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Abstract / Zusammenfassung

Abstract (in English)

The main objective of this thesis is to give an alternative proof for the classical result in
[27] that provides an estimate for the decay rate with depth of the velocity beneath two-
dimensional, spatially periodic, irrotational gravity water waves over a flat bed. We start
with the derivation of the governing equations for the full gravity water wave problem in
three dimensions, thereby explaining the physical interpretation of the quantities that are
introduced. Next we discuss the main features of the model for the case of two-dimensional,
irrotational flows. Finally we turn to the main result, also providing an improvement to
the same estimate, and we show how this can be generalized to flows with constant non-
zero vorticity. An overview of the question of well-posedness of the governing equations is
briefly addressed in the Appendix.

Deutsche Zusammenfassung

Das Hauptziel von dieser Arbeit ist, einen alternativen Beweis für das klassische Resultat
in [27] vorzustellen, welches eine Abschätzung für die Abfallrate von der Geschwindigkeit
unterhalb einer zweidimensionalen, Ort-periodischen, irrotationalen Wasserschwerewelle
oberhalb eines flachen Bodens bei zunehmender Tiefe angibt. Zunächst einmal leiten
wir die Gleichungen her, die das allgemeine Wasserschwerewellenproblem in drei räum-
lichen Dimensionen beschreiben, wobei die physikalische Interpretation der eingeführten
Größen erklärt wird. Danach besprechen wir die wichtigsten Eigenschaften des Modells für
den Fall von zweidimensionalen irrotationalen Strömungen. Schließlich befassen wir uns
mit dem Hauptresultat, wobei zusätzlich eine verbesserte Version derselben Abschätzung
angegeben wird, und wir zeigen, wie diese Ergebnisse auf Strömungen mit konstanter
nicht-verschwindender Wirbelstärke verallgemeinert werden können. Ein Überblick über
die Frage, ob das allgemeine Wasserwellenproblem korrekt gestellt ist, wird im Anhang
kurz geschildert.
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Introduction

“On the Nautilus men’s hearts never fail them. [...] no tempest to brave,
for when it dives below the water it reaches absolute tranquillity.”

J. Verne, Twenty Thousand Leagues under the Sea

Water waves are an ubiquitous, yet tremendously diverse natural phenomenon. The
amount of different ways they can viewed is quite extraordinary: sea or ocean waves,
for instance, can please the eye of the observer with the beautiful patterns they cre-
ate, and may even serve for recreational purposes, such as when surfers ride waves that
are about to plunge into the water ahead in a roaring cloud of spray—however, under
certain circumstances they can also reach immense proportions that turn them into an
utterly frightening spectacle, worthy of being immortalized in a painting by Caspar David
Friedrich, and, in the case of tsunami waves, be so forceful to be able to annihilate entire
settlements near the shore line, claiming at times a toll of hundreds of human lives by
means of their destructive fury.

Despite everyone’s familiarity and direct experience with water waves, obtaining a sat-
isfactory quantitative mathematical description thereof is surprisingly difficult. This phe-
nomenon being so important for everyday life, efforts to gain mathematical understanding
of it are relatively ancient. The equations that are most commonly used for the modelling
of water flows, the Euler equations (which we will describe in much detail below), are
known since the mid-18th century [16], and first attempts to solve them rigorously can be
dated back to the early 19th century with the remarkable work of Gerstner [20, 21], later
rediscovered by Rankine [32], although the actual initiation of the field of research was
primarily due to Stokes [37] in the mid-19th century. From then on the dynamics of water
waves has been studied by numerous authors and has evolved parallel to general fluid
mechanics, although the answers to many essential questions remain elusive. For example,
our understanding is basically limited to two-dimensional flows—a thorough quantitative
analysis of the full three-dimensional case being way out of the reach of the mathematical
tools we have at our disposal at the moment—and even in this lower dimensional case we
are far from having a full picture of the different aspects of the theory.

Historically one first looked at the linearized equations in two dimensions for irrota-
tional flows (the meaning of these concepts is made clear below) and investigated properties
such as the particles trajectories or the pressure fluctuations beneath the surface wave in
the case of a water layer of infinite depth; later, more general situations where gradually
discussed (for instance, by introducing a bottom of finite depth, or looking at different ap-
proximations of the governing equations in several regimes, e.g. the shallow-water regime,
cf. [6]), until it was clear that many key properties of water waves, such as solitons propa-
gation [6], can be captured only by nonlinear theory. Considering the presence of non-zero
vorticity is also an improvement towards a more general understanding, and several steps
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2 Velocity decay with depth in periodic water waves

forward have been made in recent years in this direction. Moreover, models for particu-
lar situations, for instance geophysical flows, equatorial flows, tsunamis, etc., have been
developed and investigated. The issue of well-posedness is also of paramount importance
and has been addressed accordingly (see Appendix A).

In this thesis we restrict our attention to two-dimensional, spatially periodic water
waves over a flat bed and investigate how the motion of the water below the surface wave
decays with increasing depth. This particular aspect is not merely of sterile academic in-
terest, because wind-generated waves usually show a spatially periodic profile after having
travelled away from the place where they have been originated, and are approximately
two-dimensional, meaning that they propagate uniformly in the direction of the wind that
has generated them [1, 35]. In such cases, it is intuitively expected that the effects that
the surface wave induces on the motion of the water below should be less pronounced at
higher depths, a fact that, to take a concrete example, is very useful for submarines: if
a wind storm causes the formation of waves of several metres of elevation, the submarine
can escape the danger by diving at an adequate depth beneath the surface. In fact, the
classical “rule of thumb” in oceanography is that at the so-called wave base (correspond-
ing to a depth of half the wavelength of the surface wave) the effects of the wave on the
underlying motion of the water should already be negligible [12].

The thesis is organized as follows. In Chapter 1 we go through the derivation of
the governing equations for water waves (which are comprised of the equation of mass
conservation, the Euler equations, suitable boundary conditions and some assumptions
on the vorticity of the flow), thereby focussing on the physical meaning and relevance of
the introduced quantities. In Chapter 2 we discuss the important special case of two-
dimensional irrotational periodic water waves, providing some general considerations on
the role of irrotationality and its consequences. In Chapter 3 we prove the main result for
irrotational flows, which is an alternative proof for (a slight generalization of) a classical
result (proven in [27]) on the decrease of velocity with depth for such water waves, also
providing in § 3.2 a quantitative estimate for the velocity decay at the wave base. Chapter
4 is devoted to the discussion of the main properties of flows with vorticity and the most
striking differences between this and the irrotational case, also providing a generalization
of the results from Chapter 3 to flows with constant vorticity. Finally, a brief overview of
the main results about the fundamental issue of well-posedness is offered in Appendix A.



1 The governing equations

In the present chapter we derive the model for gravity water waves in three dimensions
using physical reasoning and making reasonable simplifying assumptions whenever needed.
In the last part of the chapter we also discuss some of the relevant aspects of the role of
vorticity in the description of water flows. A thorough answer to the question of well-
posedness of the model—which builds an entire, broad field of research of its own—is well
beyond the scope of this thesis; nonetheless, the most important results and the essential
methods used in that context are outlined in Appendix A.

The material presented in this chapter, especially the first three sections, is standard
and can be found in basically every general textbook about fluid mechanics and/or water
waves, such as [6, 12, 23, 29, 36]; we mainly follow the book [6], although with several
adaptations.

1.1 The continuum assumption

In classical mechanics, the most realistic and “straightforward” way of describing a fluid
is to view it as an ensemble of, say, N discrete molecules, interacting with each other
and possibly subjected to some external forces. Supposing that the N molecules are each
located at x1(t), . . . ,xN (t) ∈ R3 at time t and have the (positive) masses m1, . . . ,mN ,
respectively, and denoting the total force acting on each of them (as a sum of external
forces and interaction forces with all surrounding molecules) by Fk : RN × R → R3,
k = 1, . . . , N , all we would need to do in order to get a full picture of the situation we are
interested in would be to write down Newton’s second law for each molecule,

mk
d2xk
dt2

(t) = Fk(x1(t), . . . ,xN (t), t), k = 1, . . . , N, (1.1)

and solve the resulting system of equations. However, this turns out to be utterly hopeless,
because we usually deal (as in the study of water waves) with a number of molecules ap-
proximately of the order N ≈ 1024, which would make treating the system (1.1) impossible,
even for the most advanced computers available. Instead, we make use of the simplifying
assumption, upon which continuum mechanics is founded, that the fluid is continuously
distributed (continuum assumption); this hypothesis, albeit an approximation, still yields
(in the macroscopic case) a remarkably accurate description, in thorough agreement with
our everyday-life experience. In particular, this means that one can attach a meaning to
the value properties of the fluid at a point: this is what we are referring to whenever we
talk of a “particle” of fluid.

