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Abstract

In the first part of this thesis, we will prove duality and existence of optimal couplings for
the (bi)causal optimal transport problem with looser conditions than the current theory
allows for. Subsequently, we will give a characterization of the support of cost functions
for which the optimal (bi)causal value vanishes by decomposing the underlying measures
and using already existing general transport theory. This characterization will prove
useful when it comes to counterexamples where the causal and bicausal problem do not
agree. In the end, we will use recent theory in the area of weak transport to establish a
Kantorovich-Rubenstein type result for the causal case, considering only two-step stochastic
processes.
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Kurzfassung

Der erste Teil der Arbeit beschäftigt sich mit Dualität und Existenz von optimalen Coup-
lings für das (bi)kausale Transportproblem. Dabei werden weniger restriktive Annahmen
als in ähnlichen bereits existierenden Resultaten benötigt. Anschließend wird, mithilfe einer
Zerlegung des jeweiligen Maßes, eine Charakterisierung des Trägers einer Kostenfunktion
gegeben, deren optimale Transportkosten verschwinden. Diese Charakterisierung stellt sich
als hilfreich bei Gegenbeispielen heraus, bei denen das kausale und bikausale Problem nicht
übereinstimmt. Den Abschluss der Arbeit bildet eine Art Kantorovich-Rubenstein Dualität
für kausalen Transport. Dies wird ermöglicht durch eine Brücke zwischen kausalem und
schwachem Transport. Dadurch können vor kurzem bewiesene Dualitätsresultate für
schwachen Transport genutzt werden.
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1 Introduction and outline

In the usual optimal transport problem we are confronted with a source measure µ on
some space X and a target measure ν on some space Y . The goal is to find couplings
between these two measures (i.e. measures on X × Y , such that their projection on X is
equal to µ and their projection on Y is equal to ν), which give us the minimal amount of
cost. This notion of cost arises from a function defined on X × Y , which heuristically tells
us the cost of moving mass from some point x ∈ X to some point y ∈ Y .

Throughout this thesis we will deal with discrete-time stochastic processes and transport
plans between them. In this setup one only allows transport plans which do not have
to “look into the future” of the first process in order to assign mass to the second one.
Couplings which have this property are called causal and if this property holds true in
“both directions” (interchanging what we consider the first and the second process) they
are called bicausal.

At the beginning, we will generalize Theorem 2.5 in [BBLZ17] on the duality and
existence of optimal couplings by omitting the continuity assumption on the stochastic
kernels. The proof is based on Kantorovich duality (see e.g. Theorem 5.9 in [Vil16]) and
the fact that we can see causal transport as a special case of the usual transport problem
with some additional linear constraints.

The next chapters are inspired by Theorem 2.21 in [Kel84], which characterizes the
structure of subsets of X × Y which have mass zero with respect to all couplings. We will
derive a similar result for the bicausal transport problem by decomposing couplings and
recursively applying Theorem 2.21 in [Kel84]. This characterization will prove useful when
it comes to various examples in which the bicausal optimal transport value differs from
the causal one. By adapting Theorem 2.6 in [BBLZ17], we can also give a characterization
in the causal case, although it will be less illustrative.

At the end of the thesis, we will build a bridge between causal transport and the recent
theory of weak transport. Using this bridge and already established duality theory for
weak transport (see [BBP19]), we will prove a Kantorovich-Rubenstein type result for the
causal transport problem.

To ease notation we will often work on RN . Notice that we can replace RN by SN for
an abstract Polish space S. The only difference is that the proof of Lemma 5.1 will be less
constructive.
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2 Definitions and notations

The purpose of this chapter is to introduce notations and some concepts that may not
be familiar to the reader who does not have a lot of measure-theoretic background.
Nevertheless the concept of universal measurability and analytic sets/measurability will
not be discussed, but will be used every now and then. For a detailed explanation on these
topics see [BS96].

Remark 1. Let X be a Polish space and A its Borel sigma-algebra. We denote the set of
all probability measures on the space (X,A) by P(X). Recall that the space P(X) is again
a Polish space if endowed with the weak topology. By this construction P(P(X)) is again a
Polish space as well. If not mentioned otherwise we always endow P(X) with the weak
topology.

Definition 1. Let X ,Y be Polish spaces. We call a collection of probability measures
in P(Y) parametrized by x ∈ X a stochastic kernel and denote it by qx(dy). We call
it measurable (resp. continuous) if q : X → P(Y), x ↦→ qx(dy) is measurable (resp.
continuous).

Definition 2. Let (X,A), (Y,B) be measurable spaces and let f : X → Y be a measurable
map. For a measure µ on X we denote its f -pushforward measure by f#µ. The measure
f#µ is given by

(f#µ)(B) := µ(f−1(B)), for B ∈ B.

Theorem 2.1. (Disintegration on product spaces)
Let X = X1 × X2 be a Polish space, µ ∈ P(X) and let πi : X → Xi be the natural

projection for i = 1, 2. Identifying π−1
1 (x1), for x1 ∈ X1, with X2, there exist a collection

of probability measures {µx1}x1∈X1 in P(X2), such that

µ(A×B) =

∫︂
A
µx1(B)d((π1)#µ)(x1)

for A ⊂ X1, B ⊂ X2 measurable. The collection of probability measures {µx1}x1∈X1 is
unique (π1)#µ-a.s.

Definition 3. Let X be a topological space and f : X → R, where R := R∪{+∞}∪{−∞}.
We call f lower semicontinuous if {x ∈ X : f(x) ⩽ c} is closed for all c ∈ R. We will
abbreviate this by f being l.s.c.

By abuse of notation we will denote both (x1, ..., xN ) ↦→ x1 and
(x1, ..., xN , y1, ..., yN ) ↦→ (x1, ..., xN ) by p1. For a measure µ ∈ P(RN ) and the first of the
above functions we use the notation µ1 := (p1)#(µ).

Let µ, ν ∈ P(RN ), where RN is endowed with the filtration generated from the coordinate
processes (i.e. Ft is the smallest sigma-algebra such that (x1, ..., xN ) ↦→ (x1, ..., xt) is Ft-
measurable). We denote the set of all transport plans between µ and ν by

Π(µ, ν) = {γ ∈ P(RN × RN ) : p1#γ = µ, p2#γ = ν}.
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2 Definitions and notations

Definition 4. We call γ ∈ Π(µ, ν) a causal transport plan, if x ↦→ γx(B) is Ft-measurable
for all t ⩽ N and for all B ∈ Ft and we denote the set of all causal transport plans between
µ and ν by Πc(µ, ν). If it also holds true that e#γ ∈ Πc(ν, µ), for e(x, y) := (y, x), we call
γ a bicausal coupling and we denote the set of all bicausal couplings between µ and ν by
Πbc(µ, ν). Notice that the coupling γ = µ⊗ ν is bicausal.

The idea we have in mind here is that for two stochastic processes, knowing the future
of one of them does not provide any additional information about the status quo of the
other process. So for two stochastic processes X and Y causality tells us that, knowing
X up to some point, Y up to this point is independent of the future of X. To be more
precise this means that for 1 ⩽ t ⩽ N and Bi ∈ Fi, for 1 ⩽ i ⩽ t,

P(Y1 ∈ B1, ..., Yt ∈ Bt|X1, ..., XN ) = P(Y1 ∈ B1, ..., Yt ∈ Bt|X1, ..., Xt).

Throughout the thesis we will use the notion of a Bochner integral. We will give a very
brief overview of the kind of Bochner integral we need. For a thorough construction see
for example [Coh13].

Remark 2. Let (X,A, µ) be a measure space and E a separable Banach space endowed
with its Borel sigma-algebra. We call f : X → E Bochner integrable if it is measurable and
x ↦→ ∥f(x)∥ is integrable.

For a simple function f =
∑︁n

i=1 1Aiai we define
∫︁
fdµ to be

∑︁n
i=1 aiµ(Ai). For an

arbitrary Bochner integrable function we define the integral by the usual approximation by
simple functions. (see [Coh13])

We will often need a special case of a Bochner integral. Let X be a Polish space endowed
with its Borel sigma-algebra A. Let the Banach space E be the space of bounded signed
measures on X with the total variation norm, which we denote by Ba(X ). In this setup
f : P(X ) → Ba(X ), x̂ ↦→ x̂ is integrable with respect to any µ ∈ P(P(X )). We will also
refer to

∫︁
ẑµ(dẑ) as mean(µ).

Lemma 2.2. Let A ∈ A and µ ∈ P(P(X )). Then we have that(︃∫︂
x̂µ(dx̂)

)︃
(A) =

∫︂
x̂(A)µ(dx̂).

Proof. Let f : P(R) → P(R) ⊂ Ba(X ), x̂ ↦→ x̂. Let (fn)n∈N be a sequence of simple
functions with f(x̂) = limn fn(x̂) for all x̂ ∈ P(R), such that ∥fn(x̂)∥ ⩽ ∥f(x̂)∥ for all n
and for all x̂ ∈ P(X ).

Then we have that (︃∫︂
x̂dµ

)︃
(A) = lim

n

(︃∫︂
fn(x̂)dµ

)︃
(A)

= lim
n

∫︂
fn(x̂)(A)dµ

=

∫︂
lim
n
fn(x̂)(A)dµ

=

∫︂
x̂(A)µ(dx̂).

The first equality holds true, as convergence w.r.t. total variation implies strong
convergence and the third equality follows from dominated convergence.
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For a metric space X we denote the set of 1-Lipschitz functions mapping to R by
Lip1(X). If it is clear which space X is meant, we just write Lip1.

For a Polish metric space X we denote by P1(X) the set of probability measures with
finite first moment (i.e. P1(X) := {µ ∈ P(X) :

∫︁
d(x, x0)µ(dx) <∞ ∀x0 ∈ x}). The space

P1(X) is again Polish. The underlying topology can be characterized in the following way:
A series of measures µn ∈ P1(X) converges to µ if it converges weakly and the series of
their first moments converge to the first moment of µ. A complete metric can be given by
the first order Wasserstein-distance

W (µ, ν) := inf
π∈Π(µ,ν)

∫︂
d(x, y)π(dx, dy).

Let

Clin(R) := {f ∈ C(R) : ∃C, x0 ∈ R s.th. |f(x)| ⩽ C(1 + d(x0, x)) ∀x ∈ R}.

Notice that for ϕ ∈ Clin(R) and p ∈ P1(P1(R)) we have that

∫︂
ϕ(x)(∫ x̂p(dx̂))(dx) =

∫︂
x̂(ϕ)p(dx̂). (2.1)

In particular
∫︁
x̂p(dx̂) ∈ P1(R) because both sides in (2.1) are finite. To see this, first

notice that for arbitrary x̂0 ∈ P1(R)

∫︂
W (x̂, x̂0)p(dx̂) <∞.

Let C ∈ R such that |ϕ(x)| ⩽ C(1 + |x|) for all x ∈ R. Therefore, choosing x̂0 = δ0 and
using Kantorovich duality we have that

∞ >

∫︂
W (x̂, x̂0)p(dx̂) =

∫︂
sup

ψ∈Lip1

(︃∫︂
ψ(x)x̂(dx)−

∫︂
ψ(x)x̂0(dx)

)︃
p(dx̂)

⩾
∫︂ (︃∫︂

(1 + |x|)x̂(dx)
)︃
p(dx̂)− 1

⩾
1

C

∫︂ ∫︂
|ϕ(x)|x̂(dx)p(dx̂)− 1.

