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Zusammenfassung

Kontext. Protoplanetare Scheiben gelten als mögliche Lösung des Drehimpulsprob-
lems und werden meist mittels expliziter, numerischer Verfahren simuliert. Für diese
expliziten Verfahren gelten jedoch spezielle Einschränkungen. Daher verspricht die
implizite Berechnung protoplanetarer Scheiben auf einem adaptiven Gitter, neue
Erkenntnisse in der Struktur und Evolution der Scheiben zu liefern. Der TAPIR-code
löst die Gleichungen der Radiation-Hydrodynamic (RHD), unter der Annahme einer
vernachlässigbaren Scheibenmasse. Daher hat das gravitative Potential der Scheibe
keinen Einfluss auf ihre Struktur und ihre zeitliche Entwicklung.
Ziele. Ziel dieser Arbeit ist es, den Einfluss der Scheibenmasse zu dem bestehenden
Model hinzuzufügen, indem das gravitative Eigenpotenzial einer dünnen Scheibe für
eine beliebige Dichteverteilung in des bestehende Model implementiert wird. In weit-
erer Folge soll die Auswirkung des Eigenpotenzials auf die Scheibe untersucht werden.
Methoden. Ausgehend von der allgemeinen Lösung der Poisson-Gleichung, wird das
Potenzial in radialer Richtung unter der Annahme einer dünnen, symmetrischen
Scheibe mittels kompletter elliptischer Integrale beschrieben. Dank der Finiten Volu-
mens Methode lässt sich das Potenzial sowie dessen Gradient in eine Summe um-
schreiben, die numerisch leicht zu berechnen ist. In vertikaler Richtung wird der
Einfluss des Potenzials auf die Skalenhöhe beschrieben. Ein Vergleich der gravitat-
iven Beschleunigung des Sterns und der Scheibe liefert schließlich ein Kriterium QSG,
das veranschaulichen soll, ab wann der Einfluss der Eigengravitation der Scheibe zu
berücksichtigen ist.
Ergebnisse. Das resultierende Potenzial kann sowohl durch die Berechnung der Gravit-
ationsenergie, überprüfen der Massenerhaltung sowie weitere Tests verifiziert werden.
Anschließend werden für verschiedene Werte von QSG die Scheibenstruktur und die
zeitliche Entwicklung, mit und ohne Eigenpotenzial, verglichen.
Schlussfolgerung. Die Ergebnisse legen nahe, dass für schwerer werdende Scheiben
die Scheibengravitation eine immer größere Rolle spielt. Erhöht sich die Masse einer
Scheibe bis zu dem Punkt, an dem der Wert von QSG in einem Bereich der Scheibe
unter 1 liegt, lassen sich erhebliche Unterschiede in der Struktur und der zeitlichen
Entwicklung der Scheibe feststellen. Für eine geringe Scheibenmasse und somit einem
hohen QSG, kann die Scheibengravitation vernachlässigt werden.
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Abstract

Context. Protoplanetary disks are a possible solution to the angular momentum prob-
lem and are primarily simulated using explicit numerical methods, which are subjec-
ted to certain restrictions. The implicit calculation of thin protoplanetary disks on an
adaptive grid however, promises to provide new insights in disk structure and long-
term evolution. The TAPIR code solves the equations of radiation hydrodynamics
(RHD), assuming a negligible disk-mass. Thus, the disk’s gravitational potential has
no influence on the structure and evolution of the disk itself.
Aims. The aim of this work is to study the influence of the disk’s gravitational
potential by implementing additional equations into the present model.
Methods. Starting from the basic solution of the Poisson equation, the potential of the
disk is calculated under the assumption of a thin, symmetrical disk using complete
elliptical integrals. Due to the finite volume method, the potential as well as its
gradient in radial direction can be casted into a sum which can be implemented into
the present model. In vertical direction the potential is considered as an additional
factor for the pressure scale height. Comparing the gravitational acceleration of the
star and the disk leads to a criterion QSG, which describes the importance of the
disk’s gravity.
Results. The resulting potential can be verified by e.g. calculating the gravitational
energy, the conservation of mass and with other tests. The influence of the disk’s self
gravity on the structure and evolution of the disk is examined by varying QSG.
Conclusion. The results show that for higher disk-masses the influence of the disk’s
self gravity increases. If the disk mass increases to the point, where the value of QSG

falls below 1 within the disk, significant differences in disk structure and evolution
are ascertain. For low mass disks (high QSG), the influence of the disk’s self gravity
is negligible.
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1 Introduction

During the collapse of a interstellar cloud towards a protostar, angular momentum
has to be reduced to overcome the angular momentum problem (e.g. [32]). One
possibility to decrease angular momentum is the formation of a protoplanetary ac-
cretion disk, which transports the angular momentum outwards by turbulence, while
mass is accreted towards the central star (e.g. [4] or [38]). According to e.g. [4],
the structure of a protoplanetary disk can be considered as thin in vertical direc-
tion, while maintaining Keplerian velocity in angular direction. The radial extend
rin < 0.1AU < r < 100AU < rout is estimated e.g. by reproducing episodic accretion
events (for the inner radius rin e.g. [6] or [9]) or by observations (for the outer radius
rout, e.g. [3]). The radii close to the central star entail a small dynamic (orbital)
timescale τK at the inner boundary of the disk (τK ∼ days) whereas the total lifetime
of a disk can range up to 10Myr [26].

The simulation of a protoplanetary disk is often executed with explicit numerical
methods (e.g. [40] or [46]), which are restricted e.g. by the so-called Courant, Friedrichs
and Lewy (CFL) condition [14]. During an explicit simulation, the smallest timescale
limits the timestep. Especially, the inner regions of the disk are restricted, due to
the small dynamic timescale and so, the whole radial range of a disk is not possible
to be covered with these simulations over the whole lifetime. Implicit numeric meth-
ods are not bound to the timestep limitation (e.g. [15]) and are able to deal with
the whole lifetime of the disk, including also the inner regions, which (according to
e.g. [46] or [38]) are important for the structure and evolution of the disks. The
TAPIR code (presented in [38]) is able to simulate protoplanetary disks, assuming
axial-symmetry and an isothermal disk-structure in vertical direction. The TAPIR
code however, is still under development and one physical aspect, not yet considered,
is the disk-mass (assumed to be negligible compared to the stellar mass) and the influ-
ence of the resulting gravitational potential on the structure and long-term evolution
of the disk. Although the disk’s potential is small compared to the potential of the
central object, mass transport in the disk leads to small local changes, where their
effect on the evolution of the disk remains uncertain.

In this work, the influence of the gravitational potential of the protoplanetary disk
on both, the structure and the long-term evolution of the disk is examined. The
first chapter will outline some basic assumptions the code is based upon as well as
the scales of the physical system it represents. The equations, physical assumptions
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and the discretization scheme are described in the second chapter, followed by the
numerical features e.g. the adaptive grid equation and the choice of the boundary
conditions. These first chapters shall combine the most important equations and
assumptions, in both physical and numerical manner, the code is based upon and serve
as an overview for using the code, in particular for disks. For deeper insights or exact
derivations the respective references are given. In the fourth chapter the gravitational
potential of the protostellar disk as well as its gradient in radial and vertical direction
are derived and the implementation into the code is shown. To determine, whether
the gravitational potential of the disk noticeably influences the disk’s structure and
long-term evolution, a criterion QSG is formulated. The implementation is afterwards
tested for correctness, followed by simulations showing the effect of the disk’s gravity
for different values of QSG.

1.1 TAPIR Code

The evolution of protoplanetary disks can be simulated by the TAPIR (The AdaPtive
Implicit RHD) code, which has been described by [15] and [38]. This code is designed
to produce a viscous, steady state initial model of a protoplanetary disk and calculate
the temporal evolution of the disk, by utilizing an implicit scheme based on that
model in 1+1 dimensions. Five primary variables are taken into account: the surface
density Σ, the radial velocity component ur, the angular velocity component uφ, the
internal energy e as well as the location of the radial gridpoint r, with the help of an
adaptive grid (see [16]).

1.2 Basic Assumptions and Key Numerical Aspects

Before describing the code’s physics in particular, some basic assumptions have to
be made [38]. First of all, the coordinates are based on a cylindrical coordinate
system x = x(r, φ, z). Additionally, cylindrical symmetry is assumed and thus all φ
dependencies can be neglected. Another key assumption is the hydrostatic equilibrium
in z direction. No vertical velocity is allowed and furthermore, no changes in z

direction are allowed for the velocities in r and φ direction. The velocity reduces to
a time and radius dependent quantity u = (ur(r, t), uφ(r, t), 0). The internal energy
also remains constant (isothermal) in z resulting in a constant speed of sound cs at
a given radius [38]. Finally, a thin disk approximation z ≪ r is used (e.g. [4]) which
results i.e. in

1

(r2 + z2)
3
2

≈ 1

r3
. (1.1)
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Together with the independence of the angular coordinate φ, vertically integrated
quantities can be used. The density ρ converts i.e. into a surface density Σ (see
e.g. [4] or [37]) according to

Σ(r, t) =

∫ ∞

−∞
ρ(r, z, t) dz . (1.2)

The following numerical features are characteristic for the TAPIR code. They are
listed here as an overview and are specified in the following sub-chapters. First of
all, the code is using an implicit scheme and is therefore not bound to the Courant,
Friedrichs and Lewy (CFL) condition [14] with the timestep δt and the radial orbital
distance ∆x

δt ≤ ∆x

|u|+ cs
. (1.3)

Especially for large velocities and close orbits, this restriction is impairing. According
to [38], these inner regions are especially important for the properties of the disk.
The next aspect I want to highlight is the discretization method. To comply with the
conservation laws, all equations are integrated over a time-dependent Volume V with
surface ∂V [15]. These volumes are then subdivided into volume sections between two
gridpoints; the so-called finite-volume discretization. Since the star’s radiation plays
an substantial role in disks behaviour and dynamics (see e.g. [22]), the interaction of
radiation and matter is integrated in the equations of the code. The modifications,
especially valid for this code, are combined in Sec. 2.2. To treat the viscous effects
as matter moving inside the disk, a combination of an artificial viscosity (originally
designed to treat shock events properly [13]) and a modification of the physical α

model [41] is used (Sec. 2.3 and 2.4). Finally, a grid equation (based on [16]) is solved
together with the physical equations to guarantee sufficient gridpoint concentration at
regions of physical interest. The derivation of the adaptive grid is shown in Sec. 3.1.

