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"There And Back Again.

A Data’s Tale. A look into uVie-IfA’s data processing."

Abstract

ESA’s Solar-wind-Magnetosphere-Ionosphere-Link-Explorer (SMILE) satellite is a three
year mission which aims to observe the dynamic response of the Earth’s magnetosphere
to the solar wind and the global impact of that response. SMILE is planned to launch
with four instruments: the soft X-ray imager (SXI) which observes the magnetopause,
a UV imager (UVI) which observes the earths magnetic cusps, a magnetometer (MAG)
that measures the strength and direction of the local magnetic field, and a Light Ion
Analyser (LIA) that records the velocity distribution of solar wind ions. This thesis
concentrates on the data simulations as well as consequent on-board data analysis and
event-detection specifically as it pertains to the SXI. The algorithms were written in
both Python and C.

The data simulator needs to run in real time, and be adaptable enough to test various
scenarios, as well as be modular so as to be implementable in future missions. This
means being able to easily change event types, noise, and detector properties, while
still having the simulation run in less than the expected integration time (for SMILE:
4 seconds). Due to the nature of X-Ray observations, event detection is a key step in
the data processing chain of SMILE. This starts in the Front-End Electronics (FEE).
With the limited on-board memory, only a 5×5 pixel package of an event is passed on
from the FEE to the Data Processing Unit (DPU). Both the FEE and the DPU have a
specific set of rules to determine whether a signal is an actual magnetosphere event,
background X-Ray, or a cosmic ray. Once an event is confirmed, it is passed on to
the On-Board-Computer (OBC) archive until the next earth-download. This thesis will
take an in-depth look at the SMILE mission, the structure of the created simulator DaSi,
cases of benchwork data created by DaSi, as well as the rest of the data processing chain
developed for SMILE by the Institute of Astronomy at the University of Vienna.
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1 INTRODUCTION

Chapter 1
Introduction

Where to go? Where to go? Near and

far. Here they are.

Patrick Rothfuss

There and back again. This is a tale of light. And the many adventures it goes on. That
is, before figures in long robes and goggles catch the light and make lots of charts and
graphs trying to understand the tales that the light tells them.

In modern astronomical research, it is notoriously difficult to run experiments. We can’t
touch our interests1, we can’t put a galaxy in specific scenarios, under specific condi-
tions, to see how it will react. One either needs a decently sized telescope, or even a
satellite, to obtain data needed for testing any hypothesis. It can often take years of
preparation for a mission to be ready for operations. But in this time, it is necessary to
test every component of the project, from the software, to the hardware. The problem is,
since most missions aim to obtain data using novel methods, it is difficult to test systems
before deployment. To deal with this problem, countless simulations and tests are run
to account for a number of possible situations that might arise.

The goal of this thesis is to create a data simulator for the Department of Astrophysics
from the University of Vienna, which can be implemented for the testing of the data pro-
cessing software. The simulator was created specifically for the Solar-wind-Magneto-

1And even if we could, most things would be either too hot or too cold for comfort.

1 of 123



1 INTRODUCTION

sphere-Ionosphere-Link-Explorer (SMILE) mission, but with the intention of having it
be modular and adaptive enough to be able to implement into future missions. One other
mission to which it has already started being applied to, is the Atmospheric Remote-
sensing Infrared Exoplanet Large-survey (ARIEL) mission. Another key element of
this simulation was for it to be efficient enough to be carried out in real time during the
data processing. This means that it can be run alongside data compression, within the
mission’s expected observation time. Up until now, data simulators have been written
for each mission individually, taking up valuable time and resources before the testing
of the actual software can begin.

Many standard camera simulators already exist, such as the ESA Pyxel simulator (Luc-
sanyi et al., 2018), Penn State’s ACIS simulator (Townsley and Broos, 2008), the Ed-
dington CCD simulator (Arentoft et al., 2003), and many more (see Sec. 3.3). One
really only needs to google "CCD simulator" and a plethora of open-source softwares
will be readily available. However, every one that I came across was either not modular
enough to create specific enough cases that were needed, or were so computationally
taxing, that it could take up to a couple of minutes to expect a single image. For SMILE
alone, the need for creating both benchmark data as well as specific cases, and being
able to generate them on command, was clear from the beginning. Especially having
only limited knowledge on the magnetospheric events that are expected to be imaged
by SMILE, being able to adapt and change the types of signals being observed is of
notable importance. We know quite a bit about the magnetosphere and its interactions
with space weather already, but how exactly does it affect us?

Our world is becoming increasingly dependent on ever-more complex technologies.
With this, the potential risk of space weather impacting our lives is more critical than
ever. The Earth’s magnetosphere is our primary defense against the violence of space,
protecting us from cosmic and solar radiation. Many missions already exist that observe
the effects of this interaction: GeoTail, Cluster, Swarm, Magnetospheric-Multi-Scale
(Mukai et al., 2000; Escoubet et al., 2001; Burch et al., 2016). However, these missions
have only been looking at in situ (local) observations of microscale processes.
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1 INTRODUCTION

Figure 1.1: Logo for SMILE mission.

And yet, we know surprisingly little about the global impacts of the interactions of the
magnetosphere and its extraterrestrial attackers. The SMILE mission was designed to
observe this link on a global scale. This is the first mission of its kind, and can provide
a key link to how the sun can influence the earth’s plasma environment (Sembay et al.,
2015). With this knowledge, we will be better able to forecast geomagnetic storms,
the most hazardous space weather events in the near-Earth environment (Branduardi-
Raymont et al., 2018), affecting everything from harming spacecraft electronics, cre-
ating surges in electrical power line transmissions, and impacting GPS navigation and
communication.

This thesis will first go over the SMILE mission (Fig. 1.1), its instruments, and its sci-
ence goals, then take an in-depth look at the the data simulator DaSi, as well as some
of the possible outputs, and end with an overview of the entire data processing chain
including a user manual for its operation.
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2 SMILE MISSION

Chapter 2
SMILE Mission

There is nothing like looking, if you

want to find something. You certainly

usually find something, if you look,

but it is not always quite the

something you were after.

J. R. R. Tolkien

SMILE was proposed to observe the solar wind / magnetosphere coupling via:

1. simultaneous solar wind, magnetosheath plasma, and magnetic field measure-
ments.

2. X-Ray images of the magnetosheath and magnetic cusps

3. UV auroral images of global auroral distributions.

This mission will complement all solar, solar-wind, and in situ magnetospheric obser-
vations. Thereby resulting in an observation of the full chain of events driving space
weather for the first time ever. It is a joint mission between European Space Agency
(ESA) and the Chinese Academy of Sciences (CAS).

2.1 Mission

SMILE is expected to revolutionize magnetospheric physics by providing images and
movies simultaneously of the magnetopause, cusps, and auroral oval using state of the
art detection techniques (Branduardi-Raymont et al., 2018).

5 of 123



2.1 MISSION 2 SMILE MISSION

2.1.1 Overview

SMILE aims to answer three prime science questions regarding magnetospheric physics:

1. What are the fundamental modes of the dayside solar wind/magnetosphere inter-
action?

2. What defines the substorm cycle?

3. How do coronal mass ejection-driven storms arise and what is their relationship
to substorms?

The spacecraft is planned to be launched on a VEGA-C or shared Ariane 62 rocket
and will reach a highly inclined elliptical orbit. The launch is currently scheduled for
November 2023 (status as of August 26, 2020). SMILE will be three-axis stabilized so
that the instruments will consistently point towards the cusp/magnetosheath and aurora.
The ground segment will be shared by CAS and ESA with CAS operating the space-
craft and performing science operations for the instruments. The collection of data will
be performed by ground stations of CAS and ESA respectively (Branduardi-Raymont
et al., 2018).

Another goal of this mission is to establish a comprehensive outreach program to further
the public understanding of these previously "invisible" solar-terrestrial processes.

2.1.2 Operation Modes

The nominal science operation along orbit will be broken into five level modes which
are described in Tab. 2.1 and approximate orbit zones shown in Fig. 2.1. These modes
will be supplemented by basic idle, stand-by and safe modes (SMILE, 2018a).
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2 SMILE MISSION 2.1 MISSION

Mode Description

Full Science Mode: All 4 instruments are able to operate. Space-
craft mode driven by SXI LoS (Line of Sight)
pointing to the magnetopause.

Reduced Science Mode 1: UVI is not allowed to operate due to Sun exclu-
sion constraints.

Reduced Science Mode 2: SXI is not allowed to operate due to Sun exclu-
sion constraints or because altitude is lower than
50 000 km. At that altitude, a shutter closes in
front of the focal plane to limit radiation doses
on the SXI CCD detector.

Reduced Science Mode 3: Only MAG and LIA operate and the spacecraft
mode is power-optimised.

X-band Communication Mode: PLM transmits in X-band. All science and
telemetry data collected along one orbit to either
Troll (baseline, ESA GS, Antarctica) or Sanya
(support, CAS GS, China).

Table 2.1: Nominal science Modes of SMILE in orbit after a two month commissioning
phase (Branduardi-Raymont et al., 2018).
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2.1 MISSION 2 SMILE MISSION

Figure 2.1: SMILE main science operating modes. Full science mode is only possible
near the highest inclination. Reduced mode 1 and 2 are without the UVI and subse-
quently SXI instruments. For more, see Tab. 2.1. Figure adapted from SMILE (2018a).

Dimension Argument

Apogee 20 RE± 2 RE

Perigee + 5 000 km altitude

Inclination 90 ± 27 ◦

Argument of Perigee 225 - 315 ◦

Table 2.2: Orbit Parameters (Branduardi-Raymont et al., 2018).
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2 SMILE MISSION 2.1 MISSION

Figure 2.2: Orbit of SMILE inclunding FoV for the SXI and UVI instruments (SMILE,
2018a).

2.1.3 Orbit and Field of View

SMILE is set to have a highly-inclined (>70◦), high apogee (20 RE), elliptical orbit. This
way, simultaneous images can be made of the solar wind impacting the magnetosheath
in X-ray and auroral images made in UV. The orbit also allows for 40h continuous
imaging per 51 hour orbit. The current requirements for the orbit are summarized in
Tab. 2.2. The orbit including the Field of View (FoV) of the SXI and the UVI can be
seen in Fig. 2.2.

2.1.4 Satellite

The SMILE satellite will be comprised of two main components. The Platform (PF),
and the Payload Module (PLM). See Fig. 2.3.

Platform (PF):
The spacecraft platform encapsulates the Propulsion Module (PM) and the Service
Module (SVM), see Fig. 2.4. It is under CAS supervision and the design originates from
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2.1 MISSION 2 SMILE MISSION

Figure 2.3: 3D rendering of the SMILE spacecraft from phase 0 study. The propulsion
module (PM), the service module (SVM), as well as LIA instruments comprise the PF
platform (PF). The payload module (PLM) holds the SXI, UVI and MAG (Branduardi-
Raymont et al., 2018).

Figure 2.4: Setup of the SMILE platform (PF) in launch configuration. The propulsion
module (PM) is the bottom part and the service module (SVM), which includes the LIA
instrument, is on the top (Branduardi-Raymont et al., 2018).
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2 SMILE MISSION 2.1 MISSION

Figure 2.5: Payload Module of SMILE hosting the SXI, UVI, and MAG instruments.
Note, LIA has been moved to the SVM (Branduardi-Raymont et al., 2018).

previous missions such as Beidu and the Dark Matter Particle Explorer. The propulsion
model serves to bring SMILE to its science orbit and also hosts the LIA instruments.
The service module provides power, S-Band link to the ground, and central control of
the spacecraft (including PLM). The platform will have a dry mass of 547 kg (±5%)
with 1 521 kg of propellant.

Payload Module (PLM):
The Payload Module (PLM) is joined at the top panel of the SVM and hosts the SXI,
UVI, and MAG instruments (Fig. 2.5). The PLM’s main functions are:

• Command and control of PLM units and instruments

• Interface with the Platform (e.g. telemetry, power)

• Science data storage

• Power distribution throughout PLM

• High data rate X-band transmissions to ground

• Thermal and mechanical control of PLM
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2.2 SCIENCE 2 SMILE MISSION

Figure 2.6: Magnetosphere of the earth. The magnetopause (the intersection of the
red and white field lines) represents the outermost boundary of the magnetosphere. The
solar wind decelerates and is heated at the bow shock. The magnetosheath represents
the region between the bow shock and magnetopause. The cusps are the polar regions
where the solar wind enters directly into the magnetosphere. The dayside of the mag-
netosphere is compressed with the nightside elongated (magnetotail). From https:
//www.nasa.gov/mission_pages/sunearth/science/magnetosphere2.html.

2.2 Science

2.2.1 Heliophysics

To better understand the instruments and their functions, this next part will serve as a
short introduction into the physics behind Earth’s magnetosphere. A summary of the
most important terms can be seen in Tab. 2.3.

The ionosphere describes the upper atmosphere of Earth that contains a large portion of
ions and (free) electrons due to ionization from from ultraviolet and x-ray radiation from
the sun (from ca. 60 km up to 1 000 km). The highest part of the ionosphere forms the in-
ner edge of the magnetosphere, at which point the atmosphere’s charged particles are af-
fected by the Earth’s magnetic field and interact with the super-Alfvénic and supersonic
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2 SMILE MISSION 2.2 SCIENCE

Term Definition

Interplanetary Magnetic Field (IMF) Component of solar magnetic field which
is dragged outwards by the corona.

Magnetosphere Region around object where charged par-
ticles are affected by the bodies magnetic
field.

Solar Wind High energy charged particles (plasma),
primarily electrons and protons ejected
from the Sun’s corona. Typical speeds:
300 - 500 km/s, energy: 1.5 - 10 keV, pres-
sure: 1 - 6 nPa, temperature: 1.5e6 K.

(Geo-)Magnetic storm Disturbance of magnetosphere, induces
charge exchange.

Ionosphere Upper atmosphere containing ions and
free electrons ionized from solar radiation.

Magnetopause Boundary between magnetosphere and so-
lar wind

Bow Shock Boundary at which solar wind abruptly
slows due to interaction with the magne-
tosphere of an astrophysical object.