In general, the continuum assumption comes together with the introduction of a func-
tion ρ : R3 × R→ [0,∞), called the mass density, defined via the property that the mass
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4 Velocity decay with depth in periodic water waves

contained inside of a volume V ⊂ R3 at time t should be given by∫
V
ρ(x, t) dx.

It will be convenient for our purposes to assume further properties on the mass density, as
well as on other quantities that we will introduce shortly, as we shall see in the upcoming
sections.

1.2 The equation of mass conservation

We now begin the derivation of the basic equations that, together with suitable boundary
conditions, will form the model for water waves; we begin with the equation of mass
conservation. For each t ∈ R+ = (0,∞), let D(t) ⊂ R3 denote the fluid domain at time t.
Suppose that V ⊂ D(t) is a volume with C1-boundary ∂V , and let n denote the outward
unit normal vector on ∂V . If u ∈ C1(R+;C1(D(t))) is the velocity field in the water,
i.e. u(x, t) is the velocity of the water at the point x = (x, y, z)T ∈ D(t), then the rate at
which mass flows out of V is ∫

∂V
ρ(x, t) u(x, t) · n(x) dS(x),

where dS denotes the surface measure on ∂V . On the other hand, the rate of change of
mass in V is

d

dt

∫
V
ρ(x, t) dx =

∫
V

∂ρ

∂t
(x, t) dx.

Now, one of the axioms of continuum mechanics is conservation of mass, which, in our
case, means that mass can neither be created nor destroyed in the water: in other words,
the rate of change of mass in V can only be due to the rate of mass flowing into V across
its boundary ∂V . Therefore∫

V

∂ρ

∂t
(x, t) dx = −

∫
∂V
ρ(x, t) u(x, t) · n(x) dS(x) = −

∫
V
∇ · [ρ(x, t) u(x, t)] dx

(where in the last step we used the divergence theorem), or equivalently∫
V

(
∂ρ

∂t
(x, t) +∇ · [ρ(x, t) u(x, t)]

)
dx = 0.

Since this has to hold true for arbitrary V ⊂ D(t), we obtain the equation of mass con-
servation (or continuity equation)

∂ρ

∂t
(x, t) +∇ · [ρ(x, t) u(x, t)] = 0, x ∈ D(t). (1.2)

Writing u in components as u = (u1, u2, u3)
T , we may introduce the material derivative

of ρ by

Dρ

Dt
(x, t) :=

∂ρ

∂t
(x, t) + (u(x, t) · ∇)ρ(x, t)

=
∂ρ

∂t
(x, t) + u1(x, t)

∂ρ

∂x
(x, t) + u2(x, t)

∂ρ

∂y
(x, t) + u3(x, t)

∂ρ

∂z
(x, t),
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which by the chain rule can be physically interpreted as the time derivative of ρ along a
particle path x(t). Equation (1.2) can therefore be rewritten as

Dρ

Dt
(x, t) + ρ(x, t)∇ · u(x, t) = 0, x ∈ D(t).

A fluid satisfying
Dρ

Dt
(x, t) = 0, x ∈ D(t) (1.3)

for all times t is called incompressible; in this case, the equation of mass conservation (1.2)
reduces to

∇ · u(x, t) = 0, x ∈ D(t), (1.4)

valid for each t > 0. For water in seas and oceans, it turns out (see [6]) that the mass
density ρ is subject to negligible changes due to depth or temperature, so that it is an
excellent approximation to assume that ρ is in fact a constant, both in space and in time,
so that the incompressibility condition (1.3) is trivially satisfied.

1.3 The Euler equations

As briefly mentioned above, we distinguish between two types of forces that are relevant
in fluid mechanics: external forces (whose source is external to the fluid and which are
the same for each fluid “particle”) and internal forces (exerted on a fluid element by other
elements nearby). We consider gravity water waves, i.e. we assume gravity to be the
only external force acting on the fluid bulk. If, as above, V ⊂ D(t) is a volume with
C1-boundary ∂V , then the total external force acting on the water volume V is∫

V
ρg dx,

where, in Cartesian coordinates x = (x, y, z)T with z measured upwards, we have g =
(0, 0,−g)T , with the constant gravitational acceleration g ≈ 9.8 m s−2. Moreover, we
assume water to be an ideal fluid—a concept supposing the matter to be continuously
distributed and the fluid to be inviscid1; this means, heuristically, that the force that is
exerted on a small water element by the water elements nearby is always perpendicular
to the boundary of the element (i.e. there are no friction effects that would account for
non-zero tangential components of the internal forces), so that the internal forces on the
volume V at time t are given by

−
∫
∂V
p(x, t)n(x) dS(x),

where the function p, for which we assume p ∈ C(R+;C1(D(t))), is called the hydrody-
namical pressure. Therefore the total force acting on V at time t is∫

V
ρg dx−

∫
∂V
p(x, t)n(x) dS(x) =

∫
V

(ρg −∇p(x, t)) dx,

where we used the divergence theorem once again.

1This is a good approximation for water (see [13]), especially for gravity water waves where the dissi-
pation effects caused by viscosity are negligible over long periods of time (cf. [6]).



6 Velocity decay with depth in periodic water waves

Now notice that the velocity vector of a particle at the point x at time t is u(x, t), so
that the particle will move along the path x(t) satisfying the equation

dx

dt
(t) = u(x(t), t),

hence, by the chain rule, the acceleration of the particle is

d2x

dt2
(t) =

∂u

∂t
(x(t), t) + (u(x(t), t) · ∇)u(x(t), t) =

Du

Dt
(x(t), t),

with the material derivative Du
Dt of u. Therefore Newton’s second law applied to the body

of water surrounded by ∂V yields∫
V
ρ

Du

Dt
(x, t) dx =

∫
V

(ρg −∇p(x, t)) dx.

Since V is arbitrary, we obtain the Euler equations of motion

Du

Dt
(x, t) = −1

ρ
∇p(x, t) + g, x ∈ D(t),

or, in other words,

∂u

∂t
(x, t) + (u(x, t) · ∇)u(x, t) = −1

ρ
∇p(x, t) +

 0
0
−g

 , x ∈ D(t) (1.5)

for all t > 0. The system of equations (1.5) together with the equation of mass conservation
(1.4) is often referred to as the incompressible Euler equations.

1.4 Boundary conditions

When dealing with water waves, the boundary of the fluid region consists of two distinct
parts: a lower boundary, which we assume to be a rigid flat bed, and the free surface—
the fluid region is supposed to be unbounded in the horizontal (x and y) directions. We
restrict ourselves to the case where the free water surface at time t can be written as

{x = (x, y, z)T ∈ R3 : z = η(x, y, t)} (1.6)

for a function η ∈ C1(R+;C1(R2)) such that η(·, ·, t) is a perturbation of the mean surface
level z = 0 for each time t. Notice that η is unknown and determining it is part of the
problem. On the other hand, the rigid flat bed is supposed to be the horizontal plane

{x = (x, y, z)T ∈ R3 : z = −d},

situated at the mean depth d > 0.

We distinguish between kinematic and dynamic boundary conditions. The kinematic
boundary conditions express the fact that a particle that is initially situated on the bound-
ary remains there at all later times. Clearly, the kinematic boundary condition on the flat
rigid bed reads simply

u3 = 0 on {z = −d}; (1.7)
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in the case of the free water surface, however, this condition takes the more complicated
form

u3 = ηt + u1ηx + u2ηy on {z = η(x, y, t)}, (1.8)

which can be justified as follows. First, notice that the free surface can be identified with
the set of solutions to the equation

S(x, t) = 0,

with S : R3 × R → R, S(x, t) = z − η(x, y, t). Therefore, taking an arbitrary point x0

situated on the free surface at time t = 0, its subsequent trajectory x(t) is clearly given
by the solution to the differential equation x′(t) = u(x(t), t) satisfying the constraint
S(x(t), t) = 0 and having the initial data x(0) = x0. Thus it follows by differentiation
that the condition

DS

Dt
= 0

along the surface, which is precisely (1.8), is necessary. To see that this is also a sufficient
condition we need the following result concerning flow-invariant sets:

Theorem 1.1. Let Ω ⊂ Rn be a closed C1-hypersurface in Rn, and let F ∈ C1(Rn,Rn).
If ν(Y ) · F (Y ) = 0 whenever ν(Y ) is normal to Ω at Y ∈ Ω, then Ω is flow-invariant for
F , i.e. every solution X : [t0, T )→ Rn of the differential equation

X ′(t) = F (X(t))

with X(t0) ∈ Ω remains in Ω for all t ∈ [t0, T ).

