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Abstract

Functionalized polymeric structures have recently attracted considerable interest due to
their responsiveness to externally imposed stimuli. Such systems can be used to design
next-generation materials with controllable properties. This work focuses on two classes of
polymeric systems with nontrivial architectural composition, stars and rings, that contain
functionalized blocks. In each case, the coupling between a stimulus and functionalized
blocks introduces distinctive microscopic dynamics that can yield unique macroscopic self-
organization pathways. In the case of stars, where the stimulus leads to the solvent quality
dependent attraction strength between the functionalized blocks, we find the formation
of interconnected micellar aggregates in very dilute solutions and the development of a
network-like system structure as the polymer concentration is increased. In the case of
rings, where the stimulus is introduced in a non-equilibrium way through different activity
levels between functionalized and non-functionalized blocks, we find the formation of a
hitherto unobserved state of matter that is built on topological threading constrains and
activity at high polymer concentrations — the so-called active topological glass. The
properties of equilibrium ring polymer melts as well as of the active topological glass are
further discussed in relation to biophysical phenomena in the cell nucleus.
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Zusammenfassung

Funktionalisierte Polymerstrukturen haben in letzter Zeit aufgrund ihrer Reaktion auf
extern auferlegte Stimuli großes Interesse geweckt. Mithilfe solcher Bausteine können
Materialien der nächsten Generation mit kontrollierbaren Eigenschaften entwickelt wer-
den. Diese Arbeit befasst sich mit zwei Klassen von Polymersystemen mit nichttriv-
ialer Architektur, Sternen und Ringen, die funktionalisierte Blöcke enthalten. In bei-
den Fällen führt die Kopplung zwischen einem Stimulus und funktionalisierten Blöcken
zu einer charakteristischen mikroskopischen Dynamik, die einzigartigen makroskopischen
Selbstorganisationswege eröffnet. Im Fall von Sternen, bei denen der Stimulus zu einer von
der Lösungsmittelqualität abhängigen Anziehungskraft zwischen den funktionalisierten
Blöcken führt, finden wir die Formation miteinander verbundener Mizellenaggregate in
sehr verdünnten Lösungen und die Entwicklung einer netzwerkartigen Systemstruktur,
wenn die Polymerkonzentration erhöht wird. Im Fall von Ringen, bei denen der Stimu-
lus auf eine Nichtgleichgewichtsweise durch unterschiedliche Aktivitätsniveaus zwischen
funktionalisierten und nicht funktionalisierten Blöcken eingeführt wird, finden wir die
Bildung eines bisher nicht bekannten Materiezustands, der auf topologischen Threading-
Einschränkungen und Aktivität bei hohen Polymerkonzentrationen beruht — das so-
genannte aktive topologische Glas. Die Eigenschaften von Gleichgewichtsringpolymer-
schmelzen sowie diejenigen des aktiven topologischen Glases werden in Bezug auf bio-
physikalische Phänomene im Zellkern weiter diskutiert.
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Chapter 1

Introduction

Modern chemistry enabled the synthesis of a variety of polymeric and colloidal sys-
tems that, often mimicking recurrent biological phenomena, can respond in a controlled
manner to the influence of external stimuli [1, 2, 3, 4, 5]. The latter can be either of
physical (light, temperature, mechanical force, electromagnetic or flow fields), chemical
(pH, solubility, ionic strength), or biological (enzymatic activity, protein bindings) origins
[2, 6, 7, 8, 9, 10, 11, 12]. A prototypical example of such systems are polymer solutions,
in which polymer chains contain functionalized blocks that are sensitive to one or more
of the above-mentioned factors. Then, for example, the solubility of such blocks can be
tuned through an external stimulus, like temperature or pH, which can lead to a distinct
self-assembly pathway both at the single-molecule as well as on the many-chain level.
As a result, potential inter-molecular associations between the blocks can give rise to
supramolecular gel-like assemblies that have profoundly different macroscopic properties
[2, 13]. Furthermore, of prime importance is the reversibility of such states of matter that
is simply achieved through the removal of external stimuli, and results in the relaxation
of the system to its original state. Therefore, the available variety of possible stimuli
offers an unprecedented flexibility in designing materials at a range of length scales that
can operate both at equilibrium and non-equilibrium conditions, surpassing traditional
capabilities of atoms and molecules as fundamental material building blocks [1, 2, 13].
A formidable challenge in this vast landscape of constituting blocks is to be able to de-
sign and predict the system response in line with a specific technological or biomedical
application [14]. This includes a proper understanding of self-assembly scenarios of the
system as a function of the external stimulus as well as of its resulting macroscopic (e.g.,
rheological) response.

This thesis focuses on two classes of objects, in which architectural and topologi-
cal constraints are of particular importance: polymer rings and polymer stars. In both
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Figure 1.1: Self-assembly of low-functionality telechelic star polymers. a, A
single telechelic star with three arms in good solvent conditions for both inner (blue)
and outer (red) blocks. b, A well-defined patch is formed if the solvent quality becomes
worse for the outer (functionalized) block but remains good for the inner one. c, At the
latter condition, the system self-assembles into an interconnected network-like structure
at dilute TSP concentrations. In this case, the TSP concentration is around c ≈ 0.6c∗,
where c∗ is the overlap concentration.

cases, the polymers are assumed to contain functionalized blocks that can be controlled
through an external stimulus. The presence of stimuli affects the microscopic dynamics
of responsive blocks, which, due to nontrivial architectural and topological properties of
considered polymeric structures, can lead to unique macroscopic self-assembly scenarios.
In this work, we will explore the response of the systems to a stimulus and the resulting
single-molecule and many-chain states, with a notable difference that the external control
is achieved in an equilibrium fashion for stars, however, in a highly non-equilibrium way
for rings. In what follows, we will introduce the investigated systems and we will pro-
vide a short overview of the main problems considered in this work in relation to recent
developments in soft and active matter physics.

Star polymers are composed of a certain number of linear chains, often called arms,
connected to a common center. In the first part of this thesis (Chapters 2 and 3), we will
focus on a special type of stars that contain functionalized blocks attached to the tips
of their arms, the so-called Telechelic Star Polymers (TSPs) [15]. Such structures have
recently attracted interest due to a high degree of their tunability that offers flexibility
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in designing smart, responsive, and self-healing materials [16, 17]. Indeed, the changes in
the external control parameter (like temperature or pH, as described above) can induce
a propensity for associations between the functionlized blocks. This, on the other hand,
leads to a variety of self-assembly scenarios at multiple length scales that are particularly
sensitive to (i) system density, (ii) association strength, and (iii) TSP architecture [16].
The TSP architecture, given by the number of star arms, their length, as well as the length
of functionalized blocks, determines the self-assembly pathway at the single star level upon
increasing the association strength [16, 18, 17]. This typically results in the formation of
one or few well-defined attractive patches (see Figure 1.1), reminiscent of patchy colloids
[19, 20], albeit with a soft core in this case. Upon increasing the TSP concentration,
diverse self-organized structured have been shown to exist. The latter include spherical
and wormlike micellar aggregates in very dilute solutions [16, 21, 22, 23, 24] as well as
network-like structures at TSP concentrations comparable to their overlap one [25, 17, 26].
It is expected that more ordered structures emerge at higher concentrations, in line with
the behavior of diblock co-polymers in selective solvents [27]. In any case, even in quite
dilute TSP systems, inter-star associations induce a nontrivial network connectivity that
might strongly influence the solution’s flow behavior. Therefore, the combination of the
above-described control parameters allows to fine-tune the macroscopic response of TSP
systems. In Chapter 2, we will consider a specific realization of a three-arm TSP solution
and we will apply a combination of experimental and computational approaches to shed
light on its behavior in dilute conditions. Furthermore, a particular focus will be placed
on the relationship between the end-block association strength and the ensuing TSP
structure formation. The influence of the TSP architecture will be considered in more
detail in Chapter 3.

The rest of this thesis deals with melts of ring polymers. The latter can be created
by splicing together the ends of a linear chain. Despite the apparent simplicity, such
an operation has profound consequences for properties of ring polymer systems. The
differences stem from a unique topological state of a ring, which is set during the synthesis,
that in the simplest and most studied case represents an unknotted chain that is not linked
with any of its neighbors. Indeed, to change the initial ring’s topology at least some bond
crossings are necessary, which is comparable to overcoming an energy barrier of a typical
covalent bond, Ebond ≈ 100kBT , which is practically impossible if only energy exchange
with a heat bath at temperature T is present. Therefore, the ring’s topological state
imposes a significant entropic constraint in the phase space of attainable configurations
[28]. Even at dilute and semi-dilute conditions this brings about a series of interesting
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phenomena that demarcate rings from linear chains. In particular, such phenomena,
among many others, include self-avoiding statistics for rings with no excluded volume
interactions but properly taken into account uncrossability constraints [29], an effective
topological repulsion between two rings at infinite dilution [30, 31, 32], a higher propensity
of rings to structure at the confining walls [33, 34] and a lower θ-temperature of ring
polymers in solution as compared to linear counterparts [35], as well as hydrodynamic
swelling of rings in shear flow [36].

The role of topological constrains becomes even more important as concentrated solu-
tions and melts of long unknotted and nonconcatenated rings are considered. While linear
polymers at such conditions assume ideal random walk statistics and their dynamics is
well understood in terms of tube and reptation models due to Edwards and de Gennes
[37, 38], the situation is much more complex for rings [39], where the snake-like reptation
is clearly impossible due to the absence of chain ends. Instead, rings feature an amoeba-
like motion, in which they explore the neighboring environment by forming branched and
folded segments that constantly protrude and retract in the mesh of obstacles imposed by
other rings [39, 40]. A series of effective models have been constructed since the 1980s to
rationalize the behavior of rings in the concentrated regime. In particular, such models
rely on (i) considering rings as being on a lattice of fixed obstacles [41, 42, 43], (ii) assum-
ing a double-folded annealed branched structure for rings, as in the annealed tree model
[44, 45, 40], (iii) using certain fractal curves to reconstruct ring conformations [46, 47],
(iv) approximating topological effects with an effective excluded volume [48], as well as
others [49]. A major success of these advances, largely backed up by computer simula-
tions [50, 51, 52, 49, 53, 54, 55, 56] and catching up experiments [57, 58, 59, 60, 61], was
to establish that long unknotted and nonconcatenated rings in the melt assume crum-
pled globule conformations with their size R scaling with the polymerization degree N
as R ∼ N1/3, unlike to R ∼ N1/2 for linear chains. On the other hand, despite the col-
lapsed structure, the rings feature relatively penetrable conformations with the number of
their “surface” monomers, that is the number of monomers in contact with other chains,
scaling as ∼ Nβ with β close to (but smaller than) 1 [50]. As for the dynamics, the
rings feature a significantly prolonged subdiffusive regime before the diffusion onset in
their mean-square displacements in the melt as well as a much weaker scaling of viscosity
with N as compared to linear polymers [51]. As a consequence of such properties, the
ring melts relax stress differently, featuring a power-law regime with absent entanglement
plateau, which is characteristic for linear counterparts [57, 51]. While the predictions
for the scaling of various static and dynamic quantities depend on the structure of the
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underlying effective theory [44, 45, 47], it is difficult to single out the best model because
the available estimates are generally close to each other and consistent with simulations
to date [50, 51, 52, 53]. However, it has been shown that the conformations of a single
ring from the melt are quantitatively consistent with the tree-like structure [52, 53, 62].

There exists, however, a paradox. In the melt state, rings are subject to a special
type of constraints, where one ring pierces through the opening of another one, forming
the so-called threading [63, 64, 65, 54]. While most of the available theories neglect
the presence of threadings or treat them in a simplified fashion, it has recently been
conjectured that they can actually dominate the behavior of sufficiently long rings [65,
66, 67]. The conjecture relies on the observation that the dynamics of a threading pair
of rings is slowed down until the unthreading takes place [67]. Since threading events
become more likely with increasing N , a hierarchical network of interpenetrations can
develop, causing a significant slow-down of rings’ diffusivity [68], the so-called state of
topological glass that is built up solely on inter-molecular entanglements [69]. A similar
conclusion has been inferred from pinning perturbations of ring melts [66, 70] as well as
for ring polymers confined to a gel matrix [65, 71]. Nevertheless, in none of such cases the
topologically jammed state has been observed explicitly, whereas the predicted critical
ring lengths for the transition were beyond the reach of numerical simulations. On the
other hand, the success of theoretical tree models [44, 45] in explaining static and dynamic
properties of rings in the melt implies that threadings must be quantitatively insignificant
(at least for the examined range of N). Note, however, that the picture of double-folded
ring conformations with randomly branched tree-like structure is not entirely complete,
as it underestimates threadings, as recently shown in Ref. [72]. What is then the precise
role of threadings for the dynamics of rings in the melts? Do they eventually lead to a
topologically jammed state in the asymptotic limit of increasing N or their effect becomes
marginal as inferred from current theoretical models?

While in equilibrium melts inter-ring threading is mainly enhanced by increasing the
ring length, currently making the progress in this direction unfeasible, the question has
been raised, whether the topological glass can be obtained in other ways. In the second
part of this thesis (Chapters 4 and 5), we will show how such topological jamming arises
from the deformation of rings under the influence of local non-equilibrium activity mech-
anisms, giving rise to a novel state of matter — the so-called active topological glass. In
particular, we will focus on a model where rings in the melt contain functionalized blocks
that are subject to uncorrelated, thermal-like fluctuations, stronger than for the rest of the
chain. We will show that the presence of active segments results in significantly stretched
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Figure 1.2: Comparison between conformations of equilibrium and non-
equilibrium rings in a spherically confined system. a, A pair of two threading
rings in the melt. b, A single partly active ring in the melt. The active monomers are
highlighted in orange. In both cases, the system consists of M = 46 rings of length
N = 1600 confined within a sphere of the same radius at density ρ = 0.85σ−3 (σ is the
diameter of one monomer).

and elongated ring configurations (see Figure 1.2 for a comparison between steady-state
conformation of equilibrium and activity-driven rings in the melt state). Such rearrange-
ments lead to increased inter-ring threading that pronouncedly inhibits relative motion
of the rings. In general, the employed model mimics a heterogeneous mixture of par-
ticles that operate at different levels of activity and are effectively described by having
two distinct temperatures [73, 74, 75, 76]. It was shown that a two-temperature mixture
of colloidal particles with purely repulsive interactions can demix, provided that their
temperature difference is quite high [73, 77]. On the other hand, the activity difference
necessary for phase segregation is reduced in mixtures of active and passive polymers
[78, 79]. The latter behavior reminisces that of equilibrium polymer mixtures, where
the phase segregation between polymer chains occurs due to small differences in their
inter-monomer interactions [80]. However, for the activity-driven demixing to happen it
is apparently necessary to have χ & 1/

√
N [78, 75], where χ is an appropriately defined

Flory parameter in the non-equilibrium case [78] and N is the polymer length, being in
sharp contrast to χ & 1/N in equilibrium [80]. The role of the non-equilibrium phase
segregation for the formation of the active topological glass is discussed in Chapter 5.

In the third part of the thesis (Chapters 6 and 7), we will focus on a relatively small
system of rings enclosed in a sphere at melt conditions. We will consider both detailed
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static and dynamic properties of equilibrium ring polymer melts as well as the forma-
tion of the active topological glass in such setting. Furthermore, we will discuss these
systems in the context of the interphase chromatin organization problem within the eu-
karyotic cell nucleus. Note that here and in what follows we will refer to chromatin as
to a combination of the double-stranded DNA fiber and histone proteins on which DNA
is wrapped on [81, 82]. Very long chains of chromatin that carry genetic information
form multiple independent chromosome molecules in the nucleus (e.g., 46 for the human
genome). Individual chromosomes can be clearly observed during mitosis (the cell division
stage) where they embrace very compact, condensed conformations [81]. On the other
hand, during the interphase, when the transcription of relevant genes into RNA occurs,
the chromosomes attain swollen conformations and occupy well-defined territories that
do not intermix much [83]. Such territoriality markedly contrasts with the equilibrium
arrangement of linear polymer chains in concentrated solutions or melts, where the former
feature expanded conformations with ubiquitous inter-chain contacts. From the polymer
physics perspective, the territoriality of chromosomes can be explained from topologi-
cal uncrossability constraints that dominate chromatin dynamics at nuclear conditions
[84, 85, 86]. Provided that chromosomes have free ends (which is strictly speaking not
always the case due to their possible attachment to the nuclear lamina [85, 86]), the chains
will relax via the slow repatation mechanism [37, 38]. However, as estimated in Ref. [84],
the relaxation time for this process is much greater than typical physiological time scales
in higher eukaryotes. Therefore, during the interphase, the chain ends can be neglected
entirely, whereas the chromosome conformations should resemble that of unknotted and
nonconcatenated rings in concentrated solutions [84]. This surprising analogy is further
supported by the fact that both ensembles of configurations are consistent [87, 88, 51]
with the so-called crumpled (fractal) globule model [89, 90]. The latter model assumes
self-similar polymer conformations that feature R ∼ N ν with ν = 1/3 together with the
probability of finding two monomers separated by the contour distance s close to each
other scaling as P (s) ∼ s−γ with γ ' 1. While ring polymer melts have been studied
extensively in the bulk, it is not clear what happens with the properties of a relatively
small system of rings subject to spherical confinement. This is especially relevant in the
biological context, as explained above. A detailed account on this problem is provided in
Chapter 6 of this thesis.

The interest behind investigating the active topological glass in spherical confinement,
following up on the results obtained in Chapter 6, is twofold. First of all, it is interesting
to verify if the topological glass can generally form in such conditions. As explained above,
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this state of matter arises from significantly elongated ring conformations that result in
enhanced topological constraints. It is therefore questionable if a sufficient degree of
inter-molecule threading for the topological glass formation can eventually develop within
a cavity, as confinement naturally limits the potential expansion of the rings. On the
other hand, as explained in Chapter 4, the numerical simulations of the active topological
glass in periodic boundary conditions require rather large systems to ensure that spurious
self-threadings of rings do not happen. This, therefore, restricts the studies to rather
short ring lengths (N . 400). We will show in Chapter 7 of this thesis that the presence
of active segments in a relatively small system of rings confined within a sphere similarly
leads to glassy states. Furthermore, we find that active segments in such systems are
generally colocalized and form a phase-segregated blob. Interestingly, we also observe
that threading in this case can be enhanced through multiple reflections of the stretched
rings from the confining wall, as for example seen in Figure 1.2. Second of all, it is
interesting to explore if the active topological glass phenomenology can be relevant for
other chromatin organization problems, in particular those related to active processes on
the chromatin fiber (e.g., remodeling or loop extrusion [81, 82]). In this case, we generally
focus on the phase segregation between more dilute, actively transcribed parts of the
genome (euchromatin) and its more dense, inactive regions (heterochromatin) [91, 92, 87].
It has long been questioned if the latter phenomenon is mainly driven by differences in
chemical interactions between eu- and heterochromatin [93] or by active, non-equilibrium
processes that happen in chromatin fibers on smaller scales [94, 95, 96, 97, 98]. While
it is obvious that the structure of the active topological glass breaks territoriality of
rings and, thus, cannot be used to describe the large scale chromosome arrangement,
in Chapter 7 we discuss its possible role for smaller-scale chromatin organization, where
loop extruders induce a unique loopy structure [99]. More specifically, we will focus on
the correlated chromatin dynamics [100, 101] that arises from topological constraints and
active processes.

In summary, this thesis is structured as follows:

Chapter 2 examines the self-assembly and flow behavior of a solution of three-arm TSPs
in the dilute regime for different association strengths between the end-blocks.

Chapter 3 considers the effect of star architecture on the self-assembly properties of
three-arm TSPs in dilute solutions.

Chapter 4 discusses the formation of the active topological glass in the systems of rings
with functionalized active blocks. Elaborates on the possible type of this glass
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transition by considering systems with a different fraction of partly active chains.

Chapter 5 elucidates the role of the non-equilibrium phase segregation for the active
topological glass formation and provides a detailed study on dynamic and static
steady-state properties of partly active rings in such systems.

Chapter 6 contains a detailed study of static and dynamic properties of equilibrium ring
melts composed of a fairly small number polymer chains confined within a sphere.
A systematic comparison with the bulk results is provided.

Chapter 7 is devoted to the formation of the active topological glass in spherical con-
finement and its potential relation to phenomena observed within the eukaryotic
cell nucleus.

Chapter 8 summarizes all results of this thesis and provides a broad outlook for the
directions of future work.
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Chapter 2

Self-organization and flow of
low-functionality telechelic star
polymers with varying attraction

Published: Esmaeel Moghimi, Iurii Chubak, Antonia Statt, Michael P. Howard, Dimitra
Founta, George Polymeropoulos, Konstantinos Ntetsikas, Nikos Hadjichristidis, Athanas-
sios Z. Panagiotopoulos, Christos N. Likos, and Dimitris Vlassopoulos, Self-organization
and flow of low-functionality telechelic star polymers with varying attraction, ACS Macro
Letters 8, 766-772 (2019). DOI: 10.1021/acsmacrolett.9b002111

We combine state-of-the art synthesis, simulations and physical experiments to explore
the tunable, responsive character of telechelic star polymers as models for soft patchy par-
ticles. We focus on the simplest possible system: a star comprising three asymmetric block
copolymer arms with solvophilic inner and solvophobic outer blocks. Our dilute solution
studies reveal the onset of a second slow mode in the intermediate scattering functions as
the temperature decreases below the θ-point of the outer block, as well as the size reduc-
tion of single stars upon further decreasing temperature. Clusters comprising multiple
stars are formed and their average dimensions, akin to the single star size, counterintu-
itively decrease upon cooling. A similar phenomenology is observed in simulations upon
increasing attraction between the outer blocks and is rationalized as a result of the in-
terplay between inter-star associations and steric repulsion between the star cores. Since
our simulations are able to describe the experimental findings reliably, we can use them

1Author contributions: G. P., K. N., and N. H. synthesized the polymers. E. M., D. F., and D. V.
performed the experiments. I. C. and C. N. L. developed the blob model. I. C. numerically derived
the coarse-grained potentials and performed the coarse-grained blob simulations. A. S., M. P. H., and
A. Z. P. carried out the study of star behavior in shear flow. All authors interpreted the results and wrote
the manuscript.
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with confidence to make predictions at conditions and flow regimes that are inaccessible
experimentally. Specifically, we employ simulations to investigate flow properties of the
system at high shear rates, revealing shear thinning behavior caused by the break-up of
inter-star associations under flow. On the other hand, the zero-shear viscosity obtained
experimentally exhibits a rather weak activation energy, which increases upon rising star
concentration. These findings demonstrate the unusual properties of telechelic star poly-
mers even in the dilute regime. They also offer a powerful toolbox for designing soft
patchy particles and exploring their unprecedented responsive properties further on.

2.1 Introduction

Recently, soft responsive materials have gained a steadily increasing relevance in engi-
neering applications and research because of their functional properties that can be selec-
tively tailored during preparation and/or via external fields [1, 102, 103]. Supramolecular
polymeric assemblies are of particular interest in industrial applications because of their
outstanding stimuli-responsiveness and their concomitant reversible properties such as
self-healing and shape memory [103, 104, 105, 106]. In fact, these materials can dra-
matically change their shape and/or phase under the influence of external stimuli, e.g.,
temperature, irradiation, pH, electromagnetic fields or flow [107, 108, 109]. Moreover, the
use of biologically relevant composites as building blocks of such assemblies opens up a
road for designing novel materials for biomedical or environmental technologies. Single
DNA strands serve as a notable example of such programmable units that have been
exploited for versatile structure formation [110, 111, 112].

In this work, we present a strategy for developing and investigating well-defined star-
shaped block-copolymer systems in solvents of varying quality that act as building blocks
for supramolecular assemblies using a combination of synthesis, simulations and physical
experiments. Given the broad scope and advances in the field of associating polymers
[113, 114], we focus on telechelic star polymers (TSPs), which carry associating monomers
at their ends [115, 116, 117]. A TSP comprises f AB-block copolymers (arms) grafted
on a common center with their solvophilic A-blocks being at the interior of the star
and their solvophobic B-blocks attached to the end of each arm. In what follows, NA

and NB denote the number of A- and B-type monomers in a star arm, respectively, and
α = NB/(NA +NB) is the relative size ratio between the two block lengths.

The behavior of dilute and concentrated TSP solutions is predominantly governed by
the functionality f of the stars, the block size ratio α, and the attraction strength between
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the solvophobic B-blocks that becomes stronger upon worsening solvent quality. Likewise,
structural and viscoelastic properties of melts, in which end-blocks of TSPs associate due
to the enthalpic A-B interactions, have been shown to be controlled by the temperature-
dependent interplay of intra- and inter-molecular associations [15, 118, 119, 120]. At
infinite dilution, TSPs under such selective solvent conditions form well-defined patches,
which allows us to regard them as an experimental realization of soft patchy particles
[116, 121, 122, 17]. Their conformational state-diagram at θ-like conditions for the B-
blocks has been set forward in Refs. [17, 26] based on simulations of an effective blob
model. It has been shown that the patchiness of high functionality TSPs is maintained
at finite concentrations and can facilitate the formation of ordered lattices having coor-
dination compatible with the number of patches of a single TSP, suggesting the use of
TSPs as tunable building blocks for the formation of multiscale hierarchical supramolec-
ular structures [104, 17, 26, 18]. In contrast, as shown by means of extensive on-lattice
simulations, solvophobic blocks of low functionality TSPs tend to form micellar aggre-
gates [24, 23, 22, 123] that can subsequently self-organize at higher concentrations into
long wormlike micelles bridged by arms of individual stars [24, 21]. Finally, compared to
triblock copolymers (i.e., f = 2), which tend to self-organize into flower-like micelles that
interconnect at higher concentrations [124, 125], star-shaped copolymers have a higher
propensity to form intermicellar bridges, as they can split their three arms into three
distinct micelles. Therefore, they are expected to have distinct rheological properties.

These predictions have not yet been fully tested, let alone materialized experimentally,
in a systematic way that exploits the versatility of TSP structures and properties. In
particular, of prime importance are the exact role of tunable attractions between the outer
blocks of TSPs, the corresponding structure formation in concentrated systems, and the
associated change of macroscopic properties (such as viscosity) due to microstructural
reorganization in flow. In this article, we address these questions to demonstrate the
exciting possibilities for designing and fabricating novel materials with tailored rheology.

2.2 Methods

Well-defined 3-arm star diblock copolymers (PS b PB1,4)3 were synthesized by anionic
polymerization and chlorosilane chemistry using high-vacuum techniques in custom made
glass apparatuses. The weight-average total molar mass was Mw, LS-SEC = 26700 g/mol,
the associated polydispersity was Ð = 1.03, and the weight fraction of terminal polysterene
blocks was fPS = 23 %w/w. The stars were dissolved in 1-phenyl dodecane, which is a
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Figure 2.1: Comparison between single star properties for a star with f = 3 arms of
NA = 65 and NB = 3, in experiments and simulations. a, Hydrodynamic radius, Rh,
extracted from the fast process in the experimentally determined ISFs at c = 0.11c∗. The
dashed line is a guide to the eye. b, Simulated radius of gyration of the same TSP in
units of the A-monomer diameter σ as a function of the attraction parameter, λ. Insets
illustrate typical conformations of the TSP at corresponding values of λ. Dotted vertical
lines in a and b correspond to the θ-point of the outer block.

θ-solvent for the outer PS block [126] with a cloud-point at 53.5 °C and a θ-solvent for
the inner PB block at 22 °C. In addition, this solvent has a boiling point of 330 °C at
atmospheric pressure and is therefore amenable to rheological experiments. The dynamics
of the system were measured by Dynamic Light Scattering (DLS) and the shear viscosity
by rheology. Details about the synthesis and solution preparation, as well as DLS and
rheological measurements, can be found in the Supporting Information 2.5.

We developed a complementary coarse-grained simulation model for the TSPs based
on the Kremer–Grest model [127] for linear polymer chains in a good solvent. Interactions
between the A-A and A-B pairs were purely repulsive, mimicking good solvent conditions,
while the B-B pairs had a Lennard-Jones-type attraction with a controllable strength λ,
which denotes the depth of the potential well [128] and is proportional to an inverse
temperature. λ = 0 is a good solvent, λ = 0.33 is a θ-solvent for a linear homopolymer,
and increasing it decreases the solvent quality. To directly compare with experiments, we
simulated 3-arm stars withNA = 65 andNB = 3, which correspond to the number of Kuhn
segments in the studied TSP sample (see Supplementary Section 2.5.7 for model details).
Finally, we note that the employed model aims at capturing essential physical mechanisms
at work in associating polymer solutions but not at quantitatively reproducing the specific
interactions and dynamics in the experiments.
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Figure 2.2: ISFs at different temperatures from (a) experiments and (b) simulations
of the coarse-grained blob model at c = 0.11c∗. The evolution of a second slow mode
is apparent for T < 47.5 °C in experiments and for λ > 1.06 in simulations. Inset in
b illustrates the decrease of the plateau height corresponding to the second step of the
ISF observed in simulations for λ > 1.2. σ̄, τ̄ are the units of the blob model simulations
(Supplementary Table 2.3). The values of experimental C(q, t) smaller than 1 at the
lowest t reflect measurement statistics (number fluctuations due to non-constant number
of scatterers in the scattering volume) in these dilute solutions.

2.3 Results

We first investigated the change of the structure at the single TSP level upon cooling.
Figure 2.1a shows the hydrodynamic radius Rh associated with the fast process in the
experimentally measured intermediate scattering functions (ISFs) in the dilute regime
and calculated using the Stokes-Einstein–Sutherland relation, which effectively represents
the size of a single molecule. As a direct comparison, Figure 2.1b contains the radius of
gyration Rg of the star in units of the A-monomer diameter σ obtained from bead-spring
model simulations at different values of λ. Note that the radius of gyration was too small
to be probed by DLS, hence the comparison will be made between experimental Rh and
simulated Rg. The former, Rh, is an apparent size of the TSP and it is often assumed
that Rh(T )/Rg(T ) is a constant ratio; this is not strictly true because of the different
origin of these quantities [80]. Nevertheless, the existence of a transition temperature for
the single TSP caused by interarm association is an apparent feature of both quantities.

In both cases, we observe reduction of the molecular size upon cooling. Representa-
tive snapshots of the TSP given in Figure 2.1b help to shed light on the self-assembly
process that takes place as λ increases for this particular (f, α) combination. When the
B-monomers, colored in red, are in a good solvent (i.e., for small values of λ), the star is
open and the attraction between star arms is negligible. In this regime, TSPs resemble
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usual athermal star polymers. Upon worsening the solvent quality, solvophobic monomers
first start to form transient patches (1 < λ < 2.5) that can be easily destroyed by thermal
fluctuations. On further increasing λ, this ultimately leads to the collapse of all three arms
of the TSP into one large patch (λ > 2.5) accompanied by a significant decrease in Rg

[121]. Similarly, Rh of a single TSP reduces upon cooling below T = 30 °C. Furthermore,
in both cases the decrease in TSP size occurs within a narrow region of inverse temper-
ature and λ that is notably shifted away from the θ-point of the outer block. Therefore,
we argue that cooling (increasing attraction) triggers a similar self-assembly process in
both the experiments and simulations. On the other hand, in the experiments we ob-
serve only 5% reduction in size, being at the limits of measurement resolution, whereas
this reduction amounts to 25% in the simulations. Such a discrepancy is highly plausible
to originate from the simulation model, which includes neither details of the atomistic
intermolecular interaction that are relevant for the precise values nor details or possible
modifications of the A-A and A-B interactions upon cooling. Nevertheless, it captures the
basic physics of self-organization, i.e., the end-monomer association. Finally, the different
nature of Rh and Rg renders the main value of this comparison qualitative, but even a 5%
size reduction can significantly influence properties that depend on the volume fraction
in dense systems.

Next, we examine the dynamics of TSPs. To be able to study self-assembly in larger
systems and to reach longer time-scales, we developed an even coarser simulation model
from the bead-spring model by grouping certain segments of a star arm into blobs and sub-
sequently deriving effective potentials between the blobs by means of a rigorous approach
that incorporates the many-body correlations that become important at finite densities
[129] (see Supplementary Section 2.5.8 for details). Figure 2.2 shows the ISFs from both
experiments and blob model simulations at a fixed wavevector and various temperatures
(attraction strengths) for c = 0.11c∗, where c∗ is the TSP overlap concentration (see Sup-
plementray Section 2.5.9). The ISF shows two distinct patterns, as seen in Figure 2.2a.
At temperatures above Tθ of the outer block, the ISF exhibits a single exponential decay,
demonstrating the existence of freely moving stars in solution. However, upon cooling the
system well below the Tθ of the outer block (T < 47.5 °C in experiments and λ > 1.06 in
simulations) a two-step decay in the ISF is observed. The slow process becomes more pro-
nounced as T is decreased. Identical trends emerge in the ISFs extracted from blob model
simulations, as shown in Figure 2.2b, although the difference between the fast and slow
mode relaxation times is an order of magnitude smaller than the one observed experimen-
tally. We attribute this discrepancy to the minimal character of the blob model, which
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Figure 2.3: a, Hydrodynamic radius, Rh, extracted from the slow process in the exper-
imental ISFs. b, Average aggregate size as a function of λ extracted from simulations of
the coarse-grained blob model. Insets: representative configurations of TSPs for indicated
λ with the grey arrows (attractive blobs – red, repulsive blobs – light blue, star centers –
black). Both results correspond to c = 0.11c∗.

features soft inter-blob steric potentials and does not take into account hydrodynamic
interactions mediated by the solvent, and to the finite box size that limits the growth of
the clusters that constitute the slow component of the solution. Furthermore, similar in-
formation is recovered when ISFs at various wavevectors are examined: at high T = 60 °C
or low λ = 1.0, the ISF shows a single exponential decay at all q-values, whereas at low
T = 40 °C or high λ = 1.2, the ISF exhibits a clear two-step decay both in experiments
and simulations (Supplementary Figure 2.7 and 2.8). Finally, a few characteristic data
points available in both the experiments and simulations allow us to establish a relation
between λ and 1/T (Supplementary Figure 2.9 and the associated discussion).

The two-step relaxation of the dynamics indicates the coexistence of clusters (slow
process) and single TSPs (fast process). The relaxation spectrum deduced from the in-
verse Laplace transformation of the ISF using the constraint regularized method [130]
reveals two well-separated peaks which represent the relaxation times of single stars and
clusters (Supplementary Figure 2.3). The corresponding relaxation times are used to
calculate the diffusion coefficient and, subsequently, the hydrodynamic radius of a TSP
and clusters using the Stokes-Einstein–Sutherland relation. Figure 2.3a shows Rh corre-
sponding to the slow process. The obtained values exceed the full stretch length of the
(PS PB)3 copolymer, which clearly indicates the formation of the inter-chain aggregates
that decrease in dimensions on cooling.

Simulations provide insights into such change and reveal how the morphology of the
TSP network and its rearrangements depend on λ. Figure 2.3b shows the average cluster
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Figure 2.4: a, Shear viscosity as a function of Weissenberg number Wi from monomer-
resolved simulations obtained at λ = 1 (open symbols) and λ = 3 (closed symbols) for
various TSPs concentrations. The numbers next to the viscosity curves indicate the slopes
of the latter in the corresponding range of Wi. Inset: viscosity data from experiments at
T = 30 °C and low Wi numbers. b, Temperature dependence of the zero-shear viscosity
from experiments at different concentrations indicating a small activation energy ranging
from 20 to 35 kJ/mol for c/c∗ = 1–2.5.

size as a function of λ for c = 0.11c∗ together with the corresponding simulation snapshots
of the TSP structures. At high temperatures (λ < 1.06), the dynamics of the TSPs
are predominantly diffusive: stars occasionally form intra- and inter-molecular patches
encompassing few arms, which quickly dissociate due to thermal noise. Further cooling
(1.06 < λ < 1.2) dramatically increases aggregation capabilities of a patch: we observe the
formation of micelles composed out of attractive B-blocks externally shielded by the inner
self-avoiding A-blocks, see Figure 3b. The micelles feature a rather broad size distribution
and can be interconnected, i.e., there are TSPs whose arms belong to distinct patches,
giving rise to clusters (see Supplementary Figure 2.6 for characteristic distributions of
patch and cluster sizes). Another structural rearrangement of the system occurs by further
reducing the temperature (λ > 1.2): stronger attraction between outer blocks causes
tightening of the respective micellar cores, which simultaneously leads to enhanced steric
constraints between self-avoiding inner blocks distributed on the exterior of these micelles.
Eventually, due to core crowding some arms or even TSPs leave a micelle, which results in
smaller aggregation sizes of patches and clusters and decreased intermicellar separation,
as seen in the insets of Figure 2.3b. This reorganization, however, increases micellar
interconnectivity, as more stars attach their arms to two or even three distinct patches
(see Supplementary Figure 2.5 for patch sizes and TSP interconnectivity). This scenario
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Figure 2.5: Representative configurations from the bead-spring model simulations of
TSPs at Wi = 14.6 (left) and Wi = 107.4 (right) at c = 0.1c∗ and λ = 3.

calls for a strong interplay between intra- and inter-star association, which is an important
design consideration for tailoring the properties of soft patchy particles. We argue that
the combined structural and dynamical information from Figures 2.2 and 2.3 provides
strong evidence about the tunability of TSPs.

Next, we examine the steady state response of TSPs to simple shear flow. We carried
out a study combining experiments that probed the system at low shear rates, thereby
capturing only the Newtonian regime, and simulations at very high shear rates, where
clear shear-thinning behavior was detected. In simulations of the bead-spring model,
shear flow was generated by the reverse nonequilibrium simulation method [131] with an
explicit solvent modelled by multiparticle collision dynamics [132] in the HOOMD-blue
simulation package (modified version 2.3.0) [133, 134, 135, 136]. The effect of shear flow
on TSPs was investigated at λ = 1 and λ = 3, where the stars are open and collapsed at
the single molecule level, respectively, under different concentration regimes.

