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Abstract

Quantification of Ground Reaction Force (GRF) measurements combined with a simple vi-

sual inspection is a commonly used approach for conducting gait analysis in clinical prac-

tice. Nonetheless, it is not a trivial task, requiring an experienced clinician to draw valid

conclusions about the impairment. Several attempts have been made in order to automate

that process, but very few focussed solely on data obtained by measurements conducted

using force plates. The most exhaustive research in the field so far, tries to map gait im-

pairments to the location (the joint) of the corresponding injury using the five main classes:

Healthy - Hip - Knee - Ankle - Calcaneus. This thesis tries to expand on that approach by

employing different versions of neural networks for the classification task. Even though

the proposed methods specialize in recognizing temporal dependencies and relationships

between the individual components of GRF-measurements, experiments revealed that the

increase in accuracy is minimal when compared to much simpler architectures. The best re-

sult achieved scored 73.97% accuracy on a randomly sampled validation-set outperforming

the established benchmark on a Support Vector Machine (SVM) by 10%. However, high

variability within classes and individuals make GRF-classification a challenging problem

and significantly lower accuracies where found for a larger test-set (61.91%), raising doubts

about the generalizability and robustness of the implemented classifiers.

1. Introduction

Normal walking is one of the most central human physical activities and can be described as

a continuous interchange between mobility and stability (Lakany, 2008). In order to exhibit a

natural gait pattern, the human body requires free passivemobility and appropriate muscle action

as basic preliminaries. Any restrictions in either the timing or intensity of the muscle activity

or limitations in the normal free mobility of a joint will result in an abnormal gait. Persistent

abnormalities due to impairments in either physical or neurological functions (such as injuries,

diseases, pain, or problems of motor control) are often referred to as pathological gait patterns.

Usually, such inadequacies are (at least partially) compensated by the human body, which tries

to retain a certain amount of functionality by exerting additional effort. However, as reported

by Lakany (2008), these compensation mechanisms might result in joint strain, muscle overuse,

lack of muscle growth or soft tissue contraction. Under such circumstances, clinical intervention

becomes inevitable and gait analysis is commonly used for the assessment of motion disorders

(Baker, 2013).

In order to identify gait impairments, the humanwalking pattern needs to be recognized and clas-

sified according to the clinical status of the analysed motor function (Figueiredo et al., 2018),

requiring a definition of ''normal/abnormal'' gait. A widely adapted procedure in medical sci-

ence to enable such differential diagnoses is the establishment of a so-called reference range,
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described by a number of values that are close enough to a previously defined average, which

has been calculated from a large sample of measurements across different persons. However, as

Kirtley (2006) reports, those values are difficult to interpret in the case of gait analysis, because

human walking patterns are known to have a large biological variability. Thus, normative gait

ranges are often restricted to using only±1 SD (standard deviation), in contrast to other medical

diagnostics where±2 or even 3 SD are required to be classified as ''abnormal'' (e.g. blood tests).

To complicate the task even further, the number of causes which can induce gait abnormalities

is large and each one of them might lead to another variation of measurements, making the

definition of healthy gait even more complex. Fortunately, while the list of reasons that impair

a patient's ability to walk might be endless, the abnormalities imposed on the mechanics of

walking can be described by just four functional categories (Perry, 1992):

• Deformity: The passive mobility is restricted by tissues, preventing the patient from at-

taining normal postures and ranges of motion used in walking.

• Muscle Weakness: The patient is not able to exhibit sufficient muscle strength to meet the

demands of normal gait.

• Sensory Loss: Proprioceptive impairments prevent the patient from knowing the position

of the hip, knee or foot and the type of contact with the ground.

• Pain: Musculoskeletal pain often caused by excessive tissue tension, commonly related

to trauma or arthritis. Can lead to deformity and muscle weakness.

In this context, various approaches have been applied to the task of distinguishing between

healthy and impaired gait patterns, relying on temporal-spatial parameters (e,g, the gait cycle),

gait kinematics (e.g. positions of body segments) or kinetics (e.g. ground reaction forces),

contributing to an ever increasing toolchain available to gait laboratories and clinicians (Kirtley,

2006).

Even though the methods available in clinical gait analysis are becoming more numerous and

refined, the recordings obtained by such measurements usually consist of a huge amount of data

that is characterised by high-dimensionality, temporal dependences, strong variability and non-

linear relationships and correlations within itself (Chau, 2001a). Therefore, data interpretation

is not an easy task and for valid conclusions to be drawn, the assessment of an experienced

clinician is required (Slijepcevic et al., 2018a).

1.1. Motivation

In recent years, the increasing success of machine learning has inspired several attempts to au-

tomatize this process (see Chau (2001a,b) for a basic overview of methods and Figueiredo et al.
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(2018) for approaches based on machine learning) in order to support clinicians in their diag-

nosis. According to Figueiredo et al. (2018), an automated classification of gait patterns would

provide several advantages by enabling the following:

1. Easy comparison to healthy gait, thus providing a quantitative and non-invasive option to

assess locomotive functions.

2. Personalization of gait training by adjusting assistance according to the recognized move-

ment disorder.

3. Planning and coordinating of future treatment according to the subject's needs and gait

impairment(s).

4. Measuring and describing the progress of gait treatment by comparing gait rehabilitation

at baseline and follow-up sessions.

5. Providing an objective, quick and cost-efficient support for clinical gait analysis.

With the rapid advancement and development of machine learning techniques for signal recog-

nition, where new technologies are introduced every year, it is not surprising that the number of

different methods employed and tested in the context of gait analysis is considerably high. At-

tempts have been made to apply neural networks (Lozano-Ortiz et al., 2010; Zeng et al., 2016;

Vieira et al., 2015), support vector machines (SVMs) (Wu et al., 2007; Wu and Wang, 2008;

Levinger et al., 2009), nearest neighbour classifiers (Mezghani et al., 2008; Alaqtash et al., 2011)

and even various clustering approaches (k-means, hierarchical, etc.) (Ferrarin et al., 2012) to

the task, typically reporting moderate to high accuracy when distinguishing between different

patient groups or pathologies (Lozano-Ortiz et al., 2010; Wu et al., 2007; Levinger et al., 2009;

Alaqtash et al., 2011; Soares et al., 2016). However, along with the diversity in techniques,

the use-cases also differ distinctively from each other, trying to distinguish between charac-

teristics such as the affected/non-affected limb in hemiplegic patients (Williams et al., 2015),

transfemoral amputation (Soares et al., 2016), lower limb fractures (Muniz and Nadal, 2009)

and distinction of subjects with neurological disorders (Zeng et al., 2016; Alaqtash et al., 2011).

In spite of the promising results obtained by these researchers, they are often trying to differen-

tiate between two highly dissimilar gait patterns, giving little indication on the performance of

the employed method on a different classification task.

The significance for clinical practice of these studies is further limited by the fact that they often

include both, kinetic and kinematic measurements of the subject, derived from a 3-dimensional

gait analysis. While the knowledge obtained is highly valuable for scientific research and appli-

cations, the inclusion of kinematic data is often considered problematic in a clinical setting. In

addition to the force platforms used for measuring ground reaction forces (GRFs), the recording

of kinematic data requires a 3-dimensional gait analysis system, thus introducing the following

drawbacks (Slijepcevic et al., 2018a) to the measuring process:
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• The recording process is relatively time consuming when compared to simple GRF mea-

surements.

• High acquisition and maintenance costs for the recording device.

• Requirement of highly specialized/trained staff for conducting the analysis.

Therefore, such devices are hardly used in clinical practice. According to Slijepcevic et al.

(2018a) a commonly used approach for gait diagnosis in clinical settings is the combination of

a simple visual inspection (or 2D video recording) with the quantification of GRFs. Despite the

prevalence of such methods, relatively few attempts have been made to use only GRF data for

automated classification of gait patterns (Soares et al., 2016; Goh et al., 2014; Slijepcevic et al.,

2017, 2018a,b, 2020) and to the author's best knowledge, there exists no automatic approach that

is currently used in clinical praxis. Considering the overall high amount of research in that area,

it is slightly surprising that no attempt has been made yet to put those techniques into practical

use. However, closer inspection reveals some shortcomings in either the results obtained or the

research method applied, preventing them from being deployed in clinical gait analysis. The

main arguments can be summarized as follows:

• Generalization: Most research has not been verified on large datasets, thus it remains un-

clear whether the obtained results can be generalized to a broad population. For example

the dataset classified by Soares et al. (2016), consists only of data from 20 healthy per-

sons and 12 subjects with transfemoral amputation, which is usually not enough to train

a robust and reliable classifier that is suited for complex real-world scenarios.

• Cost/Time: The method used is either too time-consuming or too cost-intensive to be used

in clinical practice (e.g. utilization of a 3-dimensional gait analysis system).

• Accuracy: The classification accuracy is not high or not reliable enough to justify the

usage of the method. For example, Slijepcevic et al. (2018b) report an accuracy of 67.8%

when trying to identify the injured body region associated with a gait disorder (i.e. one of

normal - hip - knee - calcaneus), which is quite far from the usual requirements in medical

settings (often demanding an accuracy of 90% or higher).

• Usefulness: The information provided does not contribute to the diagnosis, i.e. the clini-

cian is able to draw the same conclusion with a few simple questions or observations.

Even if just one of these disadvantages is applicable for any automated tool, it will be sufficient

to prevent it from being used for actual diagnosis. Therefore, it is important to take all of those

issues into account when trying to develop a method that can be used outside of research labo-

ratories. The research conducted in this thesis attempts to provide a contribution to the field of

automatic gait classification, by trying to improve on accuracy achieved by previous research

(Slijepcevic et al., 2018b, 2020), in the hope of advancing it towards the long term goal of mak-
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ing it suitable for clinical practice. Aiming for easy adaptability into such a setting, the issues

raised above are addressed in the following way:

• Generalization: Usage of the large GaitRec dataset (2,295 patients), provided by Horsak

et al. (2020), that is publicly available, facilitating reproducibility and further research.

The data is already split into a training and testing part, benefiting reliability and helping

to build a classifier that can be assumed to be applicable to a broader populace reasonably

well.

• Cost/Time: Measurements are conducted solely by the usage of force plates, which are

commonly available in clinical practice.

• Accuracy: Maximization of accuracy by implementing different neural network architec-

tures that have been shown to achieve good performance on GRF-measurements (Alharthi

and Ozanyan, 2019) and various other time-series data (Fawaz et al., 2019a).

• Usefulness: By associating gait abnormalities with body locations in a similar fashion to

Slijepcevic et al. (2018a, 2020), the output of the classification provides information that

could be used for detecting arthropathies or diseases at an early stage as well as indicating

secondary disorders.

Condensing these concepts down to their very core, the ultimate goal of this research is the devel-

opment of an automated gait analysis tool, purely based on quantification ofGRF-measurements.

It should be able to identify the associated location of an impairment for any gait disorder (or

none, in the case of normal gait) according to the following five classes: healthy - hip - knee -

ankle - calcaneus, providing the most likely class (possibly paired with the probability of cor-

rectness) as its output. The classifier needs to be both, accurate and reliable in order to provide

high-quality support for clinical diagnosis by indicating the injured/affected body location(s).

1.2. Applications

Due to the very natures of such a classifier, its main area of application would of course be as an

assistive tool in clinical gait analysis. However, its usage is not restricted to a clinical setting.

In combination with wearable devices for measuring GRFs, it could become a valuable method

for planning, controlling and evaluating rehabilitation progress, providing new opportunities for

optimization of the whole process. The implications of such an approach are purely speculative,

but it is not implausible that an enhanced procedure might lead to more focussed exercising,

possibly enabling a faster recovery. Thus, the proposed assistive tool could be beneficial in the

following settings:

• Diagnostics: The primary of advantage of such a classifier is the non-invasive identifica-

tion of injured body regions, possible indicating impairments/diseases (such as arthropathies)
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early in their development. In addition, it might be able to provide valuable information

about secondary injuries which may be easily overlooked during clinical examination by

a physician (Slijepcevic et al., 2018a)

• Rehabilitation: In a clinical setting the assistive tool could be used for evaluation of the

applied treatment by comparing the initial measurements (i.e. after admission) to those

of follow-up sessions, enabling personalization of the rehabilitation process by planning

and coordinating future treatments accordingly. Wearable devices would further extend

the application to individual training-sessions, providing immediate feedback about ex-

ercises (e.g. on the quality of execution). Such information could be used to make the

rehabilitation progress visible to the patient, possibly increasing their motivation. Ac-

companied by proper instructions, this method could also be employed for home training

outside of rehabilitation centers.

1.3. Research Question

The goal of this thesis is to expand on the research previously conducted by Slijepcevic et al.

(2017, 2018a,b, 2020), trying to improve the performance of their classifier by using different

neural network architectures such as convolutional neural networks (CNNs) and long short-

term memory (LSTM). While LSTMs have been built to model temporal relations and are thus

inherently qualified to classify time-series (such as GRF-measurements), CNNs have their roots

in the task of image classification, where they have been able to deliver outstanding results

Krizhevsky et al. (2017). However, CNNs have recently been introduced with great success to

the task of time-series classification (see Zhao et al. (2017) for the basic reasoning behind this

achievement) and many different adaptions have been tested since (Fawaz et al. (2019a) provide

a good and recent overview).

However, since it remains unclear how well those methods can be adapted to the task of GRF-

classification, the main purpose of this research is to implement those architectures and compare

their accuracies for the classification task proposed by Slijepcevic et al. (2018a, 2020) on the

GaitRec dataset provided by Horsak et al. (2020). In other words, the networks should be able

to separate the GRF-measurements according to the classification task described earlier, asso-

ciating gait disorders with the location of the impairment (i.e. one of the five classes: healthy

- hip - knee - ankle - calcaneus). Since the data being used has only been published recently,

this work has the additional objective of providing a first baseline for that dataset. Furthermore

an attempt is made to provide some guidelines and promising approaches for future research

by exploring a few of the implications that data selection and preprocessing might have on the

classification result. In summary, this thesis is trying to answer (or at least gain some insights)

about the following questions:
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• Which neural network architecture is best suited for the task of GRF-classification (i.e.

achieves the highest accuracy)?

• Does the input format (i.e. preprocessing and transformations applied to the data) influ-

ence the performance?

• Which procedure is best suited for aggregating the information provided by the individual

trials (i.e. multiple measurements) recorded during a single gait session, in combination

with neural networks?

• How much data is actually necessary for an accurate classification (i.e. how many data

points are needed, is the combination of data from both legs beneficial)?

• What insights can be gained about the problem itself (e.g. are all classes equally difficult

to identify)?

• Can the results of Slijepcevic et al. (2018a), suggesting that an equal number of samples

for all classes is more important than a large amount of data, be verified on the imple-

mented approaches?

1.4. Research Approach

In an attempt to answer the questions raised in the previous section, this thesis follows a strictly

empirical procedure. First, the existing literature dealing with automated classification of GRF-

measurements is analyzed and evaluated, identifying the various methods that have been pro-

posed for the task. Due to the relatively low number of publications employing neural networks

to GRF-classification, this is followed by an extensive literature review of such approaches that

have been investigated for the larger (and thus less specific) problem of time-series classifica-

tion. It is revealed that a large amount of neural network architectures have been proposed and

evaluated for the more general case, achieving high accuracy on similar tasks. However, no

universal solution has been found yet, as the performance of those methods depends on both the

data and the classification task. Hence, a selection of networks that have been shown to achieve

high accuracy on various time-series (Fawaz et al., 2019a,b) are implemented and evaluated on

the GaitRec dataset.

In addition to these (complex) architectures, a number of simpler networks, each employing

different feature extraction methods, are assessed as well, in order to gain insights about the

amount and quality of the information contained within GRF-measurements. Experiments are

conducted to first determine the parameters of each architecture, before their overall perfor-

mance is assessed (and compared to previous approaches) on the aforementioned dataset. Apart

from determining the best model (among the ones implemented), this procedure is able to re-

veal the contribution of each network component, indicating promising approaches for future
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research.

Since, no publications have been found employing complex neural networks (e.g. CNNs) to the

given classification task (Slijepcevic et al. (2018a) only evaluated a simple multi-layer percep-

tron), it can not be presumed that the pre- and post-processing methods used in other studies

are necessarily the best choice for such models. Therefore, after identification of the best archi-

tectures, the implications of such methods on the performance are investigated as well. Again

empirical verification is employed by conducting a direct comparison of the observed changes

in accuracy, enabling the determination of the best set of data transformations. After completion

of those experiments, all of the questions raised in Section 1.3 can be addressed, satisfying the

purpose of this work.

1.5. Structure of this Thesis

Due to the high amount of different experiments conducted and their dependences among each

other, it is important to clearly outline the structure being followed in this thesis. The first chapter

will introduce the current state-of-the-art of GRF-based classification by examining previously

conducted research and its implications on the proposed approach, divided into three main parts.

While Section 2.1 will provide an overview of research on GRF-based automated gait classifi-

cation in general, Section 2.2 is restricted to publications dealing with the exact same problem as

this thesis. Finally, Section 2.3 summarizes the conclusions of earlier attempts and how CNNs

might be employed to overcome their limitations.

Chapter 3 will establish the necessary background on the topic of time-series classification (Sec-

tion 3.1), followed by an explanation of the fundamental neural network types used in this re-

search, detailed in Sections 3.2- 3.5. Due to its high importance for the proposed methods, this

is followed by Chapter 4, dedicated to the GaitRec dataset, detailing its composition and fun-

damental properties. Furthermore, an explanation of the different components constituting a

single GRF-measurement will be provided, describing the recording procedure and additional

processing steps.

An overview of the general workflow followed in the experiments is given in Chapter 5. The

data selection procedure and its possible implications on performance will be discussed in Sec-

tion 5.1, followed by an explanation of the applied pre-processing methods in Section 5.2. Due

to the high accuracy achieved byCNNs on image classifications tasks, several proposed transfor-

mation approaches used to convert time-series to images, are introduced in Section 5.3, outlining

the necessary calculations and their possible benefits to the classification. A description of the

evaluated neural network architectures and their parameters is given in Section 5.4, structured

in an incremental fashion, starting from a basic MLP (Section 5.4.1) and ending with state of

the art image-classification models such as Google's Inception v3 in Section 5.4.3, employed for
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the transformed time-series. This chapter is then completed by an analysis of post-processing

methods in Section 5.5, that can be applied to boost the accuracy of the prediction after the

actual classification.

Details on the experimental setup will be provided in Chapter 6, describing the computational

environment and parameters for data selection and pre-processing. This is followed by the gen-

eral evaluation procedures in Section 6.2, outlining how the best settings have been obtained

for each neural networks before explaining the fine-tuning process. Additional insights into

the comparison process used for evaluating pre- and post-processing methods will be presented

in Section 6.2.4, followed by as similar discussion for the effects of data selection and class

aggregation (Section 6.3).

The experimental results are reported in Chapter 7, concluded by an analysis and discussion of

the outcome. The main findings will then be summarized in Chapter 8, drawing conclusions

from the experiments and considering their implications for future research.

2. Related Work

This chapter is intended to provide an overview of previous research in the field of automated

GRF-classification. Since a wide variety of approaches has been employed, the existing litera-

ture can be roughly split into three parts according to their influence on this research. The first

section will provide an outline of methods used to classify GRF-measurements for a variety of

tasks such as malfunction or activity recognition, highlighting their general idea and achieved

results. The second part is dedicated to research that has been conducted on a subset of the data

that was later published under the name GaitRec (Horsak et al., 2020), trying to solve the same

classification problem as this thesis (i.e. mapping gait disorders to the associated joint). The

last section presents a summary of the previous research, discussing areas that could benefit

from employing more complex neural networks, concluding by reporting the results of the only

publication that could be found investigating such architectures for GRF-data.

2.1. GRF-based classification

One of the first works concentrating solely on GRF for gait classification was published by

Köhle and Merkl (1996) and uses self-organizing maps (SOMs) for mapping gait patterns to

distinct body parts. Their research was one of the first focusing on automatic classification

and demonstrated that the SOM was not only able to distinguish between malfunctions in the

left and right motor system, but could also represent the location of the actual impairment (e.g.

pelvis, knee, ankle) to a large degree. They further refined their research (Köhle and Merkl,
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2000) by using radial basis function (RBF) networks and report an accuracy of 76% on a dataset

consisting of 487 persons and 15 associated body regions. While this is an impressive result,

unfortunately no details on the composition of the dataset are disclosed. This is problematic

because according to Köhle and Merkl (2000), some malfunction classes still show a rather low

recognition accuracy, and we do not know how many of those were included in the data (i.e. the

high accuracy could be caused by a large number of well separable injuries). Analyzing their

work is being made more complicated by the fact that they included patients with a prosthesis

as well as other injuries which might contribute to the high accuracy achieved, as Soares et al.

(2016) show that distinguishing between patients using a prosthesis and a healthy control group

can be done reasonably well.

Further research has been conducted by Goh et al. (2014), who tried to identify different ac-

tivities (e.g. walking, jogging, running) based on GRF measured by an instrumented treadmill.

They implemented an artificial neural network (ANN) approach, which was able to deliver an

accuracy of 72% on the task. A notable contribution is their observation that distinguishing be-

tween patterns using a single stride results in a lower accuracy than using multiple ones. This

suggests that the individual variation between two steps is considerably high and should be ac-

counted for in any classification approach (e.g. by averaging across multiple steps).

The previously mentioned study by Soares et al. (2016) puts its focus on GRF measurements of

patients walking with a prosthesis and reveals that statistically significant differences in many

portions of the waveforms exist when compared to able-bodied participants. The existence of

such differences implies that implementing an automated approach for distinguishing between

those classes should be possible, as a well designed classifier would be able to take advantage

of the distinct parts in each waveform. However, this has only been verified for patients using

a prosthesis and does not necessarily generalize to patients suffering from an injury (e.g. a

fractured bone).

2.2. Approaches based on GaitRec-data

Slijepcevic et al. (2017) provide the most exhaustive study so far, including the GRF measure-

ments of 910 persons in total. They classified the subjects (being of various physical composi-

tion and gender) manually into five different impairment classes (healthy - hip - knee - ankle -

calcaneus) resulting in 182 patients per class. Within a single class (i.e. a specific joint), mul-

tiple disorders (associated with the joint) are contained, such as ligament ruptures, fractures or

joint replacement surgery. The dataset used in their research actually forms a subset of the more

exhaustive one that was later published as GaitRec by Horsak et al. (2020) and will be used as

part of this thesis. Because of the high relevance of this dataset for the conducted research, a

detailed explanation of the recording and pre-preprocessing steps is given in Section 4 and will
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be omitted here, since the procedure is basically identical.

Because GRF-measurements are usually taken at a high sampling frequency, the output ob-

tained from force plates or similar devices is of high dimensionality as well. Therefore, it is a

common approach to reduce the dimensions of the signals, for example by expressing them as

discrete gait parameters such as local minima/maxima or time-distance parameters of the wave-

form (Alaqtash et al., 2011). Conducting a principal component analysis (PCA) is an alternative

method producing a similar effect and, although it originated from a different field, research has

demonstrated that is is able to provide a suitable input for GRF-classification tasks (Soares et al.,

2016; Muniz and Nadal, 2009). Consequently, the first step in the evaluation process applied

by Slijepcevic et al. (2017) investigated the effect of different PCA-based representations on

GRF-data. The main goal of performing a PCA is to transform the input into a representation of

lower dimensionality, while preserving as much variance as possible. Several approaches, such

as running PCA on the concatenated raw signals (early fusion) versus conducting PCA for each

signal separately before concatenating (late fusion) or PCA of commonly used discrete param-

eters, are possible and have been evaluated. The authors report that late fusion outperformed

early fusion and that the usage of COP signals was able to improve accuracy, while the inclusion

of the unaffected limb's GRF had no impact on the result.

Building on the knowledge obtained from this first approach, Slijepcevic et al. (2018a) continued

to evaluate the different signal representations as well as various machine learning methods. For

this purpose, three different parametrizations were used:

• 52 discrete and time-discrete parameters extracted from all five GRF input signals.

