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The point is ... that there is no point in driving yourself mad trying to stop yourself going mad. You

might just as well give in and save your sanity for later.

The Hitchhiker’s Guide to the Galaxy, Douglas Adams (1979)
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1 Introduction

Fixed, false beliefs (delusions) and abnormal perception (hallucinations) are hallmarks of

psychosis (van Os, Linscott, Myin-Germeys, Delespaul, & Krabbendam, 2009). While psy-

chosis has been primarily associated with schizophrenia representing the positive symp-

toms of schizophrenia, psychosis is not unique to schizophrenia. Indeed, psychoses have

been reported for other psychiatric conditions like bipolar disorder and severe depression,

as well as for neurological conditions like temporal lobe epilepsy and Parkinson’s Disease

(Howes & Kapur, 2009; Winton-Brown, Fusar-Poli, Ungless, & Howes, 2014). Additionally,

psychotic symptoms can occur on a sub-clinical level: about 8% of the general population re-

port psychotic experiences of which only half ever reach a clinical stage (van Os et al., 2009).

Because of its marked differences with respect to thought and perception, psychosis is an in-

teresting phenomenon of investigation for cognitive science. Hence, research on psychosis

may not only help affected individuals, but may also provide insights on and improve un-

derstanding of many topics central to cognitive science such as decision-making or motiva-

tion (for an overview of research on psychosis and cognition see Green & Harvey, 2014). Due

to its complexity, psychosis begs for a multidisciplinary and multi-methodological research

strategy making it even more interesting for cognitive scientists. Since research on psychosis

and schizophrenia has often been mixed (Howes & Kapur, 2009), this thesis mostly relies on

research on schizophrenia while the focus is more specifically on psychosis.

1.1. Dopamine, Schizophrenia & Psychosis

Dopamine is one of the brain’s main neurotransmitters. The dopamine system is part of the

diffuse modulatory systems, which means that it modulates activity in various brain regions

despite a relatively small number of dopamine-synthesizing neurons (Wise, 2004). It does so

through several pathways: dopamine-synthesizing neurons in the midbrain, mainly in the

ventral tegmental area and the substantia nigra pars compacta, project to more distant brain

regions like the prefrontal cortex, the ventral and dorsal striatum, and anterior temporal

structures such as the amygdala and the hippocampus (Wise, 2004). As such, the dopamine

system makes up a large part of the basal ganglia which together with the frontal cortex
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are involved in various motoric, cognitive and limbic functions needed for goal-directed

behaviour (Haber & Knutson, 2010; Wise, 2004).

Concerning dopamine’s role in psychosis, dopamine has long been implicated in schizophre-

nia, and thereby psychosis. The dopamine hypothesis of schizophrenia is based on the ob-

servation that dopamine levels of various brain regions in schizophrenic individuals differ

from those in non-schizophrenic individuals (Howes & Kapur, 2009). Elevated dopamine

synthesis capacity is among the best replicated findings in schizophrenia (Howes et al.,

2012). Accordingly, already earliest formulations of the dopamine hypothesis stated a dys-

regulated dopaminergic system as the neurochemical basis of schizophrenia. However,

Howes and Kapur (2009) paint a more complex picture. Firstly, dopamine does not work

in isolation but seems to be regulated by and interact with other neurotransmitter systems,

especially the glutamatergic system. Secondly, dopamine abnormalities have also been iden-

tified outside of the striatum, namely the prefrontal cortex, where dopamine levels seem to

be reduced. Lastly, Howes and Kapur (2009) have argued that the dopamine hypothesis

actually applies only to psychosis-in-schizophrenia and not all of schizophrenia.

1.1.1. Dopamine dysregulation in psychosis (& schizophrenia)

Despite these discrepancies on the details of the dopamine hypothesis, what seems to hold

true is that dopamine levels are elevated in the striatum of patients with schizophrenia

(Howes et al., 2012). This most likely arises from aforementioned elevated dopamine syn-

thesis and release capacity (Howes et al., 2012; Winton-Brown et al., 2014). Dopamine con-

centration depends on tonic and phasic activation of dopaminergic neurons. Tonic firing

regulates baseline dopamine levels. Phasic firing regulates temporary spikes in dopamine

levels (also called transients). Both seem dysregulated in psychosis (Maia & Frank, 2017).

Importantly, several studies have reported these abnormalities also in the prodromal stage of

schizophrenia, in individuals at high risk of developing psychosis (Howes & Kapur, 2009),

and in patients with temporal lobe epilepsy who experience psychoses (Winton-Brown et

al., 2014). Furthermore, dopamine release to stress also seems to be elevated in patients

with psychosis and in patients at risk of developing psychoses (Howes, McCutcheon, Owen,

& Murray, 2017). Together, these findings tie into the idea of endogeneous sensitisation

and a neurodevelopmental model of schizophrenia (Howes et al., 2017; Weidenauer et al.,
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2017). According to these ideas, genetic and environmental factors endogenously sensi-

tise the dopaminergic system in early life stages. Hyperresponsiveness to stress and other

stimuli that target the dopamine system ultimately results in the development of psychosis.

Overall, while dopaminergic pathophysiology in the striatum is well established for psy-

chotic variants of schizophrenia, attempts to link the neurochemical abnormalities to the

phenomenological abnormalities of the positive symptoms of schizophrenia (i.e. psychosis)

have been fairly recent.

1.1.2. Dopamine, reward processing & prediction errors

One way by which dopamine dysregulation has been implied in psychotic symptoms is

through its role in reward processing (Haber & Knutson, 2010). The concept of reward orig-

inates in behaviourist theories of associative learning, namely conditioning. Conditioning

describes the process by which organisms learn to perceive associations between events in

their environment and to adapt their behaviour according to these learnt associations (Joze-

fowiez, 2012). In conditioning, associations are usually between two stimuli (Pavlovian

conditioning) or between an action and its consequences in the environment (instrumental

conditioning). Rewards in conditioning refer more to physical objects or events that moti-

vate reward-seeking behaviour (Wise, 2004). Reward in reward processing more generally

refers to the positive value that is assigned to objects, behaviours or internal states, and that

motivates goal-directed behaviour (Winton-Brown et al., 2014).

Concerning the role of dopamine in reward processing, Schultz (1998) has shown in

a series of animal studies, that used classic reward-based learning tasks, that dopaminer-

gic neurons are sensitive to unexpected absence or presence of rewards. The author sug-

gested that these dopamine responses to unpredicted stimuli encoded a reward prediction

error, i.e. the difference between the predicted and the actual outcome (Schultz, 1998). This

prediction error would serve as global learning signal which propagates to other reward-

processing brain regions and thereby facilitates decision-making and learning. Since then,

several studies with human subjects have confirmed behavioural, dopamine-related neu-

ral abnormalities in patients with schizophrenia at different levels of reward processing,

including reward anticipation, reinforcement learning and reward-based decision-making

(Strauss, Waltz, & Gold, 2014).
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The idea that dopamine signals code reward prediction errors ties well into the pre-

dictive processing framework. This framework aims at providing a unified understanding

of perception, cognition, and action (Clark, 2013). According to predictive processing, the

brain is a "prediction machine" that uses top-down prior expectations to (1) predict expected

sensory inputs and to (2) compare predicted inputs to actual sensory inputs (Clark, 2013).

Differences between predicted and actual input (i.e. prediction errors) are theorised to prop-

agate throughout the brain, adjusting expectations and behaviour so that future mismatches

are less pronounced (Clark, 2013). Depending on how strict or lenient the framework is in-

terpreted, predictive processing has been argued to simply conceptualize neurocognitive

functions or to even provide a unified theory of action and perception, that potentially ex-

tends to adaptive behavior (Clark, 2013; Sims, 2017).

From a predictive processing perspective, delusions and hallucinations can be conceptu-

alised as false or suboptimal inferences about the world that arise from a disrupted integra-

tion of input and predictions (Griffin & Fletcher, 2017). Aberrant dopamine signalling in the

midbrain, which is hypothesised to represent aberrant reward prediction error signalling,

seems particularly plausible to underlie such disrupted integration. Considering the hy-

pothesis that dopamine functions as global learning signal, aberrant dopamine signalling

could drive aberrant updating of expectations and, hence, learning of aberrant associations

while also drawing attention to stimuli that wrongly deviate from predictions (Anticevic

& Corlett, 2012). Accordingly, the role of dopamine in learning has been increasingly con-

ceptualised in computational terms (see Maia & Frank, 2017 for an exemplary computa-

tional account of dopamine dysregulation in psychosis). But although the understanding

that dopamine codes reward prediction errors fits well into a predictive processing frame-

work and can neatly be described by computational models, dopamine appears to code

more than reward-related aspects of stimuli.

1.1.3. Dopamine & salience processing

Indeed, striatal dopamine responses have been suggested to more generally code the in-

centive salience of stimuli (Berridge, 2012; Winton-Brown et al., 2014). According to this

idea, dopamine surges after unpredicted stimuli reflect the mediating role of dopamine in

the attribution of incentive salience. Salience attribution describes a selection process by

which stimuli are prioritised according to their importance to an organism (Kapur, 2003;
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Winton-Brown et al., 2014). The ability to distinguish between relevant and irrelevant stim-

uli is central to an organism’s survival in a complex, stimulus-rich world. This is especially

true for humans. Given our limited cognitive and motor resources, it is crucial to attend to

and select the right stimuli to act upon (Winton-Brown et al., 2014). Prioritisation occurs by

attributing salience to stimuli, which can be internal (thoughts) or external (events). Some

stimuli like a sudden loud noise are highly relevant and naturally attract attention (i.e. are

attributed salience). Usually, however, salience attribution to a stimulus is highly contex-

tual, depending on internal states such as goals, beliefs or history (Winton-Brown et al.,

2014). Dopamine surges are thought to help channel attention to those stimuli that are most

relevant while less relevant stimuli are possibly suppressed (Winton-Brown et al., 2014). So,

how does salience attribution relate to the phenomenology of psychosis?

According to the aberrant salience hypothesis, abnormal dopamine signalling in psy-

chosis disrupts the regular stimulus-related dopamine release which is essential to dopamine’s

control in mediating salience attribution (Kapur, 2003). Excessive context-independent dopamine

surges label internal and external stimuli as relevant, which normally would not have been

labelled relevant. Dopamine’s function thus turns from mediating salience to creating salience

(Kapur, 2003). Concerning phenomenological abnormalities in psychosis, this framework

conceptualises delusions as top-down attempts to make sense of emerging abnormally salient

events and hallucinations as internal stimuli that have falsely been attributed with salience

(Kapur, 2003). Together with other cognitive and interpersonal abnormalities, that often ac-

company prodromal phases of psychosis, these dopaminergic abnormalities give way to the

development of full blown psychoses (Kapur, 2003).

Regarding dopamine’s hypothesised role in aberrant prediction error signalling in psy-

chosis, the aberrant salience attribution hypothesis is compatible with a predictive pro-

cessing account of psychosis. Aberrant prediction error signalling can be conceptualised

as driving salience attribution to irrelevant internal and external events (Anticevic & Cor-

lett, 2012). The aberrant salience attribution hypothesis also does not preclude earlier find-

ings on reward-based learning in psychosis. Dopamine-dependent attribution of incentive

salience can still change reward-based learning as it motivates a reward’s salience value.

Yet, it does not do so primarily (Berridge, 2012). Admittedly, some researchers argue that

such understanding is mostly based on dopamine signalling in the limbic striatum and that
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dysregulated dopamine responses in psychosis should better be understood in terms of gat-

ing aberrant thoughts and percepts and not in terms of aberrant value assignment (Maia &

Frank, 2017). However, research accumulates whereby various dopaminergic brain regions

are involved in processing of multiple types of salience, including novelty salience, aversion

salience, emotional salience and physical salience (Winton-Brown et al., 2014).

1.2. Overview of Methods & Findings on Salience Processing in
Psychosis

Research on psychosis and more generally on schizophrenia has been difficult not only due

to severity of the disorder, but also due to the diversity of subjects. Subject samples that have

been used in psychosis research entail individuals at high-risk of developing psychosis, first-

episode psychotic patients, and long-term psychotic patients, who can be medicated with

typical or atypical antipsychotics, unmedicated, or drug-naïve. Especially the medication

aspect makes interpretation across studies difficult because anti-psychotic drugs target the

dopamine system directly (Howes & Kapur, 2009). This potentially confounds any findings

on the role of dopamine in salience processing.

1.2.1. Salience processing tasks & imaging techniques

Depending on which type of salience processing is investigated, researchers have used dif-

ferent types of task paradigms (Winton-Brown et al., 2014). However, most studies employ

variants of reward-based reinforcement learning tasks that look at reward-related salience

processing. In these tasks, participants learn to associate a cue with a rewarding outcome.

Importantly, cues are usually task-relevant or task-irrelevant. Task-relevant cues are ex-

pected to reinforce certain behaviours, for instance, speeding up reaction times, which is

thought to reflect salience attribution (Winton-Brown et al., 2014). Besides reward-based

learning paradigms, researchers have also developed reward-independent salience attribu-

tion paradigms. This thesis covers only the most interesting paradigms in more detail.

Among reward-based learning tasks, the monetary incentive delay task is one of the

most frequently used ones (Knutson, Adams, Fong, & Hommer, 2001). Participants are

shown different cues that predict the probability of a financial reward, punishment or no
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monetary outcome. They have to correctly respond to a target cue that follows the outcome-

predicting cue. Importantly, participants have to wait a varying amount of time between

outcome-predicting and target cue. The task thus allows to investigate neural activation

during anticipation of relevant outcome-predicting stimuli (rewarding or punishing out-

come) and neutral outcome-predicting stimuli (neither rewarding nor punishing outcome;

Knutson et al., 2001). Ventral dopamine responses to predictive cues during reward antici-

pation are thought to link affective salience to predictive cues which facilitates initiation of

goal-directed behaviour (Strauss et al., 2014).

Different to the monetary incentive delay paradigm, the salience attribution test com-

bines implicit and explicit measures of salience attribution (Roiser et al., 2009). Participants

have to respond to cues that differ on one relevant (reward-predicting) dimension and one

irrelevant (non-predicting) dimension, for example, shape and colour. Implicit measures of

salience attribution are reaction times. Explicit measures of salience attribution are subjec-

tive ratings of how likely a specific cue is to predict a reward. Increases in subjective ratings

of reward probabilities for relevant, reward-predicting cues represent explicit measures of

adaptive salience attribution; speeded responses after salient, reward-predicting cues rep-

resent implicit measures of adaptive salience attribution (Roiser et al., 2009). By contrast,

the absolute difference between subjective ratings of reward probabilities for the two levels

of the irrelevant dimension serves as explicit measure of aberrant salience attribution, and

the absolute difference in response time between the two levels of the irrelevant dimension

serves as implicit measure of aberrant salience attribution (Roiser et al., 2009).

Concerning non-reward-related salience processing, a visual variant of the oddball task

has been used to investigate novelty-related salience processing (Bunzeck & Düzel, 2006).

In this variant, the presentation of the standard image with neutral emotional valence is

randomly interspersed with the presentation of different types of oddball pictures, namely a

neutral picture, a neutral picture requiring a button press, a picture with negative emotional

valence, and a novel picture that is different for every novel oddball trial. What is interesting

about this task is that it allows to determine neural responses to pure stimulus novelty and

not only rareness by contrasting novel and neutral oddballs (Bunzeck & Düzel, 2006).

Reversal learning tasks are another variant of reward-based learning tasks that probe

salience processing (Feeney, Groman, Taylor, & Corlett, 2017). They are particularly inter-

esting when it comes to psychosis because they directly target affective, inferential, and
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behavioural processes, all of which seem impaired in patients with schizophrenia (Schla-

genhauf et al., 2014). During deterministic reversal learning tasks, participants have to re-

peatedly choose between two (or more) stimuli (Feeney et al., 2017). The correct choice is

rewarded whereas the wrong choice is not rewarded or even punished. Participants have

to learn which stimulus is the correct / better choice by trial and error. Furthermore, the

correct choice reverses occasionally. These reversals represent relevant events in response to

which participants have to change their behaviour (i.e. update their belief) to stay with the

correct / better choice. During probabilistic variants of this task, the correct choice is more

likely to be rewarded but can also be not rewarded or even punished (e.g. 75% rewarded

versus 25% not rewarded or punished). Hence, different from deterministic variants of re-

versal learning tasks where it suffices to simply update one’s behaviour after reversals in

reward-associations, probabilistic variants add another level of uncertainty (Feeney et al.,

2017). Participants have to differentiate between true reversals (i.e. relevant events that re-

quire a change in behaviour) and trials in which the correct choice was simply unrewarded

(i.e. irrelevant events that do not require a change in behaviour). Ideally, outcomes that

are unexpected due to changes in the environment (reversals) should have a greater impact

than outcomes that are unexpected due to a generally volatile environment (Nassar, Wilson,

Heasly, & Gold, 2010).

To find neural correlates to behavioural findings, salience processing tasks are usually

combined with imaging methods that allow to measure dopamine-related neural activation

such as Positron Emission Tomography (PET) imaging or functional magnetic resonance

imaging (fMRI). Both PET and fMRI have advantages and disadvantages. Molecular imag-

ing with PET allows to directly measure dopamine neurotransmission in vivo, but it also

relies on injection of radioactive tracers to measure neurotransmission (Winton-Brown et

al., 2014). By contrast, fMRI is non-invasive as neural activation is measured with the blood

oxygenation level dependent (BOLD) contrast, but it relies on inference that activation in

brain regions that are known to be dopamine-rich, such as the ventral striatum, reflect true

dopaminergic effects (Winton-Brown et al., 2014). fMRI studies usually interpret altered re-

sponses to neutral stimuli in dopamine-rich regions as neural correlates of aberrant salience

attribution to neutral stimuli (Winton-Brown et al., 2014). More recently, however, neu-

ropharmacological models have been developed that use dopamine stimulants to target the
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dopamine system more directly, namely the ketamine and the amphetamine model of psy-

chosis in schizophrenia (Boileau et al., 2006; Corlett, Honey, & Fletcher, 2007). These models

are thought to bridge the inferential gap by eliciting dopaminergic abnormalities in healthy

volunteers similar to those observed in psychotic and pre-psychotic individuals.1

1.2.2. Findings on aberrant salience processing in psychosis

Studies on reward-related salience processing have repeatedly found behavioural and neu-

ral differences in individuals with psychosis or psychotic-like symptoms. Findings converge

on diminished neural and behavioural responses to reward-predicting (relevant) stimuli

and exaggerated responses to irrelevant stimuli (Deserno, Schlagenhauf, & Heinz, 2016).

