends
Find important Quantifies how an artifact is changing.
. Useful for understanding the direction
conditions. | oo broject.
= Regression analysis.

when they happen. :trends. Helps users make pro-active
Helps users respond quickly to events. | idecisions.

= Anomaly detection. = Extrapolation.

T
1
1
1
1
1
1
1
1
1
1
L L
]
1
1
1
1
1
1
1
1
1
1
|

Analysis | Summarization Overlays \Goals
Explain conditions. Succinctly characterizes key aspects of Compares artifacts or development :Discovers how artifacts are changing
artifacts or groups of artifacts. histories interactively. with respect to goals.
Quickly maps artifacts to development Helps establish guidelines. :Provides assistance for planning.
activities or other project dimensions. = Correlation. | ® Root-cause analysis.
= Topic analysis. :
| .
S T
Experimentation | Modeling Benchmarking \| Simulation
Compare alternative Characterizes normal development Compares artifacts to established best Tests decisions before making them.
behavior. practices. Helps when choosing between

conditions. Facilitates learning from previous work. | Helps with evaluation.

= Machine learning. = Significance testing.

decision alternatives.
® What-if? analysis.

Figure 2.7: Software Analytics from a Temporal Perspective
(Buse and Zimmermann, 2012, p. 994)

For this thesis, the focus and scope is highlighted in Fig. 2.7. To under-
stand a complex, distributed modelling ecosystem, the heterogenous software
system and its behaviour needs to be acknowledged by involved stakeholders.
Based on the assessment presented, analytical techniques for the behaviour
of run-time components are investigated in, specifically focusing on the re-

quirements towards visualisation.

This position for the thesis builds on the assumption, that external-
ising and visualising the interrelation between and within the participating

components of the modelling system supports the exploration requirement.

62 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

Therefore a focus in the review of literature is put on behaviour analysis of

software systems and its visualisation.

Definition 2.15: Software Visualisation

Software visualisation is defined as the visualisation of information
related to software-based systems for analytical purposes. The term
refers to the graphical display of any characteristic of a software sys-
tem (Zhang et al., 1996, p. V) from design and architecture, programs,
algorithms to run-time aspects such as behaviour and evolution follow-

ing the broad definition of (Diehl, 2007, p. 3).

Related Work. Diehl’s assessment of software visualisation categorisation
is applicable for the visualisation requirements identified. In (Diehl, 2007,
p. 3-4) an initial distinction is made between Structure, Behaviour and
Evolution, whereas the structure category is concerned with static elements
(e.g. source code and its architecture), behaviour consists of visualisation
techniques for the behaviour and evolution considers the development /imple-
mentation process, applying a generalised visualisation method as a pipeline

to all categories. The pipeline considers the phases of

1. Collection: concerned with the retrieval of data relevant for the visu-

alisation, also termed "Data Acquisition",

2. Analysis: methods for data manipulation e.g. filtering, static program

analysis, statistical methods,

3. Visualisation: transformation into an applicable graphical representa-

tion format.

The method introduced has been refined and applied to the development
of model-based data services in (Utz and Woitsch, 2017), evaluated in the
context of energy-efficient data streams and software systems.

For the behaviour analysis, a set of visualisation techniques are proposed
in (Diehl, 2007, p. 79-125), coined Dynamic Program Visualisation, as a
means to understand visually the behaviour of run-time components. Three
types are distinguished: accumulation, considering the data produced/con-
sumed by the running software over time, spatial projection, to plot the

events and traces in a spatial representation and animation as a technique

63 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

to replay /review the behaviour as it has occurred. For the visualisation, dia~
grammatic representation are deemed necessary, which are either derived/-
generated or dynamically projected upon (e.g. dynamic software architecture
visualisation). For the first case, the models are generated based on beha-
viour, for the second case static models of e.g. software architectures are
augmented. A detailed analysis of the visualisation requirements for model-
ling ecosystems in presented in chapter 3, mapping the requirements of the

artefact to existing visualisation approaches.

An application for the above concepts is discussed in (Rohr et al., 2008)
for the visualisation of the behaviour of a multi-user, Java-based web ap-
plication. The concept introduced, builds on the conceptual models of the
software architecture and reconstructs the behaviour as a visualisation of
operations in the system, as a composition of execution and message traces.
Conceptual models used for the visualisation are UML sequence diagrams,
Markov Chains, Component Dependency Diagrams, and Trace Timing Dia-

grams.

A conclusion that can be drawn from the discussion on software behaviour
visualisation is that conceptual models (of software architecture and their
interrelations) are currently applied, generated or augmented to support the

visualisation of interaction behaviour.

Summary. Chapter 2 discussed the knowledge base and scientific rigor for
the work performed in the research project.

Based on observations related to intelligence in information systems for
industrial stakeholders, that argue for intelligent offerings and interactions,
the background knowledge in the field and terminology is defined. Intel-
ligence as a broad topic, especially in the era of continuous innovation, is
regarded the key argument for the development of smart models. These
smart models represent an information system on one hand, but are also
applicable for digital innovation processes and the cognitive assessment of
enterprise artefacts evolving or retiring within a service or products lifecycle.
The motivation of this work relates to the need to have multiple, distributed
modelling services that harmonise with each other, even though they are not

directly related to each other.

Therefore the terms intelligence and ecosystems are considered as fun-

64 of 257

CHAPTER 2. FOUNDATIONS AND RELATED WORK

damental pillars towards the establishment of smart models, assuming that
the intelligence functionalities can be related to semantic rich metamodels
of each modelling service. Initially introduced in (Walch, 2019), the re-
search objective is based in the observation that mechanisms are required
to design and operationalise metamodels supporting smart, distributed eco-
systems. Advances in the field of software behaviour analysis and federated
system design are contributing to this argumentation, observable in the relev-
ant literature on modelling, metamodelling, design and information systems

management.

The observations have led to the formulation of hypothesis on adequate
metamodels considering domain-specific aspects and the need for a repres-
entation formalism to capture this knowledge and make it processable, con-
sidering the distributed nature of current, and future, systems. The research
question and objective set is structure around these hypothesis: which form-
alism can be developed to support intelligence and how can the design of
adequate metamodels (including functionalities that span multiple nodes in
a modelling ecosystem) be realised. The scope of this objectives relates to the
analytical, intelligence features of the design, impacting use and assessment

in an efficient manner.

The research questions and objectives are targeted as guiding elements
within the development of the conceptual framework supporting the co-

design of metamodels in a distributed manner.

65 of 257

Chapter 3

Design of Digital Intelligence

Ecosystems

This chapter introduces the artefact developed as a method and function-
ality to design and specify metamodels of a modelling method to support
digital intelligent ecosystems. The term "concept" in this chapter is under-
stood as an architectural blueprint of the DeMoMa-(*) artefact, its relation
and dependencies to the field of conceptual modelling/metamodelling and
requirements identified for the intelligent behavioral analysis of information
systems in digital transformation processes. In line with the observations and
objective, comprehension is a relevant aspect for explorational and experi-
mental interactions on any layer individually and holistically (system-wide).
Therefore the scope of the artefact developed is articulated as comprehension
of digital ecosystems as an analysis and design space.

This chapter is structured according to the research methodology, iterat-
ively refining the artefact, considering relevance and rigor in its development:
in an initial section, the problem space as introduced in Fig. 1.1 is refined
and concretised. The OMiLAB’s layered architecture is introduced struc-
turing the work presented. Specific instantiations of metamodels for each
layer and their interrelations guide the requirements elicitation process, with
respect to the relevance of the work presented and an its evaluation of the

artefact.

The DeMoMa-(*) concept considers the following building blocks, spe-

cified in detail in the sections below:

— Design a Metamodel for Digital Intelligence Ecosystems, using the un-
derlying metamodel of each element and derived patterns for the capab-
ilities. This means that a metamodel fragment’s library is proposed for
visualisation on type/pattern level, rather than on concrete instances.
Exploration techniques are proposed following the federation approach

within the ecosystem.

66 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

— Enable Federation functionality for metamodels on different levels of
abstraction. This technique is proposed on syntactical /structural and
semantic level, needed for the exploration of behaviour using concep-
tual graphs as a common knowledge representation formalism to de-

scribe metamodels and their instances.

— Realise knowledge operations for Similarity Matching between the meta-
models for information systems design within a heterogenous envir-
onment and visualisation metamodels, considering the syntax of the

metamodel and semantics encapsulated.

In the next section the problem space is introduced as a refinement of the

problem statement introduced in section 1.3.

3.1 Problem Space:

Digital Intelligence Environment

Considering the abstract representation of the problem statement graphically
shown in Fig. 1.1, an instantiation of it done using results from the OMiLAB

digital innovation laboratory to concretise challenges in focus.

The information system in the laboratory is designed for digital innova-
tion and is structured in three layers, from a physical point of view (infra-
structure/layout) as well as from a virtual, modelling software ecosystems
perspective. The structure of the ecosystem is introduced in (Bork, Buch-
mann et al., 2019, p. 32) as a framework for "model-value co-creation",
manifesting itself as the conceptualisation space for modelling methods on
one hand and the experimentation/exploration environment as the digital
product space on the other hand. Two assumptions have contributed to this

development:

— Metamodel Availability: the conceptualisation space produces continu-
ously metamodels, embedded within modelling methods following the
Generic Modelling Method Framework defined in Fig. 2.3. These mod-
elling methods are co-created by the community and establish meta-
models on different levels of granularity, abstraction and expressive-
ness. As such they refine concepts from the application domain and
(ideally) expose model-value functionality to the modeller.

67 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

— Digital Product Capabilities: the capabilities usable for the develop-
ment of digital products and services can be abstracted and gener-
alised. These capabilities are increasingly changing the model-value
co-creation as the model processing becomes runtime-aware via Inter-
net of Things (IOT) adaptors and the semantically rich representation
in conceptual models. This observation has been studied in detail in
(Walch, 2019), who developed a framework for knowledge externalisa-
tion to interact with physical devices.

The intelligent environment envisioned for the development of a digital
product follows the three layer approach "Design-Model-Make (DeMoMa)",
graphically shown in Fig. 3.1. Each of these layers is defined using a model-
based approaches to support design and analysis. Interrelations between
them realise the concept refinement of the domain as a decomposition, or
representation of functional capabilities as an abstraction, even though these
relations are not made explicit yet. Metamodels on each layer define the

expressiveness of the modelling approach.

S R

& B

G

*(\

N

S
7 7 M 2
S o
L Business Layer

Decomposition:
Concept Refinement

0 5B R

V' (,) Joj uonesapa

Abstraction: 4
Functional Capabilities

>

=y e

,,,,,,,,

MMy Feasibility Layer

,,,,,,,,

Figure 3.1: Digital Product Design Framework (adapted from (Bork,
Buchmann et al., 2019, p. 44)

The layers for DeMoMa are distinguished by their purpose during the
digital product development process:

— De Design Layer of Business Models: used for the definition of novel

68 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

business model, user stories, value propositions and chains of applica-
tion cases using design-thinking techniques. The layer is characterised
by a high-level of abstraction to involve stakeholders, identify roles
and responsibilities and their contribution to the value co-creation.
Examples for techniques on this layer are the SAP Scenes approach
introduced in (SAP User Experience Design Services, 2019), or the
Business Model Canvas by (Osterwalder and Pigneur, 2010),

— Mo Conceptual Model Layer: as a refinement of high-level concepts
from the design layer, the concepts identified are decomposed into con-
ceptual models following its traditional understanding. Examples of
modelling approaches on this layer are process models, organisational
charts, business rules, data structures. The layer is concerned with a
decomposition on one hand, but also acts as a mitigation layer towards
the feasibility layer (matching with available functional capabilities),

— Ma Feasibility Layer: Metamodels on this layer are concerned with
representing /abstracting the functional capabilities required for the
design and validation/verification of a digital product. The feasibility
layer is the experimentation and exploration space for the design and
conceptual artefacts. The CPS becomes accessible for this purpose.

Each of the layer is well-understood in literature. Modelling techniques
are available, researched and applied. In addition, integrated techniques are
available, commonly described as multi-level modelling techniques. Assum-
ing that time-consuming integration is not feasible or proves to be inefficient
due to frequent changes and flexibility, openness and agility requirements,

harmonisation is needed.

Federation for * is defined following the understanding of federated sys-
tems as granting each contributing component a maximum on autonomy
and realising decentralised interoperability. For the thesis a harmonisation
approach is introduced that builds on patterns identified within providing
metamodels or fragments defined for a specific purpose and matching tech-
niques as a harmonisation instrument. The * is defined as the purpose of
digital intelligence within the ecosystem.

"*" with comprehension

The objective of the thesis is to instantiate the
as software analysis and visualisation. Any interaction of the operational,

software-based metamodels in the digital product design space are subject

69 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

to visualisation to enhance comprehension of design/analysis outputs. Nev-
ertheless, the concept developed is generalisable, as the purpose can be re-
defined, resulting in fragments required by the purpose that are re-matched.

For the motivational cases, that are used as high-level case description,
a common framework of modelling approaches is assumed for simplification.
Fig. 3.2 shows the selection graphically and provides an outlook on high-level
requirement towards the federated architecture and its needs. It is assumed
that the selection of modelling approaches for the different layers depend
on the industrial and application domain. A single approach per layer, as
shown in the figure is not realistic and multiplicity needs to be considered in
the solution design.

Modelling Approach Classification

o Haptic Modelling

o Storyboards as a sequence
of scenes

o Abstract representation,
reduced formal
expressiveness

o Number of abstraction

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
levels: 1 !
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Scene2Model

Business Layer

i o Traditional conceptual

' modelling methods

i o Support for multiple

E metamodels (process-focus)
! o Integration via model-value
i functionality

' o Number of abstraction

H levels: 2 (overview, detail)

Conceptual
Model Layer

o Abstraction of functional E
capabilities of CPS devices |
o Operational focused with
interaction capabilities i
o CPSInteraction Patterns
o Number of abstraction !
levels: 1 i

Feasibility Layer

Figure 3.2: Motivational Cases: Modelling Approaches
(derived from (Miron et al., 2018), (Karagiannis, Buchmann et al., 2016;
Muck et al., 2018) and (Walch, 2019))

70 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

3.1.1 DMotivational Case: Smart On-Demand Mobility
(Approach: Top-Down, Decomposition)

The motivational example for the development of the concept instantiates
the layers and is described using the OMiLAB setup. On the design layer, the
haptic, modelling approach Scene2Model is used, the conceptual modelling
layer consists of traditional modelling techniques, amalgamated in the Bee-
Up metamodels and on the feasibility layer, a modelling technique as a subset
of s*IoT modelling method (Walch, 2019) is applied.

As a scenario, demonstrating the purpose and relevance of the artefact, a
case has been selected in the field of smart on-demand mobility. The scenario
is within the field of a novel product/service solution of car-sharing provider,
transforming the business model of the ecosystem by digitising establishing

a smart offering.

Case Description. Currently, car sharing providers operate their fleet on
a global scale and provide a mobility solution that replaces ownership with
utility. This is based on the observation that it is not important anymore to
own a car but use mobility according to personal preferences, availability and
location-specific setting. The current offering puts the user’s knowledge in
the foreground: depending on the current location, available cars are offered
and the user makes the choice to select the car based on the destination, the
required size and space (in case of transportation), environmental conditions
and other preferences. To provide this offering, the physical object (the car)
has been digitised e.g. the lock/unlock mechanism is available online, pay-
ment processes are automised and dynamic pricing models are implemented.

Nevertheless, the knowledge of the user is essential before and during usage.

In a future business model for smart on-demand mobility, the informa-
tion system supports the potential driver in this decision process. Cars (of
different providers) compete for customers in an intelligent manner. This
requires a fundamental change in the way the intelligent offering is defined:
the potential user signals demands to the system using a mobile, location-
aware device, providing the destination and transportation relevant para-
meters. Based on the past service usage, the user profile and preferences
are known and provided to the "cloud" of cars. Each car then individually
assesses the conditions applicable to provide the ride (from an economical,
environmental, location point of view). Alternatives are offered and ranked
and the user can select the ride most appropriate. Considering advances in

71 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

autonomous driving, one can imagine that there is no need in the future to
find the car, open it and perform the ride, but the best-rated (and selected)
car arranges for a rendezvous, picks up the client and performs the mobility
service. Automated processes in the back-office run after-sales activities such

as payment, satisfaction analysis and preference profile updates.

Considering this innovative service idea, the question remains how such
an idea can be designed on a business model level, constructed from an
organisational and processes perspective and how feasibility be evaluated.
As the new business model drives the change, a top-down approach for the
realisation of feasibility is suggested, described in the following. The steps
and results along a heterogenous method chain are visually shown in Fig. 3.3,
including the iterations cycles in design, concept and feasibility assessment.

For the feasibility assessment of the innovative idea for on-demand mo-
bility, a top-down approach in the sense of decomposition of concepts is
applied. Design decision on business model level impact the realisation and
required capabilities on conceptual and feasibility level. This means that
the decisions taken strategically, are transformed into operational aspects
(e.g. processes, organisational structure) and further transformed to derive
required functionalities on physical level.

1. Design of the business model (Business Layer): The innovative idea is
transformed into a business model building on the expertise and cre-
ativity of various stakeholders within the team. Design thinking meth-
ods, as introduced, are applied as they support "communication and
interaction between stakeholders" (Elmansy, 2018), which is deemed
key to achieve meaningful results. Facilitation in the form of moder-
ation and tooling is essential. For the creation of the business model
in the case described above the SAP Scenes approach (SAP User Ex-
perience Design Services, 2019) is selected. Using haptic elements, the
mobility solution is created in a workshop situation that focuses on
the actors involved (driver, provider, car) and their relations among
each other. The individual scenes are composed into a storyboard and
represent the way the new solution is intended to work, from triggering
the need of mobility, the selection and proposal process as a knowledge-
intense task performed by the car, to the operation and after-services
processes. The questions addressed in such a setting are how an intel-

ligent offering can be realised, which actors are involved and how value

72 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

AMiqoy puewd([-u() yrewg :(umo(-doy,) Apnig A[Iqises,] 0} [OPOJN SsoUlsng WOL] :¢'¢ 9IndI

gl

.Il
-~ pnop-eiqouf eimpnasequ 1T,

suogesa) ubisap

suogessy dsouco

jopow

saligedeo oo
SdO UM Jo8uu0) Aﬂ ¥ o} <«

(s)1opow [enydeouod
ajealo/ublly

(uonepifen) jepow

Aiqises4

Rynqises; ejenjeng ssauisng ubisaq

fidde azin
v [sutewop waiayp wos) ,_\
saijiqeded jonposd Jsleubisaq, Poujew Bunjuiy ubisaq
Spoyjaw Juawssassy IEVOIP W JuoLiLBiy 1sfjeuy ssauisny

H-6

® ® ® 306

73 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

is created for the end-user as well as the providing enterprise.

The requirement in the design process to share and include the expert-
ise of experts not physically present is covered through tool support;
the Scene2Model implementation as introduced in (Miron et al., 2018;
Muck et al., 2018) is applied. The tool enables the transformation of
the haptic design results into diagrammatic models using QR codes
and a camera setup for recognition. Design iterations result in am ab-
stract business model definition that is agreed upon all participants.
The business model is considered a representation of actors, their in-
terrelation to establish a value-proposition, the pricing/cost structure
and channels for distribution.

2. Alignment with/creation of conceptual models (Conceptual Layer): In
a next step, the business model is aligned with conceptual models avail-
able. These models are either already available and operational within
the enterprise and its ecosystem, retrieved and specialised from refer-
ence models in the industry or created from scratch by business ana-
lysts. Adequate domain-specific modelling methods are applied for this
purpose, decomposing the aspects of the business model. A challenge
in this phase is is the alignment between the design results and concep-
tual models as the expressiveness on both levels differs due abstraction
differences. Therefore, the design artefact needs to be semantically lif-
ted to become more expressive, similarly done for the conceptual model
repositories to allow for matching and alignment techniques.

For the case presented, the conceptual level is established using tra-
ditional conceptual modelling approaches for processes, data and or-
ganisation networks. The business analyst matches the business model
with available resources in a semi-automatic way. Intelligent mechan-
isms assess the semantic distance, create semantic enrichments based
on the model content and underlying metamodel and propose interre-
lations. Design effectiveness of the solution can be assessed early on in
the process through model-value functionalities, e.g. simulation of al-
ternative solutions for the end-to-end rental process using quantitative
facets of the conceptual models. These functionalities are provided for
the case using the Bee-Up implementation: the matching mechanisms
are fed with the RDF representation of the models created, considering
the underlying metamodel as the grammar, model-value functionalities
are available for different process-based metamodels.

74 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

3. Connect with CPS functionalities (Feasibility Layer): Early feasibility
assessment of the innovative idea is essential for refinement iterations of
the design and conceptual results. The conceptual models are extended
in this phase with operation calls to the CPS environment. Within the
laboratory setting, the feasibility space provides the required devices
to test the idea. These devices are understood as the prototype set-
ting for an explorative evaluation, answering questions such as which
capabilities need to be available for the system to run or what commu-
nication and processing protocols are adequate. The exploration does
not aim to verify a real-life instance but is defined with a laboratory,
prototyping environment. For the case, the capabilities needed on the
physical device are tested, e.g. context-awareness of the car, processing
capabilities needed to simulate pricing and decision making aspects, or
rule-based preference assessments.

An input for the phase are abstract representation of the different cap-
abilities that can be embedded in the conceptual models and triggered.
The CPS devices therefore become aware of the conceptual definition.
Similar as for the transition between business and concept level, the
gap between available capabilities and provided interfaces result in re-
quirements from the conceptual layer that need to be bridged. Missing
elements are made available by adapting or customising the implement-
ation on the device, exposing new functional capabilities as interfaces
and providing them in an abstract manner to the conceptual layer. An
important consideration is that the models on this layer are not aware
of the actual device (type, technology). This means that the abstract
view of a smart car is a composition result of its capabilities but can
be exchanged dynamically (as long as the abstract capabilities can be

mapped).

4. Explore viability on Feasibility Layer: Evaluation of the feasibility is
needed as an immediate feedback to the design and conceptual layers.
Assessment methods provide results back and trigger new iterations.
The objective is to have the possibility to observe how design decision

on the above layers change the operational level.

In the case of smart on-demand mobility, the business model design drives
the evolution of the conceptual layer and realisation of digital capabilities.
Intelligence in the translation and transformation between the layers is re-

75 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

quired and needs to be become transparent to provide an explanation of com-
plex system dependencies and their impact resulting from high-level design

decisions.

As a second case, the application of the inverse methodological approach
can also be considered. This means that the digitalisation of a physical

device triggers and drives the process.

3.1.2 DMotivational Case: Smart Battery Management
(Approach: Bottom-Up, Abstraction)

Case Description. In this motivational case the innovation is triggered on
physical object level. Traditionally, batteries power many IOT devices and in
case of lower voltage, need to be replaced periodically to make sure the device
is operational and can be used. An example for this observation relates to
micro-processing devices such as the Raspberry Pi that needs a stable voltage
stream in order to operate properly. When connected to a power source,
power outages are prevented but limit the location independent use of a
device. Battery management is therefore essential to overcome the limitation
of a static location context. This results in the need to add a functional
capability to the battery to monitor the its levels and expose them, as input
to react in a timely manner and reduce downtimes. Alternative solutions
on conceptual level result in differing business models that are assessed and
studied for viability.

For the feasibility assessment of the product innovation, a bottom-up ap-
proach in the sense of abstraction of physical capabilities and composition of
business model scenarios is applied. Design decision on product engineering
level and their abstraction impact the realisation of the concept and business

layer models.

1. Realise a product prototype on the Feasibility Layer: product engineers
develop a prototype that demonstrates smart capabilities of a battery
design. They consider sensing and connectivity issues in their engin-
eering task as a foundation for smart service offerings. The prototype
is designed and realised in laboratory conditions to study the tech-
nical requirements to be covered: data streams, interfaces protocols
and technologies to be applied.

2. Use the functional capabilities on Conceptual Layer to define oper-

76 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

JuomodeuR]y A19)jed jrewg :(dn)-woljog) AYNIQISed,] [OPOJN SSOUISNE 0} UOIPRAOUU] 1ONPOIJ WOL] f'¢ oINS

$5300.d Juawaoedey

ssaooud Buapio

S8 $SBUISNq PUB POYSBIYL

suonessy Ayases)

suopesa) 1deouco suogesa) uBisap

[opow

doau0p sfepow [enjdeouod

Ajiqedes jonpoud
< Mmau Jasuibug

| T

(uonepiie)

SOAleuIs}|e [opoLl
ssauIsng aAUaQ

sseuisng

Aiaises sjenjens ul sanqedeo asn

i |

azjmn azin fidde fidde azn
% spoujew m,__:@ce seniqede ponpoxd sanjiqedes
e JeUBip BB euogoun; Jo UogoEASQY
‘SPOLBW JUBWSSBSSY N -

&—— e @WC

77 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

ational aspects: the analytical work is performed on the conceptual
layer. The processes to retrieve data, handle exceptions and integrate
operational processes are covered. Thresholds and triggering mechan-
isms are evaluated in relation to the CPS models established. Data
services are hierarchically connected to the sensor interfaces and re-
trieve the current battery status e.g. as voltage levels to determine the
health status. Processes describe the operational aspects and business
rules are used to define thresholds. The product feasibility is valid-
ated using static and dynamic analysis techniques for the monitoring,

escalation and ordering processes.

The abstraction approach applied on the lower level is extended and
formally aligned with available or new models of the enterprise. This
targets systems, data and behavioural aspects.

3. Assess business model scenarios on the Business Layer: the stakehold-

ers from product engineering, operations and strategy jointly assess
different options to establish a novel business model based on the new
product functionality. Service offerings and value propositions can be
compared and analysed, e.g. replacement and ordering process triggers
based on user preference; just-in-time options for the replacement and
risk assessments.
In this case, the conceptual level limits (or filters) the expressiveness
of the design thinking approach: only aspects considered on concep-
tual level can be designed and assessed. Identifying a new aspect not
considered results in an update on conceptual level.

3.1.3 Requirements for Digital Intelligence Ecosystems

From the case and the description of the design, model and make steps
above, we can derive requirement towards the harmonisation of such a system
following federation concepts as introduced earlier. The literature review in

chapter 2 established the context to related work and background knowledge.

Model Alignment: Independent whether a bottom-up or top-down ap-
proach is followed, transitions between layers, but also within, differ from
case-to-case. Support is required to align the layers with each other (in
case pre-existing artefacts exist) or hand-over of the context of one layer to
the other. As the modelling approaches are independent of each other, the

78 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

alignment is considered a transformation on one hand, respecting the syn-
tax and semantic of source and target environment, on the other hand, an
intelligent mechanism that retrieves information, prepares proposals for the
modeller and defines the interrelations on a federated level. The metamodels

are projected upon the federated level to achieve this requirement.

Traceability: Traceability of the design and analysis process is essential.
As a process, the artefacts evolve in a co-creation manner; traceability links
between valid /approved versions support the understanding of the inform-
ation system on a holistic level. Traceability links are established on hori-
zontal level, in between models of the same abstraction and granularity and
vertically, in between layers. They can be understood as cause-and-effect
links between model artefacts. Changes in the models are reflected in the

metamodel as a response to changing environment and context settings.

Visualisation of Interactions: Visualisation is considered an outcome of
the above requirement, that aims at making the operational system trans-
parent to the user. Mechanisms for retrieval and matching, system and
device interface calls in a complex experimental setup should become visible
and understandable. The requirement is concerned with collecting all types
of software-based interactions, visualising their impact on the underlying
technology. Interactions are broadly understood as any type of human-to-
machine or machine-to-machine operations (in various types from synchron-

ous, asynchronous, void calls to push and pull interfaces).

Information Integration: is concerned with the distribution of informa-
tion (as a model artefact or the result of a model processing step) within the
ecosystem. The integration builds on traceability relations and supports the
interchange of information achieved. An example for a this requirement is
related to simulation outcomes, as a result of design effectiveness considera-
tion on the model layer, that are distributed to the business level to provide

a quantitative assessment of design alternatives.

3.2 Metamodel Federation for Digital Intelligence

Ecosystems

The above requirements result in the development of a concept applicable to

the abstract definition of intelligent ecosystems. The principle of federated

79 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

architectures has been applied in the development that aims to create an
artefact that is minimal intrusive, elevates individual functionalities of par-
ticipants with operations on a federal level. This approach is considered as
harmonisation, as underlying artefacts become interoperable, but stay at the
same time autonomous. The two building blocks identified are a common
metamodel that is defined as a projection of the individual metamodels, and
intelligent operations that can be realised on this metamodel that provide
the functionalities required. Fig. 5.7 shows the two elements in a graphical

way.
! Intelligent Operations
e >! (Alignment, Traceability, Visualisation,
| { Information Integration)
H S EEEE————
AUt
i | Metamodel
' + Digital Intelligence
1 :
L 1
S Federated Environment @
/@ ””””””””””””””””
’1?/ A N T
%) r T T T
& (D CD v @ Projected structure _
i i i
v v v
MM, " MM MM,

................

Figure 3.5: Intelligent Operations in a Federated Environment

The federated metamodel builds on the three distinct layers introduced
earlier, and a common element for all layers covering the context of the eco-
system. It aims to provide abstract constructs that are used as a projection
of an arbitrary metamodel (and consequently its model artefacts) of each
layer. Contextual elements define the semantic system boundaries that is
applicable for all layers. In order to describe the functionalities of each layer
element, the CoChaCo design approach is applied as introduced in (Karagi-
annis, Burzynski et al., 2019) that supports the requirements engineering of

metamodels.

In the following the CoChaCo Approach is introduced, including the
formal extensions required to represent metamodels as conceptual graphs.
This extension is applicable on on hand to have a common description format
for any metamodel, and provide mechanisms for alignment of individual

artefacts towards to common structure.

80 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

3.3 CoChaCo Metamodels as
Conceptual Structures

Considering the related work in the area of metamodel design on one hand
and conceptual structures on the other, the CoChaCo approach has been
realised and extended to enable processing functionality based on a formal
representation that results in generalisable functionality of similarity match-
ing as a projection. Conceptual graphs have been identified in the related
work section as the theoretical foundation for the formulation, building on
the results of (Gerbé, G. W. Mineau et al., 2001). The proposal in (Gerbé,
Keller et al., 1998) guides the specification of the common grammar elements.

The functional capabilities of conceptual graphs, as introduced in (Chein
and M.-L. Mugnier, 2008) and defined as formation rules, contribute to
the identification of graph-based patterns, their composition, translation
between representation and verification rules for model processing function-
alities. In a first step, the formal representation in CoChaCo is discussed as
the structural element, functionalities on the knowledge representation are

introduced, operating upon this structure.

3.3.1 CoChaCo Metamodel:
Concept-Characteristics-Connector

The CoChaCo approach based on the requirements above is introduced in
this section. The specification of CoChaCo builds on the assumption that
metamodels can be designed and represented using conceptual modelling it-
self, leveraging on the intuitive interaction capabilities and adaptable views
for the engineers and users. An early version of the approach has been
discussed and evaluated in (Utz, 2019a), initially defined in (Karagiannis,
Burzynski et al., 2019). The representation of a metamodel as a concep-
tual graph builds upon the notational aspects of CoChaCo, extended by the
conceptual graph specification introduced in (Gerbé, G. W. Mineau et al.,
2001). ConceptTypes and RelationTypes are precisely defined using nested
conceptual graphs for the specification of its logical semantic.

The base version of CoChaCo aims to provide a design space for metamod-
elling. This design aspect can be observed by the weak definitions of con-

cepts and relations proposed, especially within the definition of the semantic

81 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

of relation types: any design can be created and instances defined can be
connected with each other freely. This semantic weakness aims to overcome
limitations during the design process in the spirit of creativity - anything can
be designed without restrictions from an operational perspective. A draw-
back of this extended creativity is that the machine interpretation of the
models is only partially supported and requires semantic alignment /lifting
during processing. Mechanisms and algorithms operating on the structure

reflect the interpretation required.

As an overview, the design capabilities of CoChaCo are presented in Fig.
5.7.

Creation, development and
description of metamodels Metamodel Concept pool Procedure
) >
v Concept Characteristic Connector Functionality Step
Concept overview ! | I i
Purpose | | Functionality | | H Result || Resource
Concept Characteristic Connector I) I I
; / custom
v /
H H 8 o hierarchy v connects
Purpose | | | Functionality | | Catogory =
i - S & Requirement
;- Any Concept | <= Note has
custom -7 - Any Concept _
. N L/ Extornal -~ External |-~ = Cspecializes
. N v L Resource e —
- 4 connects Aggregation 7
- uses.
Requirement = s N
- has Abstraction ; f ™, o
Any Concept . 7
External specializes
Resource
uses available for Evolution Aggregation Note
Abstraction |/ ' . fow (/7//,/7/7// \Wa”"**ff——fff,w
Gonversion of |/ Cloning and Generation of Highiighting of
Evolution Aggregation Note ‘documentation /. ‘elements based on.
Categorization, Characteristics and their membership o Name/Lavel
eeeemeze>! Any Concept e 1 Any Connector
o Description / Motivation hierarchy
_.==* © Instantiable
. . Necessity
Purpose o Aggregate i i i «--—-1C
- ! ! ! Scrapped
7 * © Detailed in / by Aggregate «-__i p, ”
Functionality = P
Keywords < 7 Required custom D [~/ YN flow
Scrapped 4~ | (i | ~ H | i | N connects)/ Y\ uses
Notation s | External | | i i i i | has specializes
| i |_Resowee | | Category | | 1 ostep | Aggregation | | i
Direction
Concept | | Characteristic| | Connector
- S Requirement Abstraction Evolution Result Resource Note
e . |
‘v
Type / Associated
Type... abstraction Non-/Functional

Figure 3.6: CoChaCo Metamodel
(Karagiannis, Burzynski et al., 2019, p. 205)

Using CoChaCo, a metamodel is defined as a combination of the three
elements: concepts, defined as modelling types, characteristics as properties
of these concepts, and connector, defining possible relationships between
concepts. The elements are related with each other using relation types
(connects, has, specialises, uses, flow). Support elements for modelling in
CoChaCo are disregarded in the analysis of the approach (e.g. note and
aggregation as visual aids, evolution and abstraction elements to define tem-

82 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

poral dependencies between specification outcomes).

3.3.2 Metamodelling using CoChaCo: Grammar

In the following the grammar of the CoChaCo metamodel is described, fol-
lowing the MM-DSL logic introduced in (Visic, H. G. Fill et al., 2015; Visi¢,
2016), refined and adapted for the purpose of representing arbitrary meta-
models in a common format, independent of technological platforms. From
a syntactical point of view, Extended Backus—Naur form (EBNF) form has
been selected, visually represented as railroad diagrams in appendix A for
convenient readability. The meaning of each construct is verbally described,
and the notation is introduced for each language element in table format.
The constructs listed and graphically presented in Table 3.2 are required
to design a metamodel, extended by behavioural elements required to add
processing functionality to a metamodel, and relations/association between

structural and behaviour elements defined in Table 3.3.

(metamodel) = (construct) + (3.1)

(relation) +

(construct) = (structure) | (3.2)

(behaviour)

(structure) = (concept) | (3.3)
(characteristic) |

(connector)

(behaviour-construct) ::= (purpose) |
(functionality) |
(stakeholder)

83 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

(relation) =

Table 3.1: CoChaCo Grammar: Metamodel

Following the grammar definition of above, a metamodel is defined as a
set of at least one constructs and one relations (3.1), whereas a construct is
considered to be either structural or behavioural (3.2). Structural constructs
relate to the metamodel elements and are typed as concepts, characteristics
or connectors, behavioural constructs define the processing logic as purpose,
functionality and stakeholders.

84 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

Construct Description

Structural Constructs

Depicts modelling construct on an arbitrary level of
Concept abstraction. This could be used to represent a graph-
ical symbol of the language or an abstract element for
functionality and model processing.

Any type of characteristic of a concept. Character-
Characteristic | istics can be on syntax level, defining attributes and
properties, behaviour on the dynamic characteristics

or notational on the graphical aspects of a concept.

Describes a relationship in the metamodel between
Connector concepts as a graphical connector, a hyperlink or con-

tainment and composition dependencies.

Behavioural Constructs

Identifies the purpose of a specific mechanism or al-
Purpose gorithm in relation with the modelling procedure and
results to be perceived. The purpose includes consid-
erations on steps and resources required for a specific
processing approach.

Relates concepts and characteristics with processing
Functionality functionalities. This construct is used to identify func-
tionalities in relation to abstract and concrete meta-

model structures.

Table 3.2: CoChaCo: Notation of Structural and Behavioural Constructs

Generic relations (3.4) establish typed associations between the con-
structs of any flavour and have exactly two endpoints (start and end for
directed relations) assigned. In the following, in the decomposition of the
grammar, we focus on the structural elements (3.3) as they represent the
metamodel definition. The abstract structural-construct is refined in defini-
tion 3.5.

85 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

(structure) = ((concept) | (3.5)

(
(characteristic) |
(connector))

(

isInstantiable)

has(name)
has(description)
(aggregates(structure)) x

(has(characteristic)) *

Structural constructs define the language elements and their characteristics.
The defining properties are their name and description. Aggregation allow a
composition of structural elements. Abstract structural elements are applic-
able for for any type and specify constructs that are not directly instantiable,

but embed semantics on higher levels of abstraction.

A structural construct is defined as being either a concept, characteristic
or connector. Common properties are a descriptive name, further detailed us-
ing a free-text description (both name and description could be considered as
instantiated characteristics, but are made explicit as a result of the specific-
ation characteristic of CoChaCo), whether the construct can be instantiated
(resulting in a concrete modelling class in the metamodel, or alternatively
an abstract class for further specialisation), whether it is composed and ag-
gregated of other constructs, and the domain-specific characteristics that
refine and specify each construct. Each of the sub-types can be used for fur-
ther specialisation in a hierarchical manner (see specialises relation for each
type). This means that constructs can be structured hierarchically, whereas

hierarchy is not limited to a strict tree structure.

