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Zusammenfassung

Die Erzeugung von Photonen mit maßgeschneiderten Eigenschaften ist von größter
Bedeutung in der experimentellen Quantenoptik. Fast alle verwendeten Photonen-
quellen basieren heutzutage auf spontaner Fluoreszenz, durch die ein Photon in
einem nichtlinearen Kristall spontan in zwei Photonen zerfällt. Mithilfe dieses Ef-
fektes lassen sich sowohl Einzelphotonenquellen als auch Quellen zur Erzeugung
von verschränkten Photonenpaaren verwirklichen. In dieser Arbeit werden die
Eigenschaften von verschiedenen, auf Fluoreszenez basierender, Photonenquellen
beschrieben, sowie ihre Anwendung in zwei ausgewählten quantenoptischen Ex-
perimenten. Das erste Experiment stellt eine Anwendung der sogenannten blinden
Quantendatenverarbeitung dar, in der ein Anwender ohne quantenmechanische
Ressourcen eine Berechnung auf einen Server auslagert, der über große Quantenka-
pazitäten verfügt. Das Besondere dabei ist, dass der Server die Berechnung zwar
ausführt, dabei aber keine Details über die Berechnung selbst erfährt. Er ist der
Eingabe, der Durchführung und der Ausgabe gegenüber ’blind’. Das zweite Exper-
iment beschäftigt sich mit Einmalprogrammen, die nach einmaliger Verwendung
unbrauchbar und nicht kopiert werden können. Durch Eigenschaften der Quan-
tenmechanik ist es möglich, diese Art von Programmen zu verwirklichen ohne die
physische Zerstörung von Hardware. Abschließend werden die Vorteile einer ge-
brauchsfertigen Photonenquelle besprochen, die durch ihre einfache Handhabung
ideal für quantenoptische Experimente in einem Laborpraktikum geeignet ist.
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Abstract

The generation of photons with tailor-made properties is of paramount importance in
experimental quantum optics. Almost all sources for photons nowadays are based on
spontaneous fluorescence where a photon spontaneously decays into two photons in
a nonlinear crystal. Using this effect single-photon sources as well as sources for the
generation of entangled pairs of photons can be realized. This thesis describes the
properties of different photon sources based on fluorescence and their application
in two selected quantum optical experiments. The first experiment represents an
application of so-called blind quantum computing, in which a client without quantum
resources outsources a computation to a server providing large quantum capacities.
While the server carries out the computation, it is oblivious to the details of the
computation itself. The server is ’blind’ to the input, the computation and the output.
The second experiment deals with one-time programs that become unusable after a
one evaluation and cannot be copied. Due to the properties of quantum mechanics, it
is possible to implement this type of program without physically destroying hardware.
Furthermore, the advantages of a plug-and-play photon source are discussed which,
due to its simple handling, is ideally suited for quantum optical experiments in a
laboratory course.
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1Introduction

Quantum theory has revolutionized our understanding of Nature. Counterintuitive
properties such as the superposition of physical systems and the apparent instanta-
neous communication of correlated quantum systems were explored in the 1930s
in famous thought experiments including Schrödinger’s cat [1] and the Einstein-
Podolsky-Rosen paradox [2]. Experiments realizing the superposition of electrons
in 1961 [3, 4] and the demonstration of entanglement in 1967 [5, 6] established
quantum theory as a theory of how Nature behaves on a fundamental level. Ad-
ditionally, technological breakthroughs such as the invention of the laser [7] and
the transistor [8] were made possible by employing the laws of quantum theory.
In the following years, the principles of quantum theory were tested with increas-
ingly sophisticated experiments and existing technologies benefited from advances
in quantum research, which in turn lead to further improved experiments. Soon,
physicists began to wonder whether principles of quantum theory could be used to
implement fundamentally new technologies and concepts not possible with merely
classical physics. First ideas for quantum algorithms and quantum cryptography
protocols [9–12] showed the potential of using quantum objects and their properties
as resources. In information theory, it has been suggested that quantum algorithms
may result in significant speedups compared to classical algorithms, for example
for the factoring of large numbers [13], the search in unordered lists [14] or the
simulation of quantum systems [15].

One of the main challenges to realize these quantum algorithms the isolation of
the quantum system from unwanted environmental influences. On the other hand,
this susceptibility to disturbances also allows the reliable detection of malicious
third parties in cryptographic protocols. For example, the Ekart91 protocol [16]
employs the nonclassical threshold given by the Bell inequality to test for the security
of a quantum channel. A main advantage in quantum cryptography is that the
security is not guaranteed by technological means but rather by the laws of nature
themselves. Quantum theory enables protocols that are secure even in the face
of an adversary with unlimited resources - quantum or otherwise. In this type of
quantum cryptography protocol, known as quantum key distribution (QKD), the
scenario assumes two friendly parties, usually named Alice and Bob, who want to
securely exchange information, for example an access key or a private message. They
combine their knowledge and resources to keep a malicious eavesdropper, known
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as Eve, from intercepting the transmitted information. Depending on the premise,
Eve has more or less options to gain access to the information without Alice and
Bob noticing, however, Alice and Bob can always find a way to guarantee a secure
communication.

The protocols discussed in this thesis deal with the premise of Alice and Bob not
trusting each other nor any intermediary. Each party is potentially malicious and
might try to cheat during the protocol to gain an advantage. Nevertheless, they
both rely on a joint resource to accomplish a certain task. Therefore, they work
together but at the same time try to exchange only the bare minimum of information
necessary for the completion of the task. This is a common scenario in our every-day
lives: we need banks to manage our money and give us access to it when we need it.
We store data on the servers of companies and expect them to keep it private. If we
need to conduct computations that are too computationally intensive for a personal
computer, we have to delegate the computation to a more powerful computer not
under our purview. In all of these cases, we rely on the discretion of the supplier of
the resource. We have to trust the bank to not steal our money, we trust the server
company to not leak our data and we trust the computation provider not to steal the
results of our computation. We rely on them, knowing that bank accounts can get
hacked and private data gets stolen regularly. In most of these cases, the failure in
security lies at the end of one of the active parties. Every time we exchange access
keys or rules about how to construct a security measure, there is a chance that a
malicious party at the other end takes the information to gain knowledge about
our data or program. In a classical world, we would have to accept and live with
these insecurities forever. However, employing the laws of quantum theory opens up
possibilities to exchange messages with or use the resources of a non-trustworthy
party without leaking essential information.

Quantum theory enables us to let someone run our program without providing
access to the program itself. If we want to implement a secret quantum computation
but do not have one ourselves, we can delegate the computation to a quantum
server without ever telling the server what he is actually computing [17]. Here, we
discuss implementations of both of these premises. The first application is realized
using one-time programs, which are functions that allow for one input by a user
but cannot be used a second time [18, 19]. All the while, the structure of the
program is hidden from the user. This is primarily possible due to a fundamental
property of quantum theory: the measurement outcome of a quantum state in a
superposition of the measurement basis cannot be predicted with certainty [20, 21].
The second application has gained traction since the first quantum cloud processors
have been opened to private users [22–24]. Blind quantum computing is a premise
that allows a user to implement a computation on a quantum computer without
the server knowing the computation conducted [18]. This feature, which sounds
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impossible at first, is again enabled employing the inherently random outcome of the
measurement of a quantum state. While quantum technology is still in its infancy,
vast improvements in the implementations have been made in the last few years.
This is possible due to the improvement of existing and the development of new
technologies, a large part of which addresses the performance of the physical system
used to encode the basic unit of information in quantum computing, the qubit.

While qubits encoded in the electronic spin [25–27], in the nuclear spin [28–30] or in
the degrees of freedom of Josephson junctions [31, 32] are becoming more and more
feasible, photonic qubits remain one of the top contenders in quantum information
and quantum cryptography. Linear optical components such as waveplates and beam
splitters allow the manipulation of photons to a high precision, and detection systems
based on semiconductors or superconducting wires can detect single photons with
high probability [33]. On the other hand, the generation of photons leaves room for
improvements in various regards.
Today, the vast majority of quantum optical experiments rely on a process called
spontaneous parametric down-conversion (SPDC) where a single incident photon is
split in two daughter photons of lower frequency [34]. SPDC sources can be used to
create single photon states [35] (making use of a special technique) and entangled
photon pairs [36] used as basic resource in countless experiments. Since the Knill-
Laflamme-Milburn (KLM) scheme turned photonic qubits into viable candidates
for universal quantum computing [37], much attention has been given to the
improvement of SPDC sources. While current SPDC sources offer a wide wavelength
range, high photon count rates and high versatility despite requiring low resources
and low maintenance, more and more research is focused on the development
of alternatives. Technologies such as quantum dots [38–40] and NV centers [41]
are potential candidates for natural single-photon source but, apart from requiring
careful and resource-intense preparation, they still need improvements in order to
take over the primary role of single-photon sources. While these sources gradually
take over state-of-the-art research labs, many applications continue to be based on
the tried- and true technology of SPDC in the foreseeable future. All the experiments
discussed in this thesis are based on such sources, and while they all rely on the
same process for the generation of photons, each source is built differently, providing
different advantages and properties.

The goal of this thesis is to give an overview of the applicability of SPDC sources
in different quantum technology protocols as well as an example for their use for
educational purposes. It will be shown that while having inherent drawbacks, SPDC
sources are still extremely powerful and versatile sources of photons for a wide
variety of applications. As a first example of the main topic of this thesis, Figure
1.1 depicts a possible architecture of an SPDC source. The heart of the source is
a nonlinear BBO-crystal pumped by a continuous-wave laser at 780nm. For each
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pump photon entering the crystal, there is a small chance that spontaneous down-
conversion occurs, splitting the pump photon into two photons of half the frequency,
referred to as signal and idler photons. In this example, the generated photons are
orthogonally polarized and exit the crystal in overlapping emission cones. After
emission from the BBO crystal, the photons traverse a half-wave plate which switches
the polarization state and are then spatially separated by two prism mirrors. In the
path of each photon, a second BBO-crystal of half the length of the main crystal is
placed. In combination with the aforementioned waveplate, the crystals cancel out
dispersive effects caused by the birefringent nature of the BBO that would reduce
the coherence of the photons. Additionally, frequency filters are placed in each path
to further increase the quality of the entanglement and block residual pump light.
Finally, signal and idler photon are collected into a single-mode fibers which act as
spatial filters and guide the photons to the subsequent parts of the experiment. In
any case, after the desired operations have been implemented, the final properties
of the photons are measured which, for photons, corresponds to the absorption in a
single-photon detector. Apart from the source technology, the overarching premise
of this thesis is the mistrust between the two communicating parties, Alice and Bob,
as discussed above. Using SPDC sources, optical components and single-photon
detectors, the two can implement various protocols together without ever having to
resolve their trust issues.

The thesis is structured as follows: In Chapter 2, the fundamentals of quantum
optics are introduced, starting with single-qubit states, a graphical representation
and the polarization degree of freedom to encode quantum information in pho-
tons. Subsequently, the creation, manipulation and detection of photonic qubits
in a laboratory will be described, including the main topic of this thesis, SPDC.
Chapter 3 deals with qubits as information carrier in quantum information theory.
Measurement-based quantum computing (MBQC) [42] is introduced, along with
one of its main applications, blind quantum computing (BQC) [18]. Based on this,
the theory and experimental implementation of a new protocol of blind quantum
computing is discussed, dealing with the interaction between a classical client and a
universal quantum server. This protocol, known as classically-driven blind quantum
computing (CDBQC) [43], retains partial blindness for the server while shifting
the required quantum resources away from the client. The second protocol of this
thesis is described in Chapter 4: Quantum theory provides advantages to one-time
programs, functions that can be evaluated for only one input. The protocol is split
into two communication phases, one wholly quantum and the other entirely clas-
sical. Finally, in Chapter 5 a new kind of plug-and play SPDC source is used to
implement some of the most fundamental experiments in quantum optics. Here,
two examples are given, namely the reconstruction of the density matrix for a given
quantum state and the generation of indistinguishable photons and the verification
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Fig. 1.1: Example for an SPDC source design: a pump beam emitted by a continuous-
wave laser at 780nm is coupled to a single-mode fiber (SMF). The power of the
pump beam is tuned using a half-wave plate (HWP) in combination with a linear
polarizer. A convex lens focusses the laser beam to the center of a nonlinear beta
barium borate crystal (BBODC) where pump photons are spontaneously split in
pairs of daughter photons via SPDC. The generated photons are orthogonally
polarized and emitted in overlapping cones. Photons collected from the inter-
section points denoted by the red arrows show non-classical correlations. Prism
mirrors are used to spatially separate photons from the two intersection points.
Due to birefringent effects in the crystal, a half-wave plate after the BBO is used
to exchange the polarization of the daughter photons. In combination with BBOs

and BBOi which are half the thickness of BBODC, these effects can be compensated
to a high degree. Bandpass filters (BPF) are used to filter scattered pump light
and to spectrally post-select the generated photons. Both photons are coupled
into SMFs which are connected to single-photon avalanche diodes (SPAD). Coin-
cidence events in both detectors are noted in the coincidence logic (e.g. a field
programmable gate array (FPGA)). The source can be used as a heralded single-
photon source or a source for entangled photon pairs. To analyze the polarization
properties of the generated state, additional polarizers have to be placed in front
of the SMFs.
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via Hong-Ou-Mandel interference. The thesis is concluded with a comparison of the
most important properties of the different SPDC sources introduced.
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2Quantum optics

In this Chapter, basic concepts of quantum mechanics applied to light are introduced.
Quantum optics emerged as its own field in the 1950s, following research into
coherence of light [44] and the invention of the laser [7]. The improvement of
lasers, optical components and detectors in the following decades allowed for more
and more sophisticated experiments using quantum states of light. Many remarkable
results were achieved in experimental quantum optics in the 1990s and the early
2000s, including the realization of quantum teleportation [45], entanglement swap-
ping [46] and two-qubit logic gates [47–49]. Today, quantum optics is a diverse field
of research including fundamental research as well as the investigation of quantum
technologies. The comparably simple manipulation of photonic qubits allows for
the implementation of a large amount of proposals using a handful of types of
components for the most parts. In the following, we start by introducing single-qubit
states, including their general properties and their graphical representation on the
Bloch sphere. We then briefly discuss polarization-qubits since all qubits employed in
this thesis are of this type. Related, we define states of multiple qubits and introduce
the concept of entanglement including tests of entanglement in the form of Bell
inequalities. The final part of the Chapter discusses the creation, manipulation and
detection of single- and two-qubit states, in theory as well as in an experiment.
This includes the basic working principles of lasers, nonlinear optics and SPDC, the
properties of linear optical components and the detectors used to measure single
photons.

2.1 Basic Concepts of Quantum Mechanics

2.1.1 Single-qubit states

In quantum mechanics, a physical system is completely described by a state Ψ
represented by a ray in a separable Hilbert space H. Using Dirac’s ket notation,
a ray is defined by {eiφ |Ψ〉 |φ ∈ R}, i.e. the equivalence class of vectors differing
by multiplication with a complex scalar eiφ. Choosing a representative of the
class, denoted by |Ψ〉 and with unit norm 〈Ψ|Ψ〉 = 1, states can be represented by
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normalized vectors and overall (global) phases eiφ are of no physical significance for
|eiφ| = 1. A quantum system evolves unitarily in time, described by

|Ψ(t)〉 = Û(t) |Ψ(t = 0)〉 (2.1)

where Û(t) is a unitary operator, i.e. a bounded linear map Û : Hd → Hd in
d dimensions satisfying Û(t)†Û(t) = Û(t)Û(t)† = 1. Every state of a finite d-
dimensional quantum system can be decomposed into a linear superposition of a set
of vectors {φi} spanning H, giving

|Ψ〉 :=
d∑
i=1

λi |φi〉 (2.2)

where λi are complex amplitudes normalized to
∑d
i=0 |λi|2 = 1. The probability to

measure and find the system in state |i〉 is then given by |λi|2 using equation 2.2.
Note that if the elements of {φi} spanning H are linearly independent, they form
a basis for the space. Properties of the state that can (in principle) be measured
are called observables and realized by Hermitian operators Â† = Â for Â bounded.
Hermitian operators in a Hilbert space H have a spectral representation in H, i.e.
their eigenstates form a complete orthonormal basis. The observable can therefore
be represented as

Â =
d∑

m=1
λmMm (2.3)

where λm are the eigenvalues of Â and Mm are the corresponding orthogonal
projection operators onto the space of eigenvectors with eigenvalue λm. Projective
operators are orthogonal and Hermitian and can be expressed as

M̂m = |m〉 〈m| (2.4)

where {m} is the orthonormal basis of eigenstates of Â. When applying M̂m to |Ψ〉
the measurement result m occurs with a probability p given by the square absolute
value of the overlap

p(m) = 〈Ψ| M̂m |Ψ〉 (2.5)

To conclude, an observable gives information about the probability distribution of
the measurement outcomes, a projector gives the outcome of a single measurement
of the corresponding observable. In the following we will specifically deal with state
vectors describing two-level systems, i.e. qubits

|Ψ〉 = α |0〉+ β |1〉 (2.6)
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for α, β ∈ C and α|2 + |β|2 = 1, and therefore focus our discussion on these states.
The measurement operators which span a complete orthonormal basis of observables
in two-dimensional Hilbert space are the (unitary Hermitian) Pauli operators1

σ̂x = X =
(

0 1
1 0

)
σ̂y = Y =

(
0 −i
i 0

)
σ̂z = Z =

(
1 0
0 −1

)
(2.7)

with eigenstates

|Ψx+〉 = |+〉 = 1√
2

(|0〉+ |1〉)

|Ψy+〉 = |+i〉 = 1√
2

(|0〉+ i |1〉)

|Ψz+〉 = |0〉

|Ψx−〉 = |−〉 = 1√
2

(|0〉 − |1〉)

|Ψy−〉 = |−i〉 = 1√
2

(|0〉 − i |1〉)

|Ψz−〉 = |1〉

(2.8)

where the subscripts A± denote the eigenvalue ±1, respectively. Having established
the fundamental rules of how to describe the states, time evolution and measurement
of a quantum system, we can already state one of the most fundamental rules of
quantum theory:

2.1.2 No-cloning theorem

The no-cloning theorem [50] is one of the most important properties of quantum
theory, in particular for the following protocols. It states that arbitrary quantum states
cannot be perfectly copied. Suppose there exists a unitary operator Ûc(t) that acts

on a qubit |Ψ〉1 and a qubit in an initial state |i〉2 such that |Ψ〉1 |i〉2
Ûc(t)−−−→ |Ψ〉1 |Ψ〉2.

However, due to the linearity of quantum mechanics

Ûc(t) |Ψ〉1 |i〉2 = αÛc(t) |0〉1 |i〉2 + βÛc(t) |1〉1 |i〉2
= α |0〉1 |0〉2 + β |1〉1 |1〉2

(2.9)

which is an entangled state and different from |Ψ〉1 |Ψ〉2 except for |i〉 = |Ψ〉 or
|i〉 ⊥ |Ψ〉. Therefore, cloning an arbitrary unknown quantum state is not possible.
While this makes error correction in quantum computing impossible with classical
schemes (where bits are copied to reduce the error rate), the no-cloning theorem
is the fundamental principle preventing eavesdroppers from copying transmitted
quantum information. Moreover, the no-cloning theorem is essential for the the
uncertainty principle and prevents superluminal communication with entangled
states.

1while in most of quantum mechanics, the notation σ̂ is common for the Pauli matrices, in quantum
information theory the Pauli matrices correspond to single-qubit gates denoted as X,Y, Z
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2.1.3 Bloch sphere

An important geometric tool for the graphical representation of qubit state vectors is
the Bloch sphere depicted in Figure 2.1a. The two-dimensional Hilbert space H2 and
the Bloch sphere have a one-to-one correspondence meaning every element of H2

can be represented by a point on the sphere: Qubits are points on the surface of the
unit sphere, their position can be determined by the polar coordinates θ and φ

|Ψ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (2.10)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. This representation of the qubit state vector
in spherical polar coordinates is called the Bloch vector. Orthogonal elements of
H2 are represented by antipodal points on the sphere, e.g. the eigenstates of the
Pauli operators which are located at the poles of the sphere. Applying a Pauli
operator σ̂x, σ̂y, σ̂z to a single-qubit state rotates the state by π about the x, y, z-axis,
respectively and up to a global phase. To restore the original state, σ̂x needs to be
applied two more times making the Bloch sphere 4π-symmetric which is significant
if the phase is relative between two qubits. In general, every single-qubit unitary
corresponds to a rotation R̂n̂(θ) around an axis n̂ = (nx, ny, nz) on the Bloch sphere.
Furthermore, R̂n̂(θ) can be decomposed into a linear combination of the Pauli
operators and the identity in terms of

R̂n̂(θ) = exp
(
− iθn̂ · σ2

)
= cos

(
θ

2

)
1− i sin

(
θ

2

)
(nxσ̂x + nyσ̂y + nzσ̂z)

(2.11)

where σ = (σ̂x, σ̂y, σ̂z)ᵀ [51]. Therefore, an arbitrary single-qubit state can be
continuously rotated into any other single-qubit state by applying a unitary single-
qubit operator. Using eθÂ = cos (θ)1+ sin (θ)Â for Â2 = 1, we can express rotations
about the x-, y-, and z-axis in terms of rotation matrices

R̂x(θ) =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)
 , R̂y(θ) =

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos

(
θ
2

)
 , R̂z(θ) =

e−i θ2 0

0 ei
θ
2


(2.12)

Since Rn̂(θ) can rotate any single-qubit state into any other single-qubit state up to
a global phase, we can define an arbitrary single-qubit unitary operator as

Û = exp (iγ)R̂n̂(θ) (2.13)

for angles γ and θ. From this operator, all single-qubit unitaries used in this thesis can
be directly derived by choosing appropriate unit vectors n̂ and angles. Furthermore,
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(a) Bloch sphere (b) Poincaré sphere

Fig. 2.1: (a) Bloch sphere to represent single-qubit states. The sphere is spanned by the
eigenstates of the Pauli matrices, antipodal states are mutually orthogonal. Qubit
states can be written in the Bloch sphere representation as |Ψ〉 = cos θ/2 |0〉 +
eiφ sin θ/2 |1〉where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. (b) Poincaré sphere to represent
single polarization-qubit states. The states representing for linear, diagonal and
circular polarization are located at the poles. Apart from the notation and the
name, the representation of a qubit state on the Poincaré sphere is identical to
the representation on the Bloch sphere which is why the names are often used
synonymously.

we denote measurement operators that project a state on the eigenstates of the Pauli
operators, located on the x−, y− or z-axis of the Bloch sphere, by

σ̂x : M̂±n̂x = |±〉 〈±|

σ̂y : M̂±n̂y = |+i〉 〈−i|

σ̂z : M̂±nz = |0/1〉 〈0/1|

(2.14)

Depending on the type of qubit, different methods have to be applied to implement
unitary operations and measurements. Since in this thesis, the same type of photonic
qubits are used for all experiments, we are going to introduce their most important
properties in the following.

2.1.4 Polarization qubits

In general, various physical two-level systems can be used to encode qubits (atoms
[52, 53], electrons [54, 55], Josephson junctions [31, 32]), some more suitable for
specific tasks than others. Here, qubits encoded in the polarization degree of freedom
of photons will be used for all applications. While photons offer several degrees
of freedom that can be used to encode quantum information (frequency, orbital
angular momentum, arrival time), polarization-encoding is especially useful since
single-qubit unitary operators can be implemented using standard optical elements
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such as wave plates, beam splitters and polarizers. Due to the particle-wave duality,
we can assign a polarization state to a photon according to the oscillation of the
electromagnetic field. In analogy to classical optics, the polarization can be linear,
diagonal or circular. We assign polarization states to corresponding computational
qubit states defined in 2.8 to get

|H〉 ≡ |0〉

|D〉 ≡ |+〉

|R〉 ≡ |+i〉

|V 〉 ≡ |1〉

|A〉 ≡ |−〉

|L〉 ≡ |−i〉

(2.15)

where A (D) denote the (anti-) diagonal and R (L) the right- (left-) handed po-
larization states. We can therefore treat polarization-qubits as eigenstates of the
Pauli operators as described before. Furthermore, this tells us that these polarization
states are enough to form a complete basis in two-dimensional complex Hilbert
space giving a full representation of any polarization state possible.

In experiments, polarization qubits are remarkably convenient in contrast to many
other qubits for several reasons: as mentioned, they can be manipulated using
classical polarization manipulation technology that has been explored and refined
for centuries. Secondly, photons as having neither charge nor mass only couple
weakly to the environment making it possible to transmit them through air with
limited loss of coherence or absorption (satellite QKD). Qubits such as atoms or su-
perconducting qubits have to be isolated in vacuum chambers resulting in expensive
and sophisticated setups. At last, for selected wavelength regimes, highly efficient
single-photon detectors make the detection of photons comparably convenient. As
for all things, these advantages come with drawbacks: one of the most prevalent
drawbacks of photonic qubits is the complicated creation of entangled states and
nonlinear gates for quantum computing. Photons do not interact directly up to first
order since they are electrically neutral and second-order interactions only occur at
high energies through the creation and annihilation of virtual particle-anitparticle
pairs [56]. Since these energies are not easily accessible in an optical laboratory,
experimentalists have to resort to different means such as nonlinear crystals and
probabilistic gates. Despite these problems, photons are still the most versatile,
robust and easiest-to-set up system for the implementation of qubits.

2.1.5 Two-qubit states

The states discussed up until now describe a single two-level system. When describing
composite systems made up of several individual subsystems, for example systems

12 Chapter 2 Quantum optics



consisting of several qubits, the multi-partite state for two qubits 1 and 2 can be
expressed as

|Ψ〉12 := α |0〉1 |0〉2 + β |0〉1 |1〉2 + γ |1〉1 |0〉2 + δ |1〉1 |1〉2 (2.16)

in a bipartite Hilbert spaceH12 = H1⊗H2 where {00, 01, 10, 11} is the computational
two-qubit basis, {α, β, γ, δ} are complex amplitudes and ⊗ is the tensor product. If
a bipartite state can be written as a tensor product of the individual subsystems 1
and 2 as

|Ψ〉12 = |Ψ〉1 ⊗ |Ψ〉2 (2.17)

the state is called separable. However, since the Hilbert space is linear, it also contains
superpositions of states such as |00〉+ |11〉. These states can’t be decomposed into a
tensor product of their subsystems, i.e. |Ψab〉 6= |Ψa〉 ⊗ |Ψb〉. These states are called
nonlocal or entangled and give rise to quantum phenomena that cannot be described
using classical theories2. For the applications discussed here, we are most interested
in the four pure maximally entangled two-qubit states known as the Bell states:

|Ψ±〉 := 1√
2

(|01〉 ± |10〉)

|Φ±〉 := 1√
2

(|00〉 ± |11〉)
(2.18)

which, amongst other properties, form an orthonormal basis for the four-dimensional
Hilbert space. The singlet state |Ψ−〉 (spin quantum number 0) is of significant im-
portance since it is isotropic with respect to rotations around an angle θ, i.e. it looks
the same in any basis rotated by θ respective to |0〉. This makes the |Ψ−〉 oftentimes
the go-to state for experiments, especially since Bell states can be transformed into
any other Bell state by local unitary transformations.

