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Abstract  

Metabolomics, in contrast to its relative’s genomics, transcriptomics and proteomics, 

is one of the newcomers of omics technologies trying to target the connection between 

genetic processes and external factors directly linked to a cell’s phenotype. Not all 

genes are translated into active products, but metabolite concentrations are 

instantaneously influenced by intra- and extracellular alterations allowing a valuable 

snapshot of the healthy or pathogenic phenotype.  

The ultimate hallmark of cancer is a rewiring in metabolism to foster proliferation. More 

and more evidence lead to the assumption that considering cancer solely as genetic 

disease is an oversimplification but approaching cancer in the context of its altered 

metabolic pattern allows a deeper understanding of the disease onset and progress 

and may help finding new therapeutic targets and biomarkers.  

Since the metabolome is a complex mixture of compounds with very diverse 

physicochemical properties, the biggest challenge is to implement a method that 

covers a high number of different metabolites. The combination of liquid 

chromatography and high-resolution mass spectrometry (LC-MS) enables a highly 

sensitive measurement of a broad spectrum of metabolites involved in cancer-specific 

pathological processes. 

In this thesis, the aim was to establish a method that allows to detect a broad number 

of metabolites in an untargeted approach, using ultra-high-performance liquid 

chromatography (UHPLC) separation coupled to a high-resolution mass spectrometer, 

the Q-ExactiveTM hybrid quadrupole OrbitrapTM (Thermo Scientific). This method 

demonstrates that LC-MS metabolomics can be applied in revealing cancer specific 

metabolite patterns by identifying pathways and metabolite classes and further use this 

information in biomarker discovery. 

In this work, first the best conditions regarding sample preparation, choice of column 

and MS conditions were evaluated by profiling cell culture media. The focus was to 

acquire the maximum identifications as well as the best peak shapes and separations 

in the chromatogram. When precipitating the sample with methanol (MeOH), 

lyophilizating and resuspending it in water and using two types of columns, C18 and 

amide, to cover polar and apolar metabolites, the highest amount of identifications 

could be detected. Using the optimal settings, relevant samples of breast cancer cells 
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belonging to different subtypes were analysed Apart from the well-recognized shift 

from aerobic to anaerobic glycosylation, metabolic pathways involved in lipid 

metabolism show alterations in order to support carcinogenesis.  In conclusion, LC-

MS metabolomics turns out to be a potent tool to observe differences in metabolic 

signatures triggered by the cell’s pathological state. Developing new biomarkers, 

diagnostic approaches or treatment targets grounding on a deeper understanding of 

molecular pathways involved in disease progression, can be achieved. 
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Zusammenfassung  

Metabolimik gehört im Gegensatz zu seinen Verwandten Genomik, Transktiptomik und 

Proteomik zu den Newcomern der Omics-Technologien, die versuchen genetische 

Prozesse mit externen Faktoren zu korrelieren, um den Phänotyp einer Zelle zu 

erforschen. Nicht alle Gene werden in aktive Produkte übersetzt, aber interne und 

externe Veränderungen haben einen sofortigen Einfluss auf die 

Metabolitkonzentrationen einer Zelle und repräsentieren eine wertvolle 

Momentaufnahme des gesunden oder pathogenen Phänotyps. 

Das ultimative Kennzeichen von Krebs ist eine Neuverkabelung des Stoffwechsels, 

um dessen Proliferation voranzutreiben. Mehr und mehr Beweise führen zu der 

Annahme, dass die Betrachtung von Krebs als rein genetische Erkrankung zu sehr 

vereinfacht ist. Die Annäherung von Krebsentstehung in Zusammenhang mit des 

veränderten Stoffwechselmusters, ermöglicht ein tieferes Verständnis des 

Krankheitsbeginns und -fortschritts und kann zu neuen therapeutischen 

Angriffspunkten und Entdeckung krebsspezifischer Biomarker führen. Da das 

Metabolom ein komplexes Gemisch von Stoffklassen mit sehr unterschiedlichen 

physikalisch-chemischen Eigenschaften ist, besteht die größte Herausforderung darin, 

eine Methode zu implementieren, die ein breites Spektrum abdecken kann. Die 

Kombination von Flüssigkeitschromatographie und hochauflösender 

Massenspektrometrie ermöglicht eine hoch empfindliche Messung eins breiten 

Spektrums an Stoffwechselprodukten, welche in Krebsspezifische pathologische 

Prozessen involviert sind. 

Das Ziel dieser Arbeit bestand in der Etablierung einer Methode, die eine breite 

Detektion von Metaboliten im Zuge eines “untargeted metabolomic” Ansatzes 

ermöglicht. Unter Verwendung von ultra-hochleistungs Flüssigkeitschromatographie 

(UHPLC) und hochauflösendem Q-ExactiveTM Massenspektrometer (Thermo 

Scientific) konnte gezeigt werden, dass LC-MS ein vielversprechender Weg ist mit der 

Aufdeckung krebsspezifischer Metabolitmuster und deren Korrelation mit den 

aktivierten Stoffwechselwegen, die Biomarker Forschung voranzutreiben. 

Zunächst wurden die optimalen Bedingungen bezüglich Probenvorbereitung, 

Säulenwahl des LC- Systems, sowie MS- Bedingungen durch Analyse von 

Zellkulturmediums bewertet. Der Schwerpunkt lag auf der Erfassung der maximalen 
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Identifikationen sowie der besten Peakformen und -trennungen im Chromatogramm. 

Die Ergebnisse zeigen, dass mit der Vorbereitung der Probe mit Methanol (MeOH), 

Gefriertrocknung und Re-Suspendierung in Wasser und der Verwendung von zwei 

Säulentypen, C18 sowie der Amidsäule, um polare und apolare Metabolite 

abzudecken, die höchste Anzahl von Identifikationen erreicht wird. Unter Verwendung 

der optimalen Einstellungen wurden relevante Proben von Brustkrebszellen, die zu 

verschiedenen Subtypen gehören, analysiert. Abgesehen von der allgemein 

anerkannten Verlagerung von aerober zu anaerober Glykosylierung zeigen die am 

Lipidstoffwechsel beteiligten Stoffwechselwege Veränderungen, um die 

Kanzerogenese voranzutreiben. Zusammenfassend lässt sich sagen, dass sich die 

LC-MS-Metabolomik als ein wirksames Instrument zur Beobachtung von 

Unterschieden in den Stoffwechselsignaturen erweist, die durch den pathologischen 

Zustand der Zelle ausgelöst werden. Das tiefere Verständnis von molekularen Pfaden, 

die an der der Krankheitsprogression beteiligt sind, kann die Entwicklung neuer 

Biomarker, Diagnoseansätze oder therapeutische Angriffspunkte fördern.  
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1 Introduction 

Metabolomics, compared to its predecessor’s genomics, transcriptomics and 

proteomics, gives the ultimate approach to connect the genetic processes and dynamic 

impact of external factors represented in an altered metabolic state, thus allowing the 

best image of its pathogenic phenotype.  

1.1 Metabolomics as a diagnostic approach in cancer research  

The ultimate hallmark of cancer is a rewiring in metabolism to foster proliferation. 

Approaching cancer in the context of its altered metabolic pattern allows a deeper 

understanding of the disease and progress and may help finding new therapeutic 

targets and biomarkers 1–5. 

1.1.1 The metabolome  

Since the breakthrough of the human genome sequencing 6, and the knowledge of the 

flow of information described as the central dogma, our understanding of cellular 

processes has increased drastically during the last century. The main conclusion 

obtained, was that our hereditary instruction is captured in the DNA, the information 

flows from genes to mRNA to proteins and accounts for every biological organism 7. 

All cells have a fixed instruction of what can happen, captured as complete set of DNAs 

in the genome. The information that is actually active is transcribed into mRNA 

transcripts, which all combined represent the transcriptome. The mRNA transcripts 

serve as messenger communicating the cells work plan that is carried out by 

translation into proteins which catalyse biochemical reactions of the final end products, 

known as metabolites. Hence, the central dogma misses to consider that the actual 

objective of genes, transcripts and proteins is to regulate these small molecules which 

are major influencers of cell function and dysfunction themselves 8–10. The term 

metabolome was first introduced by Stephen G. Olivier 11 and defines the complete set 

of all small molecular substrates less than 1500 Da, including nucleotides, amino acids, 

carbohydrates or lipids12,13. By granting biochemical feedback metabolomics 

represents the superglue across all omics layers, instead of being solely an information 

sink. Because it is considered as the endpoint of the omics cascade, it is the closest 

to the cell´s phenotype and the ultimate effector of the cellular machinery 14. 
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Metabolomics tries to identify the complete metabolome in cells and tissues to gain a 

comprehensive understanding of the interaction of genomics, transcriptomics and 

proteomics with high throughput technologies like nuclear magnetic resonance 

spectroscopy (NMR) or mass spectrometry (MS) 13,15.  

In the genomics era the spotlight was focused on using genetic mutations for 

understanding diseases and individualizing therapy. Unfortunately, directly linking the 

genotype to the phenotype is missing important aspects because a disease is rather a 

result of an interplay of multiple genetic mutations and external factors like environment 

or lifestyle, rather than the result of only a single mutation. Many steps separate a gene 

from its ultimate outcome but because metabolites are seen as the downstream result 

of genetic variation, transcriptional changes, post-translational modifications of 

proteins and the influence of external factors, they capture best what is actually 

happening in the body and are the most representable reporters of any disease status 

9,15. Furthermore, metabolites are not only downstream products of the gene 

expression chain but also required building blocks for each step and disease drivers 

by influencing gene expression, signal transduction or substrates and products of 

enzymatic reactions 1,16–20. 
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Figure 1- metabolome downstream 13,17 
The figure demonstrates how genome, transcriptome and proteome combine in the end point of the 
cascade, the metabolome.  The metabolites, like nucleic acids (NA), amino acids (AA), carbohydrates 
(CH) or fatty acids (FA) are themselves influencing the whole cascade as important building blocks and 
representatives of the phenotype. 

  

Figure 1 demonstrates how on one hand the metabolome symbolizes the endpoint of 

the omics cascade, subsequent to the central dogma framework, and thus the closest 

representative of its phenotype. On the other hand metabolites can loop back into 

steps of the chain as they are required building blocks and influencers of the genome, 

transcriptome and proteome 21. Furthermore, it stresses as mentioned above that the 

genome gives the primary instructions to what can happen to the cell, the workplan is 

passed on with the produced transcripts and carried out by the proteins which are the 

catalysts of all biochemical reactions resulting in metabolites, like nucleic acids (NA), 

amino acids (AA), carbohydrates (CH) or fatty acids (FA) 13.  

