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Abstract

This thesis considers several conditions on group presentations which yield hy-
perbolicity of a group. A classic example from small cancellation theory is the
following: A group presentation 〈S|R〉 satis�es the C ′(1/6) condition if for any
subword of a relator R that occurs in two di�erent elements of the set of cyclic-
ally reduced conjugates of elements of R∪R−1, the length is strictly smaller than
1/6 |R|. Since the development of classical small cancellation theory in the 1960's,
there have been published many generalisations and variations of those conditions
from which we present two recent ones. First, we consider a condition for one-
relator groups by Blufstein and Minian and then an algorithmic approach called
RSym by Holt et al.
A conjecture by Louder and Wilton says that one-relator groups with a relator of

primitivity rank 3 are hyperbolic. The primitivity rank of a word w in the alphabet
S is the smallest rank that a subgroup H of the free group F (S) can have such
that w is a non-primitive element of H.
We use the RSym algorithm to analyse this conjecture for small examples, i.e.

groups with relators of length up to 15. Furthermore, we examine if the RSym

algorithm succeeds on groups which are hyperbolic by Blufstein and Minian.

Zusammenfassung

Diese Masterarbeit behandelt einige Voraussetzungen an Gruppenpräsentationen,
aus denen folgt, dass eine Gruppe hyperbolisch ist. Ein klassisches Beispiel aus der
Small Cancellation Theorie is das Folgende: Eine Gruppe mit Präsentation 〈S|R〉
erfüllt die C ′(1/6) Voraussetzung, wenn für jedes Unterwort eines Relators R, das
in zwei verschiedenen Elementen der Menge aller zyklisch reduzierten konjugierten
Elemente von R ∪R−1 vorkommt, die Länge echt kleiner ist als 1/6 |R|. Seit der
Entwicklung der klassischen Small Cancellation Theorie in den 1960ern wurden
viele Verallgemeinerungen und Variationen dieser Voraussetzungen verö�entlicht
von denen wir zwei kürzlich erschienene vorstellen werden. Zuerst betrachten wir
eine Voraussetzung für Gruppen mit genau einem Relator von Blufstein und Minian
und dann den sogenannten RSym Algorithmus von Holt et al.
Eine Vermutung von Louder und Wilton besagt, dass Gruppen mit genau einem

Relator, wobei der Relator einen Primitivrang von 3 hat, hyperbolisch sind. Der
Primitivrang eines Wortes w im Alphabet S ist der kleinste Rang den eine Unter-
gruppe der freien Gruppe F (S) haben kann, sodass w ein nichtprimitives Element
von H ist.
Wir nutzen den RSym Algorithmus um diese Vermutung für kleine Beispiele,

also Relatoren bis zu Länge 15, zu analysieren. Weiterhin untersuchen wir, ob
der RSym Algorithmus für Gruppen erfolgreich ist, die nach Blufstein und Minian
hyperbolisch sind.
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1 Introduction

1 Introduction

This thesis analyses di�erent conditions for hyperbolicity of a group with the main focus
on the algorithmical approach of the RSym procedure, introduced by Holt et al. in
[HLN+19].
We begin in Chapter 2 by reproducing preliminiary de�nitions and results about van

Kampen diagrams, hyperbolic groups and the word problem.
Chapter 3 is devoted to small cancellation theory. The main focus is on the classical

small cancellation conditions as they are de�ned in [LS77, Chapter V], but we also
present a recently published condition by Blufstein and Minian in [BM19]. This condition
is a weakening of the classical C ′(1/4)− T (4) condition for one-relator groups.
In Chapter 4 we present a new type of group presentation introduced in [HLN+19]

called pregroup presentation, so called coloured van Kampen diagrams over those present-
ations and the RSym, RSym+ and VerifySolver algorithms along with some important
results of the paper. Pregroup presentations give the advantage that we can ignore the
failing of small cancellation conditions on short relators. We view the group G presented
by a pregroup presentation P as a quotient of a universal group U(P ). This universal
group is generated by the elements of the pregroup and its relators are the relators of
G of length 3. Then G ∼= U(P )/〈〈R̂〉〉, where 〈〈R̂〉〉 denotes the normal closure of the
relators of length greater than 3. Rimlinger proved in [Rim87] that a �nitely generated
group G is virtually free if and only if G is the universal group U(P ) of a �nite pregroup
P . Therefore, any group that is a quotient of a virtually free group by �nitely many
additional relators has a �nite pregroup presentation. In coloured van Kampen diagrams
over those pregroup presentations, a face that is labelled by a relator of length 3, i.e. by
a relator of U(P ) is coloured red and a face that is labelled by a relator of longer length
is coloured green. The RSym scheme is a curvature distribution scheme over coloured
van Kampen diagrams with certain properties. If the curvature of any non-boundary
green face of a diagram can be bounded above by a negative number −ε, then RSym

is said to succeed on the diagram. If RSym succeeds on every diagram over a pregroup
presentation P , then the group presented by P is hyperbolic.
A slight modi�cation of RSym is the RSym+ algorithm, where faces with negative

curvature can transfer some of it to neighbouring faces. Here, it is often useful to
increase the dual distance to the boundary of the faces for which the curvature needs to
be bounded as above. One says that RSym+ (resp. RSym) succeeds for a diagram at level
d if it succeeds for all internal faces that are of dual distance at least d + 1 from the
external face. If RSym+ (resp. RSym) succeeds at level d and another condition regarding
the relators of length 3 is satis�ed, then the group presented by P is hyperbolic.
Our �rst result is the following lemma which proves to be very helpful, when working

with one-relator groups for example.

Lemma. Let G be a group with a pregroup presentation P = 〈Xσ|VP |R̂〉 where VP =
∅ and assume that RSym fails on exactly one decomposition of a relator R ∈ R̂ with
total curvature 0. If, in addition, there is one step which appears only once in this
decomposition, then RSym+ succeeds at level 2.
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1 Introduction

Additionally, RSym can be used to e�ciently solve the word problem of a group if
its pregroup presentation satis�es a certain condition. The VerifySolver algorithm,
which is also introduced in [HLN+19], checks if a given pregroup presentation satis�es
this condition.
Holt et al. have implemented functions to the computer algebra systems GAP and

MAGMA that try to verify that RSym succeeds on a given pregroup presentation at level
1. We make use of those in the last chapter.
In Chapter 5 we analyse in which cases RSym and VerifySolver succeed on groups

that satisfy other conditions for hyperbolicity. In [HLN+19] Holt et al. show that RSym
generalises the classical small cancellation conditions C ′(1/6) and C ′(1/4) − T (4) and
that VerifySolver also succeeds on presentations that satisfy those conditions. We
present the proof and afterwards focus on one-relator groups.
First, we consider relators of primitivity rank 3. The primitivity rank of an element w

of a free group F denotes the smallest rank that a subgroup K of F can have such that
w is non-primitive in K. There is a conjecture by Louder and Wilton that one-relator
groups with relators of primitivity rank at least 3 are hyperbolic (see [LW18]).
We analyse if RSym can be used to prove the conjecture for small relators and if

an implementation of RSym+ could give additional insight. To this end, we prove the
following result using the GAP functions:

Theorem. Let G = 〈S|R〉 be a one-relator group with R of primitivity rank 3. Then
there exists a pregroup presentation P of G such that:

(i) If R is of length less or equal to 10, then RSym succeeds on P.

(ii) If R is of length less or equal to 12, then RSym+ succeeds on P at level 2.

Note that hyperbolicity of one-relator groups with relators of primitivity rank 3 and
of length up to 11 also follows from [IS98]. In this paper Ivanov and Schupp consider
relators that contain a letter a for which either the sum of occurrences of a and a−1

is not greater than 3 or the sum of occurrences of a is greater or equal to 4 and the
subwords in between are pairwise di�erent. This includes all relators of length up to 11
and primitivity rank 3. Then they describe exactly which form such a relator can take
such that the corresponding one-relator group is not hyperbolic and prove that all other
groups are hyperbolic. It can be shown that all relators with such a letter a that are
not hyperbolic by Ivanov and Schupp have primitivity rank 2 [CH20]. However, there
are words of length 12 and primitivity rank 3 for which there exists no such a, so our
theorem also yields hyperbolicity for groups that are not already covered by the theorems
of Ivanov and Schupp. We refer the reader to a related paper [OS19] by Olshanskii and
Sapir for a strengthening of the results of Ivanov and Schupp.
Finally, we consider one-relator groups that satisfy the Blufstein-Minian condition

(BM-condition). We prove the following theorem:

Theorem. For one-relator groups with relators of length up to 12 that satisfy the BM-
condition, there exists a pregroup presentation on which RSym+ succeeds at level 2.
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2 Preliminaries

Furthermore, using the GAP functions, we prove the following:

Theorem. Let G = 〈S|R〉 be a one-relator group of rank 3 that satis�es the BM-
condition. Then there exists a pregroup presentation P of G such that:

(i) If R is of length less or equal to 10 or of length 12, then RSym succeeds on P.

(ii) If R is of length less or equal to 14 and contains all 3 letters of S, then RSym

succeeds on P.

(iii) If R is of length 14, then RSym+ succeds on P at level 2.

Acknowledgement. I would like to thank Goulnara Arzhantseva and Christopher
Cashen for integrating me into their research group and for the extensive supervision.

2 Preliminaries

We begin by recalling some basic terminology of group theory. Let G be a group with
presentation Q := 〈S|R〉, where S is a set of elements called generators or letters.
A word is a written product of those generators and their inverses. When we refer
to the elements of S as letters, we sometimes call S the alphabet. Consider a word
w = x1x2 · · · x|w|, where xi ∈ S ∪ S−1 for each i ∈ {1, . . . , |w|}. Then a subword of w is
a word of the form xi · · ·xj, where 1 ≤ i ≤ j ≤ |w|. The set R consists of words called
relators. If a word w is an element of R, then w = 1 in G. Even though a group can
have many di�erent presentations, we sometimes write G = 〈S|R〉.

De�nition 2.1. We say that a word w in an alphabet S is reduced if no subword is of
the form xx−1 for all x ∈ S ∪ S−1. We say that w is cyclically reduced if it is reduced
and the �rst letter is not the inverse of the last letter of w.