Magnetosheath Region between bow shock and magne-
topause

Magnetotail Dual-lobed extension of magnetosphere
on night-side of celestial object.

Van Allen Belts Two (up to three) radiation belts around
Earth of solar wind particles captured in
Earth’s magnetic field.

Sub-Storms Disturbance in magnetosphere. Transfer
energy from solar wind to magnetosphere
(and magnetotail).

Coronal Mass Ejection (CME) Large expulsions of plasma and magnetic
field from the Sun’s corona.

Table 2.3: Important terms from heliophysics. See Fig. 2.6 for visualization.
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2.2 SCIENCE 2 SMILE MISSION

solar wind plasma. Previous missions, such as the Japanese Geotail (Mukai et al., 2000),
the European Cluster mission (Escoubet et al., 2001), the Chinese-European Double-
Star project (Liu et al., 2005), the US Time History of Events and Macroscale Inter-
actions during Substorms (THEMIS) mission (Angelopoulos et al., 2008), Van Allen
probes (Mauk et al., 2013), Magnetospheric Multi-Scale mission (MMS) (Burch et al.,
2016), and the Arase-Erg missions (Miyoshi et al., 2018), were geared towards precise
local measurements of the various processes which progress in the magnetosphere’s.
These missions have increased our knowledge on the compression of the dayside mag-
netosphere, the drag of the nightside into a tail, reconnection of magnetic lines, and
more.

The magnetosphere can be strongly deformed by a coronal mass ejection (CME) (Fig.
2.6). These are fast interplanetary bursts of plasma. Such CME’s can induce large elec-
trical currents inside Earth’s magnetic field (also known as geomagnetic storms). The
magnetosphere is compressed to roughly half its normal size, which in turn enhances
auroral activity. Satellites (and even high flying airplanes) can be disrupted, severing
communications and functionality. Such storms can even affect a city’s power grid.
The largest recorded CME event was on September 1, 1859 (known as the Carrington
Event). A coronal ejection reached the earth in a mere 17 hours (compared to the typical
three to four days) and caused widespread blackouts, disrupting telegraph communica-
tions, and resulting in auroras seen as far south as the Caribbean (Lovett, 2011).

The magnetosphere has a distinctly non-linear dynamic behavior in response to solar
wind. Due to the inherent uncertainty in magnetic field line mapping, it is difficult to
define the exact extent of the mangetosphere’s boundaries. One method to approximate
the magnetic flux is the so called Expanding-Contracting Polar Cap (ECPC) paradigm.
Inferences about both the dayside magnetosphere and magnetotail can be made by mea-
suring the structure, location, and brightness of the auroral oval (Milan et al., 2012).
These have led to advancements in understanding substorms (magnetic flux which is
removed from the dayside during reconnection of field lines and passed to the magneto-
tail lobes). Despite this theory, very few independent observations exist which confirm
these processes. Observing the entire chain of events chronologically is one of the main
goals of the SMILE mission.
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2 SMILE MISSION 2.2 SCIENCE

2.2.2 Science Goals

Goal 1: Dayside reconnection

The reconnection of dayside magnetic lines has been observed to be both steady (per-
sisting for a long time in the case of magnetic field pressure dominated conditions), as
well as unsteady (bursty and time dependent due to temporal variability in the speed
of the inflowing plasma or turbulence) (ESA/ATG, 2019). These reconnections cause
plasma to flow anti-sunward through the magnetopause boundaries, cusps, and polar
caps (Branduardi-Raymont et al., 2018). However, it is unsure how the different types
of reconnection come to be, since they depend on a variety of factors such as: varia-
tions in the solar wind; cusp-topology; and even magnetotail-orientation. For example,
the cusp latitude directly correlates with the level of flux inside the magnetosphere,
which is driven by the reconnection process. Since this effect spans a large area of the
magnetopause, it is difficult to draw quantitative conclusions from the previous in-situ
observations.

Measurements required for the first science objective are (Branduardi-Raymont et al.,
2018):

• steady/unsteady solar wind variations

• steady/unsteady motion of dayside magnetopause

• transient brightenings of equatorward leaps in dayside auroral oval

• transient brightness and equatorward leaps in the cusp

Goal 2: Substorm Cycle

A southward oriented Interplanetary Magnetic Field (IMF) increases the energy density
of magnetotail lobes. This creates convections in the poles and magnetotail lobes (see
Fig. 2.7). The exact method of energy injection, and its effect on geomagnetic activity
is still debated though. One large unanswered question is, does each substorm require
an individual energy injection (growth phase), or can multiple substorms result from
a single growth phase (Branduardi-Raymont et al., 2018)? Also, are substorms even
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2.2 SCIENCE 2 SMILE MISSION

Figure 2.7: Progression of Dungey cycle, creating substorms in magnetotail lobes. (A)
Dayside reconnection, (B) magnetic flux convects over poles and (C) is stored as mag-
netic energy in magnetotail lobes. (D) Stored energy accumulates until explosive re-
lease. (E) Closed flux returns along with auroral effects at high altitude (Eastwood
et al., 2015).

created by changes in IMF orientation (Hsu and McPherron, 2003), or rather changes in
solar wind dynamic pressure (Boudouridis et al., 2003)? Note that cases have also been
observed of substorms with no obvious external driver (Huang et al., 2004).
Measurements required for the second science objective are (Branduardi-Raymont et al.,
2018):

• location and motion of the dayside magnetopause boundary

• location and motion of the auroral oval

• substorm brightenings of the auroral oval

• solar wind input

Goal 3: CME driven Storms

Coronal Mass Ejections are the leading cause for large geomagnetic disturbances and
are related to flow speed, field strength, and the southward component of the CME’s
driven magnetic field. Some known effects of CMEs are: superstorms in the equatorial
ionosphere; magnetotail stretching; and joule heating in the polar ionosphere (Kozyra
and et al., 2014). It is also known however, that the Earth’s bow shock has the ability
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to modify the magnetic field inside a CME (Turc et al., 2017). Drawing conclusions
of these interactions can help define the structure of CMEs as well as further phases of
geomagnetic storms.

Measurements required for the third science objective are the same as for the second
science objective, only done during CME-driven storms (Branduardi-Raymont et al.,
2018).

2.3 Soft X-Ray Events

Many mechanisms exist that try to explain the entry (E) and release (R) of energy and
momentum within the magnetosphere. This include the Kelvin-Helmholtz instability
(E), solar wind pressure variations battering the magnetosphere (E), magnetic recon-
nection (E+R), and plasma instabilities (R). Previous missions have been able to prove
parts of these proposed mechanisms, such as reconnection, by measuring microphysical
in-situ processes, but cannot distinguish global interactions of the magnetosphere and
solar wind.

2.3.1 Composition

The boundaries of structures in the magnetosphere (e.g. bow shock, magnetosheath,
magnetopause, and cusps) can be seen in both energetic neutral atoms (ENAs) and soft
X-rays (first observed by ROSAT). The problem with ENAs is that capturing ENA im-
ages has integration times ranging from 11 to 20 hours. However, a resolution of min-
utes to tens of minutes is needed to capture the dynamic processes that are being looked
at. For this reason, soft X-rays are chosen to image the magnetosphere (Sibeck et al.,
2017). Solar wind charge exchange (SWCX) is the process of high charge state ions
from the solar wind charge-exchanging with neutral ions (such as those in the Earth’s
geocorona). The resulting ion is in an excited state, and as it transitions back to its
ground state, one or more photons are produced in either the soft X-ray or extreme
ultraviolet (EUV). The relevant charge exchange reaction can be written:

Mq+ + B→ M(q−1)+ + B+ (2.1)

17 of 123



2.3 SOFT X-RAY EVENTS 2 SMILE MISSION

Figure 2.8: Example of charge exchange between an O7+ ion with an H2O molecule. A
common cometary occurrence presented in Dennerl (2010).

Here, the incident ion with charge q is represented as Mq+, with M being elements such
as O, N, C, or Fe collides with a target neutral species B (Branduardi-Raymont et al.,
2011). Large values for q result in the radiation of at least one photon in the EUV or
soft X-ray range. An example of this would be a solar-wind ion O7+ colliding with a
hydrogen (H) molecule (most common for Earth’s exosphere), creating the reaction:

O7+ + H2O→ O6+ + H2O+ (2.2)

A visual representation of O7+ colliding with H2O and resulting in an X-ray line at 561
eV can be seen in Fig. 2.8.

2.3.2 Detection

Soft X-rays have an energy range of 0.05 to 2.0 keV via the charge exchange process. A
high inclination, high altitude position provides an ideal vantage point for observing all
relevant structures (bow shock, magnetopause, and cusps). A front-illuminated (win-
dowless) charge-coupled device (CCD) can detect X-rays from 0.5 to 10 keV. Energies
below 0.5 keV are absorbed by the chips upper gates (semiconductors for charge trans-
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Figure 2.9: Depiction of micro pore optics. Radially stacked pore fibres focusing the
incident rays (Snowden et al., 1997).

fer), and energies above pass through the detectores. Back-illuminated (direct) CCDs
can allow for energies down to approx. 0.1 keV (Moodya et al., 2017). A thicker de-
pletion layer could allow for capture of photons with energy higher than 10 keV. For
amplifying low intensity radiation (such as X-rays), a micro-channel plate (MCP) is
often incorporated into the optics. MCPs amplify particle energies by essentially trans-
lating a particle into a cloud of electrons. An MCP consists of an array of tiny slots
(microchannels) that are electrically charged, when particles enter these channels, it im-
pacts the channel wall, thereby creating a cascade of electrons which can be collected
when exiting the channel (Pricea et al., 2012). To further focus the rays, micro pore
optics (MPOs) can be used. These are in essence MCPs with a slight curvature of the
reflecting surfaces (see Fig. 2.9).

It is important to note as well that there are other sources of soft X-rays. For example,
interstellar neutral gas can enter the heliosphere, the solar system, and subsequently
exchange charges with ions from the solar wind, creating similar soft X-rays. This can
lead to additional X-ray emissions superimposed upon those events resulting from the
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magnetosphere. Additionally, the cosmic X-ray sky emits strongly and very variably
(see Fig. 2.10), sometimes even brighter than those created via SWCX (Sibeck et al.,
2017). These sources must be quantified and subtracted from any soft X-ray images.

2.4 Instruments

SMILE holds four instruments which simultaneously establish solar wind properties
and its effects on (and in) the magnetosphere. The Soft X-ray Imager (SXI) will ob-
serve the magnetopause, magnetosheath, and magnetospheric cusps. The Ultraviolet
Imager (UVI) will image the auroral regions. The Light Ion Analyser (LIA) and the
Magnetometer (MAG) will both establish solar wind properties (both local and exter-
nally).

2.4.1 SXI

The SXI (Fig. 2.12) will observe the dayside magnetospheric boundaries (bow shock,
magnetopause, and cusp regions) in the soft X-ray band. This includes the location,
shape, and motion of the magnetosphere, as well as being able to determine a time-
dependent composition of the solar wind from the brightness of the SWCX emission
lines. The instrument consists of four main units: The telescope, thermal control sys-
tem, front end electronics assembly (FEE), and back end electronics assembly.

The SXI telescope is the image forming and detecting system, meaning the optics (MPO
/ straylight baffle), detector (CCD), and radiation shutter are all mounted on this unit.

The thermal control system is a system of thermal blankets, radiator, and radiator sup-
port structures that regulate the temperature of the SXI.

The Front End Electronics (FEE) are mounted at the base of the PLM and serve as com-
munication between the detectors and back end electronics (more in Sec. 5.1.4).

The back end electronics includes the Data Processing Unit (DPU) (incl. boot and flight
software, more in Sec. 5.1.2) and the Power Supply Unit (PSU) which provides sec-
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Figure 2.10: ROSAT All-Sky Survey images of soft X-ray background as Aitoff-Hammer
equal-area maps in Galactic coordinates centered on the Galactic center. Galactic
longitude increases to the left, the south Galactic pole is at the bottom and the north
Galactic pole is at the top. Purple and blue indicate low intensity while red and white
indicate high intensity (Pricea et al., 2012). The units of the color bars are ROSAT
counts s−1 arcmin−2. Top: 1/4 keV band, Middle: 3/4 keV band, Bottom: 1.5 keV band.
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ondary supply power to the SXI electronics. It is also mounted on the PLM base plate
and interfaces with the FEE assembly, radiation shutter, PSU, and mass memory unit of
the PLM.

The SXI will hold two e2vCCD370 sensors side by side (Fig. 2.11) of 4510×4510 18 µm

native sized pixels (it should be noted at this point that a 719×4519 px area is reserved
for asymmetric frame storage and that the detector will typically be binned by a factor
of 6×6 leading to an effective pixel size of 108 µm), lobster-eye MPOs (see Sec. 2.3.2)
with an additional film of aluminium to block optical and UV photons, and a straylight
baffle to block sun- and earthlight from entering the aperture. A radiation shutter is also
mounted which will shut during earth passes at altitudes below 50 000 km, during point-
ing changes, or if irregular activity is detected. Instrument parameters of the SXI can be
found in Tab. 2.4. The SXI will also use 24×24 binning for the secondary science mode
of observing UV photons.

The Soft X-ray Imager is developed by the University of Leicester including contribu-
tions from other UK institutes, Austria, Hungary, Spain, the Czech Republic, Norway,
Ireland, and China.

2.4.2 UVI

The UVI (Fig. 2.13) will observe Earth’s northern aurora, thereby allowing a connec-
tion to be made between the solar wind injection in the magnetosphere, to the activity
in the cusps (Loicq et al., 2018). It is designed in such a way that it can image the au-
rora even in sunlit conditions. The UVI is comprised of two main hardware components:

The UVI-C (UVI Camera Unit) which includes the Optics Barrel Assembly (telescope
optics), Detector Assembly (MCP intensifier, fiber optics, and a 1024×1024 px STAR-
1000 CMOS detector), detector readout electronics (incl. interface to UVI-E), a baffle
assembly, and radiator assembly.
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Figure 2.11: Schematic of SMILE’s SXI CCD. Procured by ESA, derivative of PLATO
CCD 270 (SMILE, 2018b).