Figure 2.4 shows the viscosity measurements from simulations and experiments for
TSPs at various shear rates, concentrations, and temperatures. In both cases, the TSP
viscosity was normalized by the solvent viscosity, ηs, and the shear rate, γ̇, was multiplied
by the Brownian time of a single TSP, τ0, to define the Weissenberg number, Wi = γ̇τ0.
The results from both experiments and simulations indicate an increase in the relative
solution viscosity upon decreasing T (increasing λ). For TSPs with moderate attraction
(λ = 1) at c ≤ c∗, as well as for λ = 3 at c = 0.1c∗, we observe a Newtonian regime at
small Wi combined with a weak shear-thinning of viscosity at higher Wi with the slope
of viscosity, η/ηs ∼ Wi−δ, δ ≈ 0.1 (see Figure 2.5 for representative TSP conformations).
Upon increasing c for the system with higher attraction (λ = 3), we first detect a transition
from a Newtonian to a weakly-thinning response, and then to a strongly-thinning response.
In this case, the slope of viscosity at highWi is reduced, suggesting a tendency towards an
infinite-rate limiting viscosity, which implies saturation of deformation of the inner blocks
in shear flow (at λ = 3 and c = 2.5c∗, for example, δ decreases from 0.74 to 0.5 upon rising
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Figure 2.6: (a) Number of patches and (b) their size as a function of Wi obtained from
bead-spring model simulations at λ = 1 (open symbols) and λ = 3 (closed symbols) and
various concentrations.

Wi). This is further confirmed by the fact that TSPs stretch and tend to align their arms
along the flow direction (Supplementary Figure 2.10). In addition, experimental data for
very dilute solutions of linear polymers (c < 0.2c∗) indicates very low slopes, similar to
that of c∗ solution at λ = 1 in our case, both in good and θ-like solvent conditions. The
slope grows with increasing concentration and reaches 0.5 in the semidilute unentangled
regime [137, 138], while simulations provide even higher values, up to 0.75 [139, 140].
Slopes ranging from 0.3 to 0.4 for increasing c have been reported for dilute solutions of
star polymers with up to 50 arms in good solvent [141]. The wide range of slopes reflects
the complexity of these multi-scale TSP systems, which are very different from simple
polymers, yet their thinning is associated with deformation of segments and break-up of
patches.

As determined by simulations, the microscopic origin of shear-thinning in solutions of
TSPs can be qualitatively linked to the fission of patches between outer blocks in shear
flow. The dependence of the number and size of patches on Wi are shown in Figure 2.6a
and 2.6b, respectively. For λ = 1, the shear rate had only a small effect on the patches.
On average the patches contained 2-3 arms and the number of patches decreased slightly
with increasing flow rate because the patches were broken up by the rearrangement of
the polymers under shear, leaving behind free arms. Such behavior is consistent with the
weak shear-thinning of viscosity observed in Figure 2.4a. On the other hand, for λ = 3,
the patches were broken up into smaller ones under strong shear rates, resulting in a steep
increase of their number, and hence implying a strongly-thinning response.
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2.4 Conclusions

In conclusion, we have shown how a simple 3-arm telechelic star polymer, a soft patchy
particle, is a paradigm for a designer material with tunable structure and rheology. Tun-
ability is easily achieved by varying the strength of attraction between the associating
terminal monomers of the TSP, i.e., by selecting a proper solvent that is at the same time
good for the inner blocks but poor for the outer ones and then controlling the tempera-
ture. We demonstrated this promising possibility in dilute solutions, where such tuning
leads to an interplay between intra- and inter-star associations that result first in the
formation of clusters comprising multiple stars in the system and then to reduction of
their size upon cooling. The clusters are gel precursors that can be characterized by a
weak flow activation energy, but have substantial deformability in strong shear fields due
to the disintegration of inter-star patches. The combination of system simplicity and un-
precedented richness of material behavior make this approach particularly promising. The
satisfactory agreement between experiment and simulations suggests a powerful strategy
to design soft responsive patchy particles with tunable macroscopic properties.
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2.5 Supplementary Information

2.5.1 Materials

Styrene (Sigma-Aldrich, 99%) was purified via consecutive distillations over CaH2 (Sigma-
Aldrich, 95%) and dibutyl-magnesium (1 M in heptane, Sigma-Aldrich) and stored in
pre-calibrated ampoules. 1,3-Butadiene (Bd) (Sigma-Aldrich, 99%) was purified via con-
secutive distillations over n-BuLi, at -10 °C using ice/salt bath, prior addition to the
polymerization reactor. Benzene (Sigma-Aldrich, 99.8%) methyltrichlorosilane (Sigma-
Aldrich, 99%) and methanol (terminating agent, Sigma-Aldrich, 99%) were purified ac-
cording to the standards required for anionic polymerization, using well-established high-
vacuum procedures. sec-Butyllithium (s-BuLi, 1.4 M in cyclohexane, Sigma-Aldrich) was
used without purification and was diluted with dry n-hexane. The diluted reagents were
stored at -20 °C in ampules equipped with break-seals before use. The polymerization
and linking reaction were performed under high vacuum conditions in sealed glass reactors
equipped with break-seals. The reactor was purged with n-BuLi solution after its removal
from the vacuum line by flame sealing-off.

2.5.2 Instrumentation

Size exclusion chromatography measurements were carried out at 35 °C through a Vis-
cotek GPCmax VE-2001 with THF as the eluent at a flow rate of 1.0 mL/min, equipped
with an isocratic pump, Styragel HR2 and HR4 columns in series (300 mm × 8 mm) and
a differential refractive index detector (DRI). The system was calibrated with polystyrene
(PS) standards (Mp: 370 to 4,220,000 g/mol). Triple-detection measurements were per-
formed in the same instrument, which was also equipped with a two-angle light scattering
detector (15° and 90°, λ0 = 658 nm) and a viscometer. These measurements were used
for the calculation of the weight-average molecular weight (Mw) and polydispersity index
(Ð) of the linear and final star block copolymers. Proton nuclear magnetic resonance
spectroscopy (1H-NMR) spectrum was recorded at Bruker AVANCE III spectrometer
operating at 500 MHz. Chloroform-d (CDCl3) was the solvent at room temperature.

2.5.3 Synthesis of the 3-arm star diblock copolymer

A typical procedure for the synthesis of the (PS b PBd1,4)3 3-arm star copolymers is as
follows. Styrene (1g) was polymerized at room temperature, using sec-butyllithium (1.1
mmol) as initiator and benzene as solvent. The mixture was left to react for 18 hours
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Sample

(
M̄ star

w

)
LS-SEC

(g/mol)

(
M̄ linear

w

)
LS-SEC

(g/mol)
ÐSEC

fPS
*

(1H-NMR)
%(w/w)

fPB
*

(1H-NMR)
%(w/w)

(PS b PB)3 26700 8800 1.03 0.23 0.77
* Mass fraction was calculated via 1H-NMR spectroscopy in CDCl3 at 25 °C.

Table 2.1: Molecular characteristics of the linear PS b PB and the final star diblock
copolymer (PS b PB)3.

and then an aliquot was taken by heat-sealing the corresponding constriction tube for
molecular characterization. Afterwards, the appropriate amount of 1,3-butadiene (9g)
was added to the reaction mixture and the polymerization left until completion. After 24
hours an aliquot was taken for molecular characterization. The rest of the “living” polymer
solution was reacted with methyltrichlorosilane (0.28 mmol) to form the 3-arm star diblock
copolymer. The linking reaction was monitored by SEC and lasted for 2-3 weeks. After
the completion of the reaction, the excess of the living chains were terminated by addition
of degassed methanol and the solution precipitated in a large amount of methanol. The
3-arm star diblock copolymer (PS b PBd1,4)3 was purified from the unreacted linear
chains by repeated solvent/non-solvent (toluene/methanol) fractionations. The synthetic
strategy is presented in Supplementary Figure 2.1. All intermediates and final products
were analyzed by SEC and 1H-NMR (Supplementary Figure 2.2).

2.5.4 Sample preparation

Solutions were prepared by mixing an appropriate amount of telechelic star polymers
(TSPs) and solvent (1-phenyldodecane) to reach a desired concentration. The sample
degradation was inhibited by adding 0.1 wt% of TSP of the antioxidant BHT (2,6-Di-tert-
butyl-4-methylphenol). In order to fully dissolve TSPs, methylene chloride was used as

Supplementary Figure 2.1: Synthesis of 3-arm star diblock copolymers (PS b PBd)3.
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Supplementary Figure 2.2: Left: SEC traces of the synthesized linear PS precursor,
linear PS b PBd1,4, and the corresponding 3-arm star (PS b PBd1,4)3. Right: 1H-
NMR spectrum of (PS b PBd1,4)3 star block copolymer.

the cosolvent. Then, the cosolvent was removed under ambient conditions until constant
weight was achieved.

2.5.5 Dynamic light scattering

In Dynamic Light Scattering (DLS), the experimental normalized autocorrelation function
G(q, t) = 〈I(q, 0)I(q, t)〉 / 〈I(q, 0)〉2 of the instantaneous light scattered intensity I(q, t) at
the scattering wavevector q = (4πn/λ0) sin (θ/2) (n is the refractive index, θ denotes
the scattering angle, and λ0 is the wavelength of the incident laser beam) is related to
the normalized time correlation function g(q, t) = 〈E∗(q, 0)E(q, t)〉 /

〈
|E(q, 0)|2

〉
of the

scattered electric field E(q, t) by the Siegert relation:

G(q, t) = 1 + f ∗ |αg(q, t)|2 = 1 + f ∗ |C(q, t)|2 , (2.1)

where f ∗ is the coherence instrumental factor, α is the fraction of the total scattered
intensity I(q) associated with fluctuations relaxing with times longer than 0.1 µs [142,
143, 144], and C(q, t) is the intermediate scattering function (ISF).

DLS experiments were performed on an ALV-5000 goniometer/correlator setup (ALV-
GmbH, Germany). The light source was a Nd:YAG dye-pumped, air-cooled laser (100
mW) with the wavelength λ0 = 532 nm. The refractive index of 1-phenyldodecane is
n = 1.482. Before each experiment, the sample was equilibrated at T = 60 °C (above
the θ-temperature of the outer PS-block) for 10 min to erase thermal history. Then,
the sample was quenched to the desired temperature and equilibrated. The equilibration
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Supplementary Figure 2.3: ISF (black circles, left axis) and its corresponding relax-
ation times spectrum deduced from the constrained regularization method (red circles,
right axis) at q = 0.02475 nm−1 for T = 30 °C (left) and T = 40 °C (right).

process was probed by measuring the ISF until it reached steady values over time. The
duration of equilibration depended on the temperature and ranged from 10 min for T = 60
°C to 10 hr for T = 20 °C.

To analyze the computed relaxation functions C(q, t), the inverse Laplace transforma-
tion using the constrained regularization method was applied. This method assumes that
C(q, t) can be written by a superposition of exponentials:

C(q, t) =
∫ +∞

−∞
H(ln τ) exp (−t/τ) d (ln τ) , (2.2)

where H(ln τ) is the relaxation spectrum. The characteristic relaxation times correspond
to the maximum values of H(ln τ), whereas the area under the peak defines the value α in
Eq. 2.1 and hence the intensity αI(q) associated with the particular dynamic process. The
transformation was performed by means of the program CONTIN [130], and yielded the
relaxation time and intensity of the partitioning modes. Typical results of such analysis
are shown in Figure 2.3.

2.5.6 Rheology

Rheological experiments were conducted on an ARES-HR strain controlled rheometer
(TA Instruments, USA) with stainless steel cone-plate geometry (8 mm diameter, 0.166
rad angle and a truncation of 0.21 mm). Temperature was controlled using a standard
Peltier plate. A solvent trap was used to ensure the elimination of evaporation, although
1-phenyldodecane did not evaporate due to a high boiling point (TB = 330 °C). To erase
history effects, before each experiment the sample was heated up at T = 60 °C for about
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10 min, which was enough for the system to reach equilibrium. The latter was checked by
probing linear elastic and viscous moduli until both reached the steady state values. The
system was then quenched to the desired temperature and equilibrated. Finally, shear
viscosity measurements were performed by applying a constant shear rate and measuring
the steady state value of viscosity.

2.5.7 Simulation model

As stated in the experimental part, arms of TSPs are diblock copolymers chemically
composed out of an inner, solvophilic PB- and an outer, solvophobic PS-block. In what
follows, ‘A’ refers to repulsive PB-monomers, ‘B’ to sticky, terminal PS-monomers, and
‘C’ to star centers. In order to accurately handle disparities in physical properties of the
blocks, we developed a specific bead-spring (BS) model for the experimental TSPs. The
number of A- and B- monomers in an arm was chosen as NA = fPBM̄

linear
w /M0

PB ≈ 65,
and NB = fPSM̄

linear
w /M0

PS ≈ 3, respectively, where M0
PB = 105 g/mol, M0

PS = 720 g/mol
are the molar masses of a single Kuhn monomer [80, p.53], and fPB, fPS, M̄ linear

w are listed
in Table 2.1. In other words, each repeating unit in the model polymer chain corresponds
to one Kuhn segment of either PB (A) or PS (B). As a consequence, the fraction of
terminal, PS, Kuhn monomers is now modified and takes for the bead-spring model the
value α = 0.044.

The solvent-dependent attractions between B-monomers are incorporated into our
simulations by means of a generalized Lennard-Jones potential [145, 128]:

βV LJ
ij (r) =


4
[(
σij
r

)12
−
(
σij
r

)6
]

+ 1− λij, r ≤ 21/6σij,

4λij
[(
σij
r

)12
−
(
σij
r

)6
]
, r > 21/6σij,

(2.3)

where i, j = A, B, C (star centers), and β = (kBT )−1. By taking into account that the
outer part is much stiffer, the Kuhn length of a PS-monomer bPS = 1.8 nm is almost twice
as large as that of a PB-monomer bPB = 0.96 nm [80, 146], we set σBB = 2σAA. All other
σij are listed in Table 2.2. The above-defined dimensionless coupling parameters λij denote
the depth of the potential well between ij-pairs and effectively control solvent quality.
More specifically, higher values of λ worsen the solvent, and therefore it is proportional
to inverse temperature in experiments. Moreover, the value λ = 0 reduces Eq. (2.3)
to the Weeks-Chandler-Andersen (WCA) potential [147] between monomers and hence
mimics good solvent conditions, whereas λ = 1 corresponds to the standard Lennard-
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ij σij λij rLJcut/σij R0
ij/σij

AA 1 0 21/6 1.5
AB 1.5 0 21/6 1.5
AC 1 0 21/6 4.5
BB 2 λ (varies) 3 1.5
BC 1.5 0 21/6 —
CC 1 0 21/6 —

Table 2.2: Parameters of pair interactions in the bead-spring model.

Jones potential.

As usual, neighboring monomers along the backbone are bonded via a finitely exten-
sible nonlinear elastic (FENE) potential:

βV FENE
ij (r) =


− κ

2

(
R0
ij

σij

)2

ln
1−

(
r

R0
ij

)2
 , r ≤ R0

ij,

+∞, r > R0
ij,

(2.4)

with κ = 30, R0
ij = 1.5σij for i, j = A, B, and R0

AC = 4.5σAC for monomers directly bonded
to star centers. Accordingly, we set mB = 40m and mA = mC = 5m, where m = 1 is
the mass of a solvent particle (the inclusion of explicit solvent and shear flow generation
are discussed in the following Section 2.5.12), originating from the fact that mPS ≈ 8mPB

[80, 146]. For efficiency reasons, the Lennard-Jones potentials (2.3) are truncated and
shifted. The parameters of all pair interaction in the model, as well as the cutoff radii,
are listed in Table 2.2. All simulations were performed at kBT = 1. In what follows, σ
denotes the smallest length scale in the system, σAA.

In experiments, the overlap concentration was estimated using c∗ = 3MW/(4πNAR
3
g,0),

where MW is the molecular weight of the studied polymer, NA is the Avogadro number,
and Rg,0 denotes the radius of gyration at high T . Note that c (and c∗) is measured in the
units of mass density when referring to experiments, and in the units of number density
in simulations. Furthermore, to match the experimental and simulated concentrations,
we converted Rh,0 to Rg,0 assuming that Rg,0 = 1.2Rh,0 [80, p. 347], where Rh,0 stands for
the hydrodynamic radius at high T . In simulations, c∗ was then calculated as 3/(4πR3

g,0).
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2.5.8 Coarse-graining

To be able to study structure and relaxations of larger systems of TSPs in equilibrium,
reaching thereby long time scales, we have developed, on the basis of the bead-spring
model introduced above, an even coarser multi-blob (MB) model, in which segments of a
star arm are grouped into blobs, whose centers of mass (CM) interact via suitably derived
effective potentials. Such a MB approach has been proven to deliver accurate results for
versatile systems in different concentration regimes [148, 149, 150, 17, 151, 26, 18].

In particular, we used Nblob
A = 32 for composing an A-blob, and Nblob

B = 3 for a B-blob.
With such parameters, an arm of a TSP from the experimental sample consists only out
of two repulsive A-blobs, and a single attractive B-blob. Moreover, such choice of blob
sizes ensures that the ranges of all effective interactions are similar. This approach not
only enables us to reduce to initial number of degrees of freedom in more than one order
of magnitude, but also allows to flexibly construct TSPs with higher functionalities as
well as various arm composition.

The derivation of the effective pair potentials V eff
αβ (r) between blobs (α, β = A, B) is

based on the exact relation between the inter- and intra-molecular (connected by a bond)
pair distribution functions (denoted by gαβ(r) and sαβ(r), respectively) between the CMs
of the blobs, and the effective potentials at low densities [129]. More specifically, these
correlation functions can be obtained from simulations of two α–β diblocks [152, 148, 153]
(in what follows, fαβ(r) = e−βV

eff
αβ (r) − 1 denotes the Mayer f -function):

1. Simulations of two A–A diblocks yielding gAA(r) and sAA(r) pair correlation func-
tions. The effective interaction V eff

AA(r) can be then obtained as a solution of the
following integral equation:

gAA(r) =
[
1 + fAA(r)

]1 +
∫

d3x
[
fAA(x)sAA(x− r) + sAA(x)fAA(x− r)

]

+
∫

d3x
∫

d3y sAA(x)sAA(y− r)
[
fAA(x− y) + fAA(y)fAA(x− y)

+ fAA(x− r)fAA(x− y) + fAA(y)fAA(x− r) + fAA(y)fAA(x− r)fAA(x− y)
]
(2.5)

2. Simulations of two B–B diblocks providing gBB(r) and sBB(r) pair correlation func-
tions, from which V eff

BB(r) can be computed using Eq. (2.5) by replacing ‘A’ with
‘B’.
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3. Simulations of an A–A and a B–B diblocks providing gAB(r) pair correlation func-
tions. The effective interaction V eff

AB(r) can be obtained by inverting

gAB(r) =
[
1 + fAB(r)

]1 +
∫

d3x
[
fAB(x)sBB(x− r) + sAA(x)fAB(x− r)

]

+
∫

d3x
∫

d3y sAA(x)sBB(y− r)
[
fAB(x− y) + fAB(y)fAB(x− y)

+ fAB(x− r)fAB(x− y) + fAB(y)fAB(x− r) + fAB(y)fAB(x− r)fAB(x− y)
]
(2.6)

4. Simulations of a single A–A or B–B diblocks provide only the sAA(r) or sBB(r)
pair correlation function, which can be used to compute effective intra-molecular
potentials Φeff

αβ(r):
βΦeff

αβ(r) = − log [sαβ(r)] (2.7)

Note that all integrals, except the last double one, in Eqs. (2.5) and (2.6) are convo-
lution integrals and therefore can be evaluated efficiently in Fourier space. The integral
involving five factors is known a ‘bridge’ integral, which cannot be decomposed into a prod-
uct of convolutions. We employed the method of Attard for evaluating them[154, 155].
All the above-defined pair distribution functions were obtained in Monte Carlo simula-
tions with umbrella sampling to ensure good statistics over a wide region of interaction
energies, which especially applies to short CM separations.

Eqs. (2.5) and (2.6) are nothing else as the RISM equations for diatomic molecules
obtained by Ladanyi and Chandler [129]. For polymeric molecules in general, and for star-
shaped in particular, the application of RISM equations hinges on a few approximations:
1) it is assumed that a polymer is composed out of multiple segments, i.e. blobs, that
are treated as a single interaction site (in our case segments of a star arm are described
only by the coordinates of its center of mass); 2) pair distribution functions between each
segment’s center of mass that are subsequently used in the RISM inversion are computed
from simulations of diblocks, not from simulations of whole polymeric molecules. We
stress, however, that such approximations are necessary to 1) substantially reduce the
number of internal degrees of freedom, which is the central goal of any first principles
coarse-graining approach and to 2) perform necessary simulations in a reasonable amount
of computational time. On the other hand, this approach explicitly includes finite density
correlations between blobs, which is a great advantage in comparison to more simplistic
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Supplementary Figure 2.4: Effective potentials between the CMs of two A (top row),
an A and a B (middle row), and two B (bottom row) non-bonded (left column) and
bonded (right column) blobs.
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Model Length Energy Mass Time
BS σ ε m τ
MB σ̄ = 10σ ε̄ = ε m̄ = 120m τ̄ ≈ 110τ

Table 2.3: Comparison between units in the bead-spring and multi-blob models.

methods that ignore them completely. For example, effective potentials computed as
βVeff(r) = − logP (r), where P (r) is the probability density of observing the centers
of mass of two polymers at a distance r, would provide much less accurate predictions
because they do not take into account finite-density effects.

The resulting set of effective potentials covering the range λ ∈ [0.5, 2.5] are shown
in Figure 2.4. As expected, V eff

AA(r) and V eff
AB(r;λ) feature a Gaussian shape [156], where

the latter one has a slight λ-dependence. V eff
BB(r;λ) potentials develop a deep negative

minimum with increasing λ, and diverge for r → 0, as there are only 3 monomers in a
B-blob.

2.5.9 Structure in equilibrium

According to the chemical composition outlined in Table 2.1, a TSP in a MB simulation
consists out of f = 3 arms, every of which contains nA = 2 A-blobs, and nB = 1 B-blobs,
tethered to a centeral, point-like particle, i.e. 10 particles in total. The masses of single
blobs were calculated as follows: mblob

A = Nblob
A mA = 32×5m = 160m for an A-blob , and

mblob
B = Nblob

B mB = 3× 40m = 120m for a B-blob. The latter mass, mblob
B , was chosen as

the unit of mass in MB simulations. In addition, as the unit of length we set σ̄ = 10σ,
which approximately corresponds to the Rg of a single free star at high temperature.
Further comparison between BS and MB units is given in Table 2.3.

We performed Langevin dynamics (T = 1.0 ε/kB, γ = 1.0 m̄/τ̄ , ∆t = 0.005τ̄) sim-
ulations of TSPs modeled by effective potentials shown in Supplementary Figure 2.4 in
the dilute regime (c/c∗ = 0.11, 0.25, 0.57) at various values of the interaction paramter
λ using the simulation package HOOMD-blue [134, 135]. The overlap concentration, c∗,
was estimated as

c∗ = 3
4πR3

g,0
, (2.8)

where Rg,0 it the radius of gyration of a TSP at low λ = 0.5. We used a cubic box of
size L = 30σ̄, containing 898, 2040, 4651 stars in the system for c/c∗ = 0.11, 0.25, 0.57,
respectively. In addition, at the lowest concentration, c/c∗ = 0.11, we also performed
simulations in a bigger box with L = 50σ̄ (4155 stars) to obtain better statistics of the
cluster size distribution.
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Supplementary Figure 2.5: Average number of (a) arms and (b) TSPs per patch as
a function of λ for c/c∗ = 0.11, 0.25, 0.57. The aggregation numbers significantly increase
within a narrow region of λ indicating the formation of micelles, first featuring a peak and
then saturating at a constant value upon increasing λ further on. The average number
of distinct patches, in which a star participate, (c) follows a similar trend, and indicates
higher interconnectivity of the TSP network upon increasing concentration. The fraction
of free stars (d) steadily decays to zero, which is located approximately at the micellization
point. Inset in d illustrates the fact that at c = 0.57c∗ all TSPs in the simulation box
belong to a single cluster for λ > 0.94.
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Supplementary Figure 2.6: Probability density of finding Nstars TSPs in a patch (left)
and a cluster (right) at c = 0.11c∗. The shape of the cluster size distribution indicates
the presence of multiple connected micelles with TSPs serving as bridges between them.

The resulting TSP structure formation upon cooling is given in Supplementary Fig-
ure 2.5. As explained in the main text, we observe the following chain of structural
rearrangements:

1. At low λ (high temperatures), TSPs form only short-lasting bonds, with a typical
patch including only two arms that belong either to the same star or two distinct
stars. In this phase, most of TSPs are free, as shown in Supplementary Figure 2.5d.

2. Further increasing of λ leads to the formation of polydisperse micellar aggregates,
with B-blobs located in their cores, and A-blobs distributed on the exterior. Two
micelles form a cluster, if two arms of a TSP that participates in both contribute
to two distinct cores. For example, at c = 0.11c∗ the biggest average aggregation
numbers can be observed at λ = 1.2: a patch on average contains more than 50
arms belonging to more than 17 different stars, and an average cluster encompasses
almost 25 TSPs, Figure 2.5a and Figure 2.5b. The distribution of patch and cluster
sizes at c = 0.11c∗ is shown in Supplementary Figure 2.6. It is worth noting that in
this case the maximal cluster size can exceed the average more than in 5 times. In
simulations of the system with L = 50σ̄ we observed identical distribution of patch
sizes, although increased sizes of the biggest cluster, originating from the fact that
there are more micelles that can potentially interconnect via bridging.

3. At high λ (low temperatures), strong attractions between B-block cause tightening
of the micellar cores, which results in reduced aggregation numbers, Supplementary
Figure 2.5b, but enhanced micellar interconnectivity, Supplementary Figure 2.5c.
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The simulations at all concentrations considered here feature similar self-assembly
trend. However, at higher c we observe bigger patch sizes and increased number of
distinct patches per TSP. Finally, at high enough concentrations, the micellization goes
along with a percolation transition, in which all TSPs form a single cluster spanning the
whole simulation box. This is illustrated for c = 0.57c∗ in the inset of Figure 2.5d.

2.5.10 Intermediate scattering functions

In MB simulations, ISFs at a fixed wavevector q were computed from NVE trajectories
(∆t = 0.002τ̄) using [157, 158, 159]

C(q, t) = 1
N

N∑
i=1

N∑
j=1

[
sin (qrij(t))
qrij(t)

]
∆ij(t, R)− 4πρ

q2

(
q−1 sin(qR)−R cos(qR)

)
, (2.9)

normalized with its equal-time value, C(q, 0), and averaged over multiple independent
simulation runs. In Eq. (2.9), ρ denotes the number density of the system, rij(t) is the
distance between particle i at time t = 0 and particle j at later time t, i.e., rij(t) =
|ri(t)− rj(0)|, R is the cutoff distance chosen to be half of the box size, and

∆ij(t, R) =


1, if rij(t) ≤ R

0, if rij(t) > R.
(2.10)

The resulting high (one-step relaxation) and low (two-step relaxation) temperature
ISFs at various wavevectors, and their comparison to the experimental ones obtained
from DLS are shown in Supplementary Figures 2.7 and 2.8. We attribute the second
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Supplementary Figure 2.7: ISFs at different scattering wavevectors q for experiments
at (a) T = 60 °C and simulations at (b) λ = 0.9.
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Supplementary Figure 2.8: ISFs at different scattering wavevectors q for experiments
at (a) T = 40 °C and simulations at (b) λ = 1.2.

step in the ISF to the relaxation of big aggregates that diffuse slower in comparison to
single stars. As differently sized clusters should remain in a dynamic equilibrium state
due to permanent inter-cluster arm exchanges, such dynamics might leave a footprint on
the relaxation of the system. However, we note that once the clusters formed during
equilibration phases of our simulations, their reorganization was an extremely rare event
over the course of a typical total simulation time. Therefore, we think that such dynamic
rearrangements had a only minor effect on the observed ISF of the system.

2.5.11 Relation between λ and T

Since λ has been introduced as a parameter of the model and a quantitative connection
to the tempreature is still lacking, we can now fulfill this task. Indeed, the comparison
between three characteristic data points, namely (i) the θ-point of the outer block, (ii) the
temperature, where a second relaxation mode in the ISFs appears, and (iii) the tempera-
ture, at which a single TSP collapses, offers us a possibility to establish a correspondence
between λ and 1/T , valid within the range of experimentally accessible temperatures
(Supplementary Figure 2.9):

λ(T ) = κ
( 1
T
− 1
T0

)
, T ≤ T0,

where λ(T ) = 0 for T > T0 with T0 = 332 K, and κ = 8935 K.
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Supplementary Figure 2.9: Relation between λ and 1/T based on (i) the θ-point of
the B-block, (ii) the temperature, where a second step in the ISFs appears, and (iii) the
temperature, at which a single TSP collapses.

2.5.12 Solvent and shear

We chose multiparticle collision dynamics (MPCD) as a solvent because this particle-
based mesoscale model faithfully resolves hydrodynamic interactions with a modest com-
putational cost [160]. The properties of the MPCD fluid are controlled by the particle
number density, the rotation angle, the temperature, and the time between collisions
[132, 161, 162]. We chose the density as ρ = 5σ−3 and the rotation angle as 130◦,
and performed a collision every 20 MD timesteps with ∆t = 0.005τ (every 0.1 τ). Each
solvent bead mass was set to have a mass of m = 1. We additionally applied a Maxwell–
Boltzmann rescaling thermostat [163, 164] to each cell to maintain a constant temperature
T = 1.0 ε/kB throughout the fluid, where kB is the Boltzmann’s constant. The viscosity
ν can be estimated for the MPCD fluid using kinetic theory [165], giving ν = 3.96 ετ/σ3

for our parameters.
We determined the relaxation time τ0 of this TSP model system for three different

values of λ = 1, 2 and 3. The diffusion coefficient D was computed from the mean-squared
displacement using six independent single star simulations. Then, the relaxation time was
defined as the time a polymer needed to diffuse its own size, τ0 = R2

g/D. The results are
τ0 = 71411τ for λ = 1, τ0 = 44028τ for λ = 2, and τ0 = 30655τ for λ = 3. The estimate
obtained from the Zimm relaxation time for a single arm would be much lower, because
the dependence of the relaxation time on star functionality and attraction strength along
the arms would be neglected. With τ0 known, the more relevant Weissenberg number
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Supplementary Figure 2.10: a, Radius of gyration as a function of Weissenberg num-
ber for λ = 1 (open symbols) and λ = 3 (closed symbols). b, Anisotropy and sphericity
values for the same systems. The colors and symbols of the latter match the ones in the
legend of a.

Wi = γ̇τ0 instead of the shear rate was used to facilitate comparison between simulations
and experiments.

For implementing shear flow, we used the reverse nonequilibrium simulation (RNES)
method [166]. It imposes a momentum flux on the system in an unphysical way by swap-
ping momentum of MPCD-particles in certain regions of the box. Consistent with the
standard implementation, we picked the regions to be at 0.25Lz and 0.75Lz with a thick-
ness of 1σ each. The momentum flows back through the fluid by friction in a physically
correct way, causing a velocity gradient in the system. This results in a gradient in the z-
direction, with x being the flow direction. By measuring the imposed perturbation Px on
the system and the resulting flow field, the viscosity as function of shear rate can be cal-
culated very accurately as η = τ/γ̇, where the stress can be calculated from the imposed
perturbation τ = Px/2tA. The main advantage of RNES is, that by performing simula-
tions of non-equilibrium TSP solutions, structure and shear viscosity can be obtained at
the same time with no substantial additional computational effort. Because unexpected
nonlinear flow profiles have been observed when using RNES in non-cubic boxes [167],
we performed all simulations in cubic boxes of size 100σ3. We then exchanged the mo-
mentum of different number of pairs to create a steady state flow. By using a modified
version, where pairs with momenta close to a target value instead of the maximum were
exchanged, we were able to tune flow rate more precisely [168, 169].

The influence of shear rate on the size of the star polymers is shown in Supplementary
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Figure 2.10. The radius of gyration for all λ and c considered increases with shear rate
because the star polymers extend in the flow direction. The shape changes from approxi-
mately spherical on average to rod-like, as illustrated by the anisotropy A and sphericity
S values in Supplementary Figure 2.10b. A perfect sphere would have A = S = 0 and a
perfect rod would have A = 1, S = 2.
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Chapter 3

The influence of arm composition on
the self-assembly of low-functionality
telechelic star polymers in dilute
solutions

To appear in Colloid and Polymer Science: Esmaeel Moghimi, Iurii Chubak, Dimitra
Founta, George Polymeropoulos, Konstantinos Ntetsikas, Nikos Hadjichristidis, Chris-
tos N. Likos, and Dimitris Vlassopoulos, The influence of arm composition on the self-
assembly of low-functionality telechelic star polymers in dilute solutions, in press (2020).1

We combine synthesis, physical experiments, and computer simulations to investigate
self-assembly patterns of low-functionality telechelic star polymers (TSPs) in dilute solu-
tions. In particular, in this work we focus on the effect of the arm composition and length
on the static and dynamic properties of TSPs, whose terminal blocks are subject to wors-
ening solvent quality upon reducing the temperature. We find two populations, single
stars and clusters, that emerge upon worsening the solvent quality of the outer block.
For both types of populations, their spatial extent decreases with temperature, with the
specific details (such as temperature at which the minimal size is reached) depending on
the coupling between inter- and intra-molecular associations as well as their strength. The
experimental results are in very good qualitative agreement with coarse-grained simula-

1Author contributions: E. M. and I. C. contributed equally. G. P., K. N., and N. H. synthesized
the polymers. E. M., D. F., and D. V. performed the experiments. I. C. and C. N. L. performed the
simulations. All authors interpreted the results. I. C. and E. M. wrote the paper with contributions from
D. V. and C. N. L.
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tions, which offer insights into the mechanism of thermoresponsive behavior of this class
of materials.

3.1 Introduction

Self-organization of building blocks due to external stimuli is ubiquitous in most materi-
als and all living organisms in nature. Inspired by this, a remarkable body of work has
been performed to understand and emulate their response to temperature [170, 171, 172],
pH [173, 174, 175] and light [176, 177], enabling the controlled design of their structure
assembly. Recent advances in polymer chemistry have led to the synthesis of various
building blocks with complex architectures and functionalized properties. Such respon-
sive building blocks that can self-organize into higher-order structures may form soft
patchy particles, which have directional interactions and varying softness. Furthermore,
topological effects that arise in systems with complex architecture can alone lead to a
range of interesting phenomena in and out of thermodynamic equilibrium for both low
[178, 33, 179, 36, 180, 181, 29] and high system densities [182, 34, 183, 184, 185, 186].
Functionalized biomolecules such as DNA-grafted colloidal particles represent a typical
example where patchiness reflects the competition between inter- and intra-particle asso-
ciations [187, 188, 189, 190]. However, despite its significance, DNA-based research is very
specialized and yields limited amounts of samples. An alternative design of patchy parti-
cles is based on the so-called Telechelic Star Polymers (TSPs), that is star polymers with
functionalized end groups [116, 191, 120, 15]. A TSP consists of f amphiphilic AB-block
copolymer arms grafted on a common center. The solvophilic A-block is attached at the
center of the star, whereas the solvophobic B-block is exposed to the exterior of the star.
On changing the solvent quality through temperature variation, the outer blocks become
attractive and form patches on the surface of the particle [121, 18, 192]. With such a TSP
system, it is thus possible to cover the entire range of inter-particle interactions, from
purely repulsive to attractive soft colloids simply by changing the solvent quality. The
self-assembly of TSPs at the single molecule level and in concentrated solutions depends
mainly on three parameters: (i) the functionality f of the stars, (ii) the outer block size
ratio α = NB/(NA + NB) (NA and NB denote the length of the respective block), and
(iii) the attraction strength between the outer solvophobic blocks which is enhanced upon
worsening solvent quality.

TSPs with low functionality (f ≤ 5) collapse into a watermelon structure with one
single patch on the surface of the particle [121]. However, more complex structures with a
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richer distribution of patches are formed in TSPs with higher functionality [18]. Such soft
patchy particles can preserve their properties such as the size, number and arrangement of
patches upon increasing the TSP concentration [17]. The inherent flexibility of such soft-
particles leads to formation of ordered structures in the case of high functionality [17]. On
the other hand, low-functionally TSPs tend to form micellar aggregates [22, 24, 23, 123],
which at relatively high concentrations self-assemble into long wormlike micelles [24, 21].
In previous work, we have examined the effects of temperature (or attraction strength)
on the self-assembly of these low-f TSPs in dilute solution [192]. In the present work,
we extend these investigations by addressing the effects of the block size ratio and arm
length on the self-organization of TSPs with f = 3 in dilute solutions. The new results
provide insight into the responsive behavior of TSPs, paving the way for the design of
functional materials with tunable properties.

