
i

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

Performance Evaluation of Sentinel-2 Earth Observation

Data Cube Generation in the Context of the

EU Common Agricultural Policy

verfasst von / submitted by

Stefan Brand BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2020 / Vienna 2020

Studienkennzahl lt. Studienblatt /

degree programme code as it appears on

the student record sheet:

UA 066 856

Studienrichtung lt. Studienblatt /

degree programme as it appears on

the student record sheet:

Kartographie und Geoinformation

Betreut von / Supervisor: Ass.-Prof. Mag. Dr. Andreas Riedl

ii

iii

Erklärung

Hiermit versichere ich,

 dass ich die vorliegende Masterarbeit selbstständig verfasst, andere als die
angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner
unerlaubter Hilfe bedient habe,

 dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland in
irgendeiner Form als Prüfungsarbeit vorgelegt habe

 und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit vollständig
übereinstimmt.

Wien, am……..

iv

v

Acknowledgments
I would like to express my thanks to a number of people, who helped make this master’s thesis pos-

sible. First of all, I would like to thank my sponsor EOX IT Services for giving me the opportunity to

write the thesis in a company environment. In particular, CEO Dr. Gerhard Triebnigg put his trust in

me from the beginning and Stefan Achtsnit and Joachim Ungar supported me with discussion about

the research and by answering all my questions.

My supervisor Ass.-Prof. Andreas Riedl enabled me to finish the thesis quickly by always replying

promptly to my e-mails. Besides, his concise feedback encouraged me to dig deeper into the research

topic and perform meticulous scientific writing.

During the whole process of writing this master’s thesis my mother took a lot of load off me. Thank

you for always being there for me and supporting my decisions! Unfortunately I have not won the

race between my girlfriend and me, about who would first finish their studies. ;-) Nevertheless I want

to thank you for pushing me forward and keeping my self-set deadline in my mind, leading to con-

tinuous research and writing progress. I love you both!

Lastly, but most importantly, I want to thank my Heavenly Father and His Son Jesus Christ for blessing

my life and putting me in a position where I can live and learn freely.

vi

Abstract
Among the EU policies the Common Agricultural Policy (CAP) has one of the biggest budget shares,

most of which is distributed to farmers. In 2018 the member states’ paying agencies disbursed about

42 billion Euros of direct payments. In return the farmers commit to environmentally friendly farming

practices and landscape conservation. (EU, 2020c) Compliance is monitored via On-The-Spot-Checks

(OTSC), which is time-consuming and only allows for 5 % of farms being inspected. (Devos, Fas-

bender, Griffiths, et al., 2017, p. 4)

This is where the Copernicus Program with its Sentinel-1 and -2 satellites comes in. In an effort to

modernize the CAP and improve its efficiency the EU wants to move to Checks by monitoring (CbM)

and do automatic compliance inspections of all agricultural parcels. CbM is facilitated by training a

Machine Learning (ML) model using labelled satellite data. The ML model then classifies the agricul-

tural parcels according to crop type and compares this computed crop type to the one declared by

the farmer. Non-complying parcels are highlighted to the inspectors.

Since satellite data can be considered big data there are some specific challenges involved. They can

be mitigated by pre-processing these data into a data cube, which abstracts satellite images from a

file-based format into a data structure that enables easy analysis. These so-called Earth observation

data cubes are at the centre of this research. The aim was to contribute information about the re-

source usage of data cube generation because this aspect is largely unexplored at present.

Program code to generate data cubes using the two applications Euro Data Cube Batch Processing

and mapchete Hub was written and the performance of the two was measured and compared. Dur-

ing the experiments, optical Sentinel-2 satellite imagery of one to 8.5-months was processed into a

data cube with half-monthly time slices covering 17,000 km². The hypothesis was that the commer-

cial service Batch Processing can outperform the custom mapchete Hub, which is based on open-

source software and developed by EOX IT services, the sponsor of this thesis.

The experiments show that there is no clear winner in terms of size (mapchete Hub: 48.37 GiB; Batch

Processing: 50.40 GiB) and storage costs (USD 1.185/USD 1.235) of the generated data cube. Also the

processing time is similar up to the point where Batch Processing seems to hit a performance bottle

neck and mapchete Hub is almost 50 % faster (1:24 vs. 2:03). Batch Processing’s abstract currency

Processing Unit is generally expensive to buy with real money and therefore mapchete Hub succeeds

in the processing costs category by far as well. The only drawback of mapchete Hub is that there is no

pre-defined UTM grid available, so that the user has to define a custom grid.

The advantage of Batch Processing’s optimized UTM tiling grid especially shows in the extrapolation

scenario for Austria, which spans two UTM zones. In this scenario EDC Batch Processing comes first in

regard to processing time (14 % faster than mapchete Hub) and storage size/costs (17 % lower). Still

mapchete Hub’s processing costs are almost 200 times lower than Batch Processing’s.

In conclusion, Batch Processing cannot outperform mapchete Hub in a business context due to its

high processing costs. The results of the experiments allow for valuable insight into the performance

of data cube generation and can be a reference for future work regarding tiling grids, optimizations

for later data cube analysis and data cubes consisting of Sentinel-1 radar data.

vii

Kurzfassung
Die Gemeinsame Agrarpolitik (GAP) hat relativ zu den anderen EU-Politiken einen der größten Bud-

getanteile. Das meiste Geld wird von den Zahlstellen der Mitgliedsländer in Form von Direktzahlun-

gen an die Bauern ausgezahlt (2018: EUR 42 Milliarden). Im Gegenzug verpflichten sich die Bauern zu

umweltfreundlicher Bewirtschaftungsweise und Landschaftspflege. (EU, 2020c) Die Erfüllung der

Vorgaben wird mit zeitaufwändigen Vor-Ort-Kontrollen überwacht, die nur eine Kontrolle von 5 %

aller Höfe erlaubt. (Devos, Fasbender, Griffiths, et al., 2017, p. 4)

Hier kommt das Copernicus-Programm mit seinen Sentinel-1- und -2-Satelliten ins Spiel. Um die GAP

zu modernisieren und ihre Effizienz zu steigern, möchte die EU auf Checks by Monitoring (CbM) set-

zen und automatische Kontrollen aller Agrarflächen durchführen. Dies wird ermöglicht, indem ein

Machine-Learning-Modell mit klassifizierten Satellitendaten trainiert wird. Das Modell klassifiziert

dann wiederum Felder nach der darauf angebauten Kulturpflanze und vergleicht das Ergebnis mit

den Angaben der Bauern. Nicht übereinstimmende Agrarflächen werden genauer kontrolliert.

Da Satellitendaten als Big Data erachtet werden können, gehen sie mit einigen spezifischen Heraus-

forderungen einher. Diese können durch Vorprozessierung zu Datenwürfeln bewältigt werden. Satel-

litenbilder werden so von einem Datei-basierten Format in eine Datenstruktur abstrahiert, die eine

mühelose Analyse ermöglicht. Die so genannten Erdbeobachtungsdatenwürfel bilden den Hauptfo-

kus dieser Arbeit. Da der Ressourcenverbrauch der Generierung solcher Datenwürfel zurzeit fast

unerforscht ist, war das Ziel, Informationen zu diesem Forschungsfeld beizutragen.

Dafür wurde Programmcode zur Datenwürfelgenerierung mittels der beiden Anwendungen Euro

Data Cube (EDC) Batch Processing (BP) und mapchete Hub (mHub) geschrieben und deren Perfor-

mance gemessen und verglichen. Die Experimente umfassten die Prozessierung von optischen Senti-

nel-2-Satellitenbildaufnahmen über einen Zeitraum von einem bis 8,5 Monaten und einer Ausdeh-

nung von 17.000 km² in einen Datenwürfel mit halbmonatigen Zeitschichten. Die Hypothese war,

dass der kommerzielle BP-Dienst eine bessere Performanz als die individuelle mHub-Lösung bietet,

die auf quelloffener Software basiert und von dem Unternehmen EOX IT Services entwickelt wird,

dem Sponsor dieser Masterarbeit.

Die Experimente zeigen, dass es bei der Speichergröße (mHub: 48,37 GiB/BP: 50,40 GiB) bzw. der -

kosten (USD 1,185/USD 1,235) des generierten Datenwürfels keinen klaren Sieger gibt. Bis zu einem

Performanz-Engpass von BP ist auch die benötigte Zeit ähnlich, danach ist mHub beinahe 50 %

schneller (1:24/2:03). Die abstrakte Währung von BP ist im Allgemeinen teuer in Bezug auf reales

Geld, wodurch mHub auch bei den Prozessierungskosten bei weitem voranliegt. Der einzige Nachteil

von mHub ist das Fehlen eines vordefinierten UTM-Rasters, das daher selbst erstellt werden muss.

Der Vorsprung des optimierten UTM-Kachelrasters von BP zeigt sich vor allem im Extrapolationssze-

nario für ganz Österreich, welches in zwei UTM-Zonen liegt. In diesem Szenario gewinnt EDC BP in

den Kategorien Prozessierungszeit (14% Vorsprung) und Speichergröße/-kosten (17%). Dennoch kos-

tet die Prozessierung mit mHub fast 200 Mal weniger.

Letztendlich bietet BP in einem Geschäftsumfeld aufgrund seiner höheren Kosten keine höhere Per-

formanz als mHub. Die Ergebnisse der Experimente erlauben wertvolle Einblicke in die Performanz

der Datenwürfelgenerierung und können eine Grundlage für zukünftige Forschung bezüglich Kachel-

raster, Optimierungen für die Datenwürfelanalyse und Datenwürfel mit Sentinel-1-Rasterdaten sein.

viii

Content
Erklärung ... iii

Acknowledgments .. v

Abstract ... vi

Kurzfassung .. vii

Content .. viii

List of figures .. x

List of tables ... xii

List of formulas .. xiii

List of abbreviations .. xiv

1 Introduction ... 2

1.1 Motivation ... 2

1.2 Problem ... 3

1.3 Research Question and Aims ... 4

1.4 State of the Art .. 5

1.5 Methodology and Structure of the Thesis ... 5

2 Theory .. 8

2.1 Computer Systems Performance... 8

2.2 Remote Sensing ... 9

2.2.1 Physical Foundations of Remote Sensing .. 10

2.2.2 Landscape Biophysical Properties and their Characterization 12

2.2.3 Sensors .. 12

2.2.4 Level of Processing .. 13

2.3 Sentinel Satellites .. 14

2.4 Cloud Computing ... 16

2.5 Earth Observation Data Cubes .. 20

2.6 Euro Data Cube .. 25

2.6.1 EDC Batch Processing API .. 27

2.7 mapchete Hub ... 31

2.8 Data representation .. 35

3 Methodology ... 40

3.1 Performance metrics ... 40

3.2 Test area .. 42

3.3 Data Cube Schema... 45

ix

3.4 Data Cube Generation Code .. 47

3.4.1 Utility function ... 47

3.4.2 Batch Processing .. 47

3.4.3 mapchete Hub ... 50

3.5 Hardware ... 51

4 Results ... 54

4.1 Resource usage of Euro Data Cube ... 54

4.2 Resource usage of mapchete Hub ... 56

4.3 Comparison ... 58

4.4 Scenarios ... 59

5 Discussion .. 64

6 Conclusions .. 68

7 Literature ... 70

Annex A date_interval_endpoints ... 78

Annex B Batch Processing code ... 79

B.1 Evalscript ... 79

B.2 EDC Batch Processing Jupyter Notebook .. 82

B.2.1 Get authorization token .. 82

B.2.2 Configure request (evalscript) ... 82

B.2.3 Calculate parameters .. 83

B.2.4 Evalscript & Payload .. 83

B.2.5 Send request .. 85

Annex C mapchete Hub code .. 86

C.1 datacube.py ... 86

C.2 datacubes.mapchete ... 89

The source code that was produced in the context of this master’s thesis can be found on Github:

https://github.com/StefanBrand/masterdatacube

x

List of figures
Fig. 1: Typical vegetation index time series of autumn barley and sunflower deduced from satellite

observations. Source: Koetz et al., 2019, p. 20 ... 3

Fig. 2: Example maps for declared crop type, predicted crop type, confidence index and conformity

assessment. Source: Koetz et al., 2019, p. 16 ... 3

Fig. 3: Passive (above) and active (below) remote sensing. Source: Eamus et al., 2016, Figure 5.1 10