Let G = 〈S|R〉, where R is a set of cyclically reduced relators of G. Let F (S) be the
free group on S. Then the group G is de�ned by the quotient F (S)/〈〈R〉〉, where 〈〈R〉〉
is the normal closure of R in F (S). We have that an element w ∈ 〈〈R〉〉 if and only if in
the free group F (S), w is a product of conjugates of elements of R∪R−1. The elements
of 〈〈R〉〉 are called relations.
A van Kampen diagram (see Section 2.1) is a diagram in the Euclidean plane, which

contains all the essential information about such a product. Van Kampen diagrams play
a crucial role in small cancellation theory and we work with them throughout this thesis.
They give rise to a combinatorial de�nition of hyperbolic groups, which we present in
Section 2.2. A famous problem posed by Dehn in 1911 that is still very relevant today
is the word problem that asks if a given word is trivial in G. In Section 2.3 we present
a proof that this problem is solvable for hyperbolic groups.
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2 Preliminaries

2.1 Van Kampen Diagrams

Van Kampen diagrams were introduced 1933 by van Kampen in [vK33] in order to exam-
ine which words represent the identity element in a �nitely presented group. According
to [LS77, Chapter V, p. 236] they did not get a lot of attention for thirty years until in
1966, Lyndon independently arrived at the idea of cancellation diagrams and Weinbaum
rediscovered van Kampen's paper and its use for small cancellation theory at the same
time.
Let G = 〈S|R〉 be as above.

De�nition 2.2. A van Kampen diagram D for the word w over the presentation 〈S|R〉
is a �nite, connected, oriented, labelled planar graph with a �xed embedding into the
plane. Furthermore, each edge is labelled by an element of S ∪ S−1, such that:

(i) The boundary of D (denoted by ∂D) is labelled by w;

(ii) The boundary of any bounded region of R2 \D, i.e. any bounded complementary
component, is labelled by a cyclically reduced element of R.

The boundary words are obtained by reading the labels on the edges, where an element
on an edge is given a ±1 exponent, depending on the orientation of the edge. We say
that ∂D is labelled by w if there exists a vertex on ∂D, starting from which one can
read w or w−1 depending on the direction.
We call the bounded regions of R2 \ D faces. A non-trivial path of maximal length

that is common to two adjacent faces of D is called a consolidated edge.

The following result is one of the central tools in geometric small cancellation theory.
A proof can be found in [LS77, Chapter V.1].

Theorem 2.3. Let G be a group given by the presentation 〈S|R〉. An element w ∈ F (S)
is in 〈〈R〉〉, i.e. satis�es w = 1 in G, if and only if there exists a van Kampen diagram
with boundary label w.

2.2 De�nition of Hyperbolic Groups

Hyperbolicity of a metric space is a large-scale geometric property that was introduced
by Gromov in [Gro83]. A group G is called hyperbolic if one (and, hence, any) of its
Cayley graphs with respect to �nite generating sets equipped with the word metric
is a hyperbolic space. There are multiple ways to formally state the de�nition of a
hyperbolic group. In this thesis, we work with the combinatorial de�nition using van
Kampen diagrams.

De�nition 2.4. A van Kampen diagram over a presentation 〈S|R〉 is called reduced if
no two adjacent faces are labelled by w1w2 and w−1

2 w−1
1 with a common consolidated

edge labelled by w1 and w−1
1 for some subwords w1, w2 ∈ F (S).

6



2 Preliminaries

Figure 1: A reduced van Kampen diagram for w = yxy2x−1y−1xy−1x−1y−4x−1y2xy over
the presentation 〈x, y|xyx−1y−2〉.

De�nition 2.5. Given a group G with presentation 〈S|R〉. Let w ∈ F (S) such that
w = 1 in G. Then we denote by Area(w) the minimal number of faces in a reduced van
Kampen diagram with boundary word w.

De�nition 2.6. Given a presentation 〈S|R〉, itsDehn function is the function f : N→ N
de�ned by

f(n) = max{Area(w)|w ∈ F (S), w = 1 in G, |w| = n}.

Note that two distinct presentations of a group G can have two di�erent Dehn func-
tions. There are however properties of those Dehn functions that are invariant, as is
indicated by the following lemma, which is a well-known result. A proof can be found
for example in [Bri93].

Lemma 2.7. Let f and g be the Dehn functions of two distinct presentations for the
group G. Then there exist constants a, b, c, d ∈ N such that

f(n) ≤ a · g(bn+ c) + d for all n ∈ N.

De�nition 2.8. A �nitely presented group G is called hyperbolic if for any presentation
of G, the Dehn function f is bounded above by a linear function f̂ , i.e. f(n) ≤ f̂(n) for
all n ∈ N.

Remark 2.9. From Lemma 2.7, we conclude that if we �nd one presentation of G whose
Dehn function can be bounded above by a linear function, then this is possible for the
Dehn functions of all �nite presentations. Therefore, hyperbolicity of a group is not
dependent on the choice of presentation.

7



2 Preliminaries

Figure 2: A reduced van Kampen diagram for [x4, y4] in Z2.

Example 2.10. (i) Finitely generated free groups are hyperbolic since in the free
presentation the only word w = 1 is the trivial word and Area(1) = 0.

(ii) Every �nite group is hyperbolic. For any �nite group G there exists a �nite present-
ation where the generating set consists of all elements of G and the set of relators
consists of all multiplication rules ab = c. Consider a word w = 1 in G. If |w| = 3,
then w is a relator of G and, hence, Area(w) = 1. Now let |w| > 3, hence w = abv,
where a, b,∈ G and v a word. If ab = c in G for some c, then w is equivalent to
abc−1cv = cv, where cv is shorter than w. We repeat this process until we arrive
at a word of length 3 which is a relator. Hence, we have Area(w) ≤ |w|.

(iii) The free abelian group Z2 is not hyperbolic because Area([xn, yn]) = n2 (see Fig-
ure 2).

2.3 The Word Problem

The word problem was posed by Dehn in 1911 and is still one of the central problems
in combinatorial group theory.

De�nition 2.11. Let G = 〈S|R〉 be a �nitely presented group. The word problem for
G is the problem of deciding algorithmically whether or not a given element w ∈ F (S)
represents the trivial element in G.

8



3 Small Cancellation Theory

In general the word problem is proven to be unsolvable. One could approach a solution
by listing all of the �nite products of conjugates of elements ofR∪R−1 since S andR are
countable. If w = 1 in G, this would eventually lead to a word that is equal to w and we
can give the de�nite answer that w represents 1 in G. On the other hand, if w 6= 1, this
algorithm would continue forever and we would never get a de�nite answer. However,
there are certain groups for which the word problem is solvable and one example of those
is hyperbolic groups.

Theorem 2.12. Hyperbolic groups have solvable word problem.

Proof. Let G be a hyperbolic group with �nite presentation 〈S|R〉 and let w be a word
in F (S). Since R is �nite, there are only �nitely many van Kampen diagrams of a given
area with boundary length |w|. Since the area of a word of a given length is bounded
above for hyperbolic groups, we can search all of the diagrams with a boundary word of
length |w| in �nite time and if none of them has a boundary word that is equal to w, we
can give the de�nite answer that w is not trivial in G.

Note that we do not use the fact that the area of a diagram is bounded by a linear
function. In fact, the proof is valid for all groups whose Dehn function can be bounded
above by an arbitrary computable function. Even though hyperbolic groups are our
main interest in this thesis, we state the more general result for completeness.

Theorem 2.13. Groups whose Dehn function can be bounded above by a computable
function have solvable word problem.

When Dehn �rst posed the word problem, he provided algorithms that solved it for
fundamental groups of closed orientable two-dimensional manifolds (see Example 3.5 for
a presentation). In these algorithms he used the fact that, when multiplying two cyclic
conjugates of the relator R, there was very little cancellation [LS77, Chapter V]. This
idea laid the foundation for the small cancellation theory, which we introduce in the next
chapter. It furthermore gave rise to Dehn's algorithm, which solves the word problem
for hyperbolic groups more e�ciently than the procedure in the proof of Theorem 2.12
and gives a Dehn presentation for those groups.

3 Small Cancellation Theory

Small cancellation theory gives conditions on the relators in a group presentation that
lead to strong results about the properties of the group. Amongst those results is the
fact that a �nitely presented group, which satis�es certain small cancellation conditions,
is hyperbolic and that the word problem can be solved by Dehn's algorithm for those
groups. The theory was developed by Lyndon, Greendlinger and others in the 1960's.
In the �rst two sections of this chapter we present aspects of classical small cancellation
theory. In Section 3.1 we de�ne small cancellation conditions under which a group is
known to be hyperbolic. In Section 3.2 we show that under a certain condition, the
word problem of a group is solvable. Finally, in Section 3.3 we present the de�nition of
a recently developed condition for one-relator groups by Blufstein and Minian.

9



3 Small Cancellation Theory

3.1 Classical Small Cancellation Conditions

The de�nitions and results presented in this section are mostly from [LS77, Chapter V],
which is the standard work for this topic and to which we refer the reader for a complete
presentation of the �eld. We again work in our standard setting: Let G be a group with
presentation 〈S|R〉, where S is the set of generators and R a set of cyclically reduced
relators. Furthermore, let S be �nite and let R be �nite and symmetrized, i.e. closed
under inversion and cyclic permutation.

De�nition 3.1. Suppose in the set of relators R, there are two elements R1, R2 such
that R1 = bc1 and R2 = bc2, with b, c1, c2 ∈ F (S) subwords. Then b is called a piece.

De�nition 3.2. We say that a presentation satis�es the C ′(λ) condition if for any
relator R ∈ R, where R = bc with b a piece, we have

|b| < λ |R| ,

where λ is a positive real number.
We say that a presentation satis�es the C(p) condition if no element of R consists of

less than p pieces.

Remark 3.3. C ′(1/p) implies C(p+ 1) for p ∈ N.

One can slightly alter the de�nition of a van Kampen diagram given in Section 2.1 to
a consolidated van Kampen diagram, where the vertices of degree 2 are suppressed and
the incident edges to such a vertex are joined to one edge and labelled by the product
of the corresponding generators. The interior consolidated edges are then labelled by
pieces. In the following we freely pass between van Kampen diagrams and consolidated
van Kampen diagrams without further comment.

