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Abstract

Competing theories on the nature of dark matter show different characteristic signature ef-
fects on scales of galactic halos (⇡ kpc). Bose-Einstein condensed dark matter, BEC-DM,
(also yDM or scalar field dark matter), a model motivated by several extensions to the stan-
dard model of particle physics like ultra-light axions, assumes that dark matter particles are
bosons able to undergo Bose-Einstein condensation. Complicated dynamics arise due to the
wave properties of this dark matter model. In particular, a Bose-Einstein-condensed dark
matter halo subject to angular momentum may exhibit those quantum vortices we know
from rotating laboratory condensates. These vortex-lines are basically ”mini-tornadoes”
where the density goes to zero and the velocity diverges. They are the building blocks
of quantum turbulence. A virialized self-gravitating Bose-Einstein condensed dark matter
halo satisfies the Gross-Pitaevskii-Poisson system of equations. Its fluid-like nature allows
to distinguish between the so-called Thomas-Fermi and fuzzy regime, where the latter cor-
responds to a limit of vanishing dark matter self-interaction. The ground state attractor
solution of the Gross-Pitaevskii-Poisson system in the fuzzy regime is a fundamental fea-
ture of this dark matter model which constitutes the central stable ”soliton” core of yDM
halos in the fuzzy regime. We apply an energy argument in order to determine whether
the formation of one singly-charged vortex in the center of such a stable configuration due
to rotation is energetically favored or not. In light of this, we developed two approximate
analytical models for these central stable regions of BEC-DM halos; a Gaussian sphere and
a compressible, (n = 2)-polytropic irrotational Riemann-S ellipsoid. We have shown that
vortex formation in the fuzzy regime is not energetically favored, neither in the case of the
Gaussian sphere model, nor in the case of the (n = 2)-polytropic irrotational Riemann-S el-
lipsoid. Moreover, according to our analysis higher dark matter particle masses imply that
vortex formation is even less favored. Comparing our results with promising BEC-DM halo
formation numerical simulations suggests that especially our (n = 2)-polytropic irrotational
Riemann-S ellipsoid model provides a suitable tool to analyse the central, vortex-free regions
of BEC-DM halos.
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Zusammenfassung

Theoretische Modelle über das grundlegende Wesen der dunklen Materie unterscheiden
sich unter anderem in ihren Merkmalen auf galaktischen Längenskalen. Sogenannte Bose-
Einstein-kondensierte dunkle Materie, BEC-DM, (auch bekannt als yDM oder Skalar Feld-
dunkle Materie), ein durch Erweiterungen des Standardmodells der Teilchenphysik gut be-
gründeter Ansatz, geht davon aus, dass die Teilchen, aus welchen dunkle Materie besteht,
Bosonen sind. Diese unterliegen der Bose-Einstein Statistik und sind bekanntlich in der
Lage einen makroskopischen Quantenzustand, auch bekannt als Bose-Einstein-Kondensat,
zu bilden. Die folglich inhärenten Welleneigenschaften dieser Beschreibung führen zu fas-
zinierender aber doch hochgradig komplexer Dynamik. Betrachtet man insbesondere BEC-
DM Halos in Kombination mit Eigendrehimpuls, so besteht die Möglichkeit, dass sich so-
genannte ”vortices” oder Wirbel ausbilden. Diese Mini-Tornados, durch verschwindende
Dichte und ins Unendliche wachsende Geschwindigkeit charakterisiert, sind von Bose- Ein-
stein Kondensat Experimenten aus dem Labor bekannt. Es stellt sich heraus, dass sich
Quantenturbulenz aus diesen Wirbelsträngen zusammensetzt. Zur Beschreibung eines viri-
alisierten BEC-DM Halos dient das sogenannte Gross-Pitaevskii-Poisson Gleichungssystem.
Dieses bietet eine quantenhydrodynamische Formulierung, welche die Unterscheidung zwei-
er Grenzfälle zulässt; der Thomas-Fermi und ”fuzzy” Limes. Letzterer entspricht dem Gren-
zfall verschwindender Selbstwechselwirkung der dunkle Materie Teilchen. Der Grundzu-
stand des Gross-Pitaevskii-Poisson Gleichungssystems im fuzzy Limes stellt in seinem Er-
scheinungsbild ein grundlegendes Merkmal dieses Modells dar und findet sich in den sta-
bilen, glatten Zentralregionen von fuzzy BEC-DM Halos. Im Rahmen dieser Arbeit wird
eine Energieanalyse angewandt, um die Wahrscheinlichkeit des Auftretens eines derartigen
einfach-gewickelten Wirbels im Zentrum eines BEC-DM Halos zu untersuchen. In Anbe-
tracht dessen, wurden zwei approximative Modelle des stabilen BEC-DM Halozentrums er-
stellt; eine Gauß’sche Kugel und ein wirbelfreier Riemann-S Ellipsoid mit einem Dichtepro-
fil, welches einer (n = 2)-Polytrope entspricht. Unsere Analyse kommt zu dem Schluss, dass
das Auftreten eines ”vortex” in keinem der beiden Fälle, weder für die Gauß’sche Kugel
noch für den polytropischen Riemann-S Ellipsoid, energetisch begünstigt ist. Es stellt sich
weiters heraus, dass mit steigender Bosonenmasse ”vortex”-Bildung in steigendem Maße
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unbegünstigt ist. Der Vergleich mit vielversprechenden Merger-Simulationen zeigt, dass
insbesondere unser polytropisches Riemann-S ellipsoides Modell ein gut geeignetes ana-
lytisches Werkzeug zur Untersuchung der ”vortex”-freien Zentralregionen eines BEC-DM
Halos darstellt.
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Overview

We begin this thesis with Chapter 1, where we introduce the reader to the vast topic of
dark matter (DM). This Chapter is dedicated to providing answers to questions like ”What
is dark matter?”, ”Why do the majority of astrophysicists proceed on the assumption that it
exists?”, ”What kinds of theories on the nature of dark matter and its comprising particles
are there?” and ”How are they connected to the evolution and formation of structure in the
Universe?”. Finally, we introduce so-called scalar field dark matter (SFDM), also referred to as
Bose-Einstein-condensed DM (BEC-DM) or yDM; one major competing theory which is the
focus of this thesis. Thus, we present in Chapter 2 the fundamental theoretical framework
and its foundation - the Gross-Pitaevskii-Poisson system of equations - which we use for our
analysis of a Bose-Einstein-condensed dark matter halo. In this Chapter, we see how the for-
mulation may be rewritten in terms of quantum-mechanical fluid equations and how based
on that, SFDM admits two limiting cases or regimes, the so-called Thomas-Fermi and fuzzy
regime. Our analysis regards the fuzzy regime and combines two initially totally indepen-
dent fields of research, dark matter astrophysics and condensed matter physics. The reason
is that the goal of our analysis is to determine whether the formation of so-called vortices, the
building blocks of quantum turbulence known to arise in driven laboratory Bose-Einstein
condensates (BECs), is energetically favored in rotating Bose-Einstein-condensed fuzzy dark
matter halos in equilibrium. Since this kind of analysis obviously requires the corresponding
theoretical background of condensed matter physics, Chapter 3 includes a ”crash course” on
superfluids, BECs and quantum turbulence. We distinguish between two models of BEC-
DM halos in the course of our energy analysis, where our second ”halo model B” heavily
relies on compressible generalizations of rotating figures of equilibrium and to be precise on
the so-called compressible irrotational Riemann-S ellipsoid. As a result, Chapter 4 provides a
detailed study of these equilibrium figures. In Chapter 5, the heart of this thesis, we present
our energy analysis that shall decide whether the formation of one central singly-charged
vortex occurs for our two given halo models. A conclusion of our results, their implications
and comparison to the results of corresponding recent numerical simulations can be found in
Chapter 6. Finally, some of the detailed theoretical aspects are relegated to three Appendices.
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Chapter 1

Introduction to the dark matter
hypothesis

As a concept, the problem of dark matter, one of the greatest mysteries of modern cosmology,
is something scientists have encountered many times before in the history of physics and as-
tronomy. Whenever anomalies appear, deviations from predictions of the current paradigm,
thought patterns, theories, etc., one has to decide whether they should be regarded as some-
thing yet unseen, nevertheless a legitimate constitute within this paradigm, or as a need to
refine or generalize or evolve the currently accepted laws of nature. Bertone et al. (2004)
commence their review on particle dark matter with an eloquent comparison. There are two
examples within the field of celestial mechanics, where in both cases observed motions de-
viated from the expected orbits, however the remedies in each case turned out to be of very
converse nature. In the case of the anomalous motion of Uranus astronomers were led to
suspect the existence of Neptune, which was eventually discovered in 1846. On the other
hand, the solution to the anomalies in Mercury’s motion required a more refined theoretical
framework for gravitation, in other words Einstein’s theory of general relativity.

For decades by now, we are confronted with a conceptually similar situation where we
observe a certain set of ”anomalies” at nearly every astrophysical scale, which will be ex-
plained in more detail, raising the question whether these belong to the ”Uranus case” or to
the ”Mercury case”, or to be precise; are scientists confronted with the existence of unseen,
dark matter or do we have to rethink general relativity? This thesis proceeds from the dark
matter hypothesis.

There are many different approaches and scientific pathways leading from different di-
rections to this one issue, coined dark matter. Completely independent efforts for example
in theoretical particle physics and astrophysics have been starting to show links. On the
one hand observational evidence at all astrophysical scales has been collected over the years
and on the other hand, coming from the realm of particle physics, there is by now plenty
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of evidence for the existence of physics beyond the Standard Model. Most crucially, theo-
retical extensions to the Standard Model do provide viable dark matter particle candidates
from the astrophysical point of view. As a consequence, we experience a strong interplay
between particle physics, cosmology and astrophysics, where the formulation of new the-
ories predicting new particles and the observational constraints of the particle’s properties
and parameters are co-dependent.

1.1 Astrophysical evidence

In Bertone et al. (2004) the astrophysical signs for dark matter are divided into three scale
categories; signs on galactic scales, galaxy cluster scales and cosmological scales.

Galactic Scales It could be that galactic rotation curves are the most commonly mentioned
direct evidence for dark matter on galactic scales. These curves plot the radial velocity of
stars and gas against their distance from the galactic center. From Newtonian Dynamics we

Figure 1.1: Rotation curve of NGC 6503 from Begeman et al. (1991). Dark matter, disk and gas
contributions are represented by dashed-dotted, dashed and dotted lines, respectively.

expect curves according to

v(r) =

r
GM(r)

r
, (1.1)

where M(r) =
R

4pr(r)r2dr and r(r) is the radial density profile, beyond the inner rigid-
body-like rotation. Theory predicts that the curve should turn over and fall proportional to
1/

p
r beyond the optical disc. However, observed rotation curves, obtained by combining

observations of the 21cm line with optical surface photometry, show a characteristic flat be-
haviour at large distances, also far beyond the edge of the disk. One of the most famous
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observations revealing this characteristics are those by Vera Rubin and Kent Ford of M31,
see Rubin and Ford (1970), whose spectroscopic analysis revealed that a large amount of
unseen matter must be holding these quickly rotating spiral galaxy together, since other-
wise it would drift apart. v(r) ⇡ constant thereby implies the existence of a dark halo with
r(r) µ 1/r2 and M(r) µ r. A typical example can be seen in figure 1.1. This feature is
also seen in so-called Low Surface Brightness galaxies, which are probably everywhere dark
matter-dominated.

There are numerous other arguments for dark matter on galactic scales from which we
will mention only a few. There is for example the so-called Oort discrepancy (see Bahcall
et al. (1992)). The amount of stars and other tracers of gravitational potentials do not seem to
be compatible with the gravitational potential one can infer from their distribution in the so-
lar neighborhood within the Milky way disk. Also, observations of dwarf spheroidal galax-
ies and measurements of their velocity distributions imply mass-to-light ratios larger than
those observed in our local neighborhood, see for example Vogt et al. (1995). Finally, there
are studies like Moustakas and Metcalf (2003) inferring substructure due to modulations of
strong lensing.

Scale of Galaxy Clusters In 1933, measurements of the velocity dispersion of galaxies in
the Coma cluster led Fritz Zwicky to propose something like dark matter in the modern
sense for the first time. He inferred a mass-to-light ratio of ⇡ 400 (M/L)� which exceeds the
ratio in the solar neighborhood by two orders of magnitude (Zwicky (1933)).

About two decades later a true pioneer in every sense, twentieth-century astronomer
Vera Rubin, started her scientific career. Hooper (2007) touches on the huge impact her career
and personal efforts had on astronomy and the scientific society. Her findings provided
some of the first actual evidence for the dark matter hypothesis. Hooper (2007) mentions
her substantial contributions on galactic as well as cluster scales. At the beginning of her
career she established that members of galaxy clusters might rotate about a gravitational
center in the cluster and that their motions deviate from the Hubble flow. On top of that,
she concluded that the amount of mass required to explain this motion must be larger than
the total stellar mass observed in the cluster. These findings and her genius conclusion of
invisible matter were immensely controversial at that time, and unfortunately even more so
when published by a female scientist. The American Astronomical Society did not accept
her findings in 1950 despite the enormous evidence she had accumulated. Later her doctoral
thesis, Rubin (1954), concluded that galaxies clumped together, rather than being randomly
distributed through space, a controversial statement not pursued by others for two decades.

Today we know that due to her strength, passion, genius and endurance in the face of
discouraging sexism, she has been one of the astronomers who paved the way for other
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women in the field 1. As if that was not enough, her legacy is sometimes described as the
beginning of a Copernican-scale change in cosmology.

Nowadays, astronomy offers several methods with which the mass of a galaxy cluster
can be determined. In their review, Bertone et al. (2004) mention three of them. One can
observe the distribution of radial velocities in a cluster and apply the virial theorem, infer
the gravitational potential well through studies of weak gravitational lensing or study X-ray
emission that traces the hot gas in rich clusters. They also mention that dynamical estimates
provide values for mass-to-light ratios on galaxy cluster scales in the range (M/L)/1000 ⇡
0.2 � 0.3.

Cosmological scales The Cosmic Microwave Background (CMB) offers a way to infer the
total amount of dark matter in the Universe, see Coles and Lucchin (2003) for an introduction
into CMB physics. It turns out that a lot of information about the evolution, content and ge-
ometry of our Universe is stored in the CMB power spectrum where the temperature fluctu-
ations of the CMB are plotted as a function of angular size. This information can be extracted
by comparing observed to theoretically modeled CMB power spectra. The Planck mission for
example has provided observations of temperature (and polarization) anisotropies of CMB
radiation and thereby the data to construct a CMB power spectrum. So-called cosmologi-
cal models or often called ”cosmologies” constitute the theoretical counter part consisting
of a set of assumptions on the content and structure development of our Universe. Planck
Collaboration (2018) start from what they denote ”base” L-cold dark matter (CDM) model,
a spatially-flat standard cosmological model with 6 parameters and adiabatic scalar pertur-
bations given by a power-law spectrum. Fitting the observed spectrum with the cosmolog-
ical model determines then the best-fit parameters from the peak of the likelihood surface.
Among the directly or indirectly resulting cosmological parameters are the dark matter den-
sity today, Wch2 = 0.1200 ± 0.0012, and the baryon density today, Wbh2 = 0.02237 ± 0.00015
(see equations (23) and (24) of Planck Collaboration (2018)). Together, the parameter con-
straints from the CMB and other sources have converged remarkably on parameters of the
LCDM model. Overall, parameter constraints from the CMB show a striking level of agree-
ment with other constraints from other sources, which has led to the standard LCDM model
being called the concordance cosmology. It is important evidence that this cosmological
model, which constitutes a remarkably well description of the large-scale conditions of the
Universe, is based on dark matter contributing roughly 27 percent to the mass-energy den-
sity.

1Regarding these struggles, we recommend her articles Rubin (1978) and Rubin (1982).
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1.2 The LCDM model and its persisting small-scale crisis

Many efforts and cosmological data have converged upon the L-cold dark matter paradigm,
short LCDM, as cosmology’s standard model. An impressive amount of agreement between
the standard LCDM model, for the cosmic mass-energy content and structure formation and
development, and observational data has earned it the title concordance cosmology. This
model assumes a flat geometry and yields that dark matter contributes about 26% and bary-
onic matter about 5% to the mass-energy content while the dominant remainder seems con-
sistent with the cosmological constant L, see Planck Collaboration (2016). Within this frame-
work, the initial spectral index of primordial density fluctuations amounts to ⇡ 1 (Planck
Collaboration (2016)) which is consistent with inflationary initial conditions. In other words,
the standard LCDM model involves an almost scale-invariant power spectrum of primordial
density fluctuations. CDM acts like a pressureless fluid (this will be explained in a moment).
Thereby, dark matter collapses readily under its own gravity and yields hierarchical non-
linear structures which provide the underlying gravitational potential ”hosting” baryonic
matter. These so-called dark matter halos show self-similarity to such an extent (subhalos
embedded in subhalos embedded in... etc.) that one of the features of the standard LCDM
model is substantial power at small mass scales.

From the particle point of view, cold dark matter particles are non-relativistic, collision-
less (see Appendix C) and cold in the sense that their velocity dispersion has almost no im-
pact on structure formation. On large scales, they are supposed to interact with the particles
of the Standard Model of particle physics and each other solely via gravity. Standard CDM
particles are cold cosmic thermal relics which Coles and Lucchin (2003) describe as matter
which was held in thermal equilibrium with the Universe’s other components until their de-
coupling or so-called ”freeze out” in the early Universe. Cold thermal relics are those which
are non-relativistic at the time of decoupling, after which they cool off while the Universe
expands. Consequently, standard CDM on large scales has a vanishing pressure, speed of
sound and thermodynamical temperature, i.e. it holds

Phom = w rhom & w = 0, (1.2)

where the pressure and density are averaged over large distances. We go into more detail on
the non-collisionality that is associated with the LCDM model in Appendix C. Collisionless
cold dark matter can be modeled as a collisionless system of particles that is commonly
described by the collisionless Boltzmann 2 equation together with the Poisson equation.

However, what is the particle realization of the standard LCDM model? There seem
to be no viable particle candidates within the Standard Model (SM) of particle physics and

2Some authors refer to it as the Vlasov equation.
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candidates arising from extensions to the SM still lack detection or laboratory support. There
are two major candidates. The supersymmetric weakly interacting massive particles, short
WIMPS, are thermal relics of order O(GeV), e.g. Jungman et al. (1996). Another option is
the quantum chromodynamics (QCD) axion, which is a nonthermal relic of order O(µeV),
e.g. Peccei and Quinn (1977).

It could very well be that the standard LCDM model would not be the dominant para-
digm it is today, if it was not for numerical simulations. The Millennium simulation Springel
et al. (2005) based on the cosmological simulation code GADGET-2, see Springel (2005), rep-
resents one of those high-impact simulations. The GADGET-2 code follows the dark matter
component and stars in galaxies by treating them as a collisionless fluid which is subject to
gravity. They are described by the collisionless Boltzmann equation and the Poisson equa-
tion which the code solves with the N-body method. Ordinary baryons like hydrogen and
helium are represented by an ideal gas and followed by smoothed particle hydrodynamics.
The two components are coupled via gravity and placed in an expanding Universe given by
the Friedman equations. The resulting cosmic web of halos and galaxies across all redshifts
based on the standard LCDM model reflects very successfully the picture we have from nu-
merous types of large-scale observational data like galaxy surveys, the CMB, the Lyman-a
forest or weak gravitational lensing.

However, with improving resolution of the simulations based on the standard LCDM
model, the model faces enduring inconsistencies between predictions and observations on
small, galactic scales. Weinberg et al. (2015) give a review on what has by now been coined
”small-scale crisis of LCDM”. Considerable power of the LCDM model on small scales
gives rise to the so-called ”cusp-core”, ”missing satellites” and ”too-big-to-fail” problem.

The Cusp-Core problem Essentially, the collisionless LCDM model predicts amounts of
dark matter in the central regions of galaxies, which are simply too high. According to N-
body simulations dark matter halos and subhalos have density profiles which are singular
or ”cuspy” in their centers. Navarro et al. (1997) developed a universal density profile of
dark matter halos and subhalos due to hierarchical clustering in standard LCDM N-body
simulations. This famous NFW-profile, a function of the radial distance r, is given by

r(r) = rs

✓
r
rs

◆�1 ✓
1 +

r
rs

◆�2
, (1.3)

where rs and rs are halo parameters. One can see that this profile scales as r�1 for small r and
as r�3 towards large r. However, according to Weinberg et al. (2015) a majority of rotation
curves of galaxies, even of low surface brightness galaxies or dwarf galaxies (e.g. Burkert
(1995) or McGaugh and de Blok (1998)), prefer ”cored” density profiles, who scale as r µ r0
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in the center.

Missing Satellites problem The standard collisionless CDM model ”preserves” its already
mentioned initial power spectrum down to the smallest scales in the sense that it retains a
very high amount of low-mass substructure in the form of dark matter subhalos. However,
observations do by far not confirm these predictions. Hui et al. (2017) highlight this contro-
versy in their introduction by comparing the galaxy number density, dn(M?) µ M�1.2

? dM?,
to the predicted dark matter halo number density, dn(Mh) µ M�2

h dMh, where M? and Mh

denote the total stellar mass and dark matter halo mass, respectively. As described in Wein-
berg et al. (2015), according to simulations, a 1012M� (Milky Way-like) dark matter halo
comprises a huge number of subhalos which are massive enough to host satellite galaxies.
The model of Moore et al. (1999) predicted that the Milky Way’s halo, to be precise its viri-
alized extent, should incorporate approximately 500 satellite galaxies with higher circular
velocities compared to the Draco and Ursa Minor dwarfs. As opposed to this, we know ap-
proximately 10 satellite galaxies orbiting the Milky Way. However, Weinberg et al. (2015)
argue that the missing satellites problem is the one problem which can be solved by ”bary-
onic physics” suppressing star formation efficiency.

Too-Big-to-Fail problem Taking a closer look at the most luminous satellite galaxies of the
Milky Way (or Andromeda) galaxy raises another, as Weinberg et al. (2015) conclude, very
significant discrepancy between predictions of the collisionless LCDM model and observa-
tional data. In principle, we would expect the most massive dark matter subhalos to host
the most luminous satellites. However, the masses of the central regions of the most massive
subhalos in a 1012M� (Milky Way-like) simulated dark matter halo exceed the masses in-
ferred from stellar dynamics of the most massive observed dwarf satellites of the Milky Way
by a factor of about 5, see for example Boylan-Kolchin et al. (2011) who coined the phrase
”too-big-to-fail”. How can it be that the most massive subhalos, which one would expect
to be ”too big to fail” hosting a galaxy, remain dark causing the most luminous satellites to
reside in other halos? Following Weinberg et al. (2015), this is a particularly serious issue,
since it arises in dark matter dominated massive systems.

1.3 A world beyond the LCDM model

We find ourselves in a situation in which a prevalent notion called LCDM model or even
paradigm hits on problems. How do we conceive this? There are essentially three different
levels of perception considering this specific scientific framework yielding three different
concept formations.
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Proceeding from a point of view that considers the LCDM model to be fundamentally
”correct”3, one arrives at widely-considered efforts to resolve discrepancies via baryonic feed-
back. Processes like photo-heating and stripping could according to Brooks et al. (2013) solve
the missing satellites problem.