Projective operators acting on two-qubit states are generated from single-qubit
operators M̂m12 = M̂m1 ⊗ M̂m2 and applied in the same way such that p(m) =

12〈Ψ| M̂m12 |Ψ〉12. Single-party measurements are equivalent to applying the pro-
jection operator on the bipartite state: |Ψ〉m2

= (M̂m1 ⊗ 1) |Ψ〉12 where |Ψ〉2 is the
reduced output state. If |Ψ〉12 was an entangled state, local measurement of one
subsystem immediately collapses the remaining subsystem into a well-defined local
quantum state independent of the distance between the parties holding the qubits
1 and 2. These correlations hold not only in the basis the state was prepared in
(which would be explainable with classical probability theory) but in any basis such
as the {+,−} basis. In this case the qubit gets projected onto either the state + or
− with a probability of 50%. Which state it is, however, is probabilistic and only
decided in the instant of the projection. Nevertheless, as soon as Alice measures

2For the most part from now on, we are going to suppress the indices describing the individual
subspaces 1 and 2 for better readability)
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Fig. 2.2: Schematics for a Bell-type experiment. A source located in the center distributes
particles to Alice on the left and Bob on the right. Both parties are equipped with a
suitable detector which can be set to measure one of two properties Â, Â′ and B̂, B̂′

of the particle. Alice and Bob can freely choose their setting but are not allowed to
communicate. Every time the detector measures, it gives out a binary output ±1
depicted by the two light bulbs at the side of the detector. After the experiment,
Alice and Bob compare their results and compute the correlation parameter C. If
the measured particles are at most classically correlated, |〈C〉|Cl = 2. If the source
emits maximally entangled particles, |〈C〉|QT = 2

√
2, violating the classical bound.

+, Bob will always measure − independent of distance, and vice versa. This seem-
ingly instantaneous communication between two separated parts of an entangled
state are perhaps the most peculiar feature of quantum theory and gave rise to
the well-known EPR paradox in 1935 [2]. In essence, if quantum theory is to be
considered complete, it cannot be both realistic and local. Realistic in the sense that
the properties of the constituent parts of the system are in some sense deterministic
to measurement and local in the sense that manipulation of a subsystem at place A
should not instantaneously influence the properties of subsystem B at a spacelike
separated location. Since both assumptions are very intuitive and dropping them
would mean to break with two very fundamental properties of reality, a solution was
to assume that quantum theory is incomplete and there exist local hidden variables,
properties of the system not accessible by a quantum treatment. This would render
quantum theory incomplete and keep the assumptions of local realism intact.

2.1.6 Bell inequality

In 1964, John S. Bell formulated an inequality that assigns an upper bound to
correlations and should be obeyed by all local realistic theories [20]. In Bell’s
original paper, perfect anticorrelation is assumed for the measurement outcomes.
Since this is impossible to realize experimentally, a more general version of Bell’s
inequality is used for experiments, introduced in 1969 by Clauser, Horne, Shimony
and Holt [57]: In the scenario, two parties, Alice and Bob, share a bipartite state
distributed by a source. Each party can choose to measure one of two observables
we denote by Â, Â′ for Alice and B̂, B̂′ for Bob. The observables can take the values
{±1} and are assumed to be functions of some hidden variable. Alice and Bob are
not allowed to communicate which can be guaranteed by spacelike separation. From
the possible outputs of the observables, we can see that either Â + Â′ = 0 and
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therefore Â − Â′ = ±2 or else Â − Â′ = 0 and Â + Â′ = ±2. Using this, we can
define the correlation parameter

C := (Â+ Â′)B̂ + (Â+ Â′)B̂′ = ±2 (2.19)

The assumption for local hidden variables (LHV) is implicit in this definition since we
assume that {±1} can be assigned to all four observables even though it is impossible
to measure both Â, Â′ and B̂, B̂′. Taking a series of measurements, the absolute of
the expectation value of C is bounded by

|〈C〉|Cl = |〈ÂB〉+ 〈 ˆA′B〉+ 〈 ˆAB′〉 − 〈 ˆA′B′〉| ≤ 2 (2.20)

since |〈C〉| ≤ 〈|C|〉Cl = 2. It was first shown in 1972 that this bound can be violated
if Alice and Bob share an entangled state, for example a Bell state [6]. For a long
time, it was not clear if this violation is inherent in quantum theory or if it is merely
a product of flaws in the experimental design. For example, the detection loophole
addresses the problem arising from imperfect detectors: Since only a subsample of
all emitted pairs is detected, the whole sample might result in random outcomes
while the quantum correlations detected are the result of LHV combined with specific
detector settings. If the measuring parties are not spacelike separated, the detector
on one side might communicate with the other detector, somehow influencing the
results. This is known as the communication loophole. In the years following
the first experimental demonstration, numerous experiments were designed and
conducted to close these and other loopholes. Eventually, three groups reported
loophole-free Bell tests all violating Bell’s inequality in 2015, showing that quantum
theory cannot be described by LHV theories [58–60]. It is important to understand
that, while quantum entanglement allows for stronger correlations than expected
in LHV theories, it does not allow for faster-than-light communication since Alice
has no way to know the random measurement outcome on Bob’s side and therefore
no way to transmit this information to Bob. This becomes apparent in the fact that,
would Alice and Bob reconstruct the their part of the state on their side they would
get a maximally mixed state. The condition of no faster-than light communication
is called ’no-signalling’ and is implicit in the formulations of Bell’s inequalities in
the sense that Alice’s measurement settings does not influence Bob’s settings and
vice versa. Using correlations obtained from measurements on entangled states,
there exists a maximum violation of Bell’s inequality, known as Tsirelson’s bound
and given by

|〈C〉|QT ≤ 2
√

2 (2.21)

Approximate equality can be achieved by using maximally entangled states and
specific measurement angles. Remarkably, Tsirelson’s bound is not the algebraic
upper bound of 2.20, which is given by |〈C〉|Alg = 43. This discrepancy has inspired

3Note that |〈C〉| is discontinuous from 2
√

2 to exactly 4

2.1 Basic Concepts of Quantum Mechanics 15



researchers to look for more generalized probability theories that include quantum
theory as a special case while still obeying no-signalling (see, for example PR-boxes
in [61–63]).

CHSH Game

In the context of quantum information theory, the CHSH inequality and Tsirelson’s
bound is often introduced via an alternative approach called the CHSH game. Here,
a referee distributes two input bits {0, 1} and sends one to Alice and the other one
to Bob. After receiving their bits, Alice and Bob both produce an output bit and send
it back to the referee who compares the results. If a certain condition is fulfilled,
Alice and Bob win the game, otherwise, they lose. The CHSH inequality can then be
expressed in terms of the winning probabilities for the different configurations of
the game and is given by

〈p〉Cl ≤
3
4 = 0.75 (2.22)

This is the classical upper bound of the CHSH inequality introduced above. Again,
it can be shown that if Alice and Bob receive one part of an entangled state, the
classical winning probability can be surpassed. Specifically, the winning probability
when using entanglement results to

〈p〉QT ≤
1
2 + 1

2
√

2
≈ 0.853 (2.23)

The upper bound of 0.853 is simply Tsirelson’s bound in the context of the CHSH
game. The advantages that can be gained by employing quantum entanglement
are diverse and powerful. For this reason, entangled quantum states have become
fundamental resources in the development of quantum technologies. It is used to
teleport information from qubit to qubit in measurement-based quantum computing
or shared between parties to enable universally secure communication in QKD. The
CHSH inequality, as a fundamentally valid proof of non-classicality, is commonly
employed to verify the presence of entanglement or to detect eavesdroppers in a
private channel.

For the applications discussed in the following sections, photonic qubits will be
the constituents of the entangled states. While entanglement between photons is
robust, the practical creation of entanglement is one of the main challenges in today’s
experimental quantum optics, especially if one wants to create higher-dimensional
entangled states such as the three-photon GHZ state. In the following section, we
will describe SPDC, one of the best-developed techniques to create polarization
entanglement in the lab, followed by a description of some of the most important
optical components to apply unitary operations to photonic qubits. Following that,
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we will conclude with the implementation of measurements on single- and multi-
qubit systems.

2.2 Spontaneous Parametric Down-Conversion
Photon Sources

2.2.1 Laser sources

For many applications in classical as well as quantum optics including SPDC, a basic
necessity are sources of spatially and temporally coherent light. Spatial coherence
means that two points of the wave can interfere with each other while temporal
coherence means that a wave can interfere with itself in different points in time.
When the first laser (light amplification by stimulated emission of radiation) was
built in 1960 [7], it was regarded as a curiosity with no apparent applications. Nowa-
days, since for many effects in (quantum) optics interference of wave(-functions)
is a prerequisite necessary for many secondary effects (e.g. nonlinear effects and
multiphoton interference), lasers are one of the fundamental building blocks of any
photonic experiment. Apart from providing the light source from which the photonic
states are created, lasers are crucial for manipulation and readout of photonic sys-
tems. Here, we are going to give a basic overview of the working principle of laser
diodes and optical amplifiers which, in combination, make up the basic source used
in the following experiments to create continuous highly monochromatic, coherent
light.

Laser diodes

In almost all modern solid-state laser sources, the light pumping the gain material
is provided by a laser diode. They consist of two semiconductor crystals stacked
on top of each other but separated by a narrow slit, one crystal with an excess of
electrons, called n-type, and one with a deficit of electrons (or a surplus of holes),
called p-type. The area between the seminconductors is referred to as p-n-junction.
A schematic of a laser diode is reported in Figure 2.3. When the diode is polarized
in forward direction, the electrons flow towards the holes and vice versa. In order
to recombine at the p-n-junction the electron has to lose some energy, since the
hole is in a lower energy state, resulting in the emission of a photon. In addition
to a positive net radiative decay, to turn the diode into a laser diode, a feedback
or resonator mechanism has to be provided to keep the photons in the junction.
Fortunately, the semiconductors have a high refractive index relative to the air in
the slit resulting in total reflection similar to a waveguide. The semiconductor
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Fig. 2.3: Schematics of a laser diode. A p-type semiconductor is brought close to an
n-type semiconductor, leaving a thin open slit called the p-n-junction. A voltage is
applied, generating a current in forward direction. At the p-n-junction, which acts
as the active area in the diode, electron-hole-recombination leads to the emission
of identical photons. Due to the high refractive index of the semiconductors,
photons are reflected from the boundaries. While the right junction output is
highly reflective, the left output is only partially reflective and is therefore the
laser output coupler. Since the outgoing radiation is typically divergent, a lens is
necessary for collimation.

crystals act as the gain material as well as the optical resonator simultaneously. If
the area between the crystals is dimensioned appropriately, i.e. the separation of
the frequency modes is larger than the spectral width, only one mode is amplified
and the diode produces and amplifies coherent single-mode photons. Since the slit
is rather narrow, the photons are emitted in a large divergence angle and results
in a wedge-shape opposed to a Gaussian shape. Therefore, collimation optics to
shape the beam have to be implemented. Using appropriate semiconductors and
dimensions of the p-n-junction, laser diodes can produce light in a wavelength range
from the ultraviolet to the infrared. For example, a laser diode made of GaN and
InGaN produces light at 405nm while diodes made of InGaAsP emit light in the
telecom band [64].

Today, laser diodes are the most commonly used types of lasers. Among other
features, they are small, efficiently4 produce light in a wide wavelength range
and can be pumped and modulated easily using the external current source or
optically. On the other hand, since the transition in the laser diode is between energy
bands opposed to discrete electronic energy levels in other types of lasers, the light
produced by laser diodes is of high bandwidth and low coherence. Also, while laser
diodes can produces pumped light up to femtosecond pulses, the power output is
limited by the intrinsic heating of the semiconductors.

Therefore, if one of these mentioned properties or other special light properties are
required, as is the case for many applications in quantum optics, the laser diodes
can provide the pump light in a gain material of a different type. This is the case

4in terms of pumping-to-light conversion
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in the laser sources used in the Chapters 3.2 and 3.3, while the laser pumping the
SPDC-crystal in Chapter 5 is a laser diode.

Cavity laser basics

When electrons are confined in a potential, for example the atomic potential of
a nucleus, the electronic energy levels are quantized and the energy states En
are the eigenvalues of the Hamiltonian Ĥ in the time-independent Schrödinger
equation Ĥ |Ψn〉 = En |Ψn〉. The probability to find fermions in a certain energy
state En is given by the Fermi-Dirac distribution. However, since the energy of the
contributing optical transition relevant for the lasing process is usually far higher
than the Fermi energy, i.e. E � EF , the probability distribution can be approximated
by a Boltzmann distribution P (En) ∝ exp(−En/kBT ) [64]. In equilibrium P (En) >
P (En+1) but for non-equilibrium conditions a distribution according to P (En+1) >
P (En) can be achieved. This is called occupation inversion and a necessary condition
for lasing. When an electromagnetic mode containing a photon interacts with an
atom, chances are that the photon is absorbed by the atom inducing a transition to a
higher energy level of the atom. For absorption to occur the energy of the photon
has to be equal to the transition energy of the atom, i.e. hν = E2 −E1. After some
time, depending on the cross section of the transition, the atom will spontaneously
emit a photon of approximately the same energy into the electromagnetic mode,
transitioning back to the ground state. Light created by spontaneous emission is the
kind of light we typically see around us in everyday life, such as thermal emitters
or LEDs. Since the emission occurs spontaneously and independent of the photon
number in the electromagnetic mode, their amplitudes and phases are not correlated,
therefore incoherent in time and position.

In order to create coherent light, the emission of photons by atoms contained in an
active medium, has to be stimulated. This can be achieved by letting atoms already
in an excited state E2 interact with an electromagnetic mode containing photons of
energy E2 − E1 where E1 is again the ground state. Speaking heuristically, bosonic
particles such as photons prefer to be close to each other than apart, therefore the
photons in the mode stimulate the excited atoms to emit identical photons which are
of the same frequency and strongly correlated in phase (meaning a long coherence
length). To make sure that the light is amplified, the emission of photons has to
exceed the absorption, which means more atoms have to be in an excited state than
in the ground state, i.e. the aforementioned population inversion. For this reason,
the active medium containing the atoms/molecules has to be pumped by an external
source, either electrically in the case of gas lasers (via DC current) or optically by
laser diodes or a flash lamp. In order to ensure population inversion and subsequent
stimulated emission, all lasers are based on the same fundamental layout sketched
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Fig. 2.4: Schematics of a typical cavity laser in cw operation. A gain medium, e.g. a
crystal or a gas, is placed in the center of a cavity, or resonator, comprised by at
least two mirrors. The gain medium is excited by an external source of energy to
achieve population inversion in the medium. Light emitted by the gain medium is
coherently amplified via reflection at the mirrors. A fraction of the total radiation
is continuously transmitted through the partially reflective mirror and makes up
the laser beam. Note the mirrors in real cavities are typically curved since flat
mirrors are highly sensitive to small deviations from parallel alignment.

in 2.4: an optical resonator consisting of two adjacent mirrors, i.e. a cavity, and an
optical amplifier, i.e. the active medium in between. An external source pumps the
active medium creating population inversion between the ground and an excited
state. After turning on the pump, the atoms absorb photons and spontaneously emit
them again after some time. The emitted photons are recoupled into the cavity
and lead to stimulated emission of more photons. The design (e.g. the length) of
the cavity only allows for certain electromagnetic modes, specifically, if no other
elements are included, Gaussian modes (TEM00). To extract some of the light of the
cavity to use is, one of the cavity mirrors has to be partially transmittent (typically
around 99% reflectance).

Together with the active medium, the resonator acts as a frequency selection mech-
anism effectively creating light of a certain frequency and phase. As long as the
resonator is optically stable and the emission exceeds the absorption, the signal
gets enhanced and the laser is above threshold necessary for lasing. A measure for
optical stabilization of the resonator is given by the resonator parameter gn = 1− d

Rn

relating the radius of the mirrors R1,2 to the length d of the cavity, that ensures that
the beam is reflected onto itself after reflection if 0 ≤ g1g2 ≤ 1. The modes allowed
in the resonator are characterized by the finesse

F = ∆ν
ν0
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where ∆ν is the full width half maximum of the resonator modes, defined by the
linewidth of spectral lines of the emitting atoms, and ν0 = c

2L is the free spectral
range, i.e. the spectral distance between the modes. At every moment, a part of
the light in the cavity mode is transmitted through the output coupler leading to a
continuous output of coherent, approximately monochromatic and collimated wave
trains. If the laser is emitting continuously it is running in continuous-wave (CW)
operation, in contrast to pulsed lasers where the light is concentrated in evenly
spaced, short pulses. The coherence properties of the wave trains emitted by the
laser can be characterized by the coherence time τc, which is inversely proportional
to the linewidth of the emitting atoms in the active media

τc ∝
1

∆ν (2.24)

and the coherence length lc = cτc which quantifies how long and how far the light of
a laser continues to interfere. Typical values for the coherence lengths and times of
lasers are in the range of 0.3µs− 300µs corresponding to 100m− 100km compared
to the coherence length of a mercury lamp which is about 3mm.

In the quantum optics framework, the output state of a laser above threshold is
described by a coherent state which is the eigenstate of the annihilation operator
â |α〉 = α |α〉 where α is a complex number related to the average photon number
by |α|2. The coherent state can be expressed as

|α〉 = exp
(
−1

2 |α|
2
) ∞∑
n=0

αn√
n!
|n〉

in terms of the number state |n〉 = (a†)n |0〉. Coherent states have a Poissonian dis-
tribution and are the states that most resemble classical states since many properties
are the same as in classical optics. However, one should keep in mind that coherent
states, as all states of light, are inherently quantum in nature.

The output of a laser consists of many photons, either in bunches in the case of
pulsed lasers or in a continuous stream. To distinguish laser (coherent) light from
other quantum states of light, we will look at an important measure in the following
section.

2.2.2 Second-order coherence function

For the characterization of coherence properties of different states of light, quantum
coherence functions of n-th order are a useful tool, quantifying spatial and temporal
correlations between quantized electric field operators Ê at different places and
times. While the first-order coherence function developed by Glauber in the 1960s

2.2 Spontaneous Parametric Down-Conversion Photon Sources 21



[44] can be used to determine (among other things) the coherence length of a state
of light, it cannot be used to distinguish among states of light of the same spectral
distributions but different photon number distributions (e.g. a photon number state
|n〉 and the coherent state |α〉. For this purpose, the second order coherence function
comes into play, which can be given in the normalized form for temporal coherence
(and fixed detector positions) as

g(2)(τ) =

〈
Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)

〉
〈
Ê(−)(t)Ê(+)(t)

〉〈
Ê(−)(t+ τ)Ê(+)(t+ τ)

〉
which can be interpreted as the probability of a detection event after time τ after
a first event. When assuming a single-mode quantized plane wave of the form
Ê(+) = iKâei(k·r−ωt) and Ê(−) = −iKâ†e−i(k·r−ωt) where k is the wave vector, r is
the spatial position, ω is the angular frequency and K is a normalization factor, the
coherence function simplifies to

g(2)(τ) =

〈
â†(0)â†(τ)â(τ)â(0)

〉
〈â†(0)â(0)〉2

= 1 +
〈
(∆n̂)2〉− 〈n̂〉
〈n̂〉2

where n̂ = â†â is the photon number operator. Calculating the g(2)(τ) for some of
the most important states of light, as it is shown in Figure 2.5, gives the following
results:

• single-mode thermal states |β〉: g(2)(0) = 2 which means that there is a
higher probability for coincidence events as τ = 0. This effect is called photon
bunching and comes from the fact that photons, as bosonic particles, tend to
arrive in bunches.

• coherent states |α〉: g(2)(τ) = 1 for all τ . This means that the photon detection
events appear completely uncorrelated in point of view of the detector

• number states |n〉: g(2)(0) = 1 − 1
n for n ≥ 1 which is a behaviour called

photon antibunching. The probability to detect coincidences is lower than
for uncorrelated states or states that show bunching. An ideal single-photon
source has g(2)(τ) = 0 meaning one single photons arriving at the detector in
equal time steps.

In experiments, the most straight-forward way to measure the g(2)(τ) of a source
is by using the setup employed by Hanbury, Brown and Twiss in an attempt to
determine the angular size of stars [65]: a 50 : 50 beam splitter is placed in the
beam of photons to divide the beam, followed by a photodetector in both output
arms that are connected by a coincidence count logic. The coincidence count rate
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Fig. 2.5: Bunching statistics for different photon sources. On the left, the second-order
coherence function g(2)(τ) is plotted around τ = 0. The width of the red and blue
curve is twice the coherence time of the source τc. On the right, the bunching
behavior of photons emitted by a certain source is depicted. Photons emitted by a
thermal source, depicted by the red curve, show bunching which corresponds to
g(2)(0) = 2. A coherent source, e.g. a laser, emits photons in a random distribution,
resulting in g(2)(0) = 1. Ideal single-photon sources emit single photons in equal
time-bins, a behaviour called anti-bunching and corresponding to g(2)(0) = 0. By
simply attenuating the light source, the photon statistics does not change.

is proportional to g(2)(τ) for small integration times, i.e. the time delay τ is much
smaller than the average time between two events. Antibunching is a highly non-
classical behavior shown first in 1977 by Kimble et al. [66]. It cannot be recreated
using ’classical’ light sources such as lamps and can only be approximated using
coherent sources. The latter case could be achieved by attenuating a laser source
to create a coherent state with |α|2 = 〈n〉 � 1 where the major contribution to the
state is the vacuum state |0〉, i.e. no photon and a small contribution is |1〉, i.e. one
photon. The disadvantages of this method are that, firstly, it is very inefficient since
most of the time no photon is detected and secondly, since this is still a coherent
state, it contains higher-order contributions i.e. multi-photon states. Nevertheless,
attenuated lasers are used in experiments, for example in quantum cryptography
[67].

The most commonly used single-photon sources used today are based on spontaneous
parametric down-conversion (SPDC). SPDC occurs in nonlinear media where a
single-photon is converted in two photons of lower frequency. In the following
Chapter we will look at the nonlinear effect in certain crystals that makes down-
conversion possible. After that, we will describe the use of down-conversion sources
in experimental quantum optics.
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2.2.3 Spontaneous parametric down-conversion

Every source discussed in this thesis is based on spontaneous parametric down-
conversion, a nonlinear effect theoretically predicted in 1961 [68] and experimen-
tally discovered by three independent groups in 1967 [69–71]. The groups observed
output radiation at a parametric amplifier without an input beam and referred to
it as parametric noise. The nature of this output radiation, specifically that it is
comprised of a flux of photon pairs created in an extremely narrow time window,
was explored in the following years [72, 73]. In order to describe the properties
of SPDC, it is necessary to introduce a few concepts of classical nonlinear optics:
When light propagates through an ordinary, dielectric medium, the response of the
polarization of the material P (t) to the electric field strength E(t) is linear, i.e.

P (t) = ε0χ
(1)E(t) (2.25)

where ε0 is the vacuum permittivity and χ(1) is the electric susceptibility to first
order [74]. The polarization of a material describes the charge displacement of
atomic dipoles due to external electromagnetic fields. Two of the consequences of
this linear response are that first, the absorptive and refractive index of the material
is independent of the intensity of the light and secondly, two light waves propagate
through the medium without influencing each other.

However, when light of high intensity (for example emitted by a laser), propagates
through a nonlinear material, these principles do not hold anymore: the refractive in-
dex becomes dependent on the intensity n = n(I)5 and therefore propagating waves
influence the propagation of other waves. Higher-order terms in the polarization
expansion need to be taken into account, hence 2.25 turns into:

P (t) = ε0
(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

)
:= PL + PNL

(2.26)

where we defined the nonlinear polarization terms

PNL := ε0χ
(2)E2(t) + ε0χ

(3)E3(t) + ... (2.27)

and used scalar notation for simplification6 Each of these terms describes numerous
nonlinear effects depending on the frequencies of the generating waves. Since

5The dependency of the refractive index on the intensity stems from the relation n2 = 1 + χ. When
higher-order terms of χ have an effect due to higher intensities, the refractive index is affected by
the intensities as well

6When all spatial dimensions are required, the polarization as seen before, is a vector and the
susceptibility of the material is a tensor, e.g. dijk for second-order nonlinearities
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the magnitude of the electric susceptibility decreases with higher-order, higher
and higher field strengths are necessary to see noticeable higher-order effects. For
example, the second-order coefficient χ(2) is of order 10−12m/V which makes it
much weaker than first-order effects, χ(1) being at the order of unity for solids. The
nonlinear term of second order

P (2)(t) = ε0χ
(2)E2(t) (2.28)

can be expressed in terms of the frequencies P (2)(t) =
∑
n
P (ωn)e−iωnt. The processes

described by the second-order nonlinearity include generation of a wave at frequency
ω3 = ω1 ± ω2 from two waves a frequencies ω1 and ω2. For example, the process
ω3 = ω1+ω2 = 2ω1 is known as second harmonic generation (SHG) and is commonly
used in optical labs, creating frequencies not naturally available from lasers, or in
spectroscopy. Second harmonic generation and other nonlinear effects can only
occur if the in- and outgoing wave vector components are equal, i.e. in a scalar
fashion

k1 + k2 = k3 = n3ω3
c

= n1ω1
c

+ n2ω2
c

(2.29)

This condition cannot be fulfilled in normally dispersive materials since n1(ω1) <
n2(ω2) < n3(ω3) for ω1 < ω2 < ω3. Therefore, nonlinear effects such as SHG and
SPDC can only occur in birefringent (anisotropic) materials where the refractive
index is different depending on the input polarization and propagation direction.
For example, in uniaxial crystals, the refractive index depends on the direction of
propagation relative to the optical axis of the crystal. Light propagating parallel to
the optical axis experiences the so-called ordinary refractive index no regardless of
its polarization. For rays propagating in any other direction but with a polarization
perpendicular to that of the ordinary ray, the polarization direction will be partly in
the direction of the optical axis. This extraordinary ray will be governed by a different,
direction-dependent refractive index. The refractive index of an extraordinary wave
entering the material is therefore split in two components, given by

1
n2(θ, ω) = cos2(θ)

n2
o(ω) + sin2(θ)

n2
e(ω) (2.30)

where 0◦ ≤ θ ≤ 90◦ is the angle between the propagation direction of the wave
and the optical axis. We can therefore tune this angle accordingly, for example
ne(ω3) = no(ω1 = ω2) the requirement for nonlinear effects can be achieved.