1.3 Protostellar Parameters

For the protostellar radius and luminosity values the work of [36] and [17] is used. The
resulting values for the protostellar radius and luminosity over a mass range between
0.1 and 1.0M⊙ can be found in Tab. 1. These values are calculated using stellar
evolution models, therefore have limitations and should serve merely as a reference.
It is also possible to remodel a specific protostar by taking its mass, radius and
luminosity from the respective work.
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1.4 Scales in Length and Time

To get a better overview about the physical system of a protoplanetary disk, a schem-
atic representation of the associated length and temporal scales is useful. First, the
dimensions of a protoplanetary disk are approximated and thereafter its different tem-
poral scales examined. For the extent of a disk, three parameters are important, since
axial symmetry is assumed: the inner and outer radius rin and rout as well as the
vertical scale height Hp.

Inner boundary

The importance of the inner boundary has already been highlighted in [38]. As de-
scribed in [23], the inner radius is coupled to the stellar magnetic field, which forces
the disk material into corotation at the truncation radius rt. This material falls quasi
freely onto the star via magnetic funnels [23] inside the co-rotation radius rco (see
e.g. [19] and Fig. 1);

rco =

(
GM∗P

2

4π2

)1/3

, (1.4)

with the stellar mass M∗, the gravitational constant G and the stellar rotation period
P . According to [25], the rotational period for low mass stars is peaking at ∼ 2days.
This period results in a co-rotation radius of ∼ 4.6R∗ for a star with 1M⊙. For the
truncation radius, a relation between rt and stellar as well as disk parameters can be
found (see e.g. [23]):

rt
R∗

∼ B
4/7
3 R

12/7
∗

M
1/7
∗ M

2/7
−8

. (1.5)

With B3 the stellar magnetic field in kG and M−8 the accretion rate in 10−8M⊙/yr.
For typical T-Tauri stars a range of 4 ≤ rt ≤ 6R∗ can be assumed. Finally, the inner
radius of the disk is set to

rin = 4R∗. (1.6)

The lower boundary was used for further consideration since it is smaller than the
co-rotation radius. In this case the ram pressure is large enough to push the disk
beyond the corotation radius. At the point where the magnetic pressure equals the
ram pressure, the material is forced in corotation and is accreted onto the star in a
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quasi free-fall. The process of breaking up the disk in this way is not yet completely
understood and not believed to be axialsymmetric. Nevertheless the density drops so
rapidly during the free-fall that these effects are not taken further into account. For
rt ≥ rco the material would be blown away in disk winds (see e.g. [23]). The final
values for rin can be found in Tab. 1.

Figure 1: Schematic overview of magnetic accretion onto a young star (grey circle on
the left) along the radial axis r; after [12]. The truncation radius Rt symbolizes the
inner boundary of the disk and is located at ∼ fewR∗ (R∗ being the stellar radius).
The disks material is transported towards the inner region of the disk (arrow 1) and
further onto the star along magnetic field lines (thin solid lines) for radii between
Rt and the corotation radius Rco (arrow 3) or is blown away by ionized winds (for
r > Rco, arrow 2).

Outer boundary

The outer radius of the disk rout is calculated according to the minimum mass solar
nebular model (MMSN) [24]. To comply with the MMSN, the goal is to reach 1% of
the stellar mass in the disk. According to the MMSN model the surface density scales
with Σ ∝ r−3/2 and the mass of the disk Md can be calculated via

Md =

∫ rout

rin

2πrΣ0

(
r

r0

)−3/2

dr. (1.7)

A relation for Σ0 can be found using [4] under the assumption of a steady state disk.
From Σ ∼ ν−1, ν = αc2s/ΩK and c2s ∼ T ∼ r−3/4L1/4 for a thin disk one gets:

Σ0 ∼
(
M∗

M⊙

)1/2(
L∗

L⊙

)−1/4

(1.8)
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The constant of proportionality can be eliminated with the initial value given in the
MMSN model for our sun at 1AU of Σ0,⊙ = 1700g/cm2 [24]. The relation in Eq. 1.8
changes to

Σ0 = 1700

(
M∗

M⊙

)1/2(
L∗

L⊙

)−1/4(
r

AU

)−3/2

. (1.9)

The resulting values for rout and the surface density at this outer radius can be found
in Tab. 1. To check, if these values are plausible, they can be compared to ALMA
data regarding T-Tauri stars. In [3] disk radii from 10 to 100AU are found which is
in consensus with the calculated values in this chapter. These values however, have
to be seen as a reference and they are not reflecting realistic disks in all cases. For
example, the surface densities for higher disk masses are quiet low and the disk would
have already lost its identity in the ISM. Furthermore, the inner radius is calculated
in Tab. 1 with approximate values. During a simulation the massflow changes and
thus the inner radius does. An more realistic treatment of the boundaries is given in
Section 3.4.

Table 1: Reference values for a range of stellar masses and disk properties, the disk
mass is fixed by 0.01M∗.

M∗ [M⊙] R∗ [R⊙] L∗ [L⊙] rin [AU] rout [AU] Σout [g/cm2]

0.1 2.49 0.604 0.046 1.41 362.9
0.2 2.52 1.042 0.047 3.64 108.5
0.4 2.70 1.633 0.050 9.04 34.5
0.6 3.53 2.748 0.066 17.6 13.9
0.8 4.30 4.909 0.080 31.3 5.85
1.0 4.88 6.887 0.091 46.2 3.34

Vertical structure

The vertical structure is determined by the pressure scale height HP. It is calculated
through the hydrostatic equilibrium in which the pressure force counteracts gravity
exerted by the central star (see e.g. [4]):

dP

dz
= −ρ

GM∗z

(r2 + z2)3/2
. (1.10)
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Now two of the key assumptions mentioned earlier can be used. First, ((r2+z2)3/2) =

r3 due to the thin disk approximation. And second the internal energy is constant
in z, so the pressure can be written as P = ρRT = ρe(γ − 1) for an ideal gas, where
only P and ρ depend on z. Eq. 1.10 can now be rewritten to:

1

ρ

dρ

dz
= − z

H2
P

, (1.11)

with

HP(r) =

√
e(γ − 1)r3

GM∗
=

√
TRr3

GM∗
(1.12)

The temperature has already been estimated in the previous subsection and with
R = R/µ (R as universal gas constant and µ as the mean molecular weight) the scale
height can be approximated with

HP(r) ∼ 0.8 · 1012cm
( r

AU

) 5
4

(
L∗

L⊙

) 1
8
(
M∗

M⊙

)− 1
2

, (1.13)

which results in a HP/r ratio of ∼ 0.05 at r = 1 AU for a solar like star.

Timescales

Despite from global timescales (e.g. the total lifetime of a protoplanetary disk), there
are several other timescales which are important for protoplanetary disks:

• Orbital timescale: The period of which a test mass can orbit around the star is
defined by the Kepler timescale

τK = 2πΩ−1
K = 2π

√
r3

GM∗
∼ 1 year at 1 AU and 1 M⊙ , (1.14)

where ΩK represents the Keplerian angular velocity of the test mass at a certain
radius.

• Viscous timescale: In a viscous disk an accretion related process depends on
the viscous timescale τν = r2/ν (see e.g. [4]) which can be approximated with
the α-model [41] (α usually set to 0.01 e.g. [30]). The viscous timescale is a
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measure for the time in which matter diffuses in a disk at a radius r. According
to [27],

τν ∝ r5/4 , (1.15)

the viscous timescale extends nearly over 3 orders of magnitude for the radial
range of the disk (radius values from Tab. 1 for a 1M∗ star).

• CFL timescale: According to the CFL condition [14] the respective timestep
limitation writes [15]

τCFL = min
all cells

∆x

|u|+ cs
. (1.16)

The absolute value of the velocity can be approximated with |u|+cs = uφ = rΩK,
since uφ ≫ ur, cs. For a solar like star and a grid spacing in φ-direction of
∼ 0.04 AU (this is the equivalent of 200 gridpoints), the timestep for quantities
at 1 AU is limited by τCFL ∼ 105 s ≪ τν . This timestep decreases further when
moving closer to the star. At 0.1 AU τCFL ∼ 3 · 104 s and thus utilizing an
explicit scheme results in long computation times.

• Total lifetime: Finally, the total lifetime of a disk’s gas component can be
estimated based on observations of the fraction of stars with near-infrared access
as a function of the age of the stellar group (see e.g. [26]): τtot < 107 years

8



2 Equations and Discretization

In this chapter the physical equations as well as their discretization are outlined.
Furthermore, the viscosity model and the effect of stellar irradiation is described.

2.1 Physical Equations of RHD, Opacity and EOS

To describe the dynamic interaction of radiation and matter in the disk the equations
of radiative hydrodynamics (RHD) are adapted for cylindrical geometry (see [15]). All
velocities are assumed non relativistic, the coordinate system is Eulerian and for the
radiation terms a local thermal equilibrium (LTE) source function is used. The RHD
equations, used to calculate four primary variables: surface density Σ, radial velocity
ur, angular velocity uφ and internal energy e, can be written as e.g. [29] or [38]:

Equation of Continuity

∂Σ

∂t
+

1

r

∂

∂r
(rurΣ) = 0 . (2.1)

Equation of Motion

The radial component of the equation of motion (2.2) with the gas pressure P (ver-
tically integrated and obtained from tables), the gradient of the total gravitational
potential ∂rΦtot = ∂rΦ∗ + ∂Φdisk combining the potentials of the star and the disk as
well as the radial and angular parts of the viscous pressure tensor Qrr and Qφφ. The
radiative pressure term is omitted since its contribution is much smaller than the gas
pressure (see e.g. [31]).

∂

∂t
(Σur) +

1

r

∂

∂r

(
rΣu2

r

)
−

Σu2
φ

r
+

∂P

∂r

+Σ
∂

∂r
Φtot +

1

r

∂

∂r
(r Qrr)−

Qφφ

r
= 0 , (2.2)

The angular component with the respective parts of the viscous pressure tensor Qrφ

as well as Qφr.

∂

∂t
(rΣuφ) +

1

r

∂

∂r

(
r2Σuruφ

)
+

∂

∂r
(r Qrφ) +Qφr = 0 . (2.3)
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Equation of internal Energy

∂

∂t
(Σer) +

1

r

∂

∂r
(rurΣer) + P

1

r

∂

∂r
(rurΣ) + ϵQ

− 4πκP (J0 − S) + ∆Erad = 0 , (2.4)

with the gas pressure P , the energy generated by viscous stress ϵQ = Q : ∇u, the
Planck opacity κP, a source function S and the radiative heating/cooling term ∆Erad

which is reviewed in Sec. 2.6.

Equation of Radiative Energy

∂

∂t
J0 +

1

r

∂

∂r
(rurJ0) + c

1

r

∂

∂r
(rHr,0) + ϵK + cκPρ0(J0 − S) = 0 , (2.5)

with ϵK = K : ∇u the radiative energy generated by the radiative pressure K. As
well as the radiation temperature J0 and the radiation flux Hr,0 both evaluated at
the midplane of the disk (here the Eddington variables are used, see e.g. [34]).

