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Abstract

We explain how the One-Move Markov Theorem from [LR97] simplifies braid equiv-

alence from the two classical moves to one move called the L-move. Using this sim-

plification, we apply the L-move to tangles obtaining braided tangles and show their

significance by outlining the relationship between oriented tangles and R-matrices

as seen in [Tur90]. The outline provides the incentive to look at the relationship

between braided tangles and R-matrices.

Zusammenfassung

Wir erklären, wie das Ein-Operation Markov Satz von [LR97] die Zopf-Äquivalenz

von den zwei klassischen Operationen zu einer Operation, die L-Operation genannt

wird, vereinfacht. Unter Verwendung dieser Vereinfachung setzen wir die L-Operation

für Tangles ein, wodurch wir verflochtene Tangles erhalten. Ihre Signifikanz wird

durch die Kurzdarstellung der Beziehung zwischen ausgerichteten Tangles und R-

Matrize wie in [Tur90] zu sehen ist, dargelegt. Die Kurzdarstellung bietet den An-

reiz, die Beziehung zwischen verflochtenen Tangles und R-Matrize zu untersuchen.
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Introduction

Chapter 1 involves proving Alexander’s Theorem, a result constructing a braid

given any link diagram. In Section 1.1 and Section 1.2 we give some brief definitions

and results that are fundamental to knot theory and braid theory. Then we show

how the L-move introduced in Section 1.4, the main operation we study, stems

from the sawtooth construction in Section 1.3. Both operations are involved in two

versions of Alexander’s Theorem which we prove in Theorem 1.25 and Theorem

1.39. For people familiar with knot theory and braid theory, one can skip straight

to Section 1.4 to learn about the L-move and the criteria needed for a link diagram

ensuring that L-moves do not affect the braid isotopy class with respect to the link

diagram equivalence class.

Chapter 2’s main result is proving the One-Move Markov Theorem (Theorem 2.19).

It is another proof of Markov’s Theorem (Theorem 2.9), except it replaces braid

equivalence with L-equivalence. The general outline of the proof for Markov’s The-

orem using the classical Markov equivalence is shown in Section 2.1. Markov equiv-

alence consists of stabilization and conjugation moves as shown by Weinberg (for

Markov’s original proof, see [Mar36] for the three-move Markov theorem). Using

Theorem 2.9, we deduce that L-equivalence and Markov equivalence of braids yield

the same equivalence classes. We only use the results of Section 2.2 for Chapter 3

where we deal with tangles instead of links.

Chapter 3 introduces braided tangles in Defintion 3.15. Given a tangle T , they

are obtained by applying L-moves to a smaller tangle, T ′, within T . Then we

define the modified tangle diagram in Definition 3.14 for the same reason we defined

the modified link diagram in Definition 1.35, since the latter was essential to define

before braiding the link diagram. The fundamentals of tangles that we use are stated

in Section 3.1, then braided tangles and their operations are defined in Section 3.2,

and finally we prove results concerning braided tangles in Section 3.3. The main

result of the section is Theorem 3.21 but the remaining results of Section 3.3 are

important for Chapter 4.

Chapter 4 provides an outline from Turaev in [Tur90] regarding why we want to

define braided tangles, as a strict monoidal category denoted by BTa. Basic cate-

gory theory and some abstract algebra is assumed. From algebra we use properties

associated to rings, modules and tensor product.
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1 Alexander’s Theorem

The first two subsections are fundamental objects and results in knot theory and

braid theory needed to construct a sawtooth in Section 1.3 and a special case of it

denoted by the L-move in Section 1.4. We state Reidemeister’s Theorem (Theorem

1.12) which provides criteria we need to check for links when proving Markov’s

Theorem (Theorem 2.9) and the One-Move Markov’s Theorem (Theorem 2.19).

Lastly we show respective results of Alexander’s Theorem using sawteeth (Theorem

1.25 and L-moves (Theorem 1.39). Both theorems explicitly show how to obtain a

braid given any link diagram. We use these very L-moves to obtain a braided tangle

diagram of Definition 3.15 given any oriented tangle diagram.

1.1 Basic Knot Theory

Definition 1.1. A link L is the embedding of n ∈ N mutually disjoint simple closed

polygonal curves into R3. We call n the components of a link L and we call a link

a knot if n = 1.

Remark 1.2. The standard definition of a link uses “smooth” instead of “polygonal”

curves. A classical result of topology is that the combinatorial isotopy of polygonal

links is equivalent to the smooth isotopy of smooth links. Assume we only work

in the combinatorial category i.e. the piecewise linear category. However in sec-

tions involving L-moves, we alternate between smooth and combinatorial settings,

sometimes even combining them for the sake of illustration.

Suppose a1, . . . , an are a finite number of points in R3. Then [a1, . . . , an] denotes

the convex hull of those points.

Definition 1.3. Let [a, b] be an arc of link L and let c be a vertex that does

not lie on L. Suppose [a, b, c] ∩ L = [a, b]. Then we define a ∆-move on L as

Eca,bL = L − [a, b] + [a, c] + [b, c].

Remark 1.4. The purpose of using explicit notation, Eca,bL, denoting a ∆-move is

only a handy aid when we describe constructing a sawtooth in Definition 1.21.

Definition 1.5. Two links denoted by L and L′ are combinatorially isotopic if

there is a chain of links L ∶= L0, L1, . . . , Ln =∶ L′ such that every pair Li and Li+1 is

related by a ∆-move for i = 0, . . . , n − 1. This defines equivalence classes of links.
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Remark 1.6. We can also give an orientation to each component of a link, it imposes

an additional requirement that a link isotopy is orientation-preserving. Since we are

working with braids, assume all link components have an orientation.

Definition 1.7. A link diagram, D , is the orthogonal projection of a link, L,

onto R2. We say D is in general position if:

1. the projection direction is not parallel to any arc of L,

2. every vertex in D lifts up to at most two vertices of L,

3. every vertex of D lifting up to exactly two vertices in L belong to two edges

of D that intersect transversely at this vertex,

4. for every transverse intersection in D, we respect the differing heights of the

corresponding edges of L by denoting over-arcs and under-arcs in D.

Vertices of D lifting up to two vertices of L are called double points.

Remark 1.8. Assume that every link diagram is in general position by a classical

general positioning argument seen in [Bir75].

Definition 1.9. Let the new vertices of a ∆-move of L be projected onto D in

general position and label the projected vertices of the move a′, b′, c′. In the special

case when [a′, c′] ∩ b′ /= ∅ and [b′, c′] ∩ a′ /= ∅, then our ∆-move introduces or deletes

the vertex c′ on the arc [a′, b′]. This case is called subdivision in D

Definition 1.10. For link diagrams, we can perform Reidemeister moves denoted

Ω1, Ω2 and Ω3 seen in Figure 1.

Figure 1: Ω1, Ω2 and Ω3 respectively shown by the diagrams starting from the left.
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Definition 1.11. Two link diagrams D and D′ are equivalent if there is a chain

of diagrams D ∶=D0,D1, . . . ,Dn =∶D′ such that every pair Di and Di+1 is related by

a planar ∆-move or a Reidemeister move.

Theorem 1.12. (Reidemeister’s Theorem) Two links L and L′ are isotopic if and

only if their corresponding link diagrams D and D′ are equivalent.

Proof. See [Rei48] for the classical proof.

1.2 Braid Theory

Definition 1.13. Suppose we have 2n points denoted Ai = (i,0,0) and Bi = (i,0,1)

in R3 for i = 1, . . . , n. Then a polygonal line joining one of the Ai and Bj will be

called a down arc if it intersects with every plane (x,0, z) for x ∈ R and z ∈ [0,1] ⊂ R
at exactly one point. A (geometric) braid on n arcs is a set of n mutually disjoint

down arcs joining n distinct points of Ai to n distinct points of Bi.

Remark 1.14. Braids can also be defined smoothly, see Remark 1.2. One can natu-

rally deduce the braid diagram in general position.

Definition 1.15. Braid isotopy is analogous to that of link isotopy as in Definition

1.5 with the exception that our braids are oriented and all relevant arcs involved in

a ∆-move are down arcs. This equivalence relation is a definition for the equivalence

class of a braid.

c

b

a
c

b

a c

b

ac

b

a

Figure 2: On the left is an admissible ∆-move but [a, c] is an up arc on the right.

Definition 1.16. The equivalence class of braids on n arcs is a group with the

presentation

Bn ∶= ⟨b1, . . . , bn−1∣bibi+1bi = bi+1bibi+1 for i = 1 . . . , n − 2 and bibj = bjbi for ∣i − j∣ ≥ 2⟩

The generators b±i is an element that has a positive (or negative) crossing as seen in

Figure 3. The operation in this group is called concatentation where the product
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bibj places the element bi vertically above bj. The first relation in the group presen-

tation is called conjugation and the second relation is called far commutativity.

Remark 1.17. Concatenation in the braid group is an associative operation.