• PCAobtained from the rawwaveforms using the best setting fromSlijepcevic et al. (2017).

• PCAof the z-standardized andmin-max normalized discrete and time-discrete parameters.

All of these representations of the input signals have been classified using Support Vector Ma-

chines (SVMs) with linear and radial basis function (RBF) kernels as well as a k-nearest neigh-

bour (k-NN) classifier (using grid search over various values of k) and a multi-layer perceptron

(MLP) with different numbers and sizes of hidden layers. In conclusion, the results for the

MLP and k-NN classifiers were all outperformed by the SVM, achieving an accuracy of 54.3%

in combination with the PCA obtained from the raw signals, the discrete parameters took sec-

ond place (46.8%), while the PCA of discrete parameters scored the lowest result of 45.6%.

Even though the reported accuracy of the MLP (52.5%) suggests low performance, its will be

re-evaluated as a part of this research to provide a baseline for the more complex approaches.

Additionally, because Slijepcevic et al. (2018a) restricted their further experiments to the SVM

(and managed to increase its accuracy to 59.5% on a balanced dataset), the MLP has never been

employed in a setting where the data from both legs was combined or with the raw waveform

as an input.
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The data of the unaffected leg was also used in the next publication by Slijepcevic et al. (2018b),

in the form of a delta signal representing the difference between the affected and unaffected

limb. Additionally, they experimented with adding the first derivatives of the raw waveforms as

a possible source of information, testing various combinations of input signals. By combining

the GRFs of the affected side together with their first derivates and the delta signals as training

data for a SVM, they managed to achieve their best result so far, obtaining an accuracy of 67.8%

on the classification task healthy - hip - knee - calcaneus (note that the ankle class was omitted

from this study).

In their latest study (Slijepcevic et al., 2020), they returned to the original problem using five

classes, investigating the impact of different aggregation methods of individual trials recorded

during the same gait analysis session. According to their results, the highest accuracy has been

found using the same combination of signals mentioned above, coupled with a majority voting

based approach, where the class for each trial is predicted individually. The final classification

result is then determined by calculating the statistical mode of all measurements recorded during

the same session. Using this setting, they report an accuracy of exactly 62%, which is the highest

score published for this classification task and the benchmark for evaluating the results of this

thesis. It should also be noted that this result was achieved using all components recorded during

a GRF-measurement, whereas experiments conducted with different subsets have been found to

be less accurate.

2.3. Towards an CNN-based classification

Since this research tries to solve the same classification problem, it relies heavily on the ground-

work provided by Slijepcevic et al. (2017, 2018a,b, 2020), trying to improve accuracy even

further by adapting current state-of-the-art machine learningmethods for the task at hand. There-

fore, the main insights and problems reported in their research will be briefly summarized, high-

lighting some shortcomings that could potentially be taken advantage of by the neural network

architectures investigated in the later chapters of this thesis.

• So far, no automated approach has surpassed 62% accuracy on the given task, although

higher values are reported for different GRF-based classification problems.

• There is high degree of individuality within GRF-measurements, resulting in a high stan-

dard deviation for all signals in a single class.

• Using all available data (i.e. trials) for training combined with majority voting seems to

have an advantage over other aggregation methods.

• Some classes are harder to distinguish than others, indicated by the better result of the

study where only four classes were used.

15



• Including all components obtained during a GRF-recording facilitates higher accuracy

(i.e. there is viable information in each signal).

• Taking a representation of the whole waveform into account (PCA) works better than a

set of manually selected discrete parameters.

• Including the data from the unaffected leg helps to yield better classification results.

• Temporal relations that can be assumed to exist within the signals have not been accounted

for.

• Relationships between the different GRF signals have been disregarded as well, due to

the nature the employed classifier (SVM).

The last two points are the main focus of this research, trying to take advantage of temporal

dependencies and inter-signal correlations to achieve higher accuracy. To develop a better un-

derstanding on how these areas can be improved, it is necessary to take a look on how a SVM

(and a MLP for that matter) are trying to classify the provided data. Both approaches regard

the data as a vector with a predefined length, where each coordinate corresponds to a different

dimension in a multi-dimensional space. Thus, they examine the signal as a whole and the no-

tion of time is lost. However, that does not mean that there is no time-related information left

in the signal. An important characteristic of data produced by sequential measurements (like

the one obtained by force plates), is that the passing of time enforces an inherent ordering on

the data (Last et al., 2004). More precisely, this implies that each dimension (i.e. each position

in the vector) corresponds to a certain time-step and the information that the second position

has been recorded after the first one is inherently encoded into the signal. This information is

always present within the data, but what is lost when classifying with an SVM (and to a lesser

degree with anMLP) is the ability to draw conclusions from the ordering in which certain events

(consisting of a sequence of values) occur within the signal. For example, it might be important

if a specific event occurs before or after another and additional information could be gained for

increasing accuracy, if this is accounted for. An easily understandable example has been illus-

trated in Figure 1, displaying two identical signals with one of them shifted along the temporal

axis.

Both a SVM and aMLPwould look at the values in each dimension (in this case time) separately

and observe that there is a clear difference between the two signals (e.g. X[11] = 1 while

Y [11] = 8). But if the notion of time is taken into account, both signals actually represent the

same phenomenon, Y just occurs 4 seconds after X but the pattern (first a small peak, then a

big peak) remains unchanged. In gait analysis this is usually accounted for by normalizing the

time to 100% stance (which would place the peaks roughly around the same time-step), but for a

disorder classification, this might not be good enough. Consider the case of a ruptured ligament

and suppose that the resulting instability will be visible by a shift in the centre of pressure (COP)
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Figure 1: Demonstrating the importance of time preservation. Both X (blue) and Y (red)
consist of the same values, but Y has been shifted by 4 seconds.

during walking (this is just a simple example to illustrate the idea, not an observation made on

the actual data). Depending on their muscular strength, some patients might be able to partially

compensate the instability by exerting additional muscular effort during the initial phase of the

step, resulting in the same shift happening at a different point in time. Thus, even if the actual

signals look different, they should be classified into the same group, as they are caused by the

same injury.

The loss of information betweenGRF components when using a SVM/MLP is easier to illustrate.

Because the input for those types of machine-learning techniques has to be a 1-dimensional vec-

tor, the simplest method is to concatenate all signals together to form a single, long input vector.

Another option would be to classify each signal separately and then combine the output of these

classifications into the final result. It should be clear, however, that by applying any of these

methods, all correlations between signals are lost. Since GRF measurements consist of several

components, they do not only contain information about each single waveform separately, but

additionally contain information about interrelations between those signals (Valdés-Sosa et al.,

2006). In other words, the relationship between different signals might also provide important

clues for an accurate classification. As a simple example, it could be relevant whether two sig-

nals are close together or not, independently of the actual values (i.e. no matter if they meet at

a peak or a valley).

The idea to investigate the importance of temporal and inter-signal relationships of GRF mea-

surements has been explored by Alharthi and Ozanyan (2019), trying to classify patients with

Parkinson's disease according to the severity level. Although the classification task and data

used are quite different, the key points of their research will be briefly summarized here to jus-

tify the general idea and establish some of the methods examined in this thesis (such as CNNs
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and LSTMs) as viable approaches. The authors used a dataset containing samples of 166 per-

son, where only the vertical ground reaction force (F_v) was recorded using eight sensors placed

underneath each foot. Additionally the sum of all eight tensors of each food was added to the in-

puts, resulting in 18 signals total. Three different classifications approaches were implemented

and evaluated on this data: (a) a 1-dimensional CNN, (b) a 2 dimensional CNN and (c) a long

short-term memory (LSTM), representing the same major architectures that will be investigated

in this research (a detailed explanation of their main concepts is given in Chapter 3). All im-

plemented networks were fairly complex consisting of four (a), seven (b) and three layers (c)

respectively, all of them outperforming earlier classification approaches using the same dataset.

While a traditional input layout was used for (a) and (c) in the form of a time-steps× signals

matrix, a different approach was chosen for the 2-dimensional network. The transformation ap-

plied fuses the input into a spatio-temporal 3D matrix (Costilla-Reyes et al., 2018), by arranging

the signals at each time-step in a similar fashion to a digital image, enabling the convolution to

analyze the relations between signals in a more fine grained manner than the 1-dimensional case.

Previous attempts established the baselines of 92.7% or 84.48% using a SVM (Abdulhay et al.,

2018; Wu et al., 2017) and 88.89% when employing an MLP (Ertuğrul et al., 2016) on the

same task, while the 1-dimensional CNN was able to achieve an accuracy of 95%. Both, the

2-dimensional CNN and the LSTM scored slightly higher, reaching 96%, the highest reported

value so far. It is noteworthy though, that the training process for the LSTM required consid-

erably more time, taking almost 90 minutes compared to approximately 10 minutes for the two

CNNs. Even though the question remains of whether or not those improvements can the trans-

ferred to the task of classifying gait impairments, their results demonstrate that a significant

boost in performance can be achieved when employing those methods to GRF-data, due to their

abilities of exploiting inter- and intra-signal relationships.

3. Background

Despite the fact that high accuracies have been reported for the machine learning approaches

implemented in this research, good performance is not guaranteed by simply inputting the data

into the network and hoping for the best. Anumber of parameters has to be carefully selected and

adjusted according to the data and classification task. Therefore, a fundamental understanding

of different data representations and the way how machine-learning algorithms are trying to

exploit those to group similar items together (i.e. classification) is required in order to enhance

accuracy. Understanding this process is not only useful for determining the best layout of the

data, but also for reasoning about which architectures to evaluate, as some machine-learning

techniques are better suited for a certain task than others.

The current chapter will provide basic information about the problem of time-series classifica-
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tion (TSC), since GRF-measurements can be regarded as a special case of a multivariate time-

series. This implies that they do not only share common characteristics, but also that knowledge

obtained about the more general problem can be transferred to the specific instance. This en-

ables the investigation of machine-learning techniques that have been successfully applied to

tasks that are somewhat similar to GRF-classification, taking advantage of a wider field of sci-

entific research.

Additionally, the basic principles of neural networks will be explained in an incremental fash-

ion, starting from the MLP as the most basic form over recurrent networks such as the LSTM up

until current state-of-the-art deep learning approaches. This serves the purpose of establishing

a common background knowledge that will be used in the later parts of this thesis, where the

design of different architectures will be discussed and evaluated. As the concepts introduced in

this chapter constitute the core of this research, a fundamental understanding about their me-

chanics is required. Apart from a detailed explanation, the emphasis in this section will be put

on highlighting the potential usefulness of each type of model for enhancing accuracy on the

classification task.

3.1. Time-series classification (TSC)

As previously mentioned, GRF-measurements can be considered as special instance of a mul-

tivariate time-series. By their very nature they consist of sampled data points, observed over

time from a continuous, real-valued process (Längkvist et al., 2014). If just one input signal is

measured in this way, a univariate time series is created, but in case of GRF-data, several signals

are captured at the same moment, consisting of three force components and the two directions

of movement for the center of pressure (COP), creating a multivariate time-series composed out

of five separate signals. According to Fawaz et al. (2019a) time-series can be formally defined

as follows:

• A univariate time-series X = [x0, x1, . . . , xt] represents real values in an ordered set,

where the number of real values T is defined by the length of X (i.e. T = t+ 1).

• An M -dimensional multivariate time-series X = [X0, X1, . . . , XM ] is built from M

different univariate time-series where X i ∈ RT .

A labelled dataset of GRF measurements D = (X0, Y0), (X1, Y1), . . . , (XN , YN) can thus be

defined as a collection of pairs (Xi, Yi), where Xi is a multivariate time-series (consisting of 5

signals) and Yi is the corresponding class (i.e. impairment) label.

The ultimate goal in a time-series classification problem consists of training a classifier on the

dataset D, which is able to predict the corresponding label to any given series of values provided

as an input. However, as Gamboa (2017) points out, care has to be taken when analysing time-
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series, because they often contain temporal dependencies, meaning that two otherwise identical

points of time could actually belong to different classes, depending on previous/future values of

the series. Therefore, feature selection is one of the most important steps when trying to build a

classifier for time-series and many handcrafted feature extraction schemes have been developed

across different applications (Cui et al., 2016). Such feature extraction methods can range from

simple statistics (e.g. mean, variance) to more complex features from spectral or fluctuation

analysis.

As those algorithms are prone to being highly application dependent, a common standard within

the TSC research community is to evaluate them against the UCR time-series archive (Dau et al.,

2018), which is considered a gold standard (Bagnall et al., 2016). By now this dataset consists

of 85 subsets across different fields, allowing for a better comparison of different algorithms.

Traditionally, one of the most popular methods used on that dataset is a nearest neighbour classi-

fier. This algorithm basically works on the assumption that the class of a given series is the same

as the one of its closest neighbour (according to some distance measurement). In other words,

given an unlabelled sample, the algorithm identifies the (already classified) instance with the

minimal distance (i.e. the nearest neighbour) and assigns the same class to the new sample. A

popular variant with increased robustness against outliers is the k-nearest neighbour algorithm,

where the classification result is chosen based on the majority class of the k closest instances.

In a comparative study of distance functions, Lines and Bagnall (2014) showed that the Dy-

namic Time Warping (DTW) distance is able to deliver the best results in this setting and still

provides a very strong baseline in the field (Bagnall et al., 2016). Furthermore, the experiments

by Lines and Bagnall (2014) revealed that an ensemble of individual nearest neighbour classi-

fiers (with different distance functions) is able to yield a significantly more accurate result than

its individual components. In the most exhaustive study on the UCR dataset so far, Bagnall

et al. (2016) verified the results of 18 different algorithms, revealing ensemble classifiers as the

current state-of-the-art when dealing with TSC problems, as the seven most accurate algorithms

all consisted of various ensembles.

The top accuracies across all datasets were achieved by COTE (Collective of Transformation

Ensembles) (Bagnall et al., 2015), an algorithm that uses a combination of classifiers in the time,

autocorrelation, power spectrum and shapelet domain. In total, COTE makes use of 35 different

classifiers, using a weighted vote system to determine the final category for each sample. Lines

et al. (2018) later expanded on that system by introducing a hierarchical vote system and two

new classifiers (including two additional signal transformations), making the new algorithm

(referred to as HIVE-COTE) even more accurate.

However, there are some important points to consider before applying those algorithms to a

specific problem domain:
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• The increased accuracy comes at the cost of additional computations and as Fawaz et al.

(2019a) points out, training 37 classifiers as well as cross-validating all hyper-parameters

in combination with the time complexity needed for some of the input transformations,

increases computational requirements tremendously. In some situations, training such a

classifier can even become prohibitively expensive (Lucas et al., 2019).

• Those algorithms generally represent a result that is best on average, across all datasets.

Taking a closer look at the results obtained by Bagnall et al. (2016), reveals that there are

significant differences between the various problem types (such as signals obtained by

electric devices, spectrographs, motion capture and sensor readings) and the length of the

time series seems to be a decisive factor as well. Therefore, those algorithms will work

well with high probability when applied to a specific problem, but there is no guarantee

that they will achieve the highest accuracy for a given dataset.

• All of those algorithms have only been validated for univariate time-series. Scientific re-

sults for multivariate time-series are rare and research seems to be still in its early stages

(Fawaz et al., 2019a). As of now, all signals of a multivariate time-series would have to

be concatenated together in order to use these classifiers, which might induce information

loss (depending on the problem domain). Nonetheless, this technique seems to be com-

monly applied when dealing with multivariate time-series (Zheng et al., 2016; Liu et al.,

2019; Slijepcevic et al., 2017).

In order to alleviate the issue of excessive data preprocessing and feature engineering, several

studies (Zheng et al., 2016; Cui et al., 2016; Wang et al., 2016) have been investigating convolu-

tional neural networks (CNNs) for an end-to-end time series classification. Unlike the classifiers

above, which are based on a number of selected features (35 of them in the case of COTE), fea-

ture selection and classification are learned jointly by a CNN, requiring no further processing

of the input data (Hatami et al., 2017). In other words, the CNN is able to learn and select the

best ''view'' on the input data by itself, making further transformations unnecessary. The gen-

eral concepts and underlying architecture of a CNN that enable this process, will be the topic of

Section 3.3.

3.2. Multi-layer Perceptron (MLP)

Neural networks, as the name suggests, have been designed to simulate the learning process of

a human brain (although in a very simplified manner) relying on neurons as its basic units. The

neuron can be either active (i.e. firing), transmitting a message to all neurons it is connected to,

or inactive, meaning it does not communicate. The state of a neuron is decided by the activation

function applied to the weighted sum of all of its inputs, basically deciding whether the neuron is

firing or not. If a neuron has the inputs x1, x2, . . . , xn associated with the weights w1, w2, . . . wn
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and the activation function f , then its output y is decided by:

y = f(
n∑

i=1

wixi) (1)

The actual learning process taking place within a neuron is quite simple. By adapting the weights

in a certainway, the neuron can be conditioned to react only to a certain type of input, for example

enabling it to recognize a single class of a classification problem. However, when the input data

is not linearly separable, a special layout of such neurons is required to accomplish that task.

Such a layout, which is commonly referred to as a multi-layer perceptron (MLP) (Marsland,

2009) is illustrated in Figure 2. It consists at least of an input layer, a hidden layer (enabling

the non-linear classification) and an output layer providing the final result, however, no upper

limit on the number of hidden layers applies, (apart from the available computing resources).

Because each neuron within a layer is connected to all the neurons of neighbouring layer, this

kind of architecture is often referred to as a fully-connected or dense layer. Because the former

is ambiguously used only the terms MLP and dense layer will be used in this thesis to denote

this type of neural network.

Figure 2: The multi-layer perceptron consisting of multiple layers of connected neurons, where
each neuron of one layer is connected to all the neurons of its neighbouring layers.
Adapted from Marsland (2009)

Due to its basic form, the MLP still retains some advantages over the more complex forms of

neural networks. As a consequence of its simplicity, the implementation is very straightforward

and it does not need as many computing resources, resulting in a training process that can be

completed reasonably fast. On the other hand, it is not able to model temporal relations or

interactions between signals, resulting in (possibly) less accuracy. Therefore, contrasting its

performance against more advanced architectures specialized in extracting such relationships,

additionally serves the purpose of gauging how much information is actually contained between
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the five components of the GRF-data as well as within their temporal dependences.

3.3. Convolutional Neural Networks (CNNs)

CNNs are a variation of neural networks commonly used in image processing tasks in order to

reduce the number of parameters to be learned by the network (Gamboa, 2017). They repre-

sent one of the most well-known variants of neural networks, because they incorporate feature

learning and classification task into one unified network architecture and have been successfully

applied to image, speech and text recognition (Liu et al., 2019). Their ability to identify relevant

features for the classification by themselves, without the need of finding the best representation

beforehand, basically eliminates the need for significant domain expertise and manual feature

extraction (Karim et al., 2019).

In contrast to an MLP, the neurons in the hidden layer are only connected to some of the input

layers and weights are shared across neurons within a group. By using this kind of architecture,

each group of neurons calculates their own convolution of the image, commonly called a feature.

Such a convolution can be seen as a sliding windowmoving over the time series, applying a filter

at each step. This process is illustrated in Figure 3. In general, as Fawaz et al. (2019a) describe

it, such a filter can be viewed as a non-linear transformation of the time series, resulting in a

''processed'' version of the signal. To describe it in a more formal way, the convolution at each

time stamp t is given by the following equation (Fawaz et al., 2019a):

Ct = f(ω ∗Xt− l
2
,t+ l

2
+ b)|∀t ∈ [1, T ] (2)

In the above formula, C denotes the result of a convolution ( ∗ is the dot product), which applies
a filter ω of length l and a bias parameter b to a time-series X of length T . To calculate the

final output of each neuron, the activation function f is applied to the result of the convolution.

The output (of a single filter) can then be considered as another univariate time-series and using

several different filters will result in a multivariate time-series with a dimensionality equal to

the number of filters applied.

To be more specific, this process describes a 1-dimensional convolution, which is commonly

used forTSC problems. In contrast to the 2-dimensional convolution used in image classification

tasks (where the sliding window moves along the width and height of the image), the height of

the window (i.e. the number of signals in a multivariate time-series) remains fixed in the 1D case

and the window only moves along the temporal axis. Operating in this setting, the convolution

considers all signal at once, providing the additional advantage of accounting for the relationship

between signals in multivariate time-series. Note that in the univariate case, the window would

just include one signal and the convolution would be exclusively done in time domain.
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Figure 3: 1-dimensional convolution of a multivariate time series. The sliding window (red)
moves along the time-axis convoluting all signals together at each step. Every filter
has its own set of weights, applying a unique transformation at each time-step t. In
the picture, time steps t1, t2, t3, t4 and t5 have already been processed (with t5 being
displayed). Subsequently, the sliding window will move one position to the right and
the convolution will be applied to the signal at t6, determining the output at o6 for
all filters.

One of the first studies to use this kind of architecture for TSC was conducted by Zheng et al.

(2016). In their work, they split multivariate time-series into separate signals, perform a 1D

convolution on each of them and finally combine the results into aMLP to obtain the final output.

On the tested datasets, this approach outperformed both nearest neighbourmethods (as discussed

earlier) and conventional MLPs by 5-10% in all cases. Further research has been done by Cui

et al. (2016), who developed a so-called multi-scale convolutional neural network (MCNN)

trying to move towards a more general architecture (that works well on different time-series) by

adding a transformation stage before the actual convolution. This stage includes downsampling

and filtering of the data in order to obtain features that are more robust (e.g. by removing high-

frequency perturbations and random noise) and identify suitable scales (i.e. a representation

where the pattern becomes recognizable). Their work is interesting because they evaluated their

architecture on the UCR dataset, comparing it to the previously mentioned ensemble classifiers

(i.e. the current state-of-the-art in TSC). While they could establish that their approach works

better than an ordinary CNN, it was still less accurate than COTE (although not significantly).

Similar results were later obtained by Zhao et al. (2017), for a CNN consisting of multiple

convolutional layers, evaluated on a subset of the UCR data.
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3.4. Long Short-Term Memory (LSTM)

Recurrent neural networks (RNNs) have been designed with the goal of extracting temporal

information from the input sequence for either classification or prediction, as they both constitute

a similar problem (Hüsken and Stagge, 2003). The basic idea is to use the output of the current

time step as an input to the next time-step, enabling the network to make decisions based on

previous states (see Figure 4 for an illustration).

Figure 4: An unrolled recurrent neural network. The output of the previous time step is used
as an input to the current one, enabling the network to learn temporal relations.

Since it is a fundamental property of time-series, that a point xi is influenced by all its prede-

cessors {xi−1, xi−2, . . . }, several studies (Hüsken and Stagge, 2003; Malhotra et al., 2017; Che

et al., 2018) have investigated recurrent neural networks for time-series classification. How-

ever, while being a simple and powerful model in principle, RNNs face a number of issues

that severely limit their usefulness (Pascanu et al., 2013). Most prominent among them are

the vanishing and exploding gradient problems described in Bengio et al. (1994). These terms

refer to the large increase/decrease that can be observed in the norm of the gradient in the back-

propagated error during training of a RNN. Such phenomena are caused by the long term com-

ponents of the signal, which can grow/decay exponentially more than the short term components

(Pascanu et al., 2013). In the case of exploding gradients, this may lead to oscillating weights,

while the impact of the long term components will be reduced to zero for the vanishing gradient

problem, making it impossible to learn temporal correlations. Both versions make proper train-

ing of the network impossible, preventing this approach from being used in many applications.

In order to address this issue, Hochreiter and Schmidhuber (1997) introduced the long short-

term memory (LSTM) using gating functions into the internal state of their network, making

the error back-propagation constant, thus avoiding the aforementioned problems. This enabled

the LSTM to be trained more effectively than RNNs, becoming one of the most widely adopted

recurrent networks (DiPietro and Hager, 2020). According to Karim et al. (2018a) a LSTM

does not only maintain a hidden vectorH for storing information from previous states, but also

a memory vectorM , which is responsible for controlling the output and updatingH . Perhaps a

25



little more understandable, Alharthi and Ozanyan (2019) describe each neuron (referred to as a

block) of an LSTM as consisting of three gates:

• Forget Gate: This gate decides which information to maintain within each block.