For a proof of this statement, see [33]. In our case, taking

Ω = {(x, y, z, t)T ∈ R4 : z − η(x, y, t) = 0}

and noticing that the differential equation x′(t) = u(x(t), t) can be rewritten as

X ′(t) = F (X(t))

with X(t) = (x(t), t)T and F (X(t)) = (u1(x(t), t), u2(x(t), t), u3(x(t), t), 1)T , we see that
the condition ν(X) · F (X) = 0 is precisely DS

Dt = 0, and applying Theorem 1.1 concludes
the argument.

The dynamic boundary condition expresses the fact that the motion of the air above
the water surface is decoupled from that of the water below. For gravity water waves we
ignore the effects of surface tension (cf. [6]), so that the atmosphere above the water exerts
an influence only in the form of pressure acting on the surface; this pressure is taken to
be equal to the (constant) atmospheric pressure patm (its common reference value being
patm = 101.325 Pa). Thus the dynamic boundary condition for gravity water waves is

p = patm on {z = η(x, y, t)}. (1.9)

1.5 Vorticity

The vorticity of a fluid flow u ∈ C1(R+;C1(D(t))) is defined as the curl of the velocity
field:

ω(x, t) := curl u(x, t) = ∇∧ u(x, t), x ∈ D(t), t > 0.

The vorticity is a very essential property of a fluid. Physically, one can interpret it as a
measure of the local spin or rotation of a fluid element, as we describe next (following the
discussion in [6]).
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1.5.1 Physical interpretation

Suppose for simplicity that we are considering a time-independent smooth flow u(x), and
look at a fixed point x0 of the fluid domain. Also, let h ∈ R3 with |h| “small”. Then the
Taylor expansion of u around x0 is

u(x0 + h) = u(x0) + (Du)(x0) h +O(|h|2),

where (Du)(x0) denotes the Jacobian of u at x0. If we then split (Du)(x0) into its
symmetric and antisymmetric part,

(Du)(x0) = DS(x0) + DA(x0)

with

DS(x0) =
(Du)(x0) + (Du)(x0)

T

2
and DA(x0) =

(Du)(x0)− (Du)(x0)
T

2
,

and performing a straightforward calculation to see that

2 DA(x0) h = ω(x0) ∧ h,

we obtain

u(x0 + h) = u(x0) + DS(x0) h +
1

2
ω(x0) ∧ h +O(|h|2).

If we are interested in a first-order approximation of the motion of a particle near x0,
whose trajectory can be written as x(t) = x0 + h(t), we need to solve the differential
equation

dh

dt
= u(x0) + DS(x0) h +

1

2
ω(x0) ∧ h. (1.10)

We can give an independent physical interpretation to the flow generated by each of the
three addends on the right-hand side.

• Clearly, the differential equation

dh

dt
= u(x0)

has the solution h(t) = h(0) + u(x0)t, which describes an infinitesimal translation
(keep in mind that we are working only at first-order level).

• The flow generated by the equation

dh

dt
= DS(x0) h (1.11)

represents an infinitesimal stretching along the eigenspaces of the symmetric matrix
DS(x0). Indeed, if λ1 ≤ λ2 ≤ λ3 are the (not necessarily distinct) real eigenvalues of
the matrix DS(x0) (which, being symmetric, is diagonalizable) with a corresponding
basis of eigenvectors {e1, e2, e3}, so that DS(x0) ek = λk ek for each k = 1, 2, 3, we
may write h(t) = h1(t) e1 + h2(t) e2 + h3(t) e3, with the consequence that (1.11)
reduces to

dhk
dt

= λk hk, k = 1, 2, 3,

with solutions
hk(t) = hk(0) eλkt, k = 1, 2, 3.
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Moreover, if u satisfies the equation of mass conservation (1.4), then

0 = tr((Du)(x0)) = tr(DS(x0)) = λ1 + λ2 + λ3,

so that the deformation due to DS(x0) is volume-preserving (see the discussion in
[6]).

• Finally, we look at the equation

dh

dt
=

1

2
ω(x0) ∧ h (1.12)

and convince ourselves that its solution defines a rigid rotation with angular velocity
1
2 ω(x0). Let f , j ∈ R3 be unit vectors such that {e = ω(x0)

|ω(x0)| , f , j} is an orthonormal

basis for R3. Furthermore, let `, L ≥ 0 and ϕ ∈ [0, 2π) with

h(0) = ` e + L cos(ϕ) f + L sin(ϕ) j,

and observe that

h(t) = ` e + L cos(ϕ+ θt) f + L sin(ϕ+ θt) j,

where θ = |ω(x0)|
2 , satisfies

h′(t) = −Lθ sin(ϕ+ θt) f + Lθ cos(ϕ+ θt) j =
1

2
ω(x0) ∧ h(t),

so that (by uniqueness theory for ODEs, cf. [5, 39]) it must be the unique solution
to (1.12) with initial data h(0). Thus the flow associated to (1.12) is a rotation with
constant angular speed θ and axis of rotation ω(x0), as claimed.

Nevertheless, from this separate analysis we cannot conclude that the solution of (1.10)
at leading order can be written as a combination of a translation, a deformation and a
rigid rotation. In fact, by Duhamel’s formula (see [39]), the solution to (1.10) is

h(t) = e(DS(x0)+DA(x0))t h(0) +

(∫ t

0
e(DS(x0)+DA(x0))(t−s) ds

)
u(x0),

and, as we have seen, the maps t 7→ eDS(x0)t h(0) and t 7→ eDA(x0)t h(0) determine a defor-
mation along three fixed axes and a rotation about a fixed axis, respectively. Thus, if the
matrices DS(x0) and DA(x0) commuted, then h(t) would indeed consist of a deformation
and a rotation (not necessarily in this order, due to commutativity) and a succeeding
translation by the vector (∫ t

0
e(DS(x0)+DA(x0))(t−s) ds

)
u(x0).

However, it is easily shown that if the matrices DS(x0) and DA(x0) commute if and only
if (Du)(x0) commutes with (Du)(x0)

T , which is in general not true, not even under the
incompressibility condition (1.4), so an actual decomposition of the flow into a translation,
a deformation and a rotation cannot be achieved in general. Still, in view of Trotter’s
product formula

e(A+B)t = lim
n→∞

(
eAt/n eBt/n

)n
uniformly on compact intervals,

valid also for non-commuting matrices A and B (cf. [5]), we may get an approximation of
the flow by performing n combinations of such rotations and deformations, followed by a
translation, provided that n be large enough.
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1.5.2 The vorticity equation

One of the main features of the vorticity of a flow is the so-called vorticity equation, which
we briefly derive here2. Plugging the identity

(u · ∇)u = ∇
(

1

2
u · u

)
+ (∇∧ u) ∧ u

into Euler’s equation (1.5) we get

∂u

∂t
+ (∇∧ u) ∧ u = −∇

(
1

2
u · u + p+ gz

)
.

Taking the curl and using the identity ∇∧(∇f) = 0, valid for all f ∈ C2(R3,R), we obtain

∂ω

∂t
+∇∧ (ω ∧ u) = 0.

If we now apply the vector identity

∇∧ (F ∧G) = (G · ∇)F− (F · ∇)G + F(∇ ·G)−G(∇ · F),

which holds true for all F,G ∈ C2(R3,R3), this becomes

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u + ω(∇ · u)− u(∇ · ω) = 0;

in this equality the fourth term vanishes because of incompressibility (1.4), whereas the
fifth term vanishes because of the vector identity ∇ · (∇∧ F) = 0, F ∈ C2(R3,R3). Thus

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u,

or, in other words,
Dω

Dt
= (ω · ∇)u,

which is the anticipated vorticity equation; notice that the hydrodynamical pressure is not
involved in this equation. In particular, for a two dimensional flow (for instance, a flow
that is independent of the y-coordinate) the vorticity of each individual water particle is
constant along the particle’s path: indeed, if we write ω = (ω1, ω2, ω3)

T , for such a flow
we have ω1 = ω3 = 0, thus

(ω · ∇)u = ω2
∂u

∂y
= 0,

and therefore
Dω

Dt
= 0. (1.13)

Notice that, in such a two-dimensional flow,

ω =

(
0,
∂u1
∂z
− ∂u3

∂x
, 0

)T
,

2For the sake of notational simplicity, we omit all arguments in the following calculations. Furthermore,
we assume that everything is sufficiently smooth for each step to be justified.



1. The governing equations 11

so that we could identify the vorticity with the scalar

ω :=
∂u1
∂z
− ∂u3

∂x
, (1.14)

which, by a slight abuse of language and notation, we call again the vorticity of the flow.
A two-dimensional flow whose vorticity, in view of the vorticity equation (1.13), vanishes
throughout the fluid domain at each time is called irrotational.

For a brief outline of the main properties of rotational flows and the differences to
irrotational ones, we refer to the later discussion in Chapter 4.