The second and third level represent entirely different perceptions, but yield essentially
similar efforts. On the one hand, you can start from the notion which accepts the LCDM
model as the current paradigm. Coming from there, dark matter models including particles
with inherently different properties than those covered by LCDM are obligated to provide
a basis of legitimacy. This very often manifests itself as a chain of reasoning starting from
the LCDM paradigm and using its small-scale-crisis to justify another model. On the other
hand, one can think of the LCDM model as one out of many, namely the model that has been
worked on a lot and that can explain an overwhelming amount of observational data but
definitely not all of it. This view point does not require any justifications for other models.
Both view points however yield alternative underlying dark matter theories. There are for
example models which do not rely on dark matter being pressureless.

One variant is so-called warm dark matter (WDM). Indeed, DM particle candidates can
be classified according to their velocity dispersion that in turn yields their free-streaming
length. According to Viel et al. (2005) warm dark matter refers to thermal relics which have
just about the right amount of velocity dispersion so that their free-streaming length smooths
out density fluctuations below a certain scale so that low-mass structure formation will be
suppressed. In other words, WDM effectively reduces structure formation below its so-called
free-streaming scale. Theoretical particle physics offers the gravitino (the graviton’s super-
symmetric partner) and the right-handed sterile neutrino as WDM candidates.

Self-interacting dark matter (SIDM) proposed by Spergel and Steinhardt (2000) repre-
sents another possibility. Here, non-collisionality is given up in favor of self-interaction
between dark matter particles. There is no reason preventing dark matter particles from
self-interaction mediated through some ”dark” force. This scenario implies that the particles
scatter elastically via 2 ! 2 interactions yielding ”collisional pressure” which may modify
or even suppress small-scale structure. Tulin and Yu (2018) give a vast overview of SIDM
arguing that the cross-section per unit mass must at least amount to

s

m
⇡ 1 cm2/g , (1.4)

in order to have the desired effect on small scales, where at the same time the collision rate
is negligible at large scales.

However, this thesis is dedicated to another promising and, regarding its nature, quite
3At this point, we are at risk to enter a discussion on how to define whether a scientific theory is correct or

not. This would go far beyond the scope of this thesis, which is why we refer to corresponding considerations in
the context of philosophy of science.
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remarkable dark matter model - so-called scalar field dark matter (SFDM). Non-thermally
generated ultralight bosonic scalar fields could manifest themselves as cold ”wavelike” DM.
Theoretical particle physics offers particle candidates which may constitute SFDM. One ex-
ample would be the class of ultralight axions - the axiverse - predicted by string theory and
investigated by Arvanitaki et al. (2010). Axion cosmology is a very diverse field of research,
see Marsh (2016).

In principle, certain conditions allow bosons to occupy (or ”condense into”) one macro-
scopic quantum state, which is often referred to as Bose-Einstein condensation, with the
result that they can be described by one classical field. Coming from axion cosmology,
Davidson (2015) notes that it could be very misleading to talk about ”Bose-Einstein con-
densates (BECs) of axions” since due to the way axion dark matter is produced in the early
Universe it is already a classical field. They propose a ”translation” of notions in which
”classical field”, ”Bose-Einstein condensation” and ”condensed regime” refer to one and the
same thing. These considerations are part of the interesting topic whether axions display
long-range correlation.

This kind of dark matter was formed in a low-momentum, non-relativistic (cold) state
whose field may be described by the coherent wavefunction y(~r, t). This wavefunction
shows interference patterns and quantum fluctuations which determine the dark matter dis-
tribution. These (kpc scale) fluctuations are the reason why for the longest time there have
been no high resolution simulations of SFDM (often also referred to as BEC-DM or yDM).
The dark matter only cosmological simulations of Schive et al. (2014a) showed how cosmic
structure forms as a consequence of the quantum mechanical wave properties of yDM. In
Chapter 2, we will see how BEC-DM can be characterized by a quantum hydrodynamical
or fluid description. In comparison to standard CDM, there appears an additional quantum
pressure term or ”quantum stress” arising from the uncertainty principle of quantum me-
chanics (cf. the Schrödinger equation) which is able to work against gravity up to DM halo
scales depending on the axion mass. According to Schive et al. (2014a), this quantum pres-
sure yields a comoving Jeans length, lJ µ (1 + z)1/4m�1/2, where z denotes redshift and m
the boson mass. This finite scale suppresses small-scale structure formation below a cutoff
mass.

yDM shows quite complicated dynamics. The simulations of Schive et al. (2014a), in
which they evolve one single coherent wave(function), demonstrate that the cosmic large-
scale structure, a web of filaments and voids, is indistinguishable from large scale structures
seen in standard LCDM simulations. However, a closer look at gravitationally bound ob-
jects, which arise in this yDM cosmology, reveals a detailed core-halo structure. Chavanis
(2019b) and Hui et al. (2017)4 describe the relaxation process of systems comprised of BEC-

4This paper (and Schive et al. (2014a)) consider so-called fuzzy dark matter. Regarding SFDM, one can distin-
guish between two limiting cases, where one of them is often referred to as fuzzy dark matter, see 2.3.
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DM which leads to this core-halo equilibrium configuration. These systems relax by means
of a process called gravitational cooling during which excited states of the wavefunction ra-
diate parts of the scalar field. The result, shown in Schive et al. (2014a) is a characteristic
feature of BEC-DM. In the center of these eventually virialized objects, we find a coherent
dense (condensed) wave that forms a de-Broglie wavelength sized flat core. This ”solitonic”
core corresponds to the stable, minimum-energy solution admitted by self-gravitating BEC-
DM systems and its smooth ”cored” density profile (including a finite central density) does
not contradict observations, unlike the cuspy profiles of standard LCDM. The surroundings
of this core are traversed by a finite number of interfering excited states yielding a time-
dependant granularity. The fact that these surroundings’ density scales like an NFW profile
suggests again that BEC-DM and standard CDM behave similarly over scales much larger
than the boson’s possibly kpc-scaled de-Broglie wavelength.

Consistency with constraints by large-scale structure sets a lower bound to the axion
mass, m > 10�23 eV, see e.g. Bozek et al. (2015). However, due to the scale symmetry of
underlying equations (at least in the fuzzy regime, see 2.3) theoretical results considering
BEC-DM are universally applicable, regardless of the boson’s mass.
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Chapter 2

Scalar field dark matter

The vast spectrum of hypotheses on the constituents of dark matter can be divided into
particle- and wave-like DM. If the dark matter particle mass is low enough, we are presented
essentially different phenomenology and speak of so-called wave or fuzzy dark matter (a term
introduced in Hu et al. (2000)), in the sense that the particle’s de-Broglie wavelength for
given mass m and velocity v,

ldeB =
h

mv
, (2.1)

exceeds the typical inter-particle separation or even becomes astronomically relevant:

ldeB
2p

= 1.92 kpc
✓

10�22 eV
m

◆ 
10 km s�1

v

!
. (2.2)

Given that wave dark matter refers to dark matter particles that are able, in the most literal
sense, to occupy macroscopically their quantum ground state, the Pauli exclusion principle
demands wave dark matter to be comprised of bosons. Hence, we are confronted with a
scenario, where dark matter is made up of ultra-light bosons or axion-like particles (ALPs)
with masses of the order of 10�23 � 10�20 eV.

Wave dark matter is commonly modeled by a scalar field, and hence often referred to as
scalar-field dark matter (SFDM). Hui et al. (2020) introduce their analysis of defects (due to
destructive interference) in wave dark matter on galactic scales and above by considering a
real Klein-Gordon scalar field f, which is minimally coupled to gravity and whose action is
described by

S =
Z

d4x
p�g

✓
�1

2
(∂f)2 � m2

2
f

2
◆

. (2.3)

Here, it is assumed that any interaction of the scalar field besides gravity can be neglected,
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i.e. that the self-interaction of the axion-like particle can be ignored 5. The situations of
interest are restricted to the non-relativistic limit, hence it is convenient to parameterize the
dark matter field as

f =
1p
2m

⇣
ye�imt + y

⇤eimt
⌘

, (2.4)

with y denoting a complex scalar field. y satisfies a Schrödinger equation coupled to gravity

i∂ty = � 1
2m

r2
y + mFy, (2.5)

assuming that |ÿ| ⌧ m|ẏ| and dropping rapidly oscillating terms 6. The gravitational po-
tential F satisfies the Poisson equation sourced by the mass density r,

r2F =
r

2M2
Pl

, (2.6)

where MPl denotes the Planck mass and r = m|y|2. If the factor h̄ was reintroduced (as it will
be in later Sections), it would become clear that h̄ and m always appear in the combination
h̄/m. Hence, on the one hand the wave properties of this classical field configuration lead to
behavior analogous to quantum-mechanical phenomena, but on the other hand the physics
is classical.

Our work deals with dark matter halos at galactic scales and below. In theory the com-
plex scalar field y produces galactic DM halos through so-calledBose-Einstein condensation,
see for example Arbey et al. (2001). Within this theory, at zero temperature bosonic particles
may condense into self-gravitating Bose-Einstein condensates, a macroscopic occupation of
the ground quantum state. In that case, the complex scalar field corresponds to the conden-
sate’s wavefunction.

Evidence for the existence of Bose-Einstein-condensates comes from laboratory exper-
iments, performed on very small (laboratory) scales, so far. In the following, theory and
formalism stimulated by the exciting first experimental realizations of Bose-Einstein conden-
sates (BECs) will be applied to analyze a condensate state of matter in a cosmic background.

2.1 Gross-Pitaevskii formulation of a dark matter superfluid

General-relativistic effects can usually be neglected at galactic scales since densities are very
low and so the Newtonian limit will be applied. Hence, the foundation of our model of
a self-gravitating BEC halo is the Gross-Pitaevskii (GP) equation, a non-linear Schrödinger

5In the following Sections, self-interaction will be included as part of a more general description of conden-
sates and will then be ignored again due to the choice of a certain regime. However, in Hui et al. (2017) and Hui
et al. (2020) it is argued that self-interaction is subdominant on galactic scales and above in the case of ALPs.

6Notice that h̄ = c = 1 in this context.
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equation. In 1961 Eugene Gross and Lev Pitaevskii independently formulated this theoretical
framework to account for the quantized vorticity of Bose gases, see Section 3.3. There they
originally incorporate an external trapping potential in the context of experimental setups.
However, our analysis requires to consider the gravitational potential of a galactic halo:

ih̄
∂y

∂t
= � h̄2

2m
Dy + (mF + g|y|2)y, (2.7)

where |y|2(~r, t) = n(~r, t) corresponds to the number probability density, m denotes the par-
ticle mass, D the Laplace operator and F the gravitational potential. This equation (dis-
regarding the replacement of the trapping potential) governs the evolution of the conden-
sate’s wavefunction in the case of dilute nonuniform Bose gases according to Pitaevskii and
Stringari (2003). By means of Poisson’s equation,

DF = 4pGm|y|2, (2.8)

the density is self-consistently coupled to the halo gravitational potential, where G denotes
the gravitational constant.

This mean-field theory relies on the assumption that all bosons in the halo volume V
reside in one quantum state, i.e. one single-particle state y

7. This complex wavefunction is
then normalized by the total number of particles N,

N =
Z

V
|y|2dV . (2.9)

In contrast to standard collisionless cold dark matter, SFDM (here in terms of the Gross-
Pitaevskii framework) does in general include self-interaction of the dark matter particles.
The energy of the condensate incorporates an effective interaction potential

g
2
|y|4, (2.10)

with self-interaction strength or coupling constant g. Requiring a dilute gas together with
a low-energy limit allows to disregard interactions between more than two bodies and thus
the interaction strength is given by

g = 4ph̄2 as

m
, (2.11)

where as is the scattering length of the bosons. The dark matter particles in this scenario
scatter elastically with each other. The strict requirement of a dilute gas demands as to be
way smaller than the mean distance between particles. The sign of the parameter g is set by

7The label ”single-particle state” can be misleading since the system in question is still made up of N particles.
However, the extraordinary properties of total condensation are hereby emphasized.
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the sign of as.
The physical meaning of the Gross-Pitaevskii-Poisson system is enlightened by applying

the so-called Madelung transformation to the wavefunction y(~r, t). Via decomposing the
wavefunction into its amplitude and phase function

y(~r, t) = |y|(~r, t)eiS(~r,t) =

r
r(~r, t)

m
eiS(~r,t), (2.12)

where

r(~r, t) = m|y|2 (2.13)

is the dark matter halo density. Inserting equation (2.12) into (2.7) and separating the real
and imaginary parts decouples the GP equation into two equations for the real amplitude
function |y| and real phase function S.

� 2m
h̄
|y|∂S

∂t
+ D|y|� |y|(~rS)2 � 2m

h̄2 (mF + g|y|2)|y| = 0 (2.14)

and
∂|y|2

∂t
+ ~r ·

✓
|y|2 h̄

m
~rS
◆
= 0 . (2.15)

Following Madelung (1927), the bulk (or flow) velocity field can be identified as the gradient
flow

~v =
h̄
m
~rS (2.16)

through the relations for the current density

~j(~r, t) =
h̄

2im
(y⇤~ry � y

~ry

⇤) = n
h̄
m
~rS (2.17)

and
~j = n ·~v. (2.18)

By that, equations (2.14) and (2.15) can be rewritten as a system of hydrodynamic equations
for the variables r and~v emphasizing the (super-)fluid character of the system, see for exam-
ple Rindler-Daller and Shapiro (2012), Tsatsos et al. (2016) or Chavanis (2019b). The results
are an Euler-like equation of motion,

r

∂~v
∂t

+ r(~v · ~r)~v = �r

~rQ � r

~rF � ~rPSI , (2.19)

and a continuity equation,
∂r

∂t
+ ~r · (r~v) = 0. (2.20)
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The right-hand side of equation (2.19) requires further investigation. The so-called Bohm
quantum potential, defined as

Q = � h̄2

2m2
Dprp

r

, (2.21)

gives rise to what is often referred to as ’quantum pressure’. In addition, the self-interaction
yields a pressure of polytropic form

PSI =
g

2m2 r

2 = Kpr

1+1/n . (2.22)

The polytropic index n corresponds to 1 and the polytropic constant Kp is only depending
on the DM particle parameters m and g. These two are the fundamental particle parameters
of this framework.

Following Rindler-Daller and Shapiro (2012), we will too restrict the analysis to stationary
systems, i.e. the time-independent GP equation including the chemical potential µ

µys(~r) = � h̄2

2m
Dys(~r) + (mF + g|ys|2)ys(~r) . (2.23)

The time-independent GP equation can be obtained from the time-dependent equation (2.7)
by inserting the state

y(~r, t) = ys(~r)e�iµt/h̄ . (2.24)

Stationary states have this form of wavefunction, evolving harmonically in time and yielding
a time-independent density r = m|ys|2 and gravitational potential. Of course ys itself can be
decomposed analogously to (2.12) as

ys(~r) = |ys|(~r)eiSs(~r) , (2.25)

where from now on the subscript s will be omitted. The GP energy functional is given by

E[y] =
Z

V

"
h̄2

2m
|ry|2 + m

2
F|y|2 + g

2
|y|4

#
d3r (2.26)

By means of decomposition (2.25) we can write the total energy,

E = K + W + USI (2.27)
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as a sum of the total kinetic energy

K ⌘
Z

V

h̄2

2m
|ry|2d3r (2.28)

=
Z

V

h̄2

2m2 (r
p

r)2d3r +
Z

V

r

2
~v2d3r ⌘ KQ + T, (2.29)

the gravitational potential energy

W ⌘
Z

V

r

2
Fd3r (2.30)

and the internal energy

USI ⌘
Z

V

g
2m2 r

2d3r . (2.31)

KQ is the part of the kinetic energy accounting for the quantum-like phenomena, T, as the
bulk kinetic energy of the system, includes rotational or internal motions and USI =

R
PSIdV

is determined by the self-interaction pressure given in (2.22). If we allow the internal energy
to arise from any polytropic pressure P = Kpr

1+1/n, i.e.

U = Kpn
Z

r

1+1/nd3r , (2.32)

then the scalar virial theorem writes

2K + W +
3
n

U = 0 . (2.33)

Considering the three terms on the right-hand side of the Euler-like equation (2.19), we can
distinguish two regimes. This framework provides two different forces which can stabilize
the halo against gravitational collapse. On the one hand, there is the regime where self-
interaction or in other words the scattering of the DM particles is entirely neglected and
hence solely the quantum potential works against gravity. On the other hand, there is the
regime of strongly interacting particles, where self-interaction pressure dominates and bal-
ances gravity.

2.2 The Thomas-Fermi regime

The aim of this Section is to give a brief but insightful overview of the Thomas-Fermi limit
within the Gross-Pitaevskii framework.

A static state of the hydrodynamic equations (2.19) and (2.20), i.e. ∂tr = 0 and ~v = 0,
corresponds to the equation of quantum hydrostatic equilibrium

r

~rQ + ~rPSI + r

~rF = 0 . (2.34)
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It accounts for the balance between the quantum potential, the pressure due to scattering
and gravity. Following Chavanis (2019a) and Chavanis (2019b) 8, we combine equation (2.34)
with the Poisson equation and obtain a differential equation of quantum hydrostatic equilib-
rium determining the density of the DM halo in equilibrium,

h̄2

2m2 D
✓

Dprp
r

◆
� ~r ·

 
~rPSI

r

!
= 4pGr . (2.35)

Moreover, with PSI as in (2.22), we have

h̄2

2m2 D
✓

Dprp
r

◆
� 4pash̄2

m3 Dr = 4pGr . (2.36)

The TF approximation amounts to setting Q = 0, which leaves

� 4pash̄2

m3 Dr = 4pGr , (2.37)

an analogue of the Lane-Emden equation of polytropic index n = 1. For spherical symmetric
configurations, this equation has an analytical solution given by

r(r) = r0
sin(pr/R)

pr/R
, (2.38)

(where r0 denotes the central density) which is stable and has a compact support:

R = p

 
ash̄2

Gm3

!1/2

(2.39)

is the radius corresponding to the first root of the profile, see Appendix A about polytropic
spheres. It is noteworthy that this radius is independent of the halo’s total mass M. As in
Rindler-Daller and Shapiro (2012) we restrict this overview to repulsive self-interaction, i.e.
as > 0 and hence Kp > 0. Chavanis (2019a) assume that the smallest observed halo with
typical values

R ⇡ 1 kpc, M ⇡ 108 M� (2.40)

corresponds to the ground state, thus getting

⇣ as

fm

⌘ eV/c2

m

!3

= 3.28 ⇥ 103 . (2.41)

Tulin and Yu (2018) give a table on observations which give constraints on the self-interaction

8Notice that they employ the convention r = |y|2, which yields different powers of m in some parts of their
hydrodynamic formulation.
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cross section per particle mass s/m = (4pa2
s )/m. Chavanis (2019a) proceed on the constraint

s/m < 1.25 cm2/g and arrive at an upper boson mass bound,

m = 1.1 ⇥ 10�3 eV/c2, as = 4.41 ⇥ 10�6 fm, (2.42)

and a lower one,

m = 2.92 ⇥ 10�22 eV/c2, as = 8.13 ⇥ 10�62 fm . (2.43)

In this case, the values correspond to the bound s/m = 1.25 cm2/g and to the transition
between the Thomas-Fermi and non-interacting (fuzzy) regime, respectively. As a conse-
quence, one can see that allowing repulsive self-interaction between the dark matter parti-
cles, a wide range of boson masses would be possible.

Rindler-Daller and Shapiro (2014) discuss amongst other things boson scattering and re-
laxation times of Bose-Einstein condensed dark matter halos and for example arrive at an
upper bound of

m  1.066 ⇥ 10�3 eV/c2 (2.44)

by comparing their expression for the relaxation time of a spherical, uniform halo core with
the Hubble time.

Two of the first to postulate and discuss ”repulsive” and ”fluid” dark matter were Good-
man (2000) and Peebles (2000). The postulation included a condensate of massive bosons al-
lowed to interact via gravity and repulsive self-interaction. More specifically, Peebles (2000)
proposed a model in which the scalar field interacts with itself by a potential close to quartic
for large and close to quadratic for small field values. As a result, they were able to conclude
huge consequences regarding the minimum length scale for bound objects and the low-mass
end of the primordial mass power spectrum.

Rindler-Daller and Shapiro (2012) establish conditions on the validity of the Thomas-
Fermi regime and whether a halo lies in the TF regime or not. There is a characteristic length
scale mentioned in classic literature on Bose-Einstein condensates, for example Pethick and
Smith (2008), namely the so-called healing length x. This length describes the distance over
which the y tends to its background value when it is subjected to a localized distortion or
perturbation and is the result of balancing the quantum kinetic term with the self-interaction
at order level accuracy,

0 = � h̄2

2m
y

x

2 + g|y|2y , (2.45)

yielding

x =
h̄p
2r̄g

, (2.46)
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with r̄ = 3M/(4pR3). To put it another way, it takes the gas or superfluid this distance to
”heal” a local disturbance. According to (2.46) the healing length increases with decreasing
self-interaction strength g for given mean density. By estimating the forces associated with
the quantum kinetic term and the self-interaction term and using relations (2.39) and (2.53),
Rindler-Daller and Shapiro (2012) conclude that in the TF regime the system’s size is way
larger than the healing length and that the de-Broglie wavelength is a lot smaller than the
size of the halo, i.e.

R � x,
R

ldeB
� 1 . (2.47)

Moreover, they show that ldeB ⇠ 4.3x.

2.3 The fuzzy regime

This Section is dedicated to the regime of extremely low particle masses, where the de-
Broglie wavelength is a significant fraction of or even comparable to the system’s size and
the self-interaction is subdominant. To be precise, we will consider BEC- cold dark matter
without self-interaction, also referred to as fuzzy, vanilla or free scalar-field dark matter from
here on.

It shall be understood that the object we will repeatedly term ”halo” or ”BEC-DM halo”
in this and following Sections refers to a region whose size is comparable to the de-Broglie
wavelength and whose wave function / density profile corresponds to the ground state of
the Gross-Pitaevskii-Poisson system in the fuzzy limit. This object in question may either
constitute an entire actual halo or just a virialized core region embedded into a larger halo.

The following analyses and discussions on Bose-Einstein-condensed dark matter halos
in the fuzzy regime require to define and thereby introduce quantities which seem inherent
in this regime.

Considering the Thomas-Fermi regime within the framework of the Gross-Pitaevskii
model, the reader is now already familiar with the so-called healing length x, describing
a length scale over which the interaction energy becomes comparable to the kinetic one. It is
a function of the interaction strength g and mass density, see Pethick and Smith (2008).

By translating these notions into the fuzzy regime through a replacement of the interac-
tion energy by the gravitational energy, we introduce the so-called gravitational healing length,
xG, and derive it by setting the quantum kinetic energy equal to the gravitational energy, see
the Gross-Pitaevskii energy functional (2.26),

h̄2

2m
|ry|2 =

m
2

F|y|2. (2.48)
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The kinetic energy is of order h̄2/(2mx

2
G) and the gravitational energy is of order mGM/(2xG),

which yields

xG =
h̄2

m2GM
, (2.49)

where M is the total mass, i.e. a global halo property. Approximating the spatial dimension
in F with xG, i.e. with the same length scale used to approximate the Laplace operator on the
left-hand side, corresponds to the notion of the Jeans instability. Another possibility would
have been to choose the gravitational energy to be of order mGM/(2R), which represents
global properties as opposed to the local sensitivity of the Laplace operator. (R denotes the
halo radius.)

