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Abstract

This thesis explores aspects of Ramsey theory in the descriptive set-theoretic
context. The motivating question was: When does a Borel function from a
countable Borel equivalence relation E to 2 admit an E-complete homoge-
neous Borel set? This thesis mostly focuses on two related questions: When
is the underlying space a countable union of homogeneous Borel sets? In
the new context, what is the relevance of the usual method of constructing
counterexamples to infinitary Ramsey statements by comparing two linear
orders?

First, we look at the Hausdorff condensation of linear orders and give two
proofs of the fact that w; is a strict upper bound for the supremum of the
Hausdorff ranks of certain definable sets of scattered linear orders. Then,
we deal with continuous embeddability in the class I'g2 of pairs of analytic
directed graphs on a Polish space whose joint Borel chromatic number is un-
countable. Many results from a paper by Miller and Lecomte are generalized
to pairs of analytic directed graphs, most importantly the basis and anti-basis
results. Finally, we look at the class I'z« of Borel functions f: F\A(X) — 2,
where F is a non-smooth Borel equivalence relation on a Polish space X, with
the property that every Borel set B for which f [ ((E\ A(X)) | B) is con-
stant is E-smooth. There is a natural example fy of such a function, which
turns out to be minimal among the functions in I'z+ whose domain comes
from a countable equivalence relation.



Zusammenfassung

In dieser Masterarbeit erkunden wir Aspekte der Ramsey-Theorie im Kon-
text der Deskriptiven Mengenlehre. Die motivierende Fragestellung lautete:
Wann gibt es fiir eine borelsche Funktion von einer abzahlbaren borelschen
Aquivalenzrelation E nach 2 eine E-vollstandige homogene Borel-Menge?
Wir beschéaftigen uns hauptséachlich mit zwei verwandten Fragen: Wann kann
der darunterliegende Raum als abzahlbare Vereinigung von homogenen Bo-
rel-Mengen geschrieben werden? Welche Relevanz hat die iibliche Methode,
um Gegenbeispiele fiir Ramsey-Aussagen im Unendlichen zu konstruieren,
i.e. das Vergleichen von zwei linearen Ordnungen, im neuen Kontext?

Zu Beginn untersuchen wir die Hausdorff-Kondensation von linearen Ord-
nungen und geben zwei Beweise dafiir, dass w; eine strikte obere Schranke fiir
das Supremum der Hausdorff-Rénge von bestimmten definierbaren Mengen
von zerstreuten linearen Ordnungen ist. Anschliefend untersuchen wir die
stetige Einbettbarkeit in der Klasse I'g= von Paaren analytischer gerichteter
Graphen auf polnischen Raumen, deren gemeinsame borelsche chromatische
Zahl tiberabzéahlbar ist. Viele Resultate einer Arbeit von Miller und Lecom-
te werden zu Paaren von analytischen gerichteten Graphen verallgemeinert,
insbesondere die Basis- und Anti-Basis-Resultate. Abschlieend untersuchen
wir die Klasse I'z« von borelschen Funktionen f: E\A(X) — 2, wobei F eine
nicht-glatte borelsche Aquivalenzrelation auf einem polnischen Raum ist und
jede Borel-Menge B, fiir welche f | ((E\ A(X)) | B) konstant ist, E-glatt
ist. Es gibt ein natiirliches Beispiel fj einer solchen Funktion, die minimal
unter jenen Funktionen in 'z« ist, deren Domane von einer abzahlbaren
Aquivalenzrelation kommt.



Introduction

The original motivation for this thesis was to investigate to what extent there
is an analog of Ramsey’s Theorem in the descriptive set-theoretic context.
For each binary relation R on a set X, function f: R — 2 and k < 2, we
call a set Y C X f-homogeneous (with value k) if f [ (R]Y) is constant
(with value k). For each equivalence realtion F on a set X, a subset of X is
E-complete if it intersects every E-class.

Question 1. Given a countable Borel equivalence relation E on a Polish
space, under what circumstances does a Borel function f: E — 2 admit an
E-complete f-homogeneous Borel set?

A graph on a set X is a symmetric irreflexive subset of X x X, a directed
graph on X is an irreflexive subset of X x X and an oriented graph on X is
an anti-symmetric directed graph on X. For each directed graph GG on a set
X, let GH ={(z,y) e X x X | (z,y) € G or (y,z) € G}.

Although Question 1 served as a starting point, this thesis mostly deals
with the following two related questions:

Question 2. Given an analytic directed graph G on a Polish space X and a
Borel function f: G — 2, under what circumstances is X a countable union
of f-homogeneous Borel sets?

Question 3. Does the usual method of building counterexamples to infinitary
Ramsey statements, i.e. by comparing two linear orders, also work in the
descriptive set-theoretic context, and to what extent are such counterexamples
canonical?

For each set X, let A(X) denote the diagonal {(x,z) € X? |z € X} on
X. For each linear order R on a set X, let dom(R) = X, <z = R\ A(X),
(z,y)p ={r€e X |z <pz<py}and [z,y)p ={r€ X |2 Rz<py}. A
linear order R on a set X is dense if Vo, y € X (x <py = (x,y)5 # 0),
and a set Y C X is R-convez if Vo,y € Y (z,y), C Y.

Given a linear order R on a set X and an equivalence relation F on X
whose classes are R-convex, let R/E denote the linear order on X/E given
by

elg R/E [y, < = Ry,

and let E, denote the superequivalence relation of £ given by
v Epy <= |([2]g, Wp)g/e Y (Wl [2]p) g/sl < Ro.

Note that the classes of E are R-convex. Recursively define an increasing
sequence of equivalence relations whose classes are R-convex by setting E% =



A(X), Ex™ = (E%), for all ordinals o and Ep = Us<a E} for all limit
ordinals A\. The Hausdorff rank pg(R) of R is the least ordinal o with the
property that E% = E'%H.

Let <@ denote the usual order on Q. A linear order R is scattered if there
is no embedding of <g into R. For each equivalence relation E, we abuse
language by saying that a partial order R C F is an assignment of linear
orders to the classes of E if the restriction of R to each E-class is a linear
order. A Borel space (X,S) is a set X together with a o-algebra & on X
and (X,S) is standard if there is a Polish topology on X whose Borel sets
are exactly the elements of S.

Section 1 deals with the Hausdorff condensation of linear orders and re-
lates to Question 3. We give two different proofs of the following well-known
result:

Theorem 1.8. Suppose that E is a countable Borel equivalence relation on
a standard Borel space X and R is a Borel assignment of scattered linear
orders to the classes of E. Then sup,cx pu(R | [z]5) < wi.

For each directed graph G on a set X, a set Y C X is G-dependent if
Jy,y' € Y (y,y') € G. For each sequence (G}),., of directed graphs on a
set X, aset Y C X is (G;);c;-dependent if Vi € I Y is Gj-dependent, and
(Gi);er-independent if it is not (G}),.,~-dependent, and a function c: X — Z
is a coloring of (G;),c; if Vz € Z ¢ '({z}) is (G;),c;-independent. For each
sequence (G;),.; of analytic directed graphs on a Polish space X and class I',
define xp((G;);c;) to be the least cardinal x for which there is a Polish space
Y and a I-measurable coloring c¢: X — Y of (G;),.; such that |c[X]| = &.
When I' is the class of all Borel subsets of X, we use x5((G}),c;) to denote
the Borel chromatic number of (G;),.,, and when I is the class of all subsets
of X with the property of Baire, we use xgp((G;);c;) to denote the respective
chromatic number.

For all sequences (R;),.; and (S5;),.; of binary relations on sets X and
Y,amap m: X — Y is a homomorphism from (R;),.; to (S;),c; if (z,2') €
R; = (m(z),n(2")) € S; for each z,2" € X and i € I, a reduction of (R;),.,
to (5i),e; if (z,2") € Ry <= (m(x),7(a")) € S; for each z,2" € X and i € I,
and an embedding of (R;),., into (S;),., if it is an injective reduction of (R;),,
to (S;i),c;- For each pair of functions f: G — 2 and g: H — 2, where G and
H are directed graphs on the sets X and Y, we call 7: X — Y an embedding
of f into g if m is an embedding of (f~'({k})),., into (¢7'({k})),,- Note
that every embedding of f into g is an embedding of G into H.

A quasi-order on a set X is a reflexive transitive binary relation on X.
For each quasi-order C on a set X, a set A C X is an C-antichain if Va,b €



A(a#b = alZD), and a strong C-antichain if YVa,b € A (a # b —
Vee X (xlZaoralZb)).

Let I'g = {G | G is an analytic directed graph on a Polish space X such
that x5(G) > No}, I'g> = {(Gk),-o | Go and G are analytic directed graphs
on a Polish space X such that xg((Gy),cy) > Mo} and Fr ={f: G =2 |G
is an analytic directed graph on a Polish space X and f is a Borel function
such that xp((f~*({k}))so) > No}. As it should cause no confusion, we
use C. to denote the quasi-order of continuous embeddability on all three of
these classes.

In Section 2, we deal with Question 2 by looking at continuous embed-
dability in the classes I'ge and I'z. Many results from [8] by Miller and
Lecomte are generalized to pairs of directed analytic graphs, most impor-
tantly the basis and anti-basis results stated in the following paragraphs.

Theorem 2.36. There is a continuum-sized strong C.-antichain of minimal-
under-C. pairs of graphs in Ugz. In particular, any basis for I'gz with respect
to C. is at least continuum-sized.

Let par: N — 2 be the unique map satisfying par(n) = n (mod 2) for
each n € N. For each pair S € P({J, 2" x 2")? and k < 2, let S* be given
by S*(i) = {s € S(i) | par(|s(0)|) = k} for each i < 2, let G° be the directed
graph on 2N given by G° = {(s(j) ~ (|7 —i|) ~ C)jeq | 1 € 2,8 € 8(i),c €
2N} and for each n > 0, let G¥ be the finite approximation of G on 2"
given by G = {(s(j) ~ (|7 —i|) ~ t)jca |1 €2,8€S3E)N (2" x2"),t €
gn=(sOF+1)1.

Let C and C denote extension and strict extension on both NN and
2=N. Fix a sequence s, € 2" for each n € N such that {ss,4x | n € N}
is dense in 2<N for each k < 2, and let So = ({(s,,5,) | n € N},0). We
call S € P(J,en2" X 2" dense if Vr € 2<N3s € S(0)Vj < 2 r C s(j) and
strongly dense if S(0) D Sp(0). We call S € (P(U, 52" X 2”)2)2 strongly
dense if S(k)(0) 2 SE(0) for each k < 2.