Fig. 4: The spectrum of electromagnetic radiation (not to scale), and its use in satellite remote sens-

ing (SRS). Source: Pettorelli et al., 2018, Figure 2.2, cropped... 11

Fig. 5: Gases that affect atmospheric transmission. Source: King & Herring, 2001, cropped 11

Fig. 6: Spectral signatures of soil, vegetation and water, and spectral bands (see below) of LANDSAT

7. Source: Siegmund & Menz, 2005 (as cited in SEOS, n.d.) ... 12

Fig. 7: Sentinel-2: Spatial resolution vs. wavelength. Source: ESA, 2015a, p. 8 15

Fig. 8: S2A Scene Classification Values. Source: (ESA, 2020b)... 16

Fig. 9: AWS infrastructure diagram. Source: AWS, 2020j .. 18

Fig. 10: Process from image files to a pixel-aligned image cube. Source: (Kopp et al., 2019, p. 8),

cropped ... 20

Fig. 11: Data-oriented faces (left) and functionality-oriented faces (right) of a data cube. Source:

Strobl et al., 2017, p. 33f ... 21

Fig. 12: The six interoperability views. Source: Nativi et al., 2017, p. 83 .. 22

Fig. 13: Euro Data Cube architecture. Source: EDC Consortium, 2020b, p. 4 27

Fig. 14: EDC Batch Processing API asynchronous workflow. Source: Sentinel Hub, 2020b 28

Fig. 15: Example JSON payload that is attached to a Batch Processing request. Source: (Sentinel Hub,

2020e) ... 29

Fig. 16: Example of a simple Batch Processing evalscript. Source: Sentinel Hub, 2020d 30

Fig. 17: Web Mercator tile pyramid. Source: EOX, 2020f ... 31

Fig. 18: Example for a .mapchete YAML file. Source: EOX, 2015/2020 ... 32

Fig. 19: Example of a simple mapchete processing script. Source: EOX, 2015/2020 33

Fig. 20: Example of .mapchete file input section for satellite imagery from a cloud repository. Source:

EOX, 2020d .. 33

Fig. 21: MongoDB document example reproduced as JSON. Source: MongoDB, 2020b 34

Fig. 22: Chart showing performance benchmark of COG, netCDF and zarr. Source: Yee et al., 2020, p.

18 ... 37

Fig. 23: Chart showing file size read benchmark of COG, netCDF and zarr. Source: Yee et al., 2020, p.

20 ... 37

Fig. 24: Chart showing file size comparison of COG, GeoTIFF (non-COG), netCDF and zarr. Source: Yee

et al., 2020, p. 23 ... 38

Fig. 25: Overview of the experiment workflow. Source: Own work ... 40

xi

Fig. 26: Overview map of Austria showing the MAB AOI. Basemap: basemap.at. CRS: EPSG:3857 42

Fig. 27: The 57 S2GM tiles that make up the MAB AOI. Basemap: basemap.at. CRS: EPSG:3857........ 43

Fig. 28: Custom grid for Mapchete Hub to cover UTM zone 33 North with process zones highlighted.

Basemap: OpenStreetMap (Data © OpenStreetMap contributors, Rendering © MapServer and

EOX), CRS: EPSG:4326 ... 43

Fig. 29: Process zones (red) overlapping Sentinel-2 tiles (pink) (ESA, 2015b). Basemap: basemap.at.

CRS: EPSG:3857 ... 44

Fig. 30: Process tiles intersected by AOI in relation to process zones. Basemap: basemap.at. CRS:

EPSG:3857 ... 45

Fig. 31: Screenshot of EOX-internal CPU and memory dashboard. Annotations: own work 51

Fig. 32: Chart showing execution time plotted against the number of time slices in the data cube. .. 54

Fig. 33: Chart showing processing costs plotted against the number of time slices in the data cube. 55

Fig. 34: Chart showing the storage size of the processed data cubes in Gibibytes plotted against the

number of time slices. ... 55

Fig. 35: Mapchete Hub: Chart showing execution time plotted against the number of time slices in

the data cube. ... 56

Fig. 36: Mapchete Hub: Chart showing processing costs plotted against the number of time slices in

the data cube. ... 57

Fig. 37: Mapchete Hub: Chart showing measured CPU time and S3 requests plotted against the num-

ber of time slices in the data cube. ... 57

Fig. 38: Mapchete Hub: Chart showing the storage size of the processed data cubes in Gibibytes plot-

ted against the number of time slices. .. 58

Fig. 39: Execution time (left) and storage size (right) comparison between Batch Processing and map-

chete Hub .. 58

Fig. 40: Illustrative diagram showing the development of data cube size over time and the respective

processing dates of the scenarios. Source: own work .. 60

Fig. 41 All Batch Processing tiles of tile grid 0 in Austria. EPSG:31297 ... 61

Fig. 42: All mapchete Hub process zones (red outline) and process tiles (pink) in Austria. EPSG:31297

 ... 61

xii

List of tables
Table 1: Levels of processing of satellite data. Source: (Chuvieco, 2020, p. 201) 14

Table 2: Overview of the Sentinel missions. Dedicated/onboard: Whether the instrument has its own

platform or is on board some other satellite platform. Sources: ESA, 2020c; European

Commission, n.d. ... 14

Table 3: Overview of Sentinel-2 bands with their spectral and spatial characteristics and applications.

Source: (Chuvieco, 2020, p. 90; ESA, 2020e) .. 15

Table 4: Sentinel Hub Batch API tiling grids. Source: Sentinel Hub, 2020b ... 29

Table 5: Illustrative folder structure of Batch Processing API results inside an S3 bucket. Source: own

work .. 31

Table 6: Illustrative folder structure of Mapchete Hub results inside an S3 bucket. Source: own work

 ... 34

Table 7: Comparison of data cube schemas of the data cubes generated using Batch Processing (left)

and mapchete Hub (right). Differences highlighted in grey. .. 46

Table 8: Structure of one Batch Processing tile in the S3 bucket. ... 49

Table 9: Performance measurements of experiments with Sentinel Hub Batch Processing API (57

processed tiles). Grey values are inferred using linear regression. Storage costs derived from

size. Prices taken from AWS website. (AWS, 2020h) a Linear regression only takes into account

values for 4–12 time slices .. 54

Table 10: Performance measurements of experiments with Mapchete Hub (2 756 tiles processed in 6

zones). Processing costs include costs for S3 requests and CPU time (m5a.2xlarge spot

instances). Storage costs derived from size. Prices taken from AWS website. (AWS, 2020e,

2020h) ... 56

Table 11: Summary of performance EDC Batch Processing API vs. Mapchete Hub 59

Table 12: Comparison between Batch Processing API (factor 4.67) and mapchete Hub (5.64) of the

extrapolation of the experiment results to the whole season and the geographical extent of

Austria ... 62

xiii

List of formulas
Formula 1: Extrapolation of Wang et al.'s results to the extent of Austria and a Sentinel-2 data cube

with 30 time slices and 16 bands. ... 5

Formula 2: Formula to estimate the cumulative wall clock time and processing costs to generate a

data cube for the whole crop season, as well as the resulting total storage size 59

Formula 3: Storage costs calculation of scenario one. ... 60

xiv

List of abbreviations
AaaS Analytics as a Service

ADBMS Array Database Management Systems

AMA Agrarmarkt Austria

AMD Advanced Micro Devices

AMS Area Monitoring System

AOI Area of Interest

API Application Programming Interface

AWS Amazon Web Services, Amazon Web Services

BNDVI Blue Normalized Difference Vegetation

Index

BoA Bottom-of-Atmosphere

BP Batch Processing

CAP Common Agricultural Policy

CbM Checks by Monitoring

CDM Common Data Model

CEO Chief Execution Officer

CF Climate and Forecast

CLI Command-Line Interface

COG Cloud-Optimized GeoTIFF

CPU Central Processing Unit, Central Processing

Unit

CRS coordinate reference system

CVI Chlorophyll vegetation index

DaaS Desktop as a Service

DGGS Discrete Global Grid Systems

DIAS Data and Information Access Service

DSaaS Data Storage as a Service

EC2 Elastic Compute Cloud

EDC Euro Data Cube, Euro Data Cube

EMS Electromagnetic Spectrum

EODC Earth Observation Data Cube

EPSG European Petroleum Survey Group Geodesy

ESA European Space Agency

EU European Union

EUMETSAT European Organisation for the

Exploitation of Meteorological Satellites

GCP Google Cloud Platform

GEE Google Earth Engine

GFS Google File System

GHz Gigahertz

GiB Gibibyte

GNDVI Green Normalized Difference Vegetation

Index

GPU Graphics Processing Unit

GSAA Geospatial Aid Application

GUI Graphical User Interface

HB Higher Better metrics

HDF Hierarchical Data Format

HDFS Hadoop Distributed File System

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IACS Integrated Administration and Control

System

IAMaaS Identity and Access Management as a

Service

INSPIRE Infrastructure for Spatial Information in

the European Community

IT Information Technology

JEODPP JRC Earth Observation Data and

Processing Platform

JPEG Joint Photographic Experts Group

JRC Joint Research Center, Joint Research Centre

JSON JavaScript Object Notation

L1C Level-1C

L2A Level-2A

LB Lower Better metrics

LPIS Land Parcel Identification System

MaaS Monitoring as a Service

MAB Monitoring Algorithm Baseline, Monitoring

Algorithm Baseline

MERIS Medium Resolution Imaging Radiometer

mHub mapchete Hub

ML Machine Learning

MODIS Moderate Resolution Imaging

Spectroradiometer

NASA National Aeronautics and Space

Administration

NB Nominal Better metrics

NDSI Normalized Difference Salinity Index

NDVI Normalized Difference Vegetation Index

NDWI Normalized Difference Water Index

netCDF Network Common Data Form

NIR Near-Infrared Region

NIST National Institute of Technology

ODC Open Data Cube

OGC Open Geospatial Consortium

OLAP OnLine Analytical Processing

OSD Object-based Storage Devices

OTSC On-The-Spot Checks

OWL Web Ontology Language

PA Paying Agency

PaaS Platform as a Service

PiB Pebibyte

PNG Portable Network Graphics

PoP Point of Presence

PU Processing Unit

radar radio detection and ranging

xv

RDF Resource Description Framework

REST Representational State Transfer

RS Remote Sensing

S1 Sentinel-1

S2 Sentinel-2

S2GM Sentinel-2 Global Mosaic

S3 Simple Storage Service

SaaS Software as a Service

SAR synthetic aperture radar

SCL Scene Classification Layer

SecaaS Security as a Service

SECO Software Ecosystem

SEPAL System for Earth Observation Data Access,

Processing and Analysis for Land Monitoring

SH Sentinel Hub

SLAR side-looking airborne radar

SoS System of Systems

SOW Statement of Work

SPOT System Probatoire pour l’Observation de la

Terre

SRS Satellite Remote Sensing

SWIR Shortwave Infrared Region

TiB Tebibyte, Tebibyte

TIFF Tagged Image File Format

TIR Thermal Infrared Region

TM Thematic Mapper

ToA Top-of-Atmosphere

ToC Top-of-Canopy

uint16 16-bit unsigned integer

USGS United States Geological Survey

UTM Universal Transverse Mercator

UV Ultraviolet

vCPU virtual CPU

VDI Virtual Desktop Infrastructure

VIS Visible

WCPS Web Coverage Processing Service

WMTS Web Map Tile Service

YAML YAML Ain't Markup Language

1

2

1 Introduction

1.1 Motivation
Food security is a recurring topic in a nowadays world struck by climate change, but it has been a

concern for nations for a long time. Almost from their beginning the European Communities have

dedicated large parts of their budget to supporting farmers and the food supply under the so-called

Common Agricultural Policy (CAP) that was founded in 1962. In 2018 about 36 % (EUR 58.82 billion)

of the European Union’s (EU) budget were spent on the CAP, of which direct payments to farmers

had the greatest share (EUR 41.74 billion), followed by the other two CAP areas rural development

(EUR 14.37 billion) and market measures (EUR 2.7 billion). The direct payments benefit around 10

million farms with 22 million people working regularly in the sector; in return the farmers commit to

environmentally friendly farming practices and preservation of the countryside. (EU, 2020c)

Payments to farmers are administered by the EU member states through one or multiple paying

agencies (PAs) per country. To ensure standardized handling of subsidies across the European Union

a system named Integrated Administration and Control System (IACS) has been implemented. IACS

consists of databases and applications to track animal and farm land stock: Besides a database for

animals, there is a database for all agricultural parcels in the EU (Land Parcel Identification System,

LPIS) and a graphical tool that helps farmers declare their cultivated crops (geospatial aid application,

GSAA). The control component of IACS comprises administrative checks of all applications through

computerised cross checks and physical on-farm checks of a sample of farmers (on-the-spot checks,

OTSC). (EU, 2020b)

The IACS process is conducted yearly; in Austria the deadline for the farmers’ declarations is the May

15th of each year (AMA, 2020, p. 11) and checks for validity are carried out until the end of the crop

season on November 30th. The OTSC sample size usually is 5% of the farms (Devos, Fasbender, Grif-

fiths, et al., 2017, p. 4), which means that on average an inspector only visits a farm every 20 years.