3.2 Materials and methods

3.2.1 Experimental details

Telechelic star polymers (TSPs) with three arms made of 1,4-polybutadiene (PB) as the
inner A-block and polystyrene (PS) as the outer B-block were synthesized by anionic
polymerization and chlorosilane chemistry using high-vacuum techniques. Detailed in-
formation on the synthesis procedure can be found in Ref. [192]. Three different TSP
samples have been used in the present study. Two of them have a similar total molar
mass of about 40000 g/mol, albeit a different PS weight fraction of fPS = 0.14 and 0.33.
The third sample, which was used in our previous work [192], has a lower molar mass
of MW = 26700 g/mol and fPS = 0.23. The molar mass distribution in all three TSP

Sample
M star

w

(g/mol)
M linear

w

(g/mol)
fPS

%(w/w)
fPB

%(w/w)
c/c∗

n

(mol/m3)
1 40500 13000 0.14 0.86 0.03 0.14
2 40000 13000 0.33 0.67 0.04 0.11
3 26700 8800 0.23 0.77 0.05 0.31

Table 3.1: Molecular characteristics of investigated star diblock copolymers (PS b PB)3.
M star

w is the total molar mass of the TSP, M linear
w is the arm molar mass, fPS, and fPB, are

the weight fractions of PS and PB blocks, respectively. c is the TSP concentration in terms
of the overlap concentration c∗ = 3M star

w /(4πR3
hNA) (Rh is the star’s hydrodynamic radius at

high temperatures and NA is the Avogadro number), and n is the number density of TSPs in
solution.
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samples is rather narrow with the corresponding polydispersity being around Ð = 1.03.
The detailed molecular characteristics of the samples are listed in Table 3.1.

We have used 1-phenyldodecane as the solvent. It has a cloud-point at 53 °C for PS
[126] and 22 °C for PB (the corresponding θ-temperatures are expected to be slightly
higher). Solutions were prepared by mixing an appropriate amount of the TSP with the
solvent to reach the desired concentration. The sample degradation was inhibited by
adding 0.1 wt% of the TSP of the antioxidant BHT (2,6-Di-tert-butyl-4-methylphenol).
In order to fully dissolve TSPs, methylene chloride was used as the cosolvent. Then, the
cosolvent was evaporated under ambient conditions until a constant weight was achieved.

Dynamic Light Scattering (DLS) was used to investigate the dynamics and self-
assembly of TSPs in dilute solutions. In DLS, the normalized autocorrelation function
G(q, t) = 〈I(q, 0)I(q, t)〉 / 〈I(q, 0)〉2 of the total scattered light intensity I(q) at the wave
vector q = (4πn0/λ) sin (θ/2) (n0 is the refractive index, θ denotes the scattering angle,
and λ is the wavelength of the incident laser beam) is related to the normalized time
correlation function of the scattered electric field E(q, t) by the Siegert relation:

G(q, t) = 1 + f ∗ |α̃g(q, t)|2 = 1 + f ∗ |C(q, t)|2 , (3.1)

where f ∗ stands for the coherence instrumental factor, α̃ is the fraction of I(q) associ-
ated with fluctuations relaxing with times longer than 0.1 µs [142, 143, 144], and C(q, t)
denotes the intermediate scattering function (ISF). The inverse Laplace transformation
using the constrained regularization method was applied to compute the relaxation spec-
trum H(ln τ). This method assumes that C(q, t) can be expressed as the superposition
of exponentials:

C(q, t) =
∫ +∞

−∞
H(ln τ) exp (−t/τ) d (ln τ) (3.2)

The characteristic relaxation times correspond to the peak positions of H(ln τ), whereas
the area under the peak defines the value of α̃ in equation 3.1 and hence the intensity
α̃I(q) associated with the particular dynamic process. The transformation was performed
with the program CONTIN [130] that yielded the relaxation time and intensity of the
partitioning modes.

DLS experiments were performed on an ALV-5000 goniometer/correlator setup (ALV-
GmbH, Germany). The light source was a Nd:YAG dye-pumped, air-cooled laser (100
mW) with the wavelength λ = 532 nm. The refractive index of 1-phenyldodecane is
n0 = 1.482. Before each DLS experiment, the samples were equilibrated at T = 60
°C, which is above the cloud point of the outer PS-block, for 10 min to erase thermal
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Sample vPS [L/mol] vPB [L/mol] vtotal [L/mol] αPS αPB N

1 1.73 12.53 14.26 0.12 0.88 144

2 4.09 9.76 13.85 0.30 0.70 140

3 1.93 7.60 9.53 0.20 0.80 96

Table 3.2: Composition of investigated star diblock copolymers (PS b PB)3. vPS and vPB are
molar volumes of PS and PB, respectively, whereas vtotal is the total molar volume of the TSP.
N is the TSP’s polymerization degree computed on the basis of PS reference segment volume,
and αPS and αPB denote the resulting number fractions of the two components.

history. Then, the sample was quenched to the desired temperature and equilibrated.
The equilibration process was probed by measuring the ISF until it reached steady values
over time. The duration of equilibration depended on the temperature and ranged from
10 minutes for T = 60 °C to 10 hours for T = 20 °C.

3.2.2 Simulation details

To model TSP dynamics under worsening solvent conditions for its outer block, we have
employed a coarse-grained dissipative particle dynamics (DPD) model with explicit sol-
vent. In what follows, the inner blocks of a TSP are labeled ‘A’, the outer ones – ‘B’,
whereas solvent particles – ‘S’. In DPD, the total force Fi acting on the i-th particle, is
composed of the conservative FC, dissipative FD, and random FR contributions [193]:

Fi =
∑
j 6=i

(
FC
ij + FD

ij + FR
ij

)
. (3.3)

In equation (3.3) above, FC
ij is the conservative force acting between the i-th and j-th

particle separated by a distance rij (here and in what follows, rij = ri − rj, rij = |rij|,
r̂ij = rij/rij, and vij = vi − vj):

FC
ij = Aijw(rij), (3.4)

where Aij is the maximal repulsion between the particles and w(rij) is given by

w(rij) = (1− rij/rcut)θ(rcut − r), (3.5)
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with θ(x) denoting the Heaviside step function and the cutoff distance rcut being chosen
as the unit of length (rcut = 1). Furthermore, FD

ij is the pairwise dissipative force

FD
ij = −γw(rij)2 (r̂ij · vij) , (3.6)

and FR
ij is the pairwise random force

FR
ij = −

√
2γkBT/∆t · ηijw(rij), (3.7)

where ηij is a Gaussian random number with zero mean and unit variance. The unit
of mass is set by the (same) mass of every particle m, whereas the unit of energy was
chosen to be kBT (kBT = 1). The simulation were performed using the HOOMD-blue
simulation package [135, 134, 133, 194] using friction coefficient γ = 4.5mτ−1 and the
equations of motion were integrated using the Velocity-Verlet algorithm [195] with time
step ∆t = 0.04τ , where τ = rcut

√
m/kBT is the DPD unit of time.

To obtain the total polymerization degree N of the star arms in the experimental
samples considered, we first estimated the molar volumes of PB and PS, given by vPS/PB =
MW/ρPS/PB, where ρPS/PB is the corresponding molar density (ρPS = 1.05 g/mL and
ρPB = 0.892 g/mL). N and αPS/PB were then computed on the basis of the PS reference
segment volume 99.2 mL/mol and are listed in Table 3.2. In general, we are interested in
the behavior of experimental systems in a rather narrow temperature range 20 °C < T <

60 °C, where the Flory-Huggins incompatibility parameter χPS−PB = 18.78/T − 9.6·10−4

[196] does not change substantially (experimental values of χPS−PBN for the three samples
in such temperature range are χPS−PBN . 10), implying that the self-assembly is mainly
controlled by the solvent selectivity towards the outer block.

Given the computational cost of simulations with explicit solvent particles, we focused
on a star polymer model with f = 3 arms containing N = 64 monomers, and system-
atically varied the outer block ratio α by changing NA and NB. All our simulations
were performed at total particle density ρr3

cut = 3. Bonded interactions were given by
Vbond(r) = K

2 (r − rcut)2 with K = 50kBT . The central particle, to which all arms were
connected to, was treated as a monomer of type A. In DPD, repulsion amplitudes Aij can
be directly related to the Flory-Huggins χij parameters [197]:

Aij ≈ Aii + κ(ρ)χij, (3.8)

where κ(ρ) depends on the DPD density such that κ(3) = 3.49. In all simulations,
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Figure 3.1: Experimental ISFs at constant wave vector q = 0.02475 nm−1 and different
temperatures for TSPs with outer PS-block fractions of fPS = 0.14 (a) and fPS = 0.33
(b). Note that the plateau values of the ISF at short times is well below one. This is due
to the fact that a part of the scattered intensity originates from density fluctuations of
solvent molecules.

we fixed the inter-block incompatibility parameter χAB = 0.23, which corresponds to
AAB = 25.8 at ρr3

cut = 3. Such value of χAB was obtained from a conservative experimen-
tal value (χABN)exp = 10 by taking into account finite polymer chain length corrections:
χAB = (χABN)exp · (1 + 3.9N2/3−2ν)/N with N = 64 and ν = 0.588 [197]. The incom-
patibility parameter χAS for the inner block and effective solvent particles was always set
to χAS = 0, which corresponds to AAS = 25. Moreover, χBS was systematically varied
between 0 and 7 with step ≈ 0.72, corresponding to ABS in the range between 25 and
50. Finally, note that the main goal of our simulations using such a coarse-grained model
is not to quantitatively reproduce the change of star properties with increasing χBS, for
which atomistic simulations with realistic solvent interactions would be necessary, but
to qualitatively assess the effect of self-associations on the change of TSPs static and
dynamic behavior.

3.3 Experimental results

We first focus on the effect of the outer PS-block fraction on the dynamic relaxation of
the TSP system at low densities. In Figure 3.1, we show the experimental ISFs at a
fixed wave vector and various temperatures for the two samples with comparable total
molecular weights but with distinct PS weight fractions. The ISFs show two distinct
trends upon changing temperature. At high temperatures, the ISFs show a single expo-
nential decay that demonstrates the existence of individual stars in solution. However,
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Figure 3.2: ISF (open symbols, left axis) and its corresponding relaxation times spec-
trum (closed symbols, right axis) deduced from the constrained regularization method
for the TSPs with PS fractions of fPS = 0.14 (black squares) and 0.33 (red circles) at
q = 0.02475 nm−1 for T = 60 °C (a) and T = 30 °C (b).

when temperature is reduced below the cloud temperature of the outer-block, the ISF
features a two-step decay which indicates the coexistence of two distinct populations in
the system. The first decay (fast process) in the ISF is similar to the one observed at
high temperatures and hence represents the individual stars in solution. On the other
hand, the second decay (slow process) taking place at longer times suggests the presence
of larger aggregates (clusters of TSPs). The slow process becomes more pronounced as
the temperature is decreased. Interestingly, the two-step decay in the ISF appears at a
slightly higher temperature for the TSP with a larger PS-fraction.

To extract hydrodynamic sizes associated with the two processes in the solution, that
is individual TSPs and clusters, the relaxation spectrum is calculated from the inverse
Laplace transformation of the ISF using the constraint regularized method [130] discussed
in Section 3.2.1. Typical results of such analysis for the TSPs with two different PS frac-
tions at T = 60 °C and 30 °C are shown in Figure 3.2. The relaxation spectrum at 60 °C
shows a single peak, which is rather sharp, reflecting single exponential decay of the ISF
mode. The position of the peak shifts to a slightly longer time for the TSP with a smaller
PS fraction, indicating a larger hydrodynamic radius. At the lower temperature of 30
°C, the relaxation spectrum exhibits two well-separated peaks, as seen in Figure 3.2b.
Similarly to high temperatures, the position of the first peak shifts to a slightly longer
time for the TSP with a smaller PS fraction, whereas the position of the second peak
in both TSP samples is located at a similar time. These two peaks represent the relax-
ation times associated with individual TSPs and clusters, respectively. Subsequently, the
two relaxation times are used to calculate the diffusion coefficients associated with each
component. The diffusion coefficient for the fast mode (where qR < 1) is q-independent,
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Figure 3.3: a, The hydrodynamic radius, Rh, of individual TSPs in the dilute solution
calculated from the fast process in the experimentally determined ISFs. b, Rh normalized
by its plateau value at high temperatures. The dashed lines serve as a guide to the eye.
The black arrows indicate the cloud-points of inner PB and outer PS blocks.

whereas D for the slow mode (where qR ≥ 1) shows some q-dependence. In the latter
case, D extrapolated to q = 0 is used to calculate Rh.Then, the hydrodynamic sizes of
TSPs and clusters are obtained using the Stokes-Einstein-Sutherland relation.

We first examine the effect of the block size ratio α on the single TSP size upon cool-
ing. In experiments, the radius of gyration was too small to be probed by DLS. Instead,
we focused on the hydrodynamic radius Rh of individual TSPs in dilute solution, as calcu-
lated from the fast process in the ISF using the Stokes-Einstein-Sutherland relation. The
temperature dependence of Rh for the three studied TSP samples is shown in Figure 3.3.
The single star size exhibits a two-step shrinkage upon reducing temperature or equiva-
lently worsening the solvent quality. The first decay in size takes place at temperatures
well below the cloud-point of outer PS-blocks, whereas the second drop is seen when tem-
perature is reduced further below the cloud-point of the inner PB-block. Hence, the first
decrease in size is associated with the collapse of outer blocks, whereas the second decay
corresponds to the case when inner blocks start to collapse. At high temperatures, for
the TSP with fPS = 0.14, we find Rh ≈ 5 nm and for fPS = 0.33, Rh ≈ 4.6 nm (see Fig-
ure 3.3a). Although both TSPs have almost the same molar mass of about 40000 g/mol,
the difference in their size originates from the difference in the fraction of PS. The radius
of gyration of a star homopolymer in good solvent conditions is given by Rg ≈ κ(f)bNν ,
where ν = 0.588, N is the number of Kuhn segments in a star arm, b is the size of a Kuhn
segment, and κ(f), which depends on the number of star arms f , is a numeric constant
that takes into account the star functionality [198, 199, 200]. Using the latter relation it
can be found that the size of a star made of purely PB is about 65% larger compared to
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Figure 3.4: a, The hydrodynamic radius, Rh, of clusters extracted from the slow process
in the experimental ISFs. b, The ratio of Rh to the number density n (see Table 3.1) of
TSPs in the solution. The black arrow indicates the cloud-point of inner PB blocks.

that made of purely PS, RPB
g ≈ 1.65RPS

g , given that their molar mass is the same [80].
Hence, it is expected that the increase in PS fraction reduces the size of a TSP. In order
to compare the collapse process for stars of different size, we have normalized the TSP
size by the plateau value of Rh at high temperatures.

The TSP with a larger fraction of outer PS-blocks (fPS = 0.33) shows the first-step
reduction in size at higher temperatures and the second-step drop at slightly lower tem-
peratures compared to the TSP with a smaller PS fraction (fPS = 0.14). In both stars,
the decrease in size is about 15%, as seen in Figure 3.3b. In addition, in Figure 3.3
we show the results for a TSP with a smaller molar mass (26700 g/mol) with the outer
PS-block fraction fPS = 0.23, which is between the other two higher molar mass TSPs
with fPS = 0.14 and 0.33. The main difference is that the TSP with the smaller molar
mass exhibits the decay in size at a much lower temperature compared to the other two,
which originates from a smaller value of the incompatibility parameter ∼ χPS−SN . More-
over, the decrease in size is also rather weaker (about 10%), which can be attributed to a
shorter length of its arms.

In Figure 3.4, we present the temperature dependence of clusters’ Rh for the systems
of TSPs with the same molar mass but two different PS fractions (MW = 40000 g/mol,
fPS = 0.14 and 0.33). In both TSPs, the cluster size shrinks on cooling. However, a slight
but consistent increase in the cluster size is observed when temperature is further reduced
below the cloud-point of the inner PB-block. Moreover, the hydrodynamic cluster size
does not show change with the fraction of outer PS block. In Figure 3.4a, we additionally
show the results for the TSP with smaller molar mass (MW = 26700 g/mol) and fPS =
0.23. In this case, the temperature dependence of the cluster size is the same as for the
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Figure 3.5: a, Mean radius of gyration of a TSP Rg as a function of χBS for different
fractions of the outer block α = NB/N . b, Mean asphericity of a TSP, computed as
〈λ1 − 1

2(λ2 + λ3)〉, scaled with its mean radius of gyration Rg as a function of χBS for
different α.

other two TSPs (fPS = 0.14, 0.33). However, the smaller molar mass TSP shows a cluster
size that is nearly three times larger. This could be due to a higher concentration of these
TSPs. To rule out the effect of concentration, we have normalized the cluster size by
the number density of TSPs in solution (see Figure 4b). The number density takes into
account for the number of stickers available in the solution. With such normalization,
the differences in cluster size between different TSPs are reduced to a great extent. The
minor differences could originate from the complex nature of self-organization of TSPs
due to small differences in their molecular characteristics.

3.4 Simulation results

We now focus on static and dynamic properties of single TSPs under worsening solvent
conditions for the outer B block, that is under increasing χBS. To do so, we simulated
single stars with f = 3 arms of length N = 64 using a coarse-grained DPD model with
explicit solvent particles, as described in detail in Section 3.2.2. The outer block ratio
was systematically varied from 0.1 to 0.5 with step 0.1. The exact number of A- and
B-type monomers in an arm was NA = 58, 52, 45, 39, 32 and NB = 6, 12, 19, 25, 32,
respectively (the corresponding α = 0.1, 0.2, 0.3, 0.4, 0.5). For each state point (α, χBS),
we performed 10-12 independent simulation runs of length 105τ , followed after a shorter
equilibration period of 104τ . Single TSPs were simulated in a box of size L = 30rcut at the
total particle density ρr3

cut = 3. To check if such box size is sufficient to accommodate a
TSP, we initially simulated the same star in good solvent conditions (χBS = 0) in a larger
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box with L = 35rcut, and we did not observe any substantial changes in its properties.
In selective solvents, the TSP size is even smaller due to the formation of patches, which
justifies the use of the same box size L = 30rcut in this case.

To assess single star shape properties, we computed the eigenvalues λi (i = 1, 2, 3,
λ1 ≥ λ2 ≥ λ3) of the star’s gyration tensor

Gij = 1
fN + 1

fN+1∑
k=1

∆r(k)
i ∆r(k)

j , (3.9)

where ∆r(k)
i is the i-th component of the k-th monomer’s position in the star’s center of

mass frame. In Figure 3.5, we report the TSP’s mean radius of gyration Rg = 〈R2
g〉

1/2

(R2
g = λ1 + λ2 + λ3) as well as the mean asphericity parameter 〈λ1 − 1

2(λ2 + λ3)〉, which
is positive and can vanish only for a completely symmetric configuration, as a function
of χBS for different block length ratios α. The angles 〈· · · 〉 denote an ensemble and time
average. We find that the behavior of a single TSP size is generally very similar to the
experimental one (see Figure 3.3): upon increasing χBS, we first observe a rather small
decrease in Rg, followed by a major drop at higher χBS. Such behavior of Rg is associated
with the formation of a single patch, where all three arms of a TSP clump together (see
Figure 3.6). We find that the transition point shifts towards a higher χBS, that is a lower
temperature because χ ∼ 1/T , with decreasing α, which is in full accordance with the
experimental behavior of the two samples with fPS = 0.14 and 0.33 that have a very similar
total molar mass (see Figure 3.3b). Afterwards, only a small reduction of Rg is observed
upon increasing χBS, as seen in Figure 3.3a. We also note that simulations do not capture

Figure 3.6: Characteristic TSP conformations with α = 0.1 (left) and α = 0.3 (right) at
a high χBS ≈ 7. B-monomers are blue, A-monomers – red, star centers are black. Solvent
particles are not shown for clarity.
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Figure 3.7: a, The total number of formed patches as a function of χBS for different α.
Two arms are defined as being in a common patch if there is at least one pair of monomers
from the two distinct arms lying at a distance r ≤ rcut. The average number of arms in
a patch (b) and the average fraction of free arms (c) as a function of χBS for different α.
a, b, and c share the same legend shown in a.

the second drop in size which is observed in experiments for temperatures below the cloud-
point of inner-block. The reason for this discrepancy is that in simulations, for simplicity
reasons, the inner-block is assumed to be always in a good solvency condition. Hence, it
only captures single step shrinkage process due to collapse of outer-block monomers.

We furthermore find that the final TSP size decreases with increasing α, also in ac-
cordance with the experimental findings for the samples with fPS = 0.14 and 0.33 (see
Figure 3.3b). This behavior is associated with generally more open configuration of col-
lapsed TSPs with small α that permit solvent flow through the TSP’s interior. On the
other hand, in the case of larger α, the solvophobic B-blocks form a single large patch
that expels the solvent from its interior, resulting in more compact and symmetric con-
figurations (see Figure 3.6 and Figure 3.5b). Interestingly, as can be seen in Figure 3.5b,
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Figure 3.8: The mean radius of gyration Rg of a TSP as a function of χBS for the same
fraction of the outer block α = 0.3 but different arm lengths N .
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upon slightly increasing χBS from 0, the stars first become more aspherical, which can be
attributed to the formation of transient patches between two out of three star arms. This
is confirmed in Figure 3.7 that reports the average number of patches formed by the star,
the average number of arms in a patch, as well as the fraction of free arms as a function of
χBS for different arm compositions. In agreement with earlier results [121], we find that
such TSP with f = 3 forms only one patch for all α with all three arms contributing to
it at high enough χBS. In addition, as seen from Figure 3.7a and 3.7b, the point when
all arms start to form a single patch corresponds to the point when Rg drops significantly
(see Figure 3.5a). Finally, to assess the influence of arm length N on the transition point
for the watermelon-like structure formation, for α = 0.3 we additionally simulated stars
with arm length N = 32, 48, 80 for different values of χBS. The comparison between the
behavior of the radius of gyration of the TSPs with different N for α = 0.3 is shown in
Figure 3.8. We find that the TSP with shorter arms features the star collapse at higher
values of χBS, which therefore corresponds to lower temperatures in the experiments, be-
ing in line with the trend observed for the experimental sample with fPS = 0.23 that has
a lower molar mass, see Figure 3.

The presence of faithful hydrodynamic interactions in DPD allows us to assess the
influence of patch formation on the dynamics of single stars in solution. We did this by
considering the mean-square displacement of TSP’s center of mass, computed as

MSD(t) = 1
T − t

∫ T−t

0

〈
[R(t′ + t)−R(t′)]2

〉
dt′, (3.10)
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Figure 3.10: (a), The mean time of an arm not belonging to a patch 〈tfree〉 as a function
of χBS for different α. (b), The normalized distribution of tfree for α = 0.1 and various
χBS.

where R(t) is the position of the star’s center of mass at time t, T is the total simula-
tion time, and 〈· · · 〉 stands for the average over independent simulations runs. Typical
behavior of the MSD for different α as well as the extracted diffusion coefficients D are
shown in Figure 3.9. We find that the tendency to form patches, causing more compact
watermelon-like structures, increases the diffusivity of the TSP. In the experiments, this
behavior corresponds to a reduction in the hydrodynamic radius Rh, which is in good
agreement with results shown in Figure 3.3. Furthermore, this effect is especially signif-
icant for the case of high α, where D at high χBS can become about two times bigger
compared to athermal conditions with χBS = 0, as seen in Figure 3.9a, again in agreement
with the experiments, where a larger reduction in Rh is seen for the TSP with a higher
PS fraction. Finally, more open conformations of collapsed TSPs with low α makes the
increase in diffusivity less pronounced (for example, about 30% increase for α = 0.10).

In addition, we have considered the dynamics of internal patch reorganizations at the
single-star level. In Figure 3.10, we show the times tfree for an arm spent in the free state,
that is not forming an association with other arms, as a function of χBS for different
α. We find that for all α, the mean value of tfree initially decreases exponentially fast
with increasing χBS [Figure 3.10(a)], up to a point where a single patch forms. At this
point, 〈tfree〉 drops to 0, indicating that the single patch is stable over the course of the
whole simulation. The value of χBS where it happens compares with the point where
a significant reduction of Rg occurs [Figure 3.5(a)]. Furthermore, in Figure 3.10(b) we
show the distribution for tfree for α = 0.1 at various χBS, featuring tails that decays
exponentially fast with increasing tfree in all cases.

Finally, we consider the formation of inter-star aggregates in the dilute solution. To
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Figure 3.11: Left column: self-assembly of three-arm TSPs with N = 10 and α = 0.3
into a giant cylindrical aggregate at c ≈ 0.4c∗. The bottom row shows only the solvophobic
B-blocks. Right column: the aggregate shrinks in the transverse directions upon increasing
the solvophobicity of the B-monomers that become more ordered (bottom image).

asses such behavior, it is necessary to simulate a sufficiently large number of stars, which
becomes computationally restrictive if using the model with N = 64 that was employed
for single star behavior discussed previously. We therefore resort to an even coarser model
with, similarly, f = 3 but with N = 10, and in what follows we focus on the case with
α = 0.3. We simulated 2000 such stars in a box with L = 70rcut at particle density
ρr3

cut = 3. In this model, the corresponding star concentration is c ≈ 0.4c∗, which is
higher than the one used in the experiments (to reach an equivalent experimental concen-
tration of c ≈ 0.04c∗, it would be necessary to simulate about a ten times bigger system
containing ∼ 107 particles). Nevertheless, even in this regime we remain at concentrations
considerably below c∗. Initially, TSPs were initialized uniformly in the box and subse-
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quently equilibrated in athermal solvent conditions for both blocks with χAS = χBS = 0
(χAB was set to χAB = 28.6 to match the experimental value (χABN)eff = 10, as explained
in Section 3.2.2). Afterward, the incompatibility parameter for the outer block was in-
creased to 4.3 (ABS = 40) over 2·106 integration time steps and then further equilibrated
for another 2·106 steps. During the latter stages, the TSPs initially began to form small
micelles that subsequently merged into worm-like structures, which then again merged
into a single giant cylindrical aggregate, shown in the left column of Figure 3.11. Note
that such cylindrical architecture is rather a consequence of periodic boundary conditions.
It is likely that symmetric spherical aggregates would form in a more dilute system with a
larger simulation box size, as, for instance, recently shown in Ref. [201]. Nonetheless, this
illustrates the tendency of the TSPs to form large aggregates even at dilute conditions, as
previously shown in the experimental cluster sizes in Figure 3.4. We also considered the
effect of lowering temperature on the structure of such aggregate by quenching χBS to 10
(ABS = 60) and equilibrating the system for another 106 integration time steps. As shown
in the right column of Figure 3.11, as a result of the χBS increase, the aggregate shrinks in
the two transverse directions. This occurs because the solvophobic TSP blocks that lie in
the aggregate’s interior become more ordered and thus push away the remaining solvent
(see the bottom row of Figure 3.11). This further agrees with the experimental trend of
decreasing cluster size with decreasing temperature (Figure 3.4).

3.5 Conclusions

In summary, we have investigated the self-assembly of TSPs with a variable size of the
outer block as well as the arm length, which is subject to worsening solvent conditions, in
dilute solutions. We find that two distinct modes in the experimental ISF appear upon
lowering the temperature below a critical value: the fast-relaxing mode that corresponds
to free stars in solutions as well as a slow-relaxing mode that indicates the presence of large
aggregates. We find that the size of both populations decreases upon cooling. For single
TSPs, the decay is associated with the formation of a single patch, where all three arms
come together. From both experiments and simulations, we find that the temperature that
corresponds to such transition increases with growing fraction of solvophobic monomers.
However, we find that the transition temperature increases with the polymerization degree
of TSP arms, when keeping the fraction of solvophobic monomers constant. The formed
aggregates in solution are much bigger than single stars (∼100 nm versus ∼5 nm). In
simulations, albeit at a higher concentration of TSPs, we have found the formation of
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micellar aggregates with complex internal structure. Upon worsening the solvent quality
for the outer block, the solvent is becoming more strongly expelled from the aggregate’s
interior, which causes the reduction of its size, similarly to the experimental behavior.
We therefore speculate that similar objects also form at concentrations similar to the
experimental ones, in line with assembled structures that have been recently observed in
large-scale DPD simulations of linear diblock co-polymers in dilute conditions [201].
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Chapter 4

Active topological glass

Published: Jan Smrek, Iurii Chubak, Christos N. Likos, and Kurt Kremer. Active topo-
logical glass. Nature Communications 11, 26 (2020). DOI: 10.1038/s41467-019-13696-z.1

The glass transition in soft matter systems is generally triggered by an increase in
packing fraction or a decrease in temperature. It has been conjectured that the internal
topology of the constituent particles, such as polymers, can cause glassiness too. However,
the conjecture relies on immobilizing a fraction of the particles and is therefore difficult to
fulfill experimentally. Here we show that in dense solutions of circular polymers containing
(active) segments of increased mobility, the interplay of the activity and the topology of
the polymers generates an unprecedented glassy state of matter. The active isotropic
driving enhances mutual ring threading to the extent that the rings can relax only in a
cooperative way, which dramatically increases relaxation times. Moreover, the observed
phenomena feature similarities with the conformation and dynamics of the DNA fibre in
living nuclei of higher eukaryotes.

4.1 Introduction

Tremendous interest has been devoted to understanding of the glass transition driven
by an increase in packing fraction or a decrease in temperature in soft and deformable
systems [202, 203]. Ultra-soft particles can be realized experimentally using polymers,
such as long polymeric stars or rings, which are highly deformable but possess a fixed
topology imposed during the synthesis. While it is known that the polymer topology

1Author contributions: J. S. and I. C. contributed equally. C. N. L. and K. K. jointly supervised this
work. J. S. and K. K. designed the research with the contributions from I. C. and C. N. L. J. S. and I. C.
performed the simulations and data analysis. J. S., I. C. and C. N. L. interpreted the results. J. S. wrote
the paper with the contributions of I. C., C. N. L. and K. K.
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has strong impact on the stress relaxation mechanism [57], it has been questioned if the
topology can independently induce a glass transition [66].

Such a topological glass has been conjectured for the system of long, unknotted, and
nonconcatenated polymer rings in dense equilibrium solutions [66, 70]. The rings cannot
cross each other, but are known to thread — one ring piercing through an eye of another
ring, which temporarily topologically constraints the motion of the two rings. Mutual
threadings of many rings can yield a conformation that is relaxed only if a cascade of
threadings is sequentially undone, which could give rise to very long relaxation times, e.g.
exponential in the ring length [204]. The glassy behavior in an equilibrium melt of rings
has been observed in computer experiments, but only under a pinning perturbation, which
immobilizes a fraction f of all rings. Then, for sufficiently long rings and high density a
glassy behavior can be extrapolated to f → 0 [66, 70]. Unfortunately, the conjectured
critical length, ninety entanglement lengths, of unpinned rings is currently beyond the
reach of experiments and, although the pinning deepens our theoretical understanding
of the glass transition [205, 206, 207], creating it experimentally to drive the topological
glass transition would be challenging.

Whereas many questions remain open in the traditional glass transition of passive
Brownian particles, recently a whole new research direction has been opened by consid-
ering system composed of active particles that are driven by non-thermal fluctuations
[208]. While, intuitively, activity opposes glassiness by enhancing mobility of the par-
ticles, some active models can exhibit a more complex behavior as a function of the
active control parameters. For example, increasing the persistence time of the active
Ornstein-Uhlenbeck particles can either glassify or fluidize the active system, depending
on the particular state point, as a result of nontrivial velocity correlations in the system
[209, 210, 211, 212]. Indeed, some system properties, such as the time-dependent effective
temperature are pertinent to active fluids and render also the corresponding glass tran-
sition distinct from the passive one. In particular, the location and the existence of the
glass transition of active fluids are dependent on the microscopic details of the activity
mechanism. Nevertheless, close to the transition region, universal features of the passive
glassy dynamics have been found recently for active spin-glasses [208] and self-propelled
particles in the non-equilibrium mode-coupling theory (MCT) [212]. For instance, the
scaling of the relaxation time with activity control parameters is governed by the same
exponent as in the passive MCT.

The impact of topology on the active glassy states has been studied almost solely in
the context of active particles confined to a topologically nontrivial space, in particular
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a sphere [213, 214, 215, 216, 217]. There, a range of dynamic phenomena arises as a
consequence of the competition between directed flows, characteristic for active matter in
euclidean space, and the ‘hedgehog theorem’ [218] that asserts the existence of topological
defects in a smooth vectorial field on a sphere. In contrast to these studies, where the
topology is a global property of space, here we focus on a system where the active particles
themselves are not point-like but feature intrinsic circular topology, the embedding space
being Euclidean with periodic boundary conditions.

Glassy dynamics also appears in various biological contexts ranging from the bacterial
cytoplasm [219] to collective cell migration in tissues [220]. While on the subcellular
level, glass-like properties have been attributed to the high crowding, as well as size and
interaction heterogeneity of the constituents [219, 221], the confluent tissues modeled using
vertex models exhibit a new type of rigidity transition at constant density without [222]
and with active motion [223], attributed to an interplay of cells’ shape and persistence of
motion. Although there is no topology involved in these models and, therefore, they are
inherently different from our present work, the transition occurs due to shape changes at
constant density similarly to the case studied here.

For dense solutions of ring polymers, we show that making the rings locally more mo-
bile by introducing a moderate segmental activity, the system reaches a glassy state with
dramatically slowed-down relaxation. This novel state of matter, the ‘active topological
glass’, is a consequence of the interplay between internal polymer topology, activity, and
the crowded polymer environment. In contrast to the conjectured equilibrium topological
glass, here no imposed pinning is necessary and only relatively short rings are sufficient
to observe the transition. Moreover, contrary to well-studied polymer glasses [224], where
the monomers are arrested due to their nearest neighbors, here the centers of mass of
the whole chains are inhibited due to multi-body, long-range effects of topological con-
straints. After detailed account of the physics of the active topological glass, we discuss
its relevance for the organization and dynamics of chromosomes in living eukaryotic cells.

4.2 Results

4.2.1 Dynamics after the onset of activity

We start with a large, well-equilibrated, concentrated solution of M = 1600 passive,
uncrossable, unknotted, and nonconcatenated rings of length N = 400 using the well-
established polymer model as in Halverson et al. [50, 51]. A consecutive segment of
length Nh = 50 monomers is made active on each chain by subjecting it to thermal-like
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Figure 4.1: Structural properties of the system as a function of time after
the onset of activity. a, Mean number of neighboring hot segment as a function of
time. Two hot segments are neighboring if their centers of mass are within the distance
of their radius of gyration (3.25σ). A complete uniform distribution corresponds to a
value 0.3. The dashed gray line is a guide to the eye. Insets: snapshots of the system
showing only the hot segments at an early (left) and a late (right) time. b, The mean
radius of gyration 〈Rg〉 obtained as an average over all rings at a given time t after the
onset of activity (Equation 4.4 in Supplementary Section 4.5.2). Insets: snapshots of two
rings in equilibrium (left) and two at late times (right). The hot segment on the active
rings is shown in orange (on the equilibrium rings the orange segment is highlighted for
comparison only and has the same temperature as the rest of the system).

fluctuations of temperature three times higher than the rest of the chains (see Supple-
mentary Section 4.5.1 for model details).

After switching on the activity, the initial equilibrium uniform spatial distribution of
the active (hot) and the passive (cold) segments alters (Figure 4.1a). They progressively
segregate to compensate for the local pressure imbalance and to decrease entropy pro-
duction [73, 78, 77]. Simultaneously, we observe a gradual but dramatic conformational
change of the rings as revealed by the mean radius of gyration 〈Rg〉 and other shape param-
eters (see Supplementary Section 4.5.4) that comes to a standstill after several equilibrium
diffusion times τdiff ' 4 · 105τ (see Supplementary Section 4.5.2 for the definition). In an
equilibrium system of linear block copolymers, the colocalization of like-blocks can drive
local density inhomogeneities that affect chain conformations. We show in Supplementary
Section 4.5.7 that analogous effect is not responsible for the conformational changes in
the present non-equilibrium system. Foremost, we do this by simulating a system with a
low fraction of active chains where the colocalization of hot segments is not present but
the conformational changes persist (Supplementary Figure 4.7). Additionally, we show
on a simplified effective equilibrium model that in a fully phase separated system the
ring conformations do not differ substantially from the homogeneous equilibrium case
(Supplementary Figure 4.4).
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Figure 4.2: Evolution of the dynamics. a, Mean magnitude of the cold-hot vector
ch as a function of time. Inset: correlation of the ch direction with the direction of
the center of mass displacements of the rings in different lag times ∆ as a function of
time t after the activity onset (ed(t + ∆) and ech(t) are unit vectors in the direction of
d(t) = R(t + ∆) − R(t) and ch(t), respectively). b, Mean-square displacement of the
centers of mass of the rings, 〈g3(t, t0)〉, as a function of time tmeasured from different times
t0 after the activity onset. c, 〈g3(t, t0)〉/t as a function of time for t0 = 0. d, e, Time-
resolved mean-square internal distance for the passive (d) and the active (e) segment
〈R2(s)passive/active〉, computed for each segment length s as the squared distance of the
endpoints of the segment averaged over the segments position within the passive/active
block of a ring and averaged over rings. The black straight lines in d emphasize the
scaling behavior 〈R2(s)〉 ∼ s2νtrail for low s with the numbers indicating νtrail for a few
characteristic times after the activity onset. b, d, e share the same legend shown in b.