Equation of Radiative Flux

∂

∂t
Hr,0 +

1

r

∂

∂r
(rurHr,0) + c

1

r

∂

∂r
(rKr,0) + ϵH + cκRρ0Hr,0 = 0 , (2.6)

with the radial part of the radiative pressure Kr,0 (again as Eddington variable, see
e.g. [34]), the Rosseland mean opacity κR [33] and ϵH = Hr,0

∂ur

∂r . The source function
S = σ/πT 4 follows the Stefan-Boltzmann-Law and the viscous pressure tensor Qij is
further explained in Sec. 2.3. Finally, this set of equations needs closing conditions:
opacities, equations of state (EOS) and, to close the radiative equation, the Eddington
factor fedd. To avoid solving the radiation transport equation fedd is fixed to 1/3,
which is the Eddington approximation (see e.g. [15]). The equation of state, which
connects density and temperature, as well as the opacities, is given in tables. These
tables are entered with the midplane density values.

2.2 Simplified Interaction of Radiation and Matter

According to [38], it is possible to approximate the radiative transport in Eq. 2.5 by
its dominant terms. Thus the radiative equations must not be treated individually
and can be directly implemented into the Eq. 2.4. The disk’s heating and therefore
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the internal energy balance as well as the temperature structure is dominated by the
radiation of the central star (e.g. [22]). Assuming a stationary limit for the radiat-
ive equations, the temporal, the advection and the velocity terms can be neglected.
Hence, only the dominant terms in Eq. 2.5 remain.

c
1

r

∂

∂r
(rHr,0) + cκP ρ0(J0 − S) = 0 (2.7)

After multiplying 4π to both sides, the radiative term in the energy equation reads.

4πκP ρ0(J0 − S) = −4π
1

r

∂

∂r
(rHr,0) . (2.8)

Now, Hr,0 has to be expressed by reducing the radiative flux equation in the same
way. After dropping the temporal, the advection and the velocity terms, we receive:

c ∂rKrr + cκRρ0Hr,0 = 0 . (2.9)

Dropping c and using the Eddington approximation (fedd = 1/3 = Krr/J0), we get

∂r(feddJ0) + κRρ0Hr,0 = 0 . (2.10)

The equation of radiation flux is modified s0 that J0 is replaced with S = σ/πT 4
0 and

Eq. 2.9 and Eq. 2.10 can be combined to find an expression for Hr,0,

Hr,0 = −feddσ∂r(T
4
0 )

πκRρ0
. (2.11)

Finally, the radiative term in the equation of energy Eq. 2.4 can be replaced by
inserting Eq. 2.11 into Eq. 2.8

4πκP (J0 − S) = −4π
1

r
∂r

(
− r

feddσ∂r(T
4)

πκRρ0

)
. (2.12)

2.3 Artificial Viscosity Model

The basic model for the artificial viscosity used in the TAPIR code is based on the
work of e.g. [13]. In this formulation the origin of the viscosity term is derived from
complete inelastic collisions of two point masses. The resulting viscosity model follows
some important conditions. Viscosity only acts dissipating, converts kinetic energy
into heat when there is contraction and becomes zero during expansion. Additionally,
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viscosity disappears during self-similar-motion such as uniform compression and rigid
rotation. Considering the complete inelastic collision of two masses M1 and M2, the
kinetic energy decreases by the portion of µ(∆u)2/2, with the reduced mass µ and
the initial difference of the velocities of the two masses ∆u. According to [13], the
basic form of the the artificial viscosity can be written as

Q = c1ρcs|∆u|+ c2ρ(∆u)2 , (2.13)

where c1 and c2 are constants, cs is the speed of sound and ρ the gas density. The
non linear term has the same form as the loss of kinetic energy during an inelastic
collision, with density acting as the reduced mass. It shall help to satisfy the shock
conditions, whereas the linear term prevents nonphysical oscillations as a damping
part. To use this formulation in the TAPIR code, some adaptions must be made.
First, the nonlinear term can be neglected since there are no strong shocks expected
in a protoplanetary disk. The artificial viscosity reduces to the linear term only

Q = c1ρcs|∆u|. (2.14)

One problem of this formulation is that the artificial viscosity does not vanish for
uniform compression, since the linear term is always present as a damping part of the
viscosity. Keeping the artificial viscosity close to the physical viscosity can solve this
problem. With ∆u = lzq, where lz is a typical length scale and q is the strain-rate-
tensor, Eq. 2.14 becomes

Qij = c1ρcslzqij ,

qij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 1

2
δijdiv(u) .

(2.15)

The tensor qij now vanishes for rigid rotation and uniform compression since it is
constructed according to meet these requirements. To evaluate the remaining constant
c1, the coefficient of the dynamic viscosity has to be calculated. A model of the
physical viscosity used in the TAPIR code is presented in the next section.
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2.4 Physical Viscosity Model

In a disk turbulent forces transport material inwards. The timescale of these accretion
processes are already estimated in Sec. 1.4 and is much longer than an orbital period.
The usual description of viscosity ν according to [41] (α-model) is

ν = αcsHp . (2.16)

The basic idea is that turbulent cells are moving with the speed of sound cs up to
a maximum extent of the pressure scale height Hp, scaled with the free parameter
α. A typical value for this parameter is α ∼ 0.01 (e.g. [30]). In this TAPIR code
the α-model is enhanced with several physical features of the layered disk model
[20]. First, the viscosity is divided into a turbulent part which is activated under
certain conditions, and a small base value αbase ∼ 10−5 [21], which is always active.
The turbulent activated part itself is also divided into a magneto rotational unstable
(MRI, [8]) and a gravitational unstable (GI) part. A GI activates in case the Toomre
parameter QT [42] exceeds a critical value Qcrit = 1.0 with

QT =
csΩ

πGΣ
. (2.17)

With the assumption of an adiabatic sound speed c2s = P/ρ = e(γ−1) (internal energy
e and adiabatic index γ) and the Kepler velocity Ω =

√
GM∗/r3 Eq. 2.17 changes to

QT =

√
e(γ − 1)M∗

r3G

1

πΣ
(2.18)

and the α-value for GIs αGI yields

αGI =

⎧⎨⎩αGI,0(
QT

Qcrit
− 1) for QT > Qcrit

0 else
, (2.19)

where αGI,0 ≪ 1 [48] and thus is set to αGI,0 = 0.01.
The MRI distinguishes between turbulence in the surface layer of the disk caused
by ionization through stellar irradiation with a maximum surface layer thickness of
Σlayer = 100g/cm2 (e.g. [20]), and an instability in the midplane which is activated
when the temperature exceeds a critical value Tcrit ∼ 1500K (see e.g. [6] or [20]). Since
the star is constantly illuminating the disk, the viscosity in the disk’s surface layer
is always active with αMRI = 0.01. For the activation in the midplane (deep layers)
a switch sT has to be added, that allows a smooth transition over δT = 100K from
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the non active to the active regions. The following function meets this requirements
sufficiently

sT =
1

2

(
1 + tanh

Tgas − Tcrit

δT

)
. (2.20)

The combination of the surface layer, the deep layer, the gravitational unstable con-
tribution and the base value gives the total α-parameter:

Σα = ΣlayerαMRI + sTΣdeepαMRI +ΣαGI +Σαbase (2.21)

with Σdeep = Σ − Σlayer. To combine the artificial and physical viscosity model the
factors c1cslz in eq. 2.15 are replaced with ν. As ν ≫ 0 over the whole radial range
and no shocks are expected in a protoplanetary disk, no additional artificial viscosity
has to be added.

2.5 Discretization

The discretization is based on a finite volume discretization as presented in [15]. In
the TAPIR code, these principles are adapted for cylindrical geometry. An overview
of the computational domain is given in Fig. 2. The grid is adapted according to the
staggered mesh, with scalar quantities (e.g. Σ) between two gridpoints in a finite,
scalar volume and vector quantities (e.g. ur) located at the cell boundaries. To
transform the RHD equations into their discrete form, the first step is to integrate
them over a time-dependent volume V with surface ∂V and surface element dS.
Due to the adaptive grid and the resulting relative velocity between the gas and the
gridpoints, the Reynolds transport theorem has to be adapted too [35],

d

dt

(∫
V

f dV

)
=

∫
V

[
∂tf +∇·

(
fugrid

)]
dV. (2.22)

The following notation is used for all discrete quantities: δ denotes a temporal (e.g.
δt is the timestep between two simulation models) and ∆ a spatial difference as well
as X̄ are averaged values in the staggered mesh.
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Figure 2: The overall picture of the discretization of the inner part of a cylindrical
configuration. The axis r shows the physical domain with the inner boundary at r3.
The cells outside the physical domain (ghostcells with Σ1 and Σ2) are defined by
boundary conditions and have zero volume. Scalar radii are named with full integer
steps ri, whereas radii defining vectoral volumes are named in half steps ri+1/2. As
an example for a scalar quantity the surface density is used between two scalar radii.
And the velocity in radial direction ur is defined at a cell boundary within a vectoral
volume. The situation is analogue for the outer boundary.