A subset B of a Polish space X is Ng-universally Baire if for every Polish
space Y and Borel function 7: X — Y, the set 7—'(B) has the property of
Baire.

neN

Theorem 2.31. Suppose that ' = {f: G — 2 | G is an analytic graph on a
Polish space which admits an Ng-universally Baire measurable reduction to a
locally countable analytic graph on a Polish space, as well as an Ny-universally
Baire measurable reduction to an analytic acyclic graph on a Polish space, and
[ is a symmetric Borel function such that xp((f~'({k}))ses) > No}. Then
the set { fo}, where fy: (GSO)il — 2is given by fo(x) =k < x € (GSS)jEl
for each k < 2, is a one-element basis for C. | I
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Theorem 2.32. Suppose that I' = {f: G — 2 | G is an analytic oriented
graph on a Polish space which admits an Ng-universally Baire measurable
reduction to a locally countable analytic directed graph on a Polish space, as
well as an No-universally Baire measurable reduction to an analytic directed
graph H on a Polish space for which H*' is an acylic graph, and f is a
Borel function such that xp((f~'({k}))z<s) > Ro}. Then the set { fo}, where
fo: G50 — 2 is given by fo(x) = k <= x € GSS for each k < 2, is a
one-element basis for C. | T'.

We let <., denote the lexicographic ordering on 2V as well the lexico-
graphic ordering on 2" for each n € N. An aligned function on 2<" is a func-
tion f: 2N — 2N given by f(s) = @, uf(s(n)), where u/, € (2’“5)2 for
some positive natural number k/ for each n € N, and where the empty con-
catenation denotes the empty sequence. For each aligned function f: 2<N —
2N et foo: 2% — 2V be given by foo(c) = U,en f(c | n) for all ¢ € 25, An
aligned function f: 2<N — 2<Nis order-preserving if Ve,d € 2N (¢ <jop d =
foo(€) <iex foold)), or equivalently, if Vn € N uf(0) <., u/(1), and is order-
reversing if Ve,d € 2V (¢ <jex d = foo(€) Z1ex foo(d)), or equivalently,
if V€ N uf(0) >, uf(1). An aligned function is monotonic if it is ei-
ther order-preserving or order-reversing. For pairs S, T € P (|, cn 2" X 2”)2,
an aligned embedding of S into T is an aligned function f: 2<N — 2<N for

which f | 2" is an embedding of G into szJr y for each n > 0. We
[ONLIR n—1

use C, to denote the quasi-order of monotonic aligned embeddability on the
set of dense pairs in P({J, oy 2" X 2”)2. As a consequence of Proposition 2.8,
for each S,T € P(J, ey 2" X 2")?, we call an embedding of G° into GT an
(order-preserving, order-reversing or monotonic) aligned embedding if it is
of the form f,, for some (order-preserving, order-reversing or monotonic)
aligned embedding f: 2<N — 2<N of S into 7.

Theorem 2.27. (cf. [8, Theorem 3.10]) Suppose that Gy and G are analytic
directed graphs on a Polish space X such that there is an Rg-universally Baire
measurable reduction of (G),_, to a pair of locally countable analytic directed

graphs on a Polish space, T is a finite subset of (P(U,en 2" X 2”)2)2, and
7T is an Ro-universally Baire measurable reduction of (Gy),_o to (GT®), _,

for each T € T. Then exactly one of the following holds:
(1) x5((Gk)pea) < No.

(2) There is a strongly dense pair S € (P(lJ,cn 2" ¥ 2")2)2 and a continu-
ous embedding 7: 28 — X of (GSW), _, into (Gy),y such that 7% ox
is an aligned embedding of (GS(”“)),K2 into (GT(”“)),€<2 for each T € T.
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A Borel equivalence relation E on a standard Borel space X is smooth
if it is Borel reducible to equality on a standard Borel space, and a Borel
set B C X is E-smooth if E | B is smooth. In particular, if £ is a non-
smooth Borel equivalence relation and B is an E-complete Borel set, then
B is E-non-smooth. Let Ey be the non-smooth countable Borel equivalence
relation on 2" given by ¢ Eg d <= 3n € NVm > n ¢(m) = d(m) and let
Ry C Ey denote the Borel relation on 2Y given by ¢ Ry d <= (¢ = d or
dn € N (¢(n) < d(n) and Ym > n c(m) = d(m))).

Section 3 is related to Questions 1 and 3, and here we look at continuous
embeddability on the class I'z- of Borel functions f: £\ A(X) — 2, where
E is a non-smooth Borel equivalence relation on a Polish space X, with the
property that every f-homogeneous Borel set is E-smooth. There is a natural
example fo: Eq\ A(2Y) — 2 of such a function given by fy(c) =0 < (c €
<iex <= ¢ € Ry), and the following hold:

Theorem 3.9. Suppose that I' is the class of symmetric Borel functions
f: ENA(X) = 2in Tge of the form f(x) =0 < (x € R < x € 9),
where R and S are Borel assignments of linear orders to the classes of E.
Then {fo} is a one-element basis for C. | T

Theorem 3.11. Suppose that T' = {f: E\ A(X) = 2| f € Tz and E is
a countable Borel equivalence relation}. Then fo is minimal with respect to
C. T

For each S € P(U,en
the pair given by ~S(i) = (I
G~ =T\ (A(2Y) UGY).

We also show that the functions from Eq to 2 that are fully determined
by a function from (J, 2" x 2" to 2 form a basis for a large subclass of
['7«. In fact, one can show that functions generated by strongly dense pairs
which satisfy a certain technical condition (see the following definition and
theorem) form such a basis. For each pair S € P(U, oy 2" x 2")°, we say
that an aligned embedding ¢: 2<N — 2<N is S-homogeneous if the pair given
by T € P(U,en 2" x 2")° given by T(i) = {(g(s(j)) ~ (w4(|5 —il) [ k));.s |
n € N, s € 2" x 2", k is minimal such that uf(0)(m) = ud(1)(m) for each
E<m < k? and u?(0)(k) =i} for each i < 2 is such that either T'(¢) C S(7)
for each @ < 2 or T'(1) C ~S(7) for each i < 2. Note that g is S-homogeneous
if and only if g,[2V] is f-homogeneous for the function f: Ey\ A(2Y) — 2
given by f(c) =0 < c€ G".

2" x 2)% we let ~S € P(U,en 2" X 2")? denote

nen 2 % 2™) \ S(i) for each i < 2. Note that

Theorem 3.14. Suppose that I' = {f: E\ A(X) — 2 | E is a non-smooth
Borel equivalence relation on a Polish space X and f is a Borel function such



that there is an Ro-unwersally Baire measurable reduction of (f~'({k})),s
to a pair of locally countable analytic directed graphs on a Polish space, and
there is no E-non-smooth f-homogeneous Borel subset of X}. Then the set
{(G%,G™%) | S € P(U,en 2" % 2" is a strongly dense pair such that there
is no S-homogeneous aligned embedding} is a basis for C. | T.



1 Hausdorff condensation

Proposition 1.1. Suppose that R is a linear order on a set X and f: Q — X
is an embedding of <g into R. Then for each ordinal o, the map fo: Q —
X/ES given by fa(q) = [f(q)]E% is an embedding of <q into R/E%.

Proof. For each ordinal «, the fact that the quotient map from X to X/E$
is a homomorphism from R to R/E$ ensures that f, is a homomorphism
from <g to R/E%, so the fact that <q is a linear order and R/E¢ is a partial
order ensures that it is sufficient to show that f, is injective. Since fo = f
and the least ordinal  for which two elements are Eg—related is never a
limit ordinal, it is sufficient to show that if f, is an embedding of <g into
R/E%, then f,11 is injective. To see this, note that if f, is an embedding
of <g into R/E$ and ¢y <g ¢1, then (fa(qo),fa(ql))R/E% is infinite, thus

[f(%)]E%“ # [f((h)]EgH- Il

Proposition 1.2 (Hausdorff [4]). Suppose that R is a linear order on a set
X. Then EQH(R) = X x X if and only if R is scattered.

Proof. To see (=), it is sufficient to show that if R is not scattered, then
B! (R) # X x X, which is a direct consequence of Proposition 1.1.
To see («=), it is sufficient to show that if EQH(R) # X x X, then R

is not scattered. To see this, note that if C and D are ER” (R)_classes with
C < Ry EPH® D, then the definition of py(R) ensures that the open interval
R

(€, D)

is infinite, so R/ER* %) is a dense linear order. In particular,

R/EFH™)
if B27) £ X x X, then R/E?™ is a non-trivial dense linear order, and

therefore is not scattered. O
Let LO(N) C P(N?) be the set of linear orders on N.
Proposition 1.3. The Hausdorff rank of each R € LO(N) is countable.

Proof. Tt is sufficient to note that (Ef),.,, is an increasing sequence of
equivalence relations on N and N is countable. O

It is straightforward to check that LO(N) is closed, hence a Polish space.
Note that the map from P(N?) x LO(N) to P(N?) given by (E,R) — FE}
if £ is an equivalence relation whose classes are R-convex and (E, R) —
() otherwise is Borel, so a straightforward induction ensures that for each
countable ordinal «, the map from LO(N) to P(N?) given by R +— FE% is
Borel.



For each tree T on a set X, let Prune(T") be the set of all elements
of T with a proper extension in 7. Let Prune’(T) = T, Prune®™(T) =
Prune(Prune®(T)) for all ordinals o and Prune®(T) = (., Prune®(T) for
all limit ordinals A. Let the pruning rank pp(T) of T be the least ordinal
o for which Prune®(T) = Prune®™ (7)), and for each ¢t € T, let the pruning
rank ph(t) of t within T' be the maximal ordinal « for which ¢ € Prune®(T')
and oo if no such ordinal exists. For each x € X, let (z) ~ T denote the tree
{(x) ~t|teT}.

Proposition 1.4. Suppose that A C LO(N) is an analytic set of scattered
linear orders on N. Then suppc 4 pu(R) < w;.

Proof. For an injective enumeration @ = (gn),cy of a subset of Q and a
linear order R on a subset of N, define the tree T?(R) on N of attempts at
embedding <g | @[N] into R by

teT9UR) < Vn,m < |t| (g <g gm <= t(n) Rt(m)).

Lemma 1.5. Suppose that R s a scattered linear order on a subset of N
for which pg(R) > A+ 2n for some limit ordinal A\ and natural number
n, and Q = (qi)ey 8 an injective enumeration of a subset of Q. Then
pp(T9(R)) > A+ n.

Proof. We proceed by induction on A + 2n. To see the base case where
A =w and n = 0, it is sufficient to note that the domain of R is infinite,
so for each | € N, there is an embedding of <g [ {qx | k¥ <!} into R, thus
pp(T(R)) > w.

To see the limit case, suppose that py(R) > A for some limit ordinal
A > w. Fix an increasing sequence (fim),,cn Of limit ordinals such that
(fm +m),,cn 1s cofinal in A, and note that the induction hypothesis ensures
that pp(T9(R)) > pm + m for every m € N, thus pp(T9(R)) > ).