 

Alteration in the metabolome through disease or therapy lead to specific metabolic 

patterns which metabolomics seeks to reveal through identifying and quantifying the 

metabolites involved. In conclusion, uncovering the metabolome gaps the bridge of the 

genomic, transcriptomic and proteomic level and the macroscopic phenotype 10,15.  
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The main objective is to reveal more sensitive biomarkers at the metabolic level where 

alterations of metabolite concentrations can provide early evidence of disease 

outbreak, among others in cancer 22,23 diabetes and obesity 10,24 or cardiovascular 

diseases 25. By targeting the individual causes leading to the pathological state of a 

patient, personalized diagnosis and therapy can be progressed and better disease 

outcomes can be achieved 26. 

1.1.2 Breast cancer  

Cancer is the major death cause of the 21st century, rising to 18.1 million new cases 

and 9.6 million deaths in 2018 worldwide 27. Among women, the most common types 

of cancer are breast, lung and colorectal, from which breast cancer accounts for 30% 

of all female cancers (figure 2) 28. 

 

 

Figure 2- world cancer statistics for women population in the USA,2020.  
The number of estimated new cases on the left and the number of estimated deaths on the right 28 

 

Risk factors like pre-existing malignancies, such as obesity, environmental factors, 

hormonal factors, like post menopause state, or inherited genetic variations, are main 

drivers of breast cancer 29. On the molecular level, cancer cells uncouple from normal 

cell control mechanism and rewire their metabolism leading to uncontrolled cell division 

and formation of abnormal cell spreading and invasion of the surrounding area. An 

interplay of inherited or environmentally caused mutations in the genetic code, 

activation of oncogenes, or loss of tumour suppressor genes, sets into motion the 

alteration of several metabolic and regulatory pathways to develop different strategies 

to support cell proliferation and escaping the control mechanisms for apoptosis.  
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This makes cancer the perfect target for metabolomic studies. In this thesis, the main 

focus is directed to breast cancer, which symbolizes a perfect representation of the 

heterogeneity of cancer because of different subtypes with distinct metabolic 

alterations 30. The breast is composed of different cell types and tissues with different 

characteristics and thus cannot be simply summarized to one disease with one 

treatment option. Trying to target breast cancer as a collection of diseases, it can be 

divided into subtypes based on morphological examination and more precisely through 

molecular subtyping which can be distinguished by its receptor expression including 

human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) (table 

1) 31–34. 

 
Table 1- molecular breast cancer subtyping based on the expressed surface receptor 
Only the luminal subtypes express estrogen receptor (ER) and additionally expression of progesterone 
receptor (PR). Her2 is expressed on Luminal B and Her2 overexpressed breast cancers, while triple 
negative subtype lacks any receptor expression.  

 ER PR HER2 

LUMINAL A + +/- - 

LUMINAL B + +/- + 

HER2 

OVEREXPRESSED  

- - + 

TRIPLE NEGATIVE  - - - 

 

The characteristics of HER2 and ER can be used to roughly divide breast cancer into 

four major molecular subtypes, including Luminal A (HER2 negative and ER positive), 

Luminal B (HER2 positive and ER positive), HER2-enriched (HER2 positive and ER 

negative), and triple negative breast cancer (TNBC) (Her2 negative, ER negative) 

(figure 3) 33 . Compared to the ER+ subtypes,TNBC and Her2 overexpressed is 

associated with poor prognosis and shorter survival rate, mainly because they cannot 

be targeted by estrogen receptors 30.  



 16 

  
Figure 3- comparison of Breast Cancer subtypes 33 
The molecular subtyping based on the receptor status ER, PR, HER2 can be observed.  They can be divided into 
four main groups, luminal A and B, HER2 positive and TNB which differ in prognosis and aggressiveness.  

 

Despite immense progress in cancer research breast cancer still leads to high death 

rates among women, due to the lack of adequate systemic therapies and the ability of 

early diagnosis before metastasis 32,35,36. Mammography, ultrasonography or invasive 

biopsies are applied for diagnosing symptomatic breast cancer as well as several 

antigens used as serum markers. Average survival can be increased dramatically by 

early stage diagnosis and treatment before metastasis, therefore non-invasive 

detection methods with high sensitivity and specificity are urgently needed 37. 

The heterogeneity of breast cancer due to different genetic expressions of receptors 

is reflected in the clinical behaviour and used as treatment guidance. However, 

subtyping breast cancer at the molecular level still only leads to assertion of breast 

cancer pathogenesis and disease progression. Metabolomics offers a deeper 

understanding and approach of metabolic mechanisms and exploited pathways 

causing tumour proliferation, in order to improve BC classification and early diagnosing 

36. 

 Many studies focused on revealing reliable metabolic signatures, but so far clinical 

application has not been achieved. Existing studies show high heterogeneity in 

identified metabolic patterns and lack validation. Some reasons may be pointed to 

these various outcomes, the use of different detection methods, sample preparation, 

collection (biofluid, plasma, tissue, urine) and storage 32. 

Metabolomics as a new expanding field which analyses cellular metabolism through 

profiling biofluids like urine or blood, could deepen our understanding of the dynamic 
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interaction between tumour and host and help in non-invasive early disease detection, 

prediction of therapy response or cancer reoccurrence and personalized therapy 36,38. 

1.1.3 Alterations in cancer cell metabolism  

Cancer cells uncouple from normal cell control mechanism and rewire their metabolism 

leading to uncontrolled cell division. Formation of abnormal cell spreading and invading 

the surrounding area represent the primary cause of mortality in cancer patients. For 

a long time, cancer has primarily been viewed as a genetic disease driven by somatic 

mutations in oncogenes or tumour suppressor genes. In 1920 Otto Warburg was the 

first to observe that even though different cancer types vary a lot in their genetic 

mutations, all show a common hallmark in their metabolism, namely shifting aerobic 

respiration to fermentation and largely relying on glucose for energy. Further research 

suggests that gene mutations can be considered a downstream epiphenomenon 

caused by metabolic rewiring 39–41. This makes cancer metabolism the ultimate target 

for metabolomics research and by deepening our knowledge of cancer metabolism our 

understanding of cancer pathophysiology will be progressed and support clinical 

oncology.  

But how to increase biomass so a new cell can be formed although using the same 

metabolic pathways? A multi- step process occurs throughout transforming a healthy 

cell to a highly proliferative cancer cell 42. 

All cells have to take up nutrients from the environment and feed it into metabolic 

pathways to maintain homeostasis between anabolism and catabolism and to sustain 

alive. Thermodynamically unfavourable reactions can only occur when coupled to 

adenosine triphosphate (ATP) hydrolysis. Hence it is not surprising that healthy cells 

dedicate their metabolism to efficient ATP production. Cancer cells aim to proliferate 

as much as possible, therefore their metabolism focuses on increased nutrient uptake 

to generate the required biomass. Unrestrained proliferation can be achieved by a tight 

interplay of nutrient availability, genetic alteration like loss of tumour suppressors, 

mutations in oncogenes integrated and metabolic rewiring controlling activity of 

oncogenic signalling cascades, demonstrated in figure 4 43.  
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Figure 4- interplay of metabolic rewiring 43 

The figure shows that metabolism is a tight interplay of nutrients, signaling cascades, metabolic and genetic 
reprogramming as well as biomass generation. 

 

The most inevitable step as described before, is the increase in nutrient uptake and 

especially glucose and glutamine addiction. This phenomenon is known as the 

Warburg effect and recognized as key hallmark of cancer.  This glucose dependency 

is clinically applied for diagnosing and staging through positron emission tomography 

(PET) scanning with radiolabelled 2-deoxyglucose and 18-fludeoxyglucose. Tumour 

cells tremendously increase glucose uptake and instead of fully oxidizing it through the 

oxidative phosphorylation chain, it is fermented to pyruvate and further to lactate, 

although generating less ATP. Since healthy cells only rely on this pathway in the 

absence of oxygen, Warburg considered this mechanism the result of dysregulation in 

the mitochondria 44.  

This rewiring seems to be a suspect matter because of much less efficient energy 

outcome but looking closer it turns out to be a survival advantage. The cells profit from 

oxygen independency, accumulation of more building blocks through shifting glycolytic 

intermediates to different pathways like tricarboxylic acid cycle (TCA) and pentose 

phosphate pathway (PPP), generation of lactate to acidify the cells environment and 

thus supressing immune response, the establishment of epigenetic regulations of 

specific metabolites  (oncometabolites) and enabling an overall faster ATP production. 

Glucose and the produced intermediates as well as glutamine are the most important 

precursors serving as nitrogen source for ribose sugars, nucleotides and non-essential 

amino acids, generating glycerol and citrate for lipids as well as supply the reducing 
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agent nicotinamide adenine dinucleotide phosphate (NADPH) and nicotinamide 

adenine dinucleotide (NADH) through PPP. As Warburg discovered, mitochondria 

represent the metabolic core to meet the anabolic requirements of cancer cells and 

are crucial in cell proliferation. They are responsible for the synthesis of lipids, proteins, 

nucleic acids and maintain redox homeostasis by supplying the reducing agents NADH 

and NADPH. To perfectly match the metabolic needs, mitochondria are tightly 

controlled by oncogenes and tumour suppressor genes. Genetic mutations in 

metabolic enzymes, like isocitrate dehydrogenase (IDH), succinate dehydrogenase 

(SDH) or fumarate hydratase (FH) lead to accumulation of the oncometabolites (D)-2-

hydroxyglutarate, succinate and fumarate. Those metabolites establish epigenetic 

alterations that directly contribute to cell transformation and demonstrate the interface 

between metabolic rewiring and altered gene expression in cancer 42–46. 

1.1.4 Application of metabolomics: biomarker discovery  

While traditional biomarkers often consist of single molecules, metabolomics tries to 

uncover metabolic patterns serving as biomarker signatures enabling a more sensitive 

and specific detection of the pathophysiological state for diagnosing, predicting, 

staging cancer or evaluating treatment response, drug discovery and personalized 

medicine 47. An ideal biomarker is an objectively, quantifiable and reproducibly 

measured indicator of a patient’s medical state and should be present in easily, non-

invasively accessible body fluids (e.g. blood, urine, plasma) to simplify clinical 

application. It should be highly specific and sensitive for achieving early and accurate 

diagnosis, should alter instantly due to treatment and disease progression and offer a 

comprehensive knowledge about disease mechanism 10,48. 