We observe that the hot segment is usually localized at one of the ends of a tree-like,
doubly-folded conformation (Figure 4.1b). This suggests that the conformational change
is caused by the differences between the dynamics of the active and passive segments. As
the active segment undergoes stronger thermal fluctuations, its diffusivity is enhanced in
comparison to the passive one. In fact, it essentially drags the cold tail through the mesh
of other chains (Supplementary Movie2 1). We illustrate such emergent directionality of
the ring’s motion by computing the ‘cold-hot’ vector ch connecting the centers of mass
of the cold and hot segments of each ring. After the onset of the activity, the mean
magnitude of ch initially grows (Figure 4.2a). During this time, the direction of the

2The movie can be downloaded using the following link: https://static-content.springer.com/
esm/art%3A10.1038%2Fs41467-019-13696-z/MediaObjects/41467_2019_13696_MOESM4_ESM.mpg
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Figure 4.3: Evolution of the relaxation. a, Self-intermediate scattering function
Fs(q∗, t, t0) as a function of t for different t0 at q∗σ = 0.35. b, Non-ergodicity parameter
f(q, t0) defined as f(q, t0) = Fs(q∗, tmax, t0), where tmax is total time of our simulation, as
a function of q for different times t0 after the activity onset. a, b share the same legend
shown in b.

motion is correlated with the direction of ch (Inset of Figure 4.2a). At later times, |ch|
decreases very slowly, generating a weak anticorrelation with the displacement vector,
which is connected to the strengthening of topological constraints as detailed later. As we
show in Supplementary Section 4.5.6, systems without topological constraints lose their
directionality on a microscopic timescale, but the dense polymer environment generates
a more intriguing global dynamics.

To describe the dynamics, we track in time the mean-square displacements of the
rings centers of mass 〈g3(t, t0)〉 (see Equation 4.5 in Supplementary Section 4.5.2 and
note that the mean is taken over the rings only because the dynamics are not stationary
in general). Figure 4.2b shows 〈g3(t, t0)〉 as a function of time t measured from various
times t0 after the activity onset. 〈g3(t, 0)〉 increasess initially and after 106τ displays a
dramatic slow-down. The crossover time is the same as for the structural changes which
underlines the fact that the two effects are dependent. More insight is provided by Figure
4.2c, where 〈g3(t, t0)〉/t is plotted as a function of time separately for the active and
the inactive segment. The initial decrease corresponds to subdiffusive 〈g3(t, t0)〉 ∼ t0.8

regime consistent with the equilibrium rings dynamics below the diffusion time [51]. The
following regime shows again the directional dynamics of the rings and explains its origin.
While the passive segment, and hence the whole center of mass, move superdiffusively
(exponent 1.13± 0.01), the active one temporarily displays standard diffusion (exponent
1). The both stages last for less than a decade in time before both segments cross over
to an arrested state with exponent very close to zero.

The superdiffusive regime is a consequence of the specific non-equilibrium dynamics
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through a mesh of topological constraints. As the detailed balance is violated due to the
coupling to different thermostats, the pulling of the active segment forwards is stronger
than the pulling of the cold tail backwards. The hot segment robustly explores new sites
that are spontaneously freed due to density fluctuations and progressively drags behind
itself the cold tail (see Supplementary Movie3 1). Furthermore, such motion of the active
segment away from its cold tail through the environment of neighboring rings introduces
new topological constraints that the cold tail must obey. These constraints restrict the
transversal motion of the chain. Finally, when the chain is getting more stretched some
time after the activity onset, the motion of the hot segment backwards to the cold tail
is compromised by the chain flexibility and, therefore, the motion away from the tail
prevails. As a result, the cold tail follows the hot head slowly, but ballistically along a
trail imposed by the topologically constrained neighboring rings. At these length scales,
the trail is characterized by the size R of the static conformation of the tail and it scales
with the contour distance s as R(s) ∼ sνtrail where the exponent νtrail = 0.57± 0.01 (Fig-
ure 4.2d). Therefore, the directed dynamics (s ∼ t) along such contour is superdiffusive
with 〈g3(t, t0)〉 ∼ R2(s(t)) ∼ t2νtrail , which is in agreement with our observation (Fig-
ure 4.2c). Moreover, the onset time of the superdiffusion t ≈ 105τ is consistent with the
onset time of a configuration that is more open than a random walk, that is νtrail > 0.5
as seen in Figure 4.2d, and the dragging mechanism is consistent with the fact that the
end points of the active segment are closer to each other than in the equilibrium case
(Figure 4.2e).

4.2.2 Glassy behaviour

Subsequently, the system is slowing down, as revealed by 〈g3(t, t0)〉 (Figure 4.2b). To
characterize the slowing-down of the relaxation of the rings in more detail, we measured
the self-part of the intermediate scattering function (ISF) Fs(q, t, t0) (Equation 4.6 in
Supplementary Section 4.5.2). As shown in Figure 4.3a, Fs(q∗, t) depends on t0, similarly
to the aging in classical glasses [225]. After about 2 · 105τ ' τdiff the system fails to relax
and Fs(q∗, t) plateaus at a nonvanishing value, defined as the non-ergodicity parameter
fq (Figure 4.3b). A striking characteristic of the ensuing arrested state is that it features
a single, β-relaxation process and the subsequent α-relaxation is absent, in contrast to
the common, two-step relaxation scenario [226] encountered for polymer glasses [227] or
for repulsive colloids [228]. Indeed, we have not been able to observe the α-relaxation,
despite the fact that we have extended our simulations to very long times, over 22τdiff .

3See footnote 2.
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Figure 4.4: Properties of the steady state. a, Normalized distributions of the
center of mass displacements in the x-direction for different lag times ∆ measured after
2 · 106τ . Identical distributions are found for other directions (not shown). The bottom
legend contains the computed values of the kurtosis κ = (m4/m

2
2)−3, where mi is the i-th

moment of the distribution, indicating strong non-Gaussian character of the distributions
upon increasing ∆. b, Time evolution of the ergodicity breaking parameter (4.7) for
various lag times ∆.

The absence of a two-step process is a feature associated with continuous, type-A glass-
transitions, as opposed to the discontinuous, type-B transitions [229, 230, 231], and it
implies the presence of higher-order singularities, the so-called A3- and A4- critical points,
in the framework of MCT [232, 233, 234, 235]. There are strong indications that the
system at hand features such higher-order singularities, a point to which we will return in
the Discussion section. At later measurement start times, the non-ergodicity parameter
is higher, that is, more wave vectors fail to relax, and we cannot even observe the β-
relaxation (more details in Supplementary Section 4.5.8). In fact, as the system evolves
towards a steady state (106τ < t < 2 · 106τ), progressive strengthening of the topological
constraints in the system takes place, which restricts the rings’ motion and leads to the
rise of the plateau height. This characteristic is similar to the strengthening of glassy
behavior for colloidal systems as the packing fraction grows [236].

After about 2 · 106τ , 〈g3(t, t0)〉 becomes independent of t0 and only small changes in
〈g3(t)〉 and Fs(q∗, t) are noticeable. These are due to the local system explorations of
the hot segments (Supplementary Figure 4.2), reminiscent of a confined diffusion with
occasional constraint release. 〈g3(t)〉 is strongly subdiffusive (∼ t0.36) and very slow,
typical for polymeric glasses [224]. The corresponding relaxation time, extrapolated as
〈g3(τrelax)〉 = 4R2

g, is τrelax ≈ 1012τ , being more than six orders of magnitude higher than
the equilibrium one. Such a strong dependence of the relaxation time on the control
parameter is a hallmark of glassy systems. Linear polymers in an equilibrium melt relax
slower than rings due to a reptation relaxation mechanism, but for the lengths considered
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here, their relaxation time is only about twice as large as that of the equilibrium rings
[51]. Therefore, the glassy behavior of partly-active rings, although they are somewhat
doubly-folded and hence remind of linear polymers of length N/2, cannot be attributed
to the reptation-like relaxation.

To further support the evidence of glassy dynamics, we measure the probability dis-
tribution of 1d displacements for various lag times ∆ in the glassy regime, that is for
t > 2 · 106τ (Fig 4.4a). For short ∆ = 2500τ , the distribution is close to Gaussian,
characterizing the standard diffusion (also in the non-equilibrium two-temperature case
[237]), whereas for longer lag times (∆ > 105τ) it becomes markedly non-Gaussian (see
also Supplementary Figure 4.5a). Tiny displacements and their non-Gaussian distribu-
tion characterize a local constraint (cage) exploration which is another hallmark of glassy
systems [238]. Interestingly, for long lag times the tails of the distribution are just simply
exponential as in the equilibrium topological glass induced by pinning perturbations [70].
We attribute these ‘fat’ tails to a constraint release and a short relocation of the hot
segments of an individual chain (Supplementary Movie4 1). Additionally, we measured
the ergodicity breaking parameter EB [70], defined by Equation (4.7) in Supplementary
Section 4.5.2. The EB characterizes how quickly (averaged over rings), the time average
of a single ring g3 converges to the ensemble average 〈g3(∆)〉. While in equilibrium EB
typically decays as t−1, the constraints with diverging lifetimes make glassy systems non-
ergodic with EB ∼ t0. We plot EB in the steady state regime (Figure 4.4b), where we
see a dramatic slowing down with exponent around −0.1 even for short lag times (see
also Supplementary Figure 4.5b for g3(t, t0,∆) of individual rings as a function of the
integration time).

4.2.3 Threading analysis

We now show that the mutual ring threadings are responsible for the glassiness. We an-
alyzed the ring threadings using computationally spanned minimal surfaces on the ring
contours (Figure 4.5a). An intersection of one ring’s contour through another ring’s min-
imal surface defines a threading of the second ring. This method was used to clarify the
extent and the role of threadings in equilibrium ring melts [63, 72] (details in Supplemen-
tary Section 4.5.3).

We characterize the threading depth in terms of the so-called separation length Lsep,
defined by Equation (4.9) in Supplementary Section 4.5.3. It approximates how much
of the threading rings material is on one side of the threaded ring. Then, the ratio

4See footnote 2.

71



Figure 4.5: Threading analysis. a, The edgy image is an example of two rings in
a steady state and their minimal surfaces (the circles mark the locations of threadings).
The schematic smooth image shows the definition of Lsep (measured in the number of
monomers) and Q (see text). b, Relative size of the biggest threading cluster (the number
of rings belonging to the biggest cluster, MBC

all , divided by the total number of rings, M)
as a function of the cutoff length Lcutoff . c, Mean number of threaded neighbors 〈ntn〉 by
a ring as a function of time from the activity onset. The ntn is computed as the total
number of threadings in the system nth divided by M . d, Mean threading length ratio Q
as a function of time. e, Distribution of Q for different times after the activity onset (the
legend is the same as in b).

Q = Lsep/(N − Lsep) defines the relative portion of the material on one side compared
to the other side of the threaded ring’s surface. This ratio provides a model-independent
view on threadings because its distribution in equilibrium is insensitive to the polymer
model above the entanglement length scale Ne [72]. We found that more ring pairs are
involved in threadings and that they are progressively deeper compared to equilibrium
(Figure 4.5c and d, respectively). Moreover, we found a positive correlation of the location
of threadings with the local mechanical stress (Supplementary Figure 4.3).

The glassy behavior should be connected to the emergence of a system-spanning cluster
of rings that fails to relax due to mutual threadings. We define two rings belonging to
the same cluster if at least one of them threads the other one with depth Lsep ≥ Lcutoff .
Therefore, we discriminate the cluster structure by the depth of threadings. Figure 4.5b
shows the relative size of the biggest cluster as a function of Lcutoff for different times after
the activity onset. For low Lcutoff , the whole system is one cluster as each ring has shallow
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Figure 4.6: Threading dynamics. a, Threading gain ∆n+
th and loss ∆n˘

th (see Sup-
plementary Section 4.5.3 for all definitions), as well as the net gain ∆n+

th − ∆n˘
th as

a function of time after the onset of activity. b, Threading survival time distribution
π(t, t0) measured from different t0. The peak at late times represent the fraction of ring
pairs threaded until the end of the analyzed data (3.4 · 106τ). c, Threading correlation
Φ(t, t0) as a function of t measured from different t0.

threadings with many of its neighbors. However, in equilibrium (t0 = 0) the threadings
are rarely deeper than 3Ne and therefore for Lcutoff > 100 ' 3Ne the system can be
viewed as a set of many small disconnected clusters. This sharply contrasts with the
structure in the glassy regime (t0 > 106τ), where all rings form a single cluster practically
independent of the choice of Lcutoff as a significant number of threadings of any depth
occurs (Figure 4.5b).

While the cluster profile remains stable in the glassy regime, we still observe threading
and un-threading events between ring pairs. Numbers of these events, however, balance
each other, resulting in a steady state (Figure 4.6a). Interestingly, the threading life-time
distribution shows a power-law with a peak at late times, meaning that the majority of
threadings are persistent and survive for the total duration of our simulations with a
minority having a short lifetime. The bimodal character is likely a consequence of the fat
power-law tail as revealed by the shape of the distribution measured at different times
after the activity onset (Figure 4.6b and Supplementary Movie5 2). Additionally, the
threading two-point correlation function Φ(t, t0) (defined in Equation (4.10)) exhibits in-
complete relaxation at all times, showing a dynamic threading steady state with persistent
threadings (Figure 4.6c).

Although in equilibrium the threading depth is correlated with the diffusion slow-
down of individual rings [63], in the case of partly-active rings, some specific shallow
threadings (for example, see Figure 4.7a) can significantly increase the relaxation time.
The directionality of the rings tightens these threadings and they can be relaxed only
if the active segment backtracks the passive tail. However, the directionality and the

5The movie can be downloaded using the following link: https://static-content.springer.com/
esm/art%3A10.1038%2Fs41467-019-13696-z/MediaObjects/41467_2019_13696_MOESM5_ESM.mov.
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presence of other rings oppose the back-tracking. These threadings are likely members
of the persistent class of threadings, but we could not determine the latter class yet.
We suspect, that such threadings could also be relevant in the dramatic increase of the
viscosity in stretched untangled melt of rings [239] (after this paper has been already
accepted, the hypothesis has been confirmed in Ref. [240]). To prove at least that ring
topology and threadings are essential for the glass transition, we took a configuration
of the system in the glassy state and cut the bond connecting two cold monomers in
the middle of the cold segment on each ring. We further simulated the system which
now consisted of M linear triblocks of length N with two cold segments at the ends and
a hot segment in the center. The chain conformations change only moderately, but it
is clear from 〈g3(t, t0)〉/t (Figure 4.7b) that the chains start to superdiffuse, releasing
the accumulated mechanical stress (Supplementary Movie6 3). Later on, the dynamics
eventually crosses over to standard diffusion in analogy to orientational relaxation of self-
propeled active particles [241]. As the non-topological properties of the system remained
unchanged, we conclude that the phase segregation is not a crucial element stabilizing the
glass7. The glassiness is driven by the enhanced threading due to the ring topology and
the violated detailed balance [73].

4.3 Discussion

We now return to the question of the order (continuous or type-A vs. discontinuous
or type-B) of the glass transition for the system at hand. The usual control parameters
driving vitrification in molecular or colloidal systems are the temperature and the density,
and the typical glass transition scenario there is discontinuous: the intermediate scattering
function in the ergodic state develops a plateau, which grows in height and extends longer
in time approaching the glass transition as the control parameters are changed [226, 224,
242]. In the continuous case, the non-ergodicity factor grows smoothly from zero to finite
values. This second scenario is less common and its realization requires the presence of
additional control parameters, such as porosity and randomness [229, 230, 231], tunable
attraction widths in the interactions [243, 244] or confining periodic potentials [245] for
which the amplitude and the wavelength can be independently varied. In such cases,
lines of continuous glass transitions have been found in parameter space, and they are
associated with higher-order singularities of the A3- or of the A4-type. The latter appear

6The movie can be downloaded using the following link: https://static-content.springer.com/
esm/art%3A10.1038%2Fs41467-019-13696-z/MediaObjects/41467_2019_13696_MOESM6_ESM.mpg.

7The role of non-equilibrium phase segregation is explored in more details in Chapter 5.
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Figure 4.7: Tight threading and relaxation of cut rings. a, Two partly-active
rings with their minimal surfaces revealing a tight threading (detail in the inset). Active
segments are marked green. Their sketched conformation shows how the directionality
tightens the threading and introduces long relaxation. These as well as other threadings
pose no long-time constraint if the rings were cut. b, Mean-square displacement of the cut
rings divided by time (t is measured from the cutting event). The initial decrease at short
times is the residual effect of the glassy state, until the former topological constraints
get released and the centers of mass of the rings switch to superdiffusion at intermediate
times. Later on, the chains cross over to the usual diffusion. Inset: snapshot of a cut ring
at late times.

as endpoints of type-A transition lines that merge with type-B lines, as endpoints of
type-B lines separating two glasses or as endpoints of A3-lines in the latter case.

For the system at hand, several control parameters can be tuned: the fraction Ma/M

of partly-active rings; the ratio Th/Tc of the temperatures of the hot and cold segments;
the fraction Nh/N of hot segments on a ring; and the number of monomers N of the rings.
The richness of the system makes the possibility of existence of higher-order singularities
in principle possible. A detailed investigation in the vast space spanned by these is be-
yond the scope of this work; we focused mainly on the first two cases above. In Figures
4.8a and 4.8b, we show the effect of gradually increasing the fraction of partly-active
chains, which induces a glassy state, as witnessed by the saturation of the mean-square
displacement, Figure 4.8a, and the growth of a non-ergodic plateau, Figure 4.8b, as the
ratio Ma/M exceeds a number as small as 1/160. There is no evidence of the develop-
ment of an intermediate plateau in the ergodic state preceding the glass, in full analogy
with type-A transitions seen in the aforementioned systems [229, 230, 231, 245, 243, 244].
The presence of a subdiffusive regime in the mean-square displacements, Figure 4.8a, and
of a logarithmic crossover intermediate scattering function, Figure 4.8b, offer additional
corroboration that the transition for this choice of the remaining system parameters is
continuous, and thus higher-order singularities are present. We have found similar be-
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Figure 4.8: Varying the number of active rings. a, Mean-square displacement of
the rings’ centers of mass from the onset of the activity (t0 = 0) as a function of time for
different numbers Ma of partly-active rings indicated in the legend. b, Self-intermediate
scattering function Fs(q∗, t, t0) as a function of t evaluated at q∗σ = 0.35 and t0 = 3·105τ

for different Ma. c, Mean number of threaded neighbors 〈ntn〉 by a ring as a function
of time from the activity onset for different Ma. d and e, Threading cluster analysis for
systems at with different number of partly-active rings at t = 2.1 · 106τ . d, Relative size
of the biggest cluster of those clusters that contain any kind (active and passive) of rings.
e, Relative size of the biggest cluster of those clusters that contain only passive rings (see
Supplementary Section 4.5.3 for details). Note the difference in the scale of the ordinate
for the passive ring clusters.

haviour (not shown) varying the ratio Th/Tc. Naturally, this does not rule out that in
other parts of the phase diagram the transition is governed by A2-singularities and it is
thus of B-type. This would give rise to a number of additional scenarios for the behaviour
of the relaxation functions, including the possibility of multiple relaxations observed in re-
lated models [245, 246]. The presence of deep and tight threadings in our system bears an
intuitive analogy with colloidal attractions [244], random pinning [229, 230, 231, 242] or
polymer-mediated bond formation [247, 246] in systems featuring similar glass-transition
phenomenologies. A detailed investigation of this issue, however, is a problem for the
future.

The present active topological glass is remarkable by its distinct role of activity in
comparison to the known active glasses composed of self-propelled particles [212, 210].
There, the activity opposes the glassiness as indicated by the increase of the effective
temperature defined through a long time limit of a generalized fluctuation-dissipation re-
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lation. At the same time however, increasing the persistence time can lead to a decrease
of the effective temperature and therefore promote the glass formation, and, conversely,
decrease in persistence time favours fluidization. In contrast, the microscopic model of the
active topological glass has zero persistence time, but nevertheless drives the vitrification.
This can be the consequence of the polymeric nature of the particles and the topologi-
cal constraints that together create some persistence as illustrated by the superdiffusive
regime. Moreover, the activity clearly causes increase of the number and the severity
of topological constraints. This ‘topological crowding’ then can be viewed as a specific,
effective attraction or pinning that further promotes the glass as mentioned above.

As regards the system with only a fraction of active rings present, the threading
cluster analysis (more details in Methods and Supplementary Note 6) has revealed that it
is always the active rings that are involved in the formation and maintenance of the largest
cluster (Figure 4.8c, 4.8d, and 4.8e). The onset time of the glassy regime increases with
decreasing Ma (Figure 4.8a). This delay is related to the slower building up of the largest
cluster as fewer active chains participate (Supplementary Figure 4.8). The ring length
N governs the number of topological interactions8. Similarly to linear polymer melts in
equilibrium, due to extended chain configurations, each partly-active ring overlaps with a
number (extensive inN) of other rings. As a cooperative un-threading of rings is necessary
for the relaxation to occur, we expect the relaxation time to grow at least exponentially
with N [204]. Such a strong dependence is also known from the melts of polymeric stars,
where it is due to the slow process of arm retraction that however, can take place even
without cooperative motion of the other chains [248].

While our model system is interesting from the fundamental physics point of view, it is
also inspired from biology and may well bear important ramifications for the organization
of the DNA fibre (chromatin) of higher eukaryotic cells. The large-scale static properties
of the equilibrium melt of unknotted rings, such as the territorial organization, the scaling
of 〈Rg〉 with N or the so-called contact probability (Supplementary Figure 4.1d) are con-
sistent with the population-average conformation of the interphase chromatin [85]. This
can be due to the common governing role of the topological constraints in both systems
[85]. The rationale behind the ring model is the time scale separation — the chromosomes
are linear chains and as such equilibrate and tangle by reptation, however for the length
and density of chromatin, such relaxation would take significantly longer than the cell’s
life time [84]. Therefore, the constraints arising from the uncrossability of the chains can
be modeled as permanent on biological time scales. This is done effectively by the closure

8The effect of varying ring length is considered in detail in Chapter 5.
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of the chain’s ends which inhibits the reptation. Furthermore, the chromatin associa-
tion with the nuclear lamina [249] hinders reptation relaxation and the chromatin can be
viewed as loops between lamina contact points. In contrast, the topoisomerase II enzyme
can resolve the topological constraints, by cutting the fibre, passing segment through
sealing up the cut back [250], although the extent to which it affects global topology on
biological time scales in interphase is unclear. Alternatively, the rings can also represent
small scale chromatin loops extruded or maintained by Structural Maintenance of Chro-
mosomes protein complexes [99, 251], and/or Topologically Associating Domains [252]
that do not link. Current experimental evidence for the topological state (knottedness)
of the chromatin fibre also varies. While conformations inferred from contact probability
measurements exhibit knots [253], the knot analysis [254] of the direct observations of
fluorescently labeled chromatin segments finds mostly unknotted segments. Unable to
refine the scales of the topological constraints completely at this point, we assumed their
existence for the typical observation times and examined the consequences. Therefore,
we mention phenomena on chromatin at various scales, for which the interplay of the
topology and the activity could be relevant.

The segmental activity with thermal-like fluctuation spectra has been measured to be
stronger in the normal living cell nuclei [100] as opposed to energy-deprived cells, and
has its origins in the energy dependent processes, such as chromatin repair or remodeling,
DNA transcription, or loop extrusion. We conjecture that the phenomena observed in our
partly-active system could also be relevant in biological context, on the basis of the follow-
ing similarities with our model: genes exhibit size increase upon transcription decoupled
from the chromatin decondensation [255]; a highly transcribed gene shows directed motion
[256]; overall chromatin loci exhibit heterogenous subdiffusive dynamics [100] reminiscent
of glassy behavior [257, 221]; the active and inactive chromatin are spatially segregated
[91]; and the chromatin exhibits a doubly-folded structure at small scales [258]. Natu-
rally, these effects have also alternative explanations. The phase separation and glassy
dynamics could be observed for a copolymer models where different chromatin segments
have different interaction potentials based on their epigenetic state [93, 257, 221, 259] or
by interaction with binding proteins [259, 260]. The double folded structure is likely to be
attributed to supercoiling due to the torsional stress induced on the fibre in the process of
transcription or loop extrusion [261, 99, 262]. Nevertheless, we show that the activity in
combination with topological constraints at the fibre level can complement the observed
phenomena and should be considered in a more complete picture of the chromatin organ-
isation [263, 98]. As the models above typically do not consider topological constraints
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and activity, our findings represent a completely new mechanism for the observed phe-
nomena. Certainly, more work is required to determine the relative contributions of the
different mechanisms in the various cases. Potentially, the different nature of the observed
glassy states, namely the monomer glass due to caging in copolymer models [257, 221] and
topological glass here, could be used to discern which one could be present or dominant
in the chromatin context.

4.4 Conclusions

Activity complemented with topological constraints at the microscopic level can lead to
rich system dynamics. We have demonstrated this on a model system of dense, unknotted
and nonconcatenated ring polymers with active segments. Firstly, the directionality of
polymers in a dense environment arises from the topological constraints and the isotropic
noises of unequal strength. Similarly to Ref. [203], the superdiffusive motion is connected
to a major particle deformation at high density. In contrast however, in our work, the
superdiffusivity is triggered by the active noise. Secondly, a novel state of matter — the
activity-driven topological glass — arises from the activity-enhanced ring threading. In
contrast to the conjectured equilibrium topological glass [70], our present model allows the
creation of a topological glass for rings of accessible lengths (7Ne) using activity. Moreover,
only a low number of partly-active rings is necesseary, making the present model suitable
for experimental testing with extracted bacterial DNA [264] or synthetic ring polymers
[57], driven by molecular motors fueled by ATP hydrolysis. The effective temperature
ratio Th/Tc of a factor of three9 that we used here is within reach, since ATP hydrolysis
releases more than 10kBT [265]. However, as our preliminary results suggest, even smaller
temperature ratios can be sufficient. Other means of selective heating could be attempted
by fluctuating external fields or infrared irradiation selectively coupling to individual
groups in the polymer. The latter mechanism can yield a fluid material with reversible
vitrification upon light exposure. What is the proper topological order parameter of the
glass transition, or what are the fragility properties of the active topological glass, are just
a few intriguing questions to be addressed in the future. The present work paves the way
for a development and investigation of these novel, molecular, topology-based, responsive
materials.

9As shown in Chapter 5, due to the heat flow in the system, the observed, effective cold and hot
temperatures, T eff

c and T eff
h , differ from Tc and Th that are imposed by the thermostats, which makes the

ratio T eff
h /T eff

c ≈ 1.7 almost two times smaller than Th/Tc = 3.
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4.5 Supplementary Information

4.5.1 Model

All particles interact via a purely repulsive Lennard-Jones potential

ULJ(r) =
(

4ε
[(
σ

r

)12
−
(
σ

r

)6
]

+ ε

)
θ(21/6σ − r), (4.1)

where θ(x) is the Heaviside step function. The connectivity of polymers is maintained by
the finitely extensible nonlinear elastic potential

UFENE(r) = −1
2r

2
maxK log

[
1−

(
r

rmax

)2
]
, (4.2)

where K = 30ε/σ2 and rmax = 1.5σ. These parameters make the chains essentially
uncrossable. The angular potential is

Uangle = kθ(1− cos(θ − π)) (4.3)

with kθ = 1.5ε.

The studied systems are monodisperse at fixed volume with the total monomer den-
sity ρ = 0.85σ−3. We used very large systems of M = 1600 chains to avoid unphysical
self-threadings of extended rings due to periodic boundary conditions. As shown in Sup-
plementary Figure 4.1c, our systems are large enough to assure that the rings are smaller
than the simulation box at all times. All the simulations were performed at constant
volume with two Langevin thermostats using the large-scale atomic/molecular massively
parallel simulator (LAMMPS) engine [266]. The equations of motion were integrated with
the time step ∆t = 0.005τ , where τ = σ(m/ε)1/2.

To model heterogeneous activity of the rings, on each polymer a consecutive segment
of length Nh = N/8 monomers is considered active by subjecting it to stronger thermal-
like fluctuations (isotropic, uncorrelated, white noise) in comparison to the rest (N −
Nh) monomers of the ring that remain passive. In particular, the active monomers are
connected to a Langevin thermostat of temperature Th = 3 (units of ε and the Boltzmann
constant set to unity are being used throughout), while passive ones are coupled to a
second Langevin thermostat with temperature Tc = 1. The coupling constants of both
thermostats are γ = (2/3)τ−1. From our earlier study [79] we know that such values
of γ and Th lie in the range of the onset of a non-equilibrium microphase separation in
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the active-passive mixtures of polymers of 40 monomers, but colloidal systems would not
demix [77, 73]. Our preliminary studies show that even a weaker temperature contrast is
sufficient for the glassy state to occur. We leave a more detailed characterization of the
phase diagram for the future study.

4.5.2 Methods

The employed model was frequently used not only for the melt of linear chains but also
for the melt of rings [50, 51] at T = 1. Therefore, we already know a range of useful
properties of the equilibrium system, such as the entanglement length Ne = 28 ± 1 and
the typical diffusion times of the rings. In equilibrium, the diffusion time τdiff(N) of a
ring is defined as the mean time required for its center of mass to diffuse over 2Rg, where

Rg ≡ 〈R2
g〉1/2 =

〈
1
N

N∑
i=1

(ri −R)2
〉1/2

(4.4)

is the mean radius of gyration. Above, ri denotes the position of the i-th monomer and
R is the position of the center of mass of the ring. The angles 〈· · · 〉 stand for the average
over different chains. As reported in [50, 51], τdiff(N = 400) ' 4 · 105τ .

To quantify dynamical evolution of the system, we consider squared displacements of
the centers of mass of the rings, g3(t, t0), at a given time t provided that the measurement
started at t0 (t0 = 0 is the activity onset, or, in the case of cut rings, the moment of the
cutting):

g3(t, t0) = [R(t0 + t)−R(t0)]2 , (4.5)

where R(t) is the position of the center of mass of a ring at time t with respect to the
center of mass of the whole system at that time. Typically, we report the mean-square
displacement 〈g3(t, t0)〉 averaged over the rings only, i.e. without additional averaging
over multiple time origins as the dynamics of the system are not stationary in general.

The relaxation dynamics of the system is also characterized by the self-part of the
intermediate scattering function defined as

Fs(q, t, t0) = 1
M

M∑
m=1

exp(iq · (Rm(t0 + t)−Rm(t0))) , (4.6)

where Rm is the position of the center of mass of the m-th ring. We evaluated it at q∗σ =
0.35 corresponding to the maximum of the static structure factor (see Supplementary
Figure 4.6 for other q-values).
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We define ergodicity breaking parameter as

EB(t) = 〈g3(t, t0,∆)2〉 − 〈g3(t, t0,∆)〉2
〈g3(t, t0,∆)〉2 . (4.7)

Here, g3(t, t0,∆), being mainly a function of the lag time ∆, represents the time average:

g3(t, t0,∆) = 1
t−∆

∫ t0+t−∆

t0
[R(t′ + ∆)−R(t′)]2 dt′ (4.8)

where R is the position of the ring’s center of mass with respect to the global center of
mass.

4.5.3 Threading analysis

The minimal surfaces are spanned on the fixed contours of the rings from the molecular
dynamics simulations and then minimized using the overdamped surface tension evolution
under the constraint of fixed disc topology. We used the Surface Evolver software [267]
and followed the protocol in [72] ensuring that for these ring lengths the area of the final
surface is close to the minimum.

The separation length is defined as

Lsep = min
( ∑
i=even

Lti ,
∑
i=odd

Lti

)
, (4.9)

where Lti is the (threading) length between the i-th and the (i+1)-th penetrations of the
surface (see Figure 4.5a). Lsep approximates how much of the threading rings material
is on one side of the threaded ring. The approximation lies in the assumption that
two following surface piercings are in the opposite direction with respect to the surface
normal vector. In many cases, there are only two surface penetrations between two rings
(see Supplementary Figure 4.3) and in such case the approximation is exact because of
the non-concatenation constraint of the rings conformations.

The threading cluster analysis is performed in the following way. At first, each ring is
analyzed for threadings with other rings. Two rings are assigned to the same cluster if at
least one of them threads the other one with Lsep > Lcutoff . Then, the size (in terms of the
number of members) of each cluster is determined and the biggest cluster is found. For
mixtures of active and passive rings the size of the biggest cluster containing any kind of
rings is considered (for example, Figure 4.8b) and separately the biggest cluster of those
clusters that contain only passive rings is calculated, such as in Figure 4.8c.

82



To characterize the dynamics of threadings we compute the threading gain ∆n+
th(t)

and loss ∆n−th(t) as function of time. To do so, we compare the set T (t) of pairs of rings
that are threaded at time t with the set T (t+ ∆t) of threaded pairs at time t+ ∆t. Then
∆n+

tn(t) = |T (t + ∆t)− T (t)| and ∆n−tn(t) = |T (t)− T (t + ∆t)|, where |x| is the number
of members of set x. Note that ∆n±th(t) is different from the derivative of the number
of threaded neighbors, because there exist a state with the derivative zero, but high
threading exchange, which is exactly the case in the steady state. For all calculations of
the threading dynamics, we used ∆t = 2.5 ·104τ and maximum simulation time 3.4 ·106τ .

A related quantity characterizing the threading correlation is

Φ(t, t0) = 1
ntn(t0)

ntn(t0)∑
i,j=1

Tij(t0)Tij(t0 + t), (4.10)

where Tij(t) is one, if threading between rings i and j exists at time t and zero otherwise,
and ntn(t) is the number of threaded neighbors at time t. The Φ(t, t0) gives the time
correlation function for the existence of threadings.

Additionally, we compute the threading survival time distribution π(t, t0) measured
from different t0. To construct π(t, t0), we look at all threaded ring pairs at time t0 and
track how long they remain threaded before they un-thread for the first time.

4.5.4 Details on static and dynamic properties of the rings

In Supplementary Figure 4.1, we present additional shape parameters of the rings, such
as the asphericity a and the contact probability P (s), as a function of time measured from
the onset of activity.

After switching on the activity, the overall size of the rings grows, as indicated in
Supplementary Figure 4.1a and Figure 4.1b, being a consequence of the directional dy-
namics of the rings in the presence of other chains. Simultaneously, the rings become
more ashperical, as can be seen in Supplementary Figure 4.1b showing the dimensionless
asphericity parameter a, defined as

a =
〈λ1 − 1

2(λ2 + λ3)〉
〈λ1 + λ2 + λ3〉

(4.11)

where λi’s are the eigenvalues of the ring’s gyration tensor Gij = 1
N

∑N
n=1(r(n)

i −Ri)(r(n)
j −

Rj) (r(n)
i is the i-th component of the position vector r(n) of the n-th particle and R

is the center of mass position of the ring), ordered as λ1 ≥ λ2 ≥ λ3. Furthermore, we
checked that all rings are smaller than the linear box size at all times (see Supplementary
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Supplementary Figure 4.1: Additional shape parameters of the rings as a
function of time after the onset of activity. a, Time-resolved distribution of the
radius of gyration. b, Time-resolved asphericity parameter (see Supplementary Equa-
tion (4.11)). c, Maximum and mean biggest spanning distance (in units of σ) of all rings
as a function of time. At all times, all rings are smaller than the the linear box size
(L = 90.97σ for N = 400 and M = 1600). d, Contact probability P (s) at different times
t after the activity onset. Two monomers are considered as in a 3D contact if the distance
between them is smaller than the cutoff distance 1.5σ. The P (s) dependence is robust
against changes in the cutoff distances as checked for values 1.12σ and 1.3σ (not shown).

Figure 4.1c). This is to make sure that the rings do not wrap around the periodic boundary
conditions, which would cause unphysical dynamics due to self-threadings.

P (s) represents the probability that two monomers separated by a contour distance
s are in contact in 3D space. It is computed for each segment length s as the fraction
of times the segments endpoints are within distance 1.5σ averaged over the segments
position within the rings and averaged over rings. It becomes non-monotonic at short
distances, as seen in Supplementary Figure 4.1d. Interestingly, at intermediate contour
lengths ([15, 50]σ) it scales as a power-law with the same exponent (−1.17) as for rings
in equilibrium. Note that the final steady-state conformations of the partly active rings
are very extended and distinct from the crumpled globules found in equilibrium, as seen
in Figure 4.2d and 4.2e.
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Supplementary Figure 4.2: Additional details on the time evolution of the hot
and cold segments. Time evolution of the squared displacements of hot (a) and cold
(b) segments of ten randomly-chosen partly active rings in the system with N = 400 and
M = 1600. For clarity, we subtracted from the square displacements the initial position
of each ring: ghot/cold = (Rhot/cold(t) −C(t))2 − (Rhot/cold(0) −C(0))2, where C(t) is the
position of the center of mass of the system and Rhot/cold(t) is the position of the center of
mass of the cold/hot segment. c, Distribution of the ch-magnitude after different times t
after the onset of activity. d, Autocorrelation function of the unit cold-hot vector ch/|ch|
connecting centers of mass of the cold and the hot segment of a ring for different times
after the onset of activity.

Additional information on the time evolution of the hot and cold segments is provided
in Supplementary Figure 4.2. To get more insight into the strongly subdiffusive regime of
the mean-square displacements, we track the squared displacements of the centers of mass
of the hot and the cold segments separately, as shown in Supplementary Figure 4.2a and
4.2b, respectively. The squared displacements of the hot segments naturally display larger
fluctuations, but, more interestingly, also occasional jumps around the plateau value. The
system was simulated for 9 × 106τ ' 22.5τdiff and during that time only small sudden
fast relocations of the segments could be observed, after which the rings practically did
not move. However, the conformations of the rings remained extended, as already seen
from the mean-square internal distance profiles (Figure 4.2d and 4.2e), and also from
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the stable shape of the distribution of the ch-magnitude (Supplementary Figure 4.2c).
As noted in the main text, the late-stage dynamics feature a slight decrease of the mean
magnitude of ch in time (Figure 4.2a). We attribute such behavior to the resolution
of weaker topological constraints and evolution of the system towards a locally ‘deeper’
steady state. In Supplementary Figure 4.2d, we show the auto-correlation function of the
unit cold-hot vector ch/|ch| for different times t0 after the activity onset indicating a very
slow decorrelation of its direction over time.

Typically, hydrodynamics plays an important role in the dynamics of active matter
[268]. We neglected it here as our systems are at the melt density, for which the hydro-
dynamic interactions, if there is any solvent at all, are screened. Nevertheless, in fully
active systems, directed flows can emerge and persist as a result of hydrodynamics with
the orientational order of particles [269, 270].