(concept) = (specialises(concept))? (3.6)
(isEndpoint(connector)) *

has(notation)

86 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

The concept is the core element of any language. A concept of a modelling
language is considered within the environment it exists in (defined by its
connectors and where it acts as an endpoint). Graphical elements define a

notation as the concrete syntax.

A concept is defined by its connector relations (in 3.6) defined as end-
points, which are derived from the (hasFromEndpoint) and (hasToEndpoint)
in 3.7. A similar technique is applicable for characteristics that refine the
structure, notation and behaviour of a construct. The belongsTo relation is
derived from the assignment of characteristics to structural-constructs as an

inverse view on the has relation defined for any structural construct.

(connector) = (specialises(connector)) ? (3.7)
(hasFromEndpoint(concept)) +
(hasToEndpoint(concept)) +

has(notation)

A connector defines the relational dependencies of concepts. The connectors
are typed and establish the relational semantics for each concept within its

context.

(characteristic) := (specialises(characteristic)) ? (3.8)
(belongsTo(concept) | (characteristic)

(connector))) +

A characteristic defines the syntax and semantic of a concept or connector.
In the narrow sense characteristics establish the properties (from a structural
perspective) and behavioural aspects of the object.

(isInstantiable) := true | false
(name) = STRING
(description) ::= LONGSTRING
(notation) ::= REPRESENTATION

87 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

Types are established as general-purpose characteristics of any concept, con-

nector or characteristic.

Relations in CoChaCo represent association between the constructs and
establish the abstract syntax of the metamodel designed. These relations are
defined in Table 3.3.2. Six different types of relations are supported by the
approach, defined on grammar level below. The relation types are generic in
a sense that their use is proposed, but not restricted. A metamodel designer
can interpret and apply them flexibly. This freedom of interpretation can be
observed in the grammar definition (to and from endpoints are defined on

construct level) as well as in the definition of each type.

(connects) = from(construct) (3.9)
to(construct)
direction(none | to | from | both)
necessity(none | unspecified | optional |

mandatory | mandatory in certain cases)

For the "connects" relation, the source is a typically of type Connector and
the target a Concept or Connector, even though it is not restricted. It spe-
cifies that the source connects something specific (the target) to it, itself or
anything else (all the connects relations of the source have to be considered).

(custom) = from(construct) (3.10)
to(construct)
direction(none | to | from | both)
necessity(none | unspecified | optional |

mandatory | mandatory in certain cases)

The "custom" relation has no restriction and meaning is established indi-

vidually by the modeller.

88 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

(specialises) = from(construct) (3.11)
to(construct)
necessity(none | unspecified | optional |

mandatory | mandatory in certain cases)

The "specialises" relation defines a relation between two elements of the same
type, but also from a characteristic to a Concept or Connector; it specifies
that something (the source) is the specialisation of something else (the tar-
get) [think sub-type / inheritance| or that it specialises something else (e.g.
using a characteristic to handle sub-types). The inverse relation "hierarchy"
structures the concepts/characteristics/connectors on a type level.

(flows) == from(construct) (3.12)

to(construct)

The "flows" relation can be defined between step, resource and/or result; it
specifies that something flows from one (the source) to another (the target),
but what exactly depends on the context (e.g. when the source is a resource
and the target a step then the Resource most likely flows into the step as
input).

(has) = from(construct) (3.13)
to(construct)
necessity(none | unspecified | optional |

mandatory | mandatory in certain cases)

The "has" relation" is typically defined between two structure constructs,
two purposes, two functionalities or from any other to a requirement; It

specifies that something (the source) has or owns something else (the target).

89 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

(uses) = from(construct) (3.14)
to(construct)
frequency(always | often | sometimes |
a little | unspecified)

when(description)

The "uses" relation is defined as a relation that a construct uses another
one, without a specific semantic meaning attached /predefined.

Relations
connects Visual connector provide the design means to relate
has/owns constructs above with each other. Connects is used
flow!order to assign characteristics to concepts, whereas generic

characteristics can be assigned to multiple concepts.
ow The has/owns relation is intended to be used to rep-
_____ﬁE‘?ﬁi?[if?ﬁ_’ resent partioning and composition of concepts. Flows

uses defines sequences and control logic of functionalities.
777 The hierarchy and specializes relation are used to
structure concepts and identify conceptual hierarchies.

Uses is applied to represent the dependency of specific

concept and their characteristics with functionalities.

Table 3.3: CoChaCo Notation: Relations

Summary. The conceptual modelling (or design) of metamodels uses three
main constructs provided by the CoChaCo metamodel: Concepts, Charac-
teristics and Connectors. Relation types allow to connect the elements. An
advantage of the approach relates to the visual interaction capabilities and
creativity support. A designer has the opportunity to a) articulate and doc-
ument design efforts of a metamodel, b) derive and verify artefacts formally
for technical platform support, using custom extensions and transformations

and c¢) provide machine processable input knowledge operations.

The syntactical view in CoChaCo using the grammar specification above
supports knowledge operations with respect to structural aspects. The meta-

model design can be assessed using static analysis mechanisms (e.g. veri-

90 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

fication for correctness using syntactical rules derived for specific runtime
platforms, and code generation as input for implementation efforts, analysis
functionalities as queries upon the design). As knowledge-based operations
based on the semantics of the metamodel, an extended notion is required.
This extension is presented in the following section introducing the notion
of conceptual graphs, as the formal representation of a conceptual structure,

on metamodels.

3.4 Foundation: Conceptual Graphs

In this section, the understanding of conceptual graphs for metamodels is
introduced. In a first step, the foundational definition derived from literat-
ure for the concept developed is introduced. A conceptual graph, in its base
definition, is a logical formalism that includes concepts, relations, individu-
als and quantifiers. More precisely, a conceptual graph is a finite, connected,
bipartite graph with nodes of the first kind called concepts and nodes of the
second kind called relations, where each relation has one or more arcs, each
of which must be attached to a concept. If a relation has n arcs, it is n-adic
with labels from 1..n (Sowa, 1979, p. 42). They are a graph-based know-
ledge representation of conceptual structures and reasoning model, that can
be derived from their representation and maps to first-order logic/predic-
ate logic to enable reasoning through inference. The translation mechanism,
called "mapping" in (Wermelinger, 1995), is a re-defined translation algorith-

m/function between a graph-based representation and a logic-based view.

3.4.1 Structure of Conceptual Graph

The definition of a conceptual graph follows the formulation of the fun-
damental notions presented in (Nguyen and Corbett, 2006), repeated and
summarised below as input for the mapping towards the ChoCaCo language.
The mathematisation has been derived from Sowa’s original idea discussed
in (Sowa, 1984). The definition respects the "support" structure required for
conceptual graphs, as "a conceptual graph has no meaning in isolation. Only
through the semantic network are its concepts and relations linked to con-
text, language, emotion, and perception" (Chein and M. L. Mugnier, 1992,
p. 366).

91 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

Conceptual Graph. A conceptual graph G that respects the support struc-
ture coined "canon" as a quintuple.

G = (C,R, type, referent,arg) (3.15)

where the following definitions are applicable, referencing the support
structure as required:

1. G is a bipartite (two disjoint sets of C and R, without adjacent of two
vertices within the same set), connected (any vertice can be reached

from any other vertice), finite (a defined set of vertices) graph.

2. C is the set of concept nodes. C' = {c — vertices} defines the concept
set, where each c-vertices is derived from a concept type. All concept
types in C are denoted as Teog. Toa is a subset of T¢.

3. R the set of relation nodes. R = {r — vertices} defines the relation
set, where each r-vertices is derived from a relation type. All relation
types in C are denoted as Trg. Trg is a subset of Tg.

An important distinction between C and T, R and Trg respectively
is that for the C and R may contain duplicate entries, whereas the type
sets are disjunct, as a consequence from T and Tr being disjunct.
Details on types (concept, relation, individual are available in 3.21 as

used in the type function below.

4. type is the surjective function that describes this association between
a concept/relation and its type. The function is expressed as

type : CUR — Tog U Tra (3.16)

with
VC € C type(C) € Teg and Tog = type(C)

VR € R type(R) € Trg and Tra = type(R)

5. referent is the surjective function that associates the concepts with

individual markers as:

referent : C — Ig andIg C 1. (3.17)

92 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

A blank referent is denoted as the generic marker * . The definition of
I as the set of individuals of the support structure is defined in 3.21.

6. arg is a partial function that associates a relation node with ¢th con-

cepts, respecting the signature of R.

arg : NxR —C (3.18)

where N are the strictly positive natural numbers and the ith argument

as a concept vertice, is
Vie NVRe R arg(i,R)

if it exists in the relations signature.

For the above definition of G, the following conditions are applicable in the

context of the canon K.

— referent and arg must satisfy the conformance relation conf of K. This
has the implication that individual markers can be used in different
concept nodes, but need to be compatible in a sense of subsumption,

defined in the conf function. This can be expressed as

VC € Cconf(referent(C)) =i < type(C) (3.19)

— arg and type must satisfy the canonicial basis function B of K.

Vi € N'VR € RVC € Carg(i, R) = C <=> type(C) (3.20)

Canon. The conceptual graph G builds on the canon K defined as

K = (T,I, <,conf, B) (3.21)

where the following definitions apply:

93 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

1. T is a set of concept T and relation types Tr, defined as T'= To UTR.
The two sets are disjunctive and finite. It is assumed that each set
has a lattice structure, established through a subsumption or subtype

relation <. Both sets are distinct; no duplicates exist.

2. I as the set of individuals or markers. An element of I is the instan-
tiation or realisation of a concept type T¢. I also includes the generic
marker/individual *. T does not contain any duplicates either.

3. < is the subsumption relation/function of T and is defined as

<: (Te xTo) U (Te x Te) — {true, false} (3.22)

4. conf is the function that relate each individual marker, with the excep-
tion of the generic one * to a concept type. The restriction proposed in
(Nguyen and Corbett, 2006, p. 263) that each individual marker can
only relate to one concept type is followed, considering the subsump-

tion hierarchy of concepts derived from concept types.

conf : T\ {*} = T¢ (3.23)

5. B is the canonical basis function responsible to associate each relation
type with the concept types that are allowed in the relation. The set
B(r) is an ordered set and may contain duplicates, n denotes the arity
or valence of the relation type, as a result from each ¢, defined as the
argument. The function is defined as

B :Tr — o(T¢) (3.24)

where
VreTr B(r)={c,....cn}

For the above definition of K, the relations/functions < and B are linked.
This means that the canonical basis function of any relation type needs to

satisfy the subsumption defined for the supertype.

94 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

The ontology definition in (Nguyen and Corbett, 2006, p. 264) is respec-
ted for the alignment to ChoCaCo but not explicitly described in the section
as it is defined as a subset of the sets defined for K, within the context of
the ontology O for a domain M. The relations/functions are carried forward
from K, applied on the subsets defined for the ontology/domain.

3.4.2 Basic Operations on Conceptual Graph

The above definitions represent the support structure, usually denoted vocab-
ulary of the conceptual graph formalism. The core feature of conceptual
graphs is the transformation logic to first-order-logic, defined as ®, laid out
in (Sowa, 1984) in detail, and continuously refined and corrected (e.g. (Wer-
melinger, 1995)). The understanding of metamodels as conceptual graphs
results in the implication that logic based operations can be applied upon
the structure that support knowledge operations. In (Nguyen and Corbett,
2006, p. 268-270), these operations are classified as projections. Such projec-
tions are defined to enable comparison and canonical operations, supporting
inference and discovery of knowledge. Consequently, the graph-based rep-
resentation enables a deductive discovery of hidden concepts and relations
within metamodel fragments as input for the dynamic composition opera-

tions.

(Chein, M. L. Mugnier and Croitoru, 2013) consider these projections
and defines them as "Core operations for Conceptual Graphs". These op-
erations are introduced below as the foundation for metamodel operations
proposed, supporting the federated design of metamodels. Operations iden-
tified by the authors build upon syntactic operation on knowledge graphs,
which are called graph homomorphism. The authors summarise in a first
step mathematically how graphs can be used as a representation format for
reasoning. Such operations build on the definition of a graph for knowledge

representation consisting of

— the Conceptual Vocabulary as two sets of node types and relation types,

— Basic Graph (BG), that build upon the vocabulary and represent the
knowledge of the underlying domain, and

— extensions towards Complex Graphs that consider nesting and rules as

hypothesis - conclusion relations within the graphs.

95 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

At its core, the subsumption relation introduced above in the formal
definition 3.21 defines the knowledge operations of conceptual graphs. Reas-
oning (defined as a deductive approach) "can be defined either by a sequence
of elementary operations or by the classical homomorphism notion" (Chein,
M. L. Mugnier and Croitoru, 2013, p. 255). The elementary operations are
classified as generalisation and (inverse) specialisation operations upon BG,
whereas the intuitive definition of the authors in (Chein, M. L. Mugnier and
Croitoru, 2013, p. 255). Specialisation is the category of knowledge opera-
tion that summarises any extension of knowledge to an existing graph. The
resulting graph, after the operation, represents more knowledge of the ini-
tial one. Generalisation, as the inverse operations, constructs a graph that
contains less knowledge, a more general picture of the system under study is
the result.

Generalisation Operations. Generalisation operations enable the trans-
formation of one conceptual graph to another that is less or equal expressive
than the previous one. As such, this operation is characterised as a unary
transformation of the graph; different types of these operations can be dis-
tinguished. The assumption is that the underlying vocabulary stays stable.

— Subtract: the subtract operation deletes one or more components of
the initial graph. As such the resulting graph is more general than the

previous one, as information is reduced.

— Detach: detaching means splitting a concept node into two concept
nodes, the initial edges related to the node are shared between the
two new nodes. The detached BGs are more general, as the relational
nodes are not linked to a single instance of the node, but distributed
to the detached ones.

— Increase: increasing means to elevate the label of a concept or rela-
tion, either on type or marker level. For the type level increase, the
vocabulary hierarchy needs to be respected, e.g. elevating/increasing
it to a high level node/relation type within the same tree branch. This
means that the increase operation on node and relation type is limited
to the super-types defined in the vocabulary. For a marker increase,
the same logic applies wheres the increasing to the generic marker (as
a it is consider greater than any individual marker) is always possible.
This implies that a concrete marker can also be substituted by the

generic "any".

96 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

— Relation duplication: this operation duplicates a relation node, result-
ing in a "twin" relation. Both nodes (original and duplicated) have
the same signature and type. As no new information is in the resulting
BG, the operation is considered as a generalisation in the broad sense

(the result it the semantically equivalent).

— Copy: copying a BG results in an "isomorphic and disjoint copy of it"

Based on the definition, a conceptual graph G is a generalisation of H if a
sequence of elementary generalisation operations can be identified that leads
from H to G. An approach that targets similarity matching based on gener-
alisation operations is introduced in in (Huibers et al., 1996). The authors
propose a framework to determine whether a graph is "about" another one,
investigating on the generalisation operations that have led to the resulting
graph. Elementary generalisation steps can be identified and an assessment
whether a specific graph is about another one can be derived. This technique
is relevant for the federation concept proposed in this research work, as the
aboutness, i.e. the degree of similarity for abstract metamodel fragments in

specified ones can be determined.

Specialisation Operations. Specialisation operations target any trans-
formation of a conceptual graph that elevates the knowledge representation
by it. Specialisation operations are defined as inverse to generalisation op-
erations. The Copy operation of above can also be considered as a special-
isation, as the resulting graph is an isomorphic copy and is skipped in the

listing below.

— Disjoint sum: as the inverse operation to Subtract, the operation sums
two disjoint conceptual graphs into a a common one

— Join: the inverse operation to Detach, two concept nodes with the
same label are combined, resulting in a join of the conceptual graphs.

— Restrict: the label of a node or relation are specialised. In contrary
to the Increase operation, the type or marker are made more specific

during the operation.

— Relation simplify: considers the removal of twin operations with a

conceptual graph.

97 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

Specialisation operations can be summarised as any transformation of
a conceptual graph that results in a more concrete and specific knowledge
representation, therefore providing a higher degree of expressiveness.

Homomorphism. Homomorphism can be assessed through the element-
ary specialisation operations. It determines whether two conceptual graphs
are mapped on each other as a result of a transformation. Homomorphism
between two conceptual graphs G to H exists in case a) the concept node
set and relation node set of G can be mapped to H, b) edges are preserved
and c¢) concept/relation labels may be decreased. Homomorphism implies
that G is a generalisation of H, and H is a specialisation of G. Element-
ary generalisation and specialisation can be identified from G to H and vice

versa.

Logical Correctness and Reasoning. Logic equivalent and the map-
ping from conceptual graphs have been introduced by Sowa in (Sowa, 1984).
Reasoning operations on conceptual graphs are enabled by the semantics
defined in the mapping towards first-order-logic of the graph. This has the
implication, that one one hand graph-based operations are applicable using
the graph syntax, and subsumption is enabled as a deduction within the

logic-based representation of the conceptual graph.

Summary. Chapter 3 translates the abstract observations, hypothesis and
needs articulated in chapter 1 and 2 to a concrete level: design requirements
for digital intelligence ecosystems. The concretisation is based on motiv-
ational cases derived from the OMIiLAB environment in order to provide
application cases that articulate the need observed. These cases are instan-
tiations of intelligent offerings and showcase how cognitive functionality is
established within a distributed space of modelling services. Harmonisa-
tion and federation concepts are defined as bridging elements of conceptual
structures. In contrast to monitoring and data-driven approaches, the con-
tribution established for digital intelligence is anchored on type level i.e. the
metamodels defining the dependencies, links and relationships within the

ecosystem.

The foundation to enable such functionality is identified: a graphical
approach to design metamodels is proposed building upon the Concept-

Characteristic-Connector (CoChaCo) space and its formalisation as concep-

98 of 257

CHAPTER 3. DESIGN OF DIGITAL INTELLIGENCE ECOSYSTEMS

tual structures. CoChaCo is positioned as a language to describe a) re-
quirements of modelling services on metamodel level with a high degree of
freedom and flexibility. As the constraints imposed in the language are on
a minimal level, design decisions can be visualised and depicted in an agile
manner. In parallel, a formalism to represent the knowledge within the
design is proposed. Sowa’s conceptual structures are applied to translate
the design language into formal concepts that support machine processable

semantics.

The formalism, as initially specified by Sowa and refined by various re-
search groups is introduced and its key characteristics for knowledge rep-
resentation are discussed: on one hand the structural aspect are defined,
utilising the mathematical foundation as a baseline. This formalism enables
capabilities on processing that are assumed to be applicable for the design
process of metamodels.

Both elements, CoChaCo as a design language and knowledge representa-
tion formalism of conceptual structures are combined in the following chapter
4, elevating the semantic expressiveness of metamodels, its dependencies and
relations to other domains and requirements. This technique is coined "Har-
monisation", as the contributing/participating metamodel in a modelling
ecosystem are a) exposed formally and b) enable intelligence functionality.
Harmonisation is defined as a coupling of concepts (virtual or through sim-
ilarity /equivalence relations that encompass functionality on each relation
identified. Intelligence functionality is defined on a federated level. This
means that the functionality spans potentially multiple metamodels and is

independent from a concrete implementation case.

99 of 257

Chapter 4

Metamodels as

Conceptual Structures

For the specification of the technique presented, metamodels are understood
as a knowledge representation of a specific domain (considering the distinc-
tion between application domain and industrial domain) that support the
conceptual design of the underlying system, applying a vocabulary that is
close to the experts perception. Related work in this field has shown that this
closeness (in contrast to general purpose approaches) elevates the efficiency

and quality of the created model.

In order to support querying and deductive reasoning on metamodel arte-
facts, conceptual graphs have been selected as a knowledge representation
format as the embedded logical foundation enables knowledge operations on
design level and provides the foundation for the intended federation concept.
Federation is understood as the capability to identify similarities between
available fragments. Similarities are on one hand structural, in case the
metamodel matches against is domain agnosticn one, on the other hand
semantical in case domain-specifics are relevant for the combination and

harmonisation.

In this section, an appropriate mapping between the metamodel design
language CoChaCo and the theory of conceptual graph is introduced. This
implies that the syntactical specification of CoChaCo acts as the common
denominator for the conceptual graph structure and on the other hand spe-
cialises the generic conceptual graph/logical representation for metamodels.

The definition of this mapping is based on the following observation:

— Common Canon/Conceptual Vocabulary: the structure of CoChaCo
as shown in 3.6 is defined as the invariant for the definition of the
"canon" of the conceptual graph. This requirements is based on the
assumption, that any metamodel can be represented in CoChaCo, due

to its generic and abstract nature. For the mapping towards conceptual

100 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

graphs, the term Metamodel Foundation Graph (MFG) is introduced
as an invariant on abstract vocabulary level. The rationale behind this
assumption is to establish a harmonised data structure for metamodels,
that is applicable for advanced design operations. The EBNF syntax of
CoChaCo is used as an input for the common and abstract vocabulary
specification. Following this approach, the challenge of isolated graphs
as discussed in (Cyre, 1997) is prevented. A set of isolated graphs, as
shown in the motivational examples in Fig. 3.3 and 3.4 are harmonised
via the abstraction towards a common vocabulary. The use of EBNF
follows the observation in (Xia and Glinz, 2003, p. 187), that graphical
modelling can be defined in an efficient and re-useable manner, using
"the elegance and simplicity of EBNF".

Even though it is assumed that any metamodel can be mapped to
CoChaCo, evaluation is required building on the results of the OMiLAB

as input, presented and discussed in section 7.1.

Alignment between Metamodel Design Process and Conceptual Graph
Representation: Metamodels for a specific domain are designed using
the CoChaCo language. As the common canon is established, these
design results instantiate the concepts, characteristics and connectors
and provide additional meaning. The canon is therefore specialised on
type level initially and semantically enriched through the specification.
The graph-based representation should stay transparent for the meta-

model engineer, the interaction is either graphical or programatically
via CoChaCo.

Relational Semantics: Relations between the concepts are considered
on two level, representing the semantics of the metamodel as a concep-
tual graph: a type-level specialisation/generalisation to identify hier-
archies within the concepts, and associations between concepts as re-
lation types. The meaning of a concept is therefore a combination
of these relational aspects and its attribute syntax. Related work by
(Kocura, 2000) is considered for this requirement.

Stmilarity Matching: Instance-based matching is considered in the
design. This requirement stems from the observation, where the meta-
model fragment is semantically weak and the instance information con-
stitute the meaning. Following the approach presented, instances can
be represented and queried similarly as concept elements as they are

101 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

understood as labelled instances of concept and relation types.

The observations of above result in the mapping of the language-based
understanding of a metamodel towards a knowledge representation as con-
ceptual graphs. The mapping is graphically shown in Fig. 4.1 and formally
described below applying the syntax introduced in section 3.4.

U = == _conforms _ Abstract Conceptual Vocabulary N
| W - 3 - (Concept/Relation Type Hierarchy)
- 3
>]
= = E CoChaCo- Language Genera/isation]\ l Specialisation g §
i r 3
E uses conforms CoChaCo Metamodels (or Fragments) 3 g
——————— > MM L-mmmmm> (Concept/Relations based on Vocabulary > o
7 as Instances or Types) Py
MM Engineer g
Instantiation @
Concrete Models N
(Instances of CG)

Figure 4.1: Mapping CoChaCo to Conceptual Graphs

For the research objectives of this thesis, the abstract conceptual vocabu-
lary and CoChaCo Metamodels are considered and conceptually introduced
in the following. The instantiation level is shown in Fig. 4.1 for completeness
reasons as the actual use of metamodels and models derived from them im-

plicates harmonisation aspects, but is not in scope of the research performed.

4.1 Abstract Conceptual Vocabulary
for Metamodels

The abstract conceptual vocabulary for metamodels (or "Canon" as defined
in 3.21) consist of the language elements of CoChaCo on syntax level and
hierarchy, detailed below for the concept types, relation types and their

subsumption.

Kcochaco = (Tcochaco, IcoChaco, <, conf, B) (4.1)

102 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

where the following definition are applicable:

TcochaCo = TCeyonace Y TRevcnacs

defining the collection of all concept and relation types, detailed below

TCrocnacs = Lconstruct, structure, behaviour, (4.2)
concept, characteristic, connector,
purpose, functionality, stakeholder,
name, notation, isInstantiable, description,

bidirectional _connector, unidirectional _connector}

as the collection of concept types exclusively available within the abstract
vocabulary,

TReocnace = irelation, has, custom, connects, uses, specialises, (4.3)

flows, compose, aggregates,

derived,elations, belongs;o}

as the collection of relation types exclusively available within the abstract

vocabulary,

I={x} (4.4)

as the set of allowed instances. Only the generic marker defined as the
"fictitious instance that can be associated with any marker" (Nguyen and
Corbett, 2006, p. 262) is allowed on this level.

The hierarchical structure is established using the subsumption relation in

the canon, detailed mathematically and graphically below. The subsumption

103 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

relation for concept types is specified using the generic "construct" concept,
that is used as a root element without any specific meaning for concept types.

structure < construct, (4.5)
behaviour < construct,

concept < structure,

characteristic < structure,

connector < structure,

purpose < behaviour,

functionality < behaviour,
stakeholder < behaviour,

name < characteristic,

description < characteristic,
notation < characteristic,
isInstantiable < characteristic,
bidirectional _connector < connector,

unidirectional _connector < connector

The graphically representation is shown in Fig. 4.2. For the purpose of
graphical modelling, specific types for characteristics (name, notation, de-
scription, capability to be instantiated) and connector specification (bidirec-
tional and unidirectional) are provided explicitly. An important considera-
tion for the understanding of metamodels as conceptual graphs relates to the
specific semantics of connectors. Connectors are defined as a concept type,
rather than a relation type to enable querying, matching and reasoning upon

the concept.

The hierarchical structure is established using the subsumption relation in
the canon, detailed mathematically and graphically below. The subsumption
relation for relation types is specified using the generic "relation" node, that
is used as a root element without any specific meaning for relation types.

104 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

concept name
description
structure characteristic
notation

isInstantiable

construct

bidirectional

connector

TTT

unidirectional

functionality

behaviour purpose

stakeholder

Figure 4.2: Concept Types: Abstract Metamodel CG Vocabulary

has < relation, (4.6)
custom < relation,

connects < relation,

uses < relation,

specialises < relation,

flows < relation,

compose < relation,

derived_relation < relation,

aggregates < composition,

belongs to < derived relation,

generalises < derived_relation

The graphically representation is shown in Fig. 4.3. As a notation, the
CGDF as proposed by (Sowa, 2009) is used. The relation types are applicable

105 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

for the design of metamodels/metamodel fragments. Inverse relations are
provided in the vocabulary to deduce relations and derive additional meaning
semantic from the specification. An aspect considered relates specifically to
the "specialise" (and its inverse opponent "generalise"), as it is explicitly
available in the canon and not only via the subsumption logic of the canon.
This design decision has been taken to allow for a general applicable approach
to define "is a" or subtype specification during the design, without the need
to adapt the canon for domain-specific considerations.

uses
custom

has

relation < connects

specialise

flows

composed_of

generalise

derived_rel. <« belongs_to

aggregates

Figure 4.3: Relation Types: Abstract Metamodel CG Vocabulary

The conformance specification of instances is not applicable on vocabulary
level, as only the generic marker is provided on this level. Applying the
canon during the design will a) establish instances of concepts and b) allow

for a conformance evaluation through the type function.

conf = {} (4.7)

The canonical basis function B is defined for the relation types in a trivial

106 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

manner. This design is applicable as it provides a flexible design space
for metamodel, in contrast to a restrictive approach. All relation types
are defined with an arity of 2, subsumption conformance is verified for this

definition.

Byelation = {construct, construct} (4.8)
Bys = {construct, characteristic}

Beustom = {construct, construct}

Beonnects = {construct, construct}

compose = {construct, construct}

aggregates = {construct, construct}

uses = { functionality, construct}

B
B
B
Bpecialises = {construct, construct }
Biows = {construct, construct}
Blerived_relation = {construct, construct}

Btelongs to = {characteristic, construct}

Bgeneratises = {construct, construct}

The abstract vocabulary of CGs for metamodel design as introduced
above defined the design space and elements to support syntactic and se-
mantic knowledge operations beyond the basic conceptual graph operations
introduced above. The advance on this level relates to how basic concep-
tual graph operations can be defined through chaining and composition to
provide value for the design approach of federated metamodels.

The notion of elementary operations, homomorphism and logic correct-
ness/reasoning introduced above are discussed in detail and exemplified in
(Chein, M. L. Mugnier and Croitoru, 2013, p. 257). Applying any of these
operations can be understood as a projection of the original graph. This pro-
jection is used to find out whether "two conceptual graphs are semantically
compatible or similar" (Nguyen and Corbett, 2006, p. 266). Different types
of projections can be distinguished (Concept, Relation, Conceptual Graph
and Ontology Projection) based on the scope the target for the similarity
identification. Such projections are a necessary means for the concept of

federated metamodels: based on the assumption that a specific functional-

107 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

ity is expressed in its required metamodel, and the processing mechanisms
and algorithms this structure enables, it is required to match the required
metamodel during the design/extension activities of a new one within the
digital intelligence environment. The degree of similarity (structural, syn-
tactical, semantical) determines whether a specific algorithm can be aligned
with the design (top-down). This implies that the metamodel designer can
assess and apply these building blocks, embed them using intelligent match-
ing algorithms and adapt the design towards a fitting abstraction.

In the following section the representation of an example metamodel
using the vocabulary of above is introduced. Querying and reasoning mech-
anisms are defined as input for matching techniques required in the design
of digital intelligence ecosystems, operating on the canon and ~CG repres-
entation of the metamodels.

4.2 CoChaCo Metamodels as CGs

Two alternative approaches to define a metamodel that conforms to the
CoChaCo language as conceptual graphs are discussed, both operating on
the same abstract vocabulary introduced above. The concept developed in
this section contributes to the challenge of aligning the metamodel design
phases and processes to support knowledge operations based on CGs.

Language-based Approach: Metamodel Concepts as CG Instances.
Following this approach, the concepts of a metamodel are defined as in-
stances of the abstract metamodel. This implies that the set of instances of
the vocabulary becomes concretely specified as instantiations of the types.
The consequence is that a further instantiation is not possible on conceptual
graph level, but needs to be mapped via the specific relation types "special-
ise". In CGs instances of instances are not considered in the core definition

and would violate the conformance relation defined.

The abstract vocabulary, defined by CoChaCo, is not extended and stays
invariant. Instances of the abstract vocabulary represent the metamodel and
describe their relation semantically. This restriction applies for concept and
relation types. To derive the conceptual graph, the transformation from
CoChaCo is performed through mapping the concepts as instances of the
vocabulary, relations are directly mappable. Fig. 4.4 shows an neutral ex-

ample metamodel in CGDF'. The concepts represented as a conceptual graph

108 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

are introduced in plain text and defined in CGIF.

The following definition hold for the example metamodel:

— modeltype X is composed of concept A, B and C,
— modeltype Y is composed of concept A and B,

— modeltype X has a characteristic N,

— concept B specialises concept C,

— connector A2B connects concept A with B,

— concept C has a characteristic N.

The CGIF representation for the example metamodel is defined as

[metamodel _abstract]
concept(< A >),
concept(modeltypeX),
concept(modeltypeY),
connector(< A2B >),
concept(< C >),
concept(< B >),
characteristic(< N >)
composed__of(modeltypeX,< A >),
composed _of(modeltypeX, < B >),
composed__of(modeltypeX,< C >),
composed__of(modeltypeY, < A >),
composed_of(modeltypeY,< B >),
specialises(< B >, < C >),
has(< C >,< N >),
connects(< A >, < A2B >),
connects(< A2B >,< B >),
has(modeltypeX,< N >).

(4.9)

109 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

concept:modeltypeY

composed_of composed_of
characteristic:N
connects
has
concept:modeltypeX i: connects
composed_of concept:B
specialise
L——— > composed_of concept:C has

Figure 4.4: Example Metamodel in CGDF': Language-based Approach

The approach presented above shows that the metamodel and its concepts
can represented as a conceptual graph applying the language mapping on
instance level. The advantage of the instance based approach relates to the
design of the graph, as no type related decisions need to be taken. The direct
mapping via the language mapping to CoChaCo supports can be achieved
as a direct translation between the different knowledge representations. De-
ficiencies can be observed with respect to the meaning of the instantiations.
The semantics of a specific instance is related to the instance label and its
relations (e.g. the meaning of a model type as a view is implicit - the "com-
pose of" relation in addition to the instance label provide only an indication)
and can not directly be used for reasoning and querying the metamodel, as
all elements in the graph are either concepts, connectors or characteristics.
A possibility to overcome this limitation on the semantic expressiveness is
to define rules to deduce the knowledge on specific types and queries as
input for further alignment and harmonisation phases. A rule to detect

110 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

whether a concept is a model-type container/view or a modelling construct,
applicable within the instance-based approach is formulated in the following.
Co-reference links establish the fact-conclusion relation.

[derived _types] (4.10)
concept(modeltype),
concept(modelling.oncept)
specialises(X 1, modeltype),

specialises(X 2, modelling.oncept),

composed_of (X1, X2),
concept(X2),
concept(X1).

This rule can be translated to the following statement: "For any concept
X1 that is related to another concept X2 with type "composed of", X1 is a
specialisation of the new concept modeltype, X2 a specialisation of the new
concept modelling concept, the outcome when applied on the example meta-
model is shown in 4.5, where concepts and relation in red are deduced from
the original graph and can be further queried based on the types identified.

Similar rules are possible on the generic structure, nevertheless only syn-
tactical results can be achieved, as the vocabulary is not aware of the do-
main, specific types required by the domain and only implicitly providing the
means to externalise its meaning. Considering the harmonisation challenge
introduced, this semantic expressiveness is limited to the language constructs
provided by CoChaCo. As a result of this observations, an alternative ap-
proach is proposed that build upon the generic vocabulary, but extends on
type level. The assumption is that based on elevated semantics within the
vocabulary, knowledge operations for harmonisation and alignment can be
supported in a richer way and assessing distributed metamodels becomes

feasible.

Semantic-based Approach: Metamodel Concepts as CG Types.
The semantic-based approach identified extends the language-based approach

with additional semantics within the vocabulary. This implies that the ab-

111 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

Fact Conclusion
| concept:* + ----------- + concept:* }—> specialise concept::modeltype
v
composed_of
"

. . . concept::
| concept: + ----------- + concept: }H specialise st Gantv:

concept:modeltypeY

composed_of composed_of

characteristic:N

connects

connector:A2B

connects

has

concept:modeltypeX

concept:B

specialise

|_of >|] concept:C H has

Figure 4.5: Type Identification Rule

stract vocabulary is used as the foundation, relevant concept and relation
types are added to the hierarchy during the design. This elevation with
domain-specific results in a higher expressiveness of the metamodel without
loosing the capabilities of the language-based technique. The extension of
the vocabulary and consequently of the graph representing the metamodel

is considered a specialisation activity.

The assumed advantage of this approach in contrast to a pure language
oriented technique relates to the expressiveness: a) the metamodel design
can build on more meaningful concepts, including domain-aspects, b) tech-
nological aspect of e.g. metamodelling platforms can be introduced in the
vocabulary, and c¢) instances level information can be represented, if required,
as the concepts of a metamodel are defined on type level and instantiation
is applicable.

The type-based understanding of a concept has implications on the map-
ping from CoChaCo as the redundancy in the specialisation/generalisation
becomes obvious. Concept types are represented through their subsumption

112 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

logic (see Fig. 4.2 and 4.3). Subsumption is considered as a "is a" relation,
that can be understood as a specialisation /generalisation relation, applicable

for both concepts and relations in a conceptual graph.

Applying this approach on the example used in the previous section, the

following representation applies.

Metamodel as Conceptual Graph

N:*
modelty

modeltypeY:*

defines_view

defines_view A

’

peXx:*

defines_view

specialise
S
i

Figure 4.6: Example Metamodel in CGDF: Semantic-based Approach

From the example we can recognise, that the concept and relation types
have been specialised by the specifics of the metamodel. Concrete types are
now available for the definition of the metamodel that is represented using

the generic marker for instantiation. The meaning of this representation can

113 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

be summarised by the following statements:

— EVERY modeltype X defines as a view from using ANY modelling
construct A, B and C instances,

— EVERY modeltype Y is defines as a view using ANY modelling con-
struct A and B instances,

— EVERY modeltype X is described through a characteristic N,
— concepts A, B and C are modelling constructs,

— concept X and Y are modeltypes,

— A2B is a connector type,

— A is an endpoint to connector A2B,

— B is an endpoint to connector A2B,

— connector A2B connects modelling construct via endpoints of A with

B instances,

— EVERY modelling construct C is described through a characteristic N.

Semantically this statements seem more adequate than the above, as
the applicability as the type level formulation allows for an exemplification
on instance level. In addition, a reduction of the metamodel design scope
can also be recognised, as specialisation and generalisation are performed on
type level, therefore do not need to be considered within the specification.
In case required, the view on specialisation can be reconstructed through
trivial reasoning that considers the type hierarchy and subsumption logic
and re-introduces (virtually) the specialisation relation.

An additional aspect to be considered relates to the typing possibilities
of concepts: using only the language-constructs, the query all defined mod-
eltypes that have a specific characteristic N (e.g. as input for alignment and
harmonisation), additional knowledge on the specifics and meaning of the
term "modeltype" need to be introduced via reasoning. In the case presen-
ted, a modeltype is defined as a construct that has at least one "compose
of" relation to another concept. Based on this rule, the type is derived. The
rule has the implication, that modeltypes can be composed of other mod-

eltypes and are an aggregation. In a next step we can perform the actual

114 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

query as a projection, since the type is now known. The semantic-based
approach allows to introduce domain-specific types directly in the hierarchy;
concepts derived from these types are considered specifically and meaning
can be attached to those concepts.

As the two approaches are building upon of each other, the semantic tech-
nique to extend the type hierarchy encapsulates and inherits the capabilities
of the language-oriented viewpoint. This means that eh higher expressiveness
also encompasses querying, projection and reasoning capabilities. Generic
queries as discussed for the type recognition in Fig. 4.5 are still applicable,
but can be refined and adapted to domain-specific considerations.