During the simulation, physical quantities are transported across the boundaries of
grid cells. Since the adaptive grid moves the grid points, the transport is done with a
relative velocity urel = u− ugrid and not with the gas velocity. According to [15] the
advection of a physical quantity X, using finite volumes, is discretized by∫

∂V

XureldS =
∑

X̃ad
∆V

δt
, (2.23)

with the advected quantity X̃ad.
The advected volume ∆V ,transported over the cell boundaries, depends on the type of
the physical quantity. For a scalar quantity the grid cell volume (see Fig. 2) is defined
as Vs = π(r2i+1 − r2i ) and corresponding advected flux reads ∆Vs = 2πuiriδt− πδ(r2i ).
In case of vectoral quantities, the cell volume, which is defined on the scalar grid,
reads Vv = π

2 (r
2
i+1 − r2i−1) and thus ∆Vv = 2π

2 (riui + ri+1ui+1)− π
2 δ(r

2
i + r2i+1). The

advection scheme utilized in this work is the so-called van Leer scheme [44]. Following
these authors, the advected quantity at a grid point i writes

X̃ad
i =

⎧⎨⎩Xad
i−1 , if u

rel
i < 0

Xad
i , otherwise

, (2.24)
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with

Xad
i = Xi +

⎧⎨⎩
∆Xi∆Xi−1

0.5(Xi−1−Xi+1)
, if ∆Xi∆Xi−1 > 0

0 , otherwise
. (2.25)

The advected quantities in their different forms (scalar or vectoral) can depend on 5
indices; i− 2, i− 1, i, i+ 1 and i+ 2. The quantity X has to be calculated at these
gridpoints during the implicit method. Therefore, this so-called 5-point stencil [15]
enters the Jacobi matrix. To calculate boundaries of the computational domain, the
5-point stencil requires the implementation of two ghost cells (see Fig. 2). These ghost
cells have no volume and are defined by the boundary conditions. The discretization
of the RHD equations is shown on the example of the equation of continuity. The
remaining set of RHD equations is derived according to [15] or [38]. Introductory,
some basic expressions (divergence and gradient) are shown in their discrete form.
The divergence of vector quantity X⃗ can be written in cylindrical coordinates as∫

V

∇⃗ · X⃗dV =

∫ ri+1

ri

1

r
∂r(rXr)2πrdr = 2π∆(rXr) (2.26)

and the gradient of X changes to∫
V

∇⃗XdV =

∫ ri+1

ri

∂r(X)2πrdr = 2πr∆X . (2.27)

Equation of Continuity

Applying the Gauß-Theorem to the volume integrated form of the equation of con-
tinuity (Eq. 2.1) gives ∫

V

∂tΣdV +

∫
∂V

ΣurdS = 0 . (2.28)

Further applying of the Reynolds Theorem (Eq. 2.22) to Eq. 2.28 leads to

d

dt

∫
V

ΣdV +

∫
∂V

Σ
(
ur − ugrid

)
, (2.29)

with the radial gas velocity ur and the velocity of the grid points ugrid. Finally,
applying Eq. 2.23 and multiplying with the time-step the discrete form of the equation
of continuity summed up over all grid points is

δ[Σ Vs] +
∑

Σ̃∆Vs = 0 , (2.30)
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with the temporal change in the surface density multiplied with the scalar volume
δ[Σ Vs] and the sum over all advected surface densities Σ̃.

Equation of Motion

The radial component of the equation of motion in discrete form is

δ[Σur Vv] +
∑

Σ̃ur ∆Vv −
Σuφuφ

r
Vv δt+ 2πr

√
2π∆ [HpPgas] δt

+ ∂rΨ(r)tot ΣVv δt−
π

r
∆

{
r2 µQr

[
∆ur

∆r
− ur

r

]}
δt = 0 , (2.31)

with the following terms from left to right: temporal difference, advection term,
centrifugal force, vertical integrated gas pressure force, gravitational acceleration with
Ψtot = Ψstar+Ψdisk (Ψstar = −GM∗/r; for Ψdisk see sec. 4) and the viscosity with the
radial scaling factor µQr = αΣcsHp (see eq. 2.16). The φ-component of the equation
of motion reads

δ[rΣuφ Vv] +
∑ ˜rΣuφ ∆Vv − π∆

{
r2 µQφ

[
∆uφ

∆r
− uφ

r

]}
δt = 0 , (2.32)

with the temporal difference, advection and viscosity using the angular scaling factor
µQφ.

Equation of internal Energy

Using the assumptions from Sec. 2.2 the discrete internal energy equations reads

δ[Σe Vs] +
∑

(̃Σe) ∆Vs + P 2π∆(rur) δt

+ 8π2
√
2πHp σ ∆

(
−

2
3r

2 ∆(T 4)

κRρ0 Vv

)
δt

− µQ

2

{[
∆ur

∆r
− ur

r

]2
+

[
∆uφ

∆r
− uφ

r

]2}
Vs δt+∆Eradδt = 0 , (2.33)

with the temporal difference, advection, pressure term, radiative heating/cooling,
viscosity with the scaling factor µQ = µQr + µQφ and the contribution of stellar
heating on the disk’s surface ∆Erad which is calculated in Sec. 2.6.

17



2.6 Irradiation from central star and cooling

Heating, through irradiation from the central star, and cooling at the disk’s surface
change the thermal profile of the protoplanetary disk. Thus, the structure of the disk
is affected (e.g. through the mass flux Ṁ(r)). As protoplanetary disks are optically
thick in radial direction (see e.g. [38]), the stellar irradiation has minor influence. In
vertical direction however, stellar radiative energy, transported vertically within the
disk, is the dominant contributor for calculating ∆Erad in Eq. 2.33. The basic idea of
the irradiation can be seen in Fig. 3. Using the equilibrium

Eirr + Eamb − Ecool + Fvert = 0 (2.34)

and following [38], ∆Erad yields

∆Erad = 2σ
1

1 + τ ′ (T
4
0 − T 4

amb)δt−
1

1 + τ ′ L∗firrmax

[
∆

(
HP −H∗

r

)
, 0

]
δt , (2.35)

with σ the Stefan-Boltzmann constant, τ ′ = 3/4τ with the optical depth τ according
to e.g. [38], midplane temperature T0, ambient temperature Tamb, timestep δt, stellar
luminosity L∗, factor for irradiation efficiency 0 ≤ firr ≤ 1, scale height HP and H∗,
which takes a actual size of the central star into account.

2.7 Summary

In this section, the physical model, used in the TAPIR code, is summarized. The
RHD equations are shown including a viscosity description according to the α-model,
modified for layered accretion. The RHD equations have been discretized by utilizing
a finite volume volume discretization. Furthermore, the influence of stellar irradiation
on the thermal profile is explained, since it plays a dominant role in heating/cooling
the disk. The next section will summarize some numerical aspects utilized in the
TAPIR code.
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Figure 3: A schematic depiction of the surface heating/cooling caused by stellar
irradiation Eirr on a surface at scale height HP over the midplane at z = 0 between
two gridpoints ri and ri+1. The stars light hits the disk under a very shallow angle
which depends on the inclination of the disk and the stars radius and therefore on
the inclination of the line of sight. Showing the cooling Ecool the vertical transported
Fvert and the ambient radiation Eamb.
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3 Numerical Method

This chapter lists and briefly summarizes some numerical components, utilized in the
TAPIR code. For more in depth information on each topic, the respective references
are given.

3.1 Adaptive Grid

During a simulation, the structure of the protoplanetary disk is subject to changes (e.g.
during an episodic accretion event, see e.g. [6] or [9]). To ensure sufficient gridpoint
concentration in radial direction, an adaptive grid is utilized in the TAPIR code.
According to [16], the arc-length of a variable X between two gridpoints should be
kept constant. This results in a higher grid-point concentration near steeper gradients.
This behaviour is illustrated in Fig. 4. Along the radial axis (r) an arbitrary variable
X(r) is increased at r0 to represent a steeper gradient, compared to X(r) = const.

elsewhere. The grey dots indicate an uniform gridpoint distribution with the same
radial distance between two gridpoints. In the vicinity of r0 the arc-length between
two grey grid-points is much larger, compared to the outer regions. The black dots
represent a grid-point distribution with a constant arc-length, resulting in a higher
grid resolution close to r0 (well recognizable by the vertical dashed lines, indicating
the position of the black dots on the radial axis) while the grid resolution decreases
towards the radial edges. The redistribution of gridpoints, however, can not occur
instantaneously. According to [16], abruptly changing the grid-point position can
result in numeric instabilities. Therefore, the adaptive grid is spatial and temporal
smoothed (for details see [16]).
In Fig. 5 the redistribution of grid-points during an actual simulation is illustrated.
The setup is similar to Fig.4. A uniform surface density Σ distribution is increased
at r0 (see upper part of Fig. 5). To achieve sufficient resolution in the vicinity of
r0, the grid-points (indicated by the solid black lines in the lower part of Fig. 5)
start to move towards r0. Here, the temporal smoothing can be observed. For small
times (log (T/Tmax) < −6) the grid-points remain static in a logarithmic equidistant
distribution. For times larger than log (T/Tmax) ∼ −6 the redistribution of the grid-
points starts. At log (T/Tmax) ∼ −3 the redistribution is completed. The resulting
accumulation of grid-points provides sufficient resolution close to r0.
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higher resolutionlower resolution lower resolution

Figure 4: Illustration of the adaptive grid principle. An arbitrary variable X(r) is
increased along the radial axis r at a specific point r0. The grey dots represent a
uniform grid-point distribution (same radial distance between two gridpoints). The
black dots represent a grid-point distribution with a constant arc-length between two
gridpoints.

3.2 Implicit Computation Procedure

The TAPIR code, utilized for this work, is solving five primary variables in M = 5

equations at N gridpoints. This results in M × N unknown variables. All variables
at a given timestep t at gridpoint i can be written as ([16])

X(t) = X
(t)
i = (Σ

(t)
i , u

(t)
r,i , u

(t)
φ,i, e

(t)
i , r

(t)
i ) . (3.1)

Together with the discrete equations of Sec. 2.5 and 3.1 a nonlinear system of M

equations has to be solved

Gm(Xi) = 0 for 1 ≤ m ≤ M . (3.2)

Following [15], the Newton-Raphson iteration is used to solve this set of equations.
X(t+1) of the new timestep t + 1 is assumed to solve the equations Gm(X(t+1)) = 0.
This system is then expanded up to the first order around the new solution

G(X(t+1)) = G(X(t)) +
∂G

∂X(t)

(
X(t+1) −X(t)

)
= 0 . (3.3)

Finally, the temporal difference δX = X(t+1) − X(t) can be calculated by inverting
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Figure 5: Upper panel: An increase in the surface density at an arbitrary radius R0

(dashed line). The radius is normed to R0 and the surface density is normed to the
maximum value at the peak. Lower panel: The radius is shown as in the upper part.
Each line represents the location of a specific grid point for a time during a simulation
T . The time is normed to the maximum time Tmax (see [38])

.
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the Jacobi-matrix ∂G/∂X via:

δX = −
(

∂G
∂X(t)

)−1

G(X(t)) (3.4)

This procedure is repeated until the relative temporal difference falls below a certain
accuracy (usually ε < 10−6). Since a 5-point stencil is used, the adjacent variables at
gridpoint i− 2, i− 1, i+ 1 and i+ 2 enter the matrix as well to calculate a variable
at gridpoint i. All other entries become zero and therefore the matrix has a block
penta-diagonal structure⎛⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . 0
∂Gm,i

∂xm,i−2

∂Gm,i

∂xm,i−1

∂Gm,i

∂xm,i

∂Gm,i

∂xm,i+1

∂Gm,i

∂xm,i+2
0 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎠ . (3.5)

Each of the entries is a M × M matrix itself. Since the TAPIR code solves five
equations, one ends up with a 5× 5 submatrix like

∂Gm,i

∂xm,i−2
=

⎛⎜⎜⎝
∂G1,i

∂x1,i−2

∂G1,i

∂x2,i−2

∂G1,i

∂x3,i−2
. . .

∂G2,i

∂x1,i−2

∂G2,i

∂x2,i−2

∂G2,i

∂x3,i−2
. . .

...
...

...
. . .