Blunted dopamine responses to reward-predicting (relevant) stimuli in the ventral striatum

of patients with schizophrenia during monetary incentive delay tasks have further been as-

sociated with positive and negative symptoms of schizophrenia (Winton-Brown et al., 2014).

Negative symptoms of schizophrenia are for example anhedonia (Green & Harvey, 2014)

Importantly, this aberrant responsiveness does not seem to stem from an inability to dis-

tinguish between rewarding and neutral stimuli which seems intact in psychotic patients

(Murray et al., 2008). Besides aberrant neural responses in the ventral striatum, the mid-

brain, hippocampus, amygdala, and prefrontal regions have also been implicated in aber-

rant salience processing (Murray et al., 2008; Romaniuk et al., 2010).

Studies that investigated salience attribution more explicitly corroborate these findings

on aberrant salience attribution in reward-based learning tasks. Using the salience attribu-

tion test, one study has found reduced salience attribution to relevant stimuli in medicated

schizophrenia patients compared to healthy controls (Roiser et al., 2009). Additionally, a

subgroup of schizophrenia patients with delusions exhibited increased aberrant salience

attribution compared to schizophrenia patients without delusions. Another study using

the salience attribution test showed that unmedicated participants at ultra-high risk of de-

veloping psychosis more frequently assigned significance to irrelevant stimuli and exhib-

ited abnormal activity in the ventral striatum to irrelevant stimuli (Roiser, Howes, Chad-

dock, Joyce, & McGuire, 2013). Both measures correlated with the severity of pre-delusional

symptoms. Furthermore, dopamine synthesis capacity in the striatum correlated inversely

1This thesis focuses on the amphetamine sensitisation model, for more details see section 1.3.
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with hippocampal responses to irrelevant stimuli in the high-risk group but not in controls

(Roiser et al., 2013).

Psychosis also seems to affect salience processing under uncertainty. Patients with psy-

chosis have been found to display increased switching behaviour during both deterministic

and probabilistic reversal learning (Feeney et al., 2017). Switching behaviour in reversal

learning tasks describes how participants change or do not change their choice of the "cor-

rect stimulus" after each trial, in other words, whether participants do or do not update

their belief of which is the "correct choice". Increased switching behaviour (or belief updat-

ing) has been interpreted as reflecting aberrant salience attribution to neutral (irrelevant)

events due to an underlying chaotic dopamine signalling in psychosis (Feeney et al., 2017;

Kapur, 2003). Psychotic patients also achieve less reversals when they depended on patients’

performance, but are quicker at adapting their response after reversals because of increased

switching behaviour (Feeney et al., 2017). Importantly, increased switching behaviour seems

to correlate with the severity of psychotic symptoms in clinical populations as well as with

the intensity of psychosis-like experiences and beliefs in sub-clinical populations (Feeney

et al., 2017). A study that investigated reversal learning in unmedicated, primarily first-

episode psychotic patients confirmed these findings (Schlagenhauf et al., 2014). Even when

controlling for task-solving strategies, psychotic patients showed excessive switching be-

haviour and reduced sensitivity to rewards. Behavioural findings were accompanied by

reduced activation to reversals in the ventral striatum. The authors hypothesised that this

striatal hypoactivation is connected to the hyperdopaminergic levels characteristic for pa-

tients with psychosis since neural activation to reward prediction errors has been shown to

inversely correlate with the dopamine synthesis capacity in the ventral striatum (Schlagen-

hauf et al., 2014, 2013). Accordingly, the authors suggest that more noisy neural prediction

error signals result from either elevated tonic dopamine levels or increased phasic dopamine

release (Schlagenhauf et al., 2014).

Another study that combined Bayesian modelling and fMRI found that increased switch-

ing behaviour during reversal learning in medicated schizophrenia patients was due to a

heightened belief that the environment was volatile (Deserno et al., 2020). This was reflected

by increased neural activation in the dorsolateral prefrontal cortex. Importantly, the com-

putational model that yielded these results could replicate behavioural findings of unmed-

icated patients with schizophrenia. This indicates that increased perceived environmental
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volatility is also present in unmedicated states. The authors suggested that abnormally in-

creased beliefs about a volatile environment could make subjects overly sensitive to new

inputs resulting in overly flexible updating to irrelevant input because subjects would not

properly detect regularities in the environment (Deserno et al., 2020).

Studies that used reward-independent salience processing tasks have reported behavioural

and neural findings in patients with psychosis similar to aberrant, reward-based salience

processing. For instance, one study found abnormal learning of neutral stimuli in medicated

patients with schizophrenia (Jensen et al., 2008). The study used an aversive learning task,

which is a reinforcement task in which the outcome is unpleasant and induces avoidance

behaviour. Patients could not distinguish between aversion-predicting and neutral stim-

uli. They also displayed a stronger activation of the ventral striatum in response to neutral

stimuli. Another study found increased subjective emotional arousal in response to neu-

tral stimuli in psychotic patients (Haralanova, Haralanov, Beraldi, Möller, & Hennig-Fast,

2012). An earlier PET study already found reduced phasic neural responses to emotion-

ally salient images in the right ventral striatum, and elevated tonic activity in the amygdala

and the right ventral striatum while overall performance measures did not differ from con-

trols (Taylor, Phan, Britton, & Liberzon, 2005). Using an affective classification task in which

participants had to rate words as pleasant, unpleasant or neutral, one study found that delu-

sional patients were more likely to rate words as unpleasant and were slower in classifying

neutral words compared to controls (Holt et al., 2006). In a functional connectivity study, pa-

tients with schizophrenia showed increased neural activity in striatum, hippocampus and

prefrontal brain regions as well as increased connectivity between these regions for neutral

stimuli. This was the opposite to the decreased activity in and connectivity between these

regions that was found in controls (Diaconescu et al., 2011).

Concerning novelty-related salience processing, a recent study found differences in in-

dividuals at ultra-high risk of developing psychosis (Modinos et al., 2020). Using the visual

oddball paradigm as described before, the study found that high-risk individuals did not

differ in their behavioural response to controls, but that their hippocampal activation to

novel (i.e. relevant) events was significantly reduced in comparison to hippocampal activa-

tion in controls (Modinos et al., 2020). Using Dynamic Causal Modelling, the study further

found dysfunctional connectivity to relevant events between hippocampus, striatum and

midbrain. Individuals at high risk exhibited increased neural connectivity in response to
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relevant events from hippocampus to striatum and from midbrain to hippocampus, but re-

duced connectivity in response to relevant events from midbrain to striatum. This reduced

connectivity from midbrain to striatum was even more marked in a small subgroup of high-

risk individuals who later developed psychosis compared to high-risk individuals who did

not develop psychosis (Modinos et al., 2020).

By contrast, a recent study did not find any difference in salience processing related to

novelty or aversion in individuals at ultra-high risk of developing psychosis (Winton-Brown

et al., 2017). The study used an extended version of the monetary incentive delay task that

not only allows to investigate reward-related but also aversion- and novelty-related salience

processing (Winton-Brown et al., 2017). In this task variant, all three dimensions (reward

prediction, aversion, and novelty) are inherent in the cue (here, a picture) that precedes the

outcome, and are manipulated independently from one another. The authors have argued

that the lack of differences in novelty- and aversion-related salience processing might have

been because the task design potentially placed different demands on different types of

salience processing. Hence, it did not allow proper comparison of these types in the task

(Winton-Brown et al., 2017).

Combining computational modelling with a variant of reversal learning, fMRI and PET,

another study found that misattribution of salience was linked to the propensity of paranoid

ideation in healthy volunteers (Nour et al., 2018). More precisely, the strength of subclini-

cal paranoia correlated inversely with behavioural responsiveness to relevant stimuli: the

stronger the paranoid ideation, the less sensitive participants were to relevant events and

the more participants updated their beliefs after irrelevant events. Neural activity in the

midbrain and ventral striatum correlated with how strongly a belief was updated. This was

further reflected in negative correlations between dopamine receptor availability in the mid-

brain and midbrain activation, and between striatal dopamine release capacity and striatal

activation (Nour et al., 2018).

Overall, research suggests that salience processing is disrupted in individuals with psy-

chosis as well as in individuals with subclinical psychotic symptoms. Behavioural evidence

for aberrant salience attribution is accompanied by abnormal neural activation in various

brain regions that are involved in dopamine signalling, most prominently the striatum,
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hippocampus and midbrain, as well as prefrontal regions. Co-occurence of aberrant be-

havioural and neural responses to relevant and irrelevant events thus supports the interpre-

tation that chaotic dopamine signalling underlies aberrant salience attribution. The fact that

both behavioural and neural responses have been shown to be abnormal in pre-psychotic

stages further supports aforementioned neurodevelopmental models of psychosis (Howes

et al., 2017; Kapur, 2003).

1.3. Bridging the Inferential Gap: The Amphetamine Sensitisation
Model

Although researchers repeatedly report evidence for dopamine’s role in salience processing,

it is difficult to disentangle the role of dopamine in salience processing from other factors.

Firstly, psychotic patients often take or have taken medication that potentially alters or has

altered dopamine neurotransmission (Howes & Kapur, 2009). Secondly, fMRI studies lack

the molecular-level clarity on the role of dopamine in aberrant salience processing. They

only represent functional activation in brain regions that involve dopamine signalling and

not directly the working of dopamine on brain processes (Winton-Brown et al., 2014).

One method that promises a more direct investigation of the role of dopamine neu-

rotransmission in psychosis is the amphetamine sensitisation model (Weidenauer et al.,

2017). In pharmacology, sensitisation describes the phenomenon that repeated exposure to

a substance can increase sensitivity to this substance with respect to behavioural and neu-

rochemical responses (Weidenauer et al., 2017). Sensitisation effects have been shown for

various substances, including amphetamines. Repeated stimulation of dopamine receptors

through repeated amphetamine administration is thought to trigger molecular and biologi-

cal changes that promote increased dopamine release, thereby approximating the dopamine

dysregulation characteristic to psychosis (Boileau et al., 2006). Importantly, already low

doses of amphetamine have been shown to increase dopamine release and psychomotor

responses in healthy male volunteers for up to one year (Boileau et al., 2006). Hence, am-

phetamine sensitisation has been proposed as a safe pharmacological model to investigate

the role of dopamine signalling in psychosis in healthy volunteers in a controlled way. So

how exactly does amphetamine work?

Amphetamines are a group of synthetic psychostimulants derived from phenethylamine
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that target the dopaminergic, noradrenergic, and serotonergic brain system (Weidenauer et

al., 2017). While the overall mechanism through which amphetamines act on these sys-

tems is the same, different amphetamines have different affinities to these systems (Weide-

nauer et al., 2017). For the amphetamine sensitisation model, D-amphetamine (hereafter,

amphetamine) is particularly interesting because it primarily targets dopamine transporters

in presynaptic neurons.2 It does so by interacting with the transmembrane dopamine trans-

porter (DAT) and the vesicular monoamine transporter 2 (VMAT2) which both are cru-

cial for regulating extracellular dopamine concentration (Weidenauer et al., 2017). Am-

phetamine enters presynaptic dopamine neurons through DAT, located in the membrane

of presynaptic dopamine neurons, and interacts with the cytosolic site of DAT. It thereby

reverses the dopamine transport direction of DAT from taking up dopamine from the syn-

patic cleft to releasing dopamine into the synaptic cleft. Once inside presynaptic neurons,

amphetamine also binds to VMAT2, located at dopamine-storing vesicles, where it stimu-

lates the release of vesicular dopamine into the cytosol. Amphetamine thereby increases

the amount of cytosolic dopamine. Consequently, significantly more dopamine is available

for release and is released into the synapse resulting in prolonged elevation of extracellular

dopamine levels (Weidenauer et al., 2017).

The amphetamine sensitisation model has already been applied with success in healthy

volunteers. A recent PET study showed that amphetamine sensitisation based on Boileau

et al. (2006)‘s dosing scheme increases dopamine release in stimulant-naïve healthy volun-

teers to levels that are indistinguishable from first-episode psychotic patients (Weidenauer

et al., 2020). Furthermore, Boileau’s amphetamine sensitisation regimen has also been used

successfully in fMRI studies on the role of dopamine in working memory (O’Daly, Joyce,

Tracy, Stephan, et al., 2014) and reward processing (O’Daly, Joyce, Tracy, Azim, et al., 2014).

Both studies found changes in neural activation of dopaminoceptive brain regions matching

neural response profiles in psychosis. During memory encoding, sensitised participants dis-

played increased neural activation in the medial temporal lobe (hippocampus) and the right

dopaminergic midbrain (ventral tegmental area and substantia nigra; O’Daly, Joyce, Tracy,

Stephan, et al., 2014). During reward processing, sensitised participants showed decreased

activation in the dorsal striatum during decision-making, but increased activation of the

2Note that D-amphetamine also targets the noradrenergic system which is not of interest for this thesis
though.
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same region during reward anticipation (O’Daly, Joyce, Tracy, Azim, et al., 2014). Further-

more, participants showed blunted activation to reward outcomes in the amygdala. Both

studies further found sensitisation effects on subjective responsiveness to amphetamine, but

no effects on physiological or behavioural measures (O’Daly, Joyce, Tracy, Azim, et al., 2014;

O’Daly, Joyce, Tracy, Stephan, et al., 2014). These findings support the idea that the am-

phetamine sensitisation model represents a promising way to explore dopamine-dependent

salience processing in healthy volunteers without the confounds of neither psychosis med-

ication nor the inferential gap between the BOLD signal in fMRI and actual dopamine sig-

nalling.

1.4. Thesis Rationale: Research Questions & Interdisciplinarity

Until now, evidence for the link between dopamine dysregulation and aberrant salience

processing in humans has been mostly correlational, relying on the inherent dopamine dys-

regulation of patients with psychosis (Winton-Brown et al., 2014). By actively manipulating

dopamine levels of healthy volunteers with amphetamine, we investigated the following

research questions:

• Does amphetamine-induced dopamine hypersensitivity affect reward-based salience

processing under uncertainty in healthy individuals on behavioural and neural levels?

• If yes, how does it affect it?

Thereby, we hope to expand the knowledge about the hypothesised causal link between

dopamine dysregulation and aberrant salience processing. Importantly, salience process-

ing is investigated in the context of reward-based learning. To do so, this thesis combines

theories and methods from neuroscience, psychology, computational modelling, and phar-

macology. Neural activity was captured with fMRI, salience processing was captured with

a reward-based reversal learning variant, and dopamine levels of healthy volunteers were

manipulated with an amphetamine sensitisation regime and an acute amphetamine chal-

lenge. Furthermore, the thesis builds on a predictive processing account of cognition. Such

interdisciplinary approach allows to investigate the role of dopamine-mediated perception

of random (irrelevant) and relevant stimuli in an uncertain environment more thoroughly.

Importantly, and different from regular reversal learning tasks, the reward-based predictive
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inference task used in this thesis better mimics real life dynamic environments by (1) in-

cluding different sources of uncertainty and by (2) including decision-making not in terms

of choosing between different options but in terms of predicting outcomes (Nassar et al.,

2010). It thereby juxtaposes the need to tolerate inaccuracy of predictions (the need to not

respond to events despite fluctuations in environmental stimuli that appear relevant but are

actually random or irrelevant events), and the need to respond to changes in the environ-

ment responding to events that need behavioural adjustment (i.e. relevant events; Griffin &

Fletcher, 2017).

Based on previous neural and behavioural findings, we expected to see the following:

• Increased belief updating in sensitised participants (i.e. we expected sensitised parti-

cipants to be more responsive to changes in the environment that are due to random

and, thus, irrelevant events).

• Better and faster detection of relevant events due to chance hits (i.e. we expected

participants to detect more reversals and to detect them faster when sensitised but not

because they properly adapt their predictions to reversals but because they update

their predictions more excessively)3.

• Increased neural responses to irrelevant (random) events in salience-processing re-

gions, namely striatum, hippocampus, and dopaminergic midbrain.

• Reduced neural responses to relevant events (reversals) in salience-processing brain

regions, namely the striatum, hippocampus, and dopaminergic midbrain.

The following two chapters go into detail on the methods and measures used in this

thesis. Chapter 2 covers general methods such as the amphetamine sensitisation and am-

phetamine challenge scheme, the task, and the overall procedure. Chapter 3 deals more

specifically with how we measured salience-processing and how we analysed our data. It

also provides hypotheses on how we expected dopamine hypersensitivity to affect salience

processing that are more specific to our behavioural and neural measures of salience pro-

cessing. After reporting our findings in chapter 4, we discuss these in the context of existing

literature in chapter 5. We also point out several limitations and introduce potential follow-

up analyses.
3See section 3.3.2.(iii) for why this does not contradict previous findings of worse performance-dependent

reversal detection (Feeney et al., 2017).
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2 Methods

2.1. Subjects

This thesis was part of a larger study. A smaller sample size was planned, but could not

be achieved due to the COVID-19 situation. Ultimately, a total of 9 healthy male volunteers

participated in the study (aged 21-30 years old, median 27 years). They were recruited from

an existing participant pool. To qualify for participation, volunteers had to be German na-

tive speakers and right-handed as confirmed with Flinders Handedness survey (Nicholls,

Thomas, Loetscher, & Grimshaw, 2013). Participants also underwent a general physical

examination as well as neuropsychological assessments. Exclusion criteria were (1) any

psychiatric and neurological disorders assessed by Mini-International Neuropsychiatric In-

terviews (M.I.N.I. German Version 5.0.0; Sheehan et al., 1998) and medical history, (2) phys-

iological, biochemical, or haematological abnormalities assessed by thyroid function test,

blood cell count, serum electrolytes, liver and kidney function, and urinalysis, (3) clinically

relevant cardio-vascular abnormalities assessed by ECG, vital signs recordings and medical

history (e.g. myocardial infection, angina pectoris, arterial hypertension, arteriosclerosis),

(4) regular substance use (exceeding a total of five exposures to psychoactive substances)

or alcohol abuse in past or presence based on declared history and urine tests (excluding

nicotine), and (5) MR scanner incompatibility. Participants gave informed consent after ad-

mission to the study. They were reimbursed with a flat fee of e340 and could gain up to

about e110 from completing all tasks of the overall study.