4.5.5 Details on threading statistics

A ring can penetrate the surface of another ring multiple times, as indicated by the number
np. We take into account only those threadings that are longer than the entanglement
length because very short ones are not model independent [72]. Note that in such case
the number of the counted penetrations of a surface is not necessarily even as required by
the nonconcatenation condition. We see that the mean number of penetrations per ring
increases with time and reaches a plateau in the glassy phase, as shown in Supplementary
Figure 4.3a and 4.3b.

We investigated whether threadings in the glassy state are responsible for the local
enhancement of mechanical stress. Although momentum is injected into the present non-
equilibrium system, we disregarded the kinetic contribution to the stress and concentrated
only on the mechanical consequences of the system’s geometrical state. To do so, we
computed the Cauchy stress tensor for each particle i:

Si = −
∑
j 6=i

rij ⊗ Fij (4.12)

where rij is the relative position of a neighboring particle j with respect to i, Fij is the
force acting between i and j and ⊗ denotes a dyadic product. We computed Si for 200
consecutive time steps of the simulation in the glassy regime. Then, we divided the sim-
ulation box into sub-boxes of size 6σ and computed −〈Tr(S)〉/3V0 (V0 = (6σ)3 is the
volume of a sub-box), where 〈Tr(S)〉 is the trace of the stress tensor averaged over the
short sampling time and over all monomers within a given sub-box. We plotted the result
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Supplementary Figure 4.3: Surface penetrations statistics and correlation of
threadings with mechanical stress. a, Mean number of surface penetrations longer
than Ne per ring as function of time from the onset of activity. b, Probability distribution
of the number of penetrations longer than Ne per ring for different times. c, Correlation
between the local density ρ in a given sub-box and the local diagonal stress value. d,
Correlation between the number of threadings in a given sub-box and the local diagonal
stress value. e, An example slab section through the simulation box. The heat map: local
averaged diagonal stresses (see Supplementary Section 4.5.5 for details). Black points:
locations of threadings in space.
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as a heat map, overlaid with the locations of threadings and computed the correlation
between the number of threadings and such mechanical pressure (see Supplementary Fig-
ure 4.3d and 4.3e). The resulting Pearson correlation coefficient χ = 0.22 suggests a
weak correlation, as, clearly, not all threadings can contribute to the pressure. A much
stronger correlation (χ = 0.6) is found when local density is correlated with the pressure
(Supplementary Figure 4.3c).

4.5.6 Emergent directionality of partly active polymers

Here, we use a toy model to discuss the possibility of a directed diffusion originating from
different diffusivities of the hot and cold segments of a partly active polymer. We consider
stochastic dynamics of two bonded particles that are coupled to two distinct thermostats
(for simplicity, in 1d):

mẍ1 = −ξẋ1 − ∂1U + σ1η1 (4.13)

mẍ2 = −ξẋ2 − ∂2U + σ2η2, (4.14)

where σ1/2 =
√

2ξT1/2 with T1 > T2 (kB = 1), and η1/2 are white noises satisfying

〈ηi(t)ηj(t′)〉 = δijδ(t− t′). (4.15)

We introduce the following set of coordinates:

r = x1 − x2, R = x1 + x2

2 , (4.16)

and assume that U(x1, x2) = U(x1 − x2) ≡ U(r). Note that in this case r coincides with
the cold-hot vector ch. The equations of motion (4.13) and (4.14) can be now rewritten
in terms of the new coordinates:

MR̈ = −ξRṘ + σRηR (4.17)

µr̈ = −ξrṙ + F (r) + σrηr, (4.18)

where M = 2m, µ = m/2, ξR = 2ξ, ξr = ξ/2, and F (r) = −∂rU(r) is the force acting on
the hot particle. More importantly,

σ2
R = 2ξRT , σ2

r = 2ξrT , T = T1 + T2

2 , (4.19)
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Supplementary Figure 4.4: Comparison between non-equilibrium and effec-
tive equilibrium models. The mean-square internal distance profiles of partly active
rings of length N = 800 in a steady state in the two-temperature non-equilibrium model
(2T), the segregated effective equilibrium diblock copolymer model (EFF), and the crum-
pled configuration of homopolymer rings in equilibrium (EQ). a, 〈R2(s)〉 of the hot seg-
ment of partly active rings, or the effective model of the hot segment (see Supplementary
Section 4.5.7 for details), or simply a segment of length Nh of the rings in equilibrium. b,
〈R2(s)〉 for the corresponding cold segments in every model.

and the noises ηR and ηr satisfy

〈ηR(t)ηR(t′)〉 = 〈ηr(t)ηr(t′)〉 = δ(t− t′), (4.20)

〈ηR(t)ηr(t′)〉 =
(
T1 − T2

T1 + T2

)
δ(t− t′). (4.21)

Provided that T1 6= T2, the motions of R and r are coupled through correlated noises,
whereas being completely independent otherwise. The equation for the center of mass is
an ordinary Langevin equation and, therefore, its motion is diffusive and isotropic in the
long time limit. However, at short time scales (' m/ξ) its velocity Ṙ can be correlated
to the relative (cold-hot) vector r. In particular, as follows from (4.21), 〈∆Ṙ(t)∆r(t′)〉 ∼
(T1 − T2), where ∆Ṙ = Ṙ(t) − 〈Ṙ(t)〉 and ∆r = r(t) − 〈r(t)〉. Additionally, as shown in
[271] explicitly for a slightly more general toy model, a drift of the center of mass can
arise only when the friction that the beads are subject to is dependent on their relative
distance r, which is not part of our model. Thus, as stated in the main text, we conclude
that the superdiffusion observed at intermediate times (Figure 4.2c) is explained by the
effect of topological constraints, rather than by the directed diffusion.

4.5.7 Effective equilibrium model and single ring conformations

In equilibrium linear block copolymers, a colocalization of like-blocks can drive local
density changes, which force conformational changes of the chains. Such changes then
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result in various global morphologies, e.g. vesicles or lamellae.

To show that the colocalization or phase separation of hot segments is not the main
mechanism for conformational changes of the rings, we simulate a single partly active ring
in the environment of passive rings, all of the same length N = 800. Initially, the radius
of gyration of the chain grows in time and eventually plateaus. During this stage, the
chain adopts a tree-like conformation that is substantially stretched (R2

g/σ
2 = 680 ± 70

obtained as an average over 100 conformations separated by 104τ), even when compared
to a linear chain of length N/2 in a melt with similar parameters (R2

g = 180σ2 [50]). This
is true also for the system with N = 400 for low number fractions of active chains (see
below).

To support these results, we construct a passive, effective equilibrium model consisting
of ring diblock copolymer rings that, as we observe, exhibit a global segregation of the two
block types. As is clear from Supplementary Figure 4.4, despite the spatial segregation,
the rings in the effective diblock model do not exhibit a substantial conformational change
when compared to the homogeneous homopolymer equilibrium state. In the effective
equilibrium model, we mimic the effect of the hot monomers by representing them as
beads with larger exclusion volume. To do so, we keep the FENE (4.2) interactions
the same, while in the LJ (4.1) interaction we use different values of the σ parameter
for the hot-hot (σhh), hot-cold (σhc) non-bonded interactions, and additionally σb

hh that
governs the LJ interaction of the bonded hot monomers. Guided by the fact that the two-
temperature density inhomogeneity is driven by the local pressure differences, we selected
the values of different σ’s, based on the following criteria: fitting the pressure and mean
bond length of a pure hot system (T = 3.0, in units of ε, for all chains) sets σhh = 1.086σ
and σbhh = 1.024σ; fitting the pressure of a fifty-fifty mixture of hot and cold chains sets
the value of σch = 1.067σ. We do not use the angular interactions as their contribution to
the pressure is of the same order as the pressure fluctuations. All these fits were performed
on systems of M = 1000 linear chains of length N = 40 (in the case of two-temperature
systems, Langevin thermostats with friction γ = (3/2)τ−1 were used). The bonded cold
monomers have the original value of the parameter σ. In the case of partly active rings, the
two hot-cold pairs of monomers that are bonded have σbch = σch. To check if the effective
model shares with the original two-thermostat model other properties, besides pressure
and bond length, we performed the above-outlined procedure for temperatures also below
3.0 and ran the obtained effective models of equal mixtures of hot and cold linear chains.
Similarly to [78], we observe phase separation of the active-like and the passive-like chains
above certain threshold of the chains (temperature) asymmetry. This threshold would
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Supplementary Figure 4.5: Ergodicty breaking. a, Distribution of g3 displace-
ments for various lag times ∆. b, Time evolution of time averaged g3 displacements (see
Equation (4.8)) of individual rings as a function of the integration time t for ∆ = 5 ·105 in
the late simulation stage. The orange curves indicate the fastest 5% of the rings, whereas
the gray ones — the slowest 5%. The dashed black line stands for the ensemble mean g3

at a given t.

correspond to the temperature of the hot chains in the two-temperature system to be below
1.75, probably close to 1.5. The true two-temperature system of linear chains of length
N = 40 phase separates around T crit

h ' 2.25, for γ = (3/2)τ−1 and is only at the onset
of phase separation at Th = 3.0 for γ = 2/3τ−1 [79]. Therefore, the effective equilibrium
model is somewhat stronger than its non-equilibrium counterpart, but it does not feature
strong conformational changes of the chains despite its stronger asymmetry between the
hot-like and cold-like particles. Hence, we expect that an equilibrium model with weaker
asymmetry that reproduces more closely the non-equilibrium phase separation, does not
exhibit such changes either.

Let us stress that the purpose of the effective model, as described above, is not to
accurately reproduce the microscopic properties of the non-equilibrium model, as it is not
clear if this was possible at all [73, 78], but simply to test whether a density inhomogeneity
in a system of ring block copolymers could drive substantial conformational changes. We
have shown this is not the case, as seen in Supplementary Figure 4.4.

4.5.8 Additional properties of the steady state

The distribution of g3 displacements for different lag times is shown in Supplementary
Figure 4.5a. As mentioned in the main text, it depends only weakly on the lag time
for ∆ > 105τ . Supplementary Figure 4.5b further illustrates the behavior of the time-
averaged g3(t, t0,∆) for individual rings as a function of the integration time and the
failure of the time average to converge to the ensemble average at longer timescales. If
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Supplementary Figure 4.6: Self-part of the intermediate scattering function
as a function of wave vector. t0 denotes the measurement start time after the activity
onset. The wave vector q grow from top (blue) to bottom (orange) by step ∆q = 0.04σ−1

from the value 0.02σ−1.

the system was ergodic at these time scales, the spread around the ensemble average
would decrease with time.

In Supplementary Figure 4.6, we show the self-part of the intermediate scattering
function for q-values in range 0.02 ≤ qσ ≤ 2 for different measurement start times t0 after
the activity onset. During the early and intermediate phase, i.e. for t0 < 2 · 105τ , we
observe that the system relaxes at high wave vectors, but intermediate and small wave
vectors exhibit only the first β-relaxation stage ending up at a non-vanishing value, which
we define as the non-ergodicity parameter fq (Figure 4.3b). Although our simulations are
very long, for very small q’s we do not observe even the β-relaxation stage. This is likely
because the present system is deeply in the glassy state. For later phases with t0 > 106τ ,
we do not even reach the first relaxation for most of the wave vectors.

It is possible that one can get closer to the glass transition point if a lower number
fraction of partly active chains is used. As shown below, we varied this number and
observed the onset of glassy behavior, but we leave the detailed relaxation analysis for
future work.
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4.5.9 Varying number of partly active chains

We simulated systems withM = 1600 rings out of which onlyMa were partly active while
the rest were completely passive.

In Supplementary Figure 4.7, we plot the behavior of the radius of gyration and the
asphericity for systems with different Ma separately for the active and for the passive
rings. The active rings are even more stretched for lower Ma, which we attribute to the
lower total number of the topological constraints as compared to system with only active
rings. Based on the threading analysis, we conjecture that the active rings form more
topological constraints than the passive ones due to their overall stretched configuration.
If a certain number of constraints is necessary to stall the rings motion, the lower the Ma

is the further each ring stretches before it reaches the number of constraints that stalls
its motion. The passive rings are also slightly stretched, as compared to equilibrium, in
the systems that evolve towards a glassy state.

We observe the onset of the active topological glass for Ma as low as 100, which
corresponds to the number fraction Φa = 0.0625 (Supplementary Figure 4.7e and 4.7f).
As is evident from these figures, both the active and the passive rings are arrested in this
case. Furthermore, as shown in Supplementary Figure 4.7, for lower Ma the glass onset
happens later in time. This is because the glassy state is formed by the mutual threadings
of the active rings, which become less frequent for lowerMa. Longer simulation of systems
with even smaller Φa might also reveal a glassy state.

The above picture is consistent with the threading cluster analysis (see Supplemen-
tary Figure 4.8). This reveals that the biggest cluster is supported by the active rings
interconnected with the passive ones. The passive rings themselves do not form a system-
spanning cluster for any value of Lcutoff . Finally, relaxation properties of the systems with
varying number of partly active rings are shown in Figure 4.8.
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Supplementary Figure 4.7: Structural and dynamical properties of rings as
a function of time for systems with different number of partly active rings.
In every case, the system contains M = 1600 rings, out of which only Ma are active,
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the legend of every plot.
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Supplementary Figure 4.8: Time-resolved threading cluster analysis for sys-
tems with different number of partly active rings. Number of rings in the biggest
cluster divided by the total number of rings as a function of the cutoff length Lcutoff for
different numbers of active rings indicated in the legend. The first row represents the
state of the system at an early t = 5000τ , the second one at an intermediate t = 2.7 ·105τ .
The late stage is shown in Figure 4.8. Bottom row: time-resolved cluster sizes for the
system with 200 (out of 1600) active chains. Left column: clusters that contain active
(and passive) rings were used. Right column: clusters that contain only passive rings were
used (see Supplementary Section 4.5.3). Note the difference in the scale of the ordinate
for the passive ring clusters.
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Chapter 5

Emergence of active topological glass
through directed chain dynamics and
non-equilibrium phase segregation

Submitted for publication: Iurii Chubak, Christos N. Likos, Kurt Kremer, and Jan Sm-
rek. Emergence of active topological glass through directed chain dynamics and non-
equilibrium phase segregation.1

Active matter states defy many notions that have been established for systems in
thermodynamic equilibrium. Nevertheless, the lack of detailed balance might be utilized
to design non-equilibrium materials with unique properties. Recently we have shown,
employing a model of ring polymers with segments coupled to stronger than thermal
fluctuations, that making polymers with intrinsic topology active can result in states that
relax extremely slow, the so-called active topological glass. In this work, we focus on
the role of non-equilibrium phase separation in the vitrification process. In particular,
we detail the polymer dynamics and show that such activity-driven glassy states arise
from heterogeneity of segmental dynamics that emerges on all scales. Provided that the
activity quench is strong enough, the rings feature an oriented reptation-like motion, with
the active segment serving as an effective chain’s end, resulting into a dramatic increase
of inter-ring treading that vitrifies the system. The scaling properties of the ensuing
steady-state ring conformations, which are significantly elongated and usually possess
a doubly-folded structure, are discussed and compared to equilibrium counterparts. We
further examine the connection between the glass formation and the non-equilibrium phase

1Author contributions: I. C. and J. S. performed the simulations and data analysis. All authors
interpreted the results. I. C. wrote the paper with the contributions of J. S., K. K. and C. N. L.

96



separation and we find that both appear to be initiated by the contrasting dynamics of
ring segments. Finally, we consider the effect of non-equilibrium phase separation in other
active co-polymer architectures.

5.1 Introduction

Properties of ring polymer systems, albeit having been the subject of longstanding the-
oretical and experimental research, have not yet been understood in their entirety. The
topology of each ring is fixed at the synthesis and the non-crossability of the chains gives
rise to unique scaling and material properties that range from individual chains [29] to
solutions and melts [57, 50, 51, 58, 272, 59, 273]. Furthermore, in contrast to other
polymer architectures, the mathematical difficulties to capture topological constraints,
even in the simplest problem of two interacting unknotted loops [274], make it a suitable
problem for exploration and effective description with the aid of computer simulations
[32, 275, 150, 35]. The semidilute and melt conditions that are relevant in biological ap-
plications [85, 185] present even a greater modelling challenge because many topological
constraints of overlapping chains are not pairwise additive [276] and have to be satisfied
simultaneously. Due to involved mathematical complexity despite the simple intuitive
rule of fixed topology, extensive studies focused on the prototypical example of the melt
of unknotted and non-concatenated rings. Yet, many fundamental questions remain open.

One of such questions pertaining from the beginnings of the field is the existence
of topological glass [69]. The rings cannot cross but can thread each other by piercing
through one anothers opening. The threading restricts relative rings motion and prolongs
their relaxation [67, 63, 277]. In melt conditions where many rings overlap, a hierarchical
network of threadings would generate a glassy state when relaxation of a ring is condi-
tioned on the sequence of relaxation of other rings. This conjectured novel type of glass
arises without the change in volume fraction or temperature, the control parameter being
the ring length, which impacts the propensity of mutual ring threading. The concept of
topological glass has been recently put in test by so-called pinning perturbations of the
melt [66, 70]. When a fraction of all rings is artificially immobilized, the whole system
exhibits glassy characteristics. The longer the rings, the smaller the fraction of pinned
rings is sufficient to observe the topological glass. The extrapolated ring length for zero
pinned rings fraction is beyond the current reach of both experiment and simulation.
In these works, the unpinned rings are in equilibrium and as such exhibit threading of
their neighbors that is limited by (i) the entropically accessible conformations and (ii)

97



Figure 5.1: Typical conformations of partially active rings in the glassy state.
The shown configurations were randomly chosen from the ensemble of rings in the system
with N = 400. The orange monomers are active and the gray ones passive. Loopy
openings on a ring highly likely correspond to other rings that thread it at a given place.
In many cases, the conformations feature a doubly-folded structure with the hot segment
located at one of its ends. The rightmost configuration depicts two rings entangled by a
tight threading similar to the square knot structure schematically depicted in the inset.

the number of the neighbors, which saturates in the long ring limit due to the compact
conformation of the rings [50]. Therefore, other ideas to enhance the threading of shorter
rings and create a topological glass have been looked for.

Recently, we have shown [184] that a state of topological glass can be attained by
rings of moderate length, provided that their segments are subject to heterogeneous ac-
tivity. The activity in the latter case was induced by coupling a consecutive number
of monomers on a ring to stronger thermal fluctuations than the rest, that is by mak-
ing them effectively hotter. The non-equilibrium dynamics of such partially active rings,
stemming from a strongly broken detailed balance, accesses conformations unfavourable in
equilibrium, dramatically increases inter-ring threading and ensues substantial structural
rearrangements of the system, ultimately resulting in a complete stall of the relative mo-
tion of the rings (typical ring conformations in the glassy state are shown in Figure 5.1).
The relevance of such a complex non-equilibrium system arises from its connection to
the chomosomes in living cells that feature both a structure consistent with topologically
constrained dense polymer matter [85] and a thermal-like active processes acting on the
DNA segments [100, 278]. While the biological aspect is certainly intriguing, here we are
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interested in the physical properties and mechanisms behind the formation of this novel
state of matter.

Many properties of such non-equilibrium, activity-driven glassy states in ring polymer
melts remain elusive, such as the relation between the glass transition and the active-
passive phase separation. While pressure, temperature, and chemical potential are neces-
sarily uniform across the system with different particle species in thermodynamic equilib-
rium, this is not longer the case for steady states of non-equilibrium active matter systems
[279, 280, 78, 79]. The active-passive phase separation is observed for various models of
activity [281, 77], but coexistence conditions can depend on activity details [280].

In a two-temperature mixture, the degree of phase separation between two species
strongly depends on the temperature difference between the hot and cold thermostats,
the friction coefficient γ, which serves as a coupling constant between particles and ther-
mostats, as well as on the polymerization degree of particles, provided they are polymers
[78, 79, 77, 73, 75, 74]. In colloidal particle mixtures containing equal number fractions
of both species, the phase segregation arises if the critical temperature ratio is quite
high, Th/Tc ≈ 30 [77, 73, 75]. Such activity ratio roughly compares with the ratio of
Péclet numbers necessary to observe phase separation of self-propelling active particles
[281]. Nevertheless, as has been shown for the two-temperature case [78, 79, 75], the
critical activity ratio decreases with the particles’ polymerization degree N with the in-
compatibility parameter scaling as ∼ N−1/2 [78, 75], in contrast to ∼ N−1 dependence for
equilibrium phase separation [80]. While the theoretical result [75] is built on a virial-like
approximation and hence applicable to moderate densities, the scaling ∼ N−1/2 had been
conjectured based on simulation of concentrated active-passive solutions [78].

In the active topological glass the sufficiently long active blocks would tend to segre-
gate, but their diffusivity that plays a role in the enhancement of threading decreases with
N . The natural questions arise: how is the vitrification related to the observed active-
passive phase separation for polymer mixtures? What is the role of the ring length for
a fixed activity ratio? How are the conformations, dynamics, and phase-separated mor-
phologies of such non-equilibrium, activity-driven rings related to those of equilibrium
and what are their scaling properties? We tackle these questions by considering melts of
ring polymers of varying length subject to comparable activity quench.

In this work, we detail on how such a non-equilibrium system of rings arrives at
a dynamically arrested state. The onset of activity implies a discrepancy between the
dynamics of hot and cold segments that, as we show, if being strong enough, generates a
slithering-snake-like motion of the active segment pulling the rest of the chain that has a
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Figure 5.2: Dynamics of monomers. Mean-square displacements of active, gh
1 (t, t0),

and passive, gc
1(t, t0), monomers in the early (t0 = 0τ , solid lines) and late (t0 = 2·106τ ,

dashed lines) stages for systems with N = 100 (a), N = 200 (b), and N = 400 (c).
The partially active rings with N = 100 feature equilibrium-like dynamics that does not
depend on t0, thus only the data for t0 = 0τ is shown in a. The dashed lines indicate
intermediate scaling regimes. The transparent gray lines correspond to g1 in equilibrium
for the respective case. The arrows indicate the squared equilibrium (black arrows) and
non-equilibrium (gray arrows) diameter of gyration.

propensity to form tight threadings – topological constraints that are difficult to resolve.
Some of these have the local form of square knots (see inset of Figure 5.1) and are found
also to be responsible for a strong increase in viscosity for ring melts under extensional flow
[239, 240]. Once a sufficiently high number of such constraints is formed, the cold part of
a ring is essentially fixed in space, whereas the hot one intermittently continues diffusing
through the system, causing a significant and rapid expansion of the rings. As a result,
it leads to even stronger inter-ring tangling. In the final, deeply threaded state, the hot
segments tend to phase segregate more, which reduces energy dissipation and increases
their effective temperature, leading to further tightening of the constraints. At this steady
state, the constraints cause the dynamics of each ring to lose the drift element. As we
show, the aforementioned process of segregation between hot and cold segments comes
to a halt due to the vitrification caused by the circular topology of the ring polymers.
To investigate the possible morphologies of activity-induced phase separation, we also
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(b) active segment (c) passive segment
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(d) Late evolution

(e) active segment (f) passive segment

Figure 5.3: Evolution of a single ring with N = 400. Left panel: early rearrange-
ments of the conformation of the whole ring (a), its hot (b) and cold (c) segment over
t = 5·105τ starting from the activity onset at t0 = 0τ . Right panel: late rearrangements
of the conformation of the whole ring (d), its hot (e) and cold (f) segment over the sub-
sequent t = 5·106τ . In all plots, the black curve indicates the final ring configuration,
whereas in a and d, the light gray curve in the foreground indicates its starting configu-
ration. In all cases, the xy-projection of the ring’s coordinates is shown and the opacity
increases linearly with time, that is, earlier configurations are lighter. The time trace of
the hot and cold segments are shown in red and blue respectively. Finally, note that the
length of the shown trajectory in d, e, f is ten times longer than in a, b, c.

examine steady states of other polymer architectures that can arise from cutting the
rings, by which we remove the long-lasting topological constraints. In particular, linear
mixtures of unequal lengths and linear triblock co-polymer systems, exhibit microphase
separation, however in the extent and morphology different from both, their equilibrium
phase-separated counterparts and the active topological glass.

5.2 Model

Our systems consist of M = 1600 monodisperse, semi-flexible ring polymers of length
N (N = 100, 200, 400). We employ a standard model for polymer melts [127], in which
excluded-volume interactions between monomers are given by the purely repulsive Lennard-
Jones potential

ULJ(r) =
(

4ε
[(
σ

r

)12
−
(
σ

r

)6
]

+ ε

)
θ(21/6σ − r), (5.1)
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where θ(x) denotes the Heaviside step function, σ is the diameter of each monomer having
mass m, and ε sets the energy scale. The bonding potential between two neighboring
monomers along the chain’s contour is set by the finitely extensible nonlinear elastic
potential

UFENE(r) = −1
2r

2
maxK log

[
1−

(
r

rmax

)2
]

(5.2)

with K = 30ε/σ2 and rmax = 1.5σ. Finally, the bending potential is

Uangle = kθ(1− cos(θ − π)) (5.3)

with kθ = 1.5ε. This choice of parameters prevents inter-chain crossings that would violate
the initial non-concatenation constraint. Moreover, it achieves small entanglement length
Ne = 28, below which the chains are still approximately Gaussian.

In each system, successive Nh = N/8 monomers on every ring are made active
(Nh = 13, 25, 50 for N = 100, 200, 400, respectively). This is achieved by subjecting
them to stronger thermal-like fluctuations, as compared to the remaining Nc = N − Nh

particles. Here and in what follows, active monomers are interchangeably called hot,
whereas passive ones are named cold. In practice, we couple both species to two distinct
Langevin thermostats with Th = 3ε (kB = 1) for active monomers, and Tc = 1ε for passive
ones, such that the equations of motions read as

mv̇i = −mγvi + F i + (2mγTi)1/2ηi, (5.4)

where γ is the coupling constant with the heat bath, F i is the total conservative force
on the monomer, the components of ηi satisfy 〈ηi,α(t)ηj,β(t′)〉 = δijδαβδ(t − t′), and Ti

is either Th or Tc. The same γ = (2/3)τ−1, where τ = σ(m/ε)1/2, is used for both
thermostats. These choices of γ and Th are sufficient to drive non-equilibrium phase sep-
aration in active-passive mixtures of short (N & 20) polymers [78, 79], but by far not
strong enough to observe demixing of colloids [77, 73]. All the Langevin dynamics simu-
lations were performed at constant volume and density ρ = 0.85σ−3 using the large-scale
atomic/molecular massively parallel simulator (LAMMPS) engine [266]. The integration
time step was set to ∆t = 0.005τ . Finally, as noted in the original work [184], rela-
tively large system sizes with M = 1600 polymers were needed to ensure that unphysical
self-threadings of extremely elongated rings due to periodic boundary conditions do not
occur.
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Figure 5.4: Dynamics of segments. Comparison between the center-of-mass mean-
square displacements of active, gh

3 (t, t0), and passive, gc
3(t, t0), segments, and the whole

rings, g3(t, t0), for N = 200 (a) and 400 (b) in the early (t0 = 0τ , solid lines) and late
(t0 = 2·106τ , dashed lines) stages. The dotted lines indicate different intermediate scaling
regimes. The arrows indicate the squared equilibrium (black arrows) and non-equilibrium
(gray arrows) diameter of gyration.

5.3 Onset of glassy dynamics

At time t0 = 0τ , the activity on all rings in a properly equilibrated sample of M chains
is switched on. As shown below, the ensued dynamics differs across the three cases
considered: whereas for the larger rings with N = 200 and 400 it progressively slows
down and eventually results in a halt of the relative motion of the rings, the dynamics of
the system with N = 100 is equilibrium-like.

To characterize in detail the rings’ motion on all scales, we consider the mean-square
displacements of active and passive monomers, gα1 (t, t0) (α = hot/cold), their mean-square
displacements with respect to the ring’s center of mass, gα2 (t, t0), and the mean-square
displacements of the center of mass of the whole ring, g3(t, t0):

gα1 (t, t0) = [rα(t0 + t)− rα(t0)]2 , (5.5)

gα2 (t, t0) = [∆rα(t0 + t)−∆rα(t0)]2 , (5.6)

g3(t, t0) = [R(t0 + t)−R(t0)]2 , (5.7)

where rα(t) is the position of an active or passive monomer at time t, R is the center
of mass position of the ring, and ∆rα(t) = rα(t) − R(t) is the position of a monomer
with respect to its ring’s center of mass. In all cases the positions are relative to the
total center of mass of the system at the given time to subtract the induced global drift.
Additionally, we consider the mean-square displacements of the center of mass of active
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and passive segments, gα3 (t, t0):

gα3 (t, t0) = [Rα(t0 + t)−Rα(t0)]2 , (5.8)

where Rα(t) = N−1
α

∑Nα
i=1 rαi (t) is the center of mass position of the active or passive

segment on a ring. In general, we consider only the mean-square displacements averaged
over rings, 〈gαi (t, t0)〉, without additional averaging over multiple time origins because of
the explicit dependence of the dynamics on t0 at early times. The steady-state properties
for the systems with N = 200 and 400 correspond to the time when most conformational
properties come to a standstill and to when the dynamic correlation functions do not
feature a significant dependence on t0. For the former two systems, this time corresponds
to about t0 ' 2·106τ . Thus, in what follows we will focus on the two cases: early
rearrangements immediately after the activity onset (t0 = 0τ) as well as the steady state
dynamics (t0 = 2·106τ). Finally, to give a perspective on the dynamics, we also simulated
fully equilibrium systems with Th = Tc = 1 and all other parameters the same as in the
active cases.

As mentioned in the introduction, the friction coefficient γ is an important parameter
that governs redistribution of heat between the cold and hot subsystems. In Langevin
dynamics simulations, lower values of γ enhance the heat transfer between distinct particle
species, and therefore result in apparent effective temperatures T eff

h and T eff
c of hot and

cold particles that differ from the ones set by the thermostats [78, 79, 74]:

Tc < T eff
c < T eff

h < Th. (5.9)

Conversely, the increase of γ keeps the particles’ temperatures closer to the thermostat
ones, thereby amplifying the effective temperature difference and thus promoting phase
segregation of hot and cold particles. Finally, due to the heat flow to the cold subsystem,
even the diffusivity of passive monomers is increased because their effective temperature is
higher than the one imposed by the thermostat, T eff

c > Tc. In any case, we use thermostat
coupling constant much lower than the effective bead-bead friction (' 20τ−1) [282].

As shown in Figure 5.2, the early dynamics (t0 = 0τ) of both active and passive
monomers is consistent with that of equilibrium melts [50, 51, 283], and is characterized
by g

h/c
1 scaling as gh/c

1 ∼ t1/2 indicating standard Rouse behavior. For all N , in full
accordance with (5.9), at early times gh

1 > gc
1 > g1, where g1 corresponds to a completely

passive, equilibrium system with Th = Tc = 1. In sharp contrast to N = 200 and N = 400,
the gh/c

1 for the system with N = 100 crosses over to free diffusion g
h/c
1 ∼ t with no

104



104 105 106

t/τ

101

102

103

〈g
i 3(t,

t 0
)〉
/

[D
eff
/

D
]

∼ t

4R2
g

(a)

N = 100

gh
3 , t0 = 0τ

gc
3, t0 = 0τ

g3, t0 = 0τ
gh

3 equilibrium
gc

3 equilibrium
g3, equilibrium

104 105 106

t/τ

101

102

103

〈g
i 3(t,

t 0
)〉
/

[D
eff
/

D
] ∼ t

4R2
g,eq

4R2
g

N = 200

(b)
gh

3 , t0 = 0τ
gc

3, t0 = 0τ
g3, t0 = 0τ
gh

3 , equilibrium
gc

3, equilibrium
g3, equilibrium

104 105 106

t/τ

101

102

103

〈g
i 3(t,

t 0
)〉
/

[D
eff
/

D
]

∼ t

4R2
g,eq

4R2
g

N = 400

(c)
gh

3 , t0 = 0τ
gc

3, t0 = 0τ
g3, t0 = 0τ
gh

3 , equilibrium
gc

3, equilibrium
g3, equilibrium

1 2 3 4 5 6 7 8
r/σ

0.81

0.82

0.83

0.84

0.85

ρ
(r

)σ
3

(d)

N = 100
N = 200
N = 400

Figure 5.5: Dynamics of segments rescaled with effective diffusion coefficient.
Comparison between the center-of-mass mean-square displacements of active, gh

3 (t, t0),
and passive, gc

3(t, t0), segments, and the whole rings, g3(t, t0), for N = 100 (a), N = 200
(b), and 400 (c) in the early (t0 = 0τ) stage (Deff/D = 1.25) and the equivalent dependen-
cies in equilibrium (Deff/D = 1). The mean-squared gyration radius in equilibrium R2

g,eq
[50] and in the steady-state R2

g are marked by arrows for comparison to the mean-squared
displacements. d, Average monomer density around the center of mass of the hot segment
early after the activity onset (t < 104τ). For all N , the dip in the density has width of
about one diameter of gyration of the hot segment at that time. The gray dashed line
corresponds to the mean monomer density ρσ3 = 0.85.

indications of glassy behavior (Figure 5.2a). Moreover, the dynamics of the system with
N = 100 is equilibrium-like and it does not depend on t0. In contrast, the Rouse regime of
g

h/c
1 for the two larger systems with N = 200 and 400 is followed by a gradual slow-down,
see Figure 5.3 for time traces at early and late stages of the evolution. The steady-
state dynamics of gh/c

1 for active and passive monomers in these systems (t0 = 2·106τ) is
indicated by dashed lines in Figure 5.2: for short lag times, gh/c

1 are generally slower than
in the equivalent equilibrium case (especially, for passive monomers), gh

1 is typically 1.5-2
times higher than gc

1, and both feature a more than two-decade long regime with g
h/c
1

exhibiting scaling close to ∼ t1/4. The exponent reminisces of linear polymer reptation
along its chain contour [51]. In the present case, in the steady state the centers of mass
of the rings are practically fixed due to numerous threadings, and their displacements are
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Figure 5.6: Dynamics of monomers with respect to the center of mass. g2(t, t0)
is shown immediately after the onset of activity, that is for t0 = 0τ , for systems with
different N and is averaged over both hot and cold monomers in the system. There
is practically no difference in gc/h2 computed separately for cold and hot monomers. The
black dotted lines indicate intermediate scaling regimes. The colored dotted lines indicate
the value 2.5〈R2

g〉, where 〈R2
g〉 is the squared equilibrium radius of gyration taken from

[50] (different colors corresponds to different N as in the legend). After around 2.5〈R2
g〉,

g3 of an equilibrium-like system would cross over to diffusion, whereas g2 would saturate
(see more discussion in the main text).

only generated by occasional pulls of the active segments, as we detail below in Figure 5.4.
This essentially corresponds to a directed reptation-like motion where the active segment
serves as an effective ‘chain end’ that directs ring’s displacements.

For the two larger systems (N = 200, 400) that slow down, in Figure 5.4 we further
compare the mean-square displacements of the center of mass of active and passive seg-
ments, gh/c

3 , as well as of the whole ring, g3, in the early (t0 = 0τ) and late (t0 = 2·106τ)
stages. Similarly to gh/c

1 , the early dynamics of gh/c
3 and g3 is consistent with the short-time

dynamics of an equilibrium ring melt with g3 ∼ t3/4 [51]. Naturally, due to a significant
difference in length, the hot segment at early times diffuses faster than the cold one, as
evidenced by about an order of magnitude difference between gh

3 and gc
3. However, in the

present cases, the hot segment still diffuses faster than it would be in a corresponding
equilibrium-like model. As shown in appendix 5.7.1, the center of mass of a free polymer
chain, parts of which are connected to two distinct thermostats, follows equilibrium-like
dynamics with an effective temperature, Teff , which is a weighted average of the two
thermostat temperatures Teff = (TcNc + ThNh)/N , directly translating into its enhanced
diffusion coefficient Deff ∼ Teff . Although the above relations are given in terms of the
thermostat temperatures Th/c, the same Teff is obtained if Th/c are replaced with T eff

h/c,
which is due to the balance of heat fluxes that is discussed later on in Section 5.5. For all
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lines) stages for systems with different N . Partially active rings with N = 100 feature
equilibrium-like dynamics that does not depend on t0. The dotted lines indicate interme-
diate scaling regimes. The gray line indicates the time t = 6·104τ . (see also Figure 5.8).

systems considered here, Nh = N/8 and Th = 3Tc, therefore Deff = 1.25D with D being
the equilibrium diffusion coefficient (Th = Tc). The Rouse regime is well applicable until
the chain starts to explore topological constraints imposed by other chains. For shorter
rings, these do not present a significant obstacle, as their (half-)length is only moder-
ately higher than the equilibrium entanglement length, which itself is effectively higher
for hotter melt due to enhanced chain flexibility [284].