De�nition 3.4. A �nite presentation Q satis�es the T (q) condition if in every reduced
consolidated van Kampen diagram over Q all internal vertices have degree at least q.

Example 3.5. Let G = 〈a1, b1, . . . , ag, bg|R := a−1
1 b−1

1 a1b1 · · · a−1
g b−1

g agbg〉 be the funda-
mental group of a closed orientable surface of genus g. The only non-trivial pieces of
R are single letters, so for any piece p, we have |p| = 1 < 1/(4g − 1) |R|. Therefore, G
satis�es the C ′(1/(4g − 1)) and C(4g) conditions.
Furthermore, G satis�es T (4). For any i ∈ {1, . . . , g}, call the edges labelled by a±1

i

a-edges and the edges labelled by b±1
i b-edges. Since an a-edge is always followed and

preceded by a b-edge and a b-edge is always followed and preceded by an a-edge, the
degree of an internal vertex in any diagram over the presentation of G is at least 4.

The following theorem is a consequence of Greendlinger's Lemma, a proof of which
can be found in [LS77, Chapter V.4].

Theorem 3.6. If a �nite presentation of G satis�es the C ′(1/6) or C ′(1/4) − T (4)
condition, then G is hyperbolic.

10



3 Small Cancellation Theory

Another famous result is the following theorem:

Theorem 3.7 ([GS90, Corollary 4.1]). If a �nite presentation of G satis�es the C(p)−
T (q) condition, with 1/p+ 1/q < 1/2, then G is hyperbolic.

From Theorem 3.6 together with Example 3.5 we deduce the following corollary:

Corollary 3.8. The fundamental group G of a closed orientable surface of genus g ≥ 2
is hyperbolic.

Remark 3.9. For genus g = 1 the fundamental group G is the free abelian group of
rank 2 which is not hyperbolic, see Example 2.10 (iii).
Also, note that this example shows that the statement of Theorem 3.7 does not hold

for 1/p + 1/q = 1/2 in general. See [IS98] and [OS19] for more information on when a
C(p)− T (q) diagram with 1/p+ 1/q = 1/2 is hyperbolic.

3.2 Dehn's Algorithm

As we have seen in the last section, groups with a C ′(1/6) presentation are hyperbolic
and hence have solvable word problem. In this section we describe an algorithm that
solves it e�ciently. Dehn's algorithm solves the word problem for any group G that has
a presentation where each word that is trivial in G contains more than half of a relator.
Let G be a group with �nite presentation 〈S|R〉, where R is a symmetrized set of

cyclically reduced relators. Furthermore, let all freely reduced non-trivial words in F (S)
that are trivial in G contain more than half of some element of R.

Algorithm 3.10 (Dehn's Algorithm). Let w be a non-trivial word in F (S).

1. List all relators R ∈ R with |R| < 2 |w|.

2. Look for a relator R = ct with |t| < |c| in this list, such that we can factorize
w = bcd.

3. If no such R exists, the element w is non-trivial in G. Otherwise, we can write
w = bt−1d and bt−1d is of shorter length than bcd.

4. Repeat this process until you either get that w = 1 or that w is non-trivial in G.

Remark 3.11. Note that Step 1 of Dehn's algorithm can be executed in �nite time
since R and the set of all words in F (S) shorter than 2 |w| are �nite.

The algorithm gives rise to a group presentation of the following form:

De�nition 3.12. A Dehn presentation of a group G is of the form 〈S|c1t1, . . . , cntn〉,
where ci = t−1

i in G, |ti| < |ci| for all i ∈ {1, . . . , n} and any word w which is trivial in
G contains at least one of the ci as a subword.

The following theorem is a well-known fact. A proof can be found for example in
[BH99, Chapter III.Γ].

11



3 Small Cancellation Theory

Theorem 3.13. A group is hyperbolic if and only if it has a Dehn presentation.

In the rest of the section we present a proof of the fact that the word problem of a
group G with a C ′(1/6) presentation is solvable by Dehn's algorithm, which yields that
G is hyperbolic by Theorem 3.13.

Theorem 3.14. If a �nite presentation Q satis�es the C ′(1/6) condition, then Dehn's
algorithm solves the word problem in Q.

We are following the proof of Theorem 3.14 in [BRS07, III]. First, we need the following
lemma:

Lemma 3.15 ([BRS07, III]). Let D be a van Kampen diagram with at least 2 faces,
such that the boundary of all internal faces has ≥ 6 edges and all vertices have degree
≥ 3. For i = 1, . . . , 5, let bi be the number of faces whose boundary intersects ∂D in
exactly one connected segment having exactly i internal edges, forming a connected part
of their internal boundary. Then

3b1 + 2b2 + b3 ≥ 6.

Proof of Theorem 3.14. Let G be a group with �nite presentation Q = 〈S|R〉 that
satis�es the C ′(1/6) condition. We need to show that any cyclically reduced word w
that is trivial in G contains at least half of an element of R. Let D be a van Kampen
diagram for such a w over Q. Then D either consists of a single topological disc, or there
are multiple extremal discs which intersect the rest of the diagram in just one vertex
(see Figure 1 in Chapter 2.1 for example).
If D consists of a single topological disc, we may assume that the disc consists of

more than a single face since otherwise the claim is proven. Therefore, we can apply
Lemma 3.15 since Q satis�es the C(7) condition and we can suppress vertices of degree
2. It follows from the lemma that there are at least 2 faces F1, F2 in D whose internal
boundary consists of at most 3 pieces. Note that since the presentation satis�es the
C ′(1/6) condition, for any three pieces a, b, c of a relator R ∈ R, we have that |a| +
|b|+ |c| < 1/2 |R|. Therefore, F1 and F2 meet the boundary of D in segments of length
greater than half of their boundary. We conclude that w contains more than half of the
relators labelling the boundaries of F1 and F2.
Now consider the case that D contains at least two extremal discs. Again we assume

that none of those discs consists of a single face since otherwise the claim is proven.
Then, for each disc Lemma 3.15 holds. Fix one of the discs and its faces F1, F2 with the
properties as above. Since there is only one vertex joining the disc and the diagram, for
at least one of the faces Fi, this vertex is not in the interior of the boundary component
∂D ∩ ∂Fi. Therefore, w contains more than half of the boundary label of Fi.

Remark 3.16. Note that the C ′(1/5) condition would not be su�cient to satisfy the
condition of Dehn's algorithm since the sum of the length of three pieces could be equal
to half of the relator, as can be seen from the hexagonal tesselation of the euclidean
plane.

12
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3.3 The Blufstein-Minian Condition

For one-relator groups, Blufstein and Minian developed a condition which is weaker
than C ′(1/6) and C ′(1/4)− T (4) in [BM19]. It allows a diagram to contain tripods, i.e.
vertices of degree 3, if they satisfy the (T') condition. They prove that this condition
ensures hyperbolicity by de�ning strictly systolic angled complexes and showing that
groups that act geometrically on such complexes are hyperbolic.

De�nition 3.17. A presentationQ = 〈S|R〉 of a one relator-group satis�es the (T') con-
dition if the following is true for every reduced van Kampen diagram over Q: For each
interior vertex of degree 3, whose incident consolidated edges are labelled by the words
w1,w2 and w3, we have

|w1|+ |w2|+ |w3| <
|R|
2
.

Remark 3.18. Note that a presentation of a one-relator group that satis�es the C ′(1/6)
condition also satis�es the (T') condition since the sum of the length of three pieces is
strictly smaller than 1/6 |R|+ 1/6 |R|+ 1/6 |R| = 1/2 |R|.

Theorem 3.19 ([BM19]). If a presentation of a one-relator group G satis�es the C ′(1/4)
and the (T') condition, then G is hyperbolic.

De�nition 3.20. We say that a presentation satis�es the Blufstein-Minian condition
or BM-condition if the assumptions of Theorem 3.19 are satis�ed.

Example 3.21. Consider the group G with presentation

Q = 〈x, y|R := xy−1x−3y−1x−1y2xy−1〉.

The pieces of the relator R are x±1, y±1, xy−1, x−2, (x−1y−1)±1, (x−1y)±1 and y−1x−1.
Since R is of length 11 and there exist pieces of length 2, the presentation Q does not
satisfy C ′(1/6). Furthermore, C ′(1/4)− T (4) is not satis�ed since there exist diagrams
with vertices of degree 3. One example of such a diagram is shown in Figure 3. However,
we can prove that the group is hyperbolic using the Blufstein-Minian condition. Since
the maximal piece length is 2, we see thatQ satis�es the C ′(1/4) condition. Furthermore,
the maximal tripod length is 5, which is smaller than |R| /2. In order to show this, we
only have to check that vertices between two pieces of length 2 are not incident with a
third edge labelled by a piece of length 2. Since each length 2 piece can be found exactly
at two positions of the relator, there is always only one possibility how the third edge of
a tripod can be labelled. It is straightforward to check that this is always a single letter.
Four of those vertices are shown in Figure 3. The only other possible tripod-vertex
between two length 2 pieces is between the pieces y−1x−1 and x−2. Here the third edge
of the tripod can only be labelled by y±1 depending on the orientation. Therefore, the
BM-condition is satis�ed and G is hyperbolic.

13



4 The RSym Procedure

Figure 3: A van Kampen diagram over the group 〈x, y|xy−1x−3y−1x−1y2xy−1〉.