The forthcoming energy analysis in the fuzzy regime gives rise to a quantity with the
dimension of mass, which we define to be the characteristic mass, mc, given entirely by halo
observables,

m2
c =

h̄2

RGM
. (2.50)

As a result, one can find the relation

xG =
⇣mc

m

⌘2
R . (2.51)

Previous works have used a slightly different definition of a characteristic mass, e.g. mH in
Rindler-Daller and Shapiro (2012). The comparison yields

mH ⌘ 2p
3

h̄p
RGM

=
2p
3

mc. (2.52)

The specific circumstances in the fuzzy regime can be exploited in order to gain some insight
into the particle mass range. More specifically, a lower bound of m follows from requiring
that the de-Broglie wavelength should be of same order as the system’s size,

ldeB . R, (2.53)

where

ldeB =
h

mv
⇡ h

m

r
R

GM
, (2.54)

and R denotes the size of the system. The last approximation in equation (2.54) uses vvir ⇡
vcirc = (GM/R)1/2. Equation (2.53) yields

2p  m
mc

. (2.55)
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The requirement
xG  ldeB, (2.56)

yields a weaker lower bound to m/mc than (2.55). xG can be understood from a Jeans analysis
point of view as the smallest length scale for bound structures and also as the length scale of
local perturbations.

In principle, xG is of the same order as the size of the system R in the fuzzy regime.
Therefore, it follows from (2.51) that m has to be of the same order as mc. We want to observe
the fuzzy regime, i.e. the plot range used in Chapter 5 will be limited to a fiducial particle
mass range of 2p  m/mc  3p.

There are two interpretations for our characteristic particle mass mc in the non-interacting
regime. On the one hand, it is the mass which results from requiring

xG =
ldeB
2p

= R . (2.57)

It is precisely the fact, that all length scales in this regime are of equal order, which makes the
fuzzy limit of the GP framework such challenging grounds for theory. On the other hand,
just as in Rindler-Daller and Shapiro (2012) we find another meaning for mc by observing
that m = (2/

p
3)mc = mH if the characteristic gravitational angular frequency

Wgrav =
p

pGr̄ (2.58)

is equal to the angular frequency

WQM =
h̄

mR2 (2.59)

of a uniformly rotating halo with mass M and angular momentum

L = MR2WQM
!
= LQM = Nh̄ . (2.60)

The background and meaning of LQM will be explained in Section 3.3.

The fuzzy regime effectively amounts to the non-interacting limit (Kp = 0). Thus, we
are interested in solutions of the time-independent Gross-Pitaevskii-Poisson system without
self-interaction

µy(~r) = � h̄2

2m
Dy(~r) + mF(~r)y(~r) , (2.61)

DF(~r) = 4pGm|y(~r)|2 . (2.62)

Mathematical physicists will recognize this system of equations as the Schrödinger - Pois-
son (SP) or Schrödinger - Newton equations, see for example the analytical approach to and
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analysis of the system in Tod and Moroz (1999), provided the identification between the
eigenenergy E and the chemical potential µ as in Chavanis (2019b).

Tod and Moroz (1999) assume without loss of generality that y is real and introduce the
real functions S and V by setting 9

y =

 
h̄2

8pGm3

!1/2

S, E � mF =
h̄2

2m
V . (2.63)

This change of variables together with the assumption of spherical symmetry yields

1
r
(rS)” = �SV (2.64)

1
r
(rV)” = �S2 . (2.65)

The prime denotes differentiation with respect to the spherical radial coordinate r. This
system admits a specific scaling invariance. Given a solution (S(r), V(r)), for any arbitrary
real l there is another solution of the form

Ŝ(r) = l

2S(lr) , V̂(r) = l

2V(lr) . (2.66)

Their analysis yields amongst other things that there exists a discrete family of smooth, finite
and normalizable solutions where the nth solution (n 2 N) has a number of n � 1 zeros and
that the energy eigenvalues increase monotonically towards 0 with increasing n10. In the
case of spherical symmetry, they note two relevant asymptotic forms: The solutions admit
Taylor series expansions near r = 0,

S = S0 � 1
6

S0V0r2 +O(r4) and V = V0 � 1
6

S2
0r2 +O(r4). (2.67)

Also, assuming large r, there are solutions looking like

S =
A
r

e�kr + ... and V = �k2 +
B
r
+ ... , (2.68)

where A,B and k are real constants. In later Sections, they show that the bound state solutions
we are looking for, have exactly these asymptotic forms.

In principle, the solution can be obtained by looking for regular and finite solutions for
the variables y and F of the SP system, since it then poses an eigenvalue problem which can
be solved numerically. Following many authors like Membrado et al. (1989), Kaup (1968),
Ruffini and Bonazzola (1969) or Guzmán and Ureña-López (2004), the family of numeri-
cal solutions is presented in Appendix B of Hui et al. (2017). They numerically calculated

9Notice that their function U has the dimension of gravitational energy and corresponds to mF.
10Of course, on this and the following page, the label ”n” is not to be confused with the polytropic index n.
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eigenstates of the SP system in spherical symmetry assuming isolated systems, i.e. that y, F
approach 0 as r goes to infinity and that they are regular at the origin. The scaling invariance
(2.66) means that a solution level n forms a one-parameter family, characterized by the total
mass M. Then the central density is given by

rc =

✓
Gm2

h̄2

◆3

M4
rn , (2.69)

where the dimensionless constant rn (depending on the eigenstate label n) is calculated nu-
merically. The densest state is the n = 0 ground state from where the central density de-
creases with increasing level number n. The n = 0 ”soliton” state is a long-term attractor
for fuzzy dark matter systems since according to the review Hui et al. (2017) excited states
decay by means of dispersion of probability density to the soliton state.

The total mass M = Nm is conserved and finite, however the system in this regime has
no compact support and thus has to be cut off artificially. In order to do so, one may calculate
a radius which includes 99 percent of the mass. An exact mass-radius relation is given by

R99 = 9.946
h̄2

GMm2 , (2.70)

see for example Membrado et al. (1989).

What does the theory of fuzzy dark matter predict in comparison to LCDM? Accord-
ing to Hui et al. (2017), the large-scale predictions of fuzzy dark matter do not differ from
standard LCDM. However, as we have already mentioned in Section 1.3, fuzzy dark matter
favors central cored density profiles over the LCDM cusps. Moreover, there are much less
low-mass sub-halos expected than in standard LCDM theory. This has two reasons. First,
fuzzy dark matter sub-halos are prone to tidal disruption due to the central density’s upper
bound, see equation (2.69), and due to the ability of fuzzy dark matter to tunnel through the
potential barrier at the tidal radius. Secondly, the power spectrum of density perturbations
is suppressed at small-scale structure compared to LCDM predictions due to the particle’s
large de-Broglie wavelength.

We have already established that the SP system can be solved numerically for the wave-
function y and the gravitational potential F coupled to it. Schive et al. (2014b) use a function
of the form

r = r0
�
1 + (r/c)2��8 , (2.71)

where c denotes their core radius and r the distance from the center, in order to fit the soliton
density profile. However, since the analytical approach of the following analysis described
in subsequent Sections required an analytical solution we establish two toy-models, each
incorporating a test function for the mass density r = m|y|2 and reduce the problem to
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solving the Poisson equation for F with given r in the first case or relying on global quantities
in the second case.

The first toy-model is inspired by the well-known ”wave-packet” of quantum physics.
Thus, having the asymptotic behavior of S in (2.68) derived by Tod and Moroz (1999) in
mind and being inspired by the Gaussian fit used in Guzmán and Avilez (2018) to describe a
purely solitonic final configuration, we set

|y|2 =
r0

m
=

rc

m
e�ar2

s . (2.72)

This is a toy model or approximation of the density profile of an unperturbed Bose-Einstein
condensed halo in spherical symmetry. r0 denotes the unperturbed matter density, rc is
the central density of the system and rs is the radial distance in spherical coordinates. The
density is distributed according to a normal distribution with

a =
1

2s

2 , (2.73)

where s is the standard deviation of the distribution, see figure 2.1. Similar to the actual
profile, this Gaussian approximation has no compact support. However, given a normal
distribution’s cumulative distribution function, one can infer that 99% of the mass lies within
2.576 s. Hence, we set the size of the system to be R99,

R99 = 2.576 s . (2.74)

The density profile is normalized,

Z •

0
rce�ar2

s 4pr2
s drs = M = N m, (2.75)

which yields

rc =
Nm

s

3(2p)3/2 . (2.76)

The second toy model, designed to approximate the actual ”soliton” profile, is inspired
by considerations of Chavanis (2019a). There they present an argument as to why the density
profile of an (n = 2)-polytrope is a particular solution to equation (2.36) in the fuzzy limit,

h̄2

2m2 D
✓

Dprp
r

◆
= 4pGr . (2.77)

Previous to introducing dimensionless variables and considering spherically symmetric con-
figurations, the Lane-Emden equation, see Appendix A, takes the form
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Figure 2.1: Density profile approximations: The two models’ respective density profiles (2.72) and
(2.81) are plotted for comparison. The two curves in shades of purple correspond to Gaussian density
profiles with standard deviations s = 1 and s = 1.5 respectively. The black curve corresponds to q

2,
the density profile in units of the central density of an (n = 2)-polytrope.

Kp(n + 1)Dr

1/n = �4pGr . (2.78)

Setting n = 2 in equation (2.78), dividing it by p
r, applying D (the Laplacian operator) and

then substituting Dpr on the right-hand side again through equation (2.78) itself, yields

D
✓

Dprp
r

◆
=

✓
4pG
3Kp

◆2
r . (2.79)

One can see, that this equation coincides with (2.77) provided that

Kp =

 
2pGh̄2

9m2

!1/2

. (2.80)

This result should be handled with care since equation (2.78) implies (2.79), but (2.79) does
not imply (2.78) due to the nature of operations between them. Due to this non-equivalency
the polytrope of index n = 2 with the fixed polytropic constant in (2.80), in particular its
density profile

r(r) = rcq(x)2, x = r

 
h̄2

8pGm2
rc

!�1/4

, (2.81)

is a valid toy model for our purpose, but not a solution of the Gross-Pitaevskii-Poisson sys-
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tem of equations in the fuzzy limit. Appendix A gives an overview on polytropic spheres
and on the numerical approach to solving the Lane-Emden equation. Figure 2.1 shows a plot
of the (n = 2) density profile (2.81).

A closer look at the energies of a self-gravitating, non-interacting BEC with the polytropic
density profile (2.81) and the energy of an (n = 2)-polytropic sphere shows the following
difference, see Chavanis (2019a). We have seen that the quantum kinetic energy term is
given by (2.29). Integration by parts yields

KQ =
h̄2

4m2

Z
rr · ds � h̄2

2m2

Z p
rD

p
r dr . (2.82)

The surface term vanishes since (2.81) indicates r

0|r=R µ qq

0|
x=x1 and therefore r

0(R) = 0
at the surface of the complete polytrope. By inserting (2.78) for n = 2, the quantum kinetic
term takes the form

KQ = 3Kp

Z
r

3/2dr =
3
2

U . (2.83)

The last equality follows from (2.32), the internal energy that arises from a polytropic pres-
sure. In other words, we know that in the fuzzy limit there is no self-interaction leading to
an internal energy arising from a polytropic self-interaction pressure. Moreover, we know
that the total energy of a standard polytropic sphere, i.e. a spherical system in hydrostatic
equilibrium with a density profile according to the solutions of the Lane-Emden equation
(see Appendix A), does not incorporate a ”quantum” kinetic energy term. We have seen,
that certain operations and identifications allow to associate a polytropic density profile in
the form of (2.81) with a Bose-Einstein condensed system in the fuzzy limit. One could guess
that the quantum kinetic term then corresponds to an internal energy of the form of (2.32)
and according to Chavanis (2019a), this is true up to a factor of 3/2.

Unlike the actual ”soliton” or the Gaussian model, the density profile (2.81) has a compact
support, i.e. the density becomes zero at a finite radius. Furthermore unlike for example
the polytrope of index n = 1, this model cannot be represented in form of an analytical
expression, which seems counterproductive at first sight. However, in Section 5.2 we will see
that due to already existing calculations on approximate hydrostatic equilibrium solutions
for uniformly and non-uniformly rotating polytropes by Lai et al. (1993), we can exploit
the sole fact that our second model is based on an (n = 2)-polytrope in order to derive
global energy expressions of uniformly (in the sense of constant angular velocity W) and
non-uniformly (in the sense of superposed velocity fields) rotating BEC halos.
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Chapter 3

Superfluids, Bose-Einstein
condensation and turbulence: A short
excursion

The previous Chapter established a close relation between scalar-field dark matter and Bose-
Einstein condensation, or alternatively superfluids, arising from their inherently similar de-
scription. As a consequence, we are dealing with an intriguing point of intersection between
the astrophysics and condensed matter physics. This thesis is dedicated to the analysis of
certain defects or distortions, which may occur as part of the dynamics of dark matter halos
given that they consist of SFDM in the fuzzy limit. Thus, it is crucial at this point to revisit the
achievements in theory and experiment of the condensed matter, superfluidity and turbu-
lence communities in order to have a better understanding of the many phenomena familiar
from these studies which may have avatars in our astrophysical setting of dark matter halos.
This Chapter is dedicated to giving an overview on the strongly entangled fields of Bose-
Einstein condensation, superfluidity and classical and quantum turbulence and in doing so
introducing concepts and mathematical models, some of which we will apply in the course
of our analysis in Chapter 5.

3.1 Bose-Einstein condensates

If all particles in a system occupy the same quantum ground level, theory speaks of a macro-
scopic phenomenon called Bose-Einstein condensation, a phenomenon which by now has
been covered by lots of classic text books like Pethick and Smith (2008) or Pitaevskii and
Stringari (2003). These particles are required to be bosons due to the Pauli exclusion princi-
ple. In 1995 three groups, Bradley et al. (1995), Davis et al. (1995) and Anderson et al. (1995),

29



separately achieved the realization of Bose-Einstein condensation in dilute alkali gases by
cooling to nK-temperatures. To be more precise, Bose-Einstein condensation requires that
the system’s temperature falls below a certain critical temperature Tc. This critical tempera-
ture’s dependency on the system’s parameters follows from the simple qualitative argument
that the mean interparticle distance hli = n�1/3

0 (where n0 is the number density of a homo-
geneous gas) becomes comparable to the de-Broglie wavelength, equation (2.1). Here, the
velocity is given by the thermal velocity of the particles, v =

p
kBT/m.

ldeB ⇠ hli yields

Tc ⇡ h2n2/3
0

mkB
, (3.1)

with kB denoting the Boltzmann constant as usual. The experimental realization of Bose-
Einstein condensation demands diluteness, i.e. number densities of typically 1012 to 1015

particles per cm3, trapping of the particles by optical or magnetic tools, and cooling through
techniques like evaporation or laser cooling.

Many experimental accomplishments allow us to routinely produce Bose-Einstein con-
densates and in doing so study these macroscopic objects with properties associated with
the microscopic quantum world.

3.2 Association of superfluids with Bose-Einstein condensation

Fritz London suggested that the unusual properties seen in He II since its first production
in 1908 are a manifestation of Bose-Einstein condensation, London (1938). Physicists had
realized that liquid helium has two separate phases, He I and II, separated by the l-point
associated to a critical temperature at low pressure. T

l

= 2.17 K in ordinary liquid 4He,
whereas T

l

⇡ mK in the rare isotope 3He. He II at T < T
l

showed up to that point unseen
thermal and mechanical ”super” properties, superconductivity and superfluidity. They saw
that He II is inviscid to such an extent that it seems to ”defy” gravity (referred to as the
siphon effect).

To be more specific, at nonzero temperatures below the critical temperature superfluid
helium consists of two fluids. Landau and Tisza’s famous two-fluid model, see Tisza (1938)
and Donnelly (1991), describes a system of two interpenetrating fluids. The inviscid super-
fluid corresponds to the macroscopic occupation of the quantum ground state and the viscid
normal fluid carries the viscosity and the entropy of the entire fluid. The fraction of the su-
perfluid density increases from zero at T

l

if T is lowered until the normal fluid is negligible.
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3.3 Vorticity

What if we are concerned with the dynamics of superfluid helium or alternatively atomic
Bose-Einstein condensates (BECs)? Besides the lack of viscosity, experiments and simula-
tions of BECs show the appearance of so-called vortices. Since on the one hand these vor-
tices are only the starting point of a whole theory around the nowadays fashionable subject
of quantum turbulence and on the other hand our specific analysis in following Chapters in-
cludes vortex formation in astrophysical sized rotating BECs, we will go into detail on what
essential role quantum vortices play.

Tsatsos et al. (2016) and Barenghi et al. (2014) give excellent reviews on superfluid and
quantum turbulence and especially on how the fact that rotated BECs experience quantized
vorticity crucially shapes their turbulent behaviour. If rotation was introduced, these sys-
tems would show a peculiar response. Below the critical temperature, they stand still and
can only rotate by threading themselves with quantized vortex lines. Their visualizations
resemble mini-tornadoes. These appear as stable topological excitations of the ground state
whereas in classical fluids, there are no long-lived thin vortices. In that sense, the mathe-
matical ideals of normal viscous fluids become real in atomic BECs. As a consequence, the
vortex line density L, the vortex length per unit volume, is an important observable charac-
teristic. Also, the fact that vorticity manifests itself as line singularities, which have a fixed
circulation, results in a length scale non-existent in classical fluid dynamics: the mean vortex
separation l. We would like to stress that indeed the quantized circulation (3.7) itself causes
this new length scale l.

Tsatsos et al. (2016) mention two theoretical models concerning superfluids and BECs un-
der rotation. Meanwhile Barenghi et al. (2014) divide the description into three scale levels.
At length scales much greater than the mean vortex separation l, models do not distinguish
between individual vortex lines and consider a vortex line continuum.

The intermediate level where individual vortex lines are essential, however at length
scales far away from the vortex core, three dimensional vortex dynamics is well-described by
the vortex filament model of Schwarz (1985). This Biot-Savart model describes the velocity
field by the vortex motion. The vortex lines are represented by space curves c = c(t, t) of
circulation k. The curves are parameterized by the arc- length t and the time t. As a starting
point, the velocity is written as the rotation of a vector potential

~vic = ~r⇥ ~A . (3.2)

As a consequence and completely analogous to the description of magnetic fields, this for-
mulation involves a self-induced velocity along the curve c,
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~vc(~c, t) =
k

4p

Z

L
~r �~c
|~r �~c|3 ⇥ dr . (3.3)

Since the velocity is a rotation field by relation (3.2), its divergence vanishes and thus the ve-
locity is inherently incompressible. A more general field should, according to the Helmholtz
decomposition, incorporate two parts,

~v = ~vic +~vir, (3.4)

an incompressible velocity field ~vic given by the Biot-Savart model and an irrotational part
~vir. In simulations and computations based on this model by Schwarz the final configu-
ration is entirely determined by the cell geometry, flow parameters and the initial vortex
distribution. The drawbacks of this formulation are that vortex-vortex interactions, such as
reconnections (see Section 3.4) need to be inserted ad hoc since they do not arise naturally
and that it assumes that vortices have infinitesimally small cores.

Finally, even at the most microscopic level, where length scales can be comparable to the
vortex core size s and corresponding phenomena must be accounted for, the Gross-Pitaevskii
approximation (Pitaevskii (1961) and Gross (1961)) for a weakly interacting Bose gas specif-
ically designed to describe quantized vorticity is the most commonly applied model in the
BEC community. It is a mean-field theory based on total condensation, describing a many-
body system by one state y(~r, t). For an infinite number of particles and ground state con-
densation at T = 0, the Gross-Pitaevskii equation is exact. In contrast to the previous Biot-
Savart model, solutions to the fundamental Gross-Pitaevskii equation can account for many
phenomena in the context of quantum turbulence like vortex reconnections. From the ex-
perimental point of view the time-dependant Gross-Pitaevskii equation for a system of N
bosons with particle mass m reads

ih̄
∂y(~r, t)

∂t
=

 
� h̄2

2m
D + Vtrap + g|y(~r, t)|2

!
y(~r, t) . (3.5)

This differential equation is equivalent to the model (2.7) and (2.8), we have introduced in
Section 2.1 in order to describe an astrophysical Bose-Einstein condensed dark matter halo,
except for the external potential Vtrap(~r, t) (spatial confinement) in the place of the gravita-
tional potential term in equation (2.7) coupled to the Poisson equation, which we will use
in the context of our analysis. In general the trapping potential depends on the experimen-
tal setup. Obviously, all considerations like for example the normalization of the complex-
valued wavefunction y or the Madelung transformation made in Section 2.1 apply equally
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to equation (3.5). This transformation yields

∂~v
∂t

= � 1
mr

~rp � ~r
✓

v2

2

◆
+

1
m
~r
 

h̄2

2mp
r

~r2p
r

!
� 1

m
~rVtrap , (3.6)

where p = r

2g/2. The classical limit h̄ ! 0 of this differential equation is identical to the
dissipation-free Navier-Stokes equation describing an irrotational fluid.

We assume a zero-viscosity fluid, a superfluid in other words, to be dissipation free and
hence possess a conservative velocity field, i.e. a gradient flow~v µ ~rS, which implies irrota-
tionality, i.e. w = ~r⇥ ~rS = 0 . Indeed, the Madelung transformation of the Gross-Pitaevskii
equation implies an identification of the velocity in the form of relation (2.16). However, it is
only at first sight, that the formulation leaves no room for fluid vorticity. Wherever the fluid
mass density r = m|y|2 vanishes, the phase S and hence the ~v become ill-defined. The im-
plication of irrotationality would only hold true if the phase function S had continuous first
and second derivatives everywhere. However, notice that this would not be the case if there
was a vortex line at some loci along which ~v diverges. It turns out that the phase function
along vortex lines has non-trivial winding and hence the vorticity there is non-vanishing:
Since the wavefunction is required to be single-valued, a circulation along a contour C en-
closing a vortex singularity may not change y. Hence, S can vary at most by d2p, where d is
the winding number, also called the vortex-charge. As a consequence, this circulation is an
integer multiple of the quantum of circulation k = h/m,

G =
I

C
d~r ·~v = d

2ph̄
m

= d
h
m

. (3.7)

Hui et al. (2020) emphasize that vortices require that the real as well as the imaginary part
of y vanishes. In an astrophysical context, where we are dealing with dark matter halos of
finite size, they expect so-called vortex rings or loops.

