
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„Topology optimization for incremental finite plasticity“

verfasst von / submitted by

Timo Lechner, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2020 / Vienna, 2020

Studienkennzahl lt. Studienblatt / A 066 821
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Master’s programme in Mathematics
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Ulisse Stefanelli, PhD





Abstract

In this thesis we discuss the topic topology optimization for an elastoplastic
object which is influenced by external forces and show that there exists an
optimal configuration for the sharp-interface model, as well as for the phase-
field approach, where the material density is continuous.

First, we introduce our setting and model the motion of the medium.
Here, the elastoplastic behaviour is described by the minimization of a spe-
cific energy functional. Following this, we prove the existence of such a min-
imizer, using the Direct Method of the Calculus of Variations. Subsequently,
we prove that both the sharp-interface problem, as well as the phase-field
problem admit a solution. Eventually, we show that under suitable con-
ditions the phase-field model converges to the sharp-interface model with
respect to Γ-convergence.
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Chapter 1

Introduction

Topology optimization describes the method of finding the optimal shape of

a certain object, placed within the container Ω. Of course the word ’optimal’

is too vague and can include many different aspects, like production costs

or specific geometrical properties. From a mathematical standpoint this is

usually expressed by minimizing a certain target functional, subjected to the

distribution of the material within this object. In other words, the material

density z : Ω→ [0, 1] at each point is the control parameter that needs to be

optimized.

There are many applications of topology optimization, especially in the

area of airplane construction. Finding the best shape of airfoils and wings

can lead to major advantages. Hence, there are many papers written on this

topic, see for example [NS11] or [SLS14]. Recently, a growing interest in

the field of 3D-printing has arisen. Here we refer to [BAH11] and [CAS16].

Applications of topology optimization will not be discussed in this thesis, as

the focus lies on the theoretical analysis. More precisely, we want to show

existence of such an optimal structure and its approximation.

There have been some contributions on this matter, like [BC03]. In these

theoretical settings the material is usually assumed to behave in an elastic

way. However, properties such as permanent deformation and damage, that

are of the utmost importance in engineering, are not captured in these mod-

els. This thesis is trying to examine such inelastic effects. To be specific, the
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focus lies on incremental finite plasticity. In other words, the whole body is

behaving in an elastoplastic way.

This chapter describes the problem of topology optimization for an elasto-

plastic object in a mathematical way and introduces the general notation.

1.1 Modelling plasticity

We are given a container Ω ⊂ Rd for d = {2, 3} and we assume to be able

to adjust the density of the material within this object. This is described by

the order parameter

z : Ω→ [0, 1].

If at some point x ∈ Ω there is no material then z(x) = 0 and vice versa

z(x) = 1 if there is material. Here we will make a distinction between the

case where we allow intermediate states, like z(x) = 1
2
, and the case where

this is not possible. Moreover, we assume the order parameter z to be in the

space L1(Ω) of Lebesgue integrable functions in Ω.

The deformation is described by the mapping

ϕ : Ω→ Rd.

Here, we assume that the whole container Ω gets deformed, both in its solid

point {z = 1} and its void point {z = 0}. As a matter of fact, we model the

void {z = 0} as a very soft elastoplastic medium. One can think of a very

soft polymeric matrix, for instance. As such, we often refer to Ω as body in

the following. Furthermore, we assume that ϕ is smooth enough such that

we can define the deformation gradient ∇ϕ. The body is assumed to behave

elastoplastically. This can be described by a multiplicative decomposition of

the deformation gradient, the so called Lee-Liu decomposition [LL67] which

is given by

∇ϕ = FelP.

Here, Fel represents the elastic part of the deformation gradient, the one

directly related to stresses, while P is the plastic strain, recording the plastic

state of the body instead. A good motivation for this model can be found
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in [Has20, ch. 8, p. 255]. However, note that the quality of this model

is still debated, see for example [DF15]. Another parameter that is needed

in this configuration is the so-called geometric dislocation tensor G(P ). It

represents the relation between the plastic deformation P and the surface

elements. This notion was first introduced by Nye in 1953 [Nye53].

The internal energy H of the elastoplastic body depends on the configu-

ration (z, ϕ, P ) and can be characterized via the energy density F as

H(z, ϕ, P ) =

∫
Ω

F (x, z,∇ϕP−1, P,G(P )) dx.

The object will deform in such a way that it minimizes its stored energy

H. By assuming F to be defined relative to some previous plastic state, the

above-mentioned minimization specifies the increment in plastic strain. As

such the problem is called incremental. More details can be found in [MM06].

However, the motion of the body is not only influenced by the type of the

material but also by external forces and boundary conditions. The boundary

Γ := ∂Ω is being clamped in ΓD ⊂ Γ and we impose a traction force

g : ΓN → Rd

on ΓN ⊂ Γ \ ΓD. Here, ΓD and ΓN are assumed to be relatively open in the

topology of ∂Ω such that ΓD ∩ ΓN = ∅ and Hd−1(ΓD) 6= 0 where Hd−1 is the

(d− 1)-dimensional Hausdorff measure. Moreover, a force density acting on

the whole body is applied

f : Ω→ Rd.

In order to specify the force, one has to multiply f by the density z. The

actual force that is acting on the body is therefore given by

zf : Ω→ Rd.

The two forces f and g are conservative in a sense that if a particle moves

along a closed trajectory then the work done by the force is zero. This can

be described by the potential energy

U(z, ϕ, P ) = −
(∫

Ω

zf · ϕ dx+

∫
ΓN

g · ϕ dx

)
3



Note that the negative sign comes from the fact that one has to put work

into the system in order to move it against the force. The total energy can

be written as

E(z, ϕ, P ) = H(z, ϕ, P ) + U(z, ϕ, P )

This is the functional that describes the motion of Ω and that we are aiming

to minimize in Chapter 2.

1.2 Modelling the optimal shape

Knowing how ϕ behaves, we can define the objective functional for the sharp-

interface case where z is either 0 or 1, as

J0(z, ϕ, P ) =

∫
Ω

zf · ϕ dx+

∫
ΓN

g · ϕ dHd−1 + cψPer({z = 1},Ω).

Here Hd−1 is the (d − 1)-dimensional Hausdorff measure and cψ > 0 is a

given constant. The first two terms in J0 are called compliance. They model

the mechanical forces that we want to minimize and represent the ability to

withstand the external forces f and g. The last term models the surface area

of the solid {z = 1}. Thus, the body avoids having a large boundary.

Furthermore, we approximate the objective functional by a phase field

approach, allowing z to take values between 0 and 1. The boundary of the

solid is then given by a diffuse interface. The thickness of this boundary is

described by a small parameter ε > 0 and the perimeter is replaced by the

Ginzburg-Landau energy

Jε(z, ϕ, P ) =

∫
Ω

zf · ϕ dx+

∫
ΓN

g · ϕ dHd−1 +

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ(ϕ) dx.

The function ψ is a so called double obstacle potential and has zeros at 0

and 1. Hence, configurations where the density is either 0 or 1 are preferred.

The Ginzburg-Landau energy functional approximates the perimeter and in

fact converges to cψPer({z = 1},Ω) as ε → 0 with respect to the so called

Γ-convergence. This was shown by Modica and Mortola in 1977 [MM77].

We will be analyzing the existence of minimizers of J0 and Jε under the

condition that ϕ and P minimize E in Chapter 3.
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Ultimately, in Chapter 4, we show Γ-convergence of the phase-field model

to the sharp-interface model, under the assumption that the deformation ϕ

is unique.

1.3 Notation and assumptions

Throughout this thesis we only look at the 2- and 3-dimensional case, i.e.

d ∈ {2, 3}. The body Ω ⊂ Rd is assumed to be an open and bounded

Lipschitz domain. This means that Ω is a bounded set, the boundary ∂Ω

is not part of Ω, and it can be described by a Lipschitz function. If we

denote by λd the Lebesgue measure in Rd, the boundedness of Ω implies that

λd(Ω) <∞.

Additionally, we can define the Lebesgue integral over Ω of a function

f : Ω→ R and write ∫
Ω

f dx :=

∫
1Ωf dλ

where

1Ω(x) :=

{
1 if x ∈ Ω

0 otherwise

is the characteristic function of Ω. Recall the definition of the Lp-norm of a

function f for p ∈ [1,∞)

‖f‖p :=

(∫
Ω

|f |p dx

)1/p

and the L∞-norm

‖f‖∞ := inf{C ≥ 0 : |f(x)| ≤ C for a.e. x ∈ Ω}

Note that the space

Lp(Ω) := {f : Ω→ R measurable : ‖f‖p <∞}

is a Banach space for all p ∈ [1,∞] and is reflexive for all p ∈ (1,∞).

Another important concept is the notion of weak derivatives.
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Definition 1.3.1. Let f ∈ L1(Ω). Then, f (α) ∈ L1(Ω) is called the α-th

weak derivative of f if∫
Ω

fDαϕ dx = (−1)|α|
∫

Ω

f (α)ϕ dx

for all ϕ ∈ C∞0 (Ω) where α = (α1, ..., αd) is a multi-index and Dα the multi-

derivative.

Based on this definition we can introduce the Sobolev spaces

W k,p := {f ∈ Lp(Ω) : f (α) ∈ Lp(Ω) for all |α| ≤ k}

These are again Banach spaces when endowed with the norm

‖f‖k,p :=

∑
|α|≤k

∥∥f (α)
∥∥p
p

1/p

for p ∈ [1,∞) and

‖f‖k,∞ := max
|α|≤k

∥∥f (α)
∥∥
∞

for the limit case. The case p = 2 is special since W k,2(Ω) =: Hk(Ω) is a

Hilbert space. Moreover, for all p ∈ (1,∞) these spaces are reflexive.

Functions that only take the values 0 and 1 in Ω do not have a weak

derivative which is the motivation for the following definition.

Definition 1.3.2. Let u ∈ L1(Ω). Define the variation V (u,Ω) of u in Ω by

V (u,Ω) :=

∫
Ω

|Du| = sup

{∫
Ω

u divv dx : v ∈ C1
0(Ω;Rd), ‖v‖∞ ≤ 1

}
We say that u has bounded variation and write u ∈ BV (Ω), if

∫
Ω
|Du| <∞.

Functions with this property are more general than functions in W 1,1(Ω).

In other words if u ∈ W 1,1(Ω) then
∫

Ω
|Du| =

∫
Ω
|∇u| dx since∫

Ω

u divv dx = −
∫

Ω

∇u · v dx
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for all v ∈ C1
0(Ω;Rd) with ‖v‖∞ ≤ 1 and we can approximate sgn(∇u) by

such functions. The space BV (Ω) together with the norm

‖u‖BV (Ω) = ‖u‖1 +

∫
Ω

|Du|

is a Banach space as well. Through this notation we can give a mathematical

desription of the perimeter of a set.

Definition 1.3.3. Let A ⊂ Rd be a Borel set. Then we define the perimeter

of A in Ω to be

Per(A,Ω) := V (1A,Ω) = sup

{∫
Ω

1A divv dx : v ∈ C1
0(Ω;Rd), ‖v‖∞ ≤ 1

}

7
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Chapter 2

Existence result for minimizers

of the energy functional

In this chapter we are going to show existence of minimizers (z, ϕ, P ) for

the total energy functional E . This is done using the Direct Method of the

Calculus of Variations, which is a tool proposed by David Hilbert around the

year 1900 to prove existence of solutions of minimization problems.