4 The RSym Procedure

In 2019, Holt et al. introduced a new algorithmic approach to prove hyperbolicity of a
group in [HLN+19]. They make use of pregroup presentations (see Section 4.1) and de�ne
a curvature distribution scheme called RSym (see Section 4.3) on coloured van Kampen
diagrams (see Section 4.2) over those pregroup presentations. The RSym procedure is
said to succeed on a pregroup presentation P if the curvature of every internal non-
boundary face with boundary length larger than 3 can be bounded above by a negative
constant in every diagram. If RSym succeeds on P , then the group presented by P is
hyperbolic. A small extension of RSym, called RSym+ is presented in Section 4.4. In this
algorithm a face with negative curvature can give some of it to neighbouring green faces.
Especially when working with the RSym+ algorithm, it is often useful to increase the
dual distance of the faces that need to have negative curvature, to the boundary. One
says that RSym+ succeeds on a diagram at level d if it succeeds on all internal faces that
are of dual distance of at least d + 1 from the external face. If RSym+ succeeds at level
d and another condition regarding the relators of length 3 is satis�ed, then the group
presented by P is hyperbolic. In Section 4.5 we explain in which case one can use a
Dehn algorithm to solve the word problem for groups on which RSym succeeds and in
Section 4.6 we describe how Holt et al. implemented a function that veri�es that RSym
succeeds on a pregroup presentation and how we use this function in the next chapter.
The de�nitions and results in this chapter are from [HLN+19] unless stated otherwise.
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4.1 Pregroups and Pregroup Presentations

In [HLN+19], Holt et al. de�ne a new kind of group presentation based on pregroups,
which were introduced by Stallings in [Sta71]. When working with pregroup presenta-
tions, we can view a group G as a quotient of a virtually free group (see De�nition 4.1)
U(P ) rather than just a free group as in classical small cancellation theory. This enables
us to ignore the failure of small cancellation on relators of length 3 since they are in the
set of relations of U(P ).

De�nition 4.1. Let ϕ be a property. We say that a group G is virtually ϕ if there exists
a subgroup H ≤ G of �nite index which has property ϕ.

De�nition 4.2. A pregroup is a set P , together with a partial multiplication (x, y)→ xy
which is de�ned for (x, y) ∈ D(P ) ⊆ P ×P and an involution σ : x→ xσ, such that the
following axioms hold:

(i) There exists a distinguished element 1 in P such that for each x ∈ P , we have
(1, x), (x, 1) ∈ D(P ) and 1x = x1 = x;

(ii) (x, xσ), (xσ, x) ∈ D(P ) and xxσ = xσx = 1 for all x ∈ P ;

(iii) If (x, y) ∈ D(P ), then (yσ, xσ) ∈ D(P ) and (xy)σ = yσxσ for all x, y ∈ P ;

(iv) If (x, y), (y, z) ∈ D(P ), then (xy, z) ∈ D(P ) if and only if (x, yz) ∈ D(P ) for all
x, y, z ∈ P . In this case (xy)z = x(yz);

(v) If (x, y), (y, z), (z, t) ∈ D(P ), then at least one of (xy, z), (yz, t) ∈ D(P ) for all
x, y, z, t ∈ P .

When working with words over P , we write [xy] to denote that the letters x, y are to
be multiplied.

De�nition 4.3. We write Xσ to denote the set X := P\{1} equipped with the involu-
tion σ and let FP (Xσ) := 〈X|xxσ : x ∈ X〉 be the free product of copies of Z and copies
of Z2.
We then let VP := {xy[xy]σ : x, y ∈ X, (x, y) ∈ D(P ), x 6= yσ} be the set of all length

3 relators over X and de�ne the universal group as follows:

U(P ) := 〈X|{xxσ : x ∈ X} ∪ VP 〉 = FP (Xσ)/〈〈VP 〉〉,

where 〈〈VP 〉〉 denotes the normal closure of VP in FP (Xσ).

De�nition 4.4. Let w = y1 · · · yn ∈ F (X) be a word. We say that w is σ-reduced if it
contains no consecutive pair yiy

σ
i of letters. We say that w is cyclically σ-reduced if it is

σ-reduced and yn 6= yσ1 .
Furthermore, we say that w is P−reduced if there is no pair (yi, yi+1) ∈ D(P ). The

word w is cyclically P -reduced if it is P -reduced and (yn, y1) /∈ D(P ).
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4 The RSym Procedure

The following equivalence relation was de�ned by Stallings and enables us to show
that the group U(P ) has solvable word problem.

De�nition 4.5. Let v = v1 · · · vn ∈ F (X) be P -reduced and w = w1 · · ·wm any word in
F (X). We say that v is an interleave of w, denoted by v ≈ w, if n = m and there exist
elements s0 = 1, s1, . . . , sn−1, sn = 1 ∈ P , such that (sσi−1, vi), (vi, si), (

[
sσi−1vi

]
, si) ∈

D(P ) and wi =
[
sσi−1visi

]
for all i ∈ {1, . . . , n}.

Theorem 4.6 ([Sta71]). For a pregroup P , two words u and v represent the same
element in U(P ) if and only if u ≈ v.

Proposition 4.7. Let P be a �nite pregroup. Then the word problem in U(P ) is solvable
by a Dehn algorithm.

Proof. From Theorem 4.6 follows that the only P -reduced word representing 1 in U(P )
is the empty word, so the word problem can be solved by reducing words using the
products in D(P ).

De�nition 4.8. Let P be a pregroup with X and σ as before. Let R̂ ∈ F (X) be a set
of cyclically P -reduced words. Then we de�ne a group presentation P on the set X as
follows:

P = 〈Xσ|VP |R̂〉 := 〈X|{xxσ : x ∈ X} ∪ VP ∪ R̂〉.

P is called a pregroup presentation.

In the following we want to show that there exists a large class of groups for which
we can �nd pregroup presentations. The following theorem was proved by Rimlinger in
[Rim87].

Theorem 4.9. A �nitely generated group G is virtually free if and only if G is the
universal group U(P ) of a �nite pregroup P .

Holt et al. deduce the following result as an immediate corollary of Theorem 4.9.

Corollary 4.10. If a group G has a pregroup presentation P = 〈Xσ|VP |R̂〉, then

G ∼= U(P )/〈〈R̂〉〉,

where 〈〈R̂〉〉 denotes the normal closure of R̂ in U(P ). Any group that is a quotient of a
virtually free group by �nitely many additional relators has a �nite pregroup presentation.

Example 4.11. Let G = 〈x, y, z|y3, (zy)4, z2y−1xyz−1x〉. First note that this presenta-
tion of G does not satisfy any of the classical small cancellation conditions for hyperboli-
city we have presented in Chapter 3. In the course of this chapter we explain how to show
that it is hyperbolic in a di�erent way. We de�ne the pregroup P = {1, x, y, z,X, Y, Z}
with products X = xσ, Y = yσ, Z = zσ, Y 2 = y, y2 = Y . It can be easily checked that
the axioms (i)-(v) from De�nition 4.2 hold. Let Xσ be like in De�nition 4.3. Then

16



4 The RSym Procedure

FP (Xσ) = Z ∗ Z ∗ Z is the free group on x, y, z and VP = {yyy, Y Y Y }. The universal
group is then de�ned as

U(P ) = FP (Xσ)/〈〈VP 〉〉 = 〈x, y, z|yyy〉

and we get that the pregroup presentation

P =
〈
x, y, z,X, Y, Z|xX, yX, zZ, yyy, (zy)4, z2Y xyZx

〉
is a presentation for G.

4.2 Coloured Diagrams and Curvature Distribution Schemes

The RSym procedure works over coloured van Kampen diagrams, a generalisation of van
Kampen diagrams, which are de�ned in this section. Furthermore, we de�ne curvature
distribution schemes over those diagrams, an example of which is the RSym scheme, which
is presented in the next section.

De�nition 4.12. A coloured (van Kampen) diagram Γ over the pregroup presentation
P = 〈Xσ|VP |R̂〉 is a van Kampen diagram with edges labelled by elements of Xσ and
faces labelled by elements of VP ∪R̂±, where R̂± denotes the set of elements of R̂ and its
inverses. The faces labelled by an element of VP are coloured red and the faces labelled
by an element of R̂± are coloured green. We view the complement of the diagram as
another green face, called external face. For a vertex v ∈ Γ we de�ne δG(v) to be the
number of green faces that are incident with v and δR(v) the number of red faces incident
with v.

Note that the red faces are triangles.

De�nition 4.13. The coloured area of a coloured diagram Γ is an ordered pair (a, b) ∈
N×N, where a is the number of internal green faces and b is the number of red triangles.
Let ∆ be a coloured diagram with coloured area (c, d). We say that the coloured area
of Γ is less than or equal to the coloured area of ∆ if a < c or if a = c and b ≤ d.

De�nition 4.14. A diagram is called semi-σ-reduced if no two distinct adjacent faces
are labelled by w1w2 and w

−1
2 w−1

1 for some relator w1w2 ∈ VP ∪ R̂± and have a common
consolidated edge labelled by w1 and w−1

1 . It is σ-reduced if the same also holds for a
single face adjacent to itself.

De�nition 4.15. A coloured diagram is semi-P -reduced if no two distinct adjacent
green faces are labelled by w1w2 and w−1

3 w−1
1 and have a common consolidated edge

labelled by w1 and w−1
1 , where w2 and w3 are equal in U(P ).

De�nition 4.16. We say that a coloured diagram is green-rich if δG(v) ≥ 2 for all
v ∈ Γ, i.e. each vertex is adjacent to at least 2 green faces, including the external face.
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Figure 4: A σ-reduced, semi-P -reduced, green-rich coloured van Kampen dia-
gram for w = (ZY )2ZyxyZxZXzY X over the pregroup presentation
〈x, y, z,X, Y, Z|xX, yX, zZ, yyy, (zy)4, z2Y xyZx〉.

De�nition 4.17. A red blob in a coloured diagram Γ is a nonempty subset B of the
set of red triangles in Γ, such that any nonempty proper subset C of B has at least one
edge in common with B \ C.

Remark 4.18. Note that in a green rich diagram every red blob is simply connected.
It then follows from [HLN+19, Proposition 4.12] that in a green rich diagram of minimal
coloured area the boundary word of every simply connected red blob has no proper
subword equal to 1 in U(P ).

Next, we generalise De�nition 4.5 to cyclic interleaves, to de�ne another pregroup
presentation where the set R̂ is replaced by all cyclic interleaves of elements of R̂. This
enables us to state a version of the classical van Kampen Lemma (Theorem 2.3) for
pregroup presentations.

De�nition 4.19. Let v = v1 · · · vn ∈ F (X) be cyclically P -reduced and w = w1 · · ·wm
any word. We say that v is a cyclic interleave of w, denoted by v ≈C w, if n = m and
there exist elements s0, s1, . . . , sn−1, sn = s0 ∈ P such that (sσi−1, vi), (vi, si), (

[
sσi−1vi

]
, si) ∈

D(P ) and wi =
[
sσi−1visi

]
for all i ∈ {1, . . . , n}.

Theorem 4.20 ([HLN+19]). ≈C is an equivalence relation on the set of all cyclically
P -reduced words.