2.2. Experimental Design

A double-blind, placebo-controlled study design was adopted combining an amphetamine

sensitisation and an amphetamine challenge paradigm. Participants were randomly as-

signed to amphetamine (n = 8) or placebo group (n = 1) and underwent a (sham) sensiti-

sation scheme. After sensitisation, participants of both groups received amphetamine. The

study was conducted at the Psychiatric Clinic of the Medical University of Vienna and at the
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Dental Clinic of the Dental Medical University of Vienna. As this thesis was part of a larger

study, participants completed more tasks than will be reported here.

2.2.1. Amphetamine sensitisation & amphetamine challenge

Following Boileau’s (2006) dosing scheme, participants in the sensitisation group received

D-amphetamine at 0.4 mg/kg body weight on 3 consecutive days with a minimum of 48

hours between administration. D-amphetamine was administered orally in form of Attentin®

5 mg capsules. This kept doses as uniform as possible over subjects with varying body

weights (see table 2.1). Participants in the placebo group received Mannitol instead. On

the last day of the study (A4), about 14 to 21 days after the third drug administration day,

participants in both groups underwent an amphetamine challenge. For this, amphetamine

was administered orally based on the same dosing scheme as used for sensitisation (see ta-

ble 2.2 for an overview of the different study days). Both placebo and amphetamine tablets

were administered in pharmacological capsules. Drugs were administered at the Psychiatric

Clinic of the Medical University of Vienna.

Table 2.1: Amphetamine sensitisation and amphetamine challenge dosing scheme.

Body
weight [kg]

Number of Attentin®

tablets
D-amphetamine total

dose [mg]
Resulting

D-amphetamine
[mg/kg body weight]

56 - 68 5 25 0.37 - 0.45
69 - 81 6 30 0.37 - 0.44
82 - 94 7 35 0.37 - 0.43

Note. Based on Boileau et al. (2006).

2.2.2. Procedure

Participants came for a total of 8 study days (table 2.2). The first and and fifth study day (B1

& B2) were pure behavioural days on which participants completed several tasks, including

the predictive inference task analysed in this study. The second study day (A1) was the first

sensitisation day on which participants received their first dose of amphetamine / placebo.

They completed the same tasks as on behavioural days. This day comprised an additional

scanning session during which participants completed the predictive inference task in the
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MR scanner. The third and fourth study day (A2 & A3) were pure (sham) sensitisation days

during which participants received their second and third dose of amphetamine / placebo.

The sixth study day (M1) was also a scanning session during which participants completed

the predictive inference and other tasks in the MR scanner. The seventh study day (A4) was

identical to the second study day. This time, however, both groups received amphetamine.

For the fMRI analysis, this thesis focuses on scans of the first and last day of amphetamine

administration during which participants completed the reward-based predictive inference

task in the MR-Scanner (session A1 & A4). The behavioural analysis includes data from all

study days on which participants completed the predictive inference task (B1, A1, B2, M1 &

A4).

All study days except M1, started between 9 and 11 AM at the psychiatric clinic. This

kept hormonal levels comparable between participants. Scanning day M1 and scanning

sessions on day A1 and A4 were completed at the dental clinic.

On sensitisation day A2 and A3, participants received the respective dose of D-amphetamine

or placebo about 15 minutes after arrival. Baseline heart rate, blood pressure and saliva sam-

ples were obtained about 10 minutes before amphetamine/placebo administration. Starting

with drug administration, these measures were obtained at 30 minutes intervals (at about 0,

30, 60, 90 minutes after drug administration). Participants additionally filled out the Drugs

Effects Questionnaire (DEQ) at the same intervals. All physiological measures were col-

lected seated with an electronic sphygmomanometer. If participants did not show any ab-

normal signs, they were dismissed about 90 minutes after drug administration.

On testing day A1 and A4, participants were asked to come on an empty stomach. Upon

arrival, participants underwent a urine drug test. Participants who were tested positive

for drugs were excluded from further participation. Furthermore, participants were asked

to report any alcohol consumption within the last 24 hours and rescheduled if they had

consumed any alcohol. Baseline and post-administration physiological and self-report mea-

sures were obtained at the same intervals as on sensitisation days. About 100 minutes after

drug administration during which participants completed several other tasks, a research

assistant walked participants to the dental clinic for scanning. Here, additional physio-

logical and DEQ measurements were obtained before and after scanning about 120, 215,
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and 250 minutes after drug administration. MR scanning started about 150 minutes af-

ter drug administration during which participants completed the reward-based predictive-

inference task. This ensured that participants completed the task when subjective effects

of amphetamine administration were peaking (Weidenauer et al., 2020). Participants were

dismissed about 250 minutes after drug administration.

There were no specific regulations for behavioural days B1 and B2 and scanning day

M1. No physiological or self-report measures were obtained on these days. Before every

scanning session, participants had to fill out an MR-compatibility questionnaire.

Table 2.2: Testing Schedule.

Sensitisation period Washout period Post-sensitisation period

0 D 1 D 3 D 5 D ∼ 14 D 19 D 20 D

B1 A1 A2 A3 B2+M1 A4

AMPH/
PLAC

AMPH/
PLAC

AMPH/
PLAC

AMPH/
AMPH

fMRI fMRI fMRI

task task task+task task

Note. This table shows which data was obtained on which day of the study. Physiological
data for sensitisation assessment was collected on day A1-A4, behavioural data was anal-
ysed for B1, A1, B2, M1, and A4. fMRI data was collected on day A1 and A4. Note that
indicated times are approximate. There was a minimum of 48 hours between each AMPH
/ PLAC administration during the sensitisation period and a minimum of two weeks la-
tency between the last day of sensitisation and the first testing day post-sensitisation. D
= day(s); AMPH / PLAC = participants received amphetamine or placebo for (sham) sen-
sitisation outside of the scanner; AMPH / AMPH = participants of both groups received
amphetamine; fMRI = participants completed the predictive-inference task inside the scan-
ner; task = participants completed the reward-based predictive inference task.

2.3. Reward-based predictive-inference task

The task used in this thesis was adapted from the predictive-inference task by Nassar et al.

(2010) which mimics changes in a dynamic environment. In our task, participants repeatedly

predicted a number on a number bar that ranged from 0 to 100, representing the potential

amount of money to be earned. They then saw the actual output and could update their

prediction based on previous trials.
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The output number was drawn from a normal distribution. Mean and variance of the

output-determining distribution changed several times throughout a block. Changes in dis-

tribution were based on a noisy process that manipulated both the volatility of the environ-

ment (in terms of changes in mean) and the reliability of the outcome (in terms of high or

low variance). The probability of a change in mean (experimental reversal) was set to 0.1

after the first three trials. A new mean was drawn from a uniform distribution within an in-

terval between 0 to 90 after a reversal. The variance of the distribution could be high (SD =

15) or low (SD = 5) and changed with a probability of 0.4 once a reversal occurred.

Participants completed one practice run and five regular runs on different study days.

During scanning sessions (A1, M1 & A4), participants completed 2 blocks of 120 trials while

lying in the scanner. The task was presented on an MR-compatible screen. Scanning was

stopped between blocks allowing participants to rest if necessary. Participants used a re-

sponse box for their responses. During non-scanning sessions (B1 & B2), participants com-

pleted 240 trials in a single run seated at a regular desktop computer and used the keyboard

for their responses.

Each block started with an initial resting phase of 3 seconds during which a white fixa-

tion dot was shown against black background at the centre of the screen. A trial comprised

a prediction and an outcome phase. During the prediction phase, participants predicted

the next number on a horizontal bar that was shown on the screen. For this, they moved

along the bar and confirmed their choice with the respective buttons on the response box /

keyboard. Their position on the bar was visualised by the bar filling up green. Trials were

restricted to 20 seconds. A red line at the top of the screen showed the remaining time. If

participants exceeded time limits, “Too slow” popped up on the screen and the next trial

started.

Besides predicting numbers, participants had to indicate how confident they were of

their current prediction. To do so, participants held down the confirmation button when

they confirmed their prediction. The longer they pressed it, the more confident they were.

Confidence ratings were visualised by a vertical line that appeared at the right end of the

green bar. The longer participant pressed the confirmation button, the more the vertical line

filled up and eventually turned red. If participants reported two unrealistic / inadequate

confidence ratings twice in a row, "Confidence rating!!!" was flashed on the screen during the

prediction phase of the next trial. Unrealistic confidence ratings were low confidence ratings
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despite a small difference between predicted and actual return as well as high confidence

ratings despite a large difference between predicted and actual return. Confidence ratings

were limited to 1.4 seconds. Confidence ratings were not used in this thesis.

After participants confirmed their prediction, their prediction was shown for 0.3 sec-

onds before the outcome phase started. The inter-stimulus interval between prediction and

outcome phase was jittered between 1.5 and 2.5 seconds during which a white fixation dot

appeared on black background at the screen centre. Once the outcome phase started, the

same horizontal bar was shown as during prediction. This time, the bar was filled yellow,

indicating the actual outcome for this trial. A vertical, black line on the bar indicated the

participant’s predicted number. This way, participants could see their prediction error, i.e.

how much their predicted number differed from the actual number. The outcome screen

was shown for 1 second after which the next trial started. The inter-trial interval was fixed

at 0.1 seconds during which a white fixation dot was shown against black background at

screen centre.

2.3.1. Task instructions

Task instructions were in German. Full instructions were provided once before the practice

run and in a shortened version before regular runs. Instructions were embedded in a story

to increase participant engagement. Participants were told that they would visit a different

planet where they would find an alien that went mining for gold in different mines of that

planet. For this, prediction and outcome screen additionally showed an alien at the screen’s

centre and a mine above it. The horizontal bar represented the amount of gold returned

from a mine. A trial represented one day. Participants were told that the alien would ask

them each day to estimate how much gold it would bring back before going mining. If their

estimation was close to the actual return, the alien would share its return with them.

Like in the original task (Nassar et al., 2010), participants were told that mines differed in

the daily average of how much gold the alien brought back and how difficult it was for the

alien to find gold in the mine. Hence, returns between trials would fluctuate more for some

and less for other mines. Additionally, participants were instructed that the alien changed

mines automatically after some trials without informing the participant. We included this

information to reduce the level of uncertainty related to the task structure. The idea was that

the instructions would allow participants to intuit about both the noise (i.e. the variance of
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the underlying distribution from which the number for the actual return was drawn) and

the occasional experimental reversal (Nassar et al., 2010). To keep participants motivated,

each trial was associated with a monetary reward. The amount of money that participants

gained in one trial was a function of (1) how close their prediction was to the actual outcome

and (2) the amount of the actual outcome (i.e. with how much gold the alien returned).

Accordingly, participants were advised to aim for the average return of a mine when making

their predictions.

2.4. fMRI data acquisition

Functional neuroimaging data were acquired with a 3 Tesla Magnetom Skyra MRI system

(Siemens Medical, Erlangen, Germany) equipped with a 32-channel head coil and a high-

performance gradient system for fast, high-resolution whole-brain multiband echoplanar

imaging at the Neuroimaging Center of the University of Vienna at the Dental Clinic of

Vienna Medical University. fMRI parameters were: echo time (TE)/repetition time (TR) =

34/704 ms, flip angle = 50°, interleaved acquisition, 32 axial slices coplanar the connect-

ing line between anterior and posterior commissure, field of view = 210 mm, matrix size

= 96x96, voxel size = 2.2x2.2x3.5 mm. Furthermore, structural images were acquired using

magnetisation-prepared rapid gradient-echo sequence (TE/TR = 2.29/2300 ms, 176 sagittal

slices, voxel size = 0.9 x 0.9 x 0.9 m, flip angle = 8°, field of view = 240 mm).
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3 Analysis

This chapter describes the methods as well as a more detailed rationale for our data analy-

sis. After a general overview on Bayesian Multilevel Modelling, which we used to analyse

subjective and physiological measures of amphetamine sensitisation as well as behavioural

measures of salience processing, we cover analyses for the respective types of data more

specifically. Behavioural data were prepared in MATLAB1 and analysed in R2. Subjective

and physiological measures were analysed in R only. fMRI data were analysed in MATLAB

only.

3.1. Bayesian Multilevel Modelling

As the number of participants was smaller than expected with unequal sample sizes for am-

phetamine and placebo group, we focused on Bayesian statistical modelling for the analysis

of subjective, physiological and behavioural data. Bayesian statistical modelling is espe-

cially useful when analysing repeated measurements and unequal sample sizes (Nalbor-

czyk, Batailler, Loevenbruck, Vilain, & Bürkner, 2017). For this, we built linear Bayesian

Multilevel Models (MLMs), which are hierarchical regression analyses implemented by the

brms package in R (Bürkner, 2017). brms uses the probabilistic programming language Stan

to fit models. Stan uses Markov Chain Monte Carlo (MCMC) algorithms and the No-U-Turn

Sampler (NUTS) extension to draw samples from the posterior distribution over model pa-

rameters (Bürkner, 2017). Once sampled, model parameters (the effects of the respective

predictor) are summarized by the mean and standard deviation of their posterior distribu-

tion and the two-sided 95% credible interval (CrI) of the mean. Different from confidence

intervals in frequentist statistics, Bayesian statistics allows for probability statements based

on CrIs (Nalborczyk et al., 2017). For instance, a 95% CrI means that there is a 0.95 proba-

bility that the interval entails the population value of the specific estimate, given the data,

the model, and its priors. At the same time, CrIs express how certain the model is about its

estimate.
1Version 9.0.0.341360 (R2016a), The MathWorks Inc., Natick, Massachusetts, US
2Version 2019, R Core Team, Vienna, Austria, https://www.R-project.org

https://www.R-project.org
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We also included an effect size approximation to Cohen’s d for multilevel models, δt. It

is the estimated difference between group means of the constant effect of interest, divided

by the square root of the sum of all variance components (Nalborczyk et al., 2017). δt is also

reported in terms of the mean of the posterior distribution and its two-sided 95% CrI. To see

the probability of effects being positive or negative, we also looked at the percentage of the

posterior distribution of each estimate above (positive) and below 0 (negative). More details

on model definition, model fitting and model comparison procedures are reported in the

respective sections.

3.2. Assessment of Sensitisation

To see whether amphetamine sensitisation worked, we examined the effect of sensitisation

and amphetamine on self-reported drug effects and physiological measures obtained on

sensitisation and testing days (A1, A2, A3, & A4). Subjective drug effects were measured

with the drug effects questionnaire (DEQ). Physiological measures entailed heart rate and

diastolic blood pressure. Like behavioural data, all measures were analysed with Bayesian

MLMs using the same model: response variable ∼ session + sensitised + amphetamine + (ses-

sion|ID). Sensitisation and amphetamine were dummy-coded (1 = sensitised, 0 = not sensi-

tised; 1 = amphetamine, 0 = no amphetamine / placebo). Sessions were coded as categorical

predictor with 4 levels (1 = A1, 2 = A2, 3 = A3, 4 = A4). We included the amphetamine ad-

ministration predictor to control for the effect of acute amphetamine administration as the

only day after sensitisation on which we obtained subjective and physiological measures

coincided with the amphetamine challenge for participants in both groups. Different to be-

havioural and fMRI data analyses, we did not do extensive model fitting and comparison

for physiological data as these only served as cross-checks that sensitisation worked (for

details on model definition see figure C.1).

3.2.1. Subjective response: drug effects questionnaire

The drug effects questionnaire (DEQ) is a common questionnaire to capture the subjective

experience of the effect of an administered drug (Morean et al., 2013). It examines the subjec-

tive experience along four subjective states, namely “feeling the effect of the drug”, “feeling

high”, “liking the effect of the drug” and “wanting more of the drug” (hereafter, feel, high,
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like and more). DEQ uses visual analogue scales. Participants indicate how much they agree

to the statements on a line ranging from “not at all” to “extremely”. The score is determined

by the distance between the left anchor point and the participant’s mark on the line (not

at all = 1, extremely = 10). To test for sensitisation effects, we calculated the difference of

the peak reported effect to baseline for each DEQ-item and each session and investigated

whether there was an effect of sensitisation and amphetamine, using Bayesian multilevel

modelling. We expected to see positive effects of acute amphetamine administration and

sensitisation, i.e. we expected participants to show increased self-report drug effects when

sensitised and / or amphetamine-challenged.

3.2.2. Physiological response: heart rate & blood pressure

Concerning physiological responses, we calculated the difference between baseline heart

rate and blood pressure and the measure that was maximally distanced from baseline sepa-

rately for all subjects and sessions. Importantly, this peak difference could take on a positive

or negative sign. We then analysed effects of amphetamine administration and sensitisation

with Bayesian MLMs as described above. We expected some effects of acute amphetamine

administration and sensitisation on heart rate and blood pressure in terms of elevated heart

rate and blood pressure in amphetamine-challenged and / or sensitised participants. How-

ever, given previous study findings (Boileau et al., 2006; O’Daly, Joyce, Stephan, Murray, &

Shergill, 2011), we did not expect large effects.

3.3. Behavioural Analysis

For the analysis of behavioural data, we were interested in how sensitisation affected the

perception of and response to relevant and random (irrelevant) events in an uncertain en-

vironment. To recall, the task environment (i.e. the planet on which the alien went mining)

was programmed to be volatile. Volatility was expressed on several levels, which were all

reflected in the amount of gold returned from mining (i.e. the actual return). Firstly, the

actual return varied from trial to trial according to the underlying distribution from which

it was drawn. This distribution changed randomly and the time points of changes were de-

termined by a probabilistic process. Secondly, underlying distributions had different levels

of noise as they could be assigned high (SD = 15) or low variance (SD = 5).
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In this context, relevant events were trials in which the change in the actual return oc-

curred due to changes in the mean of the underlying distribution from which values for the

actual return were drawn (experimental reversal). Such trials required participants to adjust

their predictions to achieve good task performance (i.e. to make predictions close to the un-

derlying average return of a mine). Successful reversals described participants’ adjustments

of predictions to the changed underlying mean after an experimental reversal. A successful

reversal was the first trial after an experimental reversal in which participants’ prediction

was within a narrow interval around the new underlying mean (within SD/2). Trials in

which the change in actual return did not occur due to changes in the underlying distribu-

tion were regarded as random (irrelevant) events. These did not require behavioural adjust-

ment for a good task performance. How much meaning participants attributed to noise (i.e.

random / irrelevant events) was seen as a behavioural measure of aberrant salience attri-

bution. To investigate sensitisation effects on salience attribution, we looked at the overall

behaviour in low and high noise trials and at responses to experimental reversals. As high

noise trials fluctuated more strongly than low noise trials, analyses focused particularly on

the interplay of sensitisation and noise.