 

Metabolomics offers many benefits to satisfy the high requirements of biomarker 

discovery. First it allows non-invasive analysis due to metabolites being secreted, in 

comparison to proteomic or genomic biomarkers. Changes at the metabolite level are 

natural outcomes of the onset and prognosis of many diseases and such changes 

often appear in biological fluids before the appearance of clinical symptoms 15. The 

metabolome is considered much smaller than genes, transcripts and proteins and 

subtle changes result in substantial changes in the metabolome representing an 

instantaneous snapshot of the biological state 10,49,50. Due to metabolites being the 
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amplified products of gene, transcript and protein activity, the required sensitivity of a 

metabolic biomarker is achieved, which is particularly important for the evaluation of 

rapid and progressive diseases. Another advantage occurs due to the fact that 

metabolites are not species dependant compared to some genes and proteins, hence 

one method is suitable to study different species and because of highly conserved 

metabolic pathways developing disease models could be achieved. 10. Furthermore, 

the metabolomics approach enables the analysis of multiple sample types, such as 

urine, blood, tissue, or cerebrospinal fluid, among which blood and urine have the 

greatest potential for biomarker identification 13. 

 Despite all this promising features metabolomic biomarker discovery still needs to 

overcome various limitations. Compared to the genome, which has been fully, and 

definitely sequenced, metabolome databases are still lacking information and 

furthermore have to be integrated with systems biology in order to place metabolites 

into biological context. Despite the progresses in database compilation and analytic 

detection, identifying the entire metabolome is presently not possible due to the great 

variety in chemical compound classes and incomplete understanding of cellular 

function. The proteome can be mapped based on the genome, but the size of the 

metabolome still remains unknown and does not consist of a limited number of building 

blocks like nucleotides building the genome or a set of amino acids building the 

proteome 17.  

 

The advantage of the highly sensitive metabolome also results in a downside because 

of many factors influencing the metabolic profile that have to be considered including 

internal impacts such as age, sex and genetics and external like lifestyle, diet, 

analytical techniques and drug treatments and need also be taken into account and 

controlled when designing the metabolic experiment. Therefore it must be 

distinguished if the metabolic alteration results from the pathological state or from 

confounding factors 9. Furthermore, the metabolism is very dynamic, many metabolites 

are produced and degraded in a fast turnover. Samples should be delicately treated 

and considered that sample storing and temperature (ideally -20° to -80°) impact the 

stability of the metabolome 10,51,52. To minimize these challenges and bias, a well-

designed metabolic experiment with large number of replicates and carefully selected 

patients will be necessary to accurately link the biological status with the metabotype 

10. 
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Apparently, the best application of metabolomics so far has been in breast cancer 

revealing an increase in choline containing compounds, a decrease in 

glycerophosphocholine as well as glucose for early detection and reoccurrence 49,53–

58. Kidney cancer shows altered concentrations of acylcarnitine and metabolites 

associated with tryptophan metabolism 49,59,60. Prostate cancer develop different levels 

of citrate concentration which appears to be a better indicator than the currently used 

PSA biomarker49,61,62, as well as total choline (tCho) and phosphocholine 

concentrations, along with an increase in the glycolytic products lactate and 

alanine13,49,63,64. Furthermore the sum of concentration of choline and creatine rationed 

to citrate show aggressiveness as well as sarcosine and N-methyl glycine65,66. In 

ovarian cancer metabolites involved in purine, pyrimidine and glycerolipid metabolism 

are altered 49,67. Lung cancer is significant for lower levels of hippurate and trigonelline, 

and elevated 3-hydroxyisovalerate, α-hydroxyisobutyrate and N- acetylglutamine 49,68. 

In colon cancer, lactate, pyruvate, malic acid and long-chain polyunsaturated fatty acid 

are recognized disease indicators 49,69–71. 

1.2 Metabolomics techniques 

1.2.1 Analytical methods for metabolomics 

The metabolome consists of compounds with high differences in chemical properties, 

size and concentrations leading to one of the bottlenecks of metabolomics, which is 

implementing an analytical technique that is able to cover the whole metabolite 

spectrum 72. Currently no instrument is capable to target the entire metabolome, 

therefore the choice of the analytical approach adds a bias in which metabolites will be 

preferably captured. Achieving the goal to identify and quantify as many metabolites 

as possible, a good method to differentiate metabolites is required and among all 

analytical techniques to choose from, challenges, advantages and differences in 

sensitivity, reproducibility and equipment cost need to be faced. The selection should 

be based on the purpose of analysis and the nature of samples and compounds of 

interest. The most commonly used tools are NMR and MS. NMR differentiates 

metabolites based on chemical shifts. It is highly reproducible and non-destructive to 

the sample plus requires little sample preparation. MS analyses metabolites based on 

their mass to charge ratio, it is considered destructive to the sample due to the required 
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ionization step and demands more extensive sample preparation compared to NMR. 

Nevertheless, MS is often the first choice for metabolomics due to higher sensitivity. 

This enables to detect lower abundance metabolites which is beneficial to increase the 

number of detections in a highly dynamic metabolism. Another advantage is the 

possibility to couple MS to an a priori separation method like gas chromatography (GC) 

or liquid chromatography (LC). With this separation step, an additional dimension with 

the retention time is gained and a decrease in sample complexity is achieved. Further 

it improves sensitivity and facilitates identification by limiting ion suppression due to 

allowing compounds to enter ion source at different times instead of simultaneously by 

direct injection. The majority of metabolites in a cell are polar and involatile demanding 

a derivatization method for GC separation. In comparison, LC allows the separation of 

metabolites in solution and of polar and non-polar metabolites depending on the 

column used and convinces to be the method of choice due to high versatility. 

49,52,73.The analytical differences of NMR and MS are summarised in Table 2.  

 

Table 2-comparison NMR and MS 13,73 

CHARACTERIZATION NMR MS 

SAMPLE   

    VOLUME large sample (500µl)  small sample(1-19µl) 

    INTERVENTION non destructive  destructive 

    PREPARATION simple extensive  

REPRODUCIBILITY  very reproducible  possible variation due to 

sample preparation 

SENSITIVITY low high 

STRUCTURAL 

INFORMATION 

less  high 

PER SAMPLE COST low high 
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1.2.2 LC-MS based metabolomics  

This thesis will focus on the application of LC-MS methodology, as it represents a very 

flexible and promising approach for metabolite analysis due to the broadness of LC 

columns chemistries and mass spectrometers available providing the researcher with 

enormous options. Enabling the detection of many metabolites, LC-MS has become 

the best choice for metabolite profiling. 74,75 

To start, the most suitable chromatography for metabolite separation prior to MS 

detection, must be determined, since it is the most limiting part in metabolome 

coverage 75. To overcome the challenge of covering a vast range of compound classes, 

it can be chosen between different types of columns, like reversed-phase (RP) or 

hydrophilic interaction chromatography (HILIC), to favour physicochemical properties 

and concentration ranges in the same sample 52,75. The sample is injected and 

transported in the mobile phase through a column by applying high pressure. The 

properties of the stationary phase and mobile phase determine how metabolites are 

separated in time by offering different interactions. A higher retention occurs if 

compounds have higher affinity to the stationary phase. The time measured from 

sample injection to elution is described as retention time. The base of the stationary 

phase is made of silica and can be modified by covalently bonding either amino groups 

for hydrophilic interaction and retaining polar substances, known as (HILIC) columns, 

or with octadecyl carbon chains for apolar molecules, known as (RP) columns. The 

mobile phase is mainly injected in gradient elution meaning that the composition 

changes throughout the separation to elute also the most retained metabolites. Hence 

narrow peaks and thus better and faster separation can be achieved. In HILIC columns 

the initial mobile phase condition consists of organic solvents like acetonitrile (ACN) or 

methanol (MeOH) and gradually increasing the aqueous amount and the opposite in 

reversed phase chromatography 76. RP columns are more reliable and robust 

stationary phases compared to HILIC columns but HILIC on the other hand fulfils 

retention of many primary metabolites (including numerous amino acids, amines, 

organic acids, sugars and carbohydrates), that play a key role in biochemical 

processes and can be analysed effectively. Furthermore, the organic solvents increase 

the sensitivity of the MS as consequence to better ionization but demands to consider 

low content of water in the sample injected. Additionally, the use of shallow gradients 

and allowing sufficient re-equilibration time is required to reach acceptable analytical 
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reproducibility to apply HILIC as complementary technique parallel to RP for metabolic 

profiling studies 75. LC-MS based metabolomics uses UHPL rather than HPLC, to 

achieve most efficient analysis due to smaller particle size of the stationary phase 

which improves metabolite separation15,77.  

 

Figure 5- schematic of LC-MS system 78  
The sample is separated by liquid chromatography and then analysed with a mass spectrometer 
consisting of an ion source, a mass analyser and a detector.  
 

After the chromatography, the sample is forwarded into the MS which separates ions 

under high vacuum in gas phase, based on their mass to charge (m/z) ratio using an 

electric or magnetic field. Ions are formed with either electrospray Ionization (ESI), 

atmosphere pressure chemical ionization (APCI) or atmospheric pressure 

photoionization (APPI) (figure 5).  Which one to choose will have a great impact on the 

resulting metabolic profiles. Some metabolites prefer a specific ionisation or polarity 

mode but among all analysing in positive and negative mode with ESI is the favourite 

approach because it is considered a soft ionization due to forming intact ions (figure 

6). ESI uses electrical energy to transform ions into gas phase by forming charged 

droplets. 52,77,79–81 

  



 25 

 

Figure 6- schematic o electrospray ionization82 
High voltage creates a fine mist of droplets and evaporation processes remove the solvent until ions 
can enter the MS  
 

Then ions are focused on a mass analyser and separated depending on their mass to 

charge ratio. The detector plots the m/z values against the signal intensity creating a 

mass spectrum. Metabolomic studies have great interest in the use of high resolution 

mass spectrometers such as orbitrap, time-of-flight mass spectrometer (TOF-MS) and 

Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR- MS). The high 

resolution allows a higher mass accuracy and decreased mass overlap, compared to 

single quadrupole and ion-trap mass analysers 10.  