First, we will state the problem in a rigorous way. Then, we will show

coercivity in order to get weak convergence of subsequences. In Sections 2.3

and 2.4 we will prove (lower semi-)continuity results which will be the last

step to obtain the existence of a minimizer.

This chapter mainly follows [MM06] as well as [KR19] and [Dac08].

2.1 Stating the problem

The plasticity functional is given by

H(z, ϕ, P ) =

∫
Ω

F (x, z,∇ϕP−1, P,G(P )) dx (2.1)

where F : Ω × [0, 1] × Rd×d × SL(d) × R

(d−1)−times︷ ︸︸ ︷
d× ...× d → R ∪ {∞}. SL(d)

describes the special linear group of matrices of order d, i.e. d × d matrices
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with determinant equal to 1. This means that throughout this thesis we will

assume detP = 1. In other words we say that the plastic deformation is

volume preserving.

By G(P ) we denote the geometric dislocation tensor which for d = 2 is

given by

G(P ) = curl2P =

(
∂1P12 − ∂2P11

∂1P22 − ∂2P21

)
∈ R2.

And for d = 3 by

G(P ) = (curl3P )P T ∈ R3×3

where the curl3 of a matrix is given by the vectorial curl applied to each row

separately, hence generating a 3× 3 matrix, i.e.,

(curlP )ij = ∂j+1Pij+2 − ∂j+2Pij+1.

This term is sometimes included in models of crystal plasticity, since an

argument can be made that the surface where two differently sheared sub-

domains meet admits a density of geometrically necessary dislocations. A

more detailed description can be found in [CG01]. From now on we will omit

the subscript. Sometimes we will also use the notation Fel = ∇ϕP−1 and

G = G(P ) for simplicity.

2.2 Coercivity

In order to get convergence of sequences we want to apply the Banach-Alaoglu

Theorem A.0.1 and hence we require uniform boundedness first. This means

that for a sequence (f (k)) there exists a constant C > 0 such that∥∥f (k)
∥∥ ≤ C for all k ∈ N. Therefore we have to study coercivity of the

different parameters.

For the order variable z we only get this bound in Chapter 3. In this

chapter we will assume convergence, i.e. for a sequence (z(k)) ⊂ L1(Ω; [0, 1])

there exists an element z ∈ L1(Ω; [0, 1]) such that

z(k) → z ∈ L1(Ω).
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Note that since ‖z‖∞ <∞ and λd(Ω) <∞ by the Riesz-Thorin interpolation

theorem [Tho48] we get

z(k) → z ∈ Lp(Ω)

for p ∈ [1,∞).

Growth properties of F play an important role. The condition that we

we will assume is the following

F (x, z, Fel, P,G) ≥ c(|Fel|qF + |P |qP + |P−1|qP + |G|qG)− g(x) (2.2)

for some c > 0 and g ∈ L1(Ω). Before we can prove coercivity we recall some

basic notions of Linear Algebra.

Let F ∈ Rd×d then we define the Euclidean norm of the matrix F via

|F |2 :=
d∑

i,j=1

F 2
ij.

Recall the following properties:

• |Fa| ≤ |F ||a| for all a ∈ Rd,

• |FH| ≤ |F ||H| for all H ∈ Rd×d,

• |FP−1| ≤ |F |/|P | for all P ∈ Rd×d where P ∈ GL(Rd).

Furthermore, we need the following three Lemmas.

Lemma 2.2.1. Let P ∈ SL(d) and G(P ) as in Chapter 2.1. Then, we have

the following inequalities

• |G(P )| ≥ |curlP | for d = 2,

• |G(P )| ≥ |curlP |
|P−1| for d = 3.

Proof. We will prove the case d = 3 as the 2-dimensional case is trivial.

Recall that G(P ) = (curl3P )P T . Using the properties of the Euclidean norm

of matrices results in

|G(P )||P−1| = |G(P )||P−T | ≥ |G(P )P−T | = |(curl3P )P TP−T | = |curl3P |.
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Lemma 2.2.2. Let q1, q2, q be such that 1
q1

+ 1
q2

= 1
q

and let f : Ω → Rd×d

and g : Ω → GL(Rd) with g ∈ Lq2(Ω;Rd×d) and fg−1 ∈ Lq1(Ω;Rd×d). Then

we have f ∈ Lq(Ω;Rd×d) and

∥∥fg−1
∥∥
q1
≥
‖f‖q
‖g‖q2

.

Proof. Taking h = fg−1 and using Hölder’s inequality for h and g we get

‖hg‖q ≤ ‖h‖q1 ‖g‖q2 .

Plugging f = hg in we get our result.

Lemma 2.2.3. Let a, b > 0, ε > 0 and r > 1 then we have

a

b
≥ rε(r−1)/ra1/r − (r − 1)εb1/(r−1). (2.3)

Proof. Recalling Young’s inequality AB ≤ Ap

p
+Bq

q
for A,B > 0 and 1

p
+ 1
q

= 1

and setting r = p, A = (εr−1a)1/r and B = εr−1b we get

(εr−1a)1/rεr−1b ≤ εr−1a

r
+

(εr−1b)r/(r−1)

r/(r − 1)
.

Subtracting the last term on both sides and multiplying by r
εr−1b

we get

rε(r−1)/ra1/r − (r − 1)εb1/(r−1) ≤ a

b

which is the desired result.

Using the Growth Condition 2.2 and applying the Lemmas above we are

able to prove coercivity.

Proposition 2.2.4. Assume that

c(|Fel|qF + |P |qP + |P−1|qP + |G|qG)− g(x) ≤ F (x, z, Fel, P,G)

holds for some c > 0 and g ∈ L1(Ω) and let

• 1
qϕ

:= 1
qF

+ 1
qP
≤ 1,
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• 1
qC

:=

{
1
qG
≤ 1 for d = 2,

1
qG

+ 1
qP
≤ 1 for d = 3.

If H(z, ϕ, P ) ≤ CH for some CH ∈ R then there exists C > 0 which depends

on CH , qF , qP , qG, and g such that

‖∇ϕ‖qϕ + ‖P‖qP +
∥∥P−1

∥∥
qP

+ ‖curlP‖qC ≤ C.

Proof. For simplicity, we will only consider the case d = 3 as the case d = 2

follows by similar arguments with different constants.

From the assumptions it follows that∫
Ω

F (x, z, Fel, P,G)dx = H(z, ϕ, P ) ≤ CH

c(‖Fel‖qFqF + ‖P‖qPqP +
∥∥P−1

∥∥qP
qP

+ ‖G‖qGqG)−
∫

Ω

gdx ≤ CH

Adding the integral of g on both sides as well as applying Lemma 2.2.1 on

G and Lemma 2.2.2 on Fel and G we get

c(‖∇ϕ‖qFqϕ / ‖P‖
qF
qP

+ ‖P‖qPqP +
∥∥P−1

∥∥qP
qP

+ ‖curlP‖qGqC /
∥∥P−1

∥∥qG
qP

) ≤ C̃H

Now we are going to use Lemma 2.2.3 on the first and fourth term of the

left hand side with r = qF
qϕ

, r̃ = qG
qC

and ε, ε̃ to be chosen. One can see that

r − 1 = qF
qP

and r̃ − 1 = qG
qP

holds. Hence, we get the following

c(
qF
qϕ
ε

qϕ
qP ‖∇ϕ‖qϕqϕ −

qF
qP
ε ‖P‖qPqP + ‖P‖qPqP

+
∥∥P−1

∥∥qP
qP

+
qG
qC
ε̃

qC
qP ‖curlP‖qCqC −

qG
qP
ε̃
∥∥P−1

∥∥qP
qP

) ≤ C̃H .

Choosing ε and ε̃ such that qF
qP
ε = 1

2
and qG

qP
ε̃ = 1

2
we get

c(c1 ‖∇ϕ‖qϕqϕ +
1

2
‖P‖qPqP +

1

2

∥∥P−1
∥∥qP
qP

+ c2 ‖curlP‖qCqC ) ≤ C̃H .

for some c1, c2 > 0. Finally taking C̃ = C̃H

c·min{c1,c2,1/2} > 0 we obtain our

result with C = C̃1/qϕ + C̃1/qP + C̃1/qC > 0.

We have shown that under suitable conditions (in our case the growth

condition) we get boundedness of ∇ϕ, P and G. This will help us extract

weakly convergent subsequences which are precisely the topic of the next

chapter.
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2.3 Lower semi-continuity of H

Starting from weakly convergent sequences our goal now is to show lower

semi-continuity of H. Here, F is assumed to be polyconvex in the matrix-

valued components, i.e. F is a convex function in the minors of the matrix-

valued components. Hence, we will need some results on weak convergence

of minors.

The following theorem is called the div-curl lemma and describes conver-

gence of the product of two weakly converging functions.

Theorem 2.3.1 (div-curl lemma). Let Ω ⊂ Rd be a bounded Lipschitz do-

main. Furthermore let (fk)k∈N and (gk)k∈N be sequences such that

fk ⇀ f in Lp(Ω;Rd),

gk ⇀ g in Lq(Ω;Rd),

for 1
p

+ 1
q

= 1
σ
< 1. If

{curlfk : k ∈ N} is bounded in

{
Lp(Ω) for d = 2,

Lp(Ω;R3) for d = 3,

{divgk : k ∈ N} is bounded in Lq(Ω),

then,

fk · gk ⇀ f · g in Lσ(Ω).

Murat proved this statement in [Mur78, p. 490] in the sense of distribu-

tions, i.e. for functions φ ∈ C∞0 (Ω). But since C∞0 (Ω) is dense in Lσ
′
(Ω)

for 1
σ

+ 1
σ′

= 1 and ‖fk · gk‖σ ≤ ‖fk‖p ‖gk‖q < ∞ for all k ∈ N and

‖f · g‖σ ≤ ‖f‖p ‖g‖q < ∞ we get weak convergence in Lσ(Ω) by approxi-

mating a function h ∈ Lσ′(Ω) with test functions φk ∈ C∞0 (Ω).

For a given matrix A ∈ Rd×d we denote by M(A) the vector of all minors

of the matrix A. In the case d = 2 this means M(A) = (A, detA) and in the

case d = 3 this means M(A) = (A,CofA, detA). Here CofA is the cofactor

matrix which is defined by (CofA)ij := (−1)i+jdetCij where Cij ∈ R2×2 is

a submatrix obtained by removing the i-th row and j-th column of A. If

14



A is invertible then we have CofA = (detA)A−T . Furthermore, if we count

indices modulo 3, i.e., 4 7→ 1, 5 7→ 2, then we get

(CofA)ij := Ai+1,j+1Ai+2,j+2 − Ai+1,j+2Ai+2,j+1.

The number of components of M(A) is
(

2d
d

)
− 1. For d = 2 these are 5

components and for d = 3 we get 19 components. By Ms(A) we denote the

s-th entry of the vector M(A). Each minor Ms(A) for s = 1, ..., d has
(
d
s

)
entries. The following theorem shows the importance of minors.

Theorem 2.3.2 (Weak convergence of minors). Let 1 ≤ s ≤ d,
1
σ

= 1
p1

+ ...+ 1
ps
< 1 and let f

(k)
i : Ω→ Rd for i ∈ {1, ..., s} satisfy

(1) f
(k)
i ⇀ f ?i in Lpi(Ω;Rd) for k →∞,

(2) {curlf
(k)
i : k ∈ N} is bounded in

{
Lqi(Ω;R) for d = 2,

Lqi(Ω;R3) for d = 3,

for 1
qi
≤ min{ 1

pi
+ 1

d
, 1}.