The reversal of SHG or of sum frequency generation (SFG) in the case ω1 6= ω2 as in
general in 2.29, is called parametric down-conversion, where one pump beam 2ω
is converted in two output beams of either different frequencies (non-degenerate)
or same (half) frequency (degenerate). In classical optics, a similar process is used
to amplify a weak wave of frequency ω1 by inferring it with a strong pump wave
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(a) SPDC energy (b) Non-collinear SPDC

Fig. 2.6: (a) Energy diagram of SPDC. The vacuum state, denoted by the solid line, can
be excited to a virtual higher energy state, denoted by the dashed line, by a
pump photon of frequency ωp. The pump photon is destroyed in the process. In
certain materials, the excited state can decay by releasing two daughter photons
of frequency ωs and ωi obeying ωs + ωi = ωp. (b) Non-collinear SPDC in a
nonlinear crystal. An incident pump photon is split in two daughter photons
named signal and idler. The down-conversion rate in the crystal is characterized by
the coefficient of second order χ(2). In non-collinear downconversion, the signal
and idler photon are emitted in an angle α relative to the pump beam.

at ω3 ≡ ωp. Besides the ’signal’ at ω1 ≡ ωs, a second weak beam called ’idler’ is
generated at ω2 ≡ ωi. It can be shown, however, that, without a second input beam,
no amplification of the signal and no generation of the idler can take place classically
[34, 75]. Describing the process as a quantum process, the vacuum is occupied by
the vacuum state |0〉 in the number basis. In a nonlinear crystal, there exists a small
probability that a pump photon excites the vacuum state to a virtual higher-energy
state which, as it decays, generates two photons of lower energy (see figure 2.6a).
Since this process is based on the spontaneous fluctuation of the vacuum, it is known
as spontaneous PDC or SPDC.

The properties of the photons involved in the SPDC process obey conservation of
energy- and momentum, in this context known as phase-matching conditions:

~ωp = ~ωs + ~ωi
~kp = ~ks + ~ki

(2.31)

where k are the respective wave vectors of pump, signal and idler photons. In
practice, the phase-matching conditions can never be perfectly fulfilled7, giving
rise to a phase-mismatch ∆k. The mismatch has to be included in the momentum
conservation which then reads as

kp = ks + ki + ∆k (2.32)

7due to deviations in the wavelength of the pump beam, the angle between pump beam and the
crystal or material imperfections
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(a)

(b)

Fig. 2.7: (a) Non-collinear phase-machting: The pump photon with wave vector kp is
split in the signal photon with wave vector ks and idler photon ki, both emitted
in an angle relative to kp. Due to experimental imperfections, a phase-mismatch
∆k is present, leading to fluctuations in the down-conversion rate. (b) Collinear
phase-matching: The signal and idler photons propagate in the same direction
as the pump photon. Again, due to experimental factors, a phase-mismatch ∆k is
present. Both types of phase-matching obey the condition kp = ks + ki + ∆k

and is graphically depicted in figure 2.7. ∆k leads to a reduced generated power
as well as to fluctuations in the down-conversion rate, which is why it should be
reduced as much as possible. While the phase-mismatch cannot be fully avoided
in birefringent phase-matching, it can be minimized by careful alignment of pump
beam and nonlinear crystal. Furthermore, in Chapter 2.2.4, a type of phase-matching
will be introduced to counter the phase-mismatch, leading to down-conversion rates
higher than possible here (however, still lower than perfect phase-matching). To
discuss the quantum properties of SPDC, we are going to derive the output quantum
state generated in SPDC processes following [76–78]: The quantized Hamiltonian
for SPDC consisting of the free electromagnetic field Hamiltonian Ĥem and an
interaction term ĤI [79] can be written as:

ĤSPDC = Ĥem + ĤI =
2∑
i=0

(
n̂i + 1

2

)
+ ~g

(
â0â
†
1â
†
2 + â†0â1â2

)
(2.33)

where g ∝ χ(2) is the coupling constant of the interaction. The two terms in the
interaction part describe SPDC and SFG, respectively. Since the state of the pump is
usually a coherent state emitted by a laser and remains a coherent state after some
photons get down-converted, we assume that the SPDC process doesn’t deplete the
pump beam of photons, i.e. 〈n̂1(t)〉, 〈n̂2(t)〉 � |α|2. This approximation is justified
by the fact that the SPDC efficiency is typically of the order of 10−7. We therefore
assume the pump field to be a classical, i.e. â0 ∼ Ee−iω0t [78]. Furthermore,
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we label mode 1 (2) as signal (idler) mode s (i), without loss of generality. The
interaction part of ĤSPDC can then be written as

ĤI = iη~
(
â†sâ
†
i + h.c.

)
(2.34)

where we absorbed the classical field and the coupling constant in the parameter
η. Starting from the initial state |Ψ(0)〉, we can describe the output state |Ψ(t)〉 =
Û |Ψ(0)〉 using

Û = exp (−iĤIt/~) = exp
(
ξ
(
â†sâ
†
i + h.c.

))
(2.35)

where ξ = ηt is a parameter that depends on the nonlinearity, the interaction time
t and the strength of the pump beam. This operator generates the well-known
two-mode squeezed state which, in the high gain regime |ξ| � 1 corresponds to
parametric amplification. Here, we are interested in the low gain regime of |ξ| � 1,
and assume spontaneous PDC, i.e. the initial state is in the vacuum |Ψ(0)〉 = |0〉s |0〉i.
The (unnormalized) output state then results to

|Ψ(t)〉 = exp (ξâ†sâ
†
i + h.c.) |0〉s |0〉i

≈ exp (ξâ†sâ
†
i ) |0〉s |0〉i

=
∞∑
j=0

ξj

j!
(
â†s

)j (
â†s

)j
|0〉s |0〉i

= |0〉s |0〉i + ξ |1〉s |1〉i + ξ2 |2〉s |2〉i + ...

(2.36)

where we approximate the second line using normal ordering of the operators [78].
The probability to randomly convert pump photons into daughter photons is given
by |ξ|2 for one pair, |ξ|4 for two pairs, and so on. For small ξ, we can drop higher
order terms such as ξ2 and get

|Ψ(t)〉 ≈ |0〉s |0〉i + ξ |1〉s |1〉i (2.37)

which is the superposition of the vacuum and a two-photon state. Since the vacuum
state |0〉 cannot be registered in detectors, we can post-select the |1〉 |1〉-term by using
two detectors and counting the coincidences. Increasing the pump power increases
the down-conversion rate ξ, however, it also leads to a higher probability of multi-
pair emissions. Since most detectors used in experiments cannot distinguish between
different number states, a detected coincidence might originate from a multi-pair
emission. If the |1〉s |1〉i is the desired state, higher-order emissions decrease the
quality of the state, acting as a source of noise. This is one of the main limiting factors
of SPDC sources. Therefore, it is important to find a balance between acceptable
noise and high down-conversion rate in experiments. The output radiation can
originate from any coupled field mode that fulfill the phase-matching conditions
2.31. Therefore, multiple modes may contribute to the parametric process which
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in turn generates entanglement between the modes. The entanglement generated
depends on different experimental factors and the type of phase-matching in the
crystal. For example, since the SPDC process has a wide spectrum, the two generated
photons are typically entangled in the wavelength (frequency), fulfilling

1
λp

= 1
λs

+ 1
λi

(2.38)

If the wavelengths of signal and idler are close, i.e. λs ≈ λi ≈ 2λp, the daughter
photons are called degenerate. This property is required if the goal is to create
indistinguishable photon pairs. Since there is still ambiguity in the wavelengths,
typically bandwidth filters with a bandwidth of a few nanometers are used to
spectrally post-select the photons. If the wavelength of the photons can be clearly
distinguished, i.e. λs 6= λi, the process is called non-degenerate. In certain crystals,
the photons can be separated by a few hundred nanometers, making it easy to
spatially separate the photons. In this thesis, while we exploit spatial and spectral
entanglements, we mostly focus our discussion on the polarization degree of freedom
since we use polarization-qubits in every experiment discussed.

In this regard, we distinguish two types of phase-matching: in type-I phase-matching,
a pump photon generates daughter photons that have the same polarization. The
photons are emitted at diametrical points of an cone centered around the pump
beam, where the opening angle depends on the pump wavelength and orientation of
the optical axis of the crystal with respect to the pump beam. The generated photons
are entangled in the frequency, temporal and spatial mode but not in polarization. By
collecting photons from opposing points of the cone, type-I phase-matching can be
used to generated highly indistinguishable photon pairs of the form in equation 2.37,
used for example for a heralded single-photon source. In type-II phase-matching,
the daughter photons generated have orthogonal polarization. Since the refractive
index in the birefringent material depends on the polarization, the signal and idler
photon are shifted relative to each other and leave the crystal in two overlapping
cones. When collecting photons from the overlapping points of the cones, we cannot
distinguish one photon from another (see 2.8). The state is entangled in the paths
(s and i) and polarization (H and V ) degrees of freedom. We can write the output
state of type-II SPDC by

|Ψ〉 ∝
∞∑
n=0

ξn
[

n∑
m=0

(−1)m |n−m〉Hs |m〉V s |m〉Hi |n−m〉V i

]
= |0〉s |0〉i + ξ |1〉Hs |0〉V s |0〉Hi |1〉V i − ξ |0〉Hs |1〉V s |1〉Hi |0〉V i + ...

(2.39)
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Fig. 2.8: Type-II SPDC. A pump photon in the state |V 〉 is extraordinarily polarized with re-
spect to the optical axis of the nonlinear crystal χ(2). The angle between the pump
propagation direction and the optical axis is denoted by θ. If down-conversion
occurs, photons of mutually orthogonal polarization are emitted in the form of two
overlapping cones. At the intersection points of the cones, entanglement between
the photons is generated resulting in the state |Ψ±〉.

Post-selection on one photon in each spatial mode, defining |1〉Hs/i |0〉V s/i ≡ |H〉s/i
and |1〉V s/i |0〉Hs/i ≡ |V 〉s/i and normalization yields the maximally entangled singlet
state

|Ψ−〉 = 1√
2

(|H〉s |V 〉i − |V 〉s |H〉i) (2.40)

Type-II SPDC sources are typically used for entanglement experiments, since polarization-
entangled pairs can be easily generated from the down-conversion process. Further-
more, the |Ψ−〉 can be transformed in any other Bell state via local transformations.
However, while photons generated by type-I phase-matching are in a product state
in the polarization degree of freedom, two identical type-I crystals with their optical
axis crossed can be combined to create the entangled |Φ+〉 state. For example,
entanglement generated from type-I phase-matching will be used for the source in
Chapter 5, where we will describe the experimental scheme in more detail. Note that
while equations 2.37 and 2.40 describe the quantum state generated by SPDC, they
do not give information about the spectral properties of the state and the influence
of phase-matching on the output. A detailed discussion on these properties can be
found for example in [78].

For the derivation of the SPDC quantum state, we used the arbitrary labels signal
and idler to distinguish between the two daughter photons. While in type-I, both
signal and idler photon are in the same polarization state and in type-II, they
are orthogonally polarized, we can further distinguish the types by referring to
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the ordinary and extraordinary polarization in Chapter 2.2.3. Depending on the
polarization of the pump photon with respect to the optical axis of the crystal, we
can then define the following phase-matching types:

• type-I:

– type-I a: o→ e+ e

– type-I b: e→ o+ o

• type-II:

– type-II a: o→ o+ e

– type-II b: e→ o+ e

where o means ordinary polarization (perpendicular to the optical axis) and e

means extraordinary polarization (in parts parallel to the optical axis). As discussed
before, in a birefringent material, the refractive index differs for ordinary and
extraordinary polarization. In type-II phase-matching, this leads to a different group
velocity of the signal and the idler photon resulting in a longitudinal offset and
leading to polarization-temporal correlations. Additionally, the differing refractive
index causes a transversal offset between the o-cone and the e-cone and, in turn
to correlation between the spatial and the polarization mode. Since both effects
reduce the indistinguishability, to produce polarization-entangled states via type-II
down-conversion, one has to account for effects caused by the birefringence of the
nonlinear crystal, known as walk-off effects:

Walk-off

In order to generate polarization-entangled states, the photons have to be indistin-
guishable in the remaining degrees of freedom. This is usually not the case after
propagation in a nonlinear crystal since the birefringence induces a spatial and a
temporal walk-off between the o- and the e-beam. The temporal and spatial walk-off
are sketched in Figure 2.9 and 2.10, respectively.

• Longitudinal/temporal walk-off originates from the different group veloci-
ties vg = c/ng of the ordinary and the extraordinary beam in the crystal where
ng is the refractive group index. Therefore, the beams leave the crystals at
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Fig. 2.9: Longitudinal walk-off compensation for SPDC in a BBO crystal. In type-II
SPDC, the group velocity in the nonlinear crystal is smaller for e-polarized light.
Depending on the point of down-conversion, the wave packets of the photons are
shifted relative to each other when exiting the crystal reducing the entanglement
quality. To compensate this effect, first a half-wave plate rotated by 45◦ is placed
in the way of the wave packets, swapping the polarization. Next, a nonlinear
crystal of half the thickness of the main crystal induces a temporal walk-off on
the swapped wave packets, effectively shifting them together and increasing the
overlap. If the down-conversion takes place close to the exit of the crystal as
depicted in the lower case, the walk-off compensation may reduce the overlap.
However, since the majority of the down-conversion events happen close to the
center of the crystal on average, the walk-off compensation overall increases the
entanglement quality.

different times dependent on the point of creation in the crystal. The time
delay is given by

∆t = |(no − ne)L/c| (2.41)

where L is the length of the crystal. If ∆t exceeds the coherence time τc =√
2 ln 2λ2/(π∆λ)c of the photons, the walk-off has to be compensated to avoid

correlations between the time of arrival and the photon polarization.

• Transversal/spatial walk-off is caused by the dependence of ne on the angle
between the propagating wave and the optical axis. The wave-vector k is not
parallel to the direction of the energy flow of the wave as in the case of the
ordinary beam but separated by a walk-off angle ρ given by

tan(ρ) = − 1
ne

dne
dθ

(2.42)

The temporal and the spatial walk-off are usually compensated by identical
crystals half the length of the SPDC-crystal that are placed in the signal (e/o)
and the idler (o/e) beam and rotated by 180◦.

This is achieved by rotating the signal and idler beam by 90◦ using a half-wave plate
and placing two crystals of the same type but half the length and rotated by 180◦ in
each arm with respect to the optical axis. With ordinary and extraordinary beams
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Fig. 2.10: Transversal walk-off compensation for SPDC in a BBO. Due to the birefrin-
gence of the nonlinear material, the e-polarized wave packet gets refracted and
transversally offset relative to the o-polarized wave packet. After exiting the
crystal, the transversal walk-off increases the distinguishability, therefore reduc-
ing the quality of entanglement. Placing a half-wave plate at 45◦ exchanges the
o-polarized with the e-polarized wave packet. A nonlinear crystal of half the
thickness of the main crystal induces a walk-off on the formerly o-polarized wave
packet, shifting the wave packets back together. As for the temporal walk-off
compensation, assuming that most of the down-conversion takes place close to
the crystsal center, the overlap and the entanglement quality is overall increased.

exchanged, the compensation crystals compensate the walk-off induced by the main
crystal.

Two of the first nonlinear crystals used for SPDC were KDP and BBO. Since BBOs are
still the most widely used crystals including two of the three experiments discussed
in this thesis, we will take a closer look at its properties and its uses.

BBO

Beta-barium borite is a uniaxial negative crystal, i.e. nf < ns (’f’ denotes the fast, ’s’
the slow axis of the crystal) ne < no transparent in the range 190 − 3000nm [80].
When the pump beam enters the BBO crystal at an angle θ with respect to the optical
axis the refractive index for the extraordinary beam depends on the angle. In a
BBO, phase-matching can only be achieved for an incoming beam of extraordinary
polarization. The down-conversion processes possible in a BBO are depicted in figure
2.11.

In type-II down-conversion, the signal and idler beam exit the BBO in the form of
two cones of orthogonal polarization that fulfill the phase-matching conditions. One
of the cones contains photons in the ordinary polarization mode, the other cone in
the extraordinary polarization, e.g. e(V )→ e(V ) + o(H). Tilting the crystal changes
the size of the cones and allows for the ordinary and the extraordinary beam to
overlap. At the cross sections of the two cones, horizontally and vertically polarized
photons overlap. This can be used to create polarization-entangled states of the
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Fig. 2.11: (a) Type-I SPDC. Emission cones: Two nonlinear crystals with crossed optical
axes are stacked together. The pump beam is polarized diagonally. On average,
half of the incident light is e-polarized relative to the optical axis of the first
crystal and the other half relative to the second crystal. If down-conversion
takes place at the intersection between the two crystals, the polarization of the
generated photons cannot be determined with certainty, creating a superposition
of o-polarization with respect to the first or the second crystal. Since both photons
are o-polarized, the emission cones are both centered around the pump beam,
the size determined by the point of down-conversion in the crystals. To the right,
a projection of the transverse plane shows the diagonally polarized pump beam
in the center and photons of ambiguous polarization at the overlap of the cones.
Photons at opposite points of the cones are polarization-entangled. (b) Type-II
SPDC. Emission cones: The e-polarized pump beam generates one o-polarized
and one e-polarized photon in the nonlinear crystal. After exiting of the crystal
the e-polarized emission cone is spatially offset relative to the o-polarized cone
due to the birefringence. The cut in the transverse plane to the right depicts the
pump beam centered in the o-polarized cone and above, the e-polarized cone.
Photons at the intersection points of the cones are ambiguous in polarization,
giving rise to entanglement.
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form 1√
2

(
|H〉 |V 〉+ eiφ |V 〉 |H〉

)
(where φ is a relative phase) as long as the spatial

and temporal walk-off are compensated, usually by placing a half-wave plate and a
compensation BBO in the signal and idler arms as described above.

Unfortunately, while the compensation of walk-off effects allow for high coherence
between the emitted photons, both type-I and type-II sources based on SPDC in a
nonlinear crystal suffer from multiple disadvantages additional to the low efficiency
and the linear scaling with pump power. Firstly, since η is proportional to the
pump field strength and the (usually small) second-order susceptibility, which shows
that the proportion of photons that are created in the signal and idler mode is
small and most of the times signal and idler will remain in the vacuum mode, no
down-conversion taking place. It also implies that the intensity of SPDC scales
linearly with the pump intensity Ip = |Ep|2 whereas classical effects such as SHG
scale quadratically. In the equations 2.37 and 2.40 we dropped higher order terms
containing multi-pair emissions of the form |n〉 |n〉. These terms become relevant
when the pump field strength contained in η is increased.

Secondly, in both configurations, entangled photon pairs are emitted non-collinearly.
In type-I, the entangled photons are located at opposite points in the cones, in
type-II sources entangled photons are in the intersection lines of the cones. Spatially
selecting the entangled photon pairs using single-mode fibers, effectively discards
the majority of the emitted photons and leads to inherently small count rates.

Thirdly, reducing the phase mismatch ∆k in experiments requires careful alignment
and cannot be completely disposed of due to dispersion and the finite crystal length
L. If ∆k 6= 0, it results in position-dependent phases ∆k · r in the medium, leading
to destructive interference between the pump and the daughter fields and therefore
to lower returns and periodic fluctuations in the output intensity.

While the efficiency of SPDC sources is inherently limited by its very nature, the
development of new source designs allows to maximize the spatial collection of
photons and minimize the effect of the phase-mismatch. We next consider SPDC
sources collinearly (αs,i = αp = 0) emitting frequency-degenerate (λs 6= λi) photon
pairs. Furthermore, the efficiency is increased by introducing another type of phase-
matching known as quasi-phase-matching.

2.2.4 Quasi phase-matching

Certain nonlinear materials can be modified to make the nonlinearity of the material
position-dependent. Specifically, the sign of the effective nonlinear coefficient deff is
periodically reversed, turning the material in a nonlinear grating with periodicity
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Fig. 2.12: Periodical poling of a nonlinear crystal. The effective nonlinearity of the
material deff which depends on the direction of the optical axis (indicated with
the arrows) changes its sign every grating period Λ along the direction z.

Λ. This technique can be used to reset the phase mismatch periodically, therefore
increasing the efficiency of nonlinear processes such as SPDC. We define the phase-
mismatch of m-th order by

∆km ≡ ∆k −m2π
Λ (2.43)

where m is a positive or negative integer. Therefore, from the definition the phase-
mismatch

∆k = kp − ks − ki (2.44)

we get the quasi-phase-matching condition

∆km = 2π
(
np
λp
− ns
λs
− ni
λi
− m

Λ

)
= 0 (2.45)

Therefore, choosing the poling periodicity as

Λ = m
2π
∆k (2.46)

we can achieve phase-matching. In essence, instead of tuning the incidence angle in
the crystal as in type-I and type-II, a crystal with an appropriate poling periodicity
is constructed for quasi-phase-matching. The periodic poling of the nonlinearity
is usually achieved by thermal or ferro-electric flipping of the electric polarization.
Since Λ is highly temperature-dependent, usually the temperature of the crystal has
to be tuned to achieve optimal periodicity.
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Fig. 2.13: Positive and negative phase mismatch vectors ∆k in a nonlinear crystal. The
momentum phase-matching condition in this case is given by kp = ks + ki + ∆k.
By periodically poling the crystal an appropriate quasi phase-matching order m
can be chosen to cancel the positve, the negative or both phase-mismatch vectors.

Some of the most used periodically poled crystals for SPDC are potassium titanyl
phosphate (KTP) and lithium niobate (LN) (referred to as ppKTP and ppLN, re-
spectively). Employing crystals suitable for quasi-phasematching can increase the
efficiency of down-conversion by a factor proportional to the square of the number of
periods in the structure [64]. A number of different architectures for SPDC sources
based on QPM in periodically-poled nonlinear crystals have been developed in the
last two decades. Among the most common designs are double-crystal single-pass
sources in a Mach-Zehnder interferometer, where a pp crystal is placed in each arm
and the output is combined afterwards, and single-crystal double-pass configurations
where a pp crystal is placed in a Sagnac loop pumped from both sides. Both of these
designs require sophisticated alignment, negating one of the advantages of typical
QPM sources.

Fortunately, attempts are made to design QPM sources that are both easy to align
and more efficient than sources based on birefringent phase-matching. For the
experiment in 4.2, we use a source introduced in [81] where entangled photon pairs
are generated by overlapping two SPDC processes in a single crystal during a single
pass. As in every QPM source, the phase-mismatch can be reset by periodical poling
every period Λ = m2π/∆k. In general, ∆k can be positive or negative, resulting in
the two cases depicted in figure 2.13. To counteract the phase-mismatch, the QPM
order m has to be chosen positive or negative accordingly. The output state of the
source can then be written as the sum of two terms

|Ψ〉out := α |Ψ+〉+ β |Ψ−〉 (2.47)
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where |Ψ±〉 correspond to SPDC processes achieved by compensating ±∆k. While
in most setups, only one of the terms is phase-matched, it is possible to configure
the crystal such that both SPDC processes contribute to the output state. Two pairs
of photons with wavelengths

λs+, λi+

λs−, λi−
(2.48)

are then emitted collinearly with respect to the pump beam. Here, the down-
conversion is of type-II and we denote the signal photons as horizontally and the
idler photon as vertically polarized. The pump and the crystal can be set up such
that two wavelengths with different polarizations are overlapped and cannot be told
apart, i.e.

λH+ = λV−

λV+ = λH−
(2.49)

Since then there is no information if the pair originated from |Ψ+〉 or |Ψ−〉, the total
output state is entangled in polarization and wavelength and is given by

|Ψ〉out = αâ†HB â
†
V R |0〉+ βâ†HRâ

†
V B |0〉

= α |H〉 |V 〉 ⊗ |B〉 |R〉+ β |H〉 |V 〉 ⊗ |R〉 |B〉
(2.50)

where B denotes the short and R the long wavelength. The output state can be
spatially separated in modes 1 and 2 by either using a PBS, reducing the state to a
wavelength-entangled state or a dichroic mirror, creating a polarization-entangled
state

|Ψ〉 = (α |H〉1 |V 〉2 + β |V 〉1 |H〉2)⊗ |B〉1 |R〉2 (2.51)

as it is done in the experiment here. In general, the superimposed SPDC processes
have a different spectral width as well as unequal amplitudes. To avoid spectral
distinguishability and equalize the amplitudes, a narrowband filter is placed in the
brighter arm. The resulting polarization-entangled state is then of the approximate
form

|Ψ〉 ≈ 1√
2

(
|H〉1 |V 〉2 + eiφ |V 〉1 |H〉2

)
(2.52)

The phase φ can be set using calcite crystals, which at the same time can be tuned to
cancel the temporal walk-off induced in the crystal due to dispersion. If the phase is
set appropriately, the final state is the Bell state |Ψ−〉.

The two main applications for SPDC in this thesis are the creation of single photons
and the creation of polarization-entangled photon pairs.
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2.2.5 Application: single-photon source

Parametric down-conversion simultaneously generates two photons, signal and idler,
spontaneously. Since the process is probabilistic, the photons tend to bunch and
measuring the second-order coherence function of either the signal or the idler arm
gives the statistical properties of a thermal source, i.e. g(2)(0) = 2. Since the photons
are always created in pairs at the same time, the detection of a photon in the idler
mode implies the presence of a photon in the signal mode. This property of SPDC
can be exploited to create an artificial single-photon source by using one photon as a
herald for the second photon [35]. The heralded photon then shows the statistics of
a single-photon source.

To test this, the idler photon is detected by a SPAD and the time ti is tagged. The
signal photon is guided to a Hanbury-Brown-Twiss interferometer consisting of a
50 : 50-beam splitter and SPADs in both outputs. The setup can be used to measure
the autocorrelation function of the signal photons heralded by the idler photon. In
the case of antibunching, at most one signal photon should then be detected in the
interval ti + τ8, i.e. low coincidences in the HBT interferometer. To quantify the
degree of antibunching, the coherence function conditioned on the detection of an
idler photon, can be expressed in the form

g
(2)
h (ts1 , ts2 |ti) = Pssi(ts1 , ts2 , ti)R(0)

Psi(ts1 − ti)Psi(ts2 − ti)
(2.53)

where Pssi is the trifold coincidence rate and R(0) is the rate of pair-generation
[82]. In the special case of g(2)

c (ti, ti + τ |ti) = g
(2)
c (0, τ, 0), antibunchig results in

g
(2)
c (0, τ, 0) ≈ 0 which is one of the most important criteria for single-photon sources.