In Figure 5.5, we show g
h/c
3 as well as g3 rescaled by Deff/D and compare them to

the equivalent equilibrium cases for all N . While we find a good correspondence between
the rescaled displacements for N = 100, for N = 200 and N = 400 certain differences
arise already at early times, immediately after the activity onset. In particular, the
dynamics of the cold segment and the center of mass are generally consistent with the
equilibrium-like system with enhanced Deff at early times, whereas the hot segment still
diffuses faster as compared to the latter case. This arises from a more dilute environment
around hot segments (see Figure 5.5d) that indicates an early stage of non-equilibrium
phase segregation. The active segments not only feature a higher diffusivity because of
their coupling to a hotter heat bath, but also because of a lower density around them. In
equilibrium, such a moderate decrease in density has a pronounced effect on the effective
monomer friction and the resulting diffusion coefficient [282]. As seen in Figure 5.4, the
discrepancy between the segment dynamics in the two larger systems only deepens in
the steady state, which is consistent with further demixing of hot and cold monomers,
as detailed later on in Section 5.5. Similarly to the monomer dynamics, center-of-mass
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mean-square displacements gh/c
3 , the quantity g3 in the steady state (t0 = 2·106τ) features

a very slow relaxation that scales as ∼ t0.2 at shorter times and then appears to cross
over to ∼ t0.3−0.4 at longer ones. Note that in the steady state the displacement of the
total center of mass is very small (' 3σ for time ' 107τ), while the hot segment explores
distances about 10σ (Figure 5.4b). As the number of active monomers is relatively small
compared to the length of the whole ring, the center-of-mass mean-square displacements,
g3, generally resemble those of the passive segment. This further confirms the picture that
the active segments explores the neighboring environment, while the whole ring remains
essentially fixed due to pronounced topological constraints.

In equilibrium ring melts, the center of mass of rings of these still relatively short
lengths starts to diffuse after traveling about 2〈R2

g〉 (〈R2
g〉 is the mean-square ring’s radius

of gyration), which corresponds to the point where g3 and g2 cross [51]. In the present
non-equilibrium case with N = 100, we find that this happens at around Deff/D×2〈R2

g〉 =
2.5〈R2

g〉, with 〈R2
g〉 being the equilibrium value. Figure 5.6 shows 〈g2(t, t0)〉 immediately

after the activity onset (t0 = 0τ) and averaged over both active and passive monomers
(g2 computed separately for the two species are practically indistinguishable). While for
N = 100, g2 indeed saturates after about 2.5〈R2

g〉, this is not the case for the two longer
polymers. In the latter cases, g2 grows beyond 2.5〈R2

g〉, which is an indication of rings
expansion past the equilibrium size. In all cases, at short times g2 features scaling close
to the Rouse-like regime of g1, g2 ∼ t1/2. For N = 400, such regime governs g2 up to the
point where it begins to saturate. For N = 200, g2 ∼ t1/2 scaling crosses over to g2 ∼ t0.2

before saturation. As will be seen in Section 5.4, this corresponds to slower expansion of
ring’s size for N = 200, as compared to N = 400.

In Figure 5.7, we further compare the mean-square displacements of the center of
mass of the rings for systems with different N . We find that the time of the onset of the
slow-down of the dynamics for N = 200 and N = 400 roughly corresponds to the onset
of free diffusion in equivalent equilibrium ring melts [51]. Conversely, N = 100 crosses
over from the g3 exponent of about 0.8 to standard diffusion with the corresponding
diffusion coefficient being about 25% higher than in equilibrium, in full agreement with
considerations in section 5.7.1 and (5.18), giving Deff = 1.25D. While both N = 200
and N = 400 arrive at an arrested state, the exact mechanism of how they do that
differs in these two cases. In particular, the Rouse regime for gh/c

1 in the system with
N = 200 extends beyond the crossover to diffusion in the equivalent equilibrium system
(Figure 5.2b), whereas gh/c

1 in the system with N = 400 is crossing over towards diffusion
earlier than in equilibrium, however, saturates later on (Figure 5.2c). For N = 400, the
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Figure 5.8: Size properties. Time evolution of (a) the mean radius of gyration, Rg,
and (b) the mean ‘end-to-end’ distance, Re, of the rings. The time series of Rg(t) and
Re(t) are scaled with their values at t = 0τ that correspond to equilibrium conformations.
The gray lines in a and b indicate the time t = 6·104τ , at which significant slow-down of
rings’ dynamics in the two larger systems becomes apparent (see Figure 5.7). Scaling of
different size descriptors with N in the steady state (t > 2·106τ) is shown in c.

cross-over to diffusion of gh/c
1 coalesces with super-diffusive motion of the center of mass

(Figure 5.7), during which the rings expand significantly (see also a detailed discussion
on the present super-diffusion mechanism in [184]). For N = 200, such super-diffusive
regime is not observed and it is likely caused by the shorter ring length that limits the
amount by which the rings can expand while being driven by the hot segment.

5.4 Conformational properties

In Figure 5.8, we quantify conformational rearrangements of the rings by tracking the
time evolution of the mean radius of gyration

Rg ≡ 〈R2
g〉1/2 =

〈
1
N

N∑
i=1

(ri −R)2
〉1/2

, (5.10)

and the mean ‘end-to-end’ distance

Re ≡ 〈R2
e〉1/2 =

〈
1
N

N∑
i=1

(ri+N/2 − ri)2
〉1/2

, (5.11)

where, ri denotes the position of the i-th monomer and R is the position of the center
of mass of the ring. Additionally, to quantify shape properties, we computed eigenvalues
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λi (i = 1, 2, 3, λ1 ≥ λ2 ≥ λ3) of the ring’s gyration tensor Gij = N−1∑N
k=1 ∆r(k)

i ∆r(k)
j ,

where ∆r(k)
i is the i-th component of the k-th monomer’s position vector in its ring’s

center of mass frame. The angles 〈· · · 〉 stand for the ensemble average over the system
of rings. Whereas the system with N = 100 that does not vitrify features almost the
same Rg and Re as in equilibrium, the systems with N = 200 and 400 are characterized
by a considerable growth of these quantities (steady-state size and shape parameters are
given in Tab. 5.1). The growth of the rings’ size is associated to two effects. Firstly,
the change in the dynamics to oriented reptation-like impacts the ring shape that has to
adapt to the topological constraints and establish a doubly-folded configuration. Second,
the formation of unresolvable threadings, which essentially fix parts of the rings, and
the following pulling of the active segment extends the chain. Whether the unresolvable
threadings are present from the initial stages, or they appear only after the chain moves
significantly is an open question. Currently, we favor the former scenario as the rings
move only about their own size. Based on observations of systems with fewer active
chains where the vitrification appears later and passive chains are stretched, we think
both scenarios are possible.

Such dramatic increase in the rings’ size is associated with a similar increase in the
number of rings’ neighbors, K1(a), as shown in Figure 5.9 (two rings are considered to
be neighbors if their centers of mass lie at a distance smaller than a). Interestingly, a
significant slow-down of the dynamics occurs after the rings on average grow by 10% (see
Figure 5.8 and 5.7, and note the associated time scale highlighted by the gray lines). This
further confirms that the heterogeneous dynamics of rings’ segments first promotes the
formation of topological constraints, which eventually cause the vitrification of the system.
Just before the dynamics significantly slows down, the systems withN = 200 andN = 400
feature a brief regime of their size growth. This translates into an equivalent simultaneous
growth of the average number of neighbors (Figure 5.9). For compact objects, K1(a) is

Table 5.1: Size and shape properties of the partly active rings in the steady state.
〈R2

g〉 is the mean-square radius of gyration, 〈R2
e〉 is the mean-square distance between two

monomers separated by the contour length N/2, and λi, i = 1, 2, 3 are the eigenvalues of the
gyration tensor ordered such that λ1 ≥ λ2 ≥ λ3. The value in the parentheses indicates the
standard error. For comparison with equilibrium values, please see Table 5.2 in Appendix 5.7.2.

N Nh 〈R2
g〉/σ2 〈R2

e〉/σ2 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉
100 13 18.1(0.1) 54.9(0.1) 7.3(0.1) 2.34(0.01)
200 25 65.2(0.3) 203.5(3.8) 12.4(0.1) 2.81(0.01)
400 50 182.1(0.7) 566.1(2.1) 14.2(0.2) 3.03(0.02)

110



5

10

15

20

K 1
(t;

a
=

R
g)

8.8

21.6

(a)
N = 100
N = 200
N = 400

104 105 106 107

t/τ

25

50

75

100

125

K 1
(t;

a
=

R
e)

50.8

119

(b)

Figure 5.9: The mean number of neighbors. Time evolution of the mean number
of neighbors K1(t; a) for (a) a = Rg and (b) a = Re. The gray line indicates the time
scale at which significant slow-down of rings’ dynamics in the two larger systems becomes
apparent.

independent of N , while for equilibrium melt of linear chains it is proportional to N1/2.
Here, in the steady state, K1(Rg) grows superlinearly, indicating that the stretching of the
rings is stronger the longer the ring is. Additionally, as shown in Figure 5.8, we quantified
the scaling of different size parameters (Rg, Re, λi) withN , resulting in an apparent scaling
∼ N ν with ν taking a value 0.64-0.75, distinctly above 1/2 characterizing linear polymers
in melt and 2/5 and 1/3 that describe rings of similar length [50]. Although this scaling
was extracted from very few points only and can be attributed to a cross-over between two
distinct scaling regimes, the effective exponent higher than 1/2 could be related to results
on transversal fluctuations of directed polymers [285]. Similarly to directed polymers,
present rings are being driven by the hot segment, although in random directions, and
move through a “gel matrix” formed by other rings. However, at these chain lengths N ,
we are not in the asymptotic limit and, therefore, not only the ring conformations differ
slightly for different N , as shown below, but also the gel matrix is different. Therefore,
a proper connection between the directed polymers and the present system is yet to be
explored. Finally, the rings in the two bigger systems arrive at significantly stretched
and elongated conformations with their radius of gyration and eigenvalue ratios being
comparable to linear polymer chains of the same length [50], but their Re comparable to
the linear chains of half the length (compare Tab. 5.1 to Tab. 5.2 in Appendix 5.7.2).
This highlights that the rings are mostly doubly-folded and significantly stretched in the
vitrified state in comparison to equilibrium.

To gain a better understanding of conformations of such non-equilibrium rings, we
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evaluated the single chain structure factor S(q), which is shown in Figure 5.10. For a
fractal object with dimension 1/ν, S(q) shall feature a scaling regime S(q) ∼ q−1/ν . The
results in Figure 5.10 do not indicate the presence of a regime with ν ≈ 0.7 for N = 200
and 400. Instead, for N = 200, at length scales comparable with Rg we observe ideal linear
polymer scaling with ν = 1/2, as shown in Figure 5.10 by plotting S(q)q2. Interestingly,
for N = 400, we observe scaling ν = 0.588 (see inset of Figure 5.10). The self-avoiding
walk regime is observed in a relatively narrow range of q and care should be taken as finite-
size effects could play a role. However, the superdiffusive dynamics reported in [184] is
consistent with this exponent as well as preliminary results of systems with longer chains
(not shown) indicate that this exponent is indeed correct. At lower q that crosses over to
ν = 1/2 at higher q. The behavior of S(q) for N = 100 is identical to the equilibrium one
[50]. Similar results on size scaling with ν = 1/2 can be inferred from the mean-square
internal distances shown in Figure 5.12 at intermediate contour segment lengths.

The ideality of rings’ conformations at smaller length scales can be further inferred
from the contact probability P (s), which gives the probability of finding two monomers
separated by contour distance s being at a distance smaller than some cutoff value, shown
in Figure 5.11a. While for N = 100, we observe the same behavior as in equilibrium,
N = 200 and N = 400, due to very extended conformations, feature an ideal chain regime
with P (s) ∼ s−γ with γ = 3/2 at small s, which then crosses over to the equilibrium-
like crumpled globule regime with γ close to 1 at larger s [50]. The contact probability
measured separately for hot and cold segments reveals a finer structure (Figure 5.11b).
The exponent γ = 4/3 found for hot segment is characteristic for smooth fractal globules,
such as collapsed unknotted polymer with smooth outer surface [286, 85], which suggests
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Figure 5.11: Contact probability. a, P (s) of rings is shown for all N at early
(solid lines) and late (dotted lines) times. b, P (s) separately for hot (solid lines) and
cold (dotted lines) segments. Here, the P (s) is averaged over the segment’s position only
within the give segment type. For clarity, dotted curves in a and b have been shifted
vertically. The solid black lines indicated intermediate scaling regimes P (s) ∼ s−γ. Two
monomers are considered in contact if they are at a distance smaller than 21/6σ.

its segregation from the surrounding. This view is confirmed by the finding that ν = 1/3
for the hot segment (see Figure 5.12a), because as shown in [85] γ = 2−(d−1)ν for space-
filling fractals in d dimensions. The cold tail shows non-monotonic behavior with very
steep decay at small scales, consistent with very stretched configurations, and shallower
decay at longer lengths, that characterize tree-like, doubly folded conformations [62].

Such dramatic changes in the rings’ size and, as a consequence, the number of neigh-
bors, result in a significantly enhanced propensity for inter-ring threading, which we
describe now. Inter-ring threadings are quantified using the minimal surface approach.
Therein, the ring’s contour is considered fixed and is spanned by a surface, whose mean-
curvature is then minimized, as explained in Refs. [72, 267]. Consequently, a threading
between a pair of rings is defined by an intersection between one ring’s contour and an-
other ring’s minimal surface. This approach provides a straightforward geometric picture
of the inter-ring threading, is model-independent above the entanglement length [72], and
has been employed to quantify the influence of threadings in bulk and confined equilib-
rium ring polymer melts [63, 72, 283] or for tadpole-shaped polymers [186]. The depth of
threadings is quantified by means of the separation length Lsep:

Lsep = min
( ∑
i=even

Lti ,
∑
i=odd

Lti

)
, (5.12)

where Lti is the (threading) contour length between the i-th and the (i+1)-th penetrations
of the minimal surface. Lsep quantifies the portion of the threading ring on one side of the
threaded ring. Threfore, the ratio Q = Lsep/(N − Lsep) approximates [186] the relative
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Figure 5.12: Conformational properties of the rings’ subchains. Mean-square
internal distance d2(s) between monomers separated by contour length s, computed sep-
arately for hot (a) and cold (b) segments as well as the whole rings (c) in the late stage.
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defined as d2(Nc/h),where Nc/h is the respective length of cold and hot segments. The
solid black lines highlight different scaling regimes of d2(s).

portion of the threading ring’s contour on one side compared to the other side of the
threaded ring’s surface.

The time evolution of mean threading properties after the activity onset in shown
in Figure 5.13 for systems with different N . Except for N = 100, the mean number
of threaded neighbors 〈ntn〉 per ring, defined as the total number of threadings in the
system ntn divided by M , is increasing with time, saturating at a constant value after
about 106τ . As expected, 〈ntn〉 correlates strongly with the mean number of ring neighbors
within its radius of gyration, K1(Rg) (compare Figure 5.13a and Figure 5.9a). Although
the numbers K1(Rg) and 〈ntn〉 in the steady state are almost the same, as we checked, the
rings contributing to K1 are not all threaded and, similarly, some threaded neighbors of a
ring are further than Rg from the ring’s center of mass. Simultaneously, the threadings are
becoming progressively deeper, as evidenced by a rise 〈Q〉 in Figure 5.13b. Interestingly,
even for N = 100 we observe a slightly increase in 〈Q〉, albeit no other influence of activity
on rings’ conformational properties in this system is apparent. While in equilibrium the
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Figure 5.13: Time evolution of threading properties. a, Mean number of threaded
neighbors 〈ntn〉 per ring for systems with differentN as a function of time after the activity
onset. b, Mean threading length ratio Q as a function of t for differentN . c, Mean number
of surface penetrations 〈np〉 as a function of t for different N .

amount of shallow threading increases with N , as quantified by the mean number of
penetrations of a ring’s minimal surface 〈np〉, in Figure 5.13c we show that 〈np〉 goes
down with time for N = 200 and N = 400. If only surface penetrations longer than Ne

were considered, which provides a model-independent view on threading statistics [72],
〈np〉 would actually slightly increase over time [184]. This indicates that many shallow
surface piercings disappear, while a few deeper ones appear, which further confirms the
increase of threading depth consistent with the evolution of 〈Q〉. Finally, as we showed in
the previous work [184], the mutual ring threadings are responsible for the glassy behavior
that emerges from the development of a system-spanning threading cluster.

5.5 Phase separation

The gradual change of conformational properties of the rings as well as the slowed dynam-
ics, ensuing from dramatically enhanced threading, coalesce with demixing of cold and hot
segments. The hot segments are bonded with the cold ones and, therefore, macrophase
separation that would feature a higher resulting temperature contrast [79] is not possi-
ble. In fact, we observe the formation of microphase separated regions, with numerous
interfaces that mediate the heat flux and decrease the temperature contrast. In the ring
systems at hand, block lengths of hot monomers are 13, 25, 50 for N = 100, 200, 400, re-
spectively. For the given γ = 2/3τ−1 and Th = 3ε, the hot block length in the two longer
systems would be sufficient to drive phase segregation in an active-passive mixture of
linear polymer chains, which irrespective of their type would have length Nh. In contrast,
such a mixture of chains of length only Nh = 13 (representing active block in the shortest
system) would not phase segregate [78, 79]. Nevertheless, the question whether demixing
occurs in systems with polymers of unequal length Nh and Nc at a similar temperature
contrast is open. To quantify phase separation in our systems, we compute the order
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Figure 5.14: The phase segregation order parameter. To render comparison across
systems with different N , the initial value of the order parameter |Φ̄(0)|, corresponding
to equilibrium, has been subtracted from |Φ̄(t)|. The gray line indicates the time scale
at which significant slow-down of rings’ dynamics in the two larger systems becomes
apparent. The dashed, colored lines represent the steady-state value of Φ of a given
system.

parameter Φ(t) = x(t)/x(0) − 1 , where x(t) is the particle-averaged number fraction of
inter-chain like-particles in a rc = 21/6σ neighborhood of a given particle at a given time
t, and x(0) is the same quantity at t = 0τ corresponding to equilibrium (at t = 0τ distinct
types were assigned to particles of an equilibrium melt state, but equations of motions
were not integrated yet; thus, such state must be reasonably mixed). Such choice of Φ(t)
allows to explicitly compare systems with different fractions of hot monomers along the
chain, which are characterized by different values of x(0).

As reported in Figure 5.14, while the system with N = 100, which is equilibrium-like
and does not vitrify, does not show strong propensity for segregation of cold and hot
monomers, the two larger system do. For N = 200 and N = 400, immediately after the
activity onset the cold and hot segments in these systems become somewhat segregated
(t < 105τ). This agrees well with reduced density around the hot segments and their
enhanced diffusion, as reported in Figure 5.4. As the rings are becoming gradually more
and more constrained by numerously increased threadings, further separation continues
up to around few millions τ . The system with N = 400 arrives at a more segregated state
than the one with N = 200.

The effective temperatures responsible for the phase segregation are obtained as aver-
age over particles of the same species. To a good approximation, the velocity distribution
of hot/cold particles can be described using the Maxwell-Boltzmann distribution with
temperature T eff

h/c [79]. In a phase segregated state, the deviations from the corresponding
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Figure 5.15: Effective temperatures. Time evolution of the system-averaged effective
temperature of hot, T eff

h , (a) and cold, T eff
c , (b) monomers. c, Distribution of the effective

temperature along the ring’s contour in the steady state for different N . (s is centered at
the middle of the active segment). Inset: time evolution of the mean entropy production Ṡ
per monomer (5.14) (error bars are not shown for clarity; generally, the standard deviation
of Ṡ/3γ is around 0.15 is all cases). In a, b, and c error bars indicate the standard
deviation of the corresponding quantity.

Maxwell-Boltzmann distribution arise from particles that sit at the interfaces and, on av-
erage, have an intermediate effective temperature, T eff

c < T eff < T eff
h . In the steady state,

the total average power supplied to the system from the thermostats through random
collisions Ėrand = −3γ(nhTh + ncTc) should balance the total dissipated energy per unit
time through friction Ėfric = 3γ(nhT eff

h + ncT
eff
c ) [78]. Therefore,

nhT
eff
h + ncT

eff
c = nhTh + ncTc. (5.13)

The relation (5.13) is satisfied for all N at any point in time t, although the two larger
systems feature substantial conformational rearrangements at early times. The reason for
this is the fact that (5.13) works as long as no external work is being produced, which is
the case in the systems considered. Note that dividing (5.13) by N provides the equality
between the mean effective temperature, governing the center of mass dynamics of the
ring, and the mean thermostat temperature. This makes it possible to apply the single
chain results like in section 5.7.1 to the melt case where the effect of the other chains,
besides the topological constraints, is just in adjusted value of the effective temperatures.

As shown in Figure 5.15a, phase separation in the systems with N = 200 and N = 400
leads to gradually increased discrepancy between the two effective temperatures in the
system. Nevertheless, the ratio T eff

h /T eff
c ≈ 1.6-1.8 in these systems is still much smaller

than the one imposed by the thermostat Th/Tc = 3. The propensity of hot blocks to phase
segregate in these systems locally reduces density around them and therefore dispropor-
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Figure 5.16: Spatial distribution of temperature and density. T eff and ρ are
shown for N = 100 (a, b) and N = 400 (c, d). To compute the distributions, the
systems were divided into n3

b small sub-boxes of comparable size σb ≈ 5.7σ. One layer
corresponding to a fixed z-elevation is shown. The heat maps for N = 100 are normalized
with the same scale as for N = 400.

tionately increases their diffusivity, as compared to the cold segments. This results in an
oriented reptation-like motion, where partially active rings are essentially driven by hot
segment displacements, which promotes the formation of inter-ring threading constraints
and makes unthreading events less likely. As the rings are getting more constrained by
their threading neighbors (Figure 5.13), they continue to locally phase segregate stronger
(Figure 5.14), which again increases the difference between segment diffusivities and there-
fore makes the unthreading processes even more unlikely. Thus, a formed glassy state is
maintained by the non-equilibrium microphase separation. In contrast, the smallest sys-
tem with N = 100 that is not segregating stronger, features more contacts between hot
and cold monomers and, therefore, heats up the cold subsystem at the expense of the
hot one, resulting in T eff

h /T eff
c ≈ 1.4. The rings as a whole in this system follow an

equilibrium-like dynamics with diffusivities of hot and cold segments being proportional

118



104 105 106

t/τ

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Φ

(t)
(a)

N = 100
N = 200
N = 400

Figure 5.17: Non-equilibrium phase segregation of cut rings (ABA triblocks).
a, Time evolution of the phase segregation order parameter for rings (transparent curves)
before t < 2·106τ and linear polymer chains (opaque curves) obtained after cutting the
rings in the middle of the cold segment at t = 2·106τ (dotted gray line). for different
N . b, Distribution of the effective temperature along the contour of cut rings in the
steady state (after equilibrating for 1.5·106τ) for different N (s is centered at the middle
of the active segment). Inset: time evolution of the mean entropy production Ṡ for rings
before (transparent) and after (opaque) cutting. The snapshot on the left illustrates the
partially segregated state of hot monomers (cold monomers are not shown for clarity)
in the system with N = 400 at the end of the simulation. In b, error bars indicate the
standard deviation of T eff(s).

to an overall enhanced temperature, as detailed in Section 5.3. Lastly, for all N , the fact
that cold and hot segments are bonded, creates intermediate regions with temperature
smaller than T eff

h but larger than T eff
c . This effect is quantified in Figure 5.15c, where we

show the distribution of effective temperatures along the ring’s contour T eff(s).
The discrepancy between the incoming and outgoing heat fluxes in the cold and hot

subsystems, results in a non-vanishing entropy production Ṡ per particle:

Ṡ = 3γ
N

N∑
s=0

〈
T eff(s)
T (s) − 1

〉
, (5.14)

where 〈. . . 〉 is the ensemble average over different polymer chains in the system. In
Eq. (5.14), we explicitly take into account deviations from T eff

h/c for boundary monomers.
The time evolution of Ṡ for different N is shown in the inset of Figure 5.15c. For N = 100,
Ṡ is the highest, indicating the least degree of phase separation. For N = 200 and
N = 400, Ṡ decreases with time, highlighting further phase separation of hot and cold
monomers in these systems. The fact that Ṡ is the smallest for N = 400 further confirms
that it is the most phase separated. Finally, the microphase systems is composed of a less
dense active phase and more dense passive phase. This is illustrated in Figure 5.16 showing
anti-correlation between temperature and density distributions within the simulation box
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for N = 100 and N = 400.

A similar system of linear chains becomes less phase separated than the one of rings.
We show this by taking a steady-state ring configuration (t = 2·106τ), cutting all chains in
the middle of the cold segment, which results in ABA triblocks, and evolving such system
further on, as shown in Figure 5.17. We also observe an increase in the entropy produc-
tion with a lesser difference between the observed effective cold and hot temperatures,
in line with reduced degree of phase separation. Interestingly, the chain ends have more
frequent contacts with hot regions that results in their higher effective temperature, as
seen in Figure 5.17b. Finally, in the two larger systems of cut rings that have a propen-
sity for demixing, the oriented reptation-like motion driven by the hot segment persists.
An interesting question that remains is whether such ABA (cold-hot-cold) triblocks can
form ordered structures that correspond to the strongly phase segregated limit in equilib-
rium block copolymers [287]. For active co-polymer rings, which we have now extensively
discussed, such behavior is obviously suppressed due to the topological glass formation,
which is disabling the rings to potentially segregate more due to the formed topological
constraints. From the evolution of the phase separation order parameter for ABA tri-
blocks (see Figure 5.17a) and from the final system states (see inset of Figure 5.17b),
we do not observe the formation of ordered structures. The phase separated regions of
active monomers rather reminisce of the weakly segregated regime for equilibrium co-
polymers. It is instructive to compare the present non-equilibrium ABA systems with the
equilibrium ones [288]. In particular, for the three ABA systems considered, we find the
non-equilibrium incompatibility parameter χ = T eff

h /T eff
c − 1 to be 0.42, 0.51, and 0.68

for N = 100, 200, and 400, respectively. Equilibrium diblocks with a similar fraction of
A monomers (fA = 7/8) would form a spherical (micellar) phase at comparable values
of (equilibrium) χ-parameters for the two bigger N [288]. In our case, however, we do
not observe a tendency for such behavior. Note, however, that this comparison is for the
illustration only, as it is not guaranteed that the phase diagrams are similar and it is not
clear now if active co-polymers can form ordered structures at all.

A mixture of M cold chains of length Nc and M hot chains of length Nh shows
a stronger propensity towards phase segregation, as seen in Figure 5.18a. As recently
derived by Ilker and Joanny [75], the critical ratio χ∗ needed for segregation (χ =
T eff

h /T eff
c − 1) scales as

χ∗ = α
(
N
−1/2
h +N−1/2

c

)
(5.15)

with chain lengths (note that the right hand side is not squared, as it would be for
equilibrium phase separation). This agrees well with earlier simulation results on phase
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Figure 5.18: Non-equilibrium phase segregation of linear polymer chains of
different length. a, Time evolution of the phase segregation order parameter for linear
polymers mixtures with M = 1600 hot chains of length Nh = N/8 and M = 1600 cold
chains of lengthNc = N−Nh forN = 100, 200, and 400. The inset snapshot shows only the
hot part of the system withN = 400 at late times. b, The non-equilibrium incompatibility
parameter χ = T eff

h /T eff
c −1 as a function of N−1/2

c +N−1/2
h for the three systems considered

(circles). The gray dashed line is the critical line, χ∗ = α(N−1/2
c + N

−1/2
h ) with α =

1.746 ± 0.081, extracted from symmetric linear polymer mixtures in [78]. The five black
squares are the measured values of χ∗ from [78] for symmetric (Nh = Nc = 10, 20, 40, 70
and 100) mixtures of equal number of hot and cold linear chains. The theory [75] supports
the numerical results.

separation in symmetric active-passive mixtures [78] (Figure 5.18b). Furthermore, we
compared the χ-parameter in the three present cases with the critical line (5.15) with α
extracted from [78]. We find that the system with Nh = 13 and Nc = 87, unlike the other
two, lies below the critical line (Figure 5.18b). This further supports that the two systems
of active-passive mixtures of linear chains of lengths equivalent to block lengths in our
ring systems do phase separate while the shortest one does not, highlighting the role of
the non-equilibrium phase separation in the process of formation of the active topological
glass.

5.6 Conclusions

In summary, we have considered in detail melts of unknotted and nonconcatenated block
co-polymer rings driven out of equilibrium by different thermostats applied to the two
different blocks. We focused on systems with different ring length N , while keeping the
same length ratio of active blocks Nh = N/8 coupled to a heat bath at the temperature
Th = 3Tc. We have shown that at early times the segmental and center of mass dynamics
is equilibrium-like with an effectively higher temperature. In particular, in the shortest
system with N = 100 the presence of activity effectively increases the ring’s diffusivity, as
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given by Eq. (5.18), however, its conformational and threading properties remain essen-
tially unchanged. On the contrary, in the case of N = 200 and N = 400, already shortly
after the activity onset, the hot segments diffuse faster as compared to the relation (5.18).
This arises due to a somewhat lower density around them that hallmarks an early stage
of non-equilibrium phase separation. The discrepancy in segment dynamics in this case
results in an oriented reptation-like regime, where rings are essentially pulled by the hot-
segment displacements, which promotes the formation of topological constraints until the
motion of rings stops, forming a very slowly relaxing glassy state that is built on topologi-
cal constraints and activity. The critical diffusivity contrast for the glass formation seems
to coincide with the phase separation contrast, but a more detailed study is necessary to
determine the relation exactly.

The present non-equilibrium rings, in a sense, represent a hybrid between ring and
linear polymers. On the one hand they are strongly influenced by threading constraints,
lack ends and, therefore, cannot reptate as linear chains. However, for strong enough
temperature discrepancies, the active segments effectively serves as a chain’s end, ex-
ploring neighboring sites and dragging the rest of the polymer with itself. Such dynamics
gives rise to elongated, doubly-folded conformations that locally feature statistics of linear
polymers.

Many intriguing questions remain to be answered for the active topological glass.
Some of these pertain to other activity models. For instance, in a dilute mixture of self-
propelling particles [280] with different propulsion speeds v, densities ρ adjust to equalize
the momentum density ρv, not the pressure p ∼ ρv2, across the system. Before the sepa-
ration, this results in a less dense phase of particles with higher mobility and, therefore,
higher pressure, and a more dense phase of lower mobility particles with lower pressure.
Similarly, in a segregated two-temperature mixture [78, 79, 73, 75], the phase with parti-
cles in contact with a hotter thermostat, locally exerting higher pressure, is more dilute
as compared to the phase with colder particles. As the microscopic and phase separation
dynamics is different for the thermostat-driven particle systems in comparison to systems
with self-propelled particles, it would be interesting to examine the existence of the ac-
tive topological glass for the latter model. To our knowledge, the non-equilibrium phase
separation of polymers composed out of self-propelling particles has not been investigated
systematically and certainly it would be interesting to test whether the N−1/2 scaling of
the incompatibility parameter holds in such systems as well.

Other properties of the active topological glass are yet to be elucidated. In partic-
ular, the exact kinetics of the formation of the active topological glass, its response to
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external shear stress, as well as the strength of the activity quench on the rings’ segments
necessary to observe the arrested states are unknown. A proper description of this phe-
nomenon requires understanding of the non-equilibrium microphase separation. It is very
interesting, for example, whether non-equilibrium active diblock polymers can form or-
dered structures, such as lamellae, cylinders or micelles, as typical for segregating diblock
copolymers in equilibrium [289, 287]. The equilibrium melt of a diblock, or in the case of
the cut rings a simple triblock co-polymers of these lengths would form micelles. In our
partly-active systems we do not observe these structures, however this might be not only
because the glassy state arrests the phase separation, but also the incompatibility pa-
rameter and the chain dynamics are different from equilibrium, and, therefore, the phase
diagram is yet to be explored. A more complete understanding of these phenomena might
further trigger development of active materials with novel properties and shed light on
self-organization and dynamics of different biological polymers, in particular chromatin,
that are subject to heterogeneous activity along their contours and can feature loopy struc-
ture at different length scales. In this context, the main question pertains on the physical
mechanism that governs the separation of transcriptionally active (euchromatin) and the
passive (heterochromatin) fibers. Since both species exhibit also chemical differences it
is difficult to establish if the equilibrium microphase separation or the non-equilibrium
analogue plays the pivotal role. Moreover, the potential topoisomerase-induced crossabil-
ity and the topology of the chromatin fiber affects the accessible morphologies. In this
work, we pinpoint the differences in the steady state morphologies (suppressed formation
of strongly separated structures) and the segment dynamics (oriented reptation) that can
guide the experiments to discern these mechanisms.
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5.7 Supplementary Information

5.7.1 Center of mass diffusion of a single chain coupled to two

thermostats

Consider a single polymer chain of N monomers out of which Nh are connected to a
Langevin thermostat at Th and Nc monomers are connected to a Langevin thermostat at
Tc. The Langevin equation for the i-th monomer is

mv̇i = −mγvi −∇iU + (2mγTi)1/2ηi, (5.16)

where γ is the thermostat coupling parameter, m is the monomer’s mass, U is the inter-
particle interaction potential, each component of ηi is a Gaussian random variable satis-
fying 〈ηi,α(t)ηj,β(t′)〉 = δijδαβδ(t − t′). The temperature Ti is Tc or Th depending on the
bead (kB = 1). By summing (5.16) over all monomers, we get the equation for the center
of mass velocity, v:

M v̇ = −Mγv + (2MγTeff)1/2 η, (5.17)

where M = mN and Teff = (TcNc + ThNh)/N . Note that the friction coefficient Mγ ≡
mγN in (5.17) corresponds to the Rouse model of polymer dynamics [80]. The result
(5.17) follows from the facts that v = N−1∑N

i vi,
∑N
i ∇iU = 0, and that the sum of

independent Gaussian random variables with unit variance and zero mean is again a
Gaussian random variable with zero mean but a larger variance, namely ∑k

i ηi = k1/2η.
This means that the center of mass of the chain moves as a Langevin particle with the
effective temperature Teff and effective diffusion coefficient

Deff = Teff

Mγ
= TcNc + ThNh

mγN2 = DcNc +DhNh

N2 (5.18)

where Dc and Dh are diffusion coefficients of hot and cold monomers, respectively. Note
that the result is independent of the ordering of the monomers.

5.7.2 Shape properties of equilibrium rings and linear chains

In this Appendix we summarize in Table 5.2 the size and shape parameters of equilibrium
ring and linear polymer chains in the melt that are mentioned in Section 5.4 of the main
paper.
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Table 5.2: Size and shape properties of equilibrium ring and linear chains. 〈R2
g〉 is the

mean-square radius of gyration, 〈R2
e〉 in the case of rings is the mean-square distance between

two monomers separated by the contour length N/2, while in the case of linear polymers it is the
mean-square end-to-end distance, and λi, i = 1, 2, 3 are the eigenvalues of the gyration tensor
ordered such that λ1 ≥ λ2 ≥ λ3. The value in the parentheses indicates the standard error. The
data is adapted from Ref. [50].

Topology N 〈R2
g〉/σ2 〈R2

e〉/σ2 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉

Ring
100 17.2 (0.4) 50.8 (1.5) 6.4 2.3
200 30.8 (0.7) 88.8 (2.7) 5.9 2.2
400 52.9 (1.2) 149.4 (4.8) 5.5 2.1

Linear
100 43.4 (1.2) 263.8 (1.6) 12.9 2.8
200 88.9 (1.2) 538.9 (1.6) 12.6 2.8
400 180.8 (1.3) 1095.3 (1.6) 12.3 2.8
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Chapter 6

Melts of nonconcatenated rings in
spherical confinement

Published: Stanard Mebwe Pachong, Iurii Chubak, Kurt Kremer, and Jan Smrek. Melts
of nonconcatenated rings in spherical confinement. The Journal of Chemical Physics 153,
064903 (2020). DOI: 10.1063/5.0013929.1

Motivated by the chromosomes enclosed in a cell nucleus, we study a spherically con-
fined system of a small number of long unknotted and nonconcatenated polymer rings in
a melt and systematically compare it with the bulk results. We find that universal scaling
exponents of the bulk system also apply in the confined case, however, certain important
differences arise. Firstly, due to confinement effects, the static and threading properties
of the rings depend on their radial position within the confining sphere. Secondly, the
rings’ dynamics is overall subdiffusive but anisotropic along the directions parallel and
perpendicular to the sphere’s radius. The radial center of mass displacements of the rings
are in general much smaller than the angular ones, which is caused by the confinement-
induced inhomogeneous radial distribution of the whole rings within the sphere. Finally,
we find enhanced contact times between rings as compared to the bulk, which indicates
slow and predominantly coordinated pathways of the relaxation of the system.

6.1 Introduction

Nonconcatenated and unknotted ring polymer melts have been fascinating physicists for
years and still a complete understanding of their properties is lacking. Static properties

1Author contributions: S. M. P. and I. C. contributed equally. S. M. P., I. C. and J. S. performed the
simulations and data analysis. All authors interpreted the results and wrote the manuscript.
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of linear chains in melt are to a good approximation Gaussian [38] and dynamic prop-
erties are well-described by tube and reptation theories [290, 291]. However, joining the
two ends of each chain, while keeping the created rings unknotted and nonconcatenated,
makes it difficult to treat the system with analytical techniques [274]. Therefore, dif-
ferent theoretical models have been developed to tackle the problem under simplifying
assumptions, such as treating a ring as in the lattice of fixed obstacles formed by the
other rings [41, 42, 43, 89, 40], assuming tree-like conformations [46, 44, 45] or various
other [49, 48, 47]. Along these ideas, computer simulations [55, 56, 49, 50, 51, 54, 52, 150]
have been an indispensable tool for testing the assumptions and verifying the experi-
mental results [57, 60, 292, 58, 272, 59, 273, 293, 294, 61] under perfectly controlled
conditions. This joint effort has proven to be successful and has generated a range of
interesting results that highlight how permanent topological constraints of rings impact
equilibrium properties, which turned out to be dramatically different from their linear
counterparts. In particular, the melt of rings exhibits a power-law stress relaxation mod-
ulus with the absence of the rubbery plateau typical for the linear polymer melts [51, 57].
Rings, significantly longer than the entanglement length Ne, adopt compact conforma-
tions characterized by the scaling relation R ∼ Nν between their mean size R and their
polymerization degree N with the exponent ν = 1/d = 1/3 where d = 3 is the dimension
of the space. Furthermore, the probability of two monomers separated by the contour
distance s being in mutual proximity in space is also a power-law P (s) ∼ s−γ with the
exponent γ ' 1.05 − 1.17. [50, 52]. The values of the exponents ν = 1/3 and γ close to
unity describe the so-called crumpled (fractal) globule ensemble that characterizes melts
of long polymers under unknotted and uncrossable topological constraints.