Definition 5. Let (Ω,A, µ) be a measure space. For 0 < p < ∞ we denote the vector
space Lp(Ω,A, µ) := {f : Ω → R measurable :

∫︁
|f |pdµ <∞} by Lp(µ).
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3 Duality for (bi)causal transport

Let µ, ν ∈ P(RN ) and c some l.s.c. cost function on RN × RN . The main result in this
chapter will be to establish attainment and duality of

inf
π∈Πc(µ,ν)

∫︂
cdπ and inf

π∈Πbc(µ,ν)

∫︂
cdπ. (3.1)

We will refer to the first expression in (3.1) as (Pc) and to the second one as (Pbc). Our
main results in this chapter (Theorem 3.2 and 3.3) generalize Theorem 2.5 and Corollary
3.3 in [BBLZ17]. Indeed, compared to Theorem 2.5 and Corollary 3.3 in [BBLZ17], we do
not impose the assumption that µ and ν have continuous kernels. We rely on arguments
similar to the ones used in [BBLZ17]. Additionally we make use of the following: for Polish
spaces X and Y and finitely many Borel measurable functions fi : X → Y we can find a
finer topology on X, with the same Borel sets as the original topology, such that all fi are
continuous.

Lemma 3.1. Denote the usual topology on RN by τ . Let τ̃ ⊇ τ such that their correspond-
ing Borel sets are equal. Let t < N and assume that (x1, ..., xt, xt+1, ..., xN ) ↦→ µx1,...,xt is
continuous with respect to τ̃ . For g ∈ Cb(RN , τ), the function defined by

(x1, ..., xN ) → g(x1, ..., gN )−
∫︂
g(x1, ..., xt, x̃t+1, ..., x̃N )µx1,...,xt(dx̃t+1, ..., dx̃N )

belongs to Cb(RN , τ̃).

Proof. If ∥g∥∞ = 0 the statement is clearly true, so we assume that ∥g∥∞ ̸= 0. As τ̃ ⊇ τ ,
it suffices to check the continuity of

(x1, ..., xN ) ↦→
∫︂
g(x1, ..., xt, x̃t+1, ..., x̃N )µx1,...,xt(dx̃t+1, ..., dx̃N ).

It suffices to show sequential continuity as (RN , τ̃) is a Polish space and therefore we
can describe its topology by a metric. Let (xn1 , ..., xnN ) converge to (y1, ..., yN ) w.r.t. τ̃ and
therefore also w.r.t. τ . We denote (xn1 , ..., x

n
t ) by xn and (y1, ..., yt) by y.

Let ε > 0. By assumption, µxn converges weakly to µy, so the sequence is tight by Prok-
horov’s Theorem. Hence, there exists K ⊂ (RN−t, τ) compact such that supn µxn(K

c) <
ε

6∥g∥∞ . Notice that B = {xn : n ∈ N} ∪ {y} is sequentally compact and therefore also
compact in (RN , τ̃). In particular B is compact in (RN , τ). Its projection B̃ on (Rt, τ)
is compact as well. So B̃ × K ⊂ (RN , τ) is compact as well. Note that if (xn1 , ..., xnN )
converges to (y1, ..., yN ) in (RN , τ̃), (xn1 , ..., xnt ) converges to (y1, ..., yt) in (Rt, τ).

We then get for n large enough that

⃓⃓⃓⃓∫︂
g(xn, z)µxn(dz)−

∫︂
g(y, z)µy(dz)

⃓⃓⃓⃓
⩽ α+ β + γ,
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3 Duality for (bi)causal transport

where

α =

⃓⃓⃓⃓∫︂
K
g(xn, z)− g(y, z)µxn(dz)

⃓⃓⃓⃓
, β =

⃓⃓⃓⃓∫︂
Kc

g(xn, z)− g(y, z)µxn(dz)

⃓⃓⃓⃓
,

γ =

⃓⃓⃓⃓∫︂
g(y, z)µxn(dz)−

∫︂
g(y, z)µy(dz)

⃓⃓⃓⃓
.

Each of the terms α, β and γ is smaller than ε/3. This is true for α because for n large
enough supn>n0,z∈K |g(xn, z) − g(y, z)| < ε/3, for β because supn µxn(K

c) < ε
6∥g∥∞ and

for γ because g ∈ Cb(RN ) and µxn → µy.

With the previous Lemma we are ready to prove a duality result for the causal transport
problem. The proof of Theorem 3.2 resembles the proof of Theorem 2.1 in [Zae15].

For µ ∈ P(RN ), ν ∈ P(RN ) and c : RN × RN → R measurable, let

A(µ, ν, c) := {(ϕ, ψ) : ϕ ∈ L1(µ), ψ ∈ L1(ν), ϕ(x) + ψ(y) ⩽ c(x, y) ∀(x, y) ∈ RN × RN}.

Theorem 3.2. Let c : RN × RN → R be l.s.c. and bounded from below. Then

inf
γ∈Πc(µ,ν)

∫︂
cdγ = sup

(ϕ,ψ)∈A(µ,ν,c−f)
f∈F

(︃∫︂
ϕdµ+

∫︂
ψdν

)︃
(3.2)

for

F =

⎧⎪⎪⎨⎪⎪⎩
F : RN × RN → R : F (x1, ..., xN , y1, ...yN ) =∑︁

t<N ht(y1, ..., yt)[gt(x1, ..., xN )
−
∫︁
gt(x1, ...xt, x̄t+1, ..., x̄N )µx1,...,xt(dx̄t+1, ..., dx̄N )],

gt ∈ Cb(RN ), ht ∈ Cb(Rt) ∀ t < N

⎫⎪⎪⎬⎪⎪⎭
and the infimum on the left hand side of (3.2) is attained.

Proof. Let τ be the usual topology on RN . By Prop. 2.80 in [Dob14] there exists a topology
τ̃ on RN such that RN endowed with τ̃ is still a Polish space, (x1, ..., xt) → µx1,...,xt is
continuous for all t < N and all Borel sets are preserved. By Lemma 3.1 all f ∈ F are
continuous w.r.t. (RN × RN , τ̃ × τ). By Proposition 2.3 in [BBLZ17] we know that

Πc(µ, ν) = Π(µ, ν) ∩
⋂︂
f∈F

ϕ−1
f (0), (3.3)

where ϕf (π) =
∫︁
fdπ. For f continuous and bounded, ϕf is continuous due to the definition

of weak convergence. As Π(µ, ν) is compact, Πc(µ, ν) is compact and attainment follows
by lower semicontinuity of γ ↦→

∫︁
cdγ (see Theorem 4.1 in [Vil16]).

Notice that we have

sup
(ϕ,ψ)∈A(µ,ν,c−f)

f∈F

(︃∫︂
ϕdµ+

∫︂
ψdν

)︃
= sup

f∈F
sup

(ϕ,ψ)∈A(µ,ν,c−f)

(︃∫︂
ϕdµ+

∫︂
ψdν

)︃

= sup
f∈F

inf
π∈Π(µ,ν)

∫︂
c− fdπ. (3.4)
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In the second line we used Kantorovich duality (see Theorem 5.9 in [Vil16]), which is
possible as we equipped RN × RN with τ̃ × τ and therefore f is continuous and bounded.
Hence c− f is l.s.c.

Now, we can interchange supremum and infimum, because Π(µ, ν) ⊂ P(RN × RN ) is
compact, F is convex and w.r.t. τ̃ × τ , c − f is l.s.c. and therefore π →

∫︁
c − fdπ is as

well by Lemma 4.3. in [Vil16] . These are all the conditions necessary to apply Theorem
2.3. in [Zae15]. So (3.4) is equal to

inf
π∈Π(µ,ν)

sup
f∈F

∫︂
c− fdπ. (3.5)

For π /∈ Πc(µ, ν) we can choose an f ∈ F s.th.
∫︁
fdπ < 0 as F is stable under scalar

multiplication. Choosing αf for α → ∞ gives us that it is sufficient to consider the
infimum over all causal couplings. By (3.3) the integral of f with respect to a causal
coupling vanishes, so we get that (3.5) is equal to

inf
π∈Πc(µ,ν)

sup
f∈F

∫︂
c− fdπ = inf

π∈Πc(µ,ν)

∫︂
cdπ.

The proof of the bicausal equivalent to Theorem 3.2 is very similar to the proof of
Theorem 3.2, so we will omit it and just state the result.

Theorem 3.3. Let c : RN × RN → R be l.s.c. and bounded from below. Then

inf
γ∈Πbc(µ,ν)

∫︂
cdγ = sup

(ϕ,ψ)∈A(µ,ν,c−f)
f∈F′

(︃∫︂
ϕdµ+

∫︂
ψdν

)︃
(3.6)

for

F′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F : RN × RN → R : F (x1, ..., xN , y1, ...yN ) =∑︁
t<N ht(y1, ..., yt)[gt(x1, ..., xN )−∫︁

gt(x1, ...xt, x̄t+1, ..., x̄N )µx1,...,xt(dx̄t+1, ..., dx̄N )]+∑︁
t<N h

′
t(x1, ..., xt)[g

′
t(y1, ..., yN )−∫︁

g′t(y1, ...yt, ȳt+1, ..., ȳN )νy1,...,yt(dȳt+1, ..., dȳN )]
gt, g

′
t ∈ Cb(RN ), ht, h′t ∈ Cb(Rt) ∀ t < N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and the infimum on the left hand side of (3.6) is attained.
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4 Bicausal 0-sets for N=2

In the following two chapters, for a function f : X → Y , we will use the notation

Gr(f) := {(x, f(x)) : x ∈ X}.

Let X , Y be Polish spaces and µ ∈ P(X ), ν ∈ P(Y). By Theorem 2.21 in [Kel84] we
know that if, for nonnegative f ,

sup
π∈Π(µ,ν)

∫︂
fdπ = 0

then there exist functions g and h with f ⩽ g ⊕ h and µ(g) = ν(h) = 0.
In this chapter we will derive a similar result in the case of bicausal couplings.

Lemma 4.1. Let µ, ν ∈ P(RN ). Let X and Y be closed subsets of RN . Then

D := {(x1, y1, π) : x1 ∈ p1(X ), y1 ∈ p1(Y), π ∈ Π(µx1 , νy1)}

is an analytic set.

Proof. As we already did before, we can equip R with a topology τ̃ , maintaining Borel-sets,
such that R is still Polish and x1 ↦→ µx1 and y1 ↦→ νy1 are continuous. Let (xn1 , yn1 , πn)n∈N ∈
{(x1, y1, π) : x1, y1 ∈ (R, τ̃), π ∈ Π(µx1 , νy1)} converge to some (x1, y1, π). As πn → π we
have that, for f ∈ Cb(R),

lim
n→∞

∫︂
fd(p1#πn) = lim

n→∞

∫︂
f ◦ p1dπn =

∫︂
f ◦ p1dπ =

∫︂
fd(p1#π).

Hence p1#π = µx1 and by the same considerations p2#π = νy1 . Therefore {(x1, y1, π) :
x1, y1 ∈ (R, τ̃), π ∈ Π(µx1 , νy1)} is closed, in particular it is Borel and also analytic.

As the projections of closed sets are analytic sets and their product is again analytic,
we have that p1(X )× p1(Y)× P(RN−1 × RN−1) is analytic. Hence

D = {(x1, y1, π) : x1, y1 ∈ R,π ∈ Π(µx1 , νy1)}
∩
(︁
p1(X )× p1(Y)× P(RN−1 × RN−1)

)︁
is also analytic as a finite intersection of analytic sets is analytic.

Remark 3. Note that D := {(x1, y1, π) : x1, y1 ∈ R, π ∈ Πbc(µx1 , νy1)} is not necessarily
closed for µ, ν ∈ P(RN ), for N > 2, even if x1 ↦→ µx1 and y1 ↦→ νy1 are continuous. To
see this let xn1 → x1, yn1 → y1 and

µxn1 =
1

2
δ(1/n,1) +

1

2
δ(−1/n,−1), νyn1 =

1

2
δ(1,1) +

1

2
δ(−1,−1),

11



4 Bicausal 0-sets for N=2

where µxn1 → µ = 1
2δ(0,1) +

1
2δ(0,−1). Then πn = 1

2δ(1/n,1,1,1) +
1
2δ(−1/n,−1,−1,−1) ∈

Πbc(µxn1 , νyn1 ) and converges weakly to π = 1
2δ(0,1,1,1) +

1
2δ(0,−1,−1,−1), which is not bi-

causal.