Recently, g(2)c-values of approximately 0.07 using a ppKTP crystal [82] and 0.088
for an on-chip source [83] have been reported. Note that g(2)

c can be reduced
by reducing the power of the pump laser, however, at the expense of the count
rate. Unfortunately, the quality of these types of sources is intrinsically limited by
the non-zero probability of multi-pair emission. Specifically, increasing the pump
intensity to achieve higher brightness leads to more multi-pair emissions which in
turn reduces the antibunching properties and the g(2)

c function. Compared to SPDC
single-photon sources, ’true’ single-photon sources such as quantum dots, ions and
NV centers offer higher single-photon rates while retaining a large g(2)

c factor and
high indistinguishability.

For example, the heralded SPDC source introduced in [84], based on QPM in a ppKTP,
yields a down-conversion probability of 0.05 when pumped with a pulsed laser of
80MHz repetition rate at 100mW, which results in a single-photon rate of 4MHz and

8this interval depends on the specific experiment and the detectors used, but is typically in the regime
of ns and chosen far shorter than the coherence time of the photon pair
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a g(2)
c function of 0.02− 0.05. A quantum dot source such as [85], on the other hand,

provides down-conversion rates as high as 0.3 at a repetition rate of 80MHz, giving
a single-photon rate of 24MHz and a g(2)

c function of < 0.02. Additionally, when
spatial encoding is desired, the rate for higher photon numbers sharply decreases for
the SPDC source due to the dependence on the down-conversion probability. The
5-photon rate is around 1Hz for the SPDC source while the quantum dot source still
yields a rate of 9.5kHz.

For these reasons, real single-photon sources are slowly replacing SPDC single-
photon sources in applications where high-quality single-photons are crucial. In
many other applications, however, single-photon sources based on SPDC are still the
option to go for based on their simplicity and versatility, in contrast to the above
mentioned sources which require complicated and expensive setups to function
properly and are still in the early stages of development.

2.2.6 Application: Entangled photon pair source

The second application is the creation of polarization-entangled photon pairs [36].
The setup of the source is the same as for a heralded single-photon source, however,
the coherence of the photons has to be maintained during manipulation and until
detection in a particular polarization basis. To ensure a high quality of entangle-
ment (i.e. visibility and fidelity), filtering and walk-off compensation is especially
important. Ideally, the state generated is one of the Bell states, the particular state
determined by the type of phase-matching. As mentioned in 2.1.5, any Bell state can
be transformed in any other Bells state by means of local operations, i.e. placing a
phase shifter and a half-waveplate in one of the arms to control the relative phase
and the polarization state of one photon, respectively.

2.3 Linear optical components

The evolution of quantum states after their creation and before their measurement is
described by applying unitary operators to the state as described in Chapter 2.1.1. In
a quantum optical experiment, unitary operators are implemented by linear optical
components. In contrast to nonlinear elements discussed in the previous chapter,
linear components leave the number of photons invariant, conserving the inner
product. Of course, there are no real elements that perfectly apply the corresponding
unitary due to unwanted effects including the nonzero reflectance of phase retarders,
transmittance of mirrors and absorption in fibers. Fortunately, the deviations from
unitarity are small enough in many cases that the operations can be assumed unitary
in the following applications. Some of the unitary operators that will be introduced
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in this chapter can be conveniently represented with a matrix in the Jones formalism
known from classical optics. Other operators, however, have to be adapted to account
for the quantum nature of the incoming states, since the outgoing state differs from
the expected state in a classical treatment.

To describe the effect of multiple unitaries acting on the state successively, e.g. Û1

first and Û2 afterwards, the matrices are applied on a polarization state |Ψ〉 as
Û2Û1 |Ψ〉 consistent with ordinary matrix multiplication being read from right to
left. We will focus on two types of components: one for controlling the spatial
evolution of photons which includes the splitting and recombination of beams and
one for manipulating the polarization degree of freedom, i.e. phase retarders and
polarizers. Of course, these components are not generally exclusive, as can be seen
in the example of polarizing beam splitters whose spatial transformation depends on
the polarization mode.

2.3.1 Beam splitters

A beam splitter divides incoming light in two parts by transmitting one part and
reflecting the other. In many cases, a beam splitter is made of a glass substrate coated
with a dielectric material or a metal. However, also prisms or fads can induce a beam
splitting operation. In classical optics, the action of a beam splitter is characterized
by how much of the amplitude of the incoming light is transmitted (t) and how
much is reflected (r). More technical, an incoming normalized amplitude A1 is split
in two outgoing amplitudes A2 = rA1 and A3 = tA1 such that the sum of intensities
gives

|A1|2 = |A2|2 + |A3|2 = 1

in the case of an ideal, lossless beam splitter. This requires |r|2 + |t|2 = 1 for the
reflectance and the transmittance. To describe the operation of a beam splitter for
quantum input states, we quantize the classical amplitudes by assigning correspond-
ing operators, i.e. Ai → âi. â and the adjoint â† are the bosonic annihilation and
creation operators defined as

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉

where |n〉 is a state occupied by n identical bosons, obeying the commutation
relations [âi, â†j ] = δij and [âi, âj ] = [â†i , â

†
j ] = 0 (i.e. ladder operators acting on

different Hilbert spaces commute). In the quantum mechanical description of the
beam splitter, unitarity requires that the classically empty second input port of the
beam splitter is occupied by a quantized vacuum field b̂. Therefore, we update
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the beam splitter transformation to include the vacuum field giving ĉ = tâ + rb̂

and d̂ = râ + tb̂ (see Figure 2.14). This relation can be written in terms of a
transformation matrix as (

ĉ

d̂

)
=
(
t r

r t

)(
â

b̂

)

Expressing the complex transmittance t and the reflectance r in polar coordinates as
t = tre

iφt and r = rre
iφr where {tr, rr} are real numbers and {φt, φr} are the phase

shifts of the transmitted and reflected beams, respectively. For 50 : 50 beam splitters,
as will be used in the following applications, rr = tr = 1√

2 . If the beam splitter is
based on a dielectric layer, the transmitted and reflected beam differ by a phase
factor of ±π/2, i.e. φt/r = φr/t± π/2. We assume a π/2 shift for the reflected beam
and set φt = 0, since global phases are not observable, to get the transformations

ĉ = 1√
2

(
â+ ib̂

)
d̂ = 1√

2

(
iâ+ b̂

) (2.54)

which corresponds to (
ĉ

d̂

)
= 1√

2

(
1 i

i 1

)(
â

b̂

)

We now apply the transformations in 2.54 to the three cases relevant in the following
chapters, starting with light closest to ’classical’ light, namely coherent light usually
emitted by lasers9. As noted before, coherent light is an infinite sum of number
states |α〉 ∝

∑∞
n=0 |n〉 Applying the beam splitter transformation as defined above to

an input of coherent light in one mode and the vacuum in the second mode gives

|0〉a |α〉b → exp
{
α√
2

(
iĉ† + d̂†

)
− α∗√

2

(
−iĉ+ d̂

)}
|0〉c |0〉d = | iα√

2
〉
c

| α√
2
〉
d

(2.55)

meaning a coherent state gets split in equal parts giving coherent states in both
output modes. The i in mode 2 represents the phase shift of π/2 in the reflected
mode. This result is not surprising, as one would also classically expect laser light
to be present in both output modes of a beam splitter when illuminated. Next, we
discuss the case of a single photon in one input mode of the beam splitter and the
vacuum mode in the second, i.e. â† |0〉a |0〉b = |1〉a |0〉b, induces the transformation

|1〉a |0〉b →
1√
2

(ĉ† + id̂†) |0〉c |0〉d = 1√
2

(|1〉c |0〉d + i |0〉c |1〉d) (2.56)

using 2.54.

This case was shown by Grangier in 1986 [86] and it was one of the first exper-
iments showing the particle nature of light. Note that the output state is a pure

9Note that in general, most natural light sources can be made coherent by appropriate filtering
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r:t

Fig. 2.14: Quantum mechanical description of a beam splitter. The transmittance is
denoted by t, the reflectance by r. The input modes of the beam splitter are
either occupied by a photon generated by â† or b̂†, or remain in the vacuum
mode |0〉. Mode-mixing in the beam splitter results in the two output modes
ĉ† and d̂†, related to the input modes as defined in 2.54. If the input consists
of either one photon or two distinguishable photons, they are transmitted with
probability r and transmitted with probability t. If two indistinguishable photons
are going through the beam splitter coming from the two different input modes,
interference results in both photons always exiting the beam splitter in the same
output mode.

bipartite entangled state. Detecting the photon in one path immediately collapses
the remaining path in the state of no photon. However, this particular entanglement
is of limited direct use since there is still only one single photon carrying information.
Especially local operations such as bit flips cannot be implemented directly since
they would have to add or remove a photon from a spatial mode and therefore
require some form of nonlinearity. For this reason, the spatially entangled state is
oftentimes translated to polarization which makes manipulation much easier. One
tool to transform polarization qubits to spatial qubits and vice versa is a polarizing
beam splitter which we are going to describe in the next Chapter. For now, let us
discuss the final case of input states relevant for us, which are two single photons
each of them occupying one input mode, i.e. |1〉0 |1〉1. We again apply the beam
splitter transformation UBS:

|1〉a |1〉b →
1
2
(
ĉ† + id̂†

) (
iĉ† + d̂†

)
|0〉a |0〉b = 1√

2
(|2〉c |0〉d + |0〉c |2〉d) (2.57)

In this case, a curious effect emerges: The output state contains both photons either
in mode c or in mode d but there is no contribution of one photon being in either
mode, i.e. |1〉c |1〉d. This effect was first shown in 1987 and is known as Hong-
Ou-Mandel effect after the discoverers of the same name [87]. The reason of the
photons being either both in port c or in port d is a direct result of interference
between indistinguishable particles of bosonic nature. We will further discuss Hong-
Ou-Mandel interference in Chapter 5.9.
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PBS

Fig. 2.15: Quantum mechanical description of a polarizing beam splitter. The input
state αâ†H + βâ†V is split in the orthogonally polarized terms. The horizontal
part with amplitude α is transmitted while the vertical part with amplitude β is
reflected and is phase-shifted by i.

2.3.2 Polarizing beam splitters

Polarizing beam splitters spatially separate ordinary and extraordinary polarization
components of incident light. A typical cubic PBS consists of two anisotropic (uniax-
ial) triangular prisms glued together and are designed to transmit horizontally and
reflect vertically polarized light. The degree of separation depends on the design of
the beam splitter, here we use Glan-Thomson beam splitters that reflect vertically
polarized light by a 90◦ angle, offering a large spatial separation. They are one
of the most commonly used optical components in polarization optics since they
offer a convenient way to translate polarization into spatial modes enabling full
tomography of the polarization state of light when photodetectors are placed in both
output modes [88]. Note that while light in the state |H〉 gets fully transmitted and
light in |V 〉 gets reflected, a polarizing beam splitter acts as 50 : 50 beam splitter for
incident light in diagonal or circular polarization states.

A special case of polarizing beam splitters are partially-polarizing or polarization-
dependent beam splitters where the transmission and reflection coefficients are
based on the incident polarization. Such unbalanced beam splitters are necessary
for the implementation of nonlinear quantum gates, for example the CPhase (CZ)
gate in section 3.3 or for state estimation protocols.

2.3.3 Linear absorbing polarizer

A linear absorbing polarizer is a filter that transmits light polarized in the direction
of its transmission axis and absorbs the orthogonally polarized component. In this
sense a linear polarizer acts similarly to a polarizing beam splitter separating light
based on polarization. Contrary to polarizing beam splitters, where both orthogonal
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transmission axis

grating orientation

unpolarized light

V

(a) Linear polarizer with vertical transmission
axis

transmission axis

grating orientation

unpolarized light

D

(b) Linear polarizer with diagonal transmis-
sion axis

Fig. 2.16: Illustration of a linear polarizer. The polarizer consists of a stretched grating
that interacts with the incident light. The component of light parallel to the
grating is absorbed while the component orthogonal to the grating is transmitted.
If the incident light is a photon, the polarizer acts in the same way. Arbitrary
polarization states get projected onto a linear polarization state determined by
the orientation of the transmission axis. (a) shows the polarizer with a vertically
oriented transmission axis, therefore transmitting only vertically (V) polarized
light. In (b), the polarizer is rotated to 45◦, only transmitting diagonally (D)
polarized light.

polarization states are preserved and can be further processed, a linear polarizer
absorbs the light polarized orthogonally to the transmission axis, destroying the
quantum state.

Linear absorptive polarizers are used to prepare or probe the polarization state of
light in optical experiments since they can be rotated to transmit arbitrary linear
polarization states. Depending on the wavelength the filter consists of a heated and
stretched polaroid foil (for the visible spectrum) or stretched wires (for infrared)
are used. Light polarized in the direction of the wires is absorbed due to interaction
with the dipole moment of the material while orthogonal light is transmitted. The
transformation matrix is given by

M̂H = |H〉 〈H| =
(

1 0
0 0

)
M̂V = |V 〉 〈V | =

(
0 0
0 1

)

M̂D = |+〉 〈+| = 1
2

(
1 1
1 1

)
M̂A = |−〉 〈−| = 1

2

(
1 −1
−1 1

) (2.58)

for a polarizer transmitting horizontal light M̂H , vertical light M̂V or diagonally
polarized light M̂D and M̂A. As can be noted immediately, these transformations
are not unitary and correspond to a projection operator M̂m = |m〉 〈m| into a linear
polarization state. Since the orthogonal polarization is absorbed, it is not possible
to access a complete polarization basis simultaneously as is the case when using a
polarizing beam splitter and two detectors.
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2.3.4 Waveplates

A waveplate is a type of polarization retarder implemented in form of a birefringent
material such as cristalline quartz that has slightly different indices of refraction in
the direction parallel and orthogonal to the optical axis of the material. Therefore,
the velocity of light in the material depends on the direction of polarization, leading
to a relative phase shift between two differently polarized components of the incident
light. Specifically, the phase of incoming light orthogonal to the optical axis of the
waveplate (called slow axis) is delayed by a phase factor φ whereas light polarized
parallel to the optical axis (fast axis) is unaffected. The effect of a waveplate acting
on a polarization state is described by the operator

UWP =
(

1 0
0 e−iΓ

)
(2.59)

where we set the fast axis in x-direction and the slow axis in y-direction without loss
of generality. The phase shift Γ is related to the thickness of the waveplate d relative
to the wavelength λ by

Γ = 2πd(ns − nf )
λ

(2.60)

where ns is the refractive index along the slow and nf is the refractive index along
the fast axis. For example, using cristalline quartz, the thickness for a half waveplate
for telecom wavelength is around 88µm. Apart from the desired retardance for a
specific wavelength that determines the thickness of the waveplate, two other criteria
for consideration are the reflectance which is minimized by coating the waveplate
with an anti-reflection coating, and the dependance of the retardance on the angle
between the angle of incidence and the surface of the waveplate. The latter criteria
comes from the fact that the surfaces of the waveplate are not perfectly parallel as
would be the ideal case. If the angle of incident differs from 0◦ with respect to the
surface, the refraction in the material leads to an offset in the outgoing beams that
is especially noticeable when the waveplate is rotated. Therefore, ensuring a high
degree of parallelism is an important factor for the performance of waveplates.

A waveplate that shifts the phase by exactly Γ without excess is called zero-order
plate. They offer a high stability over a broad wavelength range (bandwidth) and
temperature stability. However, due to the required thickness, the fabrication and
handling can be delicate. For that reason, in many cases multi-order waveplates are
used where the retardance is the required phase shift is Γ + n2π whith n = 0, 1, 2, ....
This makes the waveplate thicker and therefore easier to produce. For the designated
wavelength λ, multi-order waveplates offer the same performance as zero-order
waveplates, however, their bandwidth is comparably smaller and they are more
temperature-sensitive (since the refractive index changes with temperature). A
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compromise of zero-order retardance and the more robust design of multi-order
waveplates are effective zero-order waveplates where two waveplates with a slightly
different thickness are glued together such that the fast axes of the first waveplate
is orthogonal to the fast axis of the second waveplate, therefore almost cancelling
the phase shift, effectively reducing it to the effect of a zero-order plate. These
waveplates also offer a broad wavelength range and are not as sensitive to the angle
of incident compared to multi-order waveplates. If the incident light is in the linear
polarization states |H〉 or |V 〉, that is to say parallel or orthogonal compared to the
optical axis, the waveplate doesn’t change the state, only adding a global phase to
|V 〉. However, diagonally or circularly polarized light gets transformed into different
states depending on Γ. The most commonly used waveplates sketched in Figure 2.17
are half- and quarter-waveplates:

Half-waveplate

A half-waveplate (HWP) induces a phase shift of Γ = π for light propagating parallel
to the slow axis. Diagonal and circular polarization states are rotated by 90 deg,
e.g. |+〉 into |−〉 and |R〉 into |L〉. Equivalently, the waveplate may be rotated by
an angle θ relative to the x-axis using WP ′ = R(θ)WPR(−θ) which results in the
following transformation matrix:

ÛHWP = ei
π
2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
(2.61)

Quarter-waveplate

A quarter-waveplate (QWP) shifts the polarization along the slow axis by a quarter
wavelength or Γ = π/2. The transformation is given by

ÛQWP = 1√
2

(
1 + i cos 2θ i sin 2θ

i sin 2θ 1− i cos 2θ

)
(2.62)

For example, linearly polarized light is transformed into a circular polarization, e.g.
|+〉 into |R〉 and |−〉 into |L〉. On the Poincaré sphere (see Figure 2.1b), the effect
of rotating a waveplate by an angle θ relative to the input state can be depicted as
a rotation of the state by an angle of 2θ as seen directly in the components of the
matrix in the relations 2.61 and 2.62.

Quarter- and half-waveplates are among the most important elements in quantum
optics since they are used to implement single-qubit unitary operators defined in 2.13.
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(a) Half-wave plate
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R

(b) Quarter-wave plate

Fig. 2.17: (a) A half-wave plate with an optical axis rotated by θ = 45◦. The half-wave
plate can be used to rotate the polarization of light. Here, incident light of vertical
polarization gets rotated by 2θ to horizontal polarization. The symbol on the
lower left is the depiction of a half-wave plate in the following setup schemes.
(b) A quarter-wave plate rotated by θ = 45◦. It has half the thickness of a
half-wave plate and transforms incident light of linear (or diagonal) polarization
to circular polarization and vice versa. Here, incident light of vertical polarization
gets transformed to right-handed circular polarization. The symbol in the lower
left will be used to symbolize quarter-wave plates in the following experimental
setups.

Specifically, we can decompose this unitary into a combination of three waveplates
to induce arbitrary rotations on the Bloch sphere

Û = ÛQWP(γ)ÛHWP(β)ÛQWP(α) (2.63)

for angles α, β and γ. In table 2.1, the most important single-qubit unitary operations
are listed together with the required settings of the waveplates (up to global phases).
To analyze arbitrary polarization states, the state is usually rotated to the H/V -basis
and split in orthogonal spatial modes using a PBS. For this transformation, a QWP
followed by a HWP are sufficient [90]:

ÛH/V = ÛHWP(β)ÛQWP(α) (2.64)

The standard bases for polarization-qubits and the required waveplate setting to
transform them to the H/V -basis are given in table 2.2. Mechanical waveplates that
are rotated physically, are among of the most used optical elements to manipulate
and analyze the polarization state of light, since they are available in a wide variety
of specifications and comparably cheap. In applications that require fast, active
polarization manipulation, however, optical elements that rotate the polarization
state without having to be rotated physically offer a distinct advantage.
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Single-qubit gate Symbol Waveplate setting

Identity 1 QWP(0)HWP(0)QWP(0)

Pauli-X X HWP(π4 )

Pauli-y Y QWP(π4 )HWP(0)

Pauli-Z Z HWP(0)

Hadamard H HWP(π8 )

X-rotation RX(θ) QWP(π2 )HWP(− θ
4)QWP(π2 )

Y-rotation RY (θ) QWP(π2 + θ
2)HWP( θ4)QWP(π2 )

Z-rotation RZ(θ) QWP(π4 )HWP(−π
4 −

θ
4)QWP(π4 )

Tab. 2.1: Waveplate settings for the most common single-qubit unitaries. The angle θ
described the rotation on the Bloch sphere, while the angles of the waveplates
correspond to the physical rotation angles relative to the incident polarization.
Note that any gate might also induce a global phase. Source: [89]

Input→ QWP HWP → Output

H/V 0◦ 0◦ H/V

D/A 45◦ 22.5◦ H/V

R/L 45◦ 45◦ H/V
Tab. 2.2: Waveplate settings for the analysis of the standard polarization states. A

quarter- and a half-waveplate are sufficient to transform arbitrary input polariza-
tions to the H/V -basis. Source: [89]
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If the goal is to rotate a linear polarization state to a different polarization, faster
polarization retarders with a response time in the kHz regime, can be implemented
by utilizing the response of special materials to the application of a magnetic or an
electric field: For example, specific glasses rotate the polarization of a propagating
wave proportional to an externally applied magnetic field, an effect known as Faraday
effect [91]. In so-called nematic liquid crystals, stretched molecules are uniformly
oriented and randomly distributed creating an anisotropy. Applying an electric
field to this type of liquid leads to a realignment of the molecules inducing a phase
shift between polarization components of propagating light, effectively creating
a polarization retarder. One advantage of using polarization retarders that are
proportional to an external field is that the retardance can be varied by tuning the
applied field. This allows for arbitrarily tuneable waveplates where the phase shift
usually grows linearly with the thickness of the rotator as well as the magnetic flux in
case of a Faraday rotator and the degree of twist in a liquid crystal retarder (LCR).

In Chapter 3.2, the polarization of photons separated by around 1µs is manipulated
using a device called Pockels cell. It consists of a nonlinear electro-optical crystal that
induces a polarization-dependent retardance on light when an electrical voltage is
applied. The Pockels effect [92] describes the change of the refractive index linearly
with the electrical field strength E, i.e. ∆n ∝ E and is also called linear electro-
optical effect. An important figure of merit is the half-wave voltage Uλ/2, at which
the Pockels cell acts as a half-wave plate. While the voltage that has to be applied
is of the magnitude of kV for most materials, a Pockels cell offers switching times
of around 1MHz, way beyond the switching times reachable with any mechanically
rotated waveplates.

For the first experiment introduced in Chapter 4.2 liquid crystal retarders are used to
control the polarization state of single-qubit states offering a switching speed in the
kHz regime. A variable liquid crystal retarder is constructed by filling a solution of
liquid crystals in a cell surrounded by quartz glass in front and back and a conductive
material on top and bottom. The molecules have a stretched form and can be seen
as local uniaxial crystals where the optical axis is parallel to the long axis of the
molecules. With no voltage applied, the molecules are aligned in direction of the
light propagation, inducing a maximal delay for all incident light. When an AC
voltage is applied, the liquid crystals begin to align in direction of the electric field,
therefore changing the birefringence of the material and inducing a relative phase
shift to light polarized diagonally with respect to the optical axis, effectively rotating
the polarization state.

When transmitting light through an optical fiber, polarization of the input state is
usually scrambled due to thermal, vibrational or mechanical noise causing leakage
between arbitrary polarization modes. The original polarization state is usually re-
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stored using a combination of a quarter-, a half-, and another quarter-waveplate since
this combination offers full control of the polarization state (a specific ingoing state
can be transformed in an arbitrary outgoing state). Often times this type of polar-
ization control is implemented directly in-fiber, where waveplates are implemented
in form of fiber-stretchers. The mechanical stress induces a direction-dependent
change in the refractive index, effectively acting as a phase retarder. However, since
the fast and slow axis of a fiber stretcher are not as clearly distinguished as in a bulk
waveplate, fiber stretchers are usually not used for exact manipulation and analyzing
but for restoring a specific known state.

2.4 Single-photon detectors

The last crucial part of any (quantum-) optical setup is the readout and analysis
of the information carrier used, in this case photons. Photonic detectors are all
based on absorption of the photons, hence destroying the quantum state. An ideal
photodetector fulfills, among others, the following properties: every single incident
photon should induce a detection event in the detector, described as ’click’. This
property is quantified by the detection efficiency

η = ndetection

nincident
(2.65)

which is 1 for an ideal detector. Not every registered click is caused by a photon
incident from the experimental setup, however, since thermal photons (generated
via lattice vibrations) can cause clicks even if there are no photons impinging on
the active area of the detector. These photon counts are referred to as dark count
rate and is 0 in the case of an ideal detector (i.e. the detector is in the ground
state). After the detection of a photon, the detector should be able do immediately
detect a possible next incident photon, a feature defined by the dead-time τd of
the detector, τd = 0 in the ideal case. In every single-photon detector available,
the absorption of a photon is translated into an electrical signal fed to a counting
electronics. The time between the detection event of the photon and the translation
to the electrical signal can vary, a property named jitter ∆t, which is 0 for an ideal
detector. In this sense, the jitter is a measure of the uncertainty in the arrival time
of the detected photon. Finally, an ideal detector should be able to distinguish the
number of photons impinging on it at the same time, a property called photon-
number resolution. Detectors that do not possess this feature simply distinguish
between photon and no photon but do not give information about the number of
photons per event.

Naturally, real detectors differ from these ideal properties, but high detection effi-
ciencies, a low dark count rate, short dead-times, and a short jitter can be achieved
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in most commercial detectors available today. However, while there are techniques
being developed to improve photon-number resolution [93–96] , the detectors used
in the experiments described here do not offer the distinction between different
numbers of photons. In the following we are going to give an overview about the
most important features of the types of detectors used in the experiments in the
subsequent chapters.