• Input Gate: Responsible for controlling the data flow into the block

• Output Gate: Takes care of the output based on the computed activation of the block.

Strangely enough, even though they have been built for temporal classifications, studies evaluat-

ing only RNN architectures (without added convolution) on the UCR dataset are quite rare, one

exception being Smirnov andNguifo (2018), comparing traditional RNNs against the LSTM and

a convolutional approach developed by Wang et al. (2016) (which will be discussed later in this

thesis). They conclude that among all RNNs tested, the LSTM achieves the best classification

results (significantly better than its competitors) and is outperformed only by the CNN, which

has been established as a strong baseline on the UCR data (Wang et al., 2016). Judging from

these results, it can be assumed that a combination of CNN and LSTM might be able to provide

an ideal solution to the TSC problem. This idea has been investigated by Karim et al. (2018a),

proposing an architecture that applies an LSTM in parallel to a CNN to extract both long and

short term dependencies from the data, by concatenating the output from both networks. Their

experiments show that this approach is able to outperform most state-of-the-art models for TSC,

while requiring minimal pre-processing of the data and upholding the ability of the network to

perform the feature extraction on its own (Karim et al., 2019).

3.5. Deep Neural Networks

Recent algorithmic advances and availability of more and faster hardware have enabled scien-

tists to build and train deeper neural networks, obtained by stacking multiple (convolutional)

layers on top of each other. This has been deemed too difficult and inefficient (Bengio et al.,

1994) in the past, but started to changewith the trainingmethod proposed byHinton et al. (2006),

which allowed for fast learning of so called Deep Believe Networks. Soon, this technique, now

commonly referred to as Deep Learning (LeCun et al., 2015) was applied to various types of

networks with great success. As explained by Gamboa (2017), latest deep architectures use sev-

eral modules (each consisting of multiple layers) that are trained separately and stacked together

afterwards, so that the output of one module becomes the input of the next.

Wang et al. (2016) established a first benchmark for TSC using deep neural networks by com-

paring three different types of architectures (see Figure 5) :

• MLP: This architecture consists of several hidden layers of MLPs, each consisting of

500 neurons and using a rectified linear unit (ReLU) to calculate the activation of the

neuron. The last layer uses a softmax activation and consists of as many neurons as there
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Figure 5: Deep architectures as proposed by Wang et al. (2016). The models are ordered by
increasing number of layers. For the MLP the numbers within the solid rectangles
denote the amount of neurons in each layer, whereas for the other architectures, the
number within a box represents the number of filters used in the convolution.

are classes within the time-series, because it is responsible for providing the final output

(i.e. the classification). The DropOut-layers (Srivastava et al., 2014) in between are used

to guarantee a better generalizability of the networks, by randomly ignoring the denoted

percentage of neurons from the previous layer.

• FCN : Their so called fully-convolutional network consists of three 1-dimensional con-

volutions followed by a batch-normalization (Ioffe and Szegedy, 2015) and an activation

function. Each convolution operates with a different sliding window (decreasing in size

from 8 over 5 to 3) and applies a different number of filters (128, 256, 128). The output

of the last convolution is then passed through a global Average Pooling-Layer to reduce

dimensionality (by taking the average along each feature axis) before the final output is

produced in a similar fashion to the MLP.

• ResNet: The residual network is the ''deepest'' architecture employed, consisting of three

modules, where each module is basically a full FCN (without input and output layer). A

shortcut connection is added between those modules (also called ''residual blocks'' - hence

the name) to enable the gradient flow directly through the bottom layers.

In their paper, Wang et al. (2016) then continue to validate those models against a subset of

the UCR data, comparing them against established nearest neighbour methods such as COTE.

They conclude that both FCN and ResNet are able to classify time-series with good accuracy,

without a statistical significant difference in performance to COTE. Despite this, they conclude

that the FCN yields the best results overall (giving the best accuracy in 18 out of the 44 tested
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datasets, five more than the second place) and is able to generalize quite well, even though the

training accuracies are close to 100%. ResNet, while achieving comparable performance, has a

more limited generalizability, thus scoring slightly lower. The authors attribute this to the lack of

complex patterns within the time-series of the UTC data and suggest using such a structure only

for larger or more complex signals. Finally, the results for the MLP architecture are significantly

worse, giving the lowest score across all compared models.

Those experiments have been later repeated in a similar, but more exhaustive study by Fawaz

et al. (2019a). Their work compared the architectures above against other approaches (e.g. a pure

convolutional approach called Multi-scale Convolutional Neural Network (MCNN) developed

by Cui et al. (2016) and another deep architecture called Time Le-Net, originally proposed by

Guennec et al. (2016), to name the more prominent ones). They used the full set of data available

in the UCR archive (containing 85 different TSC tasks) for their experiments, on which ResNet

was revealed to outperform all other approaches significantly by achieving the best accuracy on

50 datasets. It should be noted though, that the FCN took second place with 36 wins (if two or

more architectures achieve the same highest accuracy on a dataset, all of them are denoted as

winners), followed by a large gap to the third place with merely 17 wins.

3.5.1. Deep learning for multivariate time-series

Multi-variate time-series classification represents a special sub-category of TSC, characterized

by additional interactions and co-movements within a group of signals (Liu et al., 2019). Al-

though several specialized architectures have been developed taking this source of information

into consideration (Zheng et al., 2016; Zhao et al., 2017), in principle it is possible to extend all

approaches mentioned in the previous section for the multivariate case. After their analysis for

univariate instances, Fawaz et al. (2019a) continued to compare those specialized architectures

against the extended versions of FCN and ResNet on a dataset of 12 multivariate time-series.

Their results were surprising, revealing that both FCN and ResNet outperformed their more

specialized counterparts, making them better suited for the task at hand. Since then, several

architectures have been proposed to better exploit the aforementioned characteristics, most of

them based on the following ideas:

• Separate convolution across domains: This technique tries to extract temporal features

and inter-signal relationships by applying convolutions in each domain individually. Usu-

ally the temporal convolution is performed first (one each signal) before their results are

combined in a convolution across signals. This order is not a requirement however, and

different versions have been applied as well (e.g. by Alharthi and Ozanyan (2019)).

• Dilated Convolution: In this case, the convolution is not applied to consecutive time-

steps, but instead skips some values in between. Using a sliding window of length = 3
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and a dilatation rate of two, this would mean that in the first step (i.e. the sliding window

is located at the beginning of the time series), the convolution is applied to x0, x2 and x4

instead of x0, x1 and x2, skipping one value in between. For a dilatation rate of 3, two

values would be skipped and so on.

An example of such an architecture was proposed by Liu et al. (2019), with the network dividing

the convolutions into a univariate and multivariate stage (the core concept of which is depicted

in Figure 6). First, the signals are arranged into a 3-dimensional tensor (with the last dimension

being time), before (based on the concept explained above), features are extracted from each

signal using a 1-dimensional convolution along the temporal axis. After this, 2-dimensional

convolutions of various sizes are applied in order to extract information about the interaction

across signals. Different sizes might be able to find different characteristics from the data, with

large-scale filters more likely to detect symmetric properties and small scale filters being able

to discover particular characteristics (Liu et al., 2019).

Figure 6: Core concept of the network proposed by Liu et al. (2019) (slightly simplified ver-
sion). The signals are arranged into a 3-dimensional tensor before applying a convo-
lution across the temporal axis. Afterwards various 2-dimensional convolutions are
applied to extract different features about the relationship of the data. The results
of this stage are then combined for further processing.

The concept of dilated convolution was implemented by Yazdanbakhsh and Dick (2019) in an

attempt to develop a network for recognizing human physical activity (e.g. walking, jogging,

standing) based on data obtained from an accelerometer. It consists of multiple 2-dimensional

convolutions with every second layer using the dilated variant. The simple version consists of

six layers using a dilatation rate of two (only in the time-domain). Their experiments show that

this model is able to deliver accuracies on-par with established classifiers using hand-crated
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features to classify the same datasets.

One of the most recent approaches to the problem (somewhat similar to Liu et al. (2019), but

using a deeper architecture), was proposed by Fawaz et al. (2019b). Their architecture is heavily

inspired by the idea of the so-called Inception-network, originally introduced to the field of

image classification by Szegedy et al. (2014). The core feature of an Inception-layer is the

application of several convolutions (with different filter sizes) at the same time, followed by a

concatenation of the results (see ''Concatenation''-step in Figure 6). The resulting architecture,

referred to as InceptionTime by Fawaz et al. (2019b) is quite complex and contains several

concepts that need to be explained:

• Bottleneck-layer: This layer uses a sliding window of length 1 and applies a number

of filters m where m is considered to be smaller than the number of signals within the

multivariate time-series. Thus, this layer performs a dimensionality reduction to reduce

the input size (note that ifm = 1 the result is basically an univariate time-series).

• Max-Pooling: An operation taking only the maximum value from a sliding window, thus

reducing the output size.

• Residual Connections: Shortcut connections between modules of a network as explained

earlier on the example of the ResNet-architecture.

Figure 7: Overall architecture of InceptionTime according to Fawaz et al. (2019b). The whole
network consists of two inception modules that are connected by residual connections.
Global average pooling is applied to the final output of the inception-layers, before
the final classification is created by a MLP.

The overall architecture of the network can be seen in Figure 7, while the details of a single

Inception-Layer are illustrated in Figure 8. Three of these layers are stacked on top of each

other to form a single inception module. Furthermore, the authors noticed that a single Incep-

tion-network exhibits a high standard deviation in accuracy, which they attribute to the random

weight initialization and the stochastic optimization process itself. To mitigate this effect, they

adopt an ensemble of networks (similar to how COTE uses an ensemble of nearest neighbour

classifiers) and define the final output as the average across all individual models. The number
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of networks to be used was determined empirically on the UCR dataset, concluding that there

are no further significant improvements when using more than 5 of them together. Thus the

model is computationally intensive, but, according to their results, still an order of magnitude

faster than HIVE-COTE and slightly more accurate, outperforming all other CNN approaches

significantly (Fawaz et al., 2019a,b).

Figure 8: Detailed information about the Inception-operation used by to Fawaz et al. (2019b).
First, the Bottleneck-layer is applied, that is a convolutional layer with a sliding
window of size 1 and m filters (in the illustration m = 1). Afterwards, multiple
convolutions of different lengths (10, 20, 40) are executed, and their outputs are
concatenated. Additionally, to increase the robustness against small perturbations a
MaxPooling-operation (on each signal separately, with a window size of 3) followed
by a Bottleneck-layer is added to the final output. All parallel convolutions use a set
of 32 filters resulting in a dimensionality of 4× 32 = 128 for the output.

From the contents explained in this chapter, it should be clear that there is an abundance of

CNN approaches that could be used for time-series classification and the state-of-the-art changes

rapidly (Gamboa, 2017; Fawaz et al., 2019a)). Additionally, from the experiments conducted

on the UCR-dataset, it becomes obvious that determining the best architecture for a single clas-

sification problem is a difficult undertaking. Because most networks introduced in this chapter

have been designed to work best on average, there is always a possibility that they might fail

at a specific task. This underlines the importance of a comparative study of methods for the

GRF-classification problem, as it is almost impossible to identify the most suitable model based

on research with different datasets.

4. The GaitRec-dataset

As this thesis has been designed for the purpose of extending the research conducted by Slijepce-

vic et al. (2017, 2018a,b, 2020), by trying a different approach to solve the GRF-classification
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problem, it would be natural to evaluate it against the same data for easy comparison. However,

the authors have since extended their dataset, publishing a new, publicly available version called

GaitRec in Horsak et al. (2020), including more individual samples. This was motivated by the

fact that it is difficult to obtain annotated large-scale datasets (as required by many supervised

learning applications such as neural networks) and the authors express their hope that it will

contribute to the development of assistive machine learning techniques for gait analysis (Hor-

sak et al., 2020). Therefore, in order to support those ideals, the decision was made to switch to

that new dataset, even though it might reduce comparability to the previous studies. On the other

hand, using publicly available data does not only help to make this research more reproducible

but additionally provides a (first) benchmark for any further experiments or studies using this

database.

As described in Horsak et al. (2020), the dataset is already split into three parts:

• An unbalanced training set consisting of 52,745 trials, in the following denoted as TRAIN.

The term unbalanced refers to the fact the number of samples belonging to each of the

different classes varies, resulting in an unevenly distribution. Patients with ankle injures

are the most frequent, making up 29% of the data, while only a limited number of healthy

(i.e. no disorder) patients are available (11%). The percentages for the other classes are

located somewhere in between those two.

• A balanced training set consisting of 6,308 trials, in the following denoted as TRAIN-

BALANCED, where the number of patients belonging to each class is equal.

• A test set that should only be used for evaluation of the results (i.e. the classifier), in

the following denoted as TEST, containing 22,987 trials. It is important to note that this

dataset is also unbalanced, again limited by the number of measurements for healthy per-

sons.

According to Horsak et al. (2020), the data provided is derived from an existing clinical gait

database from an Austrian rehabilitation centre and was recorded between 2007 and 2018 dur-

ing clinical practice, following the procedures of the rehabilitation centre. The data has been

obtained from a total of 2,295 persons of various age (mean: 41.5, standard deviation: 12.1) and

body mass (mean: 83.6, standard deviation: 17.3), with a male to female ratio of approximately

3 : 1. The following section will give a brief summary of the recording process, with additional

details available from Horsak et al. (2020).

4.1. Data recording

Measurements were taken by two force plates (Kistler, Type 9281B12, Winterthur, CH), placed

in a consecutive order on an approximately 10m long walkway. One or several measurement
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sessions (over the course of the rehabilitation process) were performed by each patient, with each

session consisting of several recordings of two consecutive steps. Such bi-lateral measurements

were taken by asking the participant to walk unassisted (and without walking aid) at a self-

selected speed across a walkway with two embedded force plates until a certain number of valid

recordings (usually 10) were taken. Such a valid recording, referred to as a trial, was defined by a

clean foot strike on each force plate while exhibiting a natural walking pattern. Five signals were

recorded in total, consisting of three ground reaction force components (vertical, medio-lateral,

and anterior-posterior forces) and the two directions of movement for the centre of pressure

(COP) (see Figure 9 for example waveforms of all five signals).

Figure 9: An example recording of all 5 components (processed version, see summary on page
34 ) taken from the dataset provided by Horsak et al. (2020). The data represents a
single measurement taken from a healthy person (i.e. their shapes are representative
for normal gait). F denotes the force components (V = vertical, AP = anterior-
posterior, ML = medio-lateral) and COP the centre of pressure

Those five components were then transformed into digital signals using a sampling rate of

2000Hz and a 12-bit analogue-digital converter (DT3010, Data Translation Incorporation, Marl-

boro, MA, USA) with a signal input range of ±10V. The available data was downsampled to
250Hz and a threshold of 35N was applied to all force components, with the COP being calcu-

lated afterwards. The data obtained in this fashion (denoted by the keyword raw, as no further

processing was applied) is available as part of the GaitRec archive (Horsak et al., 2020).

The other part of the dataset was refined further, calculating the COP only when the vertical

force reached 80N. Furthermore the medio-lateral coordinates were centered around the mean,
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while the anterior-posterior ones were centered at zero (resulting in a normalization to% stance).

All signals where then filtered by a 2nd order low-pass butterworth filter with a cut-off frequency

of 20 Hz and temporally aligned to start with the initial contact and end with the toe off before

time-normalizing them to 100% stance (i.e. 101 time-steps) by re-sampling. In order to provide

comparability across individual subjects, the amplitudes of the force components were normal-

ized to be expressed as multiples of the body weight by dividing them by the product of body

mass times acceleration due to gravity. Additionally, Horsak et al. (2020) excluded outliers as

well as sessions with less than three trials from the dataset.

The dataset wasmanually annotated by awell-experienced physical therapist, based on the avail-

able medical diagnosis of each patient, featuring one of five main categories (depending on the

location of the injury). The following list provides an overview along with the most common

injuries for each class:

• Hip: Fractures of pelvis/tight, luxation of the hip joint, coxarthrosis, total hip replacement

• Knee: Fractures of patella/femur/tibia, rupture of the cruciate/collateral ligaments ormenisci,

total knee replacement

• Ankle: Fractures of the malleoli/talus/tibia/lower leg, ruptures of the ligaments orAchilles

tendon

• Calcaneus: Calcaneus fracture, ankle fusion surgery

• Healthy control: No injuries

Note that a more detailed annotation based on these injuries is available, but was not used in this

research due to the focus on detecting the associated joint for a gait impairment, rather than the

specific type of the disorder. The key points of the processed version of the dataset can thus be

summarized as follows:

• Each measurement consists of five components: vertical, anterior-posterior and medio-

lateral force components (F_v, F_ap, F_ml) and the COP movement in anterior-posterior

and medio-lateral direction (COP_ap, COP_ml).

• All signals were temporally aligned (to 100% stance) and re-sampled to 101 points (i.e.

time-steps).

• Measurements were taken for the right and left leg of two consecutive steps, resulting in

data being available for the affected and unaffected leg (although, in some cases both legs

are injured and this separation does not apply).

• A single recording consists of several Trials (i.e. multiple measurements) conducted in

immediate succession, resulting in several instances of the same problem.
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5. Methods

When developing a strategy to determine the best possible combination of neural network type

and pre-/post-processing methods, it is important to take the characteristics of the the problem

that should be solved into consideration. Most of the network architectures examined in this

research, have been proposed for a task different then GRF-classification, while the majority of

the data preparation steps are problem specific and have been evaluated on GRF-data before.

This discrepancy makes a structured approach an absolute necessity in order to verify the impact

of each step in the classification process on the final accuracy. The proposed method splits the

workflow into several distinct parts, enabling the isolated evaluation of each component in order

to find a good solution for the associated task. This procedure is illustrated in Figure 10 and the

sections within this chapter are structured according to this general outline. Starting from the

beginning of the graph (at the data selection step), the methods used in each component will be

introduced and explained, detailing their influence on the classification process.

Figure 10: An outline of the general workflow for the classification of GRF-measurements used
in this thesis. Each depicted component can be evaluated individually in order to
estimate its influence on the achieved accuracy, revealing the combination(s) with
best performance on the task.

5.1. Data Selection

As mentioned in Chapter 4, the GaitRec dataset used in this research consists of the three sub-

sets TEST, TRAIN and TRAIN-BALANCED. While the latter has been prepared in a fashion that
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removes possible biases from the data, the first two have not received the same treatment. There-

fore, a dedicated data selection step is required, filtering out samples that could have a negative

influence on accuracy. The following variables from the dataset have the potential of biasing

the results if maintained during training and/or testing of the classifier:

• Walking speed: While measurements for patients were generally taken at a self-selected

walking speed, this is not the case for the healthy control group. Their recordings are

available at three different speeds (slow, fast and self-selected).

• Orthopaedic shoes/insoles: Some of the participants used such orthopaedic aids, known to

have an impact on the walking patterns, resulting in possible distortions of the respective

waveforms.

• Readmissions: Monitoring the individual progress of each patients, typically resulted in

several measurements taken during the rehabilitation process, corresponding to different

levels of severity for each injury. Therefore, the inclusion of such samples might blur the

boundaries between the classes, as they are expected to become more similar to those of

healthy persons.

• Injuries on both legs: Since Slijepcevic et al. (2018b) demonstrated that using the data of

the unaffected side provides a valuable contribution to the classification accuracy, lower

performance can be expected for this group, because that additional information is not

available/different for such patients.

Furthermore, only one of the three datasets features an equal distribution of samples for all avail-

able classes. This is problematic, because imbalanced data is known to bias machine-learning

algorithms towards the majority group (Krawczyk, 2016). Due to this behaviour, the classifier

is more likely to perform well if trained on a balanced dataset, a result which has been confirmed

by Slijepcevic et al. (2018a) for GRF-measurements. In addition, the biases mentioned earlier

have been removed from the TRAIN-BALANCED dataset, meaning that it does not include dif-

ferent walking speeds, readmissions, patients wearing orthopaedic shoes/insoles or with injuries

on both legs. However, those samples still exist within the TEST and TRAIN sets and care has

to be taken when evaluating the classifier.

5.2. Pre-processing Methods

In the context of this thesis, pre-processing refers to four distinct steps conducted in order to

prepare the data for being processed by a neural network. In principle, all of the steps listed in

this section are entirely optional, but often result in better performance when applied.
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5.2.1. Normalization

Because the activation of a single neuron within a neural network is computed as a weighted sum

of the inputs (see Section 3.2), different data ranges can introduce a bias within the classification

(Nayak et al., 2014). In a typical machine learning application, this is prevented by applying

some form of normalization to the data, before forwarding it to the neural network. Even though

the GRF-measurements used in this research have already been normalized with respect to the

individual (i.e. expressed as multiples of the body weight), the signals still differ considerably

in their range, with the vertical component typically exceeding the others by a factor of 5 (or

larger, see Figure 9), suggesting that additional normalization is needed. Since the choice of

normalizationmethod has been shown to have an influence on the quality of the classification for

time-series data Bhanja and Das (2018), the following two common techniques are investigated:

• Min-max normalization: The values are rescaled to be within the range [a, b] by applying

Formula 3:

X̃ = a+
(X −min(X)(b− a)

max(X)−min(X)
(3)

• Z-score normalization: The values are normalized to zero mean and unit variance, using

the Formula 4 with µ as the mean and σ as the standard deviation:

X̃ =
X − µ

σ
(4)

5.2.2. Resampling

Since GRF-measurements are produced by discretization of a continuous process, the question

of how to determine the ideal sampling-rate in order to be able to accurately represent the orig-

inal signal, arises. Because the sampling rate is directly proportional to the dimensionality of

the data, it is also connected to computational efficiency. Higher-dimensional data demands

more hardware resources for processing, resulting in a trade-off between speed and accuracy of

the signal representation. Unfortunately, an accurate representation does not necessarily corre-

late with an accurate classification, because the information contained within the signal can be

highly redundant. An example for different re-samplings of the vertical component of a GRF-

measurement is illustrated in Figure 11, where a re-sampling X̃k of the original series X is

defined as:

X̃k = {x0k, x1k, x2k, . . . , x⌊
100
k

⌋
k} (5)

In other words, to prepare a concrete example, the series X̃2 consists of every second value

contained in the original data. The main purpose of this process is to investigate the amount of

data that needs to be maintained in order to obtain an accurate classification. Or, to be more
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Figure 11: Comparison of the original data (101 points) and different resampling intervals.
resampling_5 indicates that only every 5th data-point is used to represent the
signal. It can be observed that, while the amount of information lost increases with
the length of the interval, the general outline of the curve is maintained, even if
only 7 points remain.

specific, the task of determining the maximum k for all possible re-samplings X̃k, so that the

classification accuracy is not significantly decreased when compared to the original series X .

5.2.3. Aggregation of trials

Another factor well known to influence the accuracy of machine learning methods is the amount

of data available. It has been stated by Roh et al. (2019), that not having enough training data is

one of the major problems in this field. Determining the right amount of data, however, is not a

trivial task and depends on many factors such as the classification problem itself, the complex-

ity/dimensionality of the data and of course the neural network architecture. Fortunately, the

dataset used in this research provides an easy way of obtaining more training-data by making

use of individual trials.

As stated earlier, it is a common procedure to record several trials during a single gait analysis

session. Several studies (Christian et al., 2016; Eskofier et al., 2013; Soares et al., 2016) propose

calculating the mean waveform across all trials before further classification, to produce a more

robust representation. Because the neural network tries to learn distinctive features for each

class, this is a promising approach, helping to reduce the variability within the data. Nonetheless,
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each trial represents a valid measurement and could be used individually if more training data is

required. This would increase the number of available samples almost by a factor of 10 without

the need to artificially create more samples by augmenting the data, possibly resulting in a more

reliable classifier since all actual measurements are accounted for.