The CGIF representation for the example metamodel using the semantic
approach is defined as

[metamodel _abstract _semantic] (4.11)
modeltypeY (X 2),

< B> (X5

< N > (X3),

modeltypeX (X1),

< A2B > (X7),

< C > (X4),

< A> (X6),

describes(X1, X3),

defines view(X1, X6),

defines_view(X1, X5),

)
)
defines view(X1, X4),
)
)

(
)

)

defines view(X2, X6),
defines_view(X2,X5),
describes(X4, X3),
is_endpoint(X6,X7),
is_endpoint(X7,X5).

In light of the harmonisation challenge within this thesis the semantic ap-

proach is applied. This has the advantage of elevated expressiveness and

115 of 257

CHAPTER 4. METAMODELS AS CONCEPTUAL STRUCTURES

creates an extended vocabulary of the domains considered.

Summary. Chapter 4 is consider the foundational specification of the
concept developed as the language based approach in CoChaCo is combined
with the knowledge representation formalism in conceptual structures. The
mapping between language and knowledge representation combines the ad-
vantages of both worlds: flexibility in the application (as the constraint
in the language are designer-friendly) and query /reasoning capabilities of a
fact-based format. It could be demonstrated that conceptual structures and
their mathematical representation as conceptual graphs are applicable for
a mapping as they are semantically close (in contrast to other knowledge
representation formalism) to the understanding of a metamodel defined in
(Karagiannis and Kiihn, 2002; Kiithn, 2004). Even though an overhead in
construction can be observed (abstract vocabulary, canon), the semantic ex-
pressiveness is an adequate for the definition and transformation, especially
when considering functionality mappings towards the formalism. This ob-
servation has been evaluated through alternative conceptual mappings and
assessing their expressiveness in first-order-logic/predicate logic. The ex-
tension capabilities of the selected approach (hierarchical vocabulary and
instantiation in the fact base in contrast to individual-oriented specification)
showcase that it is potentially possible to also handle model instance with
the same formal mapping.

As an outcome and take-away result from chapter 4, the mapping func-
tion and technique to represent CoChaCo is established. This result is input
to the design techniques (how are metamodels in an ecosystem design and op-
erationalised, how are operational metamodels applicable for the technique)
presented in the following chapter, including harmonisation (similarity, vir-
tual relation concept) and federation approaches (capabilities mapping). An
evaluation performed in this respect relates to operations that support sim-
ilarity identification for the purpose of closeness calculation of metamodel

fragments and identification of functionalities during the design.

116 of 257

Chapter 5

Modelling Ecosystems:

Harmonisation and Federation

Modelling ecosystems build on an arbitrary set of modelling methods, and
their corresponding metamodels. Based on the observation, that a general-
purpose metamodel can not cover any aspect of such an ecosystem, harmon-
isation concepts are required to provide guidance to the knowledge engineer
how the glue between the constituting metamodel elements can be estab-

lished. These concepts are introduced and discussed in this chapter.

g

[

Q

Harmonisation S

] —

o =

—————— 1 <

{ .<___>.Q S
2 ' B
3 MM -F>1 CG [--->1 €6 ' | 3| =1
g I : S
S !] :—\:
o !] l\>i|
H ’ MM ‘————>| CG |————>' 1 L

Figure 5.1: Harmonisation towards Modelling Ecosystems

In addition to harmonisation, intelligence mechanism are needed that
build on the harmonised ecosystem as a foundation and provide means to
assess, evaluate, visualise and consequently comprehend the complex rela-
tion between the model artefacts established. For this purpose, federation
concepts are proposed and introduced.

The common layer and foundation for harmonisation and federation is
the notion of metamodels as conceptual graphs introduced in Chapter 4. For

harmonisation, the applicability of CGs during design and operation are dis-

117 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

cussed, specifically focusing on the "glueing" aspects between metamodels
on similar or different abstraction levels. Similarity matching is considered a
possibility to identify and assess equivalence between concepts and relation
building on the same vocabulary, nevertheless "virtual" semantic relations
between concepts are enabled through conceptual relation, that do not ex-
plicitly influence the metamodels but establish the ecosystem characteristics

as an extension to the base definition in CGs.

5.1 Harmonisation Concepts for Metamodels

Harmonisation of metamodels aims at combining and glueing together meta-
models of different abstraction and purpose. The harmonisation is considered
to be performed in a manner that the autonomy of each metamodel is not
effected, but a common layer of interaction is established that can be used

for cross-layer functionalities.

5.1.1 Harmonisation of Metamodels during Design

Harmonisation can already happen during the design of a metamodel. By
re-using abstract patterns of metamodels, the metamodel engineer construct
the metamodel and implicitly aligns the results achieved on one hand with
the abstract vocabulary, on the other hand with patterns defined for a specific

purpose.

The following design patterns are based on observations of modelling
method realisation and implementation projects within the OMiLAB at the
University of Vienna. The practical experiences of realising modelling meth-
ods within the lab have been used to classify typical design approaches,
introduced initially in (Utz, 2018b). Design techniques recognised are de-
rived from specific development projects. Additional design patterns might
exist, as it can also be seen from the analysis of resulting metamodel design
formats discussed in (Bork, Karagiannis et al., 2018). The following list

presents an indication on the need to explicate such processes.

— Design from Scratch. A new metamodel is designed from scratch
based on the requirements of the domain. Mechanisms to support cre-

ativity without enforcing formal rules on the design artefacts are used

118 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

> i
Design from scratch
Generic metamodel T TTTh !
structures as patterns — i MM !
1
1
Metamodel S !
Engineer
Re-use: Elevate domain
% MM
— S
Metamodel V!
Engineer i MM "
g
S Re-use: Integrate
3 oMM
- = 1 1
5% | «—s —! '
— 5 1
S = Lo . Metamodel ! MM1 || MMn
=S Similarity matching Engineer s —.
Q 53 structure and/or semantic
o
§ é based on graph structure Bind functionality
N 5 —> |
< B 'MM © | MA
w = Metamodel 1 |
8 £ Engineer b _<_‘_|‘ - -
o L
e =
% Transform
= LS
2 S SFraos
j% — |z =
= =
Metamodel ' H
Specialization & Engineer (R
Generalization operations
on the conceptual Slicing
structure (copy, relation
duplication/simplify, increase, j% S MM
detachijoin, subtract, nesting) R ,
Metamodel oM
Engineer [——

Figure 5.2: Metamodel Design Techniques (Utz, 2019a)

during this phase. A possible approach to identify and externalise the
domain can be found in design thinking approaches as discussed in
(Miron et al., 2018). Exemplification and persona-based techniques
that put the modeller(s) and their requirements as scenarios in fo-

119 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

cus are also applied. Typically, domain expert describe the modelling
requirements as stories and scenarios that are then abstracted and
aligned with processing functionalities required.

Patterns on abstract level support the design of the new metamodel,
as syntactical elements and semantical construct to implement com-
mon structure based on the same approach. An example for such a
pattern has been introduced in the motivational chapter of this thesis
for the definition of a process-oriented metamodel. The definition of
such patterns is based on the results achieved as a reflective process,
using conceptual graphs of metamodels for the syntax definition and
annotations to search and retrieve appropriate patterns.

The theoretical foundation to define abstract patterns are discussed in
(Zwarts and Verkuyl, 1994) for conceptual semantics and (G. Mineau et
al., 1999) to establish methodological support through formal concept
analysis methods.

Conceptual Graph Operations. As an operation, generic patterns are
the foundation for this design technique. The metamodel engineer
selects a pattern, similar as a programmer selects a data structure for
the implementation of an algorithms. The basic set of these patterns is
generic and independent of domain aspects; elevated patterns could be
understood as contributions to the repository of patterns on a higher
expressiveness. CG operations required are related to specialisation of
a selected generic pattern.

— Re-use: Elevate Domain/Integrate. Re-use constitutes an often
applied design technique for the construction of domain-specific meta-
models. Two different types of this technique can be observed in the
practice of metamodel design: a) domain elevation, where an exist-
ing metamodel is extended and specialised for a domain or application
need, and b) integration where fragments or sub-sets of pre-existing
metamodels are re-purposed and combined in an integrated manner.
For the elevation type, multiple examples can be found in literature
where general purpose modelling languages are elevated to cover ad-
ditional domain aspects (e.g. in (Zor et al., 2011) that introduces an
extension of BPMN for the manufacturing domain or (Utz and Lee,
2017) that propose an elevation of a domain-specific metamodel for in-
dustrial production processes towards analytical simulation features).

120 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

Conceptual Graph Operations. Related work with respect to formation
rules in conceptual graphs as discussed in (Chein and M. L. Mugnier,
1992; Chein and M.-L. Mugnier, 2008) provide the foundation as form-
ation rules for this design technique.

Re-use as domain elevation is supported as a specialisation operation
of abstract vocabulary, including pattern projections via queries as

discussed in the "Design from Scatch" technique.

— Bind functionality. Another design technique recognised from the
implementation projects in OMiLAB are related to extending a meta-
model with processing capabilities. This implies that either the meta-
model already provides the necessary syntactical or semantical require-
ments of the processing algorithm and mechanisms or needs to be
extended with these aspects. Graph-based matching approaches as
discussed in (Gallagher, 2006) are considered relevant, since the meta-
model is presented as a graph structure and therefore allows for such
matching algorithms.

Conceptual Graph Operations. Matching as a form of discovery of
structure and semantic is supported in CGs through query mechanisms.
A required metamodel fragment, concrete or abstract, for a specific
processing algorithm /mechanism is provided as the query towards the
domain-specific representation. The result of the matching returns as
projections (if existing) which means that the algorithms can be aligned

to each projection or further refinement requirements.

— Transformation. The transformation of metamodels as conceptual
graphs is defined as a graph rewriting operation that translates a meta-
model in a specific format to another, maintaining the semantical no-
tion from the source within the target format as a homomorphism from
one to the other. Transformations are required to align and harmonise
varying input formats for to trigger the design process, provide the
structure required for alignment to a common canon or more gener-
ically, to have an aligned starting point for further design tasks. In
case the transformation is semantically identical, meaning that no se-
mantic loss can be observed, the source conceptual graph and target
conceptual graph are isomorph. Transformation also considers inter-

changeability and interoperability of metamodels as conceptual graphs.

121 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

Historically, standardisation efforts for metamodels have been driven
by the software engineering community. The evolution of XMI to in-
terchange metamodels in a common format based on MOF and UML
is applicable for a common language family, for the purpose of domain-
specific specification/design, this is inappropriate, as the common de-
nominator is not existing. Work performed in (Gutierrez et al., 2009;
Baget et al., 2010) are considered with respect to model interchange
as a transformation of conceptual graphs to ontological representations.

Conceptual Graph Operations. Transformation is supported through
base operations on conceptual graphs as a combination of querying
and extraction. It is specifically relevant for merging two metamodels
of different nature into a common representation. As an initial step
the alignment is supposed to happen on abstract vocabulary. Ad-
aptors are proposed that perform the translation of an arbitrary format
(e.g. standard schema representations, ontological representation) to
the language-based vocabulary established by CoChaCo.

— Slicing. Slicing has been introduces as a design concept in (Bork, Kar-
agiannis et al., 2018). Within the publication, the technique is used to
identify reoccurring patterns of design during the practical work work
with metamodels. As a design practice, slicing is understood within
this research project with a wider scope, including semantic aspects of
a metamodel and their purpose. Observing the work in academia of
well-known metamodels, one can recognise that the inclusion of a spe-
cific domain aspect or purpose results in an extension of concepts and
their scope. Prominent examples are the MEMO approach by discussed
in (Frank, 2014), that encompasses a extensive set of diagrams/views
to establish a multi-perspective environment; similar in Bee-Up, in-
troduced in (Karagiannis, Buchmann et al., 2016; Bee-Up 2019), that
applies a hybrid approach to combine metamodels of specific nature
and background into a common environment. Re-using certain aspects
of these metamodel sets is a challenge, as interdependencies need to be
resolved and mitigated during the design. This is especially relevant,
as the aspect of "purpose" requires a specific implementation rather
than a metamodel that potentially covers anything.

Conceptual Graph Operations. Slicing is supported by CG operations

122 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

as an orchestration of query and extraction operations. The query for-
mulated retrieves the aspects of the metamodel required for the specific
purpose, extraction is applied retrieve the query results as projections
into the derived conceptual graph.

The list of design operation above is considered as an indicative result based
on observations from the practical metamodel design work performed within
different OMIiLAB projects and does not aim to be complete. The design
techniques defined show that each operation is established as an orchestra-
tion of basic operations on conceptual graphs that translate the source to
the target graph as a homomorphic representation. The design operations
provide therefore the ability to transform/generate the formal knowledge
representation of a metamodel considering the aspect of design trajectories
(human interpretation of the conceptual structure and impact of a specific
technique on the design) as a combination and composition of formation
rules, orchestrated by the metamodel engineer. This is supported by intel-
ligent mechanisms to infer/deduct additional knowledge through rules and

verify the outcomes continuously.

5.1.2 Harmonisation Concept: Metamodel Alignment

The design techniques above result in fragments that are applicable for a
specific domain and support the engineering of these artefacts. Building upon
these outcomes, alignment in heterogenous modelling environment considers
the aspects to combine the results in a meaningful manner. The need for this
alignment has been introduced in the motivation cases in section 3.1.1 and

3.1.2. Two approaches have been identified as relevant for the alignment:

— Similarity Matching. aims at identifying overlapping elements/struc-
ture within two metamodels. These overlaps represent a possible se-
mantic match that can be used to translate from one abstraction layer
to the other (considering vertical integration aspects as introduced in
(Kiihn, 2004)) or horizontal similarity. A simplified graphical repres-
entation is provided in 5.3.

— Semantic Alignment. introduces the concept of "virtual relations"
between concepts in different metamodels. Trajectories between con-
cepts of different metamodels are established by the metamodel en-

gineer as semantically rich chains/links. The concept builds on the

123 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

== “= | fAB)=10...1]

I

Figure 5.3: Similarity Matching of Metamodels

Semantic Lifting approach introduced in (Woitsch, 2013) and general-
ises it towards transitive links between concept and relation types. A

simplified graphical representation is provided in 5.4.

-
! Semantic Alignment
! (*Virtual Relation”)

Figure 5.4: Semantic Alignment of Metamodels

Both techniques are discussed using relevant literature below, and the
applicability for metamodel design and alignment is assessed.

5.1.2.1 Similarity Matching of Metamodels

Similarity matching builds on the assumption that a semantic distance or
equivalence between two concepts/conceptsets can be determined and used
as an input for alignment of two varying knowledge representations. The

relation derived through similarity matching, states the degree or closeness

124 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

of the compares concepts with each other.

(Poole and Campbell, 1995) introduce a metric to determine the similar-
ity of conceptual graphs by applying an interest function based on surface,
structural and thematic similarity. The approach the authors proposed uses
the formula in 5.1 (Poole and Campbell, 1995, p. 296).

interest[G]
max (interest[A], interest[B])

similarity[A, B] = (5.1)

The degree of similarity is based on the ratio derived through the interest
function applied on G, as the largest set of common information, divided by
the maximum of the interest function applied on the information found in the
graphs to compare A and B. The type of similarity to be assessed is defined
within the interest function. The ratio as a result from the formula is 1 for an
identical knowledge representation and 0 for no overlap /similarity identified.
The interest function considers the type/purpose of the similarity matching.
For surface similarity, the function considers the objects and attributes and
ignores the relational environment, structural similarity would assign more
weight on general connectivity (e.g. number of arcs, path length), whereas
thematic similarity considers specific patterns in the graph for comparison.
The authors in (Poole and Campbell, 1995) suggest a hybrid combination
of the above functions as a domain specific implementation for similarity

matching.

Corpus-based Metrics. In (Zhu and Iglesias, 2017), the authors focus on
semantic similarity in knowledge graphs. They distinguish between a corpus-
based approach and a knowledge-based approach to detect such similarities
to categorise the "relatively large number of semantic similarity metrics"
(Zhu and Iglesias, 2017, p. 74). The corpus-based approach uses distrib-
uted semantic similarity as derived through a large number of text content
"learned" by a system as text corpora. Examples for this techniques are
implementations by Wikipedia, that uses the occurrence of a term in their
articles or the Google Distance Matrix, that builds on the search results of
specific terms (Karve et al., 2019). This technique builds on the assump-
tion that that the meaning of similarity of a concept is derived through a
quantifier derived from a large set of data, can be represented in e.g. a
multidimensional vector and compared. A relevant approach, as an eleva-
tion of basic corpus-based approaches has been discussed in (Patwardhan

125 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

et al., 2003). The authors use WordNet (https://wordnet.princeton.edu/,
(Miller, 1995; Fellbaum, 1998)) and derive similarity measures for terms as
a result of the knowledge representation defined in the lexical database. The
knowledge represented in WordNet, especially the depth in the hierarchy is
considered and various algorithms have been proposed upon this structure to
identify a similarity measure. An example of such a similarity can be found
below, identifying the closeness between the term "person" and "actor", as
potential concept types within two metamodels, the example uses the WUP
algorithm (WuPalmer Similarity), calculating the "relatedness by consider-
ing the depths of the two synsets in the WordNet taxonomies, along with
the depth of the LCS (Least Common Subsumer)" (Pedersen et al., 2004;
Wu and Palmer, 1994).

5, depth(lcs(cl,c2)) (5.2)

u_Palmer g, iqrity (depth(cl) 4 depth(c2))

where
cl ... label of concept type 1
c2 ... label of concept type 2

Instantiating c1 with "person" and c2 with "actor", results in a simil-
arity score of 0.94 (0.00 means no relatedness, 1.00 identical), an indication
that both terms are close to each other. Nevertheless when reviewing the
lexical definitions of both terms, the limitation of such a context-free evalu-
ation becomes obvious: the meaning, defined for the terms in the ontological
knowledge representation has to be accepted and does not consider the con-
text of the metamodel directly. This could potentially be done considered
within the algorithmic comparison (similar as above, as an interest function)

that covers the domain, but would impact the design process.

For the purpose of identifying similarities, the approach is considered as
a support function for the metamodel engineer to identify potential overlaps
and then act accordingly. A grid layout of two metamodels to be aligned is
proposed that provides the metrics for each concept and relation type defined
as a specialisation of the abstract vocabulary, ordered by the subsumption

hierarchy defined.

Knowledge-based Metrics. In addition to the corpus-based approach,
(Zhu and Iglesias, 2017) propose a knowledge-based approach that considers

the context of the specific domain. The proposal is based on the semantic

126 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

distance between concepts in the knowledge graph, the algorithmic solutions
are comparable to those of the corpus-based approach with the difference that
the context-specific knowledge graph is considered for the calculation rather
than the derived from external sources. The metrics is calculated based on
the subsumption hierarchy, either on concept/relation type level (hierarch
depth, nesting), the path between the concepts (shortest path metric) as
a distance measure or relational semantics (substituting the understanding
that the meaning of a concept is derived from its hierarchical level, nesting
and attributes defining it, with the meaning of the relation the concept

owns/provides).

A relevant approach for conceptual graphs and its similarities has been
developed in (Croitoru et al., 2007) as an ontology measure. The idea of this
approach is to use queries in conceptual graphs and its resulting projections
as a measure for similarity. The assumption is that a similarity is the result
of a syntactical projection of one graph on the other, also argued within
(Wang and Liu, 2008), proposing a measure for similarity based on objects
and attributes.

As an input for the metamodel alignment technique proposed, the results
in (Montes-Y-Gomez et al., 2001) are considered relevant from the perspect-
ive of the steps that are required to identify commonalities. The authors
suggest the following method (Montes-Y-Gomez et al., 2001, p. 106):

1. Define the overlap between two conceptual graphs: in a preparation
step, the two metamodels as conceptual graphs are merged as an over-
lap graph. M M represents the overlap graph that contains all concept
and relation types of M M; and M Mo respectively.

MM¢ = MM; N GMM, (5.3)

2. Measure the overlap of one graph towards the overlap graph. The
measure is an indication based on the overlap established beforehand.
Two measures are proposed by the authors, as a result of the bipartite
nature of a conceptual graph: concept similarity and relational simil-
arity both as relative scores between the individual and overlap graph.

3. Perform/Derive alignment modifications on a M M; or M My and iter-

atively evaluate the measure.

127 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

A limitation of the approach for knowledge-based metrics relates to isolation
within the metamodels under investigation. In case case the metamodels
are not relate to each other and not provide an overlap at all, commonly
refered to as "isolated graphs", the similarity measurements are not feasible.
The abstract vocabulary defined in section 4.1 is considered a mitigation
for this limitation. Assuming that any metamodel can be mapped to the
abstract conceptual vocabulary, a common denominator is available for sim-
ilarity measures, nevertheless alignment techniques are required that allow
the metamodel engineer to define relations that cannot be derived based on

existing input conceptual structures.

5.1.2.2 Semantic Alignment of Metamodels

Similarity matching focuses on equivalence; overlaps within the two con-
structs to be compares are quantified. This information can be used by the
metamodel engineer to refine the design and perform alignment operations.
In case of an existing similarity, the subsumption logic of one metamodel
(consuming element) is extended with the counterpart. In case this simil-
arity is not existing or only weak, an additional technique is required that
elevates similarity to semantic rich alignment relations. These alignment
relations are considered independent and do not change either part of the
metamodel. Alignment relations are defined as "virtual". They exist as rela-
tions with a distinct meaning for the alignment to be performed as a means
to reach harmonisation and elevate capabilities of the modelling ecosystem
for digital intelligence. The following definition and characteristics apply for

virtual relationships:

— Knowledge-Intense: are defined with a specific meaning assigned by

the metamodel engineer explicitly,
— Combination: can be applied to align concept and relation types,

— Transitivity: are transitive and can therefore be derived also from other
virtual relations that have been defined beforehand,

— Meaning: the semantics of such a relations is assigned, similar as for the
conceptual graph itself, through a label, subsumption and conformance

relations,

128 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

— Independent: no influence and impact is exposed on any metamodel

this relation combines and harmonises,

— Useful/Applicable for Federation Concept: the relation is available for
advanced federation concepts, similar as any other relation type/in-
stance within the conceptual graph.

Figure 5.4 already introduced on an abstract level the concept, a indic-

ative example is introduced below in 5.5 to showcase the purpose of virtual

relations.
process:*
> compose_of start:* is_endpoint
—————————————————————————————————————
> compose_of activity:* ! Semantic Alignment H
1 (‘Virtual Relation")

| |

H 1

| |

H i

| |
: |

| petomaioyt |

H 1

i

| performed_by:*
> compose_of “ is_endpoint :

organization_chart:*

—> compose_of

department:*
[

has_job_title:*

assigned_to:*

is_endpoint

—> compose_of job_description:*

Figure 5.5: Harmonisation Example: Process and Organisation Metamodels

The example introduces two distinct metamodels: a process metamodel
that considers the concepts of start, activity and end, logical connected using
the relation type "subsequent". On the other hand, a metamodel that is cap-
able to represent the organisational structure of an organisation is introduce,

considering organisational units, persons and job titles as constructs.

Harmonising these metamodels following the similarity matching ap-

proach is not possible - as neither the corpus based approach nor the know-

129 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

ledge based approach yield any meaningful results. Based on the example
above, the results exemplify this statement. For the calculation, the seman
tic relatedness from (Wu and Palmer, 1994) as a reference points. The terms
used for matching are used in a first step without any further contextualisa-

tion.

process start end activity
organization chart 0.47 0.62 0.73 0.46
department 0.53 0.38 0.7 043
person 0.5 043 0.76 0.46
job _description 0.44 0.57 0.67 0.43

Table 5.1: Similarity scores based on (Wu and Palmer, 1994)

On a first glance, an indication that a semantic similarity is recognised,
specifically between the "end" concept and "person", "department" and "or-
ganisation chart". Investigating the result of 0.76 for the relation between
the concept "person" and "end", the context free nature of this assessment
becomes obvious:

— "Person": for the term, the first found definition is used - the "a human

being",

— "End": as all possible definition are allowed, without and contextual-
isation, "end" is defined as "the person who plays at one end of the

line of scrimmage", a definition of a position in American football.

As a result, the term "person" and "end", match in the corpus-based
approach, but are semantically distant. This observation can be mitigated by
specialising the terminology used, e.g. "end" as "the final stage or concluding
parts of an event or occurrence". The outcome of the similarity matching is
then reverted to the following:

130 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

processuy startus enduz taskiy

organization_chart,,; 0.4 0.35 0.4 0.38
department yq 0.33 0.3 0.33 0.32
DET SO 41 0.25 0.22 0.25 0.24
Job_description g, 0.38 0.33 0.38 0.35

Table 5.2: Similarity scores based on (Wu and Palmer, 1994)
(refined definitions)

This refinement, as a result of subsetting the definition space to be closer
to the context/domain is shown in Table 5.2. The numbering next to the
concept name indicate the definition selected or adapted (activity has been
replaced with task, as the term "activity" in WordNet does not specify the
semantics intended. Significant overlaps on a semantic level can not be
recognised. Consequently, the need to establish relations between concurrent

metamodels has been developed.

Virtual relations are introduced to overcome such non-significant similarity
based on any context-free assessment. The concept of "Role" is introduced
virtually that covers the aspect of organisational assignment ("Every per-
son has an assigned role") and process-oriented view ("Every activity is
executed by a role"). This extension to the metamodels is not assigned to a
specific one, but enabled as a virtual bridging element. The virtual elements
(concept and relation types are specifically marked as such and used for fed-
erated model processing functionalities. These relations are understood as
an elevation of the semantic lifting approach. Semantic lifting as introduced
by (Woitsch, 2013) elevates both metamodels on a level that similarity can
be defined and an integration is possible. Virtual relations cover these as-
pects naturally (lifting of domain concepts and integration as linking) with
the additional consideration, that these elevations and relations are estab-
lished on a virtual level. The alignment is therefore not subject to extension
and modification of individual metamodels and provides the required means
to harmonise also operational metamodels (defined as metamodels that are

already implemented and deployed).

131 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

5.1.3 Harmonisation Concept: Operational Metamodels

Harmonisation of operational metamodels, defined as implemented and de-
ployed metamodels already in use to create model artefacts, pose a specific
challenge for the above concepts: as the metamodel is in operation, require-
ments for harmonisation can not be reflected in the design, but need to be
realised as an alignment extension that is dynamically embedded. The op-
erationalisation limits therefore the capabilities a knowledge engineer can
apply to perform an alignment: models might already exist, that implement
model fitting and interpretation of the user, the implementation approach
and technologies chosen cannot be adapted or changed. Considering these
different realisation platforms, a) adaptors are required to retrieve the run-
ning metamodel as a design artefact, b) translate it to a common representa-
tion format, c¢) define the alignment relations following the "virtual relation"
concept presented in the previous section and d) define the impact of model

artefacts during the harmonisation.

Harmonization
Matching and Alignment

Harmonisation Concept
i 00
[

Extract Extract

Operational Metamodels
l
ﬂﬂ
E.
i

Figure 5.6: Harmonisation of Operational Metamodels

In such environments, virtual relations established act as the semantic

"glue" between the metamodels; in addition, in the case of operational meta-

132 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

models, also are applied to define queries and translation logic on instance
level. Consequently, the conceptual graphs are not only a design artefact, but
define the translation and query interface to assess a modelling ecosystem
and provide input for comprehension as model based intelligence. Potential

application cases for the above are:

— Query related information: virtual relations are used as a specification
to define complex, cross-spanning querying mechanisms. The queries
established through linking are not focused on a specific metamodel
(and the modelling tool implementing it) but span across the linked
implementations,

— Information integration: semantic relations allow to integrate inform-
ation from one environment to the other as a decomposition (in case of
top-down) modelling or abstraction (in case of a bottom-up approach).
Knowledge represented in one environment is queried, extracted and
translated to the related domain align the relations,

— Dependency analysis: visualisation of dependencies is supported on the
harmonised level. Concepts used in one operational metamodel become
useful in another domain or abstraction level, including provenance of

knowledge.

For the realisation of the harmonisation concept, the implication is that
the virtual linking environment is considered as an additional operational
environment that operates independently, in exchange with the metamodel
considered. These application cases add the requirement that the harmon-
isation concept is also exposed as functionality to the underlying metamodels
and their users respectively. Depending on the realising technologies different
manifestations can be noted: aspect-oriented injection techniques are applic-
able to impose the functionality on each individual operational metamodel
and extend the individual functionality, service-oriented techniques can be
used to add application/domain-specific service calls to the implementation,
where harmonisation is considered as-a-service. The underlying technique
applied can be summarised as "extract-combine-query" as the semantics of
each involved metamodel needs to become accessible, defined as a concep-
tual graph and individual query techniques allow for an assessment of the

combination.

133 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

5.2 Federation Concepts in

Heterogenous Modelling Ecosystems

The harmonisation concept supports as an alignment approach the assess-
ment of heterogenous modelling environments. Input are novel or pre-existing
metamodels on different abstraction layers that are semantically aligned
through virtual relations. The resulting conceptual graph represents the
modelling ecosystem as a common, harmonised layer, useful for intelligence
operations beyond model processing functionalities that are embedded in the
individual metamodels.

The federation approach introduced in this section focus on these in-
telligence operation and how they can be realised for distributed modelling
systems. As input for the development of the federation concept, intelligence
operations are defined, based on the definition of "Digital Intelligence" intro-
duced in section 2.1 and the motivational cases in section 3.1.1 and 3.1.2. In
the context of heterogenous modelling environments, intelligence operations
are defined as "any operation that provides insights in the structure, design,
and operation of a distributed information system". This implies that stake-
holders are collaboratively working on an intelligent offering, and need to
respect /understand the impact of design decisions taken within their own
scope and on other abstraction layers. Analytical functionality is therefore
required to assess, evaluate and visualise the behaviour within the system.
In an attempt to structure such operations, the following categories have
been identified. based on the results in the field of software system ana-
lysis. Based on the related work on software visualisation in section 2.10
and specifically the results discussed in (Diehl, 2007), five categories support-
ing intelligence operations have been identified, ranging from basic logging
to complex interactive visualisation and focus on the behaviour perceived

within the environment.

1. Logging as a base/foundational functionality, interactions of any actor
(human or system) become explicit. Logging is applicable to under-
stand the behaviour of a system over time, assess system states and
explicate provenance of changes within the environment. For a model-
ling system logging is relevant to depict the evolution of specific model

artefact and track the model evolution process,

2. Tracing builds upon the logging of events in a specific distributed envir-

134 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

onment and elevates it towards a logic sequence of interactions within
a time-span. Tracing provides the means to capture a sequence of
event within a specific context and correlate logged events with each
other. In software engineering, a trace is typically used to a) limit and
filter the log entries, and b) track the dependencies between system

components,

3. Impact Assessment elevates traces received towards an adequate assess-
ment on a semantic level. This operation is performs the combination
of logs and /or traces with the knowledge represented within the meta-
model. A trace (or log), as a time-stamped series of event information,
is correlated with the metamodels defining the stream of information,

as a tree or network structure,

4. Visualisation is responsible to provide meaningful, graphical repres-
entation of the intelligence data. Visualisation is coupled with the

structure and semantics of the contributing metamodels,

5. Interaction covers aspects related to user or machine interaction on
the intelligence information. Interaction ranges from basic querying
of information (e.g. log reviews, model information assessment) to

complex interaction patterns for drill-downs and model harmonisation.

The categories introduced above have motivated the development of a
federation concept for heterogenous modelling environments, graphically in-
troduced in Fig. 5.7. The anatomy builds on the related work in the field
discussed in section 2.9 and 2.10.

5.2.1 Digital Intelligence Building Blocks: Anatomy

Digital intelligence building blocks are introduced as the instantiation of the
federation concept. As building blocks of the environment they are defined
as re-useable elements that encapsulate intelligence operation that operates
upon the common conceptual structure as a result of the harmonisation.
They are defined on metamodel level and become useful within the opera-
tion of the heterogenous modelling ecosystem. Fig. 5.7 shows graphically the
structure of such building blocks and its relation to the harmonised meta-

model environment using conceptual graphs.

135 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

The objective of federation is to provide insight on the invisible behaviour
within a modelling ecosystem that describes the information system in the
current state or future evolution. Traces and dependencies between actors

(human domain experts, functionalities as services) become accessible.

1 B

[UIWS]
Harmonisation Concept Federation Concept
New or pre-existing MM
i 1 Federated requires
MM "">_% Functionality [T
MM > —— — Vo
1 MM Similarity Matching I] r
s _D Syntax — Semantic D_C% :_,c_G__: <"_:___MM___,
MM |---> A Configuration

Y

J— 1%

Configuration MM Engineer

Figure 5.7: Anatomy of a Digital Intelligence Building Block

As a building block, the common structure has been identified based
on the representation of metamodels as conceptual graphs. Building on
the assumption that federated functionalities operates on a required struc-
ture, defined as a metamodel and formalised as a conceptual graph, the
alignment of functionality to available metamodels is performed as a sim-
ilarity matching function. Each building block consumes the harmonised
conceptual graph during design time, matching is performed in line with the
configuration defined for the building block. As an outcome the federated
functionality is proposed and based on the intervention of the metamodel

engineer, enacted within the ecosystem.

Federation techniques are enabled as domain specific building blocks
upon the harmonised and aligned metamodel. They are required to be non-
intrusive: the functionality defined in the federation building block is added
on ecosystem level, rather than the individual metamodel. This is accom-
plished through listening to specific events in the ecosystem and deriving
actions on federated level. The configuration of this listeners is the outcome

of the design-time matching in the federated building block.

136 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

5.2.2 Operation of Digital Intelligence Building Blocks

The architecture in Fig. 5.7 is on type level, abstract elements, marked in
italic, are instantiated for each specific federation approach realised. Each
instantiation results in a micro-service that provides the interfaces (User In-
terface (UI) and web-services) specified and provides the functionality glob-
ally to the user. The instantiation architecture for the federation framework
is discussed as a technological environment to embed specific type of intel-
ligence services on a per case basis, support re-use and adaptation using
suggestion mechanisms based on the design results of a metamodel.

The operation of these building blocks considers two phases: design as
matching required structure and semantic and execution as listeners and
federated functionality. The design phase identifies the adequate elements
within the harmonised conceptual graph, including virtual relations and al-
lows the metamodel engineer to map/configure the federated functionality
upon this structure. The execution phase is responsible to instantiate listen-
ers in operation and perform run the functionality accordingly. As a service-
oriented paradigm is applied, functionality is independent of the underlying,
operational metamodels and therefore applicable for more than one instan-

tiation.
V. V.
Approach Concept Implementation
Building Blocks: Building Blocks: Building Blocks:
Abstract Metamodel for Model & Functionality Execution
Federation
Description |_l_‘_‘—
! | Transformation N Transformation
Femmm——- mmmm e = Publishing =
s ioe —— 0QQ0Q0
§ 2 H £ ADOxx
° & & < = - Micro-services || ||
________________ ASen Web-services |-

| | | t
ty ty ts

Figure 5.8: Federated Functionality as Metamodel Building Blocks based
on (Utz, 2018b)

Fig. 5.8 describes the methodology to realise federated functionality
using metamodel building blocks. The concept of such building blocks has
been initially introduced in (Utz, Woitsch, Falcioni et al., 2018; Utz, 2018a),

137 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

further refined and applied on design challenges in (Utz, 2018b) and used for
the realisation of federated functionality in (Bork, H.-G. Fill et al., 2018). As
a methodology, metamodelling using building blocks considers three phases,
that are iteratively repeated and refined, as discussed in (Karagiannis, 2015)
for AMME:

1. Approach: during this phase, the abstract metamodel for the feder-
ated functionality is defined. This metamodel is considered as the
required elements and structure to be imposed upon the harmonised
modelling ecosystem. The metamodel engineer defines the functional-
ity descriptively, identifies the structure as constructs needed by the

model processing/digital intelligence functionality of model processing,

2. Concept: transforming the approach into one or more concept blocks
is considered an instantiation of the approach. Multiple outcomes are
possible based on the environment, domain-specific characteristics and
technology platform envisioned,

3. Implementation: transforms the concept building blocks into opera-
tional /executable building blocks. These blocks are defined as services
that expose their functionality to the end-user via standard interfaces
(web-services, micro-services) and accompanying user interfaces/inter-
actions. As an indication, the ADOxx platform (ADOxx.org, 2020)
is mentioned in Fig. 5.8 as an operational platform to execute these

services.

Summary. The knowledge operation for the design of novel metamodel,
harmonisation of existing ones in the context of a modelling ecosystem
and intelligence operation using federation techniques are introduced in this
chapter. An important aspect for building blocks realised using this ap-
proach is reusability and configuration: building blocks in any of the phases
(Approach, Concept, Implementation) are generic in a sense that they can be
further (re-)designed, conceptualised and implemented as additional instan-
tiations of the original version. Re-use is support via alignment (required
metamodel, projections, and binding) and configuration abilities as defined

in the anatomy of digital intelligence building blocks.

138 of 257

CHAPTER 5. MODELLING ECOSYSTEMS

This characteristics are reflected by the anatomy of metamodelling build-
ing blocks: the internal logic is exposed building upon the conceptual struc-
ture - for the required as well as provided elements. Matching is relevant on
a structural /syntactical level (matching the abstract representation) but also
on semantic level (matching the meaning of elements). The second part is
regarded a challenge as similarity on semantic level is defined either following
a close-world assumption (only the concept types available defined the sys-
tem for match) or open-world techniques (matching linguistically the actual
meaning). For open-world, canon-based techniques, the language-oriented
viewpoint needs to consider a broad spectrum of definitions and lexical in-
formation, resulting in an extensive design decision space for the metamodel

engineer.

The classification of functionalities has been performed as input for the
types of virtual relations required within a modelling ecosystem. Three types
have been identified from literature and application cases: a) querying in-
formation from various connected systems, b) information integration as
power-relation between concepts (provider, supplier, value-interchange) and
as a sub-category of querying, ¢) dependency analysis on a conceptual level.

The chapter concludes the specification of the harmonisation and federa-
tion concept for distributed metamodels and is applied within the technical
realisation concept to define an architecture of building blocks that sup-
port the design process. These building blocks are defined as blue-prints in

chapter 6 as input for a prototypical evaluation in chapter 7.