Lemma 4.2. Let µ, ν ∈ P(R2). Let D := {(x1, y1, π) : x1, y1 ∈ R, π ∈ Π(µx1 , νy1)}. Let
f : R2 × R2 → R be upper semianalytic and nonnegative. Then

sup
π∈Πbc(µ,ν)

∫︂
fdπ = sup

γ∈Π(µ1,ν1)

∫︂
sup

λ∈Π(µx1 ,νy1 )

∫︂
fdλdγ. (4.1)

Proof. Let f̃ : R× R× P(R2) → R, (x1, y1, λ) ↦→
∫︁
fdλ. We can use Proposition 7.48 in

[BS96] to see that f̃ is upper semianalytic, choosing, using the notation of Proposition 7.48
in [BS96], X to be R× R× P(R2) and Y to be R× R. Let D(x1,y1) := {λ ∈ P(R× R) :
(x1, y1, λ) ∈ D}. By Proposition 7.47 in [BS96] (x1, y1) ↦→ supπ∈D(x1,y1)

f̃(x1, y1, π) is
upper semianalytic as well as D is an analytic set by Lemma 4.1. In particular (x1, y1) ↦→
supπ∈D(x1,y1)

∫︁
fdπ is universally measurable. This combined with nonnegativity shows

that the integral on the right hand side of (4.1) is well defined.
By Proposition 5.1 in [BBLZ17] we have that

sup
π∈Πbc(µ,ν)

∫︂
fdπ = sup

γ∈Π(µ1,ν1)
λ:R×R→Π(µ·,ν·)univ.meas.

∫︂ ∫︂
fdλdγ.

Now we can use Proposition 7.50 in [BS96], again because D is an analytic set. So for
arbitrarily chosen ε > 0, we find a universally measurable function λε : R2 → P(R2) with
Gr(λε) ⊂ D such that

f̃(x1, y1, λε(x1, y1)) > sup
π∈Π(µx1 ,νy1 )

f̃(x1, y1, π)− ε

for all (x1, y1) for which supπ∈Π(µx1 ,νy1 )
f̃(x1, y1, π) <∞ and

f̃(x1, y1, λε(x1, y1)) > 1/ε otherwise.

Therefore, if

π({(x1, y1) : sup
γ∈Π(µx1 ,νy1 )

f̃(x1, y1, γ) <∞}) = 1 ∀ γ ∈ Π(µ1, ν1), (4.2)

we have that

sup
π∈Π(µ1,ν1)

λ:R×R→Π(µ·,ν·)univ.meas.

∫︂ ∫︂
fdλdπ ⩾ sup

π∈Π(µ1,ν1)

∫︂
f̃(x1, y1, λε(x1, y1))dπ

⩾ sup
π∈Π(µ1,ν1)

∫︂
sup

γ∈Π(µx1 ,νy1 )
f̃(x1, y1, γ)dπ − ε.

Letting ε go to zero gives us that the LHS in (4.1) is greater or equal than the RHS in
this case. If (4.2) does not hold true both expressions in (4.1) are equal to ∞ as we can
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make f̃(x1, y1, λε(x1, y1)) arbitrarily large on a set of positive measure for some coupling
π.

To see that the LHS in (4.1) is smaller or equal than the RHS assume that there exists a
bicausal coupling γ = γ̄(dx1, dy1)γx1,y1(dx2, dy2) such that ∫ fdγ is strictly greater than the
RHS. By Proposition 5.1 in [BBLZ17] we have that γ̄ ∈ Π(µ1, ν1) and γx1,y1 ∈ Π(µx1 , νy1).
Choosing γ̄ and γx1,y1 as couplings on the RHS immediately leads to a contradiction.

Theorem 4.3. Let µ, ν ∈ P(R2). Let f : R2 × R2 → R be upper semianalytic and
nonnegative. Then the following are equivalent:

1. supπ∈Πbc(µ,ν)

∫︁
fdπ = 0

2. There exist nonnegative functions g, h, gx1,y1 and hx1,y1 with g = 0 µ1-a.s, h = 0 ν1-
a.s., gx1,y1 = 0 µx1-a.s. and hx1,y1 = 0 νy1-a.s. such that

f(x1, x2, y1, y2) ⩽ g(x1) + h(y1) + gx1,y1(x2) + hx1,y1(y2)

for all (x1, x2, y1, y2) ∈ R2 × R2.

Proof. 1. =⇒ 2.: Using equation (4.1), by Theorem 2.21 in [Kel84] this implies
that there exist functions g and h with g = 0 µ1-a.s. and h = 0 ν1-a.s. such that
supλ∈Π(µx1 ,νy1 )

∫︁
fdλ ⩽ g(x1) + h(y1) for all (x1, y1) ∈ R2. We set the functions equal

to ∞ for all points on which they do not vanish. Repeating the same argument, for
(x1, y1) ∈ A := {(x1, y1) : g(x1) + h(y1) = 0}, we get functions gx1,y1 and hx1,y1 with
gx1,y1 = 0 µx1-a.s. and hx1,y1 = 0 νy1-a.s. such that f(x1, x2, y1, y2) ⩽ gx1,y1(x2)+h

x1,y1(y2)
for all (x2, y2) ∈ R2 and (x1, y1) ∈ A. Therefore we get that

f(x1, x2, y1, y2) ⩽ g(x1) + h(y1) + gx1,y1(x2) + hx1,y1(y2)

for all (x1, x2, y1, y2) ∈ R2 × R2.
2. =⇒ 1.: Take π ∈ Πbc(µ, ν). By Proposition 5.1 in [BBLZ17] it is of the

form π(dx1, dx2, dy1, dy2) = π̄(dx1, dy1)πx1,y1(dx2, dy2) with π̄(dx1, dy1) ∈ Π(µ1, ν1) and
πx1,y1(dx2, dy2) ∈ Π(µx1 , νy1). So we have∫︂

fdπ ⩽
∫︂ ∫︂

g ⊕ h⊕ gx1,y1 ⊕ hx1,y1dπx1,y1dπ̄ = 0.
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5 Bicausal 0-sets for general N

For the following Lemma let µ, ν ∈ P(RN ) and let D̃
M
N be a countable dense subset of

Cb([−M,M ]N ), endowed with the topology induced by ∥ · ∥∞, which is possible as Cb(K)

is separable for K compact. For every g̃ ∈ D̃
M
N we can choose a continuous extension g

to RN , such that ∥g∥∞ ⩽ ∥g̃∥∞ by Tietze’s extension Theorem. Let DM
N be the union of

these g and DN =
⋃︁
M∈ND

M
N . Let

F̃ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F : RN × RN → R : F (x1, ..., xN , y1, ...yN ) =∑︁
t<N ht(y1, ..., yt)[gt(x1, ..., xN )

−
∫︁
gt(x1, ...xt, x̄t+1, ..., x̄N )µx1,...,xt(dx̄t+1, ..., dx̄N )]+∑︁

t<N h
′
t(x1, ..., xt)[g

′
t(y1, ..., yN )

−
∫︁
g′t(y1, ...yt, ȳt+1, ..., ȳN )νy1,...,yt(dȳt+1, ..., dȳN )]

gt, g
′
t ∈ DN , ht, h

′
t ∈ Dt ∀ t < N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Lemma 5.1.

π ∈ Πbc(µ, ν) ⇐⇒
∫︂
fdπ = 0 for all f ∈ F̃.

Proof. =⇒ : Clear by the characterization of bicausal couplings in Proposition 2.3 in
[BBLZ17].
⇐= : Again by Proposition 2.3 in [BBLZ17] and by symmetry it is sufficient to show that,
for fixed bicausal π and t < N ,

∫︂
h̃t(y1, ..., yt)

(︂
g̃t(x1, ..., xN )

−
∫︂
g̃t(x1, ..., xt, x̄t+1, ..., x̄N )µx1,...,xt(dx̄t+1, ..., dx̄N )dπ

)︂
= 0

for all h̃t ∈ Cb(Rt) and g̃t ∈ Cb(RN ).
Let h̃t ∈ Cb(Rt) and g̃t ∈ Cb(RN ) be arbitrary and let γ := max{∥g̃t∥, ∥h̃t∥}.
Due to Lusin’s Theorem we find a compact set Kt ⊂ RN such that

(x1, ..., xN ) ↦→ µx1,...,xt is continuous on Kt and π(Kc
t ) < ε. Choose a hypercube K̂ with

Kt ⊆ K̂. By Prokhorov’s Theorem, the compactness of Kt gives us that {µx1,...,xt :

(x1, ..., xt) ∈ Kt} is tight and we can find a hypercube K̃ such that µx1,...,xt(K̃
c
) < ε for

all (x1, ..., xt) ∈ Kt. Let K = K̂ ∪ K̃. Now we can choose gt ∈ DN and ht ∈ Dt, such that
∥g̃t − gt∥ < ε and ∥h̃t − ht∥ < ε on K. W.l.o.g. ∥gt∥ ⩽ ∥g̃t∥ and ∥ht∥ ⩽ ∥h̃t∥.

Due to our assumption we have that

∫︂
h̃t

(︂
g̃t−

∫︂
g̃tdµx1,...,xt

)︂
dπ =∫︂

h̃t

(︃
g̃t −

∫︂
g̃tdµx1,...,xt

)︃
dπ −

∫︂
ht

(︃
gt −

∫︂
gtdµx1,...,xt

)︃
dπ.
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5 Bicausal 0-sets for general N

Notice that⃓⃓⃓ ∫︂
Kc

t

h̃t

(︃
g̃t −

∫︂
g̃tdµx1,...,xt

)︃
dπ −

∫︂
Kc

t

ht

(︃
gt −

∫︂
gtdµx1,...,xt

)︃
dπ
⃓⃓⃓

⩽
∫︂
Kc

t

4γ2dπ ⩽ 4εγ2.

We also have that ⃓⃓⃓⃓∫︂
Kt

h̃tg̃t − htgtdπ

⃓⃓⃓⃓
⩽ 2εγ, (5.1)

using that

∥h̃tg̃t − htgt∥ ⩽ ∥h̃tg̃t − h̃tgt∥+ ∥h̃tgt − htgt∥ ⩽ ∥h̃t∥∥g̃t − gt∥+ ∥gt∥∥h̃t − ht∥.

Due to the tightness of {µx1,...,xt : (x1, ..., xt) ∈ Kt} we have that

⃓⃓⃓⃓∫︂
Kt

ht

∫︂
K̃

c
gtdµx1,...,xt − h̃t

∫︂
K̃

c
g̃tdµx1,...,xtdπ

⃓⃓⃓⃓
⩽ 2εγ2.

Notice that
∫︁
K̃ gt − g̃tdµx1,...,xt ⩽ ε and by the same argument as in (5.1) we get

⃓⃓⃓⃓∫︂
Kt

ht

∫︂
K̃
gtdµx1,...,xt − h̃t

∫︂
K̃
g̃tdµx1,...,xtdπ

⃓⃓⃓⃓
⩽ 2εγ.

All in all we have ⃓⃓⃓⃓∫︂
h̃t

(︃
g̃t −

∫︂
g̃tdµx̃1,...,xt

)︃
dπ

⃓⃓⃓⃓
⩽ ε(6γ2 + 4γ).

Therefore it is equal to zero, by the arbitrary choice of ε.

Lemma 5.2. The set BN := {π ∈ Πbc(µ, ν) : µ, ν ∈ P(RN )} is Borel.

Proof. For h ∈ Cb(Rt) and g ∈ Cb(RN ) let ϕtg,h : P(RN × RN ) → R,

π ↦→
∫︂
h(y1, ..., yt)

(︂
g(x1, ..., xN )

−
∫︂
g(x1, ..., xt, x̃t+1, ..., x̃N )d(p

1
#π)x1,...,xt(x̃t+1, ..., x̃N )

)︂
dπ

and ψtg,h : P(RN × RN ) → R,

π ↦→
∫︂
h(x1, ..., xt)

(︂
g(y1, ..., yN )

−
∫︂
g(y1, ..., yt, ỹt+1, ..., ỹN )d(p

2
#π)y1,...,yt(ỹt+1, ..., ỹN )

)︂
dπ.