2 The two-dimensional periodic irrota-
tional problem

In the previous chapter we derived the general model for gravity water waves in three
dimensions. For the rest of this thesis we restrict ourselves to the most investigated case,
the two dimensional one, modelling a water wave which propagates in only one direction,
perpendicular to what me may call the “wave front”. We start by introducing some
notation and terminology, before analysing some immediate consequences of the governing
equations.

2.1 The model

As anticipated, we consider a two-dimensional water flow, with a horizontal direction,
labelled by x, and a vertical direction, measured upwards and labelled by y (instead of
z, in contrast to the previous section). To further simplify the notation, we will denote
the components of the velocity field by u = (u, v)T . The free water surface is assumed
to be described, in analogy with (1.6), by the equation y = η(x, t), for some (unknown)
function η ∈ C1(R+;C1(R)), which is assumed to be periodic of period λ > 0 (called the
wavelength) in the x-direction. The fluid domain at time t > 0 is thus

D(t) = {(x, y) ∈ R2 : −d < y < η(x, t)}.

Let us fix at this point some more terminology for the case of a two-dimensional periodic
wave (see Figure 2.1). The maximal elevation of the wave from the mean water level y = 0
is called the crest of the wave; the deepest point of the free water surface is called the
trough of the wave. The vertical distance between the wave crest and the wave trough is
called the height of the wave, whereas the amplitude is defined as the maximal deviation
of the free water surface above the mean level: this can occur either at the crest or at
the trough, although periodic sea waves usually have higher, sharper crests and flatter,
less pronounced depressions, such as in Figure 2.1 (see [6]). For travelling waves, in which
the (x, t)-dependence of η, u, v and p is of the form (x − ct), the time necessary for two
successive crests (or troughs) to pass a fixed point in space is called the wave period ; the
ratio of wavelength and wave period is called the wave speed c > 0.

Now let us go back to the governing equations. As in the previous chapter, we are
dealing with an (unknown) hydrodynamical pressure p ∈ C(R+;C1(D(t))) and a constant
(known) mass density ρ > 0. The Euler equations (1.5) take then the following form:

ut + uux + vuy = −1

ρ
px

vt + uvx + vvy = −1

ρ
py − g

in D(t), t > 0, (2.1)

13
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Figure 2.1: Schematic depiction of a two-dimensional space-periodic water wave.

whereas the mass conservation (1.4) is

ux + vy = 0 in D(t), t > 0. (2.2)

The boundary conditions (1.8), (1.7) and (1.9) are then

v = ηt + uηx on {(x, y) ∈ R2 : y = η(x, t)}, t > 0, (2.3)

v = 0 on {(x, y) ∈ R2 : y = −d}, t > 0, (2.4)

p = patm on {(x, y) ∈ R2 : y = η(x, t)}, t > 0, (2.5)

respectively. All variables u, v, p, η depend periodically on the horizontal variable x, with
period λ; moreover, the free surface is supposed to be a disturbance of the mean level
y = 0, so that ∫ λ

0
η(x, t) dx = 0 at all times t > 0. (2.6)

Finally, the flow is supposed to be irrotational, so that

uy − vx = 0 in D(t), t > 0, (2.7)

according to (1.14) and in view of the vorticity equation (1.13). The system of equations
is completed by suitable initial conditions.

2.2 Velocity potential and stream function

Since the fluid domain D(t) is simply connected, some standard results from calculus allow
us to infer some very important consequences from Equations (2.2) and (2.7).
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2.2.1 General considerations

Firstly, from (2.7) it follows the existence of a smooth function φ(·, ·, t), called the velocity
potential, with the property

φx = u and φy = v in D(t) (2.8)

for every t > 0. This function φ(·, ·, t) is determined up to an additive function of t by the
line integral1

φ(x, t) =

∫
γ(x)

(u dx+ v dy), x = (x, y) ∈ D(t),

where γ(x) is a path connecting x ∈ D(t) to an arbitrary, fixed point x0 ∈ D(t); Stokes’
theorem (see for example [25]) guarantees that the line integral does not depend on the
particular choice of the path γ(x). For instance, a possible explicit formula for φ(·, ·, t) is

φ(x, y, t) =

∫ x

0
u(s,−d, t) ds+

∫ y

−d
v(x, s, t) ds, (x, y) ∈ D(t),

which can be easily verified by differentiation. Notice that from (2.2) and (2.8) it follows

∆φ = 0 in D(t),

which has also the consequence that φ (and therefore u and v) is in fact real-analytic
throughout the fluid domain at all times.

On the other hand, (2.2) implies for each time t > 0 the existence of a smooth function
ψ(·, ·, t), called the stream function, such that

ψy = u and ψx = −v in D(t). (2.9)

Similarly as before, the stream function ψ(·, ·, t) is prescribed up to an additive function
of t by the line integral

ψ(x, t) =

∫
γ(x)

(udy − v dx), x = (x, y) ∈ D(t),

where γ(x) is a path as above. The incompressibility condition (2.2) accounts for the
independence of this definition of the chosen integration path. Moreover, at every instant
t > 0 the function ψ(·, ·, t) is uniquely determined by requiring that

ψ(x,−d, t) = 0, x ∈ R,

thus

ψ(x, y, t) =

∫ y

−d
u(x, s, t) ds, (x, y) ∈ D(t);

in particular, we see that ψ(·, ·, t) has period λ in the first variable for each t > 0. Also,
plugging (2.9) into (2.7) yields

∆ψ = 0 in D(t). (2.10)

1The velocity potential for an irrotational flow can be introduced in an analogous way also in the three-
dimensional setting. This is not true for the stream function, defined below, which can exist only in two
dimensions.
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2.2.2 Travelling waves

In the special case of travelling waves, where the (x, t)-dependence of all variables is of the
form (x− ct) for a constant propagation speed c > 0, it is more convenient to consider a
stream function that satisfies

ψy = u− c and ψx = −v in D(t). (2.11)

We can eliminate the time variable time via the transformation x− ct→ x and y → y, so
that the governing equations read now

(u− c)ux + vuy = −1

ρ
px in D, (2.12)

(u− c)vx + vvy = −1

ρ
py − g in D, (2.13)

ux + vy = 0 in D, (2.14)

uy − vx = 0 in D, (2.15)

v = (u− c)η′ on {(x, y) ∈ R2 : y = η(x)}, (2.16)

v = 0 on {(x, y) ∈ R2 : y = −d}, (2.17)

p = patm on {(x, y) ∈ R2 : y = η(x)}, (2.18)

where D is the fluid domain in the new time-independent transformed coordinates,

D = {(x, y) ∈ R2 : −d < y < η(x)}.

Let us introduce the relative mass flux through x as

m0 =

∫ η(x)

−d
(u(x, s)− c) ds, (2.19)

which is independent of x, because

dm0

dx
= (u(x, η(x))− c)η′(x) +

∫ η(x)

−d
ux(x, s) ds

= (u(x, η(x))− c)η′(x) +

∫ η(x)

−d
ψyx(x, s) ds

= (u(x, η(x))− c)η′(x) + [ψx(x, s)]
s=η(x)
s=−d

= (u(x, η(x))− c)η′(x)− v(x, η(x)) + v(x,−d)

= 0,

where we used (2.11) and the boundary conditions (2.16) and (2.17). Thus we may choose
ψ = m0 on the free surface, which implies that the flat bottom is the streamline ψ = 0.
Furthermore, from (2.12) and (2.13) it follows that the expression

E =
(c− u)2 + v2

2
+ gy + p,

sometimes called the hydraulic head , is constant throughout the flow (Bernoulli’s law), so
that the boundary condition (2.18) can be restated as

ψ2
x + ψ2

y + 2g(y + d) = Q,
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where Q := 2(E − patm + gd) is a (known) constant. Thus the whole system (2.12)–
(2.18) of equations and boundary conditions can be reformulated in terms of ψ as the
boundary-value problem

∆ψ = 0 in D,
|∇ψ|2 + 2g(y + d) = Q on {(x, y) ∈ R2 : y = η(x)},
ψ = m0 on {(x, y) ∈ R2 : y = η(x)},
ψ = 0 on {(x, y) ∈ R2 : y = −d}

(2.20)

for the Laplace equation. This fact should highlight the importance of the theory of
harmonic functions (and also of holomorphic functions in the two-dimensional case, as we
will see in the next chapter) in the study of the water wave problem; see [6, 8] for further
information on this topic.