2.4.1 Single-photon avalanche diodes

Single-photon avalanche diodes (SPAD) consist of a p-n-junction operated in reverse
bias at a voltage above the breakdown voltage. A sketch of a SPAD is reported
in Figure 2.18. When a photon hits the active area of the detector, an electron is
transitioned from the valence to the conduction band creating an electron-hole pair
in a process called impact ionization. The electron-hole pair sets off an avalanche of
carriers that increases exponentially and results in a measurable current in the mili
Ampere regime. This mode of operation is named Geiger mode, in contrast to an
avalanche photodiode where the current response is linear to the intensity of the
light, when the bias voltage is below the breakdown voltage. In order to stop the
avalanche current and reset the detector for the detection of the next photon, the
diode is quenched, i.e. the voltage is lowered to or below the breakdown voltage.
Finally, the voltage is raised again to restore the detector to the original state, ready
for a detection. The time the quenching takes is the dead-time of the detector and
depends on the specific layout and material. A scheme of the working principle of a
SPAD is reported in 2.19. Typical dead times of SPADs are in the range of µs to ns
with a jitter in the ps regime [97]. The specific semiconductor used depends on the
wavelength of interest: Silicon is used for the visible to near infrared range offering
efficiencies up to 85%. For longer wavelengths, the efficiency typically decreases
since the photons carry less energy. InGaAs detectors, which are used for detection in
the infrared, have typical efficencies around 20%. Increasing the bias voltage would
increase the efficiency, however, due to the enhanced sensitivity, the dark count
rate is increased as well. In order to reduce dark counts due to thermal photons,
InGaAs detectors are typically cooled to around 200− 250K which also decreases
the breakdown voltage making the detector more sensitive. Impurities and defects
in the crystal lattice can also lead to afterpulsing, an effect where one photon results
in two current pulses, i.e. two clicks. In general, SPADs offer the possibility to detect
single photons in a wide spectral range, while requiring relatively low power to
operate. The efficiency, however, strongly depends on the wavelength the SPAD is
constructed for.

For the detection of photons in the telecom, where the performance of SPADs is far
below the efficiency reached in the visible regime, an alternative type of detector
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Fig. 2.18: Schematics of an SPAD. A p-type semiconductor layer is connected to an n-type
semiconductor layer. A reverse bias voltage above the breakdown voltage is
applied to the diode. When a photon impinges on the active area, it is absorbed
by an electron in the p-type layer, creating an electron-hole pair. Due to the
strong bias voltage, the electron triggers an electron avalanche when entering
the n-type layer, increasing the current in the diode to a detectable magnitude.

that relies on a thermal effect and offers better properties in almost all mentioned
categories is used.

2.4.2 Superconducting nanowires

Superconducting nanowire single-photon detectors (SNSPDs) are narrow, thin wires
that are cooled to a temperature where the material gets superconducting (below
4K). They are biased with a current barely below the critical current density above
which the resistance gets back to normal. The working principle of a SNSPD is
sketched in Figure 2.20 and briefly described in the following. The absorption of
a photon leads to a localized heating breaking the superconductivity at the spot of
incidence. The current flows around the normal area which increases the current
above the critical density resulting in the normal resistance across the whole width
of the wire. This yields a voltage spike that can be detected and fed to a counting
electronics. The nanowire cools off and as soon superconductivity is restored, the
nanowire is ready for the next detection event. The cooling time, which is the
dead-time in this case is below 100ps which is much faster than in the case of SPADs.
Dark counts are naturally lower since the nanowires are cryogenically cooled and are
dominated by background photons that leak into the optical fibers (if not properly
shielded). Since a single nanowire only covers a tiny area, nanowires are usually
put in a meandering arrangement to increase the active area. To further increase
the detection efficiency, the nanowires can also be placed in a cavity that reflects
photons not absorbed. SNSPDs made of NbN are highly efficient in the infrared
regime and regularly reach detection efficiencies around 90% [98]. In addition to
their efficiency, the low dark count rate and the short dead-time, there is no chance
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Fig. 2.19: Work cycle of an avalanche photodiode run in Geiger mode. Before a detec-
tion event, the diode is in the öffßtate. In this state, the voltage is set to VA,
far above the breakdown voltage VBD. When a photon is absorbed, an electron
avalanche is triggered, leading to a current spike and setting the photodiode in
the state ön“. After detection, the photodiode is quenched by lowering the voltage
to about VBD to stop the current. The voltage is increased back to VA to reset the
photodiode for the next detection event. The time it takes the photodiode to go
back to the öffstate after the detection of a photon is the deadtime.

(1)

(4) (2)

(3)

Fig. 2.20: Working principle of a SNSPD. (1) Superconduction is enabled by cooling
the nanowire below a critical temperature. Current can then flow through the
nanowire without resistance. (2) An incident photon with energy hν creates a hot
spot on the nanowire when absorbed. The temperature is higher than the critical
temperature, breaking superconductivity at the spot of absorption. The current
flow circumvents the spot, increasing the current density. (3) Due to the high
current density at the sides of the nanowire, superconductivity is broken across
the whole width of the nanowire. The resulting voltage spike can be detected.
(4) Dissipation of the heat leads to a reduction of the temperature, eventually
restoring the superconducting state and resetting the nanowire.
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of afterpulsing due to the effect being thermal and not relying on charge carrier
avalanches.

On the other hand, SNSPDs are far more complex to manufacture and to maintain
than SPADs since they need to be cooled to cryogenic temperatures. Therefore,
they are used in applications where efficient photon detection is crucial. In this
thesis, the experiment described in Chapter 4.2 employs SNSPDs for the detection
of telecom-wavelength photons, however, the experiment could in principle also be
conducted with SPADs.
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3Blind quantum computing with a
classical client

Since personal quantum computers are a long road ahead, increasing focus lies in
the idea of a quantum server, or a quantum cloud. A client, Alice, with limited or
no quantum capabilities provides an input and directions for the computation to a
server, Bob, who has access to a universal quantum computer. After completion of
the computation, the output is sent back to Alice. For some reason, Alice doesn’t trust
Bob and therefore wants to keep the details of the computation private, i.e. the input
(if the input is quantum), the intended computation (if the encryption is not fully
homomorphic [99]) and the output. Bob wants to help Alice but cannot (or does not
want to) give Alice his device. Fortunately, quantum theory offers ways for Alice to
use Bob’s quantum computer without revealing information about the computation
to him. Scenarios where Bob conducts a quantum computations without knowing
the details are known as blind quantum computing.

The idea was first considered by Childs in 2001 [18] and developed further in the
following years. In 2009, Broadbent et al published a paper describing several
protocols for universal blind quantum computing able to detect a cheating server
and measures for fault-tolerance [17]. The protocols make use of a special graph
state called Brickwork state that allows universal computations with measurements
being restricted to the xy-plane (measurements in the z-direction would reveal
information to the server) [100]. The protocols described assume a client with
different quantum capabilities [101]: Alice might be able to prepare the input in
the form of single qubits; she might be able to conduct the final measurements and
apply the final round of corrections; or she might be completely classical. While the
last scenario seems to be the most desirable, it requires two space-like separated
quantum servers sharing entangled states. Naturally, this improves the complexity of
the implementation and reduces the applicability, at least short-term.

Numerous follow-up papers are assuming a client with the ability to prepare single-
photon states (e.g. [102]). While we do not go into details of the protocol, in
short Alice sends a sufficient number of qubits to Bob who entangles to create the
graph state. Alice then provides the measurement angles to Bob who returns the
measurement result to Alice for her to send the next angle. Alice uses random
numbers to hide the real measurement angles from Bob. She might also plant ’trap’
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of which she knows the measurement result to detect a dishonest Bob. After the
last qubit is measured, the protocol is concluded. The protocol requires a quantum
channel only in the first step to provide Bob with the physical qubits and can
afterwards be discarded since the subsequent information exchanged is classical.
However, as might have become clear in the Chapters describing photon sources, the
creation of single-photon states in an arbitrary basis is still a task of considerable
effort for the typical client. Therefore, BQC-protocols that assume a completely
classical client are of special interest for short-term quantum computing solutions.

In this Chapter, we start by describing basic concepts of quantum information theory
and information processing in terms of the unitary gate framework. We are then
going to introduce measurement-based quantum computing (MBQC), the framework
on which blind quantum computing protocols are based on. In the following part,
we are going to describe the main protocol of this Chapter, classically-driven blind
quantum computing, starting with the theory following the original paper [43], and
concluding with the properties of the planned experimental implementation.

3.1 Quantum Information Theory

In Chapter 2.1.1, we introduced general single-qubit states |Ψ〉 = α |0〉 + β |1〉 as
a fundamental entity in quantum theory. Here, we use qubits as the fundamental
building block for information encoding and manipulation. In contrast to classical
bits, which can take binary values, qubits can take infinitely many values quantified
by the probability amplitudes α and β. Since the 1980s, it is strongly believed
that computers based on qubits can outperform classical computers in various
tasks. Well-known applications include the simulation of quantum systems [15], the
determination if a function is constant or balanced [11], the factorization of large
numbers in prime factors [103] or the search of an entry in a database [14].

As in all applications described in this thesis, we use the polarization-degree of
freedom to encode quantum information in photonic qubits or, more specifically,
polarization-qubits. While photonic qubits are resilient against environmental deco-
herence and single-qubit gates can be easily realized using linear optical components,
they barely interact with each other. Since universal quantum computing requires
interaction between qubits, photonic qubits were for a long time ruled out as can-
didates for quantum computing. However, in 2001, Knill, Laflamme and Milburn
showed that universal quantum computing is indeed possible with photons using
linear optical components and a non-linearity in the detection process [37]. The
KLM scheme is a measurement-based scheme and closely related to the one-way
quantum computing scheme used for the BQC protocol discussed later. Before
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focusing on measurement-based quantum computing, we are going to introduce
some basic principles of quantum computing utilizing the unitary gate scheme [104].
One or more input states are transformed by the action of quantum equivalents
of classical logic gates. After the desired gates have been applied, the quantum
information contained in the transformed output state is readout by measurements
in the computational basis {|0〉 , |1〉}. Quantum logic gates are realized via unitary
transformations that coherently evolve the quantum states in time. As in classical
information theory, circuit diagrams can be used to graphically depict the evolution
of a quantum state and the applied unitaries:

|Ψ〉 U U |Ψ〉 (3.1)

However, while there is only one non-trivial single-bit gate for classical bits (the
NOT gate), there are infinitely many possible quantum logic gates corresponding to
infinitely many possible unitary operators. Some of he most important important
single-qubit gates are defined in table 3.1. Note that in this chapter, although
all single- and two-qubit gates introduced are unitary operators, they are written
without the hat to improve the readability.

The Pauli-X gate is the quantum equivalent of the classical NOT gate inducing a
bit flip and is equivalent, as the Pauli-Y and the Pauli-Z gate, to the corresponding
Pauli operators introduced in 2.7. The Hadamard gate transforms states from the
computational in the diagonal basis and vice versa. Finally, the phase gate R(θ) is
most commonly given for two specific phases defining

S =
(

1 0
0 i

)
T =

(
1 0
0 eiπ/4

)
(3.2)

S-gate adds a phase of π/2 and the T-gate a phase of π/4 to |1〉. Both the S- and
the T-gate are instances of the rotation operator Rn̂(θ) defined in 2.11 with n̂ = nz.
As mentioned in the Chapter introduction, a control two-qubit gate is required in
addition to single-qubit gates in order to ensure universality. These gates take two
qubits as input and perform an operation that is conditioned on the state of one the
qubits:

|Ψ〉1
U

|Ψ〉2 CU |Ψ〉1 |Ψ〉2

(3.3)

The qubits are labeled control and target qubit. Depending on the state of the control
qubit, the target is either left invariant or a unitary operation is performed. Two
potential two-qubit gates are defined in the following table:
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Single-qubit gates

Pauli-X
(

0 1
1 0

)
X

Pauli-Y
(

0 −i
i 0

)
Y

Pauli-Z
(

1 0
0 −1

)
Z

Hadamard H 1√
2

(
1 1
1 −1

)
H

Phase gate R(θ)
(

1 0
0 eiθ

)
S

Tab. 3.1: Essential single-qubit gates for quantum computation. The gates correspond
to unitary operators and can be expressed in form of a matrix. The circuit
representation of the gates is depicted in the right column

Two-qubit gates

CNOT/CX


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •

CPHASE/CZ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 •

Z

Tab. 3.2: Essential two-qubit gates for quantum computing. The controlled-NOT gate
CNOT and the controlled-phase gate CPhase take two qubits as input and perform
a conditional transformation on one qubit (target) depending on the state of the
second qubit (control). In the circuit representation in the right column, the top
channel is the control qubit, while the bottom channel is the target qubit displayed
with the respective conditional operation.
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The CX gate is a conditioned bit flip changing |0〉 → |1〉 and |0〉 → |1〉 if the control
bit is in |1〉. The CZ gate adds a conditional phase to the target if both the control
and the target bit are in state |1〉. An important property of both of these control
gates is their ability to generate entanglement. A Hadamard gate in combination
with a CX gate gives out one of the four Bell states depending on the input qubits.
For the purposes discussed in the following Chapter, however, the CZ is the more
suitable candidate: applied on a two-qubit state it induces the transformation

CZ |i〉 |j〉 = (−1)ij |i〉 |j〉 (3.4)

i.e. an input state |1〉 |1〉 acquires a phase shift of π. Note that the CZ gate is
symmetric with respect to labeling of control and target qubit (i↔ j).

Using single-qubit gates and one control gate, a universal set of gates can be con-
structed such that all possible n-qubit operations on a quantum computer can be
approximated by a finite sequence of gates of that set1. A common universal gate
set is {CX, S, T}. While entanglement-generating gates are necessary for a universal
gate set, they are not alone sufficient to ensure an advantage compared to classical
algorithms in terms of efficiency [106]. This requirement is met by the inclusion of
the T-gate which results in algorithms that cannot be simulated efficiently classically
(i.e. the simulation requires exponential time).

Up until now, we used the unitary circuit model of quantum computing to introduce
the different types of quantum logic gates. The computations is implemented by the
application of unitary gates on qubits, in effect coherently evolving the system in
time. To readout the results of the computation at the end, the quantum states are
measured which collapses the quantum state, converts the quantum into classical
information and concludes the circuit. There are, however, numerous models for
quantum computing which can prove more suitable than the circuit model for specific
applications, such as the adiabatic model [107][108], boson sampling [109] or the
topological model. For blind quantum computing introduced in Chapter 3 and the
experimental application, the most suitable mode is, however, one-way quantum
computing, a universal, measurement-based model for quantum computing.

1since there are (uncountably) infinite possible unitary quantum gates, an exact reconstruction of an
arbitrary unitary is not possible using a finite set of gates. We can, however, simulate an arbitrary
unitary using a finite sequence of certain gates resulting in a bounded error. Additionally, it has
been proven that the number of gates required for the simulation grows logarithmically, i.e. the
simulation using a universal gate set is feasible [105]

3.1 Quantum Information Theory 61



3.2 Measurement-based quantum computing

In contrast to the unitary circuit model, measurement-based quantum computing is
based on encoding the computation in adaptive sequential measurements. While they
are conceptually different, they are computationally equivalent and quantum gates
encoded in an MBQC scheme can also be depicted in terms of a circuit. The main
driving factors behind MBQC are implementations of instantaneous quantum poly-
time machines related to the research of the advantage of quantum computers, and,
important in this thesis, blind quantum computing. In any case, the fundamental
principle of information processing in MBQC models is the encoding of unitary
transformations through quantum teleportation induced by measurements.

In principle, measurement-based quantum computing can be divides in two schemes
which both rely on quantum teleportation: the Knill-Laflamme-Milburn (KLM)
scheme which is based on Bell pairs and two-qubit measurements including ancilla
qubits, and the one-way computing scheme (1WQC) introduced by Raussendorf and
Briegel, which relies on highly entangled cluster states and single-qubit measure-
ments [42, 110]. Both models are equivalent and based on the same fundamental
principles [111]. However, since the one-way model is more suitable for blind
quantum computing, we are going to restrict our discussion to this model from now
on and furthermore use the term MBQC to refer to one-way quantum computing
exclusively as is the case in most publications.

One-way quantum computing schemes start with the generation of a resource
state, a highly entangled multi-qubit state, and proceed with the computation via
measurement of single-qubits of the state in a suitable basis. The resource state is
consumed in this process and since measured qubits can’t be recovered, one-way
computing is irreversible or, ’one way’.

The general resource state used is an undirected graph G=(V,E)2 [112], an n-
dimensional set of vertices (qubits) connected by edges (entanglement between
vertices) (figure 3.1. A graph state |G〉 is defined as

|G〉 =
∏
a,b∈E

CZ(a,b) |+〉⊗n (3.5)

where CZ is applied to pairs of vertices (a, b). In short, to generate the resource
state is created from an input |+〉⊗n by applying a CZ-gate to each pair of connected
vertices [113]. Since CZ-gates commute, the order in which the gates are applied is
not important. While graph state may refer to arbitrary topologies, the graph state
defined here is special case in the form of a regular n-dimensional lattice and is

2i.e. a pair of sets V and E ⊂ V × V where for each e ∈ E and u, v ∈ V , e(u, v) = e(v, u)
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vertices (V) 

edges (E)

Fig. 3.1: Example of an open graph. The vertices V are partially connected by edges E.

called cluster state. Every horizontal line of physical qubits connected via CZ-gates
corresponds to one logical qubit. Vertical lines depict entanglement between physical
qubits in different horizontal lines.

An alternative and useful definition for the graph state is the description in terms of
the stabilizer language which in turn is defined as follows: An operator Â stabilizes
a state |Ψ〉 if and only if

Â |Ψ〉 = |Ψ〉 (3.6)

i.e. the state is an eigenstate of |A〉 corresponding to the eigenvalue +1 or is left
invariant by the action of Â. A subspace S is stabilized by Â if ∀ |Ψ〉 ∈ S, equation
3.6 holds. Furthermore, if a subspace or state is stabilized by a set of operators
{Â1, Â2, ...Ân}, that subspace or state is uniquely determined. The stabilizer for-
malism is used to describe operators that fulfill equation 3.6 and are additionally
elements of the Pauli group, i.e. tensor products of the identity and Pauli operators.
For certain states, a set of such operators can be found to uniquely determine the
state, e.g. the Bell states, codes for error correction and, of course, the graph state.
In this way, the graph state 3.5 is defined by

K̂i := X̂i

 ∏
j∈NG(i)

Ẑj

 (3.7)

as Ki |G〉 = |G〉. In words, for each qubit i ∈ V , there exists a stabilizer Ki that
consist of a Pauli X-gate applied to i and a Pauli Z-gate applied to all qubits j in the
neighborhood NG of i in the graph. The generating set of stabilizing operators can
be used to describe the unitary evolution of a state |Ψ〉 → Û |Ψ〉 by updating the
operators Âi → Û †ÂÛ accordingly. This way of describing the evolution of a state
is especially helpful in MBQC where measurement outcomes influence subsequent
measurements. Since certain operations such as Pauli gates map stabilizer states to
stabilizer states, it can be used to track and find the most efficient way to handle
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the effect of measurements. Finding the stabilizers for a specific cluster state also
uniquely identifies its structure, making it a tool to find the graphical depiction of
the state. After the graph state is prepared using |+〉 input states and applying the
entangling CZ-operator, the resource is ready for the computation:

As mentioned, the computation process in MBQC is encoded in single-qubit measure-
ments on the cluster state. The state or, more precisely, the entanglement between
the resource qubits, is consumed during the process. As in the circuit model, an
appropriate universal set of gates can be constructed for MBQC. We define the gate
set in terms of unitary operators and include a Hadamard-rotated phase gate

J(θ) := HR(θ)z =
(

1 eiθ

1 e−iθ

)
(3.8)

where H and R(θ) are both defined in 3.1 (and J(0) = H). Since any single-
qubit unitary can be decomposed in a series of rotations Û = J(θ0)J(θ1)J(θ2)J(θ3),
combining J(θ) and the required two-qubit gate CZ, we arrive at the universal gate
set {CZ, J(θ)} ∀θ for MBQC.

While the CZ gates are applied in the preparation of the state, single-qubit gates,
i.e. rotations on the Bloch sphere are encoded in the measurement bases. The bases
used are

Mj := {|0〉 , |1〉}

M θ
j := {|+θ〉 , |−θ〉}

(3.9)

where the states of M θ
j are defined as

|+θ〉 := 1√
2

(|0〉+ eiθ |1〉)

|−θ〉 := 1√
2

(|0〉 − eiθ |1〉)
(3.10)

with θ ∈ [0, 2π]. Measuring qubit j in the computational basis Mj , disentangles it
from the rest of the graph state and corresponds to the Z-axis on the Bloch sphere.
If the outcome of the measurement is 1, a Z correction gate has to be applied to the
former neighbors of the qubit. Measurements in the computational basis are required
for the creation of specific cluster states as will be shown later. The basis where the
computation is carried out is the M θ

j -basis covering the xy-plane of the Bloch sphere:
measuring a qubit in this basis is equivalent to a rotation J(−θ) on an entangled
qubit in the cluster state up to X or Z gates when the outcome is 1. These correction
gates are necessary due to the inherent randomness of quantum measurements.
Since the outcome for a measurement on qubit j is s = 0, 1, following measurement
angles have to be adapted in the case of s = 1 in order to make the computation
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Fig. 3.2: Cluster state representation of a single-qubit gate teleportation. Measuring
qubit |Ψ〉1 in the Mθ

1 -basis teleports |Ψ〉1 to |+〉2 along with the rotation gate
J(−θ)2 and a Pauli-X gate if the measurement on qubit 1 has result s1 = 1.

deterministic. Since the measurement angles depend on the outcome of former
measurements, the measurements have to be carried out in a partial order.

The fundamental principle behind this measurement-driven computation is quantum
teleportation: An unknown qubit is entangled with a known qubit and the unknown
qubit is measured. The information contained in the unknown qubit is thereby
teleported to the second qubit up to single-qubit rotations. Single-qubit gates
applied to the unknown input state are teleported to the second qubit along with
the amplitudes. Remarkably, instead of applying the single-qubit gate to the input
state, it can be shifted and absorbed in the measurement basis [114]:

Rz(−φ) |Ψ〉 • H M = {|0〉 , |1〉}

|+〉 ZsRz(−θ) |Ψ〉

|Ψ〉 • M θ = {|+θ〉 , |−θ〉}

|+〉 • XsJ(−θ) |Ψ〉

(3.11)

The two circuits depicted are equivalent which can be shown using CX = (1 ⊗
H)CZ(1 ⊗H) and HZ = XH. In the cluster state picture, the single-qubit (gate)
teleportation is shown in figure 3.2. In MBQC, the teleportation of |Ψ〉 along with
a rotation Ĵ(−θ) works as follows: After application of the CZ-gate, the unknown
state |Ψ〉1 is entangled to the known state |+〉, i.e.

|Ψ〉12 = CZ12(|Ψ〉1 ⊗ |+〉) = α |0+〉12 + β |1−〉12 (3.12)

In the next step, qubit 1 is rewritten in the |±θ〉-basis using |+θ〉 = 1√
2(|0〉 +

eiθ |1〉), |−θ〉 = 1√
2(|0〉 − eiθ |1〉 (note that in this step, no actual operation is

performed on the qubits):

|Ψ〉12 = |+θ〉1X
0
2J(−θ)2 |Ψ〉2 + |−θ〉2X

1
2J(−θ)2 |Ψ〉2 (3.13)
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Finally, measuring the first qubit in the |±θ〉-basis results in the outcome s1 and the
final state

|Ψ〉out = Xs1
2 J(−θ)2 |Ψ〉2 (3.14)

i.e. |Ψ〉 was teleported to the second qubit including the Jz(−θ)-gate and an X-
correction if s1 = 1. Since this teleportation scheme can be concatenated, arbitrary
single-qubit gates can be implemented while correction gates are applied depending
on the measurement outcome of the last qubit.

To implement a general single-qubit gate, 4 qubits in a linear cluster state are suffi-
cient. Employing the teleportation scheme, i.e. measuring qubits 1− 3 successively
in the corresponding basis gives the measurement results s1, s2, s3 and results in the
output state

|Ψ〉out = Xs3
4 J(−θ3)4X

s2
4 J(−θ2)4X

s1
4 J(−θ1)4 |Ψ〉4 (3.15)

If desired, the Pauli corrections can be commuted through the rotations to give
a result of the form of 3.13. As can be seen, the order of measurements is fixes
since the Pauli corrections and the measurement angles depend on the outcomes
si. One-dimensional cluster states are enough to implement single-qubit rotations
which can be simulated classically [106].

For universal quantum computing, two-qubit gates are required which, in MBQC, are
implemented using 2D cluster states: these states contain vertical lines corresponding
to the entanglement of logical qubits. A natural two-qubit gate to implement is
the CZ-gate as it is already used for the generation of the resource state. It can
be implemented in form of the cluster state in figure 3.3, called horseshoe cluster.
Two single-qubit teleportations are are applied and J(0) = H (since single-qubit
rotations can be shifted in the preparation phase for |Ψ〉 ⊗ |φ〉), results in

|Ψ′〉3 =Xs1
3 H |Ψ〉3

|φ′〉3 =Xs2
4 H |φ〉4

(3.16)

for qubits 3 and 4.. The remaining qubits are then entangled by applying a CZ-gate

|Ψ〉out = CZ34 |Ψ′〉3 |φ
′〉4

= (Xs1
3 Z

s2
3 ⊗X

s2
4 Z

s1
4 )CZ34(H3 |Ψ〉3H4 |φ〉4)

(3.17)

using CZ(X1 ⊗ 1) = (X1 ⊗ Z2)CZ12 to commute CZ through the correction gates.
The result is the CZ-gate applied to H-evolved states |Ψ〉 |φ〉 up to single-qubit X- and
Z-corrections. Hence, two-qubit cluster states are universal resources for a given
computation size as long as the vertical length scales faster than logarithmically with
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Fig. 3.3: Horseshoe cluster state. This type of cluster state implements two single-qubit
teleportations and entanglement creation on the outcome states. Measuring qubits
|Ψ〉1 and |φ〉2 in the Mθ=0-basis teleports the qubits to |+〉3 and |+〉4, respectively,
along with a Hadamard gate. Applying a CZ next entangles the teleported qubits
up to the Hadamard gates and correction gates depending on the measurement
outcomes s1 and s2.

the length of the cluster. The specific structure of the cluster state depends on the
computation. In general, if a unitary Û should be implemented,

In order to create the desired state, a large resource state is prepared and qubits j
not needed for the computation are disconnected from the state using measurements
in the Mj-basis, i.e. the computational basis. In case of sj = 1, a Z-correction
has to be added to the neighboring qubits N(j). This does not change the bases
required for subsequent measurements and can be taken care of by flipping the
measurement results for neighboring qubits. For measurements in the M θ

j -basis, the
following angles have to be adapted if s = 1 to account for X-corrections. Therefore,
after the preparation of the cluster state, the task left during computation is the
tracking of Z-corrections and X-corrections and the appropriate adaption of the
measurement angles. Using the stabilizer formalism, it is possible to identify gates
to apply Z-corrections, or products of gates that result in a Z-gate, anachronically,
i.e. corrections that have to be applied on a measured qubit are implemented by
acting on other (unmeasured) qubits afterwards.