To see the successor case, suppose that py(R) > A + 2n for some limit
ordinal A and n > 0. Let & = A+ 2(n — 1), and note that there are infinitely
many E%-classes, since otherwise py(R) < a+1. Also note that for (R/E$)-
adjacent E%-classes C' and D, at least one of pg(R | C) and py(R | D)
is equal to a, since otherwise C' and D are contained in the same Ef{-class.
Therefore, there are Ef-classes Cy and € and a natural number m such that
pH(R fCQ) = pH(R [ 01) = « and Co <R/E% [m]E?z <R/E§ Cl.

Let Qo and (1 be the unique subsequences of @ such that for all ¢ € Q[N]:

(i) g € Qo[N] <= ¢ <q g, and

(11) qc Ql[N] <~ qo <@ ¢-



Let f: N — 2 x N be the unique bijection such that gx11 = Q)0 (f(k)(1))
forall k € N. Let T = {s € NN | (m) ~s € T®(R)} and T; = T (R | ;)
for each 7 < 2.

9, Proposition 1.1.7] ensures that there is a homomorphism ¢ from C | 7}
to C | 11—, for some j < 2. Without loss of generality, we can assume that
j=0.Let 7: [[,.oTi — T be the map given by

7(s0,$1) = (Sf(k)(O)(f(k)(l)))k<min(|so|,|s1|)

and note that if s; T t; for i < 2, then 7(sg, s1) C 7(tg,t1). Therefore, the
map ¢: Ty — T given by

¥(s0) = m(s0, ¥(s0))

is a homomorpism from C | T to T [ T, thus [9, Proposition 1.1.7] ensures
that p5(B) > p (). The induction hypothesis ensures that pp(Tp) > A+ (n—
1), so the fact that p?Q(R)(@) > pE(0)+1 ensures that ng(R)(Q)) > A+ (n—1),
thus pp(T9(R)) > A + n.

Fix an injective enumeration () = (qn)nEN of Q. The relation S C A2 given
by Ry S R <= pp(T9(Ry)) < pp(T?(Ry)) is clearly well-founded. Note
that if R is scattered, then pITDQ(R)((Z)) is countable, thus [9, Proposition 1.1.7]
implies that if Ry and R; are scattered, then pp(T?(Ry)) < pp(T%(Ry))
if and only if there is a homomorphism from = [ (0) ~T%(Ry) to C |
T9(Ry). As T? is Borel and A is analytic, S is analytic. The Kunen-Mar-
tin Theorem (see [9, Theorem 1.4.31]) ensures that suppe 4 pp(T9(R)) < wy,
and Lemma 1.5 ensures that py(R) < pp(T9(R)) + w for all R € A, thus
SUPpea pH(R) < wi. O

One can also give a more direct proof of Proposition 1.4 using the follow-
ing lemma:

Lemma 1.6. Suppose that R is a linear order on a set X, L is a linear
order with minimal element Oy, and {F' |l € dom(L)} is a set of equivalence
relations on X whose classes are R-convex such that F°t = A(X) and VI >,
0p F' = Uje, (F*¥)g. Then

(1) F' = E} for all l in the well-founded part of L, where oy is the unique
ordinal for which L | [0p,1); = < [ oy, and

(2) F' D EﬁH(R) for all I in the ill-founded part of L.



Proof. By the definition of E', (1) holds.

To see (2), it is sufficient to show that if o is an ordinal and F' is a
superequivalence relation of E% for all [ in the ill-founded part of L, then F"
is a superequivalence relation of Ej’_—é“ for all [ in the ill-founded part of L.
To see this, it is sufficient to note that if [ is in the ill-founded part of L, then
there is a k <z, [ in the ill-founded part of L, and since £ C F* it follows
that £ C FL O

Alternative proof of Proposition 1.4. Define S C A% by Ry S R; if and only
if there is a triple (L, (Fé)ledom(L), (Fll)ledom(L)) e P(N?) x P(NQ)dom(L) %
P(N2)*" ) guch that:

(i) L is a linear order on a subset of N with minimal element 0,

(ii) Vi < 2Vl € dom(L) F! is an equivalence relation on N whose classes
are R;-convex,

(iil) Vi < 2 F? = A(N),
(iv) Vi <2Vl >1 0 F} = U, (FF)R, and
(v) 3k € dom(L) Ff =N x N #£ F}.

Notice that (i)—(v) are Borel conditions, thus S is analytic.

Lemma 1.7. Suppose that Ry, Ry € LO(N) are scattered. Then pg(Ry) <
pu(Ry) if and only if Ry S Ry.

Proof. To see (=), suppose that py(Ry) < pu(R1). Let L be a linear order
on a subset of N with minimal element 0 such that L = < [ (pg(Ry) + 1).
For all i < 2 and [ € dom(L), set F} = E}, where oy is the unique ordinal
for which L | [0,7);, = < [ a;. Then the triple (L, (F3)icqom(z)» (F1)icdom(r))
witnesses that Ry and R; are S-related.

To see (<), suppose that the triple (L, (Fé)ledom(L), (Fll)ledom(L)) wit-
nesses that Ry S Ry, and fix k € dom(L) such that FF = N x N # FF.
Since the triple satisfies (i)—(iv), Lemma 1.6 implies that every such k is
in the well-founded part of L and also that Ff = E%’C for each i € 2,
where «y, is the unique ordinal for which L | [0,k); = < | aj;. Therefore
pu(Ro) < ap < pu(Ry).

Lemma 1.7 implies that S is well-founded, so an application of the Kunen-
Martin Theorem yields a countable upper bound on the rank of S. Lemma 1.7
also implies that any upper bound on the rank of S is an upper bound for
{pa(R) | R € A}, completing the proof. O
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Theorem 1.8. Suppose that E is a countable Borel equivalence relation on
a standard Borel space X and R is a Borel assignment of scattered linear
orders to the classes of E. Then sup,cx pu(R [ [z]5) < wi.

Proof. Applying Proposition 1.4 to the analytic set A C P(N?) given by
ac€A = JeXR|[z];=a

yields the desired bound. O]
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2 Continuous embeddability of pairs of di-
rected graphs of uncountable Borel chro-
matic number

Proposition 2.1. Suppose that S € P(|J, 2" % 2")° is dense and B C 2V
is non-meager and has the property of Baire. Then B is G°-dependent.

Proof. Let B be a non-meager set with the property of Baire. [9, Proposi-
tion 1.7.4] ensures that there is an r € 2<N such that B N A is comeager
in N,. The fact that S is dense ensures that there is an s € S(0) such
that r C s(j) for each j < 2. Let ¢: 2% — 2% be the map given by
o(s(j) ~ () ~¢c) =s(1 —j) ~ (1 —3j) ~ cfor each j < 2 and ¢ € 2N,
and p(t ~c) =t ~ ¢ for each t € 2N\ {s(j) ~ (j) | 7 < 2} and ¢ € 2". The
fact that ¢ is a homeomorphism ensures that BN ~1(B)NN, is comeager in
N, Tt remains to note that if x € BNp~Y(B)NN,, then (x,¢(x)) € G° | B,
thus B is G®-dependent. ]

Proposition 2.2. Suppose that B C 2" is non-meager and has the property

of Baire, and S € (P(U,en 2" X 2")2)2 is such that S(k) is dense for each
k < 2. Then xgp((GS® | B),_,) > N.

Proof. Assume, towards a contradiction, that the coloring c: 2% — N wit-
nesses that x5p((G5%® | B),_,) < No. Since c is Baire measurable, there is
an n € N such that B N ¢ *({n}) is non-meager. Since S(k) is dense for
each k < 2, two applications of Proposition 2.1 yield that B N ¢ *({n}) is
GS®)_dependent for each k < 2, a contradiction. O

Proposition 2.3. /8, Proposition 1.2] The directed graph G is an oriented
treeing of K.

Proposition 2.4. [8, Proposition 1.3] Suppose that S € P(|J, 2" % 2")°
is strongly dense and G° is an acyclic graph. Then S(i) = So(0) for each
1< 2.

Proposition 2.5. /8, Proposition 1.4] Suppose that S € P(lJ,cn 2" ¥ 2m)?

is strongly dense and G° is an oriented graph such that (Gs)ﬂEl s an acyclic
graph. Then S = Sy.

Proposition 2.6. Suppose that S € (P(U,en 2" X 2")2)2 is strongly dense

such that G5O and GSW are disjoint graphs and G35 U GSW s an acyclic
graph. Then S(k)(i) = SE(0) for each k,i < 2.

12



Proof. As (S(0)(i) US(1)(:)),_, is strongly dense and GS(OS(M) ig an acyclic
graph, Proposition 2.4 ensures that S(0)(0) U S(1)(0) = S¢(0), and the fact
that G5 and GSM) are disjoint ensures that S(0)(0) and S(1)(0) are disjoint.
Therefore, the fact that S is strongly dense ensures that S(k)(0) = S§(0) for
each k < 2. Finally, the fact that GS® is symmetric ensures that if (s,t) €
S(k)(0), then (t,s) € S(k)(1), thus S(k)(i) = SE(0) for each k,i < 2. O

Proposition 2.7. Suppose that S € (P(U,en 2" X 2”)2)2 is strongly dense
such that G3©) and G5 are disjoint, GS© UGS is an oriented graph and
(GSOy G’S(l))jEl is an acyclic graph. Then S(k) = S for each k < 2.

Proof. Since (S(0)(i) U ( )(z))l<2 is strongly dense, GS(YS(M) is an oriented
graph and (GS(© U GS(U) is an acyclic graph, Proposition 2.5 ensures that
S(0)(0) US(1)(0) = Sy(0) and S(k)(1) = 0 = S§(1) for each k < 2, and the
fact that G5© and GSM) are disjoint ensures that S(0)(0) and S(1)(0) are
disjoint. Therefore, the fact that S is strongly dense ensures that S(k)(0) =
SE(0) for each k < 2. O

Proposition 2.8. /8, Proposition 1.6/ Suppose that S, T € P(|J, ey 2" X 2m)?
and f: 2N — 2<N s an aligned embedding of S into T. Then fs is a
continuous embedding of G° into GT.

For each directed graph G on a set X, let Eg denote the equivalence
relation on X generated by G, and for each z € X, let G, = {y € X |
(z,y) € G} and G* ={y € X | (y,x) € G}.

Proposition 2.9. (cf. [8, Proposition 2.2]) Suppose that X andY are Polish
spaces, Gy and G1 are locally countable Borel directed graphs on X such that
XB((Gk)gen) > Vo, Ho and Hy are directed graphs on'Y and 7: X — Y s
a Borel reduction of (Gy),.o to (Hg)yo- Then there is a Borel set B C X
such that Xg((G | B),.s) > Vo and m | B is injective.

Proof. Let G = Gy UGy, H= HyUH; and X' = {x € X | G, UG" # 0},
and note that xg((Gp [ X'),_o) > No. The fact that Gy and G; are locally
countable and the Lusin-Novikov Uniformization Theorem (see, for example,
[5, Theorem 18.10]) ensure that X’ is Borel.