The above-mentioned conformational properties and the corresponding exponent val-
ues have sparked further motivation to study these systems in the context of genome
folding. The fractal globule model is consistent with the population average ensemble of
the chromatin fiber configurations in cell nuclei of higher eukaryotes [295, 90, 87, 85]. In
contrast to rings, the chromosomes do have ends, but the rationale behind such connection
is the slow chromosomal reptational relaxation mechanism. Due to temporary topologi-
cal constraints the reptation is much slower than the relevant biological time scales [84].
If the chromatin fiber is mostly uncrossable with very slow or inhibited reptation but
otherwise random, the crumpled globule ensemble arises naturally. An account of topo-
logical constraints has proven to be useful in finding detailed genome conformations from
experimental data [296].

Nevertheless, the above-outlined correspondence is based on the results of bulk simu-
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Figure 6.1: System snapshots. Left: The system with N = 800 rings. Right: The
same system when only five rings are shown. The compact and territorial ring arrangement
can be observed.

lations of many rings subject to periodic boundary conditions. Chromatin fiber, on the
other hand, is confined in the nucleus and in the case of human diploid cells consists of
46 chromosomes only. Hence, the majority of chromosomes is affected by the confinement
geometry and their conformations result from the competition between the confinement
and the compression due to topological constraints. In this direction, the work [88] stud-
ied a single long ring in cubic confinement and found that the conformations of the ring’s
subchains are consistent with the crumpled globule picture in terms of ν = 1/3, but
found γ ' 0.9. The value of γ < 1 cannot be a true asymptotic value of the exponent
for conformations with ν = 1/3, because 1 ≤ γ ≤ 1 + ν for geometric reasons as detailed
in [85, 286]. No dynamics was reported in [88], as the simulations had been carried out
using Monte Carlo sampling with non-local moves. Single ring static properties have also
been investigated in biaxial confining geometry, which leads to the extension of the ring
in the third dimension, markedly different from a linear confined chain [297, 298, 33].
The impact of a cylindrical confinement on the static properties of semiflexible rings has
been studied experimentaly in [61]. In contrast to the approximate view of the rings as
tree-like objects, that work confirms significant inter-ring threadings observed previously
in the bulk simulations [63, 65, 71]. The model-independent threading differences between
the effective tree-like model [52] and the accurate molecular dynamics simulations have
been quantitatively analyzed in [72].

Here, we investigate the impact of confinement, ring topology and a small number of
polymer chains on static and dynamic properties of the system. We simulate a spherically
confined set ofM = 46 rings of lengths N = 200, 400, 800, and 1600 with the same model
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parameters as in [50] detailed below (see the system snapshot in Figure 6.1). We find and
characterize global structural organization of the confined rings as well as differences in
their single chain static properties with respect to the bulk results. Additionally, we report
mean inter-ring threading properties, which are important for the dynamics of systems
with long rings [65, 299, 66, 300, 70, 68, 186, 184]. We find that they are similar to the
bulk systems but vary with the rings’ radial position within the confining sphere. Finally,
we report dynamic properties of the system, which, inter alia, exhibit anisotropic mean-
squared displacements of the ring’s center of mass within the enclosing sphere caused by
the confinement-induced density variations.

6.2 Model

We used the well-known polymer model [127], in which the excluded volume interaction
between any two monomers is described by a purely repulsive and shifted Lennard-Jones
potential

ULJ(r) =
(

4ε
[(
σ

r

)12
−
(
σ

r

)6
]

+ ε

)
θ(21/6σ − r) (6.1)

with θ(x) being the Heaviside step function. The polymer bonds were modeled by a
finitely extensible nonlinear elastic (FENE) potential

UFENE(r) = −1
2r

2
maxK log

[
1−

(
r

rmax

)2
]
, (6.2)

where K = 30.0ε/σ2 and rmax = 1.5σ. These parameters make the chains essentially
uncrossable. Additionally, we used the angular bending potential

Uangle = kθ(1− cos(θ − π)) (6.3)

with kθ = 1.5ε to induce higher stiffness that corresponds to a lower entanglement length
Ne = 28±1 at the studied monomer density ρ = 0.85σ−3 [301]. The ring lengths therefore
correspond to the range from 7 to 57 entanglement lengths. The interaction between
monomers and the structureless confining sphere was also purely repulsive and given by
ULJ(R− r), where R is the radius of the sphere, r denotes here the distance between the
monomer and the sphere’s center, and ULJ is the same as in (6.1). The simulations were
performed in the NV T ensemble using the large-scale atomic/molecular massively parallel
simulator (LAMMPS) engine [266] using the integration time step ∆t = 0.012τ , where τ =
σ(m/ε)1/2. To maintain the constant temperature T = 1.0ε, all monomers were weakly
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coupled to a Langevin thermostat using a coupling constant γ = 1.0τ−1. The Langevin
thermostat in spherical confinement induces stochastic values of angular momentum that
can obscure the real dynamics. To prevent that, we zero the total angular momentum
every ten steps by subtracting the appropriate value of the rotational component of the
velocity of each monomer. After the subtraction, the velocities are rescaled to maintain
the set temperature. Performing this procedure every step is computationally more costly
and, as we checked, this has no effect on the dynamics.

6.2.1 System preparation

Initially, a set of M neighboring rings was extracted from the prepared bulk sample of
Ref. [50] and placed in the confining sphere that just enclosed all rings. Then, a short (ap-
proximately, 104τ) simulation was run to compress the sphere to reach the target monomer
density. The confining sphere radius R is reduced in steps that are much shorter (about
1%) than the equilibrium bond length and thus allow thermalization and equilibration on
local scales. The final values of R for each system are listed in Table 6.1. After reaching
the final density, the systems have been further equilibrated for over 106τ (N = 200 and
N = 400) or 107τ (N = 800 and N = 1600). From Ref. [50] and by computing the radius
of gyration autocorrelation function, we know this is long enough to reach equilibrium.
Additionally, we checked by computing the linking number between all pairs of rings that
during the system preparation the rings had not linked. Only afterwards, production runs
were run with a total duration over 2 · 107τ for all N considered. Configurations were
sampled every 1200τ .

Table 6.1: Size and shape properties of the confined rings. R is the radius of the confin-
ing sphere, 〈R2

g〉 is the mean-square radius of gyration, 〈R2
e〉 is the mean-square distance between

two monomers separated by the contour length N/2, and λi, i = 1, 2, 3 are the eigenvalues of
the gyration tensor ordered such that λ1 ≥ λ2 ≥ λ3. The value in the parentheses indicates the
standard error.

N R/σ 〈R2
g〉/σ2 〈R2

e〉/σ2 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉
200 13.72 26.4(0.2) 73.4(0.6) 5.64(0.04) 2.25(0.01)
400 17.29 44.4(0.7) 120.7(2.5) 5.24(0.08) 2.14(0.02)
800 21.78 73.1(1.1) 195.4(3.8) 4.93(0.10) 2.06(0.01)
1600 27.44 120.5(2.8) 320.2(10.4) 4.89(0.12) 2.03(0.02)
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6.3 Results

6.3.1 Conformational properties

We characterize the ring’s shape and size by computing the eigenvalues λi (i = 1, 2, 3,
arranged as λ1 ≥ λ2 ≥ λ3) of its gyration tensor:

Gij = 1
N

N∑
n=1

(r(n)
i −Ri)(r(n)

j −Rj), (6.4)

where r(n)
i is the i-th component of the position vector r(n) of the n-th monomer and

R is the center of mass position of the ring. Then, the ring’s mean-square radius of
gyration 〈R2

g〉 can be computed as 〈R2
g〉 = ∑3

i=1〈λi〉 with the brackets 〈· · · 〉 standing for
the time and ensemble averaging. Certain population average conformational properties
are listed in Table 6.1. As shown in Figure 6.2a, both the confined and bulk systems
of rings approach the scaling of the radius of gyration with N with exponent ν = 1/3
(see also Supplementary Figure 6.1a for the scaling of eigenvalues and Supplementary
Figure 6.2c for 〈R2

g〉 normalized by N2/3), however, the confined rings are on average
10-15% smaller than their bulk counterparts (see the inset of Figure 6.2a). This shows
that the compression due to topological constraints is “softer" than by the hard walls.
Furthermore, as seen in Figure 6.2b, the normalized probability distributions of the rings’
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Figure 6.2: Scaling of the confined rings’ radius of gyration. a, The mean-square
radius of gyration 〈R2

g〉 as a function of the ring length N on a log-log scale for the bulk
and the confined systems. The bulk data was adapted from Halverson et al. [50]. The
dashed lines represent power-laws with the marked exponents ν. Inset: Relative decrease
of the 〈R2

g〉 in the confined system with respect to the bulk one (x-axis is the same as
in the main plot). b, Probability distributions of 〈R2

g〉. Dashed curves of the same color
correspond to the bulk systems. Inset: The same distributions as in the main plot but
scaled by the mean.

131



10−3 10−2 10−1 100

s/[N/2]

10−2

10−1

100

[d
(s

)]2 /
〈R

2 e〉

s2/3

s

s2

N = 200
N = 400
N = 800
N = 1600

Figure 6.3: Conformational properties of the subchains of the rings. Mean-
square internal distance 〈d2(s)〉, computed for each segment length s as the squared
distance between the endpoints of the segment averaged over the segments position within
the ring and averaged over rings. For each N , 〈d2(s)〉 is normalized by the ring’s mean-
square end-to-end distance defined as 〈R2

e〉 = 〈d2(N/2)〉.

radius of gyration overlap fairly well for different polymerization degrees.

Additionally, we probed the structure of the subchains of the rings by measuring the
mean-squared internal distance 〈d2(s)〉 for each segment length s as the squared distance
between the endpoints of the segment averaged over the segments position within the
ring and averaged over rings. It shows a range of various scaling regimes, from the
exponent 2 (straight segments below the persistence length) through 1 for random walk-
like configurations to the exponent 2/3 characterizing the compact fractal structure, as
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Figure 6.4: Distribution of the rings’ radius of gyration within the sphere.
Probability density of finding a ring of size Rg with its center of mass located at a distance
r from the center of the confining sphere of radius R for the system with N = 800. Other
systems have very similar distributions (see Supplementary Figure 6.5).
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Figure 6.5: Contact probability P (s) as function of the segment length on a
log-log scale. The power-law with the marked exponent value is consistent for all ring
lengths. For computing P (s), we used rc = 21/6σ (results for other values of rc do not
differ substantially).

seen in Figure 6.3, in full analogy to the bulk results [50].
As detailed later on in the text, the confinement in this relatively small system of

rings causes significant structural rearrangements in comparison to the bulk that, as
a consequence, have a pronounced effect on the rings’ conformational properties with
respect to their radial position within the sphere. In particular, the rings located at the
periphery tend to be more compact than the ones positioned more centrally, as shown in
Figure 6.4. To quantify this in more detail, we divided the rings into a subset of outer
ones, whose center of mass is located at r > 2R/3, and inner ones, for which r < 2R/3.
2R/3 is the median of the radial ring’s distribution (see Figure 6.8a). We find that the
size of outer rings, being closer to the bulk ones, is about 25% larger than the size of
the inner ones. Both subsets approach the size scaling with ν = 1/3 for larger N (see
Supplementary Figure 6.2). This bias shows that the compression by an external potential
and by topological constraints are not equivalent. The external potential is sometimes
used to model compact conformations when the topological constraints are neglected [94].
Moreover, from the eigenvalues of the gyration tensor we compute a range of other shape
parameters that are reported in the Supplementary Section 6.5. For instance, we observe
that the rings located closer to the confining wall are more aspherical and oblate (see
Supplementary Figures 6.6 and 6.7).

The contact probability P (s) represents the probability that two monomers of a ring,
separated by a contour distance s, are in contact in 3D space. It is computed for each
segment length s as the fraction of times the segments endpoints are within a cutoff dis-
tance rc averaged over the segments position within the rings and averaged over rings.
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Figure 6.6: The single-chain static structure factor. a, S(q) multiplied by q3.
Inset: S(q) for N = 1600 differentiated by the radial position of rings. b, S(q) rescaled
by N1−βq(2−β)/ν motivated by the relation (6.5).

We have found that P (s) remains nearly unaffected by the confinement and, for bigger
contour distances, scales as P (s) ∼ s−γ with the scaling exponent γ = 1.12 ± 0.02 (Fig-
ure 6.5). The exponent γ is related through the relation γ = 2−β to another exponent β
characterizing the scaling of the number of surface monomers of a segment nsurf(s) ∼ sβ

[50, 85]. The surface of a segment consists of monomers that neighbor the confining wall
or monomers from other segments. For space-filling polymer conformations, that is the
ones characterized by ν = 1/3 in three dimensions, the exponent β also gives the fractal
dimension db of the segment’s surface by db = β/ν. As opposed to the bulk system,
the smooth confining wall induces db = 2 at least for some segments. The fact that we
recovered the bulk value of γ suggests that the number of the segments with db = 2 is
inferior to the other segments with higher db. Note that this is not a trivial consequence
of the fact that the system size scales as R ∼ N1/3 because the segments aligning the wall
smoothly could induce such a smooth surface also in other segments deeper inside the
confining volume. We support the analysis by measuring directly the scaling of surface
monomers. We find the value of the exponent β = 0.95 to be the same as in the bulk case
[50]. We further looked if the smooth surfaces of the outer rings affect the properties of
the single chain structure factor. As shown in Ref. [50], the structure factor of a segment
of length s follows

S(q) ∼ sβ−1/q(2−β)/ν . (6.5)

See also Refs. [302], [303] for a more refined discussion of this result. For β = 1 and ν = 1/3
the scaling gives S(q)q3 ∼ const, as evinced by the plateau in Figure 6.6a. The inset
highlight differences for the inner and outer rings, discriminated by their radial position
with respect to 2R/3 that is the median of the radial distribution (see Figure 6.8a). This
difference could be attributed to smaller β of the outer rings due to partly smoother
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Figure 6.7: Monomer density variations. Radial monomer density profiles as a
function of the radial distance from the confining wall for systems with rings of different
length N . The dashed gray line indicates the mean monomer density ρσ3 = 0.85.

surface in comparison to the inner rings. It is, however, difficult to confirm this because
the inner rings also show a bit more open conformations, and, therefore, smaller effective
ν at these scales. Another option is to consider the scaling of the contact probability for
the outer and inner rings separately. In contrast, we systematically see the opposite trend
with γ being smaller (and, therefore, β higher) for the outer rings. Additionally, only for
N = 200, γ of the outer rings is below unity and close to 0.9, which is consistent with the
findings of [88]. This is the consequence of the conformational change due to the presence
of the wall, since it is not found for the inner or bulk rings. More work is necessary to
determine the correct scaling of the structure factor and the contact probability for such
“hybrid" conformations, where the surface roughness is affected by a smooth interface.
Nevertheless, we get a better overall collapse of the structure factor (6.5) when β ' 0.95 is
used (Figure 6.6b), similarly to the bulk results [50]. The remaining small inconsistency
in the numerical verification of the theoretical relation γ + β = 2 is an open question
noticed already for the bulk. A part can be attributed to finite-size scaling corrections
[50, 302, 303].

The presence of the confinement induces local monomer density variations in the wall’s
proximity (Figure 6.7 and Supplementary Figure 6.4). The small differences between the
different systems arise from the different curvature with respect to the local scale. More
importantly, the confinement also significantly affects the global ring positioning within
the sphere (Figure 6.8a). This shows very little variation for different N . Even at dilute
conditions, ring polymers are stronger depletants than linear chains [33] due to enhanced
effective repulsion between rings that stems from additional topological uncrossability
constraints [32, 275]. At high concentrations, the rings become compact due to topological
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Figure 6.8: Global system order. a, Radial density profile (multiplied by R3) of
the ring’s center of mass within the confining sphere of radius R. The gray line shows
ρCM(r)R3 for the melt of linear chains with N = 200 at the same mean monomer density
ρσ3 = 0.85. In all cases, shaded regions indicate error bars. The dotted black line
located at about r = 2R/3 indicates the median point of the radial rings’ probability
distribution within the sphere, PCM(r) = 4πr2ρCM(r). b, The mean number of neighbors
K1(a) of a ring for different threshold a values as a function of N . The green and yellow
lines differentiate K1 by the rings position within the sphere: inner rings are located at
r < 2R/3, while outer ones at r > 2R/3.

interactions and their internal density distribution exhibits a deeper correlation hole in
comparison to linear chains [50]. The rings are more compact at the wall and therefore
their correlation hole there is even deeper. As a result, the fluid is more structured at the
wall, similarly to other effective colloidal particles such as multi-arm stars [304]. In the
present system, the positional distribution of the rings’ center of mass exhibits a single
maximum of the radial distribution at about 2/3 of the radius from the sphere’s center,
while the density minimum close to the center of the sphere is much deeper than in the
case of the linear chains. This effect arises from the compact conformation of the rings,
and their resulting deeper correlation hole. The density profiles collapse well on each other
when the length scale is normalized by the confining radius R (see Figure 6.8a), despite the
fact that monomer density variations penetrate deeper into the sphere with decreasing
N (see Supplementary Figure 6.4). To study relative arrangement of rings within the
sphere, we measured their mean number of neighbors K1(a) (Figure 6.8b). Two rings are
considered as neighbors if their centers of mass are located within a certain distance a.
The mean values for the longest ring lengths are about 30% lower in comparison to the
bulk systems [50]. This is mostly because of the rings located close to the wall (r > 2R/3),
due to which they are missing about half of the possible neighbors with respect to the
bulk. The inner rings (r < 2R/3) experience only about a 10% reduction, consistent with
the size decrease in this region (Figure 6.2d). Here, we selected the threshold distance
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Figure 6.9: Threading statistics. a, Probability density of the number of the neigh-
bors threaded by a single ring (see main text for definition); comparison between the
confined (colored lines) and bulk (black lines) systems. b, Probability density of the
number of the neighbors threaded by a single ring that has its center of mass located
at r > 2R/3 (top panel) and r < 2R/3 (bottom panel). c, Mean number of threaded
neighbors as a function of the ring length, computed from the distributions in the panels
a and b. d, Mean number of surface penetrations as a function of N . e, Mean values of
Q as a function of N (see main text for definition).

2R/3 because it represents the median of the ring positional distribution, that is, it is
equally likely to find a ring in the regions with r < 2R/3 and r > 2R/3.

6.3.2 Threading properties

The rings cannot cross and therefore link, but they can thread as one ring pierces through
the eye of another ring. The mutual ring threading is an important multi-ring property
that due to the topological constraints is believed to strongly affect the dynamics of the
system [65, 299, 66, 300, 70, 63, 64, 68, 204, 72, 186, 184]. To analyze threadings, we
have used the minimal surface approach. Each ring is considered as a fixed boundary, on
which a disc-like surface is spanned and subsequently minimized using a mean-curvature
evolution, as detailed in Ref. [72]. Then, the intersection of one ring’s contour with
another ring’s minimal surface represents a threading. This approach has already been
used to clarify the extent and the role of threadings in equilibrium bulk systems. Other
approaches are also possible [67, 65], however, the minimal surfaces provide an intuitive
geometric picture of the inter-ring threading and, moreover, the obtainable threading
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statistics is independent of the underlying polymer model [72].

The threadings can be of various depth, that is characterized by the separation length
Lsep defined as

Lsep = min
( ∑
i=even

Lti ,
∑
i=odd

Lti

)
, (6.6)

where Lti is the (threading) length between the i-th and the (i + 1)-th penetrations of
the surface (see [63, 72] for details), and its ratio Q = Lsep/(N − Lsep) that describes
the relative fraction of the threading ring length on the two sides of the threading ring’s
surface.

In Figure 6.9a, we report the distribution of the number of threaded neighbors for
various ring lengths. We consider a ring as threaded if at least one threading length
is longer than the entanglement length Ne. We have choosen this definition, because it
gives rise to distributions that are independent on the underlying polymer model [72].
The threading properties also vary with the radial position of the ring. In general, the
rings closer to the center than 2R/3 display a higher number of threaded neighbors than
the rings at the periphery (Figure 6.9b and 6.9c), being closer to the bulk values. As
can be seen in Figure 6.9c, having fewer neighboring rings (Figure 6.8b) in the case of
confinement is related to an overall lower number of threaded neighbors in comparison to
the bulk case. Interestingly, for ring lengths up to N = 800, the distribution of threaded
neighbors is consistent with the one found in the bulk (Figure 6.9a), despite the fact that
the confined rings have fewer neighbors on average (Figure 6.8b). This is likely because
of the fact that smaller rings on average thread much less than the larger ones, having
only 1-2 out of 10 neighbors threaded. Furthermore, for N = 200 and N = 400 even the
outer rings have around 8 neighbors, which provides a sufficient number of possibilities
to gain 1 or 2 relevant threadings and thus yields marginal differences in the threading
statistics. On the other hand, longer rings with N ≥ 800 that are located close to the
wall have a significantly reduced possibilities of potential threadings (it even becomes
smaller with higher N as the number of neighbors grows with N rather very slowly)
and, therefore, we observe systematically less threaded neighbors for outer rings, while
the statistics for inner rings is not affected substantially. In Figure 6.9d, we report the
number of surface piercings, that is how many times a threading ring pierces the surface
of the threaded ring. We consider only piercings that create threading longer than Ne (see
[72]). Interestingly, while ntn is on average lower in confinement in comparison to bulk,
the opposite trend holds for np, which suggests that the total piercing number ntnnp could
be a relevant quantity characterizing the free energy penalty for opening the tree-like ring
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Figure 6.10: Mean-square displacements. The mean-square displacements of
monomers, g1, (a) and of the rings’ center of mass, g3, (b) as a function of the lag
time t. The solid black lines indicate intermediate scaling regimes.

conformations. Initially, ntn grows linearly with N , consistent with findings in Ref. [64],
but saturates for longer rings due to the compact conformations and finite number of
neighbors [63]. For longer rings, ntn and np grow sub-linearly, but their product scales
with N . In summary, the threading statistics of rings in confinement is mainly affected
by a decreased threading capability of those rings located closer to the wall, as well as
by a generally slightly smaller number of neighboring polymer chains. Finally, we find
that the distribution of Q exhibits the same universal behavior as in the bulk with an
effective scaling p(Q) ∼ Q−1.35 [72]. The experimentally measured threading in a system
of confined semi-flexible rings [61] also exhibits roughly linear scaling of minimal surface
area with ring length and number of piercings of a minimal surface with its area. However,
note that rings in that work are only up to two Kuhn segments long and the estimate
of the entanglement length of that system is much shorter than the persistence length
in contrast to simulations presented here. We, therefore, do not attempt for a detailed
quantitative comparison.

6.3.3 Dynamics

We characterize the dynamics of the rings in terms of the mean-square displacements of
individual monomers of a chain, g1, and the rings’ center of mass, g3, as a function of the
lag time t:

g1(t) = 1
T−t

∫ T−t
0

1
N

∑N
i

〈
[ri(t′ + t)− ri(t′)]2

〉
dt′ (6.7)

g3(t) = 1
T−t

∫ T−t
0

〈
[R(t′ + t)−R(t′)]2

〉
dt′ (6.8)
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Figure 6.11: Anisotropic dynamics within the confining sphere. a, Radial compo-
nents of the mean-square displacements for different N . b, Comparison between different
components of g3 for N = 400. Similar results are found for other N (not shown). The
solid black lines indicate intermediate scaling regimes.

where ri(t′) is the position of the i-th monomer belonging to a single ring and R(t′) is
the position of the center of mass of a ring at a time t′ with respect to the center of mass
of the whole system at that time, and T is the total simulation time. The angle brackets
in Eqs. (6.7) and (6.8) 〈. . .〉 stand for averaging over the ensemble of rings. As shown in
Figure 6.10, the early and intermediate time dynamics is consistent with the bulk results.
g1 exhibits a subdiffusive regime, g1(t) ∼ tα, with the exponent α below 0.4 at early times
that later even slows down to around 0.25 for the longest rings in agreement with the
bulk values [51]. g3(t) shows exponents ranging from 0.75 for smaller rings with N = 200
to approximately 0.67 for the bigger ones (N = 1600), in full analogy with those observed
in the bulk systems (0.75 for N = 200 to 0.65 for N = 1600) [50]. At the time scale
when the bulk system crosses over to diffusion (e.g., 2 · 106τ for N = 800), the confined
system still subdiffuses. This is because such crossover happens at the scale of 2Rg that
is comparable to the system size (about 2.5Rg, as seen in Table 6.1). Here, in contrast, g3

plateaus due to the confinement and no intermediate diffusive regime could be observed.
To get a better understanding of the dynamics of the rings within the confining sphere,

we separately analyzed the mean-square displacements of the rings’ center of mass along
the radial direction and perpendicular to it, g‖3(t) and g⊥3 (t), respectively, as a function
of the lag time t. To do so, for a time interval [t′, t′ + t] we first evaluated the ring’s
displacement along the radial direction, δ‖(t) and perpendicular to it, δ⊥(t):

δ‖(t, t′) = ((R(t′ + t)−R(t′)) R̂(t′ + t), (6.9)

δ⊥(t, t′) = R(t′ + t)−R(t′)− δ‖(t), (6.10)

where R(t′) is the magnitude the position vector R at the time t′ assuming that R is
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measured from the sphere’s center, and R̂ = R/R. Consequently, for a fixed lag time
t, the displacements in Eq. (6.9) are squared and averaged over time and over different
rings:

g
‖/⊥
3 (t) = 1

T − t

∫ T−t

0

〈[
δ‖/⊥(t, t′)

]2〉
dt′. (6.11)

Note that with such definition δ⊥(t) is a sum of two orthogonal displacements along the
φ- and θ-directions in the spherical coordinate system and, therefore,

g3(t) = g
‖
3(t) + g⊥3 (t). (6.12)

Also note that we do not track the cumulative values of the angular components, but
consider the values of the angles to θ ∈ [0, π], φ ∈ [0, 2π], and, therefore the g⊥3 is bounded
too. As shown in Figure 6.11, the spherical confinement generates an anisotropic behavior
of the rings’ motion along the different directions. Although both directions exhibit very
similar subdiffusive exponents, the angular component dominates g⊥3 (t) over the radial
component g‖3(t) by almost an order of magnitude. This emerges due to the inhomogeneous
radial density distribution (Figure 6.8a). Similar effect, but about factor of two weaker
can be observed for linear chains (not shown), where the density anisotropy is weaker due
to their shallower correlation hole [50]. Furthermore, we find that the radial (Figure 6.11a)
as well as the total (Figure 6.10b) mean-square displacements can be brought on top of
each other at longer times, if the time axis is multiplied by N−2.4±0.1, which corresponds
to the scaling of the ring’s diffusion coefficient in the bulk melts D ∼ N−2.3±0.1 [51], as
show in Figure 6.12.

We further quantify the dynamics in terms of the relaxation of different quantities.
Firstly, we consider the structural relaxation proposed recently in [305] to quantify the
effect of threadings in ring-linear blends. The relaxation is in terms of the terminal
autocorrelation function (TACF) 〈u(t)·u(0)〉, where u(t) is the unit vector connecting
two monomers contourwise N/2 apart and the average is performed over all such possible
monomers within rings, over different chains and time. The resulting function is shown in
Figure 6.13a with the inset showing the scaling of the corresponding relaxation time with
N . The exponent 2.4 is comparable to the one obtained in the bulk (2.2) [51] for a similar
structural relaxation quantity computed as the autocorrelation of a vector c = u1 × u2,
where the two vectors are connecting monomers 0 to N/2 and N/4 to 3N/4 respectively.
In Figure 6.13b, we compare the TACF of rings that are located close to the confining wall
to those in the sphere’s interior. Such TACF was averaged over time periods when a ring
is continuously residing in the respective region. We find that the structural relaxation
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Figure 6.12: Rescaled mean-square displacements. Total g3(t) (a) and radial g‖3(t)
(b) mean-square displacements of the rings with the vertical axis divided by the squared
enclosing sphere’s radius R2 and the horizontal axis multiplied by N−2.4, which describes
the scaling of ring’s diffusion coefficient with N , D ∼ N2.3±0.1, in equivalent bulk systems
[51].

of inner rings is inhibited in comparison to the outer ones, which can be attributed to
more pronounced threading in the former region. Unfortunately, due to the lack of long
time statistics for the region-resolved TACF, we were not able to accurately estimate the
relaxation times in the two regions separately and verify their scaling with N .

Additionally, we quantify the dynamics of the neighbor exchange. We compute the
two-point contact correlation function χ̂c(t) = 〈nij(t0)nij(t0 + t)〉t0,ij, where nij(t) is unity
if ring i is a neighbor of ring j in the sense of K1(a) with a = Re, and zero otherwise
(see Figure 6.8b). The correlation χ̂c is non-vanishing at long times because in a finite
system there is a probability pn that any two rings are neighbors at any time is given by
the average number of neighbors of a ring divided by all the possible number of neighbors.
Therefore, pn = 〈∑j nij(t)〉t,i/(M − 1), where the mean number of neighbors of a ring i is
averaged over i and time. In Figure 6.14a, we plot χc(t) = χ̂c(t)−pn as a function of time.
Furthermore, from χc(t) we extract the mean exchange time τex given by τex =

∫
χc(t)dt.

The exchange time τex scales with N with the exponent ' 2.7 ± 0.1, which is consistent
with the exponent found for the relaxation time in the bulk systems [51, 45]. The tails of
χc(t) can be accurately fit with a stretched exponential exp

(
−(t/t0)β

)
with β = 0.6− 0.8
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Figure 6.13: Terminal autocorrelation functions. a, TACF of confined rings (solid
lines) compared to equivalent bulk systems (dashed lines). Inset: the relaxation time τuu
computed as τuu =

∫
〈u(t)·u(0)〉dt as a function of N on a log-log scale. b, TACF of

confined rings averaged over all chains in the system (solid lines) and over those that are
located in the inner shell with their center of mass position r < 2R/3 (dotted lines) and
in the outer shell with r > 2R/3 (dashed lines).

(smaller values correspond to larger N). The significant prefactor in this scaling relation
makes the exchange time about one order of magnitude larger than the diffusion time
in bulk [51]. This behavior arises not only from a slow neighbor exchange dynamics but
also from the finite volume of the enclosing sphere, in which the rings frequently meet
repeatedly. Such behavior is expected as χc is more related to the diffusional properties
rather than the structural relaxation. Interestingly, χc of the bulk system (dashed line
in 6.14a) decays to zero slightly faster for the confined case, and its shape is different
at early times suggesting a different process of χc relaxation in the two cases. This is
illustrated in Figure 6.14b, in which the distribution of contact times Pc(t) is plotted
for the bulk case with N = 200 and for different N in the confined case. Note that
Pc(t) ∼ tα/2−2 is connected to the distribution of the return times of a random walker
with the subdiffusive exponent α [186, 306, 307] characterizing the dynamics of rings.
This agrees well with the subdiffusion of the rings with α ∈ [0.5, 0.75]. The presence of
the wall enhances the contact time in the confined case in comparison to bulk, as is clear
from the later decay of the Pc (blue solid and dashed lines in 6.14b). This explains also
the different χ relaxation process. The mean contact time 〈τc〉 scaling as 〈τc〉 ∼ N0.55

grows more slowly with N in comparison to τuu and τex. The scaling exponent of τc
with N is a consequence of the rings’ subdiffusion. The average contact time based on
the distribution above is 〈τc〉 ∼ λα/2, where λ is a typical time scale characterizing the
power-law regime. Then, λ must be proportional to typical relaxation times for rings.
The relaxation time scales as λ ∼ Nx with x being ' 2.4 in case of the structural and
2.7 for the diffusional relaxation mechanism, both of which can contribute to the contact
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Figure 6.14: Neighbor exchange dynamics. a, The neighbor exchange correlation
function χc(t) as a function of time for different ring lengths N . Inset: the mean neighbor
exchange time τex defined as τex =

∫
χc(t)dt as function of N in log-log scale. To estimate

τex for N = 1600, the tail of χc(t) was extended with a stretched exponential fit. b, Con-
tact duration distribution Pc for different ring lengths N . The solid black line highlights
the scaling regime Pc(t) ∼ t−1.75±0.01. Inset: the mean contact time 〈τc〉 as function of N
on a log-log scale. The dashed lines in a and b of the respective color corresponds to the
bulk systems of rings.

breaking events. This gives 〈τc〉 ∼ Nxα/2 i.e. exponent somewhat above α in either case
in agreement with our findings.

Similarly to the neighbor exchange, we analyzed the threading dynamics, only for
the two shorter systems. We compute the two-point threading correlation as χ̂th(t) =
〈nij(t0)nij(t0 + t)〉t0,ij, where now the indicator function nij(t) is unity if ring i threads
ring j with Lsep > Ne and zero otherwise. In full analogy to the neighbor correlation, the
χ̂th is non-vanishing at long times. The probability pth that any two rings are threading
at any time is given by the average number of threaded neighbors of a ring ntn divided by
all the possible number of neighbors pth = ntn/(M−1). We plot the threading correlation
in Figure 6.15 and, as the inset, we show the distribution of the threading duration
Pth(t). We find that the longest threading durations are almost an order of magnitude
shorter than the relaxation of the threading correlations and this discrepancy is larger
for the longer rings. This could mean that although the duration of each threading is
relatively short, it requires a number of correlated threading events to be relaxed in
order for a ring to move. Consistent with that is the fact that the threading duration
agrees with the structural relaxation (when terminal autocorrelation functions vanish
in Figure 6.13), and additionally, the neighbor exchange dynamics (χc) agrees with the
threading de-correlation. The former fact contrasts with the bulk findings in Ref. [64],
where the structural relaxation is faster than the threading. However, here we only take
into account threadings that are deeper than the entanglement length. When threadings
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Figure 6.15: Threading exchange dynamics. The two time-points threading cor-
relator χth(t) for the two systems with N = 200 and N = 400. Inset: the distribution
of threading times Pth(t) for these systems. The solid black line highlights the scaling
regime Pth(t) ∼ t−1.75±0.01.

of any depth are considered, we find that the threading state can be maintained by the
short threadings for longer time. However, the short threadings do not have impact on the
final de-correlation time, which is governed by the deep threadings (see Supplementary
Section 6.5 and Supplementary Figure 6.3).

Although the view of the ring relaxation being governed by the correlated sequence
of unthreading events is plausible, we cannot rule out that the threading is only a con-
sequence of spatial proximity that is maintained by another mechanism. Specifically, the
rings form compact structures with a pronounced correlation hole. As such, rings could
be viewed on the scale of Rg as soft colloids that, especially in confined space, might
require collective mode of relaxation, similarly to systems approaching a glass transition.
In other words, for a ring to move, other have to rearrange to make space for it which
prolongs the exchange times. The confinement induces an effectively higher density in the
center of the volume interior (Supplementary Figure 6.4) and also restricts the possible
motion directions at the periphery. Both these effects would enhance the relaxation times
in comparison to the bulk in agreement with our observation (Figure 6.14a).

6.4 Discussion and conclusions

We have shown that a small number of spherically confined, unknotted and non-concatenated
rings in melt maintain the universal features of the main static and dynamic characteristics
known from the bulk systems [50, 51]. Therefore, the connection between the conforma-
tional properties of the topologically constrained polymers and the chromatin of higher
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eukaryotes “survives" the enclosure of the former in the confinement.

The ring conformations at the boundary display γ close to unity despite the fact that
a part of the ring has smooth surface (db = 2) and as such would be represented by
the exponent γ = 2 − (2/3) = 1.33. This means that the conformations of the confined
rings are from the geometrical perspective well represented by space-filling curves that
have smooth outer, but fractal inner boundary. Examples of such space-filling curves
have been constructed in [286, 85]. Further work is necessary to unambigously determine
the structure factor and contact probability scaling properties for these “hybrid" space-
filling conformations. We hypothesize that this could be relevant when interpreting the
scaling of the contact probabilities within different chromatin (epigenomic) domains. If
the domain formation is due to different interaction energies (proposed, e.g., in Ref. [308]),
the domain boundaries would be governed by minimizing the interfacial area which would
lead to a smooth interface affecting the contact probability of the segment similarly to a
smooth confining wall. In this context, very interesting would be the comparison of our
structural data with the scattering experiments performed on chromatin at the periphery
of the nucleus. Indeed, such a system is much more complex than the present simple
coarse-grained model and, therefore, the results would also depend on the nature of the
interaction of the chromatin with the nuclear lamina. In contrast to our simulations here,
recent results conjecture this interaction to be attractive in most cells, however, the rod
photoreceptors of nocturnal mammals do not exhibit this attraction and therefore might
be good candidates for the tests of our results [249].

Other differences between the bulk and confined case include radially-dependent con-
formational and threading properties of the rings as well as the anisotropic dynamics along
the directions parallel and perpendicular to the sphere’s radius. These effects arise from
the confinement-induced radial density variations of the rings as well as their compact
structure at melt densities. Despite the threading differences with respect to the bulk, the
confinement does not reduce the threading to the extent comparable to the effective tree-
like model [52, 72]. Therefore, the question of the construction of an effective model of
equilibrated ring melt remains open not only in the bulk [72], but also in the confinement.