Figure 2.12: Schematic of SMILE’s SXI, developed by the University of Leicester
(Branduardi-Raymont et al., 2018).
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Parameter Value (at 0.5 keV if relevant)

Optic focal length 300 mm

MPO pore size 40 µm

MPO pore length 1.2 mm

Optic coating Iridium

PSF FWHM 8.1 to 9.6 arcminutes

PSF HEW ∼2.8 degrees

Optic total effective area 14.6 cm2

Optic FOV 32.1◦ x 15.8◦

Straylight baffle vignetting ∼0.9

CCD QE 0.89

CCD energy resolution 50 eV (FWHM)

CCD frame integration time ∼4 seconds

Filter Transmission 0.82

Total instrument effective area 9.6 cm2

Instrument FOV 26.5◦ × 15.5◦

Table 2.4: Parameters of the SXI instrument (Branduardi-Raymont et al., 2018).

The UVI-E (Electronics Box) which provides high-voltage power supply, thermal con-
trol electronics, and instrument control. Performance requirements for the UVI can be
found in Tab. 2.5.

To account for both spatial and temporal resolution at the given altitude of 15 RE (down
to ∼ 11 RE) and a field of view (FoV) of 10 degrees and a resolution of 150 km (spatial),
60 seconds integration time was determined to be optimal.

The UVI is developed by the University of Calgary, the Canadian Space Agency, and
with contributions from Belgium and China.
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Field of View 10x10 degrees

Spatial Resolution 150 km @15 Re

Temporal Resolution 60 s

Spectral Band 160 - 180 nm

Detection Threshold 100 R @60 s cadence, SNR greater than 1

Dynamic Range 30 kR

Table 2.5: UVI performance requirements (Branduardi-Raymont et al., 2018).

Figure 2.13: Schematic of SMILE’s UVI (Branduardi-Raymont et al., 2018).
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Dynamic range ± 12 800 nT

Digital resolution 24 bit

Sampling rate 40 Hz

Accuracy 2.0 nT

Data rate 6 kbps

Table 2.6: MAG instrument parameters. MAG also provides a ground mode with a
dynamic range of ± 64 000 nT (Branduardi-Raymont et al., 2018).

2.4.3 Magnetometer

The magnetometer (MAG), seen in Fig. 2.14, will measure the orientation and magni-
tude of the local solar wind magnetic field. The MAG consists of two individual tri-axial
fluxgate sensor heads on a 3 m boom (mounted on the PLM). Each fluxgate sensor head
includes three ring-core fluxgate sensors mounted along three orthogonal axes to mea-
sure the three spatial components of the local magnetic field (Forslund et al., 2007).
Here, a ferromagnetic core (ring) is periodically magnetically saturated via a toroidal
drive, winding to modulate the local magnetic field. A solenoidal sense winding induces
a current from this modulation, which can then be quantified and digitized. (Miles et al.,
2019). The parameters of the MAG instrument can be found in Tab. 2.6.

The MAG is developed by the National Space Science Center in China with contribu-
tions from Austria.

2.4.4 LIA

The light ion analyzer (LIA) system, represented in Fig. 2.15, is an in-situ plasma ana-
lyzer which will measure ion distributions as well as basic moments (density, velocity,
temperature tensor, and heat flux vector) of the solar wind and magnetosheath (Sul et al.,
2018). The system is comprised of two identical top-hat electrostatic analyzers on op-
posite sides of the spacecraft platform (PF), each with a FoV of 2π. The energy analyzer
(denoted as (3) in the figure), creates an electrical field between the gap of two nested
electrodes (a negatively charged "inner", and a grounded "outer" hemisphere). Charged
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Figure 2.14: Schematic of SMILE’s Magnetometer (SMILE, 2018a).

ions entering this field are deflected to follow the curve of the hemispheres and hit a
detector. This system has an azimuthal angular resolution of down to 7.5◦ and can be
reduced to 30◦. The total analyzer has a total FoV of 360◦ (Azimuth) x 3◦ (Elevation).
The main parameters of LIA can be seen in Tab. 2.7.

LIA was developed by the National Space Science Center in China with contributions
from the UK and France.
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Ion energy range 0.05 - 20 keV/q

≤ 10% for 3D velocity
Energy resolution (∆E/E)

distribution function

2π (single instrument)
Field of view

4π (full LIA system)

Time resolution min 0.5 sec

Azimuth range
360◦

(each instrument)

Elevation range 0.05 - 13.2 keV: 0 - 90◦

(each instrument) 13.2 - 20 keV: 0 - 62◦

Azimuth: 30◦ coarse / 7.5◦ fine
Max. angular resolution

Elevation: ≤6◦

Table 2.7: LIA system parameters. Azimuthal angular resolution is a function of eleva-
tion angle (at 90◦ elevation, the azimuthal resolution is 26.86◦) (Branduardi-Raymont
et al., 2018).

Figure 2.15: Schematic of SMILE’s LIA. Left: 3D rendition of LIA with subsystems.
Right: cut-away view of electro-optical sensor. One possible path of a detected ion is
shown as a red line. The energy analyzer is denoted with (3) (Branduardi-Raymont
et al., 2018).
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Chapter 3
Data Simulation

Just like the simulations.

Dave Boat (SCCT)

As Ronald Fisher (1890-1962) once said: "To consult the statistician after an experiment

is finished is often merely an attempt to ask him to conduct a post mortem examination.

He can, perhaps, say what the experiment died of ". One of the most common problems
in astronomy is that, unlike in other sciences, nearly all objects that we want to study,
are upwards of trillions of kilometers away. Another problem in the case of satellites is
that, it is usually not possible to perform extensive changes after launch. This means,
systems need to be rigorously tested for any possible situation that might arise.

3.1 Background

Data simulations serve as both statistical analysis tools, as well as tools for testing the
robustness of a system. Simulators have the advantage to allow testing of extreme cases
and catching potential bugs before deploying a mission.

SMILE’s data simulator (DaSi) structure was adapted from a previous IfA simula-
tor developed for CHaracterising Satellite (CHEOPS). It was modified to (i.) be effi-
cient enough to act as a real-time simulator for testing the rest of SMILE’s data chain
(see Sec. 3.2.3), as well as (ii.) being versatile enough to be easily adapted for future
missions.
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Commonly, data simulations refer to models of physical or statistical processes imple-
mented to predict observational results (see more in Sec. 3.1.1). However, since this
simulator is meant to test both the hardware and software of the mission, scientific ac-
curacy is not the primary objective. But rather to make scenarios available that the
software could encounter and also test hardware limitations, such as processing speeds
and storage capacities. This section will first take a quick look into already existing
models of solar wind - magnetosphere interactions, the basics of a detector, and then
delve into the simulation.

3.1.1 Modeling Solar wind - Magnetosphere interaction

The solar wind - magnetosphere interaction model used for SMILE was developed by
the University of Science and Technology of China (USTC) and the National Space
Science Center (NSSC), CAS (Hu et al., 2007). It is based on a 3-D PPMLR (ex-
tended Lagrangian piecewise parabolic global magnetohydrodynamics (MHD) model)
code and solves the ideal MHD equations from -300 to 30 RE along the x-axis and from
0 to 150 RE in y- and z-directions (Geocentric solar magnetospheric (GSM) coordinate
frame) and a grid spacing of 0.4 RE.

X-ray intensity

The line-of-sight X-ray intensity (I) is the integration of volume emission rate (P), Eq.
3.1:

I =
1

4π

∫
Pdr =

1
4π

∫
αnHnSW < g > dr [keV cm − 2 s − 1 sr − 1] (3.1)

with α being the efficiency factor (1e-15 eV cm2), nH the number density of exospheric
hydrogen, and nSW that of the solar wind (Cravens, 2000), with integration of r from 0
to 80 RE.
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Tangential direction

The soft X-ray peak is tangent to the location of the magnetopause ~p, which is a function
of spacecraft location ~s and soft X-ray peak angles Θ, Eq. 3.2:

~p =

∣∣∣∣∣∣ d~s
dΘ
· Θ̂

∣∣∣∣∣∣ r̂ + ~s (3.2)

with r̂ being the unit vector along tangential line-of sight, and Θ̂ its respective perpen-
dicular unit vector.

Magnetopause and Bow Shock

Boundaries for the magnetopause and bow shock, as given by the PPMLR-MHD simu-
lations, are given by Eqs. 3.3-3.5:

r(Θ,Φ) =
ry(Θrz(Θ))√

[rz(Θ)cos(Φ)2] + [ry(Θ)sin(Φ)2]
(3.3)

ry(Θ) = r0

(
2

1 + cos(Θ)

)ay

(3.4)

rz(Θ) = r0

(
2

1 + cos(Θ)

)az

(3.5)

Θ is the angle from the x-axis and Φ the rotation angle in right-hand direction around
the x-axis starting at the y-axis. The X-ray emissivity is given by Eq. 3.6:

F(~r) =


0 for r < rMP(
A1 + Bsin8(Θ)

) (
r

rre f

)−(α+βsin2(Θ))
for rMP < r < rBS

A2

(
r

rre f

−3
)

for rBS < r

(3.6)

with rMP and rBS being the magnetopause and bow shock positions. Results of these
simulations can be seen in Fig. 3.1. For more detail read Branduardi-Raymont et al.
(2018).
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Figure 3.1: Result of dayside solar wind - magnetosphere MHD simulation. Left: MHD
simulation, middle: predicted count, right: processed image. First row: before arrive of
interplanetary shock. Second row: after arrival. Third/Fourth row: response to mag-
netic field turning from northward (third) to southward (fourth) (Branduardi-Raymont
et al., 2018). It comes as no surprise that this is where the acronym for SMILE origi-
nated.
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Figure 3.2: Schematic sketch of a single front-side illuminated CCD pixel consisting of
a positive "p-" doped and negative "n-" doped silicon semiconductor (Howell, 2006).

3.1.2 A Physical Detector

As previously mentioned, and especially when considering the efficiency that this sim-
ulator requires, this in-depth modeling of the science is superfluous. Hence, more focus
will from now on be put on the physical aspects of the detector itself, as well as in-
corporating important factors required by the processing of data. The most commonly
used detectors in photometry for astrophysical missions are CCD (charge-coupled de-
vices) and CMOSs (Complementary Metal Oxide Semiconductors). These are essen-
tially photon-counting monochromatic detectors. This section will go over some of the
most important effects that occur in such detectors, but more information can be found
in (Seelig, 2018). Keep in mind that all of these characteristics need to stay dynamic so
as to be adaptable for other missions.

General:

Detectors like these are arrays of pixels that store a charge proportional to the amount
of photons that hit the pixel (via the photoelectric effect). Photons enter the pixel and
transfer their energy to the top layer semiconductor, thereby releasing electrons directly
correlated to the photon’s energy. This charge is transferred to a subpixel sized electrode
("gate"), and is held in a potential well until readout. The general layout of a front-side
illuminated CCD’s pixel can be seen in Fig. 3.2.
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Figure 3.3: Pixel 3-phase charge transfer. The charge is pushed along the pixels by
cyclically changeing voltages at the gates (Rottinger, 1999).

A common analogy for the readout of a CCD is that of lines of buckets along a system
of conveyor belts being filled with rain water. The "buckets" (pixels) are filled with
water (photons/electrons) during exposure. Then during readout, each row of buckets is
emptied out into a readout-register, which is in turn emptied out into a measuring station
(Fig. 3.4). Each pixel is shifted (most commonly) with a three-phase-clocking method,
where each pixel consists of three gates that "push" the accumulated charge forward
by cycling voltages between the gates, thereby letting the charge fall to the gate with
the largest potential well, i.e. highest voltage (Fig. 3.3). Once in the readout register,
the charge is shifted to an analog-to-digital converter (ADC) where it is quantified via
correlated double sampling1 (CDS). Note, in the case of a CMOS detector, A-D conver-
sion is done on each individual pixel through attached transistors. Quantified values are
referred to as ADUs (analog-to-digital units), and can be directly reverted to an amount
of electrons via the gain (see below).

1CDS: a capacitor samples the charge differential to a reset voltage.
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Figure 3.4: Analogy of CCD sensor read out. The "measuring station" is the analog-
to-digital converter (ADC) which quantifies the incoming charge via correlated double
sampling (CDS) (Janesick, 1987).

Characteristics

The main characteristics of a CCD can be summarized as:

• Spectral Response / Quantum Efficiency

• Bias

• Readout Noise

• Dark Current

• Gain / Dynamic Range

• Linearity

Spectral Response:

The spectral response (SR) defines the sensitivity of a detector as a function of wave-
length. This sensitivity per wavelength is defined as the quantum efficiency (QE). The
QE of a detector describes the ratio of photons that encounter the sensor, with the num-
ber of photons that are actually registered. An ideal sensor would therefore have a QE
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Figure 3.5: Common spectral response of different detectors. The sensitivity at each
wavelength is defined as the quantum efficiencies (Howell, 2006).

of 100%. An eye typically has a maximum QE of 1%, and most CCDs currently have
a max QE in the range of 60-80%. Common spectral responses are presented in Fig. 3.5.

Bias:

One would assume that, if a CCD were to be read out without any exposure, all pix-
els would yield a value of zero. This is not the case. Each pixel is given a small offset
value. This is in order to avoid potential negative values2. The added benefit of avoiding
negative numbers lies in the fact that ADCs are bit counters, and such bit counters typ-
ically assign the highest bit as a representation of sign (0 for positive or 1 for negative
values respectively). If, for example, a 16-bit counter were used, this would result in
only values from 0 to 215 − 1 (32 768 ADU) instead of a possible range of 0 to 216 − 1
(65 536 ADU), thereby reducing the amount of possible values by half. Bias values typ-
ically range from a few hundred to a few thousand ADU.