First of all, this is accompanied by a lot of manual administrative work for the PAs and the farmers

and, secondly, irregularities that have arisen on a farm—be it with bad intent or inadvertently—

might not be discovered for years.

A new development, which can make IACS much more efficient and just, is made possible by the

newly available Copernicus Programme, specifically through its Sentinel-1 (S1) and Sentinel-2 (S2)

satellites. The satellite pair S1A (launched in 2014 being the first of almost 20 more Copernicus satel-

lites until 2030) and S1B is equipped with radar sensors, which enable calculation of crop biomass

and detection of crop harvesting. The S2 constellation similarly consists of two satellites with optical

sensors that capture multispectral images of the Earth’s surface. This allows for crop type detection,

crop health analysis and the monitoring of land use change. The combined frequent observations of

S1 (at least two days revisit time) and S2 (3–4 days), together with geo-tagged photos, drone images

and supplementary documentation by farmers (e.g. seed labels), facilitate automated IACS checks

that are commonly referred to as checks by monitoring (CbM) by the European Commission’s Joint

Research Centre (JRC) and EU legislation. (Devos, Fasbender, Griffiths, et al., 2017; Devos, Fasbender,

Lemoine, et al., 2017; ESA, 2018a; EU, 2018a, 2018b, 2020a) Sometimes the JRC also labels this new

scheme of checks Area Monitoring System (AMS). (Loudjani, 2019)

3

Fig. 1: Typical vegetation index time series of autumn barley and sunflower deduced from satellite observations. Source:
Koetz et al., 2019, p. 20

In order to mine information from satellite imagery, machine learning (ML) algorithms are employed.

In general, data scientists train an ML model and apply this model to new data. In terms of CbM,

satellite imagery is combined with agricultural parcels from the LPIS that have crop type labels at-

tached. The ML model then learns typical vegetation index time series for each crop type (see Fig. 1).

When new satellite imagery is presented to the algorithm, it can—with certain confidence—

determine the crop type of unlabeled parcels. These predictions are compared to the GSAA farmers’

declarations and checked for conformity (see Fig. 2). If the GSAA and the predicted crop type do not

match, an alarm is raised with the paying agency and further investigations are triggered.

Fig. 2: Example maps for declared crop type, predicted crop type, confidence index and conformity assessment. Source:
Koetz et al., 2019, p. 16

1.2 Problem
CbM can lead to huge efficiency gains for agriculture administrations, but leveraging satellite data

also poses a challenge for the authorities because they are currently not well-equipped to handle this

type of data. Satellite imagery is deemed big data or big Earth data by a lot of scientist, whose chal-

lenges are generally explained by the three (Woodcock et al., 2016, p. 13; Giuliani et al., 2017, p.

101,111, 2018, pp. 8659, 8661; Giuliani, Camara, et al., 2019, p. 1f; Wu et al., 2018, p. 693; Augustin

4

et al., 2019, p. 1; Giuliani, Masó, et al., 2019, p. 2), or sometimes four (Lewis et al., 2017, p. 289f;

Wang et al., 2019, p. 152) or five (Sudmanns et al., 2020, p. 833f) Vs:

 Volume: From beginning of the operations until the end of 2019 the Sentinels (1, 2, 3,

5P) archive contained almost 26 million products amounting to 17.23 PiB1 of data

(Knowelden & Castriotta, 2020, p. 27)

 Velocity: During November 2019, on average, 30,471 new products with a volume of

18.47 TiB2 were published per day (Knowelden & Castriotta, 2020, p. 27f)

 Variety: There is an ever increasing variety of public and commercial satellite sensors,

raw and atmospherically corrected imagery and derived data products that pose chal-

lenges in combining the different products for greater insight (e.g. Sentinel-1 and Senti-

nel-2 for CbM)

 Veracity (Lewis et al., 2017, p. 289f; Wang et al., 2019, p. 152): A lot of things can go

wrong in the Earth observation pipeline. For example, for Sentinel-2 there is an anomaly

database listing on-board irregularities that usually cannot be recovered and processing

issues that potentially can be fixed after having been identified. As a result, some satel-

lite acquisitions might contain errors and later be removed from the archive.

 Value (Sudmanns et al., 2020, p. 833f): The Copernicus data is available to use for free

and thus does not generate revenue for the European society. However, this openly ac-

cessible wealth of data fosters business opportunities for companies in many industries.

Earth observation data cubes have set out to solve these challenges by abstracting individual satellite

products into a uniform view on the data. Geographical and temporal boundaries of satellite imagery

are dissolved and offered to users as a hypercube with at least three dimensions (x-coordinate, y-

coordinate, time), potentially covering the whole Earth and all satellite observations since the launch

of the service. Often there are more than three dimensions because sensors capture multiple wave-

length bands (i.e. red, green, blue of the visible light) and satellite data might carry height informa-

tion. This data representation enables easy analysis of time series and custom areas of interest and is

perfectly fit for CbM, which deals with the development of agricultural parcels over time.

1.3 Research Question and Aims
EOX, the sponsoring company of this master’s thesis, and the Austrian paying agency AMA (Agrar-

markt Austria) have initiated the Monitoring Algorithm Baseline (MAB) project to investigate needs

of and solutions to the PA’s CbM efforts. AMA’s aim is to update the ML model on a monthly basis

throughout the crop season, which requires timely additions to an underlying data cube. Two cloud

services to process satellite data into multi-dimensional data cubes are at hand: mapchete Hub

(mHub), which is developed in-house, and the Euro Data Cube (EDC), of which EOX is a consortium

member. Since this cooperation should eventually lead to a commercial data processing offer, re-

source costs incurring to EOX are of utmost relevance in order to select the better option and draft a

business plan.

Of special interest is the resource usage during data cube generation (execution time, know-how,

processing costs) as well as of storing the resulting data cube (required storage space, cloud stor-

age costs). This results in the following questions:

1
 PiB = Pebibyte = 2

50
 bytes

2
 TiB = Tebibyte = 2

40
 bytes

5

 Can the commercial cloud service EDC outperform the custom mHub application?

 How can a data cube be generated in each of the two tools?

 What does performance even mean?

1.4 State of the Art
There are not many empirical accounts of resource usage of processing Earth observation data. One

publication could be found by Wang et al. (2019), who created 7-band satellite mosaics covering

1,208,000 km² from Landsat-TM (Thematic Mapper) imagery using the Chinese cloud services pro-

vider OpenStack. Wang et al. (2019) processed 28 Landsat scenes amounting to about 10 GB of total

storage space in North-Eastern China. The mosaic was calculated on a virtual cluster with up to ten

nodes, each equipped with 8 virtual CPUs3 and 16 GB memory. Using only one node the calculation

took 350 minutes, whereas three nodes managed the workload within 100 minutes. From five nodes

(ca. 80 minutes runtime) no speedup could be noticed and ten nodes even led to an increase in run-

time because of the parallelization overhead.

Let me naively translate these performance measurements to the whole area of Austria (83,879 km²)

and to the data requirements of the MAB project, which includes a data cube of 16 bands at S2 reso-

lution (10 m time 10 m) and 30 time slices. The Landsat-TM instrument has six bands at 30 m resolu-

tion and one band at 120 m resolution (16 x fewer pixels). (NASA, 2020) Therefore first the values for

one 10-m-resolution band (9 x more pixels than 30 m resolution) will be determined and then the

other factors will be accounted for. Formula 1 shows the resulting estimation.

Formula 1: Extrapolation of Wang et al.'s results to the extent of Austria and a Sentinel-2 data cube with 30 time slices
and 16 bands.

This means that it would have taken Wang et al.’s (2019) experiment equipment 66 hours to process

495 GB of satellite data. It has to be noted that the additional processing time for calculating vegeta-

tion indices is not included in Wang et al.’s (2019) research and they also do not disclose data type

and file format of the output mosaic.

1.5 Methodology and Structure of the Thesis
In the course of this thesis the performance of data cube generation on both mHub and EDC will be

tested using custom processing scripts applied to a sub region of Austria. The thesis will solely focus on

Sentinel-2 imagery and not treat Sentinel-1 data. Chapter 0 will introduce the reader to fundamentals

of computer system performance measurements, remote sensing, cloud computing, Earth observation

data cubes and data representation formats. It also includes a section on mHub and EDC, respectively.

Chapter 0 goes into detail about the methodology employed (used performance metrics, test area,

data cube schema and the code used to generate the data cubes). The results of the experiments will

be presented in chapter 0 and put into context in chapter 0. A summary of the results of the thesis and

conclusions can be found in chapter 0.

3
 CPU = Central Processing Unit

6

7

8

2 Theory
This chapter lays the ground for the whole thesis. Important concepts are explained and the latest

knowledge in the relevant fields is summarized. First of all, computer systems performance is thor-

oughly defined. Detailed chapters about the fundamentals of remote sensing and the Sentinel satel-

lites follow. Thereafter the relatively new cloud computing paradigm is described, including in-depth

information about Amazon Web Services. The literature about Earth observation data cubes is reca-

pitulated and the two services for data cube generation, Euro Data Cube and mapchete Hub, are

introduced. A section on in-memory and on-disk data representation concludes the theory chapter.

2.1 Computer Systems Performance
Evaluating the performance of a computer system is important because performance ultimately

translates to cost efficiency. (Obaidat & Boudriga, 2010, p. 1) E.g. is it cheaper to upgrade a computer

system because of performance gains or does a minute performance increase not justify high instal-

lation costs?

The major goals of performance evaluation are the following, according to Obaidat & Boudriga (2010,

p. 5f):

i. Compare alternative system designs (“find quantitatively the best configuration”)

ii. Procurement (“find the most cost-effective system for a specific application”)

iii. Capacity planning (“meet future demands in a cost-effective manner”, e.g. website load)

iv. System tuning (“find the set of parameter values that produce the best system perform-

ance”)

v. Performance debugging (find performance bottlenecks, i.e. the reason why a computer sys-

tem does not meet performance expectations)

vi. Set expectations (in the planning phase of future computer systems)

vii. Recognize relative performance (contextualize new generations of computer systems)

Three methods that are used throughout the development process of a system can be discerned

when conducting performance evaluation: (i) analytical modelling, (ii) simulation, (iii) measurement

and testing. Analytical models are the least cost-intense evaluation method, but they also render the

lowest accuracy in comparison to real measurements. However, they are the only relevant means to

obtain performance values in the early design stage of new computer systems. Simulations form a

middle course in the sense that they do not require a prototype or a finished system and still provide

good accuracy given representative input data. The effort for creating a simulation model is consid-

erable, though. (Obaidat & Boudriga, 2010, p. 7f)

Performance can be formalized by various measures. In computer systems the general interest is on

how many times an event occurs (count), how long a process takes (time) and how large a specific

parameter is (size). Performance metrics can be derived from one or multiple measures. For exam-

ple, the performance of a service can be indicated by the following metrics: (Lilja, 2000, p. 9; Obaidat

& Boudriga, 2010, p. 9)

 productivity (“rate at which the service is performed”)

 responsiveness (“time needed to perform the service”)

 usage metrics (consumed resources)

 availability (uptime)

 reliability (“probability that the system survives until some time t”)

9

Depending on their scale, these metrics can be categorized in Higher better metrics (HB – e.g. pro-

ductivity), Lower better metrics (LB – e.g. responsiveness) and Nominal better metrics (NB – e.g. utili-

zation of a system component; a utilization of 100 % is not desirable because it would constitute a

bottleneck for the whole system).