By Lemma 5.1 we know that

BN =
⋂︂
t<N

⋂︂
g∈DN

⋂︂
h∈Dt

(ϕtg,h)
−1(0) ∩

⋂︂
t<N

⋂︂
g∈DN

⋂︂
h∈Dt

(ψtg,h)
−1(0).

By Proposition 7.29 in [BS96] both ϕtg,h and ψtg,h are measurable functions. Hence BN is
Borel as it is a countable intersection of Borel sets.
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Lemma 5.3. Let X and Y be closed subsets of RN . Then D = {(x1, y1, π) : x1 ∈
p1(X ), y1 ∈ p1(Y), π ∈ Πbc(µx1 , νy1)} is an analytic set.

Proof. Using the set BN from the previous Lemma we get that

D =
(︁
p1(X )× p1(Y)×BN−1

)︁
∩ {(x1, y1, π) : x1 ∈ p1(X ), y1 ∈ p1(Y), π ∈ Π(µx1 , νy1)}.

Note that p1(X ) and p1(Y) are both analytic sets, as they are projections of Borel sets.
By Lemma 5.2, Lemma 4.1 and the fact that finite products and finite intersections of
analytic sets are still analytic we get that D is an analytic set.

Lemma 5.4. Let µ, ν ∈ P(RN ). Let D = {(x1, y1, π) : x1 ∈ R, y1 ∈ R, π ∈ Πbc(µx1 , νy1)}.
Let f : RN × RN → R be upper semianalytic and nonnegative. Then

sup
π∈Πbc(µ,ν)

∫︂
fdπ = sup

γ∈Π(µ1,ν1)

∫︂
sup

λ∈Πbc(µx1 ,νy1 )

∫︂
fdλdγ. (5.2)

Proof. By Proposition 5.1 in [BBLZ17] we have that π is a bicausal coupling of µ and ν
iff π = π̄πx1,y1 with π̄ ∈ Π(µ1, ν1) and πx1,y1 ∈ Π(µx1 , νy1) π̄-a.s. Hence

sup
π∈Πbc(µ,ν)

∫︂
fdπ = sup

γ∈Π(µ1,ν1)
λ:R×R→Πbc(µ·,ν·)univ.meas.

∫︂ ∫︂
fdλdγ.

Let f̃ : R× R× P(RN−1 × RN−1) → R be defined by

(x1, y1, λ) ↦→
∫︂
f(x1, x̃2, ..., x̃N , y1, ỹ2, ..., ỹN )λ(dx̃2, ..., dx̃N , dỹ2, ..., dỹN ).

We can use Proposition 7.48 in [BS96] to see that f̃ is upper semianalytic, choosing,
using the notation of Proposition 7.48 in [BS96], X to be R× R×P(RN−1 × RN−1) and
Y to be RN−1 × RN−1. Let D(x1,y1) := {λ ∈ P(RN−1 × RN−1) : (x1, y1, λ) ∈ D}. By
Proposition 7.47 in [BS96], (x1, y1) ↦→ supλ∈D(x1,y1)

f̃(x1, y1, λ) is upper semianalytic as
well, as D is an analytic set by Lemma 5.3. In particular (x1, y1) ↦→ supλ∈D(x1,y1)

∫︁
fdλ =

supλ∈Π(µx1 ,νy1 )

∫︁
fdλ is universally measurable. This combined with nonnegativity shows

that the integral on the right hand side of (5.2) is well defined.
By Proposition 7.50 in [BS96] (again using that D is an analytic set), for arbitrarily

chosen ε > 0, we find a universally measurable function λε : R2 → P(RN−1 × RN−1) with
Gr(λ) ⊆ D such that

f̃(x1, y1, λε(x1, y1)) > sup
π∈Πbc(µx1 ,νy1 )

f̃(x1, y1, π)− ε

for all (x1, y1) for which sup
π∈Πbc(µx1 ,νy1 )

f̃(x1, y1, π) <∞ and

f̃(x1, y1, λε(x1, y1)) > 1/ε
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5 Bicausal 0-sets for general N

otherwise.
Therefore, if

π({(x1, y1) : sup
γ∈Πbc(µx1 ,νy1 )

f̃(x1, y1, γ) <∞}) = 1 for all π ∈ Π(µ1, ν1), (5.3)

then

sup
π∈Π(µ1,ν1)

λ:R×R→Πbc(µ·,ν·)univ.meas.

∫︂ ∫︂
fdλdπ ⩾ sup

π∈Π(µ1,ν1)

∫︂
f̃(x1, y1, λε(x1, y1))dπ

⩾ sup
π∈Π(µ1,ν1)

∫︂
sup

γ∈Πbc(µx1 ,νy1 )
f̃(x1, y1, γ)dπ − ε.

Letting ε go to zero gives us that the LHS in (4.1) is greater or equal than the RHS in
this case. In the case of (5.3) not holding true both expressions in (4.1) are equal to ∞ as
we can make f̃(x1, y1, λε(x1, y1)) arbitrarily large on a set of positive measure for some
coupling π.

Assume there exists a coupling γ ∈ Πbc(µ, ν), such that the LHS in (5.2) is strictly
greater. Choosing γ̄ and γx1,y1 immediately leads to a contradiction.

Theorem 5.5. Let µ, ν ∈ P(RN ). Let f : RN × RN → R be upper semianalytic and
nonnegative. Then the following are equivalent:

1. supπ∈Πbc(µ,ν)

∫︁
fdπ = 0

2. There exist nonnegative functions g, h, gx1,y1 , hx1,y1 , ..., gx1,...,xN−1,y1,...,yN−1 ,
hx1,...,xN−1,y1,...,yN−1 with g = 0 µ1-a.s, h = 0 ν1-a.s, gx1,...,xi,y1,...,yi = 0 µx1,...,xi-a.s.
and hx1,...,xi,y1,...,yi νy1,...,yi-a.s for i < N such that

f(x1, ...xN , , y1, ..., yN ) ⩽ g(x1) + h(y1)

+
N−1∑︂
i=1

gx1,...,xi,y1,...,yi(xi+1) + hx1,...,xi,y1,...,yi(yi+1) (5.4)

for all (x1, ..., xN , y1, ..., yN ) ∈ RN × RN .

Proof. 1. =⇒ 2.: We will do an induction over N . The implication holds true by Theorem
4.3 for N = 2. Assume it holds true for N − 1. Using equation (5.2), by Theorem 2.21 in
[Kel84] this implies that there exist functions g and h with g = 0 µ1-a.s. and h = 0 ν1-a.s.
such that supλ∈Πbc(µx1 ,νy1 )

∫︁
fdλ ⩽ g(x1)+h(y1) for all (x1, y1) ∈ R2. We set the functions

equal to ∞ for all points on which they do not vanish. By the induction hypothesis, for
pairs (x1, y1) for which g(x1) + h(y1) vanishes, there exist functions gx1,...,xi,y1,...,yi and
hx1,...,xi,y1,...,yi for i < N such that

f(x1, ..., xN , y1, ..., yN ) ⩽
N−1∑︂
i=1

gx1,x2,...,xi,y1,...,yi(xi+1) + hx1,x2,...,xi,y1,...,yi(yi+1)

for all (x2, ..., xN , y2, ..., yN ) ∈ RN−1 × RN−1.
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For all other points the inequality (5.4) holds true because for these points (x1, y1) we
either set g(x1) = ∞ or h(y1) = ∞.
2. =⇒ 1.: We prove this direction by induction over N as well. For N = 2 the

implication is true due to Theorem 4.3. By Lemma 5.4 we have that

sup
π∈Πbc(µ,ν)

∫︂
fdπ = sup

π̄∈Π(µ1,ν1)

∫︂
sup

λ∈Πbc(µx1 ,νy1 )

∫︂
fdλdπ̄ (5.5)

⩽ sup
π̄∈Π(µ1,ν1)

∫︂
g(x1) + h(y1)

+ sup
λ∈Πbc(µx1 ,νy1 )

∫︂ N−1∑︂
i=1

gx1,...,xi,y1,...,yi(xi+1)

+ hx1,...,xi,y1,...,yi(yi+1)dλdπ̄.

Therefore for all (x1, y1) for which

f(x1, ..., xN , y1, ..., yN ) ⩽
N−1∑︂
i=1

gx1,...,xi,y1,...,yi(xi+1) + hx1,...,xi,y1,...,yi(yi+1) (5.6)

for all (x2, ..., xN , y2, ..., yN ) ∈ RN−1 × RN−1, we have by the induction hypothesis that
supλ∈Πbc(µx1 ,νy1 )

∫︁
fdλ = 0. As g and h vanish µ1 respectively ν1 a.s., (5.6) holds true

π̄-a.s. Combining this with (5.5) we get the desired result.
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6 Counterexamples

By Theorem 2.9 in [BBLZ17], the causal and bicausal problem coincide in the case that
the starting measure µ is the product of its marginals and the cost function has a separable
structure (i.e. is of the form c(x1, ..., xN , y1, ..., yN ) =

∑︁N
i=1 ci(xi, yi)). The following two

examples show that one cannot drop either of the two assumptions, using the results from
the last chapters. Although there are already counterexamples in [BBLZ17], we will give
some other examples which are more intuitive. In the following examples we denote the
Lebesgue measure on [0, 1] by λ.

Example 1. Consider the non-separable cost function c = 1Cc for
C = {(x1, x2, x3, x1) : x1, x2, x3 ∈ [0, 1]} and µ = ν = λ⊗ λ. Then

inf
π∈Πc(µ,ν)

∫︂
1Ccdπ = 0, but inf

π∈Πbc(µ,ν)

∫︂
1Ccdπ = 1. (6.1)

The first equality in (6.1) holds true as we can choose the causal coupling π = f#(λ⊗λ⊗λ)
for f(x1, x2, x3) := (x1, x2, x3, x1) which is supported on C. Heuristically π is causal, as
the third component is independent both from the first and the second component. The idea
why π is not bicausal is that knowing the third component, the fourth component tells us
exactly what the first component should be. To be more precise on why the coupling is causal
we can use the characterization from Proposition 2.3 in [BBLZ17]. It is easy to verify that
we can decompose π into π̄(dx1, dy1)πx1,y1(dx2, dy2) with π̄ = λ⊗ λ and πx1,y1 = λ⊗ δx1 .
Hence π̄ ∈ Π(µ1, ν1), (p1)#(πx1,y1) = µx1 = λ and for A ⊂ [0, 1] measurable

∫︂
y2

1Aπy1(dy2) =

∫︂
x1

∫︂
y2

1Aπx1,y1(dy2)πy1(dx1) = λ(A) = νy1(A).

By Proposition 2.3 in [BBLZ17] this implies that π is a causal coupling between µ and ν.
For the second equality in (6.1) notice that the functions g = h = gx1,y1 = 0 and

hx1,y1 = 1{x1} fulfill the requirements given in Theorem 4.3 for f = 1C (i.e. g = 0 µ1-a.s.,
h = 0 ν-a.s., gx1,y1 = 0 µx1-a.s, hx1,y1 = 0 νy1-a.s. and 1C ⩽ g ⊕ h⊕ gx1,y1 ⊕ hx1,y1) and
therefore for all γ bicausal

∫︁
1Cdγ = 0. Hence

∫︁
1Ccdγ = 1.

The next example shows that we can also not drop the assumption that µ is a product
of its marginals

Example 2. Let µ = f#λ for f(x) := (x, x), ν = δ0 ⊗ λ and c := 1{x2 ̸=y2}. Then

inf
π∈Πc(µ,ν)

∫︂
cdπ = 0, (6.2)

whereas

inf
π∈Πbc(µ,ν)

∫︂
cdπ = 1.
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6 Counterexamples

We can see that equation (6.2) holds true by choosing π = g#λ for g(x) = (x, x, 0, x).
For the bicausal case notice that the functions g = h = 0, gx1,y1(x2) = 1 − 1{x1} and

hx1,y1(y2) = 1{x1} fulfill all the requirements from Theorem 4.3, choosing f(x1, x2, y1, y2) =
1{x2=y2}. Therefore

sup
π∈Πbc(µ,ν)

∫︂
1{x2=y2}dπ = 0.