We divided our behavioural data analysis according to the following questions:

1. Did sensitisation affect participants’ overall behaviour in an uncertain environment?

(i) Did sensitisation influence how well participants performed in the task?

(ii) Did sensitisation make participants more likely to update their beliefs?

2. Did sensitisation affect participants’ responses to actual reversals in an uncertain en-

vironment?

(iii) Did sensitisation influence how well participants detected experimental reversals

in an uncertain environment?

(iv) Did sensitisation influence how long participants needed to successfully adapt

their predictions after experimental reversals?

(v) Did participants’ successful adaptations of predictions represent chance hits?
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3.3.1. Did sensitisation affect participants’ overall behaviour in an uncertain en-
vironment?

For sensitisation effects on general behaviour, we looked at participants’ (i) overall task

performance, and (ii) their overall updating behaviour.

(i) Did sensitisation influence how well participants performed in the task?

We defined task performance in terms of how well participants could predict the average

return of a mine (to recall, participants were advised to predict the average return of a mine

during instructions). A good performance was a trial in which a participant’s predicted

return was within SD/2 of the mean of the distribution from which actual return of the trial

was drawn (i.e. prediction < µ ± SD/2). As we were interested in the interplay of a volatile

environment and sensitisation, the number of SD/2-trials were calculated separately for

low and high noise trials relative to the total number of low and high noise trials.

We expected sensitised participants to perceive the task environment as more volatile,

making them more likely to attribute salience to random events and update their predictions

more frequently (i.e. to switch). Instead of settling around an average return as advised, we

predicted that sensitised participants perceived simple fluctuations in returns as experimen-

tal reversals (as changes in mines in instructional terms) and would try to adapt their pre-

dictions accordingly. With respect to task performance, we expected sensitisation to lower

the relative number of trials within the SD/2-interval. Independent from sensitisation, we

expected acute amphetamine administration to elevate responsiveness to perceived changes

in the environment equally decreasing the number of trials within the SD/2-interval. We

expected these effects to be elevated in trials with high noise (SD = 15) as changes there were

more frequent and potentially more pronounced than in low noise trials.

(ii) Did sensitisation make participants more likely to update their beliefs?

To see whether sensitisation increased belief updating, we examined participants’ updating

behaviour. Updating behaviour was defined in terms of the absolute difference between the

predicted return of a given trial and that of the previous trial relative to the prediction error

of the previous trial (update = |predictioni+1 − predictioni|/prediction errori). We calculated

average updates for low and high noise trials separately to account for the effect of volatility.
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The rationale behind updating behaviour was the same as for task performance. We in-

terpreted increased responsiveness to feedback (i.e. the difference between predicted and ac-

tual return shown during the outcome phase) as induced by sensitisation to reflect increased

aberrant salience attribution to random events. Different from task performance, however,

updating as we defined it represented a less conservative measure. It accounted for the de-

pendency of behaviour across trials, namely the dependency of participants’ prediction on

what they previously predicted as well as on the fluctuation in outcome as reflected in the

prediction error of the previous trial. Participants who might not have performed well at

approximating the average might have still settled on an average outside the SD/2-interval.

At the same time, increased updating behaviour would automatically preclude good task

performance. We expected both acute amphetamine administration and sensitisation to in-

crease updating behaviour as reflected in increased average updates. Similarly, we expected

high noise to boost this effect.

3.3.2. Did sensitisation affect participants’ responses to actual reversals in an
uncertain environment?

For sensitisation effects on behaviour to actual reversals (i.e. relevant events), we first ex-

amined participants’ (iii) reversal detection scores, followed by (iv) how long participants

needed to adjust their predictions after an experimental reversal, (v) how consistent they

behaved after successfully adapting their predictions. This way, we wanted to see whether

successful reversals only happened by chance or whether successful reversals reflected par-

ticipants’ actual adaptation of predictions to changes in the environment.

(iii) Did sensitisation influence how well participants detected experimental reversals in
an uncertain environment?

To see whether sensitisation affected how well participants detected experimental reversals

(relevant events), we calculated reversal detection scores. These were the number of success-

ful reversals divided by the total number of experimental reversals. We defined a successful

reversal as the first trial after an experimental reversal in which the predicted return was

within SD/2 of the underlying mean. The reversal detection score represented a crude mea-

sure to see how well participants learnt and adapted their predictions after experimental
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reversals. Importantly, we did not distinguish between low and high noise trials for this

measure.

We expected participants to perform better at responding to experimental reversals when

sensitised than when not sensitised, i.e. to detect more reversals. This seems to contradict

previous findings according to which psychotic patients achieve less reversals (Feeney et al.,

2017). However, here reversals were performance-dependent whereby achieving a reversal

referred to participants continuously choosing the "correct" stimulus after a reversal for a

specified number of times (Waltz & Gold, 2007). This automatically excluded chance hits to

count as successful reversals. The way we measured reversal detection was performance-

independent so that chance hits could potentially be counted as successful reversals. Ac-

cordingly, while we expected sensitised participants to detect more reversals, we expected

this to be by chance, i.e. to be because of increased updating behaviour due to increased

responsiveness to any kind of event (even noise). This is why we also examined how partic-

ipants continued to respond after they reversed successfully (see section (v)).

(iv) Did sensitisation influence how long participants needed to successfully adapt their
predictions after experimental reversals?

Another way to see whether sensitisation affected detection of relevant events is to see how

how long participants needed to adapt their predictions to an experimental reversal. For

this, we assessed the average number of trials after an experimental reversal until partici-

pants successfully adapted their predictions (i.e. the first trial that was within SD/2 to the

mean of the underlying distribution). We expected participants to be faster in successfully

changing their predictions when sensitised. A similar effect was expected for amphetamine

administration.

(v) Did participants’ successful adaptations of predictions represent chance hits?

Chances to make a prediction which is within SD/2 to the underlying mean might be higher

for participants who change predictions more excessively. Our definition of successful rever-

sals allowed for such chance hits to be identified as successful reversals. To account for this

possibility, we examined how long participants’ predictions remained in the SD/2-interval

to the underlying mean after successful reversals (pointing to a true adaptation of predic-

tions to the experimental change), and how strongly participants updated predictions after
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successful reversals. We defined closeness to the average as the average number of con-

secutive SD/2-trials after successful reversals. Updating behaviour was computed as the

average updating behaviour after successful reversal until the next experimental reversal.

We expected sensitisation to decrease the number of consecutive trials in which participants’

predictions were close to the underlying mean. We expected increased updating behaviour

post successful reversals to accompany this effect. This would reflect blunted reversal learn-

ing behaviour as has been observed in patients with schizophrenia (Maia & Frank, 2017).

3.3.3. Hierarchical regression analysis

Analysis of all variables of interest with Bayesian MLMs followed the 3-step procedure out-

lined in Nalborczyk et al. (2017). It included (i) defining a probability model, (ii) computing

the posterior distributions of each parameter that is defined by the model, and (iii) evaluat-

ing the fit and predictive performance of the model. Models were fed with data from testing

days B1, A1, B2, M1 and A4.

Model definition

We fit different models to the data to predict the variable of interest, e.g. overall updat-

ing behaviour. Models included both constant and varying effects. Here, constant effects,

also called population-level effects, represented effects that were shared across participants.

Varying effects were specified at the individual level, modelling subject-specific variability.

All models but the null model included the constant effect of session. The remaining pre-

dictors, sensitisation and amphetamine, were then added step-wise to the model starting

with sensitisation. For analyses of overall task performance and updating behaviour as well

as task performance and updating behaviour after successful reversal, we defined two more

models: one that included a noise level predictor and one which further included interaction

effects between sensitisation and noise and between amphetamine and noise. To allow for

this, we separated data for these variables into averages of high and low noise trials, respec-

tively. Amphetamine, sensitisation and noise predictors were dummy-coded (amphetamine:

1 = amphetamine administered, sensitisation: 1 = sensitised, noise: 1 = noisy). Session was

modelled as categorical predictor with 5 levels (1 = B1, 2 = A1, 3 = B2, 4 = M1, 5 = A4).

Models were built successively (see table 3.1). We started with a simple intercept model,

the null model (M0), to which increasingly complex models were compared to. The first
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Table 3.1: Model Formulas.

Model Model formula

M0 response variable ∼ 1 + (1|ID)

M1 response variable ∼ 1 + session + (1|ID)

M2 response variable ∼ 1 + session + amphetamine + (1|ID)

M3 response variable ∼ 1 + session + amphetamine + sensitised + (1|ID)

M4 response variable ∼ 1 + session + amphetamine + sensitised + (session|ID)

M5* response variable ∼ 1 + session + amphetamine + sensitised + noise
+ (session|ID)

M6* response variable ∼ 1 + session + amphetamine + sensitised + noise
+ amphetamine : noise + sensitised : noise + (session|ID)

Note. Response variable = e.g. updating behaviour, ID = subject ID, session = testing day,
categorical predictor with 5 levels (1 = B1, 2 = A1, 3 = B2, 4 = M1, 5 = A4), amphetamine =
amphetamine administration (1 = amphetamine, 0 = no amphetamine / placebo), sensitised
= sensitisation status (1 = sensitised, 0 = not sensitised)
* Model 5 & 6 were only fitted for analyses of overall and post successful reversal task
performance and updating behaviour.

proper model (M1) included session as constant effect. It accounted for a global effect of

session and for random variation in this effect across subjects. The second model (M2) in-

cluded constant effects of session and sensitisation. The third model (M3) included constant

effects of session, sensitisation and amphetamine administration. The fourth model (M4) in-

cluded an additional varying effect of session. For analyses of updating behaviour and task

performance, a fifth model (M5) included the constant effect of noise, and a sixth model (M6)

included additional interaction effects between noise and amphetamine as well as noise and

sensitisation.

Constant and varying intercept in all models accounted for individual differences in

overall changes in the variable of interest, for instance, updating behaviour. The varying

slope for session in model 4, 5 and 6 modelled the variability of the respective variable of

interest across subjects. Including varying effects allowed for better estimation of constant

effects of interest because of the partial pooling of information about variance across differ-

ent levels (Nalborczyk et al., 2017).

Sensitisation and amphetamine represented important predictors for investigating the

effect of sensitisation. The noise predictor was important for investigating the effect of

volatility on the variables of interest. Interaction effects between noise and amphetamine,



3.3. Behavioural Analysis 33

and between noise and sensitisation allowed to investigate more closely how noise affected

sensitisation and amphetamine effects. As interaction effects in multilevel models are diffi-

cult to interpret (McElreath, 2020), we calculated γ. It is the sum of the respective constant

effect and its interaction effect with noise (γ = β + βinteraction; for details on the interaction

model, see figure C.6).

Model fitting

For model fitting, we ran four Markov Chain Monte Carlo (MCMC) algorithm simulations

(chains) to approximate the posterior distribution of each model. The number of iterations

per chain was set to 1,000 of which 200 were used for warm-up, leaving 3,200 post-warm-up

samples as posterior plausibilities of model parameters. All models started with weakly in-

formative priors and a Normal (Gaussian) response distribution. If chains did not converge,

we adjusted the number of iterations and warm-ups and adapt_delta based on recommen-

dations provided by the brms package (for details on the exact models, see figure C.2 for

model 3, figure C.3 for model 4, and figure C.5 for model 5). We evaluated convergence

using the R̂ index (R̂ < 1.01 for chain convergence), the effective sample size of the posterior

distribution of each parameter and visual inspection of the trace plots (Nalborczyk et al.,

2017).

Model comparison

We compared models with respect to how well they simulated the generative process of

interest, i.e. how well they predicted unobserved data, and how well they fit the observed

data. The models’ out-of-sample predictive performance was approximated with the leave-

one-out cross-validation procedure as built into the brms package. The procedure’s index

(LOOIC) serves as estimate of how well a model predicts unobserved data (Nalborczyk et

al., 2017). Model fits to observed data were evaluated with the Bayesian R2. The combina-

tion of both evaluation methods allowed to rule out that models performed well at explain-

ing the observed data while performing worse than simpler models at predicting new data

(overfitting). This thesis only reports results from the model that best predicted unobserved

data (lowest LOOIC). If several models showed similar predictive performance (difference

< 10; Turi et al., 2018), that model was chosen as "winning" model which had the highest

Bayesian R2 index, i.e. the model that best explained the observed data.
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3.4. fMRI Analysis

fMRI data from both testing days (A1 & A4) were pre-processed and analysed in MATLAB

using the SPM12 software package3.

3.4.1. Pre-processing

Before pre-processing, MRI data was converted to NiFTi format. Following the SPM12

manual4, within-subject pre-processing steps included slice-time correction, realignment,

unwarping, co-registration and unified segmentation. To enable between-subject compari-

son, images were spatially normalised to Montreal Neurological Institute (MNI) space and

smoothed with a 3D Gaussian kernel of 4 mm full-width at half-maximum (FWHM).

Slice-time correction was needed to correct for differences in image acquisition time be-

tween sampled slices as images were acquired at interleaved mode. The slice acquired at

the middle of the sequence (i.e. at TR/2) served as reference slice. Both realignment and

unwarping correct for subjects’ movements. These can introduce great movement artefacts

in functional images, causing loss of sensitivity (not detecting true activation) and loss of

specificity (detecting false positives). For realignment, the first scan of each session of a

participant was realigned long 6 parameters (3 for translations (mm) and 3 for rotations

(degrees)) to the first scan of the first session. Then, all images of a session were realigned

to the first image of that session. Unwarping corrects for susceptibility-by-movement in-

teractions whereby subjects’ movements result in severe geometrical distortions, especially

where air and tissue interface. During co-registration, the anatomical information of func-

tional images is linked with a structural image as structural images yield superior anatom-

ical localisation. Unified segmentation includes segmentation, bias correction and spatial

normalisation of structural images. Segmentation separates different types of tissue (e.g.

grey matter and white matter) based on tissue probability maps. Bias correction accounts

for inherent intensity inhomogeneity of MRI, facilitating the subsequent normalisation pro-

cess. Normalisation helps to establish a voxel-to-voxel correspondence between brains of

different subjects allowing comparisons of neural activation between subjects. For this, T1-

weighted, anatomical images were normalised and transformed to MNI template of unified

segmentation. Normalisation parameters were then applied to all functional images. During

3Wellcome Trust Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm
4https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf

http://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf


3.4. fMRI Analysis 35

smoothing, residual anatomical differences and registration errors are blurred over, which

increases signal-to-noise ratio (by suppressing noise and effects that are due to residual dif-

ferences in functional and gyral anatomy). It further results in superior spatial overlap,

makes data more normally distributed and increases sensitivity to effects of similar scale to

kernel (for details on each processing step see appendix B, or the SPM12 manual).

3.4.2. First-level analysis

We used the general linear model (GLM) approach to calculate statistical parametric maps

of BOLD activation. First-level models were built for each subject and scan day. As we

were interested in how participants processed relevant and irrelevant, random events un-

der uncertainty, GLMs included four regressors of interest: experimental reversal trials and

non-reversal trials separately for high and low noise trials. Regressors were modelled at the

onset of the outcome phase for the whole length of the outcome phase (i.e. 1 second). We

used parametric design, so that trial-wise behavioural absolute prediction errors (PE; the ab-

solute difference between participants’ predictions and the actual outcome as shown to them

during the outcome phase) modulated the amplitude of the trial-related outcome regressor

(Schlagenhauf et al., 2014). Parametric modulators model the variation around task-related

neural activities. The GLM also included six realignment parameters from pre-processing as

regressors of no interest to account for movement-induced variance. Regressors were con-

volved with a canonical haemodynamic response function, high-pass filtered (128 seconds

cutoff), and corrected for serial correlations using a first-order autoregressive model. Con-

trast images were generated for each parametric modulator for each participant, leaving the

following contrast images for group-level analyses:

• Regressor 1: reversal high noise (PE modulated)

• Regressor 2: no reversal high noise (PE modulated)

• Regressor 3: reversal low noise (PE modulated)

• Regressor 4: no reversal low noise (PE modulated).

We expected amphetamine-sensitisation to disrupt dopamine signalling in brain regions

processing salience. More precisely, we expected aberrant salience attribution as reflected

in aberrant brain activity to irrelevant and relevant events. Irrelevant, random events were



36 Chapter 3. Analysis

defined as trials in which no experimental reversal occurred. Relevant events were all other

trials. We also expected noise to have an effect on salience processing. Accordingly, we sep-

arated regressors for non-reversal and experimental reversal trials by level of noise. Overall,

we expected to see increased BOLD responses to non-reversal trials (irrelevant events) and

decreased BOLD responses to experimental reversals (relevant events) after sensitisation.

We expected high noise trials to impair salience processing in both groups but we expected

disruptions to be greater in sensitised participants.

3.4.3. Group-level analysis

As we wanted to examine sensitisation effects on salience processing, we focused on changes

in neural activation in brain regions that have shown salience-related responses in pre-

vious imaging studies and that involve dopamine-signalling. These were bilateral hip-

pocampus, striatum and right dopaminergic midbrain (Modinos et al., 2020; see table 3.2

for details on the ROIs). Following Modinos et al. (2020), ROI images were created with

the WFU_PickAtlas toolbox5 using predefined anatomical masks of the striatum (caudate,

pallidum, putamen) and the hippocampus from the Automated Anatomical Labelling atlas

(AAL). We used a 6 mm sphere at [MNI xyz: 8 -20 -18] for the right-sided, dopaminergic

midbrain including the ventral tegmental area and the substantia nigra. These ROIs were

then used as masks for group-level analyses.

Table 3.2: Regions of interest used in fMRI analysis.

Region of Interest Hemisphere Subregions Atlas

Hippocampus bilateral AAL

Striatum bilateral Pallidum AAL
Caudate
Putamen

Dopaminergic midbrain right Substantia nigra 6mm sphere at
Ventral tegmental area [MNI xyz: 8 -20 -18]

Note. Based on Modinos et al. (2020). AAL = Automated Anatomical Labelling atlas, TD
Lobe = Talairach Daemon Lobar atlas, MNI = Montreal Neurological Institute Space.