Lilja (2000, p. 10ff) write about the “characteristics of a good performance metric”. According to

them these are:

i. Linearity (performance value should be proportional to the actual performance)

ii. Reliability (if one system is better rated than the other, it should always outperform the

other system in real conditions)

iii. Repeatability (each execution of a performance evaluation should yield the same results un-

der given conditions)

iv. Easiness of measurement (the metric should not be hard to measure because otherwise it is

also prone to incorrect measurements)

v. Consistency (for comparability the definition of the metric should be the same across sys-

tems)

vi. Independence (the metric should not be susceptible of manipulations by system manufac-

turers)

Of these six Obaidat & Boudriga (2010, p. 8) only really mention reliability in their opinion on “a good

performance metric”. While their other remark “it should be relevant or meaningful” could be any-

thing, they offer a specific perspective from the point of view of performance modelling. In the first

place “it should be possible to develop models” and then “the model [...] should not be difficult to

estimate”. By the latter they add the model perspective to Lilja’s notion of easiness of measurement.

Examples of performance metrics include clock rate, MIPS, MFLOPS and SPEC, which Lilja (2000, pp.

12–15) discards as not meeting the characteristics of a good performance metric. Execution time, on

the other hand, “satisfies all of the characteristics of a good performance metric”. However, both

CPU time (“total time the processor actually spends executing the program”) and wall clock time

(“total time the user would have to wait to obtain the results”) should be reported to allow users to

gain an insight on the time a program spends waiting on other programs. In order to compare two

computer systems speedup factor and relative change in percent can be calculated. (Lilja, 2000, pp.

17–21)

2.2 Remote Sensing
Remote sensing (RS) is defined as “discerning information about the Earth’s surface from afar with-

out direct physical contact”. (Eamus et al., 2016, p. 155) This is possible because we can use sensors

to measure electromagnetic radiation and analyse the resulting data products. The framework of

remote sensing consists of the following components (Eamus et al., 2016, p. 157f):

i. A source of electromagnetic radiation (passive RS: sun or Earth itself; active RS: Radar and Li-

dar)

ii. The Earth’s surface (reflects, absorbs and emits radiant energy)

iii. The sensor instruments (measure optical, thermal and microwave signals “over a range of

spatial, temporal and spectral resolutions”)

iv. Receiving stations (process and calibrate raw sensor signals)

v. The user community (scientists and companies)

10

2.2.1 Physical Foundations of Remote Sensing

In an attempt to understand remote sensing, the first distinction has to be made between passive

and active RS. In passive RS a sensor measures (a) solar radiation that is reflected from the Earth’s

surface or (b) terrestrial energy that is emitted from the Earth (e.g. thermal and microwave radia-

tion). Active RS is conducted when the sensor sends electromagnetic waves to Earth, which are then

reflected on the Earth’s surface. The returned signal is measured by the same sensor that has gener-

ated the signal. (Eamus et al., 2016, p. 167f) Fig. 3 illustrates active and passive RS.

Fig. 3: Passive (above) and active (below) remote sensing. Source: Eamus et al., 2016, Figure 5.1

Optical, thermal and microwave signals have been mentioned before. Together they are part of the

electromagnetic spectrum (EMS), which arranges electromagnetic waves according to their wave-

lengths (the distance between two peaks of the electric field) and—for microwave radiation—

frequencies (speed of light divided by wavelength). The optical spectrum is further divided into the

ultraviolet, visible and infrared regions (Eamus et al., 2016, p. 169ff; Moreira et al., 2013, p. 7):

i. UV: Ultraviolet region (0.1–0.4 µm useful for atmosphere studies)

ii. VIS:Visible region (0.4–0.7 µm; visible to human eye leaf pigments, surface water quality,

soil minerals)

a. blue (0.4–0.5 µm)

b. green (0.5–0.6 µm)

c. red (0.6–0.7 µm)

iii. NIR: Near-infrared region (0.7–1.3 µm leaf structure and morphology)

iv. SWIR: Shortwave infrared region (1.3–8 µm)

a. reflected solar radiation (1.3–3 µm moisture content of vegetation and the upper

soil surface)

b. surface emitted signal (3–8 µm high temperature sources, e.g. fires)

v. TIR: Thermal infrared region (8–14 µm surface temperatures, vegetation stress, soil mois-

ture, clouds, minerals, environmental contamination)

11

vi. Microwave region (>0.1 cm/<300 GHz) penetrates clouds, forest canopies; “useful in

analyses of soil surface moisture and roughness, as well as plant canopy moisture and

roughness”)

a. X-band (2.5–4 cm/12–7.5 GHz)

b. C-band (4–8 cm/7.5–3.75 GHz)

c. L-band (15–30 cm/2–1 GHz)

d. P-band (60–120 cm/0.5–0.25 GHz)

Fig. 4: The spectrum of electromagnetic radiation (not to scale), and its use in satellite remote sensing (SRS). Source:
Pettorelli et al., 2018, Figure 2.2, cropped

As can be seen in Fig. 4, VIS and infrared regions can further be classified as multispectral satellite

remote sensing (SRS) and the microwave region can be called radar SRS.

Energy can be reflected by, absorbed by or transmitted through an object and the reflected, ab-

sorbed and transmitted parts make up the total energy impacting on an object (irradiance). (Eamus

et al., 2016, p. 172f) Just like any object, the atmosphere also absorbs, transmits (atmospheric win-

dows) and reflects (atmospheric scattering) radiance. Atmospheric absorption is mainly related to

the four gases diatomic oxygen (O2; absorbs UV below 0.1 µm, small portions in TIR), ozone (O3; ab-

sorbs UV below 0.3 µm, microwave at around 27 µm), water vapour (H2O; absorbs SWIR at 1.45 µm,

1.95 µm, 6 µm, and small portion in NIR) and carbon dioxide (CO2; absorbs TIR at 15 µm and SWIR

between 2.5 and 4.5 µm). (Eamus et al., 2016, p. 180f)

Fig. 5: Gases that affect atmospheric transmission. Source: King & Herring, 2001, cropped

The portions of the spectrum that are mostly transmitted by the atmosphere are called atmospheric

windows. These are found in the VIS and NIR (0.3–1.35 µm) and in parts of the SWIR (1.5–1.8 µm; 2–

2.4 µm; 2.9–4.2 µm; 4.5–5.5 µm), the TIR (8–14 µm) and the microwave region (>20mm). (Eamus et

al., 2016, p. 181) Atmospheric absorption and transmission are illustrated in Fig. 5.

12

In contrast to absorption and transmission, which occur more often in some parts of the EMS than in

others, atmospheric scattering influences sensor measurements in the whole EMS. It is caused by

aerosols, small solid (smoke, smog, dust) and/or liquid (haze, fog) particles that are suspended in the

atmosphere. Solar radiation that impinges on aerosols is scattered in all directions: One part diffusely

reaches the Earth’s surface and one part is reflected and “augments the signal received at the sen-

sor.” (Eamus et al., 2016, p. 182f) As a result, atmospheric correction has to be applied to turn top-of-

atmosphere (ToA) reflectance into bottom-of-atmosphere (BoA) reflectance.

2.2.2 Landscape Biophysical Properties and their Characterization

Vegetation, soil, water and other objects on the Earth’s surface have characteristic absorption,

transmission and reflectance properties along the EMS. For example, the spectral signature of water

shows that it does not reflect waves in the NIR, while vegetation particularly well reflects NIR waves

(Fig. 6). (Eamus et al., 2016, p. 206) This discrepancy between the reflectance in different wavebands

is used to calculate vegetation and vegetation water indices. (Eamus et al., 2016, pp. 217ff, 225)

Among the most commonly used indices are the Normalized Difference Vegetation Index4 (NDVI) and

the Normalized Difference Water Index5 (NDWI). Numerous other indices exist; the Index DataBase

counts 519 different indices. (IDB, 2020) Eamus et al. (2016, p. 225) conclude their section on vegeta-

tion and vegetation water indices by stating that “[t]he use of multiple [vegetation indices] offers a

more complete characterization of canopy properties.”

Fig. 6: Spectral signatures of soil, vegetation and water, and spectral bands (see below) of LANDSAT 7. Source: Siegmund
& Menz, 2005 (as cited in SEOS, n.d.)

2.2.3 Sensors

In SRS, sensors mounted on satellites are used to measure electromagnetic radiance reflected on or

transmitted by the Earth’s surface. Each sensor has a set of resolution properties and optimizing one

4

5
 (McFeeters, 1996) (as cited in (Du et al., 2016, p. 5))

13

sensor resolution leads to trade-offs in the remaining sensor properties (especially spatial vs. tempo-

ral resolution) (Eamus et al., 2016, pp. 185–189):

i. Spatial resolution: captured surface area per pixel, e.g.:

a. Fine (0.5–5 m length of pixel side)

b. Moderate (5–100 m)

c. Coarse (0.1–100 km)

ii. Spectral resolution: “number of wavebands, their bandwidths, and overall spectral coverage”

a. Multispectral (4–36 bands)

b. Hyperspectral (up to 220 bands)

iii. Temporal resolution: “frequency of sensor observation over a given area on Earth” (from 10–

15 minutes for geostationary meteorological satellites up to a month for fine spatial resolu-

tion sensors)

iv. Radiometric resolution: number of radiance levels captured by sensor, e.g.:

a. 8 bit = 28 = 256 discriminable values

b. 10 bit = 210 = 1,024

c. 16 bit = 216 = 65,536

Sensor systems can further be classified by the orbital properties of the satellite. Geostationary satel-

lites orbit the earth at a distance of 36,000–41,000 km and always stay fixed at one position above

the Earth’s surface, moving as fast as the Earth rotates. One example for geostationary satellites is

the Meteosat series of satellites for weather observation. The other important class of satellite orbits

is comprised of polar orbiting satellites. These orbit the Earth “close to the poles, at altitudes of 600–

950 km.” Notable examples for polar orbiting satellites include the SPOT6-VEGETATION, MERIS7,

MODIS8, Landsat, Ikonos and QuickBird platforms. (Eamus et al., 2016, pp. 191–198)

A special type of sensors is active microwave sensors, also called radar (radio detection and ranging).

Imaging radars can further be divided into (a) real aperture radar or side-looking airborne radar

(SLAR) and (b) synthetic aperture radar (SAR). Pulses of microwaves are generated and sent to Earth

and the backscattered signal’s amplitude and phase are subsequently measured by the radar sensor.

The backscattered signal is mainly influenced by the electrical and physical (geometry, roughness)

properties of the Earth’s surface, which allows drawing conclusions about roughness and moisture

content of soil and vegetation and about topography. (Eamus et al., 2016, p. 199; Moreira et al.,

2013, p. 7) An important technique is interferometry, whose idea “is to compare for a given scene the

phase of two or more complex radar images that have been acquired from slightly different positions

or at different times.” The deferred metric called coherence “describes the degree of correlation

between [...] two radar images” and can be used to analyse land cover and land use change. (Moreira

et al., 2013, p. 19ff)

2.2.4 Level of Processing

Different processing steps are applied to the data that is transferred from satellite sensors. The re-

sulting data products are classified into several levels of processing. Chuvieco (2020, p. 201) describes

5 levels of processing ranging from level 0 to level 4. Their characterization is reproduced in Table 1.

6
 System Probatoire pour l’Observation de la Terre

7
 Medium Resolution Imaging Radiometer

8
 Moderate Resolution Imaging Spectroradiometer

14

Level Characterization

0 Raw data without any corrections, “may include different errors and artifacts”

1 Data with geometric and radiometric corrections, e.g. sensor calibration (converting meas-
ured digital numbers into actual radiance values), applied. May include “generation of top of
the atmosphere (ToA) temperature or reflectance”.

