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Abstract

This thesis is a case study for the process e+e− → di-jets with particular emphasis on the concept of
subtractions arising in QCD and Soft-Collinear Effective Theory (SCET). Our discussion will focus on
the event shape variable thrust τ . On the basis of this example we illustrate how established subtrac-
tion schemes, particularly the Catani-Seymour dipole subtraction, allow for a numerical calculation of
differential cross sections, avoiding the problem of infrared (IR) divergences. In the dijet-region where
τ � 1 a hierarchy of disparate scales leads to the occurrence of large logarithms αs log(τ) ' 1 spoiling
the fixed-order perturbative series. Effective Field Theory (EFT) methods are used to systematically
resum these logarithms to all orders. This is achieved by formulating factorisation theorems that break
up the cross section into a product of factorisation functions, each associated with a single dynamic
scale and renormalisation group equation (RGE). In the factorised framework of SCET we focus on
the collinear jet function which we show to contain divergences unlike those found in QCD, render-
ing the conventional approach to subtractions inapplicable. The main conceptual advancement put
forward by this thesis is to rewrite the jet function in terms of a finite, numerically calculable quan-
tity we call the subtracted jet function, which allows for the application of conventional subtraction
schemes. We explicitly show the analytic cancellation of divergences in this object and demonstrate
its numerical computability. To conclude we discuss the new, semi-analytic approach to performing
resummed calculations enabled by the subtracted jet function.

Zusammenfassung

Diese Arbeit ist eine Fallstudie für den Prozess e+e− → 2-Jets mit besonderem Augenmerk auf Sub-
traktionen im Kontext der QCD und Soft-Collinear Effective Theory (SCET). Dabei steht die “event
shape” Observable “thrust” τ im Mittelpunkt der Diskussion. Anhand letzterer wird gezeigt wie kon-
ventionelle Subtraktionsmethoden, insbesondere die Catani-Seymour Dipol-Subtraktion, die in Zwis-
chenschritten auftretenden Infrarot-Singularitäten umgehen, und eine numerische Berechnung von dif-
ferentiellen Wirkungsquerschnitten ermöglichen. Im 2-Jet-Limes τ � 1 führt eine Reihe hierarchischer
Skalen zu großen Logarithmen αs log(τ) ' 1, die ein Scheitern der Störungsreihe bei endlicher Ordnung
zur Folge haben. Methoden der effektiven Feldtheorie (EFT) ermöglichen eine Resummation der Loga-
rithmen zu allen Ordnungen. Dies wird durch die Formulierung von Faktorisierungtheoremen erreicht,
die ein Aufspalten des Wirkungsquerschnitts in ein Produkt von Faktorisierungsfunktionen erlauben,
wobei jeder eine einzige dynamische Skala und Renormierungsgruppengleichung (RGE) zugewiesen
werden kann. Wir betrachten im Speziellen die in SCET auftretende kollineare Jet-Funktion und
zeigen dass die darin auftretenden Divergenzen nicht mit den aus der QCD bekannten Strukturen
übereinstimmen und eine Anwendung üblicher Subtraktionsmethoden invalidieren. Die in dieser Ar-
beit vorgestellte konzeptionelle Neuerung besteht in der Umformulierung der Jet-Funktion mithilfe
einer endlichen, numerisch berechenbaren Größe, der sogenannten subtrahierten Jet-Funktion, die
eine Anwendung konventioneller Subtraktionsmethoden erlaubt. Wir zeigen analytisch dass in diesem
Objekt keine Divergenzen auftreten, demonstrieren numerische Berechenbarkeit, und schließen mit
einer Diskussion des neuen, semi-analytischen Zugangs für resummierte Rechnungen, der durch die
subtrahierte Jet-Funktion ermöglicht wird.
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1 Introduction

At modern day particle colliders, experimental data is acquired with progressively higher accuracy
and exceedingly small uncertainties. This poses the challenge to theorists of providing increasingly
precise predictions for the measured observables, allowing to put tight constraints on the underlying
model. In turn, this requires an ever more accurate knowledge of the theoretical parameters used to
arrive at the prediction. Since the Standard Model of Particle Physics (SM) is formulated within the
framework of quantum field theory (QFT) these theoretical parameters usually come in the form of
renormalised coupling constants, particle masses, mixing angles, etc.. The latter depend on the setup
of the theory and as such also need to be extracted from experimental data.

Strongly coupled theories such as Quantum Chromodynamics (QCD) present an additional diffi-
culty in making the connection between theory parameters, chief among them the strong coupling αs[1]
and the top mass mt[2, 3], and measurement in that they exhibit confinement. This means that at
low energies (compared to center of mass energies of modern colliders) on the order ΛQCD ' 200MeV
the interaction between the fundamental quarks and gluons is so strong that they bind into com-
posite hadrons. This leads to the situation that data at particle accelerators can only be obtained
on hadronic final states whose precise relation to the underlying partonic degrees of freedom eludes
current perturbative methods.

In the face of this challenge it is all the more important to develop a theoretical framework which
separates a given prediction (i.e. observables like cross sections) into contributions that are amenable
to a first-principles calculation while at the same time providing a means of consistently incorporating
the strong coupling dynamics which is of an essentially non-perturbative nature. Traditionally this
has been achieved through so-called factorisation theorems[4]. In this context Effective Field The-
ory (EFT) techniques[5] have proven especially useful in taking advantage of strong scale hierarchies
present in certain classes of kinematic final state configurations. Amongst others, these final states
are characterised by large energy deposits localised in narrow angular regions of the detector, cor-
responding to collimated sprays of particles known as jets[6]. The Soft-Collinear Effective Theory
(SCET)[7–10] in particular has been successful in providing factorisation theorems in this kinematic
region for various classes of observables.

In this work we will exclusively focus on the observable thrust τ for the process e+e− → qq +X.
Thrust is a so-called event shape[11] and as such it quantifies the collective geometric appearance of
all particles in a given event. If a such an event resembles two back-to-back jets (di-jets) it will be
assigned a low value τ ' 0, while events where particles are evenly distributed over all directions, or
indeed consist of more than two jets, will correspond to higher values. When computing the thrust
distribution (or any event shape) in the di-jet region the structure of perturbation theory dictates
that the disparate scales present in this limit enter the prediction as logarithms of the large ratios of
these scales. Thus, when the perturbative series is truncated at fixed order, infamous large logarithms
remain that scale as αslog(τ) ' 1 even though αs � 1. With higher-order corrections the same size
as the leading-order result this leads to a breakdown of naive perturbation theory.

The factorisation theorem formulated within SCET[12, 13] overcomes this problem by factoring
the observable into a product of so-called factorisation functions, each of which is associated with
only a single physical scale as well as the renormalisation scale µ through the presence of ultraviolet
(UV) divergences. The thus implied renormalisation group equations (RGEs) for each factorisation
function allow for a systematic all-orders resummation of the logarithmically enhanced terms in the
observable to regain control over the perturbative result.

However, even at the fixed-order level a further complication arises when observables are computed
in a theory with massless particles such as QCD. In addition to UV divergences, known to be treatable
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through the process of renormalisation, these theories also allow for infrared (IR) divergences to occur
in intermediate steps of the calculation. The latter are essentially due to degeneracies in the final state
kinematics and although the divergences cancel (for so-called IR safe quantities) in the final result,
their occurrence presents a significant obstacle to anyone looking for a numerical implementation.
Since regularisation is not available in a numerical approach, a diverse set of techniques, collectively
referred to as subtraction methods, have been devised which treat these divergences such as to make
finite numerical computations possible. Representing this broad class of prescriptions, the dipole
subtraction method[14] will be considered in more detail in this thesis.

Owing to the divergent nature of the factorisation functions discussed above, calculations in the
factorised EFT framework have conventionally been carried out fully analytically. In this thesis we
intend to take a first step towards combining the notions of factorisation and subtraction and propose
a new, semi-analytic approach to performing resummed calculations. Concretely, this will entail a
reformulation of the SCET collinear jet function that will allow to retain analytic control over the UV
divergent behaviour that is essential to the RG running, while separating off information that is more
demanding to obtain analytically, such as quark mass effects, into a finite, in principle numerically
calculable part. We provide an explicit proof-of-concept of numerical computability of the subtracted
jet function in certain kinematic regions. This improves on the current fully analytic approach in
that having performed the resummation in a minimal setting by conventional means, the additional
information can be incorporated purely numerically without any need for further analytic calculation.
Further work may build upon this thesis to include decay information (e.g. for top-quarks) which is
currently not available analytically.

This thesis is organised as follows:

• Chapter 1 consists of this introduction and outline.

• In Chapter 2 we compute the fixed order amplitudes for e+e− → qq + X in full QCD up to
next-to-leading order (NLO) in αs, assuming all final state partons as massless. Thereby we
investigate the structure of IR divergences in real emission and virtual contributions occurring
at various stages of the calculation. We compute the total cross section and thrust distribution
touching on the concept of IR safety crucial to attaining finite perturbative results.

• The introduction to the concept of subtraction will be the the aim of Chapter 3. Focusing on
the so-called dipole subtraction method we first discuss the general ideas and concepts in order
to then apply it to the previously obtained thrust distribution. Again, particular emphasis will
be placed on the analytic structure of the subtraction procedure.

• Chapter 4 briefly ties up some loose ends and sets up the premise of the remaining thesis. We first
discuss some details of the numerical implementation of the subtraction method providing an
explicit example for the equivalence of the numerical and analytic approaches. We then proceed
to compare the fixed-order result to actual experimental data encountering the aforementioned
problem of large logarithms in the di-jet region.

• This serves as motivation for introducing SCET in Chapter 5. We discuss methods common to
most EFTs such as power counting and integrating out degrees of freedom to explicitly construct
the collinear quark effective Lagrangian. The occurrence of new operators called Wilson lines
in the effective theory is physically motivated and their algebraic properties highlighted to be
used in later calculations.
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• In Chapter 6 we go through the main steps necessary to establish a factorisation theorem for
thrust within the SCET framework. The collinear jet function will naturally emerge as the time-
ordered product of appropriate effective theory operators. We briefly comment on the physical
significance of the remaining shape functions and the factorisation theorem in general.

• Chapter 7 deals with the explicit computation of the jet function for massive primary quarks
using the Cutkosky cutting rules. By performing the calculation in this way the effective theory
calculation is set up analogously to the full QCD case, exhibiting real emission and virtual parts.
However, in the EFT context a new, non-local divergent structure arises that cannot be treated
with the subtraction methods discussed in chapter two.

• This prompts the introduction of the subtracted massive jet function in Chapter 8. In this object
the non-local divergence, together with additional ambiguities related to zero-bin subtractions
of the conventional jet function can be removed. All the remaining divergences are manifestly
IR and can in principle be dealt with by appropriate subtraction schemes known from QCD. We
conclude the chapter by introducing the subtracted jet function into the factorisation theorem
and outlining the potential calculational advantages of the semi-analytic approach thus implied.

• The final Chapter 9 summarises the findings of this thesis and points to potential further work
building upon the formalism that was previously developed.

It should be noted that throughout the thesis we have at various stages provided information
at a level of detail that goes beyond what would strictly be necessary to achieve the main purpose
outlined above. We hope that discussing these details, which are often not explicitly addressed in
the literature, in a pedagogic way will provide some value to future students seeking to take up the
subject, without presenting a noticeable distraction to the more advanced reader.
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2 Fixed order calculations in QCD

In this section we collect results pertaining to the parton level matrix elements for the process e+e− →
hadrons which we will use throughout the thesis. At leading order (LO) we consider diagrams con-
tributing to e+e− → qq and e+e− → qq + g at next-to-leading order (NLO) in αs. We also give
explicit expressions for the gauge-invariant part of the squared matrix elements (i.e. the partonic
tensor). Since we are considering true S-matrix elements all external particles, assumed massless, are
on their respective mass shell. In this section, and throughout the thesis, we will adopt Feynman
gauge, i.e. ξ = 1 in Eqs.(H.2) and (H.3), in all our calculations.

When computing the total cross section and thrust distribution at NLO particular emphasis will
be placed on the local structure of IR divergences present in the individual real emission and virtual
contributions.

However, before we proceed to practical calculations we provide a quick reminder on how IR
divergences arise in the context of QCD.

2.1 Prelude: infrared divergences in QCD

When performing calculations in a theory with massless particles such as QCD, in addition to the
known high-energy UV divergences new kinds of divergences associated with low-energy, or long-
range dynamics appear. These infrared (IR) divergences already manifest at tree-level as a singular
dependence of the amplitude on final state particle momenta, as is illustrated1 in Fig. 2.1.

1
(q+k)2

k

q

M ' M 1

2q · k =M 1

2EqEk(1− cos θqk)

Fig. (2.1): Massless quark q emanating from some amplitude M and emitting a gluon k. The propagator associated

with the internal line goes on-shell in the limit when final state particles become soft or collinear, which corresponds

to a large distance traveled by the intermediary quark. It is for this reason that IR divergences are identified with

long-range phenomena.

Using the parametrisation qµ = (Eq,q)µ, kµ = (Ek,k)µ, we see that the propagator associated
with the internal quark line goes on-shell in one of three scenarios,

1

(q + k)2
=

1

2EqEk(1− cos θqk)
→∞ ↔


Eq → 0, soft,

Ek → 0, soft,

θqk → 0, collinear.

(2.2)

Notice that all of the above limits correspond to kinematic situations in which the final state including
the additionally soft or collinearly emitted gluon is degenerate with the original final state made up of
only the quark. While these divergences are visible at the amplitude level through a singular depen-
dence on kinematic final state variables, when performing phase space integrals over such amplitudes
in dimensional regularisation (d = 4− 2ε) they manifest as ε-poles in the associated cross section.

Let us now turn to analyse virtual contributions involving loops with massless gluons. There
the loop integrals themselves, in addition to the ubiquitous UV divergences may produce additional

1All Feynman diagrams appearing in this thesis were drawn using the software JaxoDraw[15].
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ε-poles associated with internal propagators going on-shell. Schematically such an amplitude is shown
in Fig. 2.3.

∫
đk kM ' M

[
c1

ε2IR
+

c2

εIR
+

c3

εUV
+ . . .

]
.

Fig.(2.3): Infrared divergences appear as additional poles in the parameter ε of dimensional regularisation.

For virtual contributions the divergences are thus already explicitly visible in terms of poles at
the amplitude level. Since the limits in Eq.(2.2) can overlap, e.g. the gluon can become soft while
aligned with the quark, higher order εIR-poles can occur even at one loop. A general theory around
IR divergences has been developed in the form of the Landau equations[16] and the Coleman-Norton
theorem[17], which we will not explore here.

We have seen that both real emission and virtual contributions separately exhibit IR divergent
behaviour when massless particles are present in the amplitude. The crucial observation to make is
that in a real world experiment any detector has finite energy (angular) resolution below which it
cannot discern soft (or two collinear) particles in the final state. Therefore, in this limit it cannot
distinguish whether the final state measured corresponded to a real emission below the sensitivity
threshold or a virtual contribution. Consequently quantum mechanics prompts us to coherently add
the amplitudes before squaring them to obtain the desired cross section. Since this cross section is
always measured to be finite, and we can imagine a detector of finite, but in principle arbitrarily high
resolution we begin to suspect that some non-trivial cancellations must be occurring between real
emission and virtual contributions.

That these cancellations do indeed take place and that this happens order-by-order in perturba-
tion theory is guaranteed by the celebrated KLN theorem[18]. The remaining section is now dedicated
to showing how such cancellations take place in practical calculations yielding finite theoretical pre-
dictions.

2.2 Born-level total cross section for e+e− → γ∗ → qq̄

At leading order O(α0
s) in the strong coupling only the diagram in Eq.(2.4) contributes,

γ∗

q̄

q

Q

e−

e+

= iMLO
2 . (2.4)

Adopting the above momentum convention, and using the Feynman rules in App.H, the leading-order
(LO) matrix element is given by

iMLO
2 = iµ̃2εe2eq ū(q)γµv(q)

1

s
v̄(e+)γµu(e−), (2.5)

where s = Q2 = (e+ + e−)2 = (q2 + q2) is the invariant momentum transfer and eq the quark electric
charge. The parameter µ̃ introduced by dimensional regularisation2 is defined in Eq.(B.4).

2General conventions and notations adopted for dimensional regularisation are outlined in App.B.
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Squaring the amplitude in Eq.(2.5), performing the sum over spins and colours in the final state,
and averaging over the spin of the incoming leptons gives

|MLO
2 |2 ≡

1

4

∑
spins, cols.

|MLO
2 |2 =

1

4
µ̃4εe4e2

qNCTr
[
γµ/e+γν/e−

] 1

s2
Tr
[
γµ/qγ

ν/q
]

(2.6)

=

{
e2µ̃2ε

[
eµ+e

ν
− + eµ−e

ν
+ −

s

2
gµν
]} 1

s2

{
4e2e2

qµ̃
2εNC

[
qµqν + qµqν −

s

2
gµν

]}
≡ Lµν 1

s2
HLO

2µν ,

where we introduced the gauge-invariant, symmetric leptonic tensor Lµν(e+, e−) and the leading order
partonic tensor HLO

2µν(q, q), which satisfy QµLµν = QµHLO
2µν = 0 due to the Ward identity.

The amplitude in Eq.(2.6) still contains information about the spatial direction along which the
final state quarks recoil. If we do not care about this information we can replace the leptonic tensor
by its d-dimensional, orientation-averaged analogue

〈Lµν〉 =
e2µ̃2ε(1− ε)

3− 2ε
(−s gµν +QµQν), (2.7)

which still satisfies the Ward identity and Lµµ = 〈Lµµ〉|ε=0. We note also the factor 1−ε
3−2ε that

generalises the orientation-averaged sum over the d− 2 = 2(1− ε) photon polarisations.
To compute the total cross section we therefore have to integrate the quantity

dσLO2 =
1

2s
〈Lµν〉 1

s2
HLO

2µν dΦ2, (2.8)

over the final state two-particle phase space whose measure we denote by dΦ2 (see Eq.(A.3)). In
Eq. (2.8) the decomposition of the squared amplitude into a leptonic and partonic part with the
photon propagator tying the two together is manifest. As long as we turn off QED interactions after
the initial photon production, that is, the leptonic part remains at O(αem), this form of the amplitude
remains valid to all orders in αs for the partonic part. Exploiting the Ward identity it suffices to
contract the partonic tensor only with the part of 〈Lµν〉 proportional to gµν , yielding the amplitude

|MLO
2 |2 = 〈Lµν〉 1

s2
HLO

2µν = 4e4e2
qµ̃

4εNC
(1− ε)2

3− 2ε
. (2.9)

Since the matrix element in Eq.(2.9) no longer depends on any final state momenta the integral over
phase space in Eq.(2.8) becomes a simple multiplication and the total leading-order cross section reads

σLO2 = 4πµ̃2εα2
eme

2
qNC

eγEεµ2ε

s1+ε

(1− ε)2

(3− 2ε)

Γ(1− ε)
Γ(2− 2ε)

≡ σ̂(ε)
eγEεµ2ε

s1+ε
= σ̂(ε)

µ2ε

s1+ε

{
1 +O(ε)

}
, (2.10)

where the (trivial) expansion in ε on the rightmost side was performed to be able to compare to later
results more easily. In addition, we will take Eq.(2.10) to be the definition of the universal prefactor

σ̂(ε) = 4πµ̃2εα2
eme

2
qNC

(1− ε)2

(3− 2ε)

Γ(1− ε)
Γ(2− 2ε)

, (2.11)

which will also appear in next-to-leading order calculations in the following sections.

2.3 Next-to-leading order matrix elements

At next-to-leading order O(αs) we have to treat the real emission and virtual diagrams shown in
Eq.(2.12). Since the leptonic tensor will not be modified compared to tree level, it suffices to write
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down the partonic part of the amplitude for each diagram which we will denote by iH,

γ∗

q̄

q

Q
kq + k

µ A = iHr,1
3µ,A,

γ∗

q̄

q

Q

q̄ + k k

µ
A = iHr,2

3µ,A,

γ∗

q̄

q

Q

q̄ − k

k

q + k

µ = iHv
2µ,

γ∗

q̄

q

Q

µ
= iHLO

2µ .

(2.12)

Starting with the real emission amplitude for the gluon being emitted from the quark,

iHr,1
3µ,A = ūi(q)(igsT

A
ij µ̃

εγσ)
i(/q + /k)

(q + k)2
(ieeqµ̃

εγµ)vj(q)(ε
∗)σ(k)

= −ieeqgsµ̃2εTAij ūi(q)
γσ(/q + /k)γµ

(q + k)2
vj(q)(ε

∗)σ(k)

≡ iHr,1
3σµ,A(ε∗)σ(k),

(2.13)

where we have explicitly pulled out the polarisation degrees of freedom of the gluon (ε∗) for later
convenience. We see that since we are only considering the partonic “half” of the diagram, the real
emission amplitude carries an open Lorentz index µ for the photon and an open colour index A for
the emitted gluon. In complete analogy we find the amplitude where the gluon is emitted from the
anti-quark,

iHr,2
3µ,A = iHr,2

3σµ,A(ε∗)σ(k) = ieeqgsµ̃
2εTAij ūi(q)

γµ(/q + /k)γσ
(q + k)2

vj(q)(ε
∗)σ(k). (2.14)

The virtual contribution seen in the second line of Eq.(2.12) takes the form

iHv
2µ = ūi(q)(igsµ̃

εTBij γρ)

∫
đk
−igρσδAB
k2 + i0

i(/q + /k)

(q + k)2 + i0
(ieeqµ̃

εγµ)
−i(/q − /k)

(q − k)2 + i0
(igsµ̃

εTAjkγ
σ)vk(q)

= −eeqg2
s µ̃

3ε(TATA)ik ūi(q)

∫
đk

γρ(/q + /k)γµ(/q − /k)γρ

[k2 + i0] [(q + k)2 + i0] [(q − k)2 + i0]
vk(q). (2.15)

For completeness we also give the expression for the partonic part of the leading order amplitude

iHLO
2µ = ieeqµ̃

εūi(q)γµvi(q). (2.16)

To obtain the partonic tensor Hµν we have to appropriately square the above matrix elements. De-
pending on the number of partons in the final state we have to calculate the interference diagrams
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shown in Eq.(2.17) at O(αs),

Hr
3µν =

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
2

, Hv
2µν =

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

2

, (2.17)

where we implicitly assume a sum over final state quantum numbers. Writing out the contributions
resulting from the squares in Eq.(2.17) to each partonic tensor explicitly gives us

Hr
3µν = Hr,11

3µν +Hr,22
3µν +Hr,12

3µν +Hr,21
3µν ,

Hv
2µν = Hv,LO

2µν +HLO,v
2µν .

(2.18)

Let us begin with the real emission contributions, in particular the square of Eq.(2.13) is computed
as

Hr,11
3µν =

∑
pols., spins, cols.

Hr,1
3µσ,A(Hr,1

3 ντ,A)†(ε∗)σ(k)ετ (k). (2.19)

To carry out the summation over final state quantum numbers in Eq.(2.19) we use the gluon polari-
sation sum ∑

pols.

(ε∗)µ(k)εν(k) = −gµν +
kµk

ν
+ k

µ
kν

k · k
, (2.20)

where for a given gluon momentum kµ = (k0,k)µ we have kµ = (k0,−k)µ. At this point we could go
ahead and just substitute Eq.(2.20) into Eq.(2.19) obtaining terms multiplying gµν and kµkν . However,
we know that by the Ward identity the terms involving kµ vanish in the gauge-invariant sum

kµ
[
Hr,1

3µ,A +Hr,2
3µ,A

]
= 0. (2.21)

Thus when squaring the amplitude we choose to neglect these terms in intermediate steps on the
grounds that they will cancel once we add up all contributions to Eq.(2.18). It therefore suffices to
consider only those terms of the partonic tensor that are obtained by contracting with the first term
in Eq.(2.20), i.e. we define

Hr,11
3,giµν≡

∑
spins, cols.

Hr,1
3µσ,A(Hr,1

3 ντ,A)† (−gστ ) = −e2e2
qg

2
s µ̃

4εCFNC
∆r,11
µν (k, q, q)

(2q · k)2
, (2.22)

where ∆r,11
µν (k, q, q) = Tr

[
γσ(/q + /k)γµ/qγν(/q + /k)γσ/q

]
= −16(1 − ε)(k · q)

[
qµkν + kµqν − gµν(k · q)

]
.

Note that we have Hr,11
3,giµν 6= Hr,11

3µν , but in the gauge-invariant (gi) sum of all these contributions we
recover Eq.(2.18).

The squared amplitude for the emission of the gluon from the anti-quark can be obtained from
Eq.(2.22) by exchanging q ↔ q and therefore reads

Hr,22
3,giµν = −e2e2

qg
2
s µ̃

4εCFNC
∆r,22
µν (k, q, q)

(2q · k)2
, (2.23)

where ∆r,22
µν (k, q, q) = ∆r,11

µν (k, q, q) by symmetry. We now turn to computing the real emission
interference terms which exhibit a similar structure,

Hr,12
3,giµν =

∑
spins, cols.

Hr,1
3µσ,A(Hr,2

3 ντ,A)† (−gστ ) = e2e2
qg

2
s µ̃

4εCFNC
∆r,12
µν (k, q, q)

(2q · k)(2q · k)
. (2.24)
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This time however, the tensor ∆r,12
µν (k, q, q) = Tr

[
γσ(/q + /k)γµ/qγσ(/q + /k)γν/q

]
representing the Dirac

trace takes a substantially more complicated form in d-dimensions which is why we will not explicitly
state it here. In fact, it will turn out that for our purposes knowing the tensor in its full generality
will not be necessary anyway (see Eq.(2.32)). The second interference diagram is again related by
exchanging q ↔ q and yields

Hr,21
3,giµν = e2e2

qg
2
s µ̃

4εCFNC
∆r,21
µν (k, q, q)

(2q · k)(2q · k)
, (2.25)

where ∆r,21
µν (k, q, q) = ∆r,12

νµ (k, q, q), which are equal modulo contraction with a symmetric quantity.
The final term we are missing at O(αs) is the interference between the one-loop vertex correction

Eq.(2.15) and the tree-level matrix element Eq.(2.16),

Hv,LO
2µν =

∑
spins

Hv
2µ(HLO

2 ν )† = ie2e2
qg

2
s µ̃

2εCFNC I
v,LO
2µν , (2.26)

with the one-loop integral over the virtual gluon momentum given by

Iv,LO2µν = µ̃2ε

∫
đdk

Tr
[
/qγρ(/q + /k)γµ(/q − /k)γρ/qγν

]
[k2 + i0] [(q + k)2 + i0] [(q − k)2 + i0]

. (2.27)

Just as we remarked below Eq.(2.24), we do not need to evaluate the full trace in Eq.(2.27). Since at
next-to-leading order the partonic tensor still satisfies QµHv

2µν = 0, when we later contract with the
leptonic tensor it will suffice to consider the integral

Iv,LO2 = gµνIv,LO2µν = −µ̃2ε

∫
đdk

8(1− ε)
[
s2 − 4(q · k)(q · k)− 2sk · (q − q) + ε sk2

]
[k2 + i0] [(q + k)2 + i0] [(q − k)2 + i0]

= 8(1− ε) (−i)
16π2

(
4πµ̃2

−s− i0

)ε
s

2

Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

[
2

ε2
+

3

ε
+

8

1− 2ε

]
.

(2.28)

Now that all contributions to the partonic tensor are known we can proceed to compute the total
cross section and more differential observables.

2.4 Next-to-leading order total cross section

For the real emission diagrams we consider the three-particle final state analogue to Eq.(2.8) which
we write as

dσr3 =
1

2s
〈Lµν〉 1

s2
Hr

3µν dΦ3. (2.29)

where the final state dependence of the invariant momentum transfer is now given by s = Q2 =

(q + q + k)2. The spin- and orientation-averaged leptonic tensor is still given as in Eq.(2.7), and the
real emission part of the partonic tensor can be obtained as

Hr
3µν = Hr,11

3,giµν +Hr,22
3,giµν +Hr,12

3,giµν +Hr,21
3,giµν . (2.30)

Since QµHr
3µν = 0, we are again justified in contracting the partonic tensor only with the part of

〈Lµν〉 proportional to gµν to get the full amplitude squared. With this in mind we can safely write
Eq.(2.29) as

dσr3 =
1

2s

[
|Mr,11

3,gi |2 + |Mr,22
3,gi |2 +Mr,12

3,gi +Mr,21
3,gi

]
dΦ3, (2.31)
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where the squared matrix elements are now obtained by only contracting (c.f. Eq.(2.7))

|Mr,ij
3,gi|2 =

1

s

e2(1− ε)
3− 2ε

(
−gµνHr,ij

3µν

)
, i, j ∈ {1, 2}. (2.32)

We now state the results for all the amplitudes shown in Eq.(2.31) as manifest functions of the final
state parton momenta,

|Mr,11
3,gi |2 = M̂ µ̃4ε

s

(1− ε)3

3− 2ε

q · k
q · k = M̂ µ̃4ε

s

(1− ε)3

3− 2ε

1− xq
1− xq

,

|Mr,22
3,gi |2 = M̂ µ̃4ε

s

(1− ε)3

3− 2ε

q · k
q · k = M̂ µ̃4ε

s

(1− ε)3

3− 2ε

1− xq
1− xq

,

Mr,12
3,gi =Mr,21

3,gi = − M̂
(q · k)(q · k)

µ̃4ε

s

(1− ε)2

3− 2ε

[
ε(q · k)(q · k)− 1

2
(q · q) s

]
= M̂ µ̃4ε

s

(1− ε)2

3− 2ε

[
1− xk

(1− xq)(1− xq)
− ε
]
,

(2.33)

where we separated off the common amplitude-level prefactor

M̂ = 8e4e2
qg

2
s µ̃

2εCFNC , (2.34)

that will frequently reappear in later calculations. On the right-most side of Eq. (2.33) we have
rewritten the matrix elements in terms of the momentum fractions

xp = 2
p ·Q
s

, p ∈ {q, q, k}, (2.35)

which satisfy 0 ≤ xp ≤ 1 and are normalised to xq + xq + xk = 2 and will turn out to be particularly
convenient variables for the integration over the final particle phase space dΦ3 (see Eq.(A.4)). Since
all particles are assumed to be massless we also have s = 2 (q · q + q · k + q · k). Adding all the
contributions from Eq.(2.33) leads to a particularly simple form of the total squared real emission
amplitude,

|Mr
3|2 = |Mr,11

3,gi |2 + |Mr,22
3,gi |2 +Mr,12

3,gi +Mr,21
3,gi = M̂ µ̃4ε

s

(1− ε)2

3− 2ε

[
x2
q + x2

q − εx2
k

(1− xq)(1− xq)

]
. (2.36)

In the above amplitude we can transparently see the potential sources of IR-divergent behaviour.
Exploiting the kinematic properties of the final state particles we can write

1− xq =
EqEk
s

(1− cos θqk), 1− xq =
EqEk
s

(1− cos θqk), (2.37)

identifying the collinear limits where the gluon is aligned with the quark (θqk → 0 ⇒ xq → 1) or
the anti-quark (θqk → 0 ⇒ xq → 1) corresponding to single poles in the amplitude. The soft limit
(Ek → 0 ⇒ xk → 0) together with momentum conservation imply that xq, xq → 1 simultaneously
leading to a quadratic divergence in Eq.(2.36).

Instead of directly integrating Eq.(2.36) we proceed to calculate the total cross section according
to the contributions coming from the individual amplitudes in Eq.(2.33) such that

σr3 = σr,113 + σr,223 + σr,123 + σr,213 , (2.38)

where the terms on the left-hand side are found by integrating separately each term in Eq.(2.31).
This gives us the ability to better track the origin of any infrared divergences arising. Performing the

10



phase space integrals we find

σr,113 = σr,223 = σ̂(ε)
αsCF

2π

eγEεµ4ε

s1+2ε
(1− ε)Γ(2− ε)Γ(−ε)

Γ(3− 3ε)

= σ̂(ε)
αsCF

2π

µ4ε

s1+2ε

{
− 1

2ε
− 5

4
+O(ε)

}
,

σr,123 = σr,213 = σ̂(ε)
αsCF

2π

eγEεµ4ε

s1+2ε

[
(1− ε)Γ(−ε)2

Γ(2− 3ε)
− ε Γ(1− ε)2

Γ(3− 3ε)

]
= σ̂(ε)

αsCF
2π

µ4ε

s1+2ε

{
1

ε2
+

2

ε
+ 6− 7π2

12
+O(ε)

}
,

(2.39)

with the prefactor σ̂(ε) given as in Eq.(2.11). Expanding in ε we can see that only the interference
terms σr,123 , σr,213 contribute to the soft divergence associated with the quadratic pole. Combining
these results the real emission contribution to the total cross section can thus be written as

σr3 = σ̂(ε)
αsCF

2π

µ4ε

s1+2ε

{
2

ε2
+

3

ε
+

19

2
− 7π2

6
+O(ε)

}
, (2.40)

which could have also been obtained by directly integrating Eq.(2.36).
Let us now turn to computing the total cross section for the virtual contributions coming from

the one-loop interference diagrams shown in the second line of Eq.(2.12). Schematically we write

dσv2 =
1

2s
〈Lµν〉 1

s2
Hv

2µν dΦ2, (2.41)

where the partonic tensor for the virtual-tree interference is given by the gauge-invariant sum

Hv
2µν = Hv,LO

2,giµν +HLO,v
2,giµν = Hv,LO

2,giµν + (Hv,LO
2,giµν)∗ = 2Re{Hv,LO

2,giµν}, (2.42)

Again, we will only need to contract with the part of 〈Lµν〉 proportional to gµν to obtain the desired
amplitude, while the terms involving QµQν cancel in the sum Eq.(2.42). In accord with Eq.(2.32) we
thus compute

Mv,LO
2,gi =

1

s

e2(1− ε)
3− 2ε

(−gµνHv,LO
2µν )

= − M̂
2(4π)2

µ̃2ε

(
4πµ̃2

−s− i0

)ε
Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

(1− ε)2

3− 2ε

[
2

ε2
+

3

ε
+

8

1− 2ε

]
,

(2.43)

where we have used Eqs.(2.26) and (2.28), and we still have to take the real part to obtain the partonic
tensor. The only factor in Eq.(2.43) that is not already manifestly real and we therefore have to worry
about is

Re
{(

4πµ̃2

−s− i0

)ε}
=

(
4πµ̃2

s

)ε
Re {(−1− i0)−ε} =

(
4πµ̃2

s

)ε
Re {eiπε} =

(
4πµ̃2

s

)ε
cos(πε). (2.44)

The cross section in Eq.(2.41) can now be written in terms of Eq.(2.43) as

dσv2 =
1

2s
|Mv

2|2dΦ2, and |Mv
2|2 = 2Re

{
Mv,LO

2,gi

}
, (2.45)

where the phase space integrand is given explicitly by

2Re
{
Mv,LO

2,gi

}
= − M̂

(4π)2
µ̃2ε

(
4πµ̃2

s

)ε
cos(πε)

Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

(1− ε)2

3− 2ε

[
2

ε2
+

3

ε
+

8

1− 2ε

]
. (2.46)
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Notice that just as we found at leading order, the amplitude Eq.(2.46) is a function of the momentum
transfer s and no longer depends on any individual final state momenta. The integration over the
final particle phase space in Eq.(2.45) can again be facilitated by the use of Eq.(A.3). The total cross
section coming from the virtual-tree interference diagrams thus reads

σv2 = −σ̂(ε)
αsCF

2π

eγEεµ4ε

s1+2ε
cos(πε)

Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)

[
2

ε2
+

3

ε
+

8

1− 2ε

]
= −σ̂(ε)

αsCF
2π

µ4ε

s1+2ε

{
2

ε2
+

3

ε
+ 8− 7π2

6
+O(ε)

}
.

(2.47)

Comparing with the real emission contribution Eq.(2.40), we see that the divergences cancel3 in the
sum and we are left with a finite total cross section

σNLO
2/3 = σr3 + σv2 = σ̂(ε)

αsCF
2π

µ4ε

s1+2ε

3

2
+O(ε). (2.48)

Together with the leading order result Eq.(2.10) this gives

σ = σLO2 + σNLO
2/3 = σ̂(ε)

{
µ2ε

s1+ε
+
αsCF

2π

µ4ε

s1+2ε

3

2
+O(ε)

}
= σLO2

{
1 +

αsCF
π

3

4
+O(ε)

}
, (2.49)

where we have brought the result into a form that is more recognisable from the literature[19].

2.5 General structure of the cross-section for e+e− → γ∗ → qq̄ +X

As we have seen explicitly for the LO and NLO calculations in the previous section (e.g. Eq.(2.9)),
the squared amplitude decomposes into a leptonic and partonic part for the processes e+e− → γ∗ →
qq̄(+g) at O(αem). If we now allow for the final state to contain any number of final state partons X̃
radiated from the primary qq̄-pair, we can write the amplitude abstractly as

iM(e+e− → γ∗ → qq̄ + X̃) = i
[
µ̃εeq 〈X̃, qq̄| J µv (0) |0〉

] 1

s

[
µ̃εe2 v̄(e+)γµu(e−)

]
, (2.50)

with the vector production current J µv (x) = Ψ̄(x)γµΨ(x) ensuring that only final states compat-
ible with virtual photon decay into a primary qq̄-pair contribute. At leading order where |X̃〉 = |0〉
we simply have

〈qq̄| J µv (0) |0〉 = ū(q)γµv(q̄), (2.51)

in accordance with what we found in Eq. (2.5). The fact that we evaluate the current at x = 0

can be justified with an appropriate choice of final state momenta X̃, q, q̄, which need to satisfy
e+ + e− = q + q + X̃, and the translational invariance of the theory. We reiterate that the manifest
form of Eq.(2.50) holds only when QED interactions are turned off after the initial photon production.
At higher orders in αem, effects like initial state radiation of photons would not be described by an
amplitude of this structure. However, the partonic matrix element 〈X̃, qq̄| J µv (0) |0〉 may be evaluated
to any order in αs without breaking the factorised form.

So far we have been explicit about the intermediate state being an off-shell photon γ∗. In a
realistic setting, at center of mass energies of s∼ 50GeV and higher we would have to additionally
consider mediation by an off-shell Z∗ Boson, which for the purposes of this thesis will not be necessary.
The structure of the amplitude in this more general case can be found in [20].

3See App.C on why we are allowed to cancel the divergences without having to worry about the distinction between
UV and IR.
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Squaring the amplitude Eq.(2.50) and summing over spins thus yields

1

4

∑
spins

|M(e+e− → qq̄ + X̃)|2 = Lµν
1

s2

[
µ̃2εe2e2

q 〈0| J †µv (0) |X̃, qq̄〉〈X̃, qq̄| J νv (0) |0〉
]
, (2.52)

with the leptonic tensor given as in Eq. (2.6) and the partonic tensor Hµν

X̃,qq̄
associated with the

production of the final state X̃, qq̄ identified by the square brackets on the right-hand side.
The total cross section is now obtained by summing over all allowed final states X = qq̄ + X̃ as

σ =
1

2s

∑
X

∫
dΠX (2π)dδ(d)(Q−

∑
i∈X

pi)〈Lµν〉
1

s2

[
µ̃2εe2e2

q 〈0| J †µv (0) |X〉〈X| J νv (0) |0〉
]

=
1

2s

∑
X

∫
dΦX 〈Lµν〉

1

s2
Hµν
X ,

(2.53)

where we have replaced the leptonic tensor by its orientation-averaged counterpart Eq.(2.7) and have
absorbed the overall momentum conserving delta function into the phase space measure dΦX to be
notationally consistent with the definitions for the two- and three-particle cases found in Eqs.(A.3)
and (A.4).

This particular form of the cross section will prove useful in Sec. 6 when we wish to derive a
factorisation theorem within the effective theory (EFT) framework of Soft-Collinear effective theory
(SCET) in the limit where all final state partons are either soft or collinear.

2.6 Thrust at next-to-leading order

This section concerns itself with computing the differential cross section for the event shape variable
thrust[11]

T = maxn

∑
pi
|pi · n|∑
pi
|pi|

, (2.54)

where the maximum is taken with respect to all spatial unit vectors n, and which one can show to
approach unity when the event under consideration becomes a perfect di-jet event as seen in the center
of mass frame. The vector nT at which the maximum is attained is conventionally called the thrust
axis. As a simple example let us consider thrust for a two-particle final state, which by momentum
conservation must be perfectly di-jet like in the center of mass frame, and hence have T = 1. Indeed,
using p1 =−p2 for the final state momenta we find

T = maxn
|p1 · n|+ |p2 · n|
|p1|+ |p2|

= maxn
2|p1||n| cos θp1n

2|p1|
= 1, (2.55)

where the maximum is reached when the angle between p1 and n vanishes and so the thrust axis nT
is (anti-)aligned with one (or the other) parton momentum.

We will define the computationally more convenient quantity τ = 1 − T , which, for the next-to-
leading order process e+e− → qq + g considered earlier can be written in terms of the momentum
fractions Eq.(2.35) as

τ(xq, xq, xk) = min(1− xq, 1− xq, 1− xk) = min(1− xq, 1− xq, xq + xq − 1) ≡ τ(xq, xq), (2.56)

where the normalisation xq+xq+xk = 2 was used to eliminate the dependence on the gluon momentum
fraction. This can be seen from simple geometric insights, which we want to facilitate with Fig. 2.57
and the following comment.
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Fig.(2.57): Momentum conservation implies that the spacial final state momenta q,q,k, lie in a plane. Depending on

the choice of reference vector n1,2 within that plane, we can see that the sum of the absolute values of the two smaller

projections onto the given vector is always equal to the absolute value of largest projection. Concretely we can read off

that |q · n1|+ |k · n1| = |q · n1| while |q · n2|+ |k · n2| = |q · n2|, and similar for any other choice of n in between.

From the considerations of figure Fig. 2.57 we see that for any n,

|q · n|+ |q · n|+ |k · n| = 2max{|q · n|, |q · n|, |k · n|}. (2.58)

Next we note that thrust is defined in the center of mass frame and thus for massless, on-shell particles
we have

Qµ = (Q,0)µ ⇒ |q|+ |q|+ |k| = Q, xq =
2q0

Q
, (2.59)

with the momentum fractions for q, k given analogously. With this we can write the momentum
projections |q · n| = Q

2 xq|cos θq|, where θi, i = q, q̄, k, denotes the angle between the respective final
state momentum and the reference vector n. Plugging Eq.(2.58) and Eq.(2.59) into the definition of
thrust at NLO we obtain

T = maxn
|q · n|+ |q · n|+ |k · n|

|q|+ |q|+ |k| = maxn
(
max{xq|cos θq|, xq|cos θq|, xk|cos θk|}

)
= max{xq, xq, xk},

(2.60)

from which Eq.(2.56) readily follows. The form Eq.(2.60) allows us to quickly verify that for a perfect
di-jet event, where one of the xi = 0, we still have T = 1 as before, while for a perfectly spherical
tri-jet event where xq = xq = xk = 2/3 we correspondingly have T = 2/3, from which follows that
τ = 1− T ∈ [0, 1/3] for any event at the given order.