1 i i+1 n

Figure 3: An elementary braid bi with a positive crossing.

Theorem 1.18. (Artin’s Theorem) The braid isotopy class on n arcs is isomorphic

to the braid group Bn.

Proof. See [Bir75] for a full proof.

Definition 1.19. A closed braid of a braid B on n arcs is given by connecting

the n endpoints on the top to the n endpoints on bottom of the braid directly by n

arcs. The closure of a braid B is a link denoted C(B).

Remark 1.20. We are usually working with braid diagram as opposed to geometric

braids. So when we form the closure of a braid diagram, the arcs connecting the

respective 2n endpoints lie “outside” of the braid diagram area.

1.3 Sawtooth Construction

(based on [Bir75])

Represent the orthogonal projection of a link, L, onto R2 from Definition 1.7 by a

line l ∈ R3 such that L ∩ l = ∅ and the plane of projection intersects l at only one

point denoted by l̂. The line l is oriented counterclockwise (positively) and is called

the axis of L. Let D refer to the corresponding link diagram.

Assume that L is oriented, we want to show that D represents a closed braid by

making sure all the arcs of D are down arcs with respect to the axis l.

Let [a, b] be the edge of D and assume [a, b] is oriented from a to b. Then [a, b] is

a down arc if the vector connecting a to l̂ moving to the vector connecting b and l̂

moves positively about l (counterclockwise). For notation, we will then say [a, b] > 0

if it is a down arc, otherwise [a, b] < 0.
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Definition 1.21. Let [a0, am] < 0 be an edge of a link L. Then suppose a0, . . . , am

and b1, . . . , bm are points satisfying [ai, ai+1] < 0, [ai, bi+1] > 0, [ai+1, bi+1] > 0 and

ai ∈ [a0, am] for i = 0, . . . ,m − 1. If, in addition

m−1
∑
i=0

[ai, bi+1, ai+1] ∩L = [a0, am]

then we construct a sawtooth consisting of [ai, bi+1] and [bi+1, ai+1] on [a0, am] given

by

Sb1,...,bma0,...,amL = (
m−1
∏
i=0
E bi+1ai,ai=1

)(
m−1
∏
i=0
Eai+1ai,am

L)

= L − [a0, am] +
m−1
∑
i=0

([ai, bi+1] + [bi+1, ai+1])

Remark 1.22. The sawtooth constructed uses more than one tooth if there is a double

point on [a0, am] in D as seen in Lemma 1.23. Figure 4 illustrates how sawteeth

appear in the link diagram.

l

0 1

1b

a a a a

bb

2 3

2
3

Figure 4: A sawtooth constructed on [a0, a3]. The two arcs of the diagram connected
to [a0, a3] are down arcs while [a0, a3] was an up arc with respect to l̂.

Lemma 1.23. Let L be an oriented link with axis l and [a0, am] < 0 be an edge of

L. Then we can construct a sawtooth on [a0, am].

Proof. For any pairs of vertices ai, ai+1 ∈ [a0, am] such that [ai, ai+1] < 0, we can

partition R3 into four regions bounded by two planes. One of the two planes is

determined by the vertex ai and line l while the other is determined the vertex ai+1
and line l so that both planes intersect only on l. The four regions are labelled

I(ai, ai+1), II(ai, ai+1), III(ai, ai+1) and IV (ai, ai+1). Region III(ai, ai+1) contains

[ai, ai+1] ∖ {ai, ai+1}, IV (ai, ai+1) is to the right of it and enumerate the other two

accordingly. If bi+1 is a point in the region I(ai, ai+1) then ai, bi+1, ai+1 satisfies the

initial conditions of constructing a sawtooth on [ai, ai+1] of Definition 1.21.
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Case 1: Let the projection of [a0, am] onto R2 contain no double points. Then we can

choose b ∈ I(a0, am) such that [a0, b, am]∩L = [a0, am] and construct Sba0,amL. Let B

be the line through b which is perpendicular to the projecting plane. Replacing b by

any other b′ on B does not affect whether or not Sb
′

a0,amL can still be constructed.

Case 2: Let the projection of [a0, am] onto R2 contain one double point. Without

loss of generality, let [a0, am] be an under-arc with respect to the double point. Then

we can still choose b ∈ I(a0, am) but we move b downward on the line B (defined in

Case 1) sufficiently enough so that [a0, b] and [b, am] project to under-arcs onto the

projection plane. When [a0, am] is an over-arc, we naturally move b upward along

B so that [a0, b] and [b, am] project to over-arcs. The choice of b must also satisfy

that [a0, b, am] ∩L = [a0, am].

Case 3: Let the projection of [a0, am] onto R2 contain the double points p1, . . . , pk

for k > 1. Then we can subdivide [a0, am] to include points a1, . . . , ak−1 such that

[a0, am] = ∐
m−1
i=0 [ai, ai+1] with m ∶= k + 1 and pi ∈ [ai−1, ai] for i = 1, . . . , k. This

ensures that each new edge contains only one double point. Then each new edge is

either an under-arc or over-arc, the setting of Case 2.

At the end, we have constructed a sawtooth Sb1...bka0,...,amL.

Remark 1.24. Regarding the technical aspect of how we choose our subdividing

edges of [a0, am] and the selection of the tips of the sawtooth, we can introduce the

following: For any 3-simplex S, the sawtooth avoids S if ⋃m−1
i=0 [ai, bi+1, ai+1] ∩S = ∅

or a0 or am. This condition is used in the technical proof seen in [Bir75].

Theorem 1.25. (Alexander’s Theorem, I) Let C be the map sending any represen-

tative of the braid equivalence class to a link using the closure operation. Then C is

a surjective map which means any link is the closure of some braid.

Proof. Given a link L oriented with respect to its axis l, let k denote the number

of up arcs of L. If k = 0 then L is the closure of some braid which can be read by

cutting the diagram of L by a vector with its initial point at l̂ as seen in Figure 5.
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l

Figure 5: We get a braid on three strands, the red line is the top boundary of the
braid and the blue line is the bottom boundary of the braid. This example is taken
from [PS97].

If k = 1 then we can construct a sawtooth on the up arc [a0, am] of L according to

Lemma 1.23 such that the sawtooth respects the under-arc and over-arc projections

of our link diagram. Induct on k.

1.4 L-moves

(based on [LR97])

Once again, similar to dealing with constructing a sawtooth, assume that L is

oriented, but this time the down arcs we want to obtain as in Definition 1.13 are

arcs that are oriented downwards on the plane with respect to the x and y axes.

Definition 1.26. Let D be an oriented link diagram of a link L and p a point in D

that may or may not be a vertex of D. Make sure that p is not vertically aligned with

any double points and with any other vertices of D. Then we perform a L-move

at p as seen in Figure 6. First we cut the arc at p and bend the resulting smaller

arcs vertically so that the vertical parts of each of these arcs is oriented downwards.

Extend these vertical arcs either over or under all other arcs of D - this depends

on if our original arc was an under arc or an over arc. These new vertical arcs are

connected and thus identified to each other in the same way of braid closure as in

Definition 1.19.
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p
o

o o
p p

Figure 6: An “over” L-move requires that we label our up arc ‘o’ in order to indicate
whether the new vertical arcs go over or under all other arcs of D. For short, we
call it a Lo-move. We show how vertical arcs connect on the far right diagram, but
in the future, this connection is assumed and not depicted.

Remark 1.27. Unlike Definition 1.21, the L-move operation takes place in the dia-

gram of the link. A L-move can be thought of as a sawtooth constructed on an edge

with the axis at infinity. Then the sawtooth is seen by the vertical lines after the

L-move without the need for selecting vertices b1, . . . bm.

In Definition 1.26 we assumed that the up arc contains one or no double points

and did not interfere with any other L-move of the diagram. But we will show how

to modify our link diagram of Definition 1.35 which ensures that all L-moves for

up arcs can be performed simultaneously without altering our braid isotopy class.

This results in giving us a closed braid and proving Alexander’s Theorem (Theorem

1.39).

We want to label each up arc “over” or “under” if it is respectively an over or under

arc. If the up arc contains no double point, then it is a free arc and can be labelled

“over” or “under.” Suppose that an up arc has more than one double point that has

the up arc alternate between an under and over arc. Then we subdivide the up arc

so that each up arc can only be labelled “over” or “under.”

Definition 1.28. Let [a, b] be an up arc of a link diagram D with a the initial

vertex and b being the terminal vertex of the arc. Let T (b) be a right triangle with

hypotenuse [a, b] and the right angle below the hypotenuse, moreover let a′ be the

third vertex of T (b). Define a′′ so that it is vertically lower than a′ and [a, a′′] does

not intersect any other arc of D. The choice of a′′ is to avoid forming any horizontal

arcs in D. Perform a sliding triangle move as seen in Figure 7. First, perform a

L-move at b and then a ∆-move replacing [a, b]⋃[b, a′′] by [a, a′′]. We call T (b) the

sliding triangle. Label a sliding triangle “over” or “under” depending on if the up

arc in question is an over or under arc.
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a’’ a’’

b
o

a a’

o

a’

b

a
a’’

o

a’

b

a
T(b)

Figure 7: A sliding triangle move at T (b): a Lo-move at b and then a ∆-move.