5.2.4. Ordering

The general form of representation for GRF-measurements is a time-steps× components ma-

trix (or time-steps× 2 · components, if the data from both legs is used). As this study focusses

primarily on utilizing data from both the affected and the unaffected side, the available matrix

has a dimensionality of 101 × 10. When inputting this data into a CNN, the last dimension is

generally referred to as channels and in the case of a 1-dimensional network, all of them are used

in a single convolution operation. Since the network is able to learn and adapt the weights that

are applied to each channel, the order of the components within the last dimension is irrelevant

(i.e. the same weights are learned for a signal, independent of its position). This is an impor-

tant characteristic since there is no inherent ordering (except time) between the components in

a GRF-recording.

However, when using a 2-dimensional CNN, the sliding window does not only move along

the temporal axis, but along the component axis as well. Hence, depending on the size of the

window, the order becomes relevant, as it determines the selection of signals considered in the

convolution. There is a wide range of possibilities on how to arrange the signals, but usually

rectangular shapes are preferred (because otherwise the data would have to be padded with

zeros). Since the number of available signals for the GRF-data is rather limited, the number

of possible data layouts is restricted as well. For example, for the spatio-temporal 3D matrix

proposed by Costilla-Reyes et al. (2018), the signals can only be arranged as either a 2 × 5 or

5 × 2 matrix, with the time-steps added as the last dimension. The following list outlines the

possible layouts, alongside their characteristics and possible advantages for the classification:

• 101×10×1: This format is the most flexible one, as any number of signals can be selected

by adapting the window size.

• 101× 1× 10: Using this layout should achieve similar results to the 1-dimensional case,

as the height of the window needs to be equal to 1.

• 2×5×101: This method, that encodes the time as the channels, was successfully applied

to GRF-data by Alharthi and Ozanyan (2019) (although they had more signals available).

Note that the order of the first two dimensions does not matter, as the same effect can be

obtained by exchanging the height and width of the sliding window.

• 101 × 2 × 5: The force components are still encoded as the channels, but they are split
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into the affected and unaffected side (i.e. the legs can be considered separately or in

combination).

• 101× 5× 2: Similar to above but enables comparisons between legs for each individual

signal).

5.3. Image Transformations

In order to benefit from the high accuracy that CNNs have been able to achieve on image classi-

fications tasks for TSC purposes, the idea of transforming a time-series into an image was pro-

posed (Gamboa, 2017). One of the first approaches was presented by Wang and Oates (2015a),

but multiple different methods were developed since (Elias et al., 2015; Hatami et al., 2017;

Garcia et al., 2020). The key idea behind this principle is simple: A time-series does not only

contain information in time domain, but also, for example in frequency domain. If both domains

are presented simultaneously, it can be visually represented as an image (Verstraete et al., 2017).

Spectograms, commonly used to visualize audio signals are a good example of such a process.

As Garcia et al. (2020) states, a good image encoding should be able to extract relevant patterns

for the classification, while at the same time being resistant against noise and small perturba-

tions. As such, it should be obvious that different encodings work well for different types of

time-series. In the following three (four to be exact, but two of them are very similar) image

transformations will be introduced that have demonstrated good classification accuracy on mul-

tiply datasets of the UCR archive (Wang and Oates, 2015a,b; Hatami et al., 2017) and therefore

seemed promising to deliver good representations for GRF-measurements.

5.3.1. Gramian Angular Fields (GAFs)

The idea of Gramian Angular Fields has first been published by Wang and Oates (2015a), who

later refined their idea further (Wang andOates, 2015b) by introducing both theGramianAngular

Summation Field (GASF) and the Gramian Angular Difference Field (GADF) for TSC tasks.

Both use the idea of a polar coordinates based representation to visualize the time-series by

introducing the following transformations for a time series X = {x0, x1, . . . , Xn} for n real-

valued observations:

• Rescale X so that all values are in the interval [−1, 1] or [0, 1] by

x̃t =
(xt −max(X) + (xt −min(X))

max(X)−min(X)
or (6)

x̃t =
(xt −min(X)

max(X)−min(X)
respectively. (7)
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• Transform into polar coordinates (φ, r) as follows:

φ = arccos(x̃t) with − 1 ≤ x̃t ≤ 1, x̃t ∈ X̃ and r =
t

N
, t ∈ N (8)

where t is the timestamp and N is a constant factor to regularize the span of the polar

coordinate system.

• Consider the trigonometric sum/difference between the points to identify temporal corre-

lations:

GASF = [cos(φi + φj)] and (9)

GADF = [sin(φi − φj)] (10)

• This creates the following matrix (only the GASF example is illustrated here, but the

GADF is obtained in a similar fashion):

GASF =


cos(φ1 + φ1) . . . cos(φ1 + φn)

...
. . .

...

cos(φn + φ1) . . . cos(φn + φn)


The whole process has been illustrated in Figure 12. Note that the different methods of rescaling

will lead to different angular bounds. The interval [0, 1] corresponds to the angular bounds [0, π
2
],

while the values in the interval [−1, 1] are bounded by [0, π], providing different information

granularity. For a detailed discussion on how to interpret the resulting images please refer to

Wang and Oates (2015b), for the purpose of GRF-classification it is sufficient to know that

temporal dependencies are preserved (since the time increases from top-left to bottom-right) and

temporal correlations are contained becauseGAFi,j||i−j|=k represents the relative correlation by

superposition/difference of directions of the considered time interval k.

On a final note, it should be mentioned that originally, only the GASF was used for image

classification (Wang and Oates, 2015a), while the GADF was introduced later (Wang and Oates,

2015b) to be used in combination for enhancing accuracy. While some improvements weremade

in Wang and Oates (2015b) by using both transformations, it has to be remarked that accuracy

was only increased slightly for most datasets. This suggests that the features extracted by GASF

and GADF respectively are largely similar and the information gain by combining them is small.

However, this was not investigated any further byWang andOates (2015b), making it impossible

to deduce any further differences between those methods (e.g. if one of them is superior to the

other).
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Figure 12: Converting a time-series into a Gramian Angular Field on the example of the vertical
force component (f_v). In the first step, the time-series is transformed into the
polar coordinate system and then the GASF and GADF are obtained by summation
and subtraction respectively.

5.3.2. Markov Transition Field (MTF)

The Markov Transition Field is another idea introduced by Wang and Oates (2015a). It is ob-

tained by representing theMarkov transition probabilities sequentially in order to preserve infor-

mation about time. Taking a time seriesX , the first step in this encoding consists of identifying

a number of quantile bins Q and assigning each xt to its corresponding bin qj where j ∈ [1, Q].

Next, a Q × Q adjacency matrix W is created by counting the number of transitions along the

time axis (in the manner of a first order Markov chain). In other words, wi,j gives the num-

ber of occurrences of the following event: Point pt from quantile qi is followed by point pt+1

from quantile qj . The final Markov transition matrix is then created through normalization by∑Q
i=1wi,j = 1.

From the Markov transition matrix, the n×nMTFmatrix is created by spreading out the Matrix
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W along the time time domain, resulting in:

MTF =


wi,j|x1∈qi,x1∈qj . . . wi,j|x1∈qi,xn∈qj

wi,j|x2∈qi,x1∈qj . . . wi,j|x2∈qi,xn∈qj
...

. . .
...

wi,j|xn∈qi,x1∈qj . . . wi,j|xn∈qn,xn∈qj



Figure 13: Converting a time-series into a Markov Transition Field on the example of the
anterior-posterior force component (f_ap), using 20 quantile bins. After the MTF
has been created, a 7 × 7 blurring filter is applied in order to make the edges
smoother and obtain the final image.

Thus the value of aMTFi,j denotes the likelihood (as calculated inW ) of a transition between

the bin in which xi is placed and the bin of value xj . As such, theMTFmatrix encodes the multi-

span transition probabilities found in the time-series X and Mi,j||i−j|=k gives the likelihood of

a transition between points with the time interval k. The authors further suggest to apply a

blurring filter to each non-overlapping m × m patch of the resulting image to make the size

more manageable. For filtered or low-frequency time-series, this has the additional advantage

of spreading out the information. This effect can be observed in Figure 13, illustrating the

transformation process.

On the datasets tested by Wang and Oates (2015a), the classification based on MTF images

generally achieves a better accuracy than the GASF variant, but unlike the example of GASF and

GADF discussed earlier, a combination of both inputs enhances accuracy significantly. It seems

like both variants extract different features from the time-series, that are able to complement

each other when used together. Therefore the authors suggest to always use a combination of

GASF and MTF (or GASF, GADF and MTF in their later paper) for image based TSC using

CNN, by encoding the combined information into a multi-channel image (similar to how in a

RGB image each pixel is represented by three values, storing the red, green and blue colour

components separately, they propose a format consisting of a GADF, GASF and MTF value).
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5.3.3. Recurrence Plot (RCP)

According to Hatami et al. (2017), time-series are characterized by a distinct recurrent behaviour

(e.g. periodicities and irregular cyclicities). Typically, time-series are generated by dynamic

nonlinear systems or stochastic processes, where the recurrence of states is a common phe-

nomenon. Recurrence plots, introduced by Eckmann et al. (1987), take an existing time-series

and transform it into a matrix of recurrences. This transformation is able to reveal the points

in which some trajectories return to a previous state (Garcia et al., 2020). To obtain a recur-

rence plot from a time-series, the following steps are described by Eckmann et al. (1987) to be

followed in practice:

• An embedding dimension d needs to be chosen to construct the d-dimensional orbit of xt.

• Next, a time-delay embedding (τ ) needs to be set to create the phase space trajectory.

• More specifically a state Si is defined by Si = (xi, xi+τ , xi+2τ , . . . , xi+(d−1)τ )

With those variables defined, each pixel in the recurrence plot is given by the following formula

(Hatami et al., 2017):

RCPi,j = θ(ε− ||Si − Sj||), S ∈ Rm, i, j = 1 . . . K (11)

Figure 14: Creating the 2-dimensional phase space with the time-delay embedding τ = 3 on
the example of the medio-lateral force component (f_ml). The distance between
those states is then used for creating the recurrence plot (according to formula 8).
To make the image visually recognizable and avoid clustering, only every 5th state
has been labelled in the middle plot.

In this equation,K is the number of (recurrent) states S that are considered,m is the dimension-

ality of each state and || · || is a norm (typically the euclidean norm is used). The parameter ε

denotes a threshold distance and θ() is the Heaviside function, and their application will result in

a binary image, containing both texture (dots, lines) and typology information (e.g. drifts period-

icity, homogeneity). which can be used to analyse the time-series (Eckmann et al., 1987). Note,

however, that the binarization used in this process results in the loss of information about the
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time-series. Therefore, this step is commonly skipped in automated TSC using CNNs (Hatami

et al., 2017; Garcia et al., 2020) resulting in the usage of the simplified formula:

RCPi,j = ||Si − Sj|| (12)

Figure 14 illustrates the steps to be followed in order to obtain a recurrence plot using the medio-

lateral force component as an example. Hatami et al. (2017) was one of the first to use the com-

bination of RCP and CNN for time-series classification, revealing that this approach performs

better than the combination of GAF and MTF proposed by Wang and Oates (2015a) (and other

CNN architectures) on a certain subset of the UCR data.

All of the image transformations introduced above have the common disadvantage that they

have been developed exclusively with univariate time-series in mind. To adapt them for the

multivariate case, careful consideration is necessary because the standard technique of simply

creating one long vector by concatenation is likely to fail. This process is expected to introduce

jump discontinuities at the fusion points, resulting in artefacts that might dominate the resulting

image. An example for such a behaviour is depicted in Figure 15, where the square-like patterns

and the overall cross-shape are entirely due to jump discontinuities.

Figure 15: Result of concatenating all five GRF-measurements before the image transforma-
tion. Depicted is the resulting GASF for a randomly selected healthy patient.

While stacking images for each signal on top of each other (in a similar fashion to the approach

used by Wang and Oates (2015b) to combine GASF, GADF and MTF) is one possibility, this

will result in pictures with at least 5 channels (or even more if different transformations are

combined) resulting in higher computation time. In order to alleviate that concern, the signals

of a single measurement can be fused together in a continuous fashion by the following method:

Let x100 denote the last value of signal X and y0 be the first value of the next signal Y . When

concatenating X and Y the following transformation is applied to Y :

yi = yi + (x100 − y0), i = 0, 1, . . . , 100 (13)
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5.4. Neural Network Architectures

Because this thesis is of a comparative nature, its goal is to evaluate a number of different models

on the GaitRec-dataset, identifying the ones with highest performance. For this purpose, the

most successful networks, developed for time-series classification and evaluated on the UCR

dataset (see Section 3.5, that have shown high accuracy for multivariate time-series have been

selected. The following architectures will be implemented and compared:

1. FCN: As developed by Wang et al. (2016), making use of 3 convolutional layers.

2. ResNet: A residual network using the FCN as a building block for a deeper architecture.

Proposed alongside the FCN by Wang et al. (2016)

3. InceptionTime: The most recent and complex variant with the best performance on the

UCR dataset. Implemented as described byFawaz et al. (2019b) but without building an

ensemble.

The ensemble-based approach has been omitted because it would introduce a bias into the final

comparison. Since it can be assumed that all architectures are equally sensible to the random ini-

tialization and stochastic procedures, using an ensemble for just a single network would provide

an unfair advantage. Since it was computationally infeasible to conduct such a broad compari-

son with ensembles for each type of network, it was decided to just use the basic form of each

model.

Apart from this already established approaches, an attempt is made to build a comparable so-

lution out of the basic components introduced in Chapter 3, expanding on those concepts by

stacking more (or different) layers on top of each other, finding the most suitable combination

for GRF-classification. On top of this structural changes, each type of layer additionally fea-

tures a certain number of parameters that have to be determined as well. Naturally, this leads

to a high diversity in the networks providing many options for the task. The network compo-

nents and parameters implemented and compared in this thesis, are introduced in the following

sections.

But before delving deeper into the details, an import concept when assessing the performance of

such networks needs to be established. The term overfitting is used to describe a phenomenon

commonly observed when training neural networks, where the model starts to recognize char-

acteristics of the individual samples instead of generalizable features representative for a certain

class. This results in a high accuracy on the training-data that is not transferable to other datasets

(e.g. the validation- or test-set). During the training process this is indicated by an increase in

the loss-function for the validation-set, while the one for the train-set keeps decreasing (see Fig-

ure 19 & 21 in Section 7 for a reference). Because this behaviour is generally undesirable, neural

networks aim to reduce the influence of overfitting as much as possible, by making use of some
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specialized techniques detailed in the next section.

5.4.1. Basic Architectures

Themost basic architecture evaluated in this research is anMLP(see Section 3.2 for an overview).

Due to its low complexity, the number of modifications and parameters is quite limited. The fol-

lowing options are explored for the MLP:

• Layers: The number of hidden layers within the network.

• Neurons: The number of neurons used in each hidden layer. The value can differ between

layers within the same network.

• Batch-normalization: This concept has been introduced by Ioffe and Szegedy (2015), in

order to optimize the learning process within a network. It is usually added after each layer

to re-normalize (by re-centering and re-scaling the data to zero mean and unit variance)

the output according to the currently processed batch of samples. In theory, this enables

faster and easier learning for the next layer, as the variability of its input is reduced.

• Dropout: Amethod that has been proposed by Srivastava et al. (2014) to prevent overfit-

ting of the network, by randomly ''dropping out'' (temporarily removing a neuron from the

network together with all its connections) a certain percentage (i.e. the so-called dropout-

rate) of the nodes.

Because most models implemented in this thesis use some kind of MLP for the final classi-

fication (usually with a single hidden layer), the parameters given above are used for those

architectures as well, with the dropout-rate being independent from dropout that might have

been applied to previous layers. Consequently, the number of parameters is increased for those

networks, adding to their perceived complexity. In the case of convolutional layers (as used by

the CNN) the additional variables given below need to be specified:

• Layers: The number of convolutional layers within the network.

• Kernel-size: The size of the sliding window used in each layer. Can be either 1- or

2-dimensional, depending on the type of the convolution.

• #Filters: The number of filters (i.e. different views on the data) applied in each layer.

• Pooling: A feature reduction layer applied after the convolution. It takes a number of

values within a sliding window (defined by pool-size) and aggregates them depending

on the type of the pooling operation. Max-pooling (i.e. taking the maximum value) and

average-pooling (taking the mean) are investigated in this research.

• Separable convolution: Only applicable for 1-dimensional CNNs. The convolution is

divided into one operation across time-domain (applied first, for each component individ-
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ually), followed by a convolution across signal-domain.

• Strided convolution: The convolution is not applied at every point, but instead skips some

values. For example, when using a stride of three, the convolution is applied to the first,

forth, seventh (and so on) value.

• Dilated convolution: The sliding window is dilated, applying the convolution to non-

consecutive values (e.g. every second value would be considered for a dilation-rate of

2).

• Skip-connections: Concatenating the features extracted by each layer to the original in-

put before passing them on to the MLP (i.e. both, the original data as well as the new

representations are considered for classification).

• Batch-normalization & Dropout: Same as for the MLP, with the dropout for CNN and

MLP operating independently.

Furthermore, it was investigated whether an approach similar to Liu et al. (2019), basically con-

sisting of two convolutions, one for each dimension (i.e. time and signal) of the data , would

work well with the given data. For this purpose, a two-layered 2-dimensional CNN was em-

ployed, restricting one of the dimensions of the kernel in each layer to one (i.e. (x, 1) in the first

and (1, y) in the second layer). Thus, a convolution along the temporal axis is computed first,

followed by a convolution in signal domain in the next layer. Apart from those restrictions, all

other parameters are applied as listed above, for determining the most accurate network. This

approach will be denoted as 2DCNN-1DKernels in the remainder of this thesis.

Performance of these models is compared to the two convolutional architectures proposed for

GRF-measurements by Alharthi and Ozanyan (2019):

• GRF-1D: This network consists of four convolutional layers using a kernel-size of 2,

doubling the number of filters in each layer starting from 12 (i.e. 12, 24, 48 and 96). Each

layer is followed by max-pooling with a pool-size of 2, and a dropout of 50% after the

final pooling operation. The output is then analysed by an MLP featuring 50 neurons and

a dropout rate of 20%

• GRF-2D: Three 2-dimensional convolutions (each with a kernel-size of (2, 2) are applied

using 12, 24 and 48 filters, each layer followed by average pooling with a pool-size of

(2, 2). This block is being followed by a dropout of 50% and an MLP consisting of 100

neurons.

It is important to note that the 2-dimensional network employed by Alharthi and Ozanyan (2019)

uses a spatial encoding of the signals, by arranging them in a 2-dimensional form, encoding

the time-steps as the channels of the series. Because, only a limited number of signals are

available in theGaitRec dataset, two variants of the network were implemented. In the first one,
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the network is not modified, giving up on their special data arrangement (i.e. using the same

time-steps × signals representation as the other architectures). The second variant, referred

to as GRF-2D-modified reorders the data into a tensor of shape 2 × 5 × 101, with the first

dimension corresponding to the leg, the second to the signals and the last to the time-steps. The

network was adapted to use only two layers (instead of three) with kernel-sizes of (2, 1) and (1,

2) respectively, while (all other settings remained the same.

5.4.2. LSTM Architectures

An LSTM layer can be applied with or without and addedMLP, adding the following parameters

to the ones previously introduced:

• Layers: The number of LSTM layers within the network.

• Units: The number of memory units used in each LSTM layer. Note that the length of the

time-series puts an upper limit on this value because it is not useful to try to remember

more time-steps than present in the series.

• Dropout: Same as for the MLP, but operating independently.

• Recurrent Dropout: The same concept of dropout, but being applied to the recurrent con-

nections within the LSTM.

Again, the performance of these networks is contrasted to a model successfully used by Alharthi

and Ozanyan (2019) to classify GRF-measurements:

• GRF-LSTM: This architecture uses two stacked LSTM layers, the first one consisting

of 100 and the second one of 40 units, employing both dropout and recurrent dropout of

20% in each layer. This is followed by batch-normalization and a dropout of 50% before

employing an MLP with 20 neurons.

In addition to such basic LSTM architectures, different combinations of LSTM and CNN are

explored as well, as they might be able to yield better accuracy (see Section 3.4). In such a case,

all of the parameters listed previously were investigated in the following two settings:

1. Serial architecture: In this setting, CNN and LSTM are applied in serial, with the LSTM

layer following after the convolutional layers. In other words, the LSTM is used to analyse

the temporal dependencies between the additional features extracted by the CNN and

might thus learn a better representation of the whole series.

2. Parallel architecture: CNN and LSTM are employed independently, concatenating their

outputs before the final classification (done by anMLP). TheMLP is than able to consider

the features learned by both types of architectures, possibly increasing accuracy even

further.
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Finally, the combination of LSTM and CNN proposed by Karim et al. (2018a) is investigated

as well, due to the high accuracy it achieved on the UCR dataset (outperforming several pure

CNN approaches) and a specific adaption for multivariate time-series (Karim et al., 2018b) be-

ing available. Their architecture is based on the convolutional network developed by Wang

et al. (2016) (being explained in Section 3.5) used for extracting short-term dependencies and

an LSTM applied in parallel to examine the long-term features. Similar to the concept above,

their results are concatenated and classified by an MLP afterwards. Despite the high accuracy

achieved, the usage of the LSTM in their model remains heavily disputed, because it is pre-

ceded by a dimensional shuffle (basically transposing the time-series), applying the LSTM to

the signal dimension instead of along the temporal axis. As the functionality of the LSTM in

such a situation is highly obscure, its usefulness was investigated in a follow-up paper Karim

et al. (2019), revealing that the network including the dimensional shuffle performs better than

without. While this provides some insights on the performance of the approach, the actual rea-

soning remains unclear. The authors speculate that this is due to the LSTM (without dimensional

shuffle) and CNN part extracting the same information form the signal, thus not being able to

benefit from each other.

In a later study (Karim et al., 2018b), this architecture was extended for multivariate time-series

by adding a squeeze-and-excite block (Hu et al., 2018) after the first two convolutional layers.

According to the authors, this is essential to enhance performance for multivariate time-series,

because it adaptively recalibrates the learned feature maps. As such, the whole process can be

considered as form of a self-attention mechanism applied to the output of the preceding layers.

The block's main functionality consists of capturing the dependencies across signals, trying to

identify and put special attention to the more important ones. In other words, it is a more sophis-

ticated attempt of extracting inter-correlations between signals, that outperformed their previous

approach on the tested multivariate datasets.

While evaluating this kind of architecture, in the following referred to as LSTM-FCN, seems

promising due to its high performance on time-series data, the obscurity remaining about the

actual contributions of the different components is slightly concerning. Therefore, several types

of this network are examined by enabling/disabling the dimensional shuffle and/or the squeeze-

and-excite extensions.

5.4.3. Image Architectures

Because the form of the input is fundamentally different after an image transformation is ap-

plied to a time series, special architectures are required in order to classify them. Wang et al.

(2016) proposed the usage of tiled convolutional networks while Hatami et al. (2017) used a

simple two-layered 2-dimensional CNN for the same task, achieving comparable results. Ac-
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cording to Wang et al. (2016), tiled convolution has been adapted because of its ability to learn

invariant features and the reduced requirement for labelled training data. However, the dataset

chosen for this research provides a sufficient amount of labelled instances and the invariances

learned (predominantly scale and rotational, see (Ngiam et al., 2010) for more details) are most

likely irrelevant for the given data. Taking a look at the examples given in Section 5.3, it can be

observed that the features are distinctly different from traditional image classification (e.g. no

objects and edges) making the benefit of more complex feature extraction techniques question-

able. Therefore, the network described by Hatami et al. (2017), will be the primary reference

for this research:

• IMG: A two-layered 2D-CNN using a kernel-size of (3, 3) with 32 filters followed by

max-pooling with a pool-size of (2, 2) and dropout (25%) in each layer. The output is

then processed by a MLP with 128 neurons and dropout of 50% before the final output-

layer.