One of the strengths of the Gross-Pitaevskii model is that it admits vortex solutions of
its quantum mechanical equations of motion obeying the quantization condition (3.7). The
wavefunction of an axial symmetric vortex aligned with the z-direction at the origin in cylin-
drical coordinates is a stationary solution and has the form

y(~r) = y(r, z, f) = |y|(r, z)eidf . (3.8)

The velocity field around this vortex has a form given by the Madelung transformation,

~v =
h̄
m
~rS =

h̄
m

1
r

∂S
∂f

~
f =

h̄
m

d
r
~
f , (3.9)

is directed along the azimuthal direction and is irrotational for r 6= 0. It turns out that the
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above vortex wavefunction is an angular momentum eigenstate, where the angular momen-
tum’s z-component is given by lz = dh̄ and thus yields the total angular momentum

Lz = dNh̄ ⌘ dLQM . (3.10)

LQM denotes the angular momentum required to sustain a singly-charged (or singly- quan-
tized) vortex line. Following Rindler-Daller and Shapiro (2012), we will use the vortex ansatz
in cylindrical coordinates (r, f, z)

w(r, f) = |w|(r)eidf, (3.11)

with amplitude11

|w|(r) =
8
<

:
1 for r � s ,

Cn
� r

s
�d otherwise ,

(3.12)

in the calculations of Sections 5.1 and 5.2. This ansatz corresponds to an axisymmetric, d-
quantized vortex along the axis of rotation (here the z-axis) with vortex core size s. The
amplitude is dimensionless and the constant Cn will be given by a normalization condition.

In conclusion, within the Gross-Pitaevskii formulation a discontinuous velocity flow can
indeed be both, inviscid and irrotational. Equation (3.9) tells us that ~v diverges as r ! 0.
Why does this conclusion not yield physical inconsistency? The reason has already been
mentioned. The real and imaginary parts of the wavefunction must tend to zero inside the
vortex core, hence the density also vanishes. Thus, we are not going to find any particles
moving with infinite speed in the core.

There are many perceptions or perspectives on such a vortex. It can be seen as a defect,
perturbation or topological excitation with a higher energy than the quantum ground state.
If seen as the latter, it has been shown that the vortex energy is proportional to d2 (see Tsatsos
et al. (2016) and references therein). Hence, for given d, d singly-quantized vortices in a sys-
tem are energetically favored compared to one d-charged vortex. The perception of a vortex
as a topological defect or perturbation yields the possibility to estimate the core diameter. In
our vortex ansatz, the core size s corresponds to the cylindrical radius, where the density re-
gains its unperturbed local value. In Sections 2.2 and 2.3 we have encountered the notion of
the so-called healing length x, a scale over which the gas ”heals” a disturbance, and have de-
fined the gravitational healing length xG in the fuzzy regime of the Gross-Pitaevskii-Poisson
framework. Since the vortex can be identified as a local disturbance of the density, one ex-
pects its extension at equilibrium to be of the order of the healing length or gravitational
healing length respectively, i.e. s ⇡ xG. By way of equations (2.49) and (2.70), this implies
s  R99, i.e. the vortex could take up almost the entire halo in the fuzzy regime.

11The index n in Cn refers to ”normalization” and is not to be confused with the polytropic index.
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3.4 Quantum turbulence

Vortex lines in BECs are the fundamental constituents of so-called quantum turbulence. In
some respects it is important to distinguish between what is often called superfluid or he-
lium turbulence in Bose-Einstein condensed liquid helium and turbulence in trapped, dilute
atomic BECs, often referred to as quantum turbulence, reviewed in Barenghi et al. (2014) and
Tsatsos et al. (2016) respectively.

What is turbulence? It can be described as disordered and irregular flow associated with
a huge number of simultaneously excited degrees of freedom which interact nonlinearly.
In order to prevent this definition from being too generic, it is reasonable to restrict it to
systems whose description includes the (~v · ~r)~v nonlinearity appearing in the Navier-Stokes
equation or equivalently in its skeleton, the Euler equation.

Classical turbulence involving eddies, which exchange energy, is built on a mathematical
description given by the Navier-stokes equation

∂~v
∂t

+ (~v · ~r)~v = �1
r

~rp + n

~r2~v +~g , (3.13)

describing an incompressible (solenoidal) fluid with constant density, where n is the kine-
matic viscosity and ~g is a placeholder for external forces. The transition between laminar
and turbulent flows requires that the dimensionless Reynolds number Re = vD/n (v being
the average velocity fluctuation), estimating the ratio between nonlinear and viscous forces,
becomes sufficiently large at the outer scale D. If you constantly input energy at large scales
and the system dissipates energy at same rates at small scales, you can achieve a steady state.
At intermediate scales, called inertial range, flow patterns show self-similar behaviour, in
which energy is transferred from large to small eddies in the form of a cascade. According
to Kolmogorov (1941) the distribution of kinetic energy over different scales is such that the
energy spectrum for steady, isotropic, incompressible turbulence (given inertial range scales)
has the form

Ek = Ce

2/3
k k�5/3 , (3.14)

where k = 2p/r is the wavenumber and r indicates spatial distance.
Numerical simulations and a variety of experimental setups of liquid helium or atomic

BECs have shown that there exist many manifestations of helium or quantum turbulence
like disordered configurations of vortex lines. These configurations can be either laminar,
e.g. vortex lattices in rotation, or turbulent, e.g. tangled vortex lines. What characterizes
quantum turbulence is less the superfluidity of a turbulent system but more the property of
quantized vorticity. Vorticity is unconstrained and continuous in classical turbulent systems
and quantized and discrete in quantum systems. As a consequence, the building blocks of
the latter, namely vortices, are well-defined. The fact that turbulence decays if left unforced
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in these systems despite zero viscosity in superfluids can only be explained by discrete vortex
lines. Hence, quantum turbulence requires a description by a macroscopic wavefunction.

Tsatsos et al. (2016) promote questions like ”How many degrees of freedom?” or ”What
number of vortices is needed for the emergence of turbulence or even Kolmogorov scaling?”.
These are challenging open questions in the field of quantum turbulence.

Quantum turbulence is often associated with the motion and interactions of vortices,
which are plenty. Vortex line tangles can exhibit partial spatial polarization by organizing
into vortex bundles. In doing so, quasiclassical or Kolmogorov turbulance can emerge in a
certain inertial range, where energy is transferred from big to small bundles. However, Tsat-
sos et al. (2016) highlight in their Subsection 3.2 that the scaling of the energy spectrum char-
acterizing the type of turbulence strongly depends on how the superfluid is driven. For ther-
mally driven superfluids (e.g. through heat fluxes) the energy spectrum exhibits low levels
at small k, scales as k�1 at large k and forms a ”bump” in between. On the other hand, if the
superfluid is driven by a mechanically-driven normal fluid component, a Kolmogorov-like
scale is recovered with large-scale flows due to large-scale vortex line polarization. Vortices
in trapped BECs show rich dynamics. There are for example quantum vortex reconnections,
where vortices interact, approach, connect and exchange tails. This phenomenon contributes
to a great extent to the energy transfer between vortices of different scales. In two dimen-
sions, there are models which predict annihilation of oppositely charged vortex lines and
vortex clustering.

What about the lowest temperature limit and the smallest length scales below the mean
inter-vortex distance? Vortices can experience helical perturbations referred to as Kelvin
waves. At higher temperatures friction effects damp these Kelvin waves and smooth the in-
dividual vortex lines. However, in this regime the interaction of Kelvin waves yields shorter
and shorter wavelengths in a process called Kelvin-wave cascade. Rapidly rotating Kelvin
waves yield phonon emission if the wavelength is short enough. Hence, quantum turbulence
has an acoustic (not viscous) sink explaining how its decay is based on discrete vorticity. One
could also say that vortices at the smallest scales decay eventually into sound.

There has been found another kind of turbulence, namely ultraquantum turbulence ad-
dressing large vortex tangles characterized by a lack of large-scale energy flows and a high
degree of randomness. Tsatsos et al. (2016) state that ultraquantum turbulence is more likely
to appear in trapped atomic BECs.
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Chapter 4

Rotating configurations of
Bose-Einstein condensed dark matter
halos

We have seen what extraordinary phenomena manifest themselves when Bose-Einstein con-
densates are subject to rotation. The following Chapter will be dedicated to analyse whether
and under what conditions vortex creation in self-gravitating BEC- dark matter halos in the
fuzzy regime rotating with constant angular velocity W is energetically favored. This anal-
ysis requires a complete model of the halo, i.e. a geometry, density and velocity profile
consistent with the demands of the Gross-Pitaevskii framework. In Section 2.3, we have al-
ready indicated that our analysis incorporates two possible approximations to the amplitude
squared of the Gross-Pitaevskii-Poisson system’s stationary solution for the wavefunction
|y|2 or equivalently approximations to the density profile r(~r) = m|y(~r)|2 in the fuzzy limit
12. Remember that we made an ansatz for the wavefunction of the form y = |y|eiS. By doing
so, the velocity information of the dark matter halo is given by the real phase function S(t,~r)
since ~v = h̄~rS/m.

From a cosmological point of view, we expect that angular momentum plays a crucial role
in DM-halo physics. The large-scale structure of the universe causes tidal torques, which give
halos in their early phases angular momentum. BEC-DM is supposed to behave similarly to
standard CDM over scales much larger than the de-Broglie wavelength. Hence, following
Rindler-Daller and Shapiro (2012), we will make use of the dimensionless ratio

l =
L|E|1/2

GM5/2 , (4.1)

12Have in mind, that the Gross-Pitaevskii-Poisson system as a matter of fact demands a set of solutions (y, F).
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where E denotes the total energy and M the total mass of the halo. Cosmological N-Body
numerical simulations use this spin-parameter in order to quantify the degree of rotational
support of a halo with net angular momentum L. Typical values for l are in the range
[0.01, 0.1], for example found by Antonuccio-Delogu et al. (2010). As a result, our halo model
will have a bulk angular momentum, which will eventually be set by the l-spin parameter
by associating it to the angular momentum provided by tidal torquing. The halo will hence
experience superfluid currents for W 6= 0, which will manifest themselves by a non-trivial
phase function S.

Now the key point is that we study halo configurations in equilibrium. In other words,
we consider stationary solutions given by (2.24) and (2.25), i.e. quantum states with time-
independent observables which are eigenstates of the Hamiltonian, and add the distinction
between different reference frames to our considerations. Rotating configurations at constant
W in the rest frame of the halo correspond to stationary solutions in the corotating frame. In
this corotating frame, the bulk velocity is given by

~v
0
= ~v � ~W ⇥~r, (4.2)

where primed quantities and variables denote those in the corotating frame. The angular
momentum is given by

~L
0
= �ih̄~r

0 ⇥ ~r 0
(4.3)

and the GP energy functional in the fuzzy limit (g = 0) is

E0[y0] =
Z

V

"
h̄2

2m
|~r 0

y

0|2 + m
2

F|y0|2 + ih̄y

0⇤~r 0
y

0 · (~W ⇥~r
0
)

#
d3r0 . (4.4)

This expression for the energy in the corotating frame will be used in our analysis of Chapter
5.

Our investigation is based upon two models:

• Model A: The Gaussian sphere. This model approximates the halo as a sphere with
radius R rotating with constant angular velocity ~W = (0, 0, W) about the z-axis. The
density profile is chosen according to the first density model introduced in 2.3 equation
(2.72),

|y|2 =
r0

m
=

rc

m
e�ar2

s . (4.5)

This spherical halo includes no internal velocity field in addition to the bulk rotation
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~W ⇥~r in the rest frame, hence the sphere shows no net velocity in the corotating frame

~v
0
= ~W ⇥~r � ~W ⇥~r = 0 =

h̄
m
~rS0 . (4.6)

• Model B: The irrotational Riemann-S ellipsoid. Lai et al. (1993) provide us with the
foundation of this model and thereby with the opportunity to pursue the question of
vortex formation in rotating BEC halos in a more self-consistent way. They developed
compressible generalizations of Chandrasekhar (1969)’s figures of equilibrium using
an energy variational method. Especially, their compressible version of the so-called
irrotational Riemann-S ellipsoid offers a way to account for both, the superfluid’s com-
pressibility, and the irrotationality of the velocity flow in the rest frame by superposing
an internal velocity field on top of the uniform rotation. The geometry of this non-
axisymmetric object modeling our BEC- dark matter halo is given by its three semi-axes
(a1, a2, a3) along (x, y, z). It is a classical figure of rotation perfectly suited for our pur-
pose. Without loss of generality, we align the axis of rotation, about which the ellipsoid
rotates uniformly with angular velocity W, along the z-axis. Rindler-Daller and Shapiro
(2012) applied the irrotational Riemann-S ellipsoid in their study of rotating BEC ha-
los in the Thomas-Fermi regime, in which the density profile is an (n = 1)-polytrope.
Since we have already established the fact, that the (n = 2)-polytropic density profile is
an appropriate approximation to the actual ”soliton” in Section 2.3, we paved the way
for applying the results of Lai et al. (1993) for (n = 2) with some additional considera-
tions regarding the quantum kinetic energy KQ. This way, we show that the irrotational
Riemann-S ellipsoid is a useful description for BEC-DM halos, whether they be in the
Thomas-Fermi or in the fuzzy regime.

4.1 Compressible ellipsoidal equilibrium figures

This Section is dedicated to give more insight into the theoretical framework which halo
model B is based on and to present the essential strategies, relations and results on compress-
ible figures of equilibrium of the study of Lai et al. (1993) in order to lay the groundwork for
next Chapter’s calculations.

In his book on ”Ellipsoidal figures of equilibrium”, the modern hero of astrophysics, Sub-
rahmanyan Chandrasekhar (1969), reevaluated and heavily expanded studies on the grav-
itational equilibrium of homogeneous uniformly rotating masses and thereby offered the
astrophysical community a strong and lasting asset. He sets the stage for his study with a
short historical recap starting with Newton’s considerations on the effect of rotation on the
figure of the earth, followed by Maclaurin who generalized existing results to large elliptic-
ity. Nearly a century later, Jacobi concluded that an ellipsoid with three unequal axes can
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be, too, a figure of equilibrium. This conclusion implied a huge leap forward since by that
time it was consensus that equilibrium requires the two equatorial axes to be equal. Impor-
tant works were done by Dirichlet and Dedekind inspired by the question: What conditions
allow a configuration to have, at all times, an ellipsoidal shape and a motion in the inertial
frame governed by a function that is linear in the coordinates?

Riemann then postulated that the most general motion under the above requirement
formulated by Dirichlet compatible with an ellipsoidal equilibrium figure is the sum of a
uniform rotation with angular velocity ~W and internal motions with uniform vorticity ~

x

0 .
More precisely, an ellipsoidal equilibrium figure was considered as a homogeneous fluid
mass which maintains its ellipsoidal configuration under rotation and under its own gravity
at all times. Chandrasekhar (1969) then revisits Riemann’s theorem stating that equilibrium
demands either that ~W and~

x

0 are both oriented along one of the principal axes, thereby being
parallel, or the directions of ~W and ~

x

0 lie in one principal plane, while not being parallel. As
a result, we must distinguish between two different configuration types among the Riemann
ellipsoids. It turns out that in the case of parallel ~W and ~

x

0 , we encounter a type of ellipsoids
called S-type ellipsoids or Riemann-S ellipsoids, which may be arranged in linear sequences.
The latter case of non-parallel ~W and ~

x

0 leads to equilibrium figures of completely different
structures. Given S-type ellipsoids one can define Riemann sequences as sequences along
which the fraction

fR =
x

0

W
,

where W = |~W| and x

0 = |~x 0 |, is constant. Two famous sequences, the Jacobian and Dedekind
sequences, are hereby equal to fR = 0 and fR = ±• Riemann sequences, respectively.

Since we are not going to model our BEC halo as a homogeneous ellipsoidal body but
in the case of model B as an ellipsoid comprising an (n = 2)-polytropic density profile, the
analytic studies of Lai et al. (1993) on compressible generalizations of incompressible classi-
cal figures like Maclaurin spheroids, Jacobi and Dedekind ellipsoids and especially Riemann
ellipsoids are essential to our calculations. An incompressible flow describes a fluid flow
whose density is constant within a so-called fluid parcel, i.e. an infinitesimally small vol-
ume moving with the bulk velocity. It can be shown that incompressibility also implies that
the divergence of the flow velocity vanishes. Less essential to our calculations but accord-
ing to them most significant are their results concerning the stability of Roche, Darwin and
Roche-Riemann binaries.

Motivated by the lack of adequate analytical models for the equilibrium structure of stars
perturbed by tidal fields or rotation by that time, Lai et al. (1993) used an ellipsoidal energy
variational method in order to meet the demand of numerical work on compressible flu-
ids for approximate analytical solutions. Their method involves the total (not necessarily
equilibrium) energy of a self-gravitating, isolated and steady fluid system,
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E = E[r(~r),~v(~r); M, S, L, ...], (4.7)

where conserved global quantities like the total mass M, the entropy S and the total angular
momentum L specify the system and r(~r) and ~v(~r) are the fluid density and velocity, respec-
tively. Finding an equilibrium configuration amounts to extremizing (4.7) with respect to all
variations of r(~r) and ~v(~r) which do not change the conserved quantities. Since this implies
an infinite number of degrees of freedom, Lai et al. (1993)’s approach is to replace them by a
set of parameters a1, a2, ... based on simplifying assumptions so that

E = E[a1, a2, ...; M, S, L, ...] . (4.8)

As a result,
∂E
∂ai

= 0, i = 1, 2, 3... (4.9)

yield the equilibrium conditions.

In a next step, Lai et al. (1993) consider density and pressure profiles according to those
of a polytrope of index n, see Appendix A. First, they consider spherical, i.e. non-rotating,
polytropic systems, with mass M and radius R (not necessarily the equilibrium radius). Once
the density profile and the total mass are given, the system is either characterized by the
radius R or equivalently by the central density

rc =
x1

4p|q01|
M
R3 . (4.10)

x

13 and q, defined in Appendix A, are the commonly used dimensionless variables in the
context of the Lane-Emden equation. In the spherical (non-rotating) case the total energy is
given by

E(rc; M) = U + W, (4.11)

with the internal energy
U = k1Kpr

1/n
c M (4.12)

and the gravitational potential energy

W = � 3
5 � n

GM2

R
= �k2r

1/3
c GM5/3, (4.13)

13Notice that unfortunately both, the dimensionless radius of the Lane-Emden equation as well as the uniform
vorticity of the internal motions in a Riemann-S ellipsoid, are denoted x in the common literature.
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where the constants k1 and k2 are defined as

k1 ⌘ n(n + 1)
5 � n

x1|q01| , (4.14)

k2 ⌘ 3
5 � n

✓
4p|q01|

x1

◆1/3

. (4.15)

Now, there are two crucial assumptions Lai et al. (1993) make in order to arrive from a spher-
ical non-rotating configuration to the energy of a rotating ellipsoidal polytrope, referred to
by them as the ellipsoidal approximation:

• The isodensity surfaces are assumed to be self-similar ellipsoids. Thereby the three
principal axes a1, a2 and a3 of the outer surface where r = P = 0, or equivalently the
eccentricities given by

e1 =
q

1 � (a2/a1)2 and e2 =
q

1 � (a3/a1)2 , (4.16)

solely specify the geometry.

• The density profile r(m) and specific internal energy profile u(m), where m denotes
the mass inside an isodensity surface, are set identical to those of a spherical polytrope
of same n, Kp and volume, i.e. whose radius is the mean radius

R = (a1a2a3)
1/3 . (4.17)

In the incompressible limit, i.e. n = 0, these approximations turn into strictly valid state-
ments and their method yields exact solutions.

Amongst a variety of other classical objects Lai et al. (1993) treat compressible Riemann-S
ellipsoids (triaxial structures) by incorporating the presence of non-uniform rotation. The
goal is to develop an expression for the total energy in the ellipsoidal approximation.

As part of the ellipsoidal approximation it was assumed that the specific internal energy
profile u(m) of our rotating configuration is the same as that of the corresponding spherical
non-rotating polytrope with same volume or equivalently same central density. Hence, the
total internal energy U is given by (4.12) and therefore independent of the system’s geometry.

What about the gravitational potential energy W? Lai et al. (1993) compare W of a homo-
geneous rotating triaxial ellipsoid (e.g. given by Chandrasekhar (1969)),

W(Ellipsoid) = �3
5

GM2

R
f , (4.18)

where R is given by (4.17) and f is the essential dimensionless ratio in this context given by
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f =
1
2

A1a2
1 + A2a2

2 + A3a2
3

(a1a2a3)2/3 , (4.19)

to W of a sphere of constant density,

W(Sphere) = �3
5

GM2

R
. (4.20)

One can observe, that these two expressions for the gravitational potential energy differ by
the multiplier f . Its dimensionless coefficients Ai are given in Chandrasekhar (1969) and can
be written in terms of the axis ratios:

A1 = 2
a2

a1

a3

a1

F(q, f)� E(q, f)

sin3
f sin2

q

(4.21)

A2 = 2
a2

a1

a3

a1

E(q, f)� F(q, f) cos2
q � (a3/a2) sin2

q sin f

sin3
f sin2

q cos2
q

(4.22)

A3 = 2
a2

a1

a3

a1

(a2/a3) sin f � E(q, f)

sin3
f sin2

q

, (4.23)

where cos f = a3/a1, sin q =
q

1�(a2/a1)2

1�(a3/a1)2 and the standard incomplete elliptic integrals are
given by

E(q, f) =
Z

f

0
(1 � sin2

q sin2
f

0)1/2df

0 , (4.24)

F(q, f) =
Z

f

0
(1 � sin2

q sin2
f

0)�1/2df

0 . (4.25)

The ellipticity of these equilibrium figures is a pure result of rotation reflected by the factor f .
Based on Newton’s theorem stating that an ellipsoidal shell of constant density has a constant
gravitational potential inside (see Chandrasekhar (1969)) and the ellipsoidal approximation,
Lai et al. (1993) conclude that the gravitational potential W of a spherical polytrope and the
one of a homogeneous sphere are equally modified by rotation. Hence, the gravitational
potential energy of our compressible Riemann-S ellipsoid is given by

W = � 3
5 � n

GM2

R
f = �k2r

1/3
c GM5/3 f . (4.26)

What remains is the kinetic energy of rotation T which requires more elaborate groundwork.
First, one starts with an object that rotates rigidly with constant angular velocity ~W = W~e3.
Then one superposes an internal velocity field with uniform vorticity parallel to ~W,

x

0 ⌘ (~r 0 ⇥~v
0
) ·~e3 , (4.27)
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specified by the requirement that the resulting velocity vector at any point shall be tangent
to the isodensity surface at that point. From that it follows that the fluid velocity in the rest
frame can be written as

~v = ~v
0
+ ~W ⇥~r , (4.28)

where

~v
0
= � a2

1
a2

1 + a2
2

x

0 y~e1 +
a2

2
a2

1 + a2
2

x

0 x~e2 (4.29)

in Cartesian coordinates (x, y, z). In addition, there is a relation between the angular fre-
quency of the internal motions L and the vorticity,

x

0 = � a2
1 + a2

2
a1a2

L . (4.30)

By means of the above relations Lai et al. (1993) find for the angular momentum~L and rota-
tional kinetic energy T,

~L ⌘
Z
~r ⇥~vrd3r = (IW � 2

5
kn Ma1a2L)~e3 (4.31)

and

T ⌘ 1
2

Z
~v ·~vrd3r =

kn

20
M
�
(a1 � a2)

2(W + L)2 + (a1 + a2)
2(W � L)2� , (4.32)

respectively. The moment of inertia I is given by

I =
kn

5
M(a2

1 + a2
2) (4.33)

and the definition of the constant kn and its values for n 2 (1, 2) can be found in equation
(A.13). In Chapter 3, we have sufficiently established that a Bose-Einstein condensed halo
described by the Gross-Pitaevskii-Poisson framework is in general irrotational with an ex-
ception wherever you find a vortex line. It turns out that the construction of Riemann-S
ellipsoids allows to guarantee irrotationality given a certain choice of the parameter fR. This
can be shown by introducing the circulation along the equator,

Gequator ⌘
I

equator
~v · d~l = p(2 + fR)a1a2W , (4.34)

and the vorticity in the rest frame

x ⌘ (~r⇥~v) ·~e3 = (2 + fR)W . (4.35)
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Along the so-called irrotational Riemann-S sequence the fraction fR = �2 yielding x =

Gequator = 0. Rindler-Daller and Shapiro (2012) derive the velocity field of the irrotational
(i.e. fR = �2) Riemann-S ellipsoid for a given polytropic index n in the rotating frame,

~v
0
= 2Wgrav,R

✓
2B12

qn

◆1/2
(8(1 � e2

1) + e4
1)

�1/2 (y,�(1 � e2
1)x, 0) , (4.36)

and in the rest frame,

~v = Wgrav,R

✓
2B12

qn

◆1/2
(1 + 8(1 � e2

1)/e4
1)

�1/2 (y, x, 0) , (4.37)

respectively, by using (4.27), (4.28), (4.29), (4.30), (4.51) and (4.48). Here we have used Lai
et al. (1993)’s definition of the gravitational angular velocity of an ellipsoid with mean radius
R given in (4.17),

Wgrav,R :=
p

pGr̄ =

r
3GM
4R3 . (4.38)

We have plotted ~v 0/(Wgrav,Rl) and ~v/(Wgrav,Rl), with l denoting a quantity with dimension
of length, for polytropic index (n = 2) in figures 4.1 and 4.2. Obviously, the vorticity vanishes
in the rest frame in the case of the fR = �2 irrotational sequence.