Remark 1.29. Often we depict the piece of an arc after applying a sliding triangle

move that is only slightly horizontal for efficiency of illustration.

Before stating the definition of a modified link diagram in Definition 1.35, we

need to prove Lemma 1.30 and Lemma 1.33 adjusting the relationships between our

sliding triangles.

Lemma 1.30. Let D be a link diagram with no horizontal arcs, then we can subdivide

D to get D′ such that for every two overlapping sliding triangles which do not share

a common vertex, those sliding triangles have opposite labels.

Proof. Let d1 ∶= min{d(x, y)∣x and y are double points of D} and let {Bpi
d1/2}

n
i=1 be

n balls of radius d1/2 centered at n double points of D. Then define

D′ ∶=D ∖Bp1
d1/2⋃⋯⋃Bpn

d1/2

Now let d2 ∶= mind(x, y)∣x and y are vertices of D′ and set d3 ∶=
1
2 mind1, d2. We can

subdivide D to obtain D′′ such that every up arc is of length less than d3 and ensure

that no two vertices vertically align. Then D′′ satisfies the triangle condition.

Remark 1.31. The point of taking distances between vertices and double points is to

find the minimum length between the vertices of sliding triangles of the same type

that overlap, then the resulting new vertices of the up arcs are within this minimum

distance determining the size of their sliding triangles.

Example 1.32. Let D satisfy the criteria of Lemma 1.30. Suppose we have two

up arcs such that they are non-adjacent and have non-overlapping sliding triangles

with the same label. Without loss of generality, suppose they are both forced to be

labelled “over” and suppose we are in one of the configurations (apart from (e)) of

Figure 8. If we apply the sliding triangle moves to the up arcs, we have overlapping
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vertical strands that are labelled “over” and thus we may still get different braids

depending on the order of braiding the given up arcs.

o

o

o

o

o

o o o o

ooo

(a) (b) (c) (d) (e) (f)

Figure 8: Apart from (e), the configuration of the sliding triangles create vertical
strands of the same type after sliding triangle moves.

Lemma 1.33. Let D be a link diagram with no horizontal arcs, then we can subdivide

D to get D′ such that there is no pair of non-overlapping sliding triangles that are

in one of the configurations of Example 1.32.

Proof. Using Lemma 1.30 we subdivide D to get D′ such that the triangle condition

is satisfied. For every up arc, label its initial vertex qi and its terminal vertex

pi, so that we get a set of vertices p1, . . . , pn and q1, . . . , qn. Let O ∶= {[qi, pi] ∶

[qi, pi] is labelled “over”} and U ∶= {[qi, pi] ∶ [qi, pi] is labelled “under”} and relabel

indices so that the first k ∈ N pairs of indices are in O and then k + 1, . . . , n in U .

Project [qi, pi] from O to R × {0} and call the projected edge [q′i, p
′
i]. Fix some

i ∈ 1, . . . , k, [q′i, p
′
i] ∩ [q′j, q

′
j] /= for some j ∈ ({1, . . . , k} ∖ {i}). Given every such pair

i, j that exists, let [qi, pi], [qj, pj] ∈ O′ for a new set O′ ⊂ U i.e. they overlap like one

of the configurations in Figure 8 apart from condition (e). For every pair of up arc

vertices i /= j in O′, let

di,j ∶= min{distance between two inner vertices of the four projected vertices}

and let m ∶= min{{di,j}ki/=j∈{1,...,k}}. Let ε > 0 be fixed and sufficiently small enough

so that m − ε > 0. Then returning to each pair of up arcs that intersect at their

projection to the x-axis, we subdivide one of the up arcs by a distance m − ε to the

left of their overlapping intersection as seen in Figure 9 and then relabel in order to

avoid overlapping vertical arcs of the same type.
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m

u

u

u u
o

o

o

o

o

o o
o

o

ooo

u

u

(a) (b) (c) (d) (e) (f)

Figure 9: Subdividing and relabelling up arcs by m − ε. For configuration (e), this
is overkill in terms of subdivision.

Repeat subdivision and relabelling in the same manner for the set U and take care

for both O and U to not let new vertices vertically align with other vertices or double

points.

Remark 1.34. In the case that one of the up arcs was a free up arc and if changing

its label does not violate the condition of Lemma 1.30, then we can simply relabel

the arc.

Definition 1.35. A modified link diagram D is a generic link diagram satisfying

the additional conditions:

1. there are no horizontal arcs in D,

2. there are no vertically aligned vertices in D and no vertex of D is vertically

aligned with a double point,

3. D satisfies the condition of D′ in Lemma 1.30,

4. D satisfies the condition of D′ in Lemma 1.33 and

5. all up arcs are only labelled “free,” “over” or “under.

Remark 1.36. A modified link diagram allows for us to apply sliding triangle moves

in any order to all up arcs since any order of elimination yields the same braid

isotopy class.

Lemma 1.37. Two modified link diagrams D and D′ are isotopic if and only if

there is a chain D ∶=D0, . . . ,Dn =∶D′ such that each Di is a modified link diagram.

This means that Di and Di+1 are related by a ∆-move in which Di and Di+1 satisfy

Definition 1.35 for i = 0, . . . , n − 1.
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Proof. If we have such a chain, then it is clear that D and D′ are isotopic. To prove

the other direction, suppose D and D′ are isotopic. If at some diagram Di of the

chain violates condition 1 of Definition 1.35, then we can replace one of the vertices

of the horizontal edge by a nearby point arbitrarily close to our original point. We

use this same general positioning argument if some Di violates condition 2 while

maintaining that the new vertex does not violate any of the other conditions of

Definition 1.35. For condition 5, we simply subdivide the diagram so as not violate

condition 2 and any further subdivision of the diagram still satisfies condition 5.

New vertices in all of those cases are carried throughout the diagram chain.

If at some point condition 3 or 4 is violated, then we will describe how to subdivide

participating up arcs. First, suppose condition 3 is violated, this means that after

a ∆-move, we have sliding triangles of the same type overlapping.

If the sliding triangles intersect on a point, then by definition of an isotopy, an up

arc’s vertex will not meet any interior part of another up arc which leaves only three

admissible cases of sliding triangles of the same type intersecting on a point as seen

in (d), (e) and (f) of Figure 10. However, some of these cases violate condition 2 and

so we use the same general positioning argument and if vertices are not vertically

aligned, we still use a general positioning argument replacing the point of intersection

by another vertex arbitrarily close.

(a) (b) (c) (d) (e) (f)

Figure 10: Non admissible cases of intersection on a point are (a) - (c) and the
admissible ones are (d) - (f).

Now, if sliding triangles of the same type intersect - but not on a point, then these

intersections are nonessential or essential. A nonessential intersection is when the

hypotenuses of the sliding triangles do not intersect, here we use subdivision as seen

in Figure 11.

o

o o
oo

o
o
o

Figure 11: For nonessential intersections between two sliding triangles of the same
label, subdivide and relabel by carrying over the label of the previous bigger up arc.
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An essential intersection is when the hypotenuse of the sliding triangle forms a double

point after some ∆-move, then we subdivide the up arc to obtain a free up arc as

in Figure 12. Relabel the free up arc to maintain condition 3. Such subdivision on

essential and nonessential intersections is possible by Lemma 1.30. Once again, we

can ensure the subdividing points do not violate condition 2 and we carry out these

subdivisions throughout the diagram chain.

u
u

o

u u uu
o

Figure 12: A ∆-move on the left side causes an essential intersection of two sliding
triangles of the same type. The right side shows a subdivision and relabelling to fix
the essential intersection.

Lastly, suppose condition 4 is violated at some point, then we can always choose a

subdivision by Lemma 1.33 taking care that condition 2 is also not violated.

Remark 1.38. 1. If we have a diagram satisfying condition 3, then any further

subdivision also satisfies condition 3.

2. The purpose of this result is that we can assume all link diagrams are modified

since the set of all modified link diagrams are dense in the set of all diagrams

in general position. Such assumption is needed for Theorem 1.39.

3. We can define a modified ∆-move to be a ∆-move between modified link

diagrams. The result states that each diagram in our chain is related by a

modified ∆-move.

Theorem 1.39. (Alexander’s Theorem, II) Let D be an oriented modified link dia-

gram. Then D is isotopic to C(B) for some braid B.