2.3 The mean flow beneath the surface waves

If for each t > 0 we have
η0(t) := min

x∈[0,λ]
η(x, t) > −d

for the depth of the wave trough at time t, from (2.9) we obtain

1

λ

∫ λ

0
v(x, y, t) dx = − 1

λ

∫ λ

0
ψx(x, y, t) dx = 0, −d ≤ y ≤ η0(t), (2.21)

and

∂

∂y

(
1

λ

∫ λ

0
u(x, y, t) dx

)
=

1

λ

∫ λ

0
uy(x, y, t) dx

=
1

λ

∫ λ

0
ψyy(x, y, t) dx

=
1

λ

∫ λ

0
∆ψ(x, y, t) dx = 0, −d ≤ y ≤ η0(t);

the latter implies that

1

λ

∫ λ

0
u(x, y, t) dx = f(t), −d ≤ y ≤ η0(t),

for some smooth function f : R+ → R. Moreover, from (2.4), the first equation in (2.1)
evaluated on y = −d, and the fact that both u and p are periodic in the first variable, we
obtain

f ′(t) =
∂

∂t

(
1

λ

∫ λ

0
u(x, y, t) dx

) ∣∣∣∣
{y=−d}

=
1

λ

∫ λ

0
ut(x,−d, t) dx

= − 1

λ

∫ λ

0

(
1

ρ
px(x,−d, t) + u(x,−d, t)ux(x,−d, t)

)
dx

= − 1

ρλ

∫ λ

0
px(x,−d, t) dx− 1

2λ

∫ λ

0

∂

∂x
(u(x,−d, t))2 dx

= 0,
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and so
1

λ

∫ λ

0
u(x, y, t) dx = u0, −d ≤ y ≤ η0(t), (2.22)

for some constant u0 ∈ R; this means that we have the constant mean flow u0 for all
depths between the flat bed and the trough level. Thus the water flow is experiencing a
constant horizontal “drift” with speed u0, that is, the average behaviour of the flow in the
region {(x, y) : −d < y < η0(t)} is that of a constant current with velocity field (u0, 0), so
that we may interpret u0 as the underlying (constant) current to the flow.



3 Main result for irrotational flows

In this chapter we consider a two-dimensional, irrotational water flow that is spatially
periodic with period λ, thus subjected to the governing equations (2.1)–(2.7) from § 2.1.
Notice, however, that we do not require that the flow be a travelling wave—the wave profile
and the velocity field may evolve in a non-periodic way in time, although maintaining at
every instant the λ-periodicity in the horizontal direction x. In the subsequent discussion
we investigate how the influence of the motion of the free surface on the water layer below
attenuates with increasing depth.

3.1 Proof of the main result for irrotational flows

Our goal is to recover, using a different method (adapted from [1]), the classical result of
[27], which, rewritten in the notation introduced above, can be stated as follows:

Theorem 3.1. The flow underneath any two-dimensional, spatially periodic, irrotational
water wave with no underlying current tends exponentially fast to zero: if

s(x, y, t) :=
√
u(x, y, t)2 + v(x, y, t)2, (x, y) ∈ D(t),

then at any point (x, y) ∈ D(t) with −d ≤ y ≤ η0(t)− λ
4 we have

s(x, y, t) ≤ 2 e−kη0(t)eky
(

1 + e−2k(d+y)
)

max
ξ∈[0,λ]

s(ξ, η0(t), t), (3.1)

where k = 2π/λ is the wave number.

This we do (in a slightly more general setting) in the next theorem; then, in Corollary
3.4 below, we show how the bound can be further improved by conveniently modifying
the proof of the theorem.

Theorem 3.2. The flow underneath any two-dimensional, spatially periodic, irrotational
water wave tends exponentially fast to the underlying mean flow u0: if

s(x, y, t) :=
√

(u(x, y, t)− u0)2 + v(x, y, t)2, (x, y) ∈ D(t),

then the maximum S(t) of the map (x, y) 7→ s(x, y, t) in D0(t) := {(x, y) : −d < y < η0(t)}
is attained on the line y = η0(t) and for all −d ≤ y ≤ η0(t)− λ

4 we have

s(x, y, t) ≤ eπ/4

2 sinh(π4 )
e−kη0(t)eky

(
1 + e−2k(d+y)

)
S(t), (3.2)

where k = 2π/λ is the wave number.

19
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Proof. At any fixed t > 0 the function defined by

f(x+ iy, t) := −ψx(x, y, t) + i(ψy(x, y, t)− u0) = v(x, y, t) + i(u(x, y, t)− u0) (3.3)

is holomorphic in {x + iy ∈ C : −d < y < η0(t)} (the validity of the Cauchy–Riemann
equations being an immediate consequence of (2.9) and (2.10)) and continuous on its
closure; moreover, (2.21) and (2.22) imply that

1

λ

∫ λ

0
f(x+ iy, t) dx =

1

λ

∫ λ

0
v(x, y, t) dx+

i

λ

∫ λ

0
(u(x, y, t)−u0) dx = 0, −d ≤ y ≤ η0(t).

(3.4)
By (2.5), the real part of f vanishes on the line y = −d, thus we can apply the Schwarz
reflection principle (see [34]) to obtain a holomorphic extension of f to the rectangular
domain

B(t) := {x+ iy ∈ C : 0 < x < λ,−2d− η0(t) < y < η0(t)}
given by

f(x+ iy, t) := −f(x− i(2d+ y), t), −2d− η0(t) < y < −d. (3.5)

Now we introduce the function

F (z, t) := −ik eikzf(z, t), z ∈ B(t);

the residue theorem yields

f(z0, t) =
1

2πi

∫
∂B(t)

F (z, t)

e−ikz − e−ikz0
dz, z0 ∈ B(t). (3.6)

Indeed,

1

2πi

∫
∂B(t)

F (z, t)

e−ikz − e−ikz0
dz = Res

(
− ik eikzf(z, t)

e−ikz − e−ikz0
; z0

)
= Res

(
ikf(z, t)

eik(z−z0) − 1
; z0

)
,

and applying the generalized binomial theorem we compute

1

eik(z−z0) − 1
=

( ∞∑
n=1

(ik)n

n!
(z − z0)n

)−1

=

(
ik(z − z0) +

∞∑
n=2

(ik)n

n!
(z − z0)n

)−1

=

∞∑
m=0

(−1)m(ik(z − z0))−1−m
( ∞∑
n=2

(ik)n

n!
(z − z0)n

)m

=
1

ik(z − z0)
− 1

(ik)2(z − z0)2
·
∞∑
n=2

(ik)n

n!
(z − z0)n + . . . ,

hence

Res

(
ikf(z, t)

eik(z−z0) − 1
; z0

)
= ikf(z0, t) Res

(
1

eik(z−z0) − 1
; z0

)
= ikf(z0, t)

1

ik
= f(z0, t).

We split the boundary ∂B(t) into the segments

Lr(t) := {λ+ iy : −2d− η0(t) ≤ y ≤ η0(t)}, C−(t) := {x+ i(−2d− η0(t)) : 0 ≤ x ≤ λ},
L`(t) := {iy : −2d− η0(t) ≤ y ≤ η0(t)}, C+(t) := {x+ iη0(t) : 0 ≤ x ≤ λ}.
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Since the function ψ is λ-periodic in the x-direction, so is v = −ψx, thus, keeping in mind
that k = 2π/λ, we get

F (x+ λ+ iy, t) = −ik e−ik(x+λ)ey[v(x+ λ, y, t) + i(u(x+ λ, y, t)− u0)]
= −ik e−ikxey[v(x, y, t) + i(u(x, y, t)− u0)]
= F (x+ iy, t),

i.e. F is λ-periodic in the x-direction as well; hence∫
Lr(t)

F (z, t)

e−ikz − e−ikz0
dz =

∫
L`(t)

F (z, t)

e−ikz − e−ikz0
dz.

Therefore, by means of (3.4), we see that (3.6) reduces to

f(z0, t) =
1

2πi

∫
C−(t)

F (z, t)

e−ikz − e−ikz0
dz − 1

2πi

∫
C+(t)

F (z, t)

e−ikz − e−ikz0
dz

=
1

2πi

∫
C−(t)

F (z, t)

e−ikz − e−ikz0
dz − 1

2πi

∫
C+(t)

eikzF (z, t) dz

− e−ikz0

2πi

∫
C+(t)

eikzF (z, t)

e−ikz − e−ikz0
dz

=
1

2πi

∫ λ

0

ikf(x+ iη0(t), t) e−ik[x−2id−iη0(t)]

e−ik[x+iη0(t)] − e−ikz0
dx+

1

2πi

∫ λ

0
ikf(x+ iη0(t), t) dx

+
e−ikz0

2πi

∫ λ

0

ikf(x+ iη0(t), t)

e−ik[x+iη0(t)] − e−ikz0
dx

=
1

λ

∫ λ

0

f(x+ iη0(t), t) e−ik[x−2id−iη0(t)]

e−ik[x+iη0(t)] − e−ikz0
dx+

e−ikz0

λ

∫ λ

0

f(x+ iη0(t), t)

e−ik[x+iη0(t)] − e−ikz0
dx,

or, in other words,

f(x0 + iy0, t) =
1

λ

∫ λ

0

f(x+ iη0(t), t) e−ik[(x−x0)−i(2d+η0(t)+y0)]

e−ik[(x−x0)−i(2d+η0(t)+y0)] − 1
dx

+
1

λ

∫ λ

0

f(x+ iη0(t), t) eik[(x−x0)+i(η0(t)−y0)]