The differential thrust distribution we would like to compute is thus given by Eq.(2.31) with the
additional constraint

δ(τ − τ(xq, xq)) = δ(xq + xq − τ − 1) θ(2− 2xq − xq) θ(2− 2xq − xq)
+ δ(1− τ − xq) θ(2xq + xq − 2) θ(xq − xq)
+ δ(1− τ − xq) θ(2xq + xq − 2) θ(xq − xq)
≡ δi(xq, xq, τ) + δii(xq, xq, τ) + δiii(xq, xq, τ),

(2.61)
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which restricts the physical phase space to slices of constant τ , i.e.,

dσr3
dτ

=
1

2s

∫ [
|Mr,11

3,gi |2 + |Mr,22
3,gi |2 +Mr,12

3,gi +Mr,21
3,gi

]
δ(τ − τ(xq, xq)) dΦ3. (2.62)

Since the phase space we are considering is just two-dimensional we can draw the regions in (xq, xq)-
space defined by the observable Eq.(2.61) in a Dalitz plot shown in Fig. 2.63.

Fig. (2.63): Dalitz plot showing the phase space regions defined by the observable Eq.(2.61). The shaded region is

forbidden by momentum conservation. The dashed, red lines indicate the q-collinear (θqk → 0 ⇔ xq → 1) and the

q-collinear singularity (θqk → 0 ⇔ xq → 1) respectively. The soft singularity (xk → 0) corresponds to the top-right

corner of the diagram where xq, xq → 1 simultaneously.

Just as before, we will proceed by evaluating Eq. (2.62) term-by-term, further splitting each
contribution with respect to the individual terms occurring in the thrust observable Eq.(2.61). To
facilitate this, we establish the notation

dσr,113,i

dτ
≡ 1

2s

∫
|Mr,11

3,gi |2 δi(xq, xq, τ) dΦ3, (2.64)

and similar for other contributions pertaining to the various amplitudes (ij = 11,22,12,21) and phase
space regions (x = i, ii, iii).

For the matrix elements Eq.(2.33) and the thrust observable Eq.(2.61) at hand we therefore obtain

dσr,113,i

dτ
=
σ̂(ε)(1− ε)

Γ(1− ε)
αsCF

2π

eγEεµ4ε

s1+2ε

θ(τ)

τ ε

∫ 1−τ

2τ
dxq

(1− xq)1−ε

(xq − τ)1+ε

= σ̂(ε)
αsCF

2π

µ4ε

s1+2ε

{[
− 1 + 3τ + (1− τ)log(1− 2τ)− (1− τ)log(τ)

]
θ(τ) +O(ε)

}
,

dσr,123,i

dτ
=

σ̂(ε)

Γ(1− ε)
αsCF

2π

eγEεµ4ε

s1+2ε

{
θ(τ)τ1−ε

∫ 1−τ

2τ
dxq

1

[(1− xq)(xq − τ)]1+ε

− θ(τ)

τ ε

∫ 1−τ

2τ
dxq

ε

[(1− xq)(xq − τ)]ε

}
= σ̂(ε)

αsCF
2π

µ4ε

s1+2ε

{
2τ

1− τ

[
log(1− 2τ)− log(τ)

]
θ(τ) +O(ε)

}
,

(2.65)
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for all the independent terms where the observable restricts us to the phase space region (i) in Eq.(2.61).
In the regions (ii) and (iii) we further need to calculate

dσr,113,ii

dτ
=
σ̂(ε)(1− ε)

Γ(1− ε)
αsCF

2π

eγEεµ4ε

s1+2ε

θ(τ)

τ1+ε

∫ 1−τ

2τ
dxq

(1− xq)1−ε

(xq − τ)ε
,

= σ̂(ε)
αsCF

2π

µ4ε

s1+2ε

{
− 1

2

[
1

ε
+ 1

]
δ(τ) +

1

2

[
θ(τ)

τ

]
+

+
1

2

[
3τ − 4

]
θ(τ) +O(ε)

}
,

dσr,223,ii

dτ
=
σ̂(ε)(1− ε)

Γ(1− ε)
αsCF

2π

eγEεµ4ε

s1+2ε
θ(τ)τ1−ε

∫ 1−τ

2τ
dxq

1

(1− xq)1+ε(xq − τ)ε

= σ̂(ε)
αsCF

2π

µ4ε

s1+2ε

{
τ

[
log(1− 2τ)− log(τ)

]
θ(τ) +O(ε)

}
, (2.66)

dσr,123,ii

dτ
=

σ̂(ε)

Γ(1− ε)
αsCF

2π

eγEεµ4ε

s1+2ε

{
θ(τ)

τ1+ε

∫ 1−τ

2τ
dxq

(xq − τ)1−ε

(1− xq)1+ε
− θ(τ)

τ ε

∫ 1−τ

2τ
dxq

ε

[(1− xq)(xq − τ)]ε

}
= σ̂(ε)

αsCF
2π

µ4ε

s1+2ε

{
1

2

[
1

ε2
+

3

ε
+ 7− 5π2

12

]
δ(τ)−

[
θ(τ)

τ

]
+

−
[
θ(τ)log(τ)

τ

]
+

+

[
3 +

1− τ
τ

log(1− 2τ) + log(τ)

]
θ(τ) +O(ε)

}
.

To obtain the above results extensive use of Mathematica[21] and the package HypExp[22] was
made. Since the squared matrix elements in Eq.(2.33), and the last two terms in Eq.(2.61) exhibit a
symmetry under the exchange qµ ↔ qµ, we can determine all other contributions from what we have
calculated so far, in particular,

dσr,113,i

dτ
=

dσr,223,i

dτ
,

dσr,113,iii

dτ
=

dσr,223,ii

dτ
,

dσr,223,iii

dτ
=

dσr,113,ii

dτ
,

dσr,213,i

dτ
=

dσr,123,i

dτ
,

dσr,123,ii

dτ
=

dσr,123,iii

dτ
=

dσr,213,ii

dτ
=

dσr,213,iii

dτ
,

(2.67)

where each of the integrals for a contribution from the region (iii) would naturally occur as in Eq.(2.66)
but in terms of xq rather than xq.

Note that the only two contributions that produce singular behaviour in the limit τ → 0 (i.e.
they contain delta functions and plus distributions4 are shown in the first and third line of Eq.(2.66)
respectively. In practice this means that all other integrals can be calculated in d = 4 dimensions
without any need for regularisation, further simplifying the computation.

The complete real emission contribution to the thrust distribution can now be determined entirely
by the results found in Eq.(2.65) and Eq.(2.66) and reads

dσr3
dτ

=
iii∑
x=i

{dσr,113,x

dτ
+

dσr,223,x

dτ
+

dσr,123,x

dτ
+

dσr,213,x

dτ

}
= σ̂(ε)

αsCF
π

µ4ε

s1+2ε

{[
1

ε2
+

3

2

1

ε
+

7

2
− 5π2

12

]
δ(τ)

− 3

2

[
θ(τ)

τ

]
+

− 2

[
θ(τ)log(τ)

τ

]
+

+

[
3 +

9

2
τ +

(
2

τ(1− τ)
− 3

)
log(1− 2τ) +

1− 3τ

1− τ log(τ)

]
θ(τ)

}
.

(2.68)

Interpreting the finite terms as distributions and expanding in the ratio
(
µ2

s

)ε
gives the real emission

4See App. I for the definition and properties of plus distributions.
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contribution in a form more familiar from the literature,

dσr3
dτ

=
σ̂(ε)

s

αsCF
π

{[
1

ε2
+

3

2

1

ε
+

2

ε
log
(
µ2

s

)
+

7

2
− 5π2

12
+ 3log

(
µ2

s

)
+ 2log2

(
µ2

s

)]
δ(τ) (2.69)

+

[
−3

2
+ 3τ +

9

2
τ2 +

2− 3τ(1− τ)

1− τ log(1− 2τ)

][
θ(τ)

τ

]
+

+

[
3τ − 2

1− τ

][
θ(τ)log(τ)

τ

]
+

}
.

The virtual contribution to the thrust distribution is much easier to obtain since the only kine-
matically allowed configuration of the final state quark pair, as was shown in Eq.(2.55), is exactly
back to back (τ = 0) and hence

dσv2
dτ

= σv2δ(τ) = − σ̂(ε)

s

αsCF
π

[
1

ε2
+

3

2

1

ε
+

2

ε
log
(
µ2

s

)
+ 4− 7π2

12
+ 3log

(
µ2

s

)
+ 2log2

(
µ2

s

)]
δ(τ),

(2.70)

with the total virtual cross section σv2 as in Eq.(2.47). Combining the results from Eq.(2.69) and
Eq.(2.70), this leaves us with the finite next-to-leading order thrust distribution

dσNLO
2/3

dτ
=

dσr3
dτ

+
dσv2
dτ

=
σ̂(ε)

s

αsCF
π

{[
π2

6
− 1

2

]
δ(τ) (2.71)

+

[
−3

2
+ 3τ +

9

2
τ2 +

2− 3τ(1− τ)

1− τ log(1− 2τ)

][
θ(τ)

τ

]
+

+

[
3τ − 2

1− τ

][
θ(τ)log(τ)

τ

]
+

}
,

which agrees with the usual result found in the literature[23]. Together with the leading order result
dσLO

2
dτ = σLO2 δ(τ) the above thrust distribution gives the total cross section of Eq.(2.49) when integrated

over all allowed values of τ , ∫ 1
3

0
dτ

[
dσLO2

dτ
+

dσNLO
2/3

dτ

]
= σ, (2.72)

which provides an important consistency check. In arriving at Eq.(2.72) we have crucially made use
of the fact that the plus distributions are integrable in the di-jet limit τ = 0 as per Eq.(I.3). Note
that since Eq.(2.71) is an experimentally accessible quantity, the dependence on the renormalisation
scale µ has dropped out.

2.7 Infrared safety and thrust

A crucial theoretical concept in perturbative QCD calculations is that of infrared safe observables. In
essence, IR-safety states that the measurement we are making (the observable we are computing) is
insensitive to final state particles becoming soft or collinear. In practice this means that IR-divergences
cancel between real emission and virtual corrections at any given order, just as they did for thrust in
Eq.(2.71).

Let us consider the general case where an observable O is specified by the measurement functions
Om(p1, . . . , pm) depending on m final state parton momenta. Note that at a given order in pertur-
bation theory, say O(αks), we have to consider these measurement functions for all final state particle
numbers up to some maximum n, that is, the cross section we are computing is schematically given
by the perturbative expansion

dσ
dO
'
∫
dΦ2|M2|2(p1, p2) δ(O −O2(p1, p2)) +

∫
dΦ3|M3|2(p1, p2, p3) δ(O −O3(p1, p2, p3))

+ . . . +

∫
dΦn|Mn|2(p1, . . . , pm) δ(O −On(p1, . . . , pn)) +O(αk+1

s ),

(2.73)
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where for concreteness we have assumed a leading order process with two final state partons. Each of
the amplitudes |Mm|2, m = 2, . . . , n is evaluated up to O(αks) and we have |Mn+1|2 = 0 +O(αk+1

s )

by definition.
Now a cancellation of IR-divergences between the individual contributions of Eq.(2.73) can be

guaranteed if for m = 2, . . . , n− 1 the formal requirements

Om+1(p1, . . . , (1− z)pm, zpm) = Om(p1, . . . , pm) (collinear safety),

Om+1(p1, . . . , pm, 0) = Om(p1, . . . , pm) (soft safety),
(2.74)

are met. To ensure IR-safety, analogous relations also have to hold for all other (pairs of) momenta in
the above measurement functions that lead to singular behaviour of the amplitude in the respective
soft-collinear limits. We say that in the first line of Eq.(2.74) the parton (m + 1) has gone collinear
to the parton (m) with momentum fraction 0 < z < 1, while in the second line the parton (m + 1)

has gone soft. This is illustrated in Fig. 2.75.

Fig.(2.75): Geometric representation of soft-collinear safety. We see that an IR-safe observable is not sensitive to the

presence of collinear and soft radiation in the final state.

Let us now briefly check that thrust is indeed IR-safe and that the cancellation of IR-singularities
in Eq.(2.71) was therefore not just a lucky coincidence. Writing Tm+1(p1, . . . , pm+1) for the thrust
observable Eq.(2.54) where the sum runs over (m+ 1) final state parton momenta, we first explicitly
check collinear safety,

Tm+1(p1, . . . , (1− z)pm, zpm) = maxn
[∑m−1

i |pi · n|+ |(1− z)pm · n|+ |zpm · n|∑m−1
i |pi|+ |(1− z)pm · n|+ |zpm · n|

]
= maxn

∑m
i |pi · n|∑m
i |pi|

= Tm(p1, . . . , pm),

(2.76)

with soft safety being trivially satisfied. The fact that thrust is IR-safe will also become important in
subsequent sections when we discuss the dipole subtraction procedure.

2.8 A naive numerical approach for thrust

To set up the premise for the introduction of the dipole subtraction method in the coming sections, we
want to first show how not to compute observables numerically. Highlighting the shortcomings of the
naive approach will help us to appreciate the necessity for subtractions and what practical purpose
they serve.

Returning to the thrust distribution of Sec.2.6 we notice that the phase space integrals Eqs.(2.65)
and (2.66) for the real emission contributions can be carried out in d=4 once we strictly require τ > 0

in the measurement function. Since this means that we exclude the perfect di-jet limit, the singular
boundaries of phase space in Fig. 2.63 are not integrated over. Thus, evaluating all contributions
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assuming τ > 0 and ε = 0 we obtain the real emission contribution

dσr3
dτ

∣∣∣∣τ>0

ε=0

=
σ̂(0)

s

αsCF
π

θ(τ)

{
− 3

2

1

τ
− 2

log(τ)

τ
+ 3 +

9

2
τ +

(
2

τ(1− τ)
− 3

)
log(1− 2τ) +

1− 3τ

1− τ log(τ)

}
,

(2.77)

which in principle could also be obtained numerically. Since we are avoiding the strict di-jet limit the
leading order and virtual contribution are simply

dσv2
dτ

∣∣∣∣τ>0

ε=0

=
dσLO2

dτ

∣∣∣∣τ>0

ε=0

= 0. (2.78)

Comparing the first two terms in Eq.(2.77) to the previous result in Eq.(2.68) we see that the
singular behaviour in the limit τ → 0 is correctly reproduced and the remaining finite terms agree as
well. However, we are missing the singular and (crucially) finite contributions from τ = 0 in both real
emission and virtual parts. Additionally, the proper regularisation of singular contributions in terms
of plus distributions is absent in the real emission contribution. The latter is particularly troubling
since the thus calculated thrust distribution is not integrable. Indeed, unlike Eq.(2.72), we find∫ 1

3

0
dτ

dσr3
dτ

∣∣∣∣τ>0

ε=0

=∞ 6= σ, (2.79)

which is obviously inconsistent with the finite total cross section we obtained in Eq. (2.49). We
conclude that we have to augment the naive approach discussed here with a prescription that allows
us to extend the numerical integration into the strict di-jet limit τ = 0 to provide for a proper,
controlled cancellation of IR divergences as well as incorporating the finite contributions proportional
to δ(τ) that were missing in Eqs.(2.77) and (2.78). The prescription used in this thesis will come in
the form of the dipole subtraction method which is the subject of the coming sections.
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3 Catani-Seymour dipole subtraction

In this section we will discuss the motivation and general idea behind the dipole subtraction method
first proposed in [14].

We have already seen how to calculate the total cross section Eq.(2.48) and thrust distribution
Eq.(2.71) for the process e+e− → di-jets at NLO. This required computing real emission and virtual
corrections in dimensional regularisation, both of which contained IR-divergences. The fact that these
divergences canceled to yield a finite result was attributed to the observables satisfying the IR-safety
properties of Eq.(2.74).

Note that the success of calculating observables in this way was crucially dependent on the
respective phase space integrations to be analytically solvable, so that the cancellation of poles in
ε could be explicitly performed. While we showed that this was possible for a special case, this may
not be feasible for more general amplitudes and observables. When analytic integration becomes too
cumbersome, or indeed impossible, we usually resort to approximate, numerical procedures. However,
in the present case we are confronted with a particularly non-trivial task since a numerical routine
cannot implement dimensional regularisation and the phase space integrals we are considering are in
general hopelessly divergent in four spacetime dimensions.

This is the exact problem the subtraction method was designed to solve. Roughly speaking, the
idea is to rearrange the divergences between real emission and virtual contributions in such a way that
all major phase space integrations can be carried out manifestly in four dimensions, yielding finite
cross sections. Structurally this may thus be interpreted as taking

dσNLO
m/m+1

dO
=

dσrm+1

dO
+

dσvm
dO

=

[
dσrm+1

dO
− dσc

dO

]
ε=0

+

[
dσvm
dO

+
dσc

dO

]
ε=0

≡ dσrm+1 sub

dO
+

dσvm sub
dO

,

(3.1)

where we have chosen to consider a process with m final state partons at LO, so that the NLO real
emission contribution will produce a (m + 1)-parton state. The counter term dσc

dO is particular to
the chosen subtraction prescription. All brackets in 3.1 can ultimately be finitely evaluated in d = 4

dimensions, provided a minimum number of simplified (compared to the full calculation) integrals can
be computed analytically to facilitate the cancellation of divergences. Let us now be more specific
about the structure of the counter term in the Catani-Seymour prescription.

3.1 The promise of the subtraction method

We will now give an outline of the general structure for the evaluation of arbitrary observables at
next-to-leading order using the subtraction method. Schematically we write the next-to-leading order
cross section for an observable O (c.f. Eq.(2.73) for notation) as

dσNLO
m/m+1

dO
=

dσrm+1

dO
+

dσvm
dO

=

∫
dΦm+1 |Mr

m+1|2 δOm+1(p1, . . . , pm+1) +

∫
dΦm |Mv

m|2 δOm(p1, . . . , pm),

(3.2)

in which both terms are separately divergent in four dimensions. To avoid notational clutter we have
introduced the short hand

δ(O −Om(p1, . . . , pm)) ≡ δOm(p1, . . . , pm), (3.3)

for the restriction on m-parton phase space imposed by the measurement function Om which we will
use from now on. For simplicity let us consider the concrete case where the additionally emitted
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parton with momentum pm+1 is exclusively due to a splitting of the m-th parton in the leading order
amplitude, as pictured in Fig. 3.4.

pm+1

pm

p1

Mm

Fig. (3.4): For the present discussion we assume the parton that is additionally emitted at NLO to originate from a

single splitting of the m-th parton in the leading order amplitude. In the general case multiple such splittings will occur

between any number of partons, see Sec. 3.2.

To facilitate a subtraction for this process we require two ingredients. The first is a dummy
amplitude |Mc

m+1|2, defined on (m+ 1)-parton phase space, that reproduces the singular behaviour
of the real emission amplitude |Mr

m+1|2 in d dimensions, thus acting as a local counter term. The
second is a momentum map

f(p1, . . . , pm, pm+1) = (q1, . . . , qm), (3.5)

that projects the (m+1)-parton configuration {p1, . . . , pm, pm+1} to a suitablem-parton configuration
{q1, . . . , qm}. Here the projected momenta are functions qi = qi(p1, . . . , pm, pm+1). The momentum
map is set up in such a way that the subtracted real emission cross section, defined as

dσrm+1 sub

dO
=

∫
dΦm+1

[
|Mr

m+1|2
∣∣∣∣
ε=0

δOm+1(p1, . . . , pm+1)− |Mc
m+1|2

∣∣∣∣
ε=0

δOm(f(p1, . . . , pm+1))

]
,

(3.6)

is a finite quantity that can be (numerically) integrated in four dimensions. For this to work the
projected momenta qi need to correctly reproduce the m-parton configuration obtained from the
(m + 1)-parton configuration in the respective soft-collinear limits of pm+1. The map f we will
construct indeed meets this criterion by giving

qm = pm + pm+1, and qi = pi, for i = 1. . . . ,m− 1, (3.7)

in the strict singular limits. This provides for the fact that in these limits the (m + 1)-parton final
state reduces to the original m-parton configuration, concretely

pm+1 collinear to pm : pm+1 → zpm, pm → (1− z)pm ⇒ qm = (1− z)pm + zpm = pm,

pm+1 soft: pm+1 → 0 ⇒ qm = pm + 0 = pm.
(3.8)

For an IR safe observable in the sense of Eq.(2.74) this implies

pm+1 collinear to pm : Om+1(p1, . . . , (1− z)pm, zpm) = Om(p1, . . . , pm)

= Om(p1, . . . , zpm + (1− z)pm)

= Om(q1, . . . , qm),

pm+1 soft: Om+1(p1, . . . , pm, 0) = Om(p1, . . . , pm) (3.9)

= Om(p1, . . . , pm + 0)

= Om(q1, . . . , qm),
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where in both cases the first equality is due to IR safety and the remaining equalities follow from
the properties Eq.(3.8) of the momentum map. Note that Eq.(3.9) is crucial in ensuring that the
cancellation of divergences between real emission amplitude and the counter term in Eq.(3.6) can
actually occur.

Another convenient property the momentum projection f satisfies is momentum conservation,

m∑
i

qi =
m+1∑
i

pi, and q2
i = 0, for i = 1, . . . ,m, (3.10)

over the entire phase space. This will become relevant presently when we want to interpret the
projected momenta qi as pertaining to the final state of a leading order matrix element.

Since we have subtracted the dummy amplitude from the real emission contribution, according
to Eq. (3.6) we need to add it back to the virtual correction to leave the cross section Eq. (3.2)
unchanged. However, we immediately run into the problem that |Mc

m+1|2 is defined on an (m+ 1)-
parton phase space, while |Mv

m|2 depends only on them parton momenta of the leading-order process,
thus rendering a direct recombination of the amplitudes under a common phase space integral difficult.

Here the proposed dipole subtraction shows another one of its strengths. The claim is that the
counter term factorises into a m-parton, leading order amplitude |Mc

LO|2 times a factor V explicitly
depending on the additional parton momentum and encapsulating the singular behaviour of the (m+

1)-parton amplitude, such that

|Mc
m+1|2(p1, . . . , pm, pm+1) = |Mc

LO|2(q1, . . . , qm)× V (pm+1, q1, . . . , qm). (3.11)

In addition the momentum mapping Eq.(3.5) allows for a factorisation of the (m + 1)-parton phase
space into the m-parton phase space of the virtual amplitude times an integration over the single
particle phase space pertaining to pm+1. Schematically we can therefore write the counter term as5∫
dΦm+1|Mc

m+1|2(p1, . . . , pm, pm+1) δOm(q1, . . . , qm) (3.12)

=

∫
dΦm(q1, . . . , qm)|Mc

LO|2(q1, . . . , qm) δOm(q1, . . . , qm)

∫
dpm+1(q1, . . . , qm)V (pm+1, q1, . . . , qm),

where the dependence of the measure dpm+1(q1, . . . , qm) on the projected momenta comes from a
Jacobian factor induced by the momentum map which we study in detail in App.F. The promise is that
if the integral over the single particle phase space can be carried out analytically in d dimensions, we
can recombine the result with the virtual amplitude, ensuring an exact cancellation of IR-divergences,
provided that the observable under consideration is IR-safe. This then allows the limit ε → 0 to be
taken, leaving the remaining m-parton phase space integral to be (numerically) evaluated in d = 4

dimensions. This prompts the definition of the subtracted virtual contribution to the cross section
Eq.(3.2) as

dσvm sub
dO

=

∫
dΦm

[
|Mv

m|2 δOm(p1, . . . , pm) + |Mc
m|2Om(q1, . . . , qm)

∫
dpm+1 V (pm+1)

]∣∣∣∣
ε=0

, (3.13)

where we have suppressed the dependence of V (pm+1) on the projected momenta q1, . . . , qm for nota-
tional brevity.

Thus to perform a numerical calculation of an observable as in Eq.(3.1), we need to know the
real emission amplitude in d= 4 dimensions only, while the virtual correction, as well as the dummy
amplitude will in principle need to be evaluated in arbitrary dimension d. However, we will see (c.f.

5See App. F for a more detailed discussion and proof of the phase space factorisation property Eq.(3.12).
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Apps.D and E) that the counter terms are constructed using the universal soft-collinear limit of tree-
level QCD amplitudes. This implies that the dummy amplitude can be constructed in a process- and
observable-independent manner. In particular the single particle phase space integrals in Eq.(3.12)
can be universally computed and then applied to any process and observable.

3.2 General construction of counter terms

Recall that up to now we have restricted our analysis to a single splitting between the momenta
pm, pm+1 at NLO. In the more realistic setting we will discuss now we have to take into account all
allowed splittings from other final state partons in order to reproduce the divergent behaviour of the
real emission matrix element.

For simplicity let us specify to processes without initial-state radiation, that is, at NLO the
additional parton is emitted only from final state particles. This restricted case will still apply in the
context of e+e− → di-jets, which we are ultimately interested in, and simplify the definition of the
counter terms. We will also restrict our discussion to the subtraction of appropriately spin/colour-
summed matrix elements and do not consider subtractions for amplitudes of fixed helicity.

Our starting point for the explicit construction of the dummy amplitude is that the singular
part of a given (colour/spin-summed) (m + 1)-parton final state real emission matrix element in the
soft-collinear limit can be written as6

sing soft/coll.

{
|Mr

m+1|2 ≡ m+1
〈 1, . . . ,m+ 1 | 1, . . . ,m+ 1 〉m+1

}
⊆

∑
k 6=(i 6=j)

Dij,k(p1, . . . , pm+1)

≡ |Mc
m+1|2,

(3.14)

where the sum runs over all distinct tuples {(i, j), k} of final state partons called dipoles. In particular
we will refer to the particles (i, j) as emitter(s) and to k as spectator. The symbol ⊆ denotes the fact
that the sum over the dipole contributions Dij,k reproduces all singular terms of the amplitude plus
possible additional terms that are soft-collinear-finite.

To make the summation over dipoles in Eq.(3.14) clear, we give an example. The dipoles {(1, 2), 3}
and {(1, 3), 2} are distinct and have to be taken into account separately, while the dipoles {(1, 2), 3}
and {(2, 1), 3} are identical and thus only counted once.

That we talk about dipoles in this context derives from the fact that a given contribution Dij,k on
the left-hand side of Eq.(3.14) is (roughly) associated with the divergences occurring in the interference
diagrams

|Mr
m+1|2 ⊇ Mr †

m+1Mr
m+1

i

j

k

1

m + 1

+ Mr †
m+1Mr

m+1

i

j

k

1

m + 1

,

(3.15)

contributing to the squared real emission matrix element. Note, however, that there is generally
no one-to-one correspondence of divergences appearing in individual dipole contributions and real
emission interference diagrams. The singularity structure only matches up between the two once all
dipoles {(i, j), k} are summed up, as are all interference diagrams. This is essentially due to the soft

6Check App.D for an introduction to the Colour/Helicity space formulation of amplitudes.
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limit of the real emission amplitude being sensitive to contributions from all other final state particles
(c.f. Eq.(D.12)).

The dipole factorsDij,k can be obtained as the matrix elements of the corresponding colour/helicity-
space dipole operator7 Dij,k,

Dij,k = m〈 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1|Dij,k| 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1 〉m , (3.16)

which is defined in terms of colour charge operators Ta
i and helicity operators Vij,k(yij,k, zi), the latter

also containing kinematic information about the partons constituting the dipole, and reads

Dij,k = − 1

2 (i·j)
Tk ·Tij

T2
ij

Vij,k(yij,k, zi). (3.17)

The kinematic dependence of the dipole operator can be expressed entirely in terms of the momentum
invariants

yij,k =
i · j

i · j + i · k + j · k , zi =
i · k

k · (i+ j)
. (3.18)

The reduced m-parton amplitude in Eq.(3.16) is obtained from the amplitude with m+ 1 partons
featuring on the left-hand side of Eq.(3.14) by replacing the three particles {(i, j), k} pertaining to
the given dipole with the two particles {ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk}. The corresponding three-to-two momentum projection
is given by

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ = iµ + jµ − yij,k
1− yij,k

kµ, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ =
1

1− yij,k
kµ, (3.19)

which exactly implements momentum conservation ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ + kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ = iµ + jµ + kµ as we anticipated in
Eq.(3.10). The projected momenta are on-shell ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij2 = kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk2 = 0 and in the soft-collinear limit defined
by i·j → 0 (implying yij,k → 0) they reduce to ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ → iµ + jµ and kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ → kµ. As we alluded to in the
preceding section, we thus do not have a single momentum map f as in Eq.(3.5) from (m+ 1)-parton
phase space {p1, . . . , pm+1} to that for m partons {q1, . . . , qm}, but one for each dipole contribution,
fij,k, which only acts on the three momenta {(i, j), k} of the given dipole, leaving the other m − 2

momenta untouched, that is

fij,k(1, . . . , i, . . . , j, . . . , k, . . .m+ 1) = (1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1), (3.20)

with the m projected momenta {1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+1} and identifying the momentum j as pertaining
to the parton additionally emitted at NLO.

Aside from the kinematics, the two-particle configuration {ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk} we are mapping to corresponds
to different particle types depending on the particles {(i, j), k} that were present before the reduction.
The quantum numbers of the emitter are determined according to the recipe

(i, j) = (q, g) 7→ ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = q,

(i, j) = (q, g) 7→ ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = q,

(i, j) = (g, g) 7→ ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = g,

(i, j) = (q, q) 7→ ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = g,

(3.21)

which can be inferred by thinking about which exchanges are allowed by QCD in the diagram Eq.(3.15)
for a given dipole {(i, j), k}. The spectator kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk always corresponds to the same particle type as k.

7See App.D for a more thorough definition and discussion of the individual operators in Eq.(3.17) and why we can
expect the dipole operator to generate counter terms with the correct singular limit.
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Diagrammatically we may think of a particular dipole mapping specified by Eqs.(3.19) and (3.21) as
reducing the NLO diagram to a LO diagram according to the prescription

i

m + 1
{(i, j), k}

j

k

1

m + 1

m + 1
{(i, j), k} 7−−−−→

(3.22)

In terms of Colour/Helicity space amplitudes we may think of the above as taking

m+1〈 1, . . . , (i, j), . . . , k, . . . ,m+ 1|1, . . . , (i, j), . . . , k, . . . ,m+ 1 〉m+1

7−−−−→ Dij,k = m〈 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1|Dij,k | 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1〉m .
(3.23)

Having established the momentum mapping, we show in App. F that it facilitates the phase space
factorisation

dΦ3(i, j, k) = dΦ2(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk) dj(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk), (3.24)

where the single particle phase space pertaining to the additional parton emission (j) can be written
in terms of the momentum invariants Eq.(3.18) as8

dj(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk) =
dzidyij,kdd−3Ω

(2π)1−2ε

(2 ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)1−ε

16π2

(1− yij,k)1−2ε

(zi(1− zi)yij,k)ε
Θ(zi(1− zi))Θ(yij,k(1− yij,k)), (3.25)

where dd−3Ω is the angular measure associated with the (d − 2)-dimensional space perpendicular to
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij and kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk. In addition the now refined version of the counter term factorisation Eq.(3.11) reads

Dij,k(1, . . . ,m+ 1) = |Mc ij,k
LO |2(1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1)× Vij,k(j, 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1), (3.26)

for each dipole contribution. We should note that the factorisation into the m parton amplitude
|Mc ij,k

LO |2 and the singular factor Vij,k still involves implicit sums over helicities and is thus not exact
at this point. Additionally both factors in Eq.(3.26) still depend on the projected momenta q1, . . . , qm.
However, both of these interdependencies go away once the integral over the phase space Eq.(3.25) is
carried out analytically[14], allowing for a cancellation of divergences with the virtual matrix element
according to Eq.(3.13).

With all the details now in place we can give explicit expressions for the subtracted real emis-
sion Eq.(3.6) and virtual correction Eq.(3.13) contributions to the cross section. Starting with the
subtracted real emission part we obtain

dσrm+1 sub

dO
=

∫
dΦm+1(1, . . . ,m+ 1)

{
|Mr

m+1|2(1, . . . ,m+ 1) δOm+1(1, . . . ,m+ 1)

−
∑

i 6=(j 6=k)

Dij,k(1, . . . ,m+ 1) δOm(fij,k(1, . . . ,m+ 1))

}
,

(3.27)

8For a detailed derivation of the single particle measure see the discussion starting with Eq.(F.10).
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The factorisation properties Eqs.(3.24) and (3.26) allow us to write the virtual part as

dσvm sub
dO

=

∫
dΦm(1, . . . ,m)

{
|Mv

m|2(1, . . . ,m) δOm(1, . . . ,m)

+
∑

i 6=(j 6=k)

|Mc ij,k
m |2(fij,k(1, . . . ,m+ 1)) δOm(fij,k(1, . . . ,m+ 1))

×
∫

dj(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)Vij,k(j, fij,k(1, . . . ,m+ 1))

}
.

(3.28)

Note that we have denoted the momentum configuration of the virtual correction by {1, . . . ,m},
while the momenta for a given dipole contribution are labelled as {1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1}. By virtue
of Eq.(3.21) we can uniquely identify the projected momenta of each dipole with the leading-order
configuration such that ultimately each term in Eq.(3.28) is integrated over phase space in terms of
the momenta {1, . . . ,m}.

For completeness we want to mention that generalisations of Eqs.(3.27) and (3.28) for the treat-
ment of initial-state radiation and identified partons in the final state exist, but will not be considered
in this thesis. The formalism developed so far suffices for an application to the process e+e− → di-jets
we were considering earlier, which will be the concern of the upcoming sections.

3.3 Subtraction for e+e− → di-jets

We consider the full real emission matrix element Eq.(2.36) in more detail by rewriting

|Mr
3|2 ∝

x2
q + x2

q

(1− xq)(1− xq)
− ε (2− xq − xq)2

(1− xq)(1− xq)

=

{
1

1− xq

[
2

2− xq − xq
− (1 + xq)

]
− ε 1− xq

1− xq

}
+

{
xq ↔ xq

}
− 2ε.

(3.29)

Applying the procedure outlined in the previous section for the qq̄+ g final state under consideration
leads to the d-dimensional Catani-Seymour counter terms

Dqk,q̄(xq, xq, ε) = M̂ µ̃4ε

Q2

(1− ε)2

3− 2ε

{
1

1− xq

[
2

2− xq − xq
− (1 + xq)

]
+

1− xq
xq

− ε 1

xq

1− xq
1− xq

}
,

Dq̄k,q(xq, xq, ε) = Dqk,q̄(xq, xq, ε),
(3.30)

where M̂ is defined as in Eq.(2.34). In Eq.(3.30) the dipole contribution Dqk,q̄ will take care of the
q-collinear (xq → 1) and the soft singularity in Eq.(3.29) when it is approached from the q-collinear
direction (c.f. Fig. 2.63). Dq̄k,q acts analogously for the case q ↔ q.

3.4 Derivation of Catani-Seymour counter terms

In this section we want to derive the dipole contributions Eq.(3.30) using the general formalism outlined
in Sec. 3.2. According to Eq.(3.14) we need to consider two dipoles for the process e+e− → qq + g

at NLO. Focusing on the contribution Dqk,q̄ from the dipole {(q, k), q̄} we can diagrammatically
understand the dipole reduction in the sense of Eqs.(3.22) and (3.23) as mapping

q

q̄

k 7−−→

3〈(q, k), q |(q, k), q 〉3 7−−→ Dqk,q̄ = 2〈 qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq |Dqk,q | qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2 , (3.31)
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with the dipole momentum map giving fqk,q̄(q, q̄, k) = (qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, q̄̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q), and we have a similar contribution for
Dq̄k,q. The full counter term to the real emission matrix element Eq.(2.36) is then obtained according
to Eq.(3.14) as the sum

|Mc
3|2 = Dqk,q̄ +Dq̄k,q. (3.32)

We will work out the dipole contribution Dqk,q̄ coming from the dipole {(q, k), q̄} in detail. Due
to charge conjugation, the other dipole contribution from {(q, k), q} can then be obtained from Dqk,q̄
by exchanging q ↔ q̄. Starting with the kinematics for the quark (qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk) and the anti-quark qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq we have

qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkµ = qµ + kµ − yqk,q
1− yqk,q

qµ, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqµ =
1

1− yqk,q
qµ, yqk,q =

q · k
q · q + q · k + q · k = 1− xq,

(3.33)

where we have expressed the kinematic invariant yqk,q in terms of the momentum fractions defined in
Eq.(2.35) for later convenience. To evaluate the counter term we have to compute the matrix element
of the dipole operator Dqk,q with respect to the reduced two particle amplitude | qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2, that is

Dqk,q = − 1

2(q · k) 2〈 qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq |
Tqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq ·Tqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk

T2
qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk

Vqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk,qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq(yqk,q, zq)| qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2 . (3.34)

We commence by noting that the state described by the amplitude is a colour singlet and hence colour
conservation Eq.(D.16) applied to the case at hand reads[

Ta
qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk + Ta

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

]
| qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2 = 0, (3.35)

for any colour a of the emitted gluon. The factor of the dipole operator Eq.(3.34) pertaining to the
colour degrees of freedom of both the emitter pair and the spectator can then be simplified using the
colour charge operator algebra

Tqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq ·Tqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk

T2
qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk

| qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2 = −
T2
qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk

T2
qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk

| qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2 = − | qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2 , (3.36)

leaving only the helicity and kinematic dependence to be determined. Making the sum over helicities
explicit we can use Eq.(D.25) to determine the dipole contribution

Dqk,q =
∑

s1,s2,s′1,s
′
2

1

2(q · k) 2〈 qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq |s1, s2〉(〈s1| ⊗ 〈s2|) (Vqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk,qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq ⊗ 1)
(
|s′1〉 ⊗ |s′2〉

)
〈s′1, s′2| qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2

=
8πµ̃2εαsCF

2(q · k)

[
2

1− zq(1− yqk,q̄)
− (1 + zq)− ε(1− zq)

]
2〈 qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq | qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2,

(3.37)

where yqk,q and zq are defined as in Eq.(3.18) and we have emphasised the fact that the spin dependence
of Vqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk,qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq is entirely determined by the emitter (c.f. Eq.(D.23)). The kinematic invariants appearing in
Eq.(3.37) can again be written in terms of momentum fractions where they take the form

zq =
q · q

q · (q + k)
1 + zq = 1 + xq −

(1− xq)(1− xq)
xq

1− zq =
q · k

q · (q + k)
=

1− xq
xq

1

1− zq(1− yqk,q)
=
q · q + q · k + q · k

k · (q + q)
=

Q2

2(k ·Q)
=

1

2− xq − xq
,

(3.38)

recalling that Q2 = 2(q · q + q · k + q · k) when all final state particles are massless. By Eq.(D.4)
we have 2〈 qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq | qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 〉2 = |MLO

2 |2(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, q̄̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q), i.e. the (colour/helicity-averaged) leading-order matrix
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element we computed in Eq.(2.9) in terms of the projected momenta {qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, q̄̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q}. Note that to combine
this contribution with the virtual correction as in Eq.(3.28) we have to assign the projected momenta
to the leading-order configuration {q, q̄} according to Eq.(3.21), that is {qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, q̄̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q} ≡ {q, q̄}. For the other
dipole configuration Dq̄k,q the identification correspondingly reads {q̄k̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk̄qk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq} ≡ {q̄, q}.

While in the generic case the different assignments of projected momenta onto the leading-order
configuration for each dipole are important to keep track of for the remaining phase space integration,
in the particular case we are considering we recall from Eq.(2.9) that |MLO

2 |2(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, q̄̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q̄q) = |MLO
2 |2(q, q̄) =

|MLO
2 |2 has no kinematic dependence.
Combining results we obtain the final expression for the counter terms coming from the dipole

{(q, k), q},

Dqk,q(q, q̄, k) = |MLO
2 |2

8πµ̃2εαsCF
2(q · k)

[
Q2

k · (q + q)
− 1− q · q

q · (q + k)
− ε q · k

q · (q + k)

]
, (3.39)

which, upon substitution of Eq.(3.33) and Eq.(3.38), can be brought to the form shown in Eq.(3.30).
Here we recognise the general factorised form of the dipole contribution that was claimed in Eq.(3.26),
where now

Dqk,q̄ = |Mc,qk,q̄
LO |2 × Vqk,q̄(k, q, q) (3.40)

with the leading order matrix element and the singular factor identified by

|Mc,qk,q̄
LO |2 = |MLO

2 |2, Vqk,q̄(k, q, q) =
8πµ̃2εαsCF

2(q · k)

[
Q2

k · (q + q)
− 1− q · q

q · (q + k)
− ε q · k

q · (q + k)

]
.