Proof. Given D, let k denote the number of up arc of L. Once again we induct on k

like in the proof of Theorem 1.25. Note that eliminating an up arc requires a sliding

triangle move which consists of a L-move and isotopy. Moreover, a L-move on a

closed braid diagram i.e. a link diagram is an isotopy proving our statement.
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2 Markov’s Theorem

We replace “braid equivalence” with “Markov equivalence” and “L-equivalence” for

braid isotopy classes and their bijection to their corresponding link isotopy classes

in Theorem 2.9 and Theorem 2.19. This naturally concludes that there is a bijection

between braid isotopy classes with respect to Markov equivalence and braid isotopy

classes with respect to L-equivalence.

2.1 Markov equivalence

We want to replace Definition 1.15 that uses combinatorial equivalence to define

braid equivalence by Markov equivalence as in Definition 2.1. Combinatorial

equivalence is defined in the geometric braid but Markov equivalence is defined in

the braid group.

Definition 2.1. Two braids B and B′ are Markov equivalent if there is a chain

of braids B ∶= B0, . . . ,Bn =∶ B′ such that every pair Bi and Bi+1 is related by a

conjugation move in the braid group given by aba↔ a for a, b ∈ Bn or a stabilizing

move in the braid group given by a↔ ab for b ∈ Bn+1. Note that in the latter move,

ab ∈ Bn if we choose b−1 ∈ Bn. Both moves are more generally called Markov

moves.

Remark 2.2. While these two moves in Markov equivalence are seen in the braid

group, this definition is obtained as a corollary of proving Markov’s Theorem using

so-called R-moves and W -moves that are applied to geometric braids as seen in

[Bir75]. Moves in the braid group are derived from moves on the geometric braid.

Definition 2.3. Let [a, b] be an arc of a link L and let c be a vertex that does not

lie on L. Suppose [a, b, c] ∩ L = [a, b] and [a, b], [a, c] and [c, b] > 0 with respect to

some axis l. Then we define a R-move as Rc
a,bL ∶= L − [a, b] + [a, c] + [b, c]. This is

just the restricted ∆-move defined for braids in Definition 1.15.

Definition 2.4. Let [a, b] be an arc of a link L with c and d vertices such that

[a, b, c, d]∩V = [a, b]. Suppose [a, c], [c, d], [d, b], [d, a], [b, c], [a, b] > 0 with respect

to some axis l where Ec[a,b]L and Edb,c(E
c
[a,b]L) are admissible. Then we define a W-

move as Wcd
abL ∶= L − [a, b] + [a, c] + [c, d] + [d, b].

Remark 2.5. Assume the result that a sawtooth constructed on the arc of a link can

be realized as a combination of R-moves and W-moves. For the proof, see [Bir75].
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The main purpose of Markov equivalence and eventually L-equivalence (see Defin-

tion 2.11) is that suppose we have two Markov equivalent braids B and B′ and C(B)

and C(B′) are their corresponding closed braids i.e. link diagrams. Then there is

a deformation chain of equivalent link diagrams C(B) ∶= D0, . . . ,Dn =∶ C(B′) such

that Di and Di+1 are related by a Markov move for i = 0, . . . , n−1. This means that

for every pair Di and Di+1, we have link diagrams Di = C(B′′) and Di+1 = C(B′′′)
for some braids B′′ and B′′′.

Lemma 2.7 and 2.8 are the main results in proving Theorem 2.9 (based on [Bir75]).

Their proofs are laborious and involve eliminating and selecting moves from E , S,

R and W on a case by case basis. We will not give their proofs.

Definition 2.6. Let h(L) denote the number of up arcs for a given link L, in [Bir75],

this function is called the height of L. Assume h(D) = h(L) for the corresponding

link diagram D.

Lemma 2.7. Suppose we have link L and L′ such that we have an (isotopic)

deformation chain connecting the links and h(L) = h(L′) > 0. Then we can re-

place our initial deformation chain by another (possibly longer) deformation chain

L ∶= L0, . . . , Ln =∶ L′′ for n ≥ 1 and h(Li) < h(L′) for all 1 ≤ i ≤ n − 1.

Proof. See [Bir75] for a full proof.

Lemma 2.8. Suppose we have links L, L′ and L′′ such that we have an (isotopic)

deformation chain connecting the links L ∶= L0, . . . , L′ ∶= Li, . . . , Ln =∶ L′′ for n > 1

and some 0 < i < n. If h(L) < h(L′) and h(L′′) < h(L′), then we replace our

deformation chain by another (possibly longer) deformation chain L ∶= L0, . . . , Ls =∶

L′′ for s ≥ 1 such that h(Lj) < h(L′) for all 1 ≤ j ≤ s − 1.

Proof. See [Bir75] for a full proof.

In the proof, geometric closed braids refer to corresponding links in R3 for close

braids in the plane.

Theorem 2.9. (Markov’s Theorem) Two closed braids D ∶= C(B) and D′ ∶= C(B′)
are isotopic for some braids B and B′ if and only if there is a chain

B ∶= B0, . . . ,Bm =∶ B′ such that Bi and Bi+1 are Markov equivalent for i = 0, . . . , k−1.

Proof. The easier direction is the “only if” direction. Assume we have such a chain

of braids. Then we must show how conjugation and stabilization give braid closures

that are isotopic.
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Now, the non-trivial direction is the “if” direction. Assuming we have isotopic closed

braids means we have a deformation chain D ∶=D0, . . . ,Dn =∶D′.

In the case h(Di) = 0 for 1 ≤ i ≤ n − 1, then each diagram in the chain must be

related by a Markov move. Each Di and Di+1 for i = 0, . . . , n − 1 is a closed braid

by definition. The only moves that alter the number of up arcs of geometric closed

braids are E /= R and S moves, this is not possible since there are zero up arcs. Hence

the closed braids must be related byR andW moves corresponding to Markov moves

in the respective braid groups by Remark 2.2.

Suppose now that not all h(Di) = 0 and set H ∶= maxh(Di) among i = 1, . . . ,m − 1.

If there is some j satisfying 1 ≤ j ≤ m − 1 and h(Dj) = h(Dj+1) = H, then we are in

the case of Lemma 2.7 to this smaller chain. As a result, we have a new deformation

chain D ∶= D0, . . . ,Dm′ =∶ D′ for m′ ≥ 1 and h(Di) < h(D′) for 1 ≤ i ≤ m′ − 1. While

we still have H ∶= maxh(Di) > 0 for i = 1, . . . ,m′ − 1, we now no longer have the

condition that for some j we have h(Dj) = h(Dj+1) =H. Continue to apply Lemma

2.7 to each such pair of diagrams so that there is only one such diagram Dl in our

final chain with h(Dl) =H.

The diagram Dl is not D or D′ by construction due to our indices, this allows us

to apply Lemma 2.8 where h(Dl) > h(D) and h(Dl) > h(D′). Our new deformation

chain D ∶= D0, . . . ,Dm′′ =∶ D′′ for m′′ ≥ 1 such that h(Dj) < h(D′) for all 1 ≤ j ≤

m′′ −1. But we reach our desired result that h(Dj) <H for all given j. We continue

applying Lemma 2.8 until we get a chain D ∶=D0, . . . ,Dm′′′ =∶D′ such that h(Dj) = 0

and then we are in the initial case which we have already shown has each consecutive

pair in the deformation chain connected by a Markov move.

Remark 2.10. See [Bir75] for a full complete proof of all technical lemmas involved.

2.2 L-equivalence

(based on [LR97])

We prove One Move Markov’s Theorem (Theorem 2.19 very differently from The-

orem 2.9. Rather than looking at the heights of diagram chains, we check that

L-equivalence of braids are independent of our choice of given operations and that

link diagram equivalence corresponds to L-equivalence. For link diagram equiva-

lence, we check ∆-moves and Reidemeister moves by Theorem 1.12.

Definition 2.11. Two braids B and B’ are L-equivalent if there is a chain of
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braids B ∶= B0, . . . ,Bn =∶ B′ such that every pair Bi and Bi+1 is related by a L-move

or a braid isotopy for i = 0, . . . , n − 1.

Remark 2.12. We are using this definition to replace Definition 1.15.

Definition 1.35 for link diagram D helps us define a map B which maps any

isotopy class of a link diagram to the L-equivalent braid isotopy class, denoted

B(D), via eliminating all up arcs by sliding triangle moves. Note that B ∶= C−1.

Lemma 2.13. Given a link diagram with an up arc, α, let c be a subdividing point of

α forming up arcs α1 and α2. Then the braid obtained from the diagram containing

α is L-equivalent to the braid obtained from the diagram containing α1 and α2.

Proof. Without loss of generality, assume α is labelled “over” and let C be the ver-

tical line intersecting c. After braiding α, C defines the location of c′, a subdividing

point on the new arcs after braiding α. We take a neighborhood N ′ about c′ and

this allows us to show our desired result in series of equivalent diagrams seen in

Figure 13.

oo

o
o

o

o o

o ooo

a

b

a

b
c b

c
a a

c
b

b

caa

b
cL-move

L-moves

subdivision

planar 
isotopy

L-move

‘

Figure 13: A chain showing how subdivision in the diagram maintains L-equivalent
braids. Planar isotopy here is also braid isotopy.