Let F (k) ∈ Rs×d be the matrix with rows (f
(k)
i )si=1 and F ? ∈ Rs×d with rows

(f ?i )si=1. Then, Ms(F
(k)) ∈ R1×(d

s) and for all entries of the s-th minor we

have

(Ms(F
(k)))1j ⇀ (Ms(F

?))1j in Lσ(Ω) for k →∞

for all 1 ≤ j ≤
(
d
s

)
.

Proof. We start with the case d = 2. Here we distinguish between the cases

s = 1 and s = 2. The former one is rather trivial since

M1(F (k)) = F (k) = f
(k)
1 ⇀ f ?1 = F ? = M1(F ?)

in Lp1(Ω;R2) by assumption (1).

For the case s = 2 we set f
(k)
i = (f

(k)
i1 , f

(k)
i2 ) for i = 1, 2. We can write

F (k) =

(
f

(k)
11 f

(k)
12

f
(k)
21 f

(k)
22

)
.
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Now let g
(k)
2 = (g

(k)
21 , g

(k)
22 ) = (f

(k)
22 ,−f

(k)
21 ) then we get

M2(F (k)) = detF (k) = f
(k)
11 f

(k)
22 − f

(k)
12 f

(k)
21

= (f
(k)
11 , f

(k)
12 ) · (f (k)

22 ,−f
(k)
21 ) = f

(k)
1 · g(k)

2 .

The same holds for the matrix F ?. By assumption (1) we know that

f
(k)
1 ⇀ f ?1 in Lp1(Ω;R2),

g
(k)
2 ⇀ g?2 in Lp2(Ω;R2).

Since divg
(k)
2 = curlf

(k)
2 we can deduce by assumption (2) that

{curlf
(k)
1 : k ∈ N} is bounded in Lp1(Ω;R),

{divg
(k)
2 : k ∈ N} is bounded in Lp2(Ω).

Hence we can apply the div-curl lemma 2.3.1 to obtain

M2(F (k)) = f
(k)
1 · g(k)

2 ⇀ f ?1 · g?2 = M2(F ?)

in Lσ(Ω) where 1
σ

= 1
p1

+ 1
p2
< 1.

The case d = 3 is similar. In fact for s = 1 and s = 2 we can use the same

argument again. For s = 3 we apply the Laplace expansion to calculate the

determinant of F (k)

detF (k) = f
(k)
1 · (CofF (k))1

where (CofF (k))1 denotes the first row of CofF (k). We already know from

the case s = 2 that these cofactors converge in Lσ(Ω) for 1
σ

= 1
p2

+ 1
p3
< 1

which is why we want to use the div-curl lemma once more. Setting f
(k)
i =

(f
(k)
i1 , f

(k)
i2 , f

(k)
i3 ) for i = 1, 2, 3 we get

(CofF (k))1 = (f
(k)
22 f

(k)
33 − f

(k)
23 f

(k)
32 , f

(k)
23 f

(k)
31 − f

(k)
21 f

(k)
33 , f

(k)
21 f

(k)
32 − f

(k)
22 f

(k)
31 )

= (f
(k)
2 × f (k)

3 ).

One can check that the following vector calculus identity holds

div(A×B) = (curlA) ·B − (curlB) · A.
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Using this identity it follows that

div(CofF (k))1 = div(f
(k)
2 × f (k)

3 ) = (curlf
(k)
2 ) · f (k)

3 − (curlf
(k)
3 ) · f (k)

2 .

We know that f
(k)
2 and f

(k)
3 are weakly convergent and therefore bounded in

Lp2(Ω;R3) and Lp3(Ω;R3). Furthermore curlf
(k)
2 and curlf

(k)
3 are bounded

in Lp2(Ω;R3) and Lp3(Ω;R3) as well and hence by the Hölder inequality it

follows that

{div(CofF (k))1 : k ∈ N} is bounded in Lσ(Ω)

for 1
q

= 1
p2

+ 1
p3

. Applying the div-curl lemma one last time yields the desired

result.

This theorem helps us show weak convergence of the matrix-valued com-

ponents of F . The following lemma is more specific.

Lemma 2.3.3. Let qP > d, 1
qC
< 1

d
+ 1
qP

and 1
q?

:= 1
qC

+d−2
qP

< 1. Furthermore,

let P (k) : Ω→ SL(d) be a sequence such that

P (k) ⇀ P in LqP (Ω;Rd×d),

curlP (k) ⇀ A in

{
LqC (Ω;R2) for d = 2,

LqC (Ω;R3×3) for d = 3.

Then, we have the following:

(a) A = curlP,

(b) Ms(P
(k)) ⇀Ms(P ) in LqP /s(Ω;R(d

s)×(d
s)),

(c) G(P (k)) ⇀ G(P ) in

{
Lq

?
(Ω;R2) for d = 2,

Lq
?
(Ω;R3×3) for d = 3.

Proof.

(a) We will prove this statement for the case d = 3. Take P ∈ C1(Ω̄;R3×3)

and note that if we again count indices modulo 3 we get

(curlP )ij = ∂j+1Pij+2 − ∂j+2Pij+1.
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Multiplying by a test function φ ∈ C∞0 (Ω), integrating over Ω, and integrat-

ing by parts yields∫
Ω

(curlP )ijφ dx = −
∫

Ω

Pij+2∂j+1φ dx+

∫
Ω

Pij+1∂j+2φ dx. (2.4)

This is continuous in C1(Ω̄;R3×3) equipped with the LqP (Ω;Rd×d)-norm if φ

is fixed, since∣∣∣∣∫
Ω

(curlP )ijφ dx

∣∣∣∣ ≤ ‖curlP‖1 ‖φ‖∞ ≤ C(φ) ‖P‖qP

for a constant C(φ) > 0. Since C1(Ω̄;R3×3) is dense in LqP (Ω;Rd×d) the equa-

tion (2.4) holds true for all P ∈ LqP (Ω;Rd×d). Using the weak convergence

of P (k) we get ∫
Ω

P
(k)
ij+2∂j+1φ dx→

∫
Ω

Pij+2∂j+1φ dx,∫
Ω

P
(k)
ij+1∂j+2φ dx→

∫
Ω

Pij+1∂j+2φ dx,

as k →∞. And hence

lim
k→∞

∫
Ω

[(curlP (k))ij − (curlP )ij]φ dx = 0

for all φ ∈ C∞0 (Ω). Applying the classical density argument and the unique-

ness of the weak limit we get the desired result.

The case d = 2 is exactly the same except that in this case we have

(curlP )i = ∂1Pi2 − ∂2Pi1.

(b) This follows from Theorem 2.3.2 by setting pj = qP and f
(k)
j = eTj P

(k).

(c) The case d = 2 is trivial since G(P ) = curlP .

For the case d = 3 we have G(P ) = (curlP )P T . It is clear that we want to

apply the div-curl Lemma 2.3.1. Hence, we have to verify its assumptions.

Setting f
(k)
j = eTj P

(k) and g
(k)
j = eTj curlP (k) we can conclude that

f
(k)
j ⇀ fj = eTj P in LqP (Ω;R3),

g
(k)
j ⇀ gj = eTj curlP in LqC (Ω;R3).
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Furthermore we know that {curlf
(k)
j : k ∈ N} is bounded since the weak

convergence of each row of curlP (k) implies boundedness. Note also that

divg
(k)
j = div(eTj curlP (k)) = div curl(eTj P

(k)) = 0

and therefore we can apply the div-curl lemma for j = 1, 2, 3 and obtain

(curlP (k))P (k)T ⇀ (curlP )P T in Lq
?

(Ω;R3×3)

which completes our proof.

In order to get weak convergence for the product ∇ϕP−1 we need the

following Lemma.

Lemma 2.3.4. Let F, P ∈ Rd×d with detP = 1. Then for all 1 ≤ s ≤ d and

1 ≤ i, j ≤
(
d
s

)
there exists a matrix K(s, i, j) ∈ Rd×d such that

Ms(FP
−1)ij = detK(s, i, j)

where K(s, i, j) consists of s rows of F and d− s rows of P.

Proof. For the case d = 2 we can use the explicit formula for the inverse

which is given by

P−1 =

(
P22 −P12

−P21 P11

)
.

Via standard matrix computation we can identify all entries of the matrix

FP−1 with determinants of matrices K containing one row of F and one row

of P

(FP−1)11 = F11P22 − F12P21 = det

(
F11 F12

P21 P22

)
,

(FP−1)12 = −F11P12 + F12P11 = det

(
P11 P12

F11 F12

)
,

(FP−1)21 = F21P22 − F22P21 = det

(
F21 F22

P21 P22

)
,

(FP−1)22 = −F21P11 − F22P11 = det

(
P11 P12

F21 F22

)
.
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Furthermore, by using the calculation rules for the determinant we get

det(FP−1) =
detF

detP
= detF

which finishes the proof for the case d = 2.

The same argument can be made for the determinant in the case d = 3.

These calculation rules also hold for the cofactor matrix. Additionally we

have the identity

CofA = (detA)A−T .

Let i, j ∈ {1, 2, 3} and define H as the matrix P where the j-th row is

replaced by the i-th row of F . This gives

detH =
∑
k

Hjk(CofH)jk =
∑
k

Fik(CofP )jk

and therefore

(FP−1)ij = (F (CofP )T )ij =
∑
k

Fik(CofP )jk = detH

which leaves us with proving the result for the entries of the cofactor matrix.

Note that

Cof(FP−1) = (CofF )(CofP−1) = (CofF )(CofP )−1 = (CofF )P T

Again let i, j ∈ {1, 2, 3} and this time define H as the matrix P where we fix

the j-th row and replace the other ones by the rows {1, 2, 3} \ {i} of F . We

have

detH =
∑
k

Hjk(CofH)jk =
∑
k

(CofF )ikPjk.

Combining this with the equality from above we get

Cof(FP−1)ij =
∑
k

(CofF )ikPjk = detH,

which finishes the proof.

Now we finally can show weak lower semi-continuity. First, we will recall

the definition.
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Definition 2.3.5. Let Ω ⊂ Rd be open, z : Ω → Rs, u : Ω → Rt and

F : Ω× Rs × Rt → R ∪ {∞} with the functional I(z, u) :=
∫

Ω
F (x, z, u) dx.

We say that I is weakly lower semi-continuous if for all sequences

zn ⇀ z in W 1,p(Ω;Rs)

un ⇀ u in Lq(Ω;Rt)

we have

I(z, u) ≤ lim inf
n→∞

I(zn, un)

We will usually assume the following condition on F .

Definition 2.3.6. F is said to be a Carathéodory function if

i) F (·, z, u) : Ω→ R ∪ {∞} is measurable for all (z, u) ∈ Rs × Rt

ii) F (x, ·, ·) : Rs × Rt → R ∪ {∞} is continuous for a.e. x ∈ Ω

In order to fully state and prove the theorem on lower semi-continuity we

still need some preparation. Particularly several results from measure theory

will be of importance.

Theorem 2.3.7 (Lusin). Let Ω ⊂ Rd be bounded and F : Ω → R be mea-

surable. Then for all ε > 0 there exists a compact set K ⊂ Ω such that

F : K → R is continuous and λd(Ω \K) < ε.

A proof to this statement can be optained via standard measure theory

arguments and can be found in [Fel81]. Another well-known result is the

following.