This is a powerful feature of the one-way model: Assume a qubit i and a neighbor
j /∈ I (where I is the set of input vertices). If the measurement on qubit i gives
si = 1, a Z-correction applied on i would be required (which is not possible after
the measurement). Using the stabilizer condition, we see

Zi |G(Ψ)〉 = ZiKj=N(i) |G(Ψ)〉 = 1⊗Xj ⊗k∈N(j)6=i |G(Ψ)〉 (3.18)

i.e. applying Xj⊗kinN(j)6=i on a system of qubits not yet measured has the same
effect as applying Zi. As we know, correction gates can be encoded by modifying
subsequent measurement angles: X-correction are applied by M θi

i Zi = M θi+π
i and

Z-corrections by M θi
i Xi = M−θii . The longer the computations, i.e. the larger the

cluster state, the more important it is to keep track of the order of measurements
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and corrections which accumulate to retain a deterministic computation. The order
of measurements combined with the required correction is defined by the causal
flow, that assigns to each non-output vertex measured a non-input vertex for the
corrections.

A more general correction strategy can be created employing the generalized flow
(gflow) [115]: with each non-output vertex a set of non-input vertices is associated
for corrections (instead of a single vertex). This has several advantages including
a reduction in the computational depth and correction strategies for open graphs
that do not have a causal flow. Since the gflow is a fundamental building block for
the blind quantum computing protocol described in Chapter 3.3, let us give a more
formal definition for measurements in the xy-plane: (g,≺) is a gflow of (G, I,O)
where g : V (G)\O → P (V (G)\I)\{∅} and ≺ is a strict partial order over V (G), iff
for all i ∈ O

(G1) if j ∈ g(i) then i ≺ j

(G2) if j ∈ Odd(g(i)) then j = i or i ≺ j

(G3) i ∈ Odd(g(i))

where we introduced the odd neighborhood, Odd(K) := {u|N(u)∩K| = 1} mod 2.
The restriction of the correction set to the odd neighborhood of g(i), i.e. the set
of vertices having an odd number of neighbors in g(i) ensures that that there exist
correction gates or products of corrections result in a correction gate when employing
the stabilizer formalism. Concurrently, there are only even connections to the past
of the measured vertex making sure that correction gates referring to the past are
canceled3. If g(i) contains only one element and all measurements are conducted in
the xy-plane, the gflow reduces to the causal flow.

Using the definition of the gflow, a scheme for the adaption of measurement an-
gles can be developed to account for X- and Z-corrections from previous mea-
surements. X-corrections from sx = sg−1(i) and Z-corrections from all qubits
sz =

∑
j:i∈NG(g(j))|j 6=i

sj can be included in the adapted measurement angle φ′ which,

after measurement of qubit i, is given by

α′i = (−1)sxαi + πsz (3.19)

where g−1 refers to the past of i. In words, for qubits in the past of i, add an
X-correction and a Z-correction for all qubits j 6= i such that their gflow g(j) is

3X2 = Y 2 = Z2 = 1
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even

odd

Past Present Future

XY-Plane

Fig. 3.4: Example for the gflow of a vertex in the present. The circled vertices in the
future are connected to the present by an odd number of edges and to the past
by an even number of edges. This ensures that all correction gates from the past
cancel in the future and correction gates from the present remain.

a neighbor of i. It is important to note that, given an open graph and a fixed
total measurement order, different gflows can be constructed in order to implement
various deterministic computations. This ambiguity in the gflow can be used to hide
parts of the computation from the system conducting the measurements and is the
basic idea of the protocol for blind quantum computing introduced in the following
Chapter. Before, we are going to introduce the fundamental principles of BQC and
explain why MBQC is the natural model of choice.

3.3 Classically Driven Blind Quantum Computing

In 2017, Mantri et al. proposed a scheme exploring the possibilities of classically-
driven blind quantum computing (CD-BQC) between a client and a server [43].
Using the ambiguity in information flow during a computation on a cluster state,
the client is able to hide essential information from the server. More specifically, the
information obtained by the server is bounded below what would be necessary to
unambiguously identify the computation. In the following, we are going to introduce
the basic principles of the scheme named flow ambiguity and how partial blindness
on the server’s side is ensured. The computation conducted by the client, Alice, is
described by

∆ = {Gn,m, α, g} (3.20)

where Gn,m = (I,O) denotes a square-lattice graph state with N = n × m ver-
tices, α the set of measurement angles and g is the gflow defining how to adapt
the measurement angles. For a fixed graph, there exist multiple possible gflow
patterns, consistent with the same total measurement order, implementing different
computations. Hiding the gflow of the resource state from the server effectively
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Fig. 3.5: All 9 possible gflows for the two-dimensional box cluster state. The dashed
lines denote entanglement between the qubits, solid arrows denote the gflow. By
choosing a specific gflow along with appropriate in- and output qubits allows
to encode different computations while retaining the same total measurement
pattern from 1 to 4. Source: [43]

hides the specific protocol implemented from the server. For example, figure 3.5 lists
the possible gflows for a 2× 2 square cluster, called a box cluster state. While the
order of measurement is constant, the number and distribution of input, output and
operational qubits changes, hence corresponding to the implementation different
computations. The CD-BQC protocol is, as the protocol described above, interactive
in the sense that Alice and Bob have to exchange (classical) information after each
measurement on Bob’s side.

At the start of the protocol, Alice picks a string of measurement angles α = (α1, ...αN )
and generates a uniformly random bit string r = (r1, ..., rN ) ∈ {0, 1}. Depending on
the computation, Alice chooses a suitable gflow out of a string g = (g1, ...gM ) where
M is the number of possible gflows for a given graph. The interactive part of the
protocol is conducted inN rounds (measurements) and works as follows: Alice sends
the dimension n×m of the graph state to Bob for him to prepare |G〉 by entangling
qubits via the CZ-gate. When the state is ready, measurements take place in rounds
i = 1, ..., N . In each round i, Bob sends the result to Alice who chooses a random
bit ri and, updates the measurement angle αi necessary for the computation and,
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together with the measurement outcome b′<i, constructs a modified measurement
angle α′i she sends to Bob. α′i depends on αi in the following way:

α′i = (−1)sxαi + (ri + sz)π mod 2π (3.21)

where sx and sz are the corrections that have to be applied according to the gflow.
Equation θ′i is the corrected measurement angle defined in equation 3.19 up to
the random bit r that is used to hide the real angle. Bob proceeds to perform a
measurement of the i-th qubit in the xy-plane in the M θ′

i -basis and transmits the
outcome b′i to Alice. She extracts the real outcome according to bi = b′i

⊕
ri, records

the results in a bit string b and updates the correction set {sx, sz}. Note that if Bob
is dishonest, bi is not necessary equal to b′i.

If qubit i is an output qubit (∈ O), she registers bit bi in the output string pCB. Alice
and Bob repeat the procedure for all qubits in the graph in the given total measure-
ment order. At the end of the protocol pCB contains the result of the computation up
to final corrections. The (classical) corrections on the output string is conducted
by Alice by calculating p = pC

⊕
sZO where pC is the output string extracted from

b and sZo are the final Z-corrections on the output qubits. A graphical overview of
the protocol is depicted in figure 3.6. In the end, if both Alice and Bob followed the
protocol, Alice is in possession of the classical output string p corresponding to the
desired probability distribution that follows from the measurements on Bob’s side.
Bob has information about the randomized measurement angles α′ = (α′1, ..., α′N )
and the measurement outcomes b′ = (b′1, ..., b′N ). While Alice’s secret consists of
the real angles α and the information about the gflow gi, the question is to what
degree Bob can determine Alice’s computation on average using the information he
possesses, i.e. Bob’s blindness. A full analysis of the blindness is beyond the scope
of this thesis, however, we are going to give an overview of the general idea. The
complete analysis is described in [43].

For this purpose, we define the real measurement angle variable A (whereas α
denotes the measurement angles in a particular instance), the modified measurement
angle A′, the gflow variable G and the outcome variables B and B′. Furthermore,
we introduce the conditional entropy

H(A,F |B′, A′) = H(A,G)− I(B′, A′;A,G) (3.22)

where H(A,G) = H(A) + H(G) := log2(NA) + log2(NG) and NA, NG denote the
number of possible choices for the measurement angle variable and the gflow
variable. The conditional entropy described how much information is unknown
about A,G considering B′, A′ is known. It is equal to the difference between the
information missing about A,G (which Alice has), and the mutual information
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Fig. 3.6: CDBQC protocol. Classical client Alice defines a computation by a graph state G,
measurement angles α and the possible gflows g. The computation is implemented
in N measurement rounds. For each round, Alice picks a pad bit ri and computes
the randomized measurement angle α′i which she sends to Bob using a classical
channel. The quantum server Bob prepares a two-dimensional graph state |G〉
and a fixed total order of measurements. Bob measures qubit i in the angle α′i as
instructed by Alice and sends back the result b′i. Alice computes and records the
real output bi using the pad bit ri and updates the sets of correction gates sx and
sz if necessary. If the output bit is part of the computation output, she records bi
in the output string pCB . If i < N , Alice continues with round i+ 1, using a new
pad bit and the correction gates to compute the new measurement angle. After
the last round i = N , Alice applies the last set of corrections to her output string,
concluding the protocol.
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I quantifying how much Bob can discern about A,G knowing B′, A′ (the more
dependent the quantities, the higher I). For a random variable X and the number
of possible outcomes NX , nX = log2NX bits are required to enumerate them. This
gives a natural bound for the entropy for a variable, H(X) ≤ nX . In our case, to
fully describe ∆M

A , nA + nG bits are needed. Therefore, the entropy about A,G
results to H(A,G) = nA + nG if A,G are uniformly random.

In a single run of the protocol, it can be shown (employing techniques from informa-
tion theory) that the mutual information is bound: I(B′, A′;A,G) ≤ H(A′). Using
that H(A′) ≤ nA and the definition 3.22, we get H(A,G|B′, A′) ≥ nG. If we only
had one possible choice of measurement angle for each qubit, nA = 0. However,
this is not allowed by the Gottesmann-Knill theorem. A minimal set of angles not
simulable classically is given by the set

α =
{
π

4 ,
3π
4 ,

5π
4 ,

7π
4

}
(3.23)

In this case, for each θi, and since nθi = log2 4 = 2 we get nA = 2N . Therefore
H(A′) = nA (nA = nA′). Per qubit measured, Bob can gain 2 bits of information at
most. We can apply these relations to the case of cluster states G(I,O)n,m and a
number of gflows that, in addition to the standard properties, obey

(G4) if k ∈ N(i)N(j) and if k ∈ g(i), then k /∈ g(j) (3.24)

to simplify the counting of flows. The length of the string of possible gflows is given
by M = nG = log2NG. A lower bound for M is given by counting the possible
number of flows that obey (G1)-(G4). Therefore

NF ≥ #G(I,O)n,m (3.25)

where #G(I,O)n,m is the number of ways an open graph can be constructed such
that G1-G4 are satisfied. To find #G(I,O)n,m for a given dimension N , the open
graphs are cut through edges in a specific way (details in [43]) and, it can be
shown that #G(I,O)n,m grows exponentially with the number of graph dimensions
assuming m = poly(n) (for universality) and N = n×m. Hence,

nF ≥ log2 #G(I,O)n,m ≈ 1.388N (3.26)

which results in a conditional entropy

H(A,F |B′, A′) ≥ 1.388N (3.27)

This tells us that the number of bits to determine the computation is nA + nG ≈
3.388N . But Bob only gets 2N bits of information as established before. Therefore,
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Fig. 3.7: Box cluster state used in the CDBQC protocol. The numbers denote the total
measurement pattern which is the same in every computation.

Bob cannot unambiguously distinguish between the possible computations for the
given graph state. It can furthermore be shown that Bob can guess Alice’s compu-
tation with p < 1/21.388N . This result shows that partial blindness can be ensured
assuming a fully classical client in a single run of the protocol.

While this investigation of flow ambiguity provides a bound for the information
leaked to Bob, question about security in a stricter sense, the verifiability of the
protocol and the possibility to hide a universal set of computations after transmission
of the measurement angle, are not answered yet. It is, in general, an open question
if completely blind quantum computing with classical clients is possible at all [116–
118]. In any case, flow ambiguity is an approach to give access to quantum resources
to a classical client without handing over every detail of the computation to the
server. Therefore, it is interesting to test the applicability in an experiment.

3.4 Experimental setup

For the experimental implementation, a box cluster state |Ψ〉� as shown in figure 3.7
is chosen as the resource state. It is a 2× 2 square lattice and the lowest-dimensional
cluster state that has a fundamentally different entanglement structure compared to
two- and three-qubit states [119].

A box cluster state can be prepared from a linear four-qubit cluster state by means of
local transformations while the linear cluster is usually generated by entangling two
Bell pairs. This brings us back to the unifying theme of this thesis: the creation of
entangled photon pairs by means of SPDC. A laser generates pulses with a duration
of 150fs, a repetition rate of 80MHz repetition rate and 500mW average power at
789nm [120]. The pulses are frequency-doubled via second harmonic generation to
pump two identical 2mm type-II BBO crystals set up in line. With a low probability,
photons in each pulse decay in a down-conversion event in neither, one or both
of the crystal. Here, only the latter case is of use, producing two Bell pairs in the
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CPhase

PDBS0 PDBSa

PDBSb

tH=1
tV=1/3 tH=1/3

tV=1

tH=1/3
tV=1

Fig. 3.8: Probabilistic CPhase gate based on PDBSs. Incident photons on PDBS0 are
transmitted and reflected bases on their polarization state. Reflected photons gain
a phase of i, resulting in a conditional phase of −1 in the case of reflection for two
vertically polarized photons. To equalize the amplitudes, PDBSa and PDBSb with
reversed transmittance and reflectance relative to PDBS0 are placed in the output
modes.

|Ψ±〉-state. A half-wave plate in one arm of each emitted photon pair is used to
rotate each state to |Ψ+〉, which in total results in a product state of two Bell pairs of
the form

|Φ+〉12 |Φ
+〉34 = 1

2(|H〉1 |H〉2 |H〉3 |H〉4 + |H〉1 |H〉2 |V 〉3 |V 〉4

+ |V 〉1 |V 〉2 |H〉3 |H〉4 + |V 〉1 |V 〉2 |V 〉3 |V 〉4)
(3.28)

To transform this state into the box cluster state, a CPhase gate has to be applied
to qubits 2 and 3, introducing a π-phase shift to |V V 〉23. The CPhase gate used in
this experiment is based on two-photon interference at a polarization-dependent
beam splitter (PDBS) [49] and is pictured in figure 3.8. In a PDBS, the transmission
and the reflectance depend on the polarization state of the incoming photon. The
transmission and reflectance for horizontal (vertical) polarization are denoted by
tH (tV ) and rH (rV ), respectively. For a |V V 〉-polarized state in input modes a and
b, tV = 1/3, tH = 1 and therefore rV = 2/3 and rH = 0. The amplitude for a
coincidence event after the PDBS then results to

(taV · tbV ) + (iraV · irbV ) =
√

1
3

√
1
3 −

√
2
3

√
2
3 = −1

3 (3.29)

where i is the phase shift for the reflected part. No interference occurs for terms
containing H since tH = 1. In order to equalize the amplitudes of all output terms,
two more PDBS with exchanged transmission and reflectance amplitudes, i.e. tV = 1
and tH = 1/3, have to be inserted in both output modes in order to attenuate
the H terms. This leads to a total coincidence probability of 1/3 · 1/3 = 1/9 after
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the second PDBS. Hence, the gate acts as an entangling phase-gate with a success
probability psuccess ≈ 0.11. When conditioned on the detection on coincidences, the
gate transforms the input state from above to

CZ23 |Φ+〉12 |Φ
+〉34 = 1

2(|H〉1 |H〉2 |H〉3 |H〉4 + |H〉1 |H〉2 |V 〉3 |V 〉4

+ |V 〉1 |V 〉2 |H〉3 |H〉4 − |V 〉1 |V 〉2 |V 〉3 |V 〉4)
(3.30)

This state corresponds to the 4-qubit linear cluster state |Ψ〉lin. As described above,
cluster states can be transformed in different cluster states including two-dimensional
states, by means of single-qubit (Clifford) gates. For example, the horseshoe cluster
state can be generated from |Ψ〉lin by applying. The desired box cluster is created by
Hadamard gates H1 ⊗H2 ⊗H3 ⊗H4 to |Ψlin〉, resulting in

|Ψ�〉 = 1
2(|0〉1 |+〉2 |0〉3 |+〉4 + |1〉1 |+〉2 |1〉3 |+〉4

+ |0〉1 |−〉2 |1〉3 |−〉4 + |1〉1 |−〉2 |0〉3 |−〉4)
(3.31)

Note that while the Hadamard gates could be implemented using half-wave plates at
22.5◦, it is more convenient to absorb the gate in the measurement basis as described
in Chapter 3.2. In the final step, swapping or simply relabeling of qubits 2 and 3
results in the desired box cluster state and concludes the preparation of the resource
state.

Using the box cluster state, the main part of the protocol can be started: A primary set
of measurement angles α is chosen by the client according to the desired computation.
During the experiment, the active post-processing of the results and modification
of the measurement angles is realized by a field-programmable gate array (FPGA).
Since no correction gates have to be applied to the first photon to be measured, i.e.
α1 = α′1, it is directly guided to a polarization analysis setup consisting of a PBS
and two Si single-photon detectors, simultaneously heralding the arrival of the three
other photons. For the polarization rotation that has to be applied to photons 2− 4,
a novel approach is implemented:

To minimize resources on the server’s side, all three photons are guided through a
single Pockels cell in narrow spatial modes. The Pockels cell is connected to the FPGA
and acts as a half-wave plate when a high voltage is applied. A crucial advantage
of a Pockels cell compared to mechanical wave-plates is the high switching speed
of 1MHz. Since the measurements are conducted successively and the angles have
to be adapted, photons 3 and 4 have to be delayed delayed in an optical fiber it is
of high importance to keep decoherence effects to a minimum. The minimal set of
angles required for universality as introduced in equation 3.23, i.e.

α1 = π

4 , α2 = 3π
4 , α3 = 5π

4 , α4 = 7π
4 (3.32)

76 Chapter 3 Blind quantum computing with a classical client



7
8

9
n
m

BBOc BBOC

HWP

3
9

4
.5

n
m

3
9

4
.5

n
m

BBODC

S
PA

D S
PA

D

PBS

S
PA

D S
PA

D

S
PA

D S
PA

D

S
PA
D S

PA
D

PBS

QWP
HWP

BBO
NBF

PC
FPGA

PBS

Half-wave plate
Quarter-wave plate
Beta Barium Borate
Narrow-band filter

Pockels cell
Field programmable gate
array

Polarizing beam splitter
CPhase

gate

FP
G

A

BBODC

BBOc BBOc
HWP

NBFNBF

NBFNBF

SHG

Pulsed laser 

source

PBS PBS

P
C

Alice

Bob

1.

2.

SPAD Single-photon avalanche
diode

HWP

HWP

22.5°

22.5°

Fig. 3.9: Schematics for the experimental implementation of the CDBQC protocol. On
the server side (Bob), a pulsed laser beam at 794nm is converted to 394.5nm
in a nonlinear crystal via second harmonic generation SHG. The emitted beam
pumps two type-II BBO crystals (BBODC) to generate two |Ψ−〉 states. Half-wave
plates and compensation BBOs (BBOc) are placed in each signal and idler arm to
compensate the usual walk-off effects. Narrowband filters are used for spectral
post-selection to improve the quality of the states. The resource box cluster state is
generated by fusing the Bells states. This is achieved by entangling qubits 2 and 3
via application of the CPHase gate and subsequent swapping of the labels. Qubit 1
is measured in the Mα-basis, heralding the three subsequent qubits. To ensure the
right measurement order, qubits 2, 3 and 4 are delayed by appropriate times τ , 2τ
and 3τ . The measurement basis is set by a half-wave plate followed by a Pockels
cell which can be turned ’on’ or ’off’ depending on the required angle. A PBS
followed by silicon SPDADs in every output are used to analyze the polarization
of the qubits. The measurement results are transmitted to the client (Alice) who
registers the outcomes and sets the measurement basis for the next qubit according
to the computation, the random flip and the previous outcome. After measurement
of the last qubits, Alice applies the last round of post-processing to get the final
result of the computation.
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is accessed using the combination of a half-wave plate and the Pockels cell. The
angles are accessed by rotating the |+〉-state about the Z-axis, i.e. a rotation

Rz(αi) =
(
e−iαi/2 0

0 eiαi/2

)
(3.33)

A half-wave plate at 22.5◦ applies a rotation of π/4 on an incident photon, realizing
the first required angle α1. When the Pockels cell is turned on, the additional
rotation of π/2 results in the second angle α2 = 3π/4. Realizing that α3 = α1 + π

and α4 = α2 + π allows to rotate to these measurement bases in the post-processing
by simply measuring α1 and α3 and flipping the result (π-flip). Hence, all required
measurement bases can be accessed using only a HWP and a Pockels cell. Since
every photon is passing through the same Pockels cell, it is crucial to ensure that
the polarization rotation is applied identically for each photon. If the action of
the Pockels cell varies depending on the spatial position of the photon in the cell,
information about the gflow leaks to the server which reduces the conditional entropy.
After setting the desired measurement angle, the polarization state of the photons is
measured using the same analysis setup as for photon 1. The measurement result is
transmitted to the FPGA which records the result, updates the measurement angle
accordingly and feeds an on/off instruction to the Pockels cell. After the fourth
photon is measured, classical post-processing as described in Chapter 3.2 results in
the output string, concluding the protocol.

In follow-up experiments, higher-dimensional cluster states could be implemented
to allow for more complex computations. More qubits also allows for the inclusion
of trap qubits to expose a corrupt server. Due to spatial constraints, the number of
photons propagating through the same Pockels cell is limited, especially if spatial
invariance has to be ensured. However, using one Pockels cell for three photons
already drastically reduces the amount of optical components required. Blind
quantum computing driven by classical users allows us to take the next step towards
a quantum-enhanced future. Server providers are able to offer the advantages of
quantum computing and simultaneously guarantee discretion. Users that want to
delegate delicate computations to the quantum cloud do not have to trust the server
provider to uphold secrecy but have fundamental laws of nature on their side. In this
sense, blind quantum computing is quantum in two ways: it combines the speedup of
quantum algorithms and the enhanced security making use of entanglement and the
inherent randomness of measurements. While the advantages of quantum mechanics
are straight-forward in quantum computing, a different yet intriguing approach is to
use principles of quantum mechanics to improve the security of classical protocols.
In the next Chapter, we are going to introduce a scheme that combines classical
computing algorithms with the security provided by quantum theory. While the
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scheme itself has been well-known for a long time, the implementation is only
possible by making use of security only quantum theory can provide.
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4Commodity-based one-time
programs

Self-destructing hardware has been a common trope in movies and TV shows for
years1. Usually, the agent receives secret information in form of a letter or a video
tape. After the letter is read or the tape is played, they miraculously burst into flames
or self-destruct in some other way. Therefore, the information cannot fall into the
hands of a malicious third party and is safe with the agent. For enhanced security,
the agent might have to provide an input to access the secret message such as a key
or a password. We can then describe the problem in more general terms: a function
f is provided that takes an input x and gives an output f(x) to the agent. The agent
is only able get one output and cannot reuse or copy the function.

In reality, the construction of self-destructive hardware is much less trivial. It is hard
to guarantee that an adversary is not able to disable the mechanism, especially if
instead of a letter or a video tape one translates the concept of one-time hardware
to more modern means, i.e. a chip or a computer. If we shift the requirement of
one-time usage from the hard- to the software, malicious use can in general not be
avoided: classical software can always be copied in a way, therefore rendering a
destructive mechanism useless.

In this Chapter, we are going to introduce the theory and implementation of quantum-
enhanced one-time programs. The goal is to allow an unconditionally secure imple-
mentation of classical programs that can be evaluated once and only once.

4.1 Oblivious Transfer and One-time Programs

One-time programs are closely related to a fundamental cryptographic primitive
known as oblivious transfer (OT) where a sender, Alice, transmits information to
a receiver, Bob, without knowing what pieces of information are accessed by Bob.
While the basic concept of OT was first described by Wiesner in the context of
conjugate coding [9], it only became known (and gained attention) as OT in 1981
in a paper by Rabin [121]. Alice sends a message a ∈ {0, 1} to a receiver, Bob, who

1see e.g. Inspector Gadget or Mission Impossible
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receives the message with a probability of 50%. If the message is transmitted, Bob
learns m with a probability of 100%, if it is not transmitted, he learns nothing about
m which is why this type of OT is known as all-or-nothing OT. Alice remains oblivious
if Bob received the message during the whole protocol. Soon after, one-out-of-two
oblivious transfer was developed by Even [122].

Here, Alice prepares two bits a0 and a1 and Bob chooses an input bit b ∈ {0, 1}.
Bob then receives the output bit ab without learning about Alice’s other bit. Alice,
on the other hand, does not know Bob’s input bit and therefore can only guess
which output he received. If these requirements are met, i.e. both parties do not
obtain more information than they are supposed to, the protocol is said to be fully
secure. It was furthermore shown that both types of OT protocols can be built from
the other one, they are therefore computationally equivalent [123]. Classical OT
protocols can be broken by quantum algorithms and can therefore not be constructed
in an information theoretically secure way. However, even in the quantum case,
no-go theorems show that perfect and information theoretically secure OT protocols
cannot be realized without assuming further constraints [124–126]. Therefore,
these no-go theorems have to be circumvented to implement qauntum OT (QOT)
protocols, for example by assuming that the adversary does not have access to a
large reliable quantum memory (noisy-storage model) [127]. Using OT, two parties
can implement classical non-interactive secure two-party computations, where a
sender and a receiver evaluate a publicly known function without interaction [128,
129].

One-time programs are a special case of non-interactive two-party communication
introduced in 2008 by Goldwasser, Rothblum and Kalai [130]: a function f can be
evaluated for one input x by a receiver. No adversary (receiver or third-party) should
be able to learn anything about f(x′) for x 6= x′ beyond what can be inferred from
the input-output pair (x, f(x)). As mentioned, however, classical software can always
be copied, therefore one-time programs have to rely on additional assumptions such
as interaction between the parties as in OT or hypothetical hardware, e.g. one-
time memories [131]. To improve the security of one-time programs, an idea is to
employ the properties of quantum theory: As is well-known, in contrast to classical
information, quantum information cannot be copied. The no-cloning theorem states
that arbitrary quantum states cannot be cloned due to the linearity of unitary time
evolution [50, 132]. Furthermore, measurements are irreversible, changing the
quantum state in the process [133]. These properties allow for many classically
impossible protocols such as QKD or quantum money [9]. However, as shown in
2013 by Broadbent et al. secure deterministic one-time programs are not possible
even using quantum states (apart from some trivial functions) [19]. Hence, again
additional assumptions have to be made for the adversary or the transmission
channel to realize quantum one-time programs.
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4.2 One-time programs using quantum
entanglement

A related implementation of OTPs discussed here was introduced in [134] in 2018.
Instead of placing limitations on the adversary’s quantum capabilities, the protocol
circumvents the no-go theorems by allowing for a bounded probability of error to the
computation results, i.e. in the success rate of Bob obtaining the desired output f(x)
is < 100%. It can be shown that the implementation of probabilistic OTPs allows for
an advantage in security compared to classical implementations, without assuming
further restrictions.