Lemma 2.14. Given a link diagram with a free up arc, α the braid obtained by

labelling α “over” is L-equivalent to the braid obtained by labelling α “under.”

Proof. Label the terminal vertex of α as b and the initial vertex as a. Without loss

of generality, let the sliding triangle T (b) associated to α be labelled “over.”

Case 1: Assume that T (b) contains no other arcs of the diagram. After braiding

α, we define a new point b′ near the vertical projection of b onto the new arc after
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braiding such that for vertical lines B and B′ going through b and b′, we have no

other vertex of the diagram. After applying a Lu-move at b′ we have two new vertices

c and d. Note that ensuring there is no other vertex of the diagram between B and

B′ means that [c, d]is not forced to be labelled “under.” Only vertical arcs of the

diagram can be in T (b). Applying a braid isotopy and the inverse of a Lo-move to

obtain a down arc [c, b], we get a braided local diagram if we had instead labelled

T (b) “under.” This is is our desired result and illustrated in Figure 14.

a

b

a

b

b b b

a

a a

a a

a

c

c

c’

bb b
c

‘

b d
o

u

L-move

L-move

o

u

subdivision L-moveu

planar
isotopy

L-moveo

planar isotopy
and subdivision

u

o

u u

o u
o

u

Figure 14: Case 1 showing how both types of labels yield L-equivalent braids for
free up arcs.

Case 2: Assume that T (b) contains over and under arcs of the diagram. Subdivide

α by n ∈ N new points a ∶= a1, . . . , an with ai /= b for all i and each sliding triangle

T (ai) does not contain any other arcs of the diagram and each is labelled “over” as

well. This subdivision does not affect our braiding by Lemma 2.13. Then we apply

case 1 to each sliding triangle changing all labels to “over.” Use Lemma 2.13 to

eliminate each subdividing point (“subdivision” refers to adding/deleting a vertex)

to obtain our desired result.

Corollary 2.15. Let D be a link diagram, D1 a link diagram obtained from subdi-

viding D by subdivision S1 and D2 /=D1 a link diagram obtained from subdividing D

by subdivision S2. Then B(D1) is L-equivalent to B(D2).

Proof. Subdivide D by S1 ∪ S2 to obtain a link diagram D3. We know that if

D satisfies the triangle condition, then we know that any subdivision of D still

satisfies the triangle condition. By Lemma 2.13 and Lemma 2.14, we get our desired

result.

Lemma 2.16. Let D be a link diagram containing an arc [a, b] and let D′ be a link

diagram obtained from D after applying a ∆-move to [a, b]. Then B(D) and B(D′)
are L-equivalent.



20

Proof. Without loss of generality, assume [a, b] is an up arc and by symmetry, we

only look at ∆-moves occurring in the top right quadrant of the plane. To emphasize,

assume after each operation that D is still a modified link diagram. Note that

Corollary 2.15 means that if we perform a ∆-move that results in violating Lemma

1.30, we can eliminate ∆-moves so that the condition of Lemma 1.30 is not violated.

This allows the resulting braid is still L-equivalent. Let A and B be vertical lines

intersecting vertices a and b. Case 1 looks at ∆-moves within the smaller region

bounded by A and B. Case 2 looks at ∆-moves outside the smaller region bounded

by A and B, thanks to symmetry, we only look at those moves on the right side of

the strip defined by A and B. Proving the result for both cases finishes the proof.

Case 1: We have three distinct possibilities for each new vertex after the ∆-move.

Label them p1, p2 and p3 along a vertical line (all lying above [a, b] since this suffices

thanks to symmetry) as seen in Figure 15.

a

b

p
p

p

1

2

3

Figure 15: Three general regions for a new vertex from a ∆-move of the Case 1 type.

For p1 lying on [a, b] we just apply Lemma 2.13. For p2 and p3 we show L-equivalence

in Figure 16.

a a

b b

p1

p2

oo o o

a

b
p

3

oo

a

b
p

3

o

L-moveo

Figure 16: We show how a diagram after ∆-move at p1, another at p2 and a third
at p3 are all L-equivalent.

If we instead subdivide at some point q /= p1 with q ∈ [a, b], then Lemma 2.13 and

Lemma 2.14 still give us L-equivalent diagrams.

Case 2: Once again there three distinct possibilities for each new vertex after the

∆-move labelled p1, p2 and p3 along a vertical line as seen in Figure 17.
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a

b

p

1

p2

p

3

Figure 17: Three general regions for a new vertex from a ∆-move of the Case 2 type.

We assume that there exists no other braid strands between the vertical lines between

B and the vertical line through each pi. Figure 18 shows how a braid from a link

diagram before and after a ∆-move at p3 are L-equivalent to each other.

a

bb

a

bb

p1

a

bb

a

bb

p1

p1

L-move

subdivison

planar isotopy

L-move

a

b

o

o

o

o

Figure 18: We show L-equivalence between both diagrams which were related by a
∆-move.

If we also perform a ∆-move at p3 introducing a new vertex Q involving a vertical

braided strand between vertical lines obtained through p3 and q, then we can show

how the diagram before the ∆-move is L-equivalent to the diagram after ∆-move.

Remark 2.17. If [a, b] was instead a down arc, then we might obtain up arcs after a

∆-move which would involve us applying Lemma 2.14 and Lemma 2.13.

Lemma 2.18. Let D and D′ be link diagrams related by a Reidemeister move. Then

B(D) and B(D′) are L-equivalent.

Proof. We first check the statement for a Ω1 move in Figure 19 and without loss of

generality assume our single arc is an up arc.
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planar isotopy 
and subdivsion

L-move

u

u o

u o

L-moves

L-move

Figure 19: L-equivalence between diagrams related by Ω1 move.

Now we check the statement for a Ω2 move in Figure 20 and without loss of generality

assume our arcs are a up arc and a down arc. The labelling of the two new up arcs

after a Ω2 are labelled “over” even thought they are under since the original up arc

was labelled “over.”

u

u

o

o o
o

o o

Figure 20: L-equivalence between diagrams related by Ω2 move.

Lastly we can check the statement for a Ω3 move but we can use a trick to minimize

the work needed. We have a bottom arc, an upper arc and a middle arc involved in

the move - however no matter what the top or bottom arc is, this does not matter

in the braiding process. Thus, we assume the top or bottom arcs are down arcs and

it remains to check when the middle arc is an up arc given by Figure 21.
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L-move

L-move

Figure 21: L-equivalence between diagrams related by Ω2 move.

Theorem 2.19. (One-move Markov’s Theorem) Two closed braids C(B) and C(B′)
are isotopic if and only if there is a chain B ∶= B0, . . . ,Bk =∶ B′ such that each Bi

and Bi+1 are L-equivalent for i = 0, . . . , k − 1.

Proof. By Lemma 2.13, Lemma 2.14, Lemma 2.16 and Lemma 2.18 we can conclude

that B is well-defined.

Now we simply show that C and B are mutually inverse. Checking this, we get

C(B(D)) is isotopic to D and B(C(B)) = B for any braid B giving our desired

results B ⋅ D = id and D ⋅ B = id
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3 A Local Markov’s Theorem

We introduce basic definitions about tangles in Section 3.1. Then we combine ori-

ented tangles with results about L-moves to construct braided tangles as stated in

Definition 3.15 in Section 3.2. The most important results about braided tangles

are in Section 3.3 which help us see braided tangles as a category in Section 4.

3.1 Oriented Tangles

We define smooth tangles, but only deal with combinatorial tangles, these two cat-

egories represent the same objects via Remark 1.2. Along with this, we define the

two operations for tangles that are important for geometric and algebraic results.

Definition 3.1. A tangle is an embedding of n intervals and m closed curves into

R2×I such that the closed curves lie in R2×[0,1], the endpoints of the n intervals lie

mutually disjoint on the planes R2 × {0,1} and the endpoints are mutually disjoint.

In order to deal with tangles more specifically, we define them as (k, l)-tangles

using the standard definition given by [Tur90].

Definition 3.2. A (k, l)-tangle is a smooth one dimensional compact submanifold

denoted T of R2 × [0,1] such that ∂T = T ∩ (R2 × {0,1}) which is the set {(i,0,0) ∶

k = 1, . . . , k}∪{(j,0,1) ∶ j = 1, . . . , l} and every boundary point of T meets the upper

and lower planes (respectively R2 × {1,0}) orthogonally.

The orientation for a (k, l)-tangle is inherited from the orientation of T as a man-

ifold. An orientation allows us to associate two sequences to a (k, l)-tangle. First

we have ε ∶= (ε1, . . . , εk) called source T and we have v ∶= (v1, . . . , vl) called target

T with every value in each sequence valued ±1. We have εi = 1 if the unit tangent

to T at (i,0,0) ∈ ∂T is (0,0,1), it is εi = −1 if the unit tangent to T at (i,0,0) ∈ ∂T

is (0,0,−1). This is analgously applied to the values of vj depending on the unit

tangent to T at (j,0,1) ∈ ∂T . This is the standard definition from [Tur90].