(3.41)

The form Eq.(3.39) is convenient to subtract from the real emission matrix element Eq.(2.36) since it
is given in terms of the physical parton momenta (q, q, k). However, according to Eq.(3.28), to add
the counter term back to the virtual correction we still need to analytically integrate over the single
particle phase space leading to the soft-collinear singularities. We employ the dipole phase space
factorisation Eq.(3.24), which for the dipole under consideration reads

dΦ3(q, q, k) = dΦ2(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq) dk(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq). (3.42)

Proceeding to compute the integral over the factorised single parton phase space dk(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq) (c.f.
Eq.(3.25)), we introduce the notation∫

k
Dqk,q ≡

∫
dk(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq)Dqk,q = |Mc,qk,q̄

2 |2
∫
dk(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq)Vqk,q̄(k, q, q) = |MLO

2 |2
αsCF

4π

(
4πµ̃2

Q2

)ε
× 1

Γ(1− ε)

∫ 1

0
dz dy

(1− y)1−2ε

y1+ε(z(1− z))ε
[

2

1− z(1− y)
− (1 + z)− ε(1− z)

]
,

=
M̂

16π2
µ̃2ε

(
4πµ̃2

Q2

)ε
(1− ε)2

3− 2ε

Γ(1− ε)2

Γ(1− 3ε)

[
1

ε2
+

3

2ε
+

5

1− 3ε

]
,

(3.43)

where we have brought the result into a form that is more readily comparable to the virtual amplitude
Eq.(2.46). In the calculation of Eq.(3.43) we have set yqk,q ≡ y and zq ≡ z for readability and have used
2 q · k = yQ2, 2 qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk · qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq = Q2, to rewrite the inner products appearing in the single-particle phase space
measure and the dipole factor. It is straightforward to check that for the other dipole in Eq.(3.31) we
have ∫

k
Dqk,q =

∫
dk(qkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqkqk, qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq)Dqk,q =

∫
k
Dqk,q. (3.44)
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3.5 Analytic subtraction for thrust

For the process e+e− → di-jtes under consideration the general structure of the subtraction procedure
in Eq.(3.27) and Eq.(3.28) entails the following form of the subtracted real emission and virtual thrust
distribution contributions,

dσr3 sub
dτ

=
1

2s

∫
dΦ3(q, q, k)

[
|Mr

3|2
∣∣∣∣
ε=0

δ(τ − τ(q, q, k))− [Dqk,q +Dqk,q]
∣∣∣∣
ε=0

δ(τ)

]
,

dσv2 sub
dτ

=
1

2s

∫
dΦ2(q, q̄)

[
|Mv

2|2 +

∫
k
Dqk,q +

∫
k
Dqk,q

]∣∣∣∣
ε=0

δ(τ),

(3.45)

where the real emission and virtual amplitudes are given in Eqs.(2.36) and (2.46) respectively.
Starting out with the subtracted real emission contribution to the thrust distribution we can use

the explicit form of the real emission amplitude Eq.(3.29) and the counter terms Eq.(3.30) in terms
of the momentum fractions Eq.(2.35) to write

dσr3 sub
dτ

=
1

2s

∫
dΦ3(xq, xq)

[
|Mr

3|2
∣∣∣∣
ε=0

[δ(τ − τ(xq, xq))− δ(τ)] +
M̂
3s

(
1− xq
xq

+
1− xq
xq

)
δ(τ)

]
,

(3.46)

which is a manifestly four dimensional quantity. If we wanted to analytically evaluate the terms
involving delta functions we would run into two problems. For one, there cannot feasibly occur any
cancellation in the term proportional to [δ(τ − τ(xq, xq))− δ(τ)] at the level of the integrand, since
the first term needs to have τ > 0 for the phase space integral to be sufficiently regularised as we
have seen in Eq.(3.46), while the second term only contributes at τ = 0. The second problem we have
to deal with is that the term proportional to |Mr

3|2|ε=0 δ(τ) prompts us to compute the total real
emission cross-section in d= 4 dimensions, which we know to be a divergent quantity. Therefore we
cannot naively make sense of the ill-defined expression in Eq.(3.46).

However, both of these problems only arise in the analytic calculation of the thrust distribution.
In a numerical setting the exact distributional form of Eq.(3.46) cannot be determined and we will
resort to the computation of another observable, the so-called cumulant (see Eq.(4.1)) representing
the contribution to the total cross section coming from a certain interval (bin) τ ∈ [τ−, τ+] of thrust.
The analogue of Eq.(3.46) for the thrust cumulant will in fact allow for a cancellation of divergences
(c.f. discussion below Eq.(4.6)).

One way to evaluate the real emission subtracted thrust distribution analytically is to first evaluate
the phase space integrals for both the amplitude and counter terms in d dimensions so that everything
is sufficiently regularised, perform the subtraction, and only then take the limit ε→ 0, i.e. we redefine

dσr3 sub
dτ

=
1

2s

[ ∫
dΦ3(q, q, k)|Mr

3|2δ(τ − τ(q, q, k))− [Dqk,q +Dqk,q] δ(τ)

]∣∣∣∣
ε=0

=

[
dσr3
dτ
− 1

2s

∫
dΦ3(q, q, k) [Dqk,q +Dqk,q] δ(τ)

]∣∣∣∣
ε=0

.

(3.47)

The phase space integral over the counter terms can be easily performed by noting that due to the
dipole phase space factorisation property and Eq.(3.44) we have

1

s

∫
dΦ2

∫
k
Dqk,q δ(τ) =

1

2s

∫
dΦ3(q, q, k) [Dqk,q +Dqk,q] δ(τ)

= σ̂(ε)
αsCF
π

eγEεµ4ε

s1+2ε

Γ(1− ε)2

Γ(1− 3ε)

[
1

ε2
+

3

2ε
+

5

1− 3ε

]
δ(τ)

= σ̂(ε)
αsCF
π

µ4ε

s1+2ε

{
1

ε2
+

3

2ε
+ 5− 7π2

12
+O(ε)

}
δ(τ)

(3.48)
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which conveniently allowed us to reuse the result already derived in Eq.(3.43). Combining Eq.(3.48)
with Eq.(2.69) as described in Eq.(3.47) we arrive at the subtracted real emission thrust distribution

dσr3 sub
dτ

=
σ̂(ε=0)

s

αsCF
π

{[
−3

2
+
π2

6

]
δ(τ) +

[
−3

2
+ 3τ +

9

2
τ2 +

2− 3τ(1− τ)

1− τ log(1− 2τ)

][
θ(τ)

τ

]
+

+

[
3τ − 2

1− τ

][
θ(τ)log(τ)

τ

]
+

}
. (3.49)

Note that in arriving at the above result we have given away one of the major advantages of the
subtraction method, namely the ability to compute the cross section directly in d = 4 dimensions,
without having to know the details of the amplitude in d dimensions. In App.G we propose another
method to analytically calculate Eq.(3.49) manifestly in d=4 dimensions, employing a different kind
of regularisation.

We now turn to the subtracted virtual contribution in Eq.(3.45) which is again simpler to treat
than the real emission case. Here we have to combine the d-dimensional results for the original
amplitude Eq. (2.46) and the integrated counter terms Eq. (3.43) before taking the limit ε → 0.
Exploiting Eq.(3.44) we can write

dσv2 sub
dτ

=
1

2s

∫
dΦ2

[ M̂
16π2

µ̃2ε

(
4πµ̃2

Q2

)ε
(1− ε)2

3− 2ε
Γ(1− ε)2

]∣∣∣∣
ε=0

×
{[

2

ε2
+

3

ε

][
−cos(πε)Γ(1 + ε)

Γ(1− 2ε)
+

1

Γ(1− 3ε)

]
− 8

1− 2ε

cos(πε)Γ(1 + ε)

Γ(1− 2ε)

+
10

1− 3ε

1

Γ(1− 3ε)

}∣∣∣∣
ε=0

δ(τ) =
σ̂(ε=0)

s

αsCF
π

δ(τ),

(3.50)

where the first term in the second line, containing the factor with poles in ε, vanishes in the limit
ε→ 0, thus facilitating the subtraction.

Finally combining the results Eq.(3.49) and Eq.(3.50) for the subtracted real emission and virtual
thrust distribution contributions and comparing with Eq.(2.71) establishes

dσr3 sub
dτ

+
dσv2 sub
dτ

=
dσNLO

2/3

dτ

∣∣∣∣
ε=0

, (3.51)

confirming that Eq.(3.1) in fact holds true for thrust in e+e− → qq̄ + g.
In having computed the counter term Eq.(3.48) analytically we can see another crucial property

of the subtraction procedure. The counter term is proportional to δ(τ) and as such it can only act
locally in the kinematic variable we are considering. This makes sense since the original divergences
occurring in the real emission and virtual contributions Eqs.(2.69) and (2.70) were also only local in
thrust, i.e. they were of the form

dσr3
dτ

,
dσv2
dτ

sing. ε→0'
{c1

ε2
+
c2

ε

}
δ(τ). (3.52)

This should be kept in mind in the subsequent discussion of thrust in the context of SCET, where the
structure of divergences is going to be more complicated.
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4 Numerical implementation, comparison to analytic results and experiment

This section aims at tying together the analytic and numerical approach to computing observables
in QCD. By providing some details on the implementation of the subtraction procedure using Monte
Carlo methods and numerically carrying out the subtraction for the thrust distribution discussed in
previous chapters we demonstrate equivalence to the conventional analytic methods.

We proceed to compare the obtained distributions to experimental data encountering a vast dis-
crepancy to the theoretical result which we will attribute to the infamous problem of large logarithms.
The concept of resummation, used to regain control of the perturbative prediction, as well as non-
perturbative effects are briefly discussed and provide the conceptual setup for the later introduction
of SCET.

4.1 Comments on numerical implementation using Monte Carlo

Here we want to briefly discuss some aspects regarding the adaptation of the dipole subtraction
method, introduced in an analytic context in the previous sections, to allow for its implementation
using numerical procedures such as Monte Carlo integration. Additionally we want to highlight some
of the practical advantages of the latter technique, such as parallelisation, albeit without any reference
to a specific implementation (i.e. computer code).

For concreteness let us first discuss the thrust distribution Eq.(2.71), which in the analytic cal-
culation came out to be a (mathematical) distribution. In a numerical procedure we cannot actually
determine the distributional structure itself but have to contend ourselves with computing cumulants
of the cross section

ΣNLO
2/3 (τ−, τ+) ≡

∫ τ+

τ−
dτ

dσNLO
2/3

dτ
, (4.1)

which in the case at hand represents the NLO contribution of the differential cross section to the total
cross section from some interval (also called bin) of thrust [τ−, τ+]. Recall that at NLO the thrust
variable τ ∈ [0, τmax], where τmax = 1/3. In the following we will use the short-hand ΣNLO

2/3 (τ+) =

ΣNLO
2/3 (0, τ+) for the cumulant including the di-jet contribution from τ = 0, which we will also refer

to as the zero-bin.
To compute the cumulant in Eq.(4.1) directly from the matrix elements Eqs.(2.33) and (2.46) we

have to specify the corresponding two- and three-particle measurement functions on phase space,

O3(q, q̄, k) = χ(τ(q, q, k) ∈
[
τ−, τ+

]
),

O2(q, q̄) =

{
1, if 0 ∈ [τ−, τ+]

0, else,

(4.2)

where χ(x ∈ [a, b]) denotes the characteristic function of the interval [a, b]. Using the thus de-
fined observables we partition the allowed range of the thrust parameter [0, τmax] into B small bins[
τ−i , τ

+
i

]
, i = 1, . . . , B, τ−1 = 0, τ+

B = τmax. The bins do not overlap and for simplicity we assume
that all bins are of equal size, such that the NLO contribution to the total cross section Eq.(2.48) is
recovered in the sum

B∑
i=1

ΣNLO
2/3 (τ−i , τ

+
i ) = σNLO

2/3 . (4.3)

As we decrease the bin size the individual cumulants provide a progressively closer approximation to
the differential cross section which, adopting the notation Eq.(3.3), we recall was defined through the
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measurement functions

δO3(q, q̄, k) = δ(τ − τ(q, q, k)),

δO2(q, q̄) = δ(τ).
(4.4)

The fact that the measurement functions Eq.(4.2) provide a good approximation to the original thrust
distribution obtained through the measurement functions Eq.(4.4) can be seen by noting that for the
three-particle cumulant of a small bin [τ − δτ , τ + δτ ] of size 2δτ around a given value of τ we have

1

2δτ

∫
dτ ′

dσr3
dτ ′

χ(τ ′ ∈ [τ − δτ , τ + δτ ])
δτ→0−−−→

∫
dτ ′

dσr3
dτ ′

δ(τ ′ − τ) =
dσr3
dτ

(τ). (4.5)

Correspondingly we can consider the two-particle final state contribution to the cumulant from the
zero-bin [0, δτ ] which in the limit δτ → 0 coincides with the strict di-jet region contribution to the
thrust distribution from terms proportional to δ(τ).

Coming back to the numerical computation of the cross section using the subtraction method we
see that the analogue of Eq.(3.45) for the thrust cumulant reads

ΣNLO
2/3 (τ+) =

1

2s

∫
dΦ3(q, q, k)

[
|Mr

3|2
∣∣∣∣
ε=0

χ(τ(q, q, k) ∈
[
0, τ+

]
)− [Dqk,q +Dqk,q]

∣∣∣∣
ε=0

]
+

1

2s

∫
dΦ2(q, q̄)

[
|Mv

2|2 +

∫
k
Dqk,q +

∫
k
Dqk,q

]∣∣∣∣
ε=0

,

(4.6)

whenever we are considering a zero-bin contribution from an interval of the form [0, τ+]. When the
cumulant is calculated over a bin [τ−, τ+] with τ− > 0 then the corresponding expression simply reads

ΣNLO
2/3 (τ−, τ+) =

1

2s

∫
dΦ3(q, q, k)|Mr

3|2
∣∣∣∣
ε=0

χ(τ(q, q, k) ∈
[
τ−, τ+

]
), (4.7)

where the subtraction terms do not need to be taken into account. Note that in the zero-bin contribu-
tion Eq.(4.6) the cancellation of divergences between real emission amplitude and counter terms near
τ = 0 can take place at the level of the integrand, since χ (τ(q, q, k) ∈ [0, τ+]) = 1 there. We recall
that this was not the case for the analytic calculation of the thrust distribution using Eq.(3.46). With
this problem out of the way, the above integrals are now perfectly suited to be directly evaluated by
a numerical routine.

Having established the notation and conventions for a numerical implementation of the subtraction
procedure, we would now like to explore the freedom we have in choosing counter terms. So far we
have only talked about the dipole counter terms defined by Eq.(3.16) which correctly reproduce the
singular limits of the real emission amplitude, but in practice nothing prevents us from changing the
structure of the soft-collinear finite terms included in the sum Eq.(3.14). In particular we consider
the extreme case where the counter terms in Eq.(4.6) are chosen to precisely equal the real emission
amplitude. Note that this essentially amounts to setting to zero the finite terms proportional to M̂ in
Eq.(3.46). For this particular choice of counter term the zero-bin contribution to the thrust cumulant
reads

ΣNLO
2/3 (τ+) =

1

2s

∫
dΦ3(q, q, k)|Mr

3|2
∣∣∣∣
ε=0

[
χ(τ(q, q, k) ∈

[
0, τ+

]
)− 1

]
+

1

2s

∫
dΦ2(q, q̄)

[
|Mv

2|2 +

∫
k
|Mr

3|2
]∣∣∣∣
ε=0

.

(4.8)

Note that this would in practice not be a particularly wise choice of counter term, since we would
have given away the advantage of not having to know |Mr

3|2 analytically in d dimensions. However,

32



our choice serves an illustrative purpose and allows us to further connect the numerical and analytical
calculations. We can recognise the second term in Eq.(4.8) as the total cross section as given in
Eq.(2.48), while in the first term we can use

χ(τ(q, q, k) ∈
[
0, τ+

]
)− 1 = χ(τ(q, q, k) /∈

[
0, τ+

]
) = χ(τ(q, q, k) ∈

(
τ+, τmax

]
), (4.9)

to identify it as the cumulant contribution from the interval (τ+, τmax] lying outside the zero-bin, i.e.
we have

ΣNLO
2/3 (τ+) = σNLO

2/3 − ΣNLO
2/3 (τ+, τmax), (4.10)

In this sense when we are computing (numerically or analytically) a cumulant of a differential cross
section using a subtraction procedure, we always implicitly compute the total cross section as well.
While in the case we just studied this becomes particularly apparent, the generic case where the finite
terms of the counter term and the real emission amplitude do not match exactly (as in the dipole
subtraction), just corresponds to swapping contributions between the two terms on the right-hand
side of Eq.(4.10).

Up to this point we solely focused on the thrust distribution for e+e− → qq + g. Let us now
consider the general case where we are interested in computing N differential cross sections in the
(IR-safe) quantities On, n = 1, . . . , N for a process with m + 1 partons at NLO. Using the notation
established in Eq.(3.6) and Eq.(3.13) for the subtracted cross section contributions, and naturally
generalising the measurement functions Eq. (4.2) to arbitrary observables, we can compute the N
different cumulants

ΣNLO
m/m+1(O−n , O

+
n ) ≡ ΣNLO,r

m+1,sub(O−n , O
+
n ) + ΣNLO,v

m,sub (O−n , O
+
n ), (4.11)

where, using the momentum map given in Eq.(3.5), the subtracted quantities read

ΣNLO,r
m+1,sub(O−n , O

+
n ) =

∫
dΦm+1(p1, . . . , pm+1)

[
|Mr

m+1|2
∣∣∣∣
ε=0

χ
(
On,m+1(p1, . . . , pm+1)∈

[
O−n , O

+
n

])
− |Mc

m+1|2
∣∣∣∣
ε=0

χ
(
On,m(f(p1, . . . , pm+1))∈

[
O−n , O

+
n

])]
,

ΣNLO,v
m,sub (O−n , O

+
n ) =

∫
dΦm(q1, . . . , qm)

[
|Mv

m|2 χ
(
On,m(q1, . . . , qm)∈

[
O−n , O

+
n

])
+ |Mc

LO|2 χ
(
On,m(q1, . . . , qm)∈

[
O−n , O

+
n

])∫
dpm+1V (pm+1)

]∣∣∣∣
ε=0

. (4.12)

The adaptation of the rough definitions Eq.(4.12) to the specifics of the Catani-Seymour subtraction
involving sums over dipoles (c.f. Eqs.(3.27) and (3.28)) should pose no difficulty following our previous
discussion.

It is with the above expressions that the Monte Carlo approach can really show its strength
because it allows us to compute all N cumulants for the observables On in parallel. Since the method
essentially relies on repeatedly evaluating the integrand at different points in its domain to estimate
the value of the integral, it exhibits a number of properties that cannot be reproduced with analytic
integration.

Let us consider for instance N products of functions (for simplicity we assume their domain to
be one dimensional)

f(x)gn(x), n = 1, . . . , N. (4.13)
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A (very simple) Monte Carlo program will estimate their integral over a certain region I in their
domain by randomly sampling M points {xi} ⊂ I and computing∫

I
dx f(x)gn(x) ' Vol(I)

M

M∑
xi∈I

f(xi)gn(xi). (4.14)

In an analytical calculation we would have to compute the N integrals represented by the left-hand
side of Eq.(4.14) from scratch. When using Monte Carlo integration we can be more efficient and
recycle some computations by splitting the integrand into pieces that occur in multiple integrals (such
as f(x)) and pieces that are unique to each integral (such as gn(x)). Schematically, the recurring piece
can be evaluated once and for all right at the start of an integration routine:

• Randomly sample M points {xi} ⊂ I.

• Evaluate f(xi) for all xi.

We can then attach to the recurring pieces the remainder which is unique to each integral:

In a loop n = 1, . . . , N {

• Evaluate gn(xi) for all xi.

• Compute Vol(I)
M

∑M
xi∈I f(xi)gn(xi)

}
Coming back to the original problem of calculating the N observables in Eq.(4.11), we see that each
phase space integral Eq.(4.12) is roughly of the form shown in Eq.(4.14). Therefore we can make use
of the Monte Carlo integration property just discussed by identifying the recurring and unique pieces
therein.

Among the recurring pieces we find the squared amplitudes |Mr
m+1|2, |Mv

m|2, and the counter
terms |Mc

m+1|2. The pieces that are unique to each cumulant are then just the measurement functions
χ(On,m+1(p1, . . . , pm+1)∈ [O−n , O

+
n ]) , etc., pertaining to the respective amplitudes. Implementing

the algorithm outlined above we can thus numerically compute the N observables in an efficient,
parallelised, manner.

4.2 Comparison between analytic and numerical results and facing the experiment

Combining the next-to-leading order thrust distribution in Eq.(2.71) with the leading order result
which is just given by dσLO

2
dτ = σLO2 δ(τ), we can analytically compute the cumulant

Στ (τ+) ≡ 1

σLO2

∫ τ+

0
dτ

[
dσLO2

dτ
+

dσNLO
2/3

dτ

]

= 1 +
αsCF
π

{
π2

6
− 1

2
− 3

2
log
(
τ+
)
− 2log2

(
τ+
)}

+ Σ0
τ (τ+, αs),

(4.15)

which we have normalised by the leading order total cross section. To arrive at this result it is
convenient to use the expressions Eq.(2.68) and Eq.(2.70) where a clean separation between singular
contributions (plus distributions) and finite parts is manifest and use the relations in Eq. (I.3) to
integrate. The function Σ0

τ (τ+, αs) at NLO can be shown to read

Σ0
τ (τ+, αs) =

αsCF
π

{
π2

6
+ 3τ+ +

9

4
(τ+)2 +

[
3

2
− 3τ+ − log

(
2− 2τ+

)]
log
(
1− 2τ+

)
+ 3τ+log

(
τ+
)
− 2

[
Li2(1− τ+) + Li2

(
1

2− 2τ+

)
+ Li2(2τ+)

]}
,

(4.16)

34



satisfying Σ0
τ (τ+) → 0 as τ+ → 0. While the function is negligible in the peak region, it becomes

comparable to the singular terms for larger values of τ ∼ 1/3.
Computing the cumulant also numerically using the subtraction method and Monte Carlo in-

tegration we can compare to the analytic result by plotting it in the kinematically allowed range
0 < τ+ < 1/3, which results in the diagrams shown in Fig. 4.17.
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Fig. (4.17): Comparison of analytic (le.) and numerical (ri.) result for thrust distribution cumulant Eq.(4.15) in

blue. The finite part contribution Σ0
τ is shown in orange for the analytic result. The numerical result was obtained by

splitting the interval into 30 bins and performing the phase space integrals for the subtracted quantities Eq.(4.6) and

Eq.(4.7) as outlined in Eqs.(4.11) and (4.12). For convenience we have set αsCF /π ≡ 1, so that when τ+ → 1/3 both

cumulants approach the total cross section Eq.(2.49) which in this case is given by σ/σLO
2 = 1.75.

The numerical result was obtained by evaluating the cumulants for each bin as described by
Eq. (4.6) and Eq. (4.7) starting with the zero-bin and then cumulatively adding the results of all
previous bins to the subsequent one.

From Eq.(4.15) and Fig. 4.17 we can clearly see that the thrust cumulant diverges logarithmically
as we move into the di-jet region τ+ → 0, also often called the peak region. To see why this is
an appropriate name of this particular kinematic region let us plot the thrust distribution itself and
compare it with data obtained from the LEP/OPAL experiment [24] in Fig. 4.18.

OPAL data 2004

NLO fixed order
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Fig. (4.18): The fixed order calculation (αs(MZ) = 0.1168) is compared to measurements from the LEP/OPAL

experiment [24] at Q = 91GeV. Note how the experimentally obtained quantity exhibits a peak near τ ' 0.025 while

the thrust distribution obtained from the fixed-order pQCD calculation diverges. Effective field theory methods will

allow us to reproduce this peak.
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In the tail region (large τ) the experimental data is qualitatively reproduced by the perturbative
calculation. Here the disagreement mostly stems from the fact that we neglected Z∗ boson exchange
and quark masses in our calculation, as alluded to earlier.

In the peak region we run into trouble when αslog(τ+) & 1 in Eq.(4.15) becomes parametrically
large, such that the perturbative expansion cannot represent a good approximation to the observable.
This is what is known in the literature as the problem of large logarithms. Their origin lies in the
fact that in a di-jet event we are dealing with a hierarchy of disparate scales. We will discuss the
kinematics of the di-jet limit soon (c.f. Sec. 5.2) but for now we note that there are three main scales
involved. The hard scale µh ∼ Q is associated with the energy of the initial interaction, the jet scale
µj ∼

√
τQ can be thought of as the invariant mass of the collimated spray of collinear particles, and

µs ∼ τQ represents the energy of soft (very low energy) radiation mediated between the jets. It is the
ratios between these scales that appear in the logarithms in the cumulant Eq.(4.15) and the thrust
distribution Eq.(2.71) that lead to large contributions when τ → 0.

To remedy this problem, let us consider the general structure of a perturbative expansion of the
thrust cumulant to arbitrary order, which can be shown to be the form[25]

Στ (τ+) =
∞∑
n=0

2n∑
m=0

Σnm

(αs
π

)n
Lmτ+ + Σ0(τ+, αs)

= 1 +
αs
π

[
Σ12L

2
τ+ + Σ11Lτ+ + Σ10

]
+
(αs
π

)2 [
Σ24L

4
τ+ + Σ23L

3
τ+ + Σ22L

2
τ+ + Σ21Lτ+ + Σ20

]
+ · · ·+ Σ0

τ (τ+, αs),

(4.19)

where Σ0
τ (τ+)→ 0 for τ+ → 0 is now itself an expansion starting at O(αs) and we have abbreviated

Lmτ+ ≡ logm(τ+). This can be immediately recognised as the generalisation of our result Eq.(4.15) at
NLO by looking at the second line in Eq.(4.19). Notice the grid structure of the cumulant in terms of
powers of αs and Lτ+ . Standard fixed order perturbation theory evaluates the cumulant line by line
and order by order in Σ0

τ which we have seen to lead to an inefficient approximation. An alternative
way to systematically compute the terms of the above quantity that do not vanish in the limit τ → 0

can be found by considering the logarithm

log
(
Στ − Σ0

τ

)
(τ+) = log(C(αs)) + log

(
S(τ+, αs)

)
, (4.20)

which can be split into a constant C(αs) and singular S(τ+, αs) part given respectively by the expan-
sions

log(C(αs)) =
∞∑
n=1

(αs
π

)n
Cn, log

(
S(τ+, αs)

)
=
∞∑
n=1

n+1∑
m=1

Snm

(αs
π

)n
Lmτ+ . (4.21)

Here the original coefficients Σnm can be found to be polynomials in the coefficients Cn and Snm[25].
The crucial shift in perspective is to consider the singular part in Eq.(4.21) not as a series in αs but
rather in αsLτ+ ∼ 1. We can then write equivalently

log
(
S(τ+, αs)

)
=

αs
π

[
S12L

2
τ+ + S11Lτ+

]
+
(αs
π

)2 [
S21L

3
τ+ + S22L

2
τ+ + S21Lτ+

]
+
(αs
π

)3 [
S34L

4
τ+ + S33L

3
τ+ + S32L

2
τ+ + S31Lτ+

]
+ . . . ,

(4.22)
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which essentially sums the logarithmically singular terms of the perturbation series top to bottom, col-
umn by column. If we evaluate the singular part of the cumulant up to the kth column in Eq.(4.22),
each representing an infinite stack of logarithms, we say that we are working in the Nk−1LL ap-
proximation. For example, keeping only the first column is called the leading-log, or LL = N0LL
approximation, keeping the first two terms next-to-leading log, NLL, then on to N2LL and so forth.

The effective field theory (EFT) framework of Soft-Collinear Effective Theory (SCET) [8–10] and
in particular the factorisation theorem ([12, 13] and Sec. 6) for thrust allow to systematically evaluate
these infinite stacks of logarithms using renormalisation group (RG) techniques. Resumming terms
to all orders in perturbation theory enables us to reproduce the characteristic peak in Fig. 4.18 and
thus gain qualitative agreement with experiment in the di-jet region. The resummed singular part
from the EFT calculation is further matched onto the fixed order result (by adding back Σ0

τ , which
the EFT does not correctly reproduce) leading to an overall theoretical prediction that resembles the
measured distribution to good accuracy as shown in Fig. 4.23.

Fig. (4.23): Resummed thrust distribution (αs(MZ) = 0.1168) taken from [26] and compared against data from

the LEP/ALEPH experiment (red) [27] at Q = 91GeV. The different orders shown in the plot correspond to (1st)

NLL resummation, no fixed order matching, (2nd) NNLL resummation, LO matching, (3rd) N3LO resummation, NLO

matching, (4th) N3LO resummation, NNLO matching.

However, even when the cumulant is resummed at high logarithmic accuracy using EFT methods,
we see that the agreement with experiment is more qualitative than quantitative. The reason is that
the pQCD fixed order and SCET resummed computation both rely on partonic final states consisting
of quarks and gluons, which, due to confinement and hadronisation, are not what is actually measured
by an experiment which only ever detects colour neutral hadrons. These non-perturbative effects that
bind the partons into hadrons cannot be accounted for by perturbation theory since they occur at the
typical scale ΛQCD ' 200MeV where αs(ΛQCD)� 1.

Although resummation is one of the main motivations to study EFTs we will not consider the
technical ingredients required to perform such a calculation in this thesis. Instead we refer the reader
to the detailed accounts in [28, 29]. The other reason why effective field theories like SCET have
been so successful is the ability to transparently untangle degrees of freedom that are relevant to a
given problem from those that are not. This is usually achieved using factorisation theorems. In the
coming sections will therefore build a basic understanding of the SCET formalism and use it to derive
a factorisation theorem for thrust.
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5 Introduction to Soft-Collinear Effective Theory

This section aims at giving a brief, but self-contained introduction to the formalism of the Soft-
Collinear effective theory (SCET)[7–10]. The ultimate goal is the construction of the effective theory
Lagrangian applicable to the process e+e− → di-jets we have been considering so far. Along the
way we will learn about the dominant momentum regions involved and their effective theory power
counting. We will then conclude with a discussion of Wilson lines and soft-collinear factorisation at
the operator level.

5.1 Lightcone decomposition

The canonical formulation of SCET relies heavily on the decomposition of momenta with respect
to lightlike reference vectors, usually denoted nµ and n̄µ such that n2 = n̄2 = 0, plus a spacelike
remainder pµ⊥ that satisfies n · p⊥ = n̄ · p⊥ = 0. In terms of these variables a given momentum pµ may
be uniquely decomposed as:

pµ =
n · p
n · n̄ n̄

µ +
n̄ · p
n · n̄n

µ + pµ⊥ ≡ p
µ
+ + pµ− + pµ⊥, (5.1)

where we can think of pµ⊥ as being defined by this equation. For applications in SCET the frame is
usually chosen such that n, n̄ are (anti-)parallel to the z-axis9,

nµ = (1, 0, 0, 1)µ, n̄µ = (1, 0, 0,−1)µ, (5.2)

which we will conveniently associate with the directions of the two back-to-back jets we wish to study.
Since the choice Eq.(5.2) implies the normalisation n · n̄ = 2 we can also write Eq.(5.1) in terms of
the n-collinear component p−= n̄ · p, the n̄-collinear component p+ = n · p and the transverse part,
denoted p⊥, as

pµ = p+ n̄µ

2
+ p−

nµ

2
+ pµ⊥ ≡ (p+, p−, p⊥)µ, (5.3)

where both ways of writing the momentum are used interchangeably in the literature (and by us).
The Minkowski inner product may be expanded with respect to these coordinates as

p · q = p+ · q− + p− · q+ + p⊥ · q⊥ =
p+q−

2
+
p−q+

2
+ p⊥ · q⊥, (5.4)

such that in particular,

p2 = 2 p+ · p− + p2
⊥ = p+p− + p2

⊥. (5.5)

Note the subtle difference in factors of two between using the components p± from Eq.(5.3) and the
vectors pµ± as defined in Eq.(5.1) to write the inner product.

A particular confusion that may arise when using lightcone coordinates is that due to the structure
of the Minkowski inner product a momentum that points in the spatial nµ direction close to the
lightcone will have a small “projection” p+ = n · p and a correspondingly large component p−= n̄ · p
which runs counter to the intuition one might have from Euclidean space.

With this notation in place we are now in a good position to start talking about momentum
scaling, a crucial aspect in constructing the correct SCET for the process at hand.

9Another convenient choice is to take n, n̄ such that the orthogonal component p⊥ of a given fixed momentum
vanishes.
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5.2 Momentum regions for e+e− → di-jets

A SCET and the corresponding factorisation formula are always specifically constructed for the par-
ticular process under consideration [9]. Since in this thesis we want to examine the thrust distribution
in the peak region (τ → 0), which is the region where all particles in the process cluster into two highly
collimated jets, we have to figure out the momentum regions occupied by these physical modes. To do
this we bisect momentum space into two hemispheres H,H with respect to the plane perpendicular
to the thrust axis as defined by the thrust observable Eq.(2.54) and associated with the n, n̄-collinear
directions each. This allows us to define the hemisphere masses

m2
H =

(∑
i∈H

pµi,H

)2

= p2
H , m2

H̄ =

(∑
i∈H̄

pµ
i,H̄

)2

= p2
H̄ , (5.6)

which are therefore the invariant masses of the sum of all the momenta {pµi,H} and {p
µ
i,H̄
} pointing into

hemispheres H and H̄ respectively. It can now be shown that the maximum in the definition Eq.(2.54)
of T , attained at the thrust axis nT , can be written as (see [30], Eq.(36) for a proper derivation)

τ = 1− T = 1− Q∑
i|pi|

√√√√1− 2
m2
H +m2

H̄

Q2
+

(
m2
H −m2

H̄

Q2

)2

, (5.7)

with no restriction on the number or type of final state particles involved. As in the previous sections,
Q denotes the invariant momentum transfer Q2 = (e+ + e−)2 = (

∑
i p
µ
i )2. One can check that in

the center of mass frame Q =
∑

i

√
p2
i +m2

i , which in limit of all massless particles leads to a unit
prefactor in front of the square root in Eq.(5.7). If we allowed for masses we could write

Q∑
i|pi|

=

∑
i

√
p2
i

Q2 +
m2
i

Q2∑
i

√
p2
i

Q2

, (5.8)

for the prefactor, which, for large Q2 will lead to power corrections ∼ (mi/Q)2 compared to the
massless case we will now consider in more detail. In the region τ ∼ 0 of interest, we see that the
parameters

m2
H

Q2
∼
m2
H̄

Q2
∼ λ2, (5.9)

must become small as well and we can expand Eq.(5.7) to leading order in the above parameter,
yielding

τ =
m2
H +m2

H̄

Q2
+O(λ4) ∼ O(λ2), (5.10)

which holds irrespective of the final state particle masses. Using the lightcone decomposition intro-
duced earlier we then find for the hemisphere H mass,

Q2λ2 ∼ m2
H = p+

Hp
−
H + p2

H⊥ ∼ Q2
(
λH+λH− + λ2H⊥

)
. (5.11)

Since the largest lightcone component of the total hemisphere H momentum should be in the n-
direction (i.e. p−H) we can infer that the only physically feasible choice of exponents in Eq.(5.11) is
H+ =2, H−=0, H⊥=1, leading to the n-collinear momentum scaling

pH ∼ Q(λ2, 1, λ). (5.12)
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By a similar argument using the hemisphere H̄ mass we obtain the n̄-collinear momentum scaling
pH̄ ∼ Q(1, λ2, λ). Note that if all the individual momenta in the sums Eq.(5.6) have the respective
scalings shown then this is consistent with the scaling we just found for the total hemisphere momenta,
since e.g. the sum of two momenta pi,H and pj,H scaling like Eq.(5.12) again scales as pi,H + pj,H ∼
Q(λ2, 1, λ).

However, the collinear scalings are not the only ones relevant to the problem. Phenomenologically
we know that in between the highly collimated jets there can be found an isotropic haze of low-energy
particles being radiated at large angles from the collinear particles. For these (ultra-)soft modes we
therefore expect a uniform scaling pus ∼ Q(λa, λa, λa). To have this momentum scaling be consistent
with the scaling Eq.(5.9) imposed by the thrust measurement when one or more such momenta are
present in the sums Eq.(5.6), we need that for some n-collinear pH,i (or n̄-collinear pH̄,j equivalently)

Q2λ2 ∼ (pH,i + pus)
2 = p+

H,ip
−
us + p−H,ip

+
us + p⊥H,i · p⊥us ∼ Q2(λ2+a + λa + λ1+a). (5.13)

For this to not violate the power counting, we see that we need at least a ≥ 2 to only produce terms of
O(λ2) and higher. However, if we now where to choose a > 2 strictly (say a = 3) then the right-hand
side of Eq.(5.13) would be what is called power-suppressed compared to the left-hand side, that is,
the measurement would be insensitive to the momentum regions pertaining to such a scaling. We
therefore conclude that the only scaling which does not lead to a scaling violation when combined
with collinear momenta and still has a relevant effect on the observable is a = 2. The corresponding
momenta are called ultrasoft,

pus ∼ Q(λ2, λ2, λ2). (5.14)

The name ultrasoft (usoft) stems from the fact that they correspond to even lower energy particles
than those conventionally called soft, scaling as ps ∼ Q(λ, λ, λ) which are commonly encountered in
other processes.

Lastly, the underlying high energy momentum transfer is (somewhat obviously) assigned the hard
scaling Q ∼ Q(1, 1, 1). Any momentum ph that carries this scaling is off-shell by a large amount
p2
h ∼Q2λ0 and the corresponding field modes will be integrated out in the subsequent construction of

SCET.
To conclude we give a list of the relevant momentum modes for e+e− → di-jets,

hard ph ∼ Q( 1 , 1 , 1 ),

n− collinear pn ∼ Q(λ2, 1 , λ),

n̄− collinear pn̄ ∼ Q( 1 , λ2, λ),

usoft pus ∼ Q(λ2, λ2, λ2),

(5.15)

where the dynamics of the collinear and usoft modes will be kept in the effective theory, while the hard
modes will be integrated out and moved into a so-called Wilson coefficient (c.f. Eq.(6.4)). Processes
which incorporate the momentum regions Eq.(5.15) are called SCETI-type problems in the literature.

5.3 SCET Lagrangian for e+e− → di-jets

Let us now derive the effective Lagrangian appropriate for the process e+e− → di-jets we are consid-
ering. Our starting point is the full QCD Lagrangian for a quark field Ψ with mass m,

LQCD = LA + Lq ≡ −
1

4
Tr[GµνGµν ] + Ψ

(
i /D −m

)
Ψ, (5.16)
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where the covariant derivative and the non-abelian field strength tensor read

iDµ = i∂µ + gsAµ, Gµν =
i

gs
[Dµ, Dν ] . (5.17)

We will not concern ourselves with gauge-fixing and possible ghost terms, since we will not need to
consider them at the level of our calculations. However, SCET does exhibit a rich gauge structure on
which more can be found in [9, 31]. In SCET we expect the Lagrangian Eq.(5.16) to split into two
collinear (n, n), and one ultrasoft sector for the quarks and gluons, with separate fields defined for
each sector, that is

LQCD = LA + Lq 7−−→ LSCET = LA,n + LA,n̄ + LA,us + Lq,n + Lq,n̄ + Lq,us (5.18)

In the following we will give an in-depth derivation of the n-collinear quark Lagrangian Lq,n, which
will introduce the general concepts and language needed to similarly derive Lagrangians for the other
sectors, or indeed other processes.

5.4 n-collinear quark Lagrangian

We will now derive the SCET effective Lagrangian for a n-collinear quark with momentum scaling
given as in Eq.(5.15) at leading power in λ. To begin with, we focus on the derivation of the effective
theory field for the n-collinear quark. By introducing the (n, n̄)-collinear projection operators

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
, Pn + Pn̄ = 1, (5.19)

which project the spinor degrees of freedom of the original quark field onto the respective lightcone
directions, we can define the projected fields

Ψ(x) = (Pn + Pn̄)Ψ(x) ≡ Ψn(x) + Ψn̄(x). (5.20)

These fields satisfy the projection relations PnΨn = Ψn, /nΨn = 0, ΨnPn̄ = Ψn and similar for Ψn̄.
The physical content of this particular definition is that the field Ψn encodes the so-called large spinor
components that will be of primary relevance for an n-collinear particle [9]. Note that up to this point
the fields defined by Eq.(5.20) still encode momentum modes of arbitrary wavelength and direction
and are thus equivalent to full QCD. Indeed, only considering the quark part of the QCD Lagrangian
in Eq.(5.16) we simply have

Lq = Ψ(i /D −m)Ψ =
(
Ψn + Ψn̄

)
(i /D −m) (Ψn + Ψn̄) . (5.21)

To derive the collinear fields of the effective theory we may take inspiration from the free theory
expansion of the projected fields

Ψn(x) =

∫
đ4p δ(p2 −m2)θ(p0)

[
un(p)b(p)e−ip·x + vn(p)d†(p)e+ip·x

]
, (5.22)

in terms of the projected spinors un(p) = Pnu(p), vn(p) = Pnv(p), where we have omitted any spin
sums on the spinors to avoid notational clutter. In the following we will focus only on the field in
Eq.(5.22), with all of the derived relations for Ψn understood to hold analogously for the field Ψn̄.

For a consistent treatment of particles and anti-particles in the effective theory [9] it will be
convenient to take p→ −p in the second term of Eq.(5.22) leading us to

Ψn(x) =

∫
đ4p δ(p2 −m2) e−ip·x

[
θ(p0)un(p)b(p) + θ(−p0)vn(−p)d†(−p)

]
≡
∫
đ4p δ(p2 −m2) e−ip·x

[
θ(p0)Ψ+

n (p) + θ(−p0)Ψ−n (−p)
]
,

(5.23)
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essentially interpreting the anti-particle as a negative energy particle with reversed spatial momentum.
The transition to the collinear field of the effective theory is made by restricting the quark field to
contain only n-collinear momentum modes. This is done by introducing the notion of label- and
residual momenta pl, pr, that allow us to decompose a given n-collinear momentum

(λ2, 1, λ)Q ∼ pµ = pµl + pµr , with pµl ∼ (0, 1, λ)Q, pµr ∼ (λ2, λ2, λ2)Q, (5.24)

such that the label momentum carries the large momentum components, while the residual momentum
describes small fluctuations around a given label. The idea is now to expand the full theory around
the n-collinear direction by replacing the fields Ψ±n (p) in Eq.(5.23) with a set of fields {ξ±n,pl(pr)}pl 6=0

,
each being identified with a fixed label momentum pl. The thus introduced notation suggests that we
think of pl as a discrete index, labeling a set of fields, while the the residual pr remains continuous.
However, both pl and pr will be dynamic variables of the effective theory. We have also explicitly
excluded the case pl = 0 which would correspond to ultrasoft scaling for p and hence violate the
scaling assumed in Eq.(5.24).

The n-collinear quark field ξ̂n(x) is thus defined in analogy to Eq.(5.23) as

ξ̂n(x) =
∑
pl 6=0

e−ipl·x
∫
đ4pr e

−ipr·xr [θ(n̄ · pl)ξ+
n,pl

(pr) + θ(−n̄ · pl)ξ−n,−pl(−pr)
]
, (5.25)

and is hence arranged in such a way that for n̄·pl>0 the fields ξ̂n and ξ̂n annihilate and create particles,
while for n̄·pl<0 they create and annihilate anti-particles respectively. Note the sign convention for
the label momentum which is always aligned with the fermion number flow, i.e. anti-particles carry
negative label momentum. In the free theory we may write

ξ+
n,pl

(pr) = un,pl(pr)bn,pl(pr), ξ−n,pl(pr) = vn,pl(pr)d
†
n,pl

(pr), (5.26)

thus associating the field ξ̂n(x) with either an incoming particle or an outgoing anti-particle in the
n-collinear direction.