De�nition 4.21. Let w be a cyclically P -reduced word. Then we de�ne

I(w) := {v ∈ F (X)|v ≈C w}.

Furthermore, we de�ne I(R̂) = ∪R∈R̂I(R) and a pregroup presentation

I(P) := 〈Xσ|VP |I(R̂)〉.
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Theorem 4.22 ([HLN+19]). The normal closure of VP∪R̂ is equal to the normal closure
of VP ∪ I(R̂). Hence P and I(P) de�ne the same group G.

Theorem 4.23 ([HLN+19]). Let G be a group with pregroup presentation 〈Xσ|VP |R̂〉.
A cyclically P -reduced word w is trivial in G if and only if some cyclic interleave of w
is the boundary of a coloured van Kampen diagram over 〈Xσ|VP |I(R̂)〉.

De�nition 4.24. Let Γ be a coloured van Kampen diagram over the pregroup present-
ation P with vertex set V (Γ), edge set E(Γ), and set of internal faces F (Γ). A curvature
distribution is a function ρ : V (Γ) ∪ E(Γ) ∪ F (Γ)→ R such that∑

x∈V (Γ)∪E(Γ)∪F (Γ)

ρ(x) = 1.

De�nition 4.25. Let K be a set of coloured diagrams over I(P ). A curvature dis-
tribution scheme on K is a map Ψ : K → {ρΓ : Γ ∈ K} that associates a curvature
distribution to every diagram in K.

4.3 The RSym Scheme

We are now ready to de�ne the RSym scheme, which is an example of a curvature distri-
bution scheme and explain how it can be used to prove that a group is hyperbolic. We
�rst de�ne the set D of diagrams on which RSym is applicable.

De�nition 4.26. Let P be a pregroup presentation. Then D denotes the set of all
coloured diagrams Γ over I(P) with the following properties:

(i) the boundary word of Γ is cyclically P -reduced;

(ii) the diagram Γ is σ-reduced and semi-P -reduced;

(iii) Γ is green-rich;

(iv) no proper subword of the boundary word of a simply connected red blob in Γ is
equal to 1 in U(P ).

Algorithm 4.27 (RSym). For any diagram Γ ∈ D do:

1. In the beginning, every vertex, red triangle and internal green face has curvature
+1 and every edge has curvature −1.

2. Any edge is adjacent to two faces (possibly one of them is the external face). It
gives curvature −1/2 to any adjacent red triangle and, if it is adjacent to a green
face, gives curvature −1/2 to its end vertex obtaining the orientation from the
green face in question.

3. Each vertex divides its curvature equally amongst its incident internal green faces
(counted with multiplicity). If there are none, the curvature remains on the vertex.
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4. Each red blob sums the curvature of its triangles to get the blob curvature and
distributes it equally amongst its adjacent internal green faces.

5. Return the curvature distribution.

Remark 4.28. In the RSym scheme, �x a curvature distribution ρΓ on a diagram Γ. By
Euler's formula we have∑

x∈V (Γ)∪E(Γ)∪F (Γ)

ρΓ(x) = |E| · (−1) + (1 + |E|) · (+1) = 1,

so RSym is indeed a curvature distribution scheme.

De�nition 4.29. A V σ-letter is a letter x ∈ X such that either xσ = x or x is a letter
of a relator in VP .

De�nition 4.30. We say that RSym succeeds on a diagram Γ ∈ D if there exists a
constant ε > 0, such that the curvature of every internal non-boundary green face is
≤ −ε. We say that it succeeds on a pregroup presentation P if RSym succeeds for every
Γ ∈ D.

The following theorem is a central result from [HLN+19].

Theorem 4.31. If RSym succeeds on a pregroup presentation P = 〈Xσ|VP |R̂〉 for some
ε > 0, where no R ∈ R̂ is of length 1 or 2 and no two distinct conjugates of relators
R, S ∈ I(R̂)± have a common pre�x consisting of all but one letter of R or S, then its
Dehn function is bounded above by

f(n) = n

(
6 + r +

3 + r

2ε

)
− 3 + r

ε
,

where r is the maximum length of a relator in R̂. In particular, the group presented by
P is hyperbolic.

The following lemmas from [HLN+19] can be helpful for proving that RSym succeeds
on a given diagram.

Lemma 4.32. Let v be a vertex of a diagram Γ ∈ D and let x be the number of times
it is incident with the external face. We have

(i) The vertex v gives curvature
2− δG(v)

2(δG(v)− x)

to each incident internal green face if x 6= δG(v).

(ii) If x ≥ 2, then v gives curvature at most −1/2 to each incident internal green face.
Otherwise the curvature values given to an incident internal green face are as in
Table 1.
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Table 1: Curvature values χint and χboundary of an internal and a boundary vertex in a
diagram Γ ∈ D.

δG(v) χint χboundary
2 0 0
3 −1/6 −1/4
4 −1/4 −1/3
5 −3/10 −3/8
6 −1/3 −2/5
≥ 7 ≤ −5/14 ≤ −5/12

Table 2: Curvature values χ of a red blob B in a diagram Γ ∈ D.
|∂(B)| |∂(B) ∩ ∂(Γ)| χ

3 0 −1/6
3 1 −1/4
4 0 −1/4
4 1 −1/3
5 0 −3/10
6 0 −1/3

Proof. Initially, the vertex curvature is +1. Thus, the curvature the vertex can distribute
is 1−1/2·δG(v). This curvature is split equally among δG(v)−x faces, so Part (i) follows.
Part (ii) can be computed using the formula from Part (i).

Lemma 4.33. Let B be a red blob in a diagram Γ ∈ D and f an internal green face
adjacent to B. If B is simply connected, then |∂(B)|,|∂(B) ∩ ∂(Γ)| and the curvature
values that B gives to f are as in Table 2.

Proof. Let B be a red blob with boundary length l and area t. Since B is simply
connected and Γ is green rich, we have that every vertex of B lies on ∂B. Furthermore,
t = l − 2 holds: For two triangles attached to each other, we have l = 4 and t = 2, so
the formula is true. Now assume that we have a red blob consisting of n red triangles
with length l and area t, such that t = l − 2. Then, since every vertex of B lies on ∂B,
attaching another triangle increases l and t by 1 each, so the claim follows by induction.
After Step 2 of algorithm 4.27, the curvature of each triangle is −1/2, so, in Step 4

the red blob gives curvature

−t
2 |∂(B) \ ∂(Γ)|

=
−l + 2

2(l − |∂(B) ∩ ∂(Γ)|)

from which the values in Table 2 can be computed.

The following de�nition can be thought of as a generalisation of a piece in the classical
small cancellation theory.
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Figure 5: A red triangle adjacent to a face labelled by R1 in Example 4.36.

De�nition 4.34. Fix a decomposition of a relator R = w1w2 · · ·wk into words labelling
the consolidated edges e1, e2, . . . , ek of an internal face labelled by R. A step is either
a single subword wi if the faces on the other sides of ei and ei+1 are both green or two
consecutive subwords wiwi+1 if ei+1 is adjacent to a red blob.
Fix a word w = x1 · · ·x|w| such that R = wk with k maximal among such expressions

for R. A location on R is an ordered triple (i, a, b), where i = {1, . . . , |w|}, a = xi−1 (or
x|w| if i = 1) and b = xi.
A place on R is a location (i, a, b) for which there exists a σ-reduced diagram Γ with

a face f labelled by R, such that there is a vertex between a and b of degree at least 3.
A place is green if the face meeting f at b is green and red otherwise.

Remark 4.35. Note that the maximal curvature of a step is −1/6 since either the end
vertex of a step is adjacent to at least 3 green faces or the step contains an edge that is
adjacent to a red blob, which gives curvature at most −1/6 as well.

Example 4.36. RSym succeeds on the pregroup presentation

P =
〈
x, y, z,X, Y, Z|xX, yX, zZ, yyy, (zy)4, z2Y xyZx

〉
from Example 4.11 with ε = 1/6. To see this, consider each relator in R̂ = {R1 :=
(zy)4, R2 := z2Y xyZx} individually. A consolidated edge between an internal non-
boundary face labelled by R1 and another green face can only be labelled by z or y since
neither zy or yz nor Y Z or ZY are subwords of R2. If R1 were adjacent to itself, the
diagram would not be σ-reduced. Hence, a consolidated edge is of length 1. If the edge
is labelled by z and the following edge is adjacent to a red triangle labelled by yyy, then
the step curvature is at most −1/3. This is because the end vertex v of the step zy has
green valency δG(v) ≥ 3 since neither Y z nor Zy is a subword of any relator, so the red
triangle and the end vertex of the step give at most −1/6 of curvature respectively (see
Figure 5). If the edge labelled by y is a consolidated edge of two green faces, then we
have two edges whose end vertices give curvature at most −1/6 respectively, so the total
curvature of a face labelled by R1 is at most 1− 1/6 · 8 = −1/3 < −1/6.
Next, consider an internal non-boundary face f labelled by R2, as shown in Figure 6.

If any of the boundary edges of f labelled by y or Y were adjacent to a red triangle,
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Figure 6: The decomposition of R2 in Example 4.36.

this triangle would give curvature at most −1/6 and the vertices at the beginning and
end of the subword (zY )±1 would give curvature −1/6 each. Therefore, we have at least
5 vertices in the decomposition of R2 that give curvature at most −1/6, so only one
of the edges labelled by y or Y can be adjacent to a red triangle since otherwise the
curvature of the face would already be negative. The other edge is then part of a green
step (zY )±1 whose incident vertices both give curvature at most −1/4. Hence, if there
is one red triangle adjacent to f , the curvature is bounded by 1− 1/2− 4/6 = −1/6 and
if f is not adjacent to a red triangle, the curvature is bounded by 1− 4/4− 1/6 = −1/6.

Remark 4.37. See [Cha20] for an application of the RSym algorithm to the Fibonacci
groups 〈x1, x2, . . . , xn|xixi+1 = xi+2 for i = 1, . . . , n〉 with subscripts taken mod n, which
yields that they are hyperbolic for n odd and n ≥ 11.