Lemma 2.10. The map © | X' is countable-to-one.

Proof. The fact that Gy and G are locally countable ensures that it is suf-
ficient to show that

Vg, 21 € X' (m(xg) = w(x1) = x0 Eg 21).

13



Towards this end, suppose that xg, z; € X’ are such that 7(x¢) = m(z1). Fix
xe € Gy UG™ and note that 7(xs) € Hy(po) U Hr(xo) — Ho) U H™@) | g0
Ty € (V;eg(Ga, UG™), thus xg Eg x9 Eg 1.

Lemma 2.10 ensures that we may apply the Lusin-Novikov Uniformization
Theorem to get Borel sets X;, € X’ such that X' = | J,, .y X» and 7 [ X, is
injective for each n € N. Fix m € N such that xp((Gi [ Xin),.o) > N and
let B = X,,. O

Proposition 2.11. Suppose that (G;),.; is a sequence of analytic directed
graphs on a Polish space X and B is a countable Borel partition of X such
that xp((G; | B);c;) < Ro for each B € B. Then xp((Gi),c;) < No.

Proof. For each B € B, fix a Borel coloring cg: B — N witnessing that
xB((Gi | B),cr) < Ro. Let c: X — BxN be given by c(z) = (B, cp(r)) <=
x € B. For each B € B and n € N, the fact that Cp,, = ¢ '({(B,n)}) =
cgt({n}) is (G; | B),c;-independent and the fact that Cg,, C B ensure that
Cgn is (G);c -independent, thus ¢ witnesses that xp((Gi),c;) < No. O

Theorem 2.12. (c¢f. [8, Theorem 2.4]) Suppose that Gy and Gy are locally
countable Borel directed graphs on a Polish space X, T is a finite subset of
(P(U,en 2 % 2")2)2 and 7% is a Borel reduction of (Gy),_ to (GT®), _,
for each T € T. Then exactly one of the following holds:

(1) xB((Gi)pes) < No.

(2) There is a strongly dense pair S € (P(|J, ey 2" ¥ 2”)2)2 and a continu-
ous embedding 7: 28 — X of (GSW), _, into (Gy)yy such that 7% ox
is an aligned embedding of (GS®), _, into (GT®), _, for each T € T.

Proof. Proposition 2.2 and the fact that colorings can be pulled back through
homomorphisms ensure that conditions (1) and (2) are mutually exclusive,
thus it is sufficient to show that =(1) = (2). Towards this end, suppose
that xp((Gr),es) > No. By repeatedly applying Proposition 2.9, we may
assume that 77T is injective for each T € T.

By the Feldman-Moore Theorem (see [3, Theorem 1]), there is a countable
group I' of Borel automorphisms of X such that Eg,ua, = U,er graph(y).
Fix an increasing sequence (I',), o of finite symmetric neighborhoods of 1r
such that I' = UneN I',. Let F, denote the equivalence relation on 2V given
by ¢ F, d if and only if ¢(m) = d(m) for all m > n.

By standard change of topology results (see, for example, [5, Chapter 13]),
we may assume that X is a zero-dimensional Polish space, I' acts on X
by homeomorphisms, and the sets {z € X | (y;-2),, € Gy}, {zr € X |
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7(z) F, 7 (yo-x)} and {z € X | s C 7¥(x)} are clopen for each vy,71 € T,
k<2 TeT,neNandsec 2V

We will recursively define clopen subsets U, of X, S,, € (P(2" x 2")2)2,
Yo €T, k, € Nand 7T 27 — 2kot-+ka-1 for each T € T and n € N. For
each sequence s € 2<N and k < 2, let v,: X — X be the Borel automorphism
given by v; = 78(0) x -va(n) and Gj be the Borel directed graph on U, given
by

Gy ={xeU,xU,| (s X(j))j<2 € Gi}.
Let Uy = X and 73 (@) = 0 for each T € T. By construction, the

sequences (Up,, (7% per) and (Ym, Sm, km) will satisfy the following
conditions:

m<n m<n

(i) ¥m <n XB((Gz)k<2,se2") > No.
(il) Ym < nVk <2 (Sm, Sm) € Sm(par(m))(0)).
(iii) Vm < n Upnir C Up Ny H(Un).

(iv) Vm < nVx € U,,1Vs € 2™ x 2™Vi k < 2
(s € Su(k)(i) = (a2, € G

(v) Vm < nVz € Uy (VT € T 75 (x) Frgyoovt, T (Y - ).

(vi) Vm < nVz € U,Vs € 2"WT € T wx(s) C 7¥ (7, - x).
(vil) Vm < nVs,t € 27V € Ty vYs[Umst1] 0 VeYm[Ums1] = 0.
(viii) Ym < nVs € 2™ diam(v,[Upnia]) < 1/(m + 1).

Granting that we have already found such sequences (U, (1) per), -, and

(Ym> S km) men» let P, be the set of tuples p of the form (v, S,, k;, (WpT)TeT),

where v, € I', S, € (P(2" x 2")2)2 is such that (s,,s,) € S,(par(n))(0),
kp € Nand 7} : 2"H1 — 2kottheathy for each T € 7. For each p € Py, let
U, be the open set of x € X which satisfy the following (open) conditions:

(ii") z € U, N, Y(U,).

(iv') Vs € 2" x 2°i, k < 2 (s € S,(k)(i) <= (W 7)., € Gr).
(V) VT € T 75(2) Frgtthn 14k, T (Y - ).

(vi') Vs € 2Wi <2VT € T m) (s ~ (1)) E 77 (s} - ).

(vii") Vs,t € 2y €T, v - T # v ' yys - .

15



For each p € P,, s € 2" and i,k < 2, let Gi’s/\(i) be the Borel directed graph
on U, given by

G0 —(xeU, x U, | (Y57 - X(1)j<z € G}

Lemma 2.13. There is a p € P, such that XB((G%S)]C<2,562H+1) > Np.
Proof. Suppose, towards a contradiction, that for each p € P,, there are
(GV) pes seoniri-independent Borel sets B, for m € N such that U, =

Umen Bpm- For each p € P, and m € N, fix 7, < 2 such that A [ By ] is
(GF) je2 sean-independent. Let

U="Un\ U V;T)’m [Bp,ml
peP,,meN

and note that xg((G; [ U)
given by

) > Ny. Let K be the Borel graph on U

k<2,s€2m

K={(z,y) eUxU|3s,t€2"Iy €Ty v vy -z =y}

Since K has bounded vertex degree, [7, Proposition 4.5] ensures that there
is an m € N and a Borel coloring c¢: U — m of K. Since {¢'({I}) |l € m}
is a finite Borel partition of U, Proposition 2.11 ensures that there is a K-
independent Borel set U’ C U such that xp((G}, [ U'); .9 4eon) > No.

Fix x € U’ x U’ such that (75, - x(j));co € Gpar(n)- We will show that
conditions (iii’) through (vii’) hold for x(0). The definition of I" ensures that
there is a v, € I" such that 7, - x(0) = x(1), thus condition (iii’) holds. Let

S, € (P(2" x 21)%)” be given by
S,(K)(0) = {5 € 2* x 2 | (a1 x(7)),_, € G},

for each k < 2, thus (s,,s,) € S,(par(n))(0) and condition (iv’) holds.
For each T € T, the fact that 7T is a reduction of (Gy),_, to (GTW), _,
and the fact that x(0) Eg,us, x(1) ensure that there is a kr € N such
that 77 (x(0)) Frp 7 (x(1)), thus there is a k, € N large enough, so that
condition (v’) holds. For each T € T, let 7} : 2"+ — kot thn-1thy fe
given by 77 (s ~ (i) = 7 (57, - x(0)) | (ko 4 - - - kn—1 + kp), thus condition
(vi’) holds. The fact that U’ is K-independent ensures that condition (vii’)
holds. It follows that the tuple p = (yp, Sp, kp, (7, )TeT) € IP,, thus there

is an m € N such that {x(0),x(1)} N 47" [Bpm] # 0, contradicting the fact
that x(0),x(1) e U’ C U.
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Lemma 2.13 ensures that thereis ap € P,, such that x5((G}*), g seni1) >
No. Let v = v, Sn = S,, ki = kp and 71, = WE for each T € 7. The
fact that X is zero-dimensional and condition (vii’) ensure that there is a
countable clopen partition V of U, such that the following conditions hold:

(vii?) YV € Vs, t € 2"Vy € T, yv[V] Ny [V] = 0.
(viii”) VYV € Vs € 2" diam(7,[V]) < 1/(n +1).

By Proposition 2.11, there is a V' € V such that x5((G}° [ V), 5 seoni1) >

No. Let U,y1 = V. Conditions (iii’)—(vi’) and (vii”)—(viii”) and the fact

that XB((G})pcgeamt) = XB(GY [ V)pco eoni1) ensure that conditions

(i)—(viii) hold at stage n + 1. This completes the recursive construction.
Let 7: 28 — X be given by

{m(e)} = () ern [Un]

neN
and note that conditions (iii),(vii) and (viii) ensure that 7 is well-defined and
a continuous injection.
Lemma 2.14. Suppose that n € N, s € 2" and ¢ € 2Y. Then 7(s ~ ¢) =
s - w((0)" ~ ¢).
Proof. Note that

{m(s ~ )} = [ Vsroim [Unl]

m>n

= ﬂ VsV (0)? ~clm [Uern]

m>0

="s m 7(0)"f\c(m [Um+n]

Lm>0

=7s m Y((0)r~c)[m [Um]

Lm>n

= {7 -7((0)" ~ o)},

thus 7(s ~ ¢) = v, - 7((0)" ~ ¢).

Let S € (P(U,en 2" x 2% be given by S(k)(i) = U, cx Sn(k)(i) for
each i, k < 2, and note that S is strongly dense.
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Lemma 2.15. Suppose that n € N, s € 2" x 2", i < 2, d € 2V, and
c € 2V x 2N 4s given by c(j) = s(j) ~ (|j —i|) ~ d for all j < 2. Then
c € GSW «— (7 x )(c) € Gy, for each k < 2.

Proof. Lemma 2.14 ensures that m(c(j)) = Ysg)~(j—ip - 7((0)"" ~ d) for
each j < 2, and since 7((0)"** ~ d) € U,,1, condition (iv) ensures that
c e G5W «— se8,,(k)(i) < (7 x)(c) € Gy for each k < 2.