Figure 4.1: Illustrative velocity field of an (n = 2), irrotational Riemann-S ellipsoid in the rotating
frame according to equation (4.36) with eccentricities e1 = 0.60246 and e2 = 0.46823 (or l = 0.01, see
table 5.1).
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Figure 4.2: Illustrative velocity field of an (n = 2), irrotational Riemann-S ellipsoid in the rest frame
according to equation (4.37) with eccentricities e1 = 0.60246 and e2 = 0.46823 (or l = 0.01, see table
5.1).

The total energy for a system with fixed M, L and C ⌘ �kn MGequator/(5p),

E = E[rc, h1, h2; M, L, C] = U + T + W , (4.39)

is obtained by summing all the individual energy terms, where

h1 =

✓
a3

a1

◆2/3
and h2 =

✓
a3

a2

◆2/3
. (4.40)

In other words, the configuration is specified by the central density of the polytropic density
profile and the axis ratios. Equilibrium now requires the conditions

∂E
∂rc

= 0, (4.41)

∂E
∂h1

= 0 and (4.42)

∂E
∂h2

= 0 . (4.43)

The first condition yields

2T + W +
3
n

U = 0 , (4.44)

a virial relation taking almost the same form as (2.33). The hidden but crucial difference arises
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from the fact that the classical theory of Riemann-S ellipsoids does not involve the quantum
kinetic energy we have encountered in Section 2.1. However, we have overcome this obstacle
in the course of our calculations, see Section 5.2.

Conditions (4.42) and (4.43) yield after some manipulations two equations relating fR, W̃
and the axes,


1 +

a2
1a2

2
(a2

1 + a2
2)

2 f 2
R

�
W̃ =

2B12

qn
, (4.45)

qn
a2

1a2
2

a2
1 + a2

2
fRW̃2 = a2

1a2
2A12 � a2

3A3 . (4.46)

The definition of the constant qn and its values for n 2 (1, 2) can be found in equation (A.14).
The dimensionless angular velocity W̃ is given by

W̃ =
W

Wgrav,R
=

W
(pGr̄)1/2 , (4.47)

where r̄ ⌘ 3M/(4pR3) and R is the mean radius. In addition, Lai et al. (1993) introduce the
quantities

A12 =
A1 � A2

a2
2 � a2

1
and B12 = A2 � a2

1 A12 . (4.48)

Equilibrium requires the relations (4.45) and (4.46). One can eliminate W̃ between these two
equations and obtains an equilibrium relation for the axis ratios along a given Riemann-S
sequence ( fR fixed) that does not depend on the polytropic index n:

a2
1a2

2
(a2

1 + a2
2)

2 f 2
R +

2a2
1a2

2B12

a2
3A3 � a2

1a2
2 A12

fR

a2
1 + a2

2
+ 1 = 0 (4.49)

or equivalently for fR = �2, i.e. along the irrotational sequence,

4(a2/a1)2

(1 + (a2/a1)2)2 � 4B12(a2/a1)2

(a3/a1)2 A3 � (a2/a1)2 A1�A2
(a2/a1)2�1

1
1 + (a2/a1)2 + 1 = 0 . (4.50)

In other words, in the case of equilibrium one axis ratio determines the other, thereby imme-
diately fixing the geometry, and furthermore W̃2 is given by (4.45) once a2/a1 and a3/a1 are
known. For fR = �2, (4.45) can be solved for W̃ and written as

W̃ =

✓
2B12

qn

◆1/2 ✓
1 +

4a2
1a2

2
(a2

1 + a2
2)

2

◆�1/2

. (4.51)

We will see in Section 5.2 that the irrotational Riemann-S ellipsoids fulfill a1 � a3 � a2, i.e.
this sequence consists of prolate figures.
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Inserting the virial relation (4.44) into the total energy (4.39) yields the total equilibrium
energy

Eeq =
3 � n

n
W
✓

1 � 3 � 2n
3 � n

T
|W|

◆
. (4.52)

Finally, there is an important relation between the radius of the non-rotating spherical poly-
trope of same mass M, n and Kp,

R0 = x1(x
2
1|q01|)�(1�n)/(3�n)

✓
M
4p

◆(1�n)/(3�n) ✓ (n + 1)Kp

4pG

◆n/(3�n)

, (4.53)

(compare with Appendix A) and the mean radius R = (a1a2a3)1/3:

R = R0


f
✓

1 � 2
T
|W|

◆��n/(3�n)
, (4.54)

where f is the dimensionless factor defined in (4.19).
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Chapter 5

Vortex formation in the fuzzy regime

Finally, the groundwork has been laid so that we can dedicate this Chapter to the main part
of this thesis, the energy argument deciding whether the formation of one central vortex
line in a BEC- dark matter halo in the fuzzy regime in the context of our simplified modelling
is energetically favored or not. Our energy analysis is based on the comparison between
the total energy of the system without and with a vortex in the corotating frame. To be
more precise, the question will be whether the amount of angular momentum quantified by
typical spin-parameter values in cosmological simulations, i.e. l values in the range [0.01,
0.1], is sufficient to trigger the development of a quantum vortex in the halo. In the course
of the following energy analysis the primes on variables indicating the corotating frame will
be omitted except for phase functions and energies.

5.1 Model A: The Gaussian sphere

Within this model, the approach is to construct a wavefunction which accounts for a vortex in
an otherwise unperturbed system, calculate the total energy arising from this wavefunction
by means of the Gross-Pitaevskii energy functional in the fuzzy limit (4.4), identify those
energy terms that arise due to the vortex and determine whether they lower or raise the total
energy for given parameters of the system and the dark matter particles.

To this aim, the wavefunction y of the halo superfluid must be decomposed into an un-
perturbed and a vortex-part in the form of the product state

y = y0w = |y0||w|eiS0
0+S0

1 , (5.1)

where ”0”-indices indicate variables of the unperturbed system, y0 = |y0|eiS0
0 , and the vor-

tex is included by means of the ansatz w = |w|eiS0
1 . Of course, the appearance of a vortex

affects the density and the gravitational potential of the initially unperturbed halo. This
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raises the question how to identify the density and gravitational potential associated to the
perturbation due to the vortex. The total halo density may be decomposed into

r = r0 + r1 . (5.2)

Now owing to the linearity of the Laplace operator in the Poisson equation, one can write

DF = DF0 + DF1 = 4pG(r0 + r1) . (5.3)

The fact that the unperturbed halo’s density is given by

r0 = m|y0|2 , (5.4)

yields
r1 = r � r0 = r0(|w|2 � 1) (5.5)

and hence
DF1 = 4pGr0(|w|2 � 1) (5.6)

must be solved for the gravitational potential associated to the distortion of the density.

We will apply the same method as Rindler-Daller and Shapiro (2012) (described in detail
in their Appendix B) to arrive at a convenient splitting of the energy contributions by the
unperturbed and vortex-carrying part. According to that method, inserting the ansatz (5.1)
into the energy functional (4.4) yields

E0[y] = E0[y0] + G0
r0
[w]� R0

r0
[w], (5.7)

where

E0[y0] =
Z

V

"
h̄2

2m
(~r|y0|)2 +

m
2

F0|y0|2 + h̄2

2m
|y0|2~rS0

0 ·
✓
~rS0

0 �
2m
h̄
~W ⇥~r

◆#
dV , (5.8)

G0
r0
[w] =

Z

V

"
h̄2

2m2 r0|~rw|2 + r0

2
F0 � r0

2
F0|w|2 + r0

2
F1|w|2

#
dV (5.9)

and

R0
r0
[w] =

Z

V

h̄2

2m2 r0 i w⇤ ~rw ·
⇣
~rS0

0 �
m
h̄
~W ⇥~r

⌘
dV . (5.10)

A halo system in the fuzzy regime including one central vortex line is energetically favored
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as compared to an unperturbed one, if

dE0 ⌘ G0
r0
[w]� R0

r0
[w] (5.11)

is smaller than zero, i.e. reducing the total energy level of the system. Our aim now is to
calculate dE0 as a function of the parameters defining this model and in order to do so, we
apply a density model and a vortex wavefunction which have already been introduced. As
described at the beginning of Chapter 4 model A incorporates the ansatz

|y0|2 =
r0

m
=

rc

m
e�ar2

s =
rc

m
e�a(r2+z2) (5.12)

for the unperturbed density of the halo with a = 1/(2s

2) and the radial distance in spherical
coordinates rs. In Section 3.3, we have introduced the vortex ansatz in cylindrical coordinates
(r, f, z)14

w(r, f) = |w|(r)eidf, (5.13)

with amplitude

|w|(r) =
8
<

:
1 for r � s ,

Cn
� r

s
�d otherwise .

(5.14)

(Again, s denotes the vortex core size.) The form of this vortex wavefunction amplitude has
some implications. First, it reflects that outside of the vortex, i.e. abruptly at r = s, the den-
sity is simply given by the unperturbed profile and that there is a discontinuity. Moreover,
each axisymmetric integration including the vortex wavefunction has to be split accordingly
at r = s. Also, even though halo model A is a sphere suggesting spherical coordinates during
integration, the parametrization of the vortex demands cylindrical coordinates. As a result,
the spherical domain over which the integration is performed is defined by the following
intervals for the three cylindrical coordinates:

r 2 [0, s] and [s,
p

R2 � z2] , (5.15)

f 2 [0, 2p] , (5.16)

z 2 [0, R] , (5.17)

where R is the radius of the sphere, i.e. the size of the system set by (2.74).

When calculating the energy of a vortex-carrying system, the winding number (or charge)
of the vortex plays an essential role. We have already discussed in Section 3.3 that d singly-

14The reader might wonder at the choice of notation considering the radial lengths in spherical and cylindrical
coordinates, rs and r respectively. For brevity, we have chosen r to denote the radial length in cylindrical coordi-
nates throughout this Section since most parts of the integration will be done in cylindrical coordinates which is
reasonable given the many integrals including the vortex wavefunction w(r, f).
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quantized vortices in a system are energetically favored compared to one d-charged vortex.
Hence, we will restrict our analysis to singly-charged vortices, i.e. d = 1, and specifically to
one central singly-quantized vortex.

The dimensionless constant Cn can now be determined by a normalization condition
guaranteeing that Z

V
|y|2dV =

Z

V

r0

m
|w|2dV = N . (5.18)

Inserting (2.76) into (5.12) and using (5.14), we get15
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=:
s̃2

2
K2

n , (5.22)

where Erf[x] denotes the Gauss error function given by the integral

Erf[x] =
2p
p

Z x

0
e�t2

dt . (5.23)

The first equivalence makes use of the definition (2.73) and the second equivalence makes
use of a convention employed in the course of the entire forthcoming calculation. We have
chosen to express all spatial variables in units of the standard deviation of the Gaussian
density profile, s, thereby introducing dimensionless variables which will be denoted as

x̃ =
x
s

, (5.24)

15The index n in Cn and Kn refers to ”normalization” and is not to be confused with the polytropic index.
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where x stands for any spatial variable16. Moreover, it turns out that it will be useful in the
course of calculating dE0 to write C2

n in the form of (5.22).

The density of a BEC- dark matter halo with a singly-quantized vortex in its center is
then given by

r = r0|w|2 =

8
<

:
r0 = rce�a(r2+z2) for r � s ,

r0 C2
n
� r

s
�2

= rce�a(r2+z2) C2
n
� r

s
�2 otherwise ,

(5.25)

with C2
n given by (5.21). Two-dimensional density profiles r/rc for s/s = 0.8 and s/s = 1.8

are shown in figures 5.1 and 5.2. They show that the vortex eats away the density in the
very center of the halo as expected from the vortex wavefunction. Mathematica-12.0 (2019)
plots a white ring at r̃ = s̃ where we find a discontinuity of the overall density profile. This
discontinuity can be understood right away by considering both one-sided limits limr!s± r

approaching r = s from above or below. According to equation (5.25), approaching r at r = s
from below yields rce�a(s2+z2) C2

n and from above yields rce�a(s2+z2). These two expressions
differ by C2

n, which itself is a function of the vortex core radius s. However, since we are
considering global energies, this discontinuity poses no further problem.

Looking at equations (5.9) and (5.10), one can see that we are still missing two ingredients,
namely the gravitational potentials F0 and F1 associated to the unperturbed halo density r0

and the perturbation of the density caused by the vortex r1, respectively.

As discussed in Section (2.3), F0 is originally one part of the solution (y, F) of the time-
independent and unperturbed Schrödinger-Poisson system (2.61) and (2.62), a pair of cou-
pled equations admitting numerical solutions only. This system of equations consists of two
second-order ordinary differential equations and an unknown parameter µ thus requiring
five boundary conditions. The wavefunction and the gravitational potential are required to
be regular at the center and to vanish at infinity. In addition, the value of the wavefunction
at the center is fixed. Our approach in model A included approximating the density of the
unperturbed halo in spherical symmetry by the Gaussian profile in (2.72) thereby bypassing
the numerical solution (y, F) of the SP system. The most consistent way to determine F0,
the gravitational potential associated to our ansatz for the density r0, is now to consider the
second part of the SP system, namely the Poisson equation. Thus, F0 is the solution to the
following boundary value problem in spherical coordinates:

16Have in mind, that this convention does not apply to (4.47).
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Figure 5.1: Density profile r = r0|w|2 in units of rc plotted for a BEC halo configuration with radius
R̃ = 2.576 and vortex core radius s̃ = 0.8 .
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Figure 5.2: Density profile r = r0|w|2 in units of rc plotted for a BEC halo configuration with radius
R̃ = 2.576 and vortex core radius s̃ = 1.8 .
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DF0(rs) = 4pGrce�ar2
s (5.26a)

d
drs

F0(0) = 0 (5.26b)

F0(0) = A, (5.26c)

where A is a constant. Imposing regularity, equation (5.26b), is effectively equivalent to
requiring the absence of force in the centre. The computing system Mathematica-12.0 (2019)
returns

F0(rs) = A +
2Gprc

a
� Grc

⇣
p

a

⌘3/2 Erf(
p

ars)
rs

, (5.27)

as the solution to system (5.26). Requiring a finite configuration, i.e.

lim
rs!•

F0(rs) = 0, (5.28)

sets A = � 2Gprc
a and yields

F0(rs) = �Grc

⇣
p

a

⌘3/2 Erf(
p
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. (5.29)

The density perturbation due to the central singly-quantized vortex,

r1 = r � r0 = m
r0

m
|w|2 � r0

= r0(|w|2 � 1)

=

8
<

:
0 for r � s

r0

⇣
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n
� r

s
�2 � 1

⌘
< 0 otherwise ,

(5.30)

is the source of the gravitational potential F1. Hence,

DF1 =

8
<

:
DF(o)

1 = 0 for r � s

DF(i)
1 = 4pGrce�ar2e�az2

⇣
C2

n
� r

s
�2 � 1

⌘
otherwise .

(5.31)

In fact, obtaining F1 is a much more complicated scheme, since we are looking for two dif-
ferent functions, F(o)

1 and F(i)
1 . The former is the solution to the following Laplace equation,

DF(o)
1 (r, z) = 0 for r � s, (5.32)
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only valid outside the vortex (hence ”(o)”). The general solution to equation (5.32) in cylin-
drical coordinates is

F(o)
1 (r, z) =

C2 � C1p
r2 + z2

, (5.33)

where C1 and C2 are integration constants. We follow the same line of argument as Rindler-
Daller and Shapiro (2012) by imposing that the solution approaches a point-mass potential
for large r at fixed z and for large z at fixed r. This yields

C2 � C1 = �GMsource, (5.34)

where Msource is the mass of the assumed point-source. Basically, the notion is that if we are
far away enough from the source, i.e. the region in which the vortex-perturbation acts, its
gravitational potential field ”feels” like a point-mass potential. However, how can Msource

be determined? It is important to keep in mind, that the perturbed matter density inside the
vortex region (5.30) is negative, which is physically comprehensible since the vortex removes
or rather redistributes the initial matter from the vortex core region. Since this should be
reflected by F(o)

1 , we will set
Msource = �Mi, (5.35)

where Mi is the mass inside the vortex core. In other words, the source of the outer-vortex
potential associated with the perturbation of the density due to the vortex is set to be the
negative vortex core mass. The mass inside the vortex core is given by
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(5.36)

and finally the potential by

F(o)
1 (r, z) =

GMip
r2 + z2

. (5.37)

Finding an analytical inner-vortex solution for F(i)
1 posed a crucial problem to our analysis.

The attempt to arrive at an analytical expression for the solution of

DF(i)
1 = 4pGrce�ar2

e�az2
✓

C2
n

⇣ r
s

⌘2 � 1
◆

for r < s (5.38)

is described in Appendix B. Since the partial differential equation (5.38) does not admit an
analytical solution to our knowledge, we have solved it numerically. The Poisson equation
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in question can be written as
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By multiplying both sides of equation (5.39) with

(4pG)�1
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and introducing the dimensionless variable
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with
K2

n = K2
n[s̃, R̃] (5.42)

given in (5.21). Initially, equation (5.41) has to be solved for F̃(i)
1 inside the vortex region, i.e.

in the region given by
r̃ 2 [0, s̃] and z̃ 2 [�R̃, R̃] .

However, since the density is an even function of z̃, the potential will be too and therefore
we solved the system in the region

r̃ 2 [0, s̃] and z̃ 2 [0, R̃] .

The boundary of that rectangular domain of integration in the (r̃, z̃)-plane consists of four
line segments connecting the four vertices (0, 0), (s̃, 0), (0, R̃), (s̃, R̃). There are two line seg-
ments connecting the vertices (0, 0) and (s̃, 0), and (0, 0) and (0, R̃) respectively, that lie
within the vortex volume. Neumann boundary conditions, setting the normal derivative of
F̃(i)

1 to zero, were imposed on the differential equation along these line segments. Continu-
ity requires that the solution of this partial differential equation matches with the analytical
expression for the outer-vortex solution F(o)

1 (r, z) at the respective line segments connecting
the vertices (s̃, 0) and (s̃, R̃), and (0, R̃) and (s̃, R̃) respectively, i.e. those line segments at the
boundary of the vortex volume. Hence, we impose the Dirichlet boundary condition
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along those two line segments. To arrive at equation (5.44), we have used equations (5.36)
and (5.37) and inserted (5.21). The implementation in Mathematica-12.0 (2019) returned a
dimensionless interpolating function that we denote by F̃s̃, which is plotted for s̃ = 0.8 as a
function of r̃ and z̃ in figure 5.3. However, the calculation of the gravitational energy requires
the dimensional potential

Fs̃ = F̃s̃4pGrcs

2 . (5.45)

Now the way is clear to proceed with the core of the calculation, namely determining dE0.
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Figure 5.3: Contour plot of F̃s̃ as a function of r̃ and z̃. R̃ was set according to (2.74) and s̃ = 0.8

We will consider each term in the equations (5.9) and (5.10) separately.
The quantum-kinetic term,

Z

V

h̄2

2m2 r0|~rw|2dV , (5.46)

obviously requires to calculate the square of the absolute value of the gradient of the vortex
wavefunction w.
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where ê
f

and êr denote the azimuthal and radial unit vectors along the cylindrical coordinate
directions. As a result, the absolute value of the complex vector field ~rw can be written as
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(5.48)

After splitting the axisymmetric integration domain according to (5.15), the quantum-kinetic
term yields
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where the integral function Ex[x] = ExpIntegralEi[x] = � R •
�x

e�t

t dt is given by Mathematica-
12.0 (2019). The quantum-kinetic term in Rindler-Daller and Shapiro (2012), who incorporate
a homogeneous Maclaurin spheroid into their modelling, yields a logarithmic term of the
form ln (y/s), where y is the length of the Maclaurin spheroid’s equatorial semi-axes and s
is the familiar vortex core radius. In fact, (5.49) shows a comparable functional behaviour
which is revealed by the series representation of its factor �Ex[�x2],

� Ex[�x2] = �g +
1
2

ln(� 1
x2 )�
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2

ln(�x2)�
•

Â
k=1

(�x2)k

k k!
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where g is the Euler-Mascheroni constant.

The second term of G0
r0
[w] is a gravitational potential energy term, which on its own

does not include information of the vortex. Hence, this undisturbed contribution to the
gravitational potential energy, which affects the whole sphere equally, was determined by
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integration in spherical coordinates.
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where solution (5.29) was inserted in place of F0. It is important to mention that the inte-
gration domain chosen for the calculation of this energy term is not exactly the same as the
integration domain of all other terms. The reason is that when splitting the axisymmetric
integration domain according to the vortex ansatz, we integrate over a cylinder with height
2R and radius s and in addition over a domain which we can visualize by imagining the
result of shooting this cylinder through the center of a sphere. With increasing s, the sum
of this object’s volume and the cylinder’s volume differs a bit more from the volume of a
sphere with radius R.
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while the term including the gravitational potential F1 associated to the distortion of the
density by the vortex is
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Evaluating the rotational energy (5.10) requires some ground work. First, we have al-
ready established via equation (4.6) that the unperturbed sphere shows no net velocity in the
rotating frame, i.e. ~rS0

0 = 0. Moreover, from (5.47) and

~W = Wêz, (5.54)

~r = rêr + zêz, (5.55)
~W ⇥~r = Wrê

f

(5.56)
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it follows that
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where we have inserted the expressions for rc and C2
n, (2.76) and (5.21) respectively, in order

to arrive at the last equality. In conclusion, the energy difference between the total energy
of the halo-vortex configuration and the unperturbed halo energy E0[y0] in the corotating
frame in units of

WQMLQM =
Nh̄2

mR2 (5.58)

using the characteristic mass introduced in 2.3,
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, (5.59)

amounts to
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As a result, the energy difference in question is a function of several parameters, dark matter
particle and model parameters, i.e.

dE0
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mc
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W
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�
. (5.61)

Understanding the implications of this result, requires some intuition regarding the variables
dE0/(WQMLQM) depends on.