2This could occur either through an electron from the conduction band dropping into the valence band,
or measurement errors in the ADC.
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Readout Noise:

There are three main noise sources in detectors: shot noise, fixed pattern noise, and
read noise. Shot noise refers to the quantum characteristics of coherent photon states
resulting in a Poisson distribution. This effect can be reduced by taking multiple im-
ages. Fixed pattern noise describes the behavior of individual pixels. This effect can be
removed by subtracting bias frames (zero-second exposed images).

Readout noise results from the amplification stage of the sensor’s readout. The quantifi-
cation of a continuous signal leads to a statistical scatter. If this is the dominant source
of noise, a longer exposure is advisable. The total effective noise (σe f f ) can be described
by Eq. 3.7 with the dark shot noise (σD), read noise (σR), photon shot noise (σS ), and
fixed pattern noise (σF):

σe f f =

√
σ2

D + σ2
R + σ2

S + σ2
F (3.7)

Dark Current:

A sensor cannot differentiate between an electron that originated from the silicon being
struck by a photon, and exterior electrons (for example: leaked from the electronics of
the camera, or thermal energy). This signal is strongly correlated with the detector’s
operating temperature and is described by Eq. 3.8, the Meyer-Neldel rule (based off the
Arrhenius law of reaction rates proportionality to temperature (Clark, 2013)):

X = X0 · exp
[
−

EA

kT

]
(3.8)

Here we have the activation energy EA, the absolute temperature T , the Boltzman con-
stant k, and a factor dependent on the activation energy X0. This noise is also dependent
on time, and in modern sensors, with suitable cooling and non-excessive exposure times,
can be negligible. To remove this unwanted signal, a non-illuminated image (or, more
commonly, the mean of multiple images), exposed for the same time as the science
frame can be subtracted from the original image.
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Gain / Dynamic range

Gain is the term that refers to the uncertainty of quantification at the ADC and describes
how many electrons are needed to produce one ADU step. The minimal gain for a
sensor is therefore given by the bit-counter of the ADC and the full-well depth of the
sensor’s pixels. If we have, for example, a 14-bit ADC (max 16 383 ADU) and a pixel
full-well depth of 100 000 electrons, the minimal gain would be (Eq. 3.9):

gain =
Max nr. of electrons per pixel
Max nr. of counts per pixel

=
100 000 e−

16 383 ADU
= 6.1

e−

ADU
(3.9)

In some cases, a higher gain than the theoretical minimum can have certain advantages.
If the overall noise of a CCD where at ± 10 electrons, then two values with a difference
of 6 electrons don’t contain any meaningful information, and it would be okay to assign
them both the same ADU value3 (Howell, 2006). If the gain is too large though, the
dynamic range can be strongly impacted.

The dynamic range describes how many different levels of signal can be depicted (i.e.
the ability to detect both dim and bright objects on the same image). Lets assume two
detectors with max 1 000 electrons and a gain of 5 and 50 e−/ADU respectively. The
first detector would have 200 brightness levels to depict the signal, whereas the second
would only have 20 discrete levels. This would mean, any signal between 850 and 900
electrons would result in the same brightness, whereas the first detector could differen-
tiate between 10 varying levels in the same range.

Linearity:

The linearity of a detector describes the pixel’s response to incoming photons as its
potential well fills up. This means that the proportion of electrons per photon should
stay the same no matter how full the pixel is. However, linearity typically decreases as
a pixel saturates and it’s potential well becomes less responsive.

3This uncertainty is known as the differential nonlinearity (DNL), and is most commonly chosen as
± 0.5 ADU.
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Figure 3.6: Work Flow of DaSi. This modular layout of the simulator allows for the
ease of adding new functions for future missions.

3.2 The Simulator

The SMILE data simulator (DaSi) is an object oriented simulator and was developed in
Python. The current version (1.40) is split into 6 main programs:

• A configuration file [config.xml] for defining global properties such as detector
dimensions.

• A constants file [constants.py] for creating a library of the variables set in the
config file.

• A core-library file [core_lib.py] for defining functions for the simulator object.
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• A global-library file [global_lib.py] for linking the config.xml file to the sim-
ulator.

• A utilities file [utilities.py] for external functions not directly related to the
simulation.

• And a main file [main_prog.py] for the simulation itself.

In the full data chain, the simulator is called by the FEE (see Sec. 5.1) with four pa-
rameters: exposure time, ccd number, calibration, and binning. The main work flow of
DaSi is depicted in Fig. 3.6.

3.2.1 Configuration

The configuration file config.xml includes metadata such as general simulation infor-
mation, graphics settings, detector settings, and signal information. A list of these con-
figurations can be found in Tab. 3.1-3.2. These settings are called by the get_xml_file
function in the global_lib file, and parsed into a configuration object as defined
by sim_config in the constants file. The file is expected to grow as mode modules
are added to the simulator.

Here, the main characteristics of the simulation can be defined by the user. It is impor-
tant to keep in mind, that when changing these values, they stay in the same data type as
defined in the global library. If the simulator is not called by the FEE, a number of runs
can be defined which will then be save as a fits cube. This parameter was implemented
for the ability to create a specific set of data or scenarios needed for testing. More to
the creation of the fits-cubes can be found in Sec. 3.2.4. The setting full_noise can be
set to either create a full frame of noise (0), or create noise just around the generated
events and cosmics (1). Note that a full frame of noise can potentially result in run time
longer than the expected typical exposure time depending on the system running the
simulation. Standard binning is set to 6 (representing 6x6 binning) but this value will be
overwritten if given other parameters by the FEE. Parameters for single detector dimen-
sions are also set here, in the case that multiple detectors are present when creating one
image. Cosmic and event values are generally empirically set to generate results similar
to scientific solutions (as described in Sec. 3.1.1).
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Table 3.1: a. DaSi configuration settings and default values.
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Table 3.2: b. DaSi configuration settings and default values continued.
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3.2.2 Coding a detector

Once called, the simulator first checks whether a calibration frame or a science frame is
requested.

Calibration frame:
In the case of a calibration frame, only the noise and binning is executed before returning
the array.

1 if callib != 0:

2 frames = [datasim.callibframe(ccdnr, datasim, t1b, binningN,\

3 const.sim_config[bias_level],\

4 const.sim_config[dark_current],\

5 const.sim_config[read_noise])]

6 block = save_blocker(block, frames, frames, len_x, len_y)

Here, the dimensions are set to a binnable length, the frame is initialized, the noise is
added, and finally the frame is binned:

7 def callibframe(self,ccdnr,datasim,t1,binningN,bias,dc,rn):

8 frame,(len_y,len_x) = self.calib_maker(self.single_det_x,\

9 self.single_det_y, binningN, bias, rn, dc)

10 frame = utils.rebin(frame,(int(len_y/binningN),\

11 int(len_x/binningN)))

12 return frame

with

13 def calib_maker(self,x,y,binning,bias,rn,dc,node_offset1, \

14 node_offset2,noise_type):

15 len_x = utils.set_detect_len_to_bin(x,binning)

16 len_y = utils.set_detect_len_to_bin(y,binning)

17

18 frame_1 = self.types_of_noise(noise_type,bias,dc,rn,len_x, \

19 len_y)
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20

21 frame_1[0:len_x,0:int(len_y/2)] *= (1+node_offset1)

22 frame_1[0:len_x,int(len_y/2):len_y*2] *= (1+node_offset2)

23

24 frame_1 = np.clip(frame_1,0,2**16-1)

25 return frame_1,np.shape(frame_1)

and

26 def types_of_noise(self,type_noise,bias,dc,rn,len_x,len_y):

27 u1,u2 = [],[]

28 #0 = np.normal, 1 = np.rand+BM, 2 = cv2.rand+BM

29 if type_noise == 0:

30 frame_1 = np.reshape(np.random.normal(bias+dc, rn,\

31 len_x*len_y), (len_y,len_x))

32

33 elif type_noise == 1:

34 u1 = np.random.rand(len_y*len_x)

35 u2 = np.random.rand(len_y*len_x)

36 z1 = self.gaussian(u1,u2)

37 frame_1 = np.reshape(rn*z1+(bias+dc),(len_y,len_x))

38

39 elif type_noise == 2:

40 mat = np.zeros(len_y*len_x)

41 list_rand = cv2.randn(mat,(bias+dc),rn)

42 frame_1 = np.reshape(list_rand,(len_y,len_x))

43

44 return frame_1

The random (gaussian) numbers for the noise can be generated in three different versions
which are defined by the user (see Sec. 3.2.3):

45 def gaussian(u1,u2):

46 z1 = np.sqrt(-2*np.log(u1))*np.cos(2*np.pi*u2)

47 return z1
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Science Frame:
Initialize:

If a full frame is requested, the algorithm first checks what type of frame is to be made
(Options: CCD_A, CCD_B, or CCD_A+B):

1 else:

2 ### INITIALIZE FRAME: ###<

3 frame_1,frame_2=[],[]

4 if ccdnr == 'CCD_A' : frames = [frame_1]

5 elif ccdnr == 'CCD_B' : frames = [frame_2]

6 elif ccdnr == 'CCD_A+B': frames = [frame_1,frame_2]

and initializes the frame(s):

7 frames,len_x,len_y = datasim.initialize_frame(len(frames),binningN)

with:

8 """

9 INITIALIZE:

10 - sets detector size to binnable length

11 - creates two empty frames

12 """

13 def initialize_frame(self,nrs,binning):

14 #throws away undivisible rows/columns

15 len_x = utils.set_detect_len_to_bin(self.single_det_x,binning)

16 len_y = utils.set_detect_len_to_bin(self.single_det_y,binning)

17 det_dim = (len_x,len_y)

18 frames = np.zeros((nrs,len_x,len_y))

19 for i in range(nrs):

20 frames[i] = np.empty(det_dim)

21 return frames, len_x,len_y
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Full Noise:

From here, the program checks if full-frame noise is to be added (full_noise = 0) or
just locally at events (full_noise = 1). For full noise:

1 ### CREATE FULL NOISE FRAME ###

2 if fullnoise == 0:

3 frames = datasim.make_full_bias(const.sim_config[bias_level], \

4 const.sim_config[dark_current], \

5 const.sim_config[read_noise],node_offset,frames)

which calls:

6 """

7 FULL BIAS GENERATOR:

8 - introduces bias-value/readnoise, clips to non-negatives

9 - generates full gaussian bias/RN (dark current pending)

10 """

11 def make_full_bias(self,bias,dc,rn,node_offset,frame,noise_type):

12 len_x,len_y = np.shape(frame[0])

13 for i in range(len(frame)):

14 frame[i] = self.types_of_noise(noise_type,bias,dc,rn,len_y, \

15 len_x)

16 frame[i] = np.clip(frame[i],0,2**16-1)

17 frame[i][0:len_x,0:int(len_y/2)] *= (1+node_offset[2*i])

18 frame[i][0:len_x,int(len_y/2):len_y*2] *= (1+node_offset[2*i+1])

19 return frame

Here, in l. 14, the noise with the mean of bias and dark current values and deviation of
the read noise is distributed across the whole detector(s), and subsequently clipped from
0 to 216 − 1 to avoid negative values or values higher than what the bit-counter would
register (a 16-bit ADC is used, meaning values above 216−1 would be a saturated pixel).
Any value below 0 or above 216−1 is set to that respective value. Next, an offset is added
to each half of the frame, to account for a slight node offset (l. 17-18). The values for
the node-offset where taken from standard-frames released by Open University.
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Figure 3.7: Examples of cosmic rays. Left: muons. Right: worms (Bremer and Nobels,
2015).

Cosmics:

Cosmic rays are high energy particles originating from the sun, sources outside of the
solar system, and from distant galaxies, which produce bright spots on an image. The
cosmics are generated and added to the array:

1 ### SHOOT COSMICS ###

2 frames = datasim.place_cosmics(frames , ... )

place_cosmics first calculates an amount of cosmics to be placed (l. 16). It then
calculates for each cosmic: a location (Frame A or B); intensity; orientation; and type
of cosmic (l. 20-30). The two general types of cosmics are defined as straight/oval
muons (70% probability) and the more elliptical worms (30% probability). Examples of
observed muons and worms can be seen in Figs. 3.7.