The confinement in the present work represents one of many recently proposed mecha-
nisms affecting the phase-space of the uncrossable polymers, such as more complex topol-
ogy [186], controlled concatenation [181, 180, 179, 183, 309], supercoiling [310] or activity
[184]. Considering the effects of these perturbations brings the system closer to a practical
material or biological situation, but also improves our understanding of the unperturbed
topologically constrainted matter. Considering the activity, recently it has been shown
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that a bulk system of nonconcatenated rings with active segments can lead to a very
slowly relaxing state, the so-called active topological glass [184]. The relaxation is slowed
down by the increased number of threadings and their spatial and temporal extent that
dramatically differs from the one found in equilibrium ring melts. Such a system possess
many similarities with the chromatin of living cells, such as the slow relaxation, dynamic
heterogeneity and polymer size dependence on the level of the activity. The questions
whether such state is possible to create in a confined geometry and whether it is relevant
for biological conditions, remain open. The results of the present work, however, provide
the reference equilibrium values of the observables that the system would originate from.
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6.5 Supplementary Information

6.5.1 Additional shape parameters

First, for each ring we obtain the eigenvalues λ1, λ2 and λ3 (λ1 ≥ λ2 ≥ λ3) of the gyration
tensor

Gij = 1
N

N∑
k=1

r
(k)
i r

(k)
j , (6.13)

where r(k)
i is the i-th component of the position vector r(k) of the k-th monomer in the

ring in its center of mass frame. Using the latter, we compute the invariants

I1 = λ1 + λ2 + λ3, (6.14)

I2 = λ1λ2 + λ1λ3 + λ2λ3, (6.15)

where I1 = R2
g. Using the eigenvalues and the two above-defined invariants, we can define

dimensionless asphericity, δ∗, and prolateness, S∗, parameters:

δ∗ = 1− 3〈I2/I
2
1 〉, (6.16)

S∗ = 〈(3λ1 − I1)(3λ2 − I1)(3λ3 − I1)/I3
1 〉, (6.17)

where 〈. . . 〉 denotes an average over rings and over time. Note that δ∗ ∈ [0, 1] with
0 corresponding to completely spherical conformations and S∗ ∈ [−0.25, 2] acquiring
negative values for oblate conformations and positive for prolate ones [35].

Squared magnetic ring radius of each ring is defined as in [53] by

R2
m = |A|/π, (6.18)

where

A = 1
2

N∑
k=1

r(k) × r(k+1). (6.19)

is the rings’ enclosed area.

6.5.2 Threading dynamics details

In Figure 6.3 we show the threading time correlation function and the threading duration
distributions when threadings of any depths (Lsep > 0) are considered. The threading
duration distribution spans a slightly greater range, but the de-correlation time is exactly
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the same as if only sufficiently deep threadings are taken into account (Figure 6.15). This
means, when the rings are closely associated, the threading state can be maintained by
short threadings longer, however, the short threadings do not have impact on the final
de-correlation time, which is governed by the deep threadings.
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Supplementary Figure 6.1: Additional conformational properties of the con-
fined rings. a, Scaling of the three mean eigenvalues of the gyration tensor. The dashed
lines represent power-laws with the marked exponents ν. b, Scaling of the mean prolate-
ness, 〈S∗〉, and asphericity, 〈δ∗〉, with N . c, Distribution of the enclosed area as computed
from Eq. 6.19. Inset: squared magnetic radius (Eq. 6.18) averaged over rings and time as
a function of the ring length N .
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closer to the center.
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Supplementary Figure 6.6: Distribution of the ring’s asphericity within the
confining sphere. Probability density of finding a ring with asphericity δ∗ ∈ [0, 1] with
its center of mass at a distance r from the center of the confining sphere of radius R for
systems with different N . In all cases, more aspherical rings are found close to r ≈ 0.7R,
and their deformation is highly likely caused by the interaction with the wall.
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Supplementary Figure 6.7: Distribution of the ring’s prolateness within the
confining sphere. Probability density of finding a ring with prolateness S∗ ∈ [−0.25, 2]
with its center of mass at a distance r from the center of the confining sphere of radius
R for systems with different N . The dashed line separates oblate (S∗ < 0) and prolate
(S∗ > 0) conformations. We see that more prolate rings are located close to r ≈ 0.7R,
whereas oblate shapes are found even closer to the wall, around r ≈ 0.75R.
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Chapter 7

Active topological glass as a model
for coherent motion of chromatin

Manuscript in preparation: Stanard Mebwe Pachong, Iurii Chubak, Kurt Kremer, Chris-
tos N. Likos, and Jan Smrek. Active topological glass as a model for coherent motion of
chromatin.1

Motivated by the chromosomes enclosure in the cell nucleus, we study a spherically
confined system of a small number of long unknotted and nonconcatenated partly active
polymer rings in a melt. The same bulk system arrives at a glassy steady state due to
activity-enhanced topological constraints mediated by highly expanded ring conforma-
tions. These expanded states limit the ring lengths that can be simulated because of
prohibitively large system sizes, which are needed to avoid unphysical self-interactions
due to periodic boundary conditions. Here we show that the enclosure of the system into
an impenetrable cavity, which naturally limits the degree of ring expansion, does not dis-
rupt the topological vitrification. This allows us to reach the active topological glass with
ring lengths that at equilibrium exhibit the same conformational properties as the chro-
matin at large scales. In analogy to chromatin observations, we find large scale coherent
motion due to the induced topological constraints, but also large scale structure incon-
sistent with the chromatin. We discuss the evidence for, and, against the activity-driven
topology-induced coherence in chromatin on smaller scales.

1Author contributions: S. M. P. and I. C. contributed equally. S. M. P., I. C. and J. S. performed the
simulations and data analysis. All authors interpreted the results and wrote the manuscript.
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7.1 Introduction

The active topological glass is a state of matter composed of polymers with fixed circu-
lar topology that vitrifies upon turning the polymers active and fluidizes if the actifity
is turned back off [184]. Unlike classical glasses, where the transition is driven by the
change in temperature or density, the active topological glass results from physical, tight,
threading entanglements, generated and maintained by the activity of polymer segments.
The activity operating on the ring segments, modeled here as stronger-than-thermal fluc-
tuations, triggers a directed snake-like motion that overcomes entropically unfavourable
states and results in significantly enhanced inter-ring threading [311]. A topological glass
is conjectured to exist in equilibrium solutions of sufficiently long ring polymers, where
rings naturally thread (pierce through each other), however, the conjectured critical ring
length is currently beyond the experimental or computational reach [66, 70, 204]. Al-
though the active topological glass exhibits accessible critical ring lengths, a formidable
challenge in simulating these systems stems from large system sizes that are necessary to
avoid self-threading of significantly elongated partly active rings due to periodic bound-
ary conditions [184]. To overcome the difficulty, a much smaller system confined to an
impenetrable cavity can be simulated. However, in analogy to classical glasses, where the
confinement affects the vitrification mechanism and shifts the glass transition tempera-
ture in comparison to the bulk value [312, 313], it is necessary to ask the question if the
active topological glass, the existence of which relies on highly extended configurations
that promote inter-molecular entanglement, can exist in confinement at all. To answer
this question and potentially ease the exploration of the active topological glass transi-
tion, here we study a confined melt of unknotted and nonconcatenated rings with active
segments.

Besides the active topological glass, the confined melt of uncrossable polymer rings
with active segments has an interesting biological connection. The equilibrium melt
of rings exhibits conformational properties consistent with the large scale, population-
averaged properties of chromatin fiber in the interphase nuclei of higher eukaryotes
[84, 85, 283]. In detail, the spatial segregation of distinct chains, the critical exponents
ν = 1/3 and γ ' 1.1 governing the scaling of the gyration radius R(s) ∼ sν and the
probability of end-contacts P (s) ∼ s−γ of a segment of length s, respectively, coincide for
the two systems and characterize the so-called fractal (crumpled) globule conformation
ensemble [89]. The rationale behind the connection is the separation of time scales: the
long chromatin chains do not equilibrate on biological time scales if they were mostly
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uncrossable [84]. The ensemble of their conformations can be then related to that of
permanently uncrossable, topologically constrained polymers in equilibrium – the melt of
rings. However, similarly to the partly active rings, chromatin is out of equilibrium on
smaller scales as well. Various processes, such as transcription, repair, remodeling or loop
extrusion inject energy to the system by the action of their respective molecular machines
on the chromatin fiber. Fluorescence experiments [100] and the related analytical theory
[278] suggest that some active events at small scales render fluctuations with thermal
spectrum at the effective temperature about twice higher than the ambient one.

In the context of chromatin, several groups studied partly active confined polymers [94,
95, 97, 96, 98, 314], however did not focus explicitly on the connection of the activity with
the topology. The works [94, 95] study the activity-driven phase separation [77, 73, 78]
as a model for the segregation and positioning of the active and the passive chromatin.
In contrast to our work, where the compact, territorial conformations arise from the
topological constraints, in [94, 95, 314] the compact state is created and maintained by
explicit cross-linkers. Nuebler et al. [98] observed that the activity of loop extruders,
as given by their speed, weakens the interaction-based phase-separated structure, but
strengthens the contacts within the extruded loops. The latter work, however, uses a
model with partly crossable polymers and therefore it is difficult to judge on the role
of topology. The works [97, 96, 314] focus on the spatio-temporal correlations in the
dynamics. While the first one, uses the thermal-like model of activity, the latter two
investigate the effects of active force dipoles. These are coupled with hydrodynamic
interaction in Ref. [96], while in Ref. [314] the active force dipoles act on highly cross-linked
chromatin connected to deformable lamina. All three works find large scale correlated
motion, but of different origins. In Ref. [97], the correlated domains coincide with the
micro-phase separated domains due to preferential intra-domain interaction potential,
because while the short-time correlation of active and inactive systems are found to be
the same, at longer time lags, the activity opposes the coherence (similarly to Ref. [98])
and decreases the correlation length. Although such non-monotonic dependence of the
correlation length on the time lag has been observed [100, 101], it does not seem to
be a general phenomenon (see Figure 2 in Ref. [101]) and in contrast to Ref. [97], the
coherence even at short time lags is larger for the active systems [100, 101]. The correlated
motion in Ref. [96] comes from the coupling of the hydrodynamic flow due to contractile
motors and the nematic ordering of the chromatin fiber (not yet observed), with no
discernible effect of local topology (unknottedness) of the conformation. The contractile
motor activity in Ref. [314] generates the correlated motion as a result of a high number of
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cross-links between chromatin fiber, and is even enhanced when more cross-links are used
with a deformable nuclear envelope. Last but not least, apart from the role of activity
in correlated motions, other passive mechanisms are possible [315, 221]. The latter work
also highlights glassy features of the chromatin dynamics, such as dynamic heterogeneity.

Our work does not aim at a faithful representation of the chromatin, as each of our
polymer rings has only one, long, continuous active segment, but we rather explore how
the active topological glass is consistent with the fractal globule model, both of which
represent some aspects of the chromatin conformations in space and time. In this work,
we show that essentially the same phenomenon of the active topological glass formation
is present in the confined systems with a small number of polymer chains. While the ter-
ritorial structure of the fractal globule is distorted, we observe active-passive microphase-
separated domains and large scale correlated motion arising from the glassy phase due
to the activity-driven topological constraints. In contrast to works [97, 314], where the
coherence arises from explicit interaction potentials or cross-links, here we show that the
activity-induced entanglement can mediate the coherence.

7.2 Model

We use the well-established polymer model [127], in which the excluded volume interaction
between any two monomers is described by a repulsive and shifted Lennard-Jones potential

ULJ(r) =
(

4ε
[(
σ

r

)12
−
(
σ

r

)6
]

+ ε

)
θ(21/6σ − r) (7.1)

where θ(x) is the Heaviside step function, σ is the bead’s diameter, and ε sets the energy
scale. As in Ref. [283], the same potential was used for the interaction between monomers
and the confining sphere of radius R. We simulated a fixed number of polymer chains
M and adjusted R to match the target monomer density ρ = 0.85σ−3 (the used values
of R are listed in Table 7.1). The polymer bonds were modeled by a finitely extensible
nonlinear elastic (FENE) potential

UFENE(r) = −1
2r

2
maxK log

[
1−

(
r

rmax

)2
]
, (7.2)

where K = 30.0ε/σ2 and rmax = 1.5σ. These parameters make the chains essentially
noncrossable. We also used the angular bending potential

Uangle = kθ(1− cos(θ − π)) (7.3)
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Figure 7.1: Typical conformations of partly active rings in spherical confine-
ment. The snapshots correspond to N = 200 (top left), 400 (top right), 800 (bottom
left), and 1600 (bottom right).

with the parameter kθ = 1.5ε to induce higher stiffness that corresponds to a lower
entanglement length Ne = 28± 1 at the studied monomer density ρ = 0.85σ−3 [50].

Our simulations start from well-equilbrated configurations of completely passive ring
polymer melts in spherical confinement produced in Ref. [283]. Each system contains
M = 46 ring polymer chains, each of length N (N = 200, 400, 800 and 1600, correspond-
ing to chain entanglement number Z = N/Ne = 7, 14, 28 and 57). The choice of M = 46
chains was inspired by the 23 pairs of chromosomes in the human diploid cell nucleus,
but the main reason is to demonstrate the existence of a topological glass in small sys-
tems to ease future exploration of the phenomenon. At time t = 0, the activity was
introduced by coupling a consecutive segment of length N/8 to a Langevin thermostat at
temperature Th = 3.0ε, whereas the rest of the chain is still maintained at Tc = 1.0ε by
another Langevin heat bath. We choose this value of Th = 3Tc, despite the experimental
indications of active fluctuations being only about twice the thermal fluctuations [278].
The reason is the heat flux between active and passive constituents establishes effective
temperatures that are in between the temperatures set by the thermostat. The effective
temperatures (measured by the mean kinetic energy) would be the ones measured in the
experiments and have the correct ratio about 2 [311]. The equation of motion of the
systems were integrated using the LAMMPS simulation package [266] with the time step
∆t = 0.005τ and the damping constant γ = 2/3τ−1, where τ = σ(m/ε)1/2.

The Langevin thermostat in spherical confinement can induce stochastic values of
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N Nh R/σ 〈R2
g〉/σ2 〈R2

e〉/σ2 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉 〈R2
g〉/R2 〈R2

e〉/R2

200 25 13.72 62.4(0.7) 164.8(6.2) 12.0(0.7) 4.3(0.2) 0.33 0.87
400 50 17.29 129.3(0.6) 304.4(6.2) 6.5(0.4) 3.1(0.7) 0.41 1.01
800 100 21.78 227.7(0.5) 468.6(3.1) 4.6(0.2) 2.7(0.8) 0.47 0.98
1600 200 27.44 376.1(0.7) 810.8(4.7) 3.5(0.5) 2.2(0.1) 0.49 1.07

Table 7.1: Size and shape properties of partly active rings in a confining sphere.
The mean values as well as their standard errors (indicated in the parentheses) were estimated
in the steady states. R is the radius of the sphere. 〈R2

g〉 and 〈R2
e〉 are the mean-square radius

of gyration and the mean-square spanning distance between monomers N/2 apart, respectively.
λi (i = 1, 2, 3, λ1 ≥ λ2 ≥ λ3) are the eigenvalues of the gyration tensor.

angular momentum that affects the real dynamics of the system. This effect can be
neutralized by zeroing the total angular momentum of the system periodically during the
simulation runs. In the present case, unlike to our equilibrium simulations in Ref. [283],
we do not perform this operation due to non-equilibrium character of the studied system
as well as potential global flows that can arise in active matter states. When compared
to dynamic equilibrium quantities across this work, we also used trajectories produced
in a similar fashion without zeroing the angular momentum. We note, however, that
the difference in dynamic relaxation times in equilibrium simulations with and without
zeroing the angular momentum is rather small.

7.3 Results

When the activity is switched on, after about 105τ the chains start to expand from their
equilibrium sizes until they reach a steady state after about 3·106τ with significantly
enhanced mean-square radii of gyration R2

g (see snapshot of a chain conformation in
Figure 7.2d and more in Figure 7.1), time evolution of R2

g in Figure 7.2a and Table 7.1
for shape parameter comparison. In comparison to the bulk [184], the confined rings
are significantly less expanded in terms of Rg and Re and the ratio of the two biggest
eigenvalues of the gyration tensor (see Figure 7.3a and compare Table 7.1 to Table 5.1 for
N = 400). Nevertheless, the conformations are mostly doubly-folded and the change in
the shape parameters is due to “reflections” of the doubly-folded structure from the walls.
This can be seen in the mean-square internal distance of the longest rings being a non-
monotonic function of the contour length (see Figure 7.3b). In comparison to equilibrium
(see Table 6.1), the rings are highly stretched and exhibit self-avoiding walk-like scaling at
intermediate distances (see Figure 7.3c) with a consistent scaling of the contact probability
with the exponent γ close to 1.75 (Figure 7.3d) [85] and a plateau at largest distances
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Figure 7.2: Static properties of confined partly active rings. a, Evolution of the
ring’s radius of gyration after the activity onset at t = 0 for systems with different N . b,
Multi-peak distributions of R2

g in the steady state highlighting non-ergodic behavior in
these systems. c, Evolution of the mean number of threaded neighbors after the activity
onset. d, Conformation of a partly active ring with N = 1600 at the end of the simulation
run. In a and c, the dashed lines of the respective color indicate the values in equivalent
equilibrium ring melts [283].

signifing the loss of correlation due to reflections of rings from the walls. The stretching
due to snake-like motion is caused by strong dynamic asymmetry between the active
and the passive segments, apparently triggered by non-equilibrium phase separation, as
described in [184, 311]. The dynamics of the mutual ring threading coincides with the
stretching dynamics and exhibits significantly enhanced number of threaded neighbors
ntn by a single ring in the steady state in comparison to equilibrium (Figure 7.2c), as we
showed by analyzing piercings of rings through other rings’ minimal surfaces – the method
used successfully for ring threading detection before [63, 72, 283, 184, 311]. Interestingly,
the number of threaded neighbors is the same as for the active topological glass in the bulk,
despite the different ring shape [184, 311]. In the longest system, each ring practically
threads all the other rings in the system. Although this does not hold for the shorter
rings, their dynamic behavior is comparable as detailed later below. The steady states
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Figure 7.3: Additional conformational properties. a, Comparison of the scaling of
the radius of gyration with the ring length for different systems. The confined active rings
are from the present work, the confined equilibrium rings are from Ref. [283], the bulk
equilibrium are from Ref. [50], and the bulk active rings from Ref. [184]. The equilibrium
scaling exponent ν = 1/3 is shown as well as the crossover with “effective exponent”
2/5. The seeming compact scaling of the active confined rings is not due to their internal
structure (see b), but just because systems of different N were simulated with the same
number of chains and the same density. b, The mean-square internal-distance d(s) is
computed as the mean-square end-to-end vector of a segment of length s averaged over
its position within a ring and over different rings in the steady state. At intermediate
distances (s/(N/2) ∈ [10−2; 10−1]), we recover self-avoiding walk scaling exponent 0.588
for the longer (N ≥ 400) rings. These exhibit also monotonic profile for large contour
distances. c, The mean-square internal-distance d(s) rescaled by s0.588. The broadening
plateau for the rings of N ≥ 400 shows the asymptotic self-avoiding regime. d, The
contact probability P (s) is the probability of finding the endpoints of a segment s at
distance below 21/6σ. It is an average over the segment’s position within a ring and over
different rings in the steady state. At intermediate distances and for long rings we recover
exponent γ close to 1.75 consistent with the self-avoiding random walk configuration. At
longer lengths, P (s) goes to a constant, signifying the positional decorrelation due to
reflections from the wall – this is typical profile of an equilibrium globule, i.e. confined
melt of linear chains. The exponent γ is smaller for shorter rings. The non-monotonic
character is due to the phase separation of the hot and cold segments and the doubly-
folded structure.
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are non-ergodic as shown by the rugged distribution of R2
g (Figure 7.2b), despite averaging

over about 107τ , time that is more than one order of magnitude above the equilibrium
diffusion times for N ≤ 800.

The chosen model parameters trigger active-passive (micro)phase separation in all the
systems [311, 78, 79]. We track the degree of phase separation by the order parameter
Φ(t) = x(t)/x(0)−1, where x(t) is the average number fraction of inter-chain like-particles
in a rc = 21/6σ neighborhood around a particle at a given time t (Figure 7.4a). The initial
increase of the segregation somewhat precedes the ring stretching and threading dynamics.
The phase separation is dynamic in nature, showing periods of a single mostly-hot region,
but also subsequent dissociation into several hot blobs, reminiscent of the dynamics of
activity-driven colloidal crystals [316]. When the shape properties arrive at a steady state
and the phase separation is incomplete (that is, there are multiple hot regions, as seen in
Figure 7.4b), we still observe some changes in the hot blobs. As described below, these
are the consequence of a rare tank treading motion of some of the rings, by which the hot
segment joins the hot phase without changing the overall shape of the ring and the system
as a whole. The radial density distribution of the hot monomers averaged over 10 different
runs for N = 200 displays confinement induced layering at the wall as in equilibrium [283],
and displays another broad maximum around R/2 (Figure 7.4c). However, the analysis
of single runs for N = 200 and for other N shows that the positioning of hot monomers is
history-dependent, arrested by the topological constraints, and allows for both, internal
or peripheral locations (Figure 7.4d).

In Figure 7.5, we report dynamical and relaxation properties of rings in the system with
N = 200 (averaged over 10 independent runs). We focus on the late stage dynamics by
discarding the initial period of length 3·106τ , where major configurational rearrangements
occur. To do so, we compute the mean-square displacement of the ring’s center of mass,
g3(t), as

g3(t; t0, T ) =
〈

1
T − t

∫ t0+T−t

t0
[R(t′ + t)−R(t′)]2 dt′

〉
(7.4)

where t0 is the initial time point chosen as the onset of the steady state (3·106τ in the case
of active rings and 0 for equilibrium), T is the total simulation time, R is the position of
the ring’s center of mass with respect to the global center of mass, and the angles denote
averaging over different rings. In addition, we compute the relative mean-square distance
g3,rel(t; t0, T ):

g3,rel(t; t0, T ) =
〈

1
T − t

∫ t0+T−t

t0
[dij(t′ + t)− dij(t′)]2 dt′

〉
ij

(7.5)
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Figure 7.4: Phase segregation of partly active rings in spherical confinement.
a, Time evolution of the phase segregation order parameter Φ(t) for systems with different
N . b, Phase segregated regions of hot monomers for the system with N = 1600 (cold
monomers are not shown for clarity). c, Radial distribution of cold (blue), hot (yellow),
and all (green) monomers within the enclosing sphere for the system with N = 200
(averaged over 10 independent runs). d, Radial distribution of hot monomers for systems
with different N .

where t0 and T are as above, dij is the relative distance between rings i and j and
〈. . .〉ij is the average over all distinct ring pairs in the system. The late-stage (steady-
state) dynamics of the ring’s center of mass, g3(t) is much slower than in the equilibrium
case [283], with negligible relative displacements between the rings g3,rel(t), as shown
in Figure 7.5a. Importantly, the latter quantity is invariant under global rotations and
shows that the relative motion of the rings essentially stalls. The systems with longer rings
display the same behavior. In confined systems, g3(t) saturates at a constant value, as a
consequence of a finite volume of phase space available for diffusion. For the rings with
N = 200, we find that g3(t→∞) ≈ 0.4R2, which is about two times smaller than in the
equivalent equilibrium case (Figure 7.5a). This arises mostly from extremely elongated
and practically frozen rings conformations, due to which the exploration of the available
volume is significantly suppressed.
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Figure 7.5: Dynamics and relaxation of partly active rings in spherical con-
finement. a, Mean-square displacements of the ring’s center of mass g3 normalized by
the squared sphere’s radius, R2 as function of time, for non-equilibrium partly active
rings with N = 200 (solid blue) in comparison to a fully passive equilibrium system (solid
yellow) computed according to Eq. (7.4). The relative mean-square displacement g3,rel(t)
for non-equilibrium partly active rings (dashed blue) and equilibrium (dashed yellow) is
computed according to Eq. (7.5). b, Terminal autocorrelation function in the equilibrium
(yellow) and non-equilibrium case (blue). c, Autocorrelation function for the squared
ring’s radius of gyration for the equilibrium (yellow) and non-equilibrium system (blue).
In the latter case, we additionally show the autocorrelation function for the squared end-
to-end distance Ree,ch, which is the distance between an active and a passive monomer
separated by segment length N/2. d, Time dependence of R2

ee,ch(t) for one of the rings in
the system that illustrates tank treading motion along the chain’s contour.

We characterize the ring structural relaxation by considering the terminal autocorrela-
tion function (TACF) 〈u(t)·u(0)〉, where u(t) is the unit vector connecting two monomers
separated by contour distance N/2, and the average is taken over all such monomer con-
figurations within a ring and time. The full decorrelation time of the TACF (≈ 6·105τ) is
about three times longer than in the counterpart equilibrium case without zeroing of the
angular momentum (Figure 7.5b). In the steady state, the rings are found in a heavily
threaded arrangement with their configurations being essentially frozen, as evidenced by
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the static properties.
In what follows, we show that the main pathway that contributes to the decorrelation

of the TACF are correlated, stochastic rotations of the whole system. The other possible
decorrelation mechanism is the internal ring rearrangements, caused by the local explo-
rations of the hot segments or tank treading motion. To show that these do not dominate,
in Figure 7.5c we plot the autocorrelation function for the ring’s squared radius of gy-
ration, 〈R2

g(t)R2
g(0)〉, which decorrelates at a much later time (≈ 2·106τ) and features

a three decades long logarithmic decay. This contrasts with the equilibrium behavior,
where both structural quantities 〈R2

g(t)R2
g(0)〉 and 〈u(t)·u(0)〉 decorrelate at about the

same time (yellow curves in Figure 7.5b and Figure 7.5c). Although the size of the rings
remains essentially the same during the TACF relaxation, there remains a possibility of
tank treading motion that can significantly impact the TACF decorrelation but keep the
overall size given by Rg fixed. As highlighted in Figure 7.5d, the tank treading, a tangen-
tial motion of the hot segment along the ring’s contour, is indeed observed. However, we
observe this happening, only if the hot segment on a ring is not phase separated with the
like blocks; then the only possibility for such hot block to segregate is the tank treading.
We show that the tank treading does not significantly impact the terminal relaxation by
computing the autocorrelation function for the squared end-to-end distance R2

ee,ch between
a hot and a cold monomer contour-wise N/2 apart (Figure 7.5c). Although it decorrelates
slightly faster than 〈R2

g(t)R2
g(0)〉, its relaxation time is still much larger than that of the

TACF. Therefore, correlated, collective rotations provide the dominant contribution to
the TACF decorrelation, whereas its relaxation time scale can be used as an estimate for
the rotational diffusion time.

Global rotations lead to correlated particle displacements, as detailed by computing
the spatio-temporal correlation function. The latter is computed similarly to Refs. [100,
97] as

Cs(r; ∆t) =
〈∑

i>j[∆Ri(t,∆t) ·∆Rj(t,∆t)]δ(Rij − r)∑
i>j δ(Rij − r)

〉
(7.6)

where ∆Ri(t,∆t) is the displacement of the i-th monomer in lag time ∆t as measured in
time t. The angles represent averaging over time, in the active case only over the steady
state. In the active system, the correlation decays significantly slower in comparison to
equilibrium and there is a strong anticorrelation at longer lag times at the opposing posi-
tions in the spherical confinement (r ' 1.5R) (Figure 7.6a). In part, this is a consequence
of the Langevin dynamics that induces stochastic angular momentum also in equilibrium
(Figure 7.6b). However, the anticorrelation is much more pronounced in the active topo-
logical glass state, and almost nonexistent in equilibrium with zeroed angular momentum
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Figure 7.6: Spatio-temporal displacement correlation. The correlation for N =
200 system computed using Eq. (7.6) for (a) the active confined rings, (b) equilibrium
rings without zeroing the angular momentum, (c) equilibrium rings with zeroing the
angular momentum from Ref. [283].

(Figure 7.6c). We observe larger correlation length for the active case consistent with
Refs. [100, 101, 314], but in contrast to Ref. [97]. However, the correlation length seems
to be monotonically increasing and saturating with time that is consistent with some cases
in Ref. [101], but non-monotonic correlation length has been observed in other cases at
longer time lags [101, 100, 314, 97]. Finally, note that such stochastic rotations can also
arise spontaneously in confined equilibrium systems coupled to a Langevin thermostat
(see discussion in Section 7.2).

7.4 Conclusions

We have shown that the confinement and the use of a small number of the partly active
rings does not break the active topological vitrification. This is an important step for
a detailed investigation of this new type of glass transition, as it allows to work with
much smaller systems. We took the advantage and simulated longer ring lengths to
investigate how the universal properties of the fractal globule change under the influence
of segmental activity. We have shown that the rings in the steady state exhibit doubly-
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folded, extended structures reflecting from the confining walls with self-avoiding statistics
at large ring lengths. The same numbers of threaded neighbors as in the bulk suggest the
same mechanism of the formation of the glassy state in confinement. We have found a
new tank treading relaxation mechanism that allows for optimizing the phase separation
without changes in the chain conformation and its location.

As a result of the glassy state, the whole interior of the confining volume exhibits
large correlated motions (rotational diffusion). Similarly, the interior of the whole nucleus
has been observed to move coherently on micron scale [100, 101], interpreted also as
rotations [317]. As noted in the introduction, many different mechanisms can cause large
correlated motions such as the role of cohesive interactions or hydrodynamics coupled
to orientation and activity [269]. Here we show a yet another mechanism that can give
rise to such correlated motion, namely, the activity-induced topological interactions that
entangle neighboring domains that subsequently have to move in a correlated fashion.

Although it is tempting to suggest these play a role in the nuclear dynamics, based on
the conformational data, we conclude that the active topological glass in the present form
is inconsistent with the chromatin conformational data and the fractal globule model. The
conflict of the dynamics and the large-scale conformational properties is, however, a per-
sistent issue also in other models that aim at elucidating the physical mechanisms rather
than the capturing the conformational details [96]. More work is necessary to conclude
if other types of topological glass can be consistent with fractal globule. For example,
the glassy steady states would certainly depend on the contour distribution of the active
segments [311]. In this context, the simulations in Ref. [97] use partly active uncrossable
chains with fractal-globule large scale conformational properties and distribution of the
active sites based on the epigenetic information, but conformational changes of the active
loci are not reported. Despite some active segments being long (20-80 beads), a relatively
lower density and differential interactions between the two chromatin types could sup-
press or obscure the activity-driven changes we report here. This could be also the reason
why that work did not observe the correlation length to depend on the activity level at
short times as reported in experiments [100, 101]. Nevertheless, these results together
with the conformational changes (ring stretching) we report here suggest that it is un-
likely that nucleus-wide activity-driven conformational changes appear in vivo. However,
at scales below 1 Mbp the chromatin fiber is more consistent with the active topological
glass features as the chromatin fiber has nontrivial topology (due to cohesin mediated
loops) [99] and features less compact statistics [318, 86]. Some dynamics observations at
these scales are also similar to the active topological glass behavior, namely, (i) activated
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loci exhibit directed dynamics [256], (ii) constraint release after polymerase inhibition
[319] and (iii) long transcribed genes exhibit large scale expansion [320]. We speculate
that the large correlated motions could be the consequence of the activity-enhanced topo-
logical interaction at these smaller scales. This hypothesis is further supported by the
decrease of the local coherence upon application of ATPase inhibiting drugs [100, 101]
(Inhibiting topoisomerase 2 should support the coherence if the topological picture was
valid, however, the drug itself is creating DNA damage, which in principle could allevi-
ate the topological constraints [100]). As evidenced in the experiments, the coherence
depends on the ATP-consuming processes in a nontrivial way and therefore might not
be only interactions-based. An experiment that would trace the chromatin type in 3D
simultaneously with the coherence in dynamics might elucidate the mechanism.
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Chapter 8

Conclusions and outlook

In summary, in this thesis we have focused on how different types of functional blocks
can affect self-assembly properties of polymers with nontrival (non-linear) architecture.
In the first part of the thesis, we have considered star-shaped co-polymers with end-
functionalized blocks. Computational models have been compared to a specific experi-
mental realization of a three-arm TSP. We have found the emergence of two sub-classes in
very dilute conditions upon increasing the association strength between the functionalized
blocks (in this case, via decreasing temperature that worsens the solvent quality for the
end-blocks): single stars and interconnected micellar aggregates comprising many TSPs.
We have observed the reduction in size of both components in the solution with decreasing
temperature. At the single-star level, as seen from simulations, such reduction corresponds
to the formation of a single patch, where all star arms come together through associations
between functionalized blocks. Furthermore, the transition temperature for the single
patch formation has been found to shift to lower temperatures with decreasing the length
of the associating block. On the other hand, for a fixed number ratio of the associating
monomers, the transition shifts to higher temperatures with increasing the arm length.
Using an effective blob model, we have found the formation of interconnected micellar
clusters whose aggregation size decreases with increasing the attraction strength between
the functionalized blocks, being in line with experimental findings. The particular star
architecture together with associating blocks located at the tips of star arms facilitates
the formation of a network-like structure with pronounced inter-star connections even
at relatively dilute conditions. As has been shown on the model TSP system, stronger
associations between the functionalized blocks result in a higher solution viscosity. The
solutions also exhibits interesting shear thinning behavior that stems from the reorgani-
zation of the TSP network under shear flow. While in the carried out studies we focused
on three-arm TSP systems that have a rather limited propensity for network formation,
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it is possible that gel states with a solid-like response can form if the connectivity of the
TSP network is further enhanced. The latter can be achieved by investigating TSPs with
a higher number of arms. The response of such systems, therefore, could be tuned by
adjusting the external stimulus, and would lead to controllable (i.e., liquid- or solid-like)
rheological response. Work in this direction is currently in progress.

In the second part of this thesis, we have shown that the presence of functionalized
blocks, which have a locally enhanced mobility, on polymer rings in the melt can lead to a
topologically jammed state, the so-called active topological glass. The latter state arises
from significantly deformed ring conformations that sharply contrast with the compact
ring structure in equilibrium melts. More specifically, the enhanced mobility on certain
ring segments was modeled as an effectively higher temperature as compared to non-
functionalized blocks. This inherently non-equilibrium mechanism, stemming from local
temperature differences, has been recently shown to trigger phase separation in active-
passive colloid and polymer mixtures, provided that the temperature contrast is high
enough. In this work, we find that the phenomenon of active topological glass formation
and non-equilibrium active-passive phase segregation are closely related. In particular,
a peculiar single ring dynamics is observed in those systems of rings with functionalized
active blocks that feature a tendency towards active-passive segregation. In such cases,
the rings are directed by active segments, which serve as an effective polymer end that ex-
plores the nearest environment and drives the whole chain through the mesh of constraints
imposed by other rings in the system. Such directed dynamics results in a build-up of
special topological constraints, threadings, that are unique for circular polymer chains.
Some of them form the so-called reef knots (see Figure 5.1) and are particularly hard to
be resolved. Furthermore, the formation of especially tight threadings together with con-
stantly driven dynamics, results in a notable expansion of the rings, significantly beyond
their equilibrium size. This reinforces the accumulation of threadings and consequently
leads to suppression of relative motion of the rings, yielding a glassy state developed on
topological constraints and active driving.

Many properties on active topological glasses are still unclear and, therefore, offer a
promising research direction in the future. Those are broadly related to its emergence,
macroscopic response, as well as potential experimental realization. In my view, it would
be especially interesting to unravel the precise mechanism that relates non-equilibrium
phase separation and the ensuing topological glass formation. Such mechanism might
stem from a distinctive non-equilibrium phase separation kinetics that gives rise to the
observed microscopic dynamics of partly active rings. As the used activity model is quite
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generic, multiple mechanism can be potentially employed to create this state of matter
experimentally. These can be either based on a local action of certain molecular motors
or on a coupling between specific ring segments to external fields. In any case, a full phase
diagram for the active topological glass, e.g. in terms of the temperature ratio between
active and passive blocks, Th/Tc, versus the relative fraction of active blocks, Nh/N , would
be of prime importance to stimulate experimental explorations. A study in this direction
is on the way.

In the third part of this thesis, we have considered fully passive as well as partly ac-
tive ring melts composed of a relatively small number of polymer chains confined in a
sphere in relation to phenomena that arise in the cell nucleus at different length scales.
Most importantly, we have found that the scaling properties of fully passive ring melts
remain practically unaffected despite the presence of strong confinement. This finding,
therefore, confirms the analogy between equilibrium configurations of rings in the melt
and non-equilibrium configurations of chromosomes in the cell nucleus, both of which are
consistent with the fractal globule model. However, the presence of the confining sphere
affects to a certain degree static and dynamic properties of rings that are located in close
contact with it. More specifically, the peripheral ring are generally more compact, less
threaded, and structurally relax faster. The previously-described equilibrium ring melts
have been then used to study the formation of active topological glass in spherical confine-
ment. Such setting enabled us to study the active topological glass for ring lengths up to
N = 1600, which are otherwise inaccessible in the bulk regime for the reasons explained
in Chapter 7. We have found that the active topological glass formation in a cavity
generally resembles that in the bulk. A notable difference, however, arises from the fact
that, for the longer rings considered, the sphere is not able to completely accommodate
significantly stretched conformations of partly active rings from the bulk. This results in
multiple “reflections” of the rings from the confining wall, as seen in Figure 1.2b. Further-
more, we have found that such ring conformations locally feature self-avoiding statistics.
A high degree of inter-ring threading makes the relaxation of the system significantly cor-
related. Albeit ring conformations in the active topological glass are inconsistent with the
large-scale chromatin organization, we speculate that the interplay between topological
constraints and activity, which can result in a highly correlated dynamics, might play a
role in explaining experimentally observed coherent motion of chromatin at smaller scales.
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