4.4 RSym+ at Level 2

RSym+ is an extension of the RSym algorithm by an additional step that allows faces
with more than enough negative curvature to give some of it to their neighbouring green
faces.
In this thesis we give examples of multiple presentations on which RSym does not

succeed, but RSym+ does, if one increases the dual distance of non-boundary faces, which
need to have negative curvature, to the boundary.

Algorithm 4.38 (RSym+). For any diagram Γ ∈ D do:

1.-4. See Algorithm 4.27.
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5. Each face that has curvature χ ≤ −ε can give a total of χ+ ε of curvature to any
adjacent green faces with curvature greater than −ε.

6. Return the curvature distribution.

De�nition 4.39. For d ≥ 1, we say that RSym+ (resp. RSym) succeeds on a presentation
P on level d if we can bound the total curvature above by −ε for all faces that are of
dual distance at least d+ 1 from the external face.

Theorem 4.40 ([HLN+19]). Assume that RSym+ (resp. RSym) succeeds at level d on
a presentation P = 〈Xσ|VP |R̂〉 of G, where no R ∈ R̂ is of length 1 or 2 and no two
distinct conjugates of relators R, S ∈ I(R̂)± have a common pre�x consisting of all but
one letter of R or S. If additionally no V σ-letter is trivial in G, then its Dehn function
is bounded above by

f(n) = n

(
(3 + r)

(r − 1)d − 1

r − 2

(
1 +

1

ε

)
+ 3

)
− 3 + r

ε
,

where r is the maximum length of a relator in R̂. In particular, G is hyperbolic.

We now give an example to illustrate the usefulness of RSym+ and then prove a lemma
which becomes very helpful in Chapter 5, where we analyse RSym over one-relator groups.
When working with decompositions of relators, we use the following notation:

De�nition 4.41. Let R = x1 · · ·xn be a relator in a pregroup presentation. When
describing a decomposition of R, we let

x1···xk−−−−→ (χ1)
xk+1···xk+t−−−−−−→

denote that x1 · · ·xk and xk+1 · · ·xk+t are steps which are seperated by a vertex that
gives curvature χ1. A complete decomposition of R is denoted by

x1···xk−−−−→ (χ1)
xk+1···xk+t−−−−−−→ (χ2)

···−→ · · · xn−i···xn−−−−−→ (χs) ,

where (χs) denotes the vertex between the last and the �rst step.

Example 4.42. Let G = 〈x, y, z|z−2y−1z−2y−1x−2y−2z−1yx2〉. Then

P = 〈x, y, z,X, Y, Z|xX, yY, zZ, Z2Y Z2Y X2Y 2Zyx2〉,

is a pregroup presentation for G. We show that RSym does not succeed on P , but RSym+

succeeds on P at level 2. The only decomposition of a face f on which RSym fails is the
following:

Z2Y−−→ (−1/6)
Z2Y−−→ (−1/6)

X2Y−−→ (−1/6)
Y Z−−→ (−3/10)

yx2−−→ (−1/6). (4.1)

At level 1, the internal non-boundary face f has total curvature 1−4/6−3/10 = 1/30
and the adjacent (boundary) faces also have non-negative curvature. To analyse RSym+
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4 The RSym Procedure

at level 2, consider the step p := Y Z of the failing decomposition. Since G is a one-
relator group, the face f̂ that is on the other side of the edge labelled by p is also a green
face, labelled by the same relator. At level 2, the face f̂ has to be non-boundary as well,
so the decomposition of f̂ with maximal curvature is

Z2

−→ (−1/3)
Y Z−−→ (−1/4)

ZY−−→ (−1/6)
X2Y−−→ (−1/6)

Y Z−−→ (−3/10)
yx2−−→ (−1/6),

which results in a total curvature of −17/60. Now, if we chose ε small enough, the face
f̂ can give curvature −ε−1/30 to f , so that the curvature of both faces is small enough.
Since Decomposition (4.1) is the only decomposition on which RSym fails, all other non-
boundary faces in the diagram have curvature less than −ε, so RSym+ succeeds at level
2. There is no V σ-letter in P , so G is hyperbolic.

Lemma 4.43. Let G be a group with a pregroup presentation P = 〈Xσ|VP |R̂〉 where
VP = ∅ and assume that RSym fails on exactly one decomposition of a relator R ∈ R̂
with total curvature 0. If, in addition, there is one step which appears only once in this
decomposition, then RSym+ succeeds at level 2.

Proof. Since VP = ∅, all of the faces of the failing diagram are green. Consider the step
p which appears only once in the failing decomposition and let the face on the other side
of p be called f . Note that if f is also labelled by R, the edge that is labelled by p cannot
correspond to the same location of the relator as in the original face since otherwise the
diagram would not be σ-reduced. Therefore, the face f has negative curvature −x for
some value x because its boundary word is either a relator di�erent than R on which
RSym succeeds or its a decomposition of R other than the failing one since p appears
only once in the failing decomposition. Say that p can be found n-times in the relator.
Then there can be at most n bad faces, i.e. faces with curvature 0, adjacent to f . In
Step 5 of the RSym+ procedure, f donates −(x− ε)/n of curvature to each adjacent bad
face. Since each bad face has at least one face like f as its neighbour, we conclude that,
if we choose ε small enough, RSym+ succeeds at level 2.

4.5 RSym and the Word Problem

If a pregroup presentation P on which RSym succeeds satis�es the following extra condi-
tion, it can be used to solve the word problem.

De�nition 4.44. RSym veri�es a solver for I(P) if, for any green boundary face f in
any Γ ∈ D with positive total curvature, the removal of f shortens ∂(Γ).

In this section we present an algorithm introduced in [HLN+19] that checks, if RSym
veri�es a solver for I(P) in the case where I(R̂) = R̂. If the algorithm succeeds, we
can use a standard Dehn algorithm in order to solve the word problem. Note that there
is a large class of groups that have a pregroup presentation for which I(R̂) = R̂, for
example all quotients of free products of free and �nite groups. This is the case for all
of the groups in this thesis, so we present the algorithm only for this case. We refer the
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4 The RSym Procedure

reader to [HLN+19, Chapter 8] for an algorithm that solves the word problem in the
case I(R̂) 6= R̂, which is di�erent than a standard Dehn algorithm.
The algorithm VerifySolver considers up to three steps from any green place and

up to four steps from any red place of any relator and computes, if the total curvature
after those steps is ≤ 0. If it is not, VerifySolver checks if the length of those steps
accounts for less than half of the length of the relator. Note that it su�ces to check
up to three steps from any starting green place or up to four steps from any starting
red place since any boundary vertex and any boundary triangle give curvature at most
−1/4 and internal steps give at most −1/6 of curvature. Therefore, the total curvature
of a boundary face would be less or equal to 0 if the internal boundary consisted of more
than three or four steps respectively.

Algorithm 4.45 (VerifySolver). Given a pregroup presentation P = 〈Xσ|VP |R̂〉 on
which RSym succeeds, for each R ∈ R̂ and each place PS on R do the following:

1. If PS is red, compute the maximum curvature χ0 that a boundary red blob and
the corresponding end vertex of the step give to the face. Let φ0 = 1 + χ0 and
consider each possible following step P1. If PS is green, let φ0 = 3/4.

2. Consider all possible sequences of up to three steps from PS (green case) or P1

(red case) and for each step at position i of the sequence, compute the maximal
curvature χi and let φi = φi−1 − χi.

3. If for some i ∈ {1, 2, 3}, we have that φi > 0 and the length of the subword labelling
the steps up to step i is ≥ |R| /2, return fail.

Return true.

Example 4.46. VerifySolver does not succeed for the group with pregroup present-
ation

P =
〈
x, y, z,X, Y, Z|xX, yX, zZ, yyy,R1 = (zy)4, R2 = z2Y xyZx

〉
from Example 4.11. Consider a boundary face f labelled by R2. Then, in the decom-
position of f shown in Figure 7, the face has total curvature 1/12 since the red triangle
gives curvature −1/4, the internal vertices give curvature −1/6 and −1/4 and the end
vertex gives curvature −1/4. The subword labelling the internal boundary Y xyZ is of
length 4 > |R2| /2 and therefore VerifySolver does not succeed.

Remark 4.47. Note that all boundary faces in Example 4.46 for which VerifySolver

fails are adjacent to a boundary red triangle since otherwise the total curvature would
be at most 0. Furthermore, the edge adjacent to this red triangle is either followed by
an edge labelled by x or Z if the red triangle is in the beginning, or it is preceded by an
edge labelled by z or x if it is located at the end of the internal boundary. Therefore,
the failing of VerifySolver is always due to the existence of the relator (zy)4. If we
would consider those faces over the group G = 〈x, y, z|yyy,R2〉, the curvature of those
faces would be at most 0. Therefore, the group

G = 〈x, y, z|yyy, zy−1xyz−1x〉
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4 The RSym Procedure

Figure 7: The decomposition of R2 as a boundary face in Example 4.46.

is an example of a group for which we can �nd a pregroup presentation on which RSym

and VerifySolver succeed.

4.6 Implementation and Usage of RSym

Holt et al. implemented a function in the computer algebra systems GAP and MAGMA
called IsHyperbolic that searches to verify that RSym succeeds on a given pregroup
presentation for which I(R̂) = R̂. It either returns true if RSym succeeds or it returns
fail along with additional information on the diagram where RSymmight fail. The authors
point out that the function IsHyperbolic might return fail even if RSym succeeds on a
presentation, in which case it would output a diagram that does not exist. Furthermore,
the RSym+ algorithm and algorithms at level d are not implemented at the moment.
Therefore, if IsHyperbolic returns fail for a pregroup presentation, one can either try
to show by hand that the diagram(s) given in the output do(es) not exist or that RSym
or RSym+ succeed at a higher level d and that no V σ-letter is trivial in the group.
The GAP package where IsHyperbolic is implemented is called walrus. In the cur-

rent version of walrus (4.10.2), the function IsHyperbolic tries possible decompositions
of relators until it �nds one on which RSym fails. Then, the computation stops and re-
turns fail along with the information about this decomposition. When trying to show
that RSym+ succceeds at level d on this group, it can be helpful to get information about
all of the decompositions where RSym might fail.
We therefore made some small alterations to the walrus code for our own use, so that

IsHyperbolic does not stop when it �nds a failing decomposition, but continues to try
out all of the possibilities and in the end returns all of the possible decompositions where
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RSym might fail.