Lemma 2.16. Suppose that ¢ ¢ Ey. Then (1 X w)(c) ¢ Egyuc, -

Proof. To see that ¢ ¢ Ey implies (7 x 7)(c) ¢ Eg,ug,, it is sufficient to
show that if n € N and ¢(0)(n) # ¢(1)(n), then there is no v € I';, such that
v - m(c(0)) = 7(c(1)). To see this, suppose, towards a contradiction, that
n € N is such that ¢(0)(n) # ¢(1)(n), and v € T, is such that v - 7(c(0)) =
m(c(1)). Fixs € 2" x 2", i < 2 and d € 2" x 2N such that c(j) = s(j) ~
(|7 —i]) ~ d(j) for all j < 2. Since I',, is symmetric, we may assume that
i = 0. Lemma 2.14 ensures that 7(c(7)) = vs(72 - 7((0)" ~ d(j)) for each
j < 2, so the fact that 7((0)"** ~ d(j)) € U,y1 for each j < 2 ensures that
7(c(1)) € v¥s0) [Un+1) N ¥s(1)¥n[Un+1], which contradicts condition (vii).

Lemma 2.15 and Lemma 2.16 ensure that 7 is an embedding of (Gs(k))k<2
into (G),_,. It remains to show that 7™ o 7 is an aligned embedding of
(GS®), _, into (GTW), _, for each T € T. For the rest of the proof, we may
assume that 7 # (), as otherwise, there is nothing left to show.

Lemma 2.17. Suppose that T € T, n € N and ¢ € 2Y. Then w¥(c | n) C
(7T o m)(c).

Proof. 1t is sufficient to note that if x € U, is such that 7(c) = 7, - 2, then
condition (vi) ensures that 7 (¢ | n) E 75 (Yern - ).

Lemma 2.17 ensures that if T € 7 and n € N, then 7, (s,) C w4 (8, ~
(7)) for each j < 2. In particular, it follows that for each n € N, there is a
unique pair u,, € 2% x 2% such that mr (s, ~ (j)) = mr ($n) ~ w,(j) for
each j < 2.

Lemma 2.18. Suppose that n € N. Then u,(0) # u,(1).

Proof. Fix T € T. The fact that 7 and 7T are injective ensures that
(7T om)(sn ~ () ~ (0)V)),, is injective. Lemma 2.17 and condition (v)
ensure that there is a ¢ € 2" such that (7T o7)(s, ~ (j) ~ (0)Y) = 7¥(s,,) ~

u,(j) ~ ¢ for each j < 2. It follows that u,(0) # u,(1).

Lemma 2.19. Suppose that n € N, s € 2", j < 2 and T € T. Then

Ty (s ~ (4) = 73 (s) ~ un(j).
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Proof. Since mr (s, ~ (j)) = mx ($,) ~ up(j), Lemma 2.14 and Lemma 2.17
ensure that

o (8) E (s ~ () (7 o m)(s ~ () ~ (0)) = 77 (37 - ((0)")).

Since condition (v) ensures that 7% (v - m((0)N) Frowokyy T (Vs, Vo -
m((0)Y)), it follows that 71, (s ~ (4)) = mx (s) ~ u,(j).

Let TeT7,n>0,s€2"x2"and k < 2, and note that

n

thus 77 o 7 is an aligned embedding of (G5®), _, into (GT®), _,, which
completes the proof. n

Remark 2.20. The directed graphs Gy = <iex NEy and Gy = >0 NEg on 2N
satisfy XB((Gr)pes) > Vo and, together with the set of reductions T = {idgn},
show that requiring each ™% o w to be a monotonic aligned embedding in the
conclusion of Theorem 2.12 is not possible.

In order to generalize Theorem 2.12, we first need to generalize the Gg-
dichotomy and a few technical results to pairs of analytic directed graphs.

Theorem 2.21. (c¢f. [9, Theorem 2.2.1]) Suppose that Gy and Gy are analytic
directed graphs on a Hausdorff space X. Then exactly one of the following
holds:

(1) xB((Gk)pey) < Ro.

(2) There is a continuous homomorphism m: 28 — X from (GSS)k<2 to

(Gk’)k<2'

Proof. 9, Proposition 1.4.8] ensures that there is a continuous surjection
va,: NN — G, for each i < 2, and [9, Propositions 1.4.1, 1.4.4 and 1.4.8]
ensure that there is a continuous function ¢x: NN — X for which ¢x[NV] is
the union of the left and right projections of Gy U G; onto X.

We will recursively define a decreasing sequence (B%),_,, of Borel subsets
of X such that xp((G), | ~B%),_,) < R for each v < wy. Let BY = X and for
each limit ordinal A < wy, let B* =, _, B* To describe the construction

of B! from B, we require several preliminaries.
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An approzimation is a triple of the form a = (n% ¢, (¥%),<pa), Where
n® € N p?: 2" — N and ¢¢: 2" ~("*D — N™ for each n < n% A one-
step extension of an approximation a is an approximation b for which the
following hold:

(i) n®=n*+1.
(ii) Vs € 2"Vt € 2" (s Tt = ¢%(s) T ©°(t)).
(i) Vn < n®s € 27"~y g o=t (s C ¢ = %(s) T 4P (t)).

A configuration is a triple of the form v = (n?,¢", (¥]), ), Where

n’ € N,¢7: 2" = NN and 7 : 27 ~("*) 5 NN for each n < n?, and
(SOGpar(n) © wZ)(t) = ((()OX o ()O’Y)(Sn /\ (j) /\ t))]<2

for each n < n” and t € 27" ~("*1 A configuration v is compatible with an
approximation a if the following conditions hold:

(i) n* =n".
(i) Vt €2 ¢(t) T ().
(iii) Vn < novt € 27"~ D e (t) C 2 (t).

A configuration is compatible with a set Y C X if (px 0 ¢7)[2"'] C Y. An
approximation a is Y -terminal if no configuration is compatible with a one-
step extension of a and with Y. Let A(a,Y’) denote the set of points of the

form (px 0 ¢7)(spe), where « varies over all configurations compatible with
both @ and Y.

Lemma 2.22. Suppose thatY C X, a is a Y -terminal approximation. Then
A(a,Y) is Gpar(nay-independent.

Proof. Suppose, towards a contradiction, that there are configurations v, and
71, which are compatible with both a and Y, such that ((px 0 ¢7)(sna));, €
Gpar(ne)- Fix d € NN such that PGy (d) = ((0x 0 97)(80)), . and let y
be the configuration given by n? = n®+1,¢"(t ~ (j)) = ¢ (t) for each j < 2
and t € 2", Y7(t ~ (4)) = ¥’ (t) for each j < 2,n < n® and t € 27" ~("+D),
and 1. (0) = d. Tt follows that + is compatible with a one-step extension of
a, which contradicts the fact that a is Y-terminal.

For each B®-terminal approximation a, [9, Proposition 2.2.15] ensures
that there is a Gpar(ne)-independent Borel set B(a, B*) O A(a, B*). For each
a < wi, let Aga denote the set of all B*-terminal approximations, which is
countable, and let B**' = B*\|J,. .. B(a, B*). It follows that B* is Borel

a B«
for each a < wy.
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Lemma 2.23. Suppose that a < wy and a is an approximation which is
not BT -terminal. Then there is a one-step extension of a which is not
B-terminal.

Proof. Fix a one-step extension b of a for which there is a configuration ~
compatible with both b and B™!. Then (pxo¢”)(s,s) € B>, so A(b, B*)N
BT £ (), thus b is not B®-terminal.

Fix o < w; such that Aga = Apga+1, and let ag be the unique approx-
imation for which n® = 0. Note that A(ag,Y) = Y for each Y C X, so
if ay is B%terminal, then B®™! = (), which, together with the fact that
B(a, BP) is Gpar(ney-independent for each § < o and a € Aps, implies that
V5(Gi)es) < Ro.

Otherwise, if ag is not B®-terminal, by recursively applying Lemma 2.23,
we construct for each n € N, a one-step extension a,1 of a,, which is not
B-terminal. Define ¢, ¢,: 2% — NN by ¢(c) = oy ¢ (¢ | n) and ¥, (c) =
Usn e (c [ (m — (n+1))) for each n € N. Clearly, these functions are
continuous.

It remains to show that the function 7 = ¢ x o is a homomorphism from
(Gg’lg)k<2 to (Gi),y- To see this, it is sufficient to show that if ¢ € 2V and
n € N, then

(G ey © Un)(€) = ((px 0 @) (50 ~ (1) ~ €)) jca

And to see this, it is sufficient to show that if U is an open neighborhood
of ((px o 9)(sn ~ (J) ~ ¢));. and V' is an open neighborhood of (vg,,, .,
Un)(c), then UNV # 0. Fix m > n such that [];_, ox(Ngam(s,~(j)~s)) € U
and ¢g, .. (Nyam(s)) €V, where s = ¢ [ m — (n+1). The fact that a,, is
not B“-terminal ensures that there is a configuration + which is compatible
with a,,. It follows that ((px o ¢”)(sn ~ (j) ~ 5));. € U and (pg
YY) (s) € V, thus U NV # (), which completes the proof.

Proposition 2.24. (¢f. [8, Proposition 3.7]) Suppose that Gy and Gy are
locally countable analytic directed graphs on a Polish space X such that
XB((Gk)gey) > No. Then there is a Borel set B C X such that Gy, | B
is Borel for each k <2 and xg((Gy | B)j<q) > Ro.

par(n) ©

Proof. By Theorem 2.21, there is a continuous homomorphism 7: 2% — X
from (GSS),€<2 to (Gk)pe, and for each k < 2, an application of [8, Propo-
sition 3.5] to 7 and Gy yields a Borel set By C X such that 771(By) is
comeager in 2 and Gy, N (By x X) is Borel. Let B = (,_, By, and note
that Gy, | B is Borel for each k < 2. Since 77 H(B) = (., 7 *(Bg) is comea-
ger in 2V, Proposition 2.2 ensures that yz((GS0 [ 771(B))gen) > Ry, thus
XB((Gk rB)k<2) > Ng. L]
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Proposition 2.25. (c¢f. [8, Proposition 3.8]) Suppose that X andY are Pol-
ish spaces, Gy and Gy are analytic directed graphs on X, A C X s analytic,
XB((Gr [ A)cs) > No, and p: A =Y is Ry-universally Baire measurable.
Then there is a Borel set B C X such that B C A, ¢ | B is Borel and

XB((Gk | B)jp) > Ro.

Proof. Since xp((Gk | A)zy) > No, Theorem 2.21 ensures that there is a con-
tinuous homomorphism 7: 2% — X from (GSS),€<2 to (G | A)jo- It follows
that 7[2%] C A, so [8, Proposition 3.3] ensures that there is a Borel set B C X

such that ¢ | B is Borel and 7~!(B) is comeager. Therefore, Proposition 2.2
ensures that xz((GS [ 77 (B))jey) > No, thus xp((Gk | B)yoy) >Ro. O

Proposition 2.26. (c¢f. [8, Proposition 3.9]) Suppose that X and Y are
Polish spaces, Gy and Gy are analytic directed graphs on X, Hy and H;y are
analytic directed graphs on'Y, xp((Gk)co) > No, and m: X — Y is an Ro-
universally Baire measurable reduction of (Gi)yo to (Hp),—o. Then there is
a Borel set B CY such that xp((Hi [ B),.) > No and (Hy, | B),_, admits
a Borel embedding into (Gi),_,-

k<

Proof. Proposition 2.25 ensures that there is a Borel set By C X such that
XB((Gr | Bx)yey) > No and 7 [ By is Borel, thus xp((Hy [ 7[Bx]); ) >
Ng. The Jankov-von Neumann Uniformization Theorem (see, for exam-
ple, [5, Theorem 18.1]) ensures that there is a o(X})-measurable function
@: m[Bx] — Bx such that

Vy € 7 [Bx] m(p(y)) =y.