3 """

4 COSMIC GENERATOR:

5 - amount of cosmics = exp_t [s] * cosmic-rate [cosm/sec]

6 - chooses random array, rotation, file_nr

7 - chooses worm or muon (30/70 probability)

8 - loads cosmic-file (faster than generating on own)

9 - append cosmic to array

10 """
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11 def place_cosmics(self, frame, cosmic_folder, size, intensity, \

12 exp_t, cos_rate, bias_level, dark_current, \

13 read_noise, binning, fullnoise, bias, dc, \

14 rn, node_offset):

15

16 amount = np.random.randint(cos_rate*exp_t-10,cos_rate*exp_t+10)

17 for i in range(amount):

18

19 ### define placement/orientation/shape/type ###

20 side = np.random.randint(0,len(frame))

21 intensity = np.random.randint(intensity-50,intensity+50)

22 rotate = random.randint(1,4)

23 nr = str(random.randint(1,99))

24

25 #worms = 30%, muons=70% prob

26 cos_type = random.randint(1, 100)

27 if cos_type < 31:

28 name = 'w'

29 else:

30 name = 'c'

Next, the cosmic files are loaded4. In the first version of the simulator, cosmics were
generated from scratch, however, the computational cost needed to calculate and store
completely unique cosmics each time went above what the resources allowed. To
counter this, an inventory of precalculated cosmics was generated (of both worms and
muons), which are then called by the program. The end shape of the cosmics are given
further variation by the binning, since not the exact same 6×6 pixels of a cosmic will be
binned together. The behavior and generation of cosmics was adapted from Bremer and
Nobels (2015). The csv-file is read and appended to an array cosmic_dat (l. 32-39),
next the cosmic is increased and rotated (l. 42-47), and a location on the detector is
generated (l. 54-57):

4In the Raspberry-Pi version RAPIDsim, these cosmics are all loaded on initialization (see Sec. 5.3).
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31 ### open cosmics ###

32 cosmic_dat = []

33 cosmic_filename = cosmic_folder+name+nr+'.csv'

34 with open(cosmic_filename, "r") as csvfile:

35 lines = csvfile.readlines()

36 for line in lines:

37 cosmic_dat.append(line.split(","))

38 #removes line split "\n"

39 cosmic_dat = [line[:-1] for line in cosmic_dat]

40

41 #increase size in both directions

42 cosmic_dat = np.repeat(cosmic_dat, size, axis=1)

43 cosmic_dat = np.repeat(cosmic_dat, size, axis=0)

44

45 #rotates cosmics

46 for i in range(0,rotate):

47 cosmic_dat = np.rot90(cosmic_dat)

48

49 cosmic_dat = np.asarray(cosmic_dat, dtype='float64')

50 cosmic_dat *= intensity

51

52 fheight, fwidth = frame[side].shape

53 cheight, cwidth = cosmic_dat.shape

54 pos_x = np.random.randint(0,fwidth)

55 pos_y = np.random.randint(0,fheight)

56 pos_x2 = pos_x + cwidth

57 pos_y2 = pos_y + cheight
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Before the cosmic is added to the frame, a buffer (extend) is generated, with the buffer
size based off the binning value (l. 58-61). This buffer is used to keep both the cosmics
inside the frames, as well as for adding the needed local noise:

58 if binning < 10:

59 extend = 40

60 else:

61 extend = 100

62

63 hb,wb = cheight+extend,cwidth+extend

64 pos_x3 = pos_x+wb

65 pos_y3 = pos_y+hb

66

67 #check for possible index out of range

68 if pos_x3 > fwidth or pos_y3 > fheight:

69 continue

Assuming the cosmic is inside the frame, if the image wasn’t given a full-frame noise,
the local noise around the cosmic is generated and added to the cosmic (including the
buffer area), and the cosmic is added to the frame:

70 else:

71 try:

72 if fullnoise != 0:

73 frame = self.make_local_noise(frame, side, pos_x, pos_x2,\

74 pos_y, pos_y2, fwidth, node_offset, extend, hb, \

75 wb, bias, dc, rn)

76 frame[side][pos_y:pos_y2, pos_x:pos_x2] += cosmic_dat

77 except:

78 pass

79 return frame
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The local noise is defined similar to the full noise, only additionally accounting for the
node offsets:

1 """

2 LOCAL NOISE GENERATOR:

3 - introduces bias-value/readnoise, clips to non-negatives

4 - generates full gaussian bias/RN (dark current pending)

5 """

6 def make_local_noise(self,frame,side,pos_x,pos_x2,pos_y,pos_y2, \

7 fwidth,node_offset,extend,hb,wb,bias,dc,rn):

8

9 # where zero, stays zero!

10 biasarr_mask = np.where(frame[side]\

11 [int(pos_y-(extend/2)):\int(pos_y2+(extend/2)),\

12 int(pos_x-(extend/2)):int(pos_x2+(extend/2))] \

13 == 0,1,0)

14 if side == 0 and pos_x < fwidth/2: nodeval = node_offset[0]

15 elif side == 0 and pos_x > fwidth/2: nodeval = node_offset[1]

16 elif side == 1 and pos_x < fwidth/2: nodeval = node_offset[2]

17 elif side == 1 and pos_x > fwidth/2: nodeval = node_offset[3]

18

19 biasarr = self.types_of_noise(noise_type,bias,dc,rn,hb,wb)

20 biasarr = np.swapaxes(biasarr,0,1)

21

22 if np.shape(biasarr_mask)[1]==0 or np.shape(biasarr_mask)[0]==0:

23 return frame

24

25 biasarr = np.clip(biasarr_mask*(np.add(biasarr,nodeval)),1,2**16-1)

26 frame[side][int(pos_y-(extend/2)):int(pos_y2+(extend/2)), \

27 int(pos_x-(extend/2)):int(pos_x2+(extend/2))] \

28 += biasarr

29 return frame
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Sim 1 - low activity Sim 2 - high activity

Counts
cm−1s−1

Counts
CCD−1s−1

Counts
cm−1s−1

Counts
CCD−1s−1

SWCX Rate 0.093 5.134 1.483 82.150

SXRB Rate 0.278 15.403 0.278 15.403

Particle Bkg Rate 0.011 0.627 0.023 1.255

Mean Point Source Rate 0.012 0.657 0.012 0.657

Table 3.3: Simulated SWCX flux and rates for two cases (Soman and Randalls, 2018).

Here, a mask is created with numpy.where. This masks all locations that are not equal
to zero (l. 10-13). The mask prevents an accumulation of noise values if, for exam-
ple, the buffer section of two or more cosmics/events overlap. Essentially, if a non-zero
value is already at a pixel, the mask is set to zero, and if not the mask is set to one, then
the noise array is multiplied by this mask. Thereby ensuring no overlap is added. Then,
the bias, dark current, read noise, and node-offset are added and the image is masked
and clipped just as in the full-frame noise (l. 14-25). The created bias-array is added to
the cosmic-array and returned (l. 26-28).

Events:

The information for expected events (size, frequency, etc.) where taken from Soman
and Randalls (2018). X-ray events (of energy ranging from 0.5 - 1.1 keV) will be im-
aged on 108 µm square pixels (6×6 binned). The SXI will have a FoV of 15.5 × 26.5◦

with a total CCD area of 8.12 cm × 6.82 cm × 2 CCDs. A list of SWCX rates can be
seen in Tab. 3.3.

For an extreme case, these values can be doubled, this would lead to a maximum case
of 328.6 events per full 2 CCD frame per second (Eq. 3.10):

82.15 events CCD−1 s−1 · 2 CCDs · 2 = 328.6 events s−1 in full 2 CCD frame (3.10)
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Figure 3.8: Left: X-ray events imaged by PLATO CCD270. Right: Example including
cosmic hits. Yellow pixels represent hits (Soman and Randalls, 2018).

The cosmic ray flux is estimated to be about 2.25 events cm−1s−1, meaning for a one
second 2 CCD exposure, around 249 cosmics can be expected, which is double that
of the expected normal SWCX event rate. An example image of events and cosmics
can be seen in Fig. 3.8. Soft X-ray background events (SXRBs) as well as the particle
background (PB) also need to be taken into account, which are not discernible from
science X-rays and leads to an additional 69.26 X-ray events per second per 2 CCD
image (Eq. 3.11):

(15.403+1.255+0.657) counts s−1·2 CCDs·2 = 69.26 Bkg X-rays s−1 per 2 CCD image
(3.11)

Due to binning, and the size of the pixels in relation to the size of X-ray events, only a
few sets of shapes are possible. These can be seen in Fig. 3.9. Approximately 99.87%
of events are single pixel hits, 0.064% are "doubles" (types 1-4), and the rest are types
5-31.

The events are generated in a similar fashion as the cosmics:

30 ### SHOOT EVENTS ###

31 frames = datasim.place_signal(frames, ... )
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Figure 3.9: Possible event shapes. Approximately 99.87% of events are single pixel
hits. 0.064% are doubles (types 1 - 4) (Read, 2018).

with

1 """

2 SIGNAL GENERATOR:

3 """

4 def place_signal(self,frame,amount,intense,var,fullnoise,node_offset,\

5 bias,dc,rn,binning):

6 x,y = np.shape(frame[0])

7 amount = np.clip(int(np.random.normal(amount,var,1)),0,2*amount)

8

9 for i in range(amount):

10 xs1,ys1 = np.random.randint(3,x-3),np.random.randint(3,y-3)

11 side = np.random.randint(0,2)

12 rotate = np.random.randint(1,4)

13 signal_nr = np.random.randint(0,len(a))

14 intens = np.random.randint(intense-var,intense+var)

15 sig = np.multiply(np.reshape(a[signal_nr],[4,4]),intens)

16 sig = cv2.flip(sig,xx)
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17

18 if binning < 10:

19 extend = 40

20 else:

21 extend = 100

22 hb,wb = 4+extend,4+extend

23

24 try:

25 if fullnoise != 0:

26 frame = self.make_local_noise(frame, side, ys1-2, \

27 ys1+2, xs1-2, xs1+2, y, node_offset, extend, \

28 hb, wb, bias, dc, rn)

29 frame[side][xs1-2:xs1+2, ys1-2:ys1+2] += sig

30 except:

31 pass

32 return frame

Again, an amount of events is generated, and as with the cosmics, an inventory of events
was generated to be used. It is also important to note that, due to the binning, these
shapes also change depending on their location on the detector. Then for each event a x-
and y-position, side of the detector, rotation, type of signal, and intensity are calculated
(l. 10-16). The signal is given a buffer (l. 18-22), and noise is added in the local case
(l. 25-28) and the event is added to the frame (l. 29). A try/except clause is added
in the case that something malfunctions (approximately every 1 000th event returns an
error in the masking-stage.)

Flats:

Lastly, the flats are generated. Flat fields are effects of both pixel-to-pixel sensitivity
variations, as well as distortions brought on by the optical path. Flat field corrections
are done by dividing a science frame by a normed (to 1) flat field image (an image of an
illuminated flat surface). The flat was created by digitizing images from Read (2018)
(see Fig. 3.10).
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Figure 3.10: Simulated flat field of SXI (Read, 2018).

The flat field is called with:

1 ### FLAT ###

2 frames = datasim.generate_flat(frames,'flat_self.csv', len_x, len_y)

with

3 """

4 FLAT GENERATOR:

5 - reads flat.csv file, resized to size of both arrays

6 - blockshaped: returns array blocked into two halves

7 - multiply arrays by respective flat side

8 """

9 def generate_flat(self,frame, flat_file,len_x,len_y):

10 array1 = frame[0]

11 flat_data = pd.read_csv(flat_file, quoting=csv.QUOTE_NONE)

12 flat_data = np.array(flat_data)

13 x,y = np.shape(array1)

14 xs,ys = np.shape(flat_data)
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15 flat_normed = cv2.resize(flat_data,None,fx=2*y/ys, fy=x/xs,\

16 interpolation = cv2.INTER_CUBIC)

17 x,y = flat_normed.shape

18 flat_block = utils.blockshaped(flat_normed,int(x),int(y/2))

19 for i in range(len(frame)):

20 frame[i] = np.multiply(frame[i],flat_block[len(frame)-1-i])

21 return frame

The csv-file of the flat file is imported and resized to the size of the (full 2 CCD) detector
(l. 10-16). Resizing is done with cubic interpolation using the opencv [cv2] package.
With the function blockshaped (l. 18), the flat-array is split into two separate arrays
(for each detector side)5. And finally, the science frame is multiplied by the flat frame
(l. 19-20). The benefit of generating the flat this way is that an arbitrary flat-field can be
applied by simply defining a csv file. The blockshaped function is as follows:

1 def blockshaped(arr, nrows, ncols):

2

3 h, w = arr.shape

4 return (arr.reshape(h//nrows, nrows, -1, ncols).swapaxes(1,2)\

5 .reshape(-1, nrows, ncols))

The final step, if specified, is to bin the array:

1 ### BIN FRAMES AND COMBINE ###

2 framer = []

3 if binningN > 1:

4 for i in range(len(frames)):

5 framer.append(utils.rebin(frames[i],(int(len_x/binningN),\

6 int(len_y/binningN))))

7 xx,yy = np.shape(framer[0])

8 framer = np.clip(framer,0,2**16-1)

5Note, in the RAPIDsim version, this is also all done only once at initialization (see Sec. 5.3).
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The array framer is used as a placeholder for the binned frames. After rebinning, the
entire frame is once again clipped to values between 0 and 216 − 1 so as to avoid "im-
possible" values that couldn’t be generated by the ADC.

The rebin function is:

1 def rebin(array1,new_shape):

2 shape1 = (new_shape[0],array1.shape[0]//new_shape[0],\

3 new_shape[1],array1.shape[1]//new_shape[1])

4 return array1.reshape(shape1).sum(-1).sum(1)

This method was created with the helpful folks at stackoverflow. The precise method of
how it works will be explained in the following chapter (Sec. 3.2.3).

The frame can then be saved, or is simply returned to the requesting socket. Saving
the simulated data will create a .FITS file, which includes a header of the user-defined
settings (more in Sec. 3.2.4).

An example full frame (both CCD sides with full noise and flat) can be seen in Fig.
3.11.

3.2.3 Optimization

The simulator is aimed to be able to be implemented in real time into the SXI simulator.
This means that the time from the moment an image is requested, to when it needs to
be delivered to the FEE SW simulator program is 4 seconds (TBC). If we assumed that
we only needed to calculate single values for all ~35 million pixels (assuming a full
frame of 4510 × 7582 pixels), a maximum of 170 nanoseconds is allowed per pixel.
One single calculation in Python generally takes around 1 500 cycles (for an i7 8th-gen
processor running at base speed of 1.7 GHz, established using the hwcounter library).
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Figure 3.11: Sample full noise, full frame image of DaSi simulation. CCD_A is the top
half and CCD_B the bottom half. Since the passing of the data to the FEE is serialized,
this is how the data will be read. The events are the small grey areas, and cosmics the
bright elongated sources. The node offsets can be seen in each half of a CCD frame.
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If we extrapolate this, that would mean:

1 500 cycles · 35e9 pixels = 51 billion cycles

for one calculation for the calculation of a single exposure. Which in turn implies:

5.1e10 / 1.7e9 = 30 seconds

for an entire frame, and even at a turbo boost frequency of 4.4 GHz, a time of 12 seconds
would be needed. Obviously, the math is not this simple when applying it to processors,
and this changes once more when handling multiple values at the same time in Python.
However, the problem with computational resources is clear, especially when taking
into account that more than one calculation is required per pixel. And in fact, after the
initial simulator was complete, a single run would take between 17 and 25 seconds.

Each step of the simulation was measured to isolate the functions most grievously in
need of resources. The functions found to require the most time were the generation of
noise, and the binning of the image, with both taking 6 and 4 seconds respectively.

Random Number Generation:

Generating random numbers was done using the numpy library. numpy is already writ-
ten in C (wrapped by CPython) and is made to be highly efficient. Comparing the numpy
with Pythons standard random library, numpy was found to be over 10 times faster at
creating gaussian-distributed random values (see Fig 3.12). An attempt was made at first
to write a random number generator in C specifically for this simulator, but all attempts
still ended up being slower than equivalent methods in numpy.