Remark 3.3. A (0,0)-tangle is a link. A (n,n)-tangle is a braid when there are no

disjoint polygonal curves embedded and the intervals are homeomorphically embed-

ded into R2 × [0,1].

Definition 3.4. Two tangles T1 and T2 are isotopic in the same sense for links as

in Definition 1.5 within the region R2×(0,1) while R2×{0,1} is the identity isotopy.
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We can also analogously define a tangle diagram with respect to Definition 1.7.

While keeping endpoints fixed, use Definition 1.11 to define equivalent tangle dia-

grams. With these notions defined, we can show the tangle version of Reidemeister’s

Theorem seen in Theorem 1.12.

Theorem 3.5. (Reidemeister’s Theorem for Tangles) Two tangles T and T ′ are

isotopic if and only if their corresponding tangle diagrams D and D′ are equivalent.

Proof. Since we only focused on local parts of link diagrams in the proof of Theorem

1.12, then this same proof is used for the case of tangles.

From now on, we only refer to tangle diagrams unless otherwise stated.

Definition 3.6. For two tangles T1, a (k, l)-tangle, and T2, a (m,n)-tangle, we

can perform two operations between them. A tensor product is a disjoint union

denoted by T1 ⊗ T2 and a product is a composition denoted by T2 ○ T2 which is

applicable only if source T1 is the same as target T2. Both operations are depicted

in Figure 22

T T1 2

T1

T2

Figure 22: On the left is the tensor product and on the right is the product.

Remark 3.7. We define tensor product in the category theoretic sense in Definition

4.1.

Definition 3.8. An elementary tangle is an oriented tangle that is one of the

given types as seen in Figure 23, they correspond to oriented written symbols: ↑, ↓,

↶, ↷, º, À, X+ and X−.

(a) (b) (c) (d) (e)

Figure 23: (a) and (b) are up and down arrows, (c) is a cap, (d) is a cup, (e) is a
positive crossing and (f) is a negative crossing.

Remark 3.9. Using tangle operations, we can decompose any link or tangle into a

set of elementary tangles, so it suffices to assume a tangle is an elementary tangle
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unless otherwise stated. For links, one way to decompose a link is given in Theorem

3.27.

3.2 Braided Tangles

Our goal is now to apply a braiding process to tangles, a process that eliminates up

arcs in order to obtain only down arcs, like we did in Section 1.4. We ultimately

want to obtain a diagram of a tangle that results in a braided tangle as in Definition

3.15.

Definition 3.10. Our tangle diagram T consists of edges, filled black vertices we

call original vertices, empty black vertices we call braided vertices and filled

red vertices we call product vertices.

An original vertex lies in R × (0,1). A braided vertex comes in identified pairs that

align vertically on R×{x1, x2} for some fixed x1 ∶= 0+ ε1 and x2 ∶= 1− ε2 for ε1, ε2 > 0

sufficiently small such that for each elementary tangle we obtain a smaller tangle

as seen in Figure 24, one can imagine an arc with part of it lying in T ∖ T ′ and

the other part of it lying outside of T connecting each pair of braided vertices. We

haven not depicted any braided tangles yet because they are the result of L-moves.

A product vertex lies on R × {0,1} and the vertex involved in the product of two

braided tangles.

Remark 3.11. The sequences associated for source T and target T as in Definition

3.2 are only counted for product vertices.

Figure 24: We have two smaller tangles T ′ that has boundaries given by x1 = x2 for
respective values of x1. The x1 and x2 in the elementary tangle on the left side is
chosen so that vertices do not align vertically in T ′.

Definition 3.12. For every tangle diagram T , we have an associated smaller tangle

diagram T ′ as seen in Figure 24. There we subdivide our original tangle by the
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boundary lines of the smaller tangle intersecting our original tangle as seen in Figure.

Label the new vertices as original vertices. Ensure that T ′ satisfies Definition 1.35

Definition 3.13. Given a tangle T and a smaller tangle T ′, we will give the following

perturbation operations that are applied to T ′ so that we can eliminate up arcs

simultaneously without altering our tangle isotopy type. These are given as follows:

1. (Perturbation Move 1) If there is an up arc with a vertex on the bottom

boundary and it is not oriented from the bottom left to the upper right, then

we perform a subdivision and a ∆-move as illustrated in Figure 25 taking care

to not let vertices align.

Figure 25: We apply a ∆-move so that only one of the edges of the new arcs is an
up arc and then braid.

2. (Perturbation Move 2) If there is an up arc with a vertex on the upper bound-

ary and it is not oriented from the bottom left to the upper right, then we

perform a subdivision, a ∆-move, and an isotopy as illustrated in Figure 26

taking care to not let vertices align.

Figure 26: We apply a ∆-move so that only one of the edges of the new arcs is an
up arc, shift the involved original vertex to the right on T ′ and connect to another
original vertex at the original position, then we braid. We shifted the original vertex
so that a product vertex is not connected to a braided vertex.
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3. (Perturbation Move 3) Suppose we have applied Perturbation Move 1 and

Perturbation Move 2 to all relevant up arcs. Now project all upper vertices

of up arcs to the lower boundary of T ′. In order to prevent the horizontal

portion of a sliding triangle move to overlap braided and original vertices on

the boundary of T ′, we subdivide the up arc as illustrated in Figure 27.

Figure 27: We subdivide so that the horizontal arc of an up arc on the boundary of
T ′ does not intersect with any other braided vertex or original vertex.

Definition 3.14. A modified tangle diagram T has T ′ in the sense of Definition

3.12 and we have applied perturbation moves from Definition 3.13 such that they

are no longer applicable.

Definition 3.15. Given a modified tangle diagram T , a braided tangle, B(T ), is

T with T ′ braided such that all up arcs are eliminated via sliding triangle moves.

More specifically T ′ is a finite disjoint of intervals properly embedded in R×[x1, x2]

composed of the following:

1. there are braided and original vertices that are endpoints of the intervals on

the lines R × x1 and R × x2 labelled “over” or “under,”

2. braided vertices come in pairs, a braided vertex on {a} × x2 for some a ∈ R is

matched to a braided vertex on {a} × x1,

3. only original vertices are connected to product vertices that lie on T ∖ T ′

4. a braid is formed by connecting the unpaired vertices on R×1 to the unpaired

vertices on R × 0.

Remark 3.16. While we use B(D) to represent a link diagram braided by sliding

triangles, we also use B(T ) to denote a braided tangle since this process also involves

subdivision and L-moves and isotopy to T ′. Depending on whether we are dealing

with a link diagram or a tangle is how we define what it means to map it via B.
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Definition 3.17. Suppose we have two braided tangles B(T1) and B(T2) such that

T1 ○T2 is applicable. Then the product of braided tangles, B(T1) ○B(T2), occurs in

the following steps:

1. Connect all product vertices by arcs that are oriented so that they cohere.

2. Suppose B(T1) has a braided vertex that is not connected to a horizontal arc.

Then for each pair of braided vertices, relabel the bottom braided vertex of

each pair into an original vertex and connect this vertex by a vertical arc to

a braided vertex at the bottom of T ′
2 of B(T2). Eliminate the new original

vertex to make sure that vertices don’t vertically align.

3. Suppose B(T2) has a braided vertex that is not connected to a horizontal arc.

Then for each pair of braided vertices, relabel the bottom upper vertex of

each pair into an original vertex and connect this vertex by a vertical arc to

a braided vertex at the top of T ′
1 of B(T1). Eliminate the new original vertex

to make sure that vertices don’t vertically align.

4. Suppose B(T1) has a braided vertex that is connected to a horizontal arc on

the upper boundary of T ′
1. Then extend the bottom braided vertex of the pair

as in step 2 of this definition.

5. Suppose B(T2) has a braided vertex that is connected to a horizontal arc on

the lower boundary of T ′
2. Then extend the upper braided vertex of the pair

as in step 3 of this definition.

6. We are left with the remaining braided vertices that have not been extended

- these are connected to product vertices. Relabel these braided vertices as

original vertices and extend them as follows: Note that this forms a chain of

three consecutive arcs given by: an original vertex of T ′
1 of B(T1), a product

vertex of B(T1), a product vertex of B(T2) and an original vertex of T ′
2 of

B(T2). The first arc gets extended like the bottom part of a sliding triangle

move and what we did in step 2. The second arc gets extended like what we

did in step 3.

7. We are only left with up arcs that that can be isotoped to down arcs by a

series of ∆-moves and ensure that vertices do not vertically align.

After this process B(T1) ○ B(T2) is also a braided tangle.
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Remark 3.18. 1. If we are performing step 2, 4 or 6 in the above process in which

the “extended” vertex intersects a horizontal arc on the boundary of T ′
2 of

B(T2), then we know that horizontal arc occurred from braiding an up arc

of T ′
2 of T2. Apply perturbation move 3 to this up arc to make sure such

intersection of a horizontal arc and a braided vertex does not occur.