2 Data of atmospherically corrected top-of-canopy (ToC)/bottom-of-atmosphere (BoA) reflec-
tance (multispectral) and temperature (TIR)

3 Data resampled to a certain standard grid (spatially and/or temporally aggregated)

4 Data of derived variable (evapotranspiration, land cover, ...)
Table 1: Levels of processing of satellite data. Source: Chuvieco, 2020, p. 201

2.3 Sentinel Satellites
The Sentinels are a set of Earth observation satellites that form part of the EU’s Copernicus pro-

gramme. Each of the six missions is made up by a pair of satellites, doubling temporal resolution of

each platform, respectively. Sentinel-5P is an exception in this regard. It was launched as a precursor

for Sentinel-5 to bridge the gap between the Envisat satellite and the Sentinel-5 mission. (ESA, 2020c;

European Commission, n.d.) Table 2 shows an overview of the Sentinel missions.

Name
Dedicated/
onboard

Operated
by Usage scenario

Launch
years

Sentinel-1 Dedicated ESA9 Radar imaging 2014/2016

Sentinel-2 Dedicated ESA
Multispectral imaging for land monitor-
ing

2015/2017

Sentinel-3 Dedicated EUMETSAT10
Sea-surface topography, sea- and land-
surface temperature, ocean/land colour

2016/2018

Sentinel-4 Onboard EUMETSAT Atmospheric monitoring N/A

Sentinel
-5P Dedicated ESA

Trace gases and aerosols for air qual-
ity/climate monitoring

2017

-5 Onboard EUMETSAT Atmospheric monitoring N/A

Sentinel-6 Dedicated EUMETSAT
Radar altimeter for global sea-surface
height

N/A

Table 2: Overview of the Sentinel missions. Dedicated/onboard: Whether the instrument has its own platform or is on
board some other satellite platform. Sources: ESA, 2020c; European Commission, n.d.

While both Sentinel-1 and Sentinel-2 products should be used for accurate results in the context of

checks by monitoring, this thesis focuses on the Sentinel-2 mission and data. The Sentinel-2 mission

is composed of two satellites (Sentinel-2A/B) and its multispectral instrument features a spectral

resolution of 13 bands (four 10-m bands, six 20-m bands and three 60-m bands). (Chuvieco, 2020, p.

90; ESA, 2020e) An overview of the bands is presented in Table 3.

9
 European Space Agency

10
 European Organisation for the Exploitation of Meteorological Satellites

15

Band
number

Approx. central
wavelength (nm)

Spatial
resolution Application

1 443 60 Aerosol detection (atmospheric correction)

2 493

10

Blue

3 560 Green

4 665 Red

5 704

20 Vegetation red edge 6 740

7 783

8 833 10 NIR

8a 865 20 Vegetation red edge

9 945
60

Water vapour (atmospheric correction)

10 1374 Cirrus detection

11 1610
20

SWIR – snow/ice/cloud detection, vegetation moisture
stress assessment 12 2190

Table 3: Overview of Sentinel-2 bands with their spectral and spatial characteristics and applications. Source: Chuvieco,
2020, p. 90; ESA, 2020e

As illustrated in Fig. 7 wavebands are not always equally spaced in the electromagnetic spectrum. For

example, the narrow 8a-band captures radiation extremes that would be flattened out by the wide

NIR-band no. 8.

Fig. 7: Sentinel-2: Spatial resolution vs. wavelength. Source: ESA, 2015a, p. 8

Concerning the temporal resolution the pair of Sentinel-2 satellites has a combined revisit frequency

of at least 5 days (10 days in Antarctica and non-continental Arctic regions). Since satellite swaths

overlap in higher latitudes, the revisit frequency in Austria, for example, can go up to three observa-

tions per week. (ESA, 2020f)

When flying over a continent, the satellites continuously acquire data; this is called a “datatake” The

datatakes are processed by a ground segment and distributed for free as 100 x 100 km “granules” in

the UTM11/WGS84 projection. Two versions differing in their level of processing are made available

11

 UTM = Universal Transverse Mercator

16

to the public: Level-1C (L1C; ToA, about 600 MB each) and Level-2A (L2A; BoA, about 800 MB each).

(ESA, 2020d)

In the process of calculating the L2A product, not only atmospheric correction but also a scene classi-

fication is performed. After resampling to a 60-m spatial resolution, pixels are divided up into cloud-

free, cloudy (with multiple probability levels) and shadowy pixels. The cloud-free pixels are further

classified as being vegetated, bare, water or covered by snow. The legend of the resulting classifica-

tion map in Fig. 8 also shows an entry for saturated or defective pixels. These are excluded from the

processing steps from the beginning.

Fig. 8: S2A Scene Classification Values. Source: (ESA, 2020b)

The official outlet for L1C and L2A Sentinel-2 data is the Copernicus Open Access Hub, but Sentinel

data can also be downloaded from one of the four Data and Information Access Services (DIAS) or

from an S312 storage in the AWS (Amazon Web Services) cloud. (AWS, 2020q; ESA, 2020a)

2.4 Cloud Computing
Outsourcing computation into the “cloud” is a new13 paradigm that follows the distributed computing

paradigm (e.g. computing on multiple computers that are connected via a network). (Murugesan &

Bojanova, 2016, p. 4) The US National Institute of Standards and Technology (NIST) defines cloud

computing as

“a model for enabling ubiquitous, convenient, on‐demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and ser-

vices) that can be rapidly provisioned and released with minimal management effort or ser-

vice provider interaction.” (Mell & Grance, 2011, p. 2)

This definition translates to some key characteristics of computing clouds: (Mell & Grance, 2011, p. 2;

Murugesan & Bojanova, 2016, p. 5)

12

 S3 stands for „Simple Storage Service” (AWS, 2020g)
13

 Amazon “pioneered the cloud IaaS market in 2006”. (Bala et al., 2019)

17

 On-demand self-service: Unilateral provisioning of processing and storage resources

 Broad network access: Cloud capabilities can be accessed from any device (e.g. smart-

phone, tablet, laptop, workstation)

 Resource pooling: Physical and virtual resources are dynamically assigned and reas-

signed to multiple users depending on demand

 Multitenancy: Multiple users (tenants) use the same physical resources

 Rapid elasticity and scalability: Seemingly infinite resources are scaled up and down rap-

idly commensurate with demand

 Measured service: Built-in monitoring and reporting and pay-per-use pricing schemes

Virtualization in this regard is a concept that allocates physical infrastructure to multiple users ena-

bling more efficient resource utilization. For example, an eight-core CPU (central processing unit)

could be offered to two customers, who each need a four-core CPU.

Computing clouds can be categorized into three foundational service models that are offered and

used individually or in combination with each other and additional services. The three service models

are described here (ordered from less control to more control): (Mell & Grance, 2011, p. 2f; Muruge-

san & Bojanova, 2016, p. 6f)

 Software as a Service (SaaS): Web apps; users do not have to install local software, but only

have limited configuration options for the app’s behaviour and cannot control the underlying

cloud infrastructure.

 Platform as a Service (PaaS): Users can deploy their own applications in the cloud environ-

ment using the supported programming languages and libraries, but have no control of the

operating system and the cloud infrastructure.

 Infrastructure as a Service (IaaS): Raw computer infrastructure (servers, CPU, memory, stor-

age, etc.) is provisioned to the users depending on their requirements and they can install

and run arbitrary software (operating systems and applications). Instead of buying expensive

hardware, customers are billed on a per-use basis.

There are several cloud support services that complement the three service models to a full cloud

ecosystem, for example: (Murugesan & Bojanova, 2016, p. 7ff)

 Data Storage as a service (DSaaS): Data is stored in a virtual storage location and is backed

up and secured by the provider to avoid data loss and theft, respectively

 Analytics as a Service (AaaS): Software and tools for analysis and mining of big data

 Desktop as a Service (DaaS): Provision of a virtual desktop infrastructure (VDI); desktop envi-

ronments are streamed via the internet

 Security as a Service (SecaaS): Providers either secure cloud infrastructure or the customers’

on-premises systems using, for example, virus detection, intrusion detection and encryption

 Identity and Access Management as a Service (IAMaaS): Cloud-based “user provisioning, au-

thentication, authorization, self-service, password management, and deprovisioning”

 Monitoring as a Service (MaaS): Continuous state monitoring of online services

18

Further, cloud systems can be classified according to their deployment model (ordered from less

private to more private): (Murugesan & Bojanova, 2016, p. 9)

 Public cloud: The most popular cloud deployment model; open to anyone

 Community cloud: Optimized for a particular industry sector

 Virtual private cloud: Virtual private segment of a public cloud with more control over the

cloud infrastructure

 Private cloud: On-premises cloud for internal use; full control over applications and data

If an enterprise uses more than one of the above mentioned deployment models, the notion of hy-

brid clouds is being used. An enterprise might selectively use some public cloud services and store

more sensitive data in a private cloud behind its own firewall. (Murugesan & Bojanova, 2016, p. 9f)

According to market research firm Gartner the leading players in the public cloud IaaS market as of

July 2019 are Amazon with the Amazon Web Services (AWS), Microsoft with Azure and Google with

the Google Cloud Platform (GCP) followed by the niche players Oracle, Alibaba Cloud and IBM. All of

these six global vendors also include PaaS solutions in their portfolio. (Bala et al., 2019) On the con-

trary there are thousands of SaaS providers “from Adobe to Anaplan to Atlassian to Google to Micro-

soft to Okta to Oracle to Salesforce to SAP to Slack.” (Knorr, 2020)

In the context of this master’s thesis the most relevant cloud computing services are two IaaS offers

of AWS: Elastic Compute Cloud (EC2) and Simple Storage Service (S3). These and other AWS services

are located in 24 regions around the globe (3 more planned), which each have two to six availability

zones amounting to a total of 77 (+9). These availability zones are physically separated from each

other and are comprised of one or more data centre facilities. Customers can choose to deploy appli-

cations across multiple availability zones in the same region in order to increase service reliability.

Content is served to end users via a network of 216 Points of Presence (PoP), which also exist in

places that do not have AWS regions, e.g. in Eastern Europe. (AWS, 2020n, 2020o, 2020j) See Fig. 9

for an overview of the AWS infrastructure.

Fig. 9: AWS infrastructure diagram. Source: AWS, 2020j

19

EC2 is a virtual computing environment built around so-called instances. There is a range of different

instance families, some for general purpose computing, some optimized for computing, memory or

storage and some with GPU14 support for “accelerated computing”. Each of the instance families is

further differentiated by the number of vCPUs (virtual CPUs) and by the memory and storage avail-

able to the machines. Instance types might have names like a1.large (1 vCPU, 2 GiB15 memory),

m5.4xlarge (16 vCPU, 64 GiB) or x1e.32xlarge (128 vCPU, 3 904 GiB); altogether there are hundreds

of distinct instance type configurations available. (AWS, 2020b, 2020c)

There are five billing options for the EC2 service: (AWS, 2020e)

 On-demand: Basic plan that is billed per second (Linux operating systems) or per hour (Win-

dows). Example for m5ad.4xlarge with Linux in the Frankfurt region: USD 1.00 per hour.

(AWS, 2020l)

 Reserved instances: Commitment to continued use of an instance with or without upfront

and monthly payments for a 1- or 3-year period. Example: Between USD 0.588 and

USD 0.630 effectively per hour for a 1-year period (37–41% less than on-demand price).