The seed for random number generation was generated via taking the last digits of the
CPU’s current clock cycle. The first steps to increasing efficiency of noise generation
were to remove loops, replacing them with either list comprehension or other existing
library functions that proved to already be optimized (such as Python’s reshape mod-
ule). Other options that were pursued were using quicker, less truly random methods
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Figure 3.12: A comparison of the random and numpy random value generators over
100 runs for 10 000 values per run per method. The random library is consistently over
10 times slower at generating values.

Figure 3.13: A comparison of six different random-number generators. It is clear that
the Uniform-Box-Muller transform, the Zignor, and cv2.Normal methods are most effi-
cient. Note, Zignor is the mode name for the Ziggurat algorithm.
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of generating noise, such as creating a smaller subset of random noise and repeating
that subset in random orders, or even reading the last digit of an operating systems
value at random intervals (thereby foregoing any calculations). However, these where
never significantly faster, and presented another issue. Since those values where never
truly random, it was inevitable that certain patterns would emerge in the resulting noise.
These patterns would be picked up by the data compression software and, for purposes
of testing, result in compression ratios noticeably better than those if the noise were
truly random.

The tested methods were:

(1) The numpy "standard-normal" distribution numpy.random.randn which gener-
ates gaussian distributed values with mean = 0 and standard deviation = 1.

(2) The numpy "normal" distribution numpy.random.normalwhich generates gaus-
sian distributed values with a user defined mean and standard deviation.

(3) The numpy "uniform" distribution numpy.random.uniform which generates a
uniform distribution with a user defined minimum and maximum value.

(4) The "Ziggurat" algorithm (rejection-based sampling).

(5) The opencv "uniform" distribution cv2.randu similar to numpy uniform.

(6) The opencv "normal" distribution cv2.randn similar to numpy normal.

The methods (1), (3), (4), and (5) where consequently sampled via the Box-Muller
transform (Driss et al., 2018) to create a gaussian distribution of the same mean and
standard deviation as defined by the configuration. The Ziggurat algorithm is based on
rejection-sampling wherein a point is generated, and tested whether or not it is inside
the desired distribution. It is very efficient yet complex to implement (Marsaglia and
Tsang, 2000). A readily available implementation was uploaded on github by James

Lao6, and instead of reinventing the wheel, this library was used. The results of 1 000
test runs of generating 10 000 values can be seen in Fig. 3.13 and their histograms in
Fig. 3.14. Methods (3), (4), and (6) where by far the most efficient.

6Download (incl. installation and usage) at https://github.com/jameslao/zignor-python.
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Figure 3.14: The histograms of all six random-number generators. It is clear to see
that both the mean, and standard deviation are the same for all cases.

The numpy and opencv methods where chosen as the number generators. The opencv
method is implemented as optional since it is not a native Python3 library and would
need to be installed separately. The numpy uniform method of noise generation leads
to simulations within the allotted run-time (see below), meaning the requirements are
fulfilled. Also, this way no additional packages need to be downloaded to use the
software. The performance of methods (2), (3), (4), and (6) when applied to DaSi
can be seen in Fig. 3.15. Here, it is clear to see that the Ziggurat and opencv meth-
ods are ideal for both the full-noise science frame, and the calibration frame, with
numpy.random.uniform+BM being the fastest of the numpy methods. Interesting is,
that for the local noise, the Ziggurat and numpy.random.gaussianmethods are nearly
identical with only around 0.07 seconds difference. Also noteworthy is the fact that in
this case, the Gaussian-distribution method is more efficient than the uniform + Box-
Muller distribution method. In the case that numpy is chosen for number generation,
the Gaussian method is used for local noise generation, and the normal method is used
for full noise and calibration.
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Figure 3.15: Performance of the four methods numpy.random.gauss (blue),
numpy.random.uniform+BM (green), Ziggurat (red), and cv2.normal (black) for
all main three types of frame generation. Top: Full-noise science frame. Middle: Local-
noise science frame. Bottom: Calibration frame.
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Noise:

As previously established, detectors have a lot of sources of noise, each with their own
origin and behavior. After the Box-Muller method was implemented, a full frame noise
took on average 1.25 seconds. With the entire simulation taking on average 2.61 sec-
onds, with a minimum of 2.52 and a maximum of 2.76 seconds. However, these sim-
ulations where typically run on a Lenovo ThinkPad outfitted with an intel i7 8th gen
processor clocking up to 4.40 GHz and 16 GB of RAM. It was also tested on another
machine with an i5 8th gen processor and 8 GB RAM and still stayed within the four
second time limit. Despite this, it is best to keep in mind that if run on SMILE-like
hardware (or, for testing purposes, on a raspberry pi module as described in Sec. 5.3),
these times may increase above a real-time implementation.

Due to this, and also taking into account the fact that the FEE will only be looking for
significant signals (refer to Sec. 5.2), an option to only generate local noise was imple-
mented. Here, the initial frame skips the full noise generation, and during the cosmics
and events phase, local noise is added in a buffer zone around the signal. As men-
tioned in the previous section, a mask is created to avoid overlapping noise intersecting
events. Another step to optimization here could have been to check how many pixels
fall away due to this mask, but since only a few values need to be generated, calculating
the amount of pixels that fall away would take longer than the generation of those val-
ues. With this method, the simulation is consistently under 4 seconds (on average 1.05
seconds, with a minimum time of 0.98 and a maximum of 1.24 seconds), and the FEE
source detection is not hindered since it first checks whether or not a significant signal
occurred, and only then checks the "background" noise. A series of execution times
over 100 runs with local and full noise can be seen in Fig. 3.16. A cutout of a frame
with local noise can be seen in Fig. 3.17.

Binning:

Binning was originally set in a simple loop, were neighboring pixels where summed and
placed in a new array. This obviously cost a lot of memory and computational space, es-
pecially when considering the fact that Python loops are notoriously bad at efficiency7.

7Python loops pass the data to the interpreter every iteration, creating a substantial overhead.
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Figure 3.16: Run time over 100 runs of both full frame and local noise methods.

Figure 3.17: Cutout of a DaSi frame generated with local noise around events and
cosmics.
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Even after implementing an extension written in C of the same process, binning took
over 2 seconds. Using the map function (which is essentially a C implemented version
of a for loop), no substantial improvement was reached. After lots of late nights, a bit
too much coffee, and lots of foresting around stackoverflow, a solution was found. The
result was the code in the previous section. Note, this code also works for non-equal
binnings.

To illustrate how these two beautiful lines of code work, lets look at a simple example
of a 2×6 matrix being binned by 2×3 (so the result should be a 1×2 matrix). We take
the matrix:

A =


0 1 2 3 4 5

6 7 8 9 10 11


The function requires both the array itself (with dimensions array.shape[0] = 2 and
array.shape[1] = 6), and the new shape (which is the original dimensions divided
by the binning value: new_shape[0] = 2/2 = 1 and new_shape[1] = 6/3 = 2).
First, the shape requirements are defined:

1 shape1 = (new_shape[0],array1.shape[0]//new_shape[0],\

2 new_shape[1],array1.shape[1]//new_shape[1])

which creates the shape (1,2,2,3), 1 and the second 2 are the dimensions of the
new binned array, and the first two 2 and the 3 are the binning values to the respec-
tive dimension. Next, the array is reshaped into sub arrays pairs of 3 for each line
(array1.reshape(shape1)):

B1 =
[[[0 1 2]

[3 4 5]]
B2 =

[[6 7 8]

[9 10 11]]]

Then, each pair gets summed along the "x-" or first-dimension (.sum(-1)) resulting in:

C1 = [[3 12] C2 = [21 30]]
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Figure 3.18: Left: Summing in x-direction. Right: Summing in y-direction.

And lastly summed along the "y-" or last-dimension (.sum(1)) resulting in:

D = [24 42]

This way, the entire array is passed through the interpreter once, calculated and returned
once. Comparing this method with the simple loop approach showed that the reshape-
sum method took on average four times fewer cycles to bin an array.

3.2.4 .FITS Cubes

Data is saved in .csv files if specified. Images are saved as .FITS files including head-
ers8. For multiple runs, images can also be save as .FITS cubes. All generated frames
are saved in standard .FITS format with the same header. The name of the generated
file is:

frames/SXI_[block/single]_[callib/science]_[full/local noise]

_[A/B/A+B]_[Nr of frames]frames.fit

The header information can be found in Tab. 3.4 and is created with the functions
write_hdul and save_fits, both utilizing the astropy.io - fits library, and can
be found in the utilities file.

8Note, they can also be saved as .png files.
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Information Explanation

DATE-OBS YYYY-MM-DDT hh:mm:ss observation start, UT

EXPTIME Exposure Time in Seconds

SETTEMP CCD Temperature Setpoint in C

CCDTEMP CCD Temperature at start of Exposure Time in C

PIXDIM Native Pixel SIze in microns

XPIXSZ Pixel Width in microns (after binning)

YPIXSZ Pixel Height in microns (after binning)

XBINNING Binning factor in width

YBINNING Binning factor in height

READOUTM Readout Mode of Image

IMGTYPE Type of Image

NOISE Type of Noise

IMGFRAME A, B, or A+B

FOCALLEN Focal length of telescope in cm

INSTR Soft-Xray Imager Data Sim for SMILE Mission

OBSERVER Observer

NOTES Additional Notes

Table 3.4: Standard DaSi .FITS header information.
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Figure 3.19: An example of a science frame of 6000 eV events created by The Open
University. It represents a sample of a CCD CCD370 frame, set to 6x6 binning split
over two nodes.

3.3 Comparisons

3.3.1 Open University - CCD370

Values and distributions were implemented rather empirically based off of images re-
leased by OU. Examples were given of images taken of 1 keV and 6 000 eV events
(an example of one of these images can be seen in Fig. 3.19). This image includes the
typical noise of a detector, however, it does not include effects such as a flat field, nor
cosmics as they are to be expected of extraterrestrial observations.

A comparison of the histograms of the noise in OU image and a DaSi frame (one CCD)
can be seen in Fig. 3.20.
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Figure 3.20: Histograms of Dasi (blue) and OU (orange) noise.

3.3.2 StarSim - uVie

StarSim is a previous detector simulator capable of modeling stellar fields as well as
recreating instrumental features. It implements the previously mentioned PSFs, sub-
pixel sensitivity as well as further glitches such as hot pixels (Ferstl, 2016). An example
output of StarSim can be seen in Fig. 3.21. As is the case with the other simulators,
this algorithm does not meet the requirements of running in real time. However, certain
methods from this code (such as the PSF implementation) are planned to be adapted to
DaSi (see Sec. 4.2).

3.3.3 ESA / ESO - Pyxel

Pyxel9 is an open source end-to-end framework for detector simulations in develop-
ment by ESA in cooperation with ESO. It will be able to include effects ranging from
detector quantum efficiency, running temperature, Charge Transfer Inefficiency (CTI),
Point Spread Function (PSF), readout nodes, pixel thickness, and more (Lucsanyi et al.,
2018). An example of an output can be seen in Fig. 3.22. However, this pipeline only

9https://esa.gitlab.io/pyxel/doc/overview.html
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Figure 3.21: An example of an image generated by StarSim (Ferstl, 2016).

Figure 3.22: An example of detector effects added to a user provided image created by
Pyxel Lucsanyi et al. (2018). Left: Original image from the Hubble Space Telescope.
Center: Added cosmic rays. Right: The addition of CTI and a lower full-well.

adds these effects to an image, or images, uploaded by the user. A beta release is not
public yet, but a request has been made to ESA if receiving a test-version would be
possible. This simulator is mentioned for completeness, so as to further expand the
knowledge of the forms in which simulations can be done. It could also be used as a
method of adapting provided images like those from OU, and comparing them to results
generated by DaSi.
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3.4 Future additions

The current version of DaSi provides usable benchmark data and is currently being im-
plemented at the institute for software testing. New releases are however already being
worked on, meaning that new features will be added over time. Due to the modular style
that the simulator is written in, adding additional functions is simple.

One such planned addition is the ability to add a PSF over the image. A point spread
functions describes the response (blurring) of an image to a point source. This was not
implemented in the original simulation since, due to the large binning, the relative small
size of events, and the design of the payload, these effects are negligible. However, if
applied to other missions, this may not be the case. The general form would be to add
a function into the core library that reads a PSF file and convolves the science frame
before binning.

Another addition which is still in beta mode, is the ability to account for different sce-
narios (for example: sun facing or high cosmic rate). However, due to the sheer amount
of possible scenarios, and the high dependency on the type of mission, this will be a
feature that needs to be tweaked for each new implementation. More to this in Sec. 4.1.

The inclusion of a bad pixel map is also ongoing, but this is a process that includes col-
laboration with the development of the rest of the data chain, since the DPU will include
a bad pixel map to avoid passing events that land on, or near, these defective pixels.

Also, more detector effects are planned to be implemented, such as CTI, varying quan-
tum efficiency, and the ability for an ambiguous amount of detectors (currently only up
to two are possible). However, these additions will certainly reduce the speed of the
simulator, and need to be precisely tailored to the type of mission that is to be imple-
mented.
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Chapter 4
Application

It’s still magic even if you

know how it’s done.

Terry Pratchett

4.1 SMILE Data sets

The default software delivers benchmark data sets comparable to the OU frames. Spe-
cial cases have been developed to test the SXI software and hardware. Automating the
special cases, instead of being created ahead of time, is still ongoing. An extra configu-
ration parameter will define which scenario is run. Current scenarios are:

CASE 0: Single image / Normal

CASE 1: Worst case -> max amount of expected X-ray events (see Sec. 3.2.2)

CASE 2: Sun facing (a. increasing and b. sudden)

CASE 3: Background pulses

CASE 4: Detector malfunction

CASE 5: Temporary influx of cosmics

CASE 6: Short bursts
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Currently, these cases can be created by going into the config .xml file and changing the
amount and intensity of both the cosmics and events and running the simulator. Once
standard cases are implemented, the parameter can be set and a standard amount of runs
will be executed, creating a .FITS cube of all images. Whether or not this option can
be called directly by the FEE (for testing cases) is To Be Determined (TBD). Images of
the sun-facing and cosmics cases can be seen in Fig. 4.1. A plot of a few of these cases
(Normal, Sun facing, cosmic influx, tumbling satellite, and a short bright burst) with
their total signal along multiple frames can be seen in Fig. 4.2. The cases are meant
to check that the software reacts as it is supposed to, for example, if highly illuminated
frames are captured for more than three frames1, the radiation shutter door should be
triggered and closed to avoid potential damage to the detector.