The premise of probabilistic OTPs is the delegation of a classical software from a
software provider or sender, Alice, to a receiver or user, Bob. As in blind quantum
computing, Alice and Bob do not fully trust each other and want do not want to
leak non-essential information to the other party. Alice sends an encoded version of
the software f to Bob without leaking information about the gate structure to him.
Bob then provides an input x to the software on his side and receives the output
f(x) after which the software cannot be used again. After executing the program,
Bob has knowledge about an input-output pair (x, f(x)) and is not be able to obtain
a second output f(x′) for x′ 6= x. Alice, on the other hand, has no way of finding
out x and and f(x) since the protocol is one-way and neither specific inputs nor
outputs get transferred back to her. To build the function f , Alice chooses Boolean
logic gates with k inputs and 1 output, making up the gate set G(k). All G(k)-gates
can be built from G(1)- and G(2)-gates, i.e. 1-input-1-output and 2-input-1-output
gates. Arbitrary G(2)-gates are constructed from a fixed and public circuit in order
for Bob to process the information. This circuit, taking three G(1)-gates as input and
consisting of two G(2)-gates (AND, OR) and one G(3)-gate (PARITY), is depicted in
figure 4.1. In total, there are four possible G(1)-gates defined in table 4.1.

The states are constructed after fixing measurement bases on Bob’s side correspond-
ing to inputs 0 and 1. To keep Bob from learning about the measurement outcomes
in the input basis not chosen, the measurement operators are chosen from the set
of anticommuting operators for the given dimension of the Hilbert space. In the
case of qubits, this is the set of Pauli matrices σ fulfilling {σ̂i, σ̂j} = 2δij1 where δij
is the Kronecker-Delta. For the binary inputs i ∈ {0, 1}, we choose measurements
along σ̂z for input x = 0 and σ̂x for input x = 1 resulting in the measurement
operators M0 ≡MZ = {|0〉 , |1〉} and M1 ≡MX = {|+〉 , |−〉}. This choice confines
the measurements to the xz-plane of the Bloch sphere reducing hardware require-
ments in the experiment. In the xz-plane, the states to maximize the success rate for
each input are depicted in figure 4.2. We can construct these states by rotating the
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G(1) input output

G0
0 0
1 0

G1
0 1
1 1

Gid
0 0
1 1

Gnot
0 1

1 0
Tab. 4.1: Truth tables for classical G(1) gates. The middle column shows the two possible

input bits while the right column shows the output bits depending on the gate
and input

computational basis states |0〉 and |1〉 by π/4 and 3π/4 around the Y-axis, e.g. G0 is
encoded by

R̂y(π/4) |0〉 = cos (π/8) |0〉+ sin (π/8) |1〉

=

√
2 +
√

2
2 |0〉+

√
2−
√

2
2 |1〉

= 1√
2

(|0〉+ |+〉) ≡ |Ψ〉0

(4.1)

where R̂y(θ) is the rotation operator defined in 2.11. Overall, the four states
comprising the G(1) set are

G0 → |Ψ〉0 ≡
1√

2 +
√

2
(|0〉+ |+〉)

G1 → |Ψ〉1 ≡
1√

2 +
√

2
(|1〉 − |−〉)

Gid → |Ψ〉id ≡
1√

2 +
√

2
(|0〉+ |−〉)

Gnot → |Ψ〉not ≡
1√

2 +
√

2
(|1〉+ |+〉)

(4.2)

which result in the output given by the respective truth table with a probability of

psucc =

∣∣∣∣∣∣
(

1 + 1√
2

) 1√
2 +
√

2

∣∣∣∣∣∣
2

≈ 85.36% (4.3)
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and the wrong output with a probability

pfail =

∣∣∣∣∣∣ 1√
2

1√
2 +
√

2

∣∣∣∣∣∣
2

≈ 14.64% (4.4)

The overall success probability psucc is optimal and equivalent to the best winning
strategy in the CHSH introduced in Chapter 2.1.6. We cannot construct states to
improve the success probability for one basis without reducing the success for the
other basis (input) in turn. The output of the gates is encoded in the measurement
outcomes in either basis. Outcome b′ = 0 (1) is assigned to projection on the positive
(negative) eigenvalue of the corresponding Pauli matrix σ̂x or σ̂z. Therefore, after
measurement, Bob is with a probability of psucc in possession of the input-output
pair (x, f(x)).

While G(2)-gates can be constructed using a fixed circuit as described above, this
method gets complicated for G(k)-gates with k > 2. A more appealing way is to
directly implement G(k) gate-OTPs maximizing the success probability by using the
scheme to construct G(1) gate-OTPs as a subroutine: The binary inputs to the gates
are mapped to measurement sets {M̂i} where each measurement is composed of
separable single-qubit measurements in the xz-plane, i.e.

M̂i =
2k−1⊗
j=1

σ̂ij ∀i (4.5)

where σ̂ij ∈ {σ̂x, σ̂z}. Gate-OTPs for k inputs can then be described by the mixed
state

ρ̂G = 1
Tr (1)

1 + 1√
2k

2k∑
i=1

(−1)G(i)Mi


=
∑
i

1
2k ρ̂i

=
∑
i

1
2k

2k−1∑
j=1

G̃ij


(4.6)

where G(i) is the output of the gate G for input i and ρ̂i is a set of pure states.
Since each G̃ij is a G(1) gate-OTP, arbitrary G(k) gate-OTPs can be constructed using
only G(1) states. In contrast to G(1) gate-OTPs, there exists a whole subspace of
encoding gates for higher-order gates. For example, using three linearly polarized
photons, there exist four combinations of G(1) states to encode each possible G(2)

gate which can be found in the supplementary information of [134]. Therefore,
by randomly selecting from the set of possible states, the state received by Bob is
equal to the mixed state ρG under all measurements. In the original implementation,
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AND
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Fig. 4.1: Construction of an arbitrary G(2) gate from three hidden G(1) gates. Bob sets
the measurement basis for qubits |Ψ1〉 , |Ψ2〉 and |Ψ3〉 according to his inputs a1 and
a2. For each G(2) gate, Alice can choose one out of four equivalent combinations
of G(1) gates, keeping the truth table of the gate hidden from Bob. Recreated with
modified notation from [134]

Alice encodes all possible G(1) gates in certain remotely prepared single-qubit states
using a heralded single-photon source based on SPDC and liquid crystal retarders.
The states are sent to Bob who sets his input using fast polarization retarders as
well. While several applications were shown including one-time digital signatures,
the applicability of the encoding scheme is limited due to several factors. These
include the limited gate rate due to the dependence on the switching rate of the
active elements on both Alice’s and Bob’s side and the requirement of a quantum
channel for the whole protocol.

To sort out these issues, reduce the hardware requirements and improve real-world
applicability, a follow-up experiment was proposed and realized recently [135]. One
of the most crucial improvements compared to the implementation in [134] is the
separation of the quantum information exchange and the evaluation part. For the
encoding of the one-time program, Alice and Bob create a cryptographic commodity
using a single-qubit remote state preparation scheme. In contrast to the original
implementation, only passive polarization elements are used, reducing the hardware
requirements on both Alice’s and Bob’s side. When enough gates are encoded and
transmitted, the quantum communication can be stopped since the evaluation part
can be conducted via a classical channel at any time after the encoding. Furthermore,
it requires only a classical channel between Alice and Bob, further reducing the
technical complexity.

The scheme works as follows: Instead of preparing and sending single-qubit gate
states in a fixed order, Alice shares an entangled state with Bob and employs remote
state preparation to transmit a random list of G1 gates to Bob. Specifically, Alice
generates a two-qubit singlet state |Ψ−〉 = 1√

2 (|0〉 |1〉 − |1〉 |0〉), keeps qubit 1 and
sends qubit 2 to Bob. The four G1 gates are then prepared by Alice by projecting
her part of the state randomly uniformly in two spatial modes a and b and applying
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the rotation operator R̂y(π/4) to one mode and R̂y(3π/4) to the other mode. This
results in the states

|Ψ〉a12 = R̂y(π/4) |Ψ−〉12 = 1√
2
[
|Ψ0〉1 |1〉2 − |Ψ1〉1 |0〉2

]
|Ψ〉b12 = R̂y(3π/4) |Ψ−〉12 = 1√

2
[
|Ψnot〉1 |1〉2 − |Ψid〉1 |0〉2

] (4.7)

each making up 50% of the total amplitude on Alice’s side. Alice then sends the
states on a PBS and detects in one of the two output modes, remotely preparing one
of the four gate states for Bob’s side. For example, state |Ψ〉a12 can be rewritten in
the computational basis for Alice’s qubit

|Ψ〉a12 = 1√
2

1√
2 +
√

2

[(
|0〉+ |+〉

)
1 |1〉2 −

(
|1〉 − |−〉

)
|0〉2

]
= 1√

2
1√

2 +
√

2

[
|0〉1

(
|1〉 − |−〉

)
2 − |1〉1

(
|0〉+ |+〉

)
2
]

= 1√
2
[
|0〉1 |Ψ1〉2 − |1〉1 |Ψ0〉2

]
(4.8)

Measurement in the computational basis M̂z then projects Bob’s qubit on the state
Ψ0 or Ψ1. Equivalently, state |Ψ〉b can be rewritten to

|Ψ〉b12 = 1√
2
[
|0〉1 |Ψid〉2 − |1〉1 |Ψnot〉2

]
(4.9)

where the measurement on Alice’s side results in the probabilistic implementation of
the gates Gnot or Gid. Alice can identify the gate sent to Bob from the measurement
result on her side, i.e. if she measures |Ψ〉0, the state sent to Bob is |Ψ〉1. Bob also
splits his part of the entangled in two spatial modes and then measures one mode in
the basis M̂z and the other mode in M̂x. Again, Bob encodes the binary input in the
measurement bases, i.e. a(M̂z) = 0 and a(M̂x) = 1 and assigns the projection on
the eigenstates of the Pauli matrices positive eigenvalue +1 to the binary outcome
b′ = 0 and the negative eigenvalue −1 to the outcome b′ = 1.

Both parties record the measurement outcomes as well as the time of detection on
their side and create a table they keep hidden from the other party. Alice’s table
consists of the gates she sent, i.e. a string of gates G = (G1, G2, . . . , GL) ∈ G(1) for L
total gates. Bob’s table consists of the input string a = (a1, ...aL) ∈ {0, 1} and the
measurement outputs b′ = (b′1, ..., b′L) ∈ {0, 1}. Note that the total number of gates
L to be prepared is significantly higher than the number required for a loss-free
and deterministic implementation due to the losses and the probabilistic nature
of the evaluation part of the protocol. By noting their measurement results, Alice
and Bob create a shared table, a cryptographic commodity for the evaluation of the
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OTPs. The protocol is loss-tolerant since all measurements not corresponding to a
coincidence event between Alice and Bob are discarded from the shared table. After
creating a sufficiently large table, the quantum communication is stopped and all
subsequent communication is conducted via classical communication. When Bob
wants to evaluate the OTP, he establishes a classical channel with Alice. Using their
shared table, they implement the computation by evaluating each necessary gate.
The protocol requires two-way communication and works as follows for each gate:

Alice starts by choosing the gate Gi in the logic circuit comprising the program.
To make sure that Bob can’t gain information about the program by delaying his
measurement, Alice creates a random bit r that acts as one-time pad for each gate-
OTP. If r = 0 Alice looks for the desired gate in her table, if r = 1 she instead looks
for the negation of the gate (e.g. Gid → Gnot). She then tells the line number to
Bob who looks up the line in his table. Bob has to choose the right input to process
the information, which means if the input on the line Alice tells him matches the
required input, they proceed. Otherwise he tells Alice to repeat the process and they
both discard the line in the table. Bob doesn’t learn anything about the gate in that
case because he doesn’t know the pad value. If the input is right, he tells Alice who
in turn submits the pad value r. Bob applies the one-time pad to his output result
b′i and gets the real result bi = b′i

⊕
r. They both delete the line from the table and

repeat the whole process until the final output is acquired. A graphical summary
of the classical communication part is depicted in figure 4.3. The run time of the
classical part scales linearly with the complexity of the function and the latency
between the parties. After L rounds, the computation is finished, concluding the
protocol.

Splitting the transmission and the evaluation part of the protocol also increases the
complexity for Eve, an eavesdropper who wants to acquire information about either
the gates or the output of the program: she needs to be present in both the quantum
as well as the classical part of the protocol. If she is only there in the quantum
channel, she doesn’t know the value of the one-time pad and which lines are used.
Furthermore, Alice and Bob can check for an eavesdropper in the quantum channel
using the protocol developed by Ekert [16]. They randomly select a sample from
the shared table before starting the evaluation and test for non-classical correlations
between their measurement results. In an ideal case, a value of 2

√
2 can be achieved

using a CHSH inequality. If the correlation value falls below a certain threshold, Alice
and Bob conclude that the channel is corrupted and discard the table. In the classical
evaluation part, an eavesdropper gains nothing since no information about the gates
or the output is transmitted. In conclusion, the commodity-based probabilistic OTP
protocol allows for the secure delegation of classical circuits.
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Fig. 4.2: Quantum part of the OTP protocol. Alice encodes the four G(1) gates in four
polarization-qubit states depicted on the top left including the corresponding truth
tables. To prepare the gates, Alice shares an entangled state with Bob over a
quantum channel. Rotating her part of the state by π/4 and 3π/4 and measuring
prepares the gate states |Ψ〉0/|Ψ〉1 and |Ψ〉not/|Ψ〉id, respectively. Subsequent
measurement in the computational basis projects the negation of the prepared
gate to Bob’s qubit. Alice prepares her part of the shared table by recording the
measurement outcomes. The input to the computation is chosen by Bob and
encoded in the measurement basis. Measurements in the computational basis,
corresponding to measurements in M̂z, define input ′0′ while measurements in
the diagonal basis, corresponding to M̂x, define input ′1′. Bob creates his part
of the shared table by recording the input (measurement basis) and the output
(measurement outcome). After the table has reached the required length, Alice
and Bob terminate the quantum channel, concluding the quantum part of the
protocol.
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Fig. 4.3: Classical part of the OTP protocol. To evaluate the OTP, Alice and Bob need the
shared table created in Part I of the protocol and communication via a classical
channel. Each round i starts by Alice choosing the G(1)

i and Bob choosing the input.
Alice also generates a random pad bit r ∈ {0, 1} to one-time pad the computation.
If r = 0, she then finds a line with the corresponding gate and sends the line
number to Bob. If r = 1, she finds a line with the negation ¬G(1)

i of the gate
and sends this line number instead. Bob checks if the recorded input on the line
matches the required input. If no, he deletes the line from the table and informs
Alice who does the same. Alice then goes back to the pad bit generation and they
start over. If the input on the line in Bob’s table matches his input, he records the
output b′i of the line and informs Alice. Alice sends the value of pad bit r to Bob
and deletes the line from the table. Bob uses the value of the pad bit to calculate
the real output bi = b′i

⊕
r which he records. He proceeds to delete the line from

the table, ending round i of the protocol.
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4.3 Experimental setup

In broad terms, the setup consists of three main parts: the SPDC source that produces
the Bell state and two measurement setups, one on Alice’s and one on Bob’s site. The
measurement stages are connected by a fiber that constitutes the quantum channel.
The SPDC source used in the setup is of the design described in Chapter 2.2.4 on
page 31 and was introduced in [81].

A continuous-wave laser at 515nm pumps a ppKTP of 30mm length and heated to
around 65◦C to achieve the desired wavelengths for the downconverted photons.
In the crystal two down-conversion processes are phase-matched simultaneously
to create non-degenerate photon pairs at 785nm and 1498nm. Both processes are
superimposed creating the entangled state 1/

√
2(|HV 〉 ⊗ |BR〉+ eiφ |V H〉 ⊗ |BR〉)

and separated by wavelength using a dichroic mirror. In the long-wavelength arm, a
calcite crystal is placed to compensate the temporal walk-off caused by dispersion in
the crystal and the relative phase φ is set using a LCR to produce the desired Bell
state |Ψ−〉. A tuneable narrowband filter is set in the long-wavelength path to ensure
spectral indistinguishability.

The red photon at 785nm is sent to Alice’s preparation stage that is fully built of
in-fiber components and consists of a 50:50 beam splitter, followed by fiber paddles
(acting as polarization retarders) and a PBS in each path and, in total, four silicon
avalanche photodiodes with a quantum efficiency of around 60%. The 50 : 50 beam
splitter randomizes the gate choice, whereas the half-wave plates are set to π/16
and 3π/16 to rotate the state to one of the four G(1) gate-OTPs. After detection
in one of the four SPADs, Alice knows which gate has been sent to Bob due to
the anitcorrelation of the |Ψ−〉 state by checking the states derived in 4.8. The
telecom-wavelength photon is coupled to a telecom fiber and transmitted to Bob in
a different building approximately 650m far away. On Bob’s side, a similar setup is
prepared to measure the received photons in the appropriate basis. A 50 : 50 beam
splitter randomly chooses one of two measurement bases (input encoding), whereas
in one of the paths a half-wave plate at π/8 is used to rotate the state to the σ̂x basis.
The PBSs then project the state onto the respective basis and four superconducting
nanowire detectors with a detection efficiency of approximately 40% are used to
detect the photons.

4.4 Application: One-time digital signature

The application realized using the described setup is the signing of a message using
a one-time digital signature. Suppose Alice needs to grant Bob the power to sign a
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Fig. 4.4: Experimental setup for the passive OTP protocol. The setup is divided in the
server part (Alice) for preparing the entangled states and encoding the G(1) gates,
and the client part (Bob) for measuring the shared part of the state and provide
the input. The required |Ψ−〉-state is generated by a single-pass single-crystal
type-II SPDC source: A continuous-wave laser emits a pump beam at 515nm, fiber
paddles are used to control the polarization. The laser beam pumps a type-II
quasi phase-matched ppKTP crystal where two SPDC processes are overlapped
to generate pairs of non-degenerate signal and idler photons at around 785nm
and 1498nm. A long-pass filter is used to remove the pump light and a dichroic
mirror (DM) splits the signal and idler photons based on their wavelength. The
short-wavelength photons are sent to Alice while the long-wavelength photons are
transmitted to Bob over a telecom fiber link, constituting the quantum channel.
To improve spectral indistinguishability, a tuneable narrow-band filter is placed
in Alice’s arm. Following the filter, a 50 : 50 beam splitter (BS) randomizes the
gate preparation process. In the first output, a half-wave plate at 11.25◦ rotates
the photons to the states |Ψ〉0 and |Ψ〉1. In the second output, a half-wave plate
at 37.75◦ rotates the photons to the states |Ψ〉not and |Ψ〉id. The states are then
identified by projective measurements using polarizing beam splitters and silicon
single-photon avalanche diodes (Si-SPAD). Alice uses the measurement result to
identify the G(1) gates projected on Bob’s qubit by the measurement. On Bob’s
side a 50 : 50 BS is used to randomize the measurement bases. For input ′0′,
Bob’s qubit is measured in the computational basis, for input ′1′, the qubit is
measured in the diagonal basis by rotation of the polarization by 22.5◦ using a
HWP. For the detection of the telecom-wavelength photons, Bob employs PBSs and
superconducting nanowire single-photon detectors (SNSPD). Bob can identify the
measurement basis and the output by noting which detector clicked and records
the results. Employing this scheme, Alice and Bob create the shared table to be
used in the second, classical part of the protocol.
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document in her name, for example a contract. However, Alice doesn’t trust Bob and
fears that Bob might misuse the signature to sign more than one document. Using
a digital signature scheme, Alice can’t be sure that Bob will not abuse the power
she grants him. There is no information theoretically secure way to ensure that the
signature is only used once. Using the quantum advantage for one-time programs,
however, a one-time digital signature can be realized.

Alice initiates the protocol by generating a private key and encoding the encryption
with that key using G(1) gate-OTPs. For every bit of hash of the message that Bob
wants to encrypt, Alice sends N gate-OTPs to Bob who hashes the message to make
sure that the input to the protocol is always of the same length m. After using bit
after bit of his hashed message as input to the sent gates, Bob receives the signature
as output. Since he receives N gates per OTP, the total signature length amounts to
L = m ·N . Note that to maintain the security of the protocol, the N OTPs per hash
bit all have to be encoded individually using a different private key. To verify the
signature, Bob sends the signature back to Alice combined with the signed message.
Alice certifies the validity of the message by applying decryption with the key to the
signature and comparing it with the hash of the plain text. For a valid signature,
each bit string has to be correct in at least τ of N positions where τ is a threshold
set by Alice giving the number of correctly evaluated bits to make her accept. Each
gate-OTP has an inherent success probability of Psucc ≈ 0.85. The overall success
rate can be increased, however, by using more than one gate-OTP per bit of hash.
Specifically, requiring at least τ ·N correct evaluations allows for the overall success
probability to approach 1 asymptotically by increasing N .

We can compare the success probabilities of an honest Bob, who signs one and only
one message with Alice’s keys, and a cheating Bob, who tries to sign two messages.
To give a bound for successful cheating, we assume the worst case where the hashes
of Bob’s messages differ by only one bit, and the ideal individual gate-OTP success
probability of Psucc ≈ 0.85. For Bob to cheat successfully, he then has to sign one line
of the hash for both possible inputs, reducing the overall rate of correct outputs. Alice
has to choose her threshold accordingly to maximize the difference ∆τ of success
probability between an honest and a dishonest Bob. It can be shown that choosing τ
between 0.75 and 0.85 the probability of signing one message approaches one while
the probability for signing two messages goes to zero for increasing N in an ideal
implementation (supplementary material of [134]). For a real implementation, the
optimal τ is chosen to maximize ∆τ for a given number N of gate-OTPs per hash
bit.

For example, if N = 1000 G(1) gate-OPTs are encoded per bit of hash, setting
τ = 0.776 gives a success probability of Phon = 99.87% for an honest and Pdishon =
0.11% for a dishonest receiver, which corresponds to a threshold difference τhonest −
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τdishonest = 0.9976 [135]. If the message is hashed using the SHA2-224 [136]
algorithm which encrypts the message in a bit string of length m = 224, this results
to L = 224000 total gates per program. Fortunately, to verify the signature, the
gates do not have to be evaluated in a specific order which would require N rounds
of classical communication. Instead, they can be simultaneous evaluation of gates
reduces the necessary rounds of communication by log2(L). For the given example,
this results in 18 rounds of communication on average.

In conclusion, probabilistic one-time programs allow for the secure distribution and
evaluation of functions without revealing the structure of the function itself. The one-
timeness is ensured by the laws of nature and not by specific hardware. Compared to
the original implementation, the new protocol reduces the requirements for sender
and receiver by various factors. The encoding part through a quantum channel at
telecom-wavelength is completely separated from the evaluation part which only
requires classical communication. Furthermore, all active polarization switching
parts have been replaced by passive elements, minimizing the input required by Alice
and Bob during the preparation of the shared table. In the future, the remaining
bulky parts, namely the source and the detectors can be replaced by smaller versions.
In the end, both Alice’s preparation setup and Bob’s measurement setup could fit
into portable boxes to be distributed to business or even private clients.
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5SPDC source in a lab course

Apart from research, SPDC sources are common sources in quantum optical lab
courses due to their versatility, reliability and relative simplicity. However, since
typical bulk sources consist of many individual components which have to be set
up and aligned, the construction of a source can take up a lot of time of the course,
leaving less time for actual experiments. This drawback can be overcome by using
a source where all the components are prealigned and placed on a breadboard at
fixed positions in order to maintain the alignment. One such example is the QuED
by qutools. It consists of a laser diode pumping a BBO crystal, appropriate walk-off
compensation crystals as well optical components to spatially and spectrally filter
the emitted photons and couple them to optical fibers. The laser and the crystals
are prealigned and covered by a box during operation, leaving only the coupling
components open for adjustments. This design makes the source almost plug-and-
play, since realignment is relatively straightforward. In this chapter, we describe
the type of source used in the quED, followed by two basic experiments suitable for
introductory lab courses in quantum optics.

5.1 Qutools Entanglement Demonstrator

The main part of the quED is a type-I SPDC source based on a laser diode at 405nm
pumping a 2mm long BBO crystal (see figure 5.2). As described in Chapter 2.2.3,
type-I phase-matching in a BBO generates a pair of o-polarized photons from an
e-polarized pump photon probabilistically. Here, the phase-matching results in
non-collinear emission of degenerate biphoton product states at 810± 10nm after
filtering. While type-II phase-matching directly allows for the extraction of entangled
pairs from the cone intersection points, a more sophisticated technique has to be
employed to create entanglement from type-I SPDC: two identical BBO crystals are
set in line such that their optical axes are orthogonal to each other. An incoming
photon of H (V) polarization is then downconverted into a pair of VV (HH) photons
in the first or second crystal. Pumping the crystal with D- or A-polarized light creates
ambiguity in the origin of the emitted photon pairs, with an approximately equal
probability of downconversion ocurring in either the first or the second crystal. Since
the downconversion processes are coherent with respect to each other, the process
results in the entangled state |Φ±〉 = 1√

2(|HH〉 ± |V V 〉) being contained in the
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emission cones. While the relative sign of the generated state depends on the input
(|A〉 or |D〉) the remaining |Φ〉 state can be generated by rotating a half-wave plate
inserted in the pump beam by 45◦. Using an additional waveplate in one of the arms
of the down-converted photons, the state can be rotated to the Bell states |Ψ±〉.