139 of 257

Chapter 6

Technical Realisation Concept

As a proof-of-concept for the above conceptual design and specification, a
technological concept for realisation is discussed to evaluate the feasibility
of the solution for the design of harmonised modelling ecosystem and the
applicability of federated functionality for digital intelligence. The technolo-
gical concept realised is coined "DeMoMa" as an abbreviation for "Design-
Model-Make" methodology applied in the context of "smart models". The
approach has been introduced by OMILAB (discussed in (Géotzinger et al.,
2016; Bork, Buchmann et al., 2019)) for the development of "intelligence
offerings" defined in (Petry, 2019).

DeMoMa is defined as a metamodel design and implementation environment,
whereas a core aspect of the prototype is on integration of support capab-
ilities as an Integrated Development Environment (IDE). The foundation
for the development environment, from a structural point of view, is on the
conceptual graph implementing the CoChaCo grammar. From a functional
point of view, extendable design support services are coupled by the IDE
and become useful for the metamodel designer/engineer. DeMoMa consists
(on a high abstraction level) of the two building blocks, introduced in detail

in the following subsections:

— DeMoMa::Harmony: as a design component for harmonisation of meta-
models. The component implements the concepts for metamodel design
using conceptual graphs and integrates operations on the graph. This
results in the capabilities to apply the design techniques defined in sec-
tion 5.1.1 proposing a DSL implementation that enables the specifica-
tion of metamodels or fragments following the grammar of CoChaCo,
similarity matching functionality using a corpus- and knowledge-based
approach, enable virtual relation definitions in a programmatic and
graphical way. The component provides an interfaces to conceptual
graph visualisations, verification /validation, query and deduction mech-
anisms, specifically adapted to the domain of metamodel design,

140 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

— DeMoMa::Intel: as a design and operationalisation component that
enables the definition of digital intelligence building blocks (using the
design capabilities of DeMoMa::Harmony), matching techniques and
instantiation /deployment pipelines. As such, federated functionality

can be realised and applied on the harmonised modelling ecosystem.

The realisation concept is input for the evaluation of the concepts on
harmonisation and digital intelligence, introduced in section 7.1.

6.1 Architecture of DeMoMa

DeMaMo is characterised as a language-oriented approach to design meta-
models, their harmonisation and align intelligence operations using a feder-
ated approach. As such, the architecture builds on the notion of a program-
matic interaction of the designer with the tool. The metamodel designer ap-
plies a domain-specific language (DSL) for the design task and is supported
through a graphical representation of the implementation results, visualising
the underlying conceptual graph.

The two building blocks of the IDE are introduced as DeMoMa::Harmony,
responsible to support design and harmonisation activities, and DeMoMa-
::Intel, providing the capabilities to create, align and deploy intelligence func-
tionalities. The building blocks are composed of modular submodules, that
support specific challenges. Well-defined interfaces of these submodules allow
for a dynamic extension, adaptation or replacement of functionality based
on granular/domain-specific requirements of the engineer. General charac-
teristics have been established in advance, to structure the implementation

efforts for the prototype:

— Standard technologies: the prototype builds on standard technologies
available in the field to allow for community uptake and modification.
This is specifically relevant for interfaces within the building blocks.
As a common practice, data is interchanged in Representational State
Transfer (ReST) format, using JavaScript Object Notation (JSON)

representations as a serialisation format,

— Interfaces: each module of the prototype defines input required and
output produced as well-defined interfaces. The input and output

141 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

(POSI[eNSIA $90RJIOIUT UOTJRITUNUINIOD [RUISIXS ATUO) 9ININYDIY [ed130T RINONO(19 oInS1]

N abesn T T T T TTTTT >
b R TEEEE . S I
! i ' —
1 1
1 -
IIV\II__II<II_ ..-I.I.
o, "
Jswhodeq i '] T 5 !
GG .) m
1 [N} I —
S REREP S % — !
I
90BJB)U| BLIBYIS aav i
JINX/A0Y 4199 Soepal Qv “
1
I
|
1
Joydepy Juswhodeq pue uopeinbiyuon si01depy podxgodw m
|
I
fienp 99 g |
1
syooig buipjing T = “
fyyeuonouny uogonpaq 99 g, |
3 2 R - Jewwers s
uonejdepy pue [eAsLioy _wN_n_.vmmmS s
(1sqrewweis
[f1enp 99 pue uoonpeg 9] [paseg-aBpajmouy| pue -sndiod] 0DBYD0) U0 paseq)
isuodwo) Juswubiy pue Buiyolely Jojejnojen Juawubiy 9oepa)u| buiwwelbold
a|npoyy uonezjuouLieH 3 ubisag
:Auouriey::epoweq
3dl--ewoned

142 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

definition is on format and syntax level, whereas emphasis is put on the
use of standard formats, to overcome limitations of proprietary data

formats,

— Interaction as Orchestration: user/developer interactions are flexible
and understood as the result of a user-specific orchestration of module
functionality. This characteristic targets the observation that the use
of the prototype is not prescribed, but is adaptive to domain-specific
needs.

The specification of each sub-module can be found in the following subsec-
tion. A common description format is used for each module. The template
is proposed as an adapted version of IEEE 29148 standard (ISO et al., 2011)
and Kruchten’s Architectural Blueprints (441 model) in (Kruchten, 1995).

A. Purpose/Rationale Defines the purpose and rational of the
building block in relation with the overall
architecture, describe architecture blue-
prints (e.g. interfaces).

B. Required Interfaces Interfaces that the building block requires

(internal or external).

C. Provided Interfaces Interfaces that the building block provides
to others (internal or external).

D. Functionality Functionality and typical /foreseen usage
pattern of the building block.
E. Submodules List and references to submodules in-

cluded, in case applicable.

F. Relevant Technologies | Technology assessment for the realisation
of the component, defined and evaluated

for main modules only.

G. Evaluation Criteria Assessment and evaluation criteria based
on (Prat et al., 2014) for the compon-
ent (as input for the evolution of the pro-
totype), defined and evaluated for main
modules only.

Table 6.1: Technology Concept Modules: Specification Template

143 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

6.2 DeMoMa::IDE
(Integrated Development Environment)

This module is defined as the overarching container of functionality realised
for the prototype. It provides the user interface and binds the services/sub-

modules specified.

A. Purpose/Rationale. As an integrated development environment, the meta-
model design, harmonisation and extension (through intelligence operations)
is supported. The integration aspect provides the engineer a single interac-
tion point to run and trigger the functionalities needed for the design.

DeMoMa::IDE

Project Workspace o _i‘undi?galit)LTr;gg%rm o
5 Metamode|s nalysis, Alignment, Query, Projection, Verification;

(separated in folders)
- Virtual Relations
- Queries

Programmatic Interface (DSL) Live Visualusation (CGDF)

- Rules

- Analysis Result Browser

Figure 6.2: DeMoMa User Interface (Mockup)

Fig. 6.2 shows the mockup for the integrated development environment
as a design study on user interaction. Each of the modules is dynamically
added, the UI elements represent placeholders for the specific functionality
to be embedded and offered through the UI. The conceptual architecture is
shown graphically in Fig. 6.1.

B. Required Interfaces. The IDE consumes pre-existing metamodels through
data adaptors (extract, load, transform), using standard representation for
XML Metadata Interchange (XMI) and Resource Description Framework
(RDF). It considers the CoChaCo environment as a common datastore and
(implicitly) builds on the grammar defined based on CoChaCo in section
3.3.2.

144 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

C. Provided Interfaces. The environment provides interfaces to extract design
artefacts, naturally in ADOxx Definition Language (ADL) format to ex-
change (load and store) metamodels with the CoChaCo environment. In
addition, ADOxx Library Language (binary format) (ABL) format is pro-
duced directly as implementation skeletons for the ADOxx metamodelling

platform and generic interfaces in XMI and RDF format.

D. Functionality. The metamodel engineer uses the IDE to apply the design
techniques as defined in section 5.1.1. The functionality support the design
process from early specification to extension and combination/alignment

phases.

E. Submodules. The DeMoMa::IDE consists of logical modules:

— DeMoMa::Harmony (see section 6.3), and

— DeMoMa::Intel (see section 6.4).

F. Relevant Technologies. Technologies to realise IDEs are strongly related
to the language support they offer. Typically an IDE consists of a code
editor, a compiler and interpreter and build/deployment capabilities. In the
field of DSL development, candidate technologies/platforms are ADOxx as
a metamodelling platform, Eclipse (specifically the DSL workbench/EMF),
MPS (Domain-Specific Language Creator by Jetbrains), Microsoft Visual
Studio Code as an extendible, lightweight environment for programmers.
(Visic and Karagiannis, 2014) provides an overview of technologies applicable
for the development of a DSL.

G. Evaluation Criteria. The evaluation of the prototype, on a general level
focuses on the criteria of activity, more specifically on the aspects of "consist-
ency" (whether the prototype supports the consistent definition of harmon-
ised metamodels for modelling ecosystems and "accuracy", interpreted as
the support/utility function the implementation provides to the metamodel

engineer with as adequate support in the design and development process.

6.3 DeMoMa::Harmony

DeMoMa::Harmony is responsible for the design and harmonisation of meta-
models. The functionality offered in the submodule is related to the extrac-

tion (via interfaces), transformation and load of arbitrary metamodels into

145 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

the system. Analytical support is provided to detect similarities between
metamodels, propose virtual links and perform the alignment.

A. Purpose/Rationale. The module is concerned with the design of new, and
alignment of existing metamodels. As such it covers the functionality needed
to establish the notion of conceptual graphs for metamodels and provides the
interaction access to verification, querying and deduction services. As a com-
mon foundation, the CoChaCo syntax is implemented and a programmatic
interface with live visualisation (as serialisation into CGIF and CGDF) are

provided.

DeMoMa::Harmony:
Design & Harmonization Module

'
User Interface DeMoMa:
T e

Programming Interface
(based on CoChaCo GrammariDSL)

Alignment Calculator

Workplace/Project Organizer Corpis-and Knowledge asec]

Functionality Trigger

CG Query |

CG Deduction |

CG Transformation I

DSL Interface

Import/Export Adaptors

Ao AO A 0o O

ADL Interface RDF Interface CGIF Interface XM Interface ABL Skeleton
(CoChaCo) Generator

Figure 6.3: DeMoMa::Harmony Architecture

B. Required Interfaces. The module builds on the language interpretation
of CoChaCo and its technical implementation as a DSL. Runtime interfaces
are required to load metamodels and establish the structure within a project
workspace. DeMoMa::Harmony is considered the "design environment" for
metamodels that enables harmonisation.

C. Provided Interfaces. Interfaces are provided via adaptors and translators
of metamodels in different formats, ADL-based repository persistence and for
the federated functionality alignment module
DeMoMa::Intel.

D. Functionality. The usage pattern depends on the availability of meta-
models for harmonisation. The typical flow (in case of pre-existing meta-
models) follows the interaction logic of load, extract, transform to setup the

workplace, alignment and verification during the design phase.

146 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

1. Load and Extract: the metamodel is loaded through the user interface

using a supported adaptor for extraction,

2. Transformation: The metamodel is made available in CoChaCo syntax,
as a transformation following its extraction. The mapping to CoChaCo
grammar is implemented in the specific adaptor. The transformation
triggers the CoChaCo interface to persist it in the connected tool in-

stance,

3. Workspace Organisation: step 1 and 2 are repeated for every meta-
model considered in the ecosystem. The workspace is organised in
folders (one folder per metamodel) and harmonisation elements (rules,

queries, virtual relations),

4. Alignment: The metamodel engineer triggers the functionality as re-
quired. Typically a similarity matching is performed initially to get an
impression of the relatedness of concept and relation types, followed
by alignment steps derived from the similarities identified using pre-
existing relation types (e.g. "is-a") or through virtual relation defined
iteratively,

5. Verification: is performed continuously and is supported by a graphical

view on the resulting conceptual graph and its validity,

6. Export and Compilation: the functionality triggers the compilation of
the specific alignment service.

E. Submodules. DeMoMa::Harmony includes the following submodules:

— DSL Programming Interface (see 6.3.1)

— Alignment Calculator (see 6.3.2)

— Conceptual Graph Transformer (see 6.3.4)
— Conceptual Graph Visualizer (see 6.3.5)

— Import/Export Adaptors (see 6.3.3)

DeMoMa::Harmony shares the following submodules with
DeMoMa::Intel:

— Conceptual Graph Query Interface (see 6.5.1)

147 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

— Conceptual Graph Reasoning Interface (6.5.2)

F. Relevant Technologies. For the specification of the module, technologies
to establish a language-based DSL are considered relevant. This includes im-
plementation the implementation of language workbenches introduced pre-
viously. Additionally, technologies for conceptual graphs contribute to the

development.

G. Fvaluation Criteria. Evaluation criteria selected for DeMoMa::Harmony
are selected based on the purpose of the module. Targeting harmonisation,
the criteria of completeness targets the evaluation of the functional coverage
(can arbitrary metamodels be designed, operational metamodels be extrac-
ted and loaded), in line with the criteria of usability as a means to assess
whether the results achieved are useful and comprehendible by metamodel

engineers.

The direct submodules are introduced below, following the same template

as for the main modules. Shared modules are discussed thereafter.

6.3.1 DSL Programming Interface (CoChaCo)

This module is responsible to provide the programmatic interface of the en-
vironment as the core interaction environment with the metamodel engineer.
The DSL, defined by its grammar in section 3.3.2 and detailed in the annex
A, is implemented. The module is responsible to organise the workspace
for harmonisation, each metamodel is represented in distinct folder, created
manually or established through an import via the CoChaCo modelling tool
or other adaptors. Virtual relations, queries and rules are define following
the same syntax and grammar. The internal representation of the DSL is

based on the CGIF for interchange with functional components.

A. Purpose/Rationale. The module is responsible to load, edit and manipu-
late metamodels using the CoChaCo grammar and syntax defined conceptu-
ally in a programmatic manner. The interaction of the metamodel engineer
is supported through syntax highlighting and auto- completion, aligned on
one hand with the grammar and on the other the abstract vocabulary, con-

tinuously evolving during the programming task.

148 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

Programming Interface
(based on CoChaCo Grammar/DSL)

Functionality Trigger |:|,:|7—O

<) Language
Interaction Server ¢
Client
’ DSL ¢]

° Workplace/Project Organizer

11
s

Figure 6.4: DSL Programming Interface (CoChaCo) Architecture

The purpose of the module relates to the conceptual definition and har-
monisation as a baseline for federation concepts. The actual implementation
is supported through the generation of platform specific skeletons.

B. Required Interfaces. Internally, the module builds on the language imple-
mentation and support mechanisms to support the programatic interaction,
and organising the workspace of the metamodelling projects into building
blocks that are coupled via the abstract vocabulary (template as a starting
point for each project, including the CoChaCo concept/relation hierarchy
and types of virtual relations, specialised during the development process).

A relevant interface required relates to import and export mechanisms,
provided the Import/Export Adaptors module, detailed in section 6.3.3.

C. Provided Interfaces. The module provides interfaces to retrieve imple-
mentation results in CGIF format and DSL representation for a) function-
ality triggers and b) skeleton generation.

D. Functionality. The usage pattern for this module is to create a new
workspace, and create new or import existing metamodels. This initialisa-
tion step is supported by the workspace organiser, responsible to harmonise
the vocabulary based on the imports. During the implementation process
the results are verified continuously syntactically and support functionality

enables the validation of results before deployment and skeleton generation.

149 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

6.3.2 Alignment Calculator

The Alignment calculator is a support module to identify semantic related-
ness between concepts of different metamodels (organised within the work-

space) applying the two alternative approaches introduced earlier:

— Canon-based approach: connecting to open access services to calculate

a similarity score between concept and relation types, or

— Knowledge-based approach: enabling custom interest functions to eval-
uate the closeness with respect to the vocabulary, relations and prop-
erties identified.

Both approaches result in a common visualisation as a matrix with rated
similarity scores as a proposal for further action and definition.

A. Purpose/Rationale. The module is responsible to propose commonality
and similarities between metamodels in focus. As such, it does not derive the
matching automatically, but enables the metamodel engineer to select from
various matching algorithms, and understand quickly a possible relatedness.
As the matching is domain-specific, a flexible architecture is proposed for
this module.

Alignment Calculator

[Corpus- and Knowledge-based]

2 metamodels
in CGIF format T
i E% Bind 000
Matrix Parser Trigger]_C 0O OO O

Visualisation
| Registry |

Figure 6.5: Alignment Calculator Architecture

The matching functionality is provided externally to the IDE as services
that consume two metamodels in CGIF format and the corresponding vocab-
ulary. The common service is to parse the structure as a two-dimensional
matrix, and calculate/score the similarity. The calculation logic is embedded

in the specific service that is registered in the IDE.

B. Required Interfaces. The module requires input from a content per-

spective, retrieving the metamodels in CGIF format, and the availability

150 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

of matching services within the registry. The registry is defined as a store of
all configured interfaces that can be triggered (endpoint, characteristics).

C. Provided Interfaces. The module provides interfaces to the IDE as the
visualisation of calculation results in the form of a rated matrix (comparing
concepts types or relation types of different metamodels).

D. Functionality. During the design of a the ecosystem consisting of mul-
tiple metamodels, the engineer triggers the functionality to identify poten-
tial similarity to be considered in the specific design or as virtual relations.
The functionality offered by the module provides and indication of potential
matching strategies to be applied.

6.3.3 Import/Export Adaptors

The Import/Export Adapters are concerned with the interaction between
pre-existing results or fragments. Interfaces are foreseen on a generic level
(to include results achieved using the CoChaCo modelling toolkit, directly
mapping to the grammar and syntax) and standards level (capturing meta-
models in standardised serialisation (e.g. as conceptual graphs, as schemas
in RDF or XMI format. Additional adaptors can be dynamically added as

graph-rewriting model transformations.

A. Purpose/Rationale. The module summarises and aggregates all adaptors
relevant for the prototypical implementation. These adaptors transform in-
put formats to the DSL representation for inclusion and provide skeleton
exports to metamodelling platforms.

Transformation is performed through mapping rules defined for each
source representation. Transformation rules are considered as model-to-
model transformations, that follow a graph-based re-writing approach in a

bi-directional manner.

151 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

Import/Export Adaptors

1 1

! | Rue |t

' Source 1| Transfor | Target

! i| mation |!
! 1

O

Figure 6.6: Import/Export Adaptors Architecture

B. Required Interfaces. The rule engine requires the source model as an input

and has direct access to the target model as the CoChaCo grammar.

C. Provided Interfaces. The module provides its output (in CoChaCo rep-
resentation) internally to the DSL Programming Interface and externally as
output formats that can be generated to specific target formats. The gener-
ation of skeletons for implementations on platforms follows the same logical
architecture.

D. Functionality. The module is used during the initialisation of the work-
space to retrieve and import fragments via a database interface to the CoChaCo
modelling tool or file-based for standard formats of metamodels.

6.3.4 Conceptual Graph Transformer

The Conceptual Graph Transformer as an internal component is responsible
to translate the metamodel into CGIF format for further use within the
modules. As a continuous background process, the DSL representation is
translated into CGIF on any change that occurs in the definition.

A. Purpose/Rationale. The module acts in the background as an observer
and generator of CGIF, based on the metamodel definition. Every artefact
defined is translated in the CGIF logic. The approach follows the typical
approach to semantically, syntactically sequence the input, format it and
write it to the output format. The module also adapts the vocabulary as a

common denominator of all design efforts on a common knowledge-base.

152 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

CG Transformation

1|1, Semantic Sequencer CGIF Metamodels
H'—;J g 1| 2. Syntactic Sequencer H}Olﬁcelmbsm

1 @& |3 Token Sequencer Vocabulary

i 8 '| 4 Formatter

| ' 5. Writer/Serializer

I -

Figure 6.7: Conceptual Graph Transformer

The sequencing logic implemented as an observer pattern performs the
generation efforts based on changes recognised. The generator works in two
ways: a) create the output format in CGIF representation for each individual
metamodel, and b) generate the abstract vocabulary as a single outcome of

all metamodels within a project space.

B. Required Interfaces. The modules requires input from the programming
interface and builds upon the available language server to identify changes
and trigger the transformation following an observation pattern.

C. Provided Interfaces. The output is directly available in the workspace
as CGIF files, that can be inspected by the metamodel engineer. These
outputs are used for any design/elevation functionality for harmonisation
and federated capability alignment.

D. Functionality. The use of the module is implicit and does not require any
interaction by the user. This is achieved through the observation logic.

6.3.5 Conceptual Graph Visualizer

This module is responsible to provide a textual and graphical visualisations
of the conceptual graph as an instrument to analyse, review the development
process. Results from the analytical functionalities (e.g. query, deduction)
are not only derived formally, but also visually, graphically shown via this

module.

A. Purpose/Rationale. The module consumes the CGIF representation of
the metamodels and generates a SVG visualisation from it, whereas the
default notational aspects are considered (concepts as rectangles, relations
as ellipses). The graphical view can be used for interaction (highlighting
and synchronisation of the programming interface with the visualisation) and

analysis (plotting result projections directly on the canvas. The visualisation

153 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

builds on available 2D visualisation libraries.

CG Visualizer
7 i 1[1. 2D Draw (Nodes)
1 . raw (Noaes SVG Representation
CGIF Metamodels :)_[j 1| 2. 2D Draw (Edges) (inc. Triggers)
1 & |3 Layouting
P8
' S ! 1. ADL generation (CoChaCo)
! 1| 2. Web-Service Import [/ cocnacosve
i 1| 3. SVGExport

Figure 6.8: Conceptual Graph Visualizer

In addition, the graphical notation of CoChaCo is supported via the
bridging adaptor to the ADOxx-based implementation.

B. Required Interfaces. The module requires the DSL representation as an
input, and operates upon the language servers verification and generation
results. The visualisation is embedded in the observer of the transformer

and performed on changes in the definition.

C. Provided Interfaces. The module provides a graphical user interface to
support the metamodel engineer in the design and implementation task. The
observer of the Conceptual Graph Transformer triggers the graphical view

generation in an asynchronous manner.

D. Functionality. As a support functionality, the visualisation of the con-
ceptual graph is always available on the Ul of the IDE. As the visualisation
is triggered by the observer, the interaction is on to synchronise program-
matic fragements with the visualisation (the visualisation can be used to
understand which code fragment is concerned). In addition, color highlights
support the cognitive level, marking different metamodels and virtual exten-

sions.

154 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

DeMoMa::IDE

Programmatic Interface (DSL) Live Visualusation (CGDF)
ﬁ
Generate
e
s
G
§ E S -
QU
2] =
s > = >
=
s} s] > =
_% — S—
=
a =]
-

Analysis Result Browser

Figure 6.9: Conceptual Graph Visualizer: Mockup

Figure 6.9 provides a mockup on the visualisation produced by the mod-

ule.

In the previous section, the architecture on module level of the proto-
type has been discussed for those elements, that are exclusively assigned to
DeMoMa::Harmony. In the next section, the overall architecture of DeMoMa-

::Intel and its constituting modules are introduced.

6.4 DeMoMa::Intel

DeMoMa::Intel is concerned with the design and enactment of intelligent
capabilities within the development environment. As such it builds on the
results of the harmonisation and provides engineering functionality to define,
implement and deploy intelligence operations on the distributed modelling

environment.

A. Purpose/Rationale. The module is responsible to propose, align and
define intelligence functionalities through federation concepts on the har-
monised modelling ecosystem. It supports the alignment of functionality,
defined using the same means applied DeMoMa::Harmony (abstract meta-
model fragments as conceptual graphs as functionalities) with the harmon-
isation results. A focus point of the module relates to enactment, as a

deployment connector of the functionality in a distributed manner.

155 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

DeMoMa:])
Harmony Lot Browser: Retrieval and Adaptation LFOA 1
[

Matching and Alignment Component & Building Blocks
[CG Deduction and CG Query]
L FOL]

Functionality

Configuration and Deployment Adaptor

(]
Deployment

Figure 6.10: DeMoMa::Intel Architecture

The module is concerned with alignment capabilities; the implementa-
tion of these fragments is considered external to the module. This means
that intelligence functionality can be realised using any available technology
stack or deployment architecture, as long as the interface is of such services
are accessible as a conceptual graph that represents the required metamodel
structure and semantics. The approach has the advantage that any function-
ality can be interpreted as federated functionality for modelling ecosystem
as soon as the header is defined and made accessible.

B. Required Interfaces. As input to the module, the metamodels and their
semantic alignment from DeMoMa::Harmony are required. The input is
provided through services exposing the metamodels and its combination as
a conceptual graph in CGIF format. In addition, the intelligence capabilities
are either designed directly in the module or retrieved as patterns from a
functional building block store. The same format (CGIF) is used to represent
the functionalities.

C. Provided Interfaces. The module provides interfaces to arbitrary de-
ployment environments. The deployment is considered a configuration of
pre-existing services that generically support intelligence mechanisms. The
metamodel-based intelligence functionality is concerned with elevating these

services with domain-specific semantics.

D. Functionality. The foreseen usage pattern of the module is based on
the harmonisation. The designer system proposes potential candidates for

156 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

inclusion based on the structure and semantic of the metamodels considered.
In a next step the engineer iteratively adapts the concerned metamodels, its
alignment relations or the configuration of the intelligence functionality. As
soon as the results are satisfactory, the deployment interface is responsible
to compose, configure and deploy the functionality as a service, in line with

adaptors to be included in the harmonisation environment.

E. Submodules. DeMoMa::Intel includes the following submodules:

— Retrieval and Adaptation (see 6.4.2)
— Functional Building Blocks store (see 6.4.3)

— Configuration and Deployment Adapter (see 6.4.4)
DeMoMa::Intel shares the following submodules with DeMoMa::Harmony:

— Conceptual Graph Query Interface (see 6.5.1)

— Conceptual Graph Reasoning Interface (6.5.2)

F. Relevant Technologies. The relevant technologies for the module are the
same as for DeMoMa::Harmony, with the addition the enable deployment of
intelligence services in a dynamic manner. Technologies for the configuration
and deployment of micro-services are considered relevant in this field.

G. Evaluation Criteria. The module is evaluated with respect to its cap-
ability to define and deploy services. This is considered in line with (Prat
et al., 2014) as an evaluation on the usage environment, more specifically
as consistency with technology, as pre-existing technology is re-used for the

purpose of intelligence services in distributed modelling environments.

6.4.1 Intelligence Services

Candidate intelligence services (in line with discussed approaches in 5.2 have
been identified and implemented. These services are introduced below. Ad-
ditional service would extend and validate the architectural principles intro-
duces above for the module.

— DeMoMa::Intel::Log as general purpose logging functionality that

reflects the alignment relations and provides a flat list of time-stamped

157 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

logging entries. The pre-condition of this service is that metamodel
constructs are a) instantiable and consequently b) modifiable through
human or machine intervention. Every state change of a modelling ele-
ment is considered relevant for logging as a behavioural or interaction-
based change. The overall structure and semantics of the metamodels

concerned is not relevant.

Log Visualisation

DeMoMa::Intel:Log

Required CG

> D> ey

i~ Log Listener Log DB :
el =
AN 1 Modelling Ecosystem \i, |
Biot-a0rdl MT el MM -->[CG L3
gl wr e wm [-->fee}-# ce i
o ! 1 ! 1
Lt MT e Mmoo --s[eet s

Figure 6.11: DeMoMa::Intel::Log Architecture

Interaction: Interaction behaviour with the intelligence service results
are typically filtering and search mechanisms.

Configuration: configuration possibilities are proposed to visually high-
light the foundational metamodel (distinguish the different metamodels
in the harmonised environment) and "log levels" as semantically rich
annotation of each entry produced by the service.

Visualisation: list formats, statistical assessment (charting) and time-
series analysis using time-stamped, textual log entries. Use Case: Log-
ging all interactions with the modelling environment, chronologically

and visualise adaptations and their dependencies.

— DeMoMa::Intel:: Trace as an elevation of the logging facility above

158 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

considering traces as subsets of the logged information. Tracing defines
a span (trigger to result) and combines the entries in a set of results that
can directly be assigned to the trigger. As such, dependencies between
metamodels are relevant and need to be reflected in the traces. This is
accomplished through the virtual relation concept introduced earlier.
Tracing therefore spans across the harmonised metamodels and enables
the identification of impact of behaviour changes/model updates per-

formed in one metamodel on the ecosystem.

Analysis
Comparison
Replay

Trace Visualisation

DeMoMa::Intel:: Trace

i i i E Modelling Ecosystem T
A T
AR i N
P ofeetn e Lm @l
:L__-J\’_\r%_ MT ‘<————‘ MM ‘-___> CG |._;:,_"“§§

Figure 6.12: DeMoMa::Intel:: Trace Architecture

Interaction: Traces are provided as a set of log entries, that is defined
by the span they consider. The span is based on logical or temporal
events defined by the engineer.

Configuration: in addition to the configuration of logging, spans are
specified and configured. Different types are made explicit (e.g. call-
ing, binding, composition)

Visualisation: Spans are typically visualised as directed graphs that
represent, the logical dependencies of an event and its impact on re-

159 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

lated activities. Visualisation support highlighting and animations as
a replay functionality based on contextualised, time-stamped textual
traces.

Use Case: Logging the effects of a certain modelling functionality on

related elements (in the same or different metamodel)

— DeMoMa::Intel::Impact impact assessment provide the capability
to elevate logs and traces (as subset of log entries) to become metamodel-
aware. This implies that the intelligence service not only is aware of
temporal or logical context information but also the underlying meta-
models and virtual relations for harmonisation are considered and ex-

posed to the intelligence mechanism.

Impact Visualisation

DeMoMa::Intel::Impact

. , Trace Filter Reaquired CG '8

' Trace Listener | =

! _ —— ' "3

1 Log DB 1 :

! O Log Listener g i i L'lg

! i ! Modelling Ecosystem Polg
N e Gk
g Bl oM e wm |sflees i iE
g 3 : S
Qi @900 P . NS 8-
g gl MT ‘<—---’ MM ‘---->| CG r-% CG ' ESR!

Py : LS

! e L S Vi ‘<—---’ MM ‘---->| CG |-->' ¥ ¥

s
_— !
Interaction

Figure 6.13: DeMoMa::Intel::Impact Architecture

Interaction: Interaction behaviour on model/instance level is set in
the context of the harmonisation effort reflecting the underlying meta-
models. Any interaction with a specific instance is analysed from
a metamodel perspective, assessing and querying the harmonisation

160 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

space and returning the invisible dependencies in the ecosystem.
Configuration: The configuration of logging and tracing is used as a
foundation, extended by the metamodels and the harmonisation res-
ults as conceptual graphs.

Visualisation: The modelling ecosystem is considered a network of
concepts and relations in a combined manner. This network is used
for visualisation purposes, highlighting visually the interactions and
effects.

Use Case: The service considers the harmonisation results consistently
and provides means for intelligence analysis. Network nodes as concept
derived from the ecosystem can be queried and assessed.

6.4.2 Retrieval and Adaptation

The Retrieval and Adaptation module is the interaction and mitigation
element between designed metamodels and applicable functional building
blocks. The querying mechanism provided by the representation of meta-
models (provided/required) as conceptual graphs supports the alignment
task. Resulting projections provide input on the adaptation need required.

A. Purpose/Rationale. The module uses querying techniques and identifies
candidate functional building blocks that can be included. The semantic
annotation of each building block exposed is defined as the query, the har-
monised metamodel as the knowledge base. Projections visualise the overlap

for combination of federated functionality.

Retrieval and Adaptation -
Metamodel Assess overlap [Jo©0
in CGIF format : : O ©
(projection) %o
! - Functional BB
oo Adsplaion | Reposiory

Figure 6.14: DeMoMa::Retrieval and Adaptation

B. Required Interfaces. The module requires, from a data and representation
point of view, access to the conceptual graphs and abstract vocabulary of
a) the building blocks and b) the design artefacts. Functionally, it tiggers a

query and proposes adaptation actions.

C. Provided Interfaces. Adaptation requirements are provided as a result of

161 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

the retrieval and query/matching mechanisms of the module. Based on the

results, requirements can be assessed and mitigated.

D. Functionality. The metamodel engineer triggers a retrieval run by defining
the scope and capabilities required. The repository is analysed and query
mechanisms (inverse, the required metamodel structures of each building

block is retrieved and assessed) provide a matching result.

6.4.3 Functional Building Blocks Repository

Intelligence functionalities are defined as modular building blocks that can
be added upon newly developed or exiting metamodels. The purpose of the
Functional Building Blocks Repository is to support the reuse of implement-
ations and establish a platform for interchange. The term repository is used
as an analogy to source code repositories is applicable as this module en-
ables sharing, re-use and extension similar as in the open-source ecosystem

for software engineering.

A. Purpose/Rationale. The module is built upon available source code man-
agement systems with extensions to semantically describe the building blocks
committed to the repository in a user-friendly manner, including the concep-
tual graph required dynamically in the front-matter of the documentation
files and machine readable to support search, retrieval, adoption or adapta-

tion.

Functional BB Repository

Functional Access)—[Jr-l SOUI’C& manager -

¢} Oo
Query interface)—[:J CG Frontmatter oo (@)
Parser
L

Figure 6.15: DeMoMa::Functional Building Blocks Repository

B. Required Interfaces. The module requires standardised mechanisms to
push, pull add and commit changes from the IDE in a non-binary format.

It retrieves and versions the artefacts internally.

C. Provided Interfaces. The Functional Building Block Repository expands
upon the standard functionality of source code repositories as it provides

an elevated interface for search and retrieval. This is achieved through an-

162 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

notation of a building block with the semantic context and required meta-
model fragment of the building block with the front-matter of each artefact
published. Search mechanisms assess the required structured and provide
suggestions based on projection techniques of the front-matter towards the

modelling ecosystem designed.

D. Functionality. Based on the development results of metamodels, the en-
gineer can query the repository for adequate (syntactical and semantical
fitting) building blocks. The proposed building blocks are further developed
and adapted (either on building block level or within the metamodel eco-
system to cover the requirements. The resulting configuration is deployable

and re-committed into the repository as a new version for further re-use.

6.4.4 Configuration and Deployment Adapter

The Configuration and Deployment Adapter is responsible to enact the build-
ing block in an operational environment. The building block is compiled,
packaged and installed within the selected environment.

A. Purpose/Rationale. The Configuration and Deployment Adapter enables
the packaging of a building block and its configuration and deployment.
The functionality is realised using standard mechanisms for Continuous In-
tegration (CI) and Continuous Deployment (CD). A build and deployment
pipeline is defined in YAML Ain’t Markup Language (YAML) syntax, ex-

ecuted upon commit of any new configuration made available.

B. Required Interfaces. Interfaces are needed to the metamodel compiler to
expose adaptors defined by the federated functionality as the client and the

deployment environment to configure, build and expose the functionality.

C. Provided Interfaces. The module provides interfaces in order to trigger
and visualise the pipeline operation of configuration and deployment. Monit-

oring mechanisms report on the use and result of the functionality deployed.

D. Functionality. Following the functional configuration within the Retrieval
and Adaptation module, the runtime parameters are defined. The pipeline
for deployment is established and the functional building block is made avail-
able within the ecosystem.

163 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

6.5 DeMoMa::Shared Modules

DeMoMa::Shared Modules are available to both parts of the integrated devel-
opment environment. They represent the core functionality with respect to
functionalities enabled by the notion of conceptual graph. As generic mod-
ules, they operate and provide conceptual graph mechanisms for metamodel
design.

6.5.1 Conceptual Graph Query Interface

The Conceptual Graph Query Interface realises query mechanismon struc-
tural and semantic representations of metamodels as conceptual graphs. The
logical foundation enables this functionality. The module is implemented as
a general purpose interface for querying conceptual graphs as a service.

A. Purpose/Rationale. The query interface is exposed as a state-less service
that consumes the metamodel to be queried, the query graph and the ab-
stract vocabulary. Alignment of the graph is established as all conceptual
structures build upon a common abstract vocabulary including the virtual
relations defined. Projections as an outcome of the query can be mapped on

the inputs logically and graphically.

B. Required Interfaces. Access to the metamodels in CGIF format is required.
This concerns the query base, the query itself and the abstract vocabulary

that is embedded in the conceptual graphs.

C. Provided Interfaces. Projections as an outcome are returned in CGIF
format. The textual representation (mappable to First Order Logic (FOL))
and graphical representation (as overlays on the query base) show the match-
ing results.

D. Functionality. The functionality is applicable for a) matching of meta-
model fragments (a fragment of a specific metamodel is extracted and defined
as the query against the overall definition or another fragment) or b) match-
ing functional building blocks (the required structure retrieved from the
building block repository becomes the query, the metamodel design the query
base)

164 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

6.5.2 Conceptual Graph Reasoning Interface

Reasoning on conceptual graphs supports the deduction of additional know-
ledge within the defined structure. The reasoning mechanisms provide the
means to extend dynamically using reasoning rules. These rules are defined
as required by the platform operating the solution (e.g. metamodel verifica-
tion for skeleton creation) or the building blocks for federated functionality.

A. Purpose/Rationale. Rules defined for conceptual graphs enable the de-
duction of knowledge within the graph structure. These rules are based
on the abstract vocabulary and formulated as if-then statements. The con-
sequence is that the input graph is extended by the concepts derived by the
rule definition. The purpose of this deduction for DeMoMa::* is to a) verify
a metamodel composition and b) provide additional structural and semantic

concepts/relations for processing.

Following the same strategy as for queries in section 6.5.1, the reasoning
interface is implemented as a service, building on the CGIF representation of
the conceptual graphs. Results of the reasoning/deduction can be stored and
represent a homomorphic transformation of the conceptual graph. Available
reasoning engine is re-purposed and adapted to the needs of the service
functionality.

B. Required Interfaces. Access to the metamodels in CGIF format is required
and are used as an input for reasoning. The rules are also represented in
CGIF syntax and are applied by the reasoning engine in iteratively.

C. Provided Interfaces. The result of the reasoning are homomorphic con-
ceptual graphs for each iteration of application. The resulting graph (for
each step in the reasoning) is returned.

D. Functionality. The metamodel engineer triggers the functionality upon
a query or alignment step to perform verification and semantic elevation
based on the development results and selected building blocks (that expose
rules for reasoning). Additionally, extension and reasoning is imposed by the
design techniques specified in section 5.1.1 as well as the execution platform
of each metamodel as a verification pattern.