Fig. 4.3 shows snapshot histograms (top) and surface profiles (bottom) of one sun-facing
case.

4.2 ARIEL

One further implementation which already uses DaSi is the ARIEL mission, for which
the Department of Astrophysics is also tasked with developing data processing soft-
ware. ARIEL aims to answer questions oriented around the formation of exoplanets and
their atmospheres. To observe atmospheric composition and thermal structure, ARIEL
will observe planetary transits, direct emission/transmission of planetary eclipses, phase
curves (star+planet flux), and time series of narrow-spectral band observations. ARIEL
has two spectrometers on board, the AIRS (ARIEL InfraRed Spectrometer) and NIR-
spec (Near-InfraRed Spectrometer). These are also planned to be simulated with DaSi.
At the moment, no released application for ARIEL exists, but prototypes based off of
DaSi can recreate existing images of both detectors. Example images from AIRS and
NIRspec can be seen in Figs. 4.4 and 4.6. One main challenge for this adaptation will
be implementing PSFs. Only in this case, since PSFs are wavelength-dependent, the
PSF will need to be able to adapt along the spectrum. A preliminary example of the
DaSi simulation for ARIEL AIRS and NIRspec are depicted in Figs. 4.5 and 4.7.

1This is defined as 50 % of all pixels above a certain threshold (currently set at 10 000 e- per pixel.)
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Figure 4.1: Left: Cosmic influx case. Right: Sun facing case at worst setting.
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Figure 4.2: Comparison of different cases created with DaSi. The normal case has a
very small variation since the amount of signals and their intensity are always relatively
similar. The sun facing case assumes the satellite’s alignment is off and sun light enters
past the straylight shield. The cosmic case is for the eventuality that a sudden burst of
high energy particles enters the detector. If this happens for more than three images in
a row, the FEE will command the radiation shutter doors to close until communications
with earth is taken up on the next fly-by. The tumbling case assumes that the satellite
has started to tumble, and erratically points towards the sun. The short burst case
assumes two frames of very high energy, in this case, the radiation shutter should not
be triggered.

Figure 4.3: A look into a sun facing scenario. The signal increases until the entire
frame is nearly saturated. Top: Histograms, and Bottom: surface profiles.
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Figure 4.4: Output from ARIEL’s AIRS.

Figure 4.5: Preliminary output of DaSi applied to ARIEL’s AIRS. AIRS has a spectral
range from 1.95 to 7.80 µm over two channels, meaning that the PSF varies enough to
have an effect. This method of adapting the PSF is still TBD.

A varying jitter (caused by the movement of the spacecraft) will also be relevant in these
simulations. At the moment, a spectrum and certain lines are placed in the simulation
itself, but it is planned to import a file of lines in a modular method similar to how the
flat field is implemented in DaSi.
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Figure 4.6: Output from ARIEL’s NIRspec.

Figure 4.7: Preliminary output of DaSi applied to ARIEL’s NIRspec. This image is cur-
rently convolved with one PSF, namely for the central wavelength, since NIRspec has a
very small wavelength range from 1.10 - 1.95 µm the PSF does not change significantly.
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Chapter 5
Data Processing

"Go back?" he thought. "No good at

all! Go sideways? Impossible! Go

forward? Only thing to do! On we

go!".

Bilbo Baggins

Now that the data exist, it can finally be used to test the rest of the data chain. This
process includes: detecting events from the exposed images; determining whether or
not those detected events are in fact SWCX X-rays or non X-ray events such as cosmics
or hot pixels; compressing and packaging the data; as well as storing it for transfer to
Earth.

5.1 Data Chain

The Central Checkout System (CCS), which is used to send and receive packets as
well as run test-scripts, will be connected directly connected to the On Board Computer
OBC via the Packet Utilization Standard (PUS) with TCP/IP connection (communica-
tion protocols). The exact protocols between other components are TBC, with the space
segment consisting of SpaceWire routers and most likely RMAP. The simulator chain
can be seen in Fig. 5.1.
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Figure 5.1: Full SXI simulator chain.

5.1.1 OBC

The On-Board-Computer is first and foremost applied for data storage between observa-
tion phases and data-transfer stages (Earth fly-by). Currently, the OBC simulator serves
only as a connection link for the DPU and to check for configuration parameters.

5.1.2 DPU

The Data-Processing Unit is the main port between the SXI analyzer and spacecraft. It
is split into two main parts, the DPU Boot Software (DBS) and Instrument Application
Software (IASW). It will be the main source of event-sorting and data compression (ap-
proach for compression is TBD) and functions as the central component between the
SXI analyzer (FEE and Radiation Shutter Door (RSD)) and spacecraft. This includes
sending commands to the FEE (such as observation parameters and shutter functions),
as well as returning Event data and housekeeping (HK)1 to the OBC. The DPU receives
a string of pre-processed 5×5 pixel events from the FEE and further processes these
events (more in Sec. 5.2). Communication between the FEE and DPU will be over a
SpaceWire connection allowing for transfer rates of 37.5 Mbit/s to 75 Mbit/s (double-
edge clocking) and is therefore not a limiting factor. Data transfer between the DPU and
PLM will also be with a SpaceWire.

1Data relevant to the maintenance of the satellite, such as temperature, heartbeat, storage capacities,
and power.
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It will have maps of misbehaving pixels. These are tables that can be updated from
ground stations during the comms portion of orbit. They include: column/row offsets,
global-node thresholds, pixel defect locations, and temperature dependent corrections.
Pixels or columns damaged by radiaion or defects are determined in calibration runs
and are stored in the DPU as filter-masks for incoming event packets from the FEE to
avoid false X-ray detection.

The DPU will also be responsible for data volume management. The DPU is also in
control of monitoring the spacecrafts storage space. Several data storage modes that are
TBD will be implemented depending on the fraction of storage volume remaining and
observational time left before data transfer to earth. The basic building blocks of the
SXI DPU (Jeszenszky, 2019) are:

• LEON3 processor for data processing and communication with the P/M

• FPGA for ADC control and communication with PSU and RSE

• ADC for housekeeping data acquisition from the camera

• 16 channel multiplexer for gathering PSU HK and temperatures

• Current source for controlling the CCD and FEE thermistors

• PoL converter for generating the required +1.5 V and +1.8 V board voltages

• PROM holding the boot software

• EEPROM holding the application software

• SRAM for program execution and data storage

The DPU memory map can be seen in Fig. 5.2.

5.1.3 IASW

The IASW is one sub-part of the DPU and provides services to SMILE’s SXI Platform
Module (PLM) ICU and is a user of the Front End Electronics (FEE). It is comprised
of:
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Figure 5.2: DPU Memory Structure: overall and Ram (Jeszenszky, 2019).

• A boot software (provided by IWF, who are building the hardware)

• A basic software (BSW) which is the operating system, communication links to
the FEE and PLM ICU, and DPU hardware management functions

• The application software (ASW) which provides high-level services (Reimers
et al., 2019)

This structure can be seen in Fig. 5.3. The communication between PLM ICU / IASW /

FEE is built on SpaceWire (SpW) with Remote Memory Acess Protocol (RMAP) based
packets (ECSS-E-ST-50-12C, 2008) to the FEE and Packet Utilization Standard (PUS)
based packets (ECSS-E-ST-70-41C, 2016) to the PLM ICU and Ground.

The DPU hast four main states: Standby, FEE_Offline, Pre_Science, and Science. These
states are depicted in Fig. 5.4.

5.1.4 FEE

The FEE simulator connects directly to the CCD / DaSi and preprocesses the incoming
data into event packets. The FEE hardware is baselined as a single Field Programmable
Gate Arrays (FPGA) (BRAVE) for all four CCD outputs (2 CCDs each with 2 nodes).
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Figure 5.3: Structure of SXI Instrument Application Software (Reimers et al., 2019).

Figure 5.4: DPU State Machine.
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Figure 5.5: FEE State Machine.

The included SRAM (Static Random Access Memory) retains its data bits in memory
until powered off and does not need to be refreshed like a standard dynamic RAM. Us-
ing half the built-in SRAM allows for 5 rows to be held at a time (16 bit/pixel with a
row of 385 binned pixels per node). This means that event detection will have to take
place in real time as the CCD is read out. The bitrate will be 37.5 Mbit/s (75 Mbit/s for
double-edge clocking) and is therefore not a limiting factor.

The FEE has five states, starting in Off mode, then, moving to Init. From there it goes
into Standby where it waits for a command to go into Science mode, and when needed,
the Shutdown state. The FEE state machine is depicted in Fig. 5.5.

Event Data Packet:

Each event data packet breakdown is conceptualized to keep the most useful information
but to minimize the data per event, and can be seen in Tab. 5.1.
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Information Description Bit Width Values

CCD# Which CCD event
was observed in

1 0 = CCD1,
1 = CCD2

Column# Which px column
was center

10 ≈770 px per
CCD row
(Max 1024)

Row# Which px row
was center

10 719 rows in
store region
(Max 1024)

Pixel Data Raw pixel data of
5×5 area

300 12 bit ×
25 px

Table 5.1: Breakdown of event data packet

FEE - DPU communication:

A flow chart of data processing between the FEE and DPU can be seen in Fig. 5.6. The
FEE data packets will also include a flag reserved for sun-facing security measures. If
50% or more of the pixels are above a certain threshold (currently set at 10 000 e- per
pixel), the flag is activated and will tell the DPU to initiate the radiation shutters to close.
The DPU and FEE state transitions are presented in Tab. 5.2.

5.1.5 CCD

The CCD is planned to allow for integration times between 0 to 100 seconds with a
resolution of 0.01 s (TBC) with a potential implementation of a Transistor-Transistor
Logic (TTL) clock.
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Figure 5.6: Flow chart of data processing in FEE and DPU.
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Operation modes of the CCD can be seen in Tab. 5.3. These include:

• Binning modes

a. 1×1 - Diagnostics and Calibration

b. 6×6 - Event detection

c. 24×24 - Secondary science mode (UV detection)

• Idle Mode - Only DPU active

• Safe Mode

• Off

5.1.6 CCS

The Central Checkout System (CCS), developed at the institute for testing of CHEOPS
software, is used to run test scripts which control the instrument through Telemetry
Commands (TC) and collects the Telemetry Packets (TM) of various kinds. It can be
seen as the "Ground Station" with enhanced capability to also allow a quick look at the
instrument response in real-time, such as house-keeping (HK) inspection, but also the
display of science data in near real-time. It is available as a virtual machine for down-
load and runs on any up-to-date Linux distribution. It has a graphical user interface
(implemented utilizing GTK 3) and function library (used for communication with the
instrument). See Fig. 5.7.

The CCS editor is started by running ccs.py in the root directory. From there, addi-
tional libraries can be included. A TMTC (telemetry packet/command) pool can be cre-
ated by connecting to the respective TM/TC sockets (for sending and receiving packets).
A more detailed explanation of getting started with the CCS can be found in CHEOPS
IFSW: CCS User Manual Sec. 9.3. A plotting window and data pool filtering feature
are also included.
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Figure 5.7: Left: A loaded test script in the CCS opening screen. Right: The CCS pool
viewer with a selected HK packet, which is decoded via the IDB in the left section.

5.2 Detection Rules

5.2.1 FEE Data Sorting Algorithm

The FEE scans the incoming (CCD or DaSi) data and scans it for events. The Event
Detection Unit (EDU) is applied on a pixel by pixel basis, inspecting pixels along a
row using the full 5 rows in the FEE’s SRAM in real-time. If the following criteria are
flagged as true, the inspected pixel is identified as an "event":

• The pixel contains more signal than a specified "single pixel threshold" plus the
local signal background.

• The pixel is a local maximum with more signal compared individually to its sur-
rounding 8 nearest neighbors.

The single pixel threshold will be unique to each CCD output node, and stored in the
DPU registry map, and will be defined as ≈ 4.5σ of the read noise (TBC). The local
signal background is calculated as the mean of the outer most 11 (or 14) pixels. The
top three pixels in the farthest corner from readout direction may be neglected in this
calculation due to possible loss of charge during transfer (charge transfer inefficiency -
CTI), see Fig. 5.8.
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Figure 5.8: Schematic of pixels around an event. Red: central pixel with highest sig-
nal, Blue: used to determine local background, Yellow: pixels which may include CTI,
Green: pixels which may be subject to second order CTI.

5.2.2 DPU Data Sorting Algorithm

The 5x5 px areas sent from the FEE will be interrogated for storing or rejection as events
as follows (TBC):

• If the center pixle has too large a signal, it will be classified as a non-X-ray event.

• If the sum of the 3×3 px area surrounding the main pixel has too large a signal, it
may be classified as a non-X-ray-event.

• The number of pixels in the 3×3 area that have a greater threshold pixel value can
be counted in order to classify the event (Pattern recognition, see Fig. 5.9).

These events may be cosmics, may be classified as lower priority data, and may not be
fully transmitted to the ground.

5.3 Simulator Operation

The entire data chain for SMILE is available in the OBSW (On-Board Software) git
repository as released by uVie IfA. The simulators can be built via a makefile by
simply running the command make from a terminal in the parent directory where the
makefile resides (this includes installing all dependencies: confignator, testlib, databases,
and setting permissions). Alternatively, just compiling the needed files can be done
by running the command make build-pc. Individual portions of the simulator can
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Figure 5.9: Expected forms of SXI events in 6x6 binned format.

be compiled by running make build-xxx with xxx being the needed portion (e.g
fw-profile, crplm (PLM), cria (IASW), and crfee (FEE)).