Theorem 2.3.8 (Egorov’s theorem). Let Ω ⊂ Rd be bounded and measurable

and let fn be measurable functions in Ω converging almost everywhere to a

function f . Then for all ε > 0 there exists a closed and measurable set

M ⊂ Ω such that fn converges uniformly to f in M and λd(Ω \M) < ε.

Here, we refer to [Bog07, thm. 2.2.1, p. 110].

A direct consequence from the above theorems which applies to our case

is the so called Scorza-Dragoni theorem (see [Giu03, lemma 4.6, p. 128]).
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Theorem 2.3.9 (Scorza-Dragoni theorem). Let Ω ⊂ Rd be bounded and

measurable, S ⊂ Rs × Rt compact and F : Ω × Rs × Rt → R ∪ {∞} a

Carathéodory function. Then for all ε > 0 there exists a compact set K ⊂ Ω

such that F : K × S → R ∪ {∞} is continuous and λd(Ω \K) < ε.

Proof. For n ∈ N define

mn := sup{|F (x, z, u)−F (x, y, v)| : (z, u), (y, v) ∈ S, |(z, u)− (y, v)| < 1/n}.

Since F is a Carathéodory function, mn → 0 a.e. in Ω as n→∞. Applying

Egorov’s theorem and observing that Ω is bounded, for all ε > 0 we can find

a compact and measurable set M ⊂ Ω where mn → 0 uniformly in M and

λd(Ω \M) < ε/2.

This means that for every η > 0 and (z, u) ∈ S there exists a δ1 > 0 such

that for all x ∈M and (y, v) ∈ S we have

|(z, u)− (y, v)| < δ1 =⇒ |F (x, z, u)− F (x, y, v)| < η/4. (2.5)

Since S is compact, we can find a countable dense subset {(zn, un)}∞n=1. Now

we can apply Lusin’s theorem for fixed (zn, un). Hence, for every n ∈ N there

exists a compact set Kn ⊂ Ω such that F (·, zn, un) : Kn → R is continuous

and λd(Ω \Kn) < ε/2n+1.

Let N =
⋂
n∈NKn. Then for all n ∈ N we know that F (·, zn, un) : N → R is

continuous and λd(Ω \N) < ε/2.

This means that for every η > 0, x ∈ N and (z, u) ∈ S there exists a δ2 > 0

such that for all x̄ ∈ N we have

|x− x̄| < δ2 =⇒ |F (x, zn, un)− F (x̄, zn, un)| < η/4. (2.6)

Now set K = M ∩ N . We need to show that F restricted to K × S is

continuous. Let η > 0, x ∈ N , (z, u) ∈ S and let δ1 > 0 such that (2.5) is

satisfied. Furthermore, choose (zn, un) such that |(zn, un)− (z, u)| < δ1.

This implies that if x, x̄ ∈ K and (z, u), (y, v) ∈ S with |(z, u)− (y, v)| < δ1

then

|F (x, z, u)− F (x, zn, un)| < η/4,

|F (x̄, z, u)− F (x̄, zn, un)| < η/4,

|F (x̄, z, u)− F (x̄, y, v)| < η/4.
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Furthermore, we can choose δ2 > 0 such that (2.6) holds for all x̄ ∈ K.

Hence, if we set δ := min{δ1, δ2} then for every x̄ ∈ K and (y, v) ∈ S such

that |x− x̄|+ |(z, u)− (y, v)| < δ we get

|F (x, z, u)−F (x̄, y, v)| ≤
|F (x, z, u)− F (x, zn, un)|+ |F (x, zn, un)− F (x̄, zn, un)|

+|F (x̄, z, u)− F (x̄, zn, un)|+ |F (x̄, z, u)− F (x̄, y, v)|
<η/4 + η/4 + η/4 + η/4 = η

which shows that F is continuous on K × S.

Moreover we know that λd(Ω \M) < ε/2 and λd(Ω \N) < ε/2 and hence it

follows that λd(Ω \K) < ε.

Another important result that connects weak and strong convergence is

the following (see [Rud91, Thm. 3.13, p. 67]).

Lemma 2.3.10 (Mazur’s lemma). Let V be a Banach space and {un} ⊂ V

be a weakly convergent sequence with un ⇀ u for n→∞. Then there exists

a function m : N→ N and λnj ≥ 0 with
∑m(n)

j=n λnj = 1 such that for

vn :=

m(n)∑
j=n

λnj uj

it follows that

vn → u in V as n→∞.

In order to prove weak lower semi-continuity we will first need a slightly

simpler theorem where the dependence is only in the matrix-valued compo-

nents, i.e. F : Ω× Rt → R ∪ {∞} (see [Dac08, Thm. 3.20, p. 94]).

Theorem 2.3.11. Let Ω ⊂ Rd be open and F : Ω × Rt → R ∪ {∞} be a

Carathéodory function such that for all u ∈ Rt we have F (·, u) ≥ ψ for some

ψ ∈ L1(Ω). Furthermore assume that F (x, ·) : Rt → R ∪ {∞} is convex and

that

un ⇀ u in Lq(Ω;Rt).

Then for I(u) :=
∫

Ω
F (x, u) dx we have

I(u) ≤ lim inf
n→∞

I(un).
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Proof. Without loss of generality we can assume F ≥ 0 for otherwise we can

work with F −ψ. First we want to show strong lower semi-continuity, hence

let

un → u in Lq(Ω;Rt)

and extract a (non-relabeled) subsequence such that

un → u a.e. in Ω.

Since F is continuous in u and F ≥ 0, it follows by Fatou’s lemma that∫
Ω

F (x, u) dx =

∫
Ω

lim inf
n→∞

F (x, un) dx ≤ lim inf
n→∞

∫
Ω

F (x, un) dx. (2.7)

Our goal is to go from strong to weak lower semi-continuity. Take a sequence

{un}∞n=1 with

un ⇀ u in Lq(Ω;Rt).

Define L := lim infn→∞ I(un) and extract a (non-relabeled) subsequence such

that L = limn→∞ F (x, un). Note that L ≥ 0 and assume that L < ∞,

otherwise there is nothing to show. From the definition of limits we get that

for every ε > 0 there exists an N ∈ N such that

I(un) ≤ I(u) + ε for all n ≥ N. (2.8)

Fixing ε > 0 and applying Mazur’s lemma to the sequence {un}∞n=N we obtain

a sequence {vn}∞n=N with

vn → u in Lq(Ω;Rt)

such that there exists a function m : (N,N + 1, ...) → (N,N + 1, ...) and

λnj ≥ 0 with
∑m(n)

j=n λnj = 1 and

vn :=

m(n)∑
j=n

λnj uj.
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Using the convexity of F in the second component and inequality (2.8) it

follows that∫
Ω

F (x, vn) dx =

∫
Ω

F (x,

m(n)∑
j=n

λnj uj) dx ≤
m(n)∑
j=n

λnj

∫
Ω

F (x, uj) dx

≤
m(n)∑
j=n

λnj (L+ ε) = L+ ε. (2.9)

Since we know that vn converges strongly to u we also get from (2.7) that∫
Ω

F (x, u) dx =

∫
Ω

lim inf
n→∞

F (x, vn) dx ≤ lim inf
n→∞

∫
Ω

F (x, vn) dx. (2.10)

Combining (2.9) and (2.10) we obtain

I(u) ≤ L+ ε.

This finishes our proof since ε > 0 was fixed but arbitrary.

Now we can state and prove our main lower semi-continuity result (see

[Dac08, thm. 3.23, p. 96]).

Theorem 2.3.12. Let Ω ⊂ Rd be open and bounded and let F : Ω × Rs ×
Rt → R∪ {∞} be a Carathéodory function such that for all (z, u) ∈ Rs ×Rt

we have F (·, z, u) ≥ ψ for some ψ ∈ L1(Ω). Furthermore, assume that

F (x, z, ·) : Rt → R ∪ {∞} is convex and that

zn → z? in Lp(Ω;Rs) and un ⇀ u? in Lq(Ω;Rt).

Then for I(z, u) :=
∫

Ω
F (x, z, u) dx we have

I(z?, u?) ≤ lim inf
n→∞

I(zn, un).

Proof. Again without loss of generality we can assume F ≥ 0. As before we

define L := lim infn→∞ I(zn, un) and extract a (non-relabeled) subsequence

such that L = limn→∞ F (x, zn, un) with 0 ≤ L <∞.
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Step 1: Our first goal is to show that for all ε > 0 there exists a measurable

set Ωε ⊂ Ω with λd(Ω \ Ωε) < ε and a subsequence nk with nk → ∞, such

that ∫
Ωε

|F (x, znk
, unk

)− F (x, z?, unk
)| dx < ελd(Ω). (2.11)

Now choose ε > 0 and let

K1,ε := {x ∈ Ω : |z?(x)| ≤Mε or |zn(x)| ≤Mε},
K2,ε := {x ∈ Ω : |un(x)| ≤Mε},

where Mε is such that λd(K1,ε) < ε/6 and λd(K2,ε) < ε/6 for every n ∈ N.

We can find such a Mε since z, zn ∈ Lp(Ω;Rs) and un ∈ Lq(Ω;Rt).

Set Ω1,n,ε := Ω \ (K1,ε ∪K2, ε) and it follows that λd(Ω \ Ω1,n,ε) < ε/3.

Applying the Scorza-Dragoni theorem with

S := {(z, u) :∈ Rs × Rt : |z| < Mε and |u| < Mε}

we can conclude that there exists a compact set Ω2,n,ε ⊂ Ω1,n,ε with λd(Ω1,n,ε\
Ω2,n,ε) < ε/3 and such that F is continuous on Ω2,n,ε × S.

Hence there exists δ > 0 such that if |z − y| < δ then

|F (x, z, u)− F (x, y, u)| < ε (2.12)

for all x ∈ Ω2,n,ε, z, y ∈ Rs with |z| < Mε and |y| < Mε and u ∈ Rt with

|u| < Mε.

Choosing such a δ > 0 we know that since zn → z? in Lp(Ω;Rs) there exists

Nε ∈ N such that for

Ω3,n,ε := {x ∈ Ω : |zn(x)− z?(x)| < δ}

holds that λd(Ω \ Ω3,n,ε) < ε/3 for all n ≥ Nε.

Now let Ωn,ε := Ω2,n,ε∩Ω3,n,ε then λd(Ω\Ωn,ε) < ε and from (2.12) it follows

that ∫
Ωn,ε

|F (x, z?, un)− F (x, zn, un)| dx < ελd(Ω)
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for every n ≥ Nε. The same holds for εk := ε/2k for k ∈ N. Hence, by

choosing a sequence nk ≥ Nεk with nk → ∞ and setting Ωε :=
⋂∞
k=1 Ωnk,εk

the bound (2.11) follows immediately.

Step 2: We want to apply Theorem 2.3.11. Hence, we denote by 1Ωε :

Ω→ {0, 1} the characteristic function of Ωε in Ω, i.e.,

1Ωε(x) =

{
1 if x ∈ Ωε

0 if x /∈ Ωε

and let

G(x, u) := 1Ωε(x)F (x, z?, u).

It follows that G : Ω× Rt → R ∪ {∞} is a Carathéodroy function such that

G(·, u) ≥ ψ for all u ∈ Rt and G(x, ·) : Rt → R ∪ {∞} is convex. Hence, we

can apply Theorem 2.3.11 and obtain∫
Ω

1Ωε(x)F (x, z?, u?) dx ≤ lim inf
nk→∞

∫
Ω

1Ωε(x)F (x, z?, unk
) dx.