1− eik[(x−x0)+i(η0(t)−y0)]
dx (3.7)

for all x0, y0 ∈ R with −d ≤ y0 ≤ η0(t).
Now suppose that −d ≤ y0 ≤ η0(t)− λ

4 . Then

k[η0(t)−y0] ≥
2π

λ
·λ
4

=
π

2
and k[2d+η0(t)+y0] ≥ k[η0(t)+d] ≥ 2π

λ

(
−d+

λ

4
+ d

)
=
π

2
,

so that ∣∣∣∣∣ eik[(x−x0)+i(η0(t)−y0)]

1− e−ik[(x−x0)+i(η0(t)−y0)]

∣∣∣∣∣ ≤ ek[y0−η0(t)]

1− ek[y0−η0(t)]
≤ ek[y0−η0(t)]

1− e−π/2
(3.8)

and ∣∣∣∣∣ e−ik[(x−x0)−i(2d+η0(t)+y0)]

e−ik[(x−x0)−i(2d+η0(t)+y0)] − 1

∣∣∣∣∣ ≤ e−k[2d+y0+η0(t)]

1− e−k[2d+y0+η0(t)]
≤ e−k[2d+y0+η0(t)]

1− e−π/2
. (3.9)
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Applying these estimates to (3.7) yields

|f(x0 + iy0, t)| ≤
(

max
x∈[0,λ]

|f(x+ iη0(t), t)|
)

e−k[2d+y0+η0(t)] + ek[y0−η0(t)]

1− e−π/2
1

λ

∫ λ

0
dx

=

(
max
x∈[0,λ]

|f(x+ iη0(t), t)|
)

e−kη0(t)eky0
(

1 + e−2k(d+y0)
) eπ/4

2 sinh(π4 )
, (3.10)

or, equivalently,

s(x0, y0, t) ≤
eπ/4

2 sinh(π4 )
e−kη0(t)eky0

(
1 + e−2k(d+y0)

)
max
x∈[0,λ]

s(x, η0(t), t).

The domain B(t) is a periodicity cell of the region {x+ iy ∈ C : −2d− η0(t) < y < η0(t)},
therefore by the maximum modulus principle applied to the holomorphic function f the
maximum S(t) is attained on the boundary of the region, and exploiting the symmetry
that derives from the Schwarz reflection principle (Equation (3.5)) we can choose a location
on the upper boundary, i.e.

S(t) = max
x∈[0,λ]

s(x, η0(t), t).

Thus

s(x0, y0, t) ≤
eπ/4

2 sinh(π4 )
e−kη0(t)eky0

(
1 + e−2k(d+y0)

)
S(t), −d ≤ y0 ≤ η0(t)−

λ

4
,

which concludes the proof.

Remark 3.3. In the case of u0 = 0, we recover from (3.2) the estimate (3.1) of [27],
although with a different (better) coefficient in front: in (3.1) this is namely 2, which
is replaced by eπ/4/(2 sinh(π4 )) ≈ 1.262 in (3.2). However, a sharper estimate can be
achieved, as we show next.

Corollary 3.4. Under the same assumptions as in Theorem 3.2, for all −d ≤ y ≤ η0(t)−λ
4

we have

s(x, y, t) ≤ e−kη0(t)eky

[
1 + e−2k(d+y) +

eπ/4

2 sinh(π4 )
e−kη0(t)eky

(
1 + e−4k(d+y)

)]
S(t).

(3.11)

Proof. We would like to derive better estimates for the expressions

ek[y0−η0(t)]

1− ek[y0−η0(t)]
and

e−k[2d+y0+η0(t)]

1− e−k[2d+y0+η0(t)]

than those in (3.8) and (3.9), respectively. To do so, we use the following trick. Let us
look at the first fraction. For −d ≤ y0 ≤ η0(t)− λ

4 we know that

0 < ek[y0−η0(t)] ≤ e−π/2 < 1 and 0 < e−k[2d+y0+η0(t)] ≤ e−π/2 < 1,

with sharp inequalities if y0 < η0(t)− λ
4 . Thus

ek[y0−η0(t)]

1− ek[y0−η0(t)]
= ek[y0−η0(t)]

(
1 +

ek[y0−η0(t)]

1− ek[y0−η0(t)]

)

≤ ek[y0−η0(t)] +
e2k[y0−η0(t)]

1− e−π/2
,
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which is an improvement to the bound in (3.8) because

ek[y0−η0(t)] +
e2k[y0−η0(t)]

1− e−π/2
= ek[y0−η0(t)]

(
1 +

ek[y0−η0(t)]

1− e−π/2

)

≤ ek[y0−η0(t)]

(
1 +

e−π/2

1− e−π/2

)
=

ek[y0−η0(t)]

1− e−π/2
,

with sharp inequality if y0 < η0(t)− λ
4 . Analogously we obtain for the second fraction the

improved bound

e−k[2d+y0+η0(t)]

1− e−k[2d+y0+η0(t)]
≤ e−k[2d+y0+η0(t)] +

e−2k[2d+y0+η0(t)]

1− e−π/2
.

Thus

ek[y0−η0(t)]

1− ek[y0−η0(t)]
+

e−k[2d+y0+η0(t)]

1− e−k[2d+y0+η0(t)]

≤ e−kη0(t)

(
eky0 + e−k(2d+y0) +

e2ky0 + e−2k(2d+y0)

1− e−π/2
e−kη0(t)

)

= e−kη0(t)eky0

(
1 + e−2k(d+y0) + eky0e−kη0(t)

1 + e−4k(d+y0)

1− e−π/2

)

= e−kη0(t)eky0

[
1 + e−2k(d+y0) +

eπ/4

2 sinh(π4 )
eky0e−kη0(t)

(
1 + e−4k(d+y0)

)]
;

inserting this instead of (3.8) and (3.9) in (3.10) and completing the argument exactly as
in the proof of Theorem 3.2 yields the claim.

3.2 Decay at the wave base

Typically, below a depth of one half the wavelength of the surface wave (also called the
wave base in oceanography) one expects the effects of the water flow to be negligible
compared to those of the underlying current (see [12]), so let us check this basing on the
bounds we derived. For typical surface wind-waves, we have that η0(t) > − λ

10 (see [6]).

The bound in (3.11) is non-decreasing on −d ≤ y ≤ −λ
2 , thus with e−kη0(t) ≤ eπ/4 we see

that

s

(
x,−λ

2
, t

)
≤ e−πeπ/4

(
2 +

e−π/2

2 sinh(π4 )
· 2

)
S(t) ≈ 0.212S(t),

which means that the deviation of the mean velocity of the flow from the underlying current
at a depth of a half wavelength is reduced approximately fivefold from its (maximal) value
on the trough level, in accordance to our expectations. Also note that using the original
bound (3.2) yields

s

(
x,−λ

2
, t

)
≤ e−π/2

2 sinh(π4 )
S(t) ≈ 0.239S(t),

so that the estimate (3.11) provides us with an improvement of approximately 11% on the
bound at the wave base.





4 Rotational flows

The purpose of this chapter is to outline the essential properties of flows with non-zero
vorticity, highlighting the main differences from irrotational flows. Obviously, the pres-
ence of a non-vanishing vorticity has the immediate consequence that there is no velocity
potential as in (2.8); however, for two-dimensional flows, it is still possible to introduce a
stream function ψ analogously to (2.9), with the caveat that this time ψ is not harmonic,
but instead it satisfies the Poisson equation

∆ψ = ω in D(t),

where ω is the vorticity of the flow, according to (1.14). For the rest of this chapter we will
restrict our attention to two-dimensional flows, as in Chapter 1, using the same notation
introduced there.

4.1 Currents

A flow with a flat surface (typically pre-existing before the arrival of a surface wind wave) is
called a current. It turns out that vorticity is a very adequate tool for describing currents,
as the next example (borrowed from [6]) shows in the case of a two-dimensional, steady
flow.

Example 1. Suppose that we are looking at a current of the form

u(x, y, t) = (u(x− ct, y), v(x− ct, y))T ,

with c > 0, in the layer D = {(x, y) ∈ R2 : −d < y < 0} delimited by the flat surface
{y = 0} and the flat bed {y = −d}, where d > 0 is the average depth. As in (2.11) we
may introduce a stream function ψ(x− ct, y) with{

ψx = −v
ψy = u− c

in D.