The building blocks of the prototype have been introduced conceptually
and logically above. This specification is used as input for the selection of
appropriate technologies and the definition of the deployment/use architec-

165 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

ture to evaluate the concepts established for harmonisation and federated
functionalities in distributed modelling ecosystems. In the next section, the
contributing technologies and their assessment as well as the deployment

strategy is introduced.

6.6 Technology Assessment

The assessment of available technologies builds on the environment specifica-
tion and building block structure. The following areas of technology relevant
for the implementation are identified and assessed:

— Integrated Development Environment: The IDE acts as the umbrella
of all building blocks and user interaction layer to provide effective
usage patterns of design (harmonisation and federation) functionalit-
ies for the metamodel engineer. IDEs typically consist of code editors
(including related technologies for code highlighting, auto-complete,
syntax verification), compilation and build support and debugging fa-
cilities. Criteria for the selection of an adequate technology to realise
the DeMoMa::IDE are established as: a) operating system support, b)
openness to include modules and extensions, ¢) language independence
and d) deployment support.

— Language Workbench: technologies for language-support are needed
to implement the CoChaCo grammar and provide programming in-
teractions to the metamodel engineer. Language workbenches enable
grammar definition and realise code-highlighting, auto-complete and
syntax verification. Evaluation criteria defined for the selection of lan-
guage workbench technologies are a) functional coverage, b) generation

capabilities and c) integration support.

— Conceptual Graph Query/Reasoning: Support of conceptual graph rep-
resentation, transformation and functionality is required for querying
and deduction functionality. Available technologies are assessed

— Visual programming: The programming approach build on classical
coding, elevated with visual support for evaluation and assessment.
The conceptual graph is presented in CGIF as well CGDF to provide
the means for a visual inspection of dependencies and relation of har-

monised metamodels.

166 of 257

CHAPTER 6. TECHNICAL REALISATION CONCEPT

— Deployment support: Continuous integration and deployment prin-
ciples are required for an agile adaptation of experiments. Deployment
is considered on two levels: skeleton generation for newly design meta-

models and extension patterns for existing, operational metamodels.

The assessment of technologies available for the building blocks is discussed

in annex B.

Summary. The technological realisation concept presented in this chapter
establishes the architecture blue-print for the components defining the meta-
model design space. The technical concept proposes an architecture (overall
and per building block) to implement the conceptual design presented in
chapter 2 3, 4. The technical concept defined clarifies the technical compon-
ents and architectural consideration to implement an IDE for metamodel
design, coined "DeMoMa::IDE". This IDE is considered the container of all
implementations and services realised and classifies the services into building
blocks of the architecture.

Feasibility of the architecture is assessed during the evaluation: proto-
typical implementation of selected building blocks aim to demonstrate the
applicability of the functionality foreseen. The architectural principles guar-
antee openness for extension and domain-specific adaptation of existing ser-
vice functionality.

Both the conceptual design and technical realisation architecture are in-
put to the evaluation approach discussed in chapter 7. Prototypes realised
are tested twofold: for completeness with respect to pre-existing metamodels
utilising a code base of operational metamodels and environmental evalu-
ation presenting a concrete, domain-specific implementation case within a

research project.

167 of 257

Chapter 7

Evaluation

The evaluation approach of research results developed is based on the re-
search objectives defined in section 1.4, following the guiding research ques-
tion on an adequate knowledge representation for metamodels to support
harmonisation and intelligence functionality alignment. The evaluation di-
mensions are introduced below, based on the criteria-set defined in (Prat
et al., 2014, p. 5):

1. Structural FEvaluation - Completeness and Consistency: the evaluation
dimensions target whether the conceptual design proposed is complete
to represent metamodels and is applicable in development /implement-
ation projects. The criteria is assessed through the community results
established in the OMIiLAB as an indication whether the conceptual
graph and CoChaCo mapping is adequate for metamodels of different
domains and level of abstraction.

2. Environment Fvaluation - Consistency with Technology: targeting the
use of technology to realise the concept technically in a prototypical
implementation case derived from a research project,

The evaluation results discussed below have been published and presented
in conferences and journals initially, to include feedback from the scientific
community during the early stages of concept development. The feedback
received is mentioned in the sections below and references to the design

outcomes are listed.

7.1 Structural Evaluation: OMiLAB Metamodels

The structural evaluation aims to assess whether the design concept for meta-
model using conceptual structures is applicable and can be used to represent
metamodels defined in research, academia and industry. For the evaluation

168 of 257

CHAPTER 7. EVALUATION

of this criteria, the metamodels developed in the OMiLAB at the University
of Vienna are used as the evaluation set, applying the concept developed
experimentally on these metamodels and applying the prototypical imple-

mentation.

As an initial evaluation steps, that has fed back into the conceptual
design, the available metamodels (designed and implemented) in various pro-
jects by the community have been assessed. The purpose of this evaluation is
to clarify whether the grammar developed and its transformation/mapping
on conceptual structure is adequate to represent the syntax and semantic of
the implementation results and enables an analytical assessment and value-
adding functionalities via similarity matching and virtual relations. As a
scope of this evaluation case, the transformation rules are explicated and
a repository of metamodels as conceptual graphs is established for further
evaluation steps.

, CoChaCo
! DSLRepo !

Syntax Operation

Infoﬁnation Asseésment Ma;;ping/ Publishing

Acquisition [Cleansing] Transformation [Repository]
Semantic Operation

Evaluated
DeMoMa::* ImportfExport =] 2] Retrieval 2]
- Ad DSL Interface ’
Building Blocks aptors Adaptation
CG g] Alignment il
Transformation Calculator

2]

Conceptual
Graph Visualiser

Figure 7.1: Structural Evaluation Process

In the following the steps performed, graphically shown in Fig. 7.1 for
the laboratory evaluation are detailed. Insights gained during the steps are
discussed and relevance to the concept developed is introduced.

169 of 257

CHAPTER 7. EVALUATION

7.1.1 Information Acquisition

In an initial collection step, all implementation results have been assessed
and downloaded. The OMILAB at the University of Vienna provides a
dedicated project space for the modelling method design, formalisation,
implementation and deployment. The projects are listed publicly by the
community for any interested party at https://austria.omilab.org/psm/
exploreprojects. Each project is structured in a common way: background
information and details on the modelling method are described textually,
related publications by or relevant for the project owners are referenced,
project members and contact details are listed and the download of imple-
mentation results is possible. The implementation results are provided as a
deployable tool and/or a method configuration file.

7.1.2 Assessment

The assessment of implementation results has been performed in two iter-
ations. An early technical assessment did evaluate the applicable of the
research idea, established a first technical concept for the transformation
and detailed the grammar specification. The second iteration completed the
set of modelling methods available in the lab and applied for evaluation.

The set of modelling methods used for the evaluation is established based
on the download packages available. A limitation for this selection relates to
the formalisation, that is ready-made available as these modelling methods
(and their metamodels) are already available as implementations. For the
design process and its decisions following AMME, discussed in and graphic-
ally shown in Fig. 2.4, only assumption could have been made. Nevertheless
for the purpose of the evaluation cycles presented, the scope relates to the
completeness criteria of the grammar established (ChoChaCo and mapping
towards the notion of conceptual graphs).

The assessment (as a scoping of available resources) and download res-
ulted in 50 application libraries (implemented on ADOxx) as input for the
evaluation (intermediary results are presented in Appendix C see Table C.1,

C.2 and C.3).

170 of 257

https://austria.omilab.org/psm/exploreprojects
https://austria.omilab.org/psm/exploreprojects

CHAPTER 7. EVALUATION

7.1.3 Mapping and Transformation

The mapping and transformation logic towards the CoChaCo grammar as
presented in section 3.3.2 has been evaluated on the set of modelling meth-
ods established. The transformation is based on the implementation arte-
facts (downloaded and assessed in the previous phase) in the form of ABL
files. The input are the binary representation of ADOxx Library Language
(ALL) files. The import/export building block provides the transformation
logic. Following an initial decryption (from ABL to ALL) using a Java based
implementation of the meta?-model of ADOxx, the content of the ALL files
is parsed and transformed towards grammar specified. During the binary
decryption, 3 libraries did not provide the necessary formality (due to an
outdated implementation and have been skipped - see Table C.2, resulting

in 47 implementation artefacts as the evaluation base.

The transformation/decryption of the ABL files, performed using their

Java Object Model and serialisation resulted in the following quantification:

Criteria Quantification
Number of ALL files 47
Lines of code in ALL files 1064395

External resources parsed (as files) | 3927
Lines of code in external files 129538

Table 7.1: Overview: ALL Code Base for Evaluation

A detailed analysis of the code base for evaluation is available in Table

C.4 in appendix C.
Decrypt ABL Evaluation Code Base

The transformation uses the ADOxx Java Object Model, parsing the ABL
files and decrypting them into ALL files. The screenshot shown in Fig. 7.2
shows the results in Microsoft Visual Studio Code; syntax highlighting is
enabled by the AdoScript Extension.

The results of the transformation are available in the GitLab project
space of this dissertation thesis at https://gitlab.dke.univie.ac.at/mm_
conceptual_graphs/all-repository. Additional import/export service im-
plementation are available in the source code repository at https://gitlab.
dke.univie.ac.at/mm_conceptual_graphs/import_export.

171 of 257

https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/all-repository
https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/all-repository
https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/import_export
https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/import_export

CHAPTER 7. EVALUATION

VALUE
/203 b CodeLens (Launch) - GenerateEBNF (source) Ln9,Col2 Spaces:2 UTF-8 LF ADOxxLibrarylanguage & © & (2

Figure 7.2: Screenshot: ALL in DSL Programming Interface

Evaluation of ABL Import/Export Service: The import/export service has
been developed based on a Java-based transformation logic, applying rules
to transform implementation artefacts from a compiled version to a textual
representation. The service performs this task in an efficient manner and
provides meta-information on the implementation artefact during the trans-
formation as statistics.

Transformation to CoChaCo Grammar

In a second step, the code base has been transformed into the CoChaCo
Grammar developed as part of this thesis. The representation is generic with
respect to the underlying platform. This implies that dedicated mappings

have to be established and implemented as rules.

The mapping logic for the transformation from ALL syntax into CoChaCo

grammar is detailed in the following table:

ALL Language Construct CoChaCo Grammar
CLASS <ModellingClass> : concept <classID>
<SuperClass> specialises [SuperClass|

hasName <ModellingClass>
has [characteristics];

172 of 257

CHAPTER 7. EVALUATION

ALL Language Construct

CoChaCo Grammar

RELATIONCLASS <RelationClass>

FROM <ModellingClass>
TO <ModellingClass>

connector <relationID>
specialises |

hasName <RelationClass>
fromEndpoint <classID>
toEndpoint <classID>;

MODELTYPE <ModelType>
INCL "ModellingClass"
INCL "RelationClass"

concept <mtID>

specialises ||

hasName <ModelType>
aggregates [classID, relationID];

ATTRIBUTE <AttributeName>
TYPE <AttributeType>

characteristic <AttributeType>
characteristic <attrID>
specialises [AttributeType]
hasName <AttributeName>;

ITEM "Functionality"
{context ::= menu, notebook}

functionality <context>;
functionality <funclD>
specialises [context|

hasName <Functionality>

uses [mtID, classID, relationID,
attrID, funcIDJ;

ON_EVENT "EventType"
{context ::= event}

functionality <context>;
functionality <funclD>
specialises [context|

hasName <Functionality>

has <EventType>

uses [mtID, classID, relationID,
attrID, funcIDJ;

Table 7.2: Mapping: ALL Syntax to CoChaCo Grammar

This mapping reflect specifics of the ALL syntax and the grammar defined.

A trivial reflection relates to the namespace of objects within an implement-

ation: as valid IDs are required by the grammar, the "hasName" element is

introduced. This means that an ID is generated based on the object name in
the ALL file; the "hasName" element holds the readable name. In addition,
a "namespace" element is introduced that supports the identification of a

library and provides input to the workspace organiser (distinguish objects

173 of 257

CHAPTER 7. EVALUATION

with the same name in different implementations).

Evaluation of CoChaCo Transformation Service: An observation relates to
the capabilities of specialisation and generalisation of objects. In ADOxx,
classes are specialised (single superclass), whereas CoChaCo allows the spe-
cialisation of multiple superclasses (conceptually, needs to be resolved in
implementation for a concrete implementation platform) for any type of ele-
ment (relations, characteristics). This is visualised in the mapping table as
the set of superclass is either 1 (for class concepts) or empty (for all others)
derived from the ALL syntax.

4EM-v22.cochaco X

n

oUTLINE
TIMELINE
TOMCAT SERVERS.
DOCKER CONTAINERS
DOCKER IMAGES
‘SUGGESTED DOCKER HUB IMAGES
mysaL
swn
JAVA DEPENDENCIES
MAVEN PROJECTS (STRING]
§ masterr OO0L1T @OA7DS3 D Codelens (Launch) - GenerateEBNF (source) Col1 Spaces:4 UTF-8 LF PainTet & © & (&

Figure 7.3: Screenshot: CoChaCo DSL Programming Interface

Conceptual Graph Transformation:

The transformation towards conceptual graph builds on a mapping of the
grammar towards the constructs available in the abstract vocabulary. Using
an observer pattern, the generator is triggered on every change of the meta-
model. As a result two outcomes are created on valid metamodels autonom-
ously. The generator for CGIF, as a basis for any knowledge operations,
uses the grammar defined as an input and implements the listener to cre-
ate the output formats. The formats realised are a) CGIF using the syntax
established by the CoGUI implementation and b) CoChaCo ADL (for the
visualisation of implementation results within the CoChaCo4ADOxx Mod-

174 of 257

CHAPTER 7. EVALUATION

elling Toolkit). The mapping to CFIF is presented formally in section 4.2.

1. Conceptual Graph in CGIF Format: the metamodel is translated into
an extended abstract vocabulary, utilising the "specialised" relation
to define the concept and relation type hierarchy. In parallel, the all
other relations are instantiated in the graph as concepts and relations
and define the baseline for any syntactical or semantical knowledge
operation on the metamodel. The output is compatible with existing

conceptual graph technologies and can be imported directly.

2. ADL Format in CoChaCo4ADQOxx Format: the same translation logic
is applied to generate an ADL file that is compatible with CoChaCo4-
ADOxx and can be imported in the tool. This transformation is re-
quired to provide a consistent graphical notation of the metamodel.
The output is in textual format defining the conceptual hierarchy
model and metamodel as a linked knowledge representation.

The source code fragment for the transformation is available in annex
B, code listing B.2. Additional transformation service implementation are
available in the source code repository at https://gitlab.dke.univie.ac.
at/mm_conceptual_graphs/transformation

LONGSTRING

INSTANCE <_
INSTANCE <_
INSTANCE <
sTAN

INSTANC

INSTANCE <
STAY
NSTAN
NSTAN
INSTANOE

ialises [NOTDE
ses [NOTDEFINED] | < i INSTANCE <_librar

3 master® A2@ feLens (Launch) - GenerateEBNF (source) Ln1,Col1 Spaces:4

Figure 7.4: Screenshot: CoChaCo Grammer CG Transformation

175 of 257

https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/transformation
https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/transformation

CHAPTER 7. EVALUATION

Evaluation of CG Transformation Service: the transformation of ALL to
CoChaCo has been performed using the textual representation of the library
and its Java Object Model. For those aspects that have been covered through
parsing in the object model, no deficiency could be observed. A challenge ob-
served, relates to the abstract metamodel of the platform and its use within
the implementation projects. This common abstract metamodel provides
platform functionality through inheritance/specialisation of structural ele-
ments. Nevertheless, only if specifically used and redefined, these concepts
are also explicitly available in the textual representation and could be used
in the transformation. Therefore, additional escalation and mitigation logic
is required to overcome this limitation, specifically for platform-specific ab-
stract relation types that are not redefined during the implementation. This
situation occurs when the metamodel engineer builds his/her own meta-
model, independent of the available constructs provided by the platform,
including all functionalities within the system. An indication and assess-
ment of these metamodel is performed as a structural knowledge operation

query.

7.1.4 Knowledge Operations for Metamodelling

Knowledge operations, as introduced in section 5.1, support the design and
alignment tasks of a metamodel engineer. These operations are applicable
to perform homomorphic transformations of one or more metamodels. This
means that the input is assessed, queried and and results are provided as a
sub- or superset of the input elements.

The prototypical realisation of these operations builds on the shared mod-
ules "Conceptual Graph Query Interface" and "Conceptual Graph Reasoning
Interface" that consume transparently the conceptual graph representation
of one or more metamodels and operation definition (also as a conceptual
graph) and return the results as projections of the original conceptual graph.
As a stateless, meta-service, these functionalities can be defined by the meta-
model engineer or platform providers freely and specialised to the specific
needs. Operations are sequenced and provide the insights required during
the design process.

For evaluation purposes, the Scene2Model metamodel is selected and
knowledge operations are applied on the metamodel. The results of this

evaluation are discussed in the following paragraphs. As a graphical aid,

176 of 257

CHAPTER 7. EVALUATION

the conceptual graph is visualised either in CoChaCo4ADOxx or CoGUI.
Knowledge operations run on these structures. Figure 7.5 shows the res-
ult of the import into the CoGUI toolkit, that supports layout algorithms
and browsing of the structure as well as a graphical feedback on operations
performed.

ene CoGui 201510222201
FEHEB DE €00 ™ i EREnglish (en)

Scene2Model in
CoChaCo DSL

g Scene2Model in
CG Format

Figure 7.5: Screenshot: Conceptual Graph Visualisation (CoGUI, CGDF)

The CGIF representation of the Scen2Model metamodel above is shown
below.

177 of 257

CHAPTER 7. EVALUATION

[scene2model _metamodel] (7.1)
aggregates(< Storyboard >, < Scene >),
aggregates(< Scene >, < SceneElement >),
has(< SceneElement >, typespecific),
has(< Scene >, true),
has(< Storyboard >, true),
has(< Storyboard >, X1),
has(< Scene >, X1),
has(< SceneElement >, type),
has(< SceneElement >, false),
specialises(team, < SceneElement >),
has(team, true),
specialises(character, < SceneElement >),
has(character, true),
specialises(device, < SceneElement >),
has(device, true),
specialises(sign, < SceneElement >),
specialises(speechyubble, < SceneElement >),
specialises(arrow, < SceneElement >),
has(sign, true),
has(speech bubble, true),
has(arrow, true),
connects(furniture, < SceneElement >),
has(furniture, true),
has(< Transportation >, true),
specialises(< Transportation >, < SceneElement >),
specialises(building, < SceneElement >),
has(building, true),

178 of 257

CHAPTER 7. EVALUATION

has(background, true),
specialises(background, < SceneElement >),
specialises(accessory, < SceneElement >),
has(accessory, true),

connects(type, typespeci fic),

concept(< Scene >),

concept(background),
name(X1),isInstantiable(false),
concept(accessory),

concept(speechyubble),

concept(device),

notation(typespecific),

concept(< SceneElement >),
characteristic(type),

isInstantiable(true),

concept(sign),

concept(< Transportation >),
concept(character),

concept(furniture),

concept(building),

(
(
(
concept(< Storyboard >),
(
concept(arrow),

(

concept(team).

Syntax Operations / Structural Analysis: structural analysis can be per-
formed on the conceptual graph, whereas "structural" is understood as any
operation that assesses the concept/relation hierarchy and its application
within the metamodel as a conceptual graph. Queries enable this analytical
assessment for e.g. counting the concepts and their dependencies, identific-
ation of structures not used. Syntax operations transform the conceptual
graphs syntactically structure. This includes operations for normalisation
(reducing unused relations or concepts in the graph), slicing/joining of meta-
models or subsetting based on specific criteria.

179 of 257

CHAPTER 7. EVALUATION

Query Example 1: "Get all concepts defined as containers" (implies mean-
ing/purpose of the concept is defined by included elements), represented
using the "aggregates" relation in the CoChaCo grammar.

[query _containers|? : — (7.2)
aggregates(X1, X2),
concept(X1),
concept(X2).

Results for Scene2Model: 11 projections found within the Scene2Model
metamodel (2 shown graphically in Fig. 7.6.

Result for all OMiLAB metamodels: 327 projections identified.

Query Example 2: "Get all domain-specific concrete concepts (implies any
concept that is directly usable by the modeller/actor, no abstract or system
concepts)

[query concept _instantiable]? : — (7.3)
has(X1,true),

isInstantiable(true).

Results for Scene2Model: 134 projections identified
Results for all OMiLAB metamodels: 2270 projections identified.

As the projections identified are homomorphic conceptual graphs, slicing
is feasible to e.g. retrieve a specific container type and all contained elements
and re-use for design challenge (see section 3.4.2.

Semantic Operation: semantic operations enable the assessment of the mean-
ing included in the metamodel. This includes operations to deduce additional
information on the structure (e.g. type identification based on rules) and
similarity assessments as input for virtual relations definition in modelling

ecosystems.

180 of 257

CHAPTER 7. EVALUATION

L] L] CoGui 201610222201
PHEEBEH D¢ 6003 € % Eenglisheen 1 Q- search (38+1)

ol e

ey |

@ Navigator () 1/ Projects] Services ()

selected: 1 /115 __fullview 1434:65¢

Factory Cogui | Liste Projections | Debug Cogul
Nodes

@ projection 1/2 [fact]; metamodel ne2model/scene2model_metamodel

Figure 7.6: Screenshot: Conceptual Graph Projections

Reasoning Example 1: "Any aggregates relation has an inverse counterpart
named composed of" This example of a semantic operation handles the
relation definition. Inverse relations are explicitly foreseen in the grammar

and are deduced through the reasoning rule below.

[derived _composed_of] (7.4)
composed_of (X2, X1)
aggregates(X1, X2),
concept(X2)
concept(X1).

Reasoning Example 2: "Any aggregating concept is a container that defines
a viewpoint /diagram type, all other concepts are modelling constructs" Type
identification enable advanced queries. As all operations can be sequenced,
a deducing rule is the input for a one of the above syntactical queries.

181 of 257

CHAPTER 7. EVALUATION

[derived _modeltypes] (7.5)
specialises(X 1, modeltype),
specialises(X 2, modelling.oncept),
concept(modeltype),

concept(modelling concept),

composed_of (X1, X2)
concept(X2)
concept(X1).

The rule definition above defines the type identification logic. Additional
knowledge on the concepts defines is deduced based on the rules, as any
"aggregates" relation, and its inverse counterpart "composed of" are as-
sessed and type specialisation links are established for the related concepts
(modelling construct or modeltype).

Evaluation of CG Query and Reasoning Interface: The interface is capable
to provide the functionality required for the design process and assesses the
conceptual graph structurally /syntactically and semantically. As a stateless
service, it allows for a flexible adaptation and configuration to the specific

needs of the metamodel engineer

This flexibility though impacts usability considerations as queries and
operations need to be established in advance and require knowledge on the
techniques and approach to define such queries and reasoning rules using
conceptual graphs. Out-of-the-box implementations reflect on the vocab-
ulary in a narrow scope and need adaptation in case of an update in the
vocabulary.

7.1.5 Publishing

The publishing phase is concerned with externalising (in a human readable
as well as machine processable format) the metamodel code base. The trans-
formation service operates on the grammar established and adapted during

the design operations and generates two artefacts:

182 of 257

CHAPTER 7. EVALUATION

— RDF Export: the metamodel as a conceptual graph is exposed as a
RDF representation. The direct mapping between RDF and CGIF is
available and supports this transformation,

— Markdown Generator: for human interpretation, the abstract vocabu-
lary as well as fact base is transformed to markdown dynamically and
available as a documentation result from the IDE.

Evaluation of Retrieval and Adaptation: The publication mechanisms is ap-
plicable and produces complete results. Nevertheless, an observation relates
to the extensive information artefact produces and its visual representation.
Navigation, browsing and interactive filtering mechanisms are required to
enable proper re-use capabilities on the code repository and its aretfacts.

7.2 Environment Evaluation: IBPM

Environment evaluation is concerned with the applicability of the artefact
conceptualised within concrete metamodel design challenges from an indus-
trial and research background. During the course of this dissertation research
project, the design approach for metamodels has been applied within the
European research project GOODMAN, concerned with the development of
a conceptual modelling approach for industrial business process management.
The project context and challenges have partly motivated the problem iden-
tification, result development and evaluation phases of the results presented
in this thesis.

Intermediate results achieved have been published and are available in

the following selected publications:

— Dominik Bork, Hans-Georg Fill, Dinitris Karagiannis and Wilfrid Utz
(2018). ‘Simulation of Multi-Stage Industrial Business Process Using
Mmetamodelling Building Blocks with ADOxx’. In: Journal of Enter-
prise Modelling and Information Systems Architectures 13.2, pp. 333—
344
The paper targets the idea on the novel metamodelling approach, using
metamodel building blocks as a means for re-use of implementation res-
ults and functionality alignment, based on the project results presented
in (Utz, Woitsch, Falcioni et al., 2018).

183 of 257

CHAPTER 7. EVALUATION

— Wilfrid Utz and Damiano Falcioni (Sept. 2018). ‘Data Assets for De-
cision Support in Multi -Stage Production Systems Industrial Business
Process Management using ADOxx’. In: Proceedings - IEEE 16th In-
ternational Conference on Industrial Informatics, INDIN 2018. Insti-
tute of Electrical and Electronics Engineers Inc., pp. 809-814
Technical assessment of the realisation concept for the use case de-
veloped (data streams and propagation along metamodel relations)

resulting in the formulation of the modelling ecosystem approach

— Wilfrid Utz (2019a). ‘Design of a Domain-Specific Metamodel for In-
dustrial Business Process Management’. In: Proceedings - 2019 Sth
International Congress on Advanced Applied Informatics (ITAI-AAI).
vol. 2019. Toyama: ITAI, pp. 821-826
Publication on evaluation results on the design approach followed and

its implementation results.

The evaluation presented in the following sections has been discussed
and introduced within the conference above to gain additional input and
reflections on the intended contribution.

7.2.1 Requirements:
Industrial Business Process Management

The requirements for the Industrial Business Process Management case presen-
ted are derived from a collaborative H2020 European research project with
an execution time of 36 month (October 1, 2016 - September 30, 2019) in
the field of zero-defect manufacturing. Overall the project aimed at estab-
lishing an integrated system on process and quality control in multi-stage
manufacturing/production.

For the research performed in this thesis, the project acts as an evaluation
environment to test ideas and evaluate the applicability of the results in a

concrete environmental setting.

Fig. 7.7 shows the overall architecture of the system realised within the
project: operational technologies on the shop-floor of production companies
are abstracted (using an implementation of a multi-agent system) and fur-
ther refined towards a knowledge-based environment. This knowledge-based
environment is coined Industrial Business Process Management (IBPM) as

it builds on the production processes as a baseline and elevates the definition

184 of 257

CHAPTER 7. EVALUATION

LEGEND,

4

ZDM DATA &
KNOWLEDGE
MANAGEMENT

s,Rmeeeem»A

Inff)rmatlon Technology (IT)

e e R e

v

TED

R :
®
«
4 v
S
i

Operational Technology (OT)
o
»
-]
v
-]

T

I

MULTI-STAGE I
PRODUCTION & I
QUALITY CONTROLS achi :
ata |

\ I

H |

: I

8 I

Figure 7.7: GOODMAN Distributed System Architecture (Utz, Woitsch,
Falcioni et al., 2018)

of the processes towards a decision-support system. The artefacts on this
level are graphical, smart model that require a set of metamodels combined

flexibly based on the characteristics of the production company.

From a user perspective, the following requirements are imposed on the
modelling ecosystem:

— Support a standardised process representation: build on existing in-
ternational standards and elevate with concepts from the production
industry. Standardisation is required to provide means for sharing and
comparison,

— Assess data streams: streams of data from the multi-agent-system are
integrated in the model environment and support processing function-
ality such as simulation, process and product dashboards and input for
smart decision making,

— Propagation rules: define the calculation logic between different ab-
straction level. These rules are considered the virtual relations between
different representation in the knowledge management system,

185 of 257

CHAPTER 7. EVALUATION

Further details on the requirements and needs of the end-users are avail-
able in the public deliverable of the project ((Utz, Woitsch, Falcioni et al.,
2018)) on the knowledge management system architecture.

7.2.2 Metamodelling using Building Blocks for IBPM

Applying the approach of metamodelling using building blocks (formalised as
conceptual graphs), the following case/domain-specific procedure has been

applied:

1. Transformation of input specification in proposed conceptual structure
formalism: using a specific import/export adaptor capable to trans-
form a the standard representation of the BPMN 2.0 metamodel into
conceptual structures as a syntactic operation.

The import service is based on the MOF syntax and its object model,
transformation and mapping rules defined create the conceptual graph
via the CoChaCo grammar defined. Manual layouting has been per-
formed to increase readability of the graph.

2. Slicing of the metamodel: only the graph-based process structure for
propagation is required. The overall BPMN 2.0 metamodel is parti-
tioned and sliced using a query pattern for graph-based structures as

a syntactic operation.

Using queries to identify partitions with in the imported metamodel
(type identification and aggreates/composed of relation), partitions
are identified. These partitions are marked first (colour-coded) and
then filtered via projections resulting from type-based queries (domain-

specific).

3. Discover/Bind Graph Propagation Rules: the conceptual structure of
the graph propagation mechanisms is matched against the conceptual
structure and refined to map quantitative facets and structure to the

required input as a semantic operation.

Binding of functionality on the metamodel is facilitated by matching
functionalities. The required metamodel (as a federated functionality)
is exposed as a conceptual graph that is mapped on the result from
step 2. The syntactical mapping results in the elevation of the result
towards the found concepts, implemented as "specialised" relations

186 of 257

CHAPTER 7. EVALUATION

between the merged metamodels. In case such a direct mapping is not
possible, the virtual relation concept supports a cascading definition

of a semantic chain.

4. Elevate with domain-semantics: production/manufacturing specific needs
and expressiveness is established as a domain elevation resulting from
a semantic operation on concept types.

This step is concerned with the inclusion of domain semantics. In the
case of IBPM, the concepts have been specialised according to the needs
of the end-user. Specifically the aspects of multi-stage production have
been aligned with the "Task" definition in BPMN and additional flow
semantics are added. The effect of this elevation (as functionality is
already available on general concepts) is transparent i.e. are reflected
in the algorithm accordingly.

5. Generate the skeleton for implementation: Alignment and verification
with implementation platform capabilities and generation of skeleton.

This technical step is concerned with the alignment of the design arte-
fact with the realisation platform used for implementation. Verifica-
tion queries support the alignment initially and a skeleton generator
enables from-scratch implementation or extension techniques based on

injections.

Fig. 7.8 shows step 1 to 4 of the procedure graphically. The transform-
ation performed are queries and rules applied on the conceptual structure.
Step 5 is discussed in detail within the instantiation section.

7.2.3 Instantiation of Building Blocks

The instantiation of the building blocks resulting from the design chain above
defines the implementation process. The three phases in the metamodelling

approach are defined and executed for the evaluation

1. Approach: defines the abstract metamodel based on the application
case. The challenge is to collect and assess the concepts required based
on domain-specific requirements, literature and pre-existing knowledge

within an organisation.

187 of 257

CHAPTER 7. EVALUATION

= Mapping Rules. H
TT5 xmitype="cmof Class" > instance of type <<Concept>> i Cpnoeptygl Metamodel
- xmitype="cmof:Class":name -> attribute <<name>> of H with Partitions
instance ;
- superClass="RootElement” > <<specializes>> relation i
between instance and parent instance N -
Representation as Conceptual Structure a
Conceptual Structure: Process MM
M
T T Capabiity
--------------- P ™ | Traversal and Value Propagation
T i - [T LR
i
I
(o— / |
4 '
L "
{f 1
4 '
<

Conceptual Metamodel: Proces

Conceptual Metamode: Process including Value Propagation Capability
— :
= e
Lomom ;mennon
o,

Figure 7.8: Knowledge Operations on
Building Blocks for IBPM

188 of 257

CHAPTER 7. EVALUATION

For IBPM, hierarchical value propagation networks and strategies define
the approach selected. These techniques are applicable for traversing
value streams between different levels of abstraction. An example for
the approach are low-level sensor streams that are aggregated accord-
ing to the abstraction/decomposition logic, and result in condensed
high-level views with capabilities to drill-down and apply data streams

also for purposes such as simulation and analysis.

2. Concept: as a formalisation step, the abstract building block is re-
fined and concretised. This implies that the formal representation is
established that considers variants for aligning model processing capab-
ilities. Deficiencies are reflected upon and implementation variants are
created. The transformation from approach to concept is considered
an instantiation of the approach in a concrete formal framework.

As a concept, derived from the approach, data binding techniques are
designed. This means that data producing entities are provided as
concepts in the metamodel and alignment to enterprise assets (such as
processes, IT artefacts, systems, etc.) is possible conceptually. The

semantics of this relation is precisely defined via calculation models.

3. Implementation: concerned with the actual implementation as tooling
and prototypes. Implementation considers also deployment and distri-
bution aspects of the tool realised. The transformation from concept
to implementation is considered an implementation of a concept in a

runtime environment.

The concept results are platform-independent, which means that oper-
ationalisation as e.g. a tool implementation requires a transformation.
This transformation is supported using verification techniques, map-
ping the capabilities of a metamodelling platform explicitly towards
the concept design.

7.2.4 Assessment and Evaluation

This evaluation stream targets the question how (procedural) metamodels
can be (co-) designed to provide an efficient implementation approach to
metamodel engineers. The concept of metamodelling using building blocks
(individually formalised as conceptual structures and beyond as a combin-

ation approach) was evaluated. In an initial this evaluation targeted the

189 of 257

EVALUATION

CHAPTER 7.

(B6T0C Z101) SsPO[g SuIpimg [Ppoureld)N NI NVINA0OD 6L M3

$80IMIBS SE S}asse ejep

Jo bulpul pue 10 a
uonnosx3
SOOINIBS-GOM Toe8Y .
SO0IAIBS-0RI : - 'syo0|g Buipjing
Xxoav

00000

uonejuawajdu)

|apowejaw ayj o} paddew pue
uoneoyyoads Buisseooid 19eNsqe Woly pausp s! wyobly

weats ey (2
oy
wogeziensin L sy
ey ejleq ¥seL
opow
uogepafe
A3
Y@ woy (NWeg)
ponuops; ® Mol
va
uonebedoid panyeq
omjN @ouenbas ,‘
(erenosy)
“doid anjep

|v|, i
1ossy geq 3

uopeziuebio

ay) Jo sapyqede farsj-ybiy o} uojeziensia

ejep asay) ajebaibbe pue sdajs ssaaosd
Buunjoejnuew UO UOJEZIENSIA Joj S}OSSE EJEp pulg

S)oRjapY IOy
asudiajug o) Bupuig jessy ejeq [BLSIPY] <

uonejuswajduwy

uopeuLIOjSUBL|

wiyuoby
ainmonig

Ayeuonouny g [opoly
:syoolg Bupiing

Buysiang

ydasuo)

wyjuobje uopebedoid Sone0edg |apowejaw }iomjau
YHomjaU JoeASqY) Joexsqe paydwis

ssauusameq
auoepugls s|

1o0s)

LT

T JoqyBieu

(umop-doy Jo dn-woyoq) saibejesls pauysp e 0}

sanjen doud pue ompau Buisianesy yoddng

d anjea [el IH

uonefuejsu|

uojjew.ojsuel]

Buissaoold
sjonysuo)

|opowWejs| JoeSqy
:syooig Buipiing

uopduasag

yoeouddy

190 of 257

CHAPTER 7. EVALUATION

conceptual framework developed and proposed, applied on the application
case IBPM thereafter.

This evaluation targeted the metamodelling approach that differs to tra-
ditional requirement - specification - implementation - testing and deploy-
ment cycles as agile considerations and re-use patterns are positioned at its
core. The formal knowledge representation acts in this case as an enable
to a) identify adequate structures and discover/bind functionality dynam-
ically. Due to the temporal and organisational/role separation of concerns
(approach, concept and implementation), various design variants become
testable and feedback by involved stakeholder can be reflected within an-
other design iterations.

An observed drawback of the proposed concept relates to the knowledge
and skills required to handle formal knowledge representation techniques.
Defining and using a conceptual graph of a metamodel is transparently
useable, nevertheless the application in intelligent queries and deductive reas-
oning involves domain expertise on one hand and a core understanding of
formal concepts and their representation. This becomes especially apparent
when assessing the publishing features in the retrieval and adaptation build-
ing block: the essence of this building block is to maintain and document the
outcomes of the development process during each phase and provide these
results to the community. Even though graph-based representations are con-
tinuously evolving, the abstraction capabilities of a domain-expert need to

be met and domain-semantics are needed to enrich these representations.

Summary. During the evaluation phase, two iterations of refinement have
been performed: in a first step, the feasibility of the concept and technical
realisation has been assessed with selected metamodel implementation. The
resulting adaptation in the concept and architecture are reflected in chapter
5 and 6. In a second iteration the repository of metamodel has been used
to assess the capabilities of the knowledge representation formalism, the
CoChaCo grammar and visualisation options. Highlights and low-lights of
this evaluation are articulated for each building block assessed, resulting in
an evaluation of the research question and objectives as a conclusion of this

thesis in chapter 8.

191 of 257

Chapter 8

Conclusions

This concluding chapter focuses on summarising the results achieved and
highlighting /contrasting the contribution established against the research
question and objective initially defined. The structure of the chapter follows
the work phases, providing a summary on the achievements of each phase of
the process that was also applied as the red thread of the thesis. Highlights
and accomplishments are identified and discussed. The research question
and derived objectives are re-introduced to provide the context of the dis-
cussion of results. A conclusive SWO'T analysis has been performed to assess
the achievements from a critical, self-reflective viewpoint. The threads and
opportunities are input for the outlook and further research directions.