The most important parameters that determine the efficiency of MS are high resolution 

which describes the ability to ability distinguish two ions with similar m/z values (figure 

7)  and high accuracy which represents the difference between the measured accurate 

mass and calculated exact mass expressed in mass error in parts per million (ppm)76. 

Since the experimentally determined mass and the  calculated mass are not equal, 

mass deviation is used for an accurate assignment of a measured m/z value to a 

specific molecular formula 83. Mass accuracy restricts the number of possible 
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molecular formulae for a specific m/z value ergo the lower ppm the less possible 

formulas. The main objective is to ensure that only one type of ion contributes to a 

particular measurement 84 

 

Figure 7- two compounds (m/z 230) detected with different resolutions 
With lower resolution the two compounds with similar monoisotopic masses appear in one peak 84 
 

In metabolomics, where complex biological samples are analysed and cause 

background ions from the matrix, high resolution is from high importance. Therefore, 

this thesis uses Q-ExactiveTM Focus hybrid quadrupole OrbitrapTM mass spectrometry 

(Thermo Scientific), which is widely used in untargeted metabolomics due to high 

resolution (R=70 0000) and mass accuracy. 

In a Q-ExactiveTM ions and neutrals enter the mass spectrometer from the ion source. 

A bent flatpole prevents neutrals to enter the quadrupole where m/z values can be 

preselected and only the corresponding ions can pass and enter the C-trap which 

shoots the ions into the orbitrap mass analyser or send them to the collision cell for 

fragmentation and MS/MS analysis. The fragments are sent back to the C-trap and 

further to the orbitrap mass analyser for detection 76. In an orbitrap mass analyser, ions 

oscillate around a spindle in trapped orbits causing an ion separation depending on its 

individual frequency. An image current of these oscillation frequencies can be 

measured and transformed into a mass spectrum by fast Fourier transform of the 

current. 76,85,86 (figure 8). To accurately identify a compound and gain structural 

information, producing fragmentation patterns with MS/MS on top of received retention 
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time and mass to charge ratio, is advised to narrow down the list of potential metabolite 

identifications 75. The fragmentation patterns of the tandem MS can be compared to 

standards in spectral databases to confirm the identification 87.  

 

 

Figure 8- schematic of the Thermo ScientificTM Q-ExactiveTM mass spectrometer 
A bent flatpole, a quadropole mass filter, a C-trap a higher collision cell induced dissociation cell (HCD) 
and an orbitrap mass analyser are the important elements of a Q-ExactiveTM mass analyser 
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1.2.3 Metabolomic workflow: targeted and untargeted   

The main steps for a metabolomics approach in biomarker discovery can be 

summarized in three parts: data collection, data processing and data analysis (figure 

9).  

 

  

Figure 9- steps for biomarker discovery in metabolomics 88 
 The backbone of biomarker discovery by metabolomic is built by collection, processing and analyzing of huge 
amount of data.  

 

Samples can be collected from several biological fluids, like tissue, blood, serum, 

plasma, urine, cero spinal fluid or saliva 89. Sample preparation depends on the sample 

type and analytical tool applied but should be as simple and non-destructive as 

possible to avoid metabolite degradation and allow fast analysis 52,90. Essential steps 

include a non-selective, wide metabolite range and reproducibility in measurements 

should be strived for, as the sample preparation impacts the observed metabolite 

profile as well as the quality of the obtained data 90.Then the samples can be analysed 

with LC-MS, the raw signal obtained is called a feature and graphed as MS1 in a three-

dimension plot with m/z, retention time and intensity on the axes. An ion of interest is 

isolated and further fragmentated by collision energy resulting in a pattern and used 

for compound identification (Figure 10)17.  
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Figure 10- symbolic illustration of LC-MS data 17 

The detected compouds are scaled with their mass to charge ratio plotted against the intensity of the peak. To 
obtain an MS2 spectrum singular peaks of MS1 can be further fragmented.  

 

Since high resolution MS operate in a scan mode of 50-1000 amu to cover mass 

ranges of small metabolites, a big set of mass spectra is generated and needs to be 

mined by noise filtering, peak picking, peak alignment and peak integration, to 

compress the detection into one feature. This is usually carried out by a MS 

manufacturer software which also carries out feature identification with web based 

resources 52 Compounds are identified by comparing the accurate mass , retention 

time and MS2 fragmentation patterns with metabolite libraries and databases like 

HMDB (https://hmdb.ca), MzCloud (https://www.mzcloud.org) or Chemspider 

(http://www.chemspider.com) 52,91. A major bottleneck is that the human metabolome 

is by far not completely identified and unknown metabolites cannot be matched. Due 

to incompleteness of databases the accuracy of identification is limited and therefore 

recommended to validate with standards because if a substance is not registered in a 

database it is matched with the next most similar component and incorrectly identified 

92. Although confident identification remains a challenge, the most reliable way is the 

comparison to authentic standards, identification on m/z ratios, retention time and MS2 

pattern. This grants important guidance for metabolite verification by reducing the 

number of possible identifications. 93 
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Metabolomics can be accessed targeted or untargeted. Targeted metabolomics is 

considered as hypothesis driven rather than hypothesis generating because it focuses 

on specific pathways that play an important role for the function of a cell and quantifies 

preselected metabolites. This way only a selected amount of the whole metabolite 

spectrum is considered but with the aim to analyse those in a more sensitive, accurate 

and quantitative approach. Absolute identification is still a bottleneck in metabolomics, 

especially in an untargeted approach, in targeted metabolomics isotope labelled 

internal standards can be incorporated to quantify. Untargeted metabolomics on the 

other hand strives to cover the full spectrum of a cell’s metabolism including known 

and unknown compounds. It focuses on relative quantifications due to comparing peak 

intensities as concentration indicator trying to detect unforeseen changes in metabolite 

concentrations 17,94. While in targeted approach internal standards and calibration 

curves with authentic standards can be used for absolute quantification95,in untargeted 

analysis it is impossible to have internal standards and calibration curves for all the 

detected unknown metabolites. Therefore targeted metabolomics is better in terms of 

quantification, whereas untargeted metabolomics strives for broader coverage 76. 

Due to instrumental variations, such as changes in pressure, temperature or column 

aging, QC samples can be incorporated in the analysis to assure the stability of the 

analytical system. and correct for signal drifts. QC samples include a mixture of all 

samples that are analysed and signal drifts can be corrected 96. Since high throughput 

technologies generate a large amount of data, statistical analysis, like uni- or 

multivariate, should be carried out. Principal component analysis (PCA )as 

unsupervised dimension reduction is the most applied. It reduces the number of 

variables in the dataset while still retaining most variation of the original data. Without 

prior knowledge of sample classes, differences in samples based on their metabolite 

composition and identification of outliers can be achieved 10. From this, possible 

biomarkers are suggested and can be correlated to the underlying metabolic pathway 

to allow meaningful interpretation 88. Identification of putative biomarkers is only the 

starting point to reach clinical diagnostic a validation is the essential following step 49.  

1.3 Aim of the thesis 

The main objective of this thesis is to establish a methodology for profiling cancer cell 

media and identifying excreted metabolites in an untargeted approach by using LC-

MS metabolomics. The second objective is to evaluate metabolic patterns specific for 
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breast cancer cells through observing significantly changing metabolites from fresh 

and spent media which may support discovery of potential biomarkers and novel 

disease mechanisms. Resulting biomarkers can be used as early and non-invasive 

diagnostic tools, to individualize therapy options or as treatment monitoring in the field 

of precision medicine. 
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2 Materials and methods  

2.1 Samples 

2.1.1 Experiment 1: optimization of sample processing methods  

Cell culture medium DMEM (# 41966-029, Invitrogen) supplemented with 10% FBS 

(Life Technologies) and 1% (v/v) Penicillin and streptavidin (Life Technologies). Breast 

cancer cell line HCC 1806 was originally obtained from ATCC (ATCC #CRL-2335). 

Samples of the plain media DMEM were collected and represent the sample day zero 

(D0). After four days the medium DMEM containing the breast cancer cell line HCC 

1806 was collected and represents the sample day four (D4) 

2.1.2  Experiment 2: untargeted profiling of cell culture media  

Cell culture medium DMEM (# 41966-029, Invitrogen) supplemented with 10% FBS 

(Life Technologies) and 1% (v/v) Penicillin and streptavidin (Life Technologies). Breast 

cancer cell line HCC 1806 was originally obtained from ATCC (ATCC #CRL-2335). 

Samples of the plain media DMEM were collected and represent the sample day zero 

(D0). After four days the medium DMEM containing the breast cancer cell line HCC 

1806 was collected and represents the sample day four (D4) 

2.1.3 : Experiment 3: comparing relevant samples of breast cancer 

Cell lines HCC1954 cell line was originally obtained from ATCC (ATCC #CRL-2338). 

The culture medium for this cell line is composed by Roswell Park Memorial Institute 

1640 (RPMI1640) medium, no phenol red (#11835-063, Invitrogen) supplemented with 

10% (v/v) FBS (Life Technologies), 1% (v/v) Penicillin and streptavidin (Life 

Technologies), 0.5mL 2-β-Mercaptoethanol (#21985-023, Life Technologies) and 3mL 

HEPES (Life technologies). Cells were cultured at 37 °C in a 5% CO2 atmosphere and 

medium were changed twice a week. BT474 cell line was also obtained from ATCC 

(ATCC #HTB-20) and cell culture was performed with the same method. The medium 

used with this cell line was RPMI 1640 medium, no phenol red (#11835-063, 

Invitrogen) supplemented with 10% (v/v) FBS (Life Technologies) and 1% (v/v) 
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Penicillin (Basal RPMI). MDA-MB-231cell line was obtained from ATCC (#HTB-26) and 

cell culture method was as described as before. The medium used was DMEM (# 

41966-029, Invitrogen) supplemented with 10% FBS (Life Technologies) and 1% (v/v) 

Penicillin and streptavidin (Life Technologies).  

 

Table 3- cell line classification 
Breast cancer subtypes based on the expression of surface receptor for hormones and growth factors. Estrogen 
Receptor (ER) is expressed only on the luminal subtypes while the Progesterone Receptor (PR) has phased 
expression on the same subtypes. Her2 is expressed on Luminal B and Her2 overexpressed breast cancers.  
 