In analogy with (2.19) we also define the relative mass flux

m0 =

∫ 0

−d
(u(x− ct, s)− c) ds = ψ(x− ct, 0)− ψ(x− ct,−d),

which is a constant because the kinematic boundary conditions (1.7) and (1.8) in this
context simply mean that v = 0 on the lines {y = −d} and {y = 0}, so that both
ψ(x − ct, 0) and ψ(x − ct,−d) are constants. The stream function ψ, which is constant
on both parts of the boundary, is determined up to an additive constant, so that we may

25
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choose ψ = m0 on {y = 0} and ψ = 0 on {y = −d}. The vorticity is ω(x− ct, y), therefore
the governing equations can be rewritten in the form

ψ(x, 0) = m0, x ∈ R,
ψ(x,−d) = 0, x ∈ R,
∆ψ(x, y) = ω(x, y), (x, y) ∈ D,

with a periodicity condition in the x-variable. It can be shown that if ω ∈ C1(D) is 2π-
periodic in x, then this problem possesses a unique solution ψ ∈ C2(D). Moreover, the
solution can be written out only in terms of the relative mass flux and the vorticity: in
fact, expanding ω and ψ into the Fourier series

ω(x, y) =

∞∑
n=0

ωn(y)einx,

ψ(x, y) =
∞∑
n=0

ψn(y)einx,

a calculation shows that the Fourier coefficients (ψn)∞n=0 of ψ can be written as

ψ0(y) = m0 + y

(
1

d

∫ 0

−d
s ω0(s) ds+

∫ y

−d
ω0(s) ds

)
+

∫ 0

y
s ω0(s) ds,

ψn(y) =
1

n

sinh(ny)

sinh(nd)

∫ 0

−d
sinh(n(s+ d))ωn(s) ds+

1

n

∫ y

0
sinh(n(y − s))ωn(s) ds, n ≥ 1.

In particular we see that if ω does not depend on x (that is, it is time-independent), and
thus ωn = ψn = 0 for every n ≥ 1, then this applies to ψ and u as well, whereas v = 0
throughout D. ♦

4.2 Constant vorticity

As pointed out in [13], in important cases such as the propagation in the ocean or at
sea of a long surface wave over a layer of water with a flat bed the mere presence of a
non-vanishing vorticity is more important than the actual distribution thereof, so that it
is of great interest to study flows with constant non-zero vorticity.

4.2.1 Tidal currents: flood and ebb

A constant non-zero vorticity is often used to the describe the effect of tidal currents, as
illustrated by the next simple example.

Example 2. Let us consider the flow

u(x, y, t) = (u0 + γy, 0), (x, y) ∈ {(x0, y0) ∈ R2 : −d < y0 < 0}

for some constants u0, γ ∈ R with γ 6= 0. It is easily verified that this flow has the constant
non-zero vorticity ω = γ; u0 can be interpreted as the constant underlying current (cf. §
2.3). Commonly, the alternating horizontal movements of water associated with the rise
and fall of the tide (which, on the other hand, refers to the vertical motion of the water
caused by the varying gravitational forces due to the relative motions of earth, Moon and
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Sun) are called tidal currents; the case of a rising tide is referred to as the flood , whereas
the current associated to a falling tide is called the ebb. In our example, a positive vorticity
γ > 0 describes a flow whose (horizontal) velocity is greater on the surface than on the
bottom, hence this case is adequate for modelling the ebb current; on the contrary, a
negative vorticity γ < 0, for which the velocity on the flat bed exceeds that on the surface,
is appropriate for flood currents.

Notice that, in the case of an adverse underlying constant current (that is, u0γ > 0)
with u0/γ < d, the horizontal velocity vanishes at the depth y = −u0/γ ∈ (−d, 0) and
changes sign when crossing this horizontal line (called a critical level , a feature that cannot
occur in the irrotational context). ♦

4.2.2 Main result for constant vorticity

Now let us turn to the problem (2.1)–(2.7) from Chapter 2 for a spatially periodic flow,
although with Equation (2.7) replaced by

uy − vx = γ in D(t) (4.1)

for some γ 6= 0. As in (2.8) we introduce the stream function ψ and normalize it to

ψ(x, y, t) =

∫ y

−d
u(x, s, t) ds, (x, y) ∈ D(t);

with (4.1) it also follows
∆ψ = γ in D(t).

Modifying accordingly the calculations done in § 2.3, we see that if

η0(t) := min
x∈[0,λ]

η(x, t) > −d

for the depth of the wave trough at all times t > 0, we have

1

λ

∫ λ

0
v(x, y, t) dx = 0, −d ≤ y ≤ η0(t), (4.2)

and
∂

∂y

(
1

λ

∫ λ

0
u(x, y, t) dx

)
= γ, −d ≤ y ≤ η0(t);

the latter implies that

1

λ

∫ λ

0
u(x, y, t) dx = γ(y + d) + f(t), −d ≤ y ≤ η0(t),

for some smooth function f : R+ → R that describes the mean flow on the flat bed.
Moreover, from (2.4), the first equation in (2.1) evaluated on y = −d, and the fact that
both u and p are periodic in the first variable, we obtain as above

f ′(t) =
∂

∂t

(
1

λ

∫ λ

0
u(x, y, t) dx

) ∣∣∣∣
{y=−d}

= 0,

and so
1

λ

∫ λ

0
u(x, y, t) dx = γ(y + d) + u0, −d ≤ y ≤ η0(t), (4.3)

for some constant u0 ∈ R.
Using this considerations, one can extend the result of Theorem 3.2 to flows with

constant vorticity:
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Theorem 4.1. The flow underneath any two-dimensional, spatially periodic water wave
with constant vorticity tends exponentially fast to the underlying mean flow: if

s(x, y, t) :=
√

[u(x, y, t)− γ(y + d)− u0]2 + v(x, y, t)2, (x, y) ∈ D(t),

then the maximum S(t) of the map (x, y) 7→ s(x, y, t) in D0(t) := {(x, y) : −d < y < η0(t)}
is attained on the line y = η0(t) and for all −d ≤ y ≤ η0(t)− λ

4 we have

s(x, y, t) ≤ eπ/4

2 sinh(π4 )
e−kη0(t)eky

(
1 + e−2k(d+y)

)
S(t),

where k = 2π/λ is the wave number.

Clearly, Theorem 3.2 is contained in Theorem 4.1 as the special case γ = 0. The main
advantage of the proof given for Theorem 3.2 on the original one in [27] is that it can
be very easily generalized to the case of non-zero vorticity: instead of introducing the
holomorphic function f via (3.3), one defines for every instant t the harmonic function

Ψ(x, y, t) := ψ(x, y, t)− γ

2
(y + d)2 − u0(y + d), (x, y) ∈ D(t),

and considers the function

f(x+ iy, t) := −Ψx(x, y, t) + iΨy(x, y, t) = v(x, y, t) + i[u(x, y, t)− γ(y + d)− u0],

which is easliy shown to be holomorphic in the region {x + iy ∈ C : −d < y < η0(t)},
continuous on its closure, and such that

1

λ

∫ λ

0
f(x+ iy, t) dx = 0, −d ≤ y ≤ η0(t);

from here the proof proceeds exactly as that for Theorem 3.2.
Obviously, an analogous generalization of Corollary 3.4 holds as well:

Corollary 4.2. Under the same assumptions as in Theorem 4.1, for all −d ≤ y ≤ η0(t)−λ
4

we have

s(x, y, t) ≤ e−kη0(t)eky

[
1 + e−2k(d+y) +

eπ/4

2 sinh(π4 )
e−kη0(t)eky

(
1 + e−4k(d+y)

)]
S(t).



A Well-posedness

Any reasonable model which is supposed to describe the evolution of a physical system
should posses certain basic properties, whose validity needs to be checked in the first place.
First of all, clearly one expects the model to be solvable (i.e. a solution exists); moreover,
since two copies of the same system that (ideally) start from the same initial conditions
are expected to evolve identically, it is also required that the solution be unique. However,
when performing two experiments that are supposed to be “identical”, in practice one has
to deal with slight, yet unavoidable differences in the initial data; still, if those initial data
are “close” to each other, it should be reasonable to expect that the behaviours of the two
system will be “similar” as well, at least up to a certain time. These considerations lead
us to the most generally accepted concept of well-posedness [15]: a (time-evolution) model
is called well-posed if there is a time T > 0 such that

(i) there exists a solution defined for all t ∈ [0, T ),

(ii) the solution is unique on [0, T ), and

(iii) there is continuous dependence of the solution on the initial data (in some reasonable
topology).

Obviously, as is clear from point (iii), the notion of “continuous dependence on the initial
data” is very much problem-specific, and the choice of different topologies can lead to
different notions of well-posedness for the same problem (as is the case, for instance, of
the Hs-(un)conditional well-posedness for the Schrödinger equation, cf. [38]). The fact
that this definition is just local in time, i.e. only up to a (possibly small) existence time
T , is a consequence of the fact that it may very well happen that the solution ceases to
exist in finite time; examples for this phenomenon are the blow-up of solutions of the
Schrödinger equation (again, see [38]) or, in the case of water waves that are of interest
for us, the breaking of the surface wave.