The power counting for the n-collinear momentum p in Eq. (5.24) has lead to the argument
p0 = 1

2(p−+ p+) = 1
2p
−
l +O(λ) for the step function in Eq.(5.25). Carrying out the Fourier transform

over the residual momenta we bring the field to the more compact form

ξ̂n(x) =
∑
pl 6=0

e−ipl·x
[
θ(p−l )ξ+

n,pl
(xr) + θ(−p−l )ξ−n,−pl(xr)

]
≡
∑
pl 6=0

e−ipl·xξn,pl(xr) (5.27)

We interpret the above as a (discrete) Fourier transform over label momenta pl of the fields ξ+
n,pl

, ξ−n,pl
depending on xr ∼ (λ−2, λ−2, λ−2)Q−1, which inherits its scaling from pr by requiring xr ·pr ∼ (1, 1, 1)

and thus corresponds to the long-distance modes we wish to describe with the effective theory.
In the following we will refer to expressions like Eq.(5.27), where the dependence on the label

momentum of the operators is explicit, but the residual component has been transformed back to
configuration space, as the label momentum representation of the respective EFT operators. It is in
this representation that the collinear quark Lagrangian will eventually be formulated.

Note the hybrid nature of the field ξn,pl(xr) in Eq.(5.27) in that it carries definite label momentum
pl but is a general superpositions of plane waves with respect to residual momenta. Correspondingly,
it makes sense to introduce two kinds of derivatives, the label operator Pµ and the residual derivative
i∂µr , acting on these fields and exhibiting the different scalings

Pµξn,pl(xr) ≡ pµl ξn,pl(xr) ∼ (0, 1, λ)Q, i∂µr ξn,pl(xr) ∼ (λ2, λ2, λ2)Q. (5.28)
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Employing the label operator we can bring the n-collinear quark field to the simple form

ξ̂n(x) =
∑
pl 6=0

e−iP·xξn,pl(xr) ≡ e−iP·xξn(xr), where ξn(xr) ≡
∑
pl 6=0

ξn,pl(xr), (5.29)

and we were allowed to pull the operator through the label sum which is subsequently carried out
to obtain the residual space field ξn(xr). For later convenience we note that acting with a regular
derivative on one of the fields in Eq.(5.29) we get

i∂µξ̂n(x) = i∂µe−iP·xξn(xr) = i∂µ
∑
pl 6=0

e−ipl·xξn,pl(xr)

=
∑
pl 6=0

e−ipl·x(pµl + i∂µr )ξn,pl(xr) = e−iP·x(Pµ + i∂µr )ξn(xr),
(5.30)

which makes manifest the decomposition of momenta Eq.(5.24) at the level of fields. Let us now go
through a few general results and definitions regarding the label operator that will prove useful later.
Note that the definition of the label operator in Eq.(5.28) implies the relations,

(Pµξn,pl)† = ξ†n,pl(P
µ)† = pµl ξ

†
n,pl

(e−iP·xξn,pl)
† = ξ†n,ple

iP†·x = ξ†n,ple
ipl·x = e−i(−pl)·xξ†n,pl ,

(5.31)

which in turn suggest to expand the domain of action of the label operator to conjugate fields as

Pµξ†n,pl ≡ −p
µ
l ξ
†
n,pl

. (5.32)

This convenient choice allows us to write

(e−iP·xξn,pl)
† = e−iP·xξ†n,pl , (5.33)

with the label momentum operator always acting from the left. Another convention we adopt is that
the label operator always acts on all fields to the right of it that carry a momentum label, e.g.

Pµξ†n,plξn,ql ≡ (−pµl + qµl ) ξ†n,plξn,ql , ξ†n,plξn,ql(P
†)µ ≡ (pµl − q

µ
l )ξ†n,plξn,ql , (5.34)

and similar for products of any number of label fields. The second identity in Eq.(5.34) corresponds
to the analogous relation for the adjoint label operator (P†)µ of Eq.(5.31) which by definition always
acts on all fields to the left of it with opposite signs relative to Pµ. Finally we demand that the label
operator satisfies a product rule when acting on products of operators, i.e. as an operator equation
we have

PµO = [PµO] +OPµ, (5.35)

where the square brackets allow Pµ to only act on O.
We conclude the discussion of the collinear gluon field by noting that the full theory field Ψn̄ of

Eq.(5.20) encoding the small spinor components, which, as we will see, become irrelevant at leading
power for n-collinear particles, is assigned to the field ϕ̂n in the effective theory. Physically this
field represents the remaining modes with larger off-shellness, those corresponding to other collinear
directions or (ultra-)soft momenta, all of which we did not include in ξ̂n(x). With this we can finally
combine the two spin projected fields as in Eq.(5.20) and write

Ξ̂n(x) ≡ ξ̂n(x) + ϕ̂n̄(x) =
[
e−iP·x (ξn(xr) + ϕn̄(xr))

]
. (5.36)
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Before we move on to the derivation of the collinear quark Lagrangian we have to perform a
similar analysis for the gluon field Aµ(x) of the full theory which we split into a n-collinear and an
ultrasoft part according to

Aµ(x) = Ânµ(x) + Âus
µ (x) +O(λ3). (5.37)

The components of each field scale like the momentum modes they encode, i.e. Ân ∼ (λ2, 1, λ)Q,
Âus∼(λ2, λ2, λ2)Q, and we have neglected contributions of O(λ3) and higher which will not enter the
leading power Lagrangian. For the collinear gluon field we make an analogous ansatz to Eq.(5.27) by
writing

Ânµ(x) =
∑
kl 6=0

e−ikl·x
[
θ(k−l )An,+µ,kl(xr) + θ(−k−l )An,−µ,−kl(xr)

]
≡
∑
kl 6=0

e−ikl·xAnµ,kl(xr) ≡ e
−iP·xAnµ(xr), where Anµ(xr) ≡

∑
kl 6=0

Anµ,kl(xr).
(5.38)

Just as with the quark field in Eq.(5.25), the component An,−µ,−kl of the gluon field associated with
outgoing particles carries negative label momentum. The hermiticity property (Ânµ)†(x) = Ânµ(x) of
the n-collinear gluon field in configuration space leads to the condition

(Anµ,kl)
†(xr) = Anµ,−kl(xr), (5.39)

on the label fields. However, in the sum over all labels of Eq.(5.38) we find that the label momentum
representation (Anµ)†(xr) = Anµ(xr) of the gluon field is also hermitean.

We have now developed the formalism necessary to derive the collinear quark Lagrangian at
leading power in λ. We start by simply taking Eq.(5.21) and replacing Ψ(x)

SCET7−−−−→ Ξ̂n(x), i.e.

Lq,n ≡ Ξ̂n
[
i /D −m

]
Ξ̂n =

(
ξ̂n + ϕ̂n̄

)[ /̄n
2
in ·D +

/n

2
in̄ ·D + i /D⊥ −m

](
ξ̂n + ϕ̂n̄

)
= ξ̂n

/̄n

2
in ·D ξ̂n + ϕ̂n̄

/n

2
in̄ ·D ϕ̂n̄ + ξ̂n

[
i /D⊥ −m

]
ϕ̂n̄ + ϕ̂n̄

[
i /D⊥ −m

]
ξ̂n,

(5.40)

where we have decomposed the covariant derivative into its lightcone components10. In the second line
we made use of the spinor projection properties (see below Eq.(5.20)) of the collinear fields. However,
up to this point the power counting of the effective theory was not used and so the Lagrangian still
contains information to all orders in λ.

We now use the scaling properties of the effective theory gluon fields (see below Eq.(5.37)) as
well as the label operator and the residual derivative in Eq.(5.28) to keep only the leading power
contributions to each term in Eq.(5.40). Since we are considering all particles to be near their mass
shell, i.e. p2 −m2 ∼ O(λ2) and p2 ∼ O(λ2) for collinear particles, we see that m ∼ O(λ) is the only
consistent power counting to impose if we want to keep information about the mass in the collinear
Lagrangian. Another possible scaling would be obtained by choosing m ∼ O(λ2) which would move
the mass out of the collinear and into the usoft Lagrangian. Which mass scaling should be chosen
ultimately depends on the phenomenology of the process at hand. Since we will eventually be studying
jets initiated by energetic massive quarks m ∼ O(λ) is the right scaling for our purposes. With this
in mind we may write

in·De−iP·xξn = e−iP·x [n·P + in·∂r + gsn·An + gsn·Aus] ξn,

in̄·De−iP·xξn = e−iP·x
[
n̄·P + gsn̄·An +O(λ2)

]
ξn ≡ e−iP·xin̄·Dn ξn +O(λ2)

(i /D⊥ −m)ξn = e−iP·x
[
/P⊥ + gs /A

n
⊥ −m+O(λ2)

]
ξn ≡ e−iP·x(i /D

n
⊥ −m) ξn +O(λ2),

(5.41)

10Here we make use of the lightcone decomposition of the Dirac matrices, writing γµ= nµ

2
/̄n+ n̄µ

2 /n+ γµ⊥, where γ
µ
⊥ is

defined by the previous equation.
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where all the fields are now in the label momentum representation and we have suppressed the de-
pendence on the residual xr. With this power counting in place the leading power collinear quark
Lagrangian takes the form

L(0)
q,n = e−iP·x

[
ξ̄n
/̄n

2
(n·P + gsn·An + gsn·Aus + in·∂r) ξn + ϕ̄n̄

/n

2
(n̄·P + gsn̄·An)ϕn̄

+ ξ̄n(/P⊥ + gs /A
n
⊥ −m)ϕn̄ + ϕ̄n̄(/P⊥ + gs /A

n
⊥ −m)ξn

]
.

(5.42)

Note that at leading power the field ϕn̄(xr) is not dynamical since no residual derivatives act on it.
We therefore integrate it out by replacing it with its classical equation of motion [32]

∂L(0)
q,n

∂ϕ̄n̄
= 0 ⇒ ϕn̄ =

1

n̄·P + gsn̄·An
(/P⊥ + gs /A

n
⊥ +m)

/̄n

2
ξn. (5.43)

Plugging this back into Eq.(5.42) yields the final n-collinear quark Lagrangian

L(0)
q,n = e−iP·xξ̄n

[
in·D +

(
i /D

n
⊥−m

) 1

in̄·Dn

(
i /D

n
⊥+m

)] /̄n
2
ξn, (5.44)

at leading power in λ. Since all terms in Eq.(5.44) scale homogeneously we can derive the power
counting for the n-collinear quark field itself by requiring that the action be of order O(λ0), i.e.,

S(0)
q,n =

∫
d4xL(0)

q,n
!∼ O(λ0), where d4x ∼ 1

p4
∼ O(λ−4), (5.45)

for collinear momenta, such that we must have Lq,n ∼ O(λ4) and consequently ξn ∼ O(λ).
It should be mentioned that the leading power Lagrangian is local at the scales O(λ2) and O(λ)

since all fields in Eq.(5.44) depend on the same spacetime point (xr in residual space) and the derivative
operators with the respective scaling (c.f. Eq.(5.41)) feature in the numerator. However it is non-local
at the scale O(λ0) due to the inverse derivative operator (in̄·Dn)−1, which appeared after integrating
out the field ϕn̄. We call operators such as (in̄·∂ − i0)−1 non-local since for any field φ one can show
that

1

in̄·∂ − i0 φ(x) ≡
∫
đ4p

e−ip·x

n̄·p− i0 φ̃(p) =

∫ ∞
0

ds φ(x+ sn̄), (5.46)

where the choice of i0-prescription was crucial in determining the path along which the field is inte-
grated. Additionally we may heuristically expand the inverse operator in Eq.(5.44) in powers of gs
as

1

n̄·P + gsn̄·An
=

1

n̄·P −
1

n̄·P gsn̄·A
n 1

n̄·P +
1

n̄·P gsn̄·A
n 1

n̄·P gsn̄·A
n 1

n̄·P + . . . , (5.47)

with each term in the above sum having identical scaling O(λ0). Thus at leading power n-collinear
quarks appear to couple to an arbitrary number of n-collinear gluons without any power suppression.
We will see that this feature also leads to the emergence of so-called collinear Wilson lines.

5.5 Collinear Wilson lines

When discussing the QCD process e+e− → di-jets in previous sections, the final state particles were
not restricted to any particular kinematic regime, and so the emissions of n/n̄-collinear gluons from
n/n̄-collinear (anti-)quarks could all be treated on equal footing.

In SCET the story is more subtle. Let us consider the processes pictured in Fig. 5.48 where the
initial and final state particles are now restricted to definite collinear sectors. Additionally we will
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assume the quarks to be produced by a colour-singlet current with trivial colour structure and carrying
some generic Dirac structure Γµ, e.g. Γµ = γµ for the vector production current in Eq.(2.50).

k

qq+k

q̄

Γµ

n
n̄

k

q

q̄+k

q̄

Γµ

n̄

n

Fig. (5.48): (le.) Emission of an n-collinear gluon by an outgoing quark line pointed in the n̄-collinear direction.

(ri.) Absorption of an n-collinear gluon by an incoming n̄-collinear anti-quark. Applying the appropriate SCET power

counting to these QCD processes will show that the intermediate quark propagators are pushed far off-shell yielding

the respective first order term of collinear Wilson lines.

For the detailed derivation let us focus on the emission process depicted in Fig. 5.48(le.), which
will lead us to the conclusion that the emission of n-collinear gluons from n̄-collinear quarks knocks
the intermediate quark propagator off-shell by a hard amount O(λ0). The corresponding Lagrangian
interaction of QCD will therefore be integrated out and replaced by an effective operator in SCET
in the form of the n-collinear Wilson line. To see all of this in detail, we write down the full QCD
amplitude corresponding to this process which is given by

iM†1µn,+ ∼ ū(q)(igsµ̃
εTA1γµ1) ε∗µ1,A1

(k)
i(/q + /k +m)

(q + k)2 −m2 + i0
Γµv(q̄). (5.49)

We are now interested in finding the operator that will generate this amplitude in the kinematic limit
mentioned above, where q ∼ (1, λ2, λ) and k ∼ (λ2, 1, λ). Imposing this power counting, we replace the
external state wave functions by the appropriate label momentum space fields Eqs.(5.29) and (5.38)
in SCET. For the outgoing anti-quark we can for instance identify the spinor v(q̄)↔ vn,q̄l(q̄r) as being
obtained from the contraction of the label field ξn,−q̄l(xr) with the final state, and similarly for the
other wave functions in Eq.(5.49). Keeping only the leading terms in λ we obtain the operator

O†1µn,+ ∼ ξ̄n̄,ql(xr)Aµ1,−kl(xr)γ
µ1

[
−gsµ̃ε

/̄n
2 q

+
l + /n

2k
−
l +O(λ)

q+
l k
−
l + i0 +O(λ2)

]
Γµξn,−q̄l(xr), (5.50)

where we indeed find q+
l k
−
l ∼ O(λ0) such that the propagator is hard off-shell. In the next step we

push the Dirac structure in the numerator through to the left to let it act on the n̄-collinear field ξ̄n̄,ql .
Using ξ̄n̄ /̄n = 0 and ξ̄n̄Pn = ξ̄n̄ finally yields

O†1µn,+ ∼ ξ̄n̄,ql(xr)
[
−gsµ̃ε

q+
l n̄·An−kl(xr) + /n

2k
−
l
/A
n
−kl,⊥(xr)

q+
l k
−
l + i0

]
Γµξn,−q̄l(xr)

∼ ξ̄n̄,ql(xr)
[
−gsµ̃ε

n̄·An−kl(xr) +O(λ)

k−l + i0

]
Γµξn,−q̄l(xr),

(5.51)

in which we see that the dependence on the momentum q of the outgoing quark has dropped out of
the propagator. Summing over all gluon momenta and using the label operator we can identify the
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term in square brackets as coming from the first-order Wilson line in label momentum representation

W †1n,+(xr) ≡
∑
kl 6=0

[
− gsµ̃

ε

k−l + i0
n̄·An−kl(xr)

]
=

[
n̄·An(xr)

(−gsµ̃ε)
n̄·P† + i0

]
, (5.52)

which should be reminiscent of the first term in our naive expansion Eq.(5.47). Furthermore the
Feynman rules have lead to the consistent inclusion of the i0-prescription and the mass scale µ̃ of
dimensional regularisation. The subscript n,+ captures the fact that the gluon is n-collinear and that
it is associated to a quark line (+). In using the condensed notation on the right-hand side of Eq.(5.52)
we have to remember that the gluon was outgoing and so the sum Anµ(xr) =

∑
kl 6=0A

n
µ,−kl needs to

be performed over negative label momentum fields.
We now wish to take the label momentum Fourier transform of Eq.(5.52) to obtain a full config-

uration space expression. This is achieved using the definition Eq.(5.38) of the collinear gluon field,
now written explicitly in terms of lightcone coordinates

Ânµ(x) ≡ Ânµ
(
x−

2
,
x+

2
, x⊥

)
= e−iP·xAnµ(xr) =

∑
kl 6=0

e−i(k
−
l x

+/2 + kl,⊥·x⊥)Anµ,kl(xr). (5.53)

Recall that by Eq.(5.24) we have n·kl = 0 and so the large coordinate x− ∼ Q−1λ−2, being the Fourier
conjugate of the small momentum component k+ = k+

r , is determined by the residual momentum
dependence of the field, i.e. we may identify x− ≡ x−r , while the small coordinates x+ ∼ Q−1,
and x⊥ ∼ Q−1λ−1 pertain to the large label momentum components. Employing the Schwinger
parametrisation for the eikonal propagator in Eq.(5.52)

1

k−l − i0
= i

∫ ∞
0

ds e−is(k
−
l −i0), (5.54)

and using the definition Eq.(5.53) we may write the Fourier transform of Eq.(5.52) as

e−iP·xW †1n,+(xr) = −gsµ̃ε
∑
kl 6=0

e+i(k−l x
+/2 + kl,⊥·x⊥) n̄·A

n
−kl(xr)

k−l + i0

= igsµ̃
ε

∫ ∞
0

ds
∑
kl 6=0

e−i(k
−
l (x+/2+s) + kl,⊥·x⊥) n̄·Ankl(xr)

= igsµ̃
ε

∫ ∞
0

ds n̄ · Ân
(
x−

2
,
x+

2
+s, x⊥

)
≡ igsµ̃ε

∫ ∞
0

ds n̄ · Ân(x+ n̄s)

≡W †1n,+(∞, x).

(5.55)

To obtain the second line we have taken kl → −kl and dropped the i0-prescription in the exponential
which was necessary to make the integral Eq.(5.54) converge. This omission is unproblematic since the
correct sign of the i0-term can be uniquely determined by the contour of integration. In the second
to last line we have introduced the shorthand

(
x−

2 ,
x+

2 +s, x⊥

)
≡ x + n̄s which is ubiquitous in the

literature, and allows us to write the first-order Wilson line in a visually similar way to the expression
we anticipated in Eq.(5.46).

So far we have only considered processes involving the emission and absorption of a single gluon.
The full extent of the simplification of full theory amplitudes in the soft-collinear limit can be seen
when we choose, as is depicted in Fig. 5.56, to attach any number m of n-collinear gluons to the
n̄-collinear quark in the process of Fig. 5.48(le.) and sum over diagrams where all permutations of
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external gluon lines are taken into account.

1

m!



k1

qq+...+km

q̄

Γµ

km−1km

n
n̄

+ crossed gluon
graphs



SCET7−−−−→
k1

q

q̄

W
†
n,+Γ

µ

km

n
n̄

Fig. (5.56): Emission of m different n-collinear gluons, including all their permutations, by an incoming quark line

pointed in the n̄-collinear direction. Applying the appropriate SCET power counting to this amplitude will yield an

effective vertex W
†m
n,+Γµ which we draw as a local interaction in residual space. On the right, collinear (anti-)quarks are

indicated by dashed lines, while collinear gluons are represented by curly lines with a solid line through the center.

Going through analogous steps as before, and writing ki,l ≡ ki, i = 1, . . . ,m, we now find the
label momentum space expression

O†mµ
n,+ ∼ ξ̄n̄,ql(xr)

[
(−gsµ̃ε)m

m!

∑
perms.
{k1,...,km}

n̄·An−k1
(xr) . . . n̄·An−km(xr)

[n̄·k1 + i0] . . . [n̄·∑m
i=1 ki + i0]

]
Γµξn,−q̄l(xr) + . . . , (5.57)

where the ellipses denote power suppressed terms as before. The operator associated with the emission
of m collinear gluons is obtained by summing over all possible gluon momenta and therefore reads

W †mn,+(xr) =
(−gsµ̃ε)m

m!

∑
k1,...,km 6=0

∑
perms.
{k1,...,km}

n̄·An−k1
(xr) . . . n̄·An−km(xr)

[n̄·k1 + i0] . . . [n̄·∑m
i=1 ki + i0]

=
1

m!

∑
perms.
{m}

[
(−gsµ̃ε)

n̄·An(xr)

n̄·P† + i0
. . . (−gsµ̃ε)

n̄·An(xr)

n̄·P† + i0

]
,

(5.58)

conveniently having made use of the property Eq.(5.34) of the label operators which are understood
to always act from the right on the fields inside the square bracktes. The sum is over all permutations
of the m gluon fields. Fourier transforming this back to configuration space yields

W †mn,+(∞, x) ≡ e−iP·xW †mn,+(xr) =
(igsµ̃

ε)m

m!

∫ ∞
0

ds1 . . .

∫ ∞
0

dsmP{n̄·Ân(x+ n̄s1) . . . n̄·Ân(x+ n̄sm)},

(5.59)

where P denotes path-ordering which was enforced by the i0-prescription[33] in Eq. (5.58) and is
defined by

P{Ânµ1
(n̄s1)Ânµ2

(n̄s2)} = θ(s1 − s2)Ânµ1
(n̄s1)Ânµ2

(n̄s2) + θ(s2 − s1)Ânµ2
(n̄s2)Ânµ1

(n̄s1), (5.60)

and similar for higher products of fields. That is, fields with higher values of the curve parameter are
placed to the left of fields with lower curve parameter. Physically, the fact that P occurred is related
to the gluons originally interacting with a quark line. Taking the sum over all possible gluon numbers
the contributions in Eq.(5.59) conveniently arrange themselves into an exponential

W †n,+(∞, x) = 1 +
∞∑
m=1

W †mn,+(∞, x) = P exp

{
igsµ̃

ε

∫ ∞
0

ds n̄·Ân(x+ n̄s)

}
, (5.61)
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which we will refer to as the configuration space n-collinear Wilson line associated with the process
pictured in Fig. 5.56. In label momentum space we correspondingly find the local operator

W †n,+(xr) = 1 +

∞∑
m=1

W †mn,+(xr) ≡
∑
m=0

1

m!

∑
perms.
{m}

[
(−gsµ̃ε)

n̄·An(xr)

n̄·P† + i0
. . . (−gsµ̃ε)

n̄·An(xr)

n̄·P† + i0

]

≡
∑

perms.

[
exp

{
−gsµ̃ε

n̄·An(xr)

n̄·P† + i0

}]
, (5.62)

where we have introduced convenient short-hand in the last line which is usually adopted in the
literature.

Since the Wilson line carries a trivial Dirac structure (i.e. it is proportional to the identity) and
the current in turn has trivial colour structure, we may pull W †n,+(xr) through the Dirac and colour
structure of the production current in Eq.(5.57) to obtain the operator

O†µn,+ ∼ ξ̄n̄(xr)Γ
µW †n,+(xr)ξn(xr) ≡ ξ̄n̄(xr)Γ

µχn(xr), (5.63)

where we were naturally lead to define the n-collinear jet field χn ≡W †n,+ξn that will play an important
role in the discussion of the factorisation theorem in the sections to come.

Using the expressions Eq.(5.61) and Eq.(5.62) we can directly show the crucial property

W †n,+(W †n,+)† = (W †n,+)†W †n,+ = 1, (5.64)

which similarly holds for the other Wilson lines we will consider presently. The awkward notation in
Eq.(5.64) suggests that (W †n,+)† 6= Wn,+ as we can immediately see when we study collinear Wilson
lines obtained from other processes.

For instance, analogous considerations to those outlined above for the absorption of an arbitrary
number of gluons by an incoming n̄-collinear anti-quark in the process Fig.5.48(ri.) lead to the Wilson
line

W †n,− =
∑

perms.

[
exp

{
−gsµ̃ε

n̄·An
n̄·P† − i0

}]
, W †n,−(x,−∞) = P exp

{
−igsµ̃ε

∫ 0

−∞
ds n̄·Ân(x+ n̄s)

}
, (5.65)

in label momentum and configuration space respectively, where the subscript n,− indicates the asso-
ciation of the n-collinear gluons with the anti-quark line (−). Since the gluons are now incoming we
have a sum Anµ(xr) =

∑
kl 6=0A

n
µ,kl

(xr) over positive label fields in Eq.(5.65). Note that the absorption
by an anti-quark has lead to the Wilson line being anti-path ordered P such that fields at larger curve
parameter are ordered to the right (effectively swapping the step functions in the definition Eq.(5.60)).
We also observe that the path now runs from −∞ to x along the n̄-collinear direction indicating gluon
absorption by an incoming particle.

The remaining Wilson lines can be obtained by exchanging the roles of the quark and anti-quark
in the processes of Fig.5.48 and considering emission (absorption) of any number of gluons. Concretely
we obtain

Wn,+ =
∑

perms.

[
exp

{
−gsµ̃ε

n̄·An
n̄·P + i0

}]
, Wn,+(x,−∞) = P exp

{
igsµ̃

ε

∫ 0

−∞
ds n̄·Ân(x+ n̄s)

}
, (5.66)

for the absorption of n-collinear gluons by an incoming n̄-collinear quark as well as

Wn,− =
∑

perms.

[
exp

{
−gsµ̃ε

n̄·An
n̄·P − i0

}]
, Wn,−(∞, x) = P exp

{
−igsµ̃ε

∫ ∞
0

ds n̄·Ân(x+ n̄s)

}
, (5.67)
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for the emission of n-collinear gluons by an outgoing n̄-collinear anti-quark. The label operator in
the Wilson lines Eqs.(5.66) and (5.67) is understood to act on the fields from the left. We observe
that the thus defined Wilson lines satisfy the relations (Wn,±)† = W †n,∓ in both label momentum
and configuration space. When we study the factorisation theorem for thrust we will also encounter
n̄-collinear Wilson lines, denoted W (†)

n̄,±, which will be defined analogously.
To conclude this section we want to come back and highlight the connection of the Wilson line

Eq.(5.66) with the collinear quark Lagrangian Eq.(5.44) we anticipated earlier. From the definitions
of the Wilson lines in Eqs.(5.61) and (5.62) it is not complicated to show the respective relations

in̄·DxWn,+(x,−∞) ≡
(
i∂x+ + gsµ̃

εn̄·Ân(x)
)
Wn,+(∞, x) = 0,

[in̄·DnWn,+(xr)] = [(n̄·P + i0 + gsµ̃
εn̄·An(xr))Wn,+(xr)] = 0,

(5.68)

that is, the covariant derivative (now enhanced by the proper i0-prescription) of the Wilson line along
its path vanishes. Using Eq.(5.35) we obtain the label momentum space operator equation

in̄·DnWn,+ = [in̄·DnWn,+] +Wn,+(n̄·P + i0) = Wn,+(n̄·P + i0). (5.69)

In combination with Eq.(5.64) one can then show that the inverse differential operator featuring in
the collinear quark Lagrangian Eq.(5.44) can be written in terms of this Wilson line as

1

in̄·Dn
= Wn,+

1

n̄·P + i0
(Wn,+)† = Wn,+

1

n̄·P + i0
W †n,−. (5.70)

In the next section we will combine the above result with the collinear quark Lagrangian and add the
remaining sectors necessary for our discussion of the process e+e− → di-jets.

5.6 Other sectors and final Lagrangian for e+e− → di-jets

In addition to the collinear quark Lagrangian we derived in Eq.(5.44), we have to consider additional
sectors for collinear and usoft gluons. The collinear gluon Lagrangian can be obtained by making use
of the power counted derivatives in Eq.(5.41), defining

iDnµ =
nµ
2

(n̄·P + gsn̄·An) +
n̄µ
2

(in·∂ + gsn·An + gsn·Aus) + (P⊥µ + gsA
n,⊥
µ ), (5.71)

and then replacing iDµ 7→ iDnµ in the full QCD Lagrangian. Thus for the n-collinear gluon sector we
have

L(0)
A,n = −1

4
Tr
[
GnµνGnµν

]
, with Gnµν =

i

gs

[
Dnµ,Dnν

]
. (5.72)

The ultrasoft gluons can be treated analogously by substituting iDµ 7→ iDus
µ , where iDus

µ = i∂µ+gsA
us
µ ,

and the corresponding field strength is denoted Gus
µν .

For massless quarks we would have to additionally include a kinetic term for ultrasoft modes,

Lq,us = ξ̄usi /Dus
ξus, (5.73)

which has power counting i /Dus∼O(λ2) and, by considerations similar to Eq.(5.45), ξus∼O(λ3) for
the ultrasoft quark field. However, when a mass term is present, the derivative in Eq.(5.73) is power
suppressed compared to m∼O(λ), and so the field is not dynamical at leading power. Just as we did
for ϕn̄, we can integrate it out by replacing it with its equation of motion ξus = 0, thus eliminating
the term from the Lagrangian altogether.
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Having described all relevant momentum regions and particles for the di-jet process under con-
sideration we combine the previously obtained results into the final leading power SCET Lagrangian
for massive quarks,

L(0)
SCET = −1

4
Tr
[
GnµνGnµν

]
− 1

4
Tr
[
GusµνGus

µν

]
(5.74)

+ e−iP·xξ̄n

[
in·D +

(
i /D

n
⊥−m

)
Wn,+

1

n̄ · P + i0
W †n,−

(
i /D

n
⊥+m

)] /̄n
2
ξn + (n̄-collinear),

with the label momentum space collinear Wilson line given as in Eq.(5.62) and the covariant derivatives
Eq.(5.41). The Wilson line can be thought of as the remnant of the ability of the full QCD Lagrangian
to emit n-collinear gluons off n̄-collinear (anti-)quarks, which were integrated out in SCET. The
emission of n-collinear by n-collinear (anti-)quarks on the other hand remains a regular interaction
in the effective theory Lagrangian, and is contained in the ξ̄nin·D /̄n

2 ξn term. Incidentally, this is also
the only term that couples the usoft gluon to the collinear quark. We will argue in the next section
that this interaction can in fact be removed from the Lagrangian by the introduction of additional,
ultrasoft Wilson lines.

The n̄-collinear part of the Lagrangian is given by copies of the collinear quark and gluon con-
tributions for the fields An̄, ξn̄ with n ↔ n̄. We can therefore easily accommodate any number of
collinear directions by adding the appropriate terms to Eq.(5.74). This demonstrates the modularity
but also the process-dependence of the SCET framework.

5.7 Ultrasoft Wilson lines

As we have alluded to at the end of the previous section, the Lagrangian Eq.(5.74) couples ultrasoft
gluons and collinear quarks only through a single interaction term. We now aim to illustrate that this
interaction can be cast into the form of another, now ultrasoft, Wilson line operator. An appropriate
field redefinition of the collinear quark fields using this Wilson line will enable us to effectively pull
the usoft interactions out of the fields, leading to a manifest decoupling of usoft and collinear degrees
of freedom in the leadingpower collinear quark Lagrangian.

We proceed similarly to the analysis we carried out for the collinear Wilson line by asking what
happens for diagrams of the form shown in Fig. 5.75 where an outgoing n̄-collinear anti-quark emits
m ultrasoft gluons whose momenta scale as ki,r ≡ ki ∼ Q(λ2, λ2, λ2), i = 1, . . . ,m.

1

m!



k1

q̄+. . .+ km q̄

Γµ

k2km

q̄ + k1

n

+ crossed gluon
graphs


Fig.(5.75): Emission of m ultrasoft gluons by an outgoing anti-quark line pointed in the n-collinear direction, including

all allowed permutations of the external gluon lines. The ultrasoft gluons are depicted as regular curly lines. This process

contributes to the usoft Wilson line Ym
n,−.

This process corresponds to an operator analogous to Eq.(5.58), although now in residual mo-
mentum space, which reads

Ym
n,−(k1, k2, . . . , km) =

(gsµ̃
ε)m

m!

∑
perms.
{k1,...,km}

[
n·Aus(−km) . . . n·Aus(−k1)

[n·∑m
i=1 ki + i0] . . . [n·k1 + i0]

]
, (5.76)
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where the negative residual momenta appear due to the outgoing usoft gluons and the fact that
(Aus

µ )†(k) = Aus
µ (−k). Note that unlike for the collinear Wilson line, the subscript n now refers to the

collinear direction of the quark rather than the absorbed gluons since there is no preferred direction
associated with the latter. Note that the expression Eq.(5.76) cannot be rewritten as in Eq.(5.58)
using the label operator, since the usoft gluon field does not carry a label momentum. This implies
that the usoft Wilson line and the label operator commute.

The configuration space Wilson line is now obtained by performing a continuous Fourier transform
in the residual momenta ki,r rather than the discrete transformation over labels we encountered for
the collinear Wilson line in Eq.(5.55). Summing over all numbers of gluon emissions we obtain the
fundamental representation usoft Wilson line

Yn,−(∞, xr) = P exp

{
−igsµ̃ε

∫ ∞
0

ds n·Aus(xr + ns)

}
, (5.77)

in residual configuration space which is structurally identical to Eq. (5.65). However, unlike the
collinear Wilson line, the usoft Wilson line is a genuine residual space operator. It is further non-local
in residual space, while we recall that the residual space collinear Wilson Eq.(5.62) was in fact a local
operator at this scale. The non-locality of the collinear Wilson line only emerged in configuration
space Eq.(5.61) through the dependence on the large label momenta in the small components x−, x⊥
(c.f. the discussion below Eq.(5.53)). The relations between Eq.(5.77) and the remaining usoft Wilson
lines Y (†)

n,± are identical to those of the collinear Wilson lines, still satisfying (Yn,±)† = Y †n,∓.
It should also be mentioned that the usoft Wilson line was not obtained by imposing the effective

theory power counting on a full QCD process, as was the case for the collinear Wilson line. Instead, it
naturally arose out of the structure of the effective theory. This is also apparent from the structure of
the diagrams in Fig. 5.75 where all fields and interactions are described by the Lagrangian Eq.(5.44)
of a single collinear sector. Compare this to the process in Fig. 5.56 where the presence of more than
one collinear direction was essential to the derivation of the collinear Wilson line.

Physically the usoft Wilson line reflects the fact that usoft radiation cannot change the trajectory
of an energetic, collinear (anti-)quark and thus only couples to its colour degrees of freedom along
the corresponding direction. The collinear and usoft Wilson lines can be thought of as dual in the
following sense [34]. If we boost to a frame where the previously n-collinear particles are usoft, the
previously n̄-collinear and usoft particles now appear to recoil against one another. In this boosted
frame the now usoft particles have to couple to n̄-collinear particles through a usoft Wilson line, while
the previously usoft particles, which are now n-collinear in the boosted frame, couple to the n̄-collinear
sector via a collinear Wilson line. Thus the role of collinear and usoft Wilson lines is interchanged
through an appropriate boost.

The simplification in the Lagrangian we alluded to before can now be achieved by using the usoft
Wilson line Eq.(5.77) to redefine the collinear quark and gluon fields [35],

ξn,p = Yn,−ξ
(0)
n,p, An,p = Yn,−A

(0)
n,p(Yn,−)† = Yn,−A

(0)
n,pY

†
n,+, (5.78)

where we have used the Wilson line Yn,−(∞, xr) in the field redefinition to conform with the choice
of [12] in later calculations. This choice is effectively due to the fact that the field ξn is associated
with an outgoing anti-particle. With the above relations one can show that the collinear Wilson line
transforms as

Wn,+ =
∑

perms.

[
exp

{ −gsµ̃ε
n̄·P + i0

Yn,−n̄·A(0)
n Y †n,+

}]
= Yn,−W

(0)
n,+Y

†
n,+, (5.79)
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where we can pull the usoft Wilson lines through the label operator since the two commute. Note
however, that the Wilson lines themselves do not commute since the fields contained in them are always
causally connected (lightlike separated) in residual space so that the transformation in Eq.(5.79) is
non-trivial. Similar to the collinear Wilson line, the usoft Wilson line satisfies

in·Dus
r Yn,−(∞, xr) ≡ (in·∂r + gsµ̃

εn·Aus(xr))Yn,−(∞, xr) = 0,

Y †n,+Yn,− = Yn,−Y
†
n,+ = 1.

(5.80)

With this in mind we can substitute the redefined fields Eq.(5.78) into the collinear quark Lagrangian
to get

L(0)
q,n = e−iP·x ξ̄(0)

n

[
in·∂ + gsn·A(0)

n +
(
i /D

(0)
⊥ −m

)
W

(0)
n,+

1

n̄ · P + i0
W
† (0)
n,−

(
i /D

(0)
⊥ +m

)] /̄n
2
ξ(0)
n , (5.81)

in which the usoft gluons have completely decoupled from the collinear degrees of freedom. A similar
decoupling can be observed in the collinear gluon Lagrangian Eq.(5.72), thus implementing usoft-
collinear factorisation. However, the usoft interactions have not been completely removed from the
theory, as we will see in the next section, where they resurface in the effective theory currents whose
matrix elements we wish to compute. Another aspect that should be stressed is that this decoupling
can only be achieved in the leading power Lagrangian L(0)

q,n [35], power suppressed terms in the action
that are O(λ) and higher will still contain usoft interactions even when formulated in terms of the
fields Eq.(5.78).
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6 SCET factorisation theorem for thrust

In the following we want to exploit the manifest decoupling of usoft and collinear degrees of freedom
in the effective theory Lagrangian to derive a factorisation theorem for the process e+e− → γ∗ →
di-jets in SCET. This will allow us to write experimentally accessible quantities (such as the thrust
distribution in the peak region) as a convolution of so-called factorisation functions each pertaining to
a hard, collinear or usoft sector in the theory. An additional advantage of such a factorised approach
lies in the transparent separation of perturbative and non-perturbative contributions to the observable
at hand. In the effective theory framework the factorisation will further allow for the resummation of
large logarithms encountered in Eq.(4.15) and similar observables via renormalisation group methods.
The derivation will closely follow [12, 13].

6.1 Factorisation of the total cross section in the di-jet limit

Our starting point is the contribution of final states which consist entirely of two collinear quark jets
and ultrasoft radiation to the total cross section in QCD. Schematically we have seen in Eq.(2.53)
that at O(αem) this can be written in d = 4 dimensions as

σ =

res.∑
X

∫
dΠX (2π)4δ(4)(Q−

∑
i∈X

pi)〈L̂ε=0
µν 〉〈0| J †µv (0) |X〉〈X| J νv (0) |0〉 , (6.1)

with the modification that X now denotes all final states which are restricted to only contain collinear
and ultrasoft particles. Since the states |X〉 produced by the vector current J µ (c.f. below Eq.(2.50))
will always contain a qq̄-pair we can associate the quark with the n-collinear and the anti-quark with
the n̄-collinear direction without loss of generality. The sum in Eq.(6.1) also includes any necessary
colour and spin sums. The incoming momentum of the electron-positron pair is Qµ = pµ

e+
+ pµ

e− , and
we have used a modified leptonic tensor

〈L̂ε=0
µν 〉 =

1

2s
e2
qe

2〈Lε=0
µν 〉

1

s2
, (6.2)

compared to Eq.(2.7) to comply with the notation of [13]. Note that when the restriction on the final
state sum is lifted, Eq.(6.1) simply represents the total cross section for the process in QCD.

The restriction in the final state sum can be written more explicitly by separating it into a sum
over jet directions ~n and a sum over collinear states Xn, Xn̄ along these directions as well as ultrasoft
states Xus,

res.∑
X

∫
dΠX ≡

∑
~n

res.∑
Xn,Xn̄,Xus

∫
dΠXndΠXn̄dΠXus , with |X〉 ≡ |XnXn̄Xus〉 . (6.3)

Our goal will now be to implement this restriction in SCET at the level of operators and matrix
elements, so that the explicit restriction in the above sum can eventually be lifted. From considerations
of gauge invariance (see [36]) and our calculations in Eq.(6.5), the QCD current will get matched onto
the effective theory current

J µv = Ψ̄γµΨ
SCET7−−−−→ C(n̄·P, n·P, µ)[ξ̄nWn,−]γµ[W †n̄,+ξn̄]

=

∫
dωdω̄ C(ω, ω̄, µ)[ξ̄nWn,−δ(ω − n̄·P†)]γµ[δ(ω̄ − n·P)W †n̄,+ξn̄]

≡
∫

dωdω̄ C(ω, ω̄, µ) Jµv (ω, ω̄, µ),

(6.4)
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where the Wilson coefficient C(n̄ ·P, n ·P, µ) can be restricted by gauge invariance[31] to only be a
function of the large label momentum components of the fields. In the second line of Eq.(6.4) we have
made explicit the label momentum of the jet fields

χn,ω = δ(ω − n̄·P)W †n,+ξn, χn̄,ω̄ = δ(ω̄ − n·P)W †n̄,+ξn̄,

χ̄n,ω = ξ̄nWn,−δ(ω − n̄·P†), χ̄n̄,ω̄ = ξ̄n̄Wn̄,−δ(ω̄ − n·P†),
(6.5)

for later convenience by trivially integrating over the delta functions. In Eq.(6.5) we have kept the ±
subscripts on the Wilson lines which we will from now on drop for notational brevity. With Eq.(6.4)
we have implemented hard-collinear factorisation in the sense that all of the information about the
hard scale which was integrated out in the construction of SCET is contained in the Wilson coefficient
while low energy degrees of freedom that are still dynamic within the effective theory are encoded by
matrix elements of the effective current.

In the next step we consider soft-collinear factorisation by redefining the fields according to
Eq.(5.78). This leads to the according transformation of the jet fields and the effective current

χ̄n,ω → χ̄(0)
n,ωY

†
n,+, χn̄,ω̄ → Yn̄,−χ

(0)
n̄,ω̄ ⇒ Jµv → J (0)µ

v = χ̄(0)
n,ωY

†
n,+γ

µYn̄,−χ
(0)
n̄,ω̄, (6.6)

with all operators now built from the thus redefined fields. From now on we are going to drop the
explicit superscript (0) and only consider quantities in terms of the usoft decoupled fields. Recall that
we showed that usoft gluons completely decouple from collinear quarks in the Lagrangian Eq.(5.81).
However, we have now discovered that this interaction resurfaces in the current whose matrix elements
we wish to compute. For completeness we mention that for calculations involving massive quarks at
two loops and higher, the effective current in Eq.(6.6) must be supplemented by additional mass mode
Wilson lines Sn[12], which for the purposes of this thesis we can ignore.