This network has been originally developed for univariate time-series, but can be easily adapted

to the multivariate case by increasing the number of channels, depending on the signals and

number of image transformations used for the classification. Even though it would be possible

to apply this prodecure to other well established image-recognition CNNs too, those networks

are usually built with 3-channel images (i.e. RGB-format) in mind and would have to be re-

trained from scratch to adapt to a different input format, making their effectiveness questionable

(because they have been designed and evaluated for a different task).

In order to avoid those problems and leverage state-of-the-art image classification networks,

Karimi-Bidhendi et al. (2018) propose a different technique for multivariate time-series. Their

method consists of creating a n× n transformed image (more specifically, their research is de-

voted to the GADF-transformation) for each signal k, concatenating them vertically (or horizon-

tally) to create a single image with height = kn and width = n (for the vertically concatenated

case). They continue by taking a pre-trained version of a well established image classification

network (Google's Inception v3 to be exact), removing the final output layer, using it solely for

feature extraction. This new set of features (in this case a vector of length 2048) is then used as

an input to a classical MLP, with three hidden layers, making this part the only one that is actu-

ally trained. Final testing on the UCR archive (for the univariate case) and several multivariate

series reveals that their architecture shows incredibly performance (considering the results ob-

tained byWang and Oates (2015a), where GAF andMTF had to be combined to be competitive)

outperforming all ensemble-classifiers and evaluated neural networks.

The main characteristics of this approach, in the following referred to as IMG-Inception when

applied to GRF-measurements are:

• Each signal is transformed to an image separately, but the outputs are arranged to form
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one single, larger image (i.e. images are placed right next to each other).

• Features are extracted by passing the image through the Inception v3 network (with the

final classification layer removed). The model is already pre-trained (i.e. the weights are

already set).

• Because the Inception v3 network is trained on RGB-images, the input to that architecture

must have three channels, requiring a conversion of the image to RGB based on a pre-

defined mapping.

• An MLP with three hidden layers (800, 400 and 100 neurons), each followed by batch-

normalization and a dropout of 50%, is used to classify the output obtained from Inception

v3.

5.5. Post-processing Methods

The aggregation of trails has already been mentioned in Section 5.2.3, but there exist further

methods besides using the mean of each waveform to combine their information. Slijepcevic

et al. (2020) discuss a so called late fusion approach (the name is derived from the fact that

the aggregation takes place after the actual classification, in contrast to early fusion approaches

such as taking the mean waveform), based on majority voting. This idea is based on the obser-

vation that there is a high variability within the individual trials and since the mean is known to

be sensible to outliers, such measurements might lead to a distortion of the results. Therefore,

Slijepcevic et al. (2020) suggest to use the classifier to predict each individual trial instead, com-

bining the resulting class labels into a single final one by calculating the statistical mode. Their

results indicate that this approach is somewhat superior to early fusion, achieving an accuracy

of 61% (compared to 58.9% for the mean waveform) on a SVM.

According to their reasoning, this difference is due to the partial removal of available input

information at an early stage (when early fusion is applied) resulting in a less robust classifier.

Whether or not this hypothesis is applicable to neural networks as well, is investigated as a part

of this thesis by the methods discussed in Section 5.2.3, while this part is solely dedicated to

examining the effects of majority voting itself. The method proposed Slijepcevic et al. (2020)

only considers trials with a likelihood of at least 40% for one of the five classed when producing

the final label, thus reducing the negative influence of ambiguous trials. As such, it implements a

very simply weighting procedure, differentiating between trustworthy and untrustworthy trials.

Therefore, the benefits of majority voting can not be simply limited to the training process, but

might be comparable to an ensemble-based approach, using slightly different inputs instead of

different classifiers.
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6. Experimental Setup

All experiments were conducted in the programming language Python (version 3.7.7) using the

Keras functional API available in TensorFlow 2 for implementing the different architectures.

More specifically, TensorFlow 2.2.0 was used, built with support for NVIDIA®CUDA (version

10.0.130) in order to use the GPU (graphics processor unit) for faster neural network calcula-

tions via the cuDNN library. The codebase created to support this research is publicly available

and can be freely downloaded from github1 for easy reproducibility. Additionally, the best con-

figurations (and weights) for each evaluated model have been saved and are available as part of

the same archive. In order to make the experiments as transparent as possible, (hyper-)parameter

searches were performed using the Weights & Biases API2, providing a graphical visualization

of the results for easy comprehension. The majority of this searches (referred to as a sweep by

the API) is publicly available from the project page3, offering an opportunity to investigate the

accumulated data.

Training and testing of the neural networks was conducted on a server provided by Media Com-

puting Research Group from the FH St. Pölten using a x86 64-bit architecture powered by an

Intel®i7-6900K CPU. Additionally, the system was outfitted with a NVIDIA®GeForce GTX

1080 graphics card as an accelerator, that has been used for the majority of the neural network

calculations. All results reported have been obtained using data available as part of the GaitRec

dataset (Horsak et al., 2020), which is freely available for further research.

6.1. Data preparation

From the two different versions of the data available in the GaitRec archive, only the processed

dataset (i.e. not the one denoted by raw, see Chapter 4) was used in all experiments. This choice

was made because the normalization applied aims to remove differences between individuals,

where otherwise it would be difficult to compare two waveforms based on their numerical val-

ues. Thus, the neural network does not need to take such differences into account and can focus

solely on the task of differentiating between classes.

However, due to some characteristics of the dataset and/or the evaluated classifier, some ad-

ditional preprocessing steps were necessary. The standard procedure outlined below has been

followed in all experiments unless it is explicitly noted otherwise:

1. Removal of all data associated with other walking speeds than self-selected. Patients

that were not wearing normal shoes or walking barefoot were excluded from the data

1https://github.com/delta-leader/GRF-classification
2https://www.wandb.com
3https://wandb.ai/delta-leader/ground-reaction-force-classification
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(i.e. patients using orthopedic shoes or insoles were removed, including those where the

footwear was not reported). Only initial measurements were taken into account, resulting

in exclusion of all but the first measurements per patient/admission.

2. If the affected side was not indicated in the dataset (e.g. healthy persons, patients with

injuries in both legs), it was determined randomly for each session. Once its role was

established, it was maintained during all experiments.

3. All trials for a single gait analysis session were aggregated in an early fusion-approach by

calculating the mean waveform of each signal.

4. The resulting data was normalized to be within the range of [−1, 1], for each signal indi-

vidually. The normalization was performed globally using the minimum and maximum

value of a given dataset in a component-wise fashion by applying Formula 3. However,

since the TEST -set should not be touched until the final evaluation (Horsak et al., 2020),

it can not be used to determine the parameters of the normalization. Therefore the TEST

was normalized according to the parameters obtained from the training-set (usually the

TRAIN-BALANCED dataset). This process can potentially result in values outside of the

specified range, causing problems for certainmethods (e.g. GAF-transformation). In such

a case, the values were clipped to fit the expected range after normalization.

5. The force components were represented in the resulting tensor in the following order: F_v,

F_ap, F_ml, COP_ap and COP_ml.

6. If concatenation of the signals was required (e.g. for theMLP), it was done in a continuous

fashion by applying Formula 13.

7. The data for the affected and unaffected side was processed individually and then concate-

nated along the last dimension of the output tensor, doubling the dimensionality along that

axis.

6.2. Evaluation

As mentioned in Section 4 the GaitRec-data is already split into a TEST, TRAIN and TRAIN-

BALANCED set, where the last one is a subset of TRAIN with an equal amount of samples for

each class. After applying the standard preprocessing procedure, the following numbers are

obtained for each dataset:

1. TEST : 688 recorded sessions (containing the average signals of 5,408 trials)

2. TRAIN : 1,234 recorded sessions (containing the average signals of 10,386 trials)

3. TRAIN-BALANCED: 730 recorded sessions (containing the average signals of 6,400 tri-

als)
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To assess the performance of a model when determining its best parameters without using the

TEST set, the data was split further into a train- and validation-set with the latter containing 20%

of the data originally available in the TRAIN-BALANCED set. All experiments to verify specific

architectures and fine-tuning models by determining their hyper-parameters were conducted on

this split of the data. Therefore 484 sessions were available for training and 146 sessions were

contained in the validation-set. Unless it served the purpose of answering a specific research

question (i.e. Does the inclusion of patients wearing orthopaedic shoes reduce classification ac-

curacy?) all models were trained on this training/validation-split and exceptions will be denoted

explicitly.

All models were trained and evaluated using the following settings:

• Loss-function: Categorical crossentropy was applied, given by the following function:

Loss = −
#classes∑

i=1

yi · log(ỹi) (14)

Where ỹi is the i-th scalar value in the model output and yi is the corresponding target

value.

• Metrics: Accuracy, meaning the performance is given by the number of correct predictions

divided by the number of samples.

• Optimizer: Adam optimizer (see Kingma and Ba (2017) for reference), defined by the

parameters learning-rate, β1, β2, epsilon and amsgrad.

Reproducibility of the experiments was ensured by setting the random number generator to the

same value before training each neural network and only deterministic operations were used

by setting the environmental variable TF_DETERMINISTIC_OPS. If, for some reason, such

operations were not available for a specific architecture, the result is reported as the average of

five runs.

6.2.1. Evaluation of individual architectures

The typical evaluation pipeline for a specific architecture consisted of the following three stages:

1. Determination of the optimal parameters for an architecture. This was only applied for

the models designed in this thesis and omitted for pre-defined networks such as FCN,

ResNet and InceptionTime.

2. Selection of the best hyper-parameters according to the procedure described in Section 6.2.3.

3. Evaluation of the model on the TEST set using the ideal settings determined in the steps

above.
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Step 1&2were performed using the training/validation split obtained from the TRAIN-BALANCED

dataset, by selecting the best model according to the highest accuracy it achieved on the valida-

tion set. The training process in step 1 (prior to hyper-parameter determination) was standardized

across architectures to guarantee comparability, using the following parameters:

• Batch-size: 32, defining the number of samples seen before the weights are updated.

• Epochs: 100, the number of iterations over the whole dataset (i.e. each sample is pro-

cessed 100 times).

• Optimizer: Adam optimizer with a learning-rate of 0.001, β1 = 0.9, β2 = 0.999, ε =

1e−07 and amsgrad = False.

Figure 16: Accuracy during training for train- and validation-set. It can be observed that
alterations in the train-set usually induce even larger changes in the validation-set,
resulting in strong fluctuations. Therefore, the best accuracy on the validation-set
is usually achieved before the training finishes (i.e. before 100 epochs).

Note that themodels were compared according to the highest accuracy achieved in the validation-

set, which usually happened before 100 epochs were reached (see Figure 16). In order to de-

termine the optimal parameters for each of the architectures introduced in Section 5.4.1 & 5.4.2

two types of searches across the parameter-space were performed:

1. Grid-search: In a first step, the basic settings were determined by trying different combi-

nations of layers and neurons, kernel-sizes or units forMLP, CNN and LSTM respectively.

2. Bayesian-optimization: A search across all parameters was performed using the Bayesian

optimization process described by Snoek et al. (2012) and implemented in Weights &

Biases.
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The specific settings for the grid-searches executed for each architecture are summarized in the

list below:

• MLP: layers = {1, 2, 3}, neurons = {10, 20, . . . 500}

• 1DCNN: layers = {1, 2}, kernel-size = {2, 3, 5, 7, 9, 11, 15, 21, 33},
#filters = {8, 16, 32, 64, 128, 256, 512, 1024}

• 2DCNN: layers = {1, 2}, #filters = {8, 16, 32, 64, 128, 256, 512, 1024}
kernel-size = (x, y) with x ∈ {2, 3, 5, 7, 9, 11, 15, 21, 33} and y ∈ {2, 3, 4, 5, 6, 7, 8, 9}

• LSTM: layers = {1, 2}, units = {10, 20, . . . 100}

For the searches employing the Bayesian-optimization process, the following values were set

(depending on the architecture, see 5.4.1):

• layers = {1, 2}

• neurons = [20; 300]

• batch-normalization = {True, False}

• dropout = [0.0, 0.5]

• 1D: kernel-size = [2; 20]

• 2D: kernel-size = (x, y) with x ∈ [2; 20] and y[2; 10]

• CNN: #filters = {8, 16, 32, 64, 128, 256, 512, 1024}

• CNN: pool-type = {Max,Avg,None}

• 1D-CNN: pool-size = [2; 5]

• 2D-CNN: pool-size = (x, y) with x ∈ [2; 5] and y[2; 4]

• 1D-CNN: separable-convolution = {True, False}

• CNN: skip-connections = {True, False}

• 1D-CNN: stride = [1; 5]

• 2D-CNN: stride = (x, 1) with x ∈ [2; 5]

• 1D-CNN: dilation = [1, 20]

• 1D-CNN: dilation = (x, y) with x ∈ [1; 20]and y[1; 3]

• LSTM: units = [20; 100]

• LSTM+CNN:mode = {parallel, serial}

• LSTM-FCN: dimensional-shuffle = {True, False}

• LSTM-FCN: squeeze-and-excite = {True, False}
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Note that in the specifications given above dilation and stride aremutually exclusive, therefore,

in case of the 1D-CNN, if dilation 6= 1 then stride = 1 is implied and the other way around.

Furthermore, the input for all models using 2-dimensional convolution was provided in the 101×
10 × 1 format for the reasons given in Section 5.2.4, sometimes requiring slight adaptions of

the values listed above. For example, to assure that the combination of stride and pool-size did

not exceed 10 in the second dimension. Additionally, when evaluating the 2DCNN-1DKernels

architecture the the pool-size was restrict in the same way as the kernel-size (i.e. to (x, 1) in the

first and (1, y) in the second layer) to reflect the intention of the network.

Overall, applying this procedure resulted in an exhaustive parameter search, training and testing

more than 1,000 models per architecture. The performance of each model was evaluated on the

validation-set, generally selecting the model with the highest accuracy for further comparison

on the TEST set.

6.2.2. Evaluation of image transformations

The calculations performed when transforming a time-series into an image require a number

of parameters to be determined beforehand. First of all, there is the problem of aggregating

the different components. While concatenation would work (a method to avoid the resulting

jump discontinuities is described by Formula 13), it was not investigated any further in this

research, due to the expected bias introduced to the transformation. Therefore, each signal was

transformed separately for the purpose of this thesis.

Furthermore, the ideal settings for each conversion were established, either analytically or em-

pirically. The corresponding free variables to each transformation are listed below:

• GAF: The only adjustable parameter is the data range (i.e. either [−1, 1] or [0, 1]). Since

this only affects the granularity of the information, not much difference is expected for

the GRF-data.

• MTF: The optimal number of quantile bins (bins) and the size of the blurring kernel

(blur-size) need to be determined.

• RCP: Both, the embedding dimension d, as well as the time-delay τ , need to be chosen.

But, in contrary to the MTF, some methods are available for estimating these parameters

(refer to Wallot and Mønster (2018) or Kantz and Schreiber (2003) for a detailed expla-

nation). The recommended approach is based on the Average Mutual Information (AMI)

function and the False Nearest Neighbour (FNN) function, but can only be applied to uni-

variate time-series. Therefore a grid search across the results of the estimations for each

signal was performed to determine the optimal values.

The optimal values for those parameters were determined empirically, using the IMG network
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in order to determine how much information (with respect to the classification task) was main-

tained in the resulting image. Each transformation was considered individually and the param-

eters yielding the highest accuracy on the validation-set were chosen to be used for the corre-

sponding transformation in the remainder of this research. The optimal values together with a

brief description of how they have been obtained are reported in the following list:

• GAF: Better performance was observed using a data range from [0, 1], resulting in an

accuracy increase of approximately 3% and 7% for GADF and GASF respectively when

compared to a range of [−1, 1].

• MTF: Different values for the number of quantile bins have been tested, starting from

10 and increasing by five up to a value of 50, with the highest score being obtained by

using 25 bins. Adding an additional blurring filter to the process, lead to an accuracy

enhancement of +3% with a blurring kernel of shape (2, 2). Further quadratic kernels

were tested (up to a value of 10), but no higher increases have been observed.

• RCP: Using the AMI and FNN functions, the search space for the embedding dimension

was determined to be d = {2, 3, 4} while a delay of τ = {2, 3, 4, 5, 7, 8} was calculated.
With an euclidean distance metric employed, the best combination of d = 2 and τ = 3

was found on the validation set. It is noteworthy that re-normalization to an interval of

[0, 1] led to a slight boost of +0.60%. This is important for analysing the combination of

images, as it guarantees that the results of all transformations are within the same range.

Due to the fact thatWang and Oates (2015a,b) report better performance if different image trans-

formations are combined, that area was investigated as well. Due to the slightly smaller size of

the RCP (98 × 98 - when using the settings determined above, compared to 101 × 101 for the

other images), all images have been resized to 98 × 98 when used in combination. Further-

more, to assure that each image is considered equally important by the classifier, the RCP was

normalized to [0, 1], to match the range of the other formats.

When deployed on the IMG architecture, all images were concatenated along the last dimension,

resulting in a tensor of shape 98 × 98 × 5 (or 98 × 98 × 10 if the data from both legs is used)

when using the RCP. Different transformations were concatenated along this dimensions as well,

producing a 98× 98× 20 tensor if two images are combined. In contrast, the IMG-Inception

architecture requires a spatial layout, where the signals were arranged along the horizontal axis,

while the data for the different sides and transformations was aligned horizontally, giving a shape

of 392× 490 for the combination of two transformations. An example of such a layout using all

four available images is depicted in Figure 17

For the feature extraction via the Inception v3 network as employed by the IMG-Inception

architecture the pre-trained version of that model (using the imagenet-data) provided by Keras,

was used. However, since that network requires its input to consist of three channels (i.e. a
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Figure 17: Data layout when using all four image transformations as well as signals from the
affected and unaffected side as input to the Inception-IMG architecture. The
resulting image has a width of 490 and a height of 784 pixels.

RGB-image) an RGB-conversion has to be applied. Because the details for this process are

omitted from the original paper (Karimi-Bidhendi et al., 2018), the mapping was done via the

jet-colormap available from the matplotlib library, producing similar output to the one depicted

in the actual publication.

6.2.3. Fine-tuning of architectures

Before evaluating a specificmodel on the TRAIN -set, an attempt wasmade to optimize its perfor-

mance by determining its ideal hyper-parameters (e.g. learning-rate, batch-size, epochs, etc.).

For this purpose, the same Bayesian optimization process as described in Section 6.2.1 was

employed, searching the hyper-parameter space according to the following settings (using the

adam-optimizer as specified in Section 6.2):

• batch-size = [8; 512]

• learning-rate = [0.0001, 0.01]

• beta1 = [0.5, 0.99]

• beta2 = [0.6, 0.999]

• amsgrad = {True, False}

Both networks used for classifying the time-series transformed to images (i.e. IMG and IMG-

Inception were excluded from this process, reporting their results using the standard procedure

detailed in Section 6.2. This has been necessary because the models are evaluated on different
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input combinations and fine-tuning it to one transformation (e.g. GADF) was revealed to be

deteriorating to the other representations. For example, a decrease of accuracy by 50% was

observed if the ideal hyper-parameters obtained from optimization using GADF images were

employed with the input being changed to GASF instead. Since the basic settings perform

comparatively well (the accuracy increase on the GADF was only 3%), no further attempts

on fine-tuning have been made, because the impact on other transformations is impossible to

predict. In order to compensate for this lack of fine-tuning, at least partially, both models were

trained for a longer period of time, using 150 epochs instead of the default 100.

A comprehensive overview of the hyper-parameters used for each architecture is provided in

Table 1, with the numeric values being rounded to four decimal digits. Note that two sets of

values are provided for the FCN architecture. The original set of hyper-parameters corresponds

to those used by Wang et al. (2016) in their evaluation on the UCR dataset, while the tuned

values are the result of searching the hyper-parameter space based on GRF input data. This

has been done in order to provide a contrast against the other networks that have been exces-

sively fine-tuned on the GRF-measurements, indicating whether or not there are any issues with

generalizability.

Architecture Adam-optimizer Train-parameters
learning-rate β1 β2 ε amsgrad batch-size epochs

MLP30 0.001 0.9 0.999 1e−07 False 32 100
MLP90 0.001 0.9 0.999 1e−07 False 32 100
MLP2 0.0019 0.9346 0.7534 1e−07 False 92 293
MLP-D 0.001 0.9 0.999 1e−07 False 32 100
1DCNN-strided 0.001 0.9 0.999 1e−07 False 32 100
1DCNN-dilated 0.001 0.9 0.999 1e−07 False 32 100
2DCNN-dilated 0.001 0.9 0.999 1e−07 False 32 100
2DCNN-1DKernels 0.0046 0.7660 0.8063 1e−07 True 130 181
LSTM 0.0012 0.7892 0.8694 9.0589e−07 False 357 111
FCN (tuned) 0.0056 0.7027 0.9612 1e−08 True 23 222
FCN (original) 0.001 0.9 0.999 1e−08 False 32 100
ResNet 0.0045 0.6774 0.8609 1e−08 True 18 210
InceptionTime 0.0063 0.817 0.6258 1e−08 False 38 136
IMG 0.001 0.9 0.999 1e−08 False 32 100

Table 1: Hyper-parameters for all models participating in the final comparison. Note that the
FCN is twice, once for the standard and once for the fine-tuned version. Parameters
were rounded to 4 decimal digits.

6.2.4. Pre- and post-processing methods

Unfortunately, due to the nature of those procedures restricting some of them to certain archi-

tectures, different evaluation settings are needed as well. While the proposed methods for nor-
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malization and aggregation can, in principle, be applied in any setting, care has to be taken

when assessing the effects of re-sampling or ordering. Since re-sampling reduced the number of

data-points available, the parameters for networks such as CNNs or LSTMs, that are inherently

depended on the dimensionality, would have to be adapted as well. The ordering, on the other

hand, only has an impact on models using 2-dimensional convolution (see Section 5.2.4) and

can be ignored for all other architectures. Therefore, the evaluation procedure differs depending

on the investigate method.

For assessing the influence of different orderings (i.e. input formats), an adapted 2DCNN-

1DKernels architecture was employed to assess each of the different input layouts. In other

words, a two-layered network was used, with the convolution being restricted to time domain in

the first and to signal domain in the second layer (with the exception of the 101×1×10 format,

where a convolution along the second dimension is meaningless and only a single layer was de-

ployed). A restricted version of the parameters search described in Section 6.2.1 was conducted

for each layout, without considering stride or dilation and limiting pooling to dimensions with

a size greater than two. The impact of the input formats is then assessed by a comparison of the

highest accuracy achieved on the validation-set.

Reducing the number of data points via re-sampling is expected to have a significant impact

on most of the architectures that have been optimized for a signal length of 101 time-steps.

Therefore, the effects of this method are investigated using the MLP (because none of its pa-

rameters depend on a certain layout of the data), and the unoptimized FCN. This network has

been selected to represent the convolutional approaches because it has been designed with the

UCR dataset in mind, therefore it should be somewhat robust against inputs of various lengths

in its unmodified form. The classification accuracy of the re-sampled GRF-measurements is

contrasted against the performance of the original one on the validation-set, in order to assess

how much information is maintained within the signals.

For studying the effects of normalization and aggregation of trials, all networks studied in

this research are employed, with the exception of the IMG architecture when investigating nor-

malization methods. Since the image transformations employ some kind of normalization by

themselves, either directly (GASF, GADF) or indirectly (MTF, RCP), they should be robust

against different input ranges, and will not be examined in this context. The different methods

are compared with respect to their training-, validation- and test-accuracy contrastingmin-max

and z-score normalization against the original data (i.e. as provided in the GaitRec archive). In

order to enable a fair comparison, the TEST data was normalized using the parameters obtained

from the TRAIN-BALANCED dataset for each of the methods respectively.