It follows that ¢ is an embedding of (Hy | m[Bx]),., into (Gi),,- By [5,
Theorem 21.6], ¢ is Rp-universally Baire measurable, thus Proposition 2.25
ensures that there is a Borel set B C 7[Bx] such that xg((Hy [ B),.,) > No
and ¢ [ B is Borel. It follows that ¢ [ B is a Borel embedding of (H; [ B),_,
into (G)jeo- O

Theorem 2.27. (c¢f. [8, Theorem 3.10]) Suppose that Gy and Gy are analytic
directed graphs on a Polish space X such that there is an Ng-universally Baire
measurable reduction of (G),_, to a pair of locally countable analytic directed

graphs on a Polish space, T is a finite subset of (P(|U,en 2" X 2”)2)2, and
T

7T is an No-universally Baire measurable reduction of (Gy),_, to (GT®), _,
for each T € T. Then exactly one of the following holds:

(1) xB((Gr)pez) < Ro.
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(2) There is a strongly dense pair S € (P (|, cn 2" X 2”)2)2 and a continu-
ous embedding 7: 2% — X of (G5W), _, into (Gy),_, such that 7% o7
is an aligned embedding of (GS®), _, into (GT®)), _, for each T € T.

Proof. Proposition 2.2 and the fact that colorings can be pulled back through
homomorphisms ensure that conditions (1) and (2) are mutually exclusive,
thus it is sufficient to show that =(1) = (2).

Towards this end, suppose that xp((Gk),.,) > No. By Proposition 2.26
there are locally countable analytic directed graphs Hy and H; on a Polish
space Y for which xp((Hk)yo) > Mo, as well as a Borel embedding ¢ of
(Hy)jeo into (G),.o- By Proposition 2.24, there is a Borel set B’ C'Y such
that xp((Hi [ B'),.5) > No and Hy | B’ is Borel for each £ < 2. Since
T o (p | B') is Ny-universally Baire measurable for each T € T, |T|-many
applications of Proposition 2.25 ensure that there is a Borel set B C B’ such
that xp((Hg [ B);.y) > No and 7¥ o (¢ | B) is Borel for each T € T

By standard change of topology results, there is a Polish topology 7 on
B which is compatible with the Borel structure on B and for which ¢ [ B is
continuous. Since xp((Hy | B);.5) > Yo, Theorem 2.12 ensures that there is

a strongly dense pair S € (P(|J,en 2" ¥ 2")2)2 and a continuous embedding
¢: 2V — (B, 1) of (GSW), _, into (Hy, | B),_, such that 7o (p | B)o¢ is an
aligned embedding of (GS%)), _, into (GTW), _, for each T € T. It follows
that the function 7 = (¢ | B) o is as desired. O

Corollary 2.28. Suppose that I' = {(Gy),_, | Go and Gy are analytic di-
rected graphs on a Polish space such that xp((Gy),cq) > No, and there is
an No-universally Baire measurable reduction of (Gy),.o to a pair of lo-
cally countable analytic directed graphs on a Polish space}. Then the set

{(G5R), 5 | S € (P(U,en 2" x 2”)2)2 is strongly dense} is a basis for C. | T.
Proof. This follows directly from Theorem 2.27. O

Corollary 2.29. Suppose that Gy and Gy are disjoint analytic graphs on a
Polish space X such that xp((Gy)j<) > No, and there is an No-universally
Baire measurable reduction of (G),_, to a pair of locally countable analytic
graphs on a Polish space, as well as an Ny-universally Baire measurable re-
duction of (Gy),—o to a pair of analytic graphs (Hy),_o on a Polish space Y
for which HyU Hy s an acyclic graph. Then there is a continuous embedding

of (GS5)™),_, into (Gi),—s.

Proof. An application of Proposition 2.26 yields a Borel set B C Y such that
xB((Hi [ B)js) > o and a Borel embedding ¢: B — X of (Hj, [ B),_, into
(Gk)yeo- By standard change of topology results, there is a Polish topology
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7 on B which is compatible with the Borel structure on B and for which
@ is continuous. It follows that there is an Np-universally Baire measurable
reduction of (Hy [ B),_, to a pair of locally countable analytic graphs on
a Polish space, and since xp((Hy [ B),.,) > R, Theorem 2.27 yields a
continuous embedding m: 2V — (B, 1) of (G8®), _, into (Hy, | B),_, for a

strongly dense pair S € (P({J,,cn 2" X 2”)2)2. Note that o7 is a continuous
embedding of (GS™), _, into (Gy),_,. The fact that Gy and G are disjoint
ensures that G5 and GSM are disjoint, and the fact that Hy U H; is an
acyclic graph ensures that that G5O U GS® is an acyclic graph. Therefore,
Proposition 2.6 ensures that S(k)(i) = S§(0) for each k,i < 2, thus GS®) =

(ng)il for each k < 2. O

Corollary 2.30. Suppose that Gy and Gy are disjoint analytic directed graphs
on a Polish space X such that GoUG is an oriented graph and xp((G),<q) >
No, and there is an Ro-universally Baire measurable reduction of (G),_,
to a pair of locally countable analytic directed graphs on a Polish space, as
well as an Ro-universally Baire measurable reduction of (Gy),_, to a pair of
analytic directed graphs (Hy),_, on a Polish space Y for which (HyU Hl)il

is an acyclic graph. Then there is a continuous embedding of (GSIS)
(Gk)k<2'

Proof. An application of Proposition 2.26 yields a Borel set B C Y such that
xB((Hy | B),.5) > R and a Borel embedding ¢: B — X of (H; | B),_, into
(Gk)yeo- By standard change of topology results, there is a Polish topology
7 on B which is compatible with the Borel structure on B and for which ¢
is continuous. It follows that there is an Np-universally Baire measurable re-
duction of (Hj, [ B),_, to a pair of locally countable analytic directed graphs
on a Polish space, and since xp((Hy | B),.,) > No, Theorem 2.27 yields a
continuous embedding m: 2% — (B, 1) of (G8®), _, into (Hy, | B),_, for a

strongly dense pair S € (P(J,,cn 2" X 2”)2)2. Note that ¢ o 7 is a contin-
uous embedding of (G’S(’“)),€<2 into (Gy),<o- The fact that Gy and G are
disjoint ensures that G5 and G5 are disjoint, the fact that Gy U G is
an oriented graph ensures that G50 U GS() is an oriented graph, and the
fact that (Ho U H;)™ is an acyclic graph ensures that (GS© UGSM)*™ g
an acyclic graph. Therefore, Proposition 2.7 ensures that S(k)(i) = SE(4) for
each k,71 < 2. O

<2 nto

Theorem 2.31. Suppose that I' = {f: G — 2| G is an analytic graph on a
Polish space which admits an Rg-universally Baire measurable reduction to a
locally countable analytic graph on a Polish space, as well as an Ng-universally
Baire measurable reduction to an analytic acyclic graph on a Polish space, and
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[ is a symmetric Borel function such that xg((f~*({k}))1s) > No}. Then

)
the set { fo}, where fy: (GSU)il — 2 is given by fo(x) =k < x € (GSS)jEl
for each k < 2, is a one-element basis for T, | I.

Proof. This follows directly from Corollary 2.29 and Propositions 2.2 and
2.3. O

Theorem 2.32. Suppose that I' = {f: G — 2 | G is an analytic oriented
graph on a Polish space which admits an Ng-universally Baire measurable
reduction to a locally countable analytic directed graph on a Polish space, as
well as an No-universally Baire measurable reduction to an analytic directed
graph H on a Polish space for which H*' is an acylic graph, and f is a
Borel function such that xp((f~'({k}))z<s) > Ro}. Then the set { fo}, where
fo: G50 — 2 is given by fo(x) = k <= x € GS5 for each k < 2, is a
one-element basis for C. | T'.

Proof. This follows directly from Corollary 2.30 and Propositions 2.2 and
2.3. O

Now we turn our attention to anti-basis results.

Proposition 2.33. Suppose that T € P(|U,cn 2" X 2 is a pair minimal
under C, such that xg(G*,G~T) > Ry. Then (GT,G~T) is minimal under
C

=cC-

Proof. Suppose that Gg and GG are analytic directed graphs on a Polish space
X for which xp((Gk)yos) > No, and ¢: X — 2N is a continuous embedding
of (G)j.o into (GT,G™T). To see that (G', G™") is minimal under C., it is
sufficient to show that (G*,G™") T, (Gy)4o-

Towards this end, note that x5(Gy) > Vo, thus [8, Theorem 3.10] ensures
that there is a strongly dense S € P(|J,, oy 2" X 2")* and a continuous em-
bedding 7: 2% — X of G into Gy such that ¢ o 7 is a monotonic aligned
embedding of G into GT. The fact that every monotonic aligned embedding
is a reduction of Ey to Eq ensures that ¢ o 7 is a reduction of G™~° to G~7,
which, together with the fact that ¢ is a reduction of G; to G~T, ensures that
7 is a reduction of G~ to Gy. It follows that 7 is a continuous embedding
of (G%,G~®) into (G)_y.

The minimality of T under =, ensures that there is a monotonic aligned
embedding ©: 2% — 2% of G into G°. The fact that every monotonic
aligned embedding is a reduction of Ej to [y ensures that v is a continuous
embedding of (GT, G~T) into (G®, G™), thus w01 is a continuous embedding
of (GT,G~T) into (Gi);—s- O
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For each A € 77(2<N)2, let S € P(U,en 2" X 2")? be given by S$4(i) =
{(s,8) | s € A(i)} for each i < 2. A mnicely aligned function on 2<N is a
function f: 2<N — 2<N given by f(s) = @ ul ~ |s(n) — c/(n)]), where

¢/ € 2N and uf € 2% for some natural number kI for each n € N, and where
the empty concatenation denotes the empty sequence. Note that a nicely
aligned function f is an aligned function, and f is order-preserving if ¢/ =
(0)Y and order-reversing if ¢/ = (1)N. We say that f is an aligned embedding
of A into B if it is an aligned embedding of S# into SZ, or equivalently, if
Vi<2Vs€2N (s € A « f(s) € B). Wecall A € P(2<N)* dense if S4 is
dense. As it should cause no confusion, we let C, also denote the quasi-order
of monotonic aligned embeddability on the set of dense pairs in 77(2<N)2.