Using (2.11) and the fact that F ≥ 0 we have that∫
Ω

1Ωε(x)F (x, z?, unk
) dx− ελd(Ω) =

∫
Ωε

F (x, z?, unk
) dx− ελd(Ω)

≤
∫

Ωε

F (x, z?, unk
) dx−

∫
Ωε

|F (x, znk
, unk

)− F (x, z?, unk
)| dx

≤
∫

Ωε

F (x, znk
, unk

) dx ≤
∫

Ω

F (x, znk
, unk

) dx.

In particular, we have∫
Ω

1Ωε(x)F (x, z?, u?) dx− ελd(Ω) ≤ lim inf
nk→∞

∫
Ω

F (x, znk
, unk

) dx.

Since F ≥ 0 we can apply the Monotone Convergence Theorem (see A.0.4)

on the left hand side and let ε→ 0 to conclude that∫
Ω

F (x, z?, u?) dx ≤ lim inf
nk→∞

∫
Ω

F (x, znk
, unk

) dx.
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As mentioned before, we will not assume convexity on the function F

but only polyconvexity. Hence, we will need an even stronger result on weak

lower semi-continuity which can be applied to our problem (2.1).

Theorem 2.3.13. Let Ω ⊂ Rd be open and bounded and let H and F be given

as in (2.1) with F (·, z, Fel, P,G) ≥ ψ for some ψ ∈ L1(Ω). Furthermore,

assume that there exists a Carathéodory function

F̃ : Ω× [0, 1]× R(2d
d )−1 × R(2d

d )−1 × R

(d−1)−times︷ ︸︸ ︷
d× ...× d → R ∪ {∞}

such that F̃ (x, z, ·, ·, ·) : R(2d
d )−1×R(2d

d )−1×R

(d−1)−times︷ ︸︸ ︷
d× ...× d → R∪{∞} is convex

and

F (x, z, Fel, P,G) = F̃ (x, z,M(Fel),M(P ), G)

Let qϕ > d, qP > d, and qC satisfy

d− 2

qP
+

1

qC
< 1,

1

qC
<

1

d
+

1

qP
,

and let

z(k) → z? in Lp(Ω; [0, 1]),

ϕ(k) ⇀ ϕ? in W
1,qϕ
D (Ω;Rd),

P (k) ⇀ P ? in AqP ,qCdet (Ω),

where W
1,qϕ
D (Ω;Rd) := {ϕ ∈ W 1,qϕ(Ω;Rd) : ϕ|ΓD

= 0} for some ΓD ⊂ ∂Ω

and AqP ,qCdet (Ω) consists of all elements P ∈ LqP (Ω;Rd×d) such that

curlP ∈

{
LqC (Ω;R2) for d = 2,

LqC (Ω;R3×3) for d = 3
,

detP = 1 a.e. in Ω.

Then,

H(z?, ϕ?, P ?) ≤ lim inf
k→∞

H(z(k), ϕ(k), P (k)).
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Proof. Since curlP (k) is bounded in LqC (Ω;Rd) for d = 2 and LqC (Ω;Rd×d)

for d = 3 we know that there exists a (non-relabeled) converging subsequence

and can apply Lemma 2.3.3 to obtain

curlP (k) ⇀ curlP ? in

{
LqC (Ω;R2) for d = 2,

LqC (Ω;R3×3) for d = 3,

M(P (k)) ⇀M(P ?) in LqP /d(Ω;R(2d
d )−1),

G(P (k)) ⇀ G(P ?) in

{
Lq

?
(Ω;R2) for d = 2,

Lq
?
(Ω;R3×3) for d = 3,

for some q? > 1.

To get weak convergence of M(Fel) we note that by Lemma 2.3.4 each com-

ponent Ms(∇ϕ(k)(P (k))−1)ij is the determinant of a d × d matrix K(s, i, j)

where K(s, i, j) consists of s rows of ∇ϕ(k) and d − s rows of P (k). This

means that the rows of K(s, i, j) are either curl-free or the curl is bounded

in LqC (Ω). Hence, we can use Theorem 2.3.2 to get

M(∇ϕ(k)(P (k))−1) ⇀M(∇ϕ?(P ?)−1) in Lσ(Ω;R(2d
d )−1) for some σ > 1

Now we apply Theorem 2.3.12 with

zn := z(k),

z? := z?,

un := (M(F
(k)
el ),M(P (k)), G(k)),

u? := (M(F ?
el),M(P ?), G?),

and q = min{qP/d, q?, σ} > 1 to get our desired result.

2.4 Continuity of U

Recall that the functional U describes the work done by conservative forces

and is defined as

U(z, ϕ, P ) = −
(∫

Ω

zf · ϕ dx+

∫
ΓN

g · ϕ dx

)
. (2.13)
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In this section, we want to show that U is continuous on

L1(Ω; [0, 1])×W 1,qϕ
D (Ω;Rd)× AqP ,qCdet (Ω).

Theorem 2.4.1. Let Ω ⊂ Rd be an open Lipschitz domain and qϕ > d.

Furthermore, assume that f ∈ Lqf (Ω) for some qf > qϕ
qϕ−1

=: (qϕ)′ and

g ∈ Lqg(ΓN) for some qg = (qϕ)′. If

z(k) → z in Lqz(Ω) where
1

qz
+

1

qϕ
+

1

qf
= 1,

ϕ(k) ⇀ ϕ in W
1,qϕ
D (Ω;Rd),

P (k) ⇀ P in AqP ,qCdet (Ω),

then,

lim
k→∞

U(z(k), ϕ(k), P (k))→ U(z, ϕ, P ).

Proof. Note that for the exponents it holds that

1

qf
+

1

qϕ
=

1

q′z
and

1

qf
+

1

qz
=

1

q′ϕ
.

Looking at the first term of U we obtain∫
Ω

z(k)f · ϕ(k) dx =

∫
Ω

(z(k) − z)f · ϕ(k) dx+

∫
Ω

zf · ϕ(k) dx.

Now we can use Hölder’s inequality and see that∫
Ω

(z(k) − z)f · ϕ(k) dx ≤
∥∥z(k) − z

∥∥
qz

∥∥f · ϕ(k)
∥∥
q′z

≤
∥∥z(k) − z

∥∥
qz
‖f‖qf

∥∥ϕ(k)
∥∥
qϕ
→ 0

as k →∞. Additionally we know that zf ∈ Lq′ϕ(Ω) since

‖zf‖q′ϕ ≤ ‖z‖qz ‖b‖qf <∞.

Hence, we can conclude that∫
Ω

z(k)f · ϕ(k) dx→
∫

Ω

zf · ϕ dx for k →∞.
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For the second term of U we can use Theorem B.0.3 and from the continuity

of the trace operator T (here, we will omit T in the notation) it follows that

ϕ(k) ⇀ ϕ in Lqϕ(∂Ω).

Now since 1
qϕ

+ 1
qg

= 1 and ΓN ⊂ ∂Ω we obtain∫
ΓN

g · ϕ(k) dHd−1 →
∫

ΓN

g · ϕ dHd−1 for k →∞.

All in all we have shown that

−U(z(k), ϕ(k), P (k))→ −U(z, ϕ, P ) for k →∞

which finishes the proof.

Remark 2.4.2. Using some analogous arguments one can see that for z ∈
Lqz(Ω) there exists a constant C > 0 such that

|U(z, ϕ, P )| ≤ C ‖ϕ‖qϕ .

2.5 Existence of minimizers

Combining the coercivity result of Chapter 2.2, the lower semi-continuity

result of Chapter 2.3 and the continuity result of Chapter 2.4, we now show

existence of at least one global minimizer of the plasticity functional H given

by (2.1).

Theorem 2.5.1. Let H and F be given as in (2.1) and U as in (2.13).

Moreover, we assume the following properties:

1. there exists (z, ϕ, P ) ∈ L1(Ω; [0, 1]) × W
1,qϕ
D (Ω;Rd) × AqP ,qCdet (Ω) such

that E(z, ϕ, P ) <∞,

2. there exists c > 0 and g ∈ L1(Ω) such that

c(|Fel|qF + |P |qP + |P−1|qP + |G|qG)− g(x) ≤ F (x, z, Fel, P,G)

holds with
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• 1
qϕ

:= 1
qF

+ 1
qP
< 1

d
,

• 1
qC

:=

{
1
qG

for d = 2,
1
qG

+ 1
qP

for d = 3,

• 1
qG

+ min{2d−4,d}
qP

< 1,

• 1
qG

+ min{d−3,1}
qP

< 1
d
.

3. The order variable z is uniformly bounded in

H1(Ω; [0, 1]) or BV ({0, 1}).

4. There exists a Carathéodory function

F̃ : Ω× [0, 1]× R(2d
d )−1 × R(2d

d )−1 × R

(d−1)−times︷ ︸︸ ︷
d× ...× d → R ∪ {∞}

such that F̃ (x, z, ·, ·, ·) : R(2d
d )−1 ×R(2d

d )−1 ×R

(d−1)−times︷ ︸︸ ︷
d× ...× d → R∪ {∞} is

convex and

F (x, z, Fel, P,G) = F̃ (x, z,M(Fel),M(P ), G).

Then, the infimum of E(z, ϕ, P ) is attained on H1(Ω; [0, 1])×W 1,qϕ
D (Ω;Rd)×

AqP ,qCdet (Ω) or BV (Ω; {0, 1})×W 1,qϕ
D (Ω;Rd)× AqP ,qCdet (Ω).

Proof. From assumption 1. we know that E 6≡ ∞ and from assumption 2.

we can can conclude that

H(z, ϕ, P ) ≥ c(‖Fel‖qFqF + ‖P‖qPqP +
∥∥P−1

∥∥qP
qP

+ ‖G‖qGqG)− ‖g‖1 ≥ C

for some C ∈ R which implies that H is bounded from below. Additionally,

U is bounded from above for ϕ ∈ W 1,qϕ
D . Hence, we can pick a minimizing

sequence (z(k), ϕ(k), P (k)) ∈ L1(Ω; [0, 1]) × W
1,qϕ
D (Ω;Rd) × AqP ,qCdet (Ω) which

means that

m := inf E(z, ϕ, P ) = lim
k→∞
E(z(k), ϕ(k), P (k)).
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We know that E(z(k), ϕ(k), P (k)) < ∞ for all k ∈ N which implies that

(using assumption 2.) we can apply Proposition 2.2.4. Hence, the se-

quence (ϕ(k), P (k)) is bounded in the reflexive Banach space W 1,qϕ(Ω;Rd) ×
LqP (Ω;Rd×d) and, by using the Banach-Alaoglu Theorem A.0.1, there exists

a (non-relabelled) weakly convergent subsequence. By Lemma 2.3.3 and the

continuity of traces B.0.3 we know that

ϕ(k) ⇀ ϕ? in W
1,qϕ
D (Ω;Rd),

P (k) ⇀ P ? in AqP ,qCdet (Ω).

Assumption 3. tells us that the sequence (z(k)) is uniformly bounded in

H1(Ω; [0, 1]) or BV ({0, 1}). Using the Rellich-Kondrachov Theorem B.0.1

for z(k) ∈ H1(Ω; [0, 1]) or the compactness theorem for BV functions (see

Thm. B.0.2) we get

z(k) → z? in L1(Ω; [0, 1]),

ϕ(k) ⇀ ϕ? in W
1,qϕ
D (Ω;Rd),

P (k) ⇀ P ? in AqP ,qCdet (Ω).