Due to our small sample size, we used non-parametric alternatives to regular t-tests

5https://www.nitrc.org/projects/wfu_pickatlas

https://www.nitrc.org/projects/wfu_pickatlas
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provided by the Statistical nonParametric Mapping (SnPM) toolbox6. SnPM provides per-

mutation tests using the GLM and pseudo t-statistics for independent observations (Nichols

& Holmes, 2002). We compared differences within groups with one-sample t-tests and dif-

ferences between groups with two-sample t-tests for both scan days. We further compared

differences in neural activation before and after (sham) sensitisation with paired t-tests. Due

to corrupted data, we did not conduct all tests for all participants. As participants were not

evenly distributed across group, we conducted one-sample and paired t-tests only for the

amphetamine group (see table 3.3 for an overview of which test included which dataset).

We tested all regressors of interest with masks of the different ROIs. This corresponds

to small volume correction7. The maximal number of permutations was set to 5,000. We

usually tested for positive effects except for paired t-tests examining neural activation in

response to non-reversal trials (paired t-tests for regressors 2 and 4), as we hypothesised

increased responses to random events after sensitisation. Here, testing negative effects cor-

respond to testing the contrast of A4>A1. We did not smooth variance so that t-statistics

reported here are not pseudo t-statistics (Nichols & Holmes, 2002). Activation inside our

ROIs is reported at peak-level at family-wise error (FWE)-corrected p < 0.05. We did not

look at whole-brain activation.

Table 3.3: Overview of statistical tests and datasets used in fMRI analysis.

One-sample t-test Two-sample t-test Paired t-test
Group Participant A1 A4 A1 A4

AMPH 1 x x
2 x x x x x
3 x x x x x
4 x x
5 x x x x x
6 x x x x x
7 x x x x x
8 x x x x x

PLAC 9 x x

Note. AMPH = amphetamine sensitised group, PLAC = placebo (sham) sensitised group.

6Version SnPM 13.1.08, http://www.nisox.org/Software/SnPM13/
7https://groups.google.com/forum/#!topic/snpm-support/khUyM3H20TQ

http://www.nisox.org/Software/SnPM13/
https://groups.google.com/forum/##!topic/snpm-support/khUyM3H20TQ
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4 Results

In this chapter, we first present our findings on sensitisation effects on subjective experience

of drug effects and on physiological measures, followed by our findings from behavioural

and fMRI analysis. Generally, both subjective and physiological measures of sensitisation

hint at some, yet uncertain effect of sensitisation. Likewise, our behavioural and fMRI re-

sults remain tentative as to the role of sensitisation in salience processing.

4.1. Subjective & Physiological Data

4.1.1. Sensitisation effects on subjective drug effects

We found weakly positive, but imprecise effects of sensitisation on DEQ components. These

provide inconclusive evidence that sensitisation subjectively increased perceived effects of

the drug after sensitisation (feel: β = 0.45, 95% CrI = [-2.20, 3.00], δt = 0.17, 95% CrI = [-1.02,

1.34]), increased the feeling of being high (high: β = 0.82, 95% CrI = [-2.25, 3.84], δt = 0.22,

95% CrI = [-0.73, 1.21]), increased the liking of the effect (like: β = 0.47, 95% CrI = [-2.13,

3.04], δt = 0.18, 95% CrI = [-0.97, 1.35]), and increased the wanting for more of the drug

(more: β = 0.18, 95% CrI = [-1.96, 2.26], δt = 0.09, 95% CrI = [-0.96, 1.15]), given our data and

model at hand. Effects were not precise as reflected in CrIs which included the plausibility

of both strongly negative and strongly positive effects of sensitisation and highly uncertain

effect sizes. Looking at the percentage of the posterior distribution of the sensitisation effect

above 0 points to a slight trend towards a positive effect (feel: 61% > 0; high: 67% > 0; like:

62% > 0; more: 56% > 0).

Effects of amphetamine administration showed a similar pattern (feel: β = 1.15, 95% CrI

= [-1.15, 3.41], δt = 0.44, 95% CrI = [-0.59, 1.47]; high: β = 1.09, 95% CrI = [-2.10, 4.22], δt = 0.29,

95% CrI = [-0.65, 1.33]; like: β = 1.17, 95% CrI = [-1.16, 3.41], δt = 0.44, 95% CI = [-0.57, 1.50];

more: β = 0.60, 95% CrI = [-1.38, 2.47], δt = 0.26, 95% CrI = [-0.74, 1.24]). While amphetamine

effects tended to be stronger with narrower CrIs than sensitisation effects, effect estimation

was still associated with large uncertainty, where CrIs included the possibility for positive

and negative effects. Looking at the percentage of the estimate distribution above 0 suggests
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a clearer trend towards a positive effect of amphetamine administration on all four DEQ-

items (feel: 81% > 0, high: 72% > 0, like: 80% > 0, more: 71% > 0).

Including amphetamine as predictor in the model controlled for the acute effect of am-

phetamine administration. Hence, the fact that there was still a trend towards a positive

effect of sensitisation on subjective responses to drug effects suggests that amphetamine

sensitisation was successful with respect to the subjective drug effects, given our data and

model. Importantly, large uncertainty in effect size estimation call for cautious interpreta-

tion of any of these effects though (see D.1 for details on models).

4.1.2. Sensitisation effects on heart rate & blood pressure

Concerning the effect of sensitisation and amphetamine administration on participants’

heart rate, our model estimated that both sensitisation and amphetamine administration

seemed to increase participants’ heart rate. The means of the posterior distribution of the

regression coefficients for sensitisation and amphetamine were both positive but associated

with large uncertainties (sensitisation: β = 0.66, 95% CI = [-4.15, 5.37], δt = 0.04, 95% CI =

[-0.29, 0.36]; amphetamine: β = 0.44, 95% CI = [-4.45, 5.15], δt = 0.03, 95% CI = [-0.32, 0.33]).

Credible intervals for both variables included both strongly positive and strongly negative

effects. Accordingly, it was almost equally likely for sensitisation to increase or decrease

heart rate (59% > 0) or for amphetamine to increase or decrease heart rate (57% > 0). To-

gether with effect sizes that approached 0, the observed positive effect of sensitisation on

heart rate remains preliminary, given our data and model.

Concerning diastolic blood pressure, we found a positive effect of both sensitisation (β =

1.37, 95% CI = [-2.86, 5.48], δt = 0.15, 95% CI = [-0.39, 0.69]) and amphetamine (β = 1.91, 95%

CI = [-2.95, 6.71], δt = 0.22, 95% CI = [-0.40, 0.88]). The 0.71 probability of the β distribution

to be above 0 further supports that sensitisation seemed to increase diastolic blood pressure,

however with large uncertainty. Similarly, the 0.74 probability of the effect of amphetamine

to be above 0 supports a positive effect of amphetamine administration on blood pressure.

As effects were associated with large uncertainties and small effect sizes, they should be

regarded with caution. On average, our results point to a positive effect of sensitisation on

blood pressure, but do not exclude negative effects. Consequently, evidence for sensitisation

effects on blood pressure remain inconclusive.
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Given our data and model, sensitisation seemed to affect physiological measures, tend-

ing to increase both heart rate and blood pressure. Effects were, however, associated with

large uncertainty. Our results on subjective drug effects provide a slightly more convincing

argument for successful sensitisation, increasing reported drug effects for all four aspects of

the DEQ while also considering negative effects of sensitisation. Hence, it seems reasonable

to infer that sensitisation did work to some extent, albeit with reservations, as results were

still associated with uncertainty (see table D.1 for details on the models).

4.2. Behavioural results

4.2.1. Sensitisation effects on overall task performance & updating behaviour

(i) Sensitisation effects on how well participants performed in the task

Results concerning task performance are reported for model 6 (see table D.9 for results of

model comparison and table D.15 for all population-level effects of model 6). According

to this model, sensitisation tended to worsen task performance (remember that good task

performance was defined as trials in which participants’ predictions were within SD/2-

interval around the mean of the underlying distribution; see figure 4.1, A). Yet, this effect

was associated with uncertainty about its direction: the CrI considered both positive and

negative effect estimates as plausible (β = -0.02, 95% CrI = [-0.13, 0.08], δt = -0.16, 95% CrI = [-

1.04, 0.66]). Overall, the fact that 65% of the posterior distribution of the sensitisation effect is

smaller than 0 hints at a trend towards a negative effect of sensitisation on task performance.

According to our model, a noisy environment seemed to contribute to this negative effect of

sensitisation while the effect was still associated with uncertainty, as reflected in a CrI that

still considered positive and negative estimates (γ = -0.06, 95% CrI = [-0.18, 0.07], δ = -0.41,

95% CrI = [-1.32, 0.42]).

Concerning amphetamine, our model found a weakly negative, but uncertain effect of

amphetamine on task performance (β = -0.05, 95% CrI = [-0.10, 0.01], δt = -0.32, 95% CrI =

[-1.55, 1.03]). A 0.71 probability of the effect of amphetamine to be negative points to a trend

that participants performed worse when administered amphetamine. Yet, the model also
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considered positive effects of amphetamine on task performance. Similar to sensitisation ef-

fects, a noisy environment increased the overall negative effect of amphetamine but also in-

creased uncertainty about the estimate (γ = -0.10, 95% CrI = [-0.28, 0.10], δ = -0.69, 95% CrI =

[-2.01, 0.56]; see figure 4.1, B & C for task performance by noise level). Amphetamine effects

were associated with slightly stronger, but still moderate effect sizes. Interestingly, the pure

effect of noise on task performance was actually positive (β = 0.15, 95% CrI = [0.12, 0.19], δt

= 1.07, 95% CrI = [0.55, 1.66]; 100% > 0). This was likely due to good task performance being

defined as predictions within SD/2 of the underlying mean and SD/2-intervals becoming

large enough during noisy trials for participants’ predictions to be within this interval.

Overall, participants tended to perform worse in noisy and less noisy environments

when amphetamine-challenged and / or sensitised while they tended to perform better in

noisy environments when neither amphetamine-challenged nor sensitised. Given the small

effect sizes for the effect of sensitisation in noisy and less noisy environments which were

associated with large uncertainties, the trend to a negative effect of sensitisation on how

good participants were at predicting the average return remains inconclusive.

(ii) Sensitisation effects on participants’ susceptibility to attribute salience to random
events

Results reported here are for model 6 (see table D.10 for results of model comparison and

table D.16 for all population-level effects of model 6). Controlling for effects of noise and

amphetamine, sensitisation tended to decrease how much participants updated their pre-

dictions between trials (see figure 4.2, A). This effect on updating behaviour was associated

with uncertainty, as reflected in a relatively large CrI (β = -0.32, 95% CrI = [-0.69, 0.07], δt =

-0.58, 90% CrI = [-1.35, 0.27]). A 92% probability for a negative sensitisation effect backs the

trend towards decreased updating behaviour in sensitised participants although we cannot

exclude that sensitisation could also increase how much participants updated their predic-

tions between trials. Interestingly, there seemed to be little effect of noise on this effect (γ =

-0.29, 95% CrI = [-0.74, 0.16], δt = -0.52, 95% CrI = [-1.33, 0.29]).

For amphetamine administration, our model estimated a mostly negative trend of the

effect of amphetamine on participants’ updating behaviour. However, it did not fully ex-

clude also positive effects of amphetamine on updating behaviour (95% CrI = [-0.52, 0.04],

δt = -0.43, 95% CrI = [-1.12, 0.16], 92% < 0). A noisy environment did not change this trend
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Figure 4.1: Effects of sensitisation on overall task performance.

Note. The figure shows the percentage of trials in which predictions were within SD/2 of the
underlying mean for all trials (A), for low noise (B), and for high noise trials (C). Boxplots
include the median, 25th and 75th percentile, and 1.5 x inter-quartile range. Session B1 &
A1 are pre-sensitisation, session B2, M1 & A2 are post-sensitisation. Amphetamine was
administered on session A1 & A4 for AMPH-group, and on session A4 for PLAC-group.
AMPH = amphetamine group; PLAC = placebo group.
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much (γ = -0.26, 95% CrI = [-0.59, 0.08], δt = -0.48, 95% CrI = [-1.11, 0.14]; see figure 4.2, B &

C for updating behaviour by noise level). Meanwhile, participants generally updated their

predictions less in noisy environments when they did not receive amphetamine and were

not sensitised (β = -0.17, 95% CrI = [-0.26, -0.08], δt = -0.30, 95% CrI = [-0.55, -0.10], 100% <

0).

In sum, evidence for a negative effect of sensitisation on participants’ updating be-

haviour is more convincing than for example for a negative sensitisation effect on task per-

formance. However, given that effect sizes remain moderate and effects are still associated

with uncertainty about the direction of the effect, reported sensitisation effects on partici-

pants’ updating behaviour are still preliminary.

4.2.2. Sensitisation effects on responses to reversals

(iii) Sensitisation effects on how well participants detected experimental reversals

The varying slope model for reversal detection score did not converge even after adjusting

the model inputs according to recommendations. Accordingly, we only report results for

model 3, which only had a varying intercept (see table D.11 for results of model comparison

and table D.17 for all population-level effects of model 3). Overall, results concerning the

effect of sensitisation on how well participants detected relevant events (i.e. experimental

reversals) are inconclusive. Based on model 3, sensitisation seemed to decrease how well

participants detected relevant events (i.e. experimental reversals; see figure 4.3). This effect

trended toward 0 (β = -0.06, 95% CrI = [-0.14, 0.02], δt = 0.01, 95% CrI = [0.00, 0.02]). There

was a 90% probability for participants to detect experimental reversals less after sensitisation

but the model also considered the possibility that participants detected more experimental

reversals when sensitised. Likewise, amphetamine tended to decrease detection scores (β =

-0.06, 95% CrI = [-0.19, 0.06], δt = 0.01, 95% CrI = [0.00, 0.04], 81% < 0). Both effects were

associated with large uncertainty and effect sizes of 0. In general, the models chosen for

analysis of reversal detection score did not explain our data well (see low Bayes R2 in table

D.11). Consequently, while our model points to no effect of sensitisation on the ability to

detect experimental reversals, this finding remains inconclusive.
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Figure 4.2: Effects of sensitisation on overall updating behaviour.

Note. The figure shows the average trial-by-trial update for all trials (A), for low noise (B),
and high noise trials (C). Boxplots include the median, 25th and 75th percentile, and 1.5 x
inter-quartile range. Session B1 & A1 are pre-sensitisation, session B2, M1 & A2 are post-
sensitisation. Amphetamine was administered on session A1 & A4 for amphetamine-group,
and on session A4 for placebo-group. AMPH = amphetamine group; PLAC = placebo group.
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Figure 4.3: Effects of sensitisation on participants’ ability to detect experimental reversals.

Note. The figure shows the percentage of successfully detected reversals. Boxplots include
the median, 25th and 75th percentile, and 1.5 x inter-quartile range. Session B1 & A1 are
pre-sensitisation, session B2, M1 & A2 are post-sensitisation. Amphetamine was adminis-
tered on session A1 & A4 for AMPH-group, and on session A4 for PLAC-group. AMPH =
amphetamine group; PLAC = placebo group.

(iv) Sensitisation effects on how long participants needed to successfully adapt their pre-
dictions

Results reported here are for model 4 (see table D.12 for results of model comparison and

table D.18 for all population-level effects of model 4). According to our model and data,

sensitisation seemed to have no effect on how long participants needed to successfully adapt

their predictions after an experimental reversal (see figure 4.4). This was associated with a

relatively large CrI where both positive and negative effects of sensitisation were plausible

and an effect size of 0 (β = 0.00, 95% CrI = [-0.60, 0.57], δt = 0.00, 95% CrI = [-0.64, 0.68], 50%

> 0). Meanwhile, amphetamine seemed to reduce the time how long participants needed

to successfully adapt their predictions after an experimental reversal (β = -0.41, 95% CrI =

[-1.53, 0.66], δt = -0.36, 95% CrI = [-1.46, 0.87]). Similar to the effect of sensitisation, the effect

of amphetamine was also associated with large uncertainty but generally trended towards

a negative effect (73% < 0). As before, our results do not allow a definite statement on the

effect of sensitisation on how long participants needed to respond to experimental reversals.
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Figure 4.4: Effects of sensitisation on how long participants needed to adapt their predic-
tions after experimental reversals.

Note. The figure shows the average number of trials from experimental to successful rever-
sal. Boxplots include the median, 25th and 75th percentile, and 1.5 x inter-quartile range.
Session B1 & A1 are pre-sensitisation, session B2, M1 & A2 are post-sensitisation. Am-
phetamine was administered on session A1 & A4 for AMPH-group, and on session A4 for
PLAC-group. AMPH = amphetamine group; PLAC = placebo group.

(v) Assessment of whether successful reversals were chance hits or proper behavioural
adjustments

Results concerning task performance after successful reversals are reported for model 6 (see

table D.13 for results of model comparison and table D.20 for all population-level effects of

model 6). According to our model, sensitisation seemed to increase how long participant’s

predictions were within SD/2 to the mean of the underlying distribution once they success-

fully adapted their behaviour after experimental reversals (see figure 4.5, A). However, the

effect was associated with large uncertainty where a negative effect was also plausible, but

it generally trended towards being positive (β = 0.40, 95% CrI = [-0.26, 1.05], δt = 0.40, 95%

CrI = [-0.41, 1.18], 85% > 0). This effect was even stronger when looking at noisy trials and

associated with a larger effect size (γ = 0.99, 95% CrI = [0.16, 1.73], δt = 0.97, 95% CrI = [0.16,

1.88]). While our model was uncertain about the magnitude of this effect, as reflected in a

broad CrI that considered smaller and larger values alike, our model only considered pos-

itive effects of sensitisation on how long participants exhibited good task performance in a

noisy environment.
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Similarly, amphetamine tended to increase the number of continuous SD/2-trials after

successful reversals in both less noisy and even more in noisy environments (not noisy: β =

0.33, 95% CrI = [-0.47, 1.13], δt = 0.33, 95% CrI = [-0.61, 1.30], 77% > 0; noisy: γ = 0.56, 95%

CrI = [-0.41, 1.54] , δt = 0.54, 95% CrI = [-0.40, 1.53]). However, our model reported large

uncertainty about the effect of amphetamine, also considering negative estimates. Hence, it

remains inconclusive as to how amphetamine affected how consistent participants were in

predicting the average return after successful reversals.