For each ¢ € 2V \ {(0)M}, let A, € P(2<M)? be given by A.(0) = A.(1) =
{s € 2<% | 3m € supp(c) |supp(s)| = 2*™ (mod 2?™*1)}.

n<|s|(

Proposition 2.34. [8, Proposition 6.15] The set {A. | ¢ € 2V \ {(0)N}} is
a continuum-sized strong C.-antichain of minimal-under-C, dense pairs in

P2,

Proposition 2.35. Suppose that ¢ € 2\ {(0)N}. Then xp(G5",G~5") >
No.

Proof. Since Proposition 2.34 ensures that S is dense, Proposition 2.2 en-
sures that it is sufficient to show that ~S4¢ is dense. Towards this end,
suppose that r € 2<N and fix an s J r such that |supp(s)| = 2 (mod 4). It
follows that (s, s) ¢ S4<(0), thus ~S4 is dense. O

Theorem 2.36. There is a continuum-sized strong C.-antichain of minimal-
under-C. pairs of graphs in Ug2. In particular, any basis for I'g2 with respect
to T, 1s at least continuum-sized.

Proof. [8, Theorem 5.5, Proposition 5.14] and Proposition 2.34 ensure that
{G5% | ¢ € 2Y\ {(0)N}} is a strong C.-antichain, thus Proposition 2.35
ensures that A = {(G%",G~5") | ¢ € 2Y\ {(0)N}} is a strong C.-antichain.
Finally, Proposition 2.33 and Proposition 2.34 ensure that each element of
A is minimal under C.. O

Let T, = {/: Bo \ A(2Y) 2| [ is Borel, xu((f " ({k}))es) > Ro}.

Theorem 2.37. There is a continuum-sized strong C.-antichain of minimal-
under-C,. functions in I'g,. In particular, any basis for I'g, with respect to
C. | I'g, and any basis for Iz with respect to T, is at least continuum-sized.
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Proof. For each ¢ € 2\ {(0)N}, let f.: Eo \ A(2Y) — 2 be given by f.(d) =
0 < de G5 . [8 Theorem 5.5, Proposition 5.14] and Proposition 2.34
ensure that {G5" | ¢ € 28\ {(0)N}} is a strong C-antichain, thus Proposi-
tion 2.35 ensures that A = {f. | ¢ € 2V \ {(0)N}} is a strong C.-antichain,
and in particular A C I'g,. Finally, Proposition 2.33 and Proposition 2.34
ensure that each element of A is minimal under C.. O

Let Ay € 77(2<N)2 be given by Ay(0) = Ag(1) = {s € 2<N | Im €
supp(s) |supp(s)| = 22™ (mod 22m+1)},

Proposition 2.38. Suppose that A € 73(2<N)2 and f is an aligned embedding
of A into Ay. Then XB(GSA,GNSA) > Ny.

Proof. [8, Proposition 7.1] ensures that S is dense, so Proposition 2.2 en-
sures that it is sufficient to show that ~S4 is dense. Towards this end,
suppose that » € 2<N and note that the properties of nicely aligned func-
tions ensure that there is a sequence s € 24 such that |f(r ~ s)| = 2 (mod 4).
It follows that f(r ~ s) & Ag, sor ~ s & A, thus ~S* is dense. O

Theorem 2.39. Suppose that A € 73(2<N)2 and there is a monotonic aligned
embedding of A into Aq. Then there is a continuum-sized strong C.-antichain

A CTg such that G T, (G5*,G~5") for each G € A.

Proof. By [8, Proposition 7.8|, there is a continuum-sized strong C,-antichain
B of dense pairs in 73'(2<N)2 such that B C, A for each B € B. Let A =
{(G5”,G™~5") | B € B}. The fact that every monotonic aligned embedding
is a reduction of By to Eo ensures that G C, (G5, G~5") for each G € A.
8, Theorem 5.5 and Proposition 5.14] ensure that {G5” | B € B} is a strong
C.-antichain, thus Proposition 2.38 and the fact that B T, Ag for each B € B
ensure that A is a strong C.-antichain. O

For each A € P(2<)? let f: Eo\A(2Y) — 2 be given by fa(c) =0 <
c € G5". In particular, note that {f4 | 4 € P(2<N)*} C Ig,.

Theorem 2.40. Suppose that A € 73(2<N)2 and there is a monotonic aligned
embedding of A into Ag. Then there is a continuum-sized strong C.-antichain

A C T, such that f C. fa for each f € A.

Proof. By [8, Proposition 7.8|, there is a continuum-sized strong C,-antichain
B of dense pairs in P(2<N)” such that B C, A for each B € B. Let A = {f3 |
B € B}. The fact that every monotonic aligned embedding is a reduction
of Ey to Ey ensures that f C. fa for each f € A. [8, Theorem 5.5 and
Proposition 5.14] ensure that {G°” | B € B} is a strong C.-antichain, thus
Proposition 2.38 and the fact that B £, Ag for each B € B ensure that A is
a strong C.-antichain. ]

27



3 Borel functions without homogeneous FE-
non-smooth Borel sets

Proposition 3.1. Suppose that G is a directed graph on a Polish space X
and f: G — 2 is a Borel function. Then the following are equivalent:

(1) There is no sequence (By,), oy of Borel subsets of X such that X =
Unen B and B, is f-homogeneous for each n € N.

(2) xB((f 71 {k})) ) > No.

Proof. This directly follows from the fact that for each k < 2, a subset of X is
f7Y({k})-independent if and only if it is f-homogeneous with value 1—k. [

Remark 3.2. Proposition 3.1 ensures that the class of functions {f: G —
2 | G is an analytic directed graph on a Polish space X and f is a Borel
function for which there is no sequence (By,), oy of Borel B, € X such that
X = U, en Br and B, is f-homogeneous for each n € N} is the same as I'r.

Proposition 3.3. Suppose that E is a non-smooth Borel equivalence rela-
tion on a Polish space X and f: E\ A(X) — 2 is a Borel function for
which there is no E-non-smooth f-homogeneous Borel subset of X. Then

Xs((fT ({FD))iez) > Ro.

Proof. This follows from Proposition 3.1 and the fact that if X = J, .y Bn
for Borel sets B, C X, then there is an m € N such that B,, is E-non-
smooth. O

Let 'z« be the class of functions {f: £\ A(X) — 2 | E is a non-smooth
Borel equivalence relation on a Polish space X and f is a symmetric Borel
function such that there is no F-non-smooth f-homogeneous Borel subset of
X}, and note that Proposition 3.3 ensures that 'z« C I'z. The next result
ensures that Iz« is non-empty.

For each binary relation R C X x Y, the flip of R is the relation R~! on
Y x X givenby y R"'x <= x Ruy.

Proposition 3.4. Suppose that E is a non-smooth Borel equivalence relation
on a Polish space X, R is a Borel linear order on X, and S is a Borel
assignment of scattered linear orders to the classes of E. Then the function
fr ENA(X) = 2 given by f(x) =0 < (Xx€ R < x€595) isin [z

Proof. 1t is sufficient to show that if B C X is an f-homogeneous Borel
set, then F | B is smooth. The fact that B is f-homogeneous ensures that
(RNE) | Be{S| B,S | B}, so(RNE) | Bis a Borel assignment
of scattered linear orders to the classes of E | B, thus [2, Proposition 2.9]
ensures that £ [ B is smooth. O]
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Proposition 3.5. For each ¢ € 2%, Ry | [c]g, is a scattered linear order.
More precisely, the order type of Ry | [c]g is N if ¢ € [(O)N]EO, —Nifc e

[(1)N]EO and Z otherwise.

0

Proof. Suppose that g: 2V \ {(1)"} — 2V is the function given by g((1)" ~
(0) ~¢) = (0)" ~ (1) ~ c for each n € N and ¢ € 2. Tt is straightforward
to check that ¢ Ry d <= 3n € N ¢"(¢) = d, and that this implies the
conclusion of the proposition. O]

We let fo: Eo \ A(2Y) — 2 be the symmetric Borel function given by
folc) =0 <= (c € < <= c € Ry), and note that Proposition 3.4
ensures that fy € I'z-.

Proposition 3.6. Suppose that E C Ey is a non-smooth countable Borel
equivalence relation. Then there is an order-preserving aligned embedding
Joo: 2N — 2N of (Eo, Ry) into (E,Ry).

Proof. Note that if A': 2<N — 2<N i5 an aligned embedding with respect to
Conley’s notion (see [2, page 3]), then there is an aligned embedding with
respect to our notion h: 2<N — 2<N such that heo(c) = U, P/ (¢ | n) for
each ¢ € 2N thus [2, Proposition 2.1] ensures that there is an order-preserving
aligned embedding ha: 2N — 2N of Ey into E. Let g: 2<N — 2<N be the
aligned embedding given by uf(j) = ul, (j) ~ ub, _;(|i, — j|) for each j < 2
and n € N, where 4, < 2 is unique such that (u}, ;(|i, — j|) ~ (0)),., € Ro
for each n € N, and note that g, is as desired.

Proposition 3.7. There is a continuous embedding of fo into 1 — fy.

Proof. The map 7: 2% — 2N given by 7(c)(2n) = 1 —7(c)(2n+1) = ¢(n) for
alln € N and ¢ € 2V is a continuous embedding of (<o, Ro) into (<jer, Ryt),

thus 7 is also a continuous embedding of f; into 1 — fj. ]

Proposition 3.8. Suppose that R and S are Borel assignments of linear
orders to the classes of By and f: Ey \ A(2Y) — 2 is the symmetric Borel
function given by f(c) =0 <= (c € R <= c € S5). Then at least one of
the following holds:

(1) There is an Ey-non-smooth f-homogeneous Borel set.
(2) There is a continuous embedding of fy into f.

Proof. An application of [2, Theorem 2.12] yields an Eg-non-smooth compact
set K C 2% such that R | K € {(<jee NEo) | K, (Z1ea NEy) | K, Ry | K,
R, 'K }. Proposition 3.6 ensures that there is an order-preserving aligned
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embedding 7: 28 — 2N of (Eg,Ry) into (Eg | K,Rg). Let R’ and S’ be the
pullbacks of R and S under 7, and note that S’ is a Borel assignment of
linear orders to the classes of Eq. The fact that 7 is an embedding of (E,,
<iews Ro) into (Eg | K, <, Rp) ensures that R’ € {<;., NEq, >, NEq, Ry,
Ry

A second application of [2, Theorem 2.12] yields an Eg-non-smooth com-
pact set K’ C 2% such that S’ | K" € {(<jee NEg) | K', (Z1e2 NEy) | K,
Ry [ K', Ry 11 K'}. Proposition 3.6 ensures that there is an order-preserving
aligned embedding v: 28 — 2N of (Eg,Ry) into (Ey | K',Ry). Let R” and
S” be the pullbacks of R’ and S” under . The fact that ¢ is an embedding
of (Eg, <iex, Ro) into (Eg [ K', <jes, Rg) ensures that R”,S” € {<;.. N Eo,
>1exNEo, Ry, Ry}, Let f7: Eg\ A(2Y) — 2 be the symmetric Borel function
given by f’(c) =0 <= (c € R <= c € S5”), and note that mo 1) is a
continuous embedding of f” into f.