5 RSym in Relation to Other Conditions for

Hyperbolicity

In this chapter we examine how RSym behaves on groups that satisfy other conditions for
hyperbolicity, starting with small cancellation conditions in Section 5.1. In Section 5.2
we analyse under which conditions RSym succeeds on one-relator-groups that have a short
relator (i.e. of length up to 15) of primitivity rank 3 and if RSym succeeds on one-relator
groups that satisfy the Blufstein-Minian condition.
Note that a group with presentation Q = 〈S|R〉 where |R| > 3 for all relators R ∈ R

has a canonical pregroup presentation where the only products of the pregroup are
between the elements of S and their inverses, VP = ∅ and R̂ = R. We sometimes say
that RSym succeeds on Q, meaning that the algorithm succeeds on the corresponding
canonical pregroup presentation.

5.1 RSym on Small Cancellation Groups

The following theorem is a result from [HLN+19].

Theorem 5.1. Let Q be a presentation for the group G, satisfying C(p)−T (q) for some
(p, q) ∈ {(7, 3), (5, 4), (4, 5)}. Then RSym succeeds on Q, so G is hyperbolic.

Proof. Since Q satis�es the C(p) condition, all faces have at least 7, 5 or 4 edges, so VP is
empty and there are no red faces. Fix a diagram Γ over Q and let f be a non-boundary
face of Γ. Using Lemma 4.32, we �nd that any vertex v of f that is not on ∂Γ gives
curvature

2− δ(v)

2δ(v)
=

1

δ(v)
− 1

2
≤ 1

q
− 1

2

to f since all vertices have degree at least q. If v is on ∂Γ, it gives curvature at most
−1/3 since f is not a boundary face and hence δ(v) ≥ 4. Since −1/3 is smaller than
1/q−1/2 for all q, we can assume that all vertices are internal and arrive at the following
upper bound on the curvature κ(f) of f :

κ(f) ≤ 1− p
(

1

q
− 1

2

)
≤ −1/6

for any (p, q) ∈ {(7, 3), (5, 4), (4, 5)}.

The fact that C ′(1/6) implies C(7) − T (3) and C ′(1/4) − T (4) implies C(5) − T (4)
gives the following corollary:

Corollary 5.2. Let Q be a group presentation satisfying C ′(1/6) or C ′(1/4) − T (4).
Then RSym succeeds on Q.
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Another result of Holt et al. is the following:

Theorem 5.3. Let Q be a group presentation satisfying C ′(1/6) or C ′(1/4) − T (4).
Then VerifySolver succeeds on Q.

Proof. The internal boundary of a boundary face f labelled by a relator R with positive
curvature in a diagram over a C ′(1/6) presentation consists of at most three steps since
the starting and end vertices give curvature at most −1/4 each and an internal vertex
gives curvature at most −1/6. Therefore, the length of the internal boundary is less
than 3/6 · |R|. In a C ′(1/4) − T (4) diagram the internal boundary of f consists of at
most two steps since any internal vertex gives curvature at most −1/4. Again the length
of the internal boundary is less than half of |R| because of the C ′(1/4) condition.

5.2 RSym on One-Relator Groups

In this section we analyse one-relator groups of rank 3 using computational methods in
parts. We start with groups that have relators of primitivity rank 3 and then focus on
groups that are hyperbolic by the Blufstein-Minian condition.

5.2.1 RSym and primitivity rank 3

Louder and Wilton conjecure that one-relator groups with relators of primitivity rank
3 are hyperbolic (see [LW18]). In this section we want to analyse to what extent one
can use RSym to con�rm this conjecture. In subsequent work [CH20] we used these
and additional methods to show that every rank 3 one-relator group with a relator of
primitivity rank 3 and of length at most 17 is hyperbolic.
The de�nition of the primitivity rank of a relator was introduced by Puder in [Pud14].

De�nition 5.4. An element w of a free group F is called primitive if it is contained in
a free generating set of F .

It is well known that a primitive word of a free group F is also primitive in every
subgroup of F containing it. The other direction is not true in general. If a word w is
non-primitive in F , it could be either primitive or non-primitive in a given subgroup of
F . The primitivity rank of a word w is the smallest rank that a subgroup K of F can
have, such that w is non-primitive in K.

De�nition 5.5. Let F be a free group and w ∈ F a non-primitive element. The
primitivity rank of w is

π(w) := min{rank(K)|w ∈ K ≤ F and w not primitive in K}.

In this section, we are working with a list1 of rank 3 one-relator groups with relators
of primitivity rank 3 of length up to 15. First, we run the IsHyperbolic function of
the walrus package in GAP on all of these groups with ε = 1/100. The results can be
found in Table 3. They give rise to the following theorem:

1The list was provided by C. Cashen, one of the supervisors of this thesis.
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Table 3: Results of IsHyperbolic with ε = 1/100 on rank 3 one-relator groups with a
relator R of primitivity rank 3.

|R| number of groups2 number of fails
≤ 10 637 0
11 3, 115 4
12 16, 806 1
13 96, 040 37
14 582, 475 98
15 2, 099, 313 671

Theorem 5.6. Let G = 〈S|R〉 be a one-relator group with R of primitivity rank 3. Then
there exists a pregroup presentation P of G such that:

(i) If R is of length less or equal to 10, then RSym succeeds on P.

(ii) If R is of length less or equal to 12, then RSym+ succeeds on P at level 2.

Proof. The �rst statement is a purely computational result (see Table 3).
In order to prove the second statement, we consider the 5 groups for which IsHyperbolic

returns fail. We have 4 such groups with relators of length 11. In a pregroup presenta-
tion with generators x, y, z and X, Y, Z where xσ = X, yσ = Y and zσ = Z, the relators
of those four groups are: ZY XZxzXZxzy, ZY ZXZxZXZxy, ZY ZXY xyZY Zy and
ZY ZXzxyZY Zy. For each group, there exists only one failing decomposition of the
respective relator, namely:

XZxz−−−→ (−1/6)
XZxz−−−→ (−1/6)

y−→ (−1/4)
Z−→ (−1/4)

Y−→ (−1/6),

ZXZx−−−→ (−1/6)
ZXZx−−−→ (−1/6)

y−→ (−1/4)
Z−→ (−1/4)

Y−→ (−1/6),

yZY Z−−−→ (−1/6)
yZY Z−−−→ (−1/6)

X−→ (−1/4)
Y−→ (−1/4)

x−→ (−1/6)

and
yZY Z−−−→ (−1/6)

yZY Z−−−→ (−1/6)
X−→ (−1/4)

z−→ (−1/4)
x−→ (−1/6).

In each of these decompositions the total curvature equals 0 and there exists a step
that does not come up more than once. Using Lemma 4.43, we conclude that RSym+

succeeds at level 2 for those four groups.
Now we repeat the process for the failing group with a relator of length 12 which has

the following presentation:

〈x, y, z,X, Y, Z|xX, yX, zZ, Z2Y 2Z2Y 2X2zx〉.

2The groups in the list are Aut(F (S)) classes of cyclic subgroups, so they are not necessarily distinct
isomorphism classes of groups.
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Figure 8: An internal face in a diagram over the presentation
〈x, y, z,X, Y, Z|xX, yY, zZ, (ZY XyxZ)2X〉 on which RSym fails.

Again there is only one decomposition on which RSym fails, namely

Z2Y 2

−−−→ (−1/6)
Z2Y 2

−−−→ (−1/6)
X−→ (−1/6)

X−→ (−1/6)
z−→ (−1/6)

x−→ (−1/6),

which yields total curvature 0, so Lemma 4.43 applies and the claim is proven.

For groups with a relator R of length 13, we get 37 groups on which IsHyperbolic

returns fail. Lemma 4.43 applies for 20 of them, so we end up with 17 groups that need
to be investigated further. In the following we give an example of one of those groups
and show how we can prove that RSym+ succeeds at level 2.

Example 5.7. A one-relator group with |R| = 13 for which RSym fails is the group

G = 〈x, y, z|(z−1y−1x−1yxz−1)2x−1〉

with pregroup presentation

P = 〈x, y, z,X, Y, Z|xX, yY, zZ,R := (ZY XyxZ)2X〉.

There are 12 di�erent ways to decompose R such that RSym fails on a non-boundary
face labelled by R, so Lemma 4.43 is not applicable. However, we argue that RSym+ still
succeeds at level 2. One example of a diagram where RSym fails is shown in Figure 8.
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Figure 9: The decomposition of f1 if v2 has degree 4.

First note that the consolidated edge labelled by X between the faces labelled by f
and f1 in the �gure is a step in every decomposition of R since neither ZX nor XZ can
be a step of R. Furthermore, the three vertices v1, v2 and v3 in the diagram in Figure 8
appear in every decomposition of R and the degree shown in this diagram is minimal
over all diagrams. Hence, the total curvature of 17/60 is maximal for f . Consider the
face f1 in Figure 8. We compute an upper bound on the curvature of f1, when f1 is non-
boundary. Note that when f and f1 are both non-boundary faces and v2 is a boundary
vertex, then v2 has valency at least 5. We initially assume that v2 is an internal vertex.
The �rst case to consider is that the valency of v2 is 4 as in Figure 8. By ṽ1, ṽ2, ṽ3 we

denote the three vertices on the boundary of f1 that correspond to the location of v1, v2, v3

in the decomposition labelling f . They give curvature at most −1/6 − 1/4 − 3/10 =
−43/60 since the degrees of v1, v2, v3 are minimal. The face f1 has two additional vertices
v1 and v2 that give curvature −1/6 and −1/4. Furthermore, since v2 has valency 4, there
is a third additional vertex v∗ (see Figure 9), which gives curvature at most −1/4 since
neither X2 nor x2 is a subword of R. Therefore, we can bound the total curvature κ(f1)
of f1 by

κ(f1) ≤ 1− 43/60− 1/6− 2/4 = −23/60.