In general, noise had a positive effect on task performance after successful reversals (β =

0.37, 95% CrI = [0.14, 0.62], δt = 0.37, 95% CrI = [0.07, 0.71], 99% > 0). Once participants suc-

cessfully reversed their predictions after experimental reversals, participants’ predictions

seemed to stay longer within the SD/2-interval to the underlying mean in a noisy environ-

ment when participants were neither sensitised nor amphetamine-challenged (see figure 4.5,

B & C for task performance post successful reversals by noise level). While our model was

certain about a positive effect of noise on task performance after successful reversals, this

effect was likely due to how we defined good task performance and due to SD/2-intervals

becoming large enough for participants’ predictions to be within these intervals.

Results concerning updating behaviour after successful reversals are reported for model

6 (see table D.14 for results of model comparison and table D.20 for all population-level

effects of model 6). Based on this model, sensitisation tended to reduce how much partic-

ipants updated their predictions between trials (see figure 4.6, A). Our model estimated a

clear negative effect of sensitisation (β = -0.51, 95% CrI = [-0.96, -0.07], δt = -0.71, 95% CrI =

[-1.54, 0.02], 97% < 0). It was however uncertain about how strong this negative effect was

as reflected in the large CrI. While still negative, a noisy environment seemed to attenuate

the effect and increased the CrI to also include potentially positive effects (γ = -0.37, 95% CrI

= [-1.01, 0.19] , δt = -0.51, 95% CrI = [-1.31, 0.19]). Hence, while our model provided clear

evidence for participants updating their predictions less when sensitised and when in a less

noisy environment, evidence was less clear about whether sensitised participants updated

their predictions more or less in a more noisy environment.

The effect of amphetamine on updating behaviour after successful reversals was also

clearly negative but uncertain concerning the strength of the effect (β = -0.55, 95% CrI = [-

1.02, -0.05], δt = -0.76, 95% CrI = [-1.71, 0.08], 96% < 0). The effect was slightly attenuated

and became more uncertain when looking at updating behaviour after successful reversals
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in high noise trials, including also positive values in the CrI (γ = -0.42, 95% CrI = [-0.89, 0.17],

δt = -0.58, 95% CrI = [-1.53, 0.21]; see figure 4.6, B & C for updating behaviour post successful

reversal by noise level). Interestingly, different from the pull toward slightly weaker neg-

ative effects of amphetamine and sensitisation on updating behaviour when participants

experienced a noisy environment (where positive effects were also plausible), participants

generally updated their predictions less in noisy environments when not sensitised and /

or amphetamine-challenged (β = -0.30, 95% CrI = [-0.45, -0.16], δt = -0.42, 95% CrI = [-0.74,

-0.14], 100% < 0).

Overall, sensitisation tended to increase how long participants’ predictions remained

within a close interval to the underlying mean after they successfully adapted their predic-

tions in response to experimental reversals (i.e. relevant events). Sensitisation tended to

decrease how much participants updated their predictions after successful reversals. Both

effects point to participants’ adjustments in predictions to not reflect chance hits but proper

reversals (i.e. responses which where interpreted to reflect "correct" salience attribution to

relevant events). However, sensitisation effects became more uncertain when looking at

task performance and updating behaviour in noisy trials and where generally unclear about

how strongly sensitisation affected behaviour after successful reversals. Hence, our findings

need more scrutiny as to the actual effects of sensitisation on participants’ behaviour after

successful reversals in an uncertain environment.

4.3. fMRI results

We did not find any significant differences in neural activation in response to experimental

reversals (i.e. relevant events) and in response to non-reversal trials (i.e. irrelevant events)

for both noisy and less noisy trials before and after sensitisation in hippocampus, striatum

or dopaminergic midbrain of participants in the amphetamine group (all pFWE > 0.05; see

table 4.1). Furthermore, neural responses to experimental and non-reversal trials did not

differ on any of the scan days and for any ROI within the amphetamine group and be-

tween the amphetamine and placebo group (all pFWE > 0.05; see table 4.2 for within- and

between-group differences in neural responses to experimental reversals, and table 4.3 for

within- and between-group differences in neural responses to non-reversal trials). To con-

clude, amphetamine-sensitisation did not seem to affect neural activation in our ROIs.
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Figure 4.5: Effects of sensitisation on task performance after successful reversals.

Note. The figure shows the average number of continuous trials in which prediction were
within SD/2 of the underlying mean for all trials (A), for low noise (B), and for high noise
trials (C). Boxplots include the median, 25th and 75th percentile, and 1.5 x inter-quartile
range. Session B1 & A1 are pre-sensitisation, session B2, M1 & A2 are post-sensitisation.
Amphetamine was administered on session A1 & A4 for AMPH-group, and on session A4
for PLAC-group. AMPH = amphetamine group; PLAC = placebo group.
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Figure 4.6: Effects of sensitisation on updating behaviour after successful reversals.

Notes. The figure shows the average trial-by-trial update after successful reversals for all tri-
als (A), and for low noise (B) and high noise trials (C). Session B1 & A1 are pre-sensitisation,
session B2, M1 & A2 are post-sensitisation. Amphetamine was administered on session
A1 & A4 for AMPH-group, and on session A4 for PLAC-group. Boxplots include the me-
dian, 25th and 75th percentile, and 1.5 x inter-quartile range. AMPH = amphetamine group;
PLAC = placebo group.
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Table 4.1: Results of permutation tests examining sensitisation effects on neural responses
to reversal and non-reversal trials by noise level (AMPH-group).

Regressor ROI Peak voxel coordinates T pFWE

Within-subject differences for reversal trials pre- & post-sensitisation

High noise reversals HC - 9.38 > 0.05
STR - 10.99 > 0.05
MB - - -

Low noise reversals HC - 9.73 > 0.05
STR - 9.35 > 0.05
MB - - -

Within-subject differences for non-reversal trials pre- & post-sensitisation

High noise non-reversals HC - 8.78 > 0.05
STR - 10.16 > 0.05
MB - - -

Low noise non-reversals HC - 8.96 > 0.05
STR - 12.71 > 0.05
MB - - -

Note. The table shows within-subject differences in neural responses to reversal (top) and
non-reversal trials (bottom) pre- and post-sensitisation for the AMPH group. We tested pos-
itive effects for reversal trials (A1>A4) and negative effects for non-reversal trials (A4>A1;
all n = 6). No voxels survived the critical threshold T in HC and STR. There were no active
voxels in the MB. ROI = region of interest used as mask; HC = hippocampus; STR = striatum;
MB = right dopaminergic midbrain; T = voxel-level critical threshold.
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Table 4.2: Results of permutation tests examining within- and between-group differences in
neural responses to reversal trials pre- and post-sensitisation by noise level.

Regressor ROI Peak voxel coordinates T pFWE

Within-group differences for reversal trials pre-sensitisation (AMPH-group)

High noise reversals HC - 7.50 > 0.05
STR - 8.65 > 0.05
MB - - -

Low noise reversals HC - 7.04 > 0.05
STR - 7.31 > 0.05
MB - - -

Within-group differences for reversal trials post-sensitisation (AMPH-group)

High noise reversals HC - 8.32 > 0.05
STR - 8.15 > 0.05
MB - - -

Low noise reversals HC - 7.54 > 0.05
STR - 9.76 > 0.05
MB - - -

Between-group differences for reversal trials pre-sensitisation

High noise reversals HC - 11.94 > 0.05
STR - 10.01 > 0.05
MB - - -

Low noise reversals HC - 30.41 > 0.05
STR - 48.15 > 0.05
MB - - -

Between-group differences for reversal trials post-sensitisation

High noise reversals HC - 16.15 > 0.05
STR - 11.73 > 0.05
MB - - -

Low noise reversals HC - 12.12 > 0.05
STR - 12.64 > 0.05
MB - - -

Note. The table shows within-group (top) and between-group (bottom) differences in neural
responses to reversal trials pre- and post sensitisation. Within-group differences are only
reported for the amphetamine group Within-group: n = 7. Between-group: n = 8. No voxels
survived the critical threshold T in HC and STR. There were no active voxels in the MB.
ROI = region of interest used as mask; HC = hippocampus; STR = striatum; MB = right
dopaminergic midbrain; T = voxel-level critical threshold.
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Table 4.3: Results of permutation tests examining within- and between-group differences in
neural responses to non-reversal trials pre- and post-sensitisation by noise level.

Regressor ROI Peak voxel coordinates T pFWE

Within-group differences for non-reversal trials pre-sensitisation (AMPH-group)

High noise non-reversals HC - 8.58 > 0.05
STR - 8.93 > 0.05
MB - - -

Low noise non-reversals HC - 7.42 > 0.05

STR - 9.15 > 0.05
MB - - -

Within-group differences for non-reversal trials post-sensitisation (AMPH-group)

High noise non-reversals HC - 8.09 > 0.05
STR - 6.72 > 0.05
MB - - -

Low noise non-reversals HC - 8.95 > 0.05
STR - 8.64 > 0.05
MB - - -

Between-group differences for non-reversal trials pre-sensitisation

High noise non-reversals HC - 15.63 > 0.05
STR - 7.12 > 0.05
MB - - -

Low noise non-reversals HC - 5.87 > 0.05
STR - 9.70 > 0.05
MB - - -

Between-group differences for non-reversal trials post-sensitisation

High noise non-reversals HC - 12.35 > 0.05
STR - 8.98 > 0.05
MB - - -

Low noise non-reversals HC - 10.26 > 0.05
STR - 11.49 > 0.05
MB - - -

Note. The table shows within-group (top) and between-group (bottom) differences in neural
responses to non-reversal trials pre- and post sensitisation. Within-group differences are
only reported for the amphetamine group Within-group: n = 7. Between-group: n = 8. No
voxels survived the critical threshold T in HC and STR. There were no active voxels in the
MB. ROI = region of interest used as mask; HC = hippocampus; STR = striatum; MB = right
dopaminergic midbrain; T = voxel-level critical threshold.
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5 Discussion & Conclusion

In line with previous studies, sensitisation did not seem to have a strong effect on physiolog-

ical measures (heart rate & diastolic blood pressure), but tended to increase subjective expe-

rience of drug effects (O’Daly, Joyce, Tracy, Azim, et al., 2014; O’Daly, Joyce, Tracy, Stephan,

et al., 2014). Effects were generally associated with large uncertainty. Keeping this in mind,

we can still assume that amphetamine sensitisation was successful to some extent and that

findings on behavioural and neural measures of salience processing do reflect sensitisation

effects.

Evidence for the effect of sensitisation on participants’ ability to predict the average re-

turn (task performance) and on how much participants updated their predictions after every

trial (updating behaviour) was preliminary. Nevertheless, we will try to put our results into

perspective. According to our model and data, participants seemed to be worse at estimat-

ing the average return when sensitised. While participants tended to perform worse in noisy

environments when sensitised, they tended to perform better in noisy environments when

not sensitised. This points to an increased belief updating behaviour which could implicate

that sensitised participants had problems to filter noisy stimuli. However, the seemingly

negative effect of sensitisation on updating behaviour sheds a different light on belief up-

dating behaviour. When looking at this more lenient measure of belief updating that con-

sidered trial-wise dependencies between feedback and predictions, participants tended to

update their predictions less between trials when sensitised than when not sensitised. In-

terestingly, this effect appeared slightly weaker when participants experienced a noisy envi-

ronment despite being decisively negative. Overall, if the negative effect of sensitisation on

updating behaviour proved true, it would differ from previous findings of increased belief

updating or switching behaviour in psychotic and high-risk individuals (Schlagenhauf et

al., 2014).

Unfortunately, we cannot make any statement about sensitisation effect on how well par-

ticipants detected experimental reversals (i.e. how responsive participants were to relevant

events). The tendency of sensitisation to impair how well participants detected reversals

that our model estimated is uncertain. However, if it proved true, it would match previous
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findings according to which psychotic patients have been shown to achieve fewer (although

performance-dependent) reversals (see Waltz & Gold, 2007, or Feeney et al., 2017, for a re-

view). Furthermore, the effect of sensitisation on how many trials our participant needed

to detect reversals was equally likely to decrease and increase the time needed to adapt to

experimental reversals (relevant events). This differs from previous studies which reported

that psychotic patients are quicker in adapting their responses to reversals in reward con-

tingencies (Feeney et al., 2017). As our findings were associated with large uncertainty, it

remains inconclusive if and how sensitisation affected how participants processed relevant

events that would ideally be attributed with salience.

By contrast, our models found comparably clear effects of sensitisation on how long par-

ticipants’ predictions remained close to the underlying mean and how much they changed

their predictions once they adapted predictions after experimental reversals. Sensitisation

increased how long participants performed well and decreased how much participants up-

dated their predictions after successful reversals. Accordingly, changes in behaviour after

experimental reversals did not seem to be simply by chance. Rather, sensitised participants

were more stable in their behaviour once they reversed. Importantly, these effects were only

certain when participants did not experience highly noisy environments. Overall, these

findings speak against sensitised participants being less responsive to events that require

behavioural responses (i.e. events that are at best attributed with some salience). This con-

tradicts previous findings that patients with psychosis display decreased sensitivity to re-

wards during reversal learning (see particularly Schlagenhauf et al., 2014). Yet, given that

we cannot say much about the influence of sensitisation on how good participants were at

achieving reversals, any definite conclusions remain open for discussion.

While decreased updating behaviour in sensitised participants differs from over-switching

behaviour as observed in patients with psychosis and at risk of developing psychosis (Feeney

et al., 2017), it is in line with findings on reduced uncertainty-driven exploration in pa-

tients with schizophrenia (Strauss et al., 2014). Exploration describes behaviours where

alternative actions are tried out to see whether they yield better outcomes than previous,

already rewarding actions. By contrast, exploitation describes behaviours where previously

rewarding actions (i.e. actions that yielded a positive outcome) are repeated (Strauss et al.,

2014). The trade-off between exploration and exploitation is particularly strong in uncer-

tain environments. Strauss et al. (2014) have argued that reduced exploration behaviour in
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schizophrenia patients reflects an attempt to reduce uncertainty when the environment is

unknown. With respect to our findings, it might be that sensitised participants settled on

exploitative behaviour in order to reduce uncertainty. The fact that the negative sensitisation

effect on updating behaviour was not strengthened when looking explicitly at noisy trials

could reflect that a less noisy environment was already uncertain enough to trigger exploita-

tive behaviour over exploratory behaviour. The fact that sensitisation generally tended to

decrease updating behaviour, independent of whether participants reversed successfully

or not, supports such interpretation. In the context of predictive processing, this reflects

generally attenuated PE signalling whereby every sensory input is essentially perceived as

noise, impairing any distinction between relevant and irrelevant events, i.e. between events

that require behavioural responses and events that do not necessarily require behavioural

responses (see Anticevic & Corlett, 2012).

However, it might also be that our measures of belief updating (predictions within SD/2

of the underlying mean and trial-wise prediction updating) might not properly capture up-

dating behaviour. While we tried to capture underlying dependencies between prediction

errors and predictions on each trial, we averaged these to obtain session-wise values. Hence,

trial-wise nuances of such dependencies might actually have gotten lost. Since participants

completed the task in a highly dynamic environment, it seems more adequate to analyse

data in a trial-wise fashion. Another reason why we did not find any sensitisation effects on

salience processing could be that the way we measured behavioural analogues to salience

attribution was from an experimenter’s perspective. Relevant events to which participants

ideally attribute salience were trials in which the experimental conditions changed. How-

ever, only because we regarded these events as relevant does not mean that participants

perceive them as relevant. This is especially true given that our task did not require a binary

decision in trials and that the environment was generally noisy. Consequently, and different

from regular reversal learning tasks, our participants did not receive straight forward feed-

back on the "correct" choice and did not have a clear point of reference for their predictions.

In this context, it seems likely that the events that we defined as experimental reversals, and

which usually are relevant events in classical reversal learning, might not have represented

relevant events for our participants.

Possibilities for trial-wise behavioural analyses that aim at modelling relevant events

from an individual’s perspective are computational models that investigate belief updating
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and perception under uncertainty. The approximated Bayesian Delta-Rule model (Nassar et

al., 2010), the Rescorla-Wagner model (Schlagenhauf et al., 2014) or the Hierarchical Gaus-

sian Filter (Mathys et al., 2014) are examples of such methods. Different from the measures

adopted in this study, these methods focus less on external measures of reversal learning and

relevant events but try to model participant’s subjectively perceived relevance of events.

Especially the Hierarchical Gaussian Filter (HGF) seems promising to capture individ-

ual differences in belief updating in an uncertain environment (Cole et al., 2020; Mathys et

al., 2014). The HGF builds on the idea that the brain constantly infers hidden states of the

world by minimising the difference between its predictions and the actual sensory input

(thereby matching predictive processing accounts of cognition). However, it expands this

understanding by accounting for the inherent uncertainty of predictions (Cole et al., 2020).

Accordingly, the HGF allows to look prediction errors at different levels from mere percep-

tual prediction errors to more complex prediction errors signifying beliefs about the uncer-

tainty of the environment. Importantly, both bottom-up sensory input and top-down priors

modulate how prediction errors are weighted with respect to their uncertainty and, hence,

how they drive belief updating (Cole et al., 2020; Mathys et al., 2014). In this framework,

aberrant precision-weighting of prediction errors at lower and higher levels could culmi-

nate into the development and persistence of psychotic symptoms. The HGF has already

been used in model-based fMRI analysis of aberrant reward-based learning and inference

processing under uncertainty in psychotic (Deserno et al., 2020) and in high-risk individuals

(Cole et al., 2020).

Concerning sensitisation effects on neural activity in salience-processing regions, we did

not find any significant difference in neural responses to relevant and random events in

any of the regions of interest. Our results thus differ from earlier findings on sensitisation

effects on reward processing (Schlagenhauf et al., 2014). Potential reasons for these findings

tie into what we already discussed for behavioural findings. On the one hand, the lack of

differentiated neural responses to relevant reversals and random noise in non-reversal trials

might reflect participants’ early settling on exploitative behaviour because they could not

differentiate between experimental reversals and general noise. This could translate into

a generally attenuated dopamine signalling which translates into an attenuated prediction

error signalling in predictive processing terms. On the other hand, what we defined as

relevant events (the changes in the underlying distribution from which actual returns were
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drawn) might not have been perceived as relevant from a participant’s perspective. Hence,

events that were relevant from our point of view may not have triggered neural responses

in salience-processing regions.