The fact that R",S" € {<jee N Eq, >1ee N Eg, Ry, Ry'} ensures that
f" €10, 1, fo, 1 — fo}. If f” is constant, then (7 o1)[2Y] is an Eg-non-
smooth f-homogeneous Borel set, thus condition (1) holds, and if f” is not
constant, then Proposition 3.7 ensures that there is a continuous embedding
@: 2N — 2N of fy into f”, so o1 o ¢ is a continuous embedding of f; into
f, thus condition (2) holds. O

Theorem 3.9. Suppose that T is the class of symmetric Borel functions
i E\NA(X) = 2 in Tz of the form f(x) =0 < (x € R < x€5),
where R and S are Borel assignments of linear orders to the classes of E.
Then {fo} is a one-element basis for C, | .

Proof. Fix f € I and let R and S be the Borel assignments of linear orders
to the classes of E that define it. Since E is a non-smooth Borel equiva-
lence relation, [6, Theorem 1.1] ensures that there is a continuous embedding
7: 2N — X of Eg into E. Let R’ and S’ be the pullbacks of R and S under ,
and note that R’ and S are Borel assignments of linear orders to the classes
of Eg. Let f': Eg \ A(2Y) — 2 be the symmetric Borel function given by
fllc) =0 <= (ce€ R < c e Y'), and note that 7 is a continuous
embedding of f" into f.

Note that if B C 2V is an E¢-non-smooth f’-homogeneous Borel set, then
7[B] is an E-non-smooth f-homogeneous Borel set, thus the fact that f € T'z-
ensures that there is no Eg-non-smooth f’-homogeneous Borel set. Therefore,
Proposition 3.8 ensures that there is a continuous embedding 9: 2% — 2N of
fo into f/, thus m o %) is a continuous embedding of f, into f. O

Proposition 3.10. Suppose that E is a non-smooth countable Borel equiva-
lence relation on a Polish space X, f: E\A(X) — 2 is Borel, and ¢: X — 2%
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is a Borel reduction of (fY({k})),—y to (fo~ " ({k}))4—y- Then there is a con-
tinuous embedding w: 2% — X of fy into f.

Proof. By replacing X with X \ {x € X | |[z]z| = 1} if necessary, we may
assume without loss of generality that every F-class consists of at least two
elements. The fact that ¢ is a reduction of E\ A(X) to Eq \ A(2Y) then
ensures that ¢ is injective, thus ¢ is a reduction of F to E.

By the Lusin-Novikov Uniformization Theorem, there is a Borel function
Y p[X]| = X such that

Yy € o [X] o(¥(y) = v,

thus the fact that ¢ is a reduction of (f~*({k})),y to (fo= ({k})),-, ensures
that ¢ is an embedding of (fo™ ({k}) | ¢[X]))—q into (f~2({k}))—y. The
fact that ¢ is a reduction of E to Eq ensures that ¢[X] is an E¢-non-smooth
Borel set, thus Proposition 3.6 yields an order-preserving aligned embedding
Goo: 28 — [X] of (Eg,Ry) into (B [ ¢[X],Ry | ¢[X]). By [9, Proposi-
tion 1.7.5], there is a dense G set C' C 2% such that (¢ 0 go) | C' is contin-
uous, and since every dense G set in 2" is comeager, [10, Proposition 12.7]
ensures that C' is Eq-non-smooth. A second application of Proposition 3.6
yields an order-preserving aligned embedding ho: 2% — C of (Eg, Ry) into
(Eo | C,Ry [ C). It remains to note that g, o hy is a continuous em-
bedding of (fo~'({k}))— into (fo '({k}) I ¢[X]),—s. thus it follows that
T =1 0 oo © heo 1S & continuous embedding of f; into f. m

Theorem 3.11. Suppose that I' = {f: E\A(X) - 2| f € 'z and E is
a countable Borel equivalence relation}. Then fo is minimal with respect to
C. [T,

Proof. This follows directly from Proposition 3.10. O]
Question 3.12. Is the set {fo} a one-element basis for C. | Tz« ?

Proposition 3.13. Suppose that E and F are Borel equivalence relations
on a Polish space X, E is non-smooth and f: E\ A(X) — 2 is the Borel
function given by f(x) =0 <= x € F. Then there is an E-non-smooth
f-homogeneous Borel set.

Proof. The Kanovei-Zapletal Canonization Theorem (see, for example, [1,
Theorem 8]) ensures that there is an E-non-smooth Borel set B such that
F | Be{A(B), E'| B, Bx B}. It remains to note that B is f-homogeneous
with value 1 in the first case, and B is f-homogeneous with value 0 in the
latter two cases. O
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Theorem 3.14. Suppose that I' = {f: E\ A(X) — 2 | E is a non-smooth
Borel equivalence relation on a Polish space X and f is a Borel function such
that there is an Ro-universally Baire measurable reduction of (f~'({k}))s-s
to a pair of locally countable analytic directed graphs on a Polish space, and
there is no E-non-smooth f-homogeneous Borel subset of X}. Then the set
{(G5,G™%) | S € P(U,en 2" x 27 is a strongly dense pair such that there
is no S-homogeneous aligned embedding} is a basis for C. | T.

Proof. Fix f: E\A(X) — 2in I', and note that since £ is a non-smooth Bo-
rel equivalence relation, [6, Theorem 1.1] ensures that there is a continuous
embedding 7: 2 — X of Ey into E. Let f': Eq \ A(2Y) — 2 be the Borel
function given by f’(c) = f((m x 7)(c)), and note that 7 is an embedding
of ' into f. If B C 2N is an Eg-non-smooth f’-homogeneous Borel set, then
7[B] is an E-non-smooth f-homogeneous Borel set, thus, without loss of
generality, we may assume that f = f’.

By Proposition 3.3 and [8, Theorem 3.10], there is a strongly dense pair
S € P(U,en 2" x 2")? and a continuous embedding ¢: 28 — 2V of G into
f71({0}) such that idynv op is a monotonic aligned embedding of G° into
f71({0}). The fact that every aligned embedding is a reduction of Ey to
Eo ensures that ¢ is an embedding of (G%,G~*) into (f~*({k})),-,, and
together with [5, Corollary 15.2], it ensures that if g: 2<N — 2<N is an
aligned embedding, then (p o g..)[2"] is an E¢-non-smooth Borel set. The
fact that if g is S-homogeneous, then (¢ o g )[2"] is f-homogeneous and the
fact that there is no f-homogeneous [Ej-non-smooth Borel set ensure that
there is no S-homogeneous aligned embedding, thus S is as desired. O]

We finish with a proposition that is complementary to a special case of
[2, Proposition 2.9].

For each ¢,d € 2V, let ¢ Ad denote ¢ | n for the maximal n € N satisfying
¢ [ n=d | n. For each linear order R on a set X, z,y € X are R-adjacent if
r#yand -3z € X (x <pz<pyory<gz<gx),and z is an R-endpoint
if x is R-minimal or R-maximal.

Proposition 3.15. Suppose that E is a countable Borel equivalence relation
on a Polish space X and R is a Borel linear order on X which admits a Borel
reduction p: X — 2N to <j.,. Then B ={z € X | R | [x] is not a dense
linear order without endpoints} is an E-smooth Borel set.

Proof. The fact that ¢ is a reduction of a linear order ensures that ¢ is
injective, thus [5, Corollary 15.2] ensures that ¢[B] is Borel and the inverse
map ¢~ ': ¢[B] — B is Borel. It follows that the relation F' = {(¢(z), ¢(y)) |
(z,y) € B} UA(2Y) is a Borel equivalence relation on 2N, Let C' = {c € 2V |
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<iex | [c]p is not a dense linear order without endpoints}, and note that
the fact that (R, E) is the pullback of (<., F') under ¢ and the fact that
[o(x)]p C ¢[B] for each x € X ensure that ¢[B] C C. It follows that if C'is
an F-smooth Borel set, then B is an E-smooth Borel set, thus, without loss
of generality, we may assume that X = 2N and R = <j,,.

Let B' = {c¢ € 2V | <4 | [] has an endpoint} and B” = {c € 2V \
B’ | [c]g contains (<, | [c]z)-adjacent elements}, and note that since E' is
countable, the Lusin-Novikov Uniformization Theorem ensures that B’ and
B” are Borel. Also note that (B’ x B”)NE = (). The fact that a linear order
without endpoints is not dense if and only if there are adjacent elements
ensures that B = B’ U B”, thus B is Borel. Let 7" = {¢ € B’ | ¢ is the
<jex-least (<pep | [c])-endpoint}, and note that 7" is a Borel transversal of
E | B'. To construct a Borel transversal of E | B”, we require the following
lemma:

Lemma 3.16. Suppose that C C 2N, d,e € C are (< | O)-adjacent,
d,e € C are (<iep | C)-adjacent and dNe=d Ne'. Then {d,e'} ={d, e}.

Proof. Without loss of generality, we may assume that d <;., d’, (d Ae) ~
(0) = d,d and (d Ae) ~ (1) C e, €. Note that d <, d" <jep €, thus the fact
that d and e are (<., [ C)-adjacent ensures that d = d’, and also note that
at least one of the following holds:

(1) d Slez 6/ Slez €.
(2) d=d <tex € Siex e.

If (1) holds, then the fact that d and e are (<, | C')-adjacent ensures that
e = ¢, and if (2) holds, then the fact that d’ and €’ are (<, [ C)-adjacent
ensures that e = ¢/, completing the proof of the lemma.

Fix a well-order <,, of 2<N. Let o: B” — 2<N be the function sending
¢ to the <,-minimal s € 2<% for which there are (<. | [])-adjacent
d,e € [c], with d Ae = s, and note that the definition of B” ensures that ¢ is
well-defined and Borel. Let 7" = {d € B" | Je € [d| (d,e are (<iep [ [d])-
adjacent and d A e = o(d)) and o(d) ~ (0) C d}, and note that 7" is Borel.
For each ¢ € B”, the fact that there are (<., | [¢|g)-adjacent d,e € [c]p
ensures that 77 N [c]l, # 0, and if d',¢' € [¢], are (<ier | [c]z)-adjacent
and d' A€ = d A e, then Lemma 3.16 ensures that {d’,e'} = {d,e}, thus
7" N [c]z| = 1. It follows that 7" is a Borel transversal of £ [ B”, and the
fact that (B’ x B”) N E # () ensures that T'=T"UT" is a Borel transversal
of E | B. Therefore, the map n: B" — T with graph(7) = {(¢,t) | ¢ €
B,t € [c]; NT} is a Borel reduction of £ | B to equality on 7', thus B is
E-smooth. ]
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