This and assumption 4. are exactly the conditions that we need to be able

to apply Theorem 2.3.13. Thus, we know that H is weakly lower semicon-

tinuous. Additionally, U is continuous which implies that E is weakly lower

semicontinuous

m ≤ E(z?, ϕ?, P ?) ≤ lim inf
k→∞

E(z(k), ϕ(k), P (k)) = m.

And consequently (z?, ϕ?, P ?) ∈ H1(Ω; [0, 1])×W 1,qϕ
D (Ω;Rd)×AqP ,qCdet (Ω) (or

(z?, ϕ?, P ?) ∈ BV (Ω; {0, 1}) ×W
1,qϕ
D (Ω;Rd) × AqP ,qCdet (Ω)) is a minimizer of

E .
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Chapter 3

Existence results for minimizers

of the target functionals

In this chapter we are going to show the existence of minimizers for the

phase-field problem where z ∈ H1(Ω; [0, 1]) and the sharp-interface problem

where z ∈ BV (Ω; {0, 1}). Here, we are again applying the Direct Method of

the Calculus of Variations. Hence, we have to check boundedness in order to

extract convergent subsequences, as well as proving (lower semi-) continuity

results.

This chapter follows [BGHR16].

3.1 Stating the problem

Throughout this chapter, we will assume Ω ⊂ Rd to be a bounded Lipschitz

domain. Moreover, we split the boundary into two parts ∂Ω = ΓD ∪ ΓN
with ΓD ∩ ΓN = ∅ and Hd−1(ΓD) > 0 where Hd−1 is the (d− 1)-dimensional

Hausdorff measure. We fix Ω on ΓD, i.e. ϕ|ΓD
= 0 and on ΓN the surface load

g ∈ Lqg(ΓN) should be minimized. In Ω we have the body force f ∈ Lqf (Ω)

which we want to minimize. We can then define the phase field functional as

Jε(z, ϕ, P ) =

∫
Ω

zf · ϕ dx+

∫
ΓN

g · ϕ dHd−1 +

∫
Ω

ε

2
|∇z|2 +

1

ε
ψ(z) dx (3.1)
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with a continuous double-well potential ψ : R → [0,∞) that vanishes only

at 0 and 1. We define the sharp interface functional as

J0(z, ϕ, P ) =

∫
Ω

zf · ϕ dx+

∫
ΓN

g · ϕ dHd−1 + cψPer({z = 1},Ω)

where cψ is a given positive function depending solely on the structure of ψ

and Per({z = 1},Ω) is the perimeter of the set {z = 1} in Ω. For the sake

of notational simplicity we write these functionals as

Jε(z, ϕ, P ) = K(z, ϕ, P ) + Eε(z),

J0(z, ϕ, P ) = K(z, ϕ, P ) + E0(z),

with

K(z, ϕ, P ) =

∫
Ω

zf · ϕ dx+

∫
ΓN

g · ϕ dHd−1,

Eε(z) =

∫
Ω

ε

2
|∇z|2 +

1

ε
ψ(z) dx,

E0(z) = cψPer({z = 1},Ω).

Our goal is to minimize the phase field functional for z ∈ H1(Ω; [0, 1]) and

the sharp interface functional for z ∈ BV (Ω; {0, 1}) under the condition

that (ϕ, P ) minimizes E(z, ·, ·). Or in other terms we want to show that the

following exist

min
z∈H1(Ω;[0,1])

{Jε(z, ϕ, P ) : (ϕ, P ) ∈ Arg min E(z, ·, ·)}, (3.2)

min
z∈BV (Ω;{0,1})

{J0(z, ϕ, P ) : (ϕ, P ) ∈ Arg min E(z, ·, ·)}. (3.3)

We start by showing the existence of minimizing sequences.

3.2 Existence of a proper minimizing

sequence

In the last chapter we showed that there exists at least one minimizer

(z∗, ϕ∗, P ∗) ∈ L1(Ω)×W 1,qϕ
D (Ω;Rd)×AqP ,qCdet (Ω) for E if we consider the design

36



variable z to be uniformly bounded in H1(Ω; [0, 1]) or BV (Ω; {0, 1}). Taking

the constant sequence z(k) = z∗ for all k ∈ N and for z∗ ∈ H1(Ω; [0, 1]) or z∗ ∈
BV (Ω; {0, 1}) yields exactly this condition. Hence, for fixed z ∈ H1(Ω; [0, 1])

or z ∈ BV (Ω; {0, 1}) there exists (ϕ, P ) ∈ W
1,qϕ
D (Ω;Rd) × AqP ,qCdet (Ω) such

that (ϕ, P ) ∈ Arg min E(z, ·, ·).
Now we want to minimize the target functionals over z. In order to extract

weakly convergent subsequences we need to show boundedness. First, we

know that K is bounded from below, since ϕ ∈ W 1,qϕ
D (Ω;Rd). Additionally,

there exists

(z, ϕ, P ) ∈ H1(Ω; [0, 1])×W 1,qϕ
D (Ω;Rd)× AqP ,qCdet (Ω)

with (ϕ, P ) ∈ Arg min E(z, ·, ·) such that

Jε(z, ϕ, P ) <∞

and there exists

(z, ϕ, P ) ∈ BV (Ω; {0, 1})×W 1,qϕ
D (Ω;Rd)× AqP ,qCdet (Ω)

with (ϕ, P ) ∈ Arg min E(z, ·, ·) such that

J0(z, ϕ, P ) <∞.

Since Eε ≥ 0 and E0 ≥ 0 we also know that Jε and J0 are bounded from be-

low. This means that we can choose minimizing sequences z
(k)
ε ∈ H1(Ω; [0, 1])

and z
(k)
0 ∈ BV (Ω; {0, 1}). For these sequences we can find (ϕ

(k)
ε , P

(k)
ε ) ∈

Arg min E(z
(k)
ε , ·, ·) and (ϕ

(k)
0 , P

(k)
0 ) ∈ Arg min E(z

(k)
0 , ·, ·) such that

• Jε(z(k)
ε , ϕ

(k)
ε , P

(k)
ε )

• J0(z
(k)
0 , ϕ

(k)
0 , P

(k)
0 )

• H(z
(k)
ε , ϕ

(k)
ε , P

(k)
ε )

• H(z
(k)
0 , ϕ

(k)
0 , P

(k)
0 )
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are uniformly bounded sequences. This implies that (z
(k)
ε ) is uniformly

bounded in H1(Ω), (z
(k)
0 ) is uniformly bounded in BV (Ω), and (ϕ

(k)
ε , P

(k)
ε ),

(ϕ
(k)
0 , P

(k)
0 ) are uniformly bounded in W 1,qϕ(Ω)×LqP (Ω;Rd×d). By the same

arguments as in Chapter 2 we can extract (non-relabelled) convergent sub-

sequences

z(k)
ε → ẑε in L1(Ω),

ϕ(k)
ε ⇀ ϕ̂ε in W

1,qϕ
D (Ω;Rd),

P (k)
ε ⇀ P̂ε in AqP ,qCdet (Ω),

z
(k)
0 → ẑ0 in L1(Ω),

ϕ
(k)
0 ⇀ ϕ̂0 in W

1,qϕ
D (Ω;Rd),

P
(k)
0 ⇀ P̂0 in AqP ,qCdet (Ω).

We found suitable minimizing sequences but we still have to check that

(ϕ̂ε, P̂ε) ∈ Arg min E(z, ·, ·) and (ϕ̂0, P̂0) ∈ Arg min E(z, ·, ·). First, we need

to show pointwise convergence of F .

Lemma 3.2.1. Let Ω ⊂ Rd be an open and bounded Lipschitz domain and

let F be given as in (2.1) such that there exists a Carathéodory function

F̃ : Ω× [0, 1]× R(2d
d )−1 × R(2d

d )−1 × R

(d−1)−times︷ ︸︸ ︷
d× ...× d → R ∪ {∞}

with

F (x, z, Fel, P,G) = F̃ (x, z,M(Fel),M(P ), G).

If (z(k)) is uniformly bounded in H1(Ω; [0, 1]) or BV (Ω; {0, 1}) then there

exists a convergent subsequence (z(kn)) ⊂ (z(k))→ ẑ in L1(Ω) such that

lim
n→∞

F (x, z(kn), Fel, P,G) = F (x, ẑ, Fel, P,G)

for a.e. x ∈ Ω and for all (Fel, P,G) ∈ Rd×d × SL(d)× R

(d−1)−times︷ ︸︸ ︷
d× ...× d.
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Proof. For z(k) ∈ H1(Ω; [0, 1]) we obtain boundedness of z(k) in W 1,1(Ω; [0, 1])

using the Hölder inequality. Now since p < d we can apply Rellich-

Kondrachov (see B.0.1) to get strong convergence of z(k) in L1(Ω; [0, 1]). For

z(k) ∈ BV (Ω; {0, 1}) we can immediately use compactness of BV functions

(see B.0.2). Extracting a (non-relabelled) subsequence we find that z(k) → ẑ

pointwise almost everywhere. But F̃ is a Carathéodory function and there-

fore continuous in z which means that

F̃ (x, z(k),M(Fel),M(P ), G)→ F̃ (x, ẑ,M(Fel),M(P ), G)

for almost every x ∈ Ω. Consequently the same holds for F .

Using this lemma together with the Dominated Convergence Theorem we

are able to show our claim but need to require an additional condition on F .

Proposition 3.2.2. Let Ω ⊂ Rd be an open and bounded Lipschitz domain

and F and F̃ as before such that there exist c, C > 0 and g, h ∈ L1(Ω) with

F ≥ c(|Fel|qF + |P |qP + |P−1|qP + |G|qG)− g(x),

F ≤ C(|Fel|qF + |P |qP + |P−1|qP + |G|qG) + h(x).

Then, for any uniformly bounded sequence (z(k)) ⊂ H1(Ω; [0, 1]) or (z(k)) ⊂
BV (Ω; {0, 1}) there exists a sequence (ϕ(k), P (k)) ∈ Arg min E(z(k), ·, ·) with

ϕ(k) ⇀ ϕ̂ in W
1,qϕ
D (Ω;Rd)

P (k) ⇀ P̂ in AqP ,qCdet (Ω)

such that (ϕ̂, P̂ ) ∈ Arg min E(z, ·, ·).

Proof. We still have to check the last claim, i.e., (ϕ̂, P̂ ) ∈ Arg min E(z, ·, ·).
Since we chose (ϕ(k), P (k)) ∈ Arg min E(z(k), ·, ·) we get that for all (ϕ, P ) ∈
W

1,qϕ
D (Ω;Rd)× AqP ,qCdet (Ω) it holds that

E(z(k), ϕ(k), P (k)) ≤ E(z(k), ϕ, P )

lim inf
k→∞

E(z(k), ϕ(k), P (k)) ≤ lim inf
k→∞

E(z(k), ϕ, P ).
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We pick a suitable (non-relabelled) subsequence and apply Theorem 2.3.13

and Theorem 2.4.1 on the LHS to conclude that

E(ẑ, ϕ̂, P̂ ) ≤ lim
k→∞
E(z(k), ϕ, P ).