8.1 Summary

The motivation aspects for the research work presented in this thesis have
been introduced in chapter 1: digital intelligence mechanisms and functional-
ity within ecosystems of information systems are the core aspect this research
project aimed to contribute to. This specific interest is derived from observa-
tions in today’s enterprise settings. Organisations need to be innovative at a
fast pace, reflect on intelligent offerings, interactions and processes at a fast
pace and have means in their repertoire of tools and methods that enable
them to react and evaluate new trends quickly and efficiently. Innovation
laboratories provide the physical and virtual space, but the toolset to handle
the involved complexity, involve stakeholders from various backgrounds and
establish a systematic approach are limited. This deficiency results in ad-hoc
decisions that are uninformed, ignore expertise of actors or information in
systems and only partially cover innovative solution development processes.
The question to work on (defining the objective of this research) relates
to whether an adequate formalism can be identified, utilising the baseline
on conceptual structure and knowledge representation to support a) design

processes of metamodels (based on the assumption that the knowledge in a

192 of 257

CHAPTER 8. CONCLUSIONS

domain /field is encapsulated within the type level structure) and b) provide
means for intelligence functionality and operations already during design.

The baseline for related work is derived from this direction and discussed
in chapter 2. The literature on intelligence and ecosystems define the found-
ation for the research on related work related to smart models of information
systems. During this foundational work, derived definitions have been es-
tablish that target intelligence via federation and modelling ecosystems as a
distributed system of services that define their interactions and relations in
a smart manner via virtual, semantically rich relations. Co-design aspects
for different stakeholders acting on varying abstraction levels are considered

as an intelligence feature for these ecosystems.

Chapter 3 develops the initial artefact based on these observations: con-
crete requirements are derived from motivational case studies (bottom-up,
top-down approach in distributed modelling systems). A graphical design
environment is proposed that builds on the core aspects of concepts - char-
acteristics - connected, coined "CoChaCo". The core aspects are extended
with model-processing/model value aspects to align functionalities, their
purpose and relevant stakeholders within the design approach. CoChaCo
is considered the structural element for the design technique. In parallel
the baseline on conceptual structures is assessed, diving back into core as-
pects of graph-based knowledge representation. The approach developed by
Sowa and refined by different research teams has been selected to formalise
CoChaCo. This formalisation is required to perform knowledge operations
(i.e. intelligent design support functionality) during the design pro cess. The
formalisation has been done step-wise: initially the language constructs of
CoChaCo have been identified and described as a grammar (ENBF form).
This step resulted in the observation, that design freedom limits query and
deductive capabilities and resulted in a mapping based approach towards an
abstract vocabulary for metamodelling based on CoChaCo and design prin-
ciples to map results against. This mapping is understood as a harmonisation
effort, clarified in chapter 4.

The contribution of chapter 4 is characterised by the notion of concep-
tual structures: the high-level domain-specific design language for meta-
models CoChaCo is proposed as a grammar definition, in the form of a DSL,
as well as graphical notation, supported by a modelling tool, to elicit the
specific structural and semantic aspects of metamodel. Mapping bidirec-

tionally the language and constructs with a formal knowledge representation

193 of 257

CHAPTER 8. CONCLUSIONS

based on conceptual graphs, design support functionalities become possible.
These functionalities are defined as knowledge operations operating on the
conceptual structure of one or more metamodels. A main aspect in the
definition of the conceptual graph structure is related to a knowledge rep-
resentation that provides the means to anchor CoChaCo in a manner that
operations required in the design process become feasible. These generic
operations are sequenced and define the implementation process by gradu-
ally refining the output of the previous phase as input for the next one.
Knowledge operations derived from literature and through operations of the
work in the community are defined. During the development of the design
approach, its formalisation, and realising architecture, the aspects of open-
ness, extendability have been considered. This is specifically relevant for
domain-specific extension capabilities, uncertain abstraction techniques and
implementation/design strategies. The core outcome of this chapter is the
specification of a bidirectional mapping logic between a language-oriented
design approach, defined as a grammar and modelling language and its rep-
resentation as a conceptual graph, as input for the definition of the knowledge

operations for harmonisation and functionality alignment.

These operations are targeted in chapter 5 that defines the environment
needed and its structure as a procedure model for the design of modelling eco-
systems. Harmonisation and federation concepts are introduced for novel,
or existing metamodels in light of intelligence operations required within
the system. The procedure model builds on the three phases of Approach
- Concept - Implementation to systematically structure the design to im-
plementation process. Re-use and agile adaptation concerns are reflected
and the generic anatomy for these operations is specified as an input for
the technical realisation concept. Specific examples are developed to enable
a classification of operations to a) query, b) integrate (via equivalence or
similarity relations or virtual/ecosystem relation), ¢) perform dependency
analysis on a conceptual /type level.

The technical realisation (to assess the feasibility of the conceptual design)
is discussed in chapter 6. The overall architecture of the design environment
is defined and contribution building blocks are introduced. These build-
ing blocks are considered as service containers, where actual functionality is
provided with a high-degree of flexibility through smart binding techniques.
As such each building blocks defines (in abstract terms) its consuming and
required interfaces (structure, format). Any service that fulfils the transform-

194 of 257

CHAPTER 8. CONCLUSIONS

ation is applicable for inclusion, in case not existing the interfaces define the
service implementation skeleton for any interested stakeholder/community
to include specific functionalities.

Both the conceptual design and technical realisation architecture are in-
put to the evaluation approach discussed in chapter 7. Prototypes realised
are tested twofold: for completeness with respect to pre-existing metamodels
utilising a code base of operational metamodels and environmental evalu-
ation presenting a concrete, domain-specific implementation case within a
research project. Evaluation results have fed back to the design phases and
informed /updated the concept realisation.

8.2 SWOT Analysis

Summarising the evaluation of the design approach for metamodels using
conceptual structures, a conclusive SWOT analysis has been performed to
provide an assessment of the results achieved based on the criteria of com-
pleteness, adequacy and efficiency of the novel design approach proposed.
For this analysis the design approach/procedure, the elements defined for
CoChaCo, the mapping and transformation concept towards conceptual struc-

tures and its technical realisation have been assessed holistically.

Strength. The strength of the novel design approach for metamodels are
listed below.

— Openness and Extendability: The process/procedure using metamodel
building blocks assumes re-use as a design pattern and supports know-
ledge sharing and co-creation. From a technical point of view, the
architecture is designed in a way, that extensions can be added dy-
namically and elevate the functional capabilities of the development
environment. Algorithmic solutions and mechanisms that already ex-

ist, can support specific cases without changing the structure.

— Cognition and Understanding: the approach developed in this research
project centres around intelligence as a cognitive function. This cog-
nition is considered unique as it applies a type-level assessment (dis-
cussing concepts, characteristics and connectors instead of concrete
implementation cases as instances). The complexity in large systems
is manageable as agreements between stakeholders are established in an

195 of 257

CHAPTER 8. CONCLUSIONS

ecosystem manner, clearly and explicitly defining the relations between
individual nodes in the network.

— FEstablished Technologies: The technologies used are mature and well
established. As such the risk of uptake is reduced and is considered a
strength in its application.

— Formal Knowledge Representation: the design approach builds on a
combination of freedom (during the ideation and co-creation) phase.
This means that the metamodel engineer is not restricted by con-
straints of a formalism and is free to develop alternative (even syn-
tactically /semantically "wrong") representations. CoChaCo provides
this liberating aspect and does not reinforce any restriction. The form-
alisation is transparent, which means that design results are continu-
ously transformed and add value to the process.

Weakness. The weakness of the approach are mainly attributed to the
knowledge and skill set required to maintain a distributed modelling ecosys-

tem:

— Quality Considerations: The approach presented prominently discusses
adequacy instead of quality. This differentiation is important as the
value of a model /metamodel is coupled with the use and applicability.
Nevertheless, the assessment whether adequacy is reached using the
DeMoMa::* environment is not evaluated formally, but it is assumed
that a system that is structured in multiple, distributed entities, con-
siders agile adaptation and considers ecosystem links will evolve in such

a direction.

— Metamodel Engineer knowledge and skill set: Formalisation requires
the skills and knowledge to operate and use it. The different roles in-
volved in the design process are still maintained (domain expert, meta-
model engineer); in complex cases extended by a knowledge engineer.
The additional effort in establishing such a formal level needs to be
assess in context of the value gained, even through the formalisation is

transparent and systematically supported.

— Technical Readiness: Components and artefacts developed are on a
prototype level; this includes re-used libraries (e.g. for conceptual
graphs). Mitigation strategies have been though after, especially in

196 of 257

CHAPTER 8. CONCLUSIONS

the architectural blue print to provide means to replace components
with upcoming and novel techniques that might be more appropriate
and fitting.

Opportunity. The opportunities established by the results presented and
contribution proposed are manifold as the formalisation could result in an
extended uptake within the conceptual modelling community and beyond.
As a baseline for in-depth analytical support, during the design and operation
of information systems artefacts, metamodels are processable design artefact.

This includes integration and compatibility aspects.

— Integration: as state-of-the-art software development technologies have
been selected, integration within other domains becomes feasible, e.g.
as embedded smart models within systems, to support the semantic
needs of software components, for transformations between operational

systems, etc.)

— Compatibility: in relation with the strength on openness, the selection
of conceptual structures is regarded an opportunity as compatibility
is implicitly granted through available mapping to other knowledge

representation standards and logic representations.

Thread. Threads identified are closely related to the weakness defined
above. The core concern is attributed to semantic expressiveness and its
impact on knowledge operations. As the concept builds on a rather flat
structure (CoChaCo definition, abstract vocabulary) it is difficult to estim-
ate whether this expressiveness is sufficient to cover increasing and evolving
complexity in information systems. Following the development in other do-
mains that moved from design to recognition/mining, which is based on the
assumption that the truth and value is established by past events and their
representation in data, the conceptual viewpoint (on type level) seems to
be contradictory. Marrying these two worlds could potentially lead to an
increased reception and validation of designed metamodels.

8.3 Discussion and Outlook

The objectives defined for this research project have been derived as part of
the motivation, derived from the research question (repeated below) are ap-

plied for the discussion and identification of future research directions based

197 of 257

CHAPTER 8. CONCLUSIONS

on the outcomes of this research project. This subjective assessment is estab-
lished based on the experience within the conceptual modelling community
and the reception of modelling methods and tooling.

Which form of knowledge representation is appropriate and can be
identified to support the analysis of information systems defined by

underlying metamodels?

Objective 1: Design Environment. the DeMoMa::* design environment
has been conceptually defined and prototypically developed following re-use
and combination patterns classified as knowledge operation. As an environ-
ment it spans across the results on procedure, tasks and tooling to support
the design process. As specific emphasis has been put on re-engineering tech-
niques (as documented in the evaluation chapter) that has been identified as
a future research challenge by (Visi¢, 2016; Visic, H. G. Fill et al., 2015) us-
ing the services for operational metamodels, it becomes a) possible to assess
metamodels that are operational and detect the concepts defined, even for
cases where no direct explication has been performed in the implementation
and b) a novel combination technique based on these results as virtual/e-
cosystem relation is introduced. Both streams contribute to the intelligence
consideration. A future research stream identified aims at models, or better
metamodels at runtime. This implies that the concretisation of a metamodel
does not happen in advance but during its application: types are identified
and dynamically change the available concepts. The requirement to have
multiple levels of abstraction (similar to the concept of intrinsic attributes
introduced in (Frank, 2014)), is supported as the conceptual structures are
on a type, rather than instance level.

Objective 2: Harmonisation. the harmonisation objective is omnipresent
as a result of an ever changing environment surrounding us. Valid assump-
tion are adapted and modify the conceptual frame organisations operate
within. Therefore harmonisation has been defined as concept of conceptual
connectivity. Interrelations are between participating nodes in an ecosystem
have an assigned lifecycle (come into existence, grow and are decommis-
sioned); the building nodes targeting particular domains and stakeholders
experience the same evolution. Harmonisation is therefore considered as
a temporal aspect - revision safety, traceability and design trajectories are
equally important within the system as are the modelling artefact created

with the specific nodes. This harmonisation objective impacts on one hand

198 of 257

CHAPTER 8. CONCLUSIONS

the definition of a modelling method as a holistic approach would span across
multiple participating nodes (see motivational examples in 3.1.1 and 3.1.2).
Currently the procedural aspect of the methods is only available implicitly;
assessing these aspects and which types of procedures can be recognised is
considered a second stream of research - correlating not only concepts within

the same metamodels but across them respecting the relations established.

Objective 3: Collection and Community. based on the assumption
that a collective, shared approach would support the uptake of the design
approach, an initial collection of metamodels/metamodel fragments has been
established as part of this research project. Retrieval and adaptation tech-
niques are defined and enable metamodel engineer to discover concepts and
structures that are appropriate and adequate for a domain requirement
(structure/semantic or functionality). Co-design aspects and methods/tools
to support creativity are needed as a frontend, to a) identify adequate meta-
models and b) validate the exposed functionalities in a distributed manner.
Collective intelligence on concepts and their relations impacts the way the
design process is constructed. As such the repository and collection of meta-
models requires an extension to also classify design process instances and
externalise the knowledge involved by the experts. Changing the ecosystems
is then driven by best practices that are evaluated continuously within the

community.

Digital intelligence, defined within this research project as a cognitive,
analytical capability, requires metamodels that are designed adequately. In
a setting that is constantly changing, co-creation has become a design prin-
ciple and tools and methods are needed to conceptually analyse such complex
information systems (in a broad sense, including strategy and business mod-
elling to process and organisational views, legal aspects and technological
layers such as cyber-physical systems) to stay competitive, constantly trans-
forming - in an informed way - organisations, enterprise and the society we

live in.

There is nothing permanent except change. Heraclitus (circa 500 BC)

199 of 257

References

Adams, Nan B. (2004). ‘Digital Intelligence Fostered by Technology’. In: The
Journal of Technology Studies.

Adams, Nan B. (2010). ‘Digital Intelligence’. In: Teaching through Multi-User

Virtual Environments.

ADOxx.org (2020). ADOxz Metamodelling Platform. URL: https: //www.
adoxx.org/live/home (visited on 22/03/2020).

Almeida, Joao, Ulrich Frank and Thomas Kiihne (2018). ‘Multi-Level Mod-
elling (Dagstuhl Seminar 17492)’. In: Dagstuhl Reports 7.12, p. 49. URL:
http://www.dagstuhl.de/17492.

Alter, Steven. (1991). Information Systems: A Management Perspective Addison-
Wesley. Addison Wesley, p. 523.

Andal-Ancion, Angela, Phillip A Cartwright and George S. Yip (2003). ‘The
digital transformation of traditional businesses’. In: MIT Sloan Manage-
ment Review 44.4, pp. 34—41.

Atkinson, Colin and Thomas Kiihne (2003). ‘Model-driven development: A
metamodeling foundation’. In: IEEE Software 20.5, pp. 36—41.

Avison, David and Guy Fitzgerald (2006). Information systems development:

methodologies, techniques € tools.

Baget, Jean Francois, Madalina Croitoru, Alain Gutierrez, Michel Leclére
and Marie Laure Mugnier (2010). ‘Translations between RDF(S) and
conceptual graphs’. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 6208 LNAI, pp. 28-41.

Becker, Jorg, Christian Janiesch and Daniel Pfeiffer (2007). ‘Reuse mechan-
isms in situational method engineering’. In: IFIP International Federa-
tion for Information Processing. Vol. 244, pp. 79-93.

Bee-Up (2019). URL: http://austria.omilab . org/psm/content/bee-
up/info (visited on 22/02/2019).

Berman, Saul J. (Mar. 2012). ‘Digital transformation: Opportunities to cre-
ate new business models’. In: Strategy and Leadership 40.2, pp. 16-24.

200 of 257

https://www.adoxx.org/live/home
https://www.adoxx.org/live/home
http://www.dagstuhl.de/17492
http://austria.omilab.org/psm/content/bee-up/info
http://austria.omilab.org/psm/content/bee-up/info

REFERENCES

Bihanic, David and Thomas Polacsek (2012). ‘Models for visualisation of
complex information systems’. In: Proceedings of the International Con-
ference on Information Visualisation, pp. 130-135.

Blanc, Xavier, Marie Pierre Gervais and Prawee Sriplakich (2005). ‘Model
bus: Towards the interoperability of modelling tools’. In: Lecture Notes
in Computer Science. Vol. 3599. Springer, Berlin, Heidelberg, pp. 17-32.

Bock, Alexander and Ulrich Frank (2016). ‘Multi-perspective enterprise modeling-
Conceptual foundation and implementation with ADOxx’. In: Domain-
Specific Conceptual Modeling: Concepts, Methods and Tools. Cham: Springer
International Publishing, pp. 241-267.

Bohmann, Tilo, Jan Marco Leimeister and Kathrin Moslein (2014). ‘Service
Systems Engineering - A Field for Future Information Systems Research’.

In: Business € Information Systems Engineering.

Bork, Dominik, Robert Andrei Buchmann, Dimitri Karagiannis, Moonkun
Lee and Elena-Teodora Miron (2019). ‘An Open Platform for Modeling
Method Conceptualization: The OMiLAB Digital Ecosystem’. In: Com-
munications of the Association for Information Systems, pp. 673—679.

Bork, Dominik, Hans-Georg Fill, Dinitris Karagiannis and Wilfrid Utz (2018).
‘Simulation of Multi-Stage Industrial Business Process Using Mmetamod-
elling Building Blocks with ADOxx’. In: Journal of Enterprise Modelling
and Information Systems Architectures 13.2, pp. 333-344.

Bork, Dominik, Dimitris Karagiannis and Benedikt Pittl (2018). ‘How are
metamodels specified in practice? Empirical insights and recommenda-
tions’. In: Americas Conference on Information Systems 2018: Digital
Disruption, AMCIS 2018.

Bower, J. L. and C. M. Christensen (1995). ‘Disruptive technologies: catching
the wave’. In: Long Range Planning 28.2, p. 155.

Brinkkemper, Sjaak (1996). ‘Method engineering: Engineering of information
systems development methods and tools’. In: Information and Software

Technology.

Brinkkemper, Sjaak, Motoshi Saeki and Frank Harmsen (1999). ‘Meta-modelling
based assembly techniques for situational method engineering’. In: In-
formation Systems 24.3, pp. 209-228.

201 of 257

REFERENCES

Briscoe, Gerard and Philippe De Wilde (Dec. 2006). ‘Digital ecosystems:
Evolving service-orientated architectures’. In: 2006 1st Bio-Inspired Mod-
els of Network, Information and Computing Systems, BIONETICS. arXiv:
0712.4102.

Brodie, Michael L. (1989). ‘Future Intelligent Information Systems: AI and
Database Technologies Working Together’. In: Readings in Artificial In-
telligence and Databases. Elsevier, pp. 623-641.

Brown, Tim (2008). ‘Design thinking’. In: Harvard Business Review.

Burkhard, Benjamin, Neville Crossman, Stoyan Nedkov, Katalin Petz and
Rob Alkemade (June 2013). Mapping and modelling ecosystem services

for science, policy and practice.

Buse, Raymond P.L. and Thomas Zimmermann (2012). ‘Information needs
for software development analytics’. In: Proceedings - International Con-

ference on Software Engineering, pp. 987-996.

Chein, Michel and Marie Laure Mugnier (1992). ‘Conceptual graphs: funda-
mental notions’. In: Revue d’intelligence artificielle.

Chein, Michel, Marie Laure Mugnier and Madalina Croitoru (2013). ‘Visual
reasoning with graph-based mechanisms: The good, the better and the
best’. In: Knowledge Engineering Review 28.3, pp. 249-271.

Chein, Michel and Marie-Laure Mugnier (Oct. 2008). ‘Basic Conceptual
Graphs’. In: Graph-based Knowledge Representation. Springer London,
pp. 21-57.

Chen, David, Guy Doumeingts and Francois Vernadat (2008). ‘Architectures
for enterprise integration and interoperability: Past, present and future’.
In: Computers in Industry 59.7, pp. 647-659.

Cho, Hyun and Jeff Gray (2011). ‘Design patterns for metamodels’. In:
SPLASH’11 Workshops - Compilation Proceedings of the Co-Located Work-
shops: DSM’11, TMC’11, AGERE’11, AOOPES’11, NEAT’11, and VMIL’11,
pp. 25-31.

Christensen, Clayton M., Michael Raynor and Rory McDonald (2016). What
is disruptive innovation? URL: https://hbr.org/2015/12/what-is-
disruptive-innovation.

202 of 257

https://arxiv.org/abs/0712.4102
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation

REFERENCES

Ciriello, Raffaele Fabio, Alexander Richter and Gerhard Schwabe (Dec. 2018).
‘Digital Innovation’. In: Business and Information Systems Engineering
60.6, pp. 563-569.

‘Conceptual Structure’ (2019). In: Lexicon of Linguistics. URL: http://www2.
let.uu.nl/uil-ots/lexicon/.

Croitoru, Madalina, Bo Hu, Srinandan Dashmapatra, Paul Lewis, David
Dupplaw and Liang Xiao (2007). ‘A conceptual graph based approach
to ontology similarity measure’. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 4604 LNAI. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 154-164.

Crossman, Neville D. et al. (June 2013). ‘A blueprint for mapping and mod-
elling ecosystem services’. In: Fcosystem Services 4, pp. 4-14.

Cyre, Walling R. (1997). ‘Automating System Design with Conceptual Mod-
els’. In: Springer, Boston, MA, pp. 73-90.

Czarnecki, Krzysztof and Simon Helsen (2003). OOPSLA’08 Workshop on
Generative Techniques in the Context of Model-Driven Architecture Clas-
sification of Model Transformation Approaches. Tech. rep., p. 17.

Davies, Rob (2018). Apple becomes world’s first trillion-dollar company. URL:
https://www. theguardian . com/ technology /2018 /aug/ 02/ apple-
becomes-worlds-first-trillion-dollar-company.

Davis, Randall, Howard Shrobe and Peter Szolovits (1993). ‘What is a know-
ledge representation?’ In: AI Magazine.

Delmond, Marie-HHllne, Fabien Coelho, Alain Keravel and Robert Mahl
(2017). ‘How Information Systems Enable Digital Transformation: A Fo-
cus on Business Models and Value CooProduction’. In: SSRN Electronic

Journal.

Diehl, Stephan (2007). Software visualization: Visualizing the structure, be-

haviour, and evolution of software, p. 187.

Dobing, Brian and Jeffrey Parsons (2011). ‘Dimensions of UML Diagram
Use’. In: Journal of Database Management.

DQ Institute (2020). Digital Intelligence. URL: https://www.dginstitute.
org/dq- framework / %7B%5C#%7Ddigital %7B%5C _%7Dintelligence %
20https://www.dginstitute.org/ (visited on 14,/04,/2020).

203 of 257

http://www2.let.uu.nl/uil-ots/lexicon/
http://www2.let.uu.nl/uil-ots/lexicon/
https://www.theguardian.com/technology/2018/aug/02/apple-becomes-worlds-first-trillion-dollar-company
https://www.theguardian.com/technology/2018/aug/02/apple-becomes-worlds-first-trillion-dollar-company
https://www.dqinstitute.org/dq-framework/%7B%5C#%7Ddigital%7B%5C_%7Dintelligence%20https://www.dqinstitute.org/
https://www.dqinstitute.org/dq-framework/%7B%5C#%7Ddigital%7B%5C_%7Dintelligence%20https://www.dqinstitute.org/
https://www.dqinstitute.org/dq-framework/%7B%5C#%7Ddigital%7B%5C_%7Dintelligence%20https://www.dqinstitute.org/

REFERENCES

Ebert, Jiirgen and Angelika Franzke (1995). ‘A declarative approach to graph
based modeling’. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). Vol. 903. Springer Verlag, pp. 38-50.

Ebert, Jurgen, Roger Siittenbach and Ingar Uhe (1997). ‘Meta-CASE in
practice: A CASE for KOGGE’. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 1250. Springer Verlag, pp. 203-216.

Efendioglu, Nesat, Robert Woitsch and Wilfrid Utz (2016). ‘A toolbox sup-
porting agile modelling method engineering: ADOxx.org modelling method
conceptualization environment’. In: Lecture Notes in Business Informa-
tion Processing.

Efendioglu, Nesat, Robert Woitsch, Wilfrid Utz and Damiano Falcioni (2017).
‘A Product-Service System Proposal for Agile Modelling Method Engin-
eering on Demand: ADOxx . org’. In: Digital Enterprise Computing 2017,
pp. 199-212.

Elmansy, Rafig (2018). Why Design Thinking Doesn‘t Work. URL: https:
//www.designorate.com/why-design-thinking-doesnt-work/ (visited
on 22/11/2019).

Fellbaum, Christiane (1998). ‘WordNet: An electronic lexical database. 1998’.
In: British Journal Of Hospital Medicine London England 2005.

Fernandez, George, Liping Zhao and Inji Wijegunaratne (2003). ‘Patterns for
federated architecture’. In: Journal of Object Technology 2.3, pp. 135-149.

Frakes, William B. and Kyo Kang (July 2005). ‘Software reuse research:
Status and future’. In: IEEFE Transactions on Software Engineering 31.7,
pp. 529-536.

Frank, Ulrich (1999). ‘Conceptual Modelling as the Core of the Informa-
tion Systems Discipline - Perspectives and Epistemological Challenges’.
In: Proceedings AMCIS Americas Conference on Information Systems,
pp. 695-697. URL: http://aisel.aisnet.org/amcis1999/240.

Frank, Ulrich (2014). ‘Multi-perspective enterprise modeling: Foundational
concepts, prospects and future research challenges’. In: Software and Sys-
tems Modeling.

204 of 257

https://www.designorate.com/why-design-thinking-doesnt-work/
https://www.designorate.com/why-design-thinking-doesnt-work/
http://aisel.aisnet.org/amcis1999/240

REFERENCES

Gallagher, Brian (2006). ‘Matching structure and semantics: A survey on
graph-based pattern matching’. In: AAAI Fall Symposium - Technical
Report. Vol. FS-06-02, pp. 45-53.

Gardner, Howard (1993). Multiple Intelligences Theory to practice, p. 304.

Gardner, Howard (1999). Multiple Intelligence, Intelligence Reframed, for the
21st. Basic Books, p. 292.

Gerbé, Olivier, Rudolf K. Keller and Guy W. Mineau (1998). ‘Conceptual
graphs for representing business processes in corporate memories’. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 1453.
Springer Verlag, pp. 401-415.

Gerbé, Olivier, Guy W. Mineau and Rudolf K. Keller (2001). ‘Concep-
tual graphs and metamodeling’. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 2120. Springer Verlag, pp. 245-259.

Gill, Asif Qumer (2015). ‘Agile enterprise architecture modelling: Evaluating
the applicability and integration of six modelling standards’. In: Inform-
ation and Software Technology.

GitHub (2019). State of the Octoverse. Tech. rep. URL: https://octoverse.
github.com/.

Goethals, Frank (2011). ‘An Overview of Enterprise Architecture Framework
Deliverables’. In: SSRN Electronic Journal.

Gotzinger, David, Elena Teodora Miron and Franz Staffel (2016). ‘OMiLAB:
An open collaborative environment for modeling method engineering’.
In: Domain-Specific Conceptual Modeling: Concepts, Methods and Tools.
Cham: Springer International Publishing, pp. 55-76.

Gutierrez, Alain, Michel Lecl, Marie-laure Mugnier, Eric Salvat, Michel Chein,
Madalina Croitoru and David Genest (2009). ‘RDF to Conceptual Graphs
Translations’. In: CS-TIW’09: 3rd Conceptual Structures Tool Interoper-
ability Workshop @ICCS’09: 17h International Conference on Conceptual

Struc- tures.

Guychard, Christophe, Sylvain Guerin, Ali Koudri, Antoine Beugnard and
Fabien Dagnat (2013). ‘Conceptual interoperability through Models Fed-

eration’. In:

205 of 257

https://octoverse.github.com/
https://octoverse.github.com/

REFERENCES

Haemisch, York (2013). From innovation to product: The challenge of dis-
ruptive technologies such as Digital Photon Counting (DPC).

Heimbigner, Dennis and Dennis McLeod (July 1985). ‘A Federated Archi-
tecture for Information Management’. In: ACM Transactions on Inform-
ation Systems (TOIS) 3.3, pp. 253-278.

Henderson-Sellers, Brian and Jolita Ralyté (2010). Situational method en-

gineering: State-of-the-art review.

Hevner, Alan R, Salvatore March, Jinsoo Park and Sudha Ram (2004).
‘Design Science in Information Systems Research’. In: Management In-

formation Systems Quarterly 28.1, pp. 75-105.

Hevner, Alan and Samir Chatterjee (2010). Design Science Research in In-

formation Systems.

Hofferer, Peter (2007). ‘Achieving business process model interoperability
using metamodels and ontologies’. In: Proceedings of the 15th European
Conference on Information Systems, ECIS 2007, pp. 1620-1631. URL:
http://aisel.aisnet.org/ecis2007/174.

Hrgovcic, Vedran, Dimitris Karagiannis and Robert Woitsch (2013). ‘Con-
ceptual modeling of the organisational aspects for distributed applic-
ations: The semantic lifting approach’. In: Proceedings - International
Computer Software and Applications Conference, pp. 145-150.

Hrgovcic, Vedran, Wilfrid Utz and Dimitris Karagiannis (2011). ‘Service
modeling: A model based approach for business and IT alignment’. In:
Proceedings - International Computer Software and Applications Confer-

ence.

Huibers, Theo, Iadh Ounis and Jean Pierre Chevallet (1996). ‘Conceptual
graph aboutness’. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). Vol. 1115. Springer Verlag, pp. 130-144.

Information Systems (2016). Ozford Reference - A Dictionary of Computer
Science. Ed. by Andrew Butterfield, Gerard Ekembe Ngondi and Anne
Kerr. 7th ed. Oxford University Press. URL: https://www.oxfordreference.
com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-
e-2571.

206 of 257

http://aisel.aisnet.org/ecis2007/174
https://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-2571
https://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-2571
https://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-2571

REFERENCES

ISO, IEC and IEE (2011). ISO/IEC/IEEE 29148: Systems and software en-

gineering — Life cycle processes — Requirements engineering. Tech. rep.
Jackendoff, R (1992). Semantic structures. Cambridge, Mass: MIT Press.

Jeusfeld, Manfred A. (2016). ‘SemCheck: Checking Constraints for Multi-
perspective Modeling Languages’. en. In: Domain-Specific Conceptual
Modeling. Cham, pp. 31-53.

Jeusfeld, Manfred A. (2017). Semcheck - Script for the Case Studies at
NEMO Summerschool 2017. Vienna, Austria.

Jeusfeld, Manfred A., Matthias Jarke and John Mylopoulos (2010). ‘Metamod-
eling for method engineering’. In: Choice Reviews Online 47.07, pp. 47—
3853-47-3853.

Karagiannis, Dimitris (2015). ‘Agile modeling method engineering’. In: ACM
International Conference Proceeding Series. Vol. 01-03-Octo, pp. 5-10.

Karagiannis, Dimitris, Dominik Bork and Wilfrid Utz (2019). ‘Metamodels
as a Conceptual Structure: Some Semantical and Syntactical Operations’.
In: The Art of Structuring. Cham: Springer International Publishing,
pp. 75-86.

Karagiannis, Dimitris, Robert Andrei Buchmann, Patrik Burzynski, Ulrich
Reimer and Michael Walch (2016). ‘Fundamental conceptual modeling
languages in OMiLAB’. In: Domain-Specific Conceptual Modeling: Con-
cepts, Methods and Tools. Cham: Springer International Publishing, pp. 3—
30.

Karagiannis, Dimitris, Patrik Burzynski, Wilfrid Utz and Robert Andrei
Buchmann (2019). ‘A Metamodeling Approach to Support the Engin-
eering of Modeling Method Requirements’. In: Proceedings - 2019 27th
IEEFE International Requirements Engineering Conference, pp. 199-210.

Karagiannis, Dimitris and Harald Kiihn (2002). ‘Metamodelling platforms’.
In: Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics).

Karagiannis, Dimitris, Heinrich C. Mayr and John Mylopoulos (July 2016).
Domain-specific conceptual modeling: Concepts, methods and tools. Springer
International Publishing, pp. 1-594.

Karve, Saket, Vasisht Shende and Swaroop Hople (2019). ‘Semantic related-
ness measurement from Wikipedia and WordNet using modified normal-

207 of 257

REFERENCES

ized google distance’. In: Lecture Notes in Networks and Systems. Vol. 43.
Springer, pp. 143-154.

Kim, Hyeyoung, Jae Nam Lee and Jaemin Han (2010). ‘The role of IT in
business ecosystems’. In: Communications of the ACM.

Koch, Stefan, Stefan Strecker and Ulrich Frank (2006). ‘Conceptual model-
ling as a new entry in the bazaar: The open model approach’. In: IFIP

International Federation for Information Processing 203, pp. 9-20.

Kocura, Pavel (2000). ‘Semantics of attribute relations in conceptual graphs’.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 1867.
Springer Verlag, pp. 235-248.

Kremar, Helmut (2015). Informationsmanagement. Berlin, Heidelberg: Springer
Berlin Heidelberg, p. 814.

Kruchten, Philippe (1995). ‘Architectural Blueprints—The "4+1" View Model
of Software Architecture’. In: IEEE Software.

Kiihn, Harald (2004). Methodenintegration im Business Engineering. April.
University of Vienna, PhD Thesis.

Litwin, Witold, Leo Mark and Nick Roussopoulos (Jan. 1990). ‘Interoperab-
ility of Multiple Autonomous Databases’. In: ACM Computing Surveys
(CSUR) 22.3, pp. 267-293.

Lopez-Fernandez, Jesus J., Esther Guerra and Juan De Lara (2014). ‘As-
sessing the quality of meta-models’. In: CEUR Workshop Proceedings.
Vol. 1235. CEUR-WS, pp. 3-12.

Ma, Zhiyi, Xiao He and Chao Liu (2013). ‘Assessing the quality of meta-
models’. In: Front. Comput. Sci 7.4, pp. 558-570.

Marker, David (2002). Model theory an introduction.

Masuda, Hisashi and Wilfrid Utz (2019). ‘Visualization of Customer Satisfac-
tion Linked to Behavior Using a Process-Based Web Questionnaire’. In:
Proceedings - 2019 12th International Conference on Knowledge Science,

Engineering and Management, pp. 596-603.

Masuda, Hisashi, Wilfrid Utz and Yoshinori Hara (2013). ‘Context-Free and
Context-Dependent Service Models Based on "Role Model” Concept for
Utilizing Cultural Aspects’. In: Proceedings - Knowledge Science, Engin-

208 of 257

REFERENCES

eering and Management. KSEM 2013. Ed. by Mingzheng Wang. Springer
Berlin Heidelberg, pp. 591-601.

Matt, Christian, Thomas Hess and Alexander Benlian (Oct. 2015). Digital
Transformation Strategies.

Mccormick, James, Gene Leganza and Chandler Henning (2019). ‘The For-
rester Wave™: Digital Intelligence Platforms, Q4 2019’. In:

Meder, Michael, Brijnesh Johannes Jain, Till Plumbaum and Frank Hop-
fgartner (2015). Chapter 9 Gamification of Workplace Activities, pp. 239
268.

Mens, Tom and Pieter Van Gorp (Mar. 2006). ‘A taxonomy of model trans-
formation’. In: Electronic Notes in Theoretical Computer Science 152.1-2,
pp. 125-142.

Menzies, Tim and Thomas Zimmermann (2013). ‘Software analytics: So
what?’ In: IEEE Software 30.4, pp. 31-37.

Miller, George A. (1995). ‘WordNet: A Lexical Database for English’. In:
Communications of the ACM.

Mineau, Guy, Gerd Stumme and Rudolf Wille (1999). ‘Conceptual struc-
tures represented by conceptual graphs and formal concept analysis’. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 1640.
Springer Verlag, pp. 423—441.

Miron, Elena Teodora, Christian Muck, Dimitris Karagiannis and David
Gotzinger (Jan. 2018). ‘Transforming storyboards into diagrammatic mod-
els’. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Vol. 10871 LNAI, pp. 770-773.

Montes-Y-Gomez, M., Alexander Gelbukh, Aurelio Lopez-Lopez and R. Baeza-
Yates (2001). ‘Flexible comparison of conceptual graphs’. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics). Vol. 2113, pp. 102—
111.

Moore, James Frederick (1993). ‘Predators and prey: a new ecology of com-
petition.” In: Harvard Business Review 71.3, pp. 75-86.

209 of 257

REFERENCES

Moser, Christoph, Robert Andrei Buchmann, Wilfrid Utz and Dimitris Kar-
agiannis (2017). ‘CE-SIB: A modelling method plug-in for managing
standards in enterprise architectures’. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics).

Muck, Christian, Elena-Teodora Miron, Dimitris Karagiannis and Lee Moonkun
(Sept. 2018). ‘Supporting Service Design with Storyboards and Diagram-
matic Models: The Scene2Model Tool’. In: Joint International Confer-
ence of Service Science and Innovation (ICSSI 2018) and Serviceology
(ICServ 2018).

Mylopoulos, John (1992). ‘Conceptual modelling and Telos’. In: Conceptual
Modeling, Databases, and Case An integrated view of information systems
development. pp. 49-68.

Mylopoulos, John, Alex Borgida, Matthias Jarke and Manolis Koubarakis
(1990). ‘Telos: Representing Knowledge About Information Systems’. In:
ACM Transactions on Information Systems (TOIS).

Negash, Solomon and Paul Gray (2008). ‘Business Intelligence’. In: Hand-
book on Decision Support Systems 2. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 175-193. URL: http://1link. springer.com/10.1007/
978-3-540-48716-6%7B%5C_%7D9.

Nguyen, Philip H.P. and Dan Corbett (2006). ‘A basic mathematical frame-
work for conceptual graphs’. In: IEEE Transactions on Knowledge and

Data Engineering.

Object Management Group (OMG) (2011a). ‘Business Process Model and
Notation (BPMN) Version 2.0". In:

Object Management Group (OMG) (2011b). Unified Modeling Language -
Superstructure, 2.4.1. Tech. rep., p. 748.

OECD (2019). Measuring the Digital Transformation.

Olle, T. William., Jacques Hagelstein, Ian G. Macdonald, Colette Rollands,
Henk G. Sol, Frans J. M. Van Assche and Alexander A. Verrijn-Stuart
(1988). Information Systems Methodologies: A Framework for Under-
standing (2nd Edition). 2. Addison-Wesley Pub. Co, p. 268.