The different ways of aggregating the individual trials recorded during the same gait analysis

session were analysed on the same three sets. However, a re-training of the models is required

when using all trials, resulting in two networks for each architecture and two input formats de-
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noted by mean for the mean waveform and allTrials for the individual trials. The evaluation is

performed in two steps. First the the accuracy for the models trained with allTrials is calculated

and compared with respect to the two input formats (since the models trained on the mean wave-

form have already been evaluated when comparing architectures). This is a pure pre-processing

step, with the accuracies reported for each individual sample that is provided to the classifier.

In the second step, the influence of post-processing is determined by utilizing those models to

predict input that has not been aggregated yet and performing majority voting to obtain the final

label for each session.

The voting process itself is similar to the one applied by Slijepcevic et al. (2020), considering

only trials with a likelihood of at least 40% for one of the five classes during the procedure, in

order to reduce the negative influence of ambiguous trials. However in rare cases (for certain

architectures) no such trial could be found for some specific sessions. In such situations, the

threshold was reduced to 20%, basically considering all trials for the process. The statistical

mode was calculated for all trials fulfilling that precondition, thus producing the final class

label. If two (or more) classes had the exact same number of votes, the final decision was made

based on the class probability (i.e. the class with the highest probability across all valid trials

was selected). It is important to note that during this process, the validation- and test-set were

normalized according to the parameters the model has been trained on (i.e. either the mean

waveform or all trials), because otherwise performance would be degraded significantly.

6.3. Effects of filtering and class aggregation

As part of the investigations conducted to provide more insights into the problem of classifying

gait disorders according to body locations itself, the distinctiveness for each class is explored.

For a ''good'' classification, the overlap between classes should be small, as this indicates that

they can be separated reasonably well. This class analysis is conducted via a confusion matrix,

where each row represents the predicted class labels, while the column indicates the actual class.

Thus, sensitivity, specificity and precision can be calculated, providing an in depth view of the

classifier.

Additionally, the confusion matrix obtained from using the data of both legs is contrasted to the

one from just the affected leg. It has been attested by Slijepcevic et al. (2018a,b), that accuracy

can be improved by combining that data and this procedure promises to provide a more detailed

anlaysis of the advantages. For example, as of now, it is still unclear whether or not all classes

are able to benefit equally from the reference provided by the unaffected leg. Such insights

might be useful when trying to build a better classifier, revealing information about the data

itself. Since the results obtained by Slijepcevic et al. (2018a,b) indicate that some impairment

locations might be harder to distinguish from each other than from other classes due to their

63



similarity, such differences should be investigated.

As another consequence of their research, inter-class discrepancies could also be examined by

combining classes that are hard to separate into a single, broader class. Their results indicate

that considerably higher accuracy could be achieved by that procedure, due to obtaining more

distinct categories. Two artificial classes are created in order to assess the impact of such an

approach, each of them fusing two of the main injury locations together:

• Upper Leg (UL): Combines the hip and knee class to form a single entity, representing the

upper joints (i.e. above the shank).

• Lower Leg (LL): Union of the classes located below the shank, consisting of ankle and

calcaneus.

For those experiments, the architecture achieving the highest accuracy on the newly proposed

classification problem (i.e. Healthy - UL - LW ) is selected by adding up the amount of correct

predicted for their contained sub-classes. This architecture is then retrained on the three class

problem with the same data, revealing whether or not those two problems are equally difficult

to solve. A good classifier might be able to take advantage of the fused classes, extracting better

features and therefore increasing accuracy.

As far as the filtering of the data is concerned, experiments were restricted to the best perform-

ing neural networks on the TEST set, because re-training on the whole TRAIN set is required.

The TRAIN-BALANCED set can not be used because the included samples do not feature the

examined characteristics as mentioned in Section 5.1. For each of the three presumed biases (i.e.

orthopaedic shoes/insoles, readmissions and injuries in both legs), two models were trained, in-

cluding and excluding the respective characteristics. These models were then evaluated on the

corresponding filtered/unfiltered versions of the test-set in order to assess their impact. While

being rather limited and not nearly enough to fully understand the expected biases, this approach

should be sufficient to determine if it is possible to make better use of the available data. Since

the accuracy of neural networks typically increased if more data is provided, and the GaitRec

archive contains much more data than currently used for training, this seems worthwhile to in-

vestigate, possibly revealing future directions of research.

7. Results & Discussion

The results of all experiments are presented and discussed in this chapter. Analysis is generally

conducted on the independent TEST set and the validation-set, with the exception of attempts

conducted to select the optimal parameters for a certain neural network architecture. As the

usage of the TEST set for determining the ideal settings would inevitably introduce a bias to the

result (possible hurting their generalizability), such experiments were limited to the validation-
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set and therefore only those values can be reported. Due to the large number of architectures (and

parameters for each) investigated in this research, comparison on the TEST set was limited to

only a selected few representatives for each type of network, in order to maintain computational

feasibility. For easier understanding and to provide a comprehensive structure to this chapter,

those results will be presented first, following the general outline below:

• Comparison of different network parameters for the architectures as explained in Sec-

tion 6.2.1

• Comparison of image transformations

• Comparison of network architectures

• Comparison of pre-processing methods

• Influence of post-processing via majority voting

• Influence of data selection

• Insights about class separability

7.1. Neural network parameters

This section is dedicated to the results obtained when testing different parameters for the archi-

tectures described in Sections 5.4.1 & 5.4.2 and structured according to the four neural network

concepts MLP, 1-dimensional CNN, 2-dimensional CNN and LSTM. The best settings for each

type of architecture are determined and appropriate candidates for further comparison on the

TEST set are selected by evaluating their accuracy on the validation-set.

7.1.1. MLP

An overview of the results for the grid search performed across the number of neuron in anMLP

with a single hidden layer is reported in Table 2 (restricted to the most relevant outcomes). The

highest accuracy of 67.81%) has been achieved using 90 and 440 neurons respectively, with

the lower number being preferable due to the reduced computational effort. Starting from 30

neurons the network achieves a stable performance of about 65% fluctuating by approximately

±2%, revealing no further correlations between accuracy and the number of neurons.

The influence of all other investigated parameters on the performance of the MLP, as revealed

by the experiments, are summarized below:

• Hidden Layers: Generally, increasing the number of hidden layers did not yield a higher

accuracy. However, a single two-layered model (out of 361 tested ones) was able to beat

the threshold of 67.81%, achieving 69.18% accuracy on the validation set.
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# Neurons Best Validation-Accuracy
20 61.07%
30 65.07%
50 63.01%
60 65.07%
70 67.12%
90 67.81%
110 65.75%
130 66.44%
150 65.75%
170 65.75%
190 67.12%
200 63.70%

... ...

Table 2: Highest accuracy achieved on the validation set when training a MLP with a varying
number of neurons in the hidden layer for 100 epochs.

• Batch-Normalization: Adding a batch-normalization layer after each hidden layer had a

positive effect on accuracy.

• Dropout: While dropout often improved accuracy, it did not necessarily lead to a better

performance, obtainingmixed results across the experiments. Results seem to suggest that

smaller dropout-rates are favourable, but even with higher values competitive accuracy

has been observed.

Overall, the best performance on the validation-set across all evaluated settings has been achieved

by a single-layer MLP using 253 neurons with batch-normalization and dropout (ca. 25%), re-

sulting in an accuracy value of 71.92% after training for 79 epochs. However, that particular

model exhibits strong fluctuations in its loss function for the validation-set (see Figure 18),

suggesting that maybe it just ''happened'' to come across a good solution for the current input.

This seems to be a general disadvantage of most architectures including dropout, hinting at the

existence of many local optima within the optimization space.

Four candidates were selected for further comparison on the validation set, featuring the follow-

ing parameters/characteristics:

• MLP30: A single layer MLP using just 30 neurons, representing the minimal approach

that achieves good results.

• MLP90: An MLP using 90 neurons, representing the best accuracy achieved with by a

single layer architecture without dropout.

• MLP2: The only two-layered architecture achieving better performance than the single-
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Figure 18: Loss accumulated during training of a single layer architecture with 253 neurons
and dropout (ca. 25%). It can be observed that while the loss for the training-data
decreases steadily, there is a high fluctuation in the validation-loss, making it likely
that the model just ”guessed” a good solution instead of actually learning it.

layered ones, using 50 and 80 neurons, without additional modifications (i.e. the best

model without dropout).

• MLP-D: The best model using dropout, consisting of 253 neurons, batch-normalization

and dropout with a rate of roughly 24.68%.

Hyper-parameter searches have been performed for theMLP-D andMLP2 only, in order to con-

trast their performance against the non-tuned variantsMLP30 andMLP90. Thus, by evaluating

them on the test-set it becomes possible to gauge the influence of fine-tuning on the generaliza-

tion ability of the MLP. By selecting the optimal hyper-parameters, accuracy of theMLP2 could

be improved by about +1% while no further increase was observed for theMLP-D, indicating

that it already discovered an optimal solution.

Finally, it should be mentioned that (in contrast to the methods that will be discussed later in this

chapter), the MLP hardly overfits the training-data. As can be seen from Figure 19, displaying

the loss and accuracy for theMLP2 network, both curves seem to flatten around the same time,

with the difference in loss being negligible. In other words, even though a longer training period

induces a lower training-loss, the amount is insignificant and does not improve accuracy any

further (on neither the training- nor the validation-data). In fact, for the MLP2 variant of this

network, the accuracy on the validation-data generally remains within a 5-10% distance of the

training-accuracy.

7.1.2. 1-dimensional convolution (1D-CNN)

Figure 20 depicts a comprehensive summary of the grid search performed for a 1D-CNN with

a single convolutional layer. Generally, this architecture does not seem to perform much better
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Figure 19: Comparison of loss and accuracy for both the training- and validation-set ob-
tained from using the MLP2 architecture and training for a period of 100 epochs.
Above: Loss. Below: Accuracy.

than the single-layer MLP, but for certain combinations of kernel-sizes and number of filters, a

higher accuracy can be observed. The best result is achieved by using 128 filters and a kernel-

size of 3, scoring 71.23% accuracy, after executing training for 24 epochs. It should be men-

tioned that the 1D-CNN is very prone to overfitting, reaching close to 100% accuracy on the

training-data after 60 iterations, with the loss function for the validation-set actually starting to

increase again from around the 20th epoch. This phenomenon is illustrated in Figure 21.

Further experiments revealed the following consequences of parameter modifications:

• Additional 1D-CNN-layers: No improvements (with one exception) were made when in-

creasing the number of layers.

• Batch-Normalization: Applying Batch-Normalization after the convolution seems to re-

duce the best accuracy achieved by a network.

• Dropout: Results for applying dropout (both after the convolution and the MLP) remain

mixed. If anything experiments indicate that lower values work better.

• Kernel-sizes: Smaller kernels seem to achieve better results (except for dilated convolu-

68



Figure 20: Overview of the best accuracy achieved on the validation set using a network con-
sisting of a single 1-dimensional convolutional layer followed by a MLP with 90
neurons. Showing the results for various kernel-sizes and numbers of filters applied.

tion, where the opposite is the case).

• #Filters: Less filters appear to work better in the first layer, while the number can be

increased for successive ones.

• Neurons in the hidden layer: Using a higher number of neurons tends to increase accuracy

up to a certain degree.

• Pooling: Did not havemuch of an impact on single-layer networks, but increased accuracy

for two or more layers, independent of the pool-type (i.e. for both max- and average-

pooling) and pool-size.

• Separable convolution: Mixed results have been observed, but effects, if they exist are

small, and the total impact seems to be negligible.

• Strided convolution: Helped to increase accuracy, especially when used in combination

with skip-connections.

• Dilated convolution: Enhanced accuracy for most cases, but results indicate that the

dilation-rate should not be too high.

• Skip-connections: Had a positive effect on all networks except for the two-layered dilated

variant.

Overall, the two best performing architectures are the following, scoring 73.97% accuracy on
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Figure 21: Comparison of loss and accuracy for both the training- and validation-
set obtained from using a 1-dimensional CNN layer (kernel-size = 3,
#filters = 128) followed by an MLP-layer consisting of 90 neurons.
Above: Loss. Below: Accuracy.

the validation set each:

• 1DCNN-strided: A single convolutional layer with a kernel-size of 5, 175 filters and

using a stride of 5. Max-pooling is applied after the convolution, using a pool-size of 4,

followed by a dropout with a rate of ca. 38.78%. The result is combined with the original

data using skip-connections before inputting it into anMLP consisting of 185 neurons and

dropout of about 31.55%.

• 1DCNN-dilated: The only two-layered network that performed better than all dilated

single-layer versions. The first layer uses a kernel-size of 18, 131 filters and a dilation-

rate of 12, while the second one has a kernel of size 6, 31 filters and a dilation-rate of 14.

Both layers are followed by a max-pooling operation (with pool-size = 3) and a dropout of

14.20%. The result is then analysed by an MLP using just 46 neurons and a high dropout-

rate of 43.70%.

The common variable in both networks is a high dropout after the MLP, which prevents them
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from overfitting the training data (see Figure 21), achieving their highest accuracy after 93 and

88 epochs respectively. In addition, both networks seem to benefit from analysing long-term

patterns within the time-series, extracted by using either a large stride or a high dilation-rate, as

well as a significant feature reduction by the max-pooling layer(s).

Finally, it should be reported that the hyper-parameter search performed for those two architec-

tures, did not yield any gains in accuracy. This might signify that instead of determining the best

architecture in general, the models were tuned to the specific set of learning parameters used in

the experiments. However, as can be observed in Figures 21 & 19, the validation-accuracy

generally tends to fluctuate in a range of ±5%, making it unlikely that other architectures out-
perform the selected ones due to a superior learning ability. This seems to be especially true

when compared to the performance of the GRF-1D model employed by Alharthi and Ozanyan

(2019), which did not exceed an accuracy of 67.12%, even after extensive fine-tuning.

7.1.3. 2-dimensional convolution (2D-CNN)

Overall, the achieved results of the 2D-CNN resemble those of the 1-dimensional case, being

very vulnerable to overfitting as well. Because of the large search area, only the highest ac-

curacies are reported for this network. However, to get a little more context for judging the

general performance of this model (especially in comparison to the 1D-CNN), the results for

all experiments using a kernel-size of 11 along the temporal axis are depicted in Figure 22. Of

the 384 tested variants (using only one convolutional layer), only two settings have been able to

outperform the top result achieved by a standard 1D-CNN by a margin of about +0.6%. These

two architectures use a a kernel-size of (2, 2) and 16 filters or (11, 6) and 8 filters respectively,

resulting in an accuracy of 71.92%.

The search across the parameter space generally revealed the same correlations and relationships

as for the 1-dimensional variant with a few noteworthy details:

• While adding a second convolutional layer did not improve accuracy for normal and

strided convolution, it did generally yield better results for the dilated case.

• The best results were achieved on a single-layer networkwith strided convolution (73.97%)

using a kernel-size of 9 in the signal dimension, which is almost identical to a 1-dimensional

convolution. Incidentally, the top four strided networks all used a kernel-size of either 8, 9

or 10 as their second dimension, suggesting that there is no advantage to a 2-dimensional

convolution.

• 73.97% accuracy was also achieved by a two layer dilated network using a kernel-size of

(14, 5) in the first and (3, 3) in the second layer.

• The observed influences of batch-normalization, #filters, neurons, pooling and skip-connections
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Figure 22: Example of the grid search performed to determine the best accuracy on the
validation-set for a network consisting of a single 2-dimensional convolutional layer
followed by a MLP with 90 neurons. Showing the results for various kernel-sizes
(first dimension fixed to 11) and numbers of filters applied.

were identical to the 1D-CNN.

• kernel-sizes: Mixed results were observed for the first dimension (corresponding to time),

with the strided variant tending to favour larger values, while the dilated version preferred

smaller ones. For the second dimension (i.e. signal-domain) both of them benefited from

larger kernels.

Beyond the basic variant, experiments conducted on other architectures relying on 2-dimensional

convolutions yielded the following results:

• 2DCNN-1DKernels: Generally working well, the highest obtained accuracies for this

approach are slightly lower than the ones reported above, with amaximal value of 72.60%.

However, fine-tuning this network by selecting the ideal hyper-parameters put it one equal

footing with the others, scoring 73.97% as well.

• GRF-2D: Using the unmodified network from Alharthi and Ozanyan (2019) resulted in

poor accuracy never reaching more than 65.58% accuracy on the validation-set.

• GRF-2D-modified: Better results were obtained by the modified variant using the pro-

posed spatial encoding of the signals, with a maximum accuracy of 71.23% being ob-

served.

Results seem to indicate that the 2D-CNN cannot outperform its 1-dimensional counterpart,

achieving identical highest accuracy values. Furthermore, judging by the good performance of
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the GRF-2D-modified model, the input layout seems to be of secondary importance, but this

will be investigated in more detail in Section 7.4. Since the best strided variants of this archi-

tecture are very similar to the 1D-CNN, they were not considered any further because almost

identical results are expected. Thus the candidates for further testing are:

• 2DCNN-dilated: The network consists of a (14, 5) kernel using a dilation-rate of (18, 1)

and 92 filters in the first layer and a kernel of size (3, 3) with a dilation-rate of (9, 2 )

and 134 filters in the second layer. Max-pooling, with a pool-size of (2, 3) and a dropout

of ca. 30.03% was applied after each convolutional layer, followed by an MLP with 154

neurons an a dropout of approximately 27.66%.

• 2DCNN-1DKernels: Composed of two layers with a kernel-size of (4 ,1), using 63 filters

and (1, 4), using 20 filters respectively, this model employs batch-normalization, max-

pooling of shape (5, 2) and a dropout of about 20.37% after each layer. The outputs of

all layers are then concatenated by skip-connections before analysing them with an MLP

(162 neurons) followed by batch-normalization and a dropout of 19.47%.

As a last note, similar to the 1-dimensional networks, no further performance increase was ob-

served when attempting to fine-tune the hyper-parameters for the 2DCNN-dilated model. This

might imply the existence of a threshold within the given dataset, possibly indicating that either

(a) an optimal solution has been obtained that cannot be improved any further or (b) the CNN

is not able to extract the needed information from the data. In any case, it can be observed that

several architectures are able to achieve identical accuracies close to 74%, but none of them are

able to actually surpass that value.

7.1.4. Long short-term memory (LSTM)

The results for the grid search performed to determine the optimal number of memory units for

a single-layered LSTM are presented in Table 3.

The best performance of 65.07% is achieved by an LSTM using 50 units, with most of the

other observed values being either 2% or 4% lower. Using an additional MLP layer after the

LSTM seemed to have an negative impact on the performance, while using dropout was gen-

erally beneficial, with a lower dropout-rate being preferable. By stacking two LSTM layers on

top of each other a slight accuracy improvement of +1% was observed and the GRF-LSTM

model proposed by Alharthi and Ozanyan (2019) was able to outperform all other pure LSTM

approaches by scoring 69.86% on the given task. The superiority of this architecture could be

due to the employed batch-normalization layer, which has not been investigated for the other

networks, but more research would be necessary to support that theory.

Extending the LSTMby adding convolutional layers generally yielded better performance for all
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# Units Best Validation-Accuracy
10 52.05%
20 60.27%
30 61.64%
40 61.64%
50 65.07%
60 61.64%
70 63.70%
80 61.64%
90 63.70%
100 63.01%

Table 3: Highest accuracy achieved on the validation set when training a LSTM with a varying
number of memory units for 100 epochs.

types of convolution and in both parallel and serial settings. Most interestingly, while the dilated

convolution seemed to work better in a serial architecture the opposite could be observed for the

strided variant. However, the highest accuracy for both types was obtained in a parallel setting

scoring up to 71.23% (strided) and 72.60% (dilated). Since those results are actually lower than

the ones obtained by the 1D-CNN itself, it can be concluded that the combination of CNN and

LSTM ist not able to enhance each others performance. It does seem like the features extracted

by these two architectures are highly redundant, making the combined approach ineffective on

the given dataset.

This hypothesis is further strengthened by the result obtained for the LSTM-FCN architecture

(Karim et al., 2018a,b). The maximum accuracy observed when testing different parameters for

their model was 71.23%, with experiments revealing that neither the dimensional shuffle nor

the squeeze-and-excite blocks were actually beneficial for the performance. On the contrary, a

negative impact on accuracy for both can be reported when classifying GRF-measurements.

Since the LSTM seemed to be unable to enhance accuracy in combination with a CNN, only

one candidate, representing a pure LSTM architecture was selected for further comparison:

• LSTM:As slightlymodified version of the architecture specified byAlharthi andOzanyan

(2019), using the same general layout but with an adapted dropout-rate of ca. 0.44 instead

of 0.5 after batch-normalization and before the MLP, resulting in an accuracy of 69.86%

after training for 79 epochs (with fine-tuned hyper-parameters).

7.2. Image Transformations

The performance of the different image transformations (and combinations thereof) for both

the IMG and IMG-Inception network can be seen in Table 4. The highest accuracy on the
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validation-set is achieved by the GADF transformation, scoring 69.18%, followed by the RCP

with 67.12%. All other image transformations and most interestingly also the different combina-

tions perform considerably worse. Especially the MTF does not seem to be able to extract much

useful information for the classification task, achieving only 58.22% accuracy. Furthermore,

in contrast to the findings of Wang and Oates (2015a,b), the different formats do not seem to

complement each other, with the accuracy of the combinations never outperforming the highest

accuracy of its individual components. Either the contained information is largely redundant or

the high dimensionality due to stacking signals and formats (20 channels for a combination of

two image transformations) severely limits the learning ability of the network.

Images Training-Accuracy Validation-Accuracy
IMG IMG-Inception IMG IMG-Inception

GADF 97.95% 99.14% 69.18% 49.32%
GASF 90.41% 97.95% 63.70% 48.63%
MTF 99.32% 98.29% 58.22% 45.89%
RCP 97.78% 98.63% 67.12% 52.74%
GADF+GASF 98.04% 98.80% 65.07% 50.00%
GADF+MTF 99.14% 98.97% 56.16% 49.32%
GADF+RCP 97.26% 98.97% 68.49% 53.42%
GASF+MTF 95.89% 98.29% 55.48% 44.52%
GASF+RCP 87.16% 99.32% 63.70% 54.11%
MTF+RCP 99.32% 99.49% 56.16% 52.74%
GADF+GASF+MTF 98.12% 99.14% 56.16% 50.68%
GADF+GASF+RCP 86.47% 98.97% 65.75% 50.68%
GADF+MTF+RCP 96.58% 98.97% 58.22% 52.74%
GASF+MTF+RCP 97.09% 98.46% 54.11% 50.68%
GADF+GASF+MTF+RCP 96.23% 99.14% 60.27% 50.00%

Table 4: Showing the performance of different combinations of image representations. Results
are obtained by training the IMG and IMG-Inception models for 150 epochs using
the best parameters for each image transformation.

The IMG-Inception network proposed by Karimi-Bidhendi et al. (2018) seems to support the

redundant information theory, with only two combination (GASF+RCP and GADF+RCP) out-

performing the best individual image transformation (RCP - 52.74%) by approximately 1-2%.

In general, the accuracies achieved by this network are low, rarely scoring more than 50%. This

is most likely due to the Inception v3 network being pre-trained on conventional images, learn-

ing to extract features such as forms or edges. However, as can be seen in Figure 17, such

characteristics are rarely found in the transformed images, resulting in low performance.

By tuning the hyper-parameters to specific image-transformations the performance of both net-

works could be increased, for example achieving 71.23% accuracy with the combination of
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GADF and GASF on the IMG network and 57.53% when tuning the IMG-Incpetion network

to only GADF images. However, there is no indication that these transformations will be able to

outperform the results obtained by much simpler networks like theMLP-D used on the original

input.