Having taken care of the operators, we turn to the kinematics of Eq.(6.1), which, in the di-jet
limit where all particles are either collinear to the thrust axis or usoft, allows us to decompose the
final state momenta into ∑

i∈X
pµi = PµXn + PµXn̄ + PµXus

, (6.7)

with the PXi denoting the sum of momenta in the n/n̄-collinear and usoft sectors respectively. Sub-
stituting the SCET current into the cross section Eq.(6.1) we get

σ =
∑
~n

res.∑
Xn,Xn̄,Xus

∫
dΠXndΠXn̄dΠXus

∫
dω dω̄ dω′dω̄′ (2π)4δ(4) (Q− PXn − PXn̄ − PXus) 〈L̂ε=0

µν 〉

× C(ω, ω̄)C∗(ω′, ω̄′)〈0|T
{
χ̄n̄,ω̄′Y

†
n̄,+γ

µYn,−χn,ω′
}
|XnXn̄Xus〉〈XnXn̄Xus|T

{
χ̄n,ωY

†
n,+γ

νYn̄,−χn̄,ω̄

}
|0〉,

(6.8)

with the jet fields evaluated at xr = 0 as before. Note that we had to introduce (anti-)time ordering in
the effective theory matrix elements since the usoft Wilson lines are non-local functions of the gauge
fields in residual space. However, we can absorb the time ordering into the Wilson lines by observing
that

TY †n,+ = Y †n,+, TYn,− = Yn,−, TYn̄,− ≡ (Y
†
n̄,+)T , TY †n̄,+ ≡ (Y n̄,−)T , (6.9)

where the superscript T denotes the colour transpose. We see that it suffices to rewrite the Wilson
lines where the path ordering does not already agree with time ordering. The newly defined Wilson
lines in Eq.(6.9) read

Y
†
n̄,+ = P exp

{
igsµ̃

ε

∫ ∞
0

ds n̄·Aus
(x+ n̄s)

}
, Y n̄,− = P exp

{
−igsµ̃ε

∫ ∞
0

ds n̄·Aus
(x+ n̄s)

}
, (6.10)
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with the barred gluon field in the 3 representation, Aus
= Aus

a T
a and T a ≡ −(T a)T . In the following

we will use these barred Wilson lines, allowing us to drop explicit (anti-)time ordering in the matrix
elements. In addition we drop the subscripts ± for readability.

Since the SCET Lagrangian decouples at leading power, we expect the corresponding Hilbert
space of the theory to factorise so that

|XnXn̄Xus〉 = |Xn〉|Xn̄〉|Xus〉 , (6.11)

which will allow us to disect the matrix elements in Eq.(6.8) into three distinct pieces

〈0|J†µv (0)|XnXn̄Xus〉〈XnXn̄Xus|Jνv (0)|0〉 = 〈0|(Y n̄Yn)lm(0)|Xus〉〈Xus|(Y †nY
†
n̄)ij(0)|0〉

× 〈0|(χn,ω′)σm(0)|Xn〉〈Xn|(χ̄n,ω)αi (0)|0〉 γµαβ
× 〈0|(χ̄n̄,ω̄′)ρl (0)|Xn̄〉〈Xn̄|(χn̄,ω̄)βj (0)|0〉 γνρσ.

(6.12)

In the above expression all spinor (greek 6= µ, ν) and colour (roman) indices have been made explicit.
To proceed we note that the collinear matrix elements in Eq.(6.12) are colour diagonal. Denoting by
|Xn, 1〉 a n-collinear quark state with colour a = 1 we have e.g.

〈0|(χn)σ1 (0)|Xn, 1〉〈Xn, 1|(χ̄n)αj (0)|0〉 ∼ δ1j . (6.13)

This allows us to take an average over colours in the collinear matrix elements by substituting

〈0|(χn)σm(0)|Xn〉〈Xn|(χ̄n)αi (0)|0〉 7→ δmi
NC
〈0|(χn)σa(0)|Xn〉〈Xn|(χ̄n)αa (0)|0〉 , (6.14)

and similar for the n̄-collinear sector. Making the replacements in Eq.(6.12) we have already completely
factorised the matrix elements pertaining to the usoft Wilson lines,

〈0|J†µv (0)|X〉〈X|Jνv (0)|0〉 = Tr
[
〈0|(Y n̄Yn)(0)|Xus〉〈Xus|(Y †nY n̄)(0)|0〉

]
× 1

NC
Tr
[
〈0|(χn,ω′)σ(0)|Xn〉〈Xn|(χ̄n,ω)α(0)|0〉

]
γµαβ

× 1

NC
Tr
[
〈0|(χ̄n̄,ω̄′)ρ(0)|Xn̄〉〈Xn̄|(χn̄,ω̄)β(0)|0〉

]
γνρσ,

(6.15)

with the capital Tr[. . . ] denoting a colour trace. In Eq.(6.15) we can see that the n/n̄-collinear sectors
can still communicate with each other through the Dirac structure. To remedy this we employ the
SCET Fierz identity, which for n-collinear jet fields reads[37],

χ̄αnχ
β
n =

1

2

[
/nβα

2
χ̄n
/̄n

2
χn −

(γ5/n)βα

2
χ̄nγ5

/̄n

2
χn −

(γµ⊥/n)βα

2
χ̄nγ⊥µ

/̄n

2
χn

]
, (6.16)

with an analogous relation for the n̄-collinear jet field with n ↔ n̄. Inserting the identity next to
each of the jet fields and carrying out the above replacement one can check that only the first term
in Eq.(6.16) survives in each collinear sector. This finally gives us a fully factorised matrix element

〈0|J†µv (0)|X〉〈X|Jνv (0)|0〉 = tr
[
γµ
/n

4
γν
/̄n

4

]
× Tr

[
〈0|(Y n̄Yn)(0)|Xus〉〈Xus|(Y †nY n̄)(0)|0〉

]
× 1

NC
tr
[
〈0| /̄n

2
χn,ω′(0)|Xn〉〈Xn|χ̄n,ω(0)|0〉

]
× 1

NC
tr
[
〈0|χ̄n̄,ω̄′(0)|Xn̄〉〈Xn̄|

/n

2
χn̄,ω̄(0)|0〉

]
,

(6.17)
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where the lower case tr[. . . ] now denotes a Dirac trace and the colour trace on the collinear matrix
elements has been made implicit. Finally, since we have isolated each jet field into its own matrix
element we can pull the large label momenta out by using Eq.(6.7) so that

〈0| /̄n
2
χn,ω′(0)|Xn〉 = δ(ω′ − n̄·PXn) 〈0| /̄n

2
χn(0)|Xn〉, 〈0|χ̄n̄,ω̄′(0)|Xn̄〉 = δ(ω̄′ + n·PXn̄) 〈0|χ̄n̄(0)|Xn̄〉,

(6.18)

with the jet fields now implicitly carrying label momenta ω′ = n̄·PXn and ω̄′ = −n·PXn̄ respectively.
Note the negative label momentum of the n̄-collinear field which is due to our choice of associating
this paricular direction with the jet initiated by the anti-quark (c.f. discussion below Eq.(5.25)).
Integrating over the label momenta ω′, ω̄′ the cross section Eq.(6.8) takes the form

σ = K0

∑
~n

res.∑
Xn,Xn̄,Xus

∫
dΠXndΠXn̄dΠXus

∫
dωdω̄ (2π)4δ(4)(Q− PXn − PXn̄ − PXus) |C(ω, ω̄)|2

× Tr
[
〈0|Y n̄Yn|Xus〉〈Xus|Y †nY

†
n̄|0〉

] 1

NC
tr
[
〈0| /̄n

2
χn|Xn〉〈Xn|χ̄n,ω|0〉

]
1

NC
tr
[
〈0|χ̄n̄|Xn̄〉〈Xn̄|

/n

2
χn̄,ω̄|0〉

]
,

(6.19)

where the (residual) spacetime dependence xr = 0 is now implicit and the prefactor is given by

K0 = 〈L̂ε=0
µν 〉tr

[
γµ
/n

4
γν
/̄n

4

]
=

8π2e2
qα

2
em

3s2
=

2π

NC

σLO2,ε=0

s
, (6.20)

with the total leading order cross section σLO2 as in Eq.(2.10).
From the decomposition Eq.(6.7) of the final state momentum and overall momentum conservation

in Eq.(6.19) we can also infer that in the center of mass frame, where Qµ = (Q,0)µ, we must have
PXn,⊥ + PXn̄,⊥ = 0 + O(λ2). Since the momentum conserving delta function in Eq.(6.8) may be
written in terms of lightcone coordinates as

δ(4)(Q− PXn − PXn̄ − PXus) = 2 δ(Q− n̄·PXn) δ(Q− n·PXn̄) δ(2)(PXn,⊥ + PXn̄,⊥), (6.21)

this enables us to simplify the convolution over label momenta between the collinear matrix elements
and the Wilson coefficient to an ordinary multiplication∫

dωdω̄ |C(ω, ω̄)|2δ(Q− n̄ · PXn)δ(Q− n · PXn̄)〈Xn|χ̄n,ω|0〉 〈Xn̄|
/n

2
χn̄,ω̄|0〉

= H(Q) δ(Q− n̄·PXn)δ(Q− n·PXn̄)〈Xn|χ̄n,Q|0〉 〈Xn̄|
/n

2
χn̄,−Q|0〉 ,

(6.22)

where we used analogous relations to Eq.(6.18) for the matrix elements and defined the hard function
H(Q) = |C(Q,−Q)|2. In the next step we insert the identity

1 =

∫
d4pnd4pn̄d4pus δ

(4)(pn − PXn)δ(4)(pn̄ − PXn̄)δ(4)(pus − PXus), (6.23)

into Eq.(6.19) which allows us to individually manipulate the overall momenta associated with each
sector. In the following we decompose the above dummy momenta into label and residual components
as

pµi = pi,l + ki, i∈{n, n̄, us}. (6.24)
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After some rather involved manipulations[12] and together with the relations Eqs.(6.20) and (6.22),
the total cross section can be brought to the form

σ = σLO2,ε=0H(Q)

∫
dk+

n dk
−
n̄ dk

+
usdk

−
us

[
res.∑
Xn

∫
dΠXn

4πNC

∫
d4x eik

+
n x
−/2 tr

[
〈0| /̄n

2
χn,Q(x)|Xn〉〈Xn|χ̄n,Q|0〉

]]

×
[

res.∑
Xn

∫
dΠXn̄

4πNC

∫
d4y eik

−
n̄ y

+/2 tr
[
〈0|χ̄n̄,−Q(y)|Xn̄〉〈Xn̄|

/n

2
χn̄,−Q|0〉

]]

×
[

res.∑
Xus

∫
dΠXus

4NC(2π)2

∫
dz+dz−e

i
2

(k+
usz
−+k−usz

+) Tr
[
〈0|(Y n̄Yn)(z+, z−)|Xus〉〈Xus|Y †nY

†
n̄|0〉

]]
,

(6.25)

where only integrations over residual momenta remain, label momentum conservation is exactly im-
plemented, and all fields are to be evaluated at xr = 0 unless explicitly stated otherwise. In deriving
the result in Eq.(6.25) the fact that PXn,⊥ = 0 when the n-collinear direction is chosen to align with
the thrust axis was used. In addition, the collinear matrix elements are proportional to δ(x+)δ(2)(x⊥)

and δ(y−)δ(2)(y⊥) for the n- and n̄-collinear sector respectively which reflects the fact that all short-
distance modes were removed from the jet fields. The cross section thus factorises entirely into two
collinear and a single usoft sector, with a universal prefactor H(Q) that depends only on the hard
scale and is independent of the details of the final state.

Note that in Eq.(6.25) we still have to manually impose a restriction on the final state momenta to
ensure that we are considering only the kinematic di-jet limit so that all our previous approximations
are valid. However, this renders a direct evaluation of the matrix elements impossible since we do not
generically know the explicit states {|Xn〉|Xn̄〉|Xus〉} relevant to the process. In the next section we
will thus introduce a measurement function (e.g. thrust) that makes sure we are only allowing regions
of phase space that pertain to di-jet kinematics. This will then allow us to lift the restriction on the
final state sum and make concrete computations in this factorised picture.

6.2 Hemisphere mass distribution and thrust

Recall that a thrust measurement determines a thrust axis which we use to distinguish two hemispheres
H,H. In Eq.(5.10) we have seen that thrust Eq.(2.54) and the hemisphere masses Eq.(5.6) are related
in the kinematic di-jet limit. In this section we will first derive the factorised form of the doubly
differential cross section in the hemisphere masses m2

H ,m
2
H̄
, from which the thrust distribution then

easily follows.
From the way we have set up the sectors of the effective theory, the final state momenta contribute

to the hemisphere momenta as

pµH =
∑
i∈H

pµi,H = PµXn + PµXus,H
, pµ

H̄
=
∑
i∈H̄

pµ
i,H̄

= PµXn̄ + Pµ
Xus,H̄

, PµXus
= PµXus,H

+ Pµ
Xus,H̄

, (6.26)

where the collinear sectors are associated with a definite hemisphere, while the usoft momenta are
allowed to contribute to either. Invoking SCET power counting we find

p2
H = P−Xn(P+

Xn
+ P+

Xus,H
) = Q(k+

n + k+
us,H),

p2
H̄ = P+

Xn̄
(P−Xn̄ + P−

Xus,H̄
) = Q(k−n̄ + k−us,H̄),

(6.27)

where we have dropped terms of O(λ3) and higher and used the assignment Eq.(6.23) together with
the decomposition Eq.(6.24) into label and residual momenta. We can now introduce a hemisphere
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mass measurement into the cross section Eq.(6.25) through the identity

1 =

∫
dm2

Hdm
2
H̄ δ
(
p2
H −m2

H

)
δ
(
p2
H̄ −m2

H̄

)
=

1

Q2

∫
dm2

Hdm
2
H̄ δ

(
k+
n + k+

us,H −
m2
H

Q

)
δ

(
k−n̄ + k−us,H̄ −

m2
H̄

Q

)
,

(6.28)

where, with the power counting of Eq.(6.27) applied, the second equality makes sure that the observable
restricts the final state phase space to the di-jet limit. This will allow us to drop the restriction on the
sum over final states, since now any state that does not correspond to a di-jet configuration will have
vanishing contribution to the cross section due to the observable Eq.(6.28) having no support there.

We proceed to also factorise the measurement by introducing another dummy integration

1 =

∫
dl+dl− δ

(
l+− k+

us,H

)
δ
(
l−− k−us,H̄

)
, (6.29)

which allows us to carry out all of the remaining residual momentum integrations in Eq.(6.25) leaving
us with the differential cross section

d2σ

dm2
Hdm

2
H̄

= σLO2 H(Q)

∫
dl+dl−

[∑
Xn

∫
dΠXn

4πQNC

∫
d4x e

i
2(m2

H/Q−l
+)x−tr

[
〈0| /̄n

2
χn,Q(x)|Xn〉〈Xn|χ̄n,Q|0〉

]]

×
[∑
Xn̄

∫
dΠXn̄

4πQNC

∫
d4y e

i
2(m2

H̄
/Q−l−)y+

tr
[
〈0|χ̄n̄,−Q(y)|Xn̄〉〈Xn̄|

/n

2
χn̄,−Q|0〉

]]

×
[∑
Xus

∫
dΠXus

NC
δ
(
l+− P+

Xus,H

)
δ
(
l−− P−

Xus,H̄

)
Tr
[
〈0|Y n̄Yn|Xus〉〈Xus|Y †nY

†
n̄|0〉

]]

≡ σLO2,ε=0H(Q,µ)

∫
dl+dl−Jm

n (m2
H −m2 −Ql+, µ) Jm

n̄ (m2
H̄ −m2 −Ql−, µ)Shemi(l

+, l−, µ)

(6.30)

In the first line we can see that all of the dependence on the measurement (l+, l−) is now contained
in the soft sector and the Fourier exponent of the collinear sectors. This in turn implies that the
collinear matrix elements are universal so that they can be computed independently of the observable
under consideration. In the second line we have introduced convenient notation for each sector.
The jet functions Jm

n (m2
H − m2 − Ql+, µ),Jm

n̄ (m2
H̄
− m2 − Ql−, µ) for primary quarks of mass m

capture the dynamics of n, n̄-collinear particles inside the jets and can be calculated perturbatively.
The hemisphere soft function Shemi(l

+, l−, µ) represents the cross talk between the collinear sectors
through usoft radiation. From its definition we see that it is independent of the primary quark masses.
The arguments and normalisations are chosen such that

H(Q,µ) = 1, Shemi(l
+, l−) = δ(l+)δ(l−),

Jm
n (m2

H −m2 −Ql+) = δ(m2
H −m2 −Ql+), Jm

n̄ (m2
H̄ −m2 −Ql−) = δ(m2

H̄ −m2 −Ql−),
(6.31)

at tree level since there is no additional usoft radiation (l+ = l− = 0) possible and the hemisphere
momenta are simply given by the primary (anti-)quark momenta.

The fact that the sums over final states in Eq.(6.30) are now unrestricted enables us to use the
generalised optical theorem (see chapter 24 in [23]) to bring the jet functions into a form suitable for
direct evaluation. Concretely we can relate the sum over collinear matrix elements to the imaginary
part of the corresponding forward scattering amplitude, which in our case is just a vacuum matrix
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element, and therefore

Jm
n (Qk+

n −m2, µ) =
−1

4πNCQ
Disc

{∫
d4x e

i
2
k+
n x
−
tr
[
〈0|T

{
χ̄n,Q(0)

/̄n

2
χn,Q(x)

}
|0〉
]}
,

Jm
n̄ (Qk−n̄ −m2, µ) =

1

4πNCQ
Disc

{∫
d4y e

i
2
k−n̄ y

+
tr
[
〈0|T

{
χ̄n̄,−Q(y)

/n

2
χn̄,−Q(0)

}
|0〉
]}
,

(6.32)

where T denotes time-ordering and the different signs between sectors arise from anti-commuting the
jet fields into the same order. For the hemisphere mass distributions the momenta k+

n =
m2
H
Q − l+,

k−n̄ =
m2
H̄
Q − l− are dictated by the observable and physically correspond to the residual momenta of

each collinear sector. Finally, the discontinuity of the amplitude is related to its imaginary part via
Disc {M} = 2Im {iM} (see discussion below Eq.(7.14)).

With the main result Eq.(6.30) of this section in hand, it is now straightforward to specify to
thrust, which in the di-jet region is related to the hemisphere masses via Eq.(5.10). We thus insert
the thrust measurement using the identity

1 =

∫
dτ δ

(
τ −

m2
H +m2

H̄

Q2

)
, (6.33)

into Eq.(6.30) and integrate over the hemisphere masses to obtain

dσ
dτ

= σLO2,ε=0H(Q,µ)

∫
dk+

n dk
−
n̄ dl

+dl−dm2
Hdm

2
H̄ δ

(
τ −

m2
H +m2

H̄

Q2

)
(6.34)

× δ
(
k+
n + l+−m

2
H

Q

)
δ

(
k−n̄ + l−−

m2
H̄

Q

)
Jm
n (Qk+

n −m2, µ)Jm
n̄ (Qk−n̄ −m2, µ)Shemi(l

+, l−, µ),

where we have also made the hemisphere mass measurement explicit by reinstating the integrations
over k+

n , k
−
n̄ from Eq.(6.25). We introduce one more dummy variable

1 =

∫
dl δ(l − l+ − l−), (6.35)

which can be interpreted as the total momentum of the usoft radiation emitted into either hemisphere
and carry out the integral over the hemisphere masses which gives

dσ
dτ

= σLO2,ε=0H(Q,µ)

∫
dl
[∫

dk+
n dk

−
n̄ δ

(
τ − k−n̄

Q
− k+

n

Q
− l

Q

)
Jm
n (Qk+

n −m2, µ)Jm
n̄ (Qk−n̄ −m2, µ)

]
×
[∫

dl+dl−δ(l − l+ − l−)Shemi(l
+, l−, µ)

]
≡ σLO2,ε=0H(Q,µ)

∫
dl Jm

τ

(
τ − 2m2

Q2
− l

Q
, µ

)
Sτ (l, µ),

(6.36)

thus establishing the factorisation theorem for thrust. The jet and soft functions for thrust are
obtained by taking symmetric convolutions of the corresponding hemisphere quantities as shown in
Eq.(6.36) and at tree level give

Sτ (l, µ) = δ(l), Jm
τ

(
τ − 2m2

Q
− l

Q
, µ

)
= δ

(
τ − 2m2

Q2
− l

Q

)
, (6.37)

which immediately follows from Eq.(6.31) and Eq.(6.33).
Let us briefly discuss the physical interpretation of the factorisation theorem. Explicitly imple-

menting the delta functions in Eq.(6.36) allows us to better see how the hard, n-collinear, n̄-collinear,
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and usoft degrees of freedom enter into the various factorisation functions,

dσ
dτ

= σLO2 H(Q,µ)

∫
dl dl+dl−dk+

n dk
−
n̄ δ

(
τ − k−n̄

Q
− k+

n

Q
− l

Q

)
δ(l − l+ − l−)

× Jm
n (Q2τ −m2 −Qk−n̄ −Ql, µ) Jm

n̄ (Q2τ −m2 −Qk+
n −Ql, µ)

× Shemi(Qτ − k−n̄ − k+
n − l−, Qτ − k−n̄ − k+

n − l+, µ).

(6.38)

To start with we consider the argument of the n-collinear jet function Jm
n (Q2τn) which reads

Q2τn = Q2τ −m2 −Qk−n̄ −Ql. (6.39)

In the context of an event which has total thrust τ , we can interpret Eq.(6.39) as roughly the invariant
mass (squared) of an n-collinear jet that was initiated by a quark of mass m. The contribution Q2τn
due to this jet must then be the total thrust of the event Q2τ from which any contributions to
the n-collinear direction coming from other sectors (Qk−n̄ , Ql) are removed. Conventionally we also
subtract the primary quark mass m since we want to think of Q2τn as the invariant mass solely due
to n-collinear radiation off said quark. Similar interpretations can be applied to the arguments of
the n̄-collinear jet function Jm

n̄ (Q2τn̄) and the hemisphere soft function Shemi(Qτ
+
us, Qτ

−
us) featuring in

Eq.(6.38). Putting all of this together, the physical content of the factorisation theorem is that the
probability of observing an event with thrust τ � 1 is obtained as the product of

(i), the probability density to find an n-collinear jet with invariant mass Q2τn given by Jm
n times

(ii), the probability density to find an n̄-collinear jet with invariant mass Q2τn̄ given by Jm
n̄ times

(iii), the probability density of having usoft radiation with invariant mass Qτ−us(Qτ
+
us) emitted

into hemisphere H(H) given by Shemi, integrated over all values of k+
n , k

−
n̄ , l

+, l− consistent with the
measured value of τ imposed by the delta function in Eq.(6.38). All of this is multiplied by the
universal function H(Q) which specifies how the original qq̄-pair was produced in the hard QCD
interaction. This recipe holds to all orders in αs up to power corrections of O (µs/µj) ,O (ΛQCD/µh),
which involve the characteristic scales of each sector whose significance we will outline in the next
section.

With the factorisation theorem firmly established, we will now proceed to compute the hemisphere
jet functions for massive and massless primary quarks at NLO and state results for the hemisphere
soft- as well as the hard function.
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7 NLO ingredients for the factorisation theorem

Having derived the factorisation theorems for hemisphere masses Eq.(6.30) and thrust Eq.(6.36) we
want to focus now on calculating the various factorisation functions appearing in them at NLO.

From the results we will see that each factorisation function should be evaluated at a characteristic
scale to avoid the appearance of large logarithms. These scales will turn out to be

H(Q,µh) ↔ µh ' Q,
Jm
n (Qk+

n −m2, µj), J
m
n̄ (Qk−n̄ −m2, µj) ↔ µj ' m ' √τQ,
Shemi(l

+, l−, µs) ↔ µs ' m2/Q ' τQ,
(7.1)

which could have been estimated on general grounds from the arguments the individual factorisation
functions are assigned by the factorisation theorem in Eq.(6.38).

In a resummed calculation (see [28, 29]) these different scales would be evolved to a common
one using the renormalisation group equation (RGE) associated with each factorisation function.
This leads to the resummation of logarithmically enhanced terms and a qualitative agreement with
experiment as discussed in Sec. 4.2, up to the inclusion of non-perturbative hadronisation effects.
These can in fact also be accommodated by the factorisation theorem by splitting the soft function

Shemi(l
+, l−, µ) =

∫
d l̃+ dl̃−Spert

hemi(l
+ − l̃+, l− − l̃−, µ)Smod

hemi(l̃
+, l̃−), (7.2)

into a perturbatively calculable part Spert
hemi (asssuming µs � ΛQCD) and a model soft function Smod

hemi
(see [13]) encoding the dynamics at the non-perturbative scale, which for the purposes of this thesis
we can ignore.

Lastly we want to remark on the dependence of the factorisation theorem on the primary quark
mass m, which is entirely contained in the jet function Eq. (6.32). In particular we see that the
threshold, i.e. where the argument of the function vanishes, of the massless jet function Jm=0

n (Qk+
n )

is shifted by m2 compared to the massive jet function Jm
n (Qk+

n −m2). This is physically sound, since,
as we have seen, the jet function should be interpreted as proportional to the probability density
of producing a n-collinear jet with invariant mass given by its argument. For a primary quark of
mass m we therefore need at least k+

n = m2/Q to produce the leading order configuration where
the jet is formed only by that quark, whereas for a massless quark the jet can have arbitrarily low
invariant mass. Indeed, the final results will show that the jet functions will only have support above
their respective thresholds. This is nicely consistent with the factorisation theorem Eq.(6.38) in that
having both jet functions above threshold implies

τ ≥ 2m2

Q2
, (7.3)

and the inequality is saturated precisely at threshold where only the leading order qq̄-pair and no
additional radiation is produced.

7.1 Hard and hemisphere soft functions

The hard function featuring in the factorisation theorem Eq.(6.30) is obtained by squaring the Wilson
coefficient of the effective current Eq.(6.6) which in turn is computed by matching QCD onto SCET,
i.e. requiring that the effective theory reproduces the full theory matrix element at leading power,

〈qq̄|J µv (0)|0〉QCD − C(0)(Q,µ) 〈qq̄|Jµv (0)|0〉SCET
!

= 0 +O(λ2). (7.4)
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At next-to-leading order in αs this determines the bare Wilson coefficient

C(0)(Q,µ) = 1 +
αsCF

4π

(
µ2

−Q2 − i0

)ε{
− 2

ε2
− 3

ε
− 8 +

π2

6

}
, (7.5)

which still needs to be renormalised, using e.g. the MS-scheme for which the renormalisation condition
and factor read

fin
{
C(0)(Q,µ)− ZMS

C C(Q,µ)
}

!
= 0 ⇒ ZMS

C = 1 +
αsCF

4π

{
− 2

ε2
− 3

ε
− 2

ε
log
(

µ2

−Q2 − i0

)}
, (7.6)

The renormalisation condition should be read as to state that the finite parts of the bare and renor-
malised quantity must coincide. Finally the hard function is obtained from the renormalised Wilson
coefficient,

H(Q,µ) = |C(Q,µ)|2 = 1 +
αsCF

4π

[
−16 +

7π2

3
+ 6log

(
Q2

µ2

)
− 2log2

(
Q2

µ2

)]
. (7.7)

See [28, 29] for a detailed calculation of the above quantities.
Moving on to the hemisphere soft function, at next-to-leading order the diagrams in Fig. 7.8

contribute.

+ perms.

Fig. (7.8): Diagrams contributing to the SCET hemisphere soft function at O(αs). The usoft gluons are denoted by

regular curly lines. The permutations indicate the self-energy corrections for the remaining lines.

In fact most of the above diagrams can be shown to vanish. The non-trivial contributions only
involve the interference between Wilson lines associated with different collinear sectors, as we might
have expected from our observation in Eq.(2.39). Computing them using the Cutkosky cutting rules
gives a bare soft function

S
(0)
hemi(l

+, l−) = δ(l+)δ(l−) +
αsCF
π

{[
− 1

ε2
+
π2

12

]
δ(l+)δ(l−) +

1

ε

[
δ(l−)

[
θ(l+)µ

l+

]
+

+ δ(l+)

[
θ(l−)µ

l−

]
+

]
+ 2

[
δ(l−)

[
θ(l+)log(l+/µ)µ

l+

]
+

+ δ(l+)

[
θ(l−)log(l−/µ)µ

l−

]
+

]}
, (7.9)
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which, since we are dealing with a distribution, now needs to be renormalised through an appropriate
convolution

fin
{
S

(0)
hemi(l

+, l−)−
∫
dl̃+dl̃−ZMS

S (l+ − l̃+, l− − l̃−)Shemi(l̃
+, l̃−)

}
!

= 0, (7.10)

leading to an MS renormalisation factor

ZMS
S (l+, l−) = δ(l+)δ(l−) +

αsCF
π

{
− 1

ε2
δ(l+)δ(l−) +

1

ε

[
δ(l−)

[
θ(l+)µ

l+

]
+

+ δ(l+)

[
θ(l−)µ

l−

]
+

]}
. (7.11)

Together with the hemisphere jet functions which we will compute in the next section in more detail,
the result Eq. (7.7) and the renormalised version of Eq. (7.9) can be used inside the factorisation
theorem to recover the fixed order thrust distribution in the region τ ∼ 0.

7.2 Massive next-to-leading order SCET jet function

As derived in Eq.(6.32) the (n-collinear) SCET jet function is given as the discontinuity of a time-
ordered product involving the quark jet fields χan,α = W †nξan,α, with the collinear Wilson line given as the
adjoint of Eq.(5.61) and the collinear quark field Eq.(5.78) after the usoft decoupling transformation.
In terms of these quantities the jet function for a n-collinear primary quark of mass m takes the form

Jm
n (s) ≡ Jm

n (Qp+ −m2) ≡ 1

4πNC(n̄ · p)Disc {Mm
n (s)}

=
1

4πNC(n̄ · p)Disc

{
/̄nαβ

2
δab
∫
d4x e

i
2
p+x− 〈0|T

{
χbn,β(x)χ̄an,α(0)

}
|0〉
}
,

(7.12)

where compared to Eq.(6.32) we have made all colour and spinor indices explicit and assume the
quark to carry momentum pµ such that p− = n̄ · p = Q. In Eq.(7.12) we have also introduced the
convenient short-handMm

n (s) for the jet matrix element and the off-shellness variable s = p2 −m2.
We also recall that in deriving the factorisation theorem we have aligned the collinear momentum
along the thrust axis so that p2 = p+p− = Qp+ and p⊥ = 0. Subsequently we will use the various
notations for the argument of the jet function Jm

n (pµ,m) ≡ Jm
n (Qp+ −m2) ≡ Jm

n (p2 −m2) ≡ Jm
n (s)

where appropriate for the current purpose. At next-to-leading order the diagrams shown in Fig. 7.13
contribute to the jet function matrix elementMm

n (s).

Mm
n,1 Mm

n,2 Mm
n,3

Mm
n,4 Mm

n,5 Mm
n,6

Mm
n,δm

Fig. (7.13): Diagrams contributing to the SCET jet function at O(αs). Apart from the mass counter term Jδm the

same diagrams need to be considered for massive and massless primary quarks. n-collinear gluons are depicted as curly

lines with a straight central line.
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We would like to compute the contribution of each diagram to the jet function separately, hence
we write Eq.(7.12) as

Jm
n (s) =

∑
i

Jm
n,i(s) =

1

4πNC (n̄ · p)
∑
i

Disc
{
Mm

n,i(s)
}
, (7.14)

with the sum over all diagrammatic contributions i starting at leading order. Since the jet matrix
element satisfiesMm

n (s+ i0) =Mm
n (s− i0)∗ (a property satisfied by any analytic function that takes

real values along the real axis) its discontinuity is related to the imaginary part by

Disc {Mm
n (s)} = 2Im{iMm

n (s)}, (7.15)

hence we may use the equivalent expansion for the jet function

Jm
n (s) =

∑
i

Jm
n,i(s) =

1

2πNC (n̄ · p)
∑
i

Im{iMm
n,i(s)} ≡

∑
i

Im{J̃m
n,i(s)}. (7.16)

In the discussion to follow we will call the quantities on the left-hand side of Eq.(7.16) (the Jm
n,i’s)

contributions to the jet function and the quantities on the right-hand side (the J̃m
n,i’s) contributions

to the jet correlator. The former are simply given as the imaginary part of the latter.

7.3 Evaluation of diagrams using cutting rules

The computation of the diagrams Fig. 7.13 contributing to the jet function is carried out using the
conventional QCD Feynman rules supplemented by the additional Wilson line vertices arising in
SCET. This can be shown to reproduce the results following from the SCET Feynman rules derived
directly from the Lagrangian Eq.(5.81)[38]. The dimensional regularisation prescriptions employed are
outlined in App.B. For computational convenience all calculations are carried out in Feynman gauge
(ξ = 1 in Eq.(H.3)). Since, by Eq.(7.14), the jet function asks us to compute the discontinuity of each
matrix elementMm

n,i it makes sense to employ the Cutkosky cutting rules (see [39, 40] or chapter 24
in [23]).

Double Wilson line contribution Jm
n,1

The (double) Wilson line matrix element Mm
n,1 vanishes exactly in Feynman gauge, since it is pro-

portional to n̄2 = 0. For the purposes of this calculation we do not have to further concern ourselves
with it.

Single Wilson line contribution Jm
n,2

The first non-trivial contribution comes from the (single) Wilson line diagram Mm
n,2. Using the

Feynman rules as indicated above we can write down the jet matrix element,

Mm
n,2 = Tr

[
i(/p+m)

p2 −m2 + i0
(igsµ̃

εTAγµ)

∫
đdk

i(/p− /k +m)

(p− k)2 −m2 + i0

/̄n

2

](−igµνδAB
k2 + i0

)
(gsµ̃

εTB)
n̄ν

n̄ · k + i0

= −4g2
sCFNC µ̃

2ε n̄ · p
p2 −m2 + i0

∫
đdk

n̄ · (p− k)

[(p− k)2 −m2 + i0] [k2 + i0] [n̄ · k + i0]
. (7.17)

According to the Cutkosky cutting rules the discontinuity of the above amplitude splits into a
real (Mm,r

n,2 ) and virtual (Mm,v
n,2 ) part. Correspondingly we get two contributions to the jet function

Disc
{
Mm

n,2

}
≡Mm,r

n,2 +Mm,v
n,2 ⇒ Jm

n,2 = Jm,r
n,2 + Jm,v

n,2 , (7.18)
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which can also be interpreted diagrammatically by cutting the propagators as shown in Eq.(7.19),

Disc

 Mm
n,2

 =

Mm,r
n,2

+

Mm,v
n,2

. (7.19)

We proceed by computing the two contributions individually.

Jm,r
n,2 (real emission)

The real emission cut of the amplitude is obtained by taking the quark and gluon in the loop on-shell,
effectively replacing

1

k2 + i0
−→ −2πi θ(k0)δ(k2),

1

(p− k)2 −m2 + i0
−→ −2πi θ(p0 − k0)δ((p− k)2 −m2),

(7.20)

in the full amplitudeMm
n,2 of Eq.(7.17). The cut amplitudeMm,r

n,2 now takes the form

Mm,r
n,2 = 16π2g2

sCFNC
n̄ · p

p2 −m2 + i0
Im,r
n,2 , (7.21)

where the integral Im,r
n,2 we have to compute reads

Im,r
n,2 = µ̃2ε

∫
đdk θ(k0)θ(p0 − k0)δ(k2)δ((p− k)2 −m2)

n̄ · (p− k)

n̄ · k + i0
. (7.22)

The evaluation of the integral above will be carried out in detail here. Later integrals of a similar sort
are then understood to be calculated analogously. We start by inserting the identity 1 =

∫
ddl δ(d)(l−

p+ k) into the expression Eq.(7.22),

Im,r
n,2 =

µ̃2ε

(2π)4−2ε

∫
ddk

∫
ddl δ̃(k)δ̃(l,m)δ(d)(l − p+ k)

n̄ · l
n̄ · k + i0

, (7.23)

where we have introduced the notation δ̃(k,m) = θ(k0)δ(k2 − m2) to force the momenta onto the
positive energy mass shell, and use the short-hand δ̃(k) = δ̃(k, 0) for lightlike momenta.

This formally reduces Eq.(7.23) to an integration over the two-body phase space of the on-shell
outgoing momenta kµ and lµ with an incoming momentum pµ, which becomes particularly apparent
when the identity ddl δ̃(l,m) = dd−1l

2l0
is used in which case we get

Im,r
n,2 =

µ̃2ε

(2π)4−2ε

∫
dd−1k

2k0

dd−1l

2l0
δ(d)(l − p+ k)

n̄ · l
n̄ · k + i0

. (7.24)

However the above integral is not represented in the most useful coordinates for our purposes. Our
integrand is naturally a function of the lightcone coordinates of the momenta involved, hence it makes
sense to decompose the momentum conserving delta function in Eq.(7.24) as

δ(d)(l − p+ k) = 2 δ(l−− p− + k−)δ(l+− p+ + k+)δ(d-2)(l⊥ + k⊥). (7.25)

Here the assumption p⊥ = 0 such that p2 = p+p− was used again. We proceed by first carrying out
the integration over l and eliminating delta functions11,∫

ddl δ̃(l,m)δ(l− − p− + k−)δ(d-2)(l⊥ + k⊥) =
1

2

θ(p− − k−)

p− − k− . (7.26)

11For a derivation see App.B.
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Note that this relation holds irrespective of the mass shell m2 on which the momentum sits. As a
consequence of implementing the delta functions in Eq.(7.26) the l+-component is fixed to

l+ =
l2⊥ +m2

l−
=

k2
⊥ +m2

p− − k− . (7.27)

Applied to the integral Eq.(7.24) at hand this leaves us with a remaining integration over the gluon
momentum of the form

Im,r
n,2 =

µ̃2ε

(2π)4−2ε

∫
dd-1k

2k0
θ(p− − k−) δ

(
k2
⊥ +m2

p− − k− − p
+ + k+

)
1

k− + i0
. (7.28)

Using the fact that k2 = k+k− − k2
⊥ = 0 the delta function in Eq.(7.28) can be explicitly written in

terms of k+ which gives

δ

(
k+k− +m2

p− − k− − p+ + k+

)
=
p− − k−
p−

δ

(
k+ − p+

p−
(p− − k−) +

m2

p−

)
. (7.29)

Together with the lightcone decomposition of the phase space integration measure in Eq.(A.7) the
integral Eq.(7.28) can be written as

Im,r
n,2 =

µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)
1

p−

∫
dk+dk−

θ(k+)θ(k−)θ(p− − k−)

(k+k−)ε
δ

(
k+ − p+

p−
(p− − k−) +

m2

p−

)
p− − k−
k−

=
µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)
1

p−

∫
dk−

θ(p2 −m2 − p+k−)θ(k−)θ(p− − k−)(
(p2 −m2 − p+k−)k

−

p−

)ε p− − k−
k−

. (7.30)

Note that the i0 prescription can be dropped at this point since the lightcone propagator (k− +

i0)−1 is dimensionally regulated by the phase space measure. Rewriting the expression in terms of
the off-shellness variable s = p2 − m2 and changing variables to k− = s

p+a
−, where a− is now a

dimensionless parameter, the step functions in Eq.(7.30) imply

θ(s− p+k−)θ(k−)θ(p− − k−) = θ(1− a−)θ(a−)θ(p−)θ(s), (7.31)

leaving us with a single, straightforward final integral

Im,r
n,2 =

µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)
θ(p−)θ(s)

s+m2

(
s+m2

s2

)ε∫ 1

0
da−

(1− a−)s+m2

(a−)1+ε(1− a−)ε

=
µ̃2ε

(2π)4−2ε

π1−ε

2

(
s+m2

s2

)ε
Γ(−ε)

Γ(2− 2ε)
θ(p−)θ(s)

[
(1− 2ε) +

s

s+m2
ε

]
,

(7.32)

which is best carried out using Mathematica. Plugging this back into Eq.(7.21) yields the final result
for the real emission contribution

Mm,r
n,2 = 2αsCFNCp

−θ(p−)

[
eγE (s+m2)

µ2

]ε
Γ(−ε)

Γ(2− 2ε)

[
θ(s)µ4ε

s1+2ε
(1− 2ε) +

θ(s)µ4ε

s2ε

1

s+m2
ε

]
. (7.33)

For ε close to zero (|ε| < 1
2) we see that there is an additional singularity in Eq.(7.33) for s→ 0. Since

the limit ε → 0 has to be taken eventually, we regularise this singularity by replacing the offending
factor 1

s1+2ε with an ε-expansion in plus-distributions12,

θ(s)µ2aε

s1+aε
= − 1

aε
δ(s) +

1

µ2

[
µ2θ(s)

s

]
+

− aε

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

+O(ε2). (7.34)

12For a detailed definiton of plus-distributions see App. I.
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Adding to Eq.(7.33) the prefactor from our definition of the jet function Eq.(7.14) and expanding
to constant order in ε we obtain

Jm,r
n,2 =

αsCF
4π

θ(p−)

{[
1

ε2
− 1

ε
log
(
µ2

m2

)
− π2

4
+

1

2
log2

(
µ2

m2

)]
δ(s)−

[
1

ε
− log

(
µ2

m2

)]
2

µ2

[
µ2θ(s)

s

]
+

+
4

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

− 2θ(s)

[
1

s+m2
+

1

s
log
(

1 +
s

m2

)]}
, (7.35)

giving the final result for the real emission contribution to the jet function coming from Mm
n,2. In

arriving at the result in Eq.(7.35) we made use of the distributional identity

log
(

1 +
s

m2

) 1

µ2

[
µ2θ(s)

s

]
+

=
θ(s)

s
log
(

1 +
s

m2

)
, (7.36)

which therefore corresponds to a finite contribution to the jet function as s→ 0.