Open Group (2019). ArchiMate®) 3.1 Specification. URL: https://pubs.
opengroup.org/architecture/archimate3-doc/ (visited on 14/11/2019).

210 of 257

http://link.springer.com/10.1007/978-3-540-48716-6%7B%5C_%7D9
http://link.springer.com/10.1007/978-3-540-48716-6%7B%5C_%7D9
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/

REFERENCES

Osterle, Hubert et al. (Sept. 2010). ‘Memorandum zur gestaltungsorientier-
ten Wirtschaftsinformatik’. In: Schmalenbachs Zeitschrift fir betriebswirtschaft-
liche Forschung 62.6, pp. 664—672.

Osterwalder, Alexander and Yves Pigneur (2010). Business Model Genera-
tion - Canvas.

Pacione, Michael J., Marc Roper and Murray Wood (2004). ‘A novel software
visualisation model to support software comprehension’. In: Proceedings

- Working Conference on Reverse Engineering, WCRE, pp. 70-79.
Patwardhan, Siddharth, Satanjeev Banerjee and Ted Pedersen (2003). ‘Using

measures of semantic relatedness for word sense disambiguation’. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics) 2588, pp. 241—
257.

Pedersen, Ted, Siddharth Patwardhan and Jason Michelizzi (2004). Word-
Net:: Similarity - Measuring the Relatedness of Concepts. Tech. rep.

Petre, Marian and Ed De Quincey (2006). ‘A gentle overview of software
visualisation’. In: Engineering September, pp. 1-10.

Petry, Martin (2019). ‘Intelligent Customer Interactions Require an Intelli-
gent Enterprise Architecture’. In: Presentation at NEMO Summerschool
2019. Hilti, pp. 1-18.

Plattner, Hasso, Christoph Meinel and Larry J. Leifer (2011). Design thinking
: understand, improve, apply, p. 236.

Poole, Jonathan and J. A. Campbell (1995). ‘A novel algorithm for matching
conceptual and related graphs’. In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 954, pp. 293-307.

Prat, Nicolas, Isabelle Comyn-Wattiau and Jacky Akoka (2014). ‘Artifact
Evaluation in Information Systems Design-Science Research - A Holistic
View’. In: Proceedings - 2014 Pacific Asia Conference on Information
Systems (PACIS). AIS (Association for Information Systems).

PriceWaterhouseCooper (2019). Global Top 100 Companies by market cap-
italisation, p. 36.

Ralyté, Jolita and Colette Rolland (2001). ‘An assembly process model for
method engineering’. In: Lecture Notes in Computer Science (including

211 of 257

REFERENCES

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics).

Reimann, Peter and Wilfrid Utz (2016). ‘Modeling learning data for feedback
and assessment’. In: Domain-Specific Conceptual Modeling: Concepts,

Methods and Tools. Cham: Springer International Publishing, pp. 555—
574.

Rohr, Matthias, André Van Hoorn, Jasminka Matevska, Nils Sommer, Lena
Stoever, Simon Giesecke and Wilhelm Hasselbring (2008). ‘Kieker: con-
tinuous monitoring and on demand visualization of java software beha-
vior’. In: Proceedings of the IASTED International Conference on Soft-
ware Engineering, SE 2008, pp. 80-85.

Rospocher, Marco, Chiara Ghidini and Luciano Serafini (2014). ‘An ontology
for the business process modelling notation’. In: Frontiers in Artificial
Intelligence and Applications.

Roussopoulos, Nick and Dimitris Karagiannis (2009). ‘Conceptual modeling:
Past, present and the continuum of the future’. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). Vol. 5600 LNCS, pp. 139-152.
Rowe, Peter G. (1987). Design thinking. MIT Press, p. 229.

SAP User Experience Design Services (2019). Scenes. URL: https://experience.
sap.com/designservices/approach/scenes (visited on 07/05/2019).

Selway, Matt, Markus Stumptner, Wolfgang Mayer, Andreas Jordan, Georg
Grossmann and Michael Schrefl (2015). ‘A conceptual framework for
large-scale ecosystem interoperability’. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 9381. Springer Verlag, pp. 287—
301.

Silver, Mark S., M. Lynne Markus and Cynthia Mathis Beath (1995). ‘The
information technology interaction model: A foundation for the MBA

core course’. In: MIS Quarterly: Management Information Systems.
Sowa, John F. (1979). ‘Semantics of conceptual graphs’. In:
Sowa, John F. (1984). Information Processing in Mind and Machine.

Sowa, John F. (2009). ‘Conceptual Graphs for Representing Conceptual
Structures’. In:

212 of 257

https://experience.sap.com/designservices/approach/scenes
https://experience.sap.com/designservices/approach/scenes

REFERENCES

Stachowiak, Herbert (1973). Allgemeine Modelltheorie.
Strahringer, Susanne (1995). Zum Begriff des Metamodells. Tech. rep.

Strahringer, Susanne (1998). ‘Ein sprachbasierter Metamodellbegriff und
seine Verallgemeinerung durch das Konzept des Metaisierungsprinzips.’
In: CEUR Workshop Proceedings zur Modellierung ’98, pp. 1-6.

Thalheim, Bernhard (2011). ‘The Theory of Conceptual Models, the Theory
of Conceptual Modelling and Foundations of Conceptual Modelling’. In:
Handbook of Conceptual Modeling. Springer Berlin Heidelberg, pp. 543—
577.

Thomas, Oliver (May 2005). ‘Das Modellverstédndnis in der Wirtschaftsin-
formatik : Historie , Literaturanalyse und Begriffsexplikation’. In: Insti-
tut fiir Wirtschaftsinformatik (IWi) im Deutschen Forschungszentrum
fir Kinstliche Intelligenz (DFKI GmbH), Universitdt des Saarlandes,

Saarbriicken - Publikationen.

UNCTAD (2019). Digital Economy Report 2019 Value Creation and Capture:

Implications for Developing Countries.

Utz, Wilfrid (2018a). D4.2 ZDM Data and Management Environment Im-
plementation. Tech. rep.

Utz, Wilfrid (2018b). ‘Design metamodels for domain-specific modelling meth-
ods using conceptual structures’. In: CEUR Workshop Proceedings. Vol. 2234,
pp. 47-60.

Utz, Wilfrid (2019a). ‘Design of a Domain-Specific Metamodel for Industrial
Business Process Management’. In: Proceedings - 2019 8th International
Congress on Advanced Applied Informatics (IIAI-AAI). Vol. 2019. Toy-
ama: [TAI, pp. 821-826.

Utz, Wilfrid (2019b). ‘Support of Collaborative Design Thinking using AD-
Oxx’. In: Proceedings - 2019 International Conference on Innovation and

Management. Hiroshima.

Utz, Wilfrid and Damiano Falcioni (Sept. 2018). ‘Data Assets for Decision
Support in Multi -Stage Production Systems Industrial Business Process
Management using ADOxx’. In: Proceedings - IEEE 16th International
Conference on Industrial Informatics, INDIN 2018. Institute of Electrical
and Electronics Engineers Inc., pp. 809-814.

213 of 257

REFERENCES

Utz, Wilfrid and Dimitris Karagiannis (2009). ‘Towards business and it align-
ment in the future internet; managing complexity in e-business’. In: Pro-
ceedings - 2009 1st International Conference on Advances in Future In-
ternet, AFIN 2009.

Utz, Wilfrid and Moonkun Lee (July 2017). ‘Industrial Business Process
Management Using Adonis Towards a Modular Business Process Model-
ling Method for Zero-Defect-Manufacturing’. In: 2017 International Con-
ference on Industrial Engineering, Management Science and Application,
ICIMSA 2017 Institute of Electrical and Electronics Engineers Inc.

Utz, Wilfrid, Peter Reimann and Dimitris Karagiannis (2014). ‘Capturing
learning activities in heterogeneous environments: A model-based ap-
proach for data marshalling’. In: Proceedings - IEEE 14th International
Conference on Advanced Learning Technologies, ICALT 2014.

Utz, Wilfrid and Robert Woitsch (2017). ‘A model-based environment for
data services: Energy-aware behavioral triggering using ADOxx’. In: IFIP
Advances in Information and Communication Technology.

Utz, Wilfrid, Robert Woitsch, Damiano Falcioni and Cristina Cristalli (2018).
D4.1 ZDM Data and Knowledge Management Environment Specification.
URL: http://go@dman-project.eu/wp-content/uploads/2016/10/
Abstract-D4.1-ZDM-Data-and-Management-Environment-Specification.
pdf (visited on 13/03/2018).

Utz, Wilfrid, Robert Woitsch and Dimitris Karagiannis (2011). ‘Conceptual-
isation of hybrid service models: An open models approach’. In: Proceed-
ings - International Computer Software and Applications Conference.

Utz, Wilfrid, Robert Woitsch and Zbigniew Misiak (Nov. 2016). ‘Planning
for integration: A meta-modelling approach using ADOxx’. In: Measuring
and Visualizing Learning in the Information-Rich Classroom. Routledge,

pp. 183-195.

Vazquez, José Manuel Gonzalez (2012). Ein Referenzmodellkatalog fiir die
Energiewirtschaft : Management von Informationsmodellen fir Software-
produktmanager bei der Anforderungsanalyse. Oldenburg: Dissertation

Thesis, p. 376.

Vigi¢, Niksa (2016). Language-Oriented Modeling Method Engineering. Uni-
versity of Vienna, PhD Thesis, p. 253.

214 of 257

http://go0dman-project.eu/wp-content/uploads/2016/10/Abstract-D4.1-ZDM-Data-and-Management-Environment-Specification.pdf
http://go0dman-project.eu/wp-content/uploads/2016/10/Abstract-D4.1-ZDM-Data-and-Management-Environment-Specification.pdf
http://go0dman-project.eu/wp-content/uploads/2016/10/Abstract-D4.1-ZDM-Data-and-Management-Environment-Specification.pdf

REFERENCES

Visic, Niksa, Hans Georg Fill, Robert Andrei Buchmann and Dimitris Kar-
agiannis (2015). ‘A domain-specific language for modeling method defin-
ition: From requirements to grammar’. In: Proceedings - International

Conference on Research Challenges in Information Science.

Visic, Niksa and Dimitris Karagiannis (2014). ‘Developing conceptual model-
ing tools using a DSL’. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics).

Vom Brocke, Jan (2004). ‘Internetbasierte Referenzmodellierung - State-of-
the-art und Entwicklungsperspektiven’. In: Wirtschaftsinformatik.

Walch, Michael (2019). A conceptual modelling approach for design and
use in cyber-physical environments: the s*IoT modelling method. Vienna,
Austria: University of Vienna, PhD Thesis, p. 282.

Walch, Michael and Dimitris Karagiannis (Jan. 2019). ‘How to connect design
thinking and cyber-physical systems: the s*IoT conceptual modelling ap-
proach’. In: Proceedings of the 52nd Hawaii International Conference on
System Sciences, pp. 7242-7251.

Walter, Tobias and Jiirgen Ebert (2009). ‘Combining DSLs and ontologies
using metamodel integration’. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Vol. 5658 LNCS, pp. 148-169.

Wand, Yair (1996). ‘Ontology as a foundation for meta-modelling and method
engineering’. In: Information and Software Technology 38.4 SPEC. ISS.
pp. 281-287.

Wand, Yair, David E. Monarchi, Jeffrey Parsons and Carson C. Woo (1995).
‘Theoretical foundations for conceptual modelling in information systems
development’. In: Decision Support Systems 15.4, pp. 285-304.

Wang, Lidong and Xiaodong Liu (2008). ‘A new model of evaluating concept
similarity’. In: Knowledge-Based Systems.

Wermelinger, Michel (1995). ‘Conceptual graphs and first-order logic’. In:
Conceptual Structures: Applications, Implementation and Theory: Third
International Conference on Conceptual Structures. Santa Cruz: Springer
Berlin Heidelberg, pp. 323-337.

215 of 257

REFERENCES

Wieringa, Roel J. (Jan. 2014). Design science methodology: For information
systems and software engineering. Springer Berlin Heidelberg, pp. 1-332.

Woitsch, Robert (2013). ‘Hybrid modelling with ADOxx: Virtual enterprise
interoperability using meta models’. In: Lecture Notes in Business In-
formation Processing. Vol. 148 LNBIP. Springer Verlag, pp. 298-303.

Woitsch, Robert and Wilfrid Utz (Feb. 2016). ‘Business Process as a Service:
Model Based Business and IT Cloud Alignment as a Cloud Offering’. In:
Proceedings - 2015 3rd International Conference on Enterprise Systems,
ES 2015. Institute of Electrical and Electronics Engineers Inc., pp. 121—
130.

World Economic Forum (2019). Shaping the Future of Digital Economy and
Society. URL: https://www.weforum. org/platforms/shaping- the-
future-of -digital - economy - and - new- value - creation (visited on
06/11/2019).

Wu, Zhibiao and Martha Palmer (1994). ‘Verbs semantics and lexical se-
lection’. In: Proceedings of the 32nd annual meeting on Association for
Computational Linguistics -. Morristown, NJ, USA: Association for Com-
putational Linguistics (ACL), pp. 133-138. arXiv: 9406033 [cmp-1g].

Xia, Yong and Martin Glinz (2003). ‘Rigorous EBNF-based definition for
a graphic modeling language’. In: Proceedings - Asia-Pacific Software
Engineering Conference, APSEC. IEEE Computer Society, pp. 186—196.

Yoo, Youngjin, Richard J. Boland, Kalle Lyytinen and Ann Majchrzak (2012).
‘Organizing for innovation in the digitized world’. In: Organization Sci-

ence.

Yoo, Youngjin, Ola Henfridsson and Kalle Lyytinen (2010). ‘The new or-
ganizing logic of digital innovation: An agenda for information systems
research’. In: Information Systems Research.

Zhang, Kang, Peter Eades and Peter Young (Nov. 1996). Software Visualisa-
tion. Vol. 7. Series on Software Engineering and Knowledge Engineering
vol. 7. World Scientific, pp. 1-23.

Zhu, Ganggao and Carlos A Iglesias (2017). ‘Computing Semantic Similarity
of Concepts in Knowledge Graphs’. In: IEEFE Transactions on Knowledge
and Data Engineering 29.1, pp. 72-85.

216 of 257

https://www.weforum.org/platforms/shaping-the-future-of-digital-economy-and-new-value-creation
https://www.weforum.org/platforms/shaping-the-future-of-digital-economy-and-new-value-creation
https://arxiv.org/abs/9406033

REFERENCES

Zivkovic, Srdan and Dimitris Karagiannis (2015). ‘Towards metamodelling-
in-the-large: Interface-based composition for modular metamodel devel-
opment’. In: Lecture Notes in Business Information Processing. Vol. 214.
Springer, Cham, pp. 413-428.

Zor, Sema, David Schumm and Frank Leymann (2011). ‘A Proposal of BPMN
Extensions for the Manufacturing Domain’. In: 3rd International Con-

ference on Model-Driven Engineering and Software Development (MOD-
ELSWARD) 16.1, pp. 468-481.

Zwarts, Joost and Henk Verkuyl (Feb. 1994). ‘An algebra of conceptual struc-
ture; An investigation into Jackendoft’s conceptual semantics’. In: Lin-
quistics and Philosophy 17.1, pp. 1-28.

Zwass, Vladimir (2017). ‘Information System’. In: Encyclopedia Britannica.
URL: https://www.britannica.com/topic/information-system.

217 of 257

https://www.britannica.com/topic/information-system

Appendix A

CoChaCo EBNF
Railroad Diagrams

The grammar derived from CoChaCo is graphically shown in this annex, ap-
plying the EBNF format to describe context-free grammars. The definition
within this appendix is provided as a baseline for the syntactical definition
of a metamodel. Railroad diagrams are provided for better readability. Ter-
minals have been introduced only for aspects related to relation definitions
and endpoints and are disregarded for compositions (e.g. sets of constructs

and relations).

metamodel

l construct l l relation l

(metamodel) ::= (construct)+ (relation)+

construct

‘ structure '

behaviour

(construct) ::= (structure) | (behaviour)

218 of 257

APPENDIX A. COCHACO EBNF RAILROAD DIAGRAMS

relation

has

(relation) ::= (connects) | (has) | (specialises) |

(flows) | (custom) | (uses)

structure

concept

connector

characteristic

(e @) @
characteristic ﬂ

C

aggregate% structure

(structure) ::= ({concept) | (connector) | (characteristic))

219 of 257

APPENDIX A. COCHACO EBNF RAILROAD DIAGRAMS

(isInstantiable)

has (name)

has (description)
(aggregates (structure))x

(has (characteristic))x

behaviour
]

(behaviour) ::= (functionality) | (stakeholder) | (purpose)

concept

LCSpecialisesH concept

isEndpoi ntH connector

@ notation

(concept) ::= specialises(concept))?
(isEndpoint(connector))x

(has(notation))

220 of 257

APPENDIX A. COCHACO EBNF RAILROAD DIAGRAMS

connector

LCspecialises)—‘ connector J

hasFromEndpoint)—‘ concept

hasToEndpoin% concept

@ notation

(connector) ::= specialises(connector))?
(hasFromEndpoint(concept))+
(hasToEndpoint(concept))+

(has(notation))

characteristic

1(spec iali se% characteristic

belongsTo

concept

characteristic

connector

(characteristic) ::= specialises(characteristic))?

(belongsTo((concept) | (characteristic) | (connector))+

221 of 257

APPENDIX A. COCHACO EBNF RAILROAD DIAGRAMS

connects

—(FromH construct @

direction

necessity unspecified

optional

mandatory

mandatory in certain cases

(connects) ::= from(construct))
to(construct)
direction(none | to | from | both)
necessity(none | unspecified | optional

mandatory | mandatory in certain cases)

specialises

—Gro@—{ construct @

necessity unspecified

optional

mandatory

mandatory in certain cases

(specialises) ::= from(construct))

222 of 257

APPENDIX A. COCHACO EBNF RAILROAD DIAGRAMS

to(construct)
necessity(none | unspecified | optional

mandatory | mandatory in certain cases)

custom

—Cfrom)—{ construct @

direction

unspecified

necessity

optional

mandatory

mandatory in certain cases

(custom) ::= from(construct))
to(construct)
direction(none | to | from | both)
necessity(none | unspecified | optional

mandatory | mandatory in certain cases)

flows
— (oo ()
(flows) ::= from(construct))

to(construct)

223 of 257

APPENDIX A. COCHACO EBNF RAILROAD DIAGRAMS

has

—(FromH construct @

necessity unspecified

optional

mandatory

mandatory in certain cases

(has) ::= from(construct))
to(construct)
necessity(none | unspecified | optional

mandatory | mandatory in certain cases)

uses

—Gro@—{ construct @

often
sometimes

a little

1k

unspecified

()

(uses) ::= from(construct))

[oB
]
o3
o
=
o
=
o
=

to(construct)
frequency(always | ofter | sometimes

a little | unspecified)

224 of 257

APPENDIX A. COCHACO EBNF RAILROAD DIAGRAMS

name

description

H LONGSTRING %
notation

——| REPRESENTATION |——

225 of 257

Appendix B

Prototype Technology

Within this chapter, the prototype technologies selected are introduced and
code fragments for the resulting service implementation as building blocks
of the DeMoMa::* building blocks are provided.

B.1 Overview Prototype Technologies

This list summarises the technologies selected and used for the realisation
of the proof-of-concept implementation during the evaluation phase of the
research project. The collected technologies have been assess by the criteria
of a) functional coverage (whether and to what extend the required func-
tionality can be realised), b) openness (to extensions and modification) and

¢) community engagement.

As this assessment always historic and never complete, a living docu-
ment is established at https://gitlab.dke.univie.ac.at/mm_conceptual_
graphs/technology_assessment that summarises the changing landscape of
applicable technologies. The following list provides an overview on the tech-

nology concretely used for the realisation of the building blocks and services

A Development Environments

The following IDEs have been used during the implementation:

1. The Microsoft Visual Studio Code https://code.visualstudio.com/
environment has been selected for the realisation of the DeMoMa::IDE
due to its growing popularity and ease of use to integrate extensions.
The integration and deployment process is support by the market-
place https://marketplace.visualstudio.com/vscode of extensions
and modules. Specifically the AdoScript extension has been used and
extended.

226 of 257

https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/technology_assessment
https://gitlab.dke.univie.ac.at/mm_conceptual_graphs/technology_assessment
https://code.visualstudio.com/
https://marketplace.visualstudio.com/vscode

APPENDIX B. PROTOTYPE TECHNOLOGY

2. Eclipse Java Development Environment https://www.eclipse.org/
downloads/packages/ is applicable for the development of the service
interactions (functionality, logic and endpoints)

3. Eclipse Language Workbench https://www.eclipse.org/Xtext/ has
been used to realise the language and grammar, including generators.
The workbench enables packaging of the language server and integra-
tion in Microsoft Visual Studio Code.

4. CoGUI platform https://www.lirmm.fr/cogui/ provides a graphical
UI to develop and operate conceptual graph functionality.

B Development Languages

The following development languages and frameworks are utilised for the
implementation of the prototype:

1. Java https://www.oracle.com/java/ is the language of choice to im-
plement the service logic. This is due to the experience and availability
of modules to support the implementation (libraries, extensions and
build system),

2. XText https://www.xtext.org to realise the abstract syntax tree and

parser of the CoChaCo grammar,

3. XTend http://www.xtend-lang.org to implement the generator for
import/export and transformation logic,

4. Maven http://maven.apache.org/ applied for dependency analysis

and dynamic loading of libraries as well as continuous integration,

5. JAX-RS https://github.com/jax-rs uses as a framework to generate
service endpoint dynamically based on Java annotations,

6. XSL https://www.w3.org/standards/xml/transformation as an em-

bedded language to perform model transformations.

B.2 Prototype Code Fragments

In this section the most relevant code fragment required for the realisation

of the prototype are listed. All prototype implementation results can be

227 of 257

https://www.eclipse.org/downloads/packages/
https://www.eclipse.org/downloads/packages/
https://www.eclipse.org/Xtext/
https://www.lirmm.fr/cogui/
https://www.oracle.com/java/
https://www.xtext.org
http://www.xtend-lang.org
http://maven.apache.org/
https://github.com/jax-rs
https://www.w3.org/standards/xml/transformation

APPENDIX B. PROTOTYPE TECHNOLOGY

download at https://gitlab.dke.univie.ac.at/mm_conceptual_graphs.

The code fragment below in listing B.1 shows the implementation of
the grammar in XText. The definition of the grammar is used to generate
a) the language server (for syntax highlighting, code completion and cross-
referencing) and is input for the code generator.

grammar org.adoxx.cochaco.Metamodel with
org.eclipse.xtext.common.Terminals

generate metamodel
"http://www.adoxx.org/cochaco/Metamodel”

Metamodel:
"namespace’ namespace=STRING ’;’ NL+
(constructs+=(StructuralConstruct |
BehaviouralConstruct))+
(relations+=Relation)*;

StructuralConstruct:

(Concept | Connector | Characteristic)
(’isInstantiable’)? (’hasName’ className=STRING)
(’hasDescription’ classDescription=STRING)
(’has’ ’[’ characteristic+=[Characteristic]+
’17)? (’aggregates’ [’
composition+=[StructuralConstruct]+ ’1’)? ’;’
NL+;

BehaviouralConstruct:

Purpose | Functionality | Stakeholder ’;’ NL+;
Relation:
virtual_relation ’;’ WS;

virtual_relation:
’virtual_relation’ name=ID (’specialises’ [’

228 of 257

https://gitlab.dke.univie.ac.at/mm_conceptual_graphs

APPENDIX B. PROTOTYPE TECHNOLOGY

superType+=[Connector]+ "]’)? (’hasFromEndpoint’
from=[Concept]) (’hasToEndpoint’ to=[Conceptl)
(’hasNotation’ notation=STRING)?;

Concept:

"concept’ name=ID (’specialises’ [’
superType+=[Concept]+ "1’)? (’hasNotation’
notation=STRING)?;

Connector:
connector’ name=ID (’specialises’ ’'[’

superType+=[Connector]+ "]’)? (’hasFromEndpoint’
from=[Concept]) (’hasToEndpoint’ to=[Conceptl])
(’hasNotation’ notation=STRING)?;

Characteristic:
"characteristic’ name=ID (’specialises’ ’[’
superType+=[Characteristic]l+ ']1’)7?;

Purpose:
"purpose’ name=ID (’specialises’ [’
superType+=[Purpose]+ ’]1’)7?;

Functionality:
>functionality’ name=ID (’specialises’ ’[’
superType+=[Functionality]+ ’1’)7?;

Stakeholder:
"stakeholder’ name=ID (’specialises’ [’
superType+=[Stakeholder]+ ’1’)7;

terminal NL : (’\r’? ’\n’)+;
Listing B.1: CoChaCo Grammar in XText

The generator towards conceptual graphs uses the above grammar as an
input and performs three transformations in parallel on every valid change
of the source file:

229 of 257

APPENDIX B. PROTOTYPE TECHNOLOGY

1. *.voc file: this file represents the abstract vocabulary the metamodel

is build upon

2. *.fact file: references the concept and relation types in the vocabulary

and represents the implemented metamodel

3. *.adl file: represents two CoChaCo4ADOxx Models (hierarchy and

metamodel)

package org.adoxx.cochaco.generator

import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.AbstractGenerator
import org.eclipse.xtext.generator.IFileSystemAccess?2
import org.eclipse.xtext.generator.IGeneratorContext
import org.adoxx.cochaco.metamodel.Concept

import java.util.UUID

import org.adoxx.cochaco.metamodel.Metamodel

import org.adoxx.cochaco.metamodel.Connector

/**

* Generates ADL and CoGUI code from your metamodel
files on save.

*

*/

class MetamodelGenerator extends AbstractGenerator {

nn

static String namespace = ;

override void doGenerate(Resource resource,
IFileSystemAccess2 fsa, IGeneratorContext
context) {
fsa.generateFile(resource.URI.trimFileExtension
.lastSegment + ".voc",
resource.compileCGVoc)
fsa.generateFile(resource.URI.trimFileExtension
.lastSegment + ".fact”,

resource.compileCG)

230 of 257

APPENDIX B. PROTOTYPE TECHNOLOGY

fsa.generateFile(resource.URI.trimFileExtension
.lastSegment + ".adl",
resource.compileADL)
namespace = resource.allContents.tolList
.filter (Metamodel)
.get (0)
.namespace. toLowerCase;

def compileCGVoc(Resource r) '’’’
<?xml version="1.0" encoding="UTF-8"
standalone="no"?>
<cogxml>
<namespace
name="http://www.adoxx.org/cochaco/«namespacex»/#"

[l

prefix="«namespace»"/>
<support name="vocabulary">
<conceptTypes>
«FOR ¢
r.allContents.tolterable.filter (Concept)»
«c.compileCGConcept»
«ENDFOR»
«FOR ¢
r.allContents.tolIterable.filter(Concept)»
«c.compileCGConceptHierarchy»
«ENDFOR »
</conceptTypes>
<relationTypes>
«FOR ¢
r.allContents.tolterable.filter (Connector)»
«c.compileCGConnector»
«ENDFOR»
«FOR ¢
r.allContents.tolterable.filter(Connector)»
«c.compileCGConnectorHierarchy»
«ENDFOR»
</relationTypes>
<nestingTypes>

231 of 257

APPENDIX B. PROTOTYPE TECHNOLOGY

</nestingTypes>
<conformity/>
<modules/>
</support>
</cogxml >

y

def compileCG(Resource r) ’7’
<?xml version="1.0" encoding="UTF-8"
standalone="no"?>
<cogxml>
<namespace
name="http://www.adoxx.org/cochaco/«namespace»/#"

[l

prefix="«namespace»"/>
<support name="vocabulary">
<conceptTypes>
«FOR ¢
r.allContents.tolterable.filter (Concept)»

«c.compileCGConcept»

«ENDFOR»
«FOR ¢
r.allContents.tolIterable.filter(Concept)»
«c.compileCGConceptHierarchy»
«ENDFOR »
</conceptTypes>
<relationTypes>
«FOR ¢
r.allContents.tolterable.filter(Connector)»
«c.compileCGConnector»
«ENDFOR »
«FOR ¢
r.allContents.tolterable.filter(Connector)»
«c.compileCGConnectorHierarchy»
«ENDFOR»
</relationTypes>
<nestingTypes>
</nestingTypes>

232 of 257

APPENDIX B. PROTOTYPE TECHNOLOGY

<conformity/>
<modules/>
</support>
</cogxml >

y

def compileCGConceptHierarchy(Concept c) '’
«FOR superType : c.superType»
<order
id2="«generateUniqueName (superType.name.getBytes())»"
idl1="«generateUniqueName (c.name.getBytes())»"/>
«ENDFOR »

def compileCGConnectorHierarchy(Connector c) '’’’
«FOR superType : c.superType»
<order
id2="«generateUniqueName (superType.name.getBytes())»"
idl1="«generateUniqueName (c.name.getBytes())»"/>
«ENDFOR »

def compileCGConcept(Concept c) '’
<ctype
id="«generateUniqueName (c.name.getBytes())»"

]

label="«c.name»"'

namespace="«namespace»">

] 1

<translation descr="«c.getClassDescription»’

label="«c.name»"
lang="en"/>

</ctype>

bR]

def compileCGConnector (Connector c) '’’’
<rtype
id="«generateUniqueName (c.name.getBytes())»"

233 of 257

APPENDIX B. PROTOTYPE TECHNOLOGY

label="«c.name»" namespace="«namespace»">
<translation descr="«c.getClassDescription»’

i

’

label="«c.name»'
lang="en"/>
</rtype>

bR]

/* CoChaCo ADL Converter =*/
def compileADL (Resource r)
VERSION <5.1>
VOCABULARY
<«r.URI.trimFileExtension.lastSegment»>
<CoChaCo - Prototype Dynamic 0.5>
VERSION <0.1>
TYPE <Concept overview>
«FOR ¢ : r.allContents.tolterable.filter(Concept)»
«c.compileADLConcept»

PR

«ENDFOR »

bR]

PR A

def compileADLConcept(Concept c)
INSTANCE <«c.name»> : <Concept>

1

def String generateUniqueName(byte[] bytes) {
return generateUniqueName (bytes).toString()

Listing B.2: CoChaCo CG Generator in XTend

234 of 257

Appendix C

OMiLAB Modelling Methods

The following tables classify the modelling methods, languages and /or nota-
tions available in the OMiLAB at the University of Vienna. All resources
developed by the community are publicly available at https://austria.
omilab.org/psm/exploreprojects.

OMLAB Europe noso
Modelling Method Projects
" (73
A= = -
For EnteTriEﬁ)Modelirm ADVISOR ArchiMate 3.0 BD-DS
@

i+ x o] i : x o] i o x o] i X a]

- i3 2 @ W
“CHy = By
- et =g B S
= e
Bee-Up usin neerin Business Processes for Business Process
g Digital Transformation Feature Model

Iy FEFSY AT FErS Ay EErS s

Figure C.1: OMILAB Project Space: Modelling Methods and Tools

In an initial step the modelling methods/languages/notations (an assess-
ment and categorisation is not performed), organisational background and
self-declared description as the purpose of the language are listed (Fig. C.1).
The assessment of modelling methods has been performed in two iterations
(November 2019 for technical evaluation and testing and April 2020 for com-

pleteness evaluation) resulting in 56 implementation artefacts collected.

Following this collection of projects and meta-information about them,
the download and extraction phase was conducted to structure the evalu-
ation dataset. The set consists of 50 library files that are used to assess

the completeness and adequacy of the conceptual design and prototypical
realisation.

235 of 257

https://austria.omilab.org/psm/exploreprojects
https://austria.omilab.org/psm/exploreprojects

APPENDIX C. OMILAB MODELLING METHODS

0¢

9RIA[IYOIY SUISN SUI[[OPOTA 21N Iy ostidisjury
PLiEY

-ogeuew pue USISOP JuIUIRS] I10] poyeml (UIso(]
JUOISSOSSY PUR AIJIAJDY POIOJUD)-00USPIAT)
aAvvod oy sywewerdur 1003 YOSIAAY UL
ogensd

-ure] Surepow IN1Ydd @Y} pue spepow [enjdoouod
NI dY oy ‘sseooxd INTHJH °9Y} JO SISISU0D ey
sI0mauIRI] [eo130[0poYjoul ' ST (POYIDJN PojeIdo)
-uJ — JuouraSRURN YSIY SS9001d ssoutsng) N[HJLT
(uoryedioryred Ieployeye)s) sjredxe urewop pue
s1opoyEe)s ostIdIojus oAJoAUT 0} ssa001d A10yeddr)
-1ed y -(se[o1 pue uoreziued1o 109l01d) sajo1 pautu
-1930pa1d m 90sfoxd e Jo w10} oY) Ul SUIPPOIN
0s11d.10JU JO 9OURULIONMD] -(UO0IYRIOU pUR 9IMpadold
pouyop) uoIyejou poxy e Sulsn SUIOPOW 0} SINPID
-01d pouyep Yy -uoAOMIS)UI A[osO[o oIe pue so[do
-urid o1se(q S POpIeSael 9 OSs[e URD YOIYM ‘Sjuoul

-9[@ 9100 9911} JO Posuduiod ST poyjew NHH O],

RUUSIA JO AJISIOATU)
AYSIOATU() YIOA

AoupuAq jo Aysioatun)

asnomaf,

dNI - ®siung, wWonTIST

9pAOYG JO A)YSIOATU[)
AJISIOATU[) WI[OD03S
{009S0Y JO AYISIOATU()

QPRI TIPIY

HOSIAAY

NIddd

INHY

OYRINTIPIY

HOSIAAY

NIddd

INHY

(paxeroap-jies) uorpdiiose(q

uorjesrue3iQ

wWAUOIN Y

yooloag

aIl

236 of 257

APPENDIX C. OMILAB MODELLING METHODS

"UOT)RULIOISURI) [RIISIP

Jo sxe[[id o1se(oY) 0} AJIUSIDHIP 9INGLIIUOD ABY[] SB
90URDYIUSIS SUTRS 1]} 9ARY $955900.1d SSoUISTIq [[© j0U
Agqoroym ‘SoI30[0UYD9) [RUSIP 0} Poje[dI A[OsO[d SI
jueteAoIdul sseulstq 0} goroldde pajuslIo-ssa001]
“AIqeLTe A

SS9001 sseulsng yjm [eep 03 pesodoid NAIJG
powreu S[OPOJA] 9INjed, JO UOISIOA POPUI)XS Ue SI
(INAJE) uoIpe)ou [9POJA SINYeI] SSID0IJ SSOUISTE
"UOT}RZIURSIO UR

JO JUOWOFRURW pUR USISOP OIPSI[OY O} I0J SUROW
guropowr opraoxd o9 st 300foid sy} jo [BOS oY,
"[002 9UO UI AJI[RUOI}OUN]

Sursseno1d [RUOI}IPPE Sk [[oM Se soFengue] SUI[opouwt
SN M3 d pue TINN “Ud ‘DA ‘NINdd ous sitod
-dns yorym uoryejuowerduur [eotdAjojord e st d-oog
‘TOT)RIPOUI 10] SURSUIL © S®

sfopowt [enydoouoo Juisn [9A9] sseuisnq /uorjeorjdde
UO SpUBWISOP ©Jep M Suoljejussaldal pue s3eULIo]

‘SPULY JUSIOHIP JO $90INOs ejep dewr A[[esrjuena

-08 0 so[qeud (S(-(g) 92IAIS eIR(] — ®IR(J1g

qoI8ey Jo ASIOATU()

OULIOWR)) JO AJISIOATU()

udfey) 1§ JOo AYSTIoATU()

RUUDI A JO AYISIOATU[)

PuR[AIR]N JO AJSIOATU)

VN

NAdd

NHd

dn-eeg

Sa-ad

UOT)RULIOJSURI],
[eMSI(I0J S9Ss9D
-01J ssoursngy 6

[PPOIN @Injeay

(paxeroap-jies) uorpdiiose(q

uorjesrue3iQ

wWAUOIN Y

SS900IJ Sssoulsng Q
NHA L

dn-eeg 9

Sa-ad g

poefoag A1

237 of 257

APPENDIX C. OMILAB MODELLING METHODS

"S109]J0 PIS pue seuapuadep Surpniout
Aq sseoo1d woryeuriojsuery vyep o) 10j jroddns oArd
0} pue ejep oY) INOqe 9FPI[MOUY Pa[IeIdp SPNOUL
0} Ayqiqissod oy} Yym Is[epowt o1} sepraoxd jer)

SsouIsTEy

10 Uuo1)RISOIUT

ofengdue| Surepow ® s309pal poyiewl Yl 9Y.L RUUII A JO AYISIOATU[) vdaia eredq vqgia v1
QATSULoIdWI0D puR JUS)SISUOD ‘OSTOU0D suoryeziue3i()
oIe sjppout oy], ‘uonerado esudisjus jo jurrdenyq 10] ASo[opOoyIOIN
I0 90uesse oY) ' juasarder 0) sppowr jo0adse § Jo SULIGAULIUY 3
SUIISISU00 ‘Z)91(] e Joiq Aq padoosap sem ONHJ RLIOJOIJ JO AJISIOATU() OINHA UuSiso(:OINHAd €1
SOSS900IJ OAT
AoupAg -)eI0qR[[0)) °[RIS
A3o[ouyoo], JO AJISIoATU() o(JLT,ND o8rerT o(ILIND TT
‘Juewegeuewr ureyd Ajddns jo 9xoju00
Iopmm oY) ul Apnjs topun joofqns oyy Suruoryisod
Aq ‘s1osn-pus st pue 309foxd a8ejueAwo)) oy 110d
-dns 03 swre poyjewt JUI[EPOW 9FCIURATWIO) 9], RUUSIA JO AJSIOATU[) 9FRJURAWO)) ogejueAwo) [T
"Su0)SAS 10 / pue sedlAles 07 sen[iqedes wrolg
dewr 03 uey) pue ‘sjuowaImbal ssoulsng o) 9CLIOS
-op 07 UOI}0RIISqR [RJUSWRPUN] oY) Sk sarj[iqeded
SSOUISTL(, SOSTL }] ‘oSpajmouy ostidiojus jo juawdo
-[0A9p WoALIp AJ1Iqreded 10 yIomourely [enjdoouod y uReSoYy oY) JO AJISIOATU() MATOD MAOD 0T
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