2. If we are performing step 3, 5 or 6 in the above process in which the “extended”

vertex intersects a horizontal arc on the boundary of T ′
1 of B(T ′

1), then we can

shift the pair of braided vertices of question sufficiently close to the left until

this intersection no longer occurs.

3. Lastly, if we are performing any steps 2 − 7 in which vertices vertically align,

we can always shift pairs of vertices sufficiently close to the vertical line of

intersection so that this intersection no longer occurs.

Figure 28: We only look at the involved local parts of the braided tangle diagrams.
On the left is a move from (1) of Remark 3.18, on the right is a move from (2) of
Remark 3.18. The latter diagram is similar to the move from (3) of Remark 3.18.

Example 3.19. Let T1 and T2 be the tangles on the left of Figure 29 and let B(T1)

and B(T2) be the braided tangles on the right of Figure 29. Using Definition 3.17

detailing the steps to perform the product of two braided tangles, we want to show

B(T1) ○ B(T2).
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Figure 29: The above tangle on the left is T1 and the below tangle on the left is
T2. These two elementary tangles have corresponding T ′

i tangles with appropriate
subdivisions for i = 1,2. We braid T ′

i to get the braided tangles on the right for
i = 1,2 according to Definition 3.14.

Note that we used perturbation moves from Definition 3.13 before braiding the

tangles. Next, follow step 1 and extend braided vertices as in steps 2 − 5 all stated

in Definition 3.17 depicted in Figure 30.

uo

Figure 30: The left diagram is step 1. The middle diagram is applying (1) from
Remark 3.18. The right diagram are steps 2 − 5 from Definition 3.17.
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uouo uouo

Figure 31: Lastly we perform steps 6 and 7 to eliminate remaining up arcs.

Finally we perform step 6 and then many ∆-move isotopies of step 7 on the arcs

involving the remaining braided vertices that have not been “extended” obtaining

the diagram on the right illustrated in Figure 31. In addition, this diagram is

actually B(T1) ○ B(T2).

One can begin to see how B(T1) ○ B(T2) is L-equivalent to B(T1 ○ T2).

Definition 3.20. For two braided tangles B(T1) and B(T2), the tensor product

and product still holds from Definition 3.6. In addition, if B(T1) ○ B(T2) is still

applicable, then we follow the method in Definition 3.17.

3.3 A Local Markov’s Theorem

When we say that braided tangles B(T1) and B(T2) are L-equivalent, note that we

may still have up arcs in Ti ∖ T ′
i for i = 1,2. In the L-equivalence, if needed, we can

always eliminate the up arcs in Ti∖T ′
i by a L-move if needed. The up arcs in Ti∖T ′

i

are always free up arcs.

Theorem 3.21. (A Local Markov’s Theorem) Let T and T ′ be two isotopic tangles

are isotopic if and only if there is a chain of braided tangles B(T ) ∶= B, . . . ,Bk =∶

B(T ′) such that each Bi and Bi+1 are L-equivalent for i = 0, . . . , k − 1.
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Proof. Since we only looked at local parts of a link diagram in the proof of Theorem

2.19, then the same proof is used here. The distinctions made is that we do not

need a closure operation since a braided tangle is still a tangle and our L-equivalence

requires that product vertices on the boundary remain fixed.

Lemma 3.22. Let T1 and T2 be two tangles that are compatible with respect to the

composition operation, T1 ○ T2. Then B(T1 ○ T2) is L-equivalent to B(T1) ○ B(T2).

Proof. We know that every time we apply B to a tangle, we may create more braided

arcs given by pairs of braided vertices, so the fewer we apply B, then we can try to

control the amount of formed braided arcs.

Then B(T1 ○ T2) has less braided arcs than B(T1) ○ B(T2). Eliminate the braided

arcs of B(T1) ○ B(T2) that contain the product vertices of T1 and T2 that lie in

the interior of this braded tangle. This elimination is done by inverse L-moves.

Given our construction of a braided tangle, we know that B(T1 ○ T2) differs from

B(T1) ○ B(T2) via subdivision and diagram isotopies. Thus our desired braided

tangles are L-equivalent.

Lemma 3.23. For every link diagram L we can decompose L into a elementary

tangles that are connected via tensor products and product.

Proof. Let the height of L such a height of y means we are at the line R × {y} of

R2 such that (R × {y}) ∩L /= for some y ∈ R.

Let y1, . . . , yn be the various heights of L such that (R×{y})∩L is a double point of

L or if it coincides with a point of L having the tangent vector 0. Modify L by an

arbitrarily small isotopy to ensure that double points and points where the tangent

vector are 0 lie at different heights.

Set h1 ∶= min{y1, . . . , yn} and then define ε to be the sufficient value needed so that

h1 + ε has not surpassed another yi. This allows us to set a new set of heights

y′1, . . . , y′n where y′i ∶= yi + ε along with another height y′n+1 ∶= h1 − ε. Within each

horizontal partition of the link, we use vertical lines to break up the horizontal

partition into a series of elementary tangles.

The vertical lines are tensor products and horizontal partitions are how we take a

product of two tangles (each composed of elementary tangles that are connected by

tensor product). This provides one construction to our result.

Remark 3.24. In the case of a combinatorial link diagram, we choose y1, . . . , yn at

double points and undefined tangent vectors.
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Example 3.25. We will follow Lemma 3.23 to decompose a given link.

Figure 32: On the left side, we partition the plane of a knot diagram and on the
right side, we separate each plane by lines so that we end up having only elementary
tangles in each box.

Figure 33: This is the knot decomposition into elementary tangles as seen in Figure
32 but more clearly shown.

Lemma 3.26. Let L be a link diagram and suppose it has a decomposition into

elementary tangles T1, . . . , Tn. Then B(L) is L-equivalent to B(T1) ○ ⋯ ○ B(Tn).

Proof. Given Lemma 3.22, we induct on n. Since more tangles do not change that

the diagrams differ by subdivision, diagram isotopies and L-moves, we still have

L-equivalence.
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Theorem 3.27. Let L be a link diagram. Then B(L) is L-equivalent to the the

corresponding operations of tensor product and product applied to braided tangles

B(T1), . . . ,B(Tn) resulting from elementary tangles.

Proof. Lemma 3.23 constructs how we can decompose a link diagram into a series

of elementary tangles such that they reconstruct the link through tensor product

and product operations. This construction has horizontal partitions of the plane

where tangles in each horizontal partition are connected by tensor product opera-

tions. Grouping all respective elementary tangles by tensor product operations, we

then apply product operations to each of these groups. This holds by Lemma 3.26

concluding our proof.

Lemma 3.28. Let B(T1), B(T2) and B(T3) be three braided tangles that are com-

patible with respect to the composition operation T1 ○T2 ○T3. Then B(T1 ○T2)○B(T3)

is L-equivalent to B(T1) ○ B(T2 ○ T3).

Proof. As in the first section of the proof of Lemma 3.22, we know a braided tangle

B(T1○T2○T3), we know it has fewer braided arcs than B(T1)○B(T2)○B(T3). Moreover,

it may have less braided arcs than B(T1 ○ T2) ○ B(T3) and even B(T1) ○ B(T2 ○ T3).

We can eliminate the extra braided arcs of in a similar manner to the proof of Lemma

3.22. B(T1 ○ T2) ○ B(T3) and B(T1) ○ B(T2 ○ T3) that contain product of vertices of

T1 and T2 along with the product vertices of T2 and T3 respectively which lie in the

interiors of both braided tangles. Up to subdivision and tangle isotopy, both braided

tangles are L-equivalent to B(T1 ○ T2 ○ T3). Thus both desired braided tangles are

L-equivalent to each other.

Remark 3.29. Note that the results of Lemma 3.22, Lemma 3.26 and Lemma 3.28

still hold if we replace “product” by “tensor product.” The proofs become trivial.
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4 The Category of Braided Tangles

We outline the method of getting polynomial isotopy invariants for tangles taken

from [Tur90] that is significant for how we can start to think about getting polyno-

mial isotopy invariants for braided tangles.

4.1 The Category of Oriented Tangles

(based on [Tur90])

We define the category of oriented tangles denoted by OTa. These tangles are

determines by the sequences of ε and v as seen in Definition 3.2.

Definition 4.1. A tensor product ⊗ for a category A is a covariant functor

⊗ ∶ A × A → A mapping (A,B) → A ⊗ B for A,B ∈ Ob A. It also associates

(f, g) ↦ f ⊗ g for compatible morphisms f, g ∈ Mor A. Moreover, this functor is

universal which means let g ∶ (A,B) → A ⊗ B and so for any morphism in the

category f ∶ (A,B) → C there is a unique map h ∶ A⊗B → C such that h ○ g = f .