Jm,v
n,2 (virtual contribution)

The virtual cut contribution is obtained by cutting the single collinear quark propagator as indicated
in Eq.(7.19). This amounts to making the replacement

1

s+ i0
−→ −2πi θ(p0)δ(s), (7.37)

in the original amplitude Eq.(7.17), which leads to a virtual contribution of the form

Mm,v
n,2 = 8πig2

sCFNC θ(p
0)δ(s)p−Im,v

n,2 , (7.38)

with the on-shell (p2 = m2) loop integral to be evaluated given by

Im,v
n,2 = µ̃2ε

∫
đdk

p− − k−
[k2 − 2p · k + i0] [k2 + i0] [k− + i0]

. (7.39)

Note that since we assume n-collinear scaling of the external quark momentum we have p0 = p−

2 +

O(λ2), and can thus consistently set θ(p0) = θ(p−).
We begin the evaluation of Eq.(7.39) by rewriting it in terms of lightcone coordinates using the

decomposition Eq.(A.6). This gives us

Im,v
n,2 =

µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)

∫
dk+dk−d(k2

⊥) θ(k2
⊥) (k2

⊥)−ε(p− − k−)[
k+(k− − p−)− p+k− − k2

⊥ + i0
][
k+k− − k2

⊥ + i0
]
[k− + i0]

, (7.40)

where the solid angle integration was already performed according to Eq.(B.1). The integration over
k+ will now be carried out by application of the residue theorem.

Let us take a closer look at the pole structure of the integrand in the complex k+-plane. We find
two simple poles at the locations

(i) k+ =
k2
⊥
k−
− i0

k−
,

(ii) k+ = −k2
⊥ + p+k−

p− − k− +
i0

p− − k− .
(7.41)

We see that the two poles lie on the same half plane unless we have 0 < k− < p−, which implies that
the integral will vanish by Cauchy’s integral theorem if we do not impose the previous condition. Since
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we are looking for a non-trivial result we apply the restriction to k−, close the contour in the upper
half k+-plane, thereby picking up the pole corresponding to (ii) in Eq.(7.41), and find the residue

Rm,v
n,2 (pµ, k−,k2

⊥) = Res
(
k+ = −k2

⊥ + p+k−

p− − k− + i0

)
= −θ(k

2
⊥)θ(k−)θ(p− − k−) (k2

⊥)−ε(p− − k−)[
−k2
⊥p
− − (k−)2p+ + i0

]
[k− + i0]

.

(7.42)

With the k+ integration carried out, the integral in Eq.(7.40) becomes

Im,v
n,2 =

µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)

∫
dk−d(k2

⊥) (2πi)Rm,v
n,2 (k−,k2

⊥). (7.43)

Noting that the i0 prescription in the propagator involving k2
⊥ can be dropped since the denominator

is manifestly non-vanishing, we proceed by carrying out the k2
⊥ integration which yields∫ ∞

0
d(k2

⊥)
(k2
⊥)−ε

k2
⊥p
− + (k−)2p+

=
1

p−

(
p−

p+

)ε
(k−)−2ε Γ(ε)Γ(1− ε). (7.44)

Leaving the k− integral for last, we make the convenient change of variables k−=p−a− to obtain∫ 1

0
da−

1− a−
(a−)1+2ε

= − 1

2ε(1− 2ε)
. (7.45)

Plugging expressions Eq.(7.44), Eq.(7.45) back into Eq.(7.43) the overall result for the integral reads

Im,v
n,2 =

−i
16π2

(
4πµ̃2

m2

)ε
Γ(ε)

2ε(1− 2ε)
. (7.46)

Reinstating all the necessary prefactors from Eq.(7.38) to get the full result for the virtual cut we
arrive at

Mm,v
n,2 = αsCFNCp

−θ(p−)δ(s)

(
4πµ̃2

m2

)ε
Γ(ε)

ε(1− 2ε)
. (7.47)

Relating the above to the jet function as in Eq.(7.14) the result we are thus left with reads

Jm,v
n,2 =

αsCF
4π

θ(p−)

[
1

ε2
+

2

ε
+

1

ε
log
(
µ2

m2

)
+ 4 +

π2

12
+ 2log

(
µ2

m2

)
+

1

2
log2

(
µ2

m2

)]
δ(s). (7.48)

Final result for Jm
n,2

Finally we combine the real emission and virtual contributions Eqs.(7.35) and (7.48) to obtain

Jm
n,2 = Jm,r

n,2 + Jm,v
n,2 =

αsCF
4π

θ(p−)

{[
2

ε2
+

2

ε
+ 4− π2

6
+ 2log

(
µ2

m2

)
+ log2

(
µ2

m2

)]
δ(s) (7.49)

−
[

1

ε
− log

(
µ2

m2

)]
2

µ2

[
µ2θ(s)

s

]
+

+
4

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

− 2θ(s)

[
1

s+m2
+

1

s
log
(

1 +
s

m2

)]}
.

It should be noted that this result is in principle not infrared finite, and thus zero-bin subtractions[41]
should be taken into account to avoid double counting with the soft function. However, in the particu-
lar case of the diagram J2 the zero-bin can be shown to formally vanish in dimensional regularisation,
i.e. it is of the form 1

εUV
− 1
εIR

which vanishes when εUV ≡ εIR ≡ ε are identified. Thus, in what is
sometimes referred to as the pull-up mechanism, the zero-bin exchanges any IR poles occurring in
Eq.(7.49) with UV ones. This implies that no harm is done in pretending that all ε-poles in the above
result correspond to UV divergences to begin with.

The other single Wilson line diagram contribution Jm
n,3 can be shown to give an identical contri-

bution to Jm
n,2.
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Self energy contribution Jm
n,4

As before we start by writing down the full jet matrix elementMm
n,4 for the collinear quark self-energy

diagram as shown in Fig. 7.13,

Mm
n,4 = Tr

[
i(/p+m)

p2 −m2 + i0
(igsµ̃

εTAγµ)

∫
đdk

i(/p− /k +m)

(p− k)2 −m2 + i0
(igsµ̃

εTBγν)
i(/p+m)

p2 −m2 + i0

/̄n

2

](−iδABgµν
k2 + i0

)

= g2
s µ̃

2εCFNC
1

[p2 −m2 + i0]2

∫
đdk

Tr
[
(/p+m)γµ(/p− /k +m)γµ(/p+m) /̄n2

]
[k2 + i0] [(p− k)2 −m2 + i0]

. (7.50)

We evaluate the trace (e.g. with FeynCalc[42]) and bring it to a convenient form for integration,

Mm
n,4 = 4g2

s µ̃
2εCFNC

1

[s+ i0]2

∫
đdk

[
(1− ε) [2p−p · k − s(p− + k−)] + 2p−m2

]
[k2 + i0] [(p− k)2 −m2 + i0]

, (7.51)

allowing for an immediate comparison with the corresponding amplitude for a massless quark, which
will become useful later.

Just as before we split the contribution of the collinear quark self-energy into a real emission
(Mm,r

n,4 ) and a virtual (Mm,v
n,4 ) part by means of the Cutkosky cutting rules, such that

Disc
{
Mm

n,4

}
≡Mm,r

n,4 +Mm,v
n,4 ⇒ Jm

n,4 = Jm,r
n,4 + Jm,v

n,4 , (7.52)

In the case of the collinear quark self-energy we have to be a bit more careful about employing
the regular cutting rules. In particular we choose to write Eq.(7.52) diagrammatically in a peculiar
way,

Disc

 Mm
n,4

 =

Mm,r
n,4

+

Mm,v
n,4

, (7.53)

where in the last diagram both of the outer quark propagators are cut. In which sense this double-cut
is to be understood will be clarified soon (c.f. Eq.(7.61)).

Jm,r
n,4 (real emission)

To compute the real emission contribution from the matrix elementMm
n,4 we perform the same cuts

as we did forMm
n,2 (see Eq.(7.20)). This leads to the amplitude

Mm,r
n,4 = −16π2g2

sCFNC
p−

[s+ i0]2
Im,r
n,4 , (7.54)

with the integral over the loop momentum given by

Im,r
n,4 = µ̃2ε

∫
đdk δ(k2)δ((p− k)2 −m2)θ(k0)θ(p0 − k0)

{
(1− ε)

[
2k · p− s

(
1 +

k−

p−

)]
+ 2m2

}
. (7.55)

Performing steps identical to what we described in detail for the real emission partMm,r
n,2 , we arrive

at the analogous expression to Eq.(7.32), which now reads

Im,r
n,4 = − µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)
θ(p−)θ(s)s1−2ε

(s+m2)1−ε

∫ 1

0
da−

(1− ε) s2

s+m2a
− − 2m2

[a−(1− a−)]ε
, (7.56)
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where we have k− = s
p+a

−. The remaining integral over a− can be computed using Mathematica and
proceeding to reinstate prefactors according to Eq.(7.54) we obtain

Mm,r
n,4 = −αsCFNC

θ(p−)p−

s+m2

[
eγE (s+m2)

µ2

]ε
Γ(1− ε)
Γ(2− 2ε)

[
4m2 θ(s)µ

4ε

s1+2ε
− (1− ε)θ(s)µ

4ε

s2ε

s

s+m2

]
.

(7.57)

Next we expand the first term into plus distributions using Eq.(7.34) producing the singular part of
the contribution, while the second term yields only finite contributions in the limit s→ 0. In summary
the result for the real emission contribution to the jet function Eq.(7.14) from the collinear quark self
energy diagram reads

Jm,r
n,4 =

αsCF
4π

θ(p−)

{[
2

ε
+ 4− 2log

(
µ2

m2

)]
δ(s)− 4

µ2

[
µ2θ(s)

s

]
+

+ θ(s)
5s+ 4m2

(s+m2)2

}
. (7.58)

To arrive at the above result the distributional identity

1

µ2

m2

s+m2

[
µ2θ(s)

s

]
+

=
1

µ2

[
µ2θ(s)

s

]
+

− θ(s) 1

s+m2
, (7.59)

was used, which allowed us to cleanly separate singular and non-singular parts of the amplitude in
the limit s→ 0.

Jm,v
n,4 (virtual contribution)

Note that since the amplitude in Eq.(7.51) is quadratic in the collinear quark propagator we cannot
cut a single line and set the quark on-shell in the usual way without the other propagator blowing up.

This calls for an alternative cutting prescription when higher powers of identical propagators are
present in an amplitude. Now recall that the traditional Cutkosky cutting rule prompts us to replace

1

p2 + i0
−→ 2iθ(p0) Im

{
1

p2 + i0

}
= −2πi θ(p0)δ(p2), (7.60)

where the last equality follows from the famous Sokhotski-Plemelj theorem. We propose by analogy
the natural (admittedly ad-hoc) generalisation to higher powers of propagators

1

[p2 + i0]n
−→ 2iθ(p0) Im

{
1

[p2 + i0]n

}
= 2πiθ(p0)

(−1)n

(n− 1)!

∂n−1

∂(p2)n−1
δ(p2), (7.61)

which can be derived by differentiating Eq.(7.60) n times with respect to p2 and which for n = 1

correctly reduces to the familiar prescription.
It is in this sense that the double-cut in Eq.(7.53) is to be understood. Hence, to obtain the

virtual contribution coming from the jet matrix elementMm
n,4 we have to make the replacement

1

[s+ i0]2
−→ 2πi θ(p0)δ′(s), (7.62)

in the amplitude Eq.(7.51) which leads us to

Mm,v
n,4 = 8πig2

sCFNCp
−θ(p−)Im,v

n,4 (s,m)δ′(s), (7.63)

where we explicitly display the (s,m)-dependence of the loop integral given by

Im,v
n,4 (s,m) = µ̃2ε

∫
đdk

(1− ε)
[
2k · p− s

(
1 + k−

p−

)]
+ 2m2

[k2 + i0] [(p− k)2 −m2 + i0]
. (7.64)
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At this point we note that by the product rule for differentiation (in s) of distributions we can write

Im,v
n,4 (s,m)δ′(s) = Im,v

n,4 (0,m)δ′(s)− (Im,v
n,4 )′(0,m)δ(s), (7.65)

where the symbol ′ always indicates differentiation with respect to the off-shellness s. This allows
us to compute all contributions to Eq.(7.63) in terms of loop integrals where the collinear quark is
manifestly on-shell. While the integral in the first term of Eq.(7.65) reads

Im,v
n,4 (0,m) = µ̃2ε

∫
đdk

2
[
(1− ε)k · p+m2

]
[k2 + i0] [k2 − 2k · p+ i0]

, (7.66)

the derivative on the loop integral in the second term can be formally interpreted in the sense of
dimensional regularisation as

(Im,v
n,4 )′(0,m) =

∂Im,v
n,4

∂s

∣∣∣∣
s=0

≡ pµ

2p2

∂Im,v
n,4

∂pµ

∣∣∣∣
s=0

= µ̃2ε

∫
đdk

(1− ε)
[
k·p
m2 −

(
1 + k−

p−

)]
[k2 + i0] [k2 − 2k · p+ i0]

+ µ̃2ε

∫
đdk

2
[
ε k · p+ (1− ε) (k·p)2

m2 −m2
]

[k2 + i0] [k2 − 2k · p+ i0]2
,

(7.67)

noting that ∂
∂s is just as good as ∂

∂p2 when deriving Im,v
n,4 for constant m.

Let us first turn to evaluate Eq.(7.66). By completing the square in the numerator we can bring
the integral to the form

Im,v
n,4 (0,m) ≡ Im,v

n,4,1 + Im,v
n,4,2 = µ̃2ε

∫
đdk

1− ε
[k2 − 2p · k + i0]

+ µ̃2ε

∫
đdk

2m2

[k2 + i0] [k2 − 2p · k + i0]
.

(7.68)

Note that in arriving at this decomposition we have neglected a scaleless integral of the form
∫
k k
−2.

At this point it is crucial to realise that the integral Im,v
n,4,1 cannot be evaluated by our standard

method of contours. Indeed, shifting the momentum qµ = kµ− pµ and using lightcone coordinates we
obtain

Im,v
n,4,1 '

∫
dq−dq+d(q2

⊥)
(q2
⊥)−ε(1− ε)

q+q− − q2
⊥ −m2 + i0

, (7.69)

which only falls like (q±)−1 for large q± and thus does not vanish fast enough for contributions from
the contour off the real axis. We therefore have to evaluate the integral by more conventional means,
like using the 1-loop master formula in Eq.(B.6), which applied to our case yields

Im,v
n,4,1 =

iπ2−εµ̃2ε

(2π)4−2ε
Γ(ε)(m2)1−ε. (7.70)

The second integral in Eq.(7.68) can again be treated by contour integration in the usual way. In
terms of lightcone coordinates we get

Im,v
n,4,2 =

µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)

∫
dk−dk+d(k2

⊥) θ(k2
⊥) 2m2(k2

⊥)−ε[
k+k− − k2

⊥ + i0
] [
k+k− − k2

⊥ − p−k+ − p+k− + i0
] . (7.71)

Analogous to how we proceeded for the virtual contribution Mm,v
n,2 we identify the two poles in the

complex k+-plane which we find at

(i) k+ =
k2
⊥
k−
− i0

k−
,

(ii) k+ = −k2
⊥ + p+k−

p− − k− +
i0

p− − k− ,
(7.72)
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which forces us to impose 0 < k− < p− to get a non-vanishing result. Choosing the contour to enclose
(ii) we pick up the residue

Rm,v
n,4,2(pµ, k−,k2

⊥) = Res
(
k+ = −k2

⊥ + p+k−

p−−k− + i0

)
=
θ(k−)θ(p− − k−)θ(k2

⊥)(k2
⊥)−ε

p−k2
⊥ + p+(k−)2 − i0 . (7.73)

Thus, after the residue theorem has been applied we can write Eq.(7.71) as

Im,v
n,4,2 =

µ̃2ε

(2π)4−2ε

π1−ε(2πi)

2Γ(1− ε)

∫ p−

0
dk−

∫ ∞
0

d(k2
⊥)

(k2
⊥)−ε

p−k2
⊥ + p+(k−)2 − i0 , (7.74)

in which the remaining integrations can be performed by the use of Mathematica. The final results
for Im,v

n,4,2 and the total integral Im,v
n,4 (0,m) read

Im,v
n,4,2 =

iπ2−εµ̃2ε

(2π)4−2ε

2Γ(ε)

1− 2ε
(m2)1−ε,

Im,v
n,4 (0,m) = Im,v

n,4,1 + Im,v
n,4,2 =

i

16π2

(
4πµ̃2

m2

)ε
Γ(ε)

3− 2ε

1− 2ε
m2.

(7.75)

Let us consider the contribution of this integral to the jet function right away, without worrying about
the second term in Eq.(7.65) for the moment. Reinstating all necessary prefactors from Eq.(7.63) and
Eq.(7.14), and expanding in ε we arrive at

Jm,v
n,4 ⊃

αsCF
4π

θ(p−)δ′(s)

(
4πµ̃2

m2

)ε
(−2Γ(ε))

3− 2ε

1− 2ε
m2

=
αsCF

4π
θ(p−)δ′(s) 2m2

[
−3

ε
− 4− 3log

(
µ2

m2

)]
= θ(p−)δ′(s) 2m2δZOS

m ,

(7.76)

which we recognise from QCD as the one-loop mass renormalisation factor in the on-shell scheme,

δZOS
m =

αsCF
4π

[
−3

ε
− 4− 3log

(
µ2

m2

)]
. (7.77)

The symbol ⊃ in Eq.(7.76) denotes the fact that we are only showing a subset of all the terms in Jm,v
n,4

on the right-hand side.
With this result in mind we now turn to computing the second contribution to Jm,v

n,4 which comes
from Eq.(7.67). We will see that this integral is in fact related to the other renormalisation factor
relevant for the diagram.

In principle we could proceed with a (PV13) decomposition of Eq.(7.67) analogous to what we did
for Im,v

n,4 (0,m) in Eq.(7.68), again identifying integrals that can be evaluated by contour integration and
those that cannot. This procedure would allow us to arrive at an analytic expression for (Im,v

n,4 )′(0,m)

similar to Eq.(7.75). Since we have discussed all necessary techniques to perform this calculation, we
do not mention any further details at this point and state the result in its already expanded form
which can be obtained directly using software like PackageX [45],

(Im,v
n,4 )′(0,m) =

i

16π2

[
− 1

εIR
− 1

2εUV
− 2− 3

2
log
(
µ2

m2

)]
. (7.78)

Note that we have left an explicit distinction between IR and UV poles. This leads to a jet function
contribution

Jm,v
n,4 ⊃

αsCF
4π

θ(p−)δ(s)

[
− 2

εIR
− 1

εUV
− 4− 3log

(
µ2

m2

)]
= θ(p−)δ(s) δZOS

ψ , (7.79)

13Passarino-Veltman[43, 44]
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which exactly reproduces the on-shell wavefunction renormalisation factor δZOS
ψ of a massive quark

in QCD. When we add the virtual contribution above to the real emission result Eq.(7.58), it is in
fact the εIR divergence from Eq.(7.79) that cancels between them, leaving the pure εUV pole from
Eq.(7.76) in the final result.

From our equations Eq.(7.76) and Eq.(7.79) now follows the beautifully simple result for the
“double-cut” virtual contribution from the collinear quark self energy in Eq.(7.53),

Jm,v
n,4 = θ(p−){δZOS

ψ δ(s) + 2m2δZOS
m δ′(s)}

=
αsCF

4π
θ(p−)

{
−
[

3

ε
+ 4 + 3log

(
µ2

m2

)](
δ(s) + 2m2δ′(s)

)}
,

(7.80)

where we have now neglected to distinguish between UV and IR divergences. While in the following
we will explicitly introduce a mass counter term to absorb the UV divergences coming from δZOS

m , no
such term needs to be considered for the wavefunction renormalisation δZOS

ψ . Recall that this was
also the case in full QCD where the UV divergences associated with the self energy correction of the
external legs simply canceled in the sum of all virtual contributions (c.f. App.C).

Final result for Jm
n,4

It is now time to collect the results for the real emission and virtual parts Eqs.(7.58) and (7.80) to
obtain the full discontinuity of the collinear quark self-energy,

Jm
n,4 = Jm,r

n,4 + Jm,v
n,4 =

αsCF
4π

θ(p−)

{
−
[

1

ε
+ 5log

(
µ2

m2

)]
δ(s)− 4

µ2

[
µ2θ(s)

s

]
+

− 2m2

[
3

ε
+ 4 + 3log

(
µ2

m2

)]
δ′(s) + θ(s)

5s+ 4m2

(s+m2)2

}
.

(7.81)

Note that unlike the result we obtained for Jm
n,2 in Eq.(7.49) this is infrared finite since the cancellation

of IR-divergences has occurred between the real and virtual contribution within the diagram. Therefore
even in principle no zero-bin subtractions need to be considered.

Wilson line tadpole contributions Jm
n,5 and Jm

n,6

The Wilson line tadpole matrix elementsMm
n,5 andMm

n,6 are both proportional to n̄2 = 0 as long as
we are in Feynman gauge. Thus there is nothing for us to do.

Mass counter term Jm
n,δm

The mass counter term will be calculated in an arbitrary mass scheme which is related to the on-shell
scheme by the finite difference of renormalisation factors

δm = δZm − δZOS
m . (7.82)

The full jet matrix element pertaining to the counter term is then given by

Mm
n,δm = Tr

[
i(/p+m)

p2 −m2 + i0
(−im δZm)

i(/p+m)

p2 −m2 + i0

/̄n

2

]
=

4ip−NC

[s+ i0]2
m2δZm, (7.83)

where we recall that the factor of NC comes from the implicit trace over colours in Eq.(7.12). Em-
ploying the generalised cutting rule Eq.(7.61) and collecting prefactors from Eq.(7.14) we obtain

Jm
n,δm = −2m2δZmθ(p

−)δ′(s) = −2m2
(
δZOS
m + δm

)
θ(p−)δ′(s). (7.84)

By construction the first term on the right-hand side of Eq.(7.84) precisely cancels the UV-divergent
part of Jm

n,4 (c.f. Eq.(7.81)) which is proportional to m2.
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7.4 Massive jet function and jet correlator results

Collecting the results for each contributing diagram (c.f. Eqs.(7.49), (7.81) and (7.84)), and adding
the leading order result Eq.(6.31), we give the final expression for the massive SCET jet function
Eq.(7.12) up to next-to-leading order,

Jm
n = Jm

n,LO + Jm
n,NLO = Jm

n,LO + 2Jm
n,2 + Jm

n,4 + Jm
n,δm

= δ(s)− 2m2δmθ(p
−)δ′(s) +

αsCF
4π

θ(p−)

{[
4

ε2
+

3

ε
+ 8− π2

3
− log

(
µ2

m2

)
+ 2log2

(
µ2

m2

)]
δ(s)

−
[

1

ε
+ 1− log

(
µ2

m2

)]
4

µ2

[
µ2θ(s)

s

]
+

+
8

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

+ θ(s)

[
s

(s+m2)2
− 4

s
log
(

1 +
s

m2

)]}
. (7.85)

This agrees with the expression found in the literature[13], which was obtained not by the use of
cutting rules but by explicitly taking the imaginary part of the amplitude after evaluation of the jet
correlators, thus providing a good consistency check for our calculation.

For later use we also state the results for the corresponding jet correlators as defined in Eq.(7.16)
which can be obtained by straightforward computation of the amplitudes Eq.(7.17) and Eq.(7.50)
without employing the Cutkosky rules, and read

J̃m
n = J̃m

n,LO + J̃m
n,NLO = J̃m

n,LO + 2J̃m
n,2 + J̃m

n,4 + J̃m
δm ,

J̃m
n,LO(s) = − 1

π

1

s+ i0
,

J̃m
n,2(s) =

αsCF
4π

1

π

1

s+ i0

{
− 2

ε2
− 2

ε
− π2

2
− 4− 2

[
1

ε
+ 1− log

(
µ2

m2

)]
log
(

µ2

−s− i0

)
− log2

(
µ2

m2

)
− 2log2

(
µ2

−s− i0

)
+

2m2

s+m2 + i0
log
(

m2

−s− i0

)
− 2log

(
m2

−s− i0

)
log
(

1 +
s+ i0

m2

)
+ 2Li2

(−s− i0
m2

)}
,

J̃m
n,4(s) + J̃m

n,δm(s) = − 1

π

2m2δm

[s+ i0]2
+
αsCF

4π

1

π

1

s+ i0

{
1

ε
+ log

(
µ2

m2

)
+ log

(
m2

−s− i0

)
+

s

s+m2 + i0
−m2 5m2 + 6s

[s+m2 + i0]2
log
(

m2

−s− i0

)}
. (7.86)

The above expressions can be shown to correspond to the jet function contributions we computed
above by making use of the imaginary parts identities listed in Eq.(I.5).

7.5 Massless jet function and jet correlator results

For the purposes of this thesis we will need the jet function contributions for the case of massless
primary quarks as well. The computation of the relevant quantities proceeds in complete analogy
to what was shown above for massive quarks, whence only the final results are stated. We start by
quoting the full massless next-to-leading order SCET jet function,

Jm=0
n = Jm=0

n,LO + Jm=0
n,NLO = Jm=0

n,LO + 2Jm=0
n,2 + Jm=0

n,4 (7.87)

= δ(p2) +
αsCF

4π

{[
4

ε2
+

3

ε
+ 7− π2

]
δ(p2)−

[
4

ε
+ 3

]
1

µ2

[
µ2θ(p2)

p2

]
+

+
4

µ2

[
µ2θ(p2)log

(
p2/µ2

)
p2

]
+

}
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with the off-shellness now given by s = p2, and where the individual contributions (each corresponding
to its respective diagram in Fig. 7.13) yield

Jm=0
n,LO (p2) = δ(p2),

Jm=0
n,2 (p2) =

αsCF
4π

{[
2

ε2
+

2

ε
+ 4− π2

2

]
δ(p2)−

[
1

ε
+ 1

]
2

µ2

[
µ2θ(p2)

p2

]
+

+
2

µ2

[
µ2θ(p2)log

(
p2/µ2

)
p2

]
+

}
,

Jm=0
n,4 (p2) =

αsCF
4π

{
−
[

1

ε
+ 1

]
δ(p2) +

1

µ2

[
µ2θ(p2)

p2

]
+

}
. (7.88)

Just as before, the Cutkosky cutting rules allow us to split the next-to-leading order contributions
in Eq.(7.88) into a real emission (Jm=0,r

n ) and a virtual (Jm=0,v
n ) part,

Jm=0,r
n,2 = Jm=0

n,2 , Jm=0,v
n,2 = 0, Jm=0,r

n,4 = Jm=0
n,4 , Jm=0,v

n,4 = 0. (7.89)

We note that the virtual contributions to both diagrams are formally zero in dimensional regularisation
(scaleless). Thus the full amplitudes are determined entirely by the real emission part.

For reference we also state the explicit expressions for the jet correlators, which are related to the
jet function as in Eq.(7.16),

J̃m=0
n = J̃m=0

n,LO + J̃m=0
n,NLO = J̃m=0

n,LO + 2J̃m=0
n,2 + J̃m=0

n,4 ,

J̃m=0
n,LO (p2) = − 1

π

1

p2 + i0
,

J̃m=0
n,2 (p2) =

αsCF
4π

1

π

1

p2 + i0

{
− 2

ε2
− 2

ε
− 2

[
1

ε
+ 1

]
log
(

µ2

−p2 − i0

)
− log2

(
µ2

−p2 − i0

)
− 4 +

π2

6

}
,

J̃m=0
n,4 (p2) =

αsCF
4π

1

π

1

p2 + i0

{
1

ε
+ 1 + log

(
µ2

−p2 − i0

)}
. (7.90)

7.6 Jet function renormalisation

Since the pole structure of the massive jet function coincides with that of the massless one (c.f.
Eqs.(7.85) and (7.87)), the renormalisation factor required to render these quantities finite can be
chosen identically for both. We conventionally take the renormalised (Jn,ren) and bare (J (0)

n ) jet
function to be related by

Jn,ren(s) =

∫
ds′ Z−1

J (s− s′)J (0)
n (s′), (7.91)

where s, s′ stand for the off-shellness in both the massive and massless case. In the MS-scheme the
renormalisation factor is given by

ZMS
J (s) = δ(s) +

αsCF
4π

{[
4

ε2
+

3

ε

]
δ(s)− 4

ε

1

µ2

[
µ2θ(s)

s

]
+

}
. (7.92)

In fact the above renormalisation factor even cancels the divergences appearing in the jet correlators
in Eq.(7.90) and Eq.(7.86) when appropriately convolved with them. We will explicitly check this
claim by renormalising the massless correlator

J̃m=0
n,ren (s) =

∫
ds′

(
ZMS
J

)−1
(s− s′)J̃m=0 (0)

n (s′)

= − 1

π

1

s+ i0

{
1 +

αsCF
4π

[
7− π2

3
+ 3log

(
µ2

−s− i0

)
+ 2log2

(
µ2

−s− i0

)]}
,

(7.93)
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where, crucially, the convolution properties of the plus distributions in Eq.(I.6) were used. As claimed,
the result does no longer contain any divergences. We proceed by taking the imaginary part of
Eq.(7.93), employing the identities listed in Eq.(I.5) to arrive at

Im
{
J̃m=0
n,ren (s)

}
= δ(s) +

αsCF
4π

{[
7− π2

]
δ(s)− 3

µ2

[
µ2θ(s)

s

]
+

+
4

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

}
, (7.94)

which is the exact result we would get by directly performing the convolution in Eq.(7.91). This
establishes the consistency condition Im{J̃m=0

n,ren } = Jm=0
n,ren , in essence telling us that renormalising and

taking the imaginary part of the jet matrix elements commute. The massive jet function (and matrix
elements) can be treated analogously.

7.7 Discussion of results and non-local singularity

Comparing the results for the massive Eq.(7.85) and massless Eq.(7.87) jet function we see that the
divergences between the two naively agree, apart form the threshold shift discussed at the beginning
of this section. As we have remarked before, some of the divergences, i.e. those from the diagram J2

in Eq.(7.49), in fact correspond to IR divergences and are only converted to proper UV divergences
through the scaleless zero-bin contributions, which can be shown to be identical for the massive and
massless jet function.

This implies that when the massless jet function is appropriately subtracted (in a sense we will
outline shortly) from the massive jet function all poles in ε must cancel and the result should be finite
in d = 4 dimensions, regardless of whether zero-bin cancellations are explicitly considered or not.

Moreover, we were able to split the jet functions into real emission and virtual parts Eqs.(7.19)
and (7.53), which should be regarded as analogues to the respective contributions Eqs.(2.69) and (2.70)
in the full QCD computation of thrust, since they are directly related through the factorisation theorem
Eq.(6.36). Note however, that in the effective theory calculation new kinds of divergences compared to
QCD (c.f. Eq.(3.52)) have occurred. In particular the real emission graph of the Wilson line diagram
contains a singularity of the type

Jm,r
n,2 ⊃ −θ(p−)

αsCF
4π

1

ε

4

µ2

[
µ2θ(s)

s

]
+

, (7.95)

with s = p2 −m2 and an analogous contribution in the massless jet function with s = p2. Since the
ε-pole multiplies a plus distribution, and not simply a delta function δ(s) the divergence as ε → 0

persists for any finite value of s, whence we will call this a non-local divergence. This contrasts
with the real and virtual contributions to the thrust distribution in QCD or indeed with all other jet
function diagrams for which the limit ε→ 0 can be safely taken as long as s 6= 0 since all ε-poles arise
as local threshold singularities, i.e. they are proportional to δ(τ) or δ(s) respectively. In particular
this implies that we cannot use conventional subtraction terms, like the ones we derived in Eq.(3.48),
to cancel this non-local divergence. This provides the motivation for the introduction of the so-called
“subtracted jet function” in the next section.

The origin of the non-local divergence is the eikonal structure of the Wilson line propagator
(n · k + i0)−1 (c.f. Eq.(7.17)). In a conventional SCET calculation the IR divergence of the naive
result in Eq.(7.95) would be pulled up to the UV by the zero-bin contribution and then removed using
an appropriate renormalisation factor (see Eq.(7.92)).

7.8 Subtracted massive jet function: a first look

We have already hinted that the non-local divergence can be canceled between the massive and
massless jet function. To facilitate the subtraction we compute the ratio of the two which may be
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schematically written as

Jm
n,sub = (Jm=0

n )−1 ∗ Jm
n , (7.96)

where the symbol ∗ on the right-hand side is short-hand for a convolution (c.f. Eq.(7.100)) in the
off-shellness of the jet functions involved. We will refer to the object on the left-hand side as the
“subtracted massive jet function”. The claim is that in the ratio Eq.(7.96) the divergences cancel
diagram by diagram and that the dependence on the renormalisation scale µ drops out in their sum.
To conclude, we add up all contributions and present the final, subtracted jet function.

The inverse massive(massless) jet function is defined by the equation

(Jm(=0)
n )−1 ∗ Jm(=0)

n
!

= δ ⇒ (Jm(=0)
n )−1 = J

m(=0)
n,LO − Jm(=0)

n,NLO +O(α2
s), (7.97)

which at NLO leads us to the expression on the right. Compare this to the jet functions Eqs.(7.85)
and (7.87) where the sign between LO and NLO contributions is exactly opposite. The δ on the left-
hand side of Eq.(7.97) denotes a delta function with threshold appropriate to the mass m associated
with the primary quark, i.e. δ(p2 −m2) in the massive, and δ(p2) in the massless case.

Both jet functions are written in terms of their expansion into LO and NLO contributions (c.f.
Eqs.(7.85) and (7.88)), which means that the ratio in Eq.(7.96) can be expressed more explicitly as

Jm
n,sub ≡ Jm=0

n,LO ∗ Jm
n,LO + Jm=0

n,LO ∗ Jm
n,NLO − Jm=0

n,NLO ∗ Jm
n,LO +O(α2

s)

= Jm=0
n,LO ∗ Jm

n,LO + Jm=0
n,LO ∗ (2Jm

n,2 + Jm
n,4 + Jm

n,δm)− (2Jm=0
n,2 + Jm=0

n,4 ) ∗ Jm
n,LO +O(α2

s)

≡ Jm
n,LO,sub + 2Jm

n,2,sub + Jm
n,4,sub +O(α2

s),

(7.98)

The individual subtracted diagram-by-diagram contributions in the second line of Eq.(7.98) read

Jm
n,LO,sub = Jm=0

n,LO ∗ Jm
n,LO,

Jm
n,2,sub = Jm=0

n,LO ∗ Jm
n,2 − Jm=0

n,2 ∗ Jm
n,LO,

Jm
n,4,sub = Jm=0

n,LO ∗ (Jm
n,4 + Jm

n,δm)− Jm=0
n,4 ∗ Jm

n,LO,

(7.99)

where we have chosen to add the mass counter term to the definition of the subtracted diagram Jm4,sub,
in order to have only manifestly finite quantities on the left-hand side.

To make transparent the notation we use to calculate the ratios shown in Eq.(7.99) we write out
the convolution in detail at the level of the sum of diagrams

Jm
n,sub(pµ,m) ≡ Jm

n,sub(p2 −m2) =

∫
dq2 (Jm=0

n )−1(p2 − q2) Jm
n (q2 −m2)

=

∫
dq2 Jm=0

n,LO (p2 − q2) Jm
n,LO(q2 −m2)

+

∫
dq2

[
Jm=0
n,LO (p2 − q2) Jm

n,NLO(q2 −m2)− Jm=0
n,NLO(p2 − q2) Jm

n,LO(q2 −m2)

]
+O(α2

s)

= δ(p2 −m2) +
[
Jm
n,NLO(p2 −m2)− Jm=0

n,NLO(p2 −m2)
]

+O(α2
s). (7.100)

Here the convolution acts as a shift in the threshold of the massless jet function such that the sub-
tracted result has a threshold consistent with a massive jet function. Computing the NLO contribu-
tions to Eq.(7.100) diagram by diagram we start with

Jm
n,2,sub(s) =

αsCF
4π

{[
π2

3
+ 2log

(
µ2

m2

)
+ log2

(
µ2

m2

)]
δ(s) +

[
1 + log

(
µ2

m2

)]
2

µ2

[
µ2θ(s)

s

]
+

+
2

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

− 2 θ(s)

[
1

s+m2
+

1

s
log
(

1 +
s

m2

)]}
,

(7.101)
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which shows that indeed the divergences cancel between the massive and the massless jet function. To
make the µ-independence of the result, which is not readily visible in Eq.(7.101), explicit, we perform
the substitution s = κ2x for some dummy scale κ. This allows us to use the recursion relation for
plus distributions in Eq.(I.4), thereby effectively replacing any occurrence of µ with κ in the above
result for Jm

n,2,sub. Since we are free to choose κ independently of the renormalisation scale µ, the
claim follows.

We proceed by giving the result for the subtracted contribution of Jm
n,4,sub in its already manifestly

µ-independent form,

Jm
n,4,sub(s) = −2m2δmδ

′(s) +
αsCF

4π

{[
1− 5log

(
κ2

m2

)]
δ(s)− 5

κ2

[
κ2θ(s)

s

]
+

+ θ(s)
5s+ 4m2

(s+m2)2

}
.

(7.102)

Finally adding all the results as indicated in Eq.(7.98), we obtain the full subtracted jet function

Jm
n,sub(s) = δ(s)− 2m2δmδ

′(s) +
αsCF

4π

{[
1 +

2π2

3
− log

(
κ2

m2

)
+ 2log2

(
κ2

m2

)]
δ(s)

−
[
1− 4log

(
κ2

m2

)]
1

κ2

[
κ2θ(s)

s

]
+

+
4

κ2

[
κ2θ(s)log

(
s/κ2

)
s

]
+

+ θ(s)

[
s

(s+m2)2
− 4

s
log
(

1 +
s

m2

)]}
.

(7.103)

To avoid large logarithms we evaluate the jet function at its natural scale (c.f. Eq.(7.1)) by setting
κ = m = µj and get

Jm
n,sub(s) = δ(s)− 2m2δmδ

′(s) +
αsCF

4π

{[
1 +

2π2

3

]
δ(s)− 1

m2

[
m2θ(s)

s

]
+

+
4

m2

[
m2θ(s)log

(
s/m2

)
s

]
+

+ θ(s)

[
s

(s+m2)2
− 4

s
log
(

1 +
s

m2

)]}
,

(7.104)

which is a particularly simple form of the subtracted jet function in Eq.(7.103).
For completeness we also give the analogous results for the subtracted massive jet correlator,

which is again defined as a convolution with the massless jet function

J̃m
n,sub = (Jm=0

n )−1 ∗ J̃m
n . (7.105)

The expansion of J̃m
n,sub in terms of individual, subtracted diagrams is given precisely as in Eq.(7.98)

and Eq.(7.99), only putting tildes on the appropriate factors.
The leading order contribution is given simply by

J̃m
n,LO,sub(pµ,m) = (Jm=0

n,LO ∗ J̃m
n,LO)(p2 −m2)

=

∫
dq2 δ(p2 − q2)

(
− 1

π

1

q2 −m2 + i0

)
= − 1

π

1

p2 −m2 + i0
.

(7.106)

Using the convolution properties in Eq.(I.6) we arrive at the following result for the next-to-leading
order contributions

J̃m
n,2,sub =

αsCF
4π

1

π

1

s+ i0

{
− 2π2

3
− log2

(
m2

−s− i0

)
+

2m2

s+m2 + i0
log
(

m2

−s− i0

)
− 2log

(
m2

−s− i0

)
log
(

1 +
s+ i0

m2

)
+ 2Li2

(−s− i0
m2

)}
, (7.107)

J̃m
n,4,sub = − 1

π

2m2δm

[s+ i0]2
+
αsCF

4π

1

π

1

s+ i0

{
− 1 +

s

s+m2 + i0
−m2 5m2 + 6s

[s+m2 + i0]2
log
(

m2

−s− i0

)}
,
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which are again manifestly finite and independent of the renormalisation scale µ. Note that as a
consistency check we can take the imaginary part of the results in Eq.(7.107) to recover the expressions
found in Eq.(7.101) and Eq.(7.102) respectively.

Adding all of the above contributions we are left with the full, subtracted massive jet correlator

J̃m
n,sub = J̃m

n,LO,sub + 2J̃m
n,2,sub + J̃m

n,4,sub

= − 1

π

1

s+ i0

{
− 2m2δm

s+ i0
+
αsCF

4π

[
1 +

4π2

3
+

s

s+m2 + i0
+ 2log2

(
m2

−s− i0

)
(7.108)

+m2 2s+m2

[s+m2 + i0]2
log
(

m2

−s− i0

)
+ 4log

(
m2

−s− i0

)
log
(

1 +
s+ i0

m2

)
+ 4Li2

(−s− i0
m2

)]}
,

which is consistent with our previous result Eq.(7.104) upon taking the imaginary part.
Having now demonstrated that the divergences do indeed cancel in the ratio of the massive and

massless jet function as well as the correlator, we turn to the more subtle problem of considering the
cancellations for the real and virtual parts (which can only be defined for the jet function, not the
correlator) of each diagram separately. To subtract the jet functions as we did above, we relied on
exact analytic results which had been calculated beforehand.

In the next section we will therefore seek a different approach that will allow us to perform
the subtraction for the jet function at the level of the integrand, thereby setting up the problem of
canceling divergences between real emission and virtual contributions in an analogous way to what we
encountered earlier in the full QCD calculation of thrust. In particular this will enable a numerical
treatment of the subtraction in the EFT even in the presence of non-local divergences such as the one
discussed in Eq.(7.95).
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8 Integrand-level subtraction of real emission and virtual contributions

Recalling the definition of the subtracted jet function contributions in Eq.(7.99) we split them up
further into real emission and virtual parts by introducing the quantities

J
m,r/v
n,2/4,sub = J

m,r/v
n,2/4 ∗ J

m=0
n,LO − Jm

n,LO ∗ J
m=0,r/v
n,2/4 , (8.1)

such that Jm
n,2/4,sub = Jm,r

n,2/4,sub + Jm,v
n,2/4,sub. In this section we proceed to calculate these quantities

explicitly only for the real emission contributions (real-real, RR) by implementing the subtraction not
at the level of the final jet function as was done in the previous section, but already at the level of the
integrand. Note that this means we need to refine the definition of the subtracted jet function given
in Eq.(7.100) since at amplitude level the jet functions are not manifest functions of the invariants
p2 −m2, p2 yet and the integrands Eq.(7.17) and Eq.(7.50) in principle depend on all components of
the external momentum pµ. To achieve the shift necessary for aligning the threshold of the massless
jet function with its massive counterpart we introduce an auxiliary vector

aµn(pµ, q2) = a−n
nµ

2
+ a+

n

n̄µ

2
≡ p−n

µ

2
+
q2

p−
n̄µ

2
, (8.2)

which is a function of the original external momentum pµ and the shift parameter q2 that allows
to vary the off-shellness, since a2

n = q2. As the notation suggests the auxiliary vector is specific to
the collinear direction associated with the jet function. Essentially this is because the factorisation
theorem ensures that the argument of the jet function is determined entirely by the small component
of the collinear momentum that is fed into it (c.f. Eq.(6.32)). For the n-collinear jet function we have
been concerned with so far this means that using the auxiliary momentum Eq.(8.2) we get

Jm
n (aµn(pµ, q2),m) = Jm

n (Qa+
n −m2) = Jm

n (q2 −m2),

Jm=0
n (aµn(pµ, q2)) = Jm=0

n (Qa+
n ) = Jm=0

n (q2),
(8.3)

where we recall that we assume p− = Q for the original external momentum. Therefore, replacing pµ

with aµn(pµ, q2) at the level of the integrand will produce a jet function result with off-shellness given
by the right-hand side of Eq.(8.3) after integration.