To this aim, it is helpful to pay attention to the total angular momentum of the dark
matter halo L. In fact, there is a necessary minimum condition for the creation of a vortex,
namely

L � LQM , (5.62)

which has to be fulfilled for given parameters. LQM is the minimum angular momentum,
which is required to sustain a vortex line, i.e.

LQM = Nh̄ = MR2WQM . (5.63)

According to Tipler and Mosca (2015) the total angular momentum of a uniformly rotating

63



system whose axis of rotation coincides with an axis of symmetry, is given by

~L = I~W , (5.64)

where I denotes the moment of inertia. I of a continuous body rotating about a specified axis
can be written as

I =
Z

V
~r2
?r(~r)dV , (5.65)

If we decompose the position vector into a component parallel to the axis of rotation and
perpendicular to the axis of rotation ~r?, r? gives the radial distance between each mass
element and the axis of rotation provided that the center of the mass distribution is located
at the origin of the coordinate system. Thus, it follows in spherical coordinates that

r2
? = r2

s sin2
q . (5.66)

The total angular momentum of a uniformly rotating sphere filled with matter distributed
according to our Gaussian density profile (2.72) is then given by

L = W
Z

V
r2

s sin2
q rce�ar2

s r2
s sin qdqdfdrs , (5.67)

with spherical coordinates (rs, q, f). This yields

L = WI = Wrc
8p

3


� R

4a2 e�aR2
(3 + 2aR2) +

3
p

p

8a5/2 Erf
�p

aR
��

. (5.68)

As a result, condition (5.62) together with the expression for rc and LQM = WQM MR2

amounts to

1  W
WQM

l(R̃) , (5.69)

with

l(R̃) = 2
r

2
p


�R̃�1e�R̃2/2(3 + R̃2) +

3
p

p

8
25/2R̃�2Erf

✓
R̃p

2

◆�
. (5.70)

As we have already discussed in Section 2.3, the size of our halo within model A will be set
by R99, thus

R̃ =
R
s

=
R99

s

= 2.575829 ⇡ 2.576 . (5.71)
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Evaluating l(R̃) = l(2.576) in condition (5.69) thus yields a lower bound to the ratio W
WQM

:

1.43564 =
1

l(2.576)
 W

WQM
. (5.72)

In the fuzzy regime, the vortex could in principle take up the whole halo, i.e. s  R or
in dimensionless notation s̃ = s

s

 R̃. Plotting the energy difference due to the vortex for
different particle masses provides more detailed insight. This is where the considerations
on the lower bound on the dark matter particle mass in the fuzzy regime (2.55) come into
play. The implications on dE0/(WQMLQM) can be seen in figure 5.4, where the contributions
of the central singly-quantized vortex to the energy of the system is plotted as a function of
the vortex core radius for different dark matter particle masses m at the lower bound on the
angular velocity 1.43564 = W/WQM.
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Figure 5.4: Vortex energy dE0 in the corotating frame in units of (WQMLQM) plotted as a function of
the vortex core radius s in units of s for different particle masses m/mc. The angular velocity is set to
its minimum value, 1.43564 = W/WQM.

It is evident that at W/WQM = 1.43564 non-interacting BEC- dark matter particles are
not able to form a central vortex in the context of halo-model A for any of the considered
parameter values since dE0/(WQMLQM) > 0 everywhere. Moreover, we can see that with
increasing dark matter particle mass vortex formation is even less energetically favored. The
m-independent asymptotic behaviour for s̃ ! 0 is due to the quantum kinetic energy term
(5.49). The m-dependent gravitational potential energy contribution not including any in-
formation on the vortex in equation (5.51) fans out the individual graphs in figure 5.4 since
this term just adds a m-dependent constant value to the energy. The third term of G0

r0
[w],

which combines the unperturbed gravitational potential with the total density r0|w|2 does
not show a strong dependence on the vortex core size s in the given range. Its effect on the to-
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tal vortex energy dE0/(WQMLQM) amounts to a slight decrease with increasing s. The rough
overall shape and dependence on the vortex core size s is to a great extent the result of the
asymptotic quantum kinetic term and the gravitational potential energy due to the potential
F1. This can be seen in figure 5.5 where the sum,

Z

V

h̄2

2m2 r0|~rw|2dV +
Z

V

r0

2
F1|w|2dV, (5.73)

is plotted in units of (WQMLQM) as a function of s/s for different particle masses m. A com-
parison of figures 5.4 and 5.5 suggests that the absence of the remaining terms yields a slight
horizontal stretching of the energy graphs. The striking dependence of the gravitational po-
tential energy generated by the potential F1 on the vortex core size, see equation (5.53), is
shown in figures (5.6) and (5.7), where the two integrals corresponding to the inner- and
outer-vortex contributions are plotted separately. While the monotonic increase of the inner-
vortex contribution, first integral in (5.53), for halo configurations with a larger and larger
central vortex is easily comprehensible, the s-dependence of the outer-vortex contribution,
second integral in (5.53), is quite striking. In principle, this second integral should decrease
with increasing s̃ since in that case the integration domain decreases given a fixed halo size
R̃. However, the s-dependence of the inner vortex mass (5.36) counteracts this general trend
initially yielding a local maximum.
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Figure 5.5: The sum of the quantum kinetic term (5.49) and the gravitational energy term including
F1 (5.53) in the corotating frame in units of (WQMLQM) plotted as a function of the vortex core radius
s in units of s. The angular velocity is set to its minimum value, 1.43564 = W/WQM.

Last but not least, there is the rotational energy term (5.57) which in units of (WQMLQM)

yields �W/WQM, thereby shifting the energy graphs in figure 5.4 as a whole towards lower
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Figure 5.6: The first integral in expression (5.53) in units of (WQMLQM) plotted as a function of the
vortex core radius s in units of s. The angular velocity is set to its minimum value, 1.43564 = W/WQM.
It is reasonable that the contribution to the vortex gravitational potential energy (5.53) from inside the
vortex increases for halo configurations with a larger central vortex.
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Figure 5.7: The second integral in expression (5.53) in units of (WQMLQM) plotted as a function of the
vortex core radius s in units of s. The angular velocity is set to its minimum value, 1.43564 = W/WQM.
This term shows the most peculiar dependency on the vortex configuration.
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values. Having in mind that vortex formation is energetically favored as soon as one of the
graphs in figure 5.4 crosses the abscissa and that the condition L � LQM only gives a lower
bound to W/WQM, we are required to determine a possible upper bound on W/WQM from
physical arguments in order to draw definite conclusions for model A.

First, we revisit considerations of Section 2.3 regarding the gravitational healing length
xG. We have encountered a notion considering the healing length x in the Thomas-Fermi
regime, where it can be regarded as the distance over which the wave function tends to its
background value when subjected to a localized perturbation. Moreover, it has already been
established that a vortex can in fact be treated as a perturbation of a superfluid. In this sense,
Rindler-Daller and Shapiro (2012) proceed in the course of their vortex energy analysis in the
Thomas-Fermi regime with replacing the vortex core size by x on the assumption that s is
of the same order as the healing length x. Following them, we proceed with the assumption
that the vortex core size in the fuzzy regime is well approximated by the gravitational healing
length

xG =
h̄2

m2GM
=
⇣mc

m

⌘2
R . (5.74)

This yields

s̃ =
s
s

⇡ x̃G =
⇣mc

m

⌘2
R̃ , (5.75)

i.e. for given R̃ = 2.576, the vortex core radius is now a function of the particle mass. The
result of replacing s̃ in expression (5.60) for dE0/(WQMLQM) according to (5.75) altogether is
shown in figure 5.8. This plot highlights the fact that vortex formation is even less energeti-
cally favored for higher dark matter particle masses m.
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Figure 5.8: Vortex energy dE0 in the corotating frame in units of (WQMLQM) plotted as a function of
the particle mass m/mc. The angular velocity is set to its minimum value, 1.43564 = W/WQM.

68



From a dynamical point of view considering cosmological simulations, the spin-parameter
(4.1) (mentioned at the beginning of Chapter 4) provides means to quantify the degree of ro-
tational support of a halo given its angular momentum L. In our case, we will use l in order
to derive meaningful angular velocities for our BEC-DM halo from the typical range of val-
ues for the spin-parameter, l 2 [0.01, 0.1]. To this aim, we will express l as a function of
the angular velocity and the dark matter particle mass. The following calculation considers
a rotating BEC- dark matter halo prior to vortex formation. In other words, the derivation of
l = l(W, m) does not involve the vortex ansatz (5.13) or any perturbed quantities, but only
unperturbed global properties of the halo such as L = W I from equation (5.68) and the total
energy in the rest frame in the fuzzy regime,

E = K + W , (5.76)

with

K ⌘
Z

V

h̄2

2m
|ry0|2d3r (5.77)

=
Z

V

h̄2

2m2 (r
p

r0)
2d3r +

Z

V

r0

2
~v2d3r ⌘ KQ + T, (5.78)

and
W ⌘

Z

V

r0

2
F0d3r . (5.79)

Given the Gaussian approximation for the density profile of the BEC halo (2.72), the quantum
kinetic energy term KQ amounts to

KQ =
h̄2

2m2 rca24 p


� R

4a2 exp(�aR2)(3 + 2aR2) +
3
p

p

8a5/2 Erf(
p

aR)
�

. (5.80)

The rotational kinetic energy incorporates the square of the bulk velocity of the unperturbed
halo in the rest frame, i.e.

~v2 = (~W ⇥~r) · (~W ⇥~r)

= W2r2 � (~W ·~r)2

= W2~r 2
? . (5.81)

This yields

T = W2 1
2

Z

V
r0r2

?dV

=
W2

2
I , (5.82)
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where the moment of inertia I, identified by expression (5.65), is given in (5.68). And finally,
W is given by (5.51).

As a result, we get for the spin-parameter

l =
L|E|1/2

GM5/2

=
WI

GM5/2

�����
h̄2

4m2 a23I +
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2
I � 2pr

2
c G
⇣

p
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⌘3/2 Z R
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e�ar2
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ars)rsdrs

�����
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. (5.83)

The square of l can in turn be written as

l
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where
W2

grav :=
3GM
4R3 (5.85)

denotes the square of the gravitational angular velocity,
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r̃sdr̃s (5.86)

the dimensionless quantity depending on R̃ and

B = � R
4a2 e�aR2

(3 + 2aR2) +
3
p
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8a5/2 Erf
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�

(5.87)

an expression with the dimension Length5. Inserting

WQM

Wgrav
=

h̄
m

2p
3GMR

=
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m
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m
, (5.88)

and setting

W̄ =
W

WQM
(5.89)

finally yields
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Hence, we see that l

2 is a cumbersome function of (W̄, R̃, m/mc). Since the final goal is to
derive values for W from given l-values in the range [0.01, 0.1] and isolating W̄ in equation
(5.90) is not possible, we calculate the roots of equation (5.90) for given l

2 and m/mc. This
approach is illustrated in figure 5.9 which shows that since equation (5.90) is a non-linear
function in W̄, several values for W̄ correspond to one l-value. We deal with this degeneracy
by setting W̄ to the highest of the three corresponding roots for every l and m/mc. In this
way, if vortex formation is not energetically favored given that choice for W̄, it is safe to
conclude that vortex formation is also not favored for any of the other possibilities due to the
degeneracy. It is important to mention at this point that the angular velocity W corresponding
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Figure 5.9: l

2 plotted as a function of W/WQM for R̃ = 2.576 and m/mc = 3p. The magenta curve
depicts the right-hand side of equation (5.90). For l

2 = 0.01 (black constant line), equation (5.90)
returns three roots which lie at the crossing points of the two curves.

to a given l now depends on the particle mass m. In this way, we calculate the contributions
of the central singly-quantized vortex to the energy of the system, dE0/(WQMLQM), again
as a function of m/mc by setting s̃ = x̃G, fixing the value of l

2 and calculating W̄ for every
m/mc in the considered range. Figures 5.10 and 5.11 show the result of this procedure for the
l-values (0.01, 0.05, 0.1, 0.5, 30). One can immediately see that dE0/(WQMLQM) >> 0 for any
considered BEC-DM halo configuration. Even the graphs corresponding to l-values which
lie far away from the range suggested by cosmological N-body simulations, i.e. l = 0.5 or
even l = 30 (for illustrative purposes), come nowhere near the abscissa.
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Figure 5.10: Vortex energy dE0 in the corotating frame in units of (WQMLQM) plotted as a function of
the particle mass m/mc for different spin-parameter values l. The angular velocity is set according
to equation (5.90) for fixed l and m/mc.
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Figure 5.11: A zoom-in of figure 5.10.
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5.2 Model B: The irrotational Riemann-S ellipsoid

So far, we have considered spherical BEC- dark matter halos in the context of model A and
conclude that due to our energy argument vortex formation is not favored in the case of this
setup. However, model A, incorporating the Gaussian sphere, can be refined and further
developed considering two aspects in particular; the spherical shape and the simple uniform
rotation. As we have already mentioned in Chapter 4 and described in detail in Section
4.1, Lai et al. (1993) provide us with the compressible generalization of a classical figure of
rotation perfectly suited for our purpose; the compressible irrotational Riemann-S ellipsoid.

Dark matter halos presumably acquire angular momentum by tidal torques caused by
large-scale structure in early phases of their collapse. As a result, they will attain non-spherical
equilibrium configurations. Thus, an improved analysis of our BEC-DM halo shall incorpo-
rate these notions, inspired by the approach of Rindler-Daller and Shapiro (2012). In that
paper, BEC-DM halos in the Thomas-Fermi regime prior to vortex formation were modelled
as (n=1)-polytropic, irrotational Riemann-S ellipsoids. In this work, we will model BEC-DM
halos in the fuzzy regime by using again the irrotational Riemann-S ellipsoid. However, this
time its density profile is given by an (n=2)-polytrope, based upon the analysis in Section 2.3.
In other words, the initially vortex-free BEC- dark matter halo will have all the properties of
an (n = 2) irrotational Riemann-S ellipsoid. The attribute ”irrotational” leads us directly to
the second reason why halo model B represents a refinement of model A. While the Gaus-
sian sphere model just considered uniform rotation, the defining internal velocity field of
Riemann-S ellipsoids given in (4.29) enabling the irrotational sequence of the Riemann-S el-
lipsoids allows us to account for the irrotationality of the velocity fields of superfluids and
Bose-Einstein condensates.

However, by now we know that Bose-Einstein condensates are not irrotational wherever
the phase function diverges, i.e. wherever there is a vortex line. As a result, this Section is
dedicated to pursue the question of whether vortex formation in a rotating BEC- dark matter
halo in the fuzzy regime, which will initially be modeled as a Riemann-S ellipsoid, is also
energetically disfavored as concluded in the previous Section for model A. To this aim, we
will apply an energy argument, which is similar but not equivalent to the approach described
in the previous Section and has been established by Rindler-Daller and Shapiro (2012).

Let us consider some unspecified dynamical process in the course of which a Bose-
Einstein condensed halo, described by the Gross-Pitaevskii-Poisson framework in the fuzzy
regime, creates one singly-charged vortex in its center. The actual occurrence of this vortex
creation requires that the process in question transforms the initial state of the halo into a
final state with lower total energy compared to the initial state. As a result, we are going to
look at two ”snapshots” of that transformation, namely the initial and the final configuration,
calculate their total energies and compare those for a given set of parameter ranges.
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The underlying halo will be modeled by an irrotational Riemann-S ellipsoid along the
lines of Section 4.1. In the context of model B, we will assume that the process taking the
halo from a vortex-free configuration to a configuration with one central vortex allows this
vortex in question to take up all of the angular momentum of the system once it has formed.
In this way, the source for the ellipsoidal shape of the halo vanishes thereby allowing us
to draw on the Gaussian sphere as a model for the second snapshot or final state in other
words. In the course of the following calculations, it was important to distinguish between
quantities and global properties of the initial Riemann-S ellipsoid, which will be denoted by
the index R, and the final Gaussian sphere, denoted by the index G.

We start the analysis by considering the total energy of the vortex-free initial configura-
tion in the rest frame which can be written as

ER = KQ + T + W , (5.91)

where T and W are given by (4.32) and (4.26) in Section 4.1, respectively. KQ on the other
hand has no classical counterpart and is therefore absent in the equilibrium figure studies
of Chandrasekhar (1969) or Lai et al. (1993). However, the internal energy of a Riemann-S
ellipsoid is given by (4.12) and can be written as

U = k1Kpr

1/n
c,R M , (5.92)

due to the ellipsoidal approximation, where rc,R is the central density of the initial Riemann-
S ellipsoid incorporating a polytropic density profile. The following argumentation allows
us to derive an expression for the quantum-kinetic energy KQ of a Bose-Einstein condensed
Riemann-S ellipsoid from (5.92).

The studies of Lai et al. (1993) on ellipsoidal equilibrium figures come with the huge
advantage of presenting global energy expressions provided that the density and pressure
profiles of the figures in question are those of polytropes of index n and polytropic constant
Kp. At this point, the second density profile to approximate the actual ”soliton” solution of
the Gross-Pitaevskii-Poisson system in the fuzzy regime, the (n = 2)-polytropic profile,

r(r) = rcq(x)2, x = r

 
h̄2

8pGm2
rc

!�1/4

, (5.93)

established in Section 2.3 comes into play. This model allows us to apply the results of Lai
et al. (1993) in order to find the total energy of our initial halo configuration. According to
considerations of Chavanis (2019a), associating the (n = 2)-polytropic profile with our BEC
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halo requires the polytropic constant to be identified as

Kp =

 
2pGh̄2

9m2

!1/2

. (5.94)

In addition, we know from Chavanis (2019a) that the internal energy of a sphere arising from
a polytropic pressure is related to the quantum kinetic energy via

KQ =
3
2

U (5.95)

given the density profile (5.93). As a consequence, since according to Lai et al. (1993)’s el-
lipsoidal approximation the total internal energy of a rotating polytrope is identical to that
of a spherical one with same central density, it follows that the quantum-kinetic energy of a
Bose-Einstein condensed Riemann-S ellipsoid can be written as

KQ =
3
2

k1Kpr

1/2
c,R M , (5.96)

with Kp given by (5.94) and n = 2. Before we can continue with the calculation of the
total energy ER, the current analysis requires to establish relations between several quantities
of the initial and final state of the halo. While the underlying initial halo configuration is
modeled as an irrotational (n = 2) Riemann-S ellipsoid whose respective energy terms Lai
et al. (1993) derive from initially spherical polytropes modified by rotation, we set the final
halo configuration to be a sphere - a Gaussian sphere not a polytrope. However, Lai et al.
(1993) provide us with a relation between the mean radius of the Riemann-S ellipsoid RR =

(a1a2a3)1/3 and the radius of the non-rotating, spherical equilibrium polytrope, R0, with same
mass M, constant Kp and index n:

RR = R0


f
✓

1 � 2
T
|W|

◆��n/(3�n)
, (5.97)

where f is the dimensionless factor defined in (4.19). Now, the process which we are con-
sidering shall transform the system in such a way that it settles with the radius of the final
Gaussian configuration, RG, which we will in turn associate with R0. In this sense, we heavily
rely on the fact that the density profile of a BEC-DM halo in the fuzzy limit can be approxi-
mated by both, the Gaussian profile and the (n = 2) polytropic profile. Thus, it follows for
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polytropic index n = 2 that

RR = R0


f
✓

1 � 2
T
|W|

◆��2/(3�2)

!
= RG g(e1, e2)

�2 , (5.98)

where g(e1, e2) :=
h

f (e1, e2)
⇣

1 � 2 T
|W|
⌘i

since the dimensionless factor f can be written as a
function of the axis ratios or equally as a function of the eccentricities of the ellipsoid,

e1 =
q

1 � (a2/a1)2 and e2 =
q

1 � (a3/a1)2 . (5.99)

Moreover, the radius of the Gaussian final state RG will again be set to R99 due to the fact that
the Gaussian profile does not offer a compact support. What about the central densities of
the initial and final configurations? Given the central density rc,s of the spherical polytrope
with radius R0, we have the relation between the central and mean density of a polytrope,

r̄s =
3M

4pR3
0
= 3rc,s

|q01|
x1

, (5.100)

see Appendix A. The analogue for the polytropic Riemann ellipsoid can be written as

r̄R =
3M

4pR3
R
= 3rc,R

|q01|
x1

. (5.101)

The BEC halo in question is considered to be an isolated system, i.e. a closed box in which
the total mass M is conserved. Thus, dividing equation (5.101) by equation (5.100) yields

r̄R = r̄sg(e1, e2)
6 and rc,R = rc,sg(e1, e2)

6 , (5.102)

where we have used relation (5.98). In the context of this model, the vortex-free Riemann-S
ellipsoid is sent to a Gaussian sphere with vortex. Hence, we set

rc,s
!
= rc,G =

M
s

3(2p)3/2 , (5.103)

even though unlike the spherical polytrope the Gaussian profile has no compact support, i.e.
rc,G is the central density of an infinitely large system which we cut off at R99. Once more,
we rely on the two density toy models to be equally appropriate and closely related. As a
result, the total internal energy of the Riemann-S ellipsoid can be written as

U = k1
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where we have used (5.94) and k1 is given in (4.14) and has to be evaluated for n = 2. Con-
sequently, the quantum-kinetic energy of the Bose-Einstein condensed Riemann-S ellipsoid
in units of WQM,RLQM is given by

KQ

WQM,RLQM
=

3
2
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(2p)1/2

3
Wgrav,R
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r
4
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=
k1

2(2p)1/4
m

mc,R
R̃3/2

G , (5.106)

where we have used
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By means of the above relations the gravitational potential energy (4.26) for (n = 2) in units
of WQM,RLQM amounts to

W
WQM,RLQM

= �W2
grav,R M4R2

R

3
f (e1, e2)

1
WQM,RNh̄

(5.112)

= �
✓

m
mc,R

◆2
f (e1, e2) . (5.113)

The rotational kinetic energy (4.32) on the other hand gives
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where the value for k2 can be found in Appendix A and the definition of the dimensionless
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factor h(e1) arises from setting fR = �2 and combining the relations (4.1) and (4.30):
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The vortex-free irrotational Riemann-S ellipsoid is sent to a final state that consists of a Gaus-
sian sphere hosting a central singly-charged vortex. In other words, the final state corre-
sponds to our halo model A. Thus, the total energy in the corotating frame of the final config-
uration amounts to

E0
G = E0

G[y0] + G0
r0
[w]� R0

r0
[w] = E0

G[y0] + dE0
G , (5.117)

where the total energy of the vortex-free system is given by (5.8) and the energy terms asso-
ciated to the vortex by (5.9) and (5.10). Since ~rS0

0 vanishes, E0
G[y0] is given by the sum of the

two expressions from Section 5.1, (5.80) and (5.51),
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dE0
G is given by equation (5.60) except for the fact that equation (5.60) already includes a di-

vision by WQM,GLQM. However, in order to compare the total energies of the initial and final
state on an equal footing, we need to express E0

G[y0] as well as dE0
G in units of WQM,RLQM,

which due to WQM,R = g(e1, e2)4WQM,G yields
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where dE0
G

WQM,G LQM
is given in (5.60), and
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The difference in total energy between the initial vortex-free Riemann-S ellipsoidal state and
the final spherical state with a vortex in the center dE0

RG in the frame rotating with angular
velocity W can be written as

dE0
RG = E0

G � E0
R = (E0

G[y0] + dE0
G)� (ER � WL) , (5.121)
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where we are still missing an accurate expression for WL in units of WQM,RLQM. Combin-
ing the relations (4.31), (4.33) and (5.116), the total angular momentum of an irrotational
Riemann-S ellipsoid rotating with angular velocity W amounts to
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As a result, the total angular momentum in terms of LQM yields
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Hence, (the polytropic index n being set to 2) the angular momentum in units of LQM is just
a function of the dark matter particle mass m/mc,R for fixed eccentricities, i.e. a fixed halo
geometry. In other words, given a halo shape, requiring the amount of angular momentum
to be enough in order to sustain a vortex sets a condition on the particle mass. From (5.123)
it follows
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WQM,RLQM

= W̃2 k2

5
m2

m2
c,G

3
4

g(e1, e2)
�2 e4

1
(1 � e2

1)
1/3(1 � e2

2)
1/3(2 � e2

1)
, (5.124)

with
W̃ = W/Wgrav,R . (5.125)

In summary, the dimensionless energy difference in units of WQM,RLQM between the initial
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state and final state amounts to
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with the vortex-carrying part dE0
G/(WQM,GLQM)[m/mc,G, s̃, R̃G, W/WQM,G] given by (5.60)

and
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In order to understand the implications of dE0
RG/(WQM,RLQM), we are going to gradually

incorporate the framework built by Lai et al. (1993) constructing the equilibrium sequence of
Riemann-S ellipsoids, which has been introduced in Section 4.1.