(AWS, 2020m)

 Spot instances: Spare instances that can be reclaimed by AWS at any time when another cus-

tomer has on-demand computing needs. Example: USD 0.2785 per hour (72% less). (AWS,

2020f)

 Savings plans: Similar to reserved instances, but instead of committing to a certain instance,

customers commit to a monthly amount of money for a 1- or 3-year term and can flexibly

distribute that amount among instances. Example: Between USD 0.762 and USD 0.817 for 1-

year period (18–24% less). (AWS, 2020p)

 Dedicated hosts: A whole physical server is provisioned exclusively to one customer, which

enables the customer to use existing server-bound software licences. On-demand, reserva-

tion and savings plans exist. (AWS, 2020a)

AWS S3 provides object-based cloud storage to customers. An object storage stores data as objects

instead of as blocks. The equally-sized block structure features high access performance, but file sys-

tem abstraction of conventional storage leads to a considerable overhead. The reason is that conven-

tional file systems have to map the logical structure of files to the individual blocks in the storage

medium. The variable size of objects solves this on a lower technical level by offloading the storage

management from the file system to the storage device, combining the good performance of blocks

with the highly granular security policies and easy manageability of files. Through this solution ob-

ject-based storage devices (OSD) gain self-management, which “includes actions such as reorganizing

data to improve performance, scheduling regular backups, and recovering from failures.” (Mesnier et

al., 2003, pp. 84–90)

In S3 an object storage is called bucket. There are six storage classes with different properties and

prices: (AWS, 2020i, 2020h, 2020k)

 Standard: General-purpose class with replication across multiple availability zones. Storage

price for the first 50 TiB16 in the Frankfurt region: USD 0.0245/GiB

14

GPU = Graphics Processing Unit
15

 GiB = Gibibyte (2
30

 bytes)
16

 TiB = Tebibyte (2
40

 bytes

20

 Standard-IA: Infrequent Access (IA) storage class with lower storage fees (USD 0.0135/GiB),

but higher prices for PUT, COPY, POST, LIST, GET and SELECT requests; additional data re-

trieval fee

 One Zone-IA: Same as Standard-IA except for missing replication. Storage price:

USD 0.0108/GiB

 Intelligent-Tiering: Combination of frequent and infrequent access storage classes; objects

are automatically moved to IA if they have not been accessed for 30 consecutive days. Price

like Standard and Standard-IA with additional monthly Monitoring and Automation fee per

1 000 objects.

 Glacier: Low-cost storage option for long-term archiving with three differently-priced re-

trieval options (Expedited: 1–5 minutes retrieval time, Standard: 3–5 hours, Bulk: 5–12

hours). Storage fees: USD 0.0045/GiB

 Glacier Deep Archive: Same as Glacier, but with different retrieval times (Standard: 12 hours,

Bulk: 48 hours). Storage fees: USD 0.0018/GiB

Besides, storage fees costs arise for PUT, COPY, POST and LIST requests, ranging from USD 0.0054

(Standard, Intelligent-Tiering) to USD 0.06 (Glacier, Glacier Deep Archive) per 1 000 requests, and

GET and SELECT requests, ranging from USD 0.00043 (all but IA) to USD 0.001 (IA) per 1 000 requests.

The IA and Glacier storage classes have additional fees for data retrieval. (AWS, 2020h)

2.5 Earth Observation Data Cubes
The concept of data cubes arose in the context of business intelligence and online analytical process-

ing (OLAP) in the 1990s. A data cube would typically provide access to precomputed, summarized

business or statistics data over multiple dimensions via OLAP queries. (Han et al., 2012, p. 187; Nativi

et al., 2017, p. 76; Strobl et al., 2017, p. 32) Earth Observation Data Cubes (EODC), a term which was

coined by Lewis et al. (2016) from Geoscience Australia, are a speciality in this regard because they

are composed of earth observation data like satellite imagery. Individual geo-referenced satellite

tiles within a specified time range are stacked in a way that they form a pixel-aligned image cube (see

Fig. 10).

Fig. 10: Process from image files to a pixel-aligned image cube. Source: (Kopp et al., 2019, p. 8), cropped

Also sometimes called Big Earth Data Cubes (Baumann, 2017b; Nativi et al., 2017) or Geospatial Data

Cubes (Strobl et al., 2017, p. 32), an EODC is defined by (Baumann, 2017a) as

“a massive multi-dimensional array, also called “raster data” or “gridded data”; “massive” entails

that we talk about sizes significantly beyond the main memory resources of the server hardware.

21

Data values [...] sit at grid points as defined by the d axes of the d-dimensional datacube. Coordi-

nates along these axes allow addressing data values unambiguously.”

This definition is part of the often-cited (Augustin et al., 2019, p. 1; Giuliani et al., 2017, p. 102;

Giuliani, Masó, et al., 2019, p. 18; Purss et al., 2019, p. 64; Strobl et al., 2017, p. 32) Datacube Mani-

festo that also identifies six principles or requirements of data cube services: (Baumann, 2017a)

1. Regularly or irregularly gridded data; at least 1–4 dimensions (e.g. 1D sensor time series, 3D

x/y/t image time series)

2. A single access pattern for all axes, irrespective of semantics (spatial, temporal, others)

3. Efficient trimming and slicing17 along any number of axes in a single request

4. Similar access performance along any data cube axis

5. Invisible partitioning

6. A high-level query language “where users describe what they get, not the detailed algorithm”

In order to elaborate on the concepts of the Datacube Manifesto (Strobl et al., 2017) present the six

faces of the data cube. Since a data cube must “allow ingestion, storage, provision, and analysis of

structured geospatial data” (Strobl et al., 2017, p. 32) it has multiple technical aspects, one half of

them data-oriented and the other half functionality-oriented (see Fig. 11).

Fig. 11: Data-oriented faces (left) and functionality-oriented faces (right) of a data cube. Source: Strobl et al., 2017, p. 33f

These are the six faces (Strobl et al., 2017):

i. Parameter Model: Model that describes the semantics of a cube cell value. Challenges

arise with incorporating data that describes the same parameter, but is of different ori-

gin or has been pre-processed differently.

ii. Data Representation: Discretization/Semantical encoding of a parameter, i.e. gridding of

the spatial domain along a coordinate system

17

 Trimming data cube subset with same dimensions, Slicing data cube “slice” with lower dimensions
(OGC, 2010, p. 3)

22

iii. Data Organisation: Actual arrangement and storage of the data cube: file format, file

system, database structure. Big Data cubes additionally should deal with partitioning and

streaming.

iv. Infrastructure: Storage and processing must be possible within the same IT infrastruc-

ture in a centralised or distributed fashion.

v. Access and Analysis: Interactive interfaces (APIs18, GUIs19) must be provided for access-

ing, manipulating and analysing the data cube and its metadata. The data cube should

provide anticipative processing cost estimations and handle access rights and security

aspects.

vi. Interoperability: International standards should ensure communication among different

data cube implementations to avoid silo effects. Different client software should be able

to access data cube information independently from the implementation.

The six faces of the data cube have found resonance with (Nativi et al., 2017), who employ standard-

ized software architecture modelling (viewpoints modelling) to them, with interoperability in mind.

(Nativi et al., 2017, p. 79) By the use of this modelling they identify concerns, stakeholders and soft-

ware design patterns for each of the six faces, summarised as six views (see Fig. 12). Nativi et al.

(2017, p. 77) argue that the existing experience from OLAP and business intelligence can be reused

and applied to EODCs. Therefore these existing technologies play an important role in their views.

Fig. 12: The six interoperability views. Source: Nativi et al., 2017, p. 83

18

 API = Application Programming Interface
19

 GUI = Graphical User Interface

23

The six interoperability views are as follows:

i. Semantic view: (Nativi et al., 2017, Table 1)

a. Concerns: analytical purpose of cube, information about cube’s content, meta-

data

b. Stakeholders: Earth system domain experts, community of practitioners and

business case experts

c. Patterns: specifications (INSPIRE20 data definition schemas, CF21 convention,

etc.), semantic and ontological languages (OWL22, RDF23, etc.)

ii. Geometry View: (Nativi et al., 2017, Table 2)

a. Concerns: Geometrical representation and discretization of content, dimension

neutrality (all dimensions should be treated the same)

b. Stakeholders: Business domain experts, geospatial information experts, business

intelligence professionals

c. Patterns: OGC24 feature and coverage general models, CDMs25, OLAP modelling

iii. Encoding View: (Nativi et al., 2017, Table 3)

a. Concerns: Multidimensional content encoding and storage (file formats, file sys-

tems, database structures, tiling strategy, etc.), pre-processing and query optimi-

zation

b. Stakeholders: Multidimensional data storage experts, OLAP experts

c. Patterns: File systems and formats (e.g. netCDF, HDF, GeoTIFF, GML, JSON, etc.;

also see section 2.8), multidimensional databases, big data tiling strategies

iv. Interconnection/platform view: (Nativi et al., 2017, Table 5)

a. Concerns: software components and services, system design and scalability, ex-

posed APIs and control mechanisms

b. Stakeholders: Software engineers, HPC26 infrastructure experts

c. Patterns: SoS27 patterns, software design patterns (separation of concerns,

transparency, reusability, decentralization), cloud computing interoperability

patterns

v. Interaction/interface view: (Nativi et al., 2017, Table 4)

a. Concerns: system functionality and accessibility to user, set of possible opera-

tions, web-based APIs

b. Stakeholders: data analysts, business intelligence professionals, web API experts,

interoperability experts

c. Patterns: Web APIs (e.g. REST28), interactive notebooks (e.g. Jupyter notebooks),

OLAP APIs, analytical languages (e.g. OGC WCPS29)

vi. Composition/Ecosystem view: (Nativi et al., 2017, Table 6)

20

 INSPIRE = Infrastructure for Spatial Information in the European Community
21

 CF = Climate and Forecast
22

 OWL = Web Ontology Language
23

 RDF = Resource Description Framework
24

 OGC = Open Geospatial Consortium
25

 CDM = Common Data Model
26

 HPC = High-Performance Computing
27

 SoS = System of Systems
28

 REST = Representational State Transfer
29

 WCPS = Web Coverage Processing Service

24

a. Concerns: system interoperability, distribution, scalability, governance

b. Stakeholders: SECO30 and SoS experts, international standards experts, interop-

erability experts, system and policy managers, international organizations

c. Patterns: SECO patterns, DGGS31, SoS architectures and governance styles

More recently, Augustin et al. (2019, p. 1f) use the term view differently and refer to EO data cubes

as “logical views on EO data”. Logical in this sense means that EO data is not accessed by file name,

but via an API or a query language using spatio-temporal coordinates. From a technological perspec-

tive, they distinguish between indexing and ingestion: Indexing simply references the satellite scenes

in the original data format and ingestion builds a multi-dimensional data structure, making time se-

ries or spatial analysis more efficient.

In the recent years EODC technologies have rapidly evolved and diversified. One approach have been

Array Database Management Systems (ADBMS) such as RasDaMan, SciDB and TileDB. They represent

EO data as multidimensional regular arrays and provide their own query languages and tiling mecha-

nisms (chunking). Another approach has been to use distributed file systems such as Google File Sys-

tem (GFS) or Hadoop Distributed File System (HDFS). Their main advantage for performance is that

data is processed on the same node as where it is stored. (Gomes et al., 2020, p. 2)

Still, these approaches do not meet nowadays’ requirements anymore because “in an increasing

number of cases, the volume is too large to move [EO] data to a local analysis platform”. (Woodcock

et al., 2016, p. 13) Thus, the Moving Code paradigm needs to be employed: Code must be shipped to

the data instead of the other way round; moving data must be avoided. Cloud computing infrastruc-

tures like AWS or the European DIAS platforms (see section 2.4) form processing environments

where the analyses can run on servers close to the data, improving performance. However, the plat-

forms require high technical knowledge to operate; they supply satellite imagery in a file-based way

and do not provide any abstracted interfaces to the data (Gomes et al., 2020, p. 2f)

Gomes et al. (2020, pp. 3, 14) identify seven platforms that conform to their definition of a Platform

for big EO Data Management and Analysis. They define them

“as computational solutions that provide functionalities for big EO data management, stor-

age and access; that allow the processing on the server side without having to download big

amounts of EO data sets; and that provide a certain level of data and processing abstractions

for EO community users and researchers.”

The seven platforms include

 Google Earth Engine (GEE),

 Sentinel Hub (SH),

 Open Data Cube (ODC),

 System for Earth Observation Data Access, Processing and Analysis for Land Monitoring (SEPAL),

 OpenEO,

 Joint Research Center (JRC) Earth Observation Data and Processing Platform (JEODPP) and

 pipsCloud.