This gives us that for every bicausal coupling π∫︂
1{x2 ̸=y2}dπ = 1

and therefore we have that

inf
π∈Πbc(µ,ν)

∫︂
1{x2 ̸=y2}dπ = 1.
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7 Causal 0-sets

From now on, for Polish spaces X,Y , m ∈ P(X) and µ ∈ P(X × Y ) we will also use the
notation ∫︂

X
m(dx)µx(dy)

for the Bochner integral
∫︁
X µx(dy)m(dx) and in the same way we will also frequently

interchange the integrand and the underlying measure in usual integrals, if convenient.
Apart from Theorem 7.4 the results in this chapter and the idea of their proofs resemble

[BBLZ17]. Nevertheless we cannot directly use the results from [BBLZ17] as we are
interested in obtaining slightly different ones (considerung suprema instead of infima).
These considerations will lead to Theorem 7.4, which can be seen as the equivalent to
Theorem 5.5, considering causal instead of bicausal couplings.

Lemma 7.1. Let µ ∈ P(RN ). Then, for t ⩽ N , f : P(R) → P(R) given by m ↦→∫︁
m(dxt−1)µxt−1(dxt) is measurable.

Proof. For µ0 ∈ P(R), gi ∈ Cb(R) and ε > 0 let

N(µ0, g1, ..., gk, ε) =

{︃
µ : max

1⩽i⩽k

⃓⃓⃓⃓∫︂
gidµ−

∫︂
gidµ0

⃓⃓⃓⃓
< ε

}︃
.

Recall that {N(µ0, g1, ..., gk, ε) : µ0 ∈ P(R), g1, ..., gk ∈ Cb(R), ε > 0} is a basis for the
weak topology. As P(R) is a Polish space, we can write every open set as a countable union
of base elements. We will show that the preimage of every base element is measurable,
then it easily follows that every preimage of an element of its generated sigma algebra is
also measurable. So we look at

f−1(N(µ0, g1, ..., gk, ε))

=

{︄
m ∈ P(R) : max

1⩽i⩽k

⃓⃓⃓⃓
⃓
∫︂
xt−1

∫︂
xt

gi(xt)µxt−1(dxt)m(dxt−1)−
∫︂
gidµ0

⃓⃓⃓⃓
⃓ < ε

}︄
.

By Proposition 7.29 in [BS96] we have that g̃(xt−1) :=
∫︁
gi(xt)µxt−1(dxt) is measurable and

it is bounded as gi is bounded. By Corollary 7.29.1 in [BS96] m ↦→
∫︁
g̃dm is measurable

as well. Therefore f−1(N(µ0, g1, ..., gk, ε)) is measurable.

Definition 6. Let µ, ν ∈ P(RN ). We call π ∈ Πc(µ, ν) causal quasi-Markov, denoted by
π ∈ Πcqm(µ, ν), if for 1 ⩽ t ⩽ N − 1 we have that

πx1,...,xt,y1,...,yt(dxt+1, dyt+1) = πxt,y1,...,yt(dxt+1, dyt+1).
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7 Causal 0-sets

Remark 4. The set of causal quasi-Markov couplings is non-empty if µ is a Markov
measure, but there may also be causal quasi-Markov couplings if µ is non-Markov. This
fixes a little inaccuracy in [BBLZ17].

If µ is a Markov measure we can take the independent coupling of µ and ν, which is
obviously quasi-Markov.

To see that we can have quasi-Markov couplings, even though µ is not Markov, take
N > 2 and let µ = ν ∈ P(RN ) be non-Markov. Then taking the coupling π = f#µ, for

f(x1, ..., xN ) = (x1, ..., xN , x1, ..., xN ),

we get that

πx1,...,xt,y1,...,yt(dxt+1, dyt+1) = πy1,...,yt(dxt+1, dyt+1) = πxt,y1,...,yt(dxt+1, dyt+1).

Theorem 7.2. Let µ, ν ∈ P(RN ). Let µ be Markov and c be semiseparable (i.e. c =∑︁N
t=1 ct(xt, y1, ..., yt) for ct measurable and nonnegative). We set V c

N = 0 and define
recursively for t = N, ..., 2:

V c
t−1(y1, ..., yt−1,m(dxt−1)) = (7.1)

sup
γ∈Π(

∫︁
xt−1

m(dxt−1)µxt−1 (dxt),νy1,...,yt−1 (dyt))

∫︂
γ(dxt, dyt)

(︁
c(xt, y1, .., yt)

+ V c
t (y1, ..., yt, γyt(dxt))

)︁
.

If we set

V c
0 = sup

γ∈Π(µ1,ν1)

∫︂
γ(dx1, dy1) (c(x1, y1) + V c

1 (y1, γy1(dx1))) ,

we get that

V c
0 = sup

π∈Πcqm(µ,ν)

∫︂
cdπ. (7.2)

We will refer to the right hand side in (7.2) as value(Pcqm).

Proof. First we show that the sets

Dt−1 = {(y1, ..., yt−1,m, γ) : γ ∈ Π( ∫
xt−1

m(dxt−1)µxt−1(dxt), νy1,...,yt−1(dyt))}

are Borel and therefore also analytic. Let D̃ = {(p, q, γ) : p, q ∈ P(R), γ ∈ Π(q, p)} which
is closed by a similar argument as in the proof of Lemma 4.1. Let Φt−1 be defined by

(y1, ..., yt−1,m, γ) ↦→ (νy1,...,yt−1(dyt), ∫
xt−1

m(dxt−1)µxt−1(dxt), γ).

By the way we defined Φt−1 we have that Dt−1 = Φ−1
t−1(D̃), so it suffices to show that

m ↦→
∫︁
xt−1

m(dxt−1)µxt−1(dxt) is measurable in order to obtain measurability of Dt−1,
which is true by Lemma 7.1.
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Now we will show that all the integrals in the recursive formula are well defined by
showing that the integrands are upper semianalytic and therefore universally measurable.

By Corollary 7.27.2 in [BS96] we can choose the kernel γyt(dxt) such that yt ↦→ γyt(dxt) is
measurable. Therefore (y1, ..., yt, γ) ↦→ (y1, ..., yt, γyt(dxt)) is measurable as well. If we show
that (y1, ..., yt,m) ↦→ V c

t (y1, ..., yt,m) is upper semianalytic, we get that (y1, ..., yt, γ) ↦→
V c
t (y1, ..., yt, γyt) is upper semianalytic because the composition of an upper semianalytic

function with a measurable function is upper semianalytic by Lemma 7.30 (3) in [BS96].
We will show that V c

t is upper semianalytic by reverse induction. First we show that

(y1, ..., yN−1,m, γ) ↦→
∫︂
cNγ(dxN , dyN ) (7.3)

is Borel measurable, so in particular upper semianalytic. To see this we can use Proposition
7.29 in [BS96] and its notation, defining qγ(dxN , dyN ) as γ(dxN , dyN ), which is clearly
measurable as the function q : P(R2) → P(R2) from Definition 1 is the identity. We can
use Proposition 7.47 in [BS96] to get that V c

N−1 is upper semianalytic, because we already
showed that DN−1 is an analytic set.

Suppose now that V c
t is upper semianalytic. Let us look at

(y1, ..., yt−1,m, γ) ↦→
∫︂
γ(dxt, dyt)ct(xt, y1, ..., yt)

+

∫︂
νy1,...,yt−1(dyt)V

c
t (y1, ..., yt, γyt). (7.4)

The integrand of the second integral is upper semianalytic by the induction hypothesis
and as it is the composition of an upper semianalytic function with a Borel measurable
function. Its integral is also upper semianalytic by Proposition 7.48 in [BS96]. The first
summand on the right hand side of (7.4) is measurable by the same argument as for
(7.3). By Lemma 7.30 (4) in [BS96] their sum is upper semianalytic as well. Again by
Proposition 7.47 in [BS96], which we can apply as we showed that Dt−1 is analytic, we
conclude that V c

t−1 is upper semianalytic.
We wrote V c

t−1(y1, ..., yt−1,m) as a supremum of an upper semianalytic function over
a fiber of the analytic set Dt−1. Hence we can use Proposition 7.50 in [BS96] to get an
universally measurable function defined by

(y1, ..., yt−1,m) ↦→ L
y1,...,yt−1,m
t−1,ε ∈ Π( ∫

xt−1

m(dxt−1)µxt−1(dxt), νy1,...,yt−1(dyt)),

such that

V c
t−1(y1, ..., yt−1,m)− ε ⩽

∫︂
L
y1,...,yt−1,m
t−1,ε (dxt, dyt)[c(xt, y1, ..., yt) (7.5)

+ V c
t (y1, ..., yt, (L

y1,...,yt−1,m
t−1,ε )yt)]

for all (y1, ...yt−1, ,m) for which V c
t−1(y1, ...yt−1, ,m) <∞ and for all others we can make

the RHS in (7.5) greater than 1/ε. We will now build a measure that solves the recursion
up to an ε margin each step, or gives us arbitrary large values if necessary.

Suppose that c is bounded from above and therefore also that every V c
t is finite, in par-

ticular V c
0 . We choose an ε optimizer γ0,ε(dx1, dy1). Then we take y1 ↦→ γ1,εy1 (dx2, dy2) :=

L
y1,(γ0,ε)y1
1,ε , which is universally measurable as it is the composition of two universally
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7 Causal 0-sets

measurable functions (see Proposition 7.44 in [BS96]). Suppose that (y1, ..., yt−1) ↦→
γt−1,ε
y1,...,yt−1(dxt, dyt) is universally measurable. We define

(y1, ..., yt) ↦→ γt,εy1,...,yt(dxt+1, dyt+1) := L
y1,...,yt,(y

t−1,ε
y1,...,yt−1

)yt
t,ε (dxt+1, dyt+1),

which is universally measurable, because we can write it as the composition of the universally
measurable functions

(y1, ..., yt) ↦→ (y1, ..., yt, γ
t−1,ϵ
y1,...,yt−1

),

(y1, ..., yt,m(dxt, dyt)) ↦→ (y1, ..., yt,myt) and
(y1, ..., yt,m(dxt)) ↦→ Ly1,...,yt,mt,ε (dxt+1, dyt+1).

By definition we have that

γt,εy1,...,yt(dxt+1, dyt+1) ∈ Π

(︃∫︂
xt

(γt−1,ε
y1,...,yt−1

)yt(dxt)µxt(dxt+1), νy1,...,yt(dyt+1)

)︃
and the integral w.r.t. γt,εy1,...,yt attains V c

t (y1, ..., yt, (γ
t−1,ε
y1,...,yt−1)yt) up to an ε margin. Let

(xt, y1, ..., yt) ↦→ Γxt,y1,...,ytt,ε (dxt+1, dyt+1) := µxt(dxt+1)(γ
t,ε
y1,...,yt)xt+1(dyt+1), (7.6)

which is again measurable by Proposition 7.44 and Proposition 7.45 in [BS96]. By
Proposition 7.45 in [BS96] successive composition of these kernels gives us a unique Borel
measure Γε such that

Γε(dx1, ..., dxN , dy1, ...,dyN ) = γ0,ε(dx1, dy1)Γ
x1,y1
1,ε (dx2, dy2)...

Γxt,y1,...,ytt,ε (dxt+1, dyt+1)...Γ
xN−1,y1,...,yN−1

N−1,ε (dxN , dyN ).