Including more subjective measures of relevant events and uncertainty might be a useful

next step for analysis. Apart from computational models, an alternative to incorporate more

subjective perceptions of relevant events into the analysis could be to include the confidence

ratings from the task as predictors in the behavioural models and as parametric modulators

in the fMRI analysis. These reflect subjective evaluation of how certain participants were

about their predictions and might touch on how convincing (i.e. how relevant and hence

potentially salient) observed changes in the environment have been. Another step for fMRI

analysis could be to explore whole-brain activation in response to experimental reversals

and non-reversal trials as well as activation in other regions implicated in aberrant reversal

learning, particularly the prefrontal cortex (Anticevic & Corlett, 2012; Feeney et al., 2017).

A closer look into the latter region could also help to investigate whether the reduced up-

dating behaviour observed in sensitised participants reflects reduced exploration behaviour

as a mechanism to reduce uncertainty. Frontal and medial areas in the prefrontal cortex are

thought to govern exploration-exploitation behaviours (Strauss et al., 2014). Furthermore,

future fMRI analyses could incorporate the behavioural measures of salience processing

more for example through correlation analyses.

5.1. Limitations & Future Perspectives

Besides aforementioned shortcomings of potentially defining behavioural variables too gen-

erally (analysing session-wise averages instead of examining trial-wise behaviour) or of

defining relevance from an experimenter’s point of view, this thesis has several limitations.

The most important limitation is the small sample size and the uneven assignment of par-

ticipants to amphetamine and placebo group. Any comparison of groups where one group

consists of a single participant necessarily lacks informative value. Accordingly, it is not sur-

prising that many results from our behavioural analysis were associated with rather wide

credible intervals and small effect sizes. Very likely, our models’ uncertainties about their

effect estimates stems from the small sample size. The problem of a small sample size is

even stronger for our fMRI analysis. We only had data from two scan session both of which
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entailed amphetamine administration for participants in the amphetamine group. Hence,

the fact that we did not observe differences in neural responses to hypothetically relevant

and irrelevant events might reflect some effect of amphetamine. This brings me to the next

limitation of this thesis.

Amphetamine seemed to play a significant role for some of the behavioural variables

analysed in this thesis. Thus, sensitisation effects reported for behavioural variables might

mask an interaction between amphetamine and sensitisation status. One way to expand the

current behavioural analysis is to add an interaction effect between amphetamine and sen-

sitisation status in the models. This allows to better disentangle the separate effects of both

predictors. Concerning measures of how well participants were at detecting experimental

reversals and how long participants needed to successfully adapt predictions after experi-

mental reversals, it would be good to examine these measures again but separately for low

and high noise trials.

Another shortcoming is that the study only accepted male volunteers. Schizophrenia

seems to manifest differently in men and women (Sun, Walker, Dean, van den Buuse, &

Gogos, 2016). Research on sex differences in schizophrenia has mostly focused on the role

of oestrogen in schizophrenia (Sun et al., 2016). However, progesterone has been suggested

to have a protective role in the development and severity of schizophrenia (Sun et al., 2016).

Both oestrogen and progesterone have been shown to interact with the dopaminergic sys-

tem, which was a reason to exempt female participants from this study. However, future

studies should include female participants. Generalisation from findings of all-male stud-

ies to the general, also female, population are questionable (Rich-Edwards, Kaiser, Chen,

Manson, & Goldstein, 2018).

Lastly, the current analysis did not account for differences in working memory capacity.

Already simple reinforcement learning tasks seem to draw on working memory (Deserno

et al., 2016). Given that our task was rather complex, it is plausible that processes observed

during the task also reflected influences of higher-order systems. Future analyses should

account for participants’ different working memory capacities, especially since cognitive

deficits are a frequent symptom in schizophrenia (Green & Harvey, 2014) and amphetamine

sensitisation has been shown to affect neural responses during memory encoding (O’Daly,

Joyce, Tracy, Stephan, et al., 2014).
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5.2. Conclusion

This thesis represents a first attempt to investigate the role of dopamine hypersensitivity

in behavioural and neural salience processing more directly. For this, it combined phar-

macological manipulation of dopamine levels in healthy volunteers with fMRI and a rever-

sal learning task that included more realistic types of environmental uncertainty. Unfor-

tunately, our results on the effect of amphetamine-induced dopamine hypersensitivity on

behavioural and neural salience processing in healthy volunteers remain preliminary. Sen-

sitisation tended to decrease updating behaviour which, if proven correct, would contradict

excessive salience attribution to noisy events as reported for psychotic individuals. Simul-

taneously, sensitisation tended to diminish participants’ ability to determine the underlying

task structure (namely the average return) which hints at some form of aberrant salience

attribution to noisy events. Given our definition of relevant and irrelevant events and our

choice of analysis, we did not find any effects of sensitisation on neural responses in hip-

pocampus, striatum and right dopaminergic midbrain to relevant and irrelevant events. For

more definite statements, both behavioural and fMRI data need further analyses to better

capture the effect of sensitisation on salience processing. And even then, results should

still be interpreted with caution given the small sample size and uneven distribution of

amphetamine- and placebo-sensitised participants, and should be validated by future stud-

ies with more participants. Nonetheless, the multi-methodological, interdisciplinary ap-

proach of this study is a promising way to investigate the hypothesised role of dopamine in

salience processing in healthy volunteers on both behavioural and neural levels.
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A Appendix: Abstracts

A.1. Abstract

Dopamine is thought to code prediction errors (PEs) between predicted and actual sen-

sory inputs that propagate throughout the brain, thereby facilitating decision-making and

learning. As dopamine dysregulation and abnormal reward-based learning are character-

istic for psychotic disorders, it has been suggested that disrupted PE signalling underlies

psychotic disorders. More recently, impaired PE signalling has been suggested to medi-

ate aberrant salience attribution in psychosis whereby relevant events are not attributed

salience while irrelevant events are misattributed salience. Several studies support a link

between disrupted dopamine-mediated PE signalling and abnormal salience processing in

psychosis. Yet, evidence is mostly correlational, relying on the inherent dopamine dysregu-

lation of participants with psychosis. By directly targeting the dopamine system of healthy

volunteers, this thesis investigates whether and how amphetamine-induced dopamine hy-

persensitivity affects behavioural and neural salience processing under uncertainty. Fol-

lowing a double-blind amphetamine sensitisation protocol, healthy, male volunteers were

randomly assigned to amphetamine or placebo group. The amphetamine group (n = 8)

repeatedly received low doses of D-amphetamine inducing a slight amphetamine sensi-

tisation that is thought to approximate the dopamine hypersensitivity observed in psy-

chosis. The placebo group (n = 1) received Mannitol. Participants completed a reward-based

predictive-inference task before and after sensitisation. They had to predict outcomes based

on stimulus-outcome contingencies which changed dynamically throughout the task. Neu-

ral responses were recorded with fMRI. We found some preliminary effects of sensitisation

on different behavioural measures of salience processing, e.g. a trend to reduce belief updat-

ing. Sensitisation did not seem to affect neural responses to relevant and irrelevant events

in the hippocampus, striatum and the right dopaminergic midbrain. Overall, our results

do not allow for any definite statements on sensitisation effects on behavioural and neural

salience processing and need further scrutiny. Hence, this thesis includes recommendations

for future analyses.
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A.2. Zusammenfassung

Dopamin soll Vorhersagefehler zwischen erwarteten und tatsächlichen Sinneseindrücken

kodieren, die sich im Gehirn verbreiten und dadurch Entscheidungsfindung und Lernen

unterstützen sollen. Es wird angenommen, dass das Signalisieren von Vorhersagefehler

in psychotischen Erkrankungen beeinträchtigt ist, da ein dysreguliertes Dopaminsystem

und abnormales belohnungsbasiertes Lernen charakteristisch für diese sind. Seit einiger

Zeit wird ein beeinträchtigtes Signalisieren von Vorhersagefehlern bei Psychosen mit der

fälschlichen Zuschreibung von Salienz zusammengebracht. Demnach werden irrelevante

Stimuli fälschlich mit Salienz und relevante Stimuli nicht mit Salienz assoziiert. Mehrere

Studien stützen einen Zusammenhang zwischen Dopamin-gestützter Salienzzuschreibung

und Psychosen. Die Ergebnisse sind zumeist jedoch korrelativ, da sie auf der inhärenten

Dopamindysregulierung psychotischer Proband*innen beruhen. In dieser Arbeit wurde

der Dopaminhaushalt von gesunden Probanden direkt manipuliert, um zu untersuchen,

ob und wie Amphetamin-induzierte Dopaminhypersensibilisierung behaviorale und neu-

ronale Salienzverarbeitung unter Ungewissheit beeinflusst. Hierfür wurden gesunde, männ-

liche Probanden einem doppel-blinden Amphetaminsensibilierungsprotokoll folgend ran-

domisiert der Amphetamin- oder der Placebogruppe zugeteilt. Die Amphetamingruppe

(n = 8) erhielt wiederholt geringe Dosen an D-Amphetamin, wodurch eine leichte Am-

phetaminsensibilisierung hervorgerufen wird, die der Dopaminhypersensibilisierung in Psy-

chosen ähneln soll. Die Placebogruppe (n = 1) erhielt Mannitol. Probanden absolvierten

eine belohnungsbasierte Lernaufgabe vor und nach der Sensibilisierungsphase. Hierbei

mussten Probanden zukünftige Ergebnisse anhand von Kontingenzen zwischen Stimuli

und Ergebnissen voraussagen, die sich jedoch konstant änderten. Salienzbezogene Hirn-

aktivität wurde mit fMRT aufgezeichnet. Sensibilisierung schien eine, jedoch nicht ein-

deutige, Wirkung auf behaviorale Salienzverarbeitung zu haben. So tendierten Probanden

beispielsweise dazu, ihre Meinung seltener zu aktualisieren, wenn sie sensibilisiert waren.

Sensibilisierung schien die Hirnaktivität auf irrelevanten und relevanten Ereignisse im Hip-

pocampus, Striatum und rechten dopaminergen Mittelhirn nicht zu beeinflussen. Unsere

Ergebnisse lassen keine endgültige Aussage über die Wirkung von Dopaminhypersensi-

bilisierung auf behaviorale und neuronale Salienzverarbeitung zu und bedürfen weiterer

Untersuchungen. Es werden Verbesserungsvorschläge vorgestellt.



63

B Appendix: Preprocessing Steps

Pre-processing steps included slice-time correction, realignment, unwarping, co-registration,

unified segmentation, spatial normalisation and smoothing. The following detailed expla-

nation of the preprocessing steps is based on the SPM12 manual (https://www.fil.ion.ucl

.ac.uk/spm/doc/manual.pdf).

Slice-time correction is a common pre-processing step for echo-planar scanning. In echo-

planar scanning, images of slices are sampled sequentially or interleaved. Both modes result

in temporal differences between the first and last sampled slice. However, precise timing

with respect to activation-evoking stimuli is essential for time course analyses of the BOLD

signal in fMRI. Slice-time correction accounts for these temporal differences in sampling.

During slice-time correction, the image acquisition time between slices is corrected by shift-

ing the signal phase by a given amount such that the data on each slice corresponds to the

same point in time. The amount of shift is determined with respect to a reference slice which

was the slice acquired in the middle of the sequence (i.e. at TR/2).

Both realignment and unwarping are motion correction measures. Functional images are

acquired as time series so that a subject’s movement can introduce great movement artefacts

in functional images. These movement artefacts can lead to loss of sensitivity (missing out

on true activation) and loss of specificity of neural activity (detecting false positives) in an

fMRI experiment.

Realignment is the first step to remove movement artefacts in fMRI time series. For this,

the first scan of each session of a participant was realigned to the first scan of the first session.

Next, all images of a session were realigned to the first image of that session. Images are re-

aligned along 6 parameters, 3 for translations (mm) and 3 for rotations (degrees). However,

realignment cannot fully remove all movement-induced variance in fMRI time series. This

is due to the susceptibility-by-movement interaction whereby an image collected for a given

subject position will not be identical to that collected at another position. Subject’s move-

ments result in severe geometrical distortions, especially in regions where air and tissue

interface, which are corrected during unwarping.

Co-registration links the anatomical information of functional images with a structural

https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf
https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf
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image. This is done because structural images yield superior anatomical localisation. More-

over, co-registration allows for more precise spatial normalisation.

Unified segmentation includes segmentation, bias correction and spatial normalisation

of structural images. MRI entails several artefacts from noise, intensity inhomogeneities

and bias field differences in sequences and partial volumes which make normalisation dif-

ficult. During segmentation, different types of tissue such as grey matter and white matter

are separated based on tissue probability maps. Unified segmentation further includes bias

correction which accounts for inherent intensity inhomogeneity of MRI facilitating the sub-

sequent normalisation process.

Normalisation is needed to establish a voxel-to-voxel correspondence between brains of

different subjects which allows comparisons of neural activation between subjects. For this,

images are normalised to a standard brain template (standard space). It increases statistical

power, allows for group analyses, and enables generalisation and comparison across differ-

ent studies. During normalisation, functional images are matched to the Montreal Neuro-

logical Institute (MNI) space which is the standard space used in SPM. To accomplish this,

T1-weighted, anatomical images were normalised and transformed to match the MNI tem-

plate unified segmentation. Normalisation parameters were then applied to all functional

images. To fit to MNI space, images are translated across and rotated around the three axes

as well as scaled and sheared.

Functional images were smoothed with a 3D Gaussian kernel of 4 mm full-width at half-

maximum (FWHM). Smoothing is the weighted averaging of neighbouring voxels. This

way, residual anatomical differences and registration errors are blurred over which increases

signal-to-noise ratio (by suppressing noise and effects that are due to residual differences in

functional and gyral anatomy). Smoothing further results in superior spatial overlap, makes

data more normally distributed and increases sensitivity to effects of similar scale to kernel.
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C Appendix: Model Definition

C.1. Model for Subjective & Physiological Data Analysis

Figure C.1: Varying intercept and slope model used for subjective and physiological data
analysis.

RV ∼ (µi, σe)

µi = α + αID[i] + (β + β ID[i])× sessioni + β× sensitisedi + β× amphi[
αID
β ID

]
∼ MVN

([
α
β

]
, S

)
S =

(
σα 0
0 β

)
R
(

σα 0
0 σβ

)
α ∼ Normal(0, σ)

αID ∼ Normal(0, σID)

β ∼ Normal(0, 3)
β ID ∼ Normal(0, 3)

σe ∼ Hal f Cauchy(0, 2)
σ ∼ Hal f Cauchy(0, 2)

σID ∼ Hal f Cauchy(0, 2)
σα ∼ Hal f Cauchy(0, 2)
σβ ∼ Hal f Cauchy(0, 2)

R ∼ LKJcorr(2)

Note. RV = response variable; session = testing day (1 = A1, 2 = A2, 3 = A3, 4 = A4); sen-
sitised = sensitisation status (1 = sensitised); amph = amphetamine administration (1 = am-
phetamine administered).
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C.2. Models for Behavioural Data Analysis

M3: Varying Intercept Model for Behavioural Data Analysis

Figure C.2: Varying intercept model (M3) for behavioural data analysis.

RV ∼ (µi, σe)

µi = α + αID[i] + β× sessioni + β× sensitisedi + β× amphi

α ∼ Normal(0, σ)

αID ∼ Normal(0, σID)

β ∼ Normal(0, 3)
σe ∼ Hal f Cauchy(0, 2)

σID ∼ Hal f Cauchy(0, 2)

Note. RV = response variable; session = testing day (1 = A1, 2 = A2, 3 = A3, 4 = A4); sen-
sitised = sensitisation status (1 = sensitised); amph = amphetamine administration (1 = am-
phetamine administered).

M4: Varying Intercept & Slope Model with Noise Predictor for Behavioural Analysis

Figure C.3: Varying intercept and slope model (M4) for behavioural data analysis.

RV ∼ (µi, σe)

µi = α + αID[i] + (β + β ID[i])× sessioni + β× sensitisedi + β× amphi[
αID
β ID

]
∼ MVN

([
α
β

]
, S

)
S =

(
σα 0
0 β

)
R
(

σα 0
0 σβ

)
α ∼ Normal(0, σ)

αID ∼ Normal(0, σID)

β ∼ Normal(0, 3)
β ID ∼ Normal(0, 3)

σe ∼ Hal f Cauchy(0, 2)
σ ∼ Hal f Cauchy(0, 2)

σID ∼ Hal f Cauchy(0, 2)
σα ∼ Hal f Cauchy(0, 2)
σβ ∼ Hal f Cauchy(0, 2)

R ∼ LKJcorr(2)

Note. RV = response variable; session = testing day (1 = A1, 2 = A2, 3 = A3, 4 = A4); sen-
sitised = sensitisation status (1 = sensitised); amph = amphetamine administration (1 = am-
phetamine administered); S = covariance matrix; R = correlation matrix.
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Correlation Matrix of Models with Varying Slope

Figure C.4: Correlation matrix of varying slope models.

R =

(
1 ρ
ρ 1

)

M5: Varying Intercept & Slope Model with Noise Predictor for Behavioural Data Analy-
sis

Figure C.5: Varying intercept and slope model with noise predictor (M5) for behavioural
data analysis.

RV ∼ (µi, σe)

µi = α + αID[i] + (β + β ID[i])× sessioni + β× sensitisedi + β× amphi + β× noisei[
αID
β ID

]
∼ MVN

([
α
β

]
, S

)
S =

(
σα 0
0 β

)
R
(

σα 0
0 σβ

)
α ∼ Normal(0, σ)

αID ∼ Normal(0, σID)

β ∼ Normal(0, 3)
β ID ∼ Normal(0, 3)

σe ∼ Hal f Cauchy(0, 2)
σ ∼ Hal f Cauchy(0, 2)

σID ∼ Hal f Cauchy(0, 2)
σα ∼ Hal f Cauchy(0, 2)
σβ ∼ Hal f Cauchy(0, 2)

R ∼ LKJcorr(2)

Note. RV = response variable; session = testing day (1 = B1, 2 = A1, 3 = B2, 4 = M1, 5 = A4);
sensitised = sensitisation status (1 = sensitised); amph = amphetamine administration (1 =
amphetamine administered); noise = noise level (1 = high noise/variance); S = covariance
matrix; R = correlation matrix.
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M6: Interaction Model for Behavioural Data Analysis

Figure C.6: Noise interaction model (M6) with varying intercept and slope for behavioural
data analysis.