Now we can use the assumption that F is bounded by an integrable func-

tion. Furthermore, by Lemma 3.2.1, we know that F (x, z(k),∇ϕP−1, P,G)

converges pointwise a.e. to F (x, ẑ,∇ϕP−1, P,G). By the Dominated Con-

vergence Theorem A.0.5 we get

lim
k→∞

H(z(k), ϕ, P ) = lim
k→∞

∫
Ω

F (x, z(k),∇ϕP−1, P,G) dx

=

∫
Ω

F (x, ẑ,∇ϕP−1, P,G) dx = H(ẑ, ϕ, P ).

Since U is continuous in z, we obtain

lim
k→∞
E(z(k), ϕ, P ) = E(ẑ, ϕ, P )

All in all, we have

E(ẑ, ϕ̂, P̂ ) ≤ E(ẑ, ϕ, P )

for all (ϕ, P ) ∈ W 1,qϕ
D (Ω;Rd)× AqP ,qCdet (Ω), which finishes the proof.

As in Chapter 2 we want to show lower semi-continuity of the target

functionals Jε and J0. The continuity ofK follows from the fact thatK = −U
and we have already shown continuity of U . We are left with showing lower

semi-continuity of Eε and E0

3.3 Lower semi-continuity of Eε and E0

First, we want to show weak lower semi-continuity for Eε. Recall that

Eε(z) =

∫
Ω

ε

2
|∇z|2 +

1

ε
ψ(z) dx.
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Theorem 3.3.1. Let Ω ⊂ Rd be an open and bounded Lipschitz domain.

Then Eε is weakly lower semi-continuous on H1(Ω; [0, 1]).

Proof. Let

z(k) ⇀ ẑ in H1(Ω; [0, 1])

As in the proof of Lemma 3.2.1 this implies that z(k) converges to ẑ pointwise

a.e. in Ω. Now since ψ is continuous we also know that ψ(z(k)) → ψ(ẑ)

pointwise a.e. in Ω. On the other hand,

∇z(k) ⇀ ∇ẑ in L2(Ω;Rd)

We can apply Fatou’s lemma (see A.0.3) and we get∫
Ω

ε

2
|∇ẑ|2 +

1

ε
ψ(ẑ) dx ≤ lim inf

k→∞

∫
Ω

ε

2
|∇z(k)|2 +

1

ε
ψ(z(k)) dx,

which finishes the proof.

Next, we want to prove lower semi-continuity for

E0(z) = cψPer({z = 1},Ω),

i.e., we need lower semi-continuity of the perimeter

Per({z = 1},Ω) = sup

{∫
Ω

1{z=1}(x) ∇ · φ dx : φ ∈ C1
c (Ω;Rd), ‖φ‖∞ ≤ 1

}
.

Theorem 3.3.2. Let Ω ⊂ Rd be open and let z(k) ∈ BV (Ω; {0, 1}) and

ẑ ∈ BV (Ω; {0, 1}) such that

z(k) → ẑ in L1(Ω; {0, 1}).

Then,

Per({ẑ = 1},Ω) ≤ lim inf
k→∞

Per({z(k) = 1},Ω).
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Proof. First of all, note that

z(k)(x) = 1{z(k)=1}(x) and ẑ(x) = 1{ẑ=1}(x)

and hence

1{z(k)=1} → 1{ẑ=1} in L1(Ω; {0, 1}).

In other words this means that for all φ ∈ C1
0(Ω;Rd) with ‖φ‖∞ ≤ 1 we have∫

Ω

1{ẑ=1}(x) ∇ · φ(x) dx = lim
k→∞

∫
Ω

1{z(k)=1}(x) ∇ · φ(x) dx.

Taking the supremum for the term on the right hand side we get∫
Ω

1{ẑ=1}(x) ∇ · φ(x) dx ≤ lim inf
k→∞

Per({z(k) = 1},Ω).

And now we can take the supremum on the left hand side too and obtain

Per({ẑ = 1},Ω) ≤ lim inf
k→∞

Per({z(k) = 1},Ω)

which shows lower semi-continuity.

Finally we can analyze the existence of minimizers for Jε and J0.

3.4 Existence of minimizers

We start by showing the existence of

min
z∈H1(Ω;[0,1])

{Jε(z, ϕ, P ) : (ϕ, P ) ∈ Arg min E(z, ·, ·)}. (3.4)
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Theorem 3.4.1. Let Ω ⊂ Rd be an open and bounded Lipschitz domain

and let H and F be given as in (2.1) and Jε as in (3.1). Assume that the

conditions 1.-4. from Theorem 2.5.1 hold with the additional condition that

there exists C > 0 and h ∈ L1(Ω) with

F ≤ C(|Fel|qF + |P |qP + |P−1|qP + |G|qG) + h(x)

Furthermore, let K be bounded from below and assume that f ∈ Lqf (Ω) for

some qf > (qϕ)′ and g ∈ Lqg(∂Ω) for some qg = (qϕ)′. Moreover, assume

that there exists (z, ϕ, P ) ∈ H1(Ω; [0, 1]) × W
1,qϕ
D (Ω;Rd) × AqP ,qCdet (Ω) with

(ϕ, P ) ∈ Arg min E(z, ·, ·) such that Jε(z, ϕ, P ) <∞.

Then, (3.4) admits a solution.

Proof. First, note that all the assumptions of Theorem 2.5.1 are satisfied

which means that for every z ∈ H1(Ω; [0, 1]) we can find

(ϕ, P ) ∈ Arg min E(z, ·, ·) with ϕ ∈ W
1,qϕ
D (Ω;Rd) and P ∈ AqP ,qCdet (Ω) such

that Jε(z, ϕ, P ) <∞. Since K is bounded from below we also know that Jε
is bounded from below. Using the arguments from Chapter 3.2 can find a

minimizing sequence z(k) ∈ H1(Ω; [0, 1]) that is uniformly bounded, because

lim
k→∞

Jε(z
(k), ϕ(k), P (k)) = inf

z∈H1(Ω;[0,1])
{Jε(z, ϕ, P ) : (ϕ, P ) ∈ Arg min E(z, ·, ·)}

=: mε,

Jε(z
(k), ϕ(k), P (k)) ≤ Jε(z

(1), ϕ(1), P (1)) <∞.

Additionally, the sequences ϕ(k) ∈ W 1,qϕ
D (Ω;Rd) and P (k) ∈ AqP ,qCdet (Ω) with

(ϕ(k), P (k)) ∈ Arg minH(z(k), ·, ·) are uniformly bounded, which implies that

we can find a weakly convergent subsequence

z(k) ⇀ ẑ in H1(Ω),

ϕ(k) ⇀ ϕ̂ in W
1,qϕ
D (Ω;Rd),

P (k) ⇀ P̂ in AqP ,qCdet (Ω).

Since the assumptions of Proposition 3.2.2 are satisfied we know that (ϕ̂, P̂ ) ∈
Arg minH(z, ·, ·).
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Note that z(k) → ẑ in Lqz(Ω, [0, 1]) for all qz < ∞ because |z(k)| ≤ 1

almost everywhere. Hence, we know that K is continuous and Eε is lower

semi-continuous which implies that also Jε is lower semi-continuous. We get

mε ≤ Jε(ẑ, ϕ̂, P̂ ) ≤ lim inf
k→∞

Jε(z
(k), ϕ(k), P (k)) = mε.

So (ẑ, ϕ̂, P̂ ) is a minimizer.

Next we can also show the existence of

min
z∈BV (Ω;{0,1})

{J0(z, ϕ, P ) : (ϕ, P ) ∈ Arg minH(z, ·, ·)}. (3.5)

Theorem 3.4.2. Let Ω ⊂ Rd be an open and bounded Lipschitz domain

and let H and F be given as in (2.1) and J0 as in (3.2). Assume that the

conditions 1.-4. from Theorem 2.5.1 hold with the additional condition that

there exists C > 0 and h ∈ L1(Ω) with

F ≤ C(|Fel|qF + |P |qP + |P−1|qP + |G|qG) + h(x)

Furthermore, let K be bounded from below and assume that f ∈ Lqf (Ω) for

some qf > (qϕ)′ and g ∈ Lqg(∂Ω) for some qg > (qϕ)′. Moreover, assume

that there exists (z, ϕ, P ) ∈ BV (Ω; {0, 1}) ×W 1,qϕ
D (Ω;Rd) × AqP ,qCdet (Ω) with

(ϕ, P ) ∈ Arg min E(z, ·, ·) such that J0(z, ϕ, P ) <∞.

Then, (3.5) admits a solution.

Proof. Using the same arguments as before we get a minimizing sequence

z(k) that converges in L1(Ω; {0, 1}) to some ẑ ∈ BV (Ω; {0, 1}). Here, we can

again apply the lower semi-continuity result for the perimeter and get our

desired result.

Thus we have shown that both the phase-field problem and the sharp-

interface problem are solvable. Our final goal is to check that the former one

actually converges to the latter one. This needs additional requirements and

is the topic of the next chapter.
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Chapter 4

Γ-Convergence

In this section we are going to prove that the phase-field problem converges

to the sharp-interface problem as ε→ 0. However, this does not hold in full

generality and we require a uniqueness assumption. Moreover, we need to

define the kind of variational convergence we are interested in, the so-called

Γ-convergence.

This chapter follows [PRW12], as well as [Alb00].

4.1 Γ-convergence

Γ-convergence plays an important role in the Calculus of Variations and was

first introduced by De Giorgi in 1975 in [DG75].

Definition 4.1.1. Let (X, d) be a metric space and let (Fn) be a sequence

of functionals Fn : X → [−∞,∞]. We say that (Fn) converges to the Γ-limit

F : X → [−∞,∞] if the following two properties are satisfied:

(LB) for every x ∈ X and every sequence (xn) ⊂ X with xn → x it holds

that

F(x) ≤ lim inf
n→∞

Fn(xn), (4.1)

(UB) for every x ∈ X there exists a sequence (xn) ⊂ X with xn → x such
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that

F(x) ≥ lim sup
n→∞

Fn(xn). (4.2)

The lower bound inequality (LB) ensures that the Γ-limit is never larger

than the limit along an approximating sequence, while the upper bound

inequality (UB) provides the existence of a sequence that certainly approxi-

mates the Γ-limit. This sequence is sometimes called recovery sequence. As

a matter of fact, under condition (LB), we could exchange property (UB)

with the following condition:

(UB*) For every x ∈ X there exists a sequence (xn) ⊂ X with xn → x such

that

F(x) = lim
n→∞

Fn(xn). (4.3)

To simplify the notation we will write Fn
Γ−→ F , if Fn converges to the Γ-limit

F . Furthermore, we are going to use the parameter ε > 0 instead of n ∈ N
and write Fε

Γ−→ F as ε → 0. These notions are equivalent, as we can set

εn := 1
n
.

The importance of Γ-convergence is clarified by the following proposition,

pointing out two useful properties.

Proposition 4.1.2.

1. If Fε
Γ−→ F and G is continuous then Fε + G Γ−→ F + G.

2. If Fε
Γ−→ F and xε are minimizers for Fε over X, then every limit point

of xε minimizes F over X.

Proof.

1. One can easily check that G satisfies both conditions (LB) and (UB) for

every sequence xε → x. Hence by the properties of lim inf and lim sup

we get

lim inf
ε→0

(Fε + G)(xε) ≥ lim inf
ε→0

Fε(xε) + lim inf
ε→0

G(xε) ≥ (F + G)(x),

lim sup
ε→0

(Fε + G)(yε) ≤ lim sup
ε→0

Fε(yε) + lim sup
ε→0

G(yε) ≤ (F + G)(y),
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where (yε) is the recovery sequence for an arbitrary y ∈ X. That means

F + G is the Γ-limit of Fε + G.