238 of 257

APPENDIX C. OMILAB MODELLING METHODS

"SUIOTX®
TAMO pue seseqejep ydeid ‘sopowr SUIXIW Sose(
o8pa[mouy pLqAY ur painjded SOIJURUILS oY) M

‘sorjuewros oSLIdIoNUe JO oIemMe WSISAS UOI)RULIOJ MONM
-ut Jo 9doouod oY) 9jesiysoaur o} surre 109foxd oy, AYISIOATU() TRA[OL]-SoqRY AN MONMYAINA 0%
"AY1[10R] SUI)SO) S[OTUOA DLIJOS[d OYY) Ul PI[[RISUL SIUS JInjuege[sy
-uoduod 93e3[0A-Y31 9} JO 9INJONIIS 97} [opPOW 0} JRISIOATI) “eLIpY - d[y IS[OPOJN Poq31s9],
PosnL ST (00, SUIPPOIN PAQISA, PTYIA DTN YT, HAUWED 18T "TAV INLAH OPIPA OL9[H 61
"SOYMYIISUI [RUOI}RD
-NPo IOYSIY SUOWR S[RLID)RUI JUIYOR) RIPOUII)[NUL
Ayrenb Y31y Jo UOMNQLIISIP oY) PUR SOSINOD USISOP
[enprarpur oy} Aq sioyoes) sjproddns Ioaropznpo JINJUOS] 1BISIOATU[) IOABOA\TIPO JOABOATIPO QT
UOTYBION pU® [OPOJN UOISa(J UOATDT 13 NINA NINA LT
‘yoeordde
9P00-B-SR-0INIONIJSRIJUL PUR SUOIJRULIOISURI) [OPOUL
-0)-[opowW SUIZI[[IN [oPOUW [RNSIA POJLIID S} UO
poseq juowLo[dop 1oy} pue suorjyesrdde oarsuojur
-eyep JurEpowr st jonpoid suyy jo 9doos oY, OUR[I\ TP 00TUT[O] YADIA ¥aDIa 91
"SOIYIAIYOR $59001d ssoulsng Ul SUL{RUW UOISIO NIOUIUO
-op A[yuenbesqns pue SINOARIPUS SOIJATRUR SSOU -IIAUY Sursues])
-1snq 10§ seseyd uoryeredord ejep pue SurpueiIsSIop pue Uo1)RIF)
-un ejep o) syroddns jer) porjewr Julfepow y BUUSIA JO A}SIOATU() ADIAd -ul ered ADId ST
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

239 of 257

APPENDIX C. OMILAB MODELLING METHODS

"‘Juowrdo[oAdp [BUOI}
-esIuR3I10 pue JULPOUISUD SjuowaInbor Surpnpour
‘sosodind [eISASS I0J O[qRIINS SI 1] “8ILd [I[eaY
pue SO1ISI30] ‘eouednsul ‘Sulueq Se YONs Surewop

sunisrepow
-580201ds)JRryDSor)

ur AI3SNpUl pue BIWOPRIR UL PIsn Ud(q ey N J)O SINqURH 8IISIOATU() NdH° oyostredweoxe €7
"SOWOOINO PAIISOP 9Y) OZI[RSI 09
SI090%] [RIONID dY) YIM WYY} YUI[pur S[ROS JUI[[D
-POWI [RTJUISSS QALIOP U} ‘S[ROF SSOUISN(] [IIM }IRIS
Aoy T, -ssooord Surepowr osudiojuo oy} JO SI1030®] surey)
9SIOATP oY) o)erodIodur ,SUlRYD UOIjen[eAd’ Y], wequuelN MGHJ A uonyeneAy 7o
‘su)sAs jroddns pue soAry09f JuouI
-0 s91 ‘ostrdIoiue UR SUNULWNIOP pue FUlsAeueR JO -dofene(g 98P
Aem pofjo1guos ' sopraoid ey yoeordde ue st (13MH SteJ JO A)ISIOATU() M -mouy osudioyur] g
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

240 of 257

APPENDIX C. OMILAB MODELLING METHODS

'$9850001d 1191} PUR SWIOISAS

Surugisop pue Jurdo[pasp I10j SUI[[opoul Jo s}Ie Ful
-MO[[0F 91} JO SS00® 193 0} Iasn o1} SMO[[® XXINHHH
[009 ST T, "SI9sn pue s10d0[AdD aM)9(TOT)edTunul
-woo o1} I10j juelIodull ST JUSWNIISUL UR se ($)[00)
1SLI 97} SUISOOY) "}IB UR PUR 9OUSIOS ® ST SUIPPOIN
‘spoalqo jo uonyendiuewl pue UOI)RIUD

-soxdox oty 10§ 110ddns (009 Teorydersd pue ‘serjruny
-1oddo urystiqnd 10] SUOIIN[OS opRUW-ApPeal ‘Juotl
-ofeuRW SIYSLI JOSTL ‘So[qe} JO uoreald ‘Surdronb
‘sosATeur ‘SUIAIYDIR :90RJIOIUI IS[OPOIN T-INDH o2
1e o[qe[rear oq os[e [[IM XXV £q pepraoid sor
-)I[RUOIOUN] SNOLIBA "SONDIUYD9) SUIIoseal paourA
-pe pue uoneziundo [opowl ‘SOLIRUSDS Xo[durod
p10ddns [[Im sempour I9[ePoN T-INDH 98e)s juawt
-dofosep Ixou oY) U] SURNDLYD ADULISISUOD puR
sonuewods ‘xejuds gurpnput ‘sydeouod T-INOH JO
A19I17U8 Y} SISA0D IS[OPOIN T-INOH oYl ‘Ie[nory

-red U] - XXQO(V UO paseq T-INDH I0J [00} Sur]
-epowt aarsuayaIduiod e sopraoid ISPpPoN T-INDH

(NVD) 1913 NZ JBIISIoATU)
|m@QO®.Hﬁ:<|HH®M@wM.HQO

1INJUOSE[Y JBIISIOATU)

XXULIOF]

T-WOH

XXWIdY Qg

T-WNOH ¥¢

(paxeroap-jies) uorpdiiose(q

uorjesrue3iQ

wWAUOIN Y

poefoag A1

241 of 257

APPENDIX C. OMILAB MODELLING METHODS

"S[epowt a8pa[mouy| pazijernsds-sisouseip surp[imng
01 yoeorddeurspout e syusserdel JHINYI UOIIRSID
98pa[MOUY I0] 1X0JU0D PAIRYS © Ul PUR ‘JUSTUUOIIA
-9 9A1RI0d00D © Ul ‘UOTYSe] [RIUSTSIOUT UR UT UOT)
-1SIbor 9Fpa[MOUY SASIYDR 0) WSIURYDIIW FUOI)S ®
sopraoxd poyjout oY T, *(S3]) se21nos agpapmous| o[dry

-[nW wogj uorsmbor oFpo[mouy] 9SrURUL 0) PIUSIS

OJIX9J\ 9p otuouoiny

-Op S[PpoW U0 poseq AFo[opoyjou ® st I[NV 00180[0Ud], omnsuy LHNV LINVM 6¢
‘ueder
[00)) pUR ‘SOTIIATIOY [RIN)n)) [eUOnIpel], ‘(Surpue)s
-3uo[Jo suoryestuedio) IS ‘Dulsm/) asouedef jo
Seole oY) AJOWRU SOOIAIOG OAIJROI)) osouede[I0J ISIVCr SOOIAIOG
uorjeoId anpea oy} Yjdop-ur sosAeue j100foxd oyfJ, AYJSIOATU() 01043 SO earyear)) osoueder Qg
‘stsATeur 1oy pue sdrgsuorje[ar
[B100s JO SUIMOYS 9} S9JRII[IOR] PUR OJUOIQT, JO A}IS
-I9ATU () 9) e podo[eAsp Ued(SBY POYIRIA I oYL, RUUDIA JO ANSIOATU() IR)GT miGT LT
‘S[OpPOW PajeaId d1} JO 9sN IoY}INn} pue
JueteAoIdl 91} I0] pue $9ss9001d sseulstq jo Ul
-powr pajergojul ur 10§ sdogs sesrIduiod SULIOUIFUS (L) ASorouyoaq,
$s9001d SSOUIST] I0] POYJoW JUI[PPOW STLIO oY, JO 0INJI)SU] oYNIS[Iey] SNYOH SNYOH 97
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

242 of 257

APPENDIX C. OMILAB MODELLING METHODS

‘suorjestjdde JUOWUIOA0N)-0 UL SjuoWIMbaI A1

-Imoas Jo uorjejuawo[dur pue udsep oY) ul (010g

‘euery) swSpered (Y) 9INO9)YDOIR USALIP A3ofou 100lo1g 100l
-[epout Jo uoryesridde o) uo peseq st Yorordde m@ -yoaT, JO 9INIIISU] URLIISNY AOD)FSOGOIN -0I AONPFSOGOIN F¢
‘suoryedrjdde juomInIonon)-o Ul sjyuowaImbar A1
-Imoas Jo uorjejuowo[dur pue udsep oy) ul (010g
‘Puely) swdpered (Y(JN) ©INO9IYDIR UDALID A8orou TASAN TASAN
-epowt jo uorjentjdde a1y o poseq st ypeordde () -YoaT, JO 9INIISU] URLIISNY AOL)IFSOGOTA AODFGIGOIN €€
"STI9)SAS UOTJRULIOJUI PUR UIDISAS UOI}OR S,UOT)
-eZIUBJIO UR JO S}00€] POLIBA 9}R[OIIOIUI PUE d(LIOS
-op 09 segengue| Surfopouw oywads-uremwiop pajeisa)
-ur Jo 3os e sossedwooud ONHIN ~Sulepopy ostid PESSE)
-1 AA1OIASIOI-YNIA 0] POYIOW © ST OINHIN -8IMgsm(Jo AYSI9ATU() OINHIN OdVYONIIN ¢€
"S[OPOW POZI[RULIO] UO PIse(9oURPING [IIm
10730807 soFed IIm JO SISe(A[PUSLY-IOSN © UO JUoUl
-oAoxdur $s0001d pur FULIRYS 93PO[MOUY dAT)RIOR]
-100 weALIp-sse001d syroddns joeloxd pyq wresT oy [, OULIOWR)) JO AJISIDATU() pedquesr avdures] [g
NN YHm O130] UOISIep Jo uorejussardal
oy syoddns pue NINND Pu® NN JO uoIyeiso)
-ur desp ® siopgo 3] o130[sseooid pur O130[SsoU puR[I9Z1IMG
-ISTL] SOPT[OUI UOIYM ‘NIOM OFPI[MOU IO0] POYIOW UI)SOMI}ION S9OUSING IUSISa(]
SuI[[opowr ® SI IUSISO(] NIOAA o3Fpo[mouy| oy, porddy jo AjsieArup) M YIOA\ o8pemouy] (¢
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

243 of 257

APPENDIX C. OMILAB MODELLING METHODS

uorye[NUIIS
SIT YBNOIYY) sjoN 1199 JO 9SN oY) M W)SAS UoIje
-uLIojur Aue SUIApngs 10 SuIqLsap jo Ajiqedes oy

)M Iosn oY) soplaoid ydIgm [00] UOTJR[NUILS ® JO

up

uotyejuowo[duur o) st 109f01d STy} JO [ROS UTRW SY [, -I9g IRIHSIOAIU[) IP[OqUNY SPIONTLIOJ SIONHMPJ 8¢
puR[IoZIIMG
Sur[opowr o8pormouy reorqdels Jo UI9ISOMYIION SOOURIOG S[OPOIA
spuoWRAOIdWI UT PojsoIdul ST OIYM Ayrunwod v porfddy Jo AJIsIoAru() MO o8pomouy] uwad() ¢
's[003 Ful s[ooJ, Surpe
-[oPOUW MAIA-T)[NW 10} suorjeoyroads ugiso(] renydoo -POIN MOIA-TININ
-U0)) SUIPRDID UL SIOdO[oASD [00] PUR SISUMO PO UL Jo ulrso(] renydeo
d[o1 0} peuIre ST poyjaul JUIPPOW [ONSTANN 9T], BUUIIA JO AYSIOATUN) JONPIANN -U0D JOWPIANN 9€
seouaI0g pord
-dy Jo Ajyis1eATu) RIYJULIR)) ogenguer|
"QUIINOI SUIILIOW I8} SULIND *8°9 erjuoul JInjuege[sy SUIOPOTN 90R]ID)
-op 3 ordoad 103 jr10ddns-owroy-je [RPOWIMIN JRISIOATU() RUPY Uad[y TIN-TANIN -UI TePOINTHRIN GE
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

244 of 257

APPENDIX C. OMILAB MODELLING METHODS

‘uoryeziond pue JuawaINsedw douruIofod Yim
uoryeurquiod ur gutddeur yeoy sAojdure yorym ‘enbru
-[09] SurEpom yr)J oY) podo[osop om ‘SIy) ozZI[eal
o], sessoooad Teuorjerado sjr yym AS9jeIls [euorye
-ZIURSI0 9} usIie 0) Aueduwos v 103 jueliodur st 9]

"[003 onbrun ue 0} XXLI}0J Soyeu
UOTUM POzZI[eal sem SISOy SurSIOA\ Aq SION JO UOT)
-isodwo)) ordurg 1eded oY) 03 Surpiodoe rojerodo
uoryisodwoo oty ‘os|y ‘sesodind Ieyj0 I10J o[y ® se
PoI03s 9 URD pur YO A PoImbal ST yoTym eULIO]
® OJUI [OPOW SAI}OR 9} ULIOJSURIY 0) XXLI19d UM
popraoid ST A)[eUOIIOUN] 199I0AU0D Y *(YJOT) I0ZA]
-RUY JON LI139J [9A9T] MO S1[) JO UOIYRISIIUL [[SNOIY)
SjON L9 9zZARuUR XX1I19J ‘erowoyiny -ydeis e
Sk [opOoW 9Y} JO SNJBIS JUSLIND dY) SARIASIP 41 sniJ
"JoN HI39J ® JO INOIARYRQ UIRLISD 9)R[NUWIS 0} IoPIO

ul ouredusy0) o) Ae[d pue [opOUI 0} SO[QRUD XXLIDJ

nz

AJISIOATU() JUBYY)

ug1og]

YB)ISIOATU) -)P[OqUINE]

vod

XXLId

JUOWUII[Y [ROL)

859001

- vohd OF

xmed 6€

(paxeroap-jies) uorpdiiose(q

uorjesrue3iQ

wWAUOIN Y

poefoag A1

245 of 257

APPENDIX C. OMILAB MODELLING METHODS

"o8pormouy JO Uuor)

-1smboe oanerojdxe o) Surelso] serenbs jrun pue
SurRISRIP 9919 1M JUIWLIdAXS 01 SJUOPNIS S6FRIN0D
-Uo suoryejuasordal [eorydeis jo A)[igreirear ojeIpot
-WI O], "SUOIJRN)IS P[IOM [BOI UO Poseq SueIserp
xo[dwoo JO UOIYedID 9} 10 SMO[[R PUR ‘SWRISRIP JO
AY[Iqesnal sopraold ‘UOT1)oeISIUL DITWRUAD SO[qRUS]
‘Aem Ased pue jsej ® Ul SWRISRID SUI}RdID Ul SID
-oea) pue sjuepnis jroddns 0} [0OYDS UL 9STL 91} 10
PoUSISop Uoa(SR SIAOIJ ‘selenbs jun pue surels
-RIp 991} SB SIUOAD JO soouonbes pue senriqeqoid
[BUOI}IPUOD JO UOIJRZI[RNSIA 91} I0J 00} ® ST STAOI]
‘SAAILNTHJ WOIJ SO[NPOW 9IRMIJOS

Suruiquuoo Aq (sAep 03 sIOY UIylIm) A[Ises suorye
-oridde dofeasp 0} pue (uSsep uorjedmdryred Iesn)
ugisep suoryeordde 1y ur ajedmoryred o) srosn puo
syroddns A INIMd (swo)sAs Surures] outyoru
pue ‘sto)sAs SUISUSS JUSTIUOIIAUD PUR URTINY ‘SULO)
-sAs ongoeIp yooads ‘Suwe)sAs FUIUOSrOI pase(93Pa]
-MOUY|) SWYSAS qns Jo sod£) G soyeIdojul Jey) ULIO]
-ye[d juouwrdoressp uoryeordde juaSI{[ejur (@10} © SI

(Suoryeotidge uASIIHILNI 18219 d) SIALNIY

RUUIA JO AJISIOATU[)

SINO1]

Aystoatup) oy SIHLINIYJ

pozIfe
-nstA - A(Iqeqoid gy

SAHINIYd IV

(paxeroap-jies) uorpdiiose(q

uorjesrue3iQ

wWAUOIN Y

poefoag A1

246 of 257

APPENDIX C. OMILAB MODELLING METHODS

“JUOUIUOIIA
-U9 [RUOI}RSIURSIO I191[) PUR SUISISAS 91eM)JOS ‘Juade
-y [pepouwl 0} siodo[eAdp SUIMO[[R ‘SHUTRIISTOD

Amoes 8noay) sjuewalinbor Ajumoos syuasoidol

Jer) odengue] Sulpepour © sopraold sodol], 9Inoog UO)YSLIg JO AJISIDATU() 01,998 sodoi], aamdeg ¥
S[00) puR SPOYJoW SUINUIY) USISOP Ful
-STL UOIJBAOUUI [9POWL SSOUISNI(PUR 9JIAISS ‘1ONPOIJ BUUSIA JO A}SIOATU() NCS [OPOINZOUIDS OF
"I0ZATRUY pUR I0JR[NUIIS
‘10%eIoURr) NH ‘SIOPPOIN SII PUe I JO SISISuod
9] “JUSWIUOIIAUD UOIJRIYLIOA PUR UOIYeIYIads [BNSIA
® UI 91307 SI,5) PUe SNNO[R)-P M SWo)sAs owry A18
“[BoL J[IqOW PANALISIp [opoul 03 [00} & ST AVS ~I9AIU[) [RUOLIRN Nquoys) HAVS HAVS S¥
"sessanoad
SSOUISTL(JO JUSMOAOIAWIT DIJRUDISAS ® Je SWIe JR() BULIOOUTFUSYY
103008 uorponpold se [[om se 8dIAISS o) ur 309foid pue 9OUL[[9OXH
Juowedeurw A)enb Aue ur pesn oq ued IMHAJINY SInqsua8oy Jo ASIoATU) IMAJNY sseoo1d THAJINY
WO} SUISSNOSIp pur FulsA[eur 10J
jutod SurjIe)s ® puR SOLIRUADS [RUOIIRZIURSIO (SSJ)
SWIOISAG 9OIAISG-1ONPOLJ oY} JO UOoIyejuasaIdal ID[[OPOIN
[ensia e opraold 0} SWIe ISPPOJN SOLIRUAIS SSJ QUUSI)-JUIRS SOUIA INESJ OLIRBRUAOG ssd ¢F
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

247 of 257

APPENDIX C. OMILAB MODELLING METHODS

“A[po1dxe sorjuewos ssoursng aanjdeo
0) POUSBISOP puR POIULLIO-102[qo ANy Yjoq st A30]
-opoeu NOS 9yl et) suisserdxe ‘PpoIN 199[qO
JIJUBWIDG SUBSW WAUOIOR O], 'SUIOISAS SSoUISI(

(INOS) PPOIN

surjepowr 10§ A30[opoyjou dAISUSIdwod © ST NS RUUSIA JO AJSIOATU) INOS Woalqo onuewssg 6F
‘os11dI99u0 A1) JO Sa1jIAIlOe pauue[d (agas)
10 JUOLIND 9)RUIOINE 0 ST WAISAS 2Ining oy jo asod u3so(] aseq
-md Arewrtad o) yer) sownsse poylew (qAS Y.L PUR[AIR]A JO A)ISTOATU() agas -eweq onuewos§ Qf
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

248 of 257

APPENDIX C. OMILAB MODELLING METHODS

"SO[8], Po[[e° ‘uorjejusseidel ULIOJIUN ®

Ul S[OPOW BIOW PUR S[OPOUL 8I03S 0} SMO[[R [OIYM
‘wesAs oseddeouo) oY) U0 pose(SI YOO HWSG
‘Sopowl ePW PUR S[EPOW JO AJISOjUI Oy Ful
-)291 I0] SPOY}oUI pur s[00) FuIpraoid ST yooydUG
"SJUOWIS[® [9POW JO UOljejouUR

oY} IOJ o[qR[leA® }I XRW pUR JIOMOWRI] SUlopow
9} Ul SOISO[0JU0 AN WO 'jep 9jeIdojul 0} A}S
~I0ATU[) plojuelg Aq podo[oAdp N[00} 939301] oY}
UM WSTURYDSW 9SURYDXS UR Sopraold romourery
SIAIN®S o3 Jo uorjejuowodil JUOLIND O, "SedIe
o8pormouy Arerjiqre o) poydepe Aises oq ued 91
‘STAINPS Jo yoroxdde o[qixeg oy} 03 oN(] SUISSID
-oxd orjuewes paoueape Afdde 09 Iosn o) o[qrUS
pue eoIe 98po[mouy o) Jo a8ensue] SUIPOW)
PUoIXo Jey} SW)LIOZ[e PUR SWISTURYIOW ‘S[opoul
rIOW 9[qRINSYu0d sopraoid 41 osodind s1y} 10, “edre
o8pormouy renorjred e jussordar ey) sodensue] Sut
-[epow 1en3deduod JO JUSWYDLIUS JIJUBUSS 9} I0]
Mo[[e 07 ST (I JUDS) SUID)SAG UOT)RULIOJU] I0] JI0M

-owrel| SUIPPOJN PoOseg-dIjURUIDG oY} JO WIR oY J,

OpAOYG JO AJSIOATU()

SImoqLig Jo AYNSIOATU)

SPAYHUS

SIAINES

ARUDUWLS TG

(SLANES)
SuI9)SAG uorje

-UWLIOJU] IO} 3IIOM
-owel SUIPPON
poseq-onjuemeg ()G

(paxeroap-jies) uorpdiiose(q

uorjesrue3iQ

wWAUOIN Y

poefoag A1

249 of 257

APPENDIX C. OMILAB MODELLING METHODS

"$0IMN9091JOIR dstIdI9)

-Ud JO SISATeUR pue USISep poseq JVH()J, o2 so[qe
-9 JRY} X0Q[00) JUSWDFRUR]N 9IN309IY0Iy ostidIo)
-Uf Ue JO UOIjeZI[RdI 9} U0 Sosnooj 10ofoxd siyf,
‘Sfopou Byep NHHS WOIJ A[3091Ip 9pod

TS Sunersuss 10] SUOIOUNJ sopnoul 9] “popraoid
St zulG Iewr[y “I(] ‘JoIJ Aq podopaaop se yoeoidde
(INYHS) PPOIN dIysuorye[ay] LUy paInjdnIg o)
Jo uonyejuowRdwl paseq-xxX(O) (Y ur 10oloxd sty up
"SWYSAG

[BOISAYJ I0qAD) woIy seyIiqeded [euorjounj pue sut
-yury) uSisop wogy sydeouod uBisop usemjoq des
oY) o8pLIq O} SI UOIYM ‘OFe UOIJRULIOJSURI) €IS
-Ip oY) Ul dFUS[[RYD e so[yoe) jooford JO[s oy,
surey) Ad

-dng jo juewesorduur pue sISATRUR ‘UOIYRIUSWNIOP
gSurproddns poyjewr Surjopouwr [eoryders ‘ogmoads
-urewop & sopraoid UOIJRZIUOIYPIN[S SMO[[BLIS)
-eW PUE UOIJRUWLIOJUI JO UOI}ORIDIUI SNOUOIYIUAS

' oxmbor surey) A[ddng oarsuodsor pue JUSDIFH

RUUI A JO AISIOATU[)
RLIOJOIJ JO A}ISIOATU() VAL

Sroquueg JO A)JISIOATU() INYAS

BUUSTA JO AJSIDATU) LOIS

BUUDIA JO ASIOATUIPIIRZIUOIYDIIN]S

INVAL
(INgAs)

POYIOIN SUlOpoIy
drysuoryepy A1y

-uy PoInjoONIIg

LOIS

UOTYRZIUOIYIINIS

qq

[

€S

¢S

(paxeroap-jies) uorpdiiose(q

uorjesiuedi() WAUOINY

yooloag

aIl

250 of 257

APPENDIX C. OMILAB MODELLING METHODS

SPOUIRIN SUI[PPOIN GV TINO MOTAIAQ AL T°D) S4BT,
“US1Sop A30]
-09uo urewrop asodimd-rymur ut $)Nsal pur SNOOJ Ul
aA1y00adsIad Sy pue Iosn-pus sjnd Jey) UrRWop UoI
-Ugep A}[RUOIIDUN] dIRMIJOS TIOI] POALIOP POT[IOW ®© ouuesne op o[RIYPYJ gud
st urepow urewop 10j (JNS()) Sutddewr A103s 10s) onbruypelA[og o100y SN -dey L1038 108 96
(paxeroap-jies) uorpdiiose(q uorjesiue8i() WAUOINY 19load (I

251 of 257

APPENDIX C. OMILAB MODELLING METHODS

In a next phase, the availability of development artefacts has been as-

sessed. The criteria for assessment are a) whether an implementation result

can be downloaded (in the form of a configuration library or deployable

tool) and b) the characteristic of the project in focus (implementation of a

modelling method, or general functionality for metamodelling).

ID Acronym

1

2
3
4

© 00 3 O ot

11
12
13
14
15
16
17
18

19
20
21

22
23
24
25
26
27

4EM
BPRIM
ADVISOR
ArchiMate

BD-DS
Bee-Up
BEN
BPFM
NA

CODEK
ComVantage
CUTiDe
DEMO
DIBA

DICE
DICER
DMN

eduWeaver

EVTM

ENTERKNOW

EKD

EC
eGPM
HCM-L
Hermxx
HORUS
iStar

Version
2.2

2.0

N/A
N/A

0.1
1.5

0.3.1
N/A

0.1
0.6
2.1
1.4.1
1.0
2018
1.1
1.0
N/A

8.2
N/A
N/A

Scope?

YES
YES
YES
NO

YES
YES
YES
YES
NO

YES
YES
YES
YES
YES
YES
YES
YES
NO

YES
YES
NO

20131028 YES
2016.05.03 YES

1.0
N/A
0.1
N/A

YES
YES
YES
YES

Comment

No implementation avail-
able, only usage provided
in the projects context

No implementation avail-

able

No implementation avail-

able

No implementation avail-

able

252 of 257

APPENDIX C. OMILAB MODELLING METHODS

ID Acronym

28
29
30
31
32
33

34

35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
o1

52
53
o4
95
o6

JCS
KAMET
KWD
LeanPad
MEMO
MoSeS4eGov
MDSDL
MoSeS4eGov
Project
MMI-ML
MuVieMoT
OKM

PetriNets
Petrixx
PGA
PRINTEPS
ProVis
PS3M
RUPERT
SAVE
S2M
SecTro
SDBD
SOM
SEMFIS
SemCheck

SIMchronization

sIOT
SERM
TEAM
USM

Scope?

Version

N/A YES
0.1 YES
N/A YES
5.0 YES
1.1 YES
1.0 NO
1.0 NO
0.2 YES
1.0 YES
N/A NO
N/A YES
N/A YES
1.2 YES
1.1 YES
1.1 YES
1.1 YES
2.0 YES
3.0 YES
1.5.2 YES
2.1.1 YES
1.0 YES
3.0 YES
0.42 YES
N/A NO
1.0 YES
N/A YES
1.0 YES
0.5 YES
1.0 YES

Comment

Implementation language
DE, does not transform
Implementation language

DE, does not transform

Collection of ideas, no im-
plementation available

Available as metamodel-
ling technique, not a meta-

model

Table C.2: Availability Assessment: OMiLAB Modelling Methods

253 of 257

APPENDIX C. OMILAB MODELLING METHODS

requirement to provide an implementation.

The availability assessment resulted in 50 projects that did fulfil the

Following this scoping phase, the implementation results have been down-

loaded and harmonised. During this step, the library files (in ALL format)

were retrieved, the namespace (as input for the workplace organiser) has been

established based on the project acronym, the artefacts where renamed to a
common naming convention (< ACRONY M > —v. < VERSIONNUMBER >)

and an initial transformation from the binary format to the textual repres-

entation is performed (as part of the import/export adaptor building block)

ID Acronym Version Artefact Namespace

1 4EM 2.2 4EM-v2.2.abl 4em

2 BPRIM 2.0 BPRIM-v2.0.abl bprim

3 ADVISOR N/A ADIVSOR-vNA.abl advisor

5 BD-DS 0.1 BD-DS-v0.1.abl bdds

6 Bee-Up 1.5 Bee-Up-v1.5.abl beeup

7 BEN BEN-v1.0.abl ben

8 BPFM 0.3.1 BPFM-v0.3.1.abl bpfm

10 CODEK 0.1 CODEK-v0.1.abl codek

11 ComVantage 0.6 ComVantage-v0.6.abl comvantage

12 CUTiDe 2.1 CuTiDe-v2.1.abl cutide

13 DEMO 1.4.1 DEMO-v1.41.abl demo

14 DIBA 1.0 DIBA-v1.0.abl diba

15 DICE 2018 DICE-v2018.abl dice

16 DICER 1.1 DICER-v1.1.abl dicer

17 DMN 1.0 DMN-v1.0.abl dmn

19 EVTM 8.2 Testbed-v82.abl testbed

20 ENTERKNOW N/A Enterprise Knowledge enterknow
Development-vNA .abl

22 EC 20131028 EvaluationChains- evaluation-
v2131028.abl chains

23 eGPM 2016.05.03 eGPM-v2016.05.03.abl egpm

24 HCM-L 1.0 HCM-L-v1.0.abl heml

25 Hermxx N/A hermxx-vNA.abl hermxx

26 HORUS 0.1 HORUS-v0.1.abl horus

27 iStar N/A iStar-vNA.abl istar

28 JCS N/A JCS-vNA.abl jes

29 KAMET 0.1 KAMET-v0.1.abl kamet

254 of 257

APPENDIX C. OMILAB MODELLING METHODS

ID Acronym Version Artefact Namespace

30 KWD N/A Knowledge Work Designer- kwd
vINA.abl

31 LeanPad 5.0 LearnPAD-v5.0.abl learnpad

32 MEMO 1.1 MEMO4ADO-v1.1.abl memo

35 MMI-ML 0.2 MMI-ML-v0.2.abl mmi

36 MuVieMoT 1.0 MuVieMoT-v1.0.abl muviemot

38 PetriNets N/A PetriNets-vNA.abl petrinets

39 Petrixx N/A Petrixx-vNA.abl petrixx

40 PGA 1.2 PGA-v1.2.abl pga

41 PRINTEPS 1.1 PRINTEPS-v1.1.abl printeps

42 ProVis 1.1 ProVis-vl.1.abl provis

43 PS3M 1.1 PSSScenario-v1.1.abl pss

44 RUPERT 2.0 RUPERT-v2.0.abl rupert

45 SAVE 3.0 SAVE-v3.0.abl save

46 S2M 1.5.2 Scene2Model-v1.5.2.abl s2m

47 SecTro 2.1.1 SecTrop-v2.1.1.abl sectrop

48 SDBD 1.0 SDBD-v1.0.abl sdbd

49 SOM 3.0 SOM-v3.0.abl som

50 SEMFIS 0.42 SEMFIS-v.0.42.abl semfis

52 SIMchronization 1.0 SIMchronization-v1.0.abl sim-

chronization

53 sIOT N/A sloT-vNA.abl siot

54 SERM 1.0 SERM-v1.0.abl serm

55 TEAM 0.5 TEAM-v0.5.abl team

56 USM 1.0 User Story Mapping- wuser story-
v1.0.abl __mapping

Table C.3: Artefacts and Namespaces: OMiLAB Modelling Methods

Analysing the code base for evaluation the following statistics could be

derived. This table presents the counting of code lines, external files (that

are provided as part of the implementation for additional functionality and

embedded code) and their line count.

This statistical analysis has been

performed to establish an understanding of the scope of the evaluation and

extend of metamodels implemented.

255 of 257

APPENDIX C. OMILAB MODELLING METHODS

ID ALL File Code Lines File count Code Lines
in Files
1 4EM-v2.2.all 6733) 169
2 BPRIM-v2.0.all 4716 19 566
3 ADIVSOR-vNA.all 10521 34 928
5 BD-DS-v0.1.all 4143 2 65
6 Bee-Up-v1.5.all 68993 61 1311
8 BPFM-v0.3.1.all 49330 119 3716
10 CODEK-v0.1.all 45496 121 3825
11 ComVantage-v0.6.all 16981 64 1563
12 CuTiDe-v2.1.all 60493 60 1016
13 DEMO-vl.41.all 47442 127 4266
14 DIBA-v1.0.all 5616 34 548
15 DICE-v2018.all 33246 124 3831
16 DICER-vl.1.all 2682 6 82
17 DMN-v1.0.all 3270 1 1
19 Testbed-v82.all 22019 4 11
20 Enterprise Knowledge 4840 32 1263
Development-vNA.all
22 EvaluationChains- 14937 9 10
v2131028.all
23 eGPM-v2016.05.03.all 30181 353 9506
24 HCM-L-v1.0.all 5031 43 1670
25 hermxx-vNA.all 17613 32 1299
26 HORUS-v0.1.all 10716 28 334
27 iStar-vNA.all 14513 289 6880
28 JCS-vNA.all 1365 0 0
29 KAMET-v0.1.all 2775) 292
30 Knowledge Work Designer- 57255 146 4040
vNA.all
31 LearnPAD-v5.0.all 80001 178 5242
32 MEMO4ADO-v1.1.all 53111 493 31485
35 MMI-ML-v0.2.all 2953 9 101
36 MuVieMoT-v1.0.all 4616 14 444
38 PetriNets-vNA.all 9050 80 4940
39 Petrixx-vNA.all 2389 11 692
40 PGA-v1.2.all 2920 15 595
41 PRINTEPS-vl.1l.all 8133 19 523

256 of 257

APPENDIX C. OMILAB MODELLING METHODS

ID ALL File Code Lines File count Code Lines
in Files

42 ProVis-vl.l.all 3474 15 915

43 PSSScenario-v1.1.all 10404 0 0

44 RUPERT-v2.0.all 39588 59 3625

45 SAVE-v3.0.all 7329 29 1698

46 Scene2Model-v1.5.2.all 55938 299 4840

47 SDBD-v1.0.all 58327 314 6475

48 SecTrop-v2.1.1.all 7916 44 1903

49 SEMFIS-v.0.42.all 65401 60 3372

50 SERM-v1.0.all 1998) 214

52 SIMchronization-v1.0.all 5217 41 950

53 sloT-vNA.all 48527 114 1484

54 SOM-v3.0.all 40102 397 11974

55 TEAM-v0.5.all 8596 6 401

56 User Story Mapping- 7498 7 473
v1.0.all
Sum 1064395 3927 129538

Table C.4: Code Statistics: ALL Repository for Evaluation

257 of 257

	Abstract
	Zusammenfassung
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Definitions/Equations
	List of Abbreviations
	Introduction
	Motivation
	Observations
	Problem Statement
	Challenge 1: Adequate Metamodels
	Challenge 2: Heterogenous Modelling Environments
	Challenge 3: Digital Intelligence

	Research Objective
	Research Methodology
	Structure

	Foundations and Related Work
	Digital Intelligence
	Digital Ecosystems
	Information Systems
	Design Thinking
	Models and Modelling
	Metamodels and Metamodelling
	Knowledge Representation: Conceptual Structures
	Metamodels as Conceptual Graphs
	Federated Architecture in Information Systems Design
	Software System Behaviour Analysis

	Design of Digital Intelligence Ecosystems
	Problem Space: Digital Intelligence Environment
	Motivational Case: Smart On-Demand Mobility
	Motivational Case: Smart Battery Management
	Requirements for Digital Intelligence Ecosystems

	Metamodel Federation for Digital Intelligence Ecosystems
	CoChaCo Metamodels as Conceptual Structures
	CoChaCo Metamodel
	Metamodelling using CoChaCo: Grammar

	Foundation: Conceptual Graphs
	Structure of Conceptual Graph
	Basic Operations on Conceptual Graph

	Metamodels as Conceptual Structures
	Abstract Conceptual Vocabulary for Metamodels
	CoChaCo Metamodels as CGs

	Modelling Ecosystems
	Harmonisation Concepts for Metamodels
	Harmonisation of Metamodels during Design
	Harmonisation Concept: Metamodel Alignment
	Harmonisation Concept: Operational Metamodels

	Federation Concepts in Heterogenous Modelling Ecosystems
	Digital Intelligence Building Blocks: Anatomy
	Operation of Digital Intelligence Building Blocks

	Technical Realisation Concept
	Architecture of DeMoMa
	DeMoMa::IDE (Integrated Development Environment)
	DeMoMa::Harmony
	DSL Programming Interface (CoChaCo)
	Alignment Calculator
	Import/Export Adaptors
	Conceptual Graph Transformer
	Conceptual Graph Visualizer

	DeMoMa::Intel
	Intelligence Services
	Retrieval and Adaptation
	Functional Building Blocks Repository
	Configuration and Deployment Adapter

	DeMoMa::Shared Modules
	Conceptual Graph Query Interface
	Conceptual Graph Reasoning Interface

	Technology Assessment

	Evaluation
	Structural Evaluation: OMiLAB Metamodels
	Information Acquisition
	Assessment
	Mapping and Transformation
	Knowledge Operations for Metamodelling
	Publishing

	Environment Evaluation: IBPM
	Requirements: IBPM
	Metamodelling using Building Blocks for IBPM
	Instantiation of Building Blocks
	Assessment and Evaluation

	Conclusions
	Summary
	SWOT Analysis
	Discussion and Outlook

	References
	Appendices

	CoChaCo EBNF Railroad Diagrams
	Prototype Technology
	Overview Prototype Technologies
	Development Environments
	Development Languages

	Prototype Code Fragments

	OMiLAB Modelling Methods