As in any SPDC process, the propagation of the photons through the nonlinear
crystal induces temporal and spatial walk-off between the photon pairs. These effects
increase the distinguishability of the photons and, in turn, reduce the coherence and
the purity of the entangled state. The impact of the spatial walk-off, which depends
on the length of the nonlinear crystal, can be reduced by spatial filtering of the
down-converted pairs using single-mode fibers. The temporal walk-off results from
the group velocity mismatch between the pump photon and the downconverted
photons and leads to advanced propagation of photon pairs originating from the
first crystal with respect to photons from the second crystal. To counteract, a BBO
crystal is inserted in the pump beam before the downconversion crystals delaying
one polarization component of the pump beam and effectively pre-compensating the
walk-off. Since the downconversion is non-degenerate due to the spectrally broad
laser diode, the wavelength-dependent dispersion between the pairs leads to different
cone sizes after emission of the second crystal. A second BBO crystal after the DC
crystals is inserted in the path of the downconverted photons to compensate this
walk-off by recombining the cones. The pre- and post-compensation in combination
with the spatial filtering applied here leads to entangled states of high fidelity and
purity, even using a laser diode and without spectral filtering of the downconverted
photons. In the case of the quED, all down-conversion components are covered
by a box during operation, as depicted in 5.1. A longpass filter placed on the exit
aperture of the box blocks the residual pump light. Two mirrors reflect photons
from opposite points of the cones (i.e. entangled pairs) to single-mode fiber couplers
which are preceded by additional longpass filters. The downconverted photons are
coupled into single-mode fibers which guide them to Si-SPAD detectors contained in
a control box. Between the mirrors and the fiber couplers, waveplates and polarizers
can be inserted to transform the two-photon state and to project to specific linear
polarization states, respectively. By inserting additional quarter-wave plates, the
emitted quantum state can be fully characterized and compared to the theoretically
expected state via quantum state tomography.

5.2 Quantum state tomography

In previous sections, we described the states of quantum systems using complex
wave vectors. This formalism is sufficient for pure states, however, states generated
in a lab are always mixed, i.e. an incoherent superposition of pure states. Since it is
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type-I SPDC 
source

Fig. 5.1: Qutools Entanglement Demonstrator. The white box contains the type-I SPDC
source. A longpass filter at the exit port of the box filters out the pump light,
leaving mostly signal and idler photons at 810± 10nm. The photons are coupled
to polarization-maintaining fibers using a mirror and a fiber coupler in each arm.
Polarizers in front of the couplers are needed to violate a CHSH inequality and
to analyze the generated biphoton state. Additional longpass filters mounted on
the fiber couplers block residual pump light as well as scattered light from the
environment. Source: [137]

pump

signal

idler

Fig. 5.2: Qutools Entanglement Demonstrator SPDC source. A laser diode emits the
pump beam centered at 410nm. The beam is collimated by a telescope in the diode
and a lens with negative focal length. The down-conversion process takes place in
two wedged BBO crystals with crossed optical axes. Pre- and post-compensation is
necessary due to the properties of the laser diode and the temporal offset of the
downconverted wave packets. The waveplate, here in the parking position i.e. not
inserted in the pump beam, is placed in the pump beam to induce down-conversion
in both crystals, generating the entangled state |Φ±〉. The waveplate can be rotated
by 180◦ to change the phase of the Bell state from |Φ+〉 to |Φ−〉. During operation,
the source is covered by a white box. Source: [137]
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important for many experiments to know the real mixed quantum state created, it is
convenient to introduce density operator ρ̂, defined as

ρ̂ :=
n∑
i=0

pi |ψi〉 〈ψi| (5.1)

where |ψi〉 denotes a set of pure states {|ψi〉} and
∑
i
pi = 1. For pure states all except

one pi are 0 and the expression simplifies to ρ̂ = |ψ〉 〈ψ|. The density operator fulfills
the following properties:

(i) Hermiticity: ρ̂ = ρ̂†

(ii) Trace unity: Tr{ρ̂} = 1

(iii) Positivity: 〈ψ| ρ̂ |ψ〉 ≤ 0 ∀ |ψ〉

and additionally idempotency: ρ̂2 = ρ̂ for pure states, while Tr{ρ2} < 1 for mixed
states. The second and third properties stem from the normalization of probabilities
and the non-physicality of negative probabilities, respectively.

To derive the density matrix for a specific polarization-qubit state, the contribution of
every polarization has to be accounted for. In practice, this means that measurements
have to be conducted in a complete set of mutually unbiased bases, for example
{H,V }, {A,D}, {R,L} for polarization qubits.

5.2.1 Single-qubit tomography

In the most basic case, i.e. a single-photon state, the state vector can be visualized
on the Bloch sphere where the three orthogonal bases correspond to the set of Pauli
matrices {σ̂1, σ̂2, σ̂3} and the origin is at σ̂0/2 ≡ 1/2. The density operator for the
state can then be written as a linear combination of the Pauli matrices, i.e.

ρ̂ = 1
2

3∑
i=0

Siσ̂i (5.2)

The coefficients S are called Stokes parameters originally introduced in classical
optics as a measure for the electric field amplitudes [138]. They are defined as
Si := Tr{σ̂iρ̂} and obey

0 ≤
3∑
i=1

S2
i ≤ 1 (5.3)
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Fig. 5.3: Experimental setup for a single-qubit state tomography. A quarter- and a half-
wave plate rotate arbitrary incident polarization states to a linear polarization. The
state is then analyzed via projective measurements using a polarizing beam splitter
(PBS) and some type of single-photon detectors. By measuring in all mutually
unbiased bases, i.e. σ̂x, σ̂y and σ̂z, the density matrix of the polarization-qubit can
be determined up to experimental accuracy.

and S0 = 1 due to normalization. The upper bound of 5.3 describes pure states
located on the surface of the Bloch sphere. Mixed states lie below the surface
(0 < S2 < 1) and the maximally mixed state is located at the center of the sphere
(S2 = 0). The Stokes parameters can be expressed in terms of measurement
probabilities and therefore be obtained experimentally via projective measurements
:

S0 = p|H〉 + p|V 〉

S1 = p|D〉 − p|A〉
S2 = p|R〉 − p|L〉
S3 = p|H〉 − p|V 〉

(5.4)

where P are measurement probabilities normalized in terms of an arbitrary or-
thogonal basis {|ψ〉 , |ψ⊥〉} as p|ψ〉 + p|ψ⊥〉 = 1. The density operator describing the
measured state can then be derived from equation 5.2 resulting in a 2× 2 matrix for
a single-qubit state.

An analyzer setup as depicted in figure 5.3 consisting of a QWP, a HWP, a PBS and
one or two photodetectors is sufficient to fully probe the two-dimensional Hilbert
state of a single-photon qubit. If the HWP and the PBS are exchanged with a linear
polarizer or if only one detector is available, merely one of two basis states can be
measured at once and the necessary analyzer settings double for a complete set of
measurements.
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5.2.2 Multi-qubit tomography

When dealing with multi-qubit states, the definitions and properties of the density
matrix as described above still hold. While there is no visualization for multi-
qubit Bloch spheres, the density operator for n-qubit states in terms of the Stokes
parameters can be generalized as

ρ̂ = 1
2n

3∑
i1,i2,...,in=0

Si1,i2,...,in σ̂i1 ⊗ σ̂i2 ⊗ ...⊗ σ̂in (5.5)

where S0,0,...,0 = 1 due to normalization [139]. Taking this into account, there are
4n − 1 real parameters that have to be determined corresponding to 2n basis states.
Restricting the discussion to two-qubit states (n=2) labeled by i1, i2, the Stokes
parameters can again be expressed in terms of measurement outcomes as

Si1,i2 =
(
p|Ψi1 〉 − p|Ψ⊥i1 〉

)
⊗
(
p|Ψi2 〉 − p|Ψ⊥i2 〉

)
, i1, i2 6= 0 (5.6)

allowing the determination of each two-qubit Stokes parameter by four local measure-
ment settings. In other words, every combination of {H,V,D,R} has to be measured
(taking into account the completeness relation {|Ψ〉 , |Ψ⊥〉} as P|Ψ〉 + P|Ψ⊥〉 = 1)
in order to determine every Stokes parameter. The number of analyzer setting is
determined by the amount of available detectors, either one or two for each outcome.
The primary advantage of having four detectors in total is that one analyzer setting
can access the complete basis simultaneously [90]. Therefore, enough information
to determine a Stokes parameter can be obtained with one analyzer configuration.
Since certain Stokes parameters can be calculated with the same measurements,
the number of required settings reduces to 9 from 16 in the one-detector case,
where in each case one of the measurement settings is required to determine the
normalization.

The quED consists of a polarizer that absorbs |Ψ⊥〉 (|Ψ〉) and transmitting |Ψ〉 (|Ψ⊥〉)
and only one detector, therefore requiring at least 16 measurement settings. A
schematic of the quED setup for tomography measurements is depicted in figure
5.4. The state emitted by the quED source is one of the Bell states |Φ+〉 and |Φ−〉
depending on the position of the wave-plate in the pump beam. A quarter-wave
plate in each arm is used to probe circular polarization components after which the
polarizers project the state on a linear polarization. Longpass filters in front of the
fiber couplers block residual pump light as well as short-wavelength stray light. The
quED control unit containing two Silicon SPADs is used to tune the pump laser and
track the coincidence counts for the various measurement settings.
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Fig. 5.4: quED two-qubit state tomography setup. A half-wave plate is added in signal
and idler arm to the quED setup from 5.1. The linear polarizers act as a combi-
nation of a half-wave plate and a PBS, transmitting only one linear polarization
state at a time (the drawback to using a half-wave plate and a PBS followed by 2
detectors is that more measurement settings are required). The following longpass
filters removes residual pump light and stray light. In the quED control unit, the
silicon-based SPADs to detect the incident photons are housed along with the
required electronics to analyze the state (shown in the picture are the coincidence
rates between signal and idler arm).

5.2.3 Maximum likelihood estimation

Due to experimental noise, the finite number of measurements and imperfect optical
components, measurements suffer from statistical and systematic errors. This can
result in an unphysical density matrix. In particular, the positivity property may not
be fulfilled due to one or more of the eigenvalues being negative. The probability
to encounter negative eigenvalues grows linearly with the dimension of the state
and is therefore especially apparent when dealing with large systems. If the density
operator yields unphysical eigenvalues, various methods can be employed to recover
a physical density matrix from the measured parameters. A common numerical
method is the maximum likelihood estimation (MLE) which assumes errors in the
measurement results and gives out the physical density matrix that is closest to the
measured data [140, 141].

In general, a maximum likelihood method algorithm generates a density matrix that
is Hermitian, positive and therefore physical. A likelihood function quantifies the
fit between the density matrix and the experimental data. The likelihood is then
optimized via numerical methods, e.g. Monte Carlo, to result in the most probable
physical density matrix. Implementing the MLE algorithm on one’s own usually goes
beyond the complexity and the temporal boundaries of an introductory lab course.
Fortunately, ready-to-use code packages exist either for several popular programming
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languages [142], as well as in the form of an online tomography interface which
includes a graphical output for the density matrix [143].

5.2.4 Fidelity and purity

After a physical density matrix is retrieved, several helpful measures for the quality
of the quantum state can be derived: For example, the fidelity

F(ρ̂th, ρ̂exp) :=
(

Tr
{√√

ρ̂thρ̂exp
√
ρ̂th

})
(5.7)

quantifies the overlap between the experimentally obtained state ρ̂exp and the
theoretically expected state ρ̂th. 0 ≤ F ≤ 1 where F = 1 if the states are identical, i.e.
ρ̂exp = ρ̂th. Using the quED, F > 0.88 can be achieved using the standard alignment
procedure [137]. From the fidelity, measures for the degree of entanglement of
mixed states1, can be directly recovered [144, 145]. The purity is a measure to
quantify how mixed the obtained state is and is given by

γ := Tr{ρ̂2}, 1/d ≤ γ ≤ 1 (5.8)

where d is the dimension of the Hilbert space. The upper and lower bound for γ
represent a pure and the completely mixed state, respectively, following directly
from the properties of ρ̂. Using the quED, all four Bell states can be prepared and
characterized by conducting a quantum state tomography [146]. Single-qubit states
can be created by heralding one of the two photons of each pair and rotating the
remaining photon using a half- or a quarter-wave plate [35].

5.3 Hong-Ou-Mandel interference

When two identical photons (i.e. same polarization, frequency, phase,...) enter
a beam splitter via both input modes, both photons will be detected in the same
output mode. The number of coincidence events between detectors placed in the
output ports vanishes in an ideal setup. This effect is known as Hong-Ou-Mandel
(HOM) interference and was first shown in 1987 by the authors of the same name
[87]. In contrast to many other quantum effects, HOM interference can be shown
through a relatively minimal equipment, which makes it a suitable experiment for an
undergraduate lab course [147]. Apart from a source generating identical photons,
the required components are a beam splitter where the downconverted photons are
combined and a variable delay line for either the signal or the idler arm to overlap
the time of incidence at the beam splitter. We define the two-photon input state

1e.g. the tangle and the concurrence

102 Chapter 5 SPDC source in a lab course



Coincidence
logic

r:t
SPAD

S
PA
D

Fig. 5.5: Experimental setup to measure Hong-Ou-Mandel interference. Two single-
photon states are interfered at a 50:50 beam splitter, i.e. t = r = 1/

√
2. If the

photons are indistinguishable, interference leads to both photons always exiting
the beam splitter in the same output mode. SPADs in each mode used to detect
the photons are connected to a coincidence logic. If interference occurs, the
coincidence count should reach a minimum. To adjust the arrival time at the
detectors and visualize the coincidence ’dip, a delay τ is added to one of the two
input modes.

before arriving at the beam splitter in the Fock (number) basis

|Ψin〉ab = â†b̂† |0〉a |0〉b (5.9)

where â† and b̂† are the bosonic creation operators acting on the two-photon vacuum
state in the input modes a and b. We introduce the indices j and k to label properties
of the photons such as polarization, frequency, time of arrival, spectral and transverse
spatial mode. Note that in the previous description of a beam splitter in Chapter
2.3.1 we assumed the photons to be identical, i.e. indistinguishable and therefore
suppressed these indices. The transformation induced by an ideal beam splitter of
transmission t and reflectance r is described by a unitary matrix ÛBS which acts in
the following way on the creation operators if we make no assumptions about the
distinguishability:

â†
ÛBS−−→ tĉ† + ird̂†

b̂†
ÛBS−−→ irĉ† + td̂†

(5.10)

where ĉ† and d̂† describe the creation of a photon in the output mode c and d,
respectively. Applying ÛBS to the incident two-photon state then results in the
output state

|Ψout〉cd = ÛBS |Ψin〉ab =
(
itrĉ†j ĉ

†
k + t2ĉ†j d̂

†
k − r

2ĉ†kd̂
†
j + itrd̂†j d̂

†
k

)
|0〉c |0〉d (5.11)
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using equation 5.9 and 5.10 and [ĉ†, d̂†] = 0 in the third term. Assuming a 50 : 50
beam splitter, i.e. t = r = 1/

√
2, |Ψout〉cd reduces to

|Ψout〉cd = 1
2
(
iĉ†j ĉ

†
k + ĉ†j d̂

†
k − ĉ

†
kd̂
†
j + id̂†j d̂

†
k

)
|0〉c |0〉d (5.12)

The four terms on the right hand side correspond to the possible outcomes after
undergoing the beam splitter transformation, as depicted in figure 5.6. In half of
the possible outcomes, where either both photons are transmitted or reflected, the
detectors in both output modes click, indicating a coincidence event. The remaining
terms correspond to both photons exiting the beam splitter in output c or d and both
arriving at the same detector.

Remarkably, two of these possible outcomes only occur for distinguishable photons.
If the incident photons are indistinguishable, two terms cancel out and HOM interfer-
ence can be observed: The properties of photons relevant for the distinguishability
are included in the subscripts i, j of the creation operators. If i 6= j, the photons are
distinguishable which is the case e.g. for orthogonal polarization where j = H and
k = V . The output state |Ψout〉cd is then given by

|Ψout〉cd = 1
2
(
iĉ†H ĉ

†
V + ĉ†H d̂

†
V − ĉ

†
V d̂
†
H + id̂†H d̂

†
V

)
|0〉c |0〉d

= 1
2 (i |1;H〉c |1;V 〉c |0〉d + |1;H〉c |1;V 〉d − |1;V 〉c |1;H〉d + i |0〉c |1;H〉d |1;V 〉d)

(5.13)

where we explicitly wrote both the number state and the polarization state of the
photons in the output modes. As above, two terms correspond to both photos in the
same output mode and two terms to one photon in both mode c and d, resulting in
a click at both detectors with probability pcoinc = 1/2. If the photons are in the same
polarization state and assuming the other properties to be equal as well, i = j. The
photons are indistinguishable resulting in the state

|Ψout〉cd = 1
2
(
iĉ†j ĉ

†
j + ĉ†j d̂

†
j − ĉ

†
j d̂
†
j + id̂†j d̂

†
j

)
|0〉c |0〉d

= i√
2

(ĉ†j)2
√

2
+

(d̂†j)2
√

2

 |0〉c |0〉d = i√
2

(|2〉c |0〉d + |0〉c |2〉d)
(5.14)

We can see that the terms where both output modes are occupied cancel out (destruc-
tively interfere) resulting in bunching of the photons and pcoinc = 0. The photons
leave the beam splitter in pairs (randomly) in one of two outputs with probability
1/2 Note that this destructive interference is not interference between two single
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Fig. 5.6: Schematics of Hong-Ou-Mandel interference in a 50:50 beam splitter. Indis-
tinguishable single photons from each input mode interfere in a beam splitter.
The total output state results from adding all contributing amplitudes. Due to
the minus sign in front of the third term, the contributions of one photon in each
output mode cancel out, leaving only the contributions with both photons in one
output mode, i.e. a two-photon number state.

photons but a two-photon interference effect arising from the two-photon probability
amplitude in equation 5.14.

HOM interference can be visualized in experiments by the so-called HOM dip,
referring to the decrease in coincidence counts when the photons approach temporal
indistinguishability. Using entangled photon pairs generated by type-I SPDC and
compensating the walk-off effects, we assume that the polarization, the frequency
and the transverse spatial mode are identical for both the signal and the idler photon.
To detect the HOM dip, some sort of time delay has to be inserted in one of the
input (or output) ports of the beam splitter in order to overlap the wave packages
as depicted in figure 5.7. The more the wave packages overlap, the higher the
indistinguishability, resulting in a reduction of the coincidence counts or a deepening
of the HOM dip. The coincidence counts can then be plotted against the time delay
τ between the signal and idler arm, resulting in the graphical representation of the
HOM dip. The deepness of the dip depends on the experimental setup, i.e. the
experimentally achieved indistinguishability and can be quantified in terms of the
HOM visibility given by

VHOM := Tr{ρ̂aρ̂b} = 1− pcoinc(τ → 0)
pcoinc(τ →∞) (5.15)

If the photons are entangled or if they are separable but have the same density
matrix ρ̂a = ρ̂b, the visibility is equivalent to the purity γ of the state

VHOM ≡ γ (5.16)
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propagation direction

Fig. 5.7: Temporal overlap between two wave packages. The wave packages are as-
sumed to be indistinguishable in all other degrees of freedom. In the case at the
top, the wave packages are fully overlapped and interfere, i.e. they are fully coher-
ent and would show ideal contrast in an interference pattern or perfect visibility
in a HOM dip experiment. In the middle case, the wave packages are partially
overlapped, quantified by the temporal shift τ , leading to reduced coherence. They
still interfere since τ < τc (where τc is the coherence time) but the contrast in
an interference pattern and the depth of the HOM dip is reduced. In the bottom
case, the wave packages do not overlap, i.e. τ > τc. Coherence is lost and no
interference can be observed.

The width of the dip at full width half maximum (FWHM) is the coherence time of
the two-photon state related to the coherence length by

FWHM ≡ τc = lc/c (5.17)

while the form of the dip depends on the spectral distribution of the photons which
itself depends on the nonlinear profile of the crystal used for SPDC [148]. For
example, a BBO has the nonlinear profile of a top-hat function, which results in a
spectral profile of the generated photons that is proportional to the sinc of a linear
function and results in the coincidence probability

psinc
coinc = 1

2 −
1

4σ ((σ − τ)sgn(σ − τ) + (σ + τ)sgn(σ + τ)− 2τsgn(τ)) (5.18)

where σ is the standard deviation related to the full width at half maximum via
FWHM = 2

√
2 ln 2σ. Spectral filtering after the SPDC source and before the beam

splitter might change the function to a profile proportional to a Gaussian function
which gives

pGauss
coinc = 1

2 −
1
2e
−2σ2τ2

(5.19)

Both functions are plotted in figure 5.8.

For the quED setup, a HOM effect upgrade can be purchased that consists of an
in-fiber 50 : 50 beam splitter and a translation state in one arm that is used to tune
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Fig. 5.8: Plot of the Hong-Ou-Mandel dip. Equation 5.19 (5.18) is depicted in blue (red).
The width of the wave packages σ is set to 1. Tuning the temporal overlap
between the wave packages τ changes the depth of the dip. In the case of perfect
indistinguishability (including τ = 0) and zero dark counts, the coincidence rate
pcoinc drops to zero.

the time delay. The coincidence counts can be displayed on the detector console
and tuning the delay will then result in the appearence of the HOM dip if the rest of
the setup is appropriately aligned. A schematic depiction of the quED setup used to
visualize the HOM-dip is given in figure 5.9. The experiment can be conducted in a
relatively short amount of time and a lab course report may include calculation of
the visibility and the purity of the generated state.

50:50

quED control unit

co
in

ci
d
en

ce
s

time

signal

idler
LASER
DIODEpump

quED SPDC
Source

Fig. 5.9: quED setup to study Hong-Ou-Mandel interference between signal and idler
photons. Both photons are coupled to a fiber which leads to an in-fiber 50:50 beam
splitter. To tune the arrival time, one fiber coupler is mounted on a translation stage
which can be moved by ∆L = c∆τ . The beam splitter is connected to the detectors
in the quED control unit, where the coincidence count is directly displayed. The
HOM-dip becomes visible by tuning the translation stage, overlapping the signal
and idler wave packages.

To summarize, HOM interference is a quantum effect that shows the degree of indis-
tinguishability of two particles, in this case photons. There is no classical equivalent
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since the effect emerges from a fundamental property of bosons, namely bunching.
Indistinguishability is a requirement for high degrees of entanglement, therefore
HOM interference is a common measure for the quality of a source supposed to gen-
erate identical or entangled photon pairs. Furthermore, due to the relative simplicity
of the setup, HOM interference is also a suitable experiment for undergraduate lab
courses.
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6Conclusion

Over the course of the last few chapters, we laid out three experimental applications
that rely on SPDC sources. The first experiment is an implementation of blind
quantum computing that is driven by a completely classical client. Measurement-
based quantum computing, which is the underlying framework for blind quantum
computing, is based on measurements on a highly entangled resource state, in this
case a box cluster state consisting of four physical qubits. The state is generated by
pumping two type-II BBO crystals to create two Bell pairs at 800nm and fuse the
pairs using a probabilistic CZ gate. While down-conversion rates provided by SPDC
sources are inherently low, count rates of around 10Hz can be achieved at 500mW
for the box cluster resource state after fusing.

The second experiment enables the realization of universally secure one-time pro-
grams by encoding classical gates in qubits. Sharing a Bell state allows the remote
preparation of the gates via measurement on the server’s part without compromising
the type of gate sent to the client. The source used to generate the Bell state is
based on a special type of quasi-phase-matching in a perdiodically-poled crytal. A
solid-state laser at 515nm pumps a ppKTP specifically tuned to allow for two SPDC
processes to take place simultaneously. Overlapping the processes allows for the gen-
eration a Bell state made up of highly nondegenerate photons at 785nm and 1498nm.
Transmitting the long-wavelength photon to the client and the short-wavelength
photon for the state preparation allows for long transmission channels to the client
and at the same time, keeps the resource requirements as low as possible on the
server’s side.

In the last chapter, we discuss the application of a plug-and-play type-I SPDC source
in undergraduate lab courses. The source is based on a laser diode at 405nm
pumping two wedged type-I BBO crystals generating either pairs of indistinguishable
photons or a Bell state depending on the pump polarization. Due to the design of
the source, the time required for the alignment is vastly reduced, leaving more time
to investigate the basics quantum optics such as quantum state tomography and
Hong-Ou-Mandel interference.

In Table 6.1, some of the most important properties of the sources described are
compared. The sources summarized, while based on the same fundamental process,
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Experiment Crystal Phase-matching λp λs,i Direction

CDBQC BBO type-II 394.5nm degenerate non-collinear

OTPs ppKTP QPM 515nm non-degenerate collinear

Lab course BBO type-I 400nm non-degenerate non-collinear
Tab. 6.1: A summary of the SPDC sources employed in this thesis. ’CDBQC’ refers to the

classically-driven blind quantum computing protocol, ’OTPs’ to the one-time pro-
grams using entanglement, and ’lab course’ to the quED entanglement demonstra-
tor used for laboratory course experiments. The pump wavelength (λp) is given as
well as the properties of the down-converted photons in terms of wavelength (λs,i)
(degenerate/non-degenerate) and (emission) direction (collinear/non-collinear).

are all employing different types of phase-matching, generate different states with
different rates, in a wide range of degenerate and non-degenerate wavelengths.
The extensive variability is one of the main advantages of SPDC sources. While
the sources and the corresponding setups discussed are different in their properties
and application, there are overarching themes apart from the down-conversion
process. Excluding the lab course experiments, both protocols discussed assume
interaction between non-trusting parties. For short and midterm implementations of
quantum computing, the classically-driven blind quantum computing protocol offers
a possibility for users restricted to classical capabilities to be able to use a quantum
server without having to fear compromization of the details of the computation. In
the future, the fidelity of the resource state can be improved by using more efficient
entanglement sources and by implementing entanglement gates based on nonlinear
materials to achieve higher entanglement rates. This would also enable the extension
of the resource state to larger and possibly universal cluster states, while keeping
the hardware requirements reasonable.

For the evaluation of classical gates, quantum principles allow the preparation and
evaluation of one-time programs. In the protocol introduced, a focus already lies in
the applicability of the protocol by preparing the gates using only passive in-fiber
elements and a one-way quantum channel, and requiring simply a classical channel
for the evaluation. Further improvements can be made by increasing the mobility
of the quantum part of the protocol. For example, the bulk source used in the
protocol is designed to be eventually integrated in a chip, substantially reducing
the size of the server’s setup. On the client’s side, using smaller but less-efficient
telecom-wavelength detectors would allow to confine the whole setup to a small
box.

All in all, the improvement of the protocols discussed is mainly dependent on the
development of the non-linear components. Though SPDC sources can be used
for diverse applications and are comparably easy to set up, they are fundamentally
bound by their spontaneous working principle and the increasing chance of multi-
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pair emissions for higher pump powers. Both effects can reduce the fidelity of the
generated states as well as the security in cryptographic protocols. Therefore, the
development of deterministic and efficient single-photon sources is the required
next big step in the field of quantum technologies. However, since candidates for
single-photon sources are still in their infancy and require expensive components to
set up, SPDC sources will continue to play a crucial role in quantum optical setups
in the coming years.
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