First of all, the gravitational angular velocity W̃ cannot be independently chosen within
this framework but is directly coupled to the geometry of the ellipsoid, in other words to the
axis ratios a2/a1 and a3/a1, for given polytropic index n and ratio fR = �2 via (see (4.51))

W̃ ⌘ W
Wgrav,R
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✓
2B12
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◆1/2 ✓
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(1 + (a2/a1)2)2

◆�1/2

. (5.129)

Hence, a visualization of the energy difference’s dependence on the vortex core radius s only
requires a choice of axis ratios and to set R̃G = R99/s = 2.576. This can be seen in figure
5.12, where a2/a1 = 0.7981 and a3/a1 = 0.8836. At this stage this prolate shape might seem
like a random choice. However, we will go into detail on how the spin-parameter l fixes the
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halo’s geometry later.
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Figure 5.12: Difference in energy dE0
RG in the rotating frame in units of (WQM,RLQM) (see (5.126))

plotted as a function of the vortex core radius s in units of s for different particle masses m/mc,G. The
gravitational angular velocity is set according to equation (5.129) for given polytropic index n = 2,
ratio fR = �2 and axis ratios a2/a1 = 0.7981 and a3/a1 = 0.8836.

Obviously, figure 5.12 shows the same functional shape as figure 5.4 in the previous Sec-
tion since the only term in equation (5.126) which depends on s is our result (5.60) of model
A. The far more interesting implication of figure 5.12 is that dE0

RG/(WQM,RLQM) > 0 and
therefore E0

G > E0
R for every considered choice of halo parameters. We can thus conclude

that a process transforming a vortex-free Riemann-S ellipsoid into a Gaussian sphere with a
central vortex, which corresponds to our model A, would not be energetically favored.

The fact that vortex formation as part of such a process is even less energetically favored
for higher dark matter particle masses is clearly visible in figure 5.13, where the vortex core
size is assumed to be of the same order as the gravitational healing length xG and thus a
function of the particle mass for given R̃G = 2.576:

s̃ =
s
s

⇡ x̃G =
⇣mc,G

m

⌘2
R̃G . (5.130)

Lai et al. (1993) construct an equilibrium sequence of Riemann-S ellipsoids by starting
with the equilibrium conditions (4.42) and (4.43) which eventually yield a relation between
the axis ratios a2/a1 and a3/a1 along a given sequence with fixed fR. This relation, given in
(4.50) along the irrotational sequence ( fR = �2), carries an important implication with it. For
given fR and one axis ratio, we can immediately determine the second axis ratio, thereby the
angular velocity W̃ and the angular frequency of the internal superposed velocity field L of
our ellipsoidal equilibrium figure, in other words a2/a1 determines the entire geometry and
in the further course even global quantities like the total angular momentum (see Section 5.2

81



6.5 7.0 7.5 8.0 8.5 9.0
0

200

400

600

800

1000

1200

1400

m/m G

δE'RG
LQMΩQM,

Figure 5.13: Difference in energy dE0
RG in the rotating frame in units of (WQM,RLQM) (see (5.126))

plotted as a function of the dark matter particle mass m/mc,G by means of (5.130). The gravitational
angular velocity is set according to equation (5.129) for given polytropic index n = 2, ratio fR = �2
and axis ratios a2/a1 = 0.7981 and a3/a1 = 0.8836.

of Lai et al. (1993)). However, Rindler-Daller and Shapiro (2012) show that specifying the
spin-parameter l allows us even to determine both axis ratios self-consistently by solving a
system of equations consisting of relation (4.50) and the following expression for l in the
case of an Riemann-S ellipsoid. We can write l as
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follows from inserting (4.26) and (4.31). The virial relation (4.44) yields the equilibrium en-
ergy (4.52). A division of Eeq by the gravitational potential energy eventually amounts to

����
Eeq

W

����
1/2

=

✓
1
2
(1 + t)

◆1/2
, (5.133)

where t := T
|W| . Rewriting and multiplying the expressions (5.132) and (5.133) yields
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In order to arrive at equations (5.134) and (5.137),
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grav,R =
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3GM
, (5.138)

the relation (5.116), the eccentricities e1 =
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were used along the way.

Solving the system of equations (4.50) and (5.134) given the typical range of values for
the spin-parameter, l 2 [0.01, 0.1], in addition to values beyond that range, l 2 [0.1, 0.3],
yields the corresponding axis ratios and values for several dimensionless global quantities
and properties of the Riemann-S ellipsoid which only depend on the ratios a2/a1 and a3/a1

shown in table 5.1. The numerical values of the dimensionless quantities ,
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which are functions of the eccentricities or equally axis ratios, W̃ and k2, were computed
by Mathematica-12.0 (2019) once the system of equations (4.50) and (5.134) was solved for
a2/a1 and a3/a1. From table 5.1 it is evident that (n = 2)-polytropic Riemann-S ellipsoids are
prolate figures. Figures 5.14 and 5.15 show how the geometry of our BEC- dark matter halo in
question is influenced by the spin-parameter l and the theoretical framework of Riemann-S
ellipsoids by the system of equations (4.50) and (5.134).

Bringing the energy analysis back into focus, we can see in figure 5.16 the energy differ-
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l e1 e2 a2/a1 a3/a1 t
0.01 0.60246 0.46823 0.79815 0.88361 3.411 · 10�3

0.03 0.73601 0.60587 0.67697 0.79556 1.0328 · 10�2

0.05 0.79654 0.67861 0.60458 0.73450 1.7337 · 10�2

0.1 0.87098 0.78203 0.49132 0.62324 3.5048 · 10�2

0.2 0.93067 0.88056 0.36585 0.47394 7.0077 · 10�2

0.3 0.95701 0.92861 0.29005 0.37107 1.0326 · 10�1

l W̃ L̃ L̃2 |W̃| RR/R0
0.01 0.55513 0.54131 1.9999 · 10�4 0.99661 1.0207
0.03 0.55644 0.51663 1.7999 · 10�3 0.98981 1.0642
0.05 0.55659 0.49287 4.9998 · 10�3 0.98299 1.1106
0.1 0.55266 0.43746 2.0007 · 10�2 0.96580 1.2398
0.2 0.53113 0.34275 8.0359 · 10�2 0.93034 1.5627
0.3 0.49831 0.26663 1.8267 · 10�1 0.89313 1.9911

Table 5.1: Parameters (defined in (5.140)-(5.143)) of the irrotational, (n = 2)-polytropic
Riemann-S ellipsoid as a function of l computed by means of Mathematica-12.0 (2019).

Figure 5.14: Irrotational Riemann-S ellipsoid rotating about the z-axis with a1 = 1 and l = 0.05.
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Figure 5.15: Irrotational Riemann-S ellipsoid rotating about the z-axis with a1 = 1 and l = 0.3.

ence dE0
RG/(WQM,RLQM) plotted as a function of the particle mass m along the lines of figure

5.13. However, now the axis-ratios and thus the energy difference are fixed by the spin-
parameter l. In fact, thanks to the total angular momentum in terms of LQM given in (5.123),
we are given the opportunity to constrain the transition from a Bose-Einstein condensed
Riemann-S ellipsoidal halo into a Gaussian sphere with one central vortex even further by
imposing L !

= LQM, i.e. the constraint of having exactly the minimum amount of angular
momentum to sustain one vortex. Meeting this condition implies

m
mc,G

!
= g(e1, e2)
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e4
1

(1 � e2
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1/3(2 � e2
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!�1

, (5.144)

i.e. the dark matter particle mass is now a function of the halo geometry. In other words, a
fixed halo spinning given by l together with the constraint that the halo system shall possess
a total angular momentum of exactly LQM during the entire transition, results in condition
(5.144) on the particle mass. In figure 5.17 one can see the condition on the particle mass
as a function of the spin-parameter l for three different fixed total angular momenta L 2
[LQM, 10LQM, 100LQM]. This logarithmically scaled plot shows that either higher values for
l or lower total angular momenta imply lower dark matter particle masses. Finally, it is
evident that setting the total angular momentum to LQM has implications on the energy
difference dE0

RG/(WQM,RLQM) between the initial and final state of the transition considered
in halo model B. We have seen that requiring L !

= LQM essentially fixes the particle mass
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Figure 5.16: Difference in energy dE0
RG in the rotating frame in units of (WQM,RLQM) (see (5.126))

plotted as a function of the dark matter particle mass m/mc,G by means of (5.130). The gravitational
angular velocity is set according to equation (5.129) for given polytropic index n = 2, ratio fR = �2
and the axis ratios are listed in table 5.1 for l = 0.1.
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Figure 5.17: Particle mass m in units of mc,G as a function of the spin-parameter l for three different
fixed total angular momenta L 2 [LQM, 10LQM, 100LQM].
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for given l or equally for given axis ratios of the halo. Hence, this condition can only be
met at one single point when considering the energy difference as a function of particle
mass like in figure 5.16. As a result, in the case of L !

= LQM fixing the halo geometry by l

immediately yields one value for dE0
RG/(WQM,RLQM). This can be seen in figure 5.18, where

dE0
RG/(WQM,RLQM) and m/mc,G are plotted as a function of l. We can see that although the

energy difference decreases with increasing spin-parameter, it is far away from becoming
negative within the l-range given by cosmological simulations and thus vortex formation in
the fuzzy regime is also not favored in the context of halo model B.
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Figure 5.18: Particle mass m in units of mc,G and the energy difference dE0
RG/(WQM,RLQM) as a

function of the spin-parameter l for fixed total angular momentum L = LQM.
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Chapter 6

Conclusions and discussion

We have examined gravitationally bound structures made up of macroscopically condensed
ultra-light dark matter particles. These structures are referred to as Bose-Einstein condensed
dark matter halos whose N particles may be described by one single scalar wavefunction.
These bound systems obey the Gross-Pitaevskii-Poisson system of equations which can be
written in the form of quantum-mechanical fluid equations allowing for two distinct regimes.
This thesis’ analysis has a focus on the so-called fuzzy regime in which merely the quantum
pressure arising from the uncertainty principle acts against gravity. Here, we encounter
a regime in which all length scales and contributions to the total energy are comparable,
making it a challenging working ground for (semi-)analytical considerations. Bose-Einstein
condensation of astronomically relevant extent requires the de-Broglie wavelength to be
of same order as the system’s size. In addition, perturbations of the system due to its
quantum nature can also be of same order as the system’s size, which yields m ⇡ mc =

0.923 ⇥ 10�25(R/100kpc)�1/2(M/1012M�)�1/2.

However, the main objective of our analysis has been to study the occurrence of the
distinct phenomenology rotating laboratory BECs and hence BEC- dark matter halos may
exhibit. In fact, the Gross-Pitaevskii equation allows for vortex solutions describing mini-
tornadoes in the fluid where the density goes to zero and the velocity diverges. These vortex
lines are manifestations of the quantized vorticity in superfluids and the building blocks
of quantum turbulence. To be more precise, we have pursued the question whether the
formation of a single central vortex in a BEC-DM halo in equilibrium, whose degree of rota-
tional support is given by the common spin-parameter values of cosmological simulations,
is energetically favored in the context of two halo models. To this aim, we took two valid ap-
proximations to the density profile of the ”soliton” groundstate of the Schrödinger-Poisson
system, a Gaussian wave-packet and an (n = 2) polytrope, and paired them with two dif-
ferent halo geometries, a sphere and an irrotational Riemann-S ellipsoid respectively. As a
result of our two energy arguments, we come to the conclusion that vortex formation in the
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fuzzy regime is not energetically favored, neither in the case of our spherical setup in halo
model A, nor in the case of the ellipsoidal geometry of halo model B. We therefore conclude
that vortices are not to be expected for virialized gravitationally bound groundstate BEC-
DM halos in the fuzzy regime, regardless of the choice of parameters we have considered.
Moreover, we have shown in the context of both models that vortex formation is even less
favored for higher dark matter particle masses.

Current findings, most notably coming from the realm of numerical simulations, are in
striking accordance with our predictions regarding several aspects that we will dedicate the
remaining Chapter to. These numerical simulations investigate fuzzy dark matter whose
dynamics is governed by the time-dependent Schrödinger-Poisson system,

ih̄
∂y

∂t
= � h̄2

2m
Dy + mFy, (6.1)

DF = 4pGm|y|2 . (6.2)

At this point, it is important to highlight that what is termed ”halo” in the context of our
analysis corresponds to what is referred to as the ”halo cores” of final virialized halos in
papers on merger simulations of ”primordial solitons”.

Schwabe et al. (2016) simulate the dynamics of so-called solitons, i.e. ground state so-
lutions of the Schrödinger-Poisson system, predicted to constitute the cores of dark matter
halos in the context of fuzzy dark matter. To be more precise, they investigate binary and
multiple mergers of up to 13 members made up of dark matter particles with masses of
2.5 ⇥ 10�22 eV. One generic signature of fuzzy dark matter is the existence of these compact
soliton cores which are embedded in a halo structure with a density profile whose outer part
declines like NFW density profiles. They study the final structure of these cores within a
simplified setup in which just the two isolated cores merge. This is based on the time scales
of major mergers governed by dynamical friction being much larger than the gravitational
time scales of the solitonic cores. They implemented the Schrödinger equation in comoving
coordinates and considered a grid size of 5123 cells. Their three-dimensional simulation is
based on a 4th-order Runge-Kutta finite-difference solver on this grid.

Due to the scaling symmetry of the Schrödinger-Poisson system (2.66) the initial con-
dition of their binary collisions is given by the mass ratio µ, the core distance, the relative
velocity, the total mass M, the phase difference and the angular momentum perpendicular to
the orbital plane. Their runs can be divided into two different regimes; unbound cores with
positive total energy, i.e. high relative velocity, and bound cores with negative total energy,
i.e. zero relative velocity. Unbound cores pass through each other, superpose while trans-
ferring quantum-kinetic energy KQ (2.29) to bulk kinetic energy T and back 17 and remain

17In the context of simulations, the quantum kinetic energy KQ is often referred to as gradient energy.
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to a great extent undisturbed. The relative motion of the cores is stored in their interfer-
ence pattern during collision which results in the energy transformation. Bound systems
show essentially different dynamics and evolution of global quantities. Two bound solitonic
cores merge rapidly and the emerging new core relaxes via gravitational cooling where en-
ergy and mass are carried away towards the grid boundaries and eventually absorbed by an
imaginary potential, i.e. a sponge Schwabe et al. (2016) artificially add to the time-dependent
Schrödinger equation governing the evolution of the system. Their representative runs show
that the process of merging takes roughly one free-fall time after which a new excited soliton
core forms. Their main result is that the evolution of the new core mass and the fraction of
the emerging core mass Mc to the sum of the two initial core masses is nearly independent
of parameters like the binary angular momentum, initial phase difference between the cores
or their initial distance but rather depends weakly on µ, the total energy E and total initial
mass M. Their runs follow power laws of the form

Mc/M µ
✓ |E|

M3

◆1/x
, (6.3)

with x = 4 or 6 depending on the specific run parameter setting. It appears that the mass
of the newly-formed core comprises ⇡ 70 % of the sum of the masses of the progenitors.
Schwabe et al. (2016) find that the final solitonic cores of their simulations are well fit by the
soliton profile of Schive et al. (2014b),

rsoliton ⇡ r0

"
1 + 0.091

✓
r
rc

◆2
#�8

, (6.4)

with rc denoting the solitonic core radius and r0 the central density (cf. equation (2.71)),
while the density of the surrounding envelope declines roughly as r�3, as is the case for
NFW profiles. These features are already seen in binary mergers, not only in multimerger
simulations.

Schwabe et al. (2016) find that their emerging solitonic cores are rotating ellipsoids, if the
system is initialized with non-zero total angular momentum. In fact, the respective volume
rendered images and velocity fields of the cores strongly indicate that they resemble irrota-
tional Riemann-S ellipsoids, as the authors point out. The same conclusion was drawn by
Edwards et al. (2018). While the older work by Rindler-Daller and Shapiro (2012) had intro-
duced Riemann-S ellipsoids, their study was limited to the Thomas-Fermi regime. Now, the
work in this thesis has firmly shown that irrotational Riemann-S ellipoids can be used in the
fuzzy regime, as well. In this regard, the compressible irrotational Riemann-S ellipsoid incor-
porated into our halo model B constitutes a valid framework in order to provide analytical
counterparts for the formed solitonic halo cores of BEC-DM halo formation simulations.
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Mocz et al. (2017) present a set of 100 numerical simulations in which a group consisting
of 4 to 32 primordial solitonic cores merge and form one final halo whose core is well-fitted
by the density profile introduced by Schive et al. (2014b). However, in contrast to the simula-
tions by Schive et al. (2014b) and Schwabe et al. (2016), they specifically include the study of
quantum turbulence exhibited by the final halos which is particularly interesting to compare
with our results from Section 5. Their merger simulations, aimed at studying small-scale phe-
nomena of Bose-Einstein condensed dark matter in a cosmological context, obviously rely
on evolution under the time-dependent Schrödinger-Poisson system. As a consequence, the
theoretical background of their numerical simulations include the Madelung transformation,
the total energy E = KQ + T + W (see (2.29) and (2.30)), the virial theorem, 0 = 2hKi+ hWi,
where hi denotes the time average and the system’s total net angular momentum ~L set to
zero. They mention that if one allows for the condensate’s wave function to depend on the
position vector~r, i.e. in general S = S(~r, t), then spatial wave interference could seed tur-
bulence. Notice that we do indeed consider S = S(~r) in the case of our vortex ansatz (5.13)
and (5.14), but that one single vortex does not fall into the category of quantum turbulence.
In contrast to the 4th-order Runge-Kutta finite-difference solver of Schwabe et al. (2016), the
method of Mocz et al. (2017) is a second-order pseudo-spectral solver employing a ”kick-
drift-kick” technique, which they describe in their Subsection 3.1. Moreover, while Schwabe
et al. (2016) employ the sponge at their box boundaries, Mocz et al. (2017) choose periodic
boundary conditions which allow wave reflection at the boundaries and therefore the total
energy E as well as the total mass M are conserved during their simulations of bound sys-
tems. Therefore Mocz et al. (2017) are closer to the cosmological case whereas Schwabe et al.
(2016)’s results are more comparable to ”isolated” merger systems in a static background.

Given the soliton fit (6.4), Mocz et al. (2017) find that the break between the soliton profile
and the outer NFW-like profile within the final virialized BEC-DM halo occurs universally
at ⇡ 3.5rc, which approximately corresponds to the soliton radius. Moreover, they find that
the ratio between the soliton core mass Mc and the total mass traces the energy of the system
since according to their analysis

Mc

M
µ
✓ |E|

M3

◆1/3

. (6.5)

However, most interesting in the context of our analysis are their results on turbulence and
vortex lines exhibited by the final halo. By analysing the energy power spectra Ek, the radial
energy density profiles and 2D slices of |y| of their 100 simulations, Mocz et al. (2017) con-
clude the following. In general, they see sustained chaotic motion, granules and turbulence
everywhere in the domain except for the central solitonic core. The stable soliton core stays
free of substructure and disruption from turbulence. The radial energy density profiles show
that the quantum gradient energy supports the structure up to 2.7rc. Beyond that radius all
three energy density contributions become comparable yielding a characteristic signature of
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turbulence, equipartition. The energy power spectra lack power for small k (large scales),
show a mode which displays most of the turbulence and follow a k�1.1 power law for large
k (small scales). This resembles the spectrum of thermally-driven and hence isotropic turbu-
lence of Gross-Pitaevskii fluids, see Section 3.4, where small modes dominate. Mocz et al.
(2017) show that the power spectra of their simulations peak at 2p/kpeak ⇡ 7.5rc which corre-
sponds to a scale of twice the soliton radius. This explains why the filamentary distribution
of the |y| and phase function fields (outside the soliton) seen in their figure 6 show prefer-
entially soliton width sized granules. The reason is that inside the soliton turbulence and
thereby the small-wavelength modes’ contribution is suppressed, Mocz et al. (2017) do not
see any vortex lines entering the soliton, and the dominant soliton-width-scaled modes dis-
turb the larger ones thereby lowering their contribution seen in the power spectrum. Finally,
Mocz et al. (2017) take the next step of coupling their BEC- dark-matter-only simulations to
baryonic components in Mocz et al. (2020).

This vortex-free solitonic core embedded into a turbulent envelope, which is traversed
with vortex lines seen by Mocz et al. (2017), goes along the same lines of our analysis due
to the following reasons. On the one hand, according to Mocz et al. (2017), no vortex-line
enters the central solitonic core. This is in perfect consistency with our findings where we
have approximated the ground state ”soliton” solution of the Schrödinger-Poisson system
by either a Gaussian or an (n = 2)-polytropic profile with the result that vortex formation is
energetically not favored. On the other hand, the fact that Mocz et al. (2017)’s multimerger-
simulations yield a final halo with sustained chaotic motion, granules and turbulence in
its outer region, does in no way contradict our conclusions. The reason is that the merg-
ing of primordial solitons yields excitation, superposition and interference of y-waves. In
particular, also destructive interference occurs which takes the form of vortex-lines. How-
ever, Schive et al. (2014a)’s cosmological simulations showed that in the center of gravita-
tionally bound objects made up of BEC-DM in the fuzzy limit, one finds coherent standing
waves, i.e. stable solitonic cores. Exactly these manifestations of the attractor solution of
the Schrödinger-Poisson system were our object of investigation and results for them are in
agreement with ours.