By construction Γε is causal quasi-Markov and we will show that Γε ∈ Π(µ, ν) as well.
The first projection is equal to µ as by the definition of Γxt,y1,...,ytt,ϵ in (7.6), after integrating
the yi out, we are left with

Γε(dx1, ..., dxN ) = γ0,ε(dx1)µx1(dx2)...µxN−1(dxN )

and by definition γ0,ε ∈ Π(µ1, ν1).
Now we will also show that Γϵ(dy1, ..., dyN ) = ν(dy1, ..., dyN ). The definition of γ0,ε

gives us that Γε(dy1) = ν(y1) and therefore also

Γε(dy1, dy2) =

∫︂
x1,x2

γ0,ε(dx1, dy1)µx1(dx2)(γ
1,ε
y1 )x2(dy2)

=

∫︂
x1,x2

γ0,εy1 (dx1)ν(dy1)µx1(dx2)(γ
1,ε
y1 )x2(dy2)

= ν(dy1)

∫︂
x2

(︃∫︂
x1

γ0,εy1 (dx1)µx1(dx2)

)︃
(γ1,εy1 )x2(dy2) (7.7)

= ν(dy1)νy1(dy2).
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The last equality is true, as the expression inside the brackets in the penultimate line is
the first marginal of γ1,εy1 . Inductively we will show that we can write Γε(dy1, ..., dyN ) in
the following way:

Γε(dy1, ..., dyN ) = ν(dy1)νy1(dy2)...νy1,...,yN−2(dyN−1)∫︂
xN

(︄∫︂
xN−1

(γN−2,ε
y1,...,yN−2

)yN−1(dxN−1)µxN−1(dxN )

)︄
(γN−1,ε
y1,...,yN−1

)xN (dyN ) (7.8)

Then we can conclude our argument as (7.8) is equal to

ν(dy1)...νy1,...,yN−2(dyN−1)

∫︂
xN

γN−1,ε
y1,...,yN−1

(dxN , dyN )

= ν(dy1)...νy1,...,yN−2(dyN−1)

∫︂
xN

(γN−1,ε
y1,...,yN−1

)yN (dxN )νy1,...,yN−1(dyN )

= ν(dy1)...νy1,...,yN−2(dyN−1)νy1,...,yN−2,yN−1(dyN ).

By (7.7) we can write it in the way like in 7.8 for N = 2. The induction step works as well
as

Γε(dy1, ..., dyN , dyN+1) = ν(dy1)...νy1,...,yN−2(dyN−1)∫︂
xN ,xN+1

(︄∫︂
xN−1

(γN−2,ε
y1,...,yN−2

)yN−1(dxN−1)µxN−1(dxN )

)︄
(γN−1,ε
y1,...,yN−1

)xN (dyN )

µxN (dxN+1)(γ
N,ε
y1,...,yN

)xN+1(dyN+1)

= ν(dy1)...νy1,...,yN−2(dyN−1)∫︂
xN ,xN+1

γN−1,ε
y1,...,yN−1

(dxN , dyN )µxN (dxN+1)(γ
N,ε
y1,...,yN

)xN+1(dyN+1)

= ν(dy1)...νy1,...,yN−2(dyN−1)

∫︂
xN ,xN+1

(γN−1,ε
y1,...,yN−1

)yN (dxN )

νy1,...,yN−1(dyN )µxN (dxN+1)(γ
N,ε
y1,...,yN

)xN+1(dyN+1)

= ν(dy1)...νy1,...,yN−2(dyN−1)νy1,...,yN−1(dyN )∫︂
xN+1

(︃∫︂
xN

(γN−1,ε
y1,...,yN−1

)yN (dxN )µxN (dxN+1)

)︃
(γN,εy1,...,yN

)xN+1(dyN+1).

By the arguments above we know that Γε is a causal quasi-Markov coupling and we
designed it to be ε optimal at every step. Hence

V c
0 −Nε ⩽

∫︂
cdΓε ⩽ sup

π∈Πcqm(µ,ν)

∫︂
cdπ.

As ε was chosen arbitrarily we have that V c
0 ⩽ value(Pcqm). Now we show the reverse

inequality. Let γ ∈ Πcqm(µ, ν). Notice that

γy1,...,yt(dxt+1) =

∫︂
xt

γy1,...,yt(dxt)γy1,...,yt,xt(dxt+1) =

∫︂
xt

γy1,...,yt(dxt)µxt(dxt+1),
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7 Causal 0-sets

where the last inequality holds true due the γ being causal quasi-Markov and Proposition
2.3 in [BBLZ17]. Also by Proposition 2.3 in [BBLZ17] we have that γy1,...,yt(dyt+1) =
νy1,...,yt(dyt+1) and therefore

γy1,...,yt(dxt+1, dyt+1) ∈ Π

(︃∫︂
γy1,...,yt(dxt)µxt(dxt+1), νy1,...,yt(yt+1)

)︃
. (7.9)

Furthermore for 1 ⩽ t ⩽ N∫︂
ctdγ =

∫︂
γ(dy1, ..., dyt−1)γy1,...,yt−1(dxt, dyt)ct(xt, y1, ..., yt)

=

∫︂
γ(dy1)γy1(dy2)γy1,y2(dy3)...γy1,...,yt−1(dxt, dyt)ct(xt, y1, ..., yt)

=

∫︂
γ(dx1, dy1)γy1(dx2, dy2)...γy1,...,yt−1(dxt, dyt)ct(xt, y1, ..., yt).

As we assumed c to be of the form c =
∑︁N

t=1 ct(xt, y1, ..., yt) we have that

∫︂
cdγ =

∫︂
γ(dx1, dy1)

[︃
c1 +

∫︂
γy1(dx2, dy2)

[︃
c2 +

∫︂
γy1,y2(dx3, dy3)

[︃
c3 +

∫︂
...

]︃]︃]︃
.

Combining this with (7.9) we get that value(Pcqm) ⩽ V c
0 .

Let us treat the case that c is possibly not bounded from above. For M ∈ N let
cM :=

∑︁N
t=1 c

M
t , where cMt := ct ∧M . By the considerations up to this point, we have that

V cM
0 = sup

π∈Πcqm(µ,ν)

∫︂
cMdπ. (7.10)

Using monotone convergence and equation (7.10) we have that

sup
π∈Πcqm(µ,ν)

∫︂
cdπ = sup

π∈Πcqm(µ,ν)
sup
M

∫︂
cMdπ = sup

M
sup

π∈Πcqm(µ,ν)

∫︂
cMdπ

= sup
M

V cM
0 .

Inductively applying monotone convergence we get that this is equal to

sup
M

sup
γ

∫︂
dγ

[︃
cM1 + sup

γ1

∫︂
dγ1

[︃
cM2 + sup

γ2

∫︂
dγ2

[︁
cM3 + ...

]︁]︃]︃
= sup

γ

∫︂
dγ

[︃
c1 + sup

M
sup
γ1

∫︂
dγ1

[︃
cM2 + sup

γ2

∫︂
dγ2

[︁
cM3 + ...

]︁]︃]︃
= ...

= V c
0 .

Theorem 7.3. Let µ be Markov and c be semiseparable. Then value(Pc) = value(Pcqm).
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Proof. Let γ ∈ Πc(µ, ν) and

γ̃ = γ(dx1, dy1)γx1,y1(dx2, dy2)γx2,y1,y2(dx3, dy3)...γxN−1,y1,...,yN−1(dxN , dyN ).

We will show that γ̃ is causal quasi-Markov and that the integrals of a semiseparable cost
function with respect to γ and γ̃ coincide.

By definition γ̃(dx1, dy1) ∈ Π(µ1, ν1). We also have that

γ̃x1,...,xt,y1,...,yt(dxt+1) = γxt,y1,...,yt(dxt+1)

=

∫︂
x1,...,xt−1

γxt,y1,...,yt(dx1, ..., dxt−1)γx1,...,xt,y1,...,yt(dxt+1)

=

∫︂
x1,...,xt−1

γxt,y1,...,yt(dx1, ..., dxt−1)µxt(dxt+1) = µxt(dxt+1). (7.11)

The last line in (7.11) holds true due to Proposition 2.3 in [BBLZ17] and µ being Markov.
Therefore p1(γ̃) = µ.

Let H := H(xt, y1, ..., yt) be nonnegative and measurable. If we show that
∫︁
Hdγ =∫︁

Hdγ̃ for every such H we get that p2(γ̃) = ν and for a cost function with semiseparable
structure the integrals w.r.t. γ and γ̃ coincide. Notice that p2(γ̃) = ν gives us in particular
that γy1,...,yt(dyt+1) = νy1,...,yt(dyt+1). Combining this with (7.11) and the fact that
γ̃x1,...,xt,y1,...,yt = γxt,y1,...,yt = γ̃xt,y1,...,yt gives us that γ̃ ∈ Πcqm(µ, ν) by Proposition 2.3 in
[BBLZ17].

We have that
∫︁
Hdγ =

∫︁
Hdγ̃ holds true as∫︂

Hdγ̃ =

∫︂
Hγ(dx1, dx2, dy1, dy2)γx2,y1,y2(dx3, dy3)...

=

∫︂
Hγ(dx2, dy1, dy2)γx2,y1,y2(dx3, dy3)...

=

∫︂
Hγ(dx2, dx3, dy1, dy2, dy3)γx3,y1,y2,y3(dx4, dy4)...

... =

∫︂
Hγ(dxt−1, dy1, ..., dyt−1)γxt−1,y1,...,yt−1(dxt, dyt) =

∫︂
Hdγ.

Theorem 7.4. Let µ, ν ∈ P(R2) and c be semiseparable. If

sup
γ∈Πc(µ,ν)

∫︂
cdπ = 0,

then we have, for all (x1, x2, y1, y2) ∈ R2 × R2, that

c(x1, x2, y1, y2) ⩽ g(x1) + h(y1) + gx1,y1(x2) + hx1,y1(y2),

where g (resp. h) is equal to zero µ1-a.s. (resp. ν1-a.s.), hx1,y1 = 0 νy1-a.s. and gx1,y1 = 0
a.s. w.r.t. the measure

∫︁
x1
γy1(dx1)µx1(dx2) for every γ ∈ Π(µ1, ν1). In particular

gx1,y1 = 0 µx1-a.s.
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7 Causal 0-sets

Proof. Combining Theorem 7.2 with Theorem 7.3, we can recursively apply Theorem 2.21
from [Kel84], as we already did in the proof of Theorem 4.3, to obtain this result.

To see that the last line of the Theorem is indeed true, assume that there exists a set
A ⊂ R with µ1(A) > 0 such that µx1(gx1,y1) > 0 for x1 ∈ A. Let γ = µ1 ⊗ ν1. Then(︃∫︂

x1

γy1(dx1)µx1(dx2)

)︃
(gx1,y1) =

∫︂
x1

µ(dx1)µx1(g
x1,y1) > 0,

which contradicts that gx1,y1 = 0 a.s. with respect to the measure
∫︁
x1
γy1(dx1)µx1(dx2).
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8 Weak transport

Let X be a Polish space with a compatible metric d. We denote by Ψ(X) the set of all
continuous functions ϕ : X → R, which are bounded from below and satisfy that

|ϕ(x)| ⩽ a+ bd(x, x0),

for all x ∈ X, for some a > 0, b > 0 and some x0 ∈ X.
In this chapter we will consider cost functions, which may also depend on the chosen

coupling. Let µ ∈ P(X), ν ∈ P(Y ) for Polish spaces X,Y . Consider a l.s.c. cost function

C : X × P(Y ) → R ∪ {+∞}

which is convex in the second component and bounded from below. Then we call

inf
π∈Π(µ,ν)

∫︂
C(x, πx)µ(dx)

the weak transport problem between µ and ν.
We will frequently encounter the Polish space P1(R × P1(R)) in this chapter. A

complete metric on this space can be given by the 1-Wasserstein metric w.r.t. the metric
d((x, x̂), (y, ŷ)) = |x− y|+W (x̂, ŷ). For more details see [BBEP20].