CELL LINE BC SUBTYPE  SOURCE  MEDIA  

HCC 1806 Triple negative  ATCC CRL-

2335 

RPMI+FBS+Penstrep+ 

HEPES+2-β-Mercaptoethanol 

HCC 1954  Her2 +  ATCC CRL-

2338  

RPMI+FBS+Penstrep+HEPES 

+ 2-β-Mercaptoethanol 

BT474  Luminal B  ATCC HTB-20 RPMI+ FBS+Penstrep  

MDA-MB-231 Triple negative  ATCC HTB-26  DMEM+ FBS+ Penstrep  

 

From three different cell lines HCC1806, HCC1954, BT474, MDA-MB-231 (table 2) 

fresh media (day 0) and spent media after 4 days (day 4) was collected. 

2.2 Sample preparation  

2.2.1 Experiment 1:  

The cell culture media DMEM was analysed to develop the best precipitation mode.  

100 µl DMEM were placed in four different 1.5 ml Eppendorf vials. In two 300 µl MeOH 

was added and in the other two 400µl ACN. Protein precipitation was performed over 

night by storing the vials at - 20 °C.  The next day all samples were centrifuged at -4 

°C 14000 RPM for 10 minutes. The supernatant was collected from one MeOH and 

one ACN vial for directly injecting 5µl and 10 µl into an amide column. The other MeOH 

and ACN vial were lyophilizated using a vacufuge (Eppendorf). The dried samples 

were resuspended in 200µl H2O and 5 µl injected into a reversed phase C18 column 

prior mass spectrometry.  
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2.2.2 Experiment 2 and 3:  

Supernatant form cancer cell line was collected and centrifuged for 5min 300G at 4°C, 

again collecting the supernatant and centrifuging 5 min 1000G at the previous 

temperature and storing the samples at minus 80°C.  

Frozen samples were thawed and 100 µl were placed in a 2ml Eppendorf vial. Protein 

precipitation was performed over night by using 300 µl MeOH and stored at - 20 °C.  

The next day sample was centrifuged at -4 °C 14000 RPM for 10 minutes. The 

supernatant was collected and 200 µl of the supernatant were placed into a new 

Eppendorf vial and the remaining 200 µl into another Eppendorf vial. One Eppendorf 

vial was used for direct injection (10µl) into the amide column the other one was 

lyophilizated using a vacufuge. The dried samples were resuspended in 200 µl H2O 

and injected (5µl) into a reversed phase C18 column prior mass spectrometry.  

2.3 Liquid Chromatography and mass spectrometry conditions  

2.3.1 Reagents 

Following solvents have been used for LC-MS analysis, including 0,1% formic acid in 

water and 0.1% formic acid in ACN Optima LC-MS (Fisher Chemical), ACN and MeOH 

Optima LC-MS (Fisher Chemical), Ammonium Acetate 0.25M HPLC (Fisher 

Chemical).  

2.3.2 C18 Column  

Chromatographic analysis was performed on an UltiMate 3000 UHPLC (Thermo 

Scientific). The separation was performed using a Waters XBridge column C18 

(2.1x150mm, 3.5 µm particle size, P/N 186003023. The mobile phase A was water 

with 0.1% formic acid (v/v), and mobile phase B was acetonitrile with 0.1% formic acid 

(v/v) (Optima LC/MS Grade, Fisher Scientific). The gradient program is listed in table 

3. The column temperature was maintained at 30°C, and a flow rate of 400 µl/min was 

used. 
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Table 4- gradient program for C18 column 

TIME (MIN) MOBILE PHASE A (%) MOBILE PHASE B (%) 

1.0 99 1 

13.0 1 99 

15.0 1 99 

16.0 99 1 

20.0 99 1 

 

The data was acquired on Q-ExactiveTM Focus hybrid quadrupole OrbitrapTM(Thermo 

Scientific) coupled to UHPLC, using Xcalibur software v.4.0.27.19 (Thermo Scientific). 

The method consisted of several cycles of Full MS scans (R=70000) followed by 3 

ddMS2 scans (R=17500), in positive and negative mode.  

The raw MS and MS/MS data was analysed using Compound Discoverer software 

v2.1(Thermo Scientific) with HighChem HighRes algorithm. The searches were 

performed against MzCloud and Chemspider database. 

2.3.3 Amide Column 

Chromatographic analysis was performed with an UltiMate 3000 UHPLC (Thermo 

Scientific). The separation was performed using a Waters Acquity UPLC BEH Amide 

2.1x150mm, 2.5 µm particle size, P/N 186003023. The mobile phase A was 

ammonium acetate with acetic acid (pH3) and mobile phase B was acetonitrile (LC/MS 

Grade, Fisher Scientific). The gradient program is listed in table 4. The column 

temperature was maintained at 30°C, and a flow rate of 350 µl/min was used.  

 

Table 5- gradient program for amide column 

TIME MOBILE PHASE A (%) MOBILE PHASE B (%) 

1.0 10 90 

6.0 50 50 

7.0 60 40 

9.0 60 40 

10.0 10 90 

20.0 10 90 

 



 36 

For the untargeted experiment the amide column as well as the C18 column were 

selected to cover polar and apolar metabolites. All the samples from the untargeted 

approach were analysed in positive and negative mode in the MS.  

2.3.4 Workflow for Compound Discoverer software 

The workflow for metabolite identification is demonstrated in figure 11.  

A node-based processing workflow was custom-built in Compound Discoverer 

software v 2.1 (Thermo Scientific) to search and identify the metabolites in an 

untargeted approach.  

 

Figure 11- workflow for metabolite identification with Compound Discoverer software. 

After file input, spectra selction, alignment of retention times, unknown compounds can be detected and 
identified with mzCloud or chemspider.  

 

The search description included detecting and identifying all compounds in a single 

sample (with ddMS2), even compounds with very low abundance. The software 

performs unknown compound detection and predicts elemental composition for all 

compounds. It Identifies compounds using mzCloud (ddMsS2) and chemspider 

(formula or exact mass) and performs similarity search for all compounds with ddMS2 

data using mzCloud. The intensity threshold for unknown compound detection was set 
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extremely low and peak detection filters are turned off to enable the detection of 

compounds with very low abundance. Important general settings for peak detection 

included a mass tolerance of 3 ppm, intensity tolerance of 30 and a minimum peak 

intensity of 1000000.  

 

Raw data was selected and sent to “select spectra” node which forwards the data to 

align the retention time. Here retention times were chromatographically aligned with a 

specified alignment algorithm. The “detect unknown compounds” node detects 

unknown compounds using component elucidator algorithm. Compounds with the 

same molecular weight with no retention time shift higher than 0.1 minute were 

grouped together in the “group unknown compounds” node, parameters shown in 

figure 12. 

 

 

Figure 12- group unknown compounds parameters with Compound Discoverer software. 

Compounds with the same molecular weight with a mass tolerance of 3 ppm and with a retention time shift 
lower or equal 0,1 minutes can be grouped together.  

 

In the “predict compositions” node the elemental composition of unknown compounds 

was predicted by using isotope pattern matching and a set of prediction algorithms. 

Then predicted compositions and matching masses were searched in the chemspider 

database. The “mark background” node is used to eliminate compounds present in the 

blank samples. For the identifications in chemspider and mzCloud a filter is applied to 

correspond the results to mzCloud full match with scores ≥80% and full match witch 

chemspider database shown in figure 13.  This filter is applied in experiment 3, 

analysing relevant samples of breast cancer.  
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Figure 13- chemspider and mzCloud filter with Compound Discoverer software. 

Peaks are identified with full match with scores ≥80% in mzCloud and chemspider.  

 

The data was filtered by only mzCloud greater than 80% match giving more confident 

identifications based on the ddMS2 but eliminating a lot of identifications, 

demonstrated in figure 14.  

 

 

Figure 14- mzCloud filter with Compound Discoverer software. 
Peaks are identified with full match with scores ≥80% in mzCloud 
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Figure 15- workflow tree and post-processing nodes with Compound Discoverer software 
The workflow tree ends with assigning the name, formula and structure of the compounds as well as 

differential analysis and descriptive statistics.  

 

After the workflow tree was completed the post processing nodes followed, as 

described in figure 15. The “assign compound annotations” assigns the name, the 

formula and the structure annotations to the compounds. The “differential analysis” 

node created the group areas and group CV columns in the compounds table and 

calculated Log 2Fold change, ratio, p-Values of per group ratios by an analysis of 

variance (ANOVA) with tukey post hoc tests, adjusted p-values for the false discovery 

rate, for the differential analysis. The descriptive statistics tool calculated the mean 

area and median area.  

2.4 Experiment 3: Comparing relevant samples of breast cancer 

cell lines 

Fresh media (D0) and spent media (D4) of two biological replicates of breast cancer 

cell lines ACC 1806, ACC1904, BT474 and one sample of MD-MB231 were analysed 

using a C18 and an amide column (3 technical replicates positive and negative mode). 
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This metabolomics experiment involves four different cell lines characterizing 3 

different subtypes with distinct receptor expressions, as shown in table 6.  

 

Table 6- subtype specific receptor expression 33 
 

SUBTYP

E  

CELL 

LINE  

BIOLOGICA

L 

REPLICATE 

ER 

EXPRESSIO

N 

PR 

EXPRESSIO

N 

HER2 

EXPRESSIO

N 

LUMINAL 

A  

BT474 2 + + + 

HER2  ACC 

1954  

2 - - + 

TNB ACC 

1806 

2 - - - 

 MD-

MB23

1 

1 - - - 

2.4.1 Data analysis  

Differential analysis of the injected samples was applied to evaluate the significance 

of relative metabolite concentrations between fresh and spent media with Log2Fold 

change ratios and p-Values (ANOVA). Untargeted metabolite measurements were 

applied and a comparison of ion intensities between sample D0 and D4 revealed a 

significant increase with a fold change FC ≥1 and p-value 0.05 or decrease with FC ≤-

1 and p-value 0.05 over time. 

Afterwards Perseus software was used to perform multivariate statistics in form of 

principal component analysis (PCA). This dimension reduction method was intended 

to identify sample clustering and extract main metabolites that cause variance and 

further reveal group specific metabolic signatures of the different cell lines. The PCA 

is visualised as score plot with each point representing an individual sample and 

marked with different colours to differentiate the cell line. When samples group 

together it can be assumed that a similar metabolic phenotype is the reason.  

 Then the loadings of the PC were exported to an excel sheet to determine the 

metabolites responsible for causing a separation of the samples in the PCA. A 
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percentile served as a threshold to select the most extreme metabolites, meaning all 

lower than 2,5% and higher than 97,5%.  