2. Suppose that x ∈ X is a limit point of the minimizing sequence (xε),

i.e. xε → x and minFε = F(xε). Take y ∈ X and let (yε) be the

recovery sequence of y. Then, we get

F(y) = lim
ε→0
Fε(yε) ≥ lim inf

ε→0
minFε = lim inf

ε→0
Fε(xε) ≥ F(x).

Since y ∈ X was arbitrary we conclude that x minimizes F over X.

4.2 Modica-Mortola Theorem

Our next goal is to prove that J0 is in fact the Γ-limit of Jε. First, we only

consider the order parameter z. In general, we choose L1(Ω) as our metric

space with its standard metric. Therefore, we have to adapt the functionals

Eε and E0 in such a way that they are defined on L1(Ω; [0, 1]). We have

Eε(z) =

{∫
Ω

( ε
2
|∇z|2 + 1

ε
ψ(z)) dx if z ∈ H1(Ω; [0, 1]),

∞ if z ∈ L1(Ω; [0, 1]) \H1(Ω; [0, 1]),
(4.4)

E0(z) =

{
cψPer({z = 1},Ω) if z ∈ BV (Ω; {0, 1}),
∞ if z ∈ L1(Ω; [0, 1]) \BV (Ω; {0, 1}).

(4.5)

Moreover, the double well-potential ψ satisfies the following two conditions:

1. ψ is continuous and ψ(z) = 0 if and only if z ∈ {0, 1}.

2. There exists M > 0 and z̄ > 0 such that

ψ(z) ≥M |z|,

for all z ≥ z̄.

With this notation one gets the following theorem, which was first proved

in 1977 in [MM77].
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Theorem 4.2.1 (Modica-Mortola). Let Ω ⊂ Rd be an open and bounded

Lipschitz domain. Then, E0 is the Γ-limit of Eε, i.e.,

(LB) If (zε) ⊂ H1(Ω; [0, 1]) and z ∈ BV (Ω; {0, 1}) with zε → z in L1(Ω)

then

E0(z) ≤ lim inf
ε→0

Eε(zε).

(UB) For every z ∈ BV (Ω; {0, 1}) there exists (zε) ⊂ H1(Ω; [0, 1]) with zε →
z in L1(Ω) such that

E0(z) ≥ lim sup
ε→0

Eε(zε).

For a proof we refer to [Mod87]. Also note that, Braides showed this

theorem in [Bra02, ch. 02] via a slicing argument.

We would like to apply the Modica-Mortola Theorem, but have to be

careful, since we have the extra condition that (ϕ, P ) ∈ Arg min E(z, ·, ·) and

these configurations (ϕ, P ) are not necessarily unique.

4.3 Convergence of the two models

Using the definitions from equations (4.4) and (4.5), we can write the phase-

field problem as

min
z∈L1(Ω;[0,1])

{Jε(z, ϕ, P ) : (ϕ, P ) ∈ Arg min E(z, ·, ·)}, (4.6)

and the sharp-interface problem as

min
z∈L1(Ω;{0,1})

{J0(z, ϕ, P ) : (ϕ, P ) ∈ Arg min E(z, ·, ·)}. (4.7)

We get the following theorem.
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Theorem 4.3.1. If the minimizing deformation ϕ ∈ W 1,qϕ
D (Ω;Rd) is unique

for any z ∈ L1(Ω; [0, 1]), i.e., ∃ ϕ ∈ W
1,qϕ
D (Ω;Rd) such that ϕ̂ = ϕ for all

(ϕ̂, P ) ∈ Arg min E(z, ·, ·), then the sharp-interface problem is the Γ-limit of

the phase-field problem. In other words:

(LB) If (zε) ⊂ H1(Ω; [0, 1]) and z ∈ BV (Ω; {0, 1}), such that (ϕε, Pε) ∈
Arg min E(zε, ·, ·) and (ϕ, P ) ∈ Arg min E(z, ·, ·) with

zε → z in L1(Ω),

ϕε ⇀ ϕ in W
1,qϕ
D (Ω;Rd),

Pε ⇀ P in AqP ,qCdet (Ω).

Then,

J0(z, ϕ, P ) ≤ lim inf
ε→0

Jε(zε, ϕε, Pε).

(UB) For every z ∈ BV (Ω; {0, 1}), such that (ϕ, P ) ∈ Arg min E(z, ·, ·), there

exists a sequence (zε) ⊂ H1(Ω; [0, 1]), such that

(ϕε, Pε) ∈ Arg min E(zε, ·, ·) with

zε → z in L1(Ω),

ϕε ⇀ ϕ in W
1,qϕ
D (Ω;Rd),

and such that

J0(z, ϕ, P ) ≥ lim sup
ε→0

Jε(zε, ϕε, Pε).

Proof. For the lower bound (LB) we can use the Modica-Mortola Theorem

to obtain

E0(z) ≤ lim inf
ε→0

Eε(zε).

Now, since K is continuous, we have

K(z, ϕ, P ) = lim
ε→0

K(zε, ϕε, Pε).

It follows that

J0(z, ϕ, P ) = E0(z) +K(z, ϕ, P ) ≤ lim inf
ε→0

Eε(zε) + lim
ε→0

K(zε, ϕε, Pε)

≤ lim inf
ε→0

(Eε(zε) +K(zε, ϕε, Pε)) = lim inf
ε→0

Jε(zε, ϕε, Pε).
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The upper bound (UB) makes use of the Modica-Mortola Theorem as well.

In particular, for every z ∈ BV (Ω; {0, 1}) with (ϕ, P ) ∈ Arg min E(z, ·, ·)
and (ϕ, P ) ∈ W

1,qϕ
D (Ω;Rd) × AqP ,qCdet (Ω), we can find a recovery sequence

(zε) ⊂ H1(Ω; [0, 1]) with zε → z in L1(Ω) such that

E0(z) = lim
ε→0

Eε(zε).

By Proposition 3.2.2, there exists a sequence (ϕε, Pε) ∈ Arg min E(zε, ·, ·)
with

ϕε ⇀ ϕ̂ in W
1,qϕ
D (Ω;Rd),

Pε ⇀ P̂ in AqP ,qCdet (Ω),

such that (ϕ̂, P̂ ) ∈ Arg min E(z, ·, ·). Using the uniqueness of the minimizing

deformation, we get ϕ = ϕ̂. Additionally, since K is continuous, we have

lim
ε→0

K(zε, ϕε, Pε) = K(z, ϕ̂, P̂ ) = K(z, ϕ, P ).

All in all, we obtain

J0(z, ϕ, P ) = E0(z) +K(z, ϕ, P ) = lim
ε→0

Eε(zε) + lim
ε→0

K(zε, ϕε, Pε)

= lim
ε→0

(Eε(zε) +K(zε, ϕε, Pε)) = lim
ε→0

Jε(zε, ϕε, Pε),

which is what we wanted to show.

Remark 4.3.2. If the minimizing plastic part P is also unique, then P = P̂

and we get weak convergence

Pε ⇀ P in AqP ,qCdet (Ω).

Remark 4.3.3. Note that, in general, we cannot expect uniqueness of the

minimizing deformation ϕ. Still, if one would identify a setting where unique-

ness of the minimizing deformation can be guaranteed a priori, then this

would lead to a complete Γ-convergence result.
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Appendix A

Convergence Theorems

Theorem A.0.1 (Banach-Alaouglu theorem). Let X be a separable Banach

space and X∗ denote its dual, then the closed unit ball

B := {f ∈ X∗ : ‖f‖X∗ ≤ 1}

is weak*-compact.

For a proof see [Con85, thm. 3.1, p. 130]. A consequence of this theorem

is the following lemma.

Lemma A.0.2. If X is a reflexive Banach space, then every bounded sequence

in X has a weakly convergent subsequence.

Theorem A.0.3 (Fatou’s Lemma). Let (Ω,Σ, µ) be a measure space and

(fn) a sequence of non-negative measurable functions on (Ω,Σ, µ).

If fn converges pointwise a.e. on Ω to some f then f is integrable over Ω

and ∫
Ω

f dµ ≤ lim inf
n→∞

∫
Ω

fn dµ.

See [Roy88, 10., p. 86].
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Theorem A.0.4 (Monotone Convergence Theorem). Let (Ω,Σ, µ) be a mea-

sure space and (fn) an increasing sequence of non-negative measurable func-

tions on (Ω,Σ, µ).

If fn converges pointwise a.e. on Ω to some f then f is integrable over Ω

and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.

The theorem is shown in [Roy88, 10., p. 87].

Theorem A.0.5 (Dominated Convergence Theorem). Let (Ω,Σ, µ) be a

measure space and (fn) a sequence of measurable functions on (Ω,Σ, µ) such

that there exists an integrable function g over Ω with |fn| ≤ g for all n ∈ N.

If fn converges pointwise a.e. on Ω to some f then f is integrable over Ω

and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.

A proof is given in [Roy88, 16., p. 91].
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Appendix B

Continuous Embeddings

Theorem B.0.1 (Rellich-Kondrachov). Let Ω ⊂ Rd be an open and bounded

Lipschitz domain and let d > p. Then the embedding

W 1,p(Ω) ↪→ Lq(Ω)

is compact for q < dp
d−p , i.e. every bounded sequence in W 1,p(Ω) has a con-

vergent subsequence in Lq(Ω).

See [DD12, thm. 2.80, p. 96] for more details.

Theorem B.0.2 (Compactness of BV functions). Let Ω ⊂ Rd be an open

and bounded Lipschitz domain. Then every uniformly bounded sequence in

BV (Ω) has a convergent subsequence in L1(Ω) such that the limit lies in

BV (Ω).

We refer to [Giu84, thm. 1.19, p. 17] for a proof to this statement.
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Theorem B.0.3 (Trace operator). Let Ω ⊂ Rd be an open and bounded

Lipschitz domain and 1 < p < ∞. Then, there exists a continuous linear

operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that

1. T (u) = u|∂Ω for all u ∈ W 1,p(Ω) ∩ C(Ω̄),

2. ‖T (u)‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω) ,

with C > 0 a constant depending on p and Ω.

See [Leo09, thm. 15.23, p. 473].
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Zusammenfassung

Wir behandeln das Thema Topologie Optimierung eines elastoplastischen

Objekts, welches von äußeren Kräften beeinflusst wird und zeigen, dass es

eine optimale Konfiguration des Modells mit eindeutiger Grenzschicht und

des Modells mit Phasenübergang gibt, wo die Dichte des Materials stetig ist.

Zuerst präsentieren wir den Aufbau des Modells und modellieren die Be-

wegung des Objekts. Dabei wird das elastoplastische Verhalten durch die

Minimierung eines Energie Funktionals beschrieben. Deshalb beweisen wir,

mit Hilfe der Direkten Methode der Variationsrechnung, dass ein solcher Min-

imierer existiert. Anschließend beweisen wir, dass sowohl für das Problem

mit eindeutiger Grenzschicht, als auch für das Problem mit Phasenübergang

eine Lösung existiert. Schlussendlich zeigen wir, dass unter geeigneten Bedin-

gungen das Modell mit Phasenübergangen, bezüglich Γ-Konvergenz, gegen

das Modell mit eindeutiger Grenzschicht konvergiert.
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