RV ∼ (µi, σe)

µi = α + αID[i] + (β + β ID[i])× sessioni + β× sensitisedi + β× amphi

+β× noisei + β× sensitisedi × noisei + β× amphetaminei × noisei[
αID
β ID

]
∼ MVN

([
α
β

]
, S

)
S =

(
σα 0
0 β

)
R
(

σα 0
0 σβ

)
α ∼ Normal(0, σ)

αID ∼ Normal(0, σID)

β ∼ Normal(0, 3)
β ID ∼ Normal(0, 3)

σe ∼ Hal f Cauchy(0, 2)
σ ∼ Hal f Cauchy(0, 2)

σID ∼ Hal f Cauchy(0, 2)
σα ∼ Hal f Cauchy(0, 2)
σβ ∼ Hal f Cauchy(0, 2)

R ∼ LKJcorr(2)

Note. RV = response variable; session = testing day (1 = B1, 2 = A1, 3 = B2, 4 = M1, 5 = A4);
sensitised = sensitisation status (1 = sensitised); amph = amphetamine administration (1 =
amphetamine administered); noise = noise level (1 = high noise/variance); S = covariance
matrix; R = correlation matrix.
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D Appendix: Model Comparison & Results

D.1. Subjective & Physiological Measures

D.1.1. LOOICs & Bayes R2

Note that we did not do extensive model comparison for subjective and physiological mea-
sures.

DEQ-items

Table D.1: LOOIC & Bayes R2 of models for DEQ-items.

DEQ-item LOOIC (SE) Bayes R2 (SE)

feel 158.68 (11.97) 0.40 (0.13)
high 166.60 (6.90) 0.63 (0.13)
like 158.30 (11.86) 0.72 (0.09)
more 142.75 (12.45) 0.39 (0.12)

Note. LOOIC = leave-one-out information criterion as calculated through LOO cross-
validation procedure; SE = standard error

Heart rate & diastolic blood pressure

Table D.2: LOOIC & Bayes R2 of models for heart rate and diastolic blood pressure.

DEQ-item LOOIC (SE) Bayes R2 (SE)

HR 155.88 (6.98) 0.26 (0.25)
BP 135.17 (9.61) 0.19 (0.15)

Note. HR = heart rate; BP = diastolic blood pressure, LOOIC = leave-one-out information
criterion as calculated through LOO cross-validation procedure; SE = standard error
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D.1.2. Model Results

We only report population-level (constant effects that are shared across subjects). All chains
converged (R̂ = 1.00).

DEQ-item feel

Table D.3: Population-level effects of model for feel DEQ-item.

Model Formula

feel ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 0.71 [-1.61, 3.09] 1.00
sessionA2 -0.06 [-1.51, 1.38] 1.00
sessionA3 -0.60 [-1.96, 0.78] 1.00
sessionA4 -0.97 [-3.49, 1.69] 1.00
sensitised 0.45 [-2.20, 3.00] 1.00
amph_admin 1.15 [-1.15, 3.41] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = AMPH effect.

DEQ-item high

Table D.4: Population-level effects of model for high DEQ-item.

Model Formula

high ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 1.43 [-1.63, 3.07] 1.00
sessionA2 0.89 [-1.51, 1.43] 1.00
sessionA3 0.84 [-1.95, 0.80] 1.00
sessionA4 1.56 [-3.54, 1.61] 1.00
sensitised 1.58 [-2.13, 3.04] 1.00
amph_admin 1.40 [-1.16, 3.41] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = AMPH effect.
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DEQ-item like

Table D.5: Population-level effects of model for like DEQ-item.

Model Formula

like ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% R̂

Intercept 1.43 [-1.63, 3.07] 1.00
sessionA2 0.89 [-1.51, 1.43] 1.00
sessionA3 0.84 [-1.95, 0.80] 1.00
sessionA4 1.56 [-3.54, 1.61] 1.00
sensitised 1.58 [-2.13, 3.04] 1.00
amph_admin 1.40 [-1.16, 3.41] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = AMPH effect.

DEQ-item more

Table D.6: Population-level effects of model for more DEQ-item.

Model Formula

more ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 1.73 [-0.23, 3.77] 1.00
sessionA2 -1.53 [-2.47, -0.54] 1.00
sessionA3 -1.64 [-2.58, -0.63] 1.00
sessionA4 -0.86 [-2.91, 1.20] 1.00
sensitised 0.18 [-1.96, 2.26] 1.00
amph_admin 0.60 [-1.38, 2.47] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = AMPH effect.
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Heart rate

Table D.7: Population-level effects of model for heart rate.

Model Formula

HR ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 25.87 [17.08, 34.69] 1.00
sessionA4 -0.56 [-5.12, 4.08] 1.00
sensitised 0.66 [-4.15, 5.37] 1.00
amph_admin 0.44 [-4.45, 5.15] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = AMPH effect.

Diastolic blood pressure

Table D.8: Population-level effects of model for blood pressure.

Model Formula

BP ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept -5.22 [-11.17, 0.94] 1.00
sessionA4 0.81 [-3.46, 5.05] 1.00
sensitised 1.37 [-2.86, 5.48] 1.00
amph_admin 1.91 [-2.95, 6.71] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = AMPH effect.
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D.2. Behavioural Data

D.2.1. Model Comparison Results

Results were reported for the "winning" model, which was the model with the best
predictive performance (the lowest LOOIC). If several models had similar LOOICs (i.e.
∆LOOIC < 10 to the best performing model), results were reported for the model with the
best explanatory performance (the highest Bayesian R2).

Overall task performance

Table D.9: Model comparison with LOOIC & Bayes R2, overall task performance.

Model LOOIC (SE) ∆LOOIC (SE) Bayes R2 (SE)

M5 -202.65 (10.67) 0 (0) 0.63 (0.05)
M6* -201.37 (11.21) 1.28 (5.47) 0.65 (0.05)
M4 -200.44 (12.07) 2.21 (4.93) 0.55 (0.05)
M0 -160.50 (10.70) 42.15 (10.38) 0.17 (0.07)
M1 -153.80 (11.40) 48.85 (10.56) 0.22 (0.07)
M2 -152.55 (11.51) 50.10 (10.55) 0.23 (0.07)
M3 -151.53 (11.42) 51.12 (10.57) 0.24 (0.07)

Note. LOOIC = leave-one-out information criterion as calculated through LOO cross-
validation procedure; ∆LOOIC = difference of model LOOICs to model with best LOOIC;
SE = standard error.
* winning model

Overall updating behaviour

Table D.10: Model comparison with LOOIC & Bayes R2, overall updating behaviour.

Model LOOIC (SE) ∆LOOIC (SE) Bayes R2 (SE)

M5 -43.77 (21.94) 0 (0) 0.84 (0.03)
M6* -38.77 (22.99) 5.00 (2.07) 0.84 (0.03)
M4 -11.45 (22.57) 32.32 (21.25) 0.69 (0.04)
M0 -4.56 (21.73) 39.21 (19.77) 0.61 (0.05)
M1 -0.37 (20.39) 43.40 (17.90) 0.62 (0.04)
M3 1.24 (20.62) 45.01 (17.94) 0.63 (0.04)
M2 1.42 (20.61) 45.19 (17.80) 0.62 (0.04)

Note. LOOIC = leave-one-out information criterion as calculated through LOO cross-
validation procedure; ∆LOOIC = difference of model LOOICs to model with best LOOIC;
SE = standard error.
* winning model
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Reversal detection score

Table D.11: Model comparison with LOOIC & Bayes R2, reversal detection score.

Model LOOIC (SE) ∆LOOIC (SE) Bayes R2 (SE)

M1 -108.58 (10.20) 0 (0) 0.34 (0.09)
M2 -106.67 (9.83) 1.90 (2.50) 0.35 (0.09)
M0 -101.70 (13.94) 6.88 (7.27) 0.08 (0.07)
M3* -100.52 (11.08) 8.06 (6.37) 0.37 (0.08)

Note. LOOIC = leave-one-out information criterion as calculated through LOO cross-
validation procedure; ∆LOOIC = difference of model LOOICs to model with best LOOIC;
SE = standard error.
* winning model

Number of trials to successful reversal

Table D.12: Model comparison with LOOIC & Bayes R2, number of trials to successful
reversal.

Model LOOIC (SE) ∆LOOIC (SE) Bayes R2 (SE)

M1 65.46 (12.51) 0 (0) 0.57 (0.08)
M4* 67.70 (11.44) 2.24 (5.82) 0.82 (0.08)
M2 67.84 (12.20) 2.38 (1.08) 0.57 (0.08)
M3 70.22 (11.81) 4.77 (3.35) 0.58 (0.08)
M0 90.26 (7.56) 24.80 (11.31) 0.07 (0.07)

Note. LOOIC = leave-one-out information criterion as calculated through LOO cross-
validation procedure; ∆LOOIC = difference of model LOOICs to model with best LOOIC;
SE = standard error.
* winning model



Appendix D. Appendix: Model Comparison & Results 75

Number of consecutive SD/2-trials after successful reversal

Table D.13: Model comparison with LOOIC & Bayes R2, number of consecutive SD/2-trials
after successful reversal.

Model LOOIC (SE) ∆LOOIC (SE) Bayes R2 (SE)

M6* 135.54 (15.59) 0 (0) 0.74 (0.04)
M5 143.12 (16.73) 7.57 (7.41) 0.69 (0.04)
M4 145.29 (17.09) 9.75 (11.92) 0.61 (0.05)
M3 191.78 (16.54) 56.23 (11.69) 0.34 (0.07)
M2 192.18 (16.72) 56.63 (11.73) 0.33 (0.07)
M0 192.26 (18.36) 56.71 (13.28) 0.24 (0.08)
M1 193.99 (17.46) 58.44 (12.05) 0.31 (0.07)

Note. LOOIC = leave-one-out information criterion as calculated through LOO cross-
validation procedure; ∆LOOIC = difference of model LOOICs to model with best LOOIC;
SE = standard error.
* winning model

Updating behaviour after successful reversal

Table D.14: Model comparison with LOOIC & Bayes R2, updating behaviour after success-
ful reversal.

Model LOOIC (SE) ∆LOOIC (SE) Bayes R2 (SE)

M5 41.87 (15.72) 0 (0.00) 0.72 (0.04)
M6* 44.36 (15.96) 2.48 (5.26) 0.73 (0.04)
M4 56.08 (17.85) 14.21 (14.69) 0.59 (0.05)
M3 62.50 (17.48) 20.62 (13.29) 0.56 (0.05)
M0 62.56 (19.58) 20.69 (16.28) 0.50 (0.06)
M1 63.89 (17.53) 22.01 (13.29) 0.54 (0.05)
M2 65.74 (17.75) 23.87 (13.54) 0.54 (0.05)

Note. LOOIC = leave-one-out information criterion as calculated through LOO cross-
validation procedure; ∆LOOIC = difference of model LOOICs to model with best LOOIC;
SE = standard error.
* winning model
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D.2.2. Results of "Winning" Models

Note that we only report population-level effects.

Model 6: overall task performance

Table D.15: Population-level effects of model 6, overall task performance.

Model Formula

mean number of SD/2 trials ∼ session + sensitised + amphetamine + noise + noise:sensitised +
noise:amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 0.32 [0.28, 0.36] 1.00
sessionA1 0.05 [-0.09, 0.20] 1.00
sessionB2 0.07 [-0.04, 0.17] 1.00
sessionM1 0.07 [-0.03, 0.17] 1.00
sessionA4 0.12 [-0.08, 0.31] 1.00
sensitised -0.02 [-0.13, 0.08] 1.00
amph_admin -0.05 [-0.20, 0.10] 1.00
noise 0.15 [0.12, 0.19] 1.00
sensitised:noise -0.04 [-0.08, 0.01] 1.00
amph_admin:noise -0.05 [-0.10, -0.01] 1.00

γ Estimate 95% CrI R̂

sensitised+noise -0.06 [-0.18, 0.07] -
amph+noise -0.10 [-0.28, 0.10] -

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect when low noise; amph_admin = AMPH effect when low noise; sensitised:noise
= interaction effect between sensitisation and noise; amph_admin:noise = interaction ef-
fect between sensitisation and noise; amph+noise = amphetamine effect when noisy; sensi-
tised+noise = sensitisation effect when high noise.
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Model 6: overall updating behaviour

Table D.16: Population-level effects of model 6, overall updating behaviour.

Model Formula

mean update ∼ session + sensitised + amphetamine + noise + noise:sensitised + noise:amphetamine +
(session|ID)

β Estimate 95% CrI R̂

Intercept 0.90 [0.75, 1.06] 1.00
sessionA1 0.11 [-0.15, 0.37] 1.00
sessionB2 0.29 [-0.09, 0.68] 1.00
sessionM1 0.22 [-0.14, 0.59] 1.00
sessionA4 0.50 [-0.01, 1.00] 1.00
sensitised -0.32 [-0.69, 0.07] 1.00
amph_admin -0.24 [-0.52, 0.04] 1.00
noise -0.17 [-0.26, -0.08] 1.00
sensitised:noise 0.03 [-0.07, 0.14] 1.00
amph_admin:noise -0.03 [-0.14, 0.08] 1.00

γ Estimate 95% CrI R̂

sensitised+noise -0.29 [-0.74, 0.16] -
amph+noise -0.26 [-0.59, 0.08] -

Note. CrI = credible interval of estimated mean from posterior distribution of parameter;
R̂ = potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised =
sensitisation effect when low noise; amph_admin = amphetamine effect when low noise;
sensitised:noise = interaction effect between sensitisation and noise; amph_admin:noise =
interaction effect between sensitisation and noise; amph+noise = amphetamine effect when
noisy; sensitised+noise = sensitisation effect when high noise.
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Model 4: reversal detection score

Table D.17: Population-level effects of model 4, reversal detection score.

Model Formula

percentage of reversals detected ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 0.89 [0.85, 0.93] 1.00
sessionA1 0.05 [-0.07, 0.17] 1.00
sessionB2 0.02 [-0.06, 0.11] 1.00
sessionM1 0.06 [-0.03, 0.15] 1.00
sessionA4 0.02 [-0.14, 0.19] 1.00
sensitised -0.06 [-0.14, 0.02] 1.00
amph_admin -0.06 [-0.19, 0.06] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = amphetamine effect.

Model 4: number of trials to successful reversal

Table D.18: Population-level effects of model 4, number of trials to successful reversal.

Model Formula

mean number of trials to successful reversal ∼ session + sensitised + amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 3.66 [3.46, 3.84] 1.00
sessionA1 -0.72 [-1.71, 0.36] 1.00
sessionB2 -1.16 [-1.75, -0.56] 1.00
sessionM1 -0.95 [-1.59, -0.27] 1.00
sessionA4 -0.64 [-1.87, 0.65] 1.00
sensitised 0.00 [-0.60, 0.57] 1.00
amph_admin -0.41 [-1.53, 0.66] 1.00

Note. CrI = credible interval of estimated mean from posterior distribution of parameter; R̂
= potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised = sensiti-
sation effect; amph_admin = amphetamine effect.
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Model 6: number of consecutive SD/2-trials after successful reversal

Table D.19: Population-level effects of model 6, number of consecutive SD/2-trials after
successful reversal.

Model Formula

mean consecutive SD/2-trials after successful reversal ∼ session + sensitised + amphetamine + noise +
noise:sensitised + noise:amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 0.41 [0.08, 0.75] 1.00
sessionA1 -0.27 [-1.02, 0.48] 1.00
sessionB2 -0.40 [-1.02, 0.24] 1.00
sessionM1 -0.11 [-0.75, 0.54] 1.00
sessionA4 -0.66 [-1.86, 0.54] 1.00
sensitised 0.40 [-0.26, 1.05] 1.00
amph_admin 0.33 [-0.47, 1.13] 1.00
noise 0.37 [0.14, 0.62] 1.00
sensitised:noise 0.58 [0.29, 0.88] 1.00
amph_admin:noise 0.22 [-0.06, 0.51] 1.00

γ Estimate 95% CrI R̂

sensitised+noise 0.99 [0.16, 1.73] -
amph+noise 0.56 [-0.41, 1.54] -

Note. CrI = credible interval of estimated mean from posterior distribution of parameter;
R̂ = potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised =
sensitisation effect when low noise; amph_admin = amphetamine effect when low noise;
sensitised:noise = interaction effect between sensitisation and noise; amph_admin:noise =
interaction effect between sensitisation and noise; amph+noise = amphetamine effect when
noisy; sensitised+noise = sensitisation effect when high noise.
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Model 6: updating behaviour after successful reversal

Table D.20: Population-level effects of model 6, updating behaviour after successful rever-
sal.

Model Formula

mean update after successful reversal ∼ session + sensitised + amphetamine + noise + noise:sensitised +
noise:amphetamine + (session|ID)

β Estimate 95% CrI R̂

Intercept 1.07 [0.83, 1.32] 1.00
sessionA1 0.22 [-0.25, 0.68] 1.00
sessionB2 0.41 [-0.10, 0.92] 1.00
sessionM1 0.24 [-0.19, 0.67] 1.00
sessionA4 0.80 [0.04, 1.54] 1.00
sensitised -0.51 [-0.96, -0.07] 1.00
amph_admin -0.55 [-1.02, -0.05] 1.00
noise -0.30 [-0.45, -0.16] 1.00
sensitised:noise 0.14 [-0.03, 0.31] 1.00
amph_admin:noise 0.13 [-0.05, 0.31] 1.00

γ Estimate 95% CrI R̂

sensitised+noise -0.37 [-0.89, 0.17] -
amph+noise -0.42 [-1.01, 0.19] -

Note. CrI = credible interval of estimated mean from posterior distribution of parameter;
R̂ = potential scale reduction factor on split chains (R̂ = 1 at convergence); sensitised =
sensitisation effect when low noise; amph_admin = amphetamine effect when low noise;
sensitised:noise = interaction effect between sensitisation and noise; amph_admin:noise =
interaction effect between sensitisation and noise; amph+noise = amphetamine effect when
noisy; sensitised+noise = sensitisation effect when high noise.
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