Perseus was also used to perform cluster analysis in form of heatmaps aiming to 

identify important differences in metabolite concentrations between the samples. The 

clustering algorithms such as distances and correlation coefficients group the samples 

so that the similar ones appear in the same cluster. 

Kegg pathways (https://www.genome.jp/kegg/pathway.html) were used to correlate 

identified metabolites to specific pathways.  
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3 Results d 

3.1 Experiment 1: ptimization of sample processing and spectra 

acquisition  

The aim was to set the conditions for being able to profile cell media and obtaining the 

most identifications. For this step, cell media DMEM 11039 was analysed. First 

decision to make was the conditions of the sample preparation. The media required a 

protein precipitation to minimize sample complexity. Based on the metabolite polarity 

and the conditions of the column, 4 different approaches were considered. First and 

second approach were precipitating the sample with MeOH or ACN and directly 

injecting the supernatant after centrifugation. In the third and fourth approach a 

lyophilization step after precipitation and resuspending in water was added. This step 

further concentrates the sample and leads to better solubilization of the mostly polar 

metabolites. 

Experiment 1 involved analysing the cell culture medium DMEM with all four 

precipitation modes and a C18 column. The following chromatogram (figure 16) 

pictures the quality of peak separation comparing the sample either precipitated with 

ACN or MeOH and analysed in positive and negative ionization mode. The time in 

minutes is graphed on the x-axes and the intensity on the y-axes. An ideal 

chromatogram should contain symmetrical peaks that are sufficiently separated and 

have a detectable intensity, which is best achieved with MeOH in positive mode, visible 

in chromatogram A in figure 16.  
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Figure 16- comparison of chromatogram with different precipitating agents (extracted from 
Compound Discoverer software) 
Chromatogram A shows the peak shapes with MeOH in positive mode, B after precipitating with ACN 
in positive mode, C after precipitating with MeOH in negative mode and D after precipitating with ACN 
in negative mode.  

 

  

A

B

C

D
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The following venn diagram, figure 17, demonstrates a difference in the precipitation 

modes based on the obtained numbers of identifications.  

 

 
Figure 17- venn diagram- total number of identified metabolites with different precipitations 
using a C18 column 
Injection of DMEM  5µl for MeOH and ACN (two technical replicates positive and negative mode) and 
10µl for MeOH/H2O and ACN/H2O (two technical replicates positive mode and one negative mode).The 
yellow cluster shows 4 exclusively detected metabolites precipitated with ACN, the green cluster shows 
6 exclusively detected metabolites with ACN precipitation and resuspending in water, the purple cluster 
shows 5 exclusively detected metabolites with precipitating with MeOH and the red cluster 8 with 
precipitating in MeOH and resuspending in water.  
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The highest amount of identifications, with 8 metabolites exclusively detected, was 

achieved by MEOH precipitation and resuspending in water named as 

MeOH/H2O.This can be explained with the polarity of the metabolites of which the 

majority is water soluble and therefore more peaks can be detected in the water-based 

precipitation mode. The sample concentration step of drying and reconstituting in 

100% H2O increases the metabolome coverage resulting in a higher number of 

identifications 97. Another benefit can be documented in the peak shape. Figure 18 

shows the peak of the amino acid DL-tryptophan in all four different precipitation 

modes. The ideal peak should be symmetrical without fronting or tailing and sharp for 

a defined separation between multiple peaks. The peaks of the samples lyophilized 

and resuspended in water have higher intensities (figure 18,19). Without lyophilization 

tilted peaks were obtained which would make it hard to properly quantify the 

metabolites, because it is difficult to see the start or end of the peak (figure 20,21). The 

higher intensities can be explained with the higher concentration of the metabolites 

when lyophilized. Plus having the metabolites highly concentrated in water perfectly fit 

the composition of the mobile phase. Reversed phase columns, C18, are made of a 

lipophilic stationary phase, the mobile phase starts polar and gradually increases in 

organic solvents thus injecting a polar sample matches the polarity of the mobile 

phase.  

  

Figure 18-tryptophan peak with MeOH/H2O precipitation and C18 column. 
The yellow peak is detected in negative ionization mode and the blue peak in positive ionization mode. 
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Figure 19- tryptophan peak with ACN/H2O precipitation and C18 column. 
The yellow peak is detected in negative ionization mode and the blue peak in positive ionization mode. 

 

 

Figure 20- tryptophan peak with MeOH precipitation and C18 column. 
The yellow peak is detected in negative ionization mode and the blue peak in positive ionization mode. 
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Figure 21 -tryptophan peak with ACN precipitation and C18 column. 
The yellow peak is detected in negative ionization mode and the blue peak in positive ionization mode. 

 

Based on these results, the best separation with a C18 column, the sharpest peak 

shapes and the most identifications were obtained with MeOH precipitation and 

resuspending in water.  

Next the DMEM sample was analysed in all four precipitation modes in the amide 

column demonstrated in the following venn diagram in figure 22.  
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Figure 22- metabolite identifications amide column. 
Injection of DMEM  5µl for MeOH and ACN (two technical replicates positive and negative mode) and 10µl for 
MeOH/H2O and ACN/H2O (two technical replicates positive mode and one negative mode). 
The yellow cluster shows 3 exclusively detected metabolites with ACN precipitation, the purple cluster 4 
exclusively detected metabolites with MeOH precipitation, the purple cluster 4 exclusively detected 
metabolites with ACN precipitation and resuspending in water and the red cluster 10 exclusively detected 
metabolites with MeOH precipitation and water resuspension.  
 

The comparison gives us the information that MeOH/H2O is the best choice regarding 

to the higher number of identifications with 10 elements exclusively detected. On the 
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other hand, the detected peak shapes turned out to be very broadened (figure 23) 

compared to the symmetrical peaks after precipitation with ACN (figure 24) and MeOH 

(figure 25).  

 
Figure 23- tryptophan peak with MeOH/H2O precipitation and amide column. 

The yellow peak is detected in negative ionization mode and the blue peak in positive ionization mode. 
 

 

Figure 24- tryptophan peak with ACN precipitation and amide column 
The yellow peak is detected in negative ionization mode and the blue peak in positive ionization mode. 
 

 

Figure 25- tryptophan peak with MeOH precipitation and amide column. 

The yellow peak is detected in negative ionization mode and the blue peak in positive ionization mode. 
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In the amide column the conditions are reversed, consisting of a polar stationary phase 

and an organic mobile phase gradually increasing in polar solvents, therefore apolar 

substances elute before polar. Resuspending the supernatant in water lead to broad 

and non-quantifiable peak shapes. One reason could be the interference of the water 

in the sample with the composition of the mobile phase that should increase in polar 

components instead of starting with polar solvents. Therefore, the better results for the 

amide column were obtained with precipitating with MeOH and after centrifugation 

directly injecting the supernatant  

Also, in the chromatogram in figure 26 we can observe better peak separation in 

MeOH/H2O and higher intensities with increasing injection volume.  

 

Figure 26- chromatogram comparison precipitation and solubilization. 

Chromatogram A is detected with MeOH precipitation and 5 µl injection volume, B with ACN and 5 µl injection 
volume, C with MeOH/H2O and 10 µl injection volume and D with ACN/H2O and 10 µl injection volume.  

 

The high-resolution Q-ExactiveTM allows positive and negative ionization in separate 

injections, as well as fast polarity switching between positive and negative mode in the 

same injection allowing faster metabolite screening. Comparing DMEM media based 

on the acquired identifications, injecting the sample twice and ionizing separately in 

positive and negative mode gives more identifications, 10 exclusively, as with fast 

polarity switching in the same run with only 6 exclusive identifications, as demonstrated 

in figure 27. 

A

B

C

D
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Figure 27- comparison of polarity switch and individual positive and negative mode. 
Injection of two technical replicates of DMEM 5µl for MeOH in C18 column for positive and negative mode 
compared to 5µl MeOH in polarity switch mode. 6 exclusively detected metabolites analyzing the sample with 
polarity switch and 10 exclusively detected metabolites in separate analysis of negative and positive ionization 
mode, could be achieved.  

 

The following experiments 2 and 3 were based on these results. A multidimensional 

LC approach combining RP and HILIC separation, sample preparation with 

MeOH/H2O for C18 and MeOH for the amide column and high performance MS 

operating in positive and negative ionization mode, are used to increase peak capacity 

and metabolite identification in complex samples.  

3.2 Experiment 2: Untargeted profiling of cell culture media   

A sample of fresh (day0) and spent media (day4)  was assayed in LC-MS to observe 

changes in the metabolism over time. For this analysis a list of metabolites (table 7) 

involved in central metabolism, including important amino acids, organic acids, 

vitamins, sugars as well as oncometabolites was implemented and compared with the 

resulting identifications gathered from LC-MS. Untargeted metabolite measurements 

were applied and a comparison of ion intensities between sample D0 and D4 revealed 
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a significant increase with a fold change FC ≥1  and p-value  0.05 or decrease with FC 

≤-1 and  p-value 0.05 over time. 

 
Table 7- list of relevant metabolites 

 

 

The next diagram shows how many identifications matched the relevant metabolites 

by running the samples in amide and C18 column in positive and negative ionization 

mode (figure 28). 
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Figure 28- venn diagram showing metabolite identifications 

Injection of 10µl MeOH/H2O precipitation (3 technical replicates positive and negative mode) each sample D0 
and D4. In total 29 relevant metabolites could be identified in the samples, 15 with the C18 column, 2 with the 
amide column and 12 with both columns.  

 

A lot of sugars were impossible to accurately identify because MS cannot differentiate 

between the stereoisomers with the exact same mass, in which case using standards 

would be a solution to overcome this problem 77,83. Acetic acid and formic acid are 

included in the mobile phase and therefore considered background and do not appear 

as identification. Another reason for some metabolites not appearing might be due to 

low abundance, not being present in the media and therefore not being metabolized 

or they were not able be confidently identified with the m/z cloud database.  

With Compound Discoverer software, descriptive analysis was used to show significant 

changes between fresh and spent media of the cancer cell line.  

The following volcano plot (figure 29) points out the significantly increasing and 

decreasing metabolites comparing day 0 (D0) with day 4 (D4), analysed with C18 

column. 
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Figure 29- volcano plot positive and negative mode with C18 

Injection of 10µl MeOH/H2O precipitation (3 technical replicates positive and negative mode) each sample D0 
and D4.The volcano plot is generated with the log2 fold change D0 over D4, therefore the green section and 
negative values represent the metabolites with higher abundance in day 4 and the red section with the positive 
values represent the metabolites higher abundant in day 0. Only metabolites with FC≤ -1 or ≥1; p-Value ≤ 0.05 
were considered significant.  
 