⎞⎟⎟⎠ . (3.6)

The inversion is done via a conversion of the matrix into an upper triangular block
system. For a detailed description of the calculation see [15].

3.3 Initial Model

An implicit numerical method requires a full solution of the system (RHD equa-
tions together with an adequate grid-point distribution) to start the computation
(see e.g. [15]). For the TAPIR code, we aim to construct a stationary initial model.
Since stationary models can be calculated analytically (see e.g. [4]), they can be used
to verify the numeric method utilized in the TAPIR code (see [38]). Starting from a
Keplerian disk, which has no radial velocity ur and is in thermal equilibrium in vertical
and radial direction, a time-independent mass accretion rate Ṁ at the outer boundary
is chosen. The combination of the stellar parameters (e.g. radius R∗, mass M∗ and
luminosity L∗) and the boundary conditions (see Sec. 3.4) fully describe the internal
structure of the disk. As the viscous timescale τν characterizes the evolution of the
surface density (e.g. [5]), τν is the natural timescale for the transition towards the
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stationary model. The model is considered to be stationary, as the timestep exceeds
∼ 10 τν .

3.4 Boundary Conditions

The boundary conditions have to be chosen carefully, since the disk physics change
with different boundary conditions [38]. Additionally, the boundary conditions enter
the Jacobi-matrix (Eq. 3.5) and have to be chosen to keep the matrix’s structure as
regular as possible [15]. Especially the inner boundary is crucial (see [38]) since the
disk’s structure and evolution depends strongly on the flux and temperature at this
point. A crucial parameter to define the overall structure of a protoplanetary disk is
the massflow (see [38]). The importance of this value can easily be demonstrated using
a approximation for a stationary disk, shown in [4], where the massflow is considered
to be constant.

Ṁ = const. ∝ νΣ (3.7)

Since the viscosity model is already defined (see Sec. 2.4) the massflow directly dictates
the surface density profile of the disk and thus its internal structure. The outer disk
radius is considered to be located at the point where the disk looses its identity in the
ISM. In other words, if the surface density drops to a given value (in the following
simulations Σout = 20g/cm2 is used), the disk is considered to end. To satisfy these
requirements different boundary conditions are set at the inner and outer boundary:

• Outer boundary: The surface density as well as the temperature are set to be
open. Meaning the gradient over the outer boundary for these variables is zero
(Van Neumann boundary conditions). This is implemented for an quantity X

at the gridpoint i as follows:

Xi −Xi−1 = 0 . (3.8)

The velocity in angular direction is set to the Keplerian velocity and the radial
velocity is set to keep the massflow constant for the computation of the initial
model:

Ṁ = 2πRiΣiur,i = const. , (3.9)
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during the simulation the massflow is set to zero. The last boundary condition
to be set at the outer radius is the radius itself. It is simple placed to the point,
where the surface density drops below 20g/cm2.

• Inner boundary: At the inner edge of the disk the surface density, temperature
and the velocity in radial direction are considered to be open. The inner radius
itself is fixed to the truncation radius (see Eq. 1.5) during the calculation of
the initial model and moves according to the changing massflow Ṁ during the
simulation. The angular velocity at the inner boundary is set to be in corotation
with the star.

3.5 Summary

In this section some key numeric features of the TAPIR code are presented. The
adaptive grid providing sufficient grid-point resolution for each timestep. An implicit
calculation method requiring the inversion of the Jacobi-matrix and an initial model,
which already solves the full set of RHD equations. To ensure a successful simulation,
the boundary conditions have to be chosen carefully. In the following sections the
calculation of the gravitational potential of the disk as well as its implementation into
the equations is discussed.
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4 Self Gravity of the Disk

To work out the effects of the disk’s gravitational potential on the structure and long
term evolution of protoplanetary disks, the potential as well as its gradient have to
be derived and implemented into the TAPIR code. In this chapter, the gravitational
potential and its gradient with respect to the radius of a thin protostellar disk is
calculated using complete elliptic integrals. Furthermore, the elliptic integrals and
the gravitational potential (including the gradient) in radial direction, are presented
in discrete form and the implementation into the model is discussed. Finally, the
impact of the potential in vertical direction on the scale height is presented. The
angular direction is not effected by the disk’s self gravity due to the axial-symmetry.

4.1 Derivation of the Potential

To calculate the potential of a thin disk, the general solution of the Poisson equation

△Φ(x⃗) = 4πGρ(x⃗) (4.1)

is used, using Green’s method (analog to [11])

Φ(x⃗) = −G

∫
ρ(x⃗′)

|x⃗− x⃗′|
d3x⃗′ . (4.2)

For an axis symmetric disk using cylindrical coordinates with d3x⃗′ = R′dR′dϕ′dz′ and
the surface density Σ =

∫
ρdz Eq. 4.2 changes to:

Φ(R,ϕ, z) = −G

∫ ∞

0

∫ 2π

0

Σ(R′)R′

|x⃗− x⃗′|
dR′dϕ′ , (4.3)

with x⃗ = (R,ϕ, z) and x⃗′ = (R′, ϕ′, 0). Now the term |x⃗ − x⃗′| has to be evaluated.
The detailed calculation can be found in the appendix (A.1). Introducing k2 =

4RR′/((R+R′)2 + z2) gives

|x⃗− x⃗′|2 = [(R+R′)2 + z2][1− k2cos2(
1

2
ϕ′)] . (4.4)

The radial and angular components are now separated and the angular part of the
integral in Eq. 4.3 can be transformed. Substituting t = cos( 12ϕ

′) and dϕ′ = −2dt
sin( 1

2ϕ
′)
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results in ∫ 2π

0

1√
1− k2cos2( 12ϕ

′)
dϕ′ = 2

∫ 1

−1

1√
1− t2

√
1− k2t2

dt . (4.5)

A detailed calculation is is executed in Appendix A.2. Prior the last adaption of this
integral, the factor k2 has to be studied for the different possible values of R, R′ and
z to show that the integrand is symmetric and real in t. For this it is sufficient to
proof the following lemma:

Lemma 1. k2 = 4RR′/((R+R′)2 + z2) ≤ 1 ∀(R,R′, z).

Proof. w.l.o.g. z = 0. Furthermore,

((R+R′)2 + z2)/4RR′ ≥ 1

R2 + 2RR′ +R2 ≥ 4RR′

R2 − 2RR′ +R2 ≥ 0

(R−R′)2 ≥ 0

(4.6)

is true for all real values of R and R′

The integrand is shown to be symmetric and real and thus the integral in Eq. 4.5 can
be simplified to

2

∫ 1

−1

1√
1− t2

√
1− k2t2

dt = 4

∫ 1

0

1√
1− t2

√
1− k2t2

dt = 4K(k) . (4.7)

The exact definition of the complete elliptical integral of the first kind K(k) can be
found in Appendix A.3. Finally, the gravitational potential of a protostellar disk
writes

Φ(R, z) = −4G

∫ ∞

0

Σ(R′)R′K(k)√
(R+R′)2 + z2

dR′

= −2G

∫ ∞

0

Σ(R′)kK(k)

√
R′

R
dR′ .

(4.8)
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4.2 Gravitational force

To add the gravitational potential to the equation of motion, the gradient has to be
calculated, which reduces (in one dimensional cylindrical coordinates) to the calcula-
tion of the derivative with respect to R

∂Φ(R)

∂R
= −2G

∫ ∞

0

Σ(R′)
√
R′ ∂

∂R

(
kK(k)√

R

)
dR′ . (4.9)

Using the product rule

∂

∂R

(
kK(k)√

R

)
= −1

2

K(k)K

R
3
2

+
1√
R

∂(K(k)k)

∂R

= −1

2

K(k)K

R
3
2

+
1√
R

∂(K(k)k)

∂k

∂k

∂R
,

(4.10)

the gradient yields

∂Φ(R)

∂R
=

G

R
3
2

∫ ∞

0

Σ(R′)
√
R′

[
kK(k)− 2R

∂(K(k)k)

∂k

∂k

∂R

]
dR′ . (4.11)

In Appendix A.3 and A.4 these derivatives are calculated as

∂(K(k)k)

∂k
=

E(k)

1− k2
(4.12)

and

2R
∂k

∂R
=

k3

4

(
− R

R′ +
R′

R
+

z2

RR′

)
. (4.13)

Equation 4.11 can now be transformed into its final form

∂Φ(R)

∂R
=

G

R
3
2

∫ ∞

0

Σ(R′)k
√
R′

[
K(k)− k2

1− k2
E(k)

4

(
− R

R′ +
R′

R
+

z2

RR′

)]
dR′ .

(4.14)

4.3 Discrete Complete Elliptic Integrals

The discretization of the complete elliptic integrals is performed with the arithmetic-
geometric-mean (AGM) method [28]. The numerical determination of K(k) and E(k)

is reduced to an iterative process down to any required accuracy (see [47]). The initial
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values are a0 = 1, b0 =
√
1− k2 and c0 = k and the iterations are computed according

to

a1 =
a0 + b0

2
. . . an+1 =

an + bn
2

b1 =
√
a0b0 . . . bn+1 =

√
anbn

c1 =
a0 − b0

2
. . . cn+1 =

an − bn
2

.

(4.15)

With every iteration an and bn are approaching the same value M and after the
desired number of steps (in the order of 10 [47]) an ∼ bn ∼ M applies. The complete
elliptical integrals can then be numerically evaluated with

K(k) =
π

2M
,

E(k) =
π

4M
(2− c20 − 2c21 − · · · − 2nc2n) .

(4.16)

The K(k) has a singularity at k = 1. In [47] this problem was bypassed by setting the
exact value for E(1) = 1 as well as a large value for K(k = 1) = 10300. The accuracy
of this method is even in the vicinity of k = 1 comparable to the numerical accuracy
and ranges, according to [47], in the order of 10−7.

4.4 Discrete Potential Equations

To formulate the complete elliptical integrals in a discrete form the integrands of
Eq. 4.8 and 4.14 are separated in a purely radius dependent and a surface density
term. Furthermore, the integral boundaries need adjustment since the disk expands
from the inner radius rin to the outer radius rout. Outside the disk boundaries the
surface density is set to zero and thus the contributions to the potential vanish. As
a consequence of the grid structure, the surface density has a constant value between
two gridpoints. Therefore the integral can be written as a sum of integrals covering
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two gridpoints. The potential of the disk at the gridpoint Ri is then

Φ(Ri) = −2G

∫ ∞

0

Σ(Rj)kK(k)

√
Rj

Ri
dRj

= −2G

∫ Rout

Rin

Σ(Rj)kK(k)

√
Rj

Ri
dRj

=

np−1∑
j=1

Σ(Rj)

∫ Rj+1

Rj

−2G

√
Rj√
Ri

kK(k)dRj

=

np−1∑
j=1

Σ(Rj)Ij .