With this notation in place we can give a more general definition of the subtracted jet function,
also valid at the integrand-level,

Jm
n,sub(pµ,m) ≡ Jm

n,sub(p2 −m2) =

∫
dq2 (Jm=0

n )−1(aµn(pµ, p2 − q2)) Jm
n (aµn(pµ, q2),m)

=

∫
dq2 Jm=0

n,LO (aµn(pµ, p2 − q2)) Jm
n,LO(aµn(pµ, q2),m)

+

∫
dq2

[
Jm=0
n,LO (aµn(pµ, p2 − q2)) Jm

n,NLO(aµn(pµ, q2),m)

− Jm=0
n,NLO(aµn(pµ, p2 − q2)) Jm

n,LO(aµn(pµ, q2),m)

]
+O(α2

s)

= δ(p2 −m2) +
[
Jm
n,NLO(aµn(pµ, p2),m)− Jm=0

n,NLO(aµn(pµ, p2 −m2))
]

+O(α2
s),

(8.4)

which correctly reduces to Eq.(7.100) when the relations Eq.(8.3) are used. Similarly we can define
the subtracted jet function for the n̄-collinear sector by using the auxiliary vector

aµn̄(p̄µ, q̄2) = a−n̄
nµ

2
+ a+

n̄

n̄µ

2
≡ q̄2

p̄+

nµ

2
+ p̄+ n̄

µ

2
. (8.5)

However, we will continue to focus only on the n-collinear sector here and proceed by evaluating
each diagram, split into its real emission and virtual part, contributing to the subtracted jet function
defined in Eq.(8.4).
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8.1 Jn,2 RR-subtraction

From Eq.(7.21) we know that the massive and massless real emission contributions to the jet function
are given respectively by

J
m(=0),r
n,2 (pµ,m(= 0)) = 16π2αsCF

1

s
I
m(=0),r
n,2 (pµ,m(= 0)). (8.6)

Using the notation δ̃(k,m) = θ(k0)δ(k2−m2) and in particular δ̃(k) = δ̃(k, 0), we can cast the integrals
I
m(=0),r
n,2 appearing in Eq.(8.6) into the form of physical phase space integrals,

Im,r
n,2 (pµ,m) =

µ̃2ε

(2π)4−2ε

∫
ddk ddl δ̃(k)δ̃(l,m)δ(d)(l − p+ k)

p− − k−
k−

,

Im=0,r
n,2 (pµ) =

µ̃2ε

(2π)4−2ε

∫
ddk ddl δ̃(k)δ̃(l)δ(d)(l − p+ k)

p− − k−
k−

.

(8.7)

With the notation of the previous section in place we define the subtracted real emission contri-
bution to the Wilson line diagram by the convolution

Jm,r
n,2,sub(pµ,m) =

∫
dq2

[
δ(p2 − q2)Jm,r

n,2 (aµn(pµ, q2),m)− Jm=0,r
n,2 (aµn(pµ, p2 − q2))δ(q2 −m2)

]
= 16π2αsCF

1

s

[
Im,r
n,2 (aµn(pµ, p2),m)− Im=0,r

n,2 (aµn(pµ, p2 −m2))
]

≡ 16π2αsCF
1

s
Im,r
n,2,sub(pµ,m).

(8.8)

Writing out the subtracted integral in detail gives us

Im,r
n,2,sub(pµ,m) =

µ̃2ε

(2π)4−2ε

∫
ddk ddl δ̃(k)

{
a−n (pµ, p2)− k−

k−
δ̃(l,m)δ(d)(l − an(pµ, p2) + k)

− a−n (pµ, p2 −m2)− k−
k−

δ̃(l)δ(d)(l − an(pµ, p2 −m2) + k)

}
=

2µ̃2ε

(2π)4−2ε

∫
ddk ddl δ̃(k)δ(l− − p− + k−)δ(d-2)(l⊥ + k⊥)

p− − k−
k−

×
{
δ̃(l,m) δ(l+ − p+ + k+)− δ̃(l) δ

(
l+ − p2 −m2

p−
+ k+

)}
,

(8.9)

where in the second line we have split up the momentum conserving delta functions into lightcone
components. In Eq.(8.9) we can explicitly see how the subtraction takes place at the integrand-level.
While the concrete amplitude we are considering is naturally a function of lightcone components and
thus lends itself particularly well to the decompostion Eq. (8.2), we could in principle satisfy any
dependence of the integrand on a given component of aµn.

We proceed by using Eq.(7.26) to eliminate the integral over ddl with the delta functions for the
(−,⊥)-components and implementing the respective mass-shell conditions δ̃(l,m(= 0)),

Im,r
n,2,sub(pµ,m) =

µ̃2ε

(2π)4−2ε

1

p−

∫
ddk δ̃(k)θ(p− − k−)

p− − k−
k−

×
{
δ

(
k+ − s

p−

(
1− p+k−

s

))
− δ
(
k+ − s

p−

(
1− k−

p−

))}
,

(8.10)

where s = p2 −m2 now denotes the off-shellness of the massive external momentum. Decomposing
ddk into lightcone components as in Eq.(A.7), and carrying out the k+ integration yields

Im,r
n,2,sub(pµ,m) =

µ̃2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)
θ(p−)

p−
θ(s)

∫
dk− θ(k−)

p− − k−
(k−)1+ε

(
p−

s

)ε
×
{
θ

(
1− p+k−

s

)(
1− p+k−

s

)−ε
− θ
(

1− k−

p−

)(
1− k−

p−

)−ε}
,

(8.11)

82



where the above step functions were simplified according to

θ

(
s

p−

(
1− p+k−

s

))
= θ(s)θ

(
1− p+k−

s

)
, θ

(
s

p−

(
1− k−

p−

))
= θ(s)θ

(
1− k−

p−

)
. (8.12)

Note that each of the equalities in Eq.(8.12) only holds modulo all other step functions in Eq.(8.11). In
particular the first identity prompts us to define a− = p+

s k
− as a convenient variable for integration.

To be able to safely take the limit ε → 0 in the subtraction we rearrange Eq.(8.11) according to
the regions of overlapping (0 ≤ a− ≤ 1) and non-overlapping (1 < a− ≤ 1/∆) support of the step
functions restricting the upper limit on a−. Here we introduced the dimensionless parameter ∆= s

s+m2

satisfying 0 ≤ ∆ < 1. Thus, recollecting all prefactors from Eq.(8.8) allows us to write

Jm,r
n,2,sub(pµ,m) =

αsCF
4π

2

Γ(1− ε)

[
eγE (s+m2)

µ2

]ε
θ(s)µ4ε

s1+2ε
θ(p−)

×
{∫ 1

0
da−

1−∆a−

(a−)1+ε

[
1

(1− a−)ε
− 1

(1−∆a−)ε

]
−
∫ 1

∆

1
da−

(1−∆a−)1−ε

(a−)1+ε

}
.

(8.13)

Carrying out the integrals in Eq.(8.13) we find

Im,r,1
n,2,sub ≡

θ(s)µ4ε

s1+2ε

∫ 1

0
da−

1−∆a−

(a−)1+ε

[
1

(1− a−)ε
− 1

(1−∆a−)ε

]
= −π

2

12
δ(s) +O(ε),

Im,r,2
n,2,sub ≡

θ(s)µ4ε

s1+2ε

∫ 1
∆

1
da−

(1−∆a−)1−ε

(a−)1+ε
=

{[
1

2ε2
+

1

ε
+

1

ε
log
(
µ2

m2

)
+ 2− π2

6
+ log

(
µ2

m2

)
+

1

2
log2

(
µ2

m2

)]
δ(s)−

[
1 + log

(
µ2

m2

)]
1

µ2

[
µ2θ(s)

s

]
+

− 1

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

+ θ(s)

[
1

s+m2
+

1

s
log
(

1 +
s

m2

)]
+O(ε)

}
.

(8.14)

In particular we see that if we are only interested in the region where s > 0 strictly, we can safely
take the limit ε→ 0 even before performing the integration without running into divergent integrals.
As we discussed earlier this would not have been possible with the initial jet function contributions
in Eq.(7.88) and Eq.(7.85) since there the terms proportional to 1

ε

[
µ2θ(s)
s

]
+
would have rendered this

limit ill-defined, even at finite s.
Assuming s > 0 and ε = 0 the integrals in Eq. (8.14) can be directly (and in principle also

numerically) evaluated to give

Im,r,1
n,2,sub|s>0

ε=0 = 0,

Im,r,2
n,2,sub|s>0

ε=0 =
θ(s)

s

[
−1 +

s

s+m2
+ log

(
1 +

s

m2

)
− log

( s

m2

)]
.

(8.15)

With the above results we can now give the finite part of the RR-subtracted jet function Eq.(8.13),

Jm,r
n,2,sub|s>0

ε=0(pµ,m) =
αsCF

2π
θ(p−)

{
Im,r,1
n,2,sub|s>0

ε=0 − Im,r,2
n,2,sub|s>0

ε=0

}
=
αsCF

4π
θ(s)θ(p−)

[
2

s
− 2

s+m2
− 2

s
log
(

1 +
s

m2

)
+

2

s
log
( s

m2

)]
,

(8.16)

which is now also independent of the renormalisation scale µ. As the results obtained in Eq.(8.14)
already indicate, this is not going to be the case for the full, analytic result including singular terms.

83



For completeness we also state the full analytic result for Eq.(8.13) valid for s = 0 and ε 6= 0.
Collecting terms according to inverse powers of the off-shellness s = p2 −m2 it reads

Jm,r
n,2,sub(pµ,m) =

αsCF
4π

θ(p−)

[
eγE (s+m2)

µ2

]ε
2Γ(−ε)

Γ(2− 2ε)

[
θ(s)µ4ε

s1+2ε
(1− 2ε) +

θ(s)µ4ε

s2ε

1

s+m2
ε

− θ(s)µ2ε

s1+ε

(
µ2

s+m2

)ε
(1− ε)

]
= Jm,r

n,2 (p2 −m2)− Jm=0,r
n,2 (p2 −m2),

(8.17)

where we recognise the blue terms as Jm,r
n,2 before it was expanded into plus distributions (c.f. Eq.(7.33))

and identify the remaining red terms as corresponding to Jm=0,r
n,2 with appropriately shifted threshold.

Expanding Eq.(8.17) to constant order in ε yields the RR-subtracted contribution

Jm,r
n,2,sub(pµ,m) =

αsCF
4π

θ(p−)

{[
− 1

ε2
− 2

ε
− 1

ε
log
(
µ2

m2

)
+
π2

4
− 4 +

1

2
log2

(
µ2

m2

)]
δ(s)

+

[
1 + log

(
µ2

m2

)]
2

µ2

[
µ2θ(s)

s

]
+

+
2

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

− 2θ(s)

[
1

s+m2
+

1

s
log
(

1 +
s

m2

)]}
,

(8.18)

which we could have also obtained by directly combining the results in Eq.(8.14). As a consistency
check Eq.(8.18) yields the correct finite part Eq.(8.16) when we take s > 0 and ε = 0. Note that
since the zero-bin, which normally facilitates the pull up from IR to UV, cancels between massive and
massless jet functions all the divergences remaining in the above result are of IR origin.

We further see that the subtracted real emission jet function contains a term proportional to
1
ε log

(
µ2/m2

)
, and whence, unlike the full subtracted result in Eq.(7.101) and the finite part for s > 0,

cannot be brought to a µ-independent form. Independence of the renormalisation scale is therefore
only established once the virtual part (the VV-subtraction, see Eq.(8.32)) is added, or s > 0 is strictly
imposed.

8.2 Jn,4 RR-subtraction

We proceed in complete analogy to the treatment of the RR subtraction for Jm,r
n,2,sub. The massless

and massive real emission jet function contributions Jm(=0),r
n,4 are given by (c.f. Eq.(7.54))

J
m(=0),r
n,4 (pµ,m(= 0)) = −16π2αsCF

1

s2
I
m(=0),r
n,4 (pµ,m(= 0)), (8.19)

where the integrals to be calculated read

Im,r
n,4 (pµ,m) =

µ̃2ε

(2π)4−2ε

∫
ddk ddl δ̃(k)δ̃(l,m)δ(d)(l − p+ k)

×
{

(1− ε)
[
k−p+ + k+p− − s

(
1 +

k−

p−

)]
+ 2m2

}
, (8.20)

Im=0,r
n,4 (pµ,m) =

µ̃2ε

(2π)4−2ε

∫
ddk ddl δ̃(k)δ̃(l)δ(d)(l − p+ k)(1− ε)

[
k−p+ + k+p− − p2

(
1 +

k−

p−

)]
.

Just as in Eq.(8.8) we use the n-collinear auxiliary momentum Eq.(8.2) to define the RR subtracted
contribution

Jm,r
n,4,sub(pµ,m) =

∫
dq2

[
δ(p2 − q2)Jm,r

n,4 (aµn(pµ, q2),m)− Jm=0,r
n,4 (aµn(pµ, p2 − q2))δ(q2 −m2)

]
= −16π2αsCF

1

s2

[
Im,r
n,4 (aµn(pµ, p2),m)− Im=0,r

n,4 (aµn(pµ, p2 −m2))
]

≡ −16π2αsCF
1

s2
Im,r
n,4,sub(pµ,m).

(8.21)
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Writing out the above integral in detail we get

Im,r
n,4,sub(pµ,m) =

2µ2ε

(2π)4−2ε

∫
ddk ddl δ̃(k)δ(l− − p− + k−)δ(d-2)(l⊥ + k⊥)

×
{[

(1− ε)
[
k+p− + k−p+ − s

(
1 +

k−

p−

)]
+ 2m2

]
δ̃(l,m)δ(l+ − p+ + k+)

− (1− ε)
[
k+p− + k−

s

p−
− s

(
1 +

k−

p−

)]
δ̃(l,m)δ

(
l+ − p2 −m2

p−
+ k+

)}
.

(8.22)

Following steps essentially identical to what we did for Im,r
n,2,sub to eliminate all delta functions in

Eq.(8.22) we arrive at an expression analogous to Eq.(8.11), which now reads

Im,r
n,4,sub(pµ,m) = − µ2ε

(2π)4−2ε

π1−ε

2Γ(1− ε)
θ(p−)θ(s)

p−

∫
dk− θ(k−)

(
p−

sk−

)ε
×
{
θ

(
1− p+k−

s

)(
1− p+k−

s

)−ε[
(1− ε) s k

−

p−
− 2m2

]
− θ
(

1− k−

p−

)(
1− k−

p−

)−ε
(1− ε) s k

−

p−

}
.

(8.23)

The remaining integration is now convenient to carry out using the variable a− = p+

s k
−. Reinstating

the prefactors from Eq.(8.19) and arranging the contributions according to overlapping (0 ≤ a− ≤ 1)
and non-overlapping (1 < a− ≤ 1/∆) regions of a− as well as powers of m2 yields

Jm,r
n,4,sub(pµ,m) =

αsCF
4π

2

Γ(1− ε)

[
eγE (s+m2)

µ2

]ε
θ(p−)

θ(s)µ4ε

s1+2ε

×
{

(1− ε)∆2

∫ 1

0
da− (a−)1−ε

[
1

(1− a−)ε
− 1

(1−∆a−)ε

]
− (1− ε)∆2

∫ 1
∆

1
da−

(a−)1−ε

(1−∆a−)ε
− 2m2

s+m2

∫ 1

0
da−

1

[(1− a−)a−]ε

}
.

(8.24)

As a reminder, the above result is given in terms of the dimensionless parameter ∆ = s
s+m2 . Carrying

out the integrals in Eq.(8.24) and expanding in ε we get

Im,r,1
n,4,sub = (1− ε)∆2 θ(s)µ

4ε

s1+2ε

∫ 1

0
da− (a−)1−ε

[
1

(1− a−)ε
− 1

(1−∆a−)ε

]
= 0 +O(ε), (8.25)

Im,r,2
n,4,sub = (1− ε)∆2 θ(s)µ

4ε

s1+2ε

∫ 1
∆

1
da−

(a−)1−ε

(1−∆a−)ε
= −1

2

[
1

ε
+ 1 + log

(
µ2

m2

)]
δ(s) +

1

2

1

µ2

[
µ2θ(s)

s

]
+

− θ(s)1

2

s

(s+m2)2
+O(ε),

Im,r,m
n,4,sub =

2m2

s+m2

θ(s)µ4ε

s1+2ε

∫ 1

0
da−

1

[(1− a−)a−]ε
= −

[
1

ε
+ 2

]
δ(s) +

2

µ2

[
µ2θ(s)

s

]
+

− θ(s) 2

s+m2
+O(ε),

all of which are perfectly finite when we take s > 0 strictly and ε → 0, just as we discussed below
Eq.(8.14). Assuming a finite s and directly performing the integrals in Eq.(8.25) with ε = 0 thus
yields

Im,r,1
n,4,sub|s>0

ε=0 = 0,

Im,r,2
n,4,sub|s>0

ε=0 =
θ(s)

2

[
1

s
− s

(s+m2)2

]
,

Im,r,m
n,4,sub|s>0

ε=0 = θ(s)
2m2

s(s+m2)
.

(8.26)
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Combining the above results gives the finite part of the RR-subtracted jet function contribution

Jm,r
n,4,sub|s>0

ε=0(pµ,m) =
αsCF

2π
θ(p−)

{
Im,r,1
n,4,sub|s>0

ε=0 − Im,r,2
n,4,sub|s>0

ε=0 − Im,r,m
n,4,sub|s>0

ε=0

}
=
αsCF

4π
θ(s)θ(p−)

{
−5

s
+

5s+ 4m2

(s+m2)2

}
.

(8.27)

Additionally, the full, analytic result can be arranged by inverse powers of s = p2 −m2 and thus
be brought to a similarly suggestive form as in Eq.(8.17),

Jm,r
n,4,sub(pµ,m) =

αsCF
4π

Γ(1− ε)
Γ(2− 2ε)

θ(p−)

{
1

s+m2

[
eγE (s+m2)

µ2

]ε[
4m2 θ(s)µ

4ε

s1+2ε
− θ(s)µ4ε

s2ε

s (1− ε)
s+m2

]
− θ(s)µ2ε

s1+ε
(eγE )ε(1− ε)

}
= Jm,r

n,4 (pµ,m)− Jm=0,r
n,4 (pµ,m). (8.28)

Expanded into distributional form the above result reads

Jm,r
n,4,sub(pµ,m) =

αsCF
4π

θ(p−)

{[
3

ε
+ 5− 2log

(
µ2

m2

)]
δ(s)− 5

µ2

[
µ2θ(s)

s

]
+

+ θ(s)
5s+ 4m2

(s+m2)2

}
, (8.29)

which could have also been obtained by subtracting the two distributional expressions for Jm,r
n,4 in

Eq.(7.58) and Jm=0,r
n,4 in Eq.(7.89) as indicated in Eq.(8.1), or by combining the results in Eq.(8.25)

directly. Note that the finite part of Eq.(8.29) correctly reproduces Eq.(8.27).

8.3 Subtracted real emission and virtual jet function (final results)

Combining the analytic results Eq. (8.18) and Eq. (8.29) yields the full real emission part of the
subtracted massive jet function

Jm,r
n,NLO,sub(pµ,m) = 2Jm,r

n,2,sub + Jm,r
n,4,sub

=
αsCF

4π

{[
− 2

ε2
− 1

ε
− 2

ε
log
(
µ2

m2

)
+
π2

2
− 3− 2log

(
µ2

m2

)
+ log2

(
µ2

m2

)]
δ(s)

−
[
1− 4log

(
µ2

m2

)]
1

µ2

[
µ2θ(s)

s

]
+

+
4

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

+ θ(s)

[
s

(s+m2)2
− 4

s
log
(

1 +
s

m2

)]}
. (8.30)

Note that the above result fulfills the important consistency condition that the terms contributing to
s > 0 are identical to those of the full subtracted jet function in Eq.(7.103). This is expected since the
virtual contributions can only contribute as terms proportional to δ(s) and should eventually cancel
the remaining ε-poles. Taking s > 0 and ε = 0 in Eq.(8.30) we obtain

Jm,r
n,NLO,sub(pµ,m)|s>0

ε=0 =
αsCF

4π
θ(p−)θ(s)

{
− 1

s
+

s

(s+m2)2
+

4

s
log
( s

m2

)
− 4

s
log
(

1 +
s

m2

)}
, (8.31)

which could have equivalently been obtained by adding the individual contributions Eq.(8.16) and
Eq.(8.27). This implies that the above result can in principle be obtained by numerical methods,
directly evaluating the integrals Eq.(8.14) and Eq.(8.25) in d = 4.

The quantity in Eq.(8.31) should be thought of as analogous to the non-singular part of the real
emission thrust distribution Eq.(2.77), which we showed to be calculable without any regularisation.
However, to correctly reproduce the contributions coming from τ = 0 in a numerical calculation we
had to rely on techniques such as the dipole subtraction method. A similar implementation would
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be needed here to rearrange the remaining local IR divergences between the real emission and virtual
part of the subtracted jet function.

For completeness we now turn, without giving the specifics of the calculation, to quoting the
results for the virtual contributions (VV-subtraction, c.f. Eq.(8.1)) to the subtracted jet function,

Jm,v
n,NLO,sub(pµ,m) = 2Jm,v

n,2,sub + Jm,v
n,4,sub + Jm

n,δm

= −2m2δmθ(p
−)δ′(s) +

αsCF
4π

θ(p−)

{
2

ε2
+

1

ε
+

2

ε
log
(
µ2

m2

)
+ 4 +

π2

6

+ log
(
µ2

m2

)
+ log2

(
µ2

m2

)}
δ(s), (8.32)

Jm,v
n,2,sub(pµ,m) =

αsCF
4π

θ(p−)

{
1

ε2
+

2

ε
+

1

ε
log
(
µ2

m2

)
+ 4 +

π2

12
+ 2log

(
µ2

m2

)
+

1

2
log2

(
µ2

m2

)}
δ(s),

Jm,v
n,4,sub(pµ,m) = 2m2δZOS

m θ(p−)δ′(s) +
αsCF

4π
θ(p−)

{
− 3

ε
− 4− 3log

(
µ2

m2

)}
δ(s).

It should be noted that just like the subtracted real emission contributions all of the above quantities
are UV finite (i.e. all remaining poles in are in εIR) since the zero-bin cancels between them. In
particular we observe that the coefficient proportional to δ(s) in Jm,v

n,4,sub in the last line of Eq.(8.32)
arises as

− 3

εIR
− 4− 3log

(
µ2

m2

)
= δZm,OS

ψ − δZm=0,OS
ψ , (8.33)

with the renormalisation factor δZm,OS
ψ for a massive quark given as in Eq.(7.79) and the massless wave

function renormalisation factor δZm=0,OS
ψ as in Eq.(C.3). The latter appears as the scaleless virtual

contribution (c.f. Eq.(7.89)) Jm=0,v
n,4 in the subtraction. The real emission and virtual subtracted jet

functions in Eq.(8.31) and Eq.(8.32) are consistent in that when added they give the correct full result
we computed in Eq.(7.103).

To summarise the calculations of the previous sections we want to explicitly compare the structure
of quantities arising in our treatment of the SCET jet function with the thrust distribution of full
QCD discussed in Sec. 2.6. We hope that this comparison is facilitated by the following “dictionary”:

SCET (jet function) eq. QCD (thrust) eq.

Jm,r
n,2 ' 1

ε δ(s),
1
ε

[
θ(s)
s

]
+

(7.35) ���
�XXXX -

Jm,r
n,2,sub, J

m,v
n,2,sub ' 1

ε δ(s) (8.18),(8.32) dσr

dτ ,
dσv

dτ (2.68),(2.70)

Jm,r
n,2,sub|s>0

ε=0 , J
m,v
n,2,sub|s>0

ε=0 '
θ(s)
s × fin. (8.16) dσr

dτ

∣∣τ>0

ε=0
, dσv

dτ

∣∣τ>0

ε=0
(2.77)

Jm
n,2,sub '

[
θ(s)
s

]
+
× fin. (7.101) dσ

dτ (2.71)

Tab.(8.3): Outline of structural similarities between the SCET jet function and full QCD thrust.

We can see that the conventional jet function exhibiting the non-local divergence has no structural
analogue in the full theory. By introducing the subtracted jet function as in Eq.(8.4) we are able to
separate the information contained in the jet function in a way that is similar to the real emission and
virtual parts encountered in the QCD thrust distribution, containing only local divergences at s = 0,
τ = 0. Moreover, we have shown that the finite parts away from the threshold and given in line three
of Tab.8.3 can be numerically calculated. Consistently incorporating the remaining contributions from
the threshold s = 0, τ = 0 in a numerical routine will now only require a subtraction procedure similar
to the dipole method of QCD, as opposed to having to introduce new counter term prescriptions to
treat the non-local divergence. This presents a distinct advantage of the subtracted jet function.
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8.4 Subtracted jet function in the factorisation theorem

In this section we explain how the subtracted massive jet function calculated in the previous section
can be useful in implementing resummed calculations in a semi-analytic way via the factorisation
theorem. Concretely we consider the inverse of Eq.(8.4), i.e. we want to write the regular massive jet
function in terms of a convolution of the massless jet function with the subtracted massive jet function

Jm
n (pµ,m, µ) ≡

∫
dq2 Jm=0

n (aµn(pµ, p2 − q2), µ) Jm
n,sub(aµn(pµ, q2),m)

=

∫
dq2 Jm=0

n,LO (aµn(pµ, p2 − q2)) Jm
n,LO,sub(aµn(pµ, q2),m)

+

∫
dq2

[
Jm=0
n,LO (aµn(pµ, p2 − q2)) Jm

n,NLO,sub(aµn(pµ, q2),m) (8.35)

+ Jm=0
n,NLO(aµn(pµ, p2 − q2), µ) Jm

n,LO,sub(aµn(pµ, q2),m)

]
+O(α2

s)

= δ(p2 −m2) +
[
Jm
n,NLO,sub(aµn(pµ, p2),m) + Jm=0

n,NLO(aµn(pµ, p2 −m2), µ)
]

+O(α2
s).

Note that we have made explicit the dependence on the renormalisation scale µ which is entirely
contained in the massless jet function. This is crucial since it allows us to separate the information
unique to the massive jet function in the finite, numerically calculable, subtracted factor, while the
UV-divergent, hence µ-dependent, behaviour necessary for the resummation of large logarithms is still
analytically accessible.

Let us now look at the factorisation theorem Eq.(6.36) for thrust in the light of Eq.(8.35). Focusing
on the jet functions in particular we get

dσ
dτ

= σLO2 H(Q,µ)

∫
dq2dq̄2

∫
dldk+

n dk
−
n̄ δ

(
τ − k−n̄

Q
− k+

n

Q
− l

Q

)
Sτ (l, µ) (8.36)

× Jm=0
n (aµn(kµn, k

2
n − q2), µ) Jm

n,sub(aµn(kµn, q
2),m) Jm=0

n̄ (aµn̄(kµn̄, k
2
n̄ − q̄2), µ) Jm

n̄,sub(aµn̄(kµn̄, q̄
2),m),

with the auxiliary vectors aµn, aµn̄ defined as in Eqs.(8.2) and (8.5). Assuming we are able to calculate
the subtracted jet function numerically, which, for now, we have shown to be possible for the finite part
s > 0, we can proceed as follows. Just as in a conventional calculation within the framework of the
factorisation theorem the massless jet function needs to be renormalised (see Eq.(7.91)) which induces
its RGE and associated running leading to the resummation of large logarithms in the peak region
(see Eq.(4.19) and discussion below). However, it is only the massless jet function that is affected by
this running which is carried out analytically. We can then include mass effects by carrying out the
convolutions over q2, q̄2 numerically, in a sense bootstrapping the massive result from the massless
one without any further need for analytic calculation.
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9 Conclusion and outlook

The main conceptional emphasis of this thesis was put on the introduction of the subtracted SCET
jet function in Eq.(7.100), which in the context of the well-established SCET factorisation theorem
Eq.(8.36) promises to allow for a numerical incorporation of quark mass effects on top of the analyti-
cally controlled resummation of large logarithms.

Regarding the subtracted jet function itself, we showed that non-local divergences, as well as any
zero-bin ambiguities particular to the conventional SCET jet function are absent in the thus modified
version. The local IR divergences (s = 0) of the subtracted jet function were found to resemble the
structures found in the full QCD calculation of thrust (τ = 0). We explicitly showed that away from
the threshold region (i.e. for s > 0) the finite subtracted jet function can be numerically computed
without any need for further regularisation.

To consistently take into account contributions to the subtracted jet function at the threshold
s = 0, which by Eq.(7.3) are necessary to correctly reproduce the behaviour of the thrust distribution
at τ = 0, future work may see the implementation of a subtraction prescription analogous to the dipole
method discussed in Sec. 3. This would allow for a numerical cancellation of threshold singularities,
between the real emission and virtual parts Eqs. (8.30) and (8.32) of the subtracted jet function.
Alternatively the Feynman tree theorem[46, 47] may be used to facilitate a direct cancellation of these
divergences at the integrand level, without the need for constructing additional counter terms.

In addition to numerically taking into account mass effects as discussed in Sec. 8.4, future inves-
tigations may include the incorporation of lifetime effects, e.g. the decay of a primary top quark pair
through electroweak interactions[48], into a framework similar to the one proposed in this work.
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A Phase space in d spacetime dimensions

The Lorentz-invariant definition of the cross section for 2→ n particle scattering is given by

dσ2→n =
1

F (p1, p2)
|M|2dΦn(q1, . . . , qn), (A.1)

where the flux factor F (p1, p2) = 4
√

(p1 · p2)2 − (m1m2)2 is determined by the incoming particles with
momenta pi and masses mi. Note the particular case m1 = m2 = 0, then F = 2s, with s = (p1 + p2)2

the center of mass energy of the two particles. The other objects featuring in Eq.(A.1) are the squared
matrix element |M|2 and the n-particle phase space element dΦn. The generalisation of dΦn to
d = 4− 2ε dimensions of spacetime reads

dΦn = (2π)dδ(d)

(
p1 + p2 −

n∑
i=0

qi

)
n∏
i=1


ddqi

(2π)d−1
δ̃(q2

i −m2
i )

dd−1qi
(2π)d−12Ei

(A.2)

where the on-shell condition δ̃(q2 −m2) = θ(q0)δ(q2 −m2) was explicitly implemented in the second
expression. The Lorentz-invariant phase space measure for two particles, where the integrand is
assumed to be independent of the final state momenta, reads∫

dΦ2 =
1

4π

p̂√
s

(
π

p̂2

)ε Γ(1− ε)
Γ(2− 2ε)

, (A.3)

with the center of mass momentum given by p̂ =
√
s

2 λ
(

1,m2
q/s,m

2
q/s
)
. Here we use the Källén

function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz, which in the massless limit leads to p̂ =√
s

2 λ(1, 0, 0) =
√
s

2 . To evaluate the necessary angular integrals in d-dimensions the identity Eq.(B.1)
was used. The three particle Lorentz-invariant phase space measure in d spacetime dimensions, written
in terms of the momentum fractions Eq.(2.35) takes the form∫

dΦ3 =
s

2(4π)3

(
4π

Q2

)2ε 1

Γ(2− 2ε)

∫ 1

0
dxq

∫ 1

0
dxq

θ(xq + xq − 1)

[(1− xq)(1− xq)(xq + xq − 1)]ε
, (A.4)

where, again, the integrand was assumed to be independent of any angular variables and the corre-
sponding integrations were already carried out.

The decomposition of the loop integral measure over the momentum

kµ = k−
nµ

2
+ k+ n̄

µ

2
+ kµ⊥, k− = n̄·k, k+ = n·k, (A.5)

of an internal line in terms of lightcone coordinates reads

đdk =
1

4(2π)4−2ε
dd−2Ω dk+dk−d(k2

⊥)(k2
⊥)−εθ(k2

⊥), , (A.6)

where k2
⊥ ≡ |~k⊥|2 = −ηµνkµ⊥kν⊥ > 0 denotes the square of the Euclidean perpendicular momentum

k⊥ such that k2 = k+k− − k2
⊥.

The decomposition of the d-dimensional Lorentz-invariant phase space measure associated with
a positive-energy, on-shell particle into lightcone coordinates Eq.(5.3) yields

dd−1k

2k0
=

1

4
Ωd−2

tot dk+dk−
θ(k+)θ(k−)

(k+k−)ε
, (A.7)

where we have used k0 = 1
2(k+ + k−) and the integrand was assumed not to depend on angular

variables, or the perpendicular momentum component k⊥.
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B Integral identities and conventions for Dimensional Regularisation

Throughout this thesis the (almost) standard parametrisation d = 4 − 2ε is used. When performing
integrals in d euclidean dimensions, we often separate the integration measure into an angular and a
radial part ∫

ddx =

∫
dd-1Ω

∫
dxxd−1,

∫
dd-1Ω =

2π
d
2

Γ
(
d
2

) =
2π1−ε

Γ(1− ε) , (B.1)

where we have explicitly evaluated the angular integration for integrands that are independent of these
variables. This simply gives the volume of the d-dimensional unit sphere.

Loop integrals over Feynman propagators are only well-defined when the “i0-prescription” is
consistently adhered to. Here we give a couple of examples for manipulations involving the “i0-
prescription” that are commonly used when evaluating loop amplitudes.

(∆− i0)α = (−1− i0)α(−∆ + i0)α, ∆ < 1

(−1 + i0)α = (−1− i0)−α = exp (iαπ)

log(∆± i0) = log(|∆|)± iπ ∆ < 0.

(B.2)

For momentum integrals we adopt the convention that the measure of each component comes supple-
mented with a factor of 1

2π and use the convenient notation

ddq

(2π)d
≡ đdq, (B.3)

being reminiscent of the reduced Planck constant ~ = h
2π .

Conventionally we choose the dimensionful scale introduced by dimensional regularisation to be

µ̃2 ≡ µ2eγE−log(4π), (B.4)

which is used in the context of calculations in the MS scheme and conveniently removes universal finite
terms of the form −γE + log(4π) (where γE ' 0.577216 is the Euler-Mascheroni constant) associated
with divergences from loop integrals, leaving only poles in ε and the scale µ in the final result.

For α, β ∈ N the basic scalar 1-loop master integral in dimensional regularisation evaluates to∫
đdq

(
q2
)β

[q2 −∆ + i0]α
=
i(−1)β

(4π)
d
2

Γ
(
d
2 − β

)
Γ(α) Γ

(
d
2

)Γ
(
α− β − d

2

)
(−1 + i0)−

d
2
−β(−∆ + i0)

d
2

+β−α. (B.5)

This integral will cover all our needs when it comes to full QCD amplitudes. However, for convenience
we also give the integral∫

đdq
1

[q2 + 2Q·q −∆ + i0]α
=

iπ2−ε

(2π)4−2ε

Γ(α+ ε− 2)

Γ(α)

(−1)α

[Q2 + ∆− i0]α+ε−2 . (B.6)

where the square in the propagator is not complete.

Real emission phase space integral in lightcone coordinates

In the derivation of the real emission contributions Jm,r
n,2 , J

m,r
n,4 we had to perform an integration of the

form Eq.(7.26). Here we want to give some intermediate steps to make the calculation more tractable.
We begin by decomposing the measure into lightcone components

I(p− − k−) =

∫
ddl θ(l0)δ(l2 −m2)δ(l− − p− + k−)δ(d-2)(l⊥ + k⊥) (B.7)

=
1

2

∫
dl+dl−θ(l+ + l−)

∫
dd-2l⊥ δ(l

+l− − l2⊥ −m2)δ(l− − p− + k−)δ(d-2)(l⊥ + k⊥),
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where the relation l0 = 1
2(l−+l+) was used in the step function. Integrating over the d−2 perpendicular

components and rearranging the on-shell delta function explicitly in terms of l+ we obtain

I(p− − k−) =
1

2

∫
dl+dl−θ(l+ + l−)

1

l−
δ

(
l+ − k2

⊥ +m2

l−

)
δ(l− − p− + k−)

=
1

2

1

p− − k− θ
(
k2
⊥ +m2

p− − k− + p− − k−
)
,

(B.8)

where through the integration we set the variables

l− = p− − k−, l+ =
l2⊥ +m2

p− − k− . (B.9)

To conclude we observe that the argument of the step function in Eq.(B.8) can be written as

θ

(
1

p− − k−
[
k2
⊥ +m2 + (p− − k−)2

])
= θ(p− − k−), (B.10)

since the expression in the numerator on the left-hand side is strictly non-negative. This leaves us
with the result claimed in Eq.(7.26).

C Ultraviolet divergences in the QCD virtual correction

When we computed the loop integral for the virtual-tree interference diagram in Eq.(2.28) we could
have found by naive power counting that the integral must, besides the infrared (IR) divergences we
are ultimately interested in, also contain ultraviolet (UV) divergences. In fact, expanding Eq.(2.43)
and being careful to distinguish IR and UV divergences we indeed find

Mv,LO
2,gi = − M̂

(4π)2

(1− ε)2

3− 2ε

{
1

ε2IR
+

2

εIR
− 1

2εUV
+

1

εIR
log
(

µ2

−Q2 − i0

)
+ 4− π2

12

+
3

2
log
(

µ2

−Q2 − i0

)
+

1

2
log2

(
µ2

−Q2 − i0

)
+O(ε)

}
,

(C.1)

where the prefactor M̂ is defined in Eq.(2.34). We see that Eq.(C.1) clearly contains an UV di-
vergence. However, in the discussion of the main text we never needed to treat this divergence with
renormalisation and even saw that the cancellation of divergences between the real emission diagrams,
which do not contain any UV divergences, and the virtual contribution took place regardless. While
it may look like we illegally cancelled UV against IR divergences at this stage, this is in fact not the
case.

The answer to this apparent conundrum lies in the LSZ reduction formula (for a thorough treat-
ment see [49]). Recall that true S-matrix elements are obtained by taking the corresponding amputated
Green’s function and equipping each of the external lines with the appropriate renormalisation factor
encoding the self-energy contributions of the particle at hand. In the calculation of the main text we
have therefore (purposefully) overlooked two contributions,

+
LSZ7−−−→

(√
ZOS
ψ

)2

× , (C.2)
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where ZOS
ψ denotes the (massless) quark field renormalisation factor in the on-shell scheme. Note that

the diagrams on the left-hand side of Eq.(C.2) are to be regarded as contributions to the (unampu-
tated) Green’s function and not as S-matrix elements. The right-hand side then shows the S-matrix
contribution after the LSZ reduction has been applied to the Green’s function.

At one loop the massless on-shell quark field renormalisation factor is given by

ZOS
ψ = 1 + δZOS

ψ +O(α2
s) = 1− αsCF

4π

(
1

εUV
− 1

εIR

)
+O(α2

s). (C.3)

We can see that had we not distinguished between UV and IR divergences (and so εIR = εUV ≡ ε)
the O(αs) contribution of Eq.(C.3) would formally vanish. To consistently carry out the cross section
calculation we have to consider precisely this O(αs) contribution coming from the interference diagram
of the right-hand side of Eq.(C.2) with the leading order diagram, which takes a form analogous to
Eq.(2.9) modified by the one-loop term of ZOS

ψ ,

Mv,LO
2,LSZ = 4e4e2

qµ̃
2εNC

(1− ε)2

3− 2ε
δZOS
ψ = − M̂

(4π2)

(1− ε)2

3− 2ε

1

2

(
1

εUV
− 1

εIR

)
. (C.4)

Adding this contribution to the original virtual-tree interference in Eq.(C.1) yields

Mv,LO
2,gi +Mv,LO

2,LSZ = − M̂
(4π)2

(1− ε)2

3− 2ε

{
1

ε2IR
+

2

εIR
− 1

2εIR
+

1

εIR
log
(

µ2

−Q2 − i0

)
+ 4− π2

12

+
3

2
log
(

µ2

−Q2 − i0

)
+

1

2
log2

(
µ2

−Q2 − i0

)
+O(ε)

}
,

(C.5)

where we see that the UV divergence has canceled and is replaced by a corresponding IR divergence,
that is, the sum of all virtual contributions is manifestly UV-finite.

If we drop the distinction between the different kinds of poles the results in Eqs.(C.1) and (C.5)
are formally identical. This is the reason why we got away with ignoring the contributions from
Eq.(C.2) in the main text, intentionally misinterpreting some UV divergences as IR.

D Colour/Helicity space formulation of amplitudes

In deriving the dipole counter terms it is convenient to think of the amplitude for a given (m+1)-parton
final state as an abstract vector in the combined colour/helicity space of these particles,

iMm(p1, . . . , pm) = | 1, . . . ,m 〉m , (D.1)

where {1, . . . ,m} denote the respective parton momenta. Note that the amplitude in Eq.(D.1) carries
no explicit indices for the final state particle’s helicities and colours. These are made explicit only
after a projection to the appropriate colour/helicity basisket,

iMc1...cm
m s1...sm = 〈 s1, . . . sm; c1, . . . cm | 1, . . . ,m 〉m , (D.2)

where the indices take values si∈{1, 2}, ci∈{1, . . . , NC} if parton i is a(n anti-)quark and sj ≡µj ∈
{1, . . . , d}, cj∈{1, . . . , N2

C−1} if parton j is a gluon. We can therefore expand the amplitude Eq.(D.1)
in terms of these basiskets as

| 1, . . . ,m 〉m = iMc1...cm
ms1...sm | 1, . . . , sm; c1, . . . , cm 〉 , (D.3)

the sum over helicities and colours being performed implicitly. In the context of this thesis we will
usually think of | 1, . . . ,m 〉m as representing the gauge-invariant sum over all diagrams for the final
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state under consideration at a given order in αs. With this in mind the squared amplitude summed
over final state colours and helicities simply reads

|Mm|2 = m〈 1, . . . ,m | 1, . . . ,m 〉m = (Mc1...cm
m s1...sm)∗Mc1...cm

m s1...sm . (D.4)

To make the notation more transparent we give a concrete example. Writing

| q, q, k 〉3 = |(q, k), q 〉3 + |(q, k), q 〉3 , (D.5)

for the sum of the real emission amplitudes in Eq. (2.12) where the gluon is emitted from the
(anti-)quark respectively (now including the initial state), we establish a term-by-term correspon-
dence to Eq.(2.36) via

|Mr
3|2 =

1

4

{
3〈(q, k), q | (q, k), q 〉3 + 3〈(q, k), q | (q, k), q 〉3

+ 3〈(q, k), q | (q, k), q 〉3 + 3〈(q, k), q | (q, k), q 〉3
}

=
1

4 3〈 q, q, k | q, q, k 〉3.
(D.6)

Note that the factor pertaining to the average over the helicities of the incoming e+e−-pair appears
explicitly in Eq.(D.6) since it is not taken care of by Eq.(D.4). In all our calculations we will nonetheless
absorb this averaging factor into the definition of 3〈 q, q, k | q, q, k 〉3 for convenience.