 

From D0 to D4 following metabolites seem to be decreasing, including glutamine, and 

fructose, which may indicate the Warburg effect and glutamine dependency of cancer 

cells (figure 30 and 31). As well as indole-acetic acid, hypoxanthine and uridine are 

decreasing. On the other side threonic acid, pyroglutamic acid, y-L-glutamyl-glutamic 

acid, 7-methylguanine, thiamine and citric acid seem to be increasing after time.  
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Figure 30- box plot relative concentration of glutamine.  

Injection of 10µl MeOH/H2O precipitation (3 technical replicates positive and negative mode) each sample D0 
and D4. A decrease of glutamine over time can be observed. 

 

 

 

Figure 31- box plot relative concentration of fructose 
Injection of 10µl MeOH/H2O precipitation (3 technical replicates positive and negative mode) each sample D0 
and D4. A decrease of fructose over time can be observed. 
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Figure 32- PCA D0 and D4 in positive and negative mode using a C18 column 

Injections of 3 technical replicates from fresh media (day0) and spent media (day4) show that the 3 technical 
replicates in negative mode of the fresh media (C) and spent media (B) cluster together in PC2. The 3 technical 
replicants in positive mode of the fresh media (D) and spent media (A) can be observed in PC1.   

 

The PCA in figure 32, shows that the 3 injections of the same sample which are 

considered as technical replicates cluster well together. The different modes cluster 

apart, samples analysed in negative mode on the left and samples analysed in positive 

mode on the right. In amide negative mode no significantly changing metabolites were 

identified. Comparing the two columns, more significantly changing metabolites could 

be evaluated with C18 column (figure 29), visible due to the less identifications in the 

volcano plot generated with amide column (figure 33). The metabolites in the green 

section represent those that are significantly higher concentrated in day 4 ( FC ≤ -1; p-

Value ≤ 0.05) and thus increasing from D0 to D4. The metabolites in the red section 

represent those significantly (FC ≥ 1; p-Value ≤ 0.05) higher concentrated in day 0 and 

thus decreasing from D0 to D4.  
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Figure 33- volcano plot showing significant metabolites in positive mode using an Amide 
column.  
Injection of 10µl MeOH/H2O precipitation (3 technical replicates positive and negative mode) each sample D0 
and D4. The volcano plot is generated with the log2 fold change D0 over D4, therefore the green section and 
negative values represent the metabolites with higher abundance in day 4 and the red section with the positive 
values represent the metabolites higher abundant in day0. Only metabolites with FC≤ -1 or ≥1; p-Value ≤ 0.05 
were considered significant.  

3.3 Experiment 3: comparing relevant samples of cancer cell 

lines 

This analysis was intended to reveal the metabolic pattern and to discover variations 

of different breast cancer cell lines. These characteristics were attempted to be 

correlated with the underlying breast cancer subtype of the cell line. Based on their 

molecular distinction breast cancer can be divided into four main different subtypes, 

Luminal A, Luminal B, Her2+ and TNB. Even though, the variation of receptor 

expression between those subtypes already implicates the therapy approach, the full 

heterogeneity of this disease has not yet been revealed. Through metabolomics, 

pathways and up or downregulated metabolites that might be more specific for an 

individual subtype may be identified and used as biomarkers or treatment target.  

This metabolomics experiment involves four different cell lines characterizing 3 

different subtypes with distinct receptor expressions (Table 6). Fresh media (D0) and 
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spent media (D4) of two biological replicates of breast cancer cell lines ACC 1806, 

ACC1904, BT474 and one sample of MD-MB231 were analysed using a C18 and an 

amide column (3 technical replicates positive and negative mode). 

LC-MS analysis was carried out as described in 2.3. The approach of using two 

different columns in positive and negative mode aimed to detect the largest possible 

number of metabolites. In total 3476 features could be identified using an amide 

column for targeting polar compound classes and a C18 column for rather lipophilic 

ones, both in positive and negative ionization mode. Out of this 3476 features a total 

number of 1952 of unique identifications was obtained. To shorten the list of 

identifications, descriptive analysis was carried out by Compound Discoverer software. 

Only significantly increasing and decreasing metabolites from fresh and spent media 

of the cell line supernatant (FC≤ -1.5 or ≥1.5; p-Value ≤ 0.05) were filtered out and 

further analysed. This reduced the list to a total of 1592 identifications (figure 34). 

 

 

Figure 34- pie chart symbolizing the amount of significantly in or decreasing metabolites over 
time. 
Two biological replicates of breast cancer cell lines ACC 1806, ACC1904, BT474 and one sample of MD-MB231 
were analysed using a C18 and an amide column (3 technical replicates positive an 
d negative mode). Only metabolites with (FC≤ -1.5 or ≥1.5; p-Value ≤ 0.05) were considered significant.  

 

Among the 1592 identifications, relevant significant metabolites correspond to the 

chemical classes of fatty acids, organic acids, amino acids and the rest consisting of 

metabolites from various pathways such as carbohydrate, vitamin, urea, or 

components of cell culture media or of the solvents used (figure 35).  

metabolite identifications

all metabolites significant metabolites
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Figure 35- compound classes of identified metabolites. 
4% belong to the class of fatty acids, 6% amino acids, 11% organic acids and 79% of sugars, solvents, and 
unknown compounds 

 

Using the shortened list of 1592 identified metabolites that significantly change in 

concentration from D0 to D4 a venn diagram (figure 36) was generated to compare the 

metabolite variation between the relevant breast cancer samples. This Figure 

illustrates that different cell lines consume or produce different metabolites. A total 

amount of 429 metabolites could be identified in all cell lines. We can observe that 

TNB and Her2 have more metabolites in common (134) than TNB and Luminal B (70) 

and Luminal B and Her2 (75). This could be explained with the comparable 

aggressiveness of TNB and HER2 breast cancer subtype.  

 

metabolites

fatty acids organic acids amino acids and derivates rest nucleotides and derivates
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Figure 36- venn diagram showing common metabolite identifications of different breast cancer 
cell lines. 
Fresh media (D0) and spent media (D4) of two biological replicates of breast cancer cell lines  ACC 
1806, ACC1904, BT474 and one sample of MD-MB231 were analysed using a  C18 and an amide 
column(3 technical replicates positive and negative mode).Depending on the breast cancer subtype 
different metabolites are consumed or produced and similarities can be identified.  

 

A PCA demonstrates which metabolites are responsible for causing a separation 

between the different cell lines or BC subtypes, shown in figure 37. The input for PCA 

was the list of all significantly changing metabolites from day 0 to day 4 (FC≤-1.5 or 

≥1.5 ;p-Value ≤ 0.05) Component 1 and 2 explain 58,2% of the variation. The two 

biological replicates of cell line BT474 marked in green cluster well together in the 

negative values of component 1 and 2. The biological replicates of cell line 1954 and 

1806 are more separated. This could be explained with the sample collection of 

biological replicates 2 two weeks after biological replicate 1 and thus causing a 

metabolite variance. 
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Figure 37- PCA metabolites responsible for causing a separation between the different cell lines 
or BC subtypes. 
The biological replicates of each cell line cluster together in PC1 and a separation depending on the 
breast cancer subtype is visible in PC1.In PC2 BT474 is separated from the other breast cancer cell 
lines. 

 

Overall the more aggressive subtypes TNB and Her2 cluster apart from the less 

aggressive subtype luminal B. In component 1, when leaving replicate 1954-2 out of 

consideration , there is a seperation between cell line BT474 (Luminal B )and MB 231, 

1806 (TNB) as well as 1954 (Her2+). Component 2 seperates BT474 form 1954 

replicate 2. A histogram of the biological replicates of each cell line based on the 

relative increase and decrease of all metabolites shows that there is no normal 

distribution but clear upper and lower extremes can be observed in figure 38.  
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Figure 38- histogram of breast cancer subtypes. 
Fresh media (D0) and spent media (D4) of two biological replicates of breast cancer cell lines  ACC 1806, 
ACC1904, BT474 and one sample of MD-MB231 were analysed using a C18 and an amide column (3 technical 
replicates positive and negative mode)  

 

Therefore, the loadings of the PC were extracted and arranged from smallest to 

largest. 2,5% of the most negative PC loadings and 2,5% of the most positive PC 

loadings were further selected and combined in a table. A heatmap generated with the 

fold changes shows the variation of relative increase and decrease of the metabolites 

(Table 7-8).The biological replicates of the cell lines are marked with different colours 

and the one’s symbolizing the same BC subtype are grouped together.  
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The numbers in the columns represent the fold 2 changes from D0 to D4, with negative 

values showing a relative increase in concentration and positive numbers showing a 

relative decrease over time stressed with a colour change from green (positive) to red 

(negative). Observing sphingolipids, tetradecaphytosphingosine (PC1+ and PC2-) and 

palmiotylethanolamine (PC1+), N,N-diethylethanolamine (PC2 -) in the upper 

percentiles of the PC1 and PC2 loadings indicate altered sphingolipid and 

glycerophospholipid metabolism, shown in table 8 and 9. 

 
Table 8- metabolites in PC1 positive 
The biological replicates of the cell lines are marked with different colors and the one’s symbolizing the 
same BC subtype are grouped together. The numbers in the columns represent the mean value of  fold 
2 changes from D0 to D4, of the three technical replicates of each sample, with negative values showing 

a relative increase in concentration and positive numbers showing a relative decrease over time stressed with 
a color change from green (positive) to red (negative). 

 

 
Table 9-metabolites in PC2 negative 

 

 

Therefore, from the file including all significantly changing metabolites from day 0 to 

day 4, all metabolites involved in these two metabolisms based on the kegg pathway, 

shown in figure 39 and 40, were further extracted. The lipid identifications are 

summarized in table 10. 
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Table 10- identified lipid metabolites involved in sphingolipid and glycerophospholipid 
metabolism 

 
 

 

Figure 39- sphingolipid metabolism. 
 Kegg pathway showing the metabolites involved in the sphingolipid metabolism with marked 
metabolites identified in breast cancer samples 
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Figure 40- glycerophospholipid metabolism 

Kegg pathway showing the metabolites involved in the glycerophospholipid metabolism with marked 
metabolites identified in breast cancer samples 

 

The list of metabolites (table 10) were analysed in a PCA (figure 41) with Perseus to 

investigate if the sphingolipid and glycerophospholipid metabolism is responsible for 

causing a separation between the breast cancer cell lines or subtypes. 

v

v 

v

v
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Figure 41- PCA of lipid compounds 
The two biological replicates of cell lines BT474,1954,1806 cluster together in PC1 and a separation between 
the breast cancer subtypes can be observed in PC1.  