(4.17)

Accordingly, the equation of the gradient writes

∂Φ(Ri)

∂R
=

G

R
3
2
i

∫ ∞

0

Σ(Rj)k
√
Rj

[
K(k)− k2

1− k2
E(k)

4

(
− Ri

Rj
+

Rj

Ri
+

z2

RiRj

)]
dRj

=

np−1∑
j=1

Σ(Rj)

∫ Rj+1

Rj

G

R
3
2
i

k
√
Rj

[
K(k)− k2

1− k2
E(k)

4

(
− Ri

Rj
+

Rj

Ri
+

z2

RiRj

)]
dRj

=

np−1∑
j=1

Σ(Rj)Jj ,

(4.18)

where I and J are abbreviations for the integral expressions and np is the number
of gridpoints. The problem of calculating the potential and its gradient has now
been reduced to a summation and the integrals I and J can be evaluated by using a
trapezoidal rule.

4.5 Numeric Implementation

After having written the gravitational potential and the gravitational force in con-
tinuous and discrete form, the respective expressions have to be implemented into the
model, paying attention to the numerical properties of the TAPIR code. As a result
of the 5-point-stencil at each gridpoint Ri, the potential (the gradient follows exactly
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the same method) can be calculated as

Φ(Ri) =
∑

j<i−2

Σj,oldIj +Σi−2Ii−2 +Σi−1Ii−1 +ΣiIi

+Σi+1Ii+1 +Σi+2Ii+2 +
∑

j>i+2

Σj,oldIj ,
(4.19)

where Σj,old is the surface density at the previous timestep. As the gravitational
potential is acting instantaneously, a change beyond the 5-point-stencil would also
effect the potential at the gridpoint Ri. This effect however, reduces with distance
and the combined change of all other gridpoints is negligible compared to the old
timestep. Another problem arises when combining the potential with the adaptive
grid. Using a fixed grid, the integrals I and J have to be calculated once prior to the
first timestep. With an adaptive grid and changing the values of Ri, these integrals
have to be updated at every timestep. Since the integrals require np2 calculations,
the computation time increases. Finally, the situation Ri = Rj has to be discussed.
In this case applies k = 1 and K(k) approaches infinity. The resulting potential and
its gradient would also diverge, which is not realistic. To reduce the impact of this
problem, e.g. Rj could be slightly shifted so that Ri ̸= Rj is assured and thus does
not result in a singularity.

4.6 Impact on the Vertical Structure

The gravitational potential of the disk does not only act in radial direction, the vertical
direction is also affected. According to Eq. 1.10 and Eq.1.12, gravity contributes to
the pressure scale height Hp. Additional to the stellar gravitational acceleration, the
gravitational contribution of the disk has to be taken into account (similar to e.g. [5]).
For a fixed radius and angle (∂r = ∂φ = 0) in cylindrical coordinates the Poisson
equation (Eq. 4.1) reduces to

∂2Φ

∂z2
= 4πGρ . (4.20)

Performing an integration over the vertical direction (analog to e.g. [43]) and using
the symmetry of the disk and the definition of the surface density, Eq. 4.20 changes
to

2∂zΦ = 4πGΣ . (4.21)
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The gravitational acceleration in vertical direction can be written as gz = −∂zΦ and
so the self gravity of the disk has a direct influence on the scale height of the disk
since the gz has to be added to the acceleration exerted by the central star. This
changes Eq. 1.10 as follows:

dP

dz
= −ρ

GM∗z

(r2 + z2)3/2
− ρgz . (4.22)

Ignoring the central star for now and using the equation for an ideal gas changes the
hydrostatic equilibrium to

1

ρ

dρ

dz
= − gz

e(γ − 1)
= − 2πGΣ

e(γ − 1)
. (4.23)

Now, caused by the self gravity of the disk, a scale height similar to Eq. 1.11 can be
introduced

Hz =

√
e(γ − 1)

2πGΣ
. (4.24)

The two expressions for the scale height (see Eq. 1.12) are acting simultaneously.
They are combined using the harmonic mean (see e.g. [10])

H2
p,tot =

1
1

H2
z
+ 1

H2
p

, (4.25)

Hp,tot =

√
e(γ − 1

G

1
4π2GΣ2

e(γ−1) + M∗
r3

. (4.26)

The numerical implementation does not require additional steps since all the required
variables are already defined in the TAPIR code.

4.7 Dominant Disk Self Gravity

The disk’s self gravity is negligible for small disk masses. For increasing disk masses
however, it impact increases as well. A critical point where the disk’s gravity becomes
dominant can be approximated according to [5]. Comparing the two gravitational ac-
celeration terms in vertical direction at z = Hp, the disk’s influence becomes dominant
for

2πGΣ >
GM∗Hp

r3
. (4.27)

This can be rewritten into a criterion, at which self gravity of the disk becomes
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important and has to be included in the simulation. Bringing all terms in Eq. 4.27 on
one side and defining the respective value as the self gravity criterion QSG (similar to
the Toomre parameter) yields

QSG ∼ 1 >
M∗HP

2πr3Σ
, (4.28)

where QSG is of order 1. In Section 6 three different disks are compared. As the
surface density decreases QSG, one low mass disk with QSG > 1, a critical disk with
QSG ∼ 1 and a high mass disk with QSG < 1 are tested.

4.8 Summary

In this chapter the potential of a protostellar disk is derived by rewriting the gen-
eral solution of the Poisson equation with the help of the complete elliptic integral
of the first kind. The physical interpretation of the complete elliptical integrals is
the summing-up of all the parts of the symmetrical distribution of the disks surface
density that contribute to the gravitational potential. Furthermore, the derivative
with respect to the radius is calculated. These results are derived under the given
assumptions for continuous functions of the surface density Σ and the elliptical in-
tegrals. Since Σ and the grid points, which represent the radius, are given in discrete
distributions, the potential and the derivative have to be discretized as well. First,
the complete elliptic integrals are calculated numerically using the AGM method.
The resulting deviations to the analytic values are far below numerical accuracy. The
potential is rewritten to a sum of integrals ranging over two gridpoints. Between two
gridpoints the surface density is constant and so the problem of solving the integral is
reduced towards a sum in which the remaining, only radius dependent integrals, can
be calculated using the trapez method. This, however, increases the computational
time especially if the gridpoints are moving since the radius dependent parts have to
be calculated in every time step. Finally, the impact of the disk’s potential on the
vertical structure through the scale height is derived. By comparing the gravitational
acceleration of the star and the disk, a criterion is formulated which should determine,
when it is important to include the disk’s self gravity to the simulation. In the next
section some tests are performed to show the plausibility of the assumptions and the
behaviour of the potential.
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5 Tests

In this section, the equation for the potential of the protostellar disk is tested in
different ways. First, the gravitational potential energy of the young solar system will
be compared from different points of view. The mass conservation and the related
conservation of the total potential is then verified using the discrete equation of the
potential (Eq. 4.17) in a numeric test case. Afterwards, the implementation is tested
by increasing the disk’s density at a specific point in the disk and analysing the
behaviour of the potential on the density evolution.

5.1 Comparing Gravitational Potential Energy

To test the analytic potential function Φ(R) of the disk the gravitational potential
energy U of the system will be calculated. First, the mass of the star which is
concentrated at radius zero is placed within the disk’s potential. The result is then
compared to the mass of the disk placed in the stars potential. At radius zero Eq. 4.8
changes to

Φ(0) = −4G

∫ Rout

Rin

Σ(R′)K(0)dR′ . (5.1)

With K(0) = π/2 the gravitational energy can be calculated as

U =

∫
M∗dΦ(0) = −2πGM∗

∫ Rout

Rin

Σ(R′)dR′ . (5.2)

Expanding this equation with R′ one ends up with

U = −
∫ Rout

Rin

2πR′Σ(R′)
GM∗

R′ dR′ =

∫
Φ∗dMD , (5.3)

which represents the mass of the disk placed in the stars potential. Thus, the gravit-
ational potential energy is independent of the point of view.

5.2 Conservation of Mass

The following test considers the numeric discretization and verifies the conservation
of the total potential. Since the potential of a protostellar disk is up to three orders of
magnitude smaller compared to the potential of the star, a system will be constructed
in which the initial mass of the disk equals the initial mass of the star. Thus the
potential will have the same order of magnitude. The initial mass is set to unity.
During an arbitrary time T = 1, the complete mass from the disk falls onto the star
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which doubles the amount of stellar mass at the end of the simulation. The total
potential Φtot of the system is the sum of the disk and stellar potential. Since the
mass of the system is conserved, integrating the potential over the radius should result
in the same value for all timesteps t∫

ΦtotdR = const ∀t . (5.4)

Since gravity is a long ranging force this integral has to be evaluated from zero to
infinity. This is only possible analytically. For this numerical test the outer boundary
R∞ is chosen to be three orders of magnitude larger than the outer radius of the disk.
The stellar radius equals the inner radius of the disk R∗ = Rin = 0.1 and the outer
radius of the disk Rout = 2 and R∞ = 2000 respectively. To calculated the potential
of the disk, the domain is divided into three parts. In each part 400 gridpoints are
used. The first part ranges from zero to the inner radius of the disk; the second part
from the inner to the outer radius of the disk and the third part from the outer edge
of the disk to R∞. In each part the potential is calculated according to Eq. 4.17. The
star’s potential can be split in two parts. From zero to the stellar radius the formula
for a homogeneous sphere

Φ(R)∗,in =
GM∗

2R∗

(
R2 − 3R2

∗
)

(5.5)

and from the stellar radius to R∞, Φ(R)∗,out = −GM∗/R is used. The integral over
the stars potential can be calculated analytically. In Fig. 6 the result for a disk with
a constant surface density is shown. The integrated potential of the disk (solid line)
and the star (dashed line) as well as the total integrated potential (dotted line) are
calculated for 200 timesteps. Since the disk-mass is added onto the star, the disk’s
potential decreases and the stellar potential increases. The total value remains nearly
constant. The maximum difference in the total potential is 0.3% and decreases for a
lower disk-mass. Keeping in mind that the actual disk-mass is only a small fraction
of the stellar mass, the error will even be smaller in more realistic systems. This
test shows, that the numeric method is compatible with the conservation of the total
potential of the system and provides accurate results.
The accuracy depends on the number of gridpoints and especially on the value of R∞.
For smaller values of R∞ the accuracy decreases. Indeed, the maximum deviation for
R∞ = 1000 is ∼ 5% and ∼ 7% for R∞ = 50.
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Figure 6: Different potential functions integrated over an arbitrary time t and norm-
alised to the integrated total potential (Total). The integrated potentials of the disk
(Disk) and the star (Star) are shown. They were calculated in 200 timesteps.