More concretely, in Theorem 8.8, we will establish duality for the cost function

C : R× P1(R)× P1(R× P1(R)) → R,

C(x, x̂, p) =

∫︂
|x− y|p(dy) +W

(︃
x̂,

∫︂
ŷp(dŷ)

)︃
,

which is the cost function we consider for the remainder of the chapter. This duality in
Theorem 8.8 will prove to be useful in the next chapter in order to make a connection to
causal transport.

Definition 7. Let (X,X∗, ⟨·, ·⟩) be a dual pair and let f : X → R be a proper convex
function (i.e. f is convex, f > −∞ and there exists an x ∈ X s.th. f(x) < +∞). Then
we call f∗ : X∗ → R, defined by

f∗(x∗) = sup
x∈X

{⟨x∗, x⟩ − f(x)},

the conjugate function of f .

Lemma 8.1. Let ϕ : P1(R) → R be convex and l.s.c. Then∫︂
ϕ(µ)α(dµ) ⩾ ϕ

(︃∫︂
µα(dµ)

)︃
for α ∈ P1(P1(R)).
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8 Weak transport

Proof. Notice that P1(R) ⊂ M1(R) is closed and convex. Here M1(R) denotes the the
space of signed measures with finite first moment endowed with the initial topology with
respect to the family of functions of the form µ ↦→

∫︁
fdµ, for f ∈ Clin(R). So we are looking

at the dual pair (M1(R), Clin(R), ⟨·, ·⟩), where ⟨m, f⟩ :=
∫︁
fdm. Restricted to P1(R) this

topology coincides with the topology on P1(R) arising from the Wasserstein-distance (see
Definition 6.7 in [Vil16]). Let ϕ̃ : M1(R) → R be defined by{︄

ϕ̃(x̂) = ϕ(x̂) x̂ ∈ P1(R),
ϕ̃(x̂) = +∞ x̂ /∈ P1(R).

By definition ϕ̃ is clearly convex. Notice that {x̂ ∈ M1(R) : ϕ̃(x̂) ⩽ c} = {x̂ ∈ P1(R) :
ϕ(x̂) ⩽ c} is closed for c ∈ R by the lower semicontinuity of ϕ and therefore ϕ̃ is l.s.c. as
well. So we can use Theorem 2.3.3 in [Zal02] in order to get ϕ̃ = ((ϕ̃)∗)∗ and therefore

ϕ̃(µ) = sup
f∈Clin(R)

(︃∫︂
fdµ− (ϕ̃)∗(f)

)︃
. (8.1)

Using (8.1) we get, for α ∈ P1(P1(R)), that∫︂
ϕ(µ)α(dµ) =

∫︂
ϕ̃(µ)α(dµ)

=

∫︂
sup

f∈Clin(R)

(︃∫︂
fdµ− (ϕ̃)∗(f)

)︃
α(dµ)

⩾ sup
f∈Clin(R)

(︃∫︂ (︃∫︂
fdµ− (ϕ̃)∗(f)

)︃
α(dµ)

)︃
= sup

f∈Clin(R)

(︃∫︂
f(x)(∫ µα(dµ))(dx)− (ϕ̃)∗(f)

)︃
= ϕ̃

(︃∫︂
µα(dµ)

)︃
= ϕ

(︃∫︂
µα(dµ)

)︃
.

We will need the following two results characterizing convex functions, in which we
denote the pointwise supremum of all convex functions, which are dominated by ϕ, by ϕ̄.
It is easily seen that ϕ̄ is convex.

Lemma 8.2. Let ϕ : P1(R) → R be convex and 1-Lipschitz. Then

ϕ(x̂) = inf
α∈P1(P1(R)), mean(α)=x̂

∫︂
ϕdα.

Proof. One inequality can directly be seen by choosing α = δx̂.
For the reverse inequality let α ∈ P1(P1(R)) with mean(α) = x̂, we can use the version

of Jensen’s inequality from Lemma 8.1 to get

ϕ(x̂) = ϕ

(︃∫︂
ẑα(dẑ)

)︃
⩽
∫︂
ϕ(ẑ)α(dẑ).

Passing over to the infimum we get the result.
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Corollary 8.3. For ϕ : P1(R) → R 1-Lipschitz we have that

ϕ̄(x̂) = inf
α∈P1(P1(R)), mean(α)=x̂

∫︂
ϕ(ẑ)α(dẑ). (8.2)

Proof. It is easily seen that the function on the right hand side is convex and that it is
dominated by ϕ as we can again choose p = δx̂. Hence the right hand side in (8.2) is
dominated by the left hand side. For the reverse inequality let ψ be a convex function
with ψ ⩽ ϕ and α with mean(α) = x̂. Then, due to Lemma 8.1,

ψ(x̂) = ψ

(︃∫︂
ẑα(dẑ)

)︃
⩽
∫︂
ψ(ẑ)α(dẑ) ⩽

∫︂
ϕ(ẑ)α(dẑ).

Again we can pass over to the infimum on the right side.

Lemma 8.4. The function

C : R× P1(R)× P1(R× P1(R)) → R,

C(x, x̂, p) =

∫︂
|x− y|p(dy) +W

(︃
x̂,

∫︂
ŷp(dŷ)

)︃
is 1-Lipschitz in p.

Proof. Let p, q ∈ P1(R×P1(R)). We assume w.l.o.g. that
∫︁
|x− y|p(dy) >

∫︁
|x− y|q(dy).

For ϕ ∈ Lip1(R) the function gϕ : P1(R) → R, x̂ ↦→ x̂(ϕ) is also 1-Lipschitz, because⃓⃓⃓⃓∫︂
ϕ(x)x̂(dx)−

∫︂
ϕ(y)ŷ(dy)

⃓⃓⃓⃓
⩽ sup

f∈Lip1(R)

(︃∫︂
f(x)x̂(dx)−

∫︂
f(y)ŷ(dy)

)︃
=W (x̂, ŷ).

Using (2.1) we have that

W

(︃∫︂
x̂p(dx̂),

∫︂
ŷq(dŷ)

)︃
= sup

ϕ∈Lip1(R)

(︃∫︂
gϕ(x̂)p(dx̂)−

∫︂
gϕ(ŷ)q(dŷ)

)︃
. (8.3)

Applying (8.3) and the fact that gϕ is 1-Lipschitz for ϕ 1-Lipschitz we get

|C(x, x̂, p)− C(x, x̂, q)| ⩽
∫︂

|x− y|p(dy)−
∫︂

|x− y|q(dy)

+
⃓⃓⃓
W

(︃
x̂,

∫︂
ŷp(dŷ)

)︃
−W

(︃
x̂,

∫︂
ŷq(dŷ)

)︃ ⃓⃓⃓
⩽
∫︂

|x− y|p(dy)−
∫︂

|x− y|q(dy) +W

(︃∫︂
ŷp(dŷ),

∫︂
ŷq(dŷ)

)︃
⩽ sup

ϕ∈Lip1(R)

(︃∫︂
|x− y|+ gϕ(ŷ)p(dy, dŷ)−

∫︂
|x− y|+ gϕ(ŷ)q(dy, dŷ)

)︃
⩽ sup

f∈Lip1(R×P1(R))

(︃∫︂
fdp−

∫︂
fdq

)︃
=W (p, q).
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8 Weak transport

Lemma 8.5 and Theorem 8.8 and the idea of their proof resemble Theorem 2.11 in
[GRST17].

Lemma 8.5. For all ϕ ∈ Ψ(R × P1(R)) ∩ Lip1 and for all (x, x̂) ∈ R × P1(R) we have
that

Q̂ϕ(x, x̂) := inf
p∈P1(R×P1(R))

{︃∫︂
ϕ(y, ŷ)p(dy, dŷ) +

∫︂
|x− y|p(dy) +W

(︂
x̂,

∫︂
ŷp(dŷ)

)︂}︃
= Qϕ̂(x, x̂),

where ϕ̂ denotes the supremum of all functions which are dominated by ϕ and convex in
the second component and Qf(x, x̂) := inf ẑ∈P1(R){f(x, ẑ) +W (x̂, ẑ)}.

Proof. First we will show that

Q̂ϕ(x, x̂) = inf
ẑ∈P1(R)

{g(x, ẑ) +W (x̂, ẑ)},

where

g(x, ẑ) := inf
p∈P1(R×P1(R))

{︃∫︂
ϕdp+

∫︂
|x− y|dp(y),

∫︂
ŷp(dŷ) = ẑ

}︃
Then we conclude by showing that g = ϕ̂.

"⩾": Let p ∈ P1(R× P1(R)) be arbitrary. Let λp =
∫︁
ŷp(dŷ). Then∫︂

ϕdp+

∫︂
|x− y|p(dy) +W (x̂, λp) ⩾ g(x, λp) +W (x̂, λp)

⩾ inf
ẑ∈P1(R)

{g(x, ẑ) +W (x̂, ẑ)}.

Therefore we can also pass over to the infimum over all p.

"⩽": Let ẑ ∈ P1(R) be arbitrary. Then we have

inf
p

{︃∫︂
ϕdp+

∫︂
|x− y|p(dy),

∫︂
ŷdp = ẑ

}︃
+W (x̂, ẑ)

= inf
p

{︃∫︂
ϕdp+

∫︂
|x− y|p(dy) +W

(︃
x̂,

∫︂
ŷp(dŷ)

)︃
,

∫︂
ŷdp = ẑ

}︃
⩾ inf

p

{︃∫︂
ϕdp+

∫︂
|x− y|p(dy) +W

(︃
x̂,

∫︂
ŷp(dŷ)

)︃}︃
= Q̂ϕ(x, x̂).

Therefore we can also pass over to the infimum over all ẑ.
Now we will show that g is indeed equal to ϕ̂. Let ẑ1, ẑ2 ∈ P1(R), ε > 0 and λ ∈ [0, 1]. To

show convexity in the second argument of g choose an ε/2-optimal measure p1 for g(z, ẑ1)
and an ε/2-optimal measure p2 for g(z, ẑ2). Then, choosing the measure λp1 + (1− λ)p2,
we have that
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g(z, λẑ1 + (1− λ)ẑ2)

⩽ λ

(︃∫︂
ϕ(x, x̂) + |x− z|p1(dx, dx̂)

)︃
+ (1− λ)

(︃∫︂
ϕ(x, x̂) + |x− z|p2(dx, dx̂)

)︃
⩽ λg(z, ẑ1) + (1− λ)g(z, ẑ2) + ε.

As ε was chosen arbitrarily this shows that g is convex in the second variable.
As we can choose p = δx ⊗ δx̂ we also have that g ⩽ ϕ and therefore g ⩽ ϕ̂. Now we

show that g ⩾ ϕ̂ as well. By Corollary 8.3 and Lipschitz continuity of ϕ we have that

ϕ̂(x, x̂) = inf
p∈P1(P1(R))

{︃∫︂
ϕ(x, ẑ)p(dẑ),

∫︂
ẑp(dẑ) = x̂

}︃
= inf

p∈P1(R×P1(R))

{︃∫︂
ϕ(x, ẑ)p(dx0, dẑ),

∫︂
ẑp(dẑ) = x̂

}︃
⩽ inf

p∈P1(R×P1(R))

{︃∫︂
ϕ(x0, ẑ) + |x− x0|p(dx0, dẑ),

∫︂
ẑp(dẑ) = x̂

}︃
= g(x, x̂).

Lemma 8.6. For ϕ ∈ Lip1(R× P1(R)) we have that

Qϕ(x, x̂) := inf
ẑ∈P1(R)

{ϕ(x, ẑ) +W (x̂, ẑ)} = ϕ(x, x̂) (8.4)

for all (x, x̂) ∈ R× P1(R).

Proof. The LHS in (8.4) is dominated by the RHS as we can choose ẑ = x̂. To see that
the other inequality holds true as well assume that there exists some ẑ ∈ P1(R) such that

ϕ(x, ẑ) +W (x̂, ẑ) < ϕ(x, x̂).

This immediately leads to a contradiction as ϕ is 1-Lipschitz.

Lemma 8.7. The function ϕ̂(x, x̂) is 1-Lipschitz, for ϕ : R× P1(R) → R 1-Lipschitz.