There are currently three methods of running the SMILE data processing chain once
compiled. Either (1) via terminals, (2) with a user interface developed by the institute
in Vienna, or (3) via a Raspberry-Pi module developed by the institute in Graz.

(1) Terminals:

The bash file open_components opens terminals in the respective build-directories for
the PLM, IASW, FEE, and DaSi. From there, the individual components can be started
by executing their bash files. These commands can be found in Tab. 5.4. Note, that the
DaSi is started via a socket-server that connects the FEE to the data simulator.

An example of the layout of all terminals running their respective components can be
seen in Fig. 5.10. Each termial can be started individually and each component will
open a socket to connect to their respective partners and wait for a response, meaning
that the order in which they are started is irrelevant. It is important to note at this point,
that as soon as a connection is established, the simulators will not cyclically check the
connection. This means that, if one of the segments is interrupted, the remaining seg-
ments will keep running (except for the socket between the FEE and DaSi).
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Component Command

PLM ./CrPlm

IASW ./CrIa

FEE ./CrFee

DaSi python
socket_server_
datasim.py

Table 5.4: Data Processing Simulator Commands

(2) User Interface:

A Graphical User Interface (GUI) has also been created with adaptability for other
projects in mind (Fig. 5.11, created by Marko Mecina). It is built in such a way that,
any needed "building blocks" can be called (in the case of SMILE, this refers to the
PLM, IASW, FEE, and DaSi socket). These building blocks can then be connected in
any given constellation by their resepctive socket points. Each block can be started in-
dividually and the respective terminals can be blended in if need be. A future version
will also allow for the selection of the type of connection (for example: RMAP or PUS).
This UI is however, still in development and has not yet been released.

(3) Raspbery-Pi Module

The Space Research Institute (Institut fuer Weltraumforschung (IWF)) in Graz has de-
veloped a Raspberry-Pi module with specs as they will be in SMILE to test the software
on the appropriate hardware. The module can be seen in Fig. 5.12. It will run the DPU
software, meaning it hold both the DBS and IASW software, and will communicate
with the OBC (or Ground/CCS if specified) and the FEE.

The Raspberry-Pi module currently has two executables on it. The first (DBSonRASP) is
for running the boot software (DBS), which is started as soon as the module is connected
to a power source. The second executable (IASW) is the IASW software, which will start
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Figure 5.10: Example of terminal layout for uVie IfA’s data-chain simulator.
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Figure 5.11: Current version of the UI for the data-chain simulator. A top bar allows
for the selection of "building blocks" which can then be connected via their respective
sockets.

when the appropriate telemetry command is sent by the OBC (TC_BOOT_IASW). Imple-
mentation of the FEE and DaSi simulators in the module is currently in development.
The module can either be connected to (i.) directly over a network, or (ii.) over a PLM-
SpaceWire Gateway.

i. Direct connection:

Since the module runs on Linux, it can be directly accessed, and the software updated,
using a SSH connection with the following parameters:

- static IP: 192.168.0.1

- username: pi

- password: smile2020

Once a LAN connection exists, the module can be accessed over the terminal with the
command ssh pi@192.168.0.1 and entering the password. The DBS and IASW soft-
ware are located in the root file system of the simulator. The IASW software is started
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Figure 5.12: Left: Graz DPU simulator front including SpaceWire links (SPW1 for
connection to the spacecraft / ground, SPW2 for connection to the FEE), a ground which
will be connected to the ground of the spacecraft and a shut-down button (SHUTDN).
Right: Graz DPU simulator rear including a power connector (Module turns on directly
when connected to power), and a network connector which can be used to communicate
directly with the module.

directly from the executable instead of from the nonvolatile memory or RAM area.
More information about this can be found in Hasiba (2020). Note that this method is
communicating directly with the raspberry-pi module, and is not the type of communi-
cation between Ground/OBC and the DPU (PUS packets via SpaceWire) that will occur
in SMILE.

ii. PLM Gateway:

An Ethernet-to-SpaceWire gateway enables the routing of SpaceWire packets through
an Ethernet interface. This can be connected to via the gate IP: 10.19.4.105 with the
SpaceWire port 5000. This interface can be used to communicate to the DPU raspberry-
pi module in the same manner as will be implemented in the spacecraft. The configura-
tion interface for the gateway can be seen in Fig. 5.13. More information can be found
in Martin-Serrano and Herrero (2019).
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Figure 5.13: Default configuration interface for the PLM SpaceWire Gateway.

Code:

A few alterations were made to the simulator to adapt for the raspberry pi. After initial
tests, DaSi still took on average 4.62 seconds. These alterations reduce the adaptability
for other missions, but significantly increases speed time. They include changes such
as loading the flat frame once in the socket server and passing it to DaSi, instead of
being imported and scaled to the detector size each time DaSi is called. This eliminates
the simple changing of flat fields on the fly, but ensures that the frame is only loaded
into memory once. The cosmics are also all loaded once in a similar fashion. Resizing
arrays, whether it be done by numpy, openCV, or any other method, has consistently
taken up a large portion of the computational time. By taking an already scaled flat
frame as well as precalculated and rotated cosmics, a lot of calculations can be spared.
However, this also means that they cannot be changed as intuitively as before. Due
to its speed, this adapted version was given the name RAPIDsim (RAspberry PI Data
Simulator). The run times of the RAPIDsim can be seen in Fig. 5.14 for execution
on the i7 processor, and in Fig. 5.15 for execution on the raspberry-pi module’s 1.5
GHz Cortex-A72 processor. Very curious is the fact that the calibration run time on the
raspberry-pi consistently decreases. This was confirmed over three tests of 100 runs
each. This behavior does not show up in the i7 runs, nor does is occur when only the
calibration is run as a stand alone program. It only appears when the function is called
by RAPIDsim on the pi module. The source of this gradient is still being investigated.
The average, minimum, and maximum run times for both versions can be seen in Tab.
5.5.
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Figure 5.14: Run time of the raspberry-pi configured DaSi for all three main cases
running on an i7 processor.

Figure 5.15: Run time of the raspberry-pi configured DaSi for all three main cases run-
ning on the raspberry-pi 1.5 GHz Cortex-A72 processor. Noteworthy is the consistent
decrease of the calibration run time.
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Run Time [s]

Processor Type Minimum Average Maximum

Full Noise 0.955 0.961 1.005

Local Noise 0.698 0.709 0.712Intel-i7

Calibration 0.696 0.707 0.715

Full Noise 3.961 4.028 4.194

Local Noise 2.210 2.305 2.351Cortex-A72

Calibration 2.378 2.488 2.596

Table 5.5: RAPIDsim run times over 100 runs for each type and processor. Most impor-
tant is the run time of the local noise case for the Cortex-A72 processor (Raspberry-Pi
4), and that it is consistently under four seconds.

Interaction:

PLM:

Once started, the PLM will import configurations from CrPlm.cfg and establish socket
points for a (hitherto undefined) ground segment, and the IASW, and then continue its
cyclic activities: waiting for a connection with the IASW and consequently sending it
the command to run.

IASW:

If the IASW is started alone it will read its config (CrIa.cfg) and initialize connections
to the PLM and the FEE, and continually check for an answer from those ports. Once
connections are established, the IASW can send commands to the FEE. Currently, it
can set and get certain variables in the FEE. However, this library only consists of two
variables at the moment: set_vstart and set_toi_period.

FEE:

The FEE similarly first established connections to the IASW and DaSi sockets and then,
when commanded to by the IASW, sends an image request to the DaSi. It will also con-
trol the movement of the RSD. If the FEE receives an image from DaSi, it runs the data
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through its established event detection procedure. In its end form, the FEE will mainly
be in either science or standby mode.

DaSi:

The socket server for DaSi waits for a connection from the FEE. When it received
a request, it unpacks the parameters, calls DaSi, serializes the resulting image, and
transmits it back to the FEE.
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5.4 TL;DR

A short recap of how to initialize and run the IfA SMILE data processing simulator.

Terminals:

This can be used as a quick-start to using the software via terminals:

i. Navigate to parent directory:
OBSW/implementation/ (default)

ii. Compile

a. Run makefile: make

b. Alternatively, to simply compile each component, run:
./compile_all or make build-pc
(Note, this will not verify and install potentially missing dependencies).

iii. Open needed terminals by running
./open_components.

iv. Run each component respectively with:
./CrPlm, ./CrIa, ./CrFee, and python socket_server_datasim.py

Raspberry-Pi:

A quick-start to using the raspberry-pi module. For User Manuals on the DPU module
and the PLM SpaceWire Gateway see Hasiba (2020) and Martin-Serrano and Herrero
(2019).

i. The module can be directly accessed with

a. ssh pi@192.168.0.1 and entering the password smile2020.

b. Running the IASW executable

ii. Or connect to the module through the SpaceWire Gateway

a. Via the IP 10.19.4.105.

b. Sending TMs and TCs to the DPU with the implemented interface
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Chapter 6
Conclusion

Don’t cry because it’s over. SMILE

because it happened.

Dr. Seuss

This thesis has introduced the SMILE mission, its main science goals, and the data
processing chain that the Department of Astrophysics of the University of Vienna is de-
veloping.

The goal of this thesis was to develop a simulator which could create a wide range of
benchmark test data that can be implemented in a variety of missions, while also being
effective enough to run in real time during the entire data-processing chain. The result-
ing DaSi simulator has been able to do just that. It is currently being implemented in
development for two ESA missions (SMILE and ARIEL) at the institute. The simulator
can be configured to create detectors of any given size, add parametrically generated
noise, and events as defined by the configuration file. It can create specific scenarios
to test both the software as well as the hardware for extreme cases. And it also has the
ability to create preliminary spectra. The entire data processing can be run through
emulators via terminals, with an integrated GUI, or partly over a hardware module
(Raspberry-Pi).

In the case of SMILE, the data simulation DaSi can be run with either a full frame of
noise, which can be run in real time on any processor of the caliber intel i5 8th gen. or
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better, or run with only creating noise around the events and cosmics that are generated.
The full noise frame method takes at least 2.52 seconds, on average 2.61 seconds, and
up to 2.76 seconds. The local noise frames take on average 1.05 seconds to generate,
with a minimum of 0.98 and a maximum of 1.24 seconds.

A simulation adapted for the rapsberry pi module (RAPIDsim) was created as well, re-
ducing some of the adaptability/modularity, but significantly increasing the run time. It
can create a local noise frame in at least 2.22 seconds, on average 2.31 seconds, and a
maximum of 2.35 seconds; a calibration frame taking at least 2.38 seconds, on average
2.49 seconds, and a maximum of 2.60 seconds; and a full noise frame taking at least
3.96 seconds, on average 4.03 seconds, and a maximum of 4.19 seconds.

The simulator is constantly being updated and adapted for new cases and missions. It
was programmed with this in mind, and was kept as modular as possible, with each
step of the simulation being made easy to augment or remove, as well as including the
addition of new functions without a dependence on other steps of the simulation.

I hope that DaSi can contribute further to the testing of software and that it can look
forward to generating light for many missions to come.
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A. Appendix
The Appendix includes additional material and information. Firstly, a German sum-
mary (Zusammenfassung) of the thesis, which is required by the University of Vienna.
Then, an overview of all figures, tables, and equations in this work. And lastly, a list of
commonly used abbreviations.
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A.1 Zusammenfassung

Der ESA Solar-wind-Magnetosphere-Ionosphere-Link-Explorer Satellite ist eine drei-
jährige Mission, welche die Wechselwirkung zwischen dem Magnetfeld der Erde und
der solaren Strahlung beobachtet und deren globale Auswirkungen analysieren soll.
SMILE wird vier Instrumente beinhalten: der soft X-ray imager (SXI), welcher die
Magnetopause beobachten wird, eine UV Kamera (UVI), welche das Spitzenmagnet-
feld beobachten wird, einen Magnetometer (MAG), der sowohl die Stärke als auch
Richtung des lokalen Magnetfelds miessen wird, und den Light Ion Analyser (LIA),
der die Geschwindigkeitsverteilung der Ionen von dem solaren Wind aufzeichnen wird.
Diese Arbeit befasst sich mit den Datensimulationen, der on-board Analyse und der
Event-Detektion durch den SXI. Die dazugehörigen Algorithmen wurden in Python und
C geschrieben.

Der Datensimulator muss in Echtzeit laufen können, und gleichzeitig anpassungsfähig
genug sein, um bestimmte Sonderfälle austesten zu können. Außerdem muss er modu-
lar aufgebaut sein, damit er ohne großen Aufwand bei zukünftigen Missionen adaptiert
werden kann. Dafür müssen die Events, das Rauschen, und die Detektoreigenschaften
leicht änderbar sein, aber dennoch eine Ausführungszeit aufweisen, die geringer als
die erwartete Belichtungszeit ist (für SMILE: 4 Sekunden). Wegen der Natur von we-
icher Röntgenstrahlung, ist die Eventerkennung ein essenzieller Teil in der Datenverar-
beitungskette. Diese Eventerkennung beginnt in der Front-End-Electronic (FEE). Hier
wird wegen dem begrenzten on-board Speicherplatz lediglich ein 5×5 Pixel-Paket an
die Data-Processing Unit (DPU) weitergegeben. Sowohl FEE als auch DPU folgen
gewissen Regeln, mit denen unterschieden wird, ob es sich bei dem Signal tatsäch-
lich um ein magnetosphärisches Event, Hintergrundröntgenstrahlung oder kosmische
Strahlung handelt. Sobald das Signal als ein Event bestätigt worden ist, wird es zu
dem On-Board-Computer (OBC) weitergeleitet und bis zum nächstmöglichen Down-
load archiviert. Diese Arbeit soll als ein detaillierter Einblick in die SMILE-Mission
dienen und die Struktur des Simulators DaSi, die daraus entstandenen Testdaten und
die restliche vom Institut für Astronphysik der Universität Wien entwickelte Datenver-
arbeitungskette von SMILE aufzeigen.
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