 

The PCA shows a clear clustering dependent on the breast cancer cell line in PC1.  It 

may suggest a malignant shift in lipid profile characteristic for the cell line or breast 

cancer subtype. The following table 9, shows the upper percentiles meaning all lower 

than 2,5% and higher than 97,5% of the PC loadings of the metabolites involved in 

sphingolipid and glycerophospholipid metabolism. The biological replicates of the cell 

lines are marked with different colours, and the one’s symbolizing the same BC 

subtype are grouped together. The numbers in the columns represent the mean value 

of fold 2 changes from day 0 to day 4, of the three technical replicates of each sample, 

with negative values showing a relative increase in concentration and positive numbers 

showing a relative decrease over time stressed with a colour change from green 

(positive) to red (negative). Cell line HCC 1954 Her 2 positive, circled in red, shows a 

stronger decrease in lipids compared to TNB and Luminal B cell lines.  Previous studies 

showed that alterations in phospholipid level like , phosphoethanolamine 

,glycerophosphoplipids ,sphingolipids indicate membrane remodelling across breast 

cancer subtypes, with greater differences in Her2 positive tumours due to the stronger 

tumour growth 58.  
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Table 11- heatmap of identified lipids 

Upper percentiles of the PC loadings of the metabolites involved in sphingolipid and glycerophospholipid 
metabolism. The biological replicates of the cell lines symbolizing the same BC subtype are grouped together 
and the relative increase or decrease is expressed by the mean value of fold 2 changes from day 0 to day 4, of  
the three technical replicates of each sample ,with negative values (red) showing a relative increase in 
concentration and positive numbers showing a relative decrease (green). 

 

 

A heatmap with all lipids identified and involved in the sphingolipid and 

glycerophospholipid metabolism was generated in figure 42. The biological replicates 

cluster well together demonstrating the similarity between the samples of the same cell 

line. Furthermore, there is a clustering of the cell lines belonging to the same BC 

subtype as HCC1806 and MDA-MB231 are both representatives of TNB. Especially 

the lower part shows a strong differentiation between Her2+ cell line 1954 and the 

other ones. 
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Figure 42- heatmap lipids 

All lipids identified and involved in the sphingolipid and glycerophospholipid metabolism identified in the 
samples BT474, 1954,1806, MB231 were considered. A clustering between the biological replicates and a 
clustering of the cell lines belonging to the same BC subtype, as HCC1806 and MB231 are both representatives 
of TNB, can be observed. Especially the lower part, marked with a rectangle, shows a strong differentiation 
between Her2+ cell line 1954 and the other ones. 

 

The lipids appearing in the most differentiating part of the heat map, marked with a 

blue rectangle, include metabolites of the sphingolipid metabolism, including 

phosphoethanolamine and phosphocholine derivates, phytoceramide, sphinganine 

derivates. A difference between cell line HCC1954 and the other cell lines can be 

observed, which is further underlined in the scatterplot next to the heatmap.  

Since breast cancer belongs to the most spread diseases among women, there is a 

high interest in decreasing mortality rate especially trough early detection and effective 

treatment. To improve treatment outcomes metabolomics tries to target individual and 

cancer type specific pathways that are altered throughout malignancy. It has long been 

discovered that cancer cells rewire their metabolic survival strategies in order to 

Heatmap Lipids 
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tolerate the hypoxic and unhostile environment due to rapid cell growth.  Apart from 

the well-known shift from aerobic to anaerobic glycolysis described as the Warburg 

effect, changes in glutaminolysis and nucleotide synthesis, another phenotypic 

alteration in fatty acid and lipid metabolism has been observed and investigated as 

therapeutic target 98,99. From the untargeted metabolomics approach of different breast 

cancer cell lines, a hint of altered lipid metabolism including sphingolipids and 

glycerophospholipids could be detected. Lipids are known to have various important 

functions in cell metabolism thus indicating pathological changes. In previous studies 

alteration of lipid metabolism in particular phospholipids has been reported in breast 

cancer patients compared to healthy controls 30,81,98–108. Fatty acids are overproduced 

to generate membrane phospholipids, which are strongly required in proliferating cells, 

and furthermore function as signalling mediators 98  As phospholipids are the main 

builiding block for membranes sphingolipids are important for cell membrane and, 

glycosphingolipids pattern the surface of the cell , enabling cell-cell interaction and 

intracellular signalling. Other sphingolipids, such as ceramide, ceramide 1-phosphate 

(Cer1P), sphingosine, and sphingosine 1-phosphate (S1P) are capable of  influencing 

cancer cell fate as  signalling mediators 109.  

Phospholipids are a class of lipids built from two fatty acyl molecules esterified with 

glycerol and phosphate group and linked to the hydrophilic head group such as choline, 

ethanolamine, serine, glycerol or inositol, which define the type of phospholipid (figure 

43). There is a structural difference when glycerol is exchanged with ceramide e.g. in 

sphingosines or sphingomyelins composed of phosphocholines bound to ceramide. 

 

 

Figure 43- structure of fatty acids 99 

The main structure consists of an apolar tail build of glycerol esterified with fatty acyl molecules with a polar 
head consisting of choline, ethanolamine, serine, glycerol or inositol, which define the type of phospholipid. 
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De novo synthesis of these phospholipids occurs via the so-called Kennedy pathway. 

Among this compound class phosphatidylcholine (PC), phosphatidylethanolamine 

(PE), and sphingomyelin are the most common phospholipids of biological 

membranes. Especially PC and PE or their precursor molecules (PCho and 

phosphoethanolamine) are significantly altered in breast cancer patients. The 

alteration suggests a change in lipid profile progressing carcinogenesis. 81,99  

Complex lipids are vital not only as energy source or membrane compounds but also 

important drivers of major oncogenic pathways. Accumulated evidence indicates that 

sphingolipids are important mediators in several cancers like breast, colon, lung, 

gastric and prostate cancer and play important roles in tumour formation 104,105. 

Deriving from the phospholipid pathway ceramide and sphingosine are apoptotic 

molecules, while sphingosine-1-phosphat promotes cell survival and 

glycosphingolipids are associated with drug resistance104. Ceramide and substrates to 

generate ceramide, like sphingomyelin or dihydroceramide, has been identified as 

differentiating metabolite between breast cancer tissue and healthy tissue and 

associated less aggressiveness breast cancer subtypes 104. Previous studies have 

found that cancer cells displaying specific changes in choline and lipid metabolism 

were linked to more aggressive carcinomas. High levels of choline-containing 

compounds including choline, phosphocholine and glycerophosphocholine have been 

measured in cancer cells as well as tumour tissues in correlation with cancer 

transformation 58,98,103,110–114. 

As molecular understanding of choline and phospholipid metabolism increases, 

studying the effect of the enzymes will be necessary to reveal potential treatment 

targets113,115. Supporting evidence of the importance of fatty acid metabolism for 

carcinogenesis is shown in the decrease of tumour progression when knocking out 

main metabolic enzymes involved in lipid metabolism, like fatty acid synthase (FASN) 

or choline kinase (ChoK). It is noted that Choline kinase (ChoK) is overexpressed in 

approximately 40% of all breast cancers and inhibitors have a therapeutic value in 

antitumor activity 98. Its overexpression contributes to the recognized increase of PC 

and tCho in breast cancer and other tumours 113,114. FASN converts fatty acids to 

various lipids. Lipid metabolism may also indicate breast cancer subtypes due to an 

observed increase in FASN correlated with Her2 expression. Cancer cells 

overexpressing Her2 activate translation of FASN which enhances Her2 signalling, cell 
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growth and increase proliferation. FASN overexpression guarantees breast cancer cell 

survival and correlates to poor prognosis and aggressiveness 116.  

Based on these considerations’ association of lipids and cancer promotion has become 

a target of investigation in cancer research 117. Identification of biomarkers is valuable 

in cancer diagnosis, treatment targeting and response, cancer reoccurrence and 

clinical outcome 118. Nevertheless, consistency of the study outcomes should be 

questioned, and clinical relevance further examined.  
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4 Conclusion 

In conclusion, this thesis provides a method for analysing cancer cell supernatant by 

LC-MS. By untargeted profiling of cell culture media, the best conditions for sample 

preparation and LC-MS analysis for obtaining the highest amount of metabolite 

identifications have been evaluated. Based on these results, the first untargeted 

approach, experiment 2, comparing fresh and spent media showed that significant 

changes in metabolite concentrations can be detected. The second untargeted 

profiling, experiment 3, used relevant samples from different breast cancer subtypes. 

Comparing the metabolite concentrations over time clearly stated that differences in 

metabolite profiles exist. Based on this analysis LC-MS metabolomics can be 

considered as a method to reveal metabolite changes and observe differences in 

metabolic signatures occurring due to the pathological state. This enables a deeper 

understanding of molecular pathways involved in disease progression and propose 

new treatment targets and diagnosing approaches. Metabolomic biomarker discovery 

is still at an early stage but many studies spotted changes in glycolysis, glutaminolysis, 

lipid, glycolipid and amino acid metabolism and correlations to breast cancer cell line 

and subtypes. Our results show that different breast cancer subtypes employ cancer-

associated metabolic pathways such as  sphingolipid and phospholipid pathway. 

Since breast cancer remains second leading cause of cancer deaths among women 

more reliable screening tests apart from mammography are required to recognize 

tumour formation at an early stage. Phospholipids have been identified in disease 

progression and could be investigated for breast cancer detection 99. Despite the 

recognition of LC-MS metabolomics as powerful tool to detect altered metabolites and 

metabolic pathways in cancer, clinical development of metabolic profiling remains a 

challenge. In order to evaluate their clinical advantages and applications, adequate 

sample size, standardized methods to increase statistical power and verification of the 

identified biomarkers in human studies, are the next inevitable steps. To increase the 

power of omics in depth analysis by combining different omics approaches is gaining 

more importance 119.   

To conclude, metabolomics is a potential tool to identify discriminative variables and 

now the challenge is to validate the potential biomarkers.  
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