5.3 Adding Mass to the disk

For this test the initial model of a protoplanetary disk around a 1M⊙ star constructed.
The idea is to add the mass of a Jupiter at an arbitrary radius rref by increasing the
surface density and follow the evolution of this perturbation. The potential of the
disk is expected to show a gravitational cavity at rref . Viscous forces then transport
the mass away from the cavity, both inwards and outwards. This widens the mass
accumulation and the potential cavity until the mass is evenly distributed along the
disk. This process is visible in Fig. 7. The temporal progress of this process is shown
at four evolution ages, starting with the initial disk τ0 without the mass injection,
the time after the mass injection τ1 and two more times showing the progress until
the entire mass is redistributed (τ2 and τ3). The peak in the surface density, the
gravitational cavity in the potential and the cavity’s widening is clearly visible.

5.4 Known Limitation

Since gravity is a long-ranged force and changes in the potential function appear in-
stantaneously within the gravitational field, numerical limitations occur. The TAPIR
code uses a five-point stencil, only at these points the variables are calculated for the
new time step. To overcome this issue, the old values are taken into account for the

36



remaining gridpoints. Gravitational force however, is decreasing fast with increasing
distance. Even if there are mass shifts beyond the five-point stencil, gravity shifts are
reduced and differences to the old timestep are marginal.

5.5 Summary

The gravitational energy as well as the conservation of the total mass shows satis-
factory results during these tests. Furthermore, the effects of a mass added onto the
disk at a given radius is reproduced realistically. Moreover, the limitations regarding
the gravitational force have been discussed. Since all tests show satisfying results, the
impact of the potential on more realistic disks is shown in the next section.
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Figure 7: Upper panel: Surface density distribution after a mass increase at a ra-
dius rref during different timesteps. τ0 represents the initial density prior the mass
injection; τ1 shows the distribution directly after the increase and τ2 as well as τ3
show the further progress. All distributions are normalised to the value of the ini-
tial density distribution (τ0) at rref . Lower panel: Respective illustration of the disk’s
gravitational potential. The plots are normed to the initial potential at rref . (see [38])
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6 Results

In this section the profile and temporal evolution of different protoplanetary disks is
tested under the influence of the gravitational potential of the disk. After a short
excursus introducing episodic accretion events, a complete temporal evolution of a
disk with and without the disk’s potential will be compared for different values of
QSG. Finally, the influence of an episodic accretion event (FU Orionis like outburst,
see e.g. [6] or [9]) on QSG is tested.

6.1 Episodic Outburst Events

The basis of accretion outbursts as described in e.g. [6] or [9] is the layered viscosity
model as introduced in Section 2.4. Accreting layers at the boundary of the disk
enclose a part of cool gas. The temperature of this locked gas is first of all too low
to trigger MRI turbulence. As this gas cannot be transported efficiently in radial
direction ([7]), more and more material is accreted into this region the temperature
increases until it reaches the critical value of Tcrit. In this case turbulence induced
and the zone of former cold gas falls onto the star increasing the accretion rate from
Ṁ ∼ 10−8M⊙/yr to 10−6− 10−5M⊙/yr (see e.g. [6]). This increases the temperature
even further and an instability starts until the gas is depleted and the temperature
decreases below the critical value. The reason why these events are interesting in
this context are the waves, which are triggered with the outburst and move through
the disk. Together with the waves masses within the disk are shifted and so a local
increase of the importance of the disk’s potential compared to the stellar potential
could occur.

6.2 Different values of QSG

To show the influence of self gravity for different values of QSG (Eq. 4.28), the same
disk and stellar parameters are used for all runs. The star is a solar like star with
1M⊙ and the disk ranges from 0.06 to 30 AU. The viscosity parameter alpha is set
to be constant; α = 0.01. The effect of a layered viscosity model and the resulting
outbursts are shown in the next subsection. For each disk mass a run with and
without the gravitational influence of the disk is made. Then the disk structure of the
initial, stationary model (in this case the surface density profile and the scale height
with respect to the radius) as well as the temporal evolution (the disk mass and the
accretion rate onto the star) are compared.
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6.2.1 Low Mass Disks

First, we show the influence of the disk potential on the disk structure, for a low-mass
disk. The disk mass is ∼ 1%M∗ which corresponds to the MMSN [24]. The parameter
QSG has a value of ∼ 7. In Fig. 8 and 9 can be seen that the inclusion of the potential
does not change the structure of the disk noticeable. The surface density as well as
the scale height are unaffected over the whole range of the disk radius. The temporal
evolution of the low mass disk looks similar. In Fig. 10 minimum deviations can be
guessed during an early phase of the disk lifetime. The accretion rate again is quasi
undisturbed during the whole evolution (see Fig. 11).
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Figure 8: Low-mass disk. Surface density Σ of the disk with respect to the radius R.
The radius is given in AU and the surface density is normed to the maximum value.
The dots represent the simulation in which the gravitational potential of the disk is
included. The line shows the run without the disk’s potential.
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Figure 9: Low-mass disk. Scale height of the disk Hp as a function of the radius R.
The radius and the scale height is given in AU. The dots represent the simulation
in which the gravitational potential of the disk is included. The line shows the run
without the disk’s potential.
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Figure 10: Low-mass disk. Disk mass mD in solar mass units as a function of the
simulation time t in units of the maximum value tmax. The dots represent the simu-
lation in which the gravitational potential of the disk is included. The line shows the
run without the disk’s potential.
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Figure 11: Low-mass disk. Disk accretion rate onto the star Ṁ in solar masses per
year as a function of the simulation time t in units of the maximum value tmax.
The dots represent the simulation in which the gravitational potential of the disk is
included. The line shows the run without the disk’s potential.
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6.2.2 Critical Disks

In the second run a disk with a larger mass is simulated (∼ 5%M∗). The parameter
QSG has a minimum value of ∼ 1.5. This is close to 1 and thus the gravitational
potential of the disk should already have an impact on the disk. This however is
expected to make a difference in the outer parts of the disk, since the Eq. 4.28 decreases
with increasing radius. With the approximation for HP used for Eq. 1.13 as well as
the dependency for Σ used in the MMSN [24], QSG goes with r−1/4. Indeed a change
in the outer regions of the surface density as well as in the scale height can be seen
(see Fig. 12 and 13). During the evolution of the disk, there are bigger changes than
before (see Fig. 14 and 15) but these changes are still small and the different runs are
still comparable in their structure.
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Figure 12: Critical-mass disk. Surface density Σ of the disk with respect to the radius
R. The radius is given in AU and the surface density is normed to the maximum
value. The dots represent the simulation in which the gravitational potential of the
disk is included. The line shows the run without the disk’s potential.
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Figure 13: Critical-mass disk. Scale height of the disk Hp as a function of the radius
R. The radius and the scale height is given in AU. The dots represent the simulation
in which the gravitational potential of the disk is included. The line shows the run
without the disk’s potential.
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Figure 14: Critical-mass disk. Disk mass mD in solar mass units as a function of
the simulation time t in units of the maximum value tmax. The dots represent the
simulation in which the gravitational potential of the disk is included. The line shows
the run without the disk’s potential.
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Figure 15: Critical-mass disk. Disk accretion rate onto the star Ṁ in solar masses
per year as a function of the simulation time t in units of the maximum value tmax.
The dots represent the simulation in which the gravitational potential of the disk is
included. The line shows the run without the disk’s potential.
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6.2.3 High Mass Disks

In the third run a heavy disk is simulated (∼ 10%M∗). The parameter QSG has a
minimum value of ∼ 0.7. This is already in the range where the disk self gravity should
be dominant and a significant change should be noticeable. This change should again
be strongest in the outer parts of the disk. As expected there is a tremendous change
in the surface density profile in Fig. 16 as well as in the scale height in Fig. 17. This
effect in the stationary model can be explained as follows: The scale height is decreased
due to the increased combined value of acceleration towards the central plane of the
disk as seen in Fig. 17. Thereby the angle at which the disk is illuminated by the star
decreases as well. So the temperature is reduced due to this shadowing effect. These
two effects, the lower scale height and the shadowing, both influence the viscosity
value ν = αcsHP . The scale height reduces ν directly and the lower temperature
decreases the speed of sound cs and thus also decreases ν. Since according to e.g. [5]
the following for a stationary disk is true: Ṁ = νΣ = const, the surface density
has to increase to fulfil this condition. This higher surface density in the other parts
increases the disk mass significantly (as seen in Fig. 18) and so the temporal evolution
of the disk is affected as well. The accretion rate in Fig. 19 is even qualitative different.
The higher mass of the initial model results in an initial increase of the accretion rate
onto the star.
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Figure 16: High-mass disk. Surface density Σ of the disk with respect to the radius
R. The radius is given in AU and the surface density is normed to the maximum
value. The dots represent the simulation in which the gravitational potential of the
disk is included. The line shows the run without the disk’s potential.
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Figure 17: High-mass disk. Scale height of the disk Hp as a function of the radius
R. The radius and the scale height is given in AU. The dots represent the simulation
in which the gravitational potential of the disk is included. The line shows the run
without the disk’s potential.
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Figure 18: High-mass disk. Disk mass mD in solar mass units as a function of
the simulation time t in units of the maximum value tmax. The dots represent the
simulation in which the gravitational potential of the disk is included. The line shows
the run without the disk’s potential.
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Figure 19: High-mass disk. Disk accretion rate onto the star Ṁ in solar masses
per year as a function of the simulation time t in units of the maximum value tmax.
The dots represent the simulation in which the gravitational potential of the disk is
included. The line shows the run without the disk’s potential.
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6.3 Impact of episodic accretion events on QSG

In the previous section the different simulations are carried out with a constant value
for the viscosity parameter α. Now the effect of a layered accretion and the resulting
outbursts are tested. For this purpose a low mass disk is simulated (QSG ∼ 20). In
Fig. 20 the accretion rate during the burst as well as the value for QSG can be seen.
QSG is normed to its initial value of ∼ 20. It can be seen, that as soon as the outburst
starts, QSG increases and thus decreases the influence of the disk’s self gravity. As the
burst fades QSG remains even above its initial value. Concluding from this results, an
episodic accretion event like an FU Orionis like outburst, does not increases the effect
of the disk’s self gravity, on the contrary it is reduced. This effect can be explained
by the rapid and strong increase in the disks temperature during these events (see
e.g. [6] or [9]).
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Figure 20: Upper panel: Accretion rate in solar masses per year. Lower panel: Value
of QSG in units of QSG, init. Both are given in units of the time; ranging over the
duration of the burst and normalised to its final value.
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6.4 Summary