30

 SECO = Software Ecosystem
31

 DGGS = Discrete Global Grid Systems

25

They then proceed with an evaluation on the basis of EO community needs that stem from related

literature. (Gomes et al., 2020, pp. 14–21) Concluding, Gomes et al. (2020, p. 22) write that to meet all

user needs a platform would have to provide two forms of processing: An abstracted API and access to

low-level extensions. The latter form is already implemented in ODC and they “believe that ODC is the

solution that presents the best conditions to evolve to a platform with these characteristics.”

Since all of these platforms are relatively young, with GEE being the pioneer (GEE was launched in

2010), there is almost no empirical research on the performance of these solutions. One paper could

be found by Wang et al. (2019) that reports performance measurements using the PIPS (Parallel Im-

age Processing System) solution of the Chinese Academy of Sciences Institute of Remote Sensing and

Digital Earth. (Wang et al., 2019, pp. 155–158) Wang et al. (2019, p. 167f) generated a Landsat-5 mo-

saic composed of 28 satellite images with seven bands over North-Eastern China (approx. 1,208,000

km²). They used a multi-core cluster with up to 10 nodes with 8 Virtual CPUs and 16 GB memory

each. When using only one node, a total runtime of over 350 minutes was recorded. At three nodes

the runtime could be reduced to 100 minutes, while there was no further improvement from five or

more nodes (about 80 minutes runtime). From ten nodes onwards the runtime increased again.

2.6 Euro Data Cube
Taking into account the previous chapter, the Euro Data Cube (EDC) is probably best introduced by its

differences to the Open Data Cube. The CEO of EDC consortium’s lead company Sinergise from Slo-

venia, Grega Milczinski (2020c), states that there is a difference in target audiences. ODC aims to

“[g]ive scientists and other users easy ability to perform Exploratory Data Analysis”, whereas EDC

wants to “[m]ake it easy for developers to build tools” to aid scientists and other users with Explora-

tory Data Analysis. He highlights that ODC would primarily provide software and, in contrast, EDC

focuses on making web services directly accessible to developers while also providing software for

those who want to use it. (Milcinski, 2020c)

As mentioned above, the EDC consortium is lead by the Slovenian company Sinergise and includes

Brockmann Consult from Germany, EOX (Austria) and gisat (Czech Republic). (EDC Consortium,

2020a) The consortium was founded in response to an ESA project tender for an EO Data Cube Facil-

ity Service with a project time frame of five years (2018–2022). (ESA, 2018b, p. 1) The Statement of

Work (SOW) for that tender describes in detail the background and required tasks of the project. A

paradigm shift from “EO Data Repository” to “EO Information Factory” forms the context of the ten-

der: Instead of downloading massive amounts of satellite data to their local environment, users

should be able to analyse and exploit the data directly where they are stored. (ESA, 2018b, p. 7) By

adopting standard data formats and tools that are non-exclusive to earth observation, ESA aims to

enlarge the user base of EO data from the space community to the larger GIS community. Finally,

open source software and interoperability standards should remove barriers between (space and

non-space) data sets, sensor types and data cube implementations. (ESA, 2018b, p. 7ff)

To this end ESA formulated six “Use Case Scenarios and Service Requirements” (ESA, 2018b, p. 15):

 Information Layer Publishing & Marketplace: Customers of the data cube should be able to

publish their own thematic layers and make them available under commercial or non-

commercial licences, generating income in the former case. (ESA, 2018b, p. 15f)

26

 On-Demand Mapping: Instead of data downloads or storage duplication, customers should

be able to plug in their algorithm and run it directly on the latest source satellite imagery

within the cloud environment. (ESA, 2018b, p. 16f)

 Cross-Mission Analysis: The data cube should rely on satellite data already provisioned in the

cloud and avoid duplication because of the high storage costs of the latter scenario. Custom-

ers should be able to choose resolution, grid and projection dynamically and the data cube

should harmonise the source data from different satellite missions on the fly. (ESA, 2018b, p.

17f)

 Front-End Operator Support: The data cube should provide interfaces that customers can

use to build front-end services on top of the data cube engine. (ESA, 2018b, p. 19)

 Virtual Thematic Data Cubes: Through trimming and slicing customers should be able to limit

the data cube’s view and make only subsets available to their communities. (ESA, 2018b, p.

19)

 Data Cube Federation & Interoperability: The contractor should actively participate in the

standardization process of the Open Geospatial Consortium (OGC). Interoperability with the

Open Data Cube and with regional data cube instances (“national data on nationally oper-

ated infrastructure”) should be ensured. (ESA, 2018b, p. 19f)

In order to fulfil these requirements the EDC consortium designed a data cube architecture com-

prised of multiple web services, as can be seen in Fig. 13. At the bottom the data sources are shown:

Besides the Sentinel satellites’ imagery, data from the Landsat-8 mission and the MODIS instrument

(NASA32/USGS33), derived Copernicus layers (Copernicus Climate Change Service, Marine Service,

Land Use Monitoring Service, Atmosphere Monitoring Service) and commercial satellite imagery

(Airbus SPOT and Pléiades, PlanetScope), among others, are available through the data cube. The

bring-your-own-data concept allows customers to link their own data to the data cube for combined

analysis and publish it to a wider user community. (EDC Consortium, 2020b, p. 4f)

The cloud section in Fig. 13 contains the data repositories from where data can be obtained; options

are the DIAS systems, AWS and customer-owned object stores. The Euro Data Cube services are built

on top of that: (EDC Consortium, 2020b, pp. 4, 8–14)

 Sentinel Hub: A cloud-based REST API combined with custom JavaScript scripts for on-the-fly

or batch processing of satellite data.

 xcube: Generation, analysis and publication of custom data cubes, which can be a combina-

tion of EO and non-EO data and/or gridded and non-gridded data

 geoDB: PostgreSQL with user access management to store feature data, use it for one’s own

computations and publish it non-commercially or commercially

 EOxHub: The workspace combines a dashboard, a Jupyter notebooks computing environ-

ment and a marketplace. The latter is a repository where customers can unlock additional

computing resources, buy the aforementioned web services and share/sell web apps and al-

gorithms to other customers.

32

NASA = National Aeronautics and Space Administration
33

USGS = United States Geological Survey

27

Fig. 13: Euro Data Cube architecture. Source: EDC Consortium, 2020b, p. 4

The Sentinel Hub Batch Processing API is of high relevance for this master’s thesis and its technical

details will be discussed below. A prerequisite for using the EDC is an active EOxHub workspace sub-

scription starting from EUR 99 per month for up to 6 CPUs and up to 24 GB Memory. (EDC Consor-

tium, 2020b, p. 6f) Processing costs with the Sentinel Hub are tracked via an abstract currency called

processing units (PUs), which can be obtained with real money. One PU is defined as the cost for “an

output (image) size of 512 x 512 pixels, 3 dataset input bands, one data sample per pixel [...], an

output (image) format not exceeding 16 bits per pixel, without additional processing (e.g. orthorecti-

fication) applied.” (Sentinel Hub, 2020c) A sample is a particularity of a processing script and de-

scribed below.

There are subscription plans as well as pre-paid plans available for the Sentinel Hub. The Exploration

plan for non-commercial use is EUR 30 per month and includes 30,000 processing units. Commercial

plans offer 70,000 PUs for EUR 100 monthly, 400,000 PUs for EUR 500 and 1,000,000 PUs for

EUR 1,000. The pre-paid version of the Sentinel Hub subscription sells 1,000 PUs (valid 24 months)

for EUR 2.50 for the first 400,000 PUs and EUR 1.50 for any additional PUs. Subscription plans simi-

larly can be topped-up for EUR 1.50 per 1,000 PUs.

2.6.1 EDC Batch Processing API

The Batch Processing (BP) API is an asynchronous REST API, meaning that results are not returned in

an immediate response, but delivered to a customer-owned S3 bucket. This makes sense for large

processing requests that take longer than a few minutes because it is impractical to maintain a ser-

vice connection until the request finishes. The area of interest of these large requests may span an

entire country or continent and therefore—in order to optimize execution time—they are processed

in parallel in a distributed fashion. The possible workflows for such an asynchronous request are

shown in Fig. 14. Using the HTTP34 method POST a new request can be created and commands like

START, ANALYSE or CANCEL can be issued to the service. The request’s current status can be queried

via a HTTP GET call. (Milcinski, 2020b; Sentinel Hub, 2020b)

34

 HTTP = Hypertext Transfer Protocol

28

Fig. 14: EDC Batch Processing API asynchronous workflow. Source: Sentinel Hub, 2020b

After a processing request has been created an initial estimate for the processing units is provided

when the request’s status is queried. This estimate can be refined by POSTing ANALYSE to the re-

quest’s API endpoint. The command START moves the request into the PROCESSING state, which is

resolved after “5 minutes to a couple of hours” (Milcinski, 2020b) to DONE or—if some or all tiles

have failed—to PARTIAL or FAILED, respectively. A request can be cancelled at any time during the

workflow by issuing the command CANCEL. (Sentinel Hub, 2020b)

29

Fig. 15: Example JSON payload that is attached to a Batch Processing request. Source: (Sentinel Hub, 2020e)

In order to create a request a JSON35 payload (see Fig. 15) must be attached to the HTTP POST call.

The payload lets the user specify input parameters like the area of interest, the time range, the out-

put S3 bucket and the tiling grid to be used. Three pre-defined grids are available, with differing spa-

tial resolutions and tile extents (see Table 4). The 10-km and 100.08-km grids are self-explanatory;

the “s2gm” grid was designed during Sentinel Hub’s Sentinel-2 Global Mosaic (S2GM) project, mainly

to avoid too many overlaps. All grids are based on the UTM projection. (Milcinski, 2020b)

Name s2gm grid 10-km grid 100.08-km grid

Id 0 1 2

tileWidth [m] 20,040 10,000 100,080

tileHeight [m] 20,040 10,000 100,080

resolutions [m] 10.0, 20.0, 60.0 10.0, 20.0 60.0, 120.0, 240.0, 360.0
Table 4: Sentinel Hub Batch API tiling grids. Source: Sentinel Hub, 2020b

The JSON payload also includes a so-called evalscript. An evalscript is composed of two mandatory

functions: The setup function defines the input bands and output format of the image(s) and the

evaluatePixel function contains the actual processing instructions. An example is shown in Fig. 16:

35

 JSON = JavaScript Object Notation

30

Satellite bands 2 (blue), 3 (green) and 4 (red) are fed into the process and the values are augmented

by a factor of 2.5. A three-band true-colour image of the requested area of interest is delivered to

the defined S3 bucket. (Sentinel Hub, 2020d)

Fig. 16: Example of a simple Batch Processing evalscript. Source: Sentinel Hub, 2020d

The setup function must return an object that has band names as input properties and one or multi-

ple output objects each with a user-defined id (which becomes the file name, optional), a number of

bands of the respective output image file and a sampleType (optional). The sampleType describes the

data type of the output image file and can be one of UINT8 (256 distinguishable values), UINT16

(65,536) or FLOAT32 (decimals between -2127 and 2127). Besides, the setup function’s return object

can contain a mosaicking specifier that defines which samples are taken into account for the process-

ing. mosaicking can either be set to SIMPLE (only one sample for the complete requested time range

is evaluated), ORBIT (one sample per orbit within the requested time range) or TILE (all samples

within the requested time range, possibly from multiple scenes in the same orbit). (Sentinel Hub,

2020d)

The second mandatory function is called evaluatePixel. Inside the function one or more sample(s) are

available, depending on the mosaicking type chosen in setup. One or more scene(s) object(s) carry

metadata information including the date(s), original name(s) of the satellite image(s) and orbitId(s)

belonging to the sample(s). Some additional (meta)data can be passed on to evaluatePixel via the

inputMetadata, customData and outputMetadata arguments. If there is only one output image de-

fined, the function must return a value for each band of that image. For multiple output images val-

ues must be assigned to the respective id that has been set in the setup function. (Sentinel Hub,

2020d)

As long as the request’s status is PROCESSING, the results start appearing in the S3 bucket that the

user specifies. The default folder structure can be seen in Table 5. For every request a new directory

is created and a JSON file with the request parameters is uploaded. Parallel processing requires a

partitioning of the area of interest into several tiles, which are processed independently from each

other. Therefore the bucket will contain a folder for each tile that in turn contains the requested

output images as JPEG36, PNG37 or Cloud-optimized GeoTIFF38 (COG); (Sentinel Hub, 2020b) the proc-

essing result is not merged to one single file.