Definition 4.2. A strict monoidal category A is a category A equipped with

the functor A × A → A and an identity object I ∈ Ob A. The functor is actually

the tensor product defined in Definition 4.1. This tensor product must satisfy the

associative property of objects and (compatible) morphisms. Lastly, the identity

object must satisfy, for all A ∈ Ob A, A ⊗ I = I ⊗ A = A and for all morphisms

f ∈ Mor A, f ⊗ IdI = IdI ⊗ f = f . We usually denote a strict monoidal category by

the triple (A,⊗, I).

Example 4.3. The category of oriented tangles, OTa, is a strict monoidal category

given by the triple (OTa,⊗,∅). The objects of OTa are sequences of 1 and −1 such

as the ones of ε and v as in Definition 3.1 representing the source and target. A

morphism in OTa is a map f ∶ ε→ v, which is actually the isotopy equivalence class

of the oriented (k, l)-tangle T where source T = ε and target T = v.

The tensor product ⊗ for oriented tangles is defined as:

ε⊗ v = (ε1, . . . , εk) ⊗ (v1, . . . , vl)

= (ε1, . . . , εk, v1, . . . , vl)

The empty tangle ∅ ∈ ob OTa with source T = target T = ∅.
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(a) (b) (c) (d)

Figure 34: (a) represents morphism (−1,1) → ∅, (b) represents morphism ∅ →

(−1,1), (c) represents morphism (−1,1) → (1,−1) and (d) represents morphism
1→ 1.

4.2 R-matrices

(based on [Tur90])

This section provides a brief introduction to R-matrices and their significance but

do not explain how to construct one.

Definition 4.4. Given a commutative ring K, let V be a K-module, let R ∶ V ⊗V →

V ⊗ V be an automorphism of the K-module V ⊗ V and I ∶ V → V the identity

automorphism. Then the automorphism (R⊗ I) ○ (I ⊗R) ○ (R⊗ I) = (I ⊗R) ○ (R⊗

I)○(I⊗R) ∶ V ⊗V ⊗V → V ⊗V ⊗V is called the quantum Yang-Baxter equation

with spectral parameter zero.

Remark 4.5. The quantum Yang-Baxter equation with spectral parameter zero is

one of the braid relations in the braid group presentation of Definition 1.16.

Definition 4.6. Every linear operator R satisfying the quantum Yang-Baxter equa-

tion is called a quantum R-matrix. This operator determines

Ri = I ⊗⋯⊗ I ⊗R⊗ I ⊗⋯⊗ I ∶ V ⊗⋯V → V ⊗⋯⊗ V

such that we take the first groups of tensor products of I to the (i − 1)th tensor

power, the second group of tensor products of I to the (n − i − 1)th tensor power

and so we have a map from the nth tensor power of V to the nth tensor power of V

for i = 1, . . . , n − 1.

Remark 4.7. These Ri satisfy the same relations as the bi for the braid group of Def-

inition 1.16. This yields the existence of a unique homomorphism Bn → Aut(V ⊗n)

mapping bi ↦ Ri for i = 1, . . . , n − 1. Here we associate a linear operator R to a

braid, Turaev generalizes to associating a linear operator R to an oriented tangle.

The linear operator R for tangles needs to satisfy additional properties.
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4.3 Jones-Conway Polynomial

(based on [Tur90])

We outline how the Jones-Conway Polynomial for links can be obtained from the

R-matrix for oriented tangles.

We set K to be the ring of Laurent polynomials Z[q±] and let V be a free K-module

with finite rank m ≥ 1 and a basis v1, . . . , vm.

Remark 4.8. As usual, let V ∗ = Homk(V,K) be the dual K-module with a dual basis

v∗1 , . . . , v∗m.

Definition 4.9. Define the K-linear homomorphism R ∶ V ⊗KV → V ⊗KV mapping

vi ⊗ vj ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

vj ⊗ vi i > j

−qvi ⊗ vj i = j

vj ⊗ vi + (q−1 − q)vi ⊗ vj i < j

Remark 4.10. 1. R satisfies the Yang-Baxter equation.

2. R2 = 1 − (q − q−1)R implies that it is an isomorphism and R−1 = R + (q − q−1) ⋅
IdV ⊗V .

Notation 4.11. The following notations are useful in Theorem 4.12 which is defines

a operator that lets us create polynomial isotopy invariants for oriented tangles:

1.
Ð→
b denotes the K-homomorphism K → V ∗ ⊗K V mapping 1↦ ∑

m
i=1 v∗i ⊗ vi

2.
←Ð
b denotes theK-homomorphismK → V ⊗KV ∗ mapping 1↦ ∑

m
i=1 q2i−m−1vi⊗v∗i

3.
Ð→
d denotes the K-homomorphism V ⊗K V ∗ →K mapping vi ⊗ v∗j ↦ δi,j

4.
←Ð
d denotes the K-homomorphism V ∗ ⊗K V →K mapping v∗i ⊗ vj ↦ qm+1−2iδi,j

Now for every sequence ε = (ε1, . . . , εk) as defined for tangles in Definition 3.1, let

F (ε) = (⋯(F (ε1) ⊗K F (ε2)) ⊗⋯) ⊗K F (εk) with F (1) = V and F (−1) = V ∗.

Lastly we take the tensor product of the basis and dual basis in V and V ∗, to form

the basis of the K-module F (ε).

Theorem 4.12. For m ≥ 2, there is a unique map Fm mapping an orientable tangle

T to a K-linear homomorphism F (T ) ∶ F ( source T ) → F ( target T ) satsifying:
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1. F (T ) is invariant under tangle isotopy.

2. F (T1 ○ T2) = F (T1) ○ F (T2) for all tangles T1 and T2 such that source T1 =

target T2.

3. F (T1 ⊗ T2) = F (T1) ⊗ F (T2) for all tangles T1 and T2.

4. F (↑) = IdV , F (↓) = IdV ∗, F (↶) =
←Ð
d , F (↷) =

Ð→
d , F (º) =

←Ð
b , F (À) =

Ð→
b ,

F (X+) = −q−mR and F (X−) = −qmR−1.

Proof. The full proof is in [Tur90] using the presentation of generators and relations

of OTa.

Remark 4.13. Our map F is a linear operator which is the R-matrix from Definition

4.6. Note that F is an isotopy invariant of the tangle and that the operations of

the tangle, tensor product and product, correspond to tensor product and product

of the linear operator F .

Definition 4.14. The Conway triple as seen in Figure 35 for a link diagram L

gives three links L+, L− and L0 which is identical to L except for one crossing, and

they differ from each other at that crossing as illustrated.

L L L+ - 0

Figure 35: The Conway Triple is used for polynomial invariants of links.

Replacing oriented tangles with links, then our R-matrix operator is actually the

Jones-Conway Polynomial as defined in Theorem 4.15. In short, for an orientable

link L, the K-linear homomorphism Fm(L) ∶K →K acts by multiplying an element

of the ring K and denote this new element by Fm(L). We can calculate this for

m ≥ 1 via the Jones-Conway polynomial.

Theorem 4.15. The Jones-Conway polynomial is the resulting polynomial of

the unique map V from the set of orientable links in R3 to the Laurent ring in two

variables Z[x±, y±] . This is calculated by:

1. V (L), often denoted by VL is invariant under link isotopy.
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2. V maps the trivial knot to 1.

3. We use the skein formula using the Conway triple, xVL+ − x
−1VL− = yVL0.

Proof. The proof using Theorem 4.12 is seen in full in [Tur90].

Remark 4.16. 1. The traditional Jones polynomial is replaces the third property

above by 1
tVL+−tVL− = (

√
t+ 1√

t
)VL0 for the Laurent ring in one variable Z[

√
t
±
].

See [Jon19] and [Jon85] regarding how the Jones polynomial derived from the

trace defined on Temperley-Lieb algebras and Markov’s Theorem 2.9.

2. The Jones-Conway polynomial is also called the HOMFLY or HOMFLY-

PT polynomial.

The Jones-Conway polynomial can also be used to determine the K-linear ho-

momoprhism Fm(L) ∶K →K as shown in [Tur90].

4.4 The Category of Braided Tangles

Using results from Section 3.3, we show how braided tangles forms a strict monoidal

category similar to oriented tangles.

For tangle T , the smaller tangle T ′ has a distinguished sequence for the source and

target from T . However, every T ′ has +1 for its sequence since we can always isotopy

the horizontal arcs upward so that the original vertices on the boundary of T ′ are

tilted positively. In the combinatorial setting, the vector at a point is denoted +1 if

the angle of the vector lies in (0, π], and it is −1 for (π,2π].

Thus for a tangle T , the braided tangle at its larger boundary consisting of product

vertices, shares the same source and target sequences as T and we apply the product

and tensor product operation similarly. This easily deduces that (BTa,⊗,∅) is a

strict monoidal category.

Further research involves determining a R-matrix for BTa as we did for OTa.
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equivalence of closed braids]. Comptes Rendus (Doklady) de l’Academie des

Sciences de l’URSS, 23:215 – 216, 1939.