In this section the results are presented. First, episodic accretion events were briefly
explained and the reason for their consideration stated. Afterwards different values
of QSG are tested and the impact of the disk’s self gravity illustrated in both the
stationary model of the disk as well as in the temporal evolution. Finally, the impact
of episodic accretion outbursts on the parameter QSG is shown. As this section
completes the separate parts of this work, the next section gives a conclusion of these
results.
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7 Conclusion

In this work the implicit TAPIR code is introduced, its key features addressed and the
physical and the temporal dimensions of a protoplanetary disk are estimated. Sub-
sequently, the equations and the numerical methods used are explained. Since these
parts should act as a review, the respective references are given for deeper insights.
Thereafter, the gravitational potential and its gradient of the disk are calculated, us-
ing complete elliptical integrals. This method is chosen since these integrals can be
easily calculated numerically up to sufficient accuracy. With the discrete form of the
elliptic integrals, the implementation of the potential’s gradient into the equation of
motion is carried out by rewriting the potential as a finite sum. Unfortunately, this
implementation increases the computation time. Especially if the gridpoints are mov-
ing and the parts depending on the gridpoints have to be calculated in every timestep.
Additionally, the impact in the radial equation of motion, the impact of the potential
is also implemented in the pressure scale height. Comparing the gravitational accel-
eration of the star and the disk, a criterion QSG is derived which can determine when
the disk gravity become important. For value of QSG close to unity the impact of the
disk’s gravity should become important. In the following tests to check the correct
implementation the potential shows satisfactory results. Furthermore, three different
simulation runs for disks with different values of QSG are compared with and without
the influence of the disk gravitational potential. For low-mass disks (QSG > 1) the
effect is not noticeable. Increasing the disk mass and decreasing QSG to approximate
unity the effects increase but remain still small and the qualitative structure and evol-
ution remains the same. For even heavier disks (QSG < 1) the impact of the disk’s
gravity becomes dominant in the outer parts of the disk, resulting in distinct changes
in the disk structure and the temporal evolution. Finally, the impact of episodic ac-
cretion events on QSG is tested. A comparison of QSG over the course of such an
outburst event shows, that QSG increases due to the strong temperature rise during
an outburst. This reduces the effect of the disk’s gravity.
Combining these results, it is absolutely reasonable to ignore the disk’s self gravity for
low-mass disks. The structure and the evolution of the disk remain almost unchanged
when adding the potential into the model. Even if the value of QSG approaches unity
the differences are sill not qualitative. For higher disk masses (QSG < 1) however,
the impact is significant and the inclusion of the gravitational potential of the disk
should be considered. Ignoring the gravitational effects for high-mass disks can lead
to substantial deviations in both the disk structure and evolution.
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Further Outlook

The TAPIR code is constantly expanded with new features. There are features, that
are already implemented in the model, but not yet fully analysed. These, as well as
further tests with the existing model, could change the results of this work and give
new insights on protoplanetary disks.

One included aspect in the current model is the efficiency of the accretion process,
which is divided in three factors. First, the efficiency of the mass accretion facc can be
varied. Describing how much of the accreted mass is added onto the star. And how
much mass is lost in stellar winds. Furthermore, the change of the stellar irradiation
efficiency firr (see Eq. 2.35), can be changed. The higher firr, the more radiation is
absorbed from the disk and less energy is reflected. The third efficiency parameter
describes the accretion luminosity flum. Higher flum leads more energy of the accreted
material to be converted into stellar luminosity. In addition, the properties of the gas
within the disk itself can be adapted. The equation of state can be changed from a
perfect gas with a mean molecular weight of 2.33 g/mol to a more realistic gas, which
has to be given in tables. To adjust for different metallicities Z, opacity tables for
different Z values can be used. A collection of opacities from different authors and for
different metallicities can be found here [1].

Besides the further analysis of the existing model, several new features are being im-
plemented into the model. One possibility is the treatment of stellar jets. According
to e.g. [18], jets are found originating from young stellar objects. As a consequence,
the disk is not only irradiated by the star itself, but also by a jet, releasing energy
onto the disk’s surface. This energy input also contributes to the energy transport
in vertical direction. As the material in the jet is moving away from the star, the
intensity of the radiation and the angle under which the disk is irradiated changes.
Another aspect, which is currently being implemented into the TAPIR code, is a
planet-disk interaction. A single planet, orbiting the central star, can have a large
impact on the protoplanetary disk. The planet’s mass attracts the disk material in
its vicinity and a gap within the disk can open (see e.g. [5] Fig. 32 and references
therein). As the current model utilizes 1-D calculations and axial-symmetry, a single
planet orbiting the central star is difficult to implement. A sinkterm, however, im-
plemented at a given radius, can represent at least the gravitational presence of a
planet embedded in the disk (keeping in mind, that a sinkterm does not represent the
physics of a whole planet). In the current model, the effects of the stellar magnetic
field are limited towards the inner regions of the disk and the truncation radius. It
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is possible to add a large-scale, primordial disk magnetic field to the model, effecting
the disk over its whole radial range and being the reason for e.g. disk winds. I want
to finish this outlook with one more additional extension to the model; the enhanced
treatment of dust. In the current model, a constant dust-to-gas ratio of 0.01 is used.
In recent publications (e.g. [45]) however, this ratio can differ from the constant value
significantly (values up to 1). In regions of a high dust-to-gas ratio, the increased
optical depth due to the dust causes more efficient radiative heating within the disk,
which then has a influence on the viscous parameters. As the viscosity is directly
influenced by the surface density (see Sec. 6.2.3), the whole disk structure is effected.
Additionally, dust-settling, dust-growing, fragmentation and different drag-regimes
have to be distinguished.

Despite the work left to be done, the current model is able to reproduce previous work
on protoplanetary disks (see [38]) in a satisfactory manner. Furthermore, the implicit
nature of the TAPIR code enables long term simulations (as shown in Sec. 6.2), which
have been not possible with the given accuracy so far (especially towards the inner
regions of a disk). One example of such a case is the upper mass limit due to viscous
instabilities for stationary protoplanetary accretion disks [39].
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A Appendix

A.1 Detailed calculation of equation 4.4

With x⃗ = (R,ϕ, z) and x⃗′ = (R′, ϕ′, 0).

|x⃗− x⃗′|2 = R2 +R′2 − 2RR′cos(ϕ′) + z2

= [(R+R′)2 + z2]
[R2 +R′2 − 2RR′cos(ϕ′) + z2]

(R+R′)2 + z2

= [(R+R′)2 + z2]

[
1− 2RR′

(R+R′)2 + z2
(1 + cos(ϕ′))

]
,

(A.1)

using (1 + cos(ϕ′)) = 2cos2( 12ϕ
′) and k2 = 4RR′/((R+R′)2 + z2):

[(R+R′)2 + z2]

[
1− 2RR′

(R+R′)2 + z2
(1 + cos(ϕ′))

]
= [(R+R′)2 + z2][1− 4RR′

(R+R′)2 + z2
cos2(

1

2
ϕ′)]

= [(R+R′)2 + z2][1− k2cos2(
1

2
ϕ′)] .

(A.2)

A.2 Substitution in equation 4.5

Using the following substitution t = cos( 12ϕ
′) and dϕ′ = −2dt

sin( 1
2ϕ

′)
with the new lower

integral boundary 1 and upper boundary −1 and the relation sin( 12ϕ
′) =

√
1− t2

∫ 2π

0

1√
1− k2 cos2( 12ϕ

′)
dϕ′

= −2

∫ −1

1

1√
1− k2t2

√
1− t2

dt

= 2

∫ 1

−1

1√
1− t2

√
1− k2t2

dt .

(A.3)

In the last step, the integral boundaries are switched changing the sign of the integral.
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A.3 Complete elliptic integrals of the first and second kind

The complete elliptic integral of the first kind is defined as (e.g. [2])

K(k) =

∫ 1

0

1√
1− t2

√
1− k2t2

dt . (A.4)

The complete elliptic integral of the second kind is defined as

E(k) =

∫ 1

0

√
1− k2t2√
1− t2

dt . (A.5)

Derivation of the complete elliptic integral of the first kind with respect to k

d

dk

(
kK(k)

)
= K(k) + k

dK(k)

dk

!
=

E(k)

1− k2
.

(A.6)

Rewriting this equation with K ′(k) which represents the derivation of K(k) with
respect to k yields

k(1− k2)K ′(k)− E(k) + (1− k2)K(k)
!
= 0 (A.7)

To prove this relation the definitions of the integrals are used as well as the following
derivative

d

dk

(
1√

1− k2t2

)
=

t2k

(1− k2t2)
3
2

(A.8)

k(1− k2)K ′(k)− E(k) + (1− k2)K(k)

=

∫ 1

0

dt

[
k(1− k2)t2k

(1− k2t2)
3
2 (1− t2)

1
2

− (1− k2t2)
1
2

(1− t2)
1
2

+
(1− k2)

(1− t2)
1
2 (1− k2t2)

1
2

]
=

∫ 1

0

dt

[
k(1− k2)t2k − (1− k2t2)2 + (1− k2)(1− k2t2)

(1− k2t2)
3
2 (1− t2)

1
2

]
= −k2

∫ 1

0

dt
1 + 2t2 − k2t4

(1− k2t2)
3
2 (1− t2)

1
2

= −k2
∫ 1

0

dt
d

dt

(
t(1− t2)

1
2

(1− k2t2)
1
2

)
(A.9)
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= −k2
[(

t(1− t2)
1
2

(1− k2t2)
1
2

)⏐⏐⏐⏐
t=1

−
(

t(1− t2)
1
2

(1− k2t2)
1
2

)⏐⏐⏐⏐
t=0

]
= −k2(0− 0) = 0

(A.10)

A.4 Derivative of k

With the definition of k =
√
4RR′/((R+R′)2 + z2) the following derivative can be

calculated

d

dR
k =

d

dR

( √
4RR′√

(R+R′)2 + z2

)
=

R′(R2 +R′2 + 2RR′ + z2)− 2R2R′ − 2RR′2

(RR′)
1
2 ((R+R′)2 + z2)

3
2

=
R′3 +R′z2 −R2R′

(RR′)
1
2 ((R+R′)2 + z2)

3
2

=
R′(−R2 +R′2 + z2)

(RR′)
1
2 ((R+R′)2 + z2)

3
2

.

(A.11)

This expression changes after multiplying a factor 2R (according to equation 4.11)
to

2R
d

dR
k =

2RR′(−R2 +R′2 + z2)

(RR′)
1
2 ((R+R′)2 + z2)

3
2

=
k3

4

(
− R2

RR′ +
R′2

RR′ +
z2

RR′

)
=

k3

4

(
− R

R′ +
R′

R
+

z2

RR′

)
.

(A.12)
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