The well-posedness theory for the water wave equations is highly technical and relies
on very deep results from many areas of mathematics, such as functional analysis, operator
theory and differential geometry. Very little insight into the qualitative properties of the
model is gained from this analysis, nevertheless it is of paramount importance, because lack
of well-posedness invalidates the model. Moreover, there are still several open questions
in this fascinating field, especially in the case of flows with vorticity—this is not at all
surprising, given the notorious difficulty of the equations of fluid mechanics. After all it is
well-known that the problem of well-posedness for the Navier–Stokes equations (where the
effects of viscosity are taken into account by adding the term ν∆u to the right-hand side
of Equation (1.5), with the viscosity ν > 0) is one of the renowned Millennium Problems
assigned by the Clay Mathematics Institute in the early 2000s.1

For irrotational water waves, the issue of well-posedness was treated by many authors

1For more information, visit the dedicated website https://www.claymath.org/millennium-problems/
navier%E2%80%93stokes-equation of the Clay Mathematics Institute.
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over several decades, first for linearized surface waves [30, 42, 10], then for the linearization
of the water wave equations around an exact solution that is supposed to satisfy a general-
ized Taylor criterion [2], until the nonlinear problem for overhanging, non-self-intersecting
surface profiles (albeit only for the case of infinite depth) was solved in [40, 41]; finally, the
problem for the general nonlinear irrotational water wave equations over a (not necessarily
flat) bed of finite depth in arbitrary dimensions was settled in [24]. Written out in the
notation of Chapter 1 for the 3-D case over a flat bed, the result in [24] is the following.
As in § 2.2.1, we can find a velocity potential φ with u = ∇xφ and

∆φ = 0 in D(t), t ≥ 0.

As in Chapter 1, the free surface is described by (1.6), and we write x = (x, y, z)T ∈ D(t);
the gradient ∇ is always taken with respect to the spatial components only, but for clarity
we specify this by writing ∇x (respectively ∇(x,y) for functions on R2 such as η(·, ·, t)).
Moreover, we introduce the notation

n :=
1√

1 +
∣∣∇(x,y)η

∣∣2 (−∇(x,y)η, 1
)T

and ∂n := n · ∇x,

and we set
ξ(x, y, t) := φ(x, y, η(x, y, t), t) = φ(x, t)|{z=η(x,y,t)}.

A calculation (similar to that in § 2.2.2, cf. also [11]) shows that the irrotational water
wave problem 

Du

Dt
= −1

ρ
∇xp+ g in D(t),

∇x · u = 0 in D(t),

curl u = 0 in D(t),

u3 = 0 on {z = −d},
u3 = ηt + u1ηx + u2ηy on {z = η(x, y, t)},
p = 0 on {z = η(x, y, t)}

(A.1)

(where the last equation is (1.9) after a renormalization) is equivalent to the system
ηt −G(η)ξ = 0,

ξt + gη +
1

2

∣∣∇(x,y)ξ
∣∣2 − 1

2
(

1 +
∣∣∇(x,y)η

∣∣2) (G(η)ξ +∇(x,y)η · ∇(x,y)ξ
)

= 0, (A.2)

where

G(η)ξ :=

√
1 +

∣∣∇(x,y)η
∣∣2 ∂nφ|{z=η(x,y,t)}

is called the Dirichlet–Neumann operator (see for instance [31]). Then the main result of
[24] for the special case of a flat bed situated at the mean depth z = −d can be stated as
follows:

Theorem A.1. Let η0 ∈ Hs+1(R2) and ξ0 be such that ∇(x,y)ξ0 ∈ Hs(R2)2, with Sobolev
index s ≥ 3. Assume moreover that

η0 + d > 2h0 in R2 for some h0 > 0.

Then there exists T > 0 and a unique solution (η, ξ) to the water wave equations (A.2)
with initial conditions (η0, ξ0) and such that

(η, ξ − ξ0) ∈ C1
(
[0, T ];Hs(R2)×Hs(R2)

)
.
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Theorem A.1 can be restated in terms of the velocity field u:

Theorem A.2. Let η0 ∈ Hs+1(R2) and u0 ∈ Hs+1(R3)3, with Sobolev index s ≥ 3.
Assume moreover that

η0 + d > 2h0 in R2 for some h0 > 0.

Then there exists T > 0 and a unique solution (η,u) to the water wave equations (A.1)
with initial conditions (η0,u0) and such that

(η,u) ∈ C1
(
[0, T ];Hs(R2)×Hs(R3)3

)
.

Notice that, by Sobolev embedding (cf. [3]), the condition s ≥ 3 implies that η and u
are in fact of class C1.

The first step towards the proof of Theorem A.1 consists of an in-depth analysis of
the Dirichlet–Neumann operator: after showing a collection of estimates for its norm,
culminating in the estimate

‖G(η)ξ‖Hk+1/2 ≤ C(k, ‖η‖Hs0 )
(
‖η‖Hk+3/2‖∇(x,y)ξ‖Hs0−1 + ‖∇(x,y)ξ‖Hk+1/2

)
for all k ∈ N, where s0 is a fixed positive real number, one proceeds to investigate fur-
ther properties of the operator G(η)·, such as its principal symbol, its commutator with
derivatives (both in space and in time) and its shape derivative (i.e. the derivative of the
map η 7→ G(η)·), also providing more estimates for the norm of this and higher-order
derivatives. Next, all this gained information is used to solve the water wave equations
(A.2). First one looks at the linearization around a reference state U = (η, ξ), giving an
explicit expression of the linearized operator L (in view of the formula found for the shape
derivative of the Dirichlet–Neumann operator) and discovering that L is hyperbolic. Next,
the operator L is transformed into an operatorM whose principal part exhibits the Jordan
block structure inherent to the water wave equations; a careful study of the well-posedness
of the Cauchy problem for the new operator M is then pursued, the main technical tool
therein being the Nash–Moser theory (see [22]), and the proof is finally completed by the
subsequent solution of the nonlinear system (A.2) via a Nash–Moser iterative scheme. For
all technical details we refer the reader once again to [24].

In the general case of flows with non-zero vorticity (cf. Chapter 4), the issue of well-
posedness becomes even trickier, and there is still plenty of room for improvement in our
understanding of this problem. Nevertheless, it has been shown [9, 26] that the governing
equations are well-posed if the following Taylor sign condition is satisfied: the exterior
normal derivative ∂p

∂n = n · ∇p has to be uniformly negative all along the initial free
surface, i.e. there has to exist some c0 > 0 such that

∂p

∂n
(x, 0) ≤ −c0 < 0 for all x = (x, y, z)T with z = η(x, y, 0).

Moreover, this condition is necessary, because if one fails to impose it, then the governing
equations turn out to be ill-posed (see [14]). More recently, a reformulation of the water
wave equations in Hamiltonian terms has also provided some new insight [4].

We conclude this chapter by pointing out that one of the current most interesting
directions of research regarding this topic is the investigation of how solutions cease to
exist in finite time, in which case we say the surface wave breaks. It is known that if
the initial solutions satisfy particular smallness assumptions in certain weighted Sobolev
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spaces, then the solution exists for all times (cf. [19]); nevertheless, experiments (and
everyday experience) suggest that wave breaking is a key ingredient of the nature of water
waves, although the mechanisms that lead to this fascinating phenomenon are to a huge
extent still unclear, both in the irrotational and in the rotational case, despite some recent
developments (see for instance [7]).
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[3] Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-
Verlag, New York, NY (2011).

[4] Castro, A. Lannes, D.: Well-posedness and shallow-water stability for a new Hamiltonian
formulation of the water waves equations with vorticity. Indiana Univ. Math. J. 64, 1169–
1270 (2015).

[5] Chicone, C.: Ordinary Differential Equations with Applications. Springer-Verlag, New York,
NY (1999).

[6] Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and
Tsunamis. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81, SIAM,
Philadelphia, PA (2011).

[7] Constantin, A.: The time evolution of the maximal horizontal surface fluid velocity for an
irrotational wave approaching breaking. J. Fluid Mech. 768, 468–475 (2015).

[8] Constantin, A., Strauss, W. A.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math.
53, 533–557 (2010).

[9] Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations
with or without surface tension. J. Amer. Math. Soc. 20, 829–930 (2007).

[10] Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries
scaling limits. Comm. Partial Differential Equations 10, 787–1003 (1985).

[11] Craig, W., Schanz, U., Sulem, C.: The modulational regime of three-dimensional water waves
and the Davey–Stewartson system. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 615–667
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