Hui et al. (2020) dedicate a mixture of analytical and numerical analysis to exactly those
outer regions of the virialized BEC-DM halo that do exhibit these turbulent dynamics and
like us 18 focus on formation of vortices. It is important to highlight that they investigate
analytical ”defect” solutions in the absence of gravity and only incorporate gravitational ef-
fects in their numerical simulations. However, since all characteristic length scales in the
fuzzy regime of the Gross-Pitaevskii-Poisson system (unlike the Thomas-Fermi regime) are

18However, have in mind that our analysis considers wave defects like vortices in cores subject to angular
momentum in contrast to destructive interference in the outer regions of halo envelopes into which these cores
are embedded.
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of equal order, for example perturbations characterized by the vortex core size s can in prin-
ciple reach the system size, there are no leading energy terms emerging in the fuzzy limit.
This feature can also be seen in figures (5.5) to (5.7), where the gravitational potential energy
due to the vortex proves to be very significant. Hui et al. (2020) then test their expecta-
tions by running numerical simulations including gravity. In addition, they apply a random
phase model in order to investigate the probability of destructive interference and thereby
the frequency of vortex-line occurrence. This approach may be a promising way to develop
analytical studies of the turbulent outer regions of BEC-DM halos.
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Appendix A

Polytropic spheres

Classical literature on stellar structure like Chandrasekhar (1939) or Kippenhahn et al. (2012)
present a special class of equilibrium configurations of gas spheres, so-called polytropic
spheres.

For spheres in hydrostatic equilibrium one shall require

dP
dr

= �dF
dr

r , (A.1)

considering static and spherically symmetric solutions only, and combine with the Poisson
equation

1
r2

d
dr

✓
r2 dF

dr

◆
= 4pGr , (A.2)

where P denotes the pressure, r the density and F the gravitational potential of the system.

This class of configurations is characterized by a simple so-called polytropic relation be-
tween the pressure and the density of the form

P = Kpr

1+ 1
n , (A.3)

where the polytropic ”constant” Kp and the polytropic index n are constant. Kippenhahn
et al. (2012) mention that there are two reasons for a polytropic relation specifically in stars.
On the one hand the equation of state of the gas can have the form (A.3), in which case
Kp is fixed by natural constants. On the other hand, the equation of state may contain the
temperature T and in addition we have a relation between T and P. These two relations then
yield a polytropic relation, where however Kp is a free parameter that can vary from star to
star.
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By introducing the dimensionless variables

q =

✓
r

rc

◆1/n
, x =

r
a

, (A.4)

where rc denotes the central density and

a = r

1
2 (

1
n�1)

c

s
Kp(n + 1)

4pG
, (A.5)

after combining equations (A.1),(A.2) and (A.3), one obtains the fundamental differential
equation

1
x

2
d

dx

✓
x

2 dq

dx

◆
= �q

n , (A.6)

the famous Lane-Emden equation with boundary conditions

q(0) = 1, (A.7)

q

0(0) = 0 . (A.8)

Here, the prime denotes differentiation with respect to x. Solutions corresponding to 0 
n < 5 have a compact support. Thus, they become zero at a finite radius x1:

q|
x=x1 = 0 . (A.9)

In that case, one can define a so-called complete polytrope with surface at x = x1 and
subsequently its radius, mass and mass-radius relation depending on the polytropic index
0  n < 5:

R = x1

s
Kp(n + 1)

4pG
r

� n�1
2n

c , (A.10)

M = �4p

q

0
1

x1
rcR3, (A.11)

M(n�1)/nR(3�n)/n = �x

(n+1)/n
1 q

0(n�1)/n
1

Kp(1 + n)
G(4p)1/n . (A.12)

Only for n 2 {0, 1, 5} there exists a solution which can be given by analytical expressions.
Chandrasekhar (1939) presents several tables of numerical values for polytropic models with
index n. Some of the basic values are listed in table A.1.

An expansion of equation (A.6) shows that the point x = 0 represents a regular singu-
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n x1

⇣
�x

2 dq

dx

⌘
|
x=x1 rc/r̄

0 2.4494 4.8988 1.0000
1 3.14159 3.14159 3.28987
1.5 3.65375 2.71406 5.99071
2 4.35287 2.41105 11.40254

Table A.1: Numerical values of polytropes with index n according to Chandrasekhar (1939).
r̄ denotes the mean density and rc the central density.

larity of the ordinary differential equation. Thus any numerical method will have difficulty
starting at x = 0. We therefore started integrating at some value x = x

0 near zero. How-
ever, accurate solutions then require initial conditions at x

0. The approach was to calculate a
Taylor series expansion of q about x = 0 and to use this series in order to determine the ini-
tial conditions at x

0. The implementation in Mathematica-12.0 (2019) yielded the numerical
values shown in table A.2.

The global energy terms given by Lai et al. (1993) include the constants kn and qn depend-
ing on the polytropic index n. Through numerical integration by Mathematica-12.0 (2019) we
get

kn ⌘ 5
3x

4
1|q01|

Z
x1

0
q

n
x

4dx

8
<

:
= 5

3
�
1 � 6

p

2

� ⇡ 0.653 for n = 1

⇡ 1.4481 for n = 2
(A.13)

and

qn ⌘ kn

⇣
1 � n

5

⌘
8
<

:
= 4

3
�
1 � 6

p

2

� ⇡ 0.523 for n = 1

⇡ 0.868859 for n = 2 .
(A.14)

n x1 kn qn
1 3.14159265 0.653455 0.522764
2 4.352874593 1.4481 0.868859

Table A.2: Numerical values calculated by Mathematica-12.0 (2019)
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Appendix B

The perturbed halo potential F1: An
analytical approach

We have already indicated in Section 5.1, that finding an analytical expression for the inner-
vortex solution F(i)

1 is a difficult or rather virtually impossible task to undertake. This Ap-
pendix shall for the sake of completeness present our effort in constructing such an expres-
sion by means of several severe assumptions.

The density perturbation due to the central singly-quantized vortex,

r1 = r � r0 = m
r0

m
|w|2 � r0

= r0(|w|2 � 1)

=

8
<

:
0 for r � s (outside the vortex)

r0

⇣
C2

n
� r

s
�2 � 1

⌘
< 0 otherwise ,

(B.1)

is the source of the gravitational potential F1. Hence,

DF1 =

8
<

:
DF(o)

1 = 0 for r � s

DF(i)
1 = 4pGrce�ar2e�az2

⇣
C2

n
� r

s
�2 � 1

⌘
otherwise .

(B.2)

We found that in order to arrive at some approximation to the true solution of

DF(i)
1 = 4pGrce�ar2

e�az2
✓

C2
n

⇣ r
s

⌘2 � 1
◆

for r < s , (B.3)

it is recommended to base the calculations on an equivalent formulation, namely the Poisson
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integral for some general potential F(~r) and density field r(~r),

F(~r) = �G
Z

V

r(~r 0
)

|~r �~r 0 |d
3r0 . (B.4)

In our case and in cylindrical coordinates (r, f, z), this amounts to

F(i)
1 (~r) = �G

Z R

�R

Z 2p

0

Z s

0
rce�ar02e�az02

 
C2

n

✓
r0

s

◆2

� 1

!
1

|~r �~r 0 | r
0dr0df

0dz0 . (B.5)

Primed variables are supposed to cover every position within the domain of integration and
thereby include every part of the static, localized mass distribution, which is the source of the
potential. From the theory of electrostatics, see Fließbach (2012), we know that for a position
in space ~r far away from the localized mass distribution r(~r 0

), the gravitational potential
F(~r) is given by the so-called multipole expansion which converges under the above condi-
tion, i.e. a localized source close to the origin and a point at which the potential is observed
far from the origin. Unfortunately, when searching for the inner-vortex solution F(i)

1 (~r), the
points at which the potential is observed lie within the mass distribution, which implies that
the multipole expansion cannot be applied in the first place. However, based on the assump-
tion that the multipole expansion method is legitimate in a case where the point at which
the potential is observed lies precisely at the boundary of the localized density distribution,
we can split the domain of integration in the hope of finding a subdomain of integration
which allows the multipole expansion method. The following considerations are illustrated
in figure B.1. Our domain of integration is the vortex cylinder defined by

r 2 [0, s] (B.6)

f 2 [0, 2p] , (B.7)

z 2 [0, R] . (B.8)

Imagine a reflection of the area shown in B.1 with respect to the r0-axis and then rotating both
areas about the z0-axis. Every fixed position within the domain, pointed at by the vector~r,
divides this domain into four subdomains, denoted by 1, 2, 3 and 4 in figure B.1. Given the
vector components of the now fixed vector~r and the vector~r 0 pointing at somewhere in the
domain in cylindrical coordinates, i.e. (r, f, z) and (r0, f

0, z0), the subdomains 1, 2, 3 and 4
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Figure B.1: Splitting the domain of integration

are given by

subdomain 1: r0 > r , z0 > z (B.9)

subdomain 2: r0 > r , z0  z (B.10)

subdomain 3: r0  r , z0  z (B.11)

subdomain 4: r0  r , z0 > z . (B.12)

From that we can infer that the density distribution within subdomain 3 allows a multipole
expansion in order to arrive at a potential although under unfavorable conditions since the
point at which the potential is observed does not lie far from the distribution but just outside
of it.

Following Fließbach (2012), the potential F can be written as

F(~r) = �G
•

Â
l=0

+l

Â
m=�l

r
4p

2l + 1
qlm

rl+1
s

Ylm(q, f), (B.13)

given the above conditions, where Ylm(q, f) denote the spherical harmonics and for a cylin-
drical symmetric density distribution the coefficients are given by

qlm = dm0ql0 = dm0

Z

V
r(rs, q)rl

sPl(cos q) . (B.14)
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(rs, q, f) are spherical coordinates, the delta distribution implies

dm0 =

8
<

:
0 for m 6= 0

1 m = 0
(B.15)

and Pl(x) denote the Legendre polynomials given explicitly by Rodrigues’ formula, i.e.

Pl(x) =
1

2l l!
dl

dxl (x2 � 1)l . (B.16)

The division of the integration domain effectively amounts to splitting the integration over
the vortex-volume:

Z

V
=

Z

1
+
Z

2
+
Z

3
+
Z

4

=

✓Z R

z
+
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◆ Z 2p
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r
+
Z

2
+
Z z

�z

Z 2p

0

Z r

0
+
Z

4
. (B.17)

Since no strategy was found to approximate the integration over the subdomains 2 and 4, the
total analytic expression will be approximated by the sum of the solutions for the domains 1
and 3:

F(i)
1 ⇡ F(i)

1,1 + F(i)
1,3 . (B.18)

We are going to derive an analytic expression for F(i)
1,3 by truncating the multipole expansion

at l = 2, i.e. our approximation is given by the following partial sum:

F(i)
1,3 ⇡ �G


q00

rs
+

q10

r2
s

cos q +
q20

2r3
s
(3 cos2

q � 1)
�

. (B.19)

The monopole q00 is given by

q00 = 4prc

Z z

0
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0
e�ar02e�az02
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p
az)

#
. (B.20)

The dipole is evaluated by integrating an odd function of z0 over a symmetric interval, thus
yielding zero:

q10 = 2prc

Z z

�z

Z r

0
e�ar02e�az02

 
C2

n

✓
r0

s

◆2

� 1

!
z0r0dr0dz0

= 0 . (B.21)
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And finally,

q20 = 2prc

Z z

�z

Z r

0
e�ar02e�az02
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. (B.22)

In order to calculate the multipole expansion coefficients, we have made use of

z = rs cos q (B.23)

rs =
p

r2 + z2 (B.24)

P0(x) = 1 (B.25)

P1(x) = x (B.26)

P2(x) =
1
2
[3x2 � 1] . (B.27)

Hence, we get

F(i)
1,3 ⇡ �G


q00p

r2 + z2
+

q20

2(r2 + z2)3/2 (3
z2

(r2 + z2)
� 1)

�
. (B.28)

A quite different approach was applied in order to derive an analytical expression for F(i)
1,1.

It holds true for subdomain 1 that r0 > r and z0 > z. Thus we proceed with the strong
assumption that~r <<~r 0 and therefore |~r �~r 0 | ⇡ |~r 0 |, which yields

F(i)
1,1 ⇡ �G 4prc
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Unfortunately, due to the several severe approximations these considerations rely on, ex-
pression (B.18) including (B.28) and (B.29) yields a gravitational potential,

F̃approx ⇡ (F(i)
1,1 + F(i)

1,3)
1

4pGrcs

2 , (B.30)
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which differs sufficiently enough from the numerical solution shown in figure 5.3 that we
have not used this result for F(i)

1 in our energy analysis.
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Appendix C

Non-collisionality

What do the terms ”collisionless” or more specifically ”a collisionless system” refer to? What
defines such systems? How can they be described? This Section is dedicated to provide
answers to these questions based on Binney and Tremaine (2008) and Dorfi (2017).

According to Binney and Tremaine (2008), whether a system is collisional or collision-
less is decided by the nature of the force governing the interactions between the system’s
constituents. The fundamental difference between a collisionless galaxy and a collisional dif-
fuse gas of molecules is the range of the underlying force. The trajectory of a molecule in
a diffuse gas consists of long periods of unaffected movement with constant velocity and
violent collisions with other molecules yielding short-lived accelerations. Their interaction
is short-range. In contrast, stars in a galaxy or collisionless dark matter particles19 are subject
to gravity, which is long-range. Hence, a star in a galaxy ”feels” a smooth acceleration given
by a gravitational force that can be treated as if arising from a smooth density distribution
rather than a sum of localized masses.

The so-called relaxation time trelax offers a way to quantify the above notion and is given
by

trelax ⇠ N
8 ln N

tcross , (C.1)

with N the total number of stars (or particles) and tcross the crossing time of that system. The
(whether frequent or unlikely) two-body encounters or ”kicks” between passing objects of a
system have altered one object’s orbit significantly from the orbit it would have had given
a truly smooth gravitational field, after trelax. Thus, as long as timescales of a system do not
exceed trelax, its dynamics is that of a collisionless system. For instance, the relaxation time of
elliptical galaxies with N ⇠ 1012 exceeds by far the age of the universe.

Collisionless systems are described on the basis of the collisionless Boltzmann equation. In

19One can disregard weak or gravitational interaction between individual WIMPs in any galactic context.
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order to derive this equation, Dorfi (2017) lists several necessary assumptions. It is assumed
that the system consists of N particles, whose orbits do not vary drastically. No masses
are created or destroyed. And finally, a smooth gravitational potential can be given in the
Newtonian limit.

The basic idea is to use these assumptions and the characteristics of a collisionless system
to avoid the unfeasible task of tracking every particle’s orbit by introducing the distribution
function (DF), f , which is defined such that

f (~x,~p, t)d3xd3 p , (C.2)

gives the probability that at time t a particle has position ~x and momentum ~p in the given
range. f is normalized such that

Z
f (~x,~p, t)d3xd3 p = 1 . (C.3)

Some authors, like Dorfi (2017), prefer the DF already multiplied with the total number N,
so that the normalization is given by

Z
f (~x,~p, t)d3xd3 p = N . (C.4)

As the DF evolves in time, probability must be conserved. Thus, there exists a continuity
equation given by

∂ f
∂t

+
∂

∂wi
( f ẇi) = 0 , (C.5)

with ~w = (wi) = (x1, x2, x3, p1, p2, p3) denoting a set of canonical coordinates20. By using
Hamilton’s equations (and denoting the Hamiltonian as H)

ẋi =
∂H
∂pi

ṗi = �∂H
∂xi

, (C.6)

the second term of the continuity equation becomes

∂

∂wi
( f ẇi) =

∂

∂xi
·
✓

f
∂H
∂pi

◆
� ∂

∂pi
·
✓

f
∂H
∂xi

◆
(C.7)

=
∂ f
∂xi

·
∂H
∂pi

� ∂ f
∂pi

·
∂H
∂xi

(C.8)

= ẋi ·
∂ f
∂xi

+ ṗi ·
∂ f
∂pi

. (C.9)

20Have in mind that we apply the Einstein summation convention unless otherwise stated in this Section.
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As a result, one can obtain several forms of the collisionless Boltzmann equation:

∂ f
∂t

+ ẋi ·
∂ f
∂xi

+ ṗi ·
∂ f
∂pi

= 0 , (C.10)

∂ f
∂t

+ { f , H} = 0 , (C.11)

d f
dt

= 0 , (C.12)

where the definition of the Poisson bracket { f , H} and the Lagrangian derivative

d f
dt

⌘ ∂ f
∂t

+ ẇi ·
∂ f
∂wi

(C.13)

were used, see Binney and Tremaine (2008).

Inserting the Hamiltonian H = ~p 2

2m + f(~x, t) with the gravitational potential f into (C.11)
yields

∂ f
∂t

+
pi
m

·
∂ f
∂xi

� ∂f

∂xi
·

∂ f
∂pi

= 0 . (C.14)

The collisionless Boltzmann equation together with the Poisson equation

Df = 4pGr = 4pGmn = 4pGmN
Z

f (~x,~p, t)d3 p , (C.15)

given the number density

n(~x, t) = N
Z

f (~x,~p, t)d3 p , (C.16)

and same mass m for all particles, form a self-contained system which in principle deter-
mines the complete dynamics of this star- or dark matter-”gas”. However, calculating the
distribution function f is often not practical.

In order to have a better understanding of the system’s behavior, it is helpful to infer
so-called moments of the Boltzmann equation. It is customary to interpret f as a function of
the velocity components vi = pi/m, rather than momentum components pi. For this f , the
Boltzmann equation reads

∂ f
∂t

+ vi ·
∂ f
∂xi

� ∂f

∂xi
·

∂ f
∂vi

= 0 . (C.17)

The 0th moment is the probability density distribution n(~x, t):

n(~x, t) =
Z

f (~x,~v, t)d3v . (C.18)
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The first moment is the mean velocity vi, defined by

vi(~x, t) =
1
n

Z
vi f (~x,~v, t)d3v . (C.19)

Integrating the Boltzmann equation over all velocities, gives

Z
∂ f
∂t

d3v +
Z

vi ·
∂ f
∂xi

d3v �
Z

∂f

∂xi
·

∂ f
∂vi

d3v = 0 . (C.20)

The partial time derivative may be taken outside the integral in (C.20) (no time-dependancy
of the bounds of integration). Thus, by considering the definition of n(~x, t), the first term can
be rewritten as

∂n

∂t
. (C.21)

Moreover, the partial derivative ∂

∂xi
can be taken outside the integral due to the independence

between xi and vi. The second term therefore becomes

∂(nvi)
∂xi

. (C.22)

The last term can be evaluated by direct integration:

� ∂f

∂xi

Z
∂ f
∂vi

d3v = � ∂f

∂xi

Z •

�•

Z •

�•
f |vi=•

vi=�•d2vj 6=i = 0 , (C.23)

since there are no particles with infinite speed. The result is the so-called continuity equation
for collisionless systems or first Jeans equation,

∂n

∂t
+

∂(nvi)
∂xi

= 0 . (C.24)

In order to derive the second Jeans equation, an equation of motion similar to the one in
hydrodynamics, the Boltzmann equation is multiplied by vj before integrating over all ve-
locities,

Z
vj

∂ f
∂t

d3v +
Z

vjvi ·
∂ f
∂xi

d3v �
Z

vj
∂f

∂xi
·

∂ f
∂vi

d3v = 0 . (C.25)

Partial integration of the integral in the last term gives

Z
vj

∂ f
∂vi

d3v =
Z

vj( f (vi))|vi=•
vi=�•d2vj 6=i �

Z
f

∂vj

∂vi
d3v = �ndij . (C.26)

Following the same argumentation as above and defining the second moment of the Boltz-
mann equation
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vivj(~x, t) =
1
n

Z
vivj f (~x,~v, t)d3v (C.27)

leads to the second Jeans equation,

∂(nvj)

∂t
+

∂(nvivj)

∂xi
+ n

∂f

∂xj
= 0. (C.28)

In order to put this equation into a more familiar form, the definition of the velocity-dispersion
tensor,

s

2
ij(~x, t) ⌘ 1

n

Z
(vi � vi)(vj � vj) f (~x,~v, t)d3v = vivj � vi vj. (C.29)

is needed.
Subtracting vj times the left-hand side of the first Jeans equation from the second Jeans

equation (which is allowed since it equals 0) yields

n

∂vj

∂t
� vj

∂(nvi)
∂xi

+
∂(nvivj)

∂xi
+ n

∂f

∂xj
= 0. (C.30)

One can see that the result is analogous to Euler’s equation of hydrodynamics by using the
definition of the velocity-dispersion tensor:

n

∂vj

∂t
+ nvi

∂vj

∂xi
= �n

∂f

∂xj
�

∂(ns

2
ij)

∂xi
. (C.31)

The last term on the right-hand side of this (sometimes called) third Jeans equation repre-
sents a kind of pressure force, �rp. To be more precise, �ns

2
ij is a stress tensor describing

anisotropic pressure.
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Guzmán, F. S. and Ureña-López, L. A. (2004). Evolution of the Schrödinger-Newton system
for a self-gravitating scalar field. Physical Review D, 69(12):124033.

Hooper, D. (2007). Dark Cosmos: In Search of Our Universe’s Missing Mass and Energy. Harper-
Collins.

Hu, W., Barkana, R., and Gruzinov, A. (2000). Fuzzy Cold Dark Matter: The Wave Properties
of Ultralight Particles. Physical Review Letters, 85(6):1158–1161.

Hui, L., Joyce, A., Landry, M. J., and Li, X. (2020). Vortices and waves in light dark matter.
arXiv e-prints, page arXiv:2004.01188.

Hui, L., Ostriker, J. P., Tremaine, S., and Witten, E. (2017). Ultralight scalars as cosmological
dark matter. Physical Review D, 95(4):043541.

Jungman, G., Kamionkowski, M., and Griest, K. (1996). Supersymmetric dark matter. Physics
Reports, 267:195–373.

Kaup, D. J. (1968). Klein-Gordon Geon. Physical Review, 172(5):1331–1342.

Kippenhahn, R., Weigert, A., and Weiss, A. (2012). Stellar Structure and Evolution. Astronomy
and Astrophysics Library. Springer Berlin Heidelberg.

Kolmogorov, A. (1941). The Local Structure of Turbulence in Incompressible Viscous Fluid
for Very Large Reynolds’ Numbers. Akademiia Nauk SSSR Doklady, 30:301–305.

Lai, D., Rasio, F. A., and Shapiro, S. L. (1993). Ellipsoidal Figures of Equilibrium: Compress-
ible Models. Astrophysical Journal Supplement Series, 88:205.

London, F. (1938). The l-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy.
Nature, 141(3571):643–644.

Madelung, E. (1927). Quantentheorie in hydrodynamischer Form. Zeitschrift fur Physik, 40(3-
4):322–326.

113



Marsh, D. J. E. (2016). Axion cosmology. Physics Reports, 643:1–79.

Mathematica-12.0 (2019). Wolfram research, inc. Champaign, IL, 2019.

McGaugh, S. S. and de Blok, W. J. G. (1998). Testing the Dark Matter Hypothesis with Low
Surface Brightness Galaxies and Other Evidence. Astrophysical Journal, 499(1):41–65.
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