7.3. Architecture comparison

The performance achieved by all examined architectures on the independent test-set will be

disclosed in this section. Due to the fact that the test-set is not balanced, the results might be

difficult to interpret as just the total accuracy can be misleading and it is therefore important to

disclose the exact class composition of the TEST set. After preparation of the data according to

the procedure described in Section6.1, the test-set used in this research consists of 688 samples,

featuring the following numbers per class:

• Healthy: 80 samples

• Hip: 162 samples

• Knee: 192 samples

• Ankle: 172 samples

• Calcaneus: 82 samples

A comprehensive comparison of the performance by all tested architectures is presented in Ta-

ble 5, listing the accuracies for the training-, validation- and the independent test-set. The highest

value on the test-set is achieved by the 2DCNN-dilated architecture, scoring 60.3% accuracy,

followed by the1DCNN-strided (58.28%) andMLP2 (57.56%) architectures. It seems like the

performance on the validation-set is not a good indication for the independent test-set, generally

overestimating the accuracy by 10-15%.

Judging from these results, there is no benefit in adding additional layers when classifying GRF-

measurements, as neither of the more complex networks (FCN, ResNet or InceptionTime)

manages to outperform the single-layered MLP30 using just 30 neurons for the classification.

On the contrary, the complex variants seem to suffer frommassive overfitting, reaching 100% ac-

curacy on the train-set, without a corresponding increase in validation-accuracy. ResNet seems

to be most affected by this problem, as its score is the lowest among all non-image based archi-

tectures. For the image transformations, the results from the previous section can be validated,

with the GADF achieving the highest and the MTF the lowest accuracy. The ranking for the

GASF and RCP is reversed on the TEST and validation set, but they remain within a range of

1% from each other.

Because the TEST dataset is not balanced, it is difficult to infer knowledge about the individual
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Architecture TRAIN-BALANCED TEST
Train-accuracy Validation-accuracy Test-accuracy

MLP30 66.44% 65.07% 56.54%
MLP90 66.61% 67.81% 55.96%
MLP2 76.71% 70.55% 57.56%
MLP-D 77.40% 71.92% 56.25%
1DCNN-strided 77.40% 73.97% 58.28%
1DCNN-dilated 78.08% 73.97% 57.85%
2DCNN-dilated 94.18% 73.97% 60.03%
2DCNN-1DKernels 82.36% 73.97% 56.54%
LSTM 75.51% 69.86% 53.92%
FCN (tuned) 100% 71.92% 54.07%
FCN (original) 99.83% 64.38% 55.67%
ResNet 100% 70.55% 49.27%
InceptionTime 100% 69.86% 54.51%
IMG (GADF) 97.95% 69.18% 55.81%
IMG (GASF) 90.41% 63.70% 52.18%
IMG (MTF) 98.63% 56.85% 44.48%
IMG (RCP) 97.95% 64.38% 51.45%

Table 5: Performance of models being trained on the TRAIN-BALANCED dataset when eval-
uated on the test-set. In case of the FCN, results are reported for the original and
fine-tuned version and the IMG network lists the accuracies for all individual trans-
formations.

classes from the just the overall accuracy alone. Therefore, the results obtained on this dataset

have been displayed in Table 6 in more detail. The ankle class seems to be the most difficult to

recognize with only a single model scoring more than 50% accuracy, followed by the knee class,

where five networks are able to pass that threshold. Accuracy is quite high for the healthy and

calcaneus class, which is probably the reason for the high disparity between the results for the

validation- and test-set. Because those classes are under-represented in the TEST data, overall

accuracy is reduced for all classifiers.

When ranking the models by the score they achieve on each class (i.e. the best scoring model

for a class receives rank one, the second best rank two and so on), the 1DCNN-strided archi-

tecture is the overall winner, closely followed by the two dilated variants. Surprisingly the

IMG achieves the forth place when using the GADF as input, followed by a larger gap to the

different types ofMLP architectures. In this kind of ranking procedure, the complex networks

are all outperformed by the simple architectures with the InceptionTime, FCN and ResNet

coming in last (in that order). The considerable performance differences on the various classes

between the models suggest than an ensemble of different architectures might be beneficial for

the classification. Especially the (comparatively) high accuracy achieved by the IMG network

(in combination with GADF) on the ankle class is remarkable and could be useful to all other
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Architecture
TEST-set (models trained on TRAIN-BALANCED)

Healthy Hip Knee Ankle Calcaneus Overall
(n=80) (n=162) (n=192) (n=172) (n=82) (n=688)

MLP30 85.00% 62.35% 46.35% 49.42% 56.10% 56.54%
MLP90 85.00% 57.41% 58.85% 31.40% 69.51% 55.96%
MLP2 85.00% 51.85% 60.94% 40.70% 69.51% 57.56%
MLP-D 56.25% 69.75% 46.88% 44.77% 75.61% 56.25%
1DCNN-strided 92.50% 64.81% 45.83% 40.12% 79.27% 57.56%
1DCNN-dilated 88.75% 66.05% 41.67% 48.26% 69.51% 57.85%
2DCNN-dilated 81.25% 61.73% 52.60% 47.67% 79.27% 60.03%
2DCNN-1DKernels 70.00% 55.56% 50.52% 47.09% 79.27% 56.54%
LSTM 77.50% 62.96% 39.06% 39.53% 78.05% 53.92%
FCN (tuned) 78.75% 56.17% 43.75% 45.35% 68.29% 54.07%
FCN (original) 76.25% 59.26% 56.25% 33.14% 74.39% 55.67%
ResNet 66.25% 74.69% 26.04% 34.88% 67.07% 49.27%
InceptionTime 82.50% 58.64% 39.58% 43.02% 78.05% 54.51%
IMG (GADF) 86.25% 60.49% 28.13% 56.98% 79.27% 55.81%
IMG (GASF) 75.00% 56.79% 47.92% 33.72% 69.51% 52.18%
IMG (MTF) 87.50% 40.12% 34.38% 37.79% 48.78% 44.48%
IMG (RCP) 82.50% 59.88% 45.31% 21.51% 81.71% 51.45%

Table 6: Performance of models being trained on the TRAIN-BALANCED dataset when eval-
uated on the test-set. Accuracies for each individual class and the entire dataset are
provided, with the highest values highlighted in bold.

methods.

Robustness was verified for the classifier with the highest accuracy on the test-set, performing

ten train- and test-runs with the 2DCNN-dilated architecture, averaging its performance on the

test set. The mean accuracy obtained is slightly lower than the one given above, scoring 59.61%

with the lowest and highest values being 56.98% and 62.35% respectively. A standard deviation

of 1.79% was calculated as a consequence, revealing that there is no statistical significance

between the top performing networks.

Finally, to investigate the influence ofmore training data being available (even though the classes

are not balanced), Table 7 illustrates the obtained results for the same networks as above, but

this time trained on all available data (i.e. the entire TRAIN -dataset with the exception of the

validation-set). The validation-set is exactly the same for both attempts (except for an adjusted

normalization process to match the training-data) and the selection of the best model (i.e. when

to stop training) is based on the highest accuracy achieved on that part of the data.

Surprisingly, using all available data (i.e. the entire TRAIN set) did only benefit one of the MLP

networks, while it generally resulted in higher accuracy for all convolutional models. Especially

ResNet was able to increase its performance on three of the classes resulting in an overal im-
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Architecture
TEST-set (models trained on TRAIN-set)

Healthy Hip Knee Ankle Calcaneus Overall
(n=80) (n=162) (n=192) (n=172) (n=82) (n=688)

MLP30 70.00% 51.23% 44.27% 68.02% 45.12% 54.94%
MLP90 73.75% 33.33% 53.65% 67.44% 51.44% 54.51%
MLP2 85.00% 35.80% 60.94% 42.44% 79.27% 55.38%
MLP-D 88.75% 47.53% 66.15% 57.56% 56.10% 61.05%
1DCNN-strided 77.50% 53.09% 62.50% 52.33% 62.20% 59.45%
1DCNN-dilated 77.50% 66.67% 51.56% 50.00% 73.17% 60.32%
2DCNN-dilated 81.25% 59.26% 54.69% 51.74% 70.73% 60.03%
2DCNN-1DKernels 73.75% 49.38% 59.38% 64.53% 52.44% 59.16%
LSTM 75.00% 54.32% 50.00% 53.49% 54.88% 55.38%
FCN (tuned) 92.50% 59.26% 50.52% 57.56% 51.22% 59.30%
FCN (original) 85.00% 61.11% 42.19% 51.74% 73.17% 57.70%
ResNet 85.00% 50.00% 60.42% 40.12% 65.85% 56.40%
InceptionTime 52.50% 29.63% 60.94% 47.67% 75.61% 51.02%
IMG (GADF) 86.25% 56.79% 31.77% 61.63% 67.07% 55.67%
IMG (GASF) 86.25% 35.80% 59.38% 58.14% 37.80% 54.07%
IMG (MTF) 93.75% 25.31% 54.17% 31.40% 65.85% 46.37%
IMG (RCP) 91.25% 59.88% 46.35% 59.88% 26.83% 53.20%

Table 7: Showing the accuracies achieved by the models when being trained on the entire
TRAIN set and evaluated on the test-set. Both, the overall score as well as the
accuracies for each class are listed, with the highest values highlighted in bold.

provement of almost +7%. However, the results also reveal one of the big disadvantages when

training on an unbalanced dataset: Having more data available for some classes, causes the net-

work to predict those more often, based on their higher probability of being correct. This effect

can be observed for most of the models when using the TRAIN dataset, resulting in a reduced ac-

curacy for the under-represented classes (in this case healthy and calcaneus) while performance

is improved for the others, simply because they are predicted more often. Most interestingly,

this tendency does not affect all architectures to an equal degree, with the IMG in combination

with the MTF actually being able to improve its accuracy for both of those two classes, while

some of the others managed to increase at least one of them. More research is necessary in order

to understand this behaviour and its implications for the classification task. In the meantime,

the following conclusions can be drawn based on the conducted experiments:

1. An even larger dataset or at least an increased number of samples for the under-represented

classes would be beneficial. This would allow for the creation of a larger (balanced)

validation-set while still having enough data available for training, helping the obtained

results to generalize better on the TEST set. Additionally, as indicated by the results

obtained on the TRAIN set, some classifiers might be able to perform better if more data
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can be used for training.

2. Small differences in accuracy on the validation-set are unlikely to transfer to the TEST set

and it is hard to predict which architecture will perform best.

3. It seems like the convolution is able to extract some additional features from the data, with

the CNNs generally achieving higher results than the MLPs. Their impact remains small,

however, only improving accuracy slightly when compared to other architectures.

7.4. Influence of pre-processing

The results for the different preprocessing methods are presented in this section, starting with the

influence of normalization on the proposed classifiers. The accuracies achieved by the various

architectures with either min-max or z-score normalization applied are contrasted against just

the original data (i.e. no normalization) in Table 8. It should be remarked however, that with the

exception of the FCN (original) network, all models have been fine-tuned with an input format

usingmin-max normalization and are therefore biased to prefer this kind of input. Furthermore,

the IMG network was not evaluated for this pre-processing mode, because most of the image

transformations enforce some king of normalization anyway, resulting in a low influence of the

method.

Architecture Training-Accuracy Validation-Accuracy Test-Accuracy
Original Min-max Z-score Original Min-max Z-score Original Min-max Z-score

MLP30 55.82% 66.44% 72.43% 54.79% 65.07% 67.12% 38.37% 56.54% 54.51%
MLP90 60.27% 66.61% 76.37% 56.85% 67.81% 67.81% 49.13% 55.96% 55.38%
MLP2 66.61% 76.71% 69.01% 60.27% 70.55% 65.75% 46.37% 57.56% 54.07%
MLP-D 76.88% 77.40% 77.05% 63.01% 71.92% 67.81% 59.16% 56.25% 52.03%
1DCNN-strided 59.93% 77.40% 87.33% 65.75% 73.97% 68.49% 51.60% 58.28% 57.56%
1DCNN-dilated 57.19% 78.08% 92.47% 59.59% 73.97% 67.12% 48.40% 57.85% 54.51%
2DCNN-dilated 69.69% 94.18% 99.66% 62.33% 73.97% 64.38% 57.70% 60.03% 55.96%
2DCNN-1DKernels 64.55% 82.36% 85.10% 62.33% 73.97% 69.18% 51.74% 56.54% 55.23%
LSTM 65.92% 75.51% 87.16% 56.16% 69.86% 59.59% 52.33% 53.92% 43.46%
FCN (tuned) 100% 100% 100% 63.01% 71.92% 64.38% 46.95% 54.07% 48.26%
FCN (original) 99.32% 99.83% 99.83% 57.53% 64.38% 65.75% 44.04% 55.57% 54.51%
ResNet 100% 100% 100% 63.70% 70.55% 66.44% 50.58% 49.27% 53.34%
InceptionTime 100% 100% 100% 65.07% 69.86% 65.07% 52.47% 54.51% 52.33%

Table 8: Comparison of accuracies for training-, validation- and test-set for different normal-
ization methods and architectures. ”Original”, denotes that no normalization has
been applied at all, while the name of the normalization method is given for the other
column headers.

It can be observed that applying no normalization is clearly the worst choice, especially for the

less complex networks, resulting in a lower performance. Both min-max and z-score seem to

be good choices for most of the architectures, with the exception of the LSTM, where z-score is

outperformed by the original input on the test-set. As indicated by the almost identical accuracy
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on the FCN (original)model for both normalization methods, the differences on other networks

are most likely due to the bias mentioned earlier. This seems to suggest that both of them work

equally well for the given dataset, if the parameters of the models are tuned accordingly.

As far as the input layout is concerned, the effects seem to be negligible as well. As explained

in Section6.2.4 this has been evaluated on a modified version of the 2DCNN-1DKernels archi-

tecture, since the order of the input only affects 2D-CNNs. For an 101×10×1 input tensor, the

achieved performance is already documented in Section 7.1.3, scoring 72.60% (without hyper-

parameter tuning). An almost identical result can be accomplished using the 101× 1× 10 and

2 × 5 × 101 formats, while accuracy decreases slightly (to 71.92%) in case of the input being

provided as a 101 × 2 × 5 tensor. The most favourable data shape seems to be 101 × 5 × 2

where several models have been able to achieve a top accuracy of 73.97%, suggesting that the

differences between the affected and unaffected leg play an important role during the classifi-

cation process. However, the observed disparity between formats remains small and will most

likely vanish when fine-tuning the hyper-parameters of each model. Nonetheless, there are three

important observations to be made:

1. The 101× 5× 2 layout, facilitating comparisons between legs achieves the highest accu-

racy, suggesting that this is an important source of information for the network.

2. Even if all time-steps are convoluted in a single operation (as it is the case for the 2 ×
5 × 101 format), the accuracy remains high. This seems to indicate that the amount of

redundancy within the data is high, especially for the temporal relationships, which seem

to be insignificant for the classification.

3. The 2D-CNN is able to perform well independent of the input ordering, indicating that the

influence of inter-signal dependencies is small as well, because the amount of additional

information is low.

Those assumptions have been verified in the next step, looking at the impact of re-sampling on

the data. Experiments were limited to the best performingMLP architectures and the unmodi-

fied FCN, due to the expected robustness against input of varying length and the high amount of

re-training required for this evaluation. However, since the sole purpose of this endeavour is to

determine how much information remains within the re-sampled measurements, this approach

should be more than sufficient. An overview of the obtained results is provided in Table 9.

Surprisingly, even though the highest accuracy was achieved using all available data-points (i.e.

resampling of 1), the amount of redundant data seems to be considerably high. The values sug-

gest that only 10% of the data are actually needed to achieve good accuracy, scoring only 3-5%

lower for the MLPs and achieving an identical result for the FCN. In order to verify this hypoth-

esis, an attempt has been made to fine tune the parameters of MLP-D on the input-series X̃10

(i.e. 11 time-steps), looking for a score that is identical or close to the 71.92% achieved on the
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Architecture Sampling interval
1 2 3 4 5 6 7 8 9 10

MLP2 70.55% 67.81% 65.75% 65.75% 69.18% 65.07% 65.75% 65.75% 65.75% 65.07%
MLP-D 71.92% 68.49% 69.86% 67.81% 68.49% 67.81% 67.81% 68.49% 67.81% 69.18%
FCN (original) 64.38% 63.70% 63.70% 64.38% 64.38% 60.96% 59.59% 62.33% 64.38% 64.38%

Table 9: Validation-accuracies for various sampling intervals k for MLP and FCN architectures.
It can be observed that performance does not suffer much even if the samples are
reduced from 101 to just 11 data-points.

original data. The resulting parameter search revealed that there is no difference in performance

of an MLPwith a single hidden layer when only 11 data-points are used instead of the total 101.

The best accuracy observed on the reduced dataset even outperformed the original one slightly,

scoring 72.60% accuracy. As a result of the conducted experiments, the following conclusions

can be drawn:

• Almost no information is contained within the temporal dependencies of a signal (i.e. they

can be fully represented by 11 points).

• Interaction within signals also seem to be of limited importance (i.e. the behaviour in the

regions removed from the dataset is not relevant).

• Not all re-samplings X̃k seem to yield an equally accurate representation, depending on

the selection of points. For example k = 6 and k = 7 feature the lowest accuracies

across all evaluated architectures, suggesting that some parts of the waveform are more

important than others.

The last part of this section investigates if the theory by Slijepcevic et al. (2020) about the

increased robustness of the classifier when training with all trials instead of the mean waveform

can be verified for neural network architectures. Table 10 lists the obtained accuracies when

using each individual trial during the training process. The results for the validation- and test-

set are provided for the mean waveform (i.e. the model is trained with all trials, but just the

mean waveform is predicted) or all trials in total (i.e. the classifier tries to predict each trial.

Aggregating those individual labels into one common class per gait analysis session will be

discussed in the next section.

First of all, it needs to be remarked that the training process takes considerably more time and

computing power if each individual trial is used, especially for the more complex architectures.

As a general observation, there seems to be a lot of variability within the trials of a single session,

as the performance on the individual trials is almost always lower than on the mean waveform.

This signifies that there exist at least some trials within a session, that get classified differently

than the average. Furthermore, while the performance on the validation-set generally decreased

(compared to themodels being trained on themeanwaveform), this is not necessarily the case for
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the test-set, with some architectures achieving higher accuracies than previously (see Table 6).

In combination with the smaller gap between the accuracies of the mean waveform and all trials

on the test-set, it does indeed seem like a more robust classifier was created.

Architecture Training-Accuracy Validation-Accuracy Test-Accuracy
AllTrials Mean AllTrials Mean AllTrials

MLP30 71.40% 65.07% 62.49% 56.98% 56.62%
MLP90 75.19% 67.81% 62.57% 57.41% 54.81%
MLP2 82.84% 63.70% 58.76% 52.33% 53.44%
MLP-D 69.27% 69.18% 62.17% 61.77% 58.75%
1DCNN-strided 80.56% 64.38% 61.22% 58.43% 55.01%
1DCNN-dilated 92.70% 63.70% 58.84% 52.18% 51.68%
2DCNN-dilated 98.00% 60.96% 58.45% 53.34% 54.11%
2DCNN-1DKernels 81.47% 67.12% 62.65% 56.34% 53.22%
LSTM 84.76% 65.07% 61.46% 53.92% 52.22%
FCN (tuned) 100% 65.07% 62.25% 57.56% 52.35%
FCN (original) 98.99% 61.64% 58.84% 54.07% 48.19%
ResNet 100% 66.44% 59.87% 53.78% 52.03%
InceptionTime 100% 63.70% 60.11% 47.97% 49.22%
IMG (GADF) 97.96% 63.70% 56.62% 53.34% 50.98%
IMG (GASF) 88.99% 59.59% 55.11% 50.15% 49.70%
IMG (MTF) 97.53% 55.48% 52.97% 49.71% 46.89%
IMG (RCP) 97.33% 61.64% 57.73% 51.89% 51.59%

Table 10: Depicting the performance achieved when training with all individual trials instead of
taking the mean. Accuracies for the validation-set are given for both, the aggregated
data (i.e. Mean) as well as all individual trials.

Most notably, the MLP-D, seems to benefit from more data being available (see the compar-

ison on the whole TRAIN set in Table 7), achieving the best accuracy on the test-set so far

with 61.77%. Another notable fact is the low training-accuracy achieved by this network, sug-

gesting that it is indeed somehow able to extract more generalizable information than the other

architectures. In general, the performance of the MLPs when relying on individual trials is

impressive, with the perceived small advantage of the convolutional networks reported for the

mean waveform, seeming to disappear entirely, with good performances being observed across

all architectures.

7.5. Influence of post-processing

According to the results obtained by Slijepcevic et al. (2020), aggregation of all individual trials

for a single session by using a majority voting-based approach, should be able to take advantage

of the more robust classifier built in the previous section to produce a more accurate result. The
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comparison between the original score (highest accuracy using themeanwaveform, independent

of which data has been used to train the model - denoted as baseline) and models trained with

either aggregated or individual trials followed by late fusion via majority voting) is presented in

Table 11.

For the validation-set, accuracy did generally not increase when majority voting was applied,

while better performance can be observed for the test-set on some architectures. Interestingly,

in some cases the classifier obtained from training with the mean waveform seemed to be more

robust, yielding the best result on the test-set, especially for the 2DCNN-1DKernelsmodel. The

MLP-1D managed to increase its accuracy by +0.2% with applied majority voting, achieving

the highest performance observed on the test-set during all experiments. With the exception of

ResNet, none of the convolutional networks could improve its results when compared to the

mean waveform, suggesting a lower generalizability of the learned patterns.

Architecture Validation-Accuracy Test-Accuracy
Baseline Mean AllTrials Baseline Mean AllTrials

MLP30 65.07% 61.64% 64.38% 56.98% 57.12% 57.99%
MLP90 67.81% 65.07% 65.07% 57.41% 54.51% 57.27%
MLP2 70.55% 64.38% 61.64% 57.56% 57.41% 55.52%
MLP-D 71.92% 69.86% 67.81% 61.77% 56.40% 61.92%
1DCNN-strided 73.97% 67.81% 63.01% 58.43% 55.96% 56.98%
1DCNN-dilated 73.97% 70.55% 58.90% 57.85% 57.27% 52.33%
2DCNN-dilated 73.97% 67.81% 63.01% 60.3% 58.58% 57.27%
2DCNN-1DKernels 73.97% 67.12% 65.75% 56.54% 57.12% 54.51%
LSTM 69.86% 64.38% 62.33% 53.92% 51.16% 52.76%
FCN (tuned) 71.92% 65.75% 65.75% 57.56% 54.94% 54.36%
FCN (original) 64.38% 56.85% 58.90% 55.67% 52.62% 48.98%
ResNet 70.55% 60.27% 63.01% 53.78% 49.85% 56.25%
InceptionTime 69.86% 63.01% 65.75% 54.51% 54.36% 49.85%
IMG (GADF) 69.18% 62.33% 62.33% 55.81% 54.94% 55.81%
IMG (GASF) 63.70% 61.64% 58.22% 52.18% 52.47% 51.89%
IMG (MTF) 56.85% 52.05% 57.53% 49.71% 51.60% 51.02%
IMG (RCP) 64.38% 63.01% 57.53% 51.89% 55.09% 54.80%

Table 11: Demonstrating the effect of late fusion via majority voting applied to different ar-
chitectures. The column denoted by Mean shows the accuracy obtained when using
majority voting in combination with a model that has been trained on mean wave-
forms, while each individual trial has been used for training in the AllTrials column.
Baseline on the other hand reports the best result without majority voting, obtained
by using the mean waveform.

Overall, there are three important trends to observe:

• When compared to the results in Table 7, majority voting never decreased performance

for models being trained on all individual trials, in most cases actually increasing it by
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1-5%.

• For model trained on the mean waveform, majority voting did not help in most cases,

probably because the resulting models are more sensitive to perturbations (i.e. less robust)

• The high accuracy on the validation-set for the baseline suggests that most architectures

extracted patterns from this set that are not generalizable, thus overfitting the validation

data.

Considering that all networks (with the exception of the unmodified FCN) have been optimized

for the mean waveform, the combination of using majority voting in combination with a clas-

sifier trained on all trials seems to be a promising approach. The accuracy boost achieved by

late fusion seems to apply even if the performance of the architecture is already high, indicating

that it would increase even further with a better classifier. Optimizing the networks to utilize all

input data therefore seems to be a promising approach for future research. However, because

results indicate that it is more difficult to obtain general features from all individual trials, it is

unlikely that overall performance would increase by more than 5-10%.