Proof. For notational simplicity we assume that ϕ : P1(R) → R and we show that ϕ̄ is
1-Lipschitz.

Let x̂, ŷ ∈ P1(R) and π ∈ Π(x̂, ŷ) such that W (x̂, ŷ) =
∫︁
|x − y|π(dx, dy), which is

possible by Theorem 4.1 in [Vil16]. Let λ be the Lebesgue measure on [0, 1]. We choose
T : R× [0, 1] → R such that, for all x ∈ R, (y ↦→ T (x, y))#(λ) = πx. Then we have that

W (x̂, ŷ) =

∫︂
|x− y|π(dx, dy) =

∫︂ ∫︂
|x− T (x, u)|λ(du)x̂(dx).

Let p ∈ P1(P1(R)) with
∫︁
ẑp(dẑ) = x̂ such that∫︂

ϕ(ẑ)p(dẑ)− ε ⩽ ϕ̄(x̂). (8.5)

For u ∈ [0, 1] and Tu := (x ↦→ T (x, u)) let qu := (ẑ ↦→ (Tu)#ẑ)#p. Let q :=
∫︁
quλ(du).

First we verify that
∫︁
ẑq(dẑ) = ŷ. For A measurable we have that

35



8 Weak transport

(︃∫︂
ẑq(dẑ)

)︃
(A) =

∫︂
ẑ(A)(∫ quλ(du))(dẑ)

=

∫︂ ∫︂
ẑ(A)qu(dẑ)λ(du)

=

∫︂ ∫︂
(Tu)#(ẑ)(A)p(dẑ)λ(du)

=

∫︂ ∫︂
ẑ({x : T (x, u) ∈ A})p(dẑ)λ(du)

=

∫︂ ∫︂ ∫︂
1{x:T (x,u)∈A}ẑ(dx)p(dẑ)λ(du)

=

∫︂ ∫︂
1{x:T (x,u)∈A}x̂(dx)λ(du)

=

∫︂ ∫︂
1{u:T (x,u)∈A}λ(du)x̂(dx)

=

∫︂
πx(A)x̂(dx)

= π(R×A) = ŷ(A)

Moreover, using the Lipschitz continuity of ϕ and (8.5), we have that

∫︂
ϕ(ẑ)q(dẑ) =

∫︂ ∫︂
ϕ(ẑ)qu(dẑ)λ(du)

=

∫︂ ∫︂
ϕ((Tu)#ẑ)p(dẑ)λ(du)

⩽
∫︂ ∫︂

ϕ(ẑ) +W (ẑ, (Tu)#ẑ)p(dẑ)λ(du)

⩽ ϕ̄(x̂) +

∫︂ ∫︂ ∫︂
|x− T (x, u)|ẑ(dx)p(dẑ)λ(du) + ε

= ϕ̄(x̂) +

∫︂
|x− T (x, u)|x̂(dx)λ(du) + ε

⩽ ϕ̄(x̂) +W (x̂, ŷ) + ε.

The fourth line holds true as we can choose the coupling π between ẑ and (Tu)#ẑ given
by π = f#ẑ for f(x) = (x, T (x, u)).

By the arbitrary choice of ε and by passing over to the infimum of all measures
m ∈ P1(P1(R)) with mean(m) = ŷ on the left hand side, we get the desired result.

Lemma 8.4 enables us to use an already established duality result on weak transport (see
Lemma 5.7 in [BBP19]). Putting this together with Lemma 8.5, Lemma 8.6 and Lemma
8.7 we will be able to prove the following duality Theorem:
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Theorem 8.8. For µ, ν ∈ P1(R× P1(R)) and

C : R× P1(R)× P1(R× P1(R)) → R,

C(x, x̂, p) =

∫︂
|x− y|p(dy) +W

(︃
x̂,

∫︂
ŷp(dŷ)

)︃
,

we have that

inf
π∈Π(µ,ν)

∫︂
C(x, x̂, πx,x̂)µ(dx, dx̂) =

sup

{︃∫︂
ϕdµ−

∫︂
ϕdν, ϕ ∈ Ψ(R× P1(R)) ∩ Lip1 and conv. in sec. var.

}︃
.

Proof. By Lemma 8.5 and the fact that ϕ̂ ⩽ ϕ we have, for ϕ ∈ Ψ(R× P1(R)), that∫︂
Q̂ϕdµ−

∫︂
ϕdν ⩽

∫︂
Qϕ̂dµ−

∫︂
ϕ̂dν. (8.6)

We also notice that ϕ̂ ∈ Ψ(R × P1(R)) as it also satisfies the growth constraint and it
is bounded from below if ϕ is. Moreover, by Lemma 8.7 it is also Lipschitz-continuous.
Using all these considerations we get that

inf
π∈Π(µ,ν)

∫︂
C(x, x̂, πx,x̂)µ(dx, dx̂) = sup

{︃∫︂
Q̂ϕdµ−

∫︂
ϕdν, ϕ ∈ Ψ(R× P1(R)) ∩ Lip1

}︃
⩽ sup

{︃∫︂
Qϕ̂dµ−

∫︂
ϕ̂dν, ϕ ∈ Ψ(R× P1(R)) ∩ Lip1

}︃
⩽ sup

{︃∫︂
Qψdµ−

∫︂
ψdν, ψ ∈ Ψ(R× P1(R)) ∩ Lip1, conv. in sec. var.

}︃
= sup

{︃∫︂
ψdµ−

∫︂
ψdν, ψ ∈ Ψ(R× P1(R)) ∩ Lip1, conv. in sec. var.

}︃
⩽ sup

{︃∫︂
Q̂ψdµ−

∫︂
ψdν, ψ ∈ Ψ(R× P1(R)) ∩ Lip1, conv. in sec. var.

}︃
⩽ sup

{︃∫︂
Q̂ψdµ−

∫︂
ψdν, ψ ∈ Ψ(R× P1(R)) ∩ Lip1,

}︃
= inf

π∈Π(µ,ν)

∫︂
C(x, x̂, πx,x̂)µ(dx, dx̂).

The first and the last equality are due to Lemma 5.7 in [BBP19], the first inequality is
due to (8.6), the second inequality due to Lemma 8.7, the second equality due to Lemma
8.6 and the third inequality is true because ψ = ψ̂, so we can use Lemma 8.5.
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9 Weak transport meets causal transport

In the whole chapter µ, ν ∈ P(R2). Using Theorem 8.8 from the last chapter and Theorem
2.6 in [BBLZ17], we will derive duality for causal transport between the measures µ and ν
w.r.t. the cost function c = |x1 − y1|+ |x2 − y2| in Theorem 9.2. First though, we need to
rewrite the causal problem as a weak problem in the following way, in order to be able to
apply the duality results from Chapter 8:

Lemma 9.1. Let µ, ν ∈ P(R2). Let µ̄ := µ1 ⊗ δµx1 ∈ P(R×P1(R)) and ν̄ := ν1 ⊗ δνy1 ∈
P(R× P1(R)). Then we have that

inf
γ∈Πc(µ,ν)

∫︂
|x1 − y1|+ |x2 − y2|dγ =

inf
γ̄∈Π(µ̄,ν̄)

∫︂ ∫︂
|x1 − y1|γ̄y1,ŷ(dx1) +W

(︃∫︂
x̂γ̄y1,ŷ(dx̂), ŷ

)︃
γ̄(dy1, dŷ).

Proof. Notice that µ is Markov because it is a measure on R2. Hence we can apply
Theorem 2.6 in [BBLZ17], as c has a separable structure, in order to get

inf
γ∈Πc(µ,ν)

∫︂
|x1 − y1|+ |x2 − y2|dγ =

inf
π̄∈Π(µ1,ν1)

∫︂
π̄(dx1, dy1)

(︂
|x1 − y1|

+ inf
π∈Π(∫x1 π̄y1 (dx1)µx1 (dx2),νy1 (dy2))

∫︂
π(dx2, dy2)|x2 − y2|

)︂
.

Also notice that for γ̄ ∈ Π(µ̄, ν̄) we have that

γ̄y1(dx1, dx̂) =

∫︂
γ̄y1,ŷ(dx1, dx̂)γ̄y1(dŷ) = γ̄y1,νy1 (dx1, dx̂). (9.1)

Let γ ∈ Π(µ1, ν1). Choose γ̄ ∈ Π(µ̄, ν̄) with γy1(dx1) = γ̄y1(dx1), then

∫︂
|x1 − y1|+W

(︃∫︂
µx1(dx2)γy1(dx1), νy1(dy2)

)︃
γ(dx1, dy1)

=

∫︂
|x1 − y1|+W

(︃∫︂
x̂γ̄y1,νy1 (dx̂), νy1(dy2)

)︃
γ̄(dx1, dy1)

=

∫︂
|x1 − y1|γ̄y1,ŷ(dx1) +W

(︃∫︂
x̂γ̄y1,ŷ(dx̂), ŷ

)︃
γ̄y1(dŷ)γ̄(dy1).
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9 Weak transport meets causal transport

The second line holds true, as∫︂
µx1(dx2)γy1(dx1) =

∫︂
µx1(dx2)γ̄y1(dx1) =

∫︂ ∫︂
x̂γ̄x1,y1(dx̂)γ̄y1(dx1)

=

∫︂
x̂γ̄y1(dx̂) =

∫︂
x̂γ̄y1,νy1 (dx̂),

where we used (9.1) in order to obtain the last equality. We could have also started with a
coupling γ̄ ∈ Π(µ̄, ν̄) and chosen γ ∈ Π(µ1, ν1) such that γy1(dx1) = γ̄y1(dx1) and hence
we get that

inf
γ∈Πc(µ,ν)

∫︂
|x1 − y1|+ |x2 − y2|dγ

= inf
γ∈Π(µ1,ν1)

∫︂
|x1 − y1|+W

(︃∫︂
µx1γy1(dx1), νy1

)︃
γ(dx1, dy1)

= inf
γ̄∈Π(µ̄,ν̄)

∫︂ ∫︂
|x1 − y1|γ̄y1,ŷ(dx1) +W

(︃∫︂
x̂γ̄y1,ŷ(dx̂), ŷ

)︃
γ̄(dy1, dŷ).

Theorem 9.2. Let µ, ν ∈ P(R2). Then we have that

inf
γ∈Πc(µ,ν)

∫︂
|x1 − y1|+ |x2 − y2|dγ =

sup

{︄∫︂
ϕ(y1, νy1)ν(dy1)−

∫︂
ϕ(x1, µx1)µ(dx1),ϕ ∈ Ψ(R× P1(R)) ∩ Lip1

& conv. in sec. var.

}︄
.

Proof. By Lemma 9.1 we know that

inf
γ∈Πc(µ,ν)

∫︂
|x1 − y1|+ |x2 − y2|dγ = (9.2)

= inf
γ̄∈Π(µ̄,ν̄)

∫︂ ∫︂
|x1 − y1|γ̄y1,ŷ(dx1) +W

(︃∫︂
x̂γ̄y1,ŷ(dx̂), ŷ

)︃
γ̄(dy1, dŷ).

The RHS in (9.2) can be interpreted as a weak transport with the cost function
C : R× P1(R)× P1(R× P1(R)) → R,

C(y1, ŷ, p) =

∫︂
|x1 − y1|p(dx1) +W

(︃∫︂
x̂p(dx̂), ŷ

)︃
and therefore we can use Theorem 8.8 to get that
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inf
γ∈Πc(µ,ν)

∫︂
|x1 − y1|+ |x2 − y2|dγ

= sup

{︃∫︂
ϕdν̄ −

∫︂
ϕdµ̄, ϕ ∈ Ψ(R× P1(R)) ∩ Lip1& conv. in sec. var.

}︃
= sup

{︄∫︂
ϕ(y1, νy1)ν(dy1)−

∫︂
ϕ(x1, µx1)µ(dx1), ϕ ∈ Ψ(R× P1(R)) ∩ Lip1

& conv. in sec. var.

}︄
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