Hence, if we choose ε small enough, f1 has enough negative curvature to donate−17/60−
ε of it to f .
The next question to consider is what happens, when the degree of v2 is 5 since then

vertex v∗ might not exist. In this case the total curvature of f would be 1−1/6−6/10 =
7/30. The faces would be arranged like in Figure 10 and we see that there is a new vertex
ṽ∗ that also gives curvature at most −1/4. Again f1 has enough negative curvature for
itself and f .
If v2 is internal with degree larger or equal to 6 or v2 is a boundary vertex with degree
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Figure 10: The decomposition of f1 if v2 has degree 5.

larger or equal to 5, the total curvature of f is ≤ 1 − 1/3 − 1/6 − 3/10 = 1/5 and the
total curvature of f1 is ≤ 1− 1/3− 1/6− 3/10− 1/4− 1/6 = −13/60 which is su�cient
for f1 and f .
In all of these cases, any additional bad face, i.e. face with non-negative curvature,

that might be adjacent to f1 via a consolidated edge labelled by X would produce 2 more
vertices on the boundary of f1 giving curvature at most −1/6 and −1/4, which could
be donated right back to the bad face in question. Therefore, f1 can provide enough
negative curvature to any adjacent bad face, which concludes the argument that RSym+

succeeds at level 2 since any face on which RSym fails has a neighbouring face like f1.

This leaves us with 16 groups that need to be investigated in the same manner. While
doing this for some randomly picked groups, we were not able to �nd an example where
RSym+ does not succeed at level 2 for relators of length ≥ 13. Since the number of
groups to analyse grows larger as the length of the relator gets longer, it is not feasible
to perform a procedure like in Example 5.7 one by one for each group by hand. Instead,
implementing an algorithm that tries to verify that RSym+ succeeds at level 2 on a given
pregroup presentation might give more insight.
Next, we consider if VerifySolver succeeds on the groups on which RSym does. The

following example shows that this is not the case in general.

Example 5.8. Consider the group G given by the pregroup presentation

P = 〈x, y, z,X, Y, Z|xX, yZ, zZ,R := Z4Y X2yx〉.

The only possible steps longer than 1 are Z2 and Z3. Therefore, any decomposition of
R consists of at least 7 steps. Since the maximal curvature of a step is −1/6, we see
that the total curvature of an internal face is at most −1/6, so RSym succeeds on P .
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Figure 11: The decomposition of R as a boundary face in Example 5.8.

Table 4: Results of IsHyperbolic with ε = 1/100 on rank 3 one-relator groups with
relators R that satisfy the BM-condition.

|R| number of groups number of fails
≤ 10 606 0
11 2, 973 11
12 14, 961 0
13 95, 085 67
14 564, 718 13

A boundary face with curvature 1/30 > 0 whose internal boundary is labelled by a
subword of R of length 5 > |R| /2 is shown in Figure 11. Hence, VerifySolver does
not succeed on P .

5.2.2 RSym and the Blufstein-Minian condition

In this section, we analyse if RSym succeeds on groups that satisfy the Blufstein-Minian
condition (BM-condition). For this purpose, we are working with a list of shortest
representatives of Aut(F ) equivalence classes of cyclic subgroups of F of rank 3 with
a relator of length up to 14. We have checked computationally which words of our
list satisfy the BM-condition and then ran the function IsHyperbolic on them. The
computational results can be found in Table 4. Before analysing the computational
results, we state a more general observation that is true for one-relator groups of all
ranks and which can be proved by hand.

Theorem 5.9. For one-relator groups with relators of length up to 12 that satisfy the
BM-condition, there exists a pregroup presentation on which RSym+ succeeds at level 2.
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Proof. Consider a one-relator group G with presentation Q = 〈S|R〉 that satis�es the
BM-condition. If |R| < 7, then there exists no tripod in any diagram over Q since the
minimum length of a tripod is 3. Hence, the presentation satis�es the C ′(1/4) − T (4)
condition, so RSym succeeds on Q by Corollary 5.2.
For |R| = 7 or 8, the maximal length of a step is 1 since Q satis�es the C ′(1/4) condi-

tion. Hence, Q satis�es the C ′(1/6) condition and RSym succeeds on Q by Corollary 5.2.
For |R| = 9, the maximal length of a step is 2 and the maximal length of a tripod is

4. Consider a face f labelled by a decomposition of R that consists of only �ve steps.
Then four of these steps are of length 2, so there are 3 vertices that cannot have degree
3, hence the maximum curvature of f is −1/12. Let f be labelled by a decomposition of
R that consist of 6 steps and assume that RSym does not succeed on Q because of this
decomposition. Then there are 6 vertices of degree 3 on the boundary of f and the total
curvature is 0. Because of the (T') condition, in the decomposition there are three steps
of length 1 and three steps of length 2 and the steps of length 1 and 2 are alternating.
Consider an edge labelled by a step p of length 1. It is preceded and followed by an edge
of length 2 because its start and end vertex have degree three and a tripod has maximal
length 4. Furthermore, the third edge in the tripod is also labelled by a word of length
1. Hence, the decomposition of the face f̂ , by which we denote the face on the other
side of the consolidated edge labelled by p, contains at least three consecutive steps of
length 1. Therefore, if f̂ is non-boundary, it has total curvature at most −1/6. Since f̂
is only adjacent to a �nite number of bad faces (i.e. faces with curvature 0), in Step 5
of the RSym+ algorithm, it can give enough of its curvature to all of them if we chose ε
small enough. Therefore, RSym+ succeeds at level 2 on Q in this case.
For |R| = 10, the maximal step length and maximal tripod length remain the same.

If a decomposition consists of 5 steps, all of them are of length 2, so there can be no
tripods, which results in a total curvature of at most −1/4. If it consists of 6 steps, we
obtain at least two vertices that are in between two edges labelled by words of length
2 that give curvature at most −1/4 each because of the maximal tripod length. Hence,
RSym succeeds on Q.
For |R| = 11, we have a maximal step length of 2 and a maximal tripod length of 5.

With the same argument as for |R| = 9, one can show that RSym+ succeeds on Q at level
2.
For |R| = 12, RSymmight not succeed on a decomposition of R with 6 vertices of degree

3 where each step is of length 2. Since the maximal tripod length is 5, all adjacent faces
have curvature less than 0 in this case because their boundary contains an edge of length
1. Hence, RSym+ again succeeds on Q at level 2.

By hand, we were able to show that in general for relators of length 9 and 12, RSym+

succeeds at level 2. In fact, when investigating one-relator groups of rank 3 using the
walrus package in GAP, we obtain that RSym already succeeds on all relators of length
9 and 12 at level 1. Therefore, the decompositions of length 6 that we construct in
the proof of Theorem 5.9, where RSym might fail, do not appear for groups of rank 3.
Another observation is that all of the groups on which IsHyperbolic fails have relators
that are words in only 2 letters. From the computational results we deduce the following
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Figure 12: A diagram over the pregroup presentation
〈x, y,X, Y |xX, yY, xY X3Y Xy2xY 〉 on which RSym fails.

theorem:

Theorem 5.10. Let G = 〈S|R〉 be a one-relator group of rank 3 that satis�es the BM-
condition. Then there exists a pregroup presentation P of G such that:

(i) If R is of length less or equal to 10 or of length 12, then RSym succeeds on P.

(ii) If R is of length less or equal to 14 and contains all 3 letters of S, then RSym

succeeds on P.

Example 5.11. An example of a one-relator group, which is hyperbolic by the Blufstein-
Minian condition, but where RSym+ does not succeed on the corresponding pregroup
presentation at level 1 is the group

G =< x, y|xy−1x−3y−1x−1y2xy−1 > .

In Example 3.21 we have already shown that G satis�es the BM-condition. The diagram
where RSym+ fails at level 1 is shown in Figure 12. The non-boundary face has total
curvature 0 and the adjacent faces have a total curvature of 1/6 respectively. However,
this is the only decomposition of the relator where RSym fails, so RSym+ succeeds at level
2 by Lemma 4.43.

When analysing the groups with relators of length 13 on which RSym fails, we see that
there are 52 groups for which Lemma 4.43 applies, so we end up with 15 groups that
need to be investigated further. Again, we were not able to �nd an example where RSym+

does not succeed at level 2.
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Figure 13: The decomposition of R as a boundary face in Example 5.14.

For relators of length 14, there are 9 groups for which Lemma 4.43 is applicable.
In a pregroup presentation with generators x, y, z and X, Y, Z where xσ = X, yσ =
Y and zσ = Z, the relators of the remaining four groups are: Z2Y Z2Y zY 2ZY 2Zy,
Z3Y 2ZY Z2yZyzY , Z2Y Z2Y zyZY 2zy2 and zY 2z3Y 2Z3Y ZY . Analysing those present-
ations in a similar manner as in Example 5.7 yields that RSym+ also succeeds on them
at level 2.

Proposition 5.12. For one-relator groups of rank 3 with relators of length up to 14 that
satisfy the BM-condition, there exists a pregroup presentation on which RSym+ succeds
at level 2.

Finally, we want to investigate if VerifySolver succeeds on the groups on which RSym

does. Since we have seen in the proof of Theorem 5.9 that a one-relator group G = 〈S|R〉
with |R| ≤ 8 satisfying the BM-condition has either a C ′(1/6) or a C ′(1/4) − T (4)
presentation, the following result follows immediately from Theorem 5.3:

Proposition 5.13. For one-relator groups with presentation 〈S|R〉 with |R| ≤ 8 that
satisfy the BM-condition, VerifySolver succeeds on the corresponding canonical pre-
group presentation P.

On presentations of groups with relators of length≥ 9, VerifySolver does not succeed
in general, as is shown by the following example:

Example 5.14. Consider the group given by the presentation

P = 〈x, y,X, Y |xX, yY,R := Y 3XYX2Y x〉.

The only possible steps of R longer than 1 are Y 2 and XY . In order to prove that
the (T') condition is veri�ed, it su�ces to check if a vertex between edges labelled by
Y 2 and XY can have degree 3. This is not the case since the edge following Y 2 needs
to be labelled by Y and the edge preceding XY needs to be labelled by X. Since the
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other possible steps of length 2 are always preceded and followed by a step of length 1,
the maximal tripod length is 4. Furthermore, P satis�es the C ′(1/4) condition, hence,
it satis�es the BM-condition. Since |R| = 9, RSym succeeds on P by Theorem 5.10.
However, VerifySolver does not succeed on P because a boundary face of the form
shown in Figure 13 has total curvature 1/12 > 0 and the internal boundary is labelled
by a subword of R of length 5 > |R| /2.
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