7.6. Class separability

The goal of this section is to provide more insights into the problem of classifying gait disorders

according to body locations itself, by exploring the distinctiveness of each class. For a ''good''

classification, the overlap between classes should be small, as this indicates that they can be

separated reasonably well. Only the results obtained for the 1DCNN-strided architecture are

presented here, since this architecture achieved the best results for the class fusion introduced

in Section 6.3 (i.e. it is the most accurate model for detecting whether a gait disorder originates

from the lower or upper leg). The confusion matrix for this network is depicted in Figure 23.

The matrix illustrates that some of the classes are more likely to be confused with each other

because their characteristics seem to be very similar (i.e. they are hard to distinguish). This is

especially true for the ankle class, where 32% of the instances are misclassified as calcaneus.

However, when combining such hard to differentiate classes, a considerably higher accuracy

could be reached and the theoretical performance of the fused UL at LL classes is highlighted in

the figure. If the classification task is simplified to only three categories, an accuracy of 87.67%

could be obtained. Aparameter search was conducted using this new classification problem (i.e.

Healthy - UL - LL in an attempt to train a model that is able to improve on the performance of

the classifier using the original five. Unfortunately, both tasks seem to be equally difficult,

because none of the models examined during the extensive search was able to surpass the value

of 87.67% accuracy. In accordance to the results of the previous sections, this seems to support

the theory that the network actually overfitted on the validation-data and has already found an
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optimal solution.

Figure 23: Confusion matrix for the 1DCNN-strided architecture. All values are in percent-
ages of the real occurrences (i.e. each columns sums up to 100%). For example the
value in the Hip-Hip cell signifies that 71.9% of all patients with hip injuries were
classified as such. The highlighted areas simulate the effect of fusing commonly
confused classes together, resulting in a total accuracy of 87.67% for the classifier
(+13% from the original result).

The research on class separability is concluded by investigating the influence of combining data

from both legs, with the the results being summarized into the confusion matrix of just the af-

fected leg displayed in Figure 24. In case of the 1DCNN-strided architecture, the accuracies

for all classes, with the exception of knee are decreased, indicating that the model learns a nar-

row representations for four classes and a single broader one, that is used to fit everything that

does not match any other category (in this case classifying such data as a knee injury). Fur-

thermore, it can be deduced that information from the unaffected leg is especially helpful for

recognizing healthy-patients, while the effects on other classes remain mixed (dominated by

misclassifications as knee). Calculating the average accuracy per class (i.e. the mean of the

diagonal elements) reveals that it is reduced by almost 10% (from 72.82% down to 63.28%) if

the signals for the unaffected leg are omitted from the classification. Ass such, the conclusion

drawn by (Slijepcevic et al., 2020, 2018b), claiming that inclusion of the unaffected leg results

in a better overall accuracy can be verified for neural networks.
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Figure 24: Comparison of confusion matrices for the 1DCNN-strided network for GRF-
measurements using either all data or only the affected leg. All values are in per-
centages of the real occurrences (i.e. each columns sums up to 100%). The small
black numbers give the percentages obtained with the unaffected side included,
while the red numbers illustrate the results for the affected side only. Increases/De-
creases are highlighted by arrows, while the background colour indicates a negative
(red) or positive (green) effect.

7.7. Data Selection

The implications of the selection process applied to the data obtained from the GaitRec archive

are discussed in this section. Due to the considerable increase in data (especially when read-

missions are considered) and thus computing time required, experiments in this section were re-

stricted to the two architectures achieving the highest accuracy on the test set, namely theMLP1

and 1DCNN-dilated models. Furthermore, in contrast to the previous sections, the TRAIN set

had to be used during the training process because the TRAIN-BALANCED set does not include

samples with the examined characteristics. Results are only available for the mean waveform,

but it is expected that the general behaviour would be similar, even if other input forms are used.

When looking at persons with injuries in both legs, there are a total of 34 (hip: 10, knee: 6,

ankle: 1, and calcaneus: 17) available in the test-set. The inclusion/exclusion of such patients

during training and/or testing had the following consequences on the examined architectures:

• MLP1: This architecture manages to classify 14 out of these 34 correctly, when included

in training and testing. Excluding such data from the whole process increased total ac-

curacy by +0.1%, with the most notable changes being an increase in the accuracy of the
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calcaneus class (+13%) and, surprisingly, a decrease for the healthy patients (-11%).

• 1DCNN-dilated: 50% of the patients with injuries in both legs are classified correctly (17

out of 34), while excluding them from both training and testing boosted overall accuracy

by +2.5%, increasing the values for both knee (+10%) and healthy (+5) with only a slight

decrease in results for the calcaneus class (-4%).

Excluding those patients from just the training-data while maintaining them in the test-set re-

sulted in a worse performance for both architectures. Otherwise, due to the low sample size,

there is little indication to which method should be preferred in general. However with only a

50% chance of the impairment location being classified correctly, there seems to be little benefit

in maintaining such data, as it will not see practical use. Since the GRF-measurement classifi-

cation task appears to be difficult enough without this additional constraint, the recommended

approach would be to discard such data from both the training- and test-set, focussing on the

development of a classier for injuries in a single leg.

Including data from readmissions provides the advantage of increasing the amount of available

data for training by a factor of four, while, on the other hand, skewing the class balance even

further (since such data is not available for healthy persons). This is reflected in the experi-

ments, deteriorating performance for the healthy group considerably, with accuracy decreasing

by 11-20%. Results obtained for the other classes remained mixed and seemed to be dependent

on the architecture. For the MLP1 a considerable increase in accuracy was observed for the

hip class, paired with an equally strong decrease for the knee class, whereas the exact opposite

applied when the 1DCNN-dilated network was employed. For now, there is no definite answer

to the question on how to best utilize such data, as its usefulness is severely restricted by the

lack of measurements for non-injured persons.

In contrast to the somewhat ambiguous results above, experiments conductedwith patients wear-

ing orthopaedic/shoes insoles give definite evidence on how to proceed with such data. Both

models show a decreased accuracy for all classes (except one that seems to act as a general cat-

egory for everything that can not be classified anywhere else) resulting in a low performance in

total. This demonstrates that the impact of the distortion caused by orthopaedic aids should not

be underestimated and it is generally recommended to remove such samples from the dataset.

This can be safely done without limiting the clinical usefulness of the classifier, since GRF-

measurements can be performed equally well when taking off one's shoes and walking barefoot

or in socks, a practice that should not be too hard to adopt in a clinical setting.
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7.8. Summary

The obtained results demonstrate that classification of gait disorders according to the body loca-

tion of the associated impairment is a difficult task to solve. High inter- and intra-class variabil-

ity prevent the classifier from accurately separating the data, signifying that either the method

is not good enough to extract the appropriate features or the information is simply not contained

in the results. Especially the fact that no higher accuracy than 73.97% can be achieved on the

validation-set is concerning. An analysis of the corresponding waveforms (see Figures 21 &

19) seems to indicate that the actual learning is limited around 60% and deviations from that

number are just random fits of the data, that "happen" to be a good choice for the validation-set.

This theory is supported by the accuracies obtained for the TEST set, which rarely surpass that

value.

Furthermore, the information needed to achieve those 60% seems to be fairly obvious and is

contained within only a few data-points, as down-sampling did not decrease accuracy by much

and even a simple MLP with just 30 neurons is able to extract it. A major problem seems to be

the distinction between the ankle and calcaneus classes, with classifiers usually just performing

well on only one of them. Closer inspection reveald that the main decision point between those

two classes is an earlier maxima in the F_ap component, but unfortunately only about 75% of

the calcaneus instances actually posses that characteristic. At the same time approximately 25%

ankle signals contain that feature as well. Therefore, higher accuracy for one of these classes

usually results in lower performance for the other. Hip and knee injuries are easier to distinguish

but rarely achieve a score larger than 70% (hip) or 60% (knee) respectively. While several of

the proposed techniques (majority voting, training with all trials) seemed to be able to mitigate

those issues, the improvements remain rather small, never able to catch up to the performance

observed on the validation-set.

Image-transformations, normalization methods and neural network architectures did not seem to

influence the result much, largely achieving identical values independent of the type. However,

the conducted experiment indicate that having more data available during training is able to

improve accuracy and maybe a larger dataset could be used to alleviate many of the current

issues. Neural networks are known to benefit from a huge amount of data (Roh et al., 2019) and

if generalizable patterns exist more sampled would definitely be advantageous.

8. Conclusion

The main contribution of this research is the evaluation of different neural network based ap-

proaches for classifying GRF-measurements according to the location of gait impairment. Re-

sults suggest that, despite the high accuracy achieved (compared to previous research), the
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amount of information contained within the data is actually limited. None of the employed

architectures has been able to break the threshold of 74% accuracy on the validation-set, even

though extensive searches across the parameter space have been performed. The fact that the

maximal accuracy for several different models is exactly the same might signify that there is

no better solution obtainable with the given dataset. However, there are still areas for future

research that might end up yielding a better performance. Making use of all individual trials

during the training process in combination with a majority voting based approach for the final

classification of each sample could lead to a boost in accuracy. Especially if the parameters of

those models are fine-tuned on non-aggregated input, such an approach could perform better

than the ones used in this research. Experiments indicate that majority voting does not lose its

advantages even when applied to networks that already obtain high accuracy, reducing the task

to finding a model that performs well on all individual trials. Furthermore, due to the observed

differences between architectures on the accuracies obtained for single classes, investigating en-

sembles of neural networks (similar to the approach used by Fawaz et al. (2019b) but consisting

of different architectures) seems to be a promising direction for future research.

Nonetheless, the results obtained from the experiments raise serious doubts that the aforemen-

tioned threshold can be surpassed by a large margin. The GRF-signals might simply not contain

enough information for an accurate classification, as the information contained within tempo-

ral dependencies and the interaction between signals seems to be largely redundant. None of

the methods specifically developed for categorizing time-series yielded a significantly better

accuracy than a simple MLP consisting of a single hidden layer. Perceived (although small)

differences on the validation-set did not transfer to the independent test-set, because it over-

estimated the actual accuracy by approximately 10% (and in most cases even more). Therefore,

fine-tuning of the architectures generally ended up in finding a good fit for the validation-set,

with a somewhat limited ability to generalize well on the test-set.

Especially the ankle and knee classes are hard to identify resulting in a low performance for both

of them. This seems to be a general problem for the ankle class, suggesting that it might be due

to the characteristics of the class itself (i.e. the waveforms are too similar to other classes), while

the complications for the knee class seem to be of a different nature. The drop in accuracy on the

TEST data might signify that the variability of the waveforms within this group is too high to

be accurately captured by the validation-set, making this class difficult to categorize. While the

latter could be combated with more available data, finding a good representation for the ankle

class seems to be the real bottleneck and the key to improving accuracy.

Apart from such concerns, research revealed that it is possible to extract the same amount of

information (i.e. reaching the same level of accuracy) even if the signals are downsampled by a

factor of 0.1, resulting in only 11 points per measure. This implies that all relationships and cor-

relations between signals other than at those exact time-steps are irrelevant for the classification,
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probably because of the aforementioned high variability. This applies to the classes in general

as well as to the individual persons. The performance decrease observed when using majority

voting in combination with the mean waveform can only be explained by either outliers or in-

dividual trials that are distinctly different from each other. It seems to be entirely possible for

the averaged waveform of all trials (from the same session), to be classified into one category,

while the majority of the trials itself would fall into another when analysed individually. This

raises some concerns about the robustness of the classifier, calling for further research on that

topic.

Due to the reasons listed above and the fact that the TEST set defined by Horsak et al. (2020) has

not been used in any publications yet, a comparison to previous research (Slijepcevic et al., 2017,

2018a,b, 2020) is difficult. For example, Slijepcevic et al. (2020) used the same dataset (i.e.

TRAIN-BALANCED) for training a SVM, forming an independent test-set by randomly selecting

35% of the samples. Since this test-set is nearly balanced with high probability, the overall

accuracies can not be compared and performance for individual classes is not reported in their

research. However, their best accuracy of 62% is almost identical to the highest score observed

in this research (61.92%) indicating that both approaches work equally well (andmaybe separate

the data in a similar fashion). In order to verify this hypothesis, an evaluation of the SVM on the

dataset from Horsak et al. (2020) would be needed and might reveal some additional insights

into the task.

In any case, the purpose of successfully establishing a first benchmark on the dataset provided by

Horsak et al. (2020) was achieved, hopefully facilitating comparisons for future research against

a common baseline. Unfortunately it seems like small subsamples from the TRAIN-BALANCED

set might not be a good enough indication for the actual performance of a classifier, making this

common reference a much needed opportunity to assess further research.
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Appendices

A. Thesis summary

With the recent advancements and success of machine learning techniques for automated clas-

sification of data, several attempts have been made to employ such methods in the field of gait

analysis. Various studies have been conducted, often making use of both kinetic and kinematic

data obtained from measurements using a 3-dimensional gait analysis system. However, due

to the relatively high cost and time requirements of such a device, it is not commonly used in

clinical practice. Instead, experienced clinicians often rely on a simple quantification of Ground

Reaction Force (GRF) measurements in combination with a visual inspection in order to as-

sess the clinical status of the analysed motor function. An automated approach for classifying

GRF-measurements would not only be able to support clinicians in their diagnosis, but could ad-

ditionally be used for planning and coordinating the treatment by personalizing the gait training

according to the recognized movement disorder.

The most exhaustive research (focussing solely on GRF measurements obtained by using force

plates) conducted in the field so far, tries to map gait impairments to the location (the joint) of the

corresponding injury using the five main classes: Healthy - Hip - Knee - Ankle - Calcaneus, pro-

viding a non-invasive option for assessing locomotive functions. However, the problem remains

a difficult one, with the highest classification accuracies reported (62%, obtained by employing

a Support Vector Machine) being lower than desirable in a clinical setting. Because temporal

dependencies and relationships between the individual components of GRF-measurements have

been neglected in previous attempts, this thesis tries to expand on those approaches by employ-

ing different versions of neural networks for the classification task. The main advantage of such

advanced architectures is their ability to operate on multivariate input, enabling them to take

advantage of correlations between the different signals. Additionally, those methods have been

specifically developed (e.g. LSTM - Long Short-TermMemory) or adapted (e.g. Convolutional

Neural Networks - CNNs) for time-series data, promising to extract a maximum of informa-

tion from the available measurements. The networks evaluated in this research have either been

previously used for GRF data (but with a different classification goal) or have shown good per-

formance across various time-series data, making it likely that they will achieve high accuracy

on the investigated task.

Experiments have been conducted using the GaitRec-data, using the provided balanced dataset

for training the classifiers and the independent test set for evaluating their performance. Param-

eters for the individual architectures have been estimated by splitting the data used for training

into a train- (80%) and validation-set (20%), using the model achieving the highest accuracy on
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the validation-set for further testing. The following four main components of neural networks

have been verified, independently and in combination, to determine the best architecture for

the GRF classification task: (1) Multi-Layer Perceptron (MLP), (2)1-dimensional convolution

(1D-CNN), (3) 2-dimensional convolution (2D-CNN) and (4) LSTM. Additionally, more com-

plex models proposed for time-series classification such as FCN (Fully Connected Network),

ResNet (Residual Network) and InceptionTime, and time-series to image transformations have

been investigated as well.

However, experiments revealed that the advanced feature extraction ability of such complex

techniques is not able to detect beneficial patterns within the data, showing minimal to no in-

crease in accuracywhen compared tomuch simplermethods. Generally, it seems like the amount

of information contained within the GRF-measurements is highly redundant, with only a few

data-points actually contributing to the performance of the classifier. None of the more sophis-

ticated networks is able able to outperform a rather simple single-layered MLP (achieving the

highest observed accuracy of 61.91%) on the independent test-set, suggesting that there is no

advantage to analysing temporal and inter-signal dependencies of the data. On the contrary, the

conducted research indicates that the amount of data-points can be reduced by a factor of ten

without a significant drop in accuracy, achieving almost identical performance on the validation-

set. Furthermore, even though the convolutional approaches are able to score a higher accuracy

on the validation-set (presumably due to overfitting), no model is able to surpass the accuracy

threshold of 74%, although several different architectures achieve 73.97%. Such behaviour

could signify that the optimal solution for the validation-set has been found and no further in-

crease might be possible using neural networks.

Despite those slightly surprising results concerning general classification accuracy, evaluation of

different pre- and post-processingmethods has been able to reveal some insights into the problem

itself, indicating promising field for future research. While the performance seems to be inde-

pendent of the input format and neural network type, experiments demonstrate that additional

normalization of the input is advisable, resulting in higher scores on validation- and test-set.

Additionally, some positive effects when training with all individual trials instead of the mean

waveform have been observed, possibly leading to a more robust classifier when employed.

Especially in combination with late fusion of individual trials via majority-voting, higher ac-

curacies have been achieved on various architectures. While the aggregation of trials after the

actual classification is clearly advantageous, more research is necessary in order to determine if

a better classification result can be achieved when both methods are combined.
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B. Zusammenfassung der Masterarbeit

Aufgrund der raschen Entwicklung und dem fortschreitenden Erfolg von künstlicher Intelligenz

(besonders im Bereich des sogenanntenDeep Learnings), ist es nicht weiter verwunderlich dass

zahlreicheVersuche unternommenwurden, dieseMethoden auch für die Ganganalyse zu nutzen.

Viele Forschungsprojekte zu diesem Thema verwenden dabei sowohl kinetische als auch kine-

matische Daten, die mittels eines 3DGanganalysesystems erhoben werden. Aufgrund der hohen

Anschaffungskosten und der relativ zeitintensiven Messungen, finden solche Systeme jedoch

nur selten Anwendung im klinischen Alltag. Viel verbreiteter ist die Analyse der Bodenreak-

tionskräfte (erhoben mittels Kraftmessplatten) gekoppelt mit einer visuellen Inspektion durch

erfahrenes Personal. Eine derartige Analyse könnte erheblich von einer automatischen Klassi-

fizierung solcher Daten profitieren, die dazu in der Lage wäre quantitative und nachvollziehbare

Information sowohl für die Diagnose als auch für die Planung und Kontrolle des Rehabilitation-

sprozesses beizusteuern.

Die bisher größte Studie, welche sich ausschließlich mit der Klassifikation von Bodenreak-

tionskräften beschäftigt, versucht eine Verbindung zwischen der jeweiligen Beeinträchtigung

und dem von der Verletzung betroffenen Gelenk herzustellen. Dabei wird zwischen den fol-

genden fünf Klassen zu unterschieden: Gesund - Hüfte - Knie - Knöchel – Calcaneus. Eine

solche Klassifizierung erweist sich jedoch als schwierig und die Genauigkeit der Methode (62%

unter Benutzung einer Support Vector Machine) ist noch erheblich unter der erstrebenswerten

Anforderung für eine medizinische Anwendung. Da zeitliche Abhängigkeiten und Beziehun-

gen zwischen den einzelnen Komponenten einer Bodenreaktionskraftmessung in den bisheri-

gen Studien nicht berücksichtigt wurden, wird im Rahmen dieser Masterarbeit versucht diese

zusätzliche Information mithilfe neuronaler Netze zu analysieren um eine höhere Genauigkeit

zu erzielen. Dabei kommt eine Anzahl speziell entwickelter (z.Bsp. LSTM - Long Short-Term

Memory) oder adaptierter (z.Bsp. Convolutional Neural Networks – CNNs) Methoden für die

Zeitreihenanalyse zumEinsatz. Die angewendetenModelle wurden entweder bereits erfolgreich

für Bodenreaktionskraftdaten getestet oder zeigten gute Ergebnisse bei Experimenten mit unter-

schiedlichen Arten von Zeitreihen und repräsentieren den gegenwärtigen Stand der Forschung

in diesem Bereich.

Zur Evaluation dieser Netzwerkarchitekturen wurde die GaitRec-Daten herangezogen, welche

sowohl einen balanzierten Trainingsdatensatz als auch unabhängige Testdaten zur Verfügung

stellen. Um die optimalen Parameter der individuellen Architekturen zu erheben, wurde der

Trainingsdatensatz in ein Trainings- (80%) und Validierungs-set (20%) geteilt, und Kandidaten

für weitere Tests wurden anhand der erzielten Genauigkeit amValidierungs-set ausgewählt. Die

folgenden vier Komponenten neuronaler Netzwerke wurden (unabhängig und in Kombination)

getestet um das beste Modell für Bodenreaktionskraftdaten zu finden: (1) Multi-Layer Per-
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ceptron (MLP), (2)1-dimensional convolution (1D-CNN), (3) 2-dimensional convolution (2D-

CNN) and (4) LSTM. Zusätzlich wurden komplexere Modelle, die große Erfolge in der multi-

variaten Zeitreihenanalyse erzielen konnten implementiert (FCN - Fully Connected Network,

ResNet - Residual Network und InceptionTime) und auch Umwandlungen von Zeitreihen zu

Bildern (um von der hohen Genauigkeit aktueller Bilderkennungsanwendungen zu profitieren)

untersucht.

Die durchgeführten Experimente zeigen jedoch dass auch solche komplexen Methoden nicht

dazu in der Lage sind, weitereMuster in den Daten zu identifizieren und die erzielte Genauigkeit

kann nur minimal bis gar nicht gesteigert werden. Generell erscheint der Informationsgehalt der

Daten größtenteils redundant zu sein, da nur wenige Datenpunkte dazu in der Lage sind die Qual-

ität der Klassifizierung zu beeinflussen. Das beste Ergebnis am unabhängigen Testset wurde von

einem relativ simplen Netzwerk (61.91%, MLP mit nur einem Layer) erzielt und konnte von

keiner der anderen Methoden übertroffen werden. Dies legt nahe, dass weder in den zeitliche

Abhängigkeiten noch in den Korrelationen zwischen den Komponenten relevante Information

enthalten ist, die für eine bessere Klassifikation genutzt werden könnte. Im Gegenteil, erste

Tests mit reduzierten Datensätzen zeigen dass die Anzahl der Datenpunkte auf mindestens ein

Zehntel reduziert werden kann, ohne signifikant an Genauigkeit zu verlieren. Das relativ gute

Abschneiden der CNNs auf dem Validierungs-set, bei dem mehrere verschiedeneArchitekturen

eine Genauigkeit von 73.97% erreichen, suggeriert ebenfalls einen limitierten Informationsge-

halt. Da keines der Modell dazu in der Lage ist die Schwelle von 74% zu überschreiten, könnte

dies bedeuten dass keine (global) bessere Lösung existiert und somit auch kein besseres Ergebnis

erzielt werden kann.

Trotz dieser etwas enttäuschenden Resultate in Bezug auf die Klassifikationsgenauigkeit, zeigen

die Experimente dass entsprechende Schritte bei der Vor- und Nachbearbeitung der Daten dazu

in der Lage sind das Resultat zu beeinflussen. Während sowohl das Eingabe-Format als auch der

Netzwerktyp nur eine untergeordnete Rolle spielen, zeigen die Versuche deutlich bessere Ergeb-

nisse wenn die Daten erneut normalisiert wurden, und zwar unabhängig von der dabei gewählten

Methode. Zusätzlich konnten positive Effekte beobachtet werden wenn mit sämtlichen Daten

(die während eines einzelnen Ganganalyse-Termins erhoben wurden) gearbeitet wurde anstatt

den Mittelwert der individuellen Messungen zu verwenden. Insbesondere in Kombination mit

einer späten Aggregation (d.h. Klassifikation jedes einzelnen Trials) via Mehrheitsentschei-

dung ist es möglich die Genauigkeit zusätzlich zu steigern. Während der Einfluss der Mehrheit-

sentscheidung durchgehend positiv ausfällt, ist bezüglich der verschiedenen Kombinationen der

Fusionierung individueller Trials weitere Forschung notwendig umderen Effekte undAuswirkun-

gen zu verstehen.
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