Colour charge operators and the soft limit

We now turn to introducing the colour charge operators Ta
i , whose purpose it is to mimic the emission

of a gluon with colour a from a final state parton i in colour space. That is, it takes a m parton colour
space basisket where said parton i carries colour ci, to a linear combination of m+ 1 parton basiskets
given by

Ta
i | c1, . . . , ci, . . . , cm 〉 =

∑
bi

(T ai )bici | c1, . . . , bi, . . . , cm, a 〉 , (D.7)

where the coefficients (T ai )bici relate to the SU(N) generators sitting in the respective representation
of the emitting parton. Explicitly, for different parton types i the generators read

(T ai )bc = T abc for i = q, b, c = 1, . . . , NC ,

(T ai )bc = T
a
bc = −(T a)∗bc for i = q̄, b, c = 1, . . . , NC ,

(T ai )bc = −ifabc for i = g, b, c = 1, . . . , N2
C − 1,

(D.8)

where we have been careful to distinguish between indices b, c in the adjoint and fundamental repre-
sentation respectively. Note that in Eq.(D.7) there is no implied sum over the colour of the emitted
gluon, such that it carries definite colour a. The colour charge operators obey the algebra

Ti ·Tj ≡ Ta
i T

a
j = Ti ·Tj , T2

i = Ti ·Ti = Ci 1, (D.9)

where Ci denotes the Casimir factor of the representation pertaining to parton i. At amplitude level
the action of a colour charge operator onto a m parton final state yields

〈 c1, . . . , ci, . . . , cm, ã |Ta
i | 1, . . . ,m〉m = δãa

∑
bi

T acibi 〈 c1, . . . , bi, . . . , cm|1, . . . ,m〉m

= iδãa
∑
bi

T acibiM
c1...bi...cm
m

(D.10)
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with any helicity indices suppressed for readability. Using Eq. (D.10) we can define squared tree
amplitudes which are colour-correlated through the final state partons i, j exchanging a gluon in
colour space as

|Mi,j
m |2 = m〈 1, . . . ,m |Ti ·Tj | 1, . . . ,m 〉m = (Mc1...bi...cj ...cm

m s1...sm )∗T abiciT
a
cjbj
Mc1...ci...bj ...cm

m s1...sm , (D.11)

where now all summations have been made implicit and (T a)∗cicj = T acjci was used. When we say that
the gluon is exchanged “in colour space” we mean that only the colour degree of freedom is connecting
the partons (i, j), no momentum flow and spin correlations between them are implied.

The structure Eq.(D.11) naturally appears in the universal soft limit of QCD (c.f. Eq.(E.3)). The
square of a given (m + 1)-parton tree-level matrix element in the limit where the parton j goes soft
(c.f. Eq.(3.15)), that is jµ = λpµ for some arbitrary pµ and λ→ 0, can be shown to almost factorise
and take the form,

m+1〈 1, . . . , j, . . . ,m+ 1|1, . . . , j, . . . ,m+ 1 〉m+1
λ→0−−−→ − 1

λ2
8πµ̃2εαs

∑
i

1

i · p
∑
k 6=i

i · k
(i+ k) · p

×m〈 1, . . . , ��j, . . . ,m+ 1 |Ti ·Tk | 1, . . . , ��j, . . . ,m+ 1 〉m .

(D.12)

Both sums run over the momenta i, k, where i 6= k, in the amplitude | 1, . . . , ��j, . . . ,m+ 1 〉m with only
m partons in the final state which is obtained from the original (m+1)-parton amplitude by removing
the parton j. It is in one part the structure of Eq.(D.12) that inspires the definition of the dipole
operator Eq.(3.17). The other kinematic limit that is important to determining the dipole counter
terms is the one where two final state particles become collinear and is discussed in the next section.

Before we continue, let us briefly check the validity of the above relation by comparing to what
we have already calculated in Chapter 2. Recall from the discussion below Eq.(2.39) that only the
interference diagrams where the gluon is exchanged between the quark/anti-quark lines contribute to
the soft singularity. Indeed, setting kµ = λpµ in Eq.(2.33) and keeping only singular terms as λ→ 0

we can write

3〈 q, q, k | q, q, k 〉3 ⊂M
r,12
3,gi +Mr,21

3,gi
λ→0−−−→− 1

λ2
8παsµ̃

2ε
(
−CF |MLO

2 |2
)

×
(
q · q̄
q · p

1

(q + q̄) · p +
q · q̄
q̄ · p

1

(q + q̄) · p

)
,

(D.13)

where we have used the tree-level amplitude from Eq.(2.9) and the partial fraction decomposition

q · q̄
(q · p)(q̄ · p) =

q · q̄
q · p (q + q̄) · p +

q · q̄
q̄ · p (q + q̄) · p, (D.14)

to isolate the overlapping collinear singularities of the soft momentum (i.e. p ‖ q and p ‖ q̄) each into
its separate term. Finally using that (−CF |MLO

2 |2) = 2〈 q, q | −CF | q, q 〉2 =
2
〈 q, q| −T2

q |q, q 〉2 and
colour conservation we get

3〈 q, q, k | q, q, k 〉3
λ→0−−−→ − 1

λ2
8παsµ̃

2ε
∑
i=q,q̄

1

i · p
∑
k 6=i

i · k
(i+ k) · p 2〈 q, q |Ti ·Tk | q, q 〉2, (D.15)

which is in fact consistent with what was claimed in Eq.(D.12).
To conclude we note that if the amplitude |1, . . . ,m〉m refers to a gauge-invariant sum of diagrams

the colour charge operators additionally fulfill the colour conservation relation∑
i

Tc
i |1, . . . ,m〉m = 0. (D.16)
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This follows directly from gauge invariance by applying a SU(N) transformation to the amplitude

U(α) |1, . . . ,m〉m = e−iα
c
iT

c
i |1, . . . ,m〉m

!
= |1, . . . ,m〉m , (D.17)

and considering (αci ) ≡ 1 as a particular case. However, to elucidate the formalism involved we show
Eq. (D.16) explicitly for the simple case of (colour space) gluon emission from the q, q̄ final state
considered in the leading order process Eq.(2.4). There we find

∑
i=q,q̄

Ta
i |q, q̄〉2 =

NC∑
c1,c2=1

(
Ta
q + Ta

q̄

)
|c1, c2〉〈c1, c2 | q, q̄〉2 . (D.18)

Since the q, q̄ pair was produced by a photon it must be in a colour singlet configuration implying
〈c1, c2 | q, q̄〉2 = δc1c2 . Using the definition of the colour charge operator Eq.(D.7) and the explicit
representations Eq.(D.8) we can further write Eq.(D.18) as

∑
i=q,q̄

Ta
i |q, q̄〉2 =

NC∑
c,b=1

(
(T a)bc |b, c, a〉+ (T

a
)bc |c, b, a〉

)
=

NC∑
c,b=1

((T a)bc + (−T a)∗cb) |b, c, a〉 = 0,

(D.19)

establishing the claim. In the last line a relabelling of indices b ↔ c was performed for the second
term and the hermiticity property of the generator was used to cancel the colour factors. Colour
conservation for a colour singlet gluon state |g1, g2〉2 can be shown by analogous means where again
〈c1, c2|g1, g2〉 = δc1c2 but now c1, c2 = 1, . . . , N2

C − 1 are indices in the adjoint representation.

Helicity operators and the collinear limit

Apart from the colour charge operators introduced before, the dipole operator in Eq. (3.17) also
contains the splitting operator Vij,k pertaining to the dipole {(i, j), k} (c.f. diagram in Eq.(3.22))
that takes care of helicity correlations between final state partons. In addition it will reproduce the
correct kinematic singularity structure in the counter term when two final state particles go collinear.
To be more precise we first perform a decomposition for the emitter momenta i, j, similar to the one
in Eq.(5.3),

iµ = zpµ − q2
⊥

z(n̄ · p)
n̄µ

2
+ qµ⊥, jµ = (1− z)pµ − q2

⊥
(1− z)(n̄ · p)

n̄µ

2
− qµ⊥, (D.20)

with some arbitrary momentum pµ specifying the direction along which the momenta become collinear
and satisfying p2 = n̄2 = 0 and p · q⊥ = n̄ · q⊥ = 0, where n̄µ is another arbitrary lightlike vector
needed to uniquely perform the decomposition. The perpendicular component is given by a spacelike
vector that may be parameterised as qµ⊥ = |q⊥|nµ⊥ where n2

⊥ = −1 and is defined by Eq.(D.20). We
may further identify z as the momentum fraction of i along the combined dipole momentum, that is

z =
2 i · (i+ j + k)

(i+ j + k)2
=

i · (j + k)

i · j + i · k + j · k . (D.21)

The collinear limit where the parton momenta align along the direction picked out by pµ is then
defined as

i · j = − q2
⊥

2z(1− z)
q2
⊥→0−−−−→ 0. (D.22)
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In this limit, squared QCD tree-level matrix elements with (m+1) partons exhibit a quasi-factorisation
(see [14]) in terms of m-parton amplitudes similar to Eq.(D.12), that is

m+1〈 1, . . . , i, . . . , j, . . . ,m+ 1|1, . . . , i, . . . , j, . . . ,m+ 1 〉m+1
q2
⊥→0−−−−→ 1

i · j 4πµ̃2εαs

×m〈 1, . . . , �i, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, . . . , ��j, . . . ,m+ 1|Pijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij,i(z, q⊥, ε) | 1, . . . , �i, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, . . . , ��j, . . . ,m+ 1〉m ,

(D.23)

where the reduced amplitude is obtained by removing partons i, j from the (m+1)-particle amplitude
and replacing them with a single parton ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij whose type is determined as in Eq.(3.21) and which carries
momentum pµ. The splitting operator Pijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij,i acts on the spin degrees of freedom of the combined parton
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, its matrix elements are proportional to the Altarelli-Parisi splitting functions [50]. For example,
in the case where a(n anti-)quark and gluon (i, j) in the (m+1)-parton amplitude get reduced to a(n
anti-)quark (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij) (c.f. first two lines of Eq.(3.21)), the splitting operator matrix element reads

〈 s |Pijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij,i(z, q⊥, ε) | s′ 〉 = δss′CF

{
1 + z2

1− z − ε(1− z)
}
. (D.24)

Just as the splitting operator in Eq.(D.23), the helicity operator Vijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij,kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk featuring in the definition
of the dipole counter term Eq.(3.17) only depends on the helicities of the combined (emitter) parton
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij. Employing the kinematics Eq.(3.19) and the momentum invariants introduced in Eq.(3.18) the
matrix elements of the helicity operator are defined as

〈 s |Vijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij,kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk | s′ 〉 = 8πµ̃2εαsCF δss′

{
2

1− zi(1− yij,k)
− (1 + zi)− ε(1− zi)

}
, (D.25)

for dipoles where a reduction (i, j) = (q, g) 7→ ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = q or (i, j) = (q, g) 7→ ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = q took place. Note
that the explicit form of these matrix elements is particular to the subtraction procedure and as such
cannot be physically motivated. It is only justified by its applicability as a valid subtraction term,
as we will see in App. E. The matrix elements for the remaining reductions in Eq.(3.21) will not be
needed in this thesis and can be found in [14].

E Dipole operator matrix elements in the soft and collinear limit

Let us now argue why the dipole contributions as defined by Eq.(3.16) should reproduce the singularity
structure of the squared real emission matrix element. To be able to be more explicit in our derivation
we will focus on (anti-)quark/gluon splitting only, with other splittings to be treated analogously. For
such processes, where a dipole reduction {(i, j), k} to {ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk} according to Eq.(3.22) is being performed,
the dipole operator matrix element in terms of the momentum invariants Eq.(3.18) reads

Dij,k = −8πµ̃2εαsCF
2 (i·j)

{
2

1− zi(1− yij,k)
− (1 + zi)− ε(1− zi)

}
×m〈 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, . . . , kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1|Tijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij ·Tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

T2
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij

| 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, . . . , kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, . . . ,m+ 1〉m ,

(E.1)

where we have explicitly written out the helicity operator matrix element from Eq.(D.25).

Soft limit

Recalling the definition of the soft limit, that is setting jµ = λpµ and considering the limit λ→ 0, the
kinematic variables appearing in Eq.(E.1) can be shown to approach

yij,k
λ→0−−−→ 0, zi

λ→0−−−→ 1,
1

1− zi(1− yij,k)
λ→0−−−→ 1

λ

i · k
p · (i+ k)

. (E.2)
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With this, the dipole momenta Eq.(3.19) reduce to ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ λ→0−−−→ iµ and kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ λ→0−−−→ kµ, such that the dipole
operator matrix element becomes

Dij,k
soft' −8πµ̃2εαsCF

λ2 (i·p)

{
i · k

p · (i+ k)
+O(λ)

}
×m〈 1, . . . , i, . . . , k, . . . ,m+ 1|Ti ·Tk

T2
i

| 1, . . . , i, . . . , k, . . . ,m+ 1〉m .

(E.3)

We can now use C−1
F m〈. . . , i, . . . | . . . , i, . . .〉m=m〈. . . , i, . . .|(T2

i )
−1 |. . . , i, . . .〉m and that the colour/helicity

space states in Eq.(E.3) are identical to those in Eq.(D.12). With this, and dropping terms less singular
than λ−2 we obtain

Dij,k
soft, sing.' − 1

λ2
8πµ̃2εαs

1

(i·p)
i · k

p · (i+ k) m〈 1, . . . , ��j, . . . ,m+ 1|Ti ·Tk| 1, . . . , ��j, . . . ,m+ 1〉m ,

(E.4)

correctly reproducing one of the terms in the sum of Eq.(D.12). This makes particularly clear that
the soft singularity in the real emission matrix element is only correctly reproduced once the sum over
all dipoles is performed as in Eq.(3.14).

Collinear limit

The collinear limit as defined by Eq. (D.20) and Eq. (D.22) implies for the kinematic variables in
Eq.(E.1)

zi
q2
⊥→0−−−−→ z, yij,k

q2
⊥→0−−−−→ 0, (E.5)

with z defined as in Eq.(D.21). The projected dipole momenta reduce to ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ
q2
⊥→0−−−−→ iµ + jµ and

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
q2
⊥→0−−−−→ kµ respectively. Applying this to the matrix element in Eq.(E.1) yields

Dij,k
coll.' −8πµ̃2εαs

2(i·j) CF

{
2

1− z − (1 + z)− ε(1− z)
}

×m〈 1, . . . , i+ j, . . . ,m+ 1|Ti+j ·Tk

T2
i+j

| 1, . . . , i+ j, . . . ,m+ 1〉m ,

(E.6)

where we have identified ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ ≡ pµ as the collinear direction when compared with Eq.(D.23). To
reproduce the correct singular limit of the real emission amplitude we have to sum over all spectators k
for a fixed emitter (i, j), c.f. Eq.(3.22), which we assumed to be a(n anti-)quark-gluon pair. Performing
the sum we thus obtain∑
k 6=(i,j)

Dij,k
coll.' −8πµ̃2εαs

2(i·j) CF

{
1 + z2

1− z − ε(1− z)
}

×
{

m〈 1, . . . , i+ j, . . . ,m+ 1|
∑

k 6=(i,j)

Ti+j ·Tk

T2
i+j

| 1, . . . , i+ j, . . . ,m+ 1〉m +O(q⊥)

}
,

(E.7)

where we can already identify the prefactor as being proportional to the appropriate Altarelli-Parisi
splitting function matrix element in Eq.(D.24). The fact that we were allowed to pull the summation
through this prefactor is that in the collinear limit where iµ ' z ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ + qµ⊥ and jµ ' (1 − z)ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ − qµ⊥
(neglecting terms of order q2

⊥ in Eq.(D.20)) we have

zi '
z ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · k + q⊥ · k

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · k = z +O(q⊥), (E.8)
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that is, the momentum fractions zi and z become equal and independent of the spectator momentum
k up to terms of order q⊥. This means that the only dependence on k that is left in Eq.(E.7) at leading
order in q⊥ is contained in the colour charge operator Tk, which, making use of colour conservation
Eq.(D.16) allows us to write∑

k 6=(i,j)

Tk | 1, . . . , i+ j, . . . ,m+ 1〉m = −Ti+j | 1, . . . , i+ j, k, . . . ,m+ 1〉m . (E.9)

Plugging the above into Eq.(E.7) and keeping only the most singular terms of order O(q−2
⊥ ) we can

write ∑
k 6=(i,j)

Dij,k
coll., sing.' − 1

i·j 4πµ̃2εαs

×m〈 1, . . . , . . . , i+ j, . . . ,m+ 1|Pijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij,i(z, q⊥, ε) | 1, . . . , ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, . . . ,m+ 1〉m ,

(E.10)

obtaining the result claimed in Eq.(D.23). Note that unlike the soft limit, where we had to sum over
all dipole contributions {(i, j), k} to obtain the correct singular behaviour, for the limit where partons
(i, j) become collinear it suffices to sum over all allowed spectators k for the given pair.

F Dipole map and factorisation of dipole phase space

Using the momentum projection proposed in Eq.(3.19), it is possible to factorise the Lorentz invariant
phase space

dΦ3(i, j, k) =
ddi

(2π)d
δ̃(i2)

ddj

(2π)d−1
δ̃(j2)

ddk

(2π)d−1
δ̃(k2)(2π)dδ(d)(Q− i− j − k), (F.1)

of three particles with momenta i, j, k into a two particle phase space of momenta ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk times a modified
measure corresponding to the single particle phase space for the emission of an additional parton with
momentum j at NLO, which we will show to be of the form

dΦ3(i, j, k) = dΦ2(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk) dj(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk). (F.2)

In Eq.(F.1) we have used the notation δ̃(k2) = θ(k0)δ(k2) to ensure that all particles are on the
positive-energy mass shell. The single particle integral measure associated with the emitted parton
has the form

dj(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk) =
ddj

(2π)d−1
δ̃(j2)J (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, j), (F.3)

with the Jacobian factor J (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, j) arising from the momentum projection map.
It is most useful to think of going from the momenta {(i, j), k} of a given dipole (which we will also

call the physical momenta) to {ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, j} (projected momenta) as related to a pseudo-process where an
emitter particle with initial momentum ij = i+ j splits into two particles of momentum i and j with
a spectator particle k running along, similar to the left-hand side of the depiction in Eq.(3.22). We
now wish to find a relation between the projected momenta {ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk} and the dipole momenta {(i, j), k}.

Derivation of dipole momentum map

To derive the dipole projection map Eq.(3.19), we start out by using Eq.(D.20) to decompose the
emitter momenta i and j. Recall that for the decomposition to work, both reference vectors pµ, n̄µ

have to be null. The momenta available in the pseudo-process under consideration (which are not i
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and j themselves) are ij = i+ j and k. However, we have (ij)2 = 2i · j 6= 0 in general, and so ij does
not by itself constitute a valid reference vector. This can easily be remedied by introducing a null
vector ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij that lies in the same spatial direction as ij, i.e.

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ = (|ij|, ij)µ, ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij2 = 0. (F.4)

In keeping with the notation of Eq.(D.20), we thus set the reference vectors pµ = ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ and n̄µ = kµ

which yields the decomposition

iµ = z ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ − q2
⊥
z

kµ

2(k · ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij) + qµ⊥, jµ = (1− z)ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ − q2
⊥

1− z
kµ

2(k · ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij) − q
µ
⊥, i · j =

−q2
⊥

2z(1− z) ,

(F.5)

In the next step we would like to invert the relations in Eq.(F.5) to obtain an expressions for the
projected momentum ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij in terms of {(i, j), k}. We start by substituting the expansion of i and j into
the definition of ij

ijµ = iµ + jµ = ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ − q2
⊥

2z(1− z)
kµ

k · ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ +
i · j
k · ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij k

µ. (F.6)

All the physical momenta are assumed to be null, hence the denominator in the last term above can
be written as k · ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij = k · ij. This allows us to explicitly state the projected momentum ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij in terms of
the physical momenta

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ = ijµ − i · j
k · ij k

µ = iµ + jµ − yij,k
1− yij,k

kµ, (F.7)

with the dimensionless momentum fraction yij,k defined as in Eq.(3.18), thus establishing the first of
the relations claimed in Eq.(3.19). The second projected momentum kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk is determined by requiring
that the projection conserve momentum, i.e.,

iµ + jµ + kµ
!

= ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ + kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ ⇒ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ =
1

1− yij,k
kµ, (F.8)

reproducing the second relation. For completeness we also invert the relations Eqs.(F.7) and (F.8)
to give the decomposition of the physical emitter momenta (i, j) in terms of the projected momenta
(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk),

iµ = zi ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij
µ + (1− zi)yij,k kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ +

√
2(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)zi(1− zi)yij,k nµ⊥,

jµ = (1− zi) ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ + ziyij,k kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
µ −

√
2(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)zi(1− zi)yij,k nµ⊥,

(F.9)

where we have rewritten qµ⊥ = |q⊥|nµ⊥, with n2
⊥ = −1, and have identified the momentum fraction

z ≡ zi compared with Eq.(F.5). This identification is allowed since, as we showed in Eq.(E.8), the
collinear limits of the decompositions using either z or zi coincide which is all we ultimately care
about. Now that we have sufficiently motivated the momentum map, we would like to show that it
indeed allows for a factorisation of the three particle phase space of the dipole.

Jacobian factor and single particle phase space

In this section we turn to calculating the Jacobian factor J (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, j) found in the phase space factor
Eq.(F.3). We consider the part of the phase space factor pertaining only to the physical momenta i
and k, and implement their mass-shell conditions explicitly, i.e.

dΦ2(i, k) =
ddi

(2π)d−1

ddk
(2π)d−1

δ̃(i2)δ̃(k2) =
dd−1i

(2π)d−12i0
dd−1k

(2π)d−12k0
. (F.10)

100



Performing a change of variables to the projected momenta ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk defined as in Eq.(3.19), we can rewrite
the phase space factor as

dΦ2(i, k) =
dd−1ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij

(2π)d−12ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0

dd−1kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

(2π)d−12kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0 kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0

i0 k0
|det J | ≡ dΦ2(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)J (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, j), (F.11)

which defines the Jacobian factor J (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, j), introducing a dependence on the momentum j of the
additionally emitted particle through the expansion Eq.(F.7). The Jacobian J , which in d dimensions
will be a 2(d− 1)×2(d− 1) dimensional matrix, is given by

J =
∂(i, k)

∂(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)
=

 ∂i
∂ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij

∂k
∂ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij

∂i
∂kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

∂k
∂kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

 , (F.12)

where the momenta whose derivatives we need to take are as in Eqs.(F.8) and (F.9).
If we want to explicitly calculate the entries of this Jacobian we have to be careful to take into

account the on-shell constraint we explicitly implemented in Eq.(F.10). This means that we have to
effectively treat the particle energies as functions of the spatial momenta, e.g. ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0 = ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij) = |ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij|.
When calculating derivatives with respect to the a-th component of a projected momentum, this
implies for instance

∂

∂ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij a
(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · j) =

j0

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijija − ja, (F.13)

with analogous expressions for the other scalar products involved. Using these relations we can
explicitly compute all the entries in the Jacobian matrix,

∂ia

∂ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb
= δab + ∆ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkka

([
j0

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb − jb

]
− yij,k

[
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb − kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb

])
,

∂ia

∂kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb
= yij,k δ

a
b −∆ yij,kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

a

(
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb − ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb −

j0

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb + jb

)
,

∂ka

∂ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb
= −∆ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkka

([
j0

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb − jb

]
− yij,k

[
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb − kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb

])
,

∂ka

∂kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb
= (1− yij,k)δab + ∆ yij,kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

i

(
ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb − ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijb −

j0

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkb + jb

)
,

(F.14)

where we introduced the short-hand ∆ = (kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk · (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij − j))−1.
In order to compute the determinant we start by considering the simplest case of d= 2. Using

canonical Minkowski coordinates we choose the center of mass frame of the emitter ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij and the spectator
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, such that

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ =
Q

2
(1,−1)µ , kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ =

Q

2
(1, 1)µ , jµ = (j0, j‖). (F.15)

In this frame the kinematic variables Eq.(3.18) take the form

yij,k =
j0+j‖

Q−j0+j‖
∆ = 2

Q(Q− j0 + j‖)
−1,

zi =
Q−j0+j‖

Q 1− zi =
j0−j‖
Q .

(F.16)

The determinant of Eq. (F.12) in two dimensions is computed by brute force, and after some
algebra can be shown to be a Lorentz invariant function of the kinematic invariants above,

detJ2 =
Q− 2j0 +Qyij,k
Q− j0 + j‖

=
1− zi(1− yij,k)

zi
. (F.17)
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Having done the computation for d = 2 the generalisation to arbitrary spacetime dimension d

turns out to be not too difficult. Going again to the center of mass frame, we now have

ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ =
Q

2
(1,0⊥,−1)µ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ =

Q

2
(1,0⊥, 1)µ , jµ = (j0, j⊥, j‖)

µ. (F.18)

The Jacobian matrix involving d-dimensional momenta then takes the form

Jd =




. . . . .

.

1d−2

. .
. . . .


...

0d−2

...


. . . . .

.

0d−2

. .
. . . .


...

0d−2

...

· · · f1(j⊥) · · · (J2)11 · · · f2(j⊥) · · · (J2)12
. . . . .

.

yij,k1d−2

. .
. . . .


...

0d−2

...


. . . . .

.

(1− yij,k)1d−2

. .
. . . .


...

0d−2

...

· · · f3(j⊥) · · · (J2)21 · · · f4(j⊥) · · · (J2)22



, (F.19)

where (J2)ij are the matrix elements of the Jacobian in two dimensions. When computing the de-
terminant of Eq.(F.19) we can first expand (d − 2) times in the rows of the upper-left unit matrix
1d−2, thereby eliminating any dependence on the functions f1,3(j⊥). In the next step we expand in the
(d− 2) rows of the lower right matrix (1− yij,k)1d−2 to remove the dependence on f2,4(j⊥). Note that
in this way we have removed any dependence on the transverse momentum j⊥, and the row expansion
of the determinant reduces to the determinant in two dimensions times a prefactor,

det Jd = (1− yij,k)d−2 det J2. (F.20)

The final ingredient for the Jacobian factor is to calculate the ratio of energies appearing in Eq.(F.11).
A priori it is not clear that this ratio is indeed a Lorentz scalar. However, making use of the relations
Eq.(F.16) one finds

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk0ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij0

i0k0
=

1

(1− zi(1− yij,k))(1− yij,k)
, (F.21)

so that we are indeed dealing with a Lorentz invariant quantity. Putting together the results from
Eqs.(F.17), (F.20) and (F.21) we obtain the final result for the Jacobian factor

J (ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk, j) =
(1− yij,k)d−3

zi
. (F.22)

Thus the separated one particle phase space in Eq.(F.3) may be written as

dj(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij, kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk) =
ddj

(2π)d−1
δ̃(j2)Θ(1− zi)Θ(1− yij,k)

(1− yij,k)d−3

zi
. (F.23)

In the last step we would like to decompose the measure Eq.(F.23) entirely in terms of the kinematic
invariants yij,k and zi. To do this we note that a general lightcone decomposition of the form

jµ = α ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijµ + β kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkµ − |q⊥|nµ⊥, (F.24)
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can be shown to lead to a decomposition of the single particle phase space measure that reads

ddj
(2π)d−1

δ̃(j2) =
dαdβd|q⊥|dd−3Ω

(2π)d−1

δ(|q⊥| −
√

2(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)αβ)

2
√

2(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)αβ
(ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)|q⊥|d−3

=
dαdβdd−3Ω

(2π)d−1

1

4
(2 ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)

d
2
−1 (αβ)

d
2
−2 ,

(F.25)

where we have integrated over |q⊥| in the last line, implementing the on-shell constraint. Comparing
the decompositions Eqs.(F.9) and (F.24) we see that we have to identify

α = 1− zi, β = ziyij,k, (F.26)

which, when performing the change of variables (α, β) 7→ (yij,k, zi) leads to an additional Jacobian
factor

det J̃ = det

 ∂α
∂zi

∂β
∂zi

∂α
∂yij,k

∂β
∂yij,k

 = −zi. (F.27)

In terms of the kinematic invariants the single particle phase space pertaining to j in Eq.(F.25) now
reads

ddj

(2π)d−1
δ̃(j2) =

dzidyij,kdd−3Ω

(2π)d−1

zi
4

(2ijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijijij · kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)
d
2
−1 (zi(1− zi)yij,k)

d
2
−2 , (F.28)

which, plugging the above into Eq.(F.23), gives the phase space of the separated particle as stated in
Eq.(3.25).

G Alternative calculation of subtracted real emission thrust distribution

In this section we explore an alternative method for analytically determining the subtracted real
emission thrust distribution Eq.(3.49) while staying closer in spirit to its original (albeit ill-defined)
definition Eq.(3.45). In particular all calculations will be carried out in d= 4 dimensions. We start
out by considering the finite real emission thrust distribution (c.f. Eq.(2.77))

dσr3
dτ

∣∣∣∣τ>0

ε=0

=
σ̂(ε=0)

s

αsCF
π

{[
−3

2
+ 3τ +

9

2
τ2 +

2− 3τ(1− τ)

1− τ log(1− 2τ)

]
1

τ
+

[
3τ − 2

1− τ

]
log(τ)

τ

}
≡ σ̂(ε=0)

s

αsCF
π

{
a(τ)

1

τ
+ b(τ)

log(τ)

τ

}
, (G.1)

which defines the functions a(τ), b(τ) and can be obtained by direct evaluation or from the result in
Eq.(2.69) by first assuming τ > 0 strictly and then taking the limit ε → 0. Note that the result
Eq.(G.1) is divergent when τ → 0, which is fine as long as we restrict ourselves to considering τ > 0.
However, we will be able to regain information about the singular part (at τ = 0) of the subtracted
thrust distribution by integrating the above result against a test function φ(τ) in the interval

(
δτ ,

1
3

)
where we assume δτ to be a small thrust cutoff which we shall want to take to zero eventually.
Concretely we want to consider the integral∫ 1

3

δτ

dτ
dσr3
dτ

∣∣∣∣τ>0

ε=0

φ(τ) =
σ̂(ε=0)

s

αsCF
π

∫ 1
3

δτ

dτ
[
a(τ)

τ
+ b(τ)

log(τ)

τ

]
φ(τ). (G.2)
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Focusing only on the term involving a(τ) for the moment we can write∫ 1
3

δτ

dτ
a(τ)

τ
φ(τ) =

∫ 1
3

δτ

dτ
φ(τ)a(τ)− φ(0)a(0)

τ
+ φ(0)a(0)

∫ 1
3

δτ

dτ
τ

+ φ(0)a(0)log
(

1

3

)
− φ(0)a(0)log

(
1

3

)
=

∫ 1
3

δτ

dτ
φ(τ)a(τ)− φ(0)a(0)

τ
+ φ(0)a(0)log

(
1

3

)
− φ(0)a(0)log(δτ ) , (G.3)

where we have done nothing but to add zero in a particular way. Note that the singular behaviour of
Eq.(G.3) when δτ → 0 is encapsulated in the term containing log(δτ ), while the other terms are finite
in this limit. Performing similar manipulations for the term involving b(τ) in Eq.(G.2) we arrive at∫ 1

3

δτ

dτ
dσr3
dτ

∣∣∣∣τ>0

ε=0

φ(τ) =
σ̂(ε=0)

s

αsCF
π

{∫ 1
3

δτ

dτ
φ(τ)a(τ)− φ(0)a(0)

τ
+ φ(0)a(0)log

(
1

3

)
− φ(0)a(0)log(δτ )

+

∫ 1
3

δτ

dτ log(τ)
φ(τ)b(τ)− φ(0)b(0)

τ
+ φ(0)b(0)

log2
(
1
3

)
2

− φ(0)b(0)
log2(δτ )

2

}
.

(G.4)

Using the definition of plus distributions Eq.(I.2), we can thus interpret Eq.(G.4) in its entirety as a
distribution in the sense that

dσr3
dτ

∣∣∣∣τ>0

ε=0

=
σ̂(ε=0)

s

αsCF
π

{
a(τ)

[
θ(τ − δτ )

τ

]
+

+ b(τ)

[
θ(τ − δτ )log(τ)

τ

]
+

+
3

2
log(δτ ) δ(τ) + log2(δτ ) δ(τ)

} (G.5)

where we have used a(0) = −3
2 and b(0) = −2. Note that Eq.(G.5) is well-defined as a distribution as

long as δτ > 0, even for τ = 0. Keeping this result in mind we turn to integrating the counter terms.
As already mentioned this will necessitate an additional regularisation prescription since the integral

1

2s

∫
dΦ3 [Dqk,q +Dqk,q]

∣∣∣∣
ε=0

δ(τ), (G.6)

corresponding to the counter-term is divergent in d = 4 dimensions. Now recall from the form of
the integrals Eq.(2.65) and Eq.(2.66) that the thrust observable regularises the real emission thrust
distribution by effectively acting as a phase space cut-off. In close analogy we therefore define the
regularised integral corresponding to Eq.(G.6) using the cut-off δτ introduced in Eq.(G.2) as

1

2s

∫
reg

dΦ3 [Dqk,q +Dqk,q]
∣∣∣∣
ε=0

δ(τ) ≡ 1

4(4π)3

∫ 1−δτ

2δτ

dxq
∫ 1−δτ

1−xq
dxq [Dqk,q +Dqk,q] (xq, xq)

∣∣∣∣
ε=0

δ(τ)

(G.7)

where the explicit form of the three particle phase space Eq.(A.4) in d=4 was used and the integrand
expressed in terms of momentum fractions reads (c.f. Eq.(3.30)),

[Dqk,q +Dqk,q] (xq, xq)

∣∣∣∣
ε=0

=
M̂
3s

{
x2
q + x2

q

(1− xq)(1− xq)
+

1− xq
xq

+
1− xq
xq

}
, (G.8)

with M̂ defined in Eq.(2.34). Integrating the above as in Eq.(G.7) we find

1

2s

∫
reg

dΦ3 [Dqk,q +Dqk,q]
∣∣∣∣
ε=0

δ(τ) =
σ̂(ε=0)

s

αsCF
π

{
3

2
− π2

6
+

3

2
log(δτ ) + log2(δτ ) +O(δτ )

}
δ(τ),

(G.9)
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which, when subtracted from Eq.(G.5), cancels the divergences proportional to logn(δτ ) therein. With
these terms out of the way, nothing prevents us from taking the thrust cutoff δτ → 0. Comparing
with Eq.(3.49) we indeed find

dσr3 sub
dτ

=

[
dσr3
dτ

∣∣∣∣τ>0

ε=0

− 1

2s

∫
reg

dΦ3 [Dqk,q +Dqk,q]
∣∣∣∣
ε=0

δ(τ)

]
δτ=0

=
σ̂(ε=0)

s

αsCF
π

{[
−3

2
+
π2

6

]
δ(τ) + a(τ)

[
θ(τ)

τ

]
+

+ b(τ)

[
θ(τ)log(τ)

τ

]
+

}
.

(G.10)

This shows that the subtracted real emission thrust distribution, including the contribution from terms
proportional to δ(τ), can be obtained in a manifestly four dimensional calculation. In particular, no
information about the d-dimensional matrix element |Mr

3|2 or dipole contributions Dqk,q,Dqk,q was
necessary. This ensures that a numerical implementation of the subtraction, which can only work in
d=4, will still produce the correct result.

H Feynman rules

For the computation of QCD matrix elements we use the following Feynman rules in Rξ gauge.
Throughout our calculations we will adopt Feynman gauge, ξ = 1. To also accomodate later calcula-
tions in SCET we state all the expressions with masses.

i, αj, β p
=

i(/p+m)αβ δij

p2 −m2 + i0
, (H.1)

i, µj, ν k
=

i
(
−gµν + (1− ξ)kµkν

k2

)
k2 + i0

, (H.2)

i, µ, Aj, ν, B k
=

i
(
−gµν + (1− ξ)kµkν

k2

)
δAB

k2 + i0
, (H.3)

ij

µ, A

= igsµ̃
εγµTAij , (H.4)

We will use the above Feynman rules also for SCET computations where n, n̄-collinear quarks couple
to gluons in the same collinear sector. For the more complicated SCET Feynman rules that directly
follow from the effective Lagrangian Eq.(5.74) see [9]. When calculating S-matrix elements we have
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to attach the appropriate wave functions to incoming and outgoing particle legs, which are

α, i
uiα(pi)

v̄iα(pi)
α, i

µ, A
ǫµ,A(ki)

ūjβ(pf)

vjβ(pf)

ǫ∗ν,B(kf)

pi, ki pf , kf

ν, B

β, j

β, j

(H.5)

The Feynman rules associated with the usoft and collinear Wilson lines that appear in the hemisphere
soft and jet function respectively are presented here to first order in αs.

Wn

ij

µ,A
k, n

=
gsµ̃

εn̄µTAij
n̄·k + i0

,

W †
n

ij

µ, A
k, n

=
gsµ̃

εn̄µTAij
n̄·k − i0 ,

(H.6)

k, us

µ, A

j i
Yn

=



gsµ̃εnµTAij
n·k+i0 for Yn,

−gsµ̃εnµTAij
n·k+i0 for Y †n ,

gsµ̃εnµT
A
ij

n·k+i0 for Yn,

−gsµ̃εnµT
A
ij

n·k+i0 for Y
†
n.

(H.7)

Here we have shown all Wilson lines pertaining to n-collinear particles or usoft gluon emission
therefrom. For n̄-collinear particles the rules are completely analogous and obtained by replacing
n↔ n̄.

I Plus distribution miscellanies

The plus distribution of n-th degree for a dimensionless variable x is defined in terms of the limit [13][
θ(x)logn(x)

x

]
+

≡ limβ→0
d
dx

[
θ(x− β)

∫
dx

logn(x)

x

]
= limβ→0

[
θ(x− β)

logn(x)

x
+

1

n+ 1
logn+1(β) δ(x− β)

]
.

(I.1)

Integrated against a test function φ(x) up to some upper bound x+ we find∫ x+

0
dx
[
θ(x)logn(x)

x

]
+

φ(x) =

∫ x+

0
dx

φ(x)− φ(0)

x
logn(x) + φ(0)

logn+1(x+)

n+ 1
, (I.2)
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which, when we integrate against the identity function gives us the convenient relation∫ x+

0
dx
[
θ(x)logn(x)

x

]
+

=
logn+1(x+)

n+ 1
. (I.3)

The plus distributions obey a convenient recursion relation. For n ∈ N0 and some dimensionless
constant ∆ > 0 it holds that

∆

[
θ(x)logn(∆x)

∆x

]
+

=
logn+1(∆)

n+ 1
δ(x) +

n∑
k=0

n!

(n− k)!k!
logn−k(∆)

[
θ(x)logk(x)

x

]
+

. (I.4)

Together with the delta function the plus distributions Eq.(I.1) form “a complete set” of distribu-
tions which characterise the singular behaviour of any jet observable [25].

Imaginary part identities

For the extraction of the imaginary parts from jet correlators in Eqs.(7.86) and (7.90) the following
identities can be used

1

π
Im
{

1

s+ i0

}
= −δ(s),

1

π
Im
{

1

[s+ i0]2

}
= δ′(s),

1

π
Im
{

1

s+ i0
log
(

µ2

−s− i0

)}
=

1

µ2

[
µ2θ(s)

s

]
+

,

1

π
Im
{

1

s+ i0
log
(

m2

−s− i0

)}
=

1

µ2

[
µ2θ(s)

s

]
+

− log
(
m2

µ2

)
δ(s),

1

π
Im
{

1

s+ i0
log2

(
µ2

−s− i0

)}
=
π2

3
δ(s)− 2

µ2

[
µ2θ(s)log

(
s/µ2

)
s

]
+

,

1

π
Im
{

1

s+ i0
Li2
(−s− i0

m2

)}
=
θ(−s−m2)

s
log
(
m2

−s

)
,

1

π
Im
{

1

s+ i0
log
(

m2

−s− i0

)
log
(

1 +
s+ i0

m2

)}
=
θ(−s−m2)

s
log
(
m2

−s

)
+ log

(
1 +

s

m2

) 1

µ2

[
µ2θ(s)

s

]
+

,

=
θ(−s−m2)

s
log
(
m2

−s

)
+
θ(s)

s
log
(

1 +
s

m2

)
1

π
Im
{

1

s+ i0

m2

s+m2 + i0
log
(

m2

−s− i0

)}
=

1

µ2

[
µ2θ(s)

s

]
+

− θ(s)

s+m2
− log

(
m2

µ2

)
δ(s),

1

π
Im
{

1

[s+m2 + i0]2
log
(

m2

−s− i0

)}
= log

(
m2

−s

)
δ′(s+m2) +

θ(s)

(s+m2)2

= − 1

m2
δ(s+m2) +

θ(s)

(s+m2)2
.

(I.5)
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Convolution properties

To perform the convolution between jet correlators and jet functions (or renormalisation factors) the
following identities prove useful,∫

ds′
1

µ2

[
µ2θ(s− s′)
s− s′

]
+

1

s′ + i0
= − 1

s+ i0
log
(

µ2

−s− i0

)
,∫

ds′
1

µ2

[
µ2θ(s− s′)
s− s′ log

(
s− s′
µ2

)]
+

1

s′ + i0
=

1

s+ i0

[
π2

6
+

1

2
log2

(
µ2

−s− i0

)]
.

(I.6)
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