36

 JPEG = Joint Photographic Experts Group
37

 PNG = Portable Network Graphics
38

 TIFF = Tagged Image File Format

31

Request ID Tile ID Image files

05baa5b2-3dee-43fe-8e67-b8195b095ed0/ 11375/ rgb.tif
false-color.tif
...

11376/ rgb.tif
false-color.tif
...

11377/ rgb.tif
false-color.tif
...

... ...

request.json
Table 5: Illustrative folder structure of Batch Processing API results inside an S3 bucket. Source: own work

2.7 mapchete Hub
mapchete Hub is a cloud processing service for satellite imagery and other geodata written in Python.

It extends the open-source software library mapchete with the libraries Celery and MongoDB into an

asynchronous REST API that can be controlled via a command-line tool called mhub. The mapchete

Hub code is developed and maintained by Joachim Ungar with contributions from Petr Ševčík (both

EOX IT Services GmbH). (EOX, 2020a)

Ungar is also the creator of the name-giving mapchete Python library itself that takes large amounts

of input data, chunks it into smaller parts (tiles) and processes them, several at a time. Optionally—as

mapchete was designed for web maps—a tile pyramid in the Web Map Tile Service (WMTS) format

can be requested as output format (see Fig. 17). A tile pyramid consists of multiple zoom levels: For

example, the Web Mercator projection zoom level 0 covers the whole world on one single tile while

level 1 covers the world on four tiles, and so on. Each zoom level has its own tile matrix and individ-

ual tiles are referenced by their zoom level, their row and their column. Besides the predefined tile

pyramids for the WGS84 and Web Mercator projections, users can define their own custom tile

pyramids for any other existing projection. (EOX, 2020f, 2015/2020)

Fig. 17: Web Mercator tile pyramid. Source: EOX, 2020f

32

Per definition, each WMTS tile has a pixel size of 256 x 256 pixels. (Masó, 2016) For processing, the

small tile size can mean some unnecessary computational overhead. In order to provide more effi-

cient processing, mapchete employs a concept known as metatiling. Instead of running a process on

multiple smaller tiles, tiles are first united to larger metatiles. mapchete’s metatiling parameter can

be set to 2, 4, 8 or 16, resulting in tile sizes of 512, 1,024, 2,048 or 4,096 pixels squared, respectively.

(EOX, 2020f, 2020b)

Configuration of mapchete is done using a Python process file and a YAML39 configuration file that

must have a .mapchete file extension. Apart from the pyramid definition, the .mapchete file makes it

possible to specify input data and output format. An example can be seen in Fig. 18.

Fig. 18: Example for a .mapchete YAML file. Source: EOX, 2015/2020

The actual processing script must be made available to mapchete as a separate Python file. It must

include an execute function, which receives an mp object and, optionally, one or multiple custom

variables. The mp object exposes the process parameters and offers various functions to open and

manipulate the input data that is referenced under the input key in the configuration file. Custom

variables can be defined in the .mapchete configuration file and are used to overwrite default values

that the user can specify in the execute function (e.g. the resampling parameter in Fig. 18 and Fig.

19). After processing, the execute function must return one or more multi-dimensional arrays. (EOX,

2020c)

39

 YAML = YAML Ain't Markup Language

33

Fig. 19: Example of a simple mapchete processing script. Source: EOX, 2015/2020

mapchete cannot out-of-the-box use satellite imagery stored in the cloud. An input plug-in called

mapchete Satellite makes this functionality available via additional configuration parameters. Specifi-

cally, mapchete Satellite provides access to Sentinel-1, Sentinel-2 and MODIS archives stored in the

AWS and Mundi DIAS clouds. The parameters that must at least be added to the .mapchete file are

the start_time and end_time of the time stack that is to be processed (see Fig. 20). (EOX, 2020d)

Fig. 20: Example of .mapchete file input section for satellite imagery from a cloud repository. Source: EOX, 2020d

mapchete Hub processing requests (or jobs) are managed by the asynchronous job queue library

Celery. A queue is a structure that handles objects in a first-in/first-out manner. Celery takes over the

task to assigns jobs to workers. Whenever a job is finished, it leaves the queue and Celery allocates

the now unoccupied worker to the next pending job in the queue. (Celery, 2020b; Garner, 2020)

In order for this workflow to function properly, Celery needs a service to receive and send messages

and a database where it can store the current state of a job. (Celery, 2020a) This is handled by map-

chete Hub using MongoDB. (EOX, 2020a) According to their website, “MongoDB is a general purpose,

document-based, distributed database”. (MongoDB, 2020b) Document-based in this sense means

that data is not stored as tables like in traditional relational databases. Instead, MongoDB uses a

JSON-like object representation that is more familiar to developers and optimized for distributing

documents across multiple servers in the cloud. (MongoDB, 2020a) Fig. 21 shows an example docu-

ment reproduced as a JSON.

34

Fig. 21: MongoDB document example reproduced as JSON. Source: MongoDB, 2020b

Putting it all together, a mapchete Hub instance is a combination of multiple services resulting in an

asynchronous pendent to mapchete. The code base contains scripts for the CLI (command-line inter-

face) that help start the required services in the cloud. For users the command-line utility mhub is

provided that follows mapchete’s CLI syntax and features additional functionality for mapchete Hub’s

asynchronous nature. Using mhub it is possible to list all jobs, execute or cancel jobs and query a job’s

status, among several other commands. (EOX, 2020a)

The results of a processing job are stored alongside a metadata.json file in a chosen directory on the

user’s S3 bucket as COG, PNG or GeoJSON (for vector data) (EOX, 2020e) or as multi-dimensional

arrays in the netCDF or zarr formats. For the latter option the open-source plug-in mapchete_xarray

must be installed. (EOX, 2019/2020) An example output directory structure can be seen in Table 6.

User-defined directory Zoom level Tile matrix row Tile matrix column

data_cube/ 5/ 800/ 60.zarr
61.zarr
62.zarr
63.zarr
...

801/ 60.zarr
61.zarr
62.zarr
63.zarr
...

... ...

metadata.json
Table 6: Illustrative folder structure of Mapchete Hub results inside an S3 bucket. Source: own work

35

2.8 Data representation
Several file formats have been discussed in the previous chapters like COG or netCDF. Generally, one

has to distinguish between in-memory data representation and persistent file storage. While COG or

netCDF are used to persist data in a file system, in-memory data is being used during computations.

Software packages can transform data from one state into the other.

Most programming languages have simple structures in place to form collections of data, e.g. arrays

in JavaScript or lists in Python. They can store simple data types like numbers or text together in one

variable and their notation would be as follows:

list_or_array = [1, “two”, 3.4, etc]

In contrast to JavaScript, Python also features some more sophisticated data structures that are

added through plug-in libraries: NumPy arrays, pandas Series and DataFrame, as well as xarray

DataArray and DataSet. All of them offer unique benefits that might be speed improvements or la-

belled data tables to make data handling easier.

NumPy (short for Numerical Python) introduces n-dimensional homogeneous arrays to Python. Ho-

mogeneous in this regard means that a NumPy array only contains data of the same data type (e.g.

only integers). This allows for faster mathematical computations and much less memory consump-

tion. NumPy arrays can represent what would usually be called a vector (one-dimensional), a matrix

(two-dimensional) or any higher-dimensional grid. (The SciPy community, 2020) An example of a

three-dimensional NumPy array with a 16-bit integer data type can be seen here:

>>> np.ones((2,3,4), dtype=np.int16)

array([[[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]],

 [[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]]], dtype=int16)

pandas extends on NumPy functionality by attaching an index and labels to vectors and matrices.

Vectors correspond to pandas Series, where each vector entry has an index value attached. Data-

Frames mimic spreadsheets and can have both an index and column labels. Examples are shown

below: (the pandas development team, 2020)

pd.Series(np.random.randn(5), in-

dex=['a', 'b', 'c', 'd', 'e'])

a 0.469112

b -0.282863

c -1.509059

d -1.135632

e 1.212112

dtype: float64

pd.DataFrame(data, columns=['a',

'b'])

 a b

0 1 2

1 5 10

36

xarray combines the labels from pandas and the performance benefits of NumPy’s n-dimensional

arrays into DataArrays that can further be collected into DataSets. DataArrays do not necessarily

have a uniformly-spaced coordinate system. Instead arbitrary coordinates can be specified, like

points in time or text coordinates. The dimensions are like the column labels in pandas and describe

the coordinates semantically. Additionally, custom metadata (so-called attributes) can be attached to

a DataArray. A DataSet is a container for DataArrays and “is designed as an in-memory representa-

tion of the data model from the netCDF file format.” (xarray Developers, 2020a) A sample DataArray

is reproduced here:

xr.DataArray(data, coords=[times, locs], dims=["time", "space"])

<xarray.DataArray (time: 4, space: 3)>

array([[0.127, 0.967, 0.26],

 [0.897, 0.377, 0.336],

 [0.451, 0.84 , 0.123],

 [0.543, 0.373, 0.448]])

Coordinates:

 * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 2000-01-04

 * space (space) <U2 'IA' 'IL' 'IN'

According to its maintainer Unidata (2018), the netCDF40 file format “is a community standard for

sharing scientific data.” Among others, they highlight these features:

 Self-describing: Metadata is built into the file

 Scalable: Users can access small parts of a large dataset in the cloud

 Appendable: Data can later be appended to an existing netCDF file

 Sharable: „One writer and multiple readers may simultaneously access the same netCDF

file” (Unidata, 2018)

The file format’s latest iteration netCDF-4 is based on the HDF541 format, which promises optimized

performance through chunking (structuring data in multiple chunks for subset access or parallel

computation), compression and encryption. (HDF Group, 2017; Unidata, 2020) There is another file

format (and library) that provides similar functionality to HDF5—but claiming more flexibility—called

zarr. While facilitating chunked and compressed NumPy arrays in-memory, zarr can also persist them

on a local file system or in an object storage in the cloud. (Zarr Developers, 2019, 2020) xarray can

leverage this zarr feature and store DataArrays and DataSets as zarr files. (xarray Developers, 2020b)

The last relevant storage format to be discussed in this thesis is Cloud Optimized GeoTIFF (COG).

Despite sticking to the original GeoTIFF specification, COG imagery files are structured in a way that

makes them more quickly accessible over the internet. This is achieved through tiling and overviews.

Tiles are the imagery equivalent of chunks and allow file access in portions. Overviews are represen-

tations of an image with a lower resolution. They increase storage size of the file, but enable fast

display of images when zoomed out. Tiling and overviews are combined with HTTP GET range re-

quests, which make it possible that files serve only parts of themselves to the user. (cogeotiff, 2020)

40

 netCDF = Network Common Data Form
41

 HDF = Hierarchical Data Format

37

A recent study by Yee et al. (2020) compared the performance of COG, netCDF and zarr for Earth

observation data. They found that, in general, COG is faster than zarr and netCDF has the poorest

performance when it comes to various analysis operations (see Fig. 22; details to be gathered from

the original study).

Fig. 22: Chart showing performance benchmark of COG, netCDF and zarr. Source: Yee et al., 2020, p. 18

netCDF also doesn’t perform well when the percentage of the file that has to be read for an opera-

tion is evaluated. In half of the cases zarr beats COG and vice-versa (see Fig. 23).

Fig. 23: Chart showing file size read benchmark of COG, netCDF and zarr. Source: Yee et al., 2020, p. 20

38

Yee et al. (2020, p. 23) also compared the file size of four datasets in different formats and the zarr

version had a bigger storage footprint than netCDF in two of the three cases where it was tested. The

authors of the study, however, note that this would be due to zarr’s default compression settings

which are optimized for certain use cases and lead to feeble results in others. The file size compari-

son is shown in Fig. 24.

Fig. 24: Chart showing file size comparison of COG, GeoTIFF (non-COG), netCDF and zarr. Source: Yee et al., 2020, p. 23

In their final remarks Yee et al. (2020, p. 24f) emphasize that file packaging (e.g. how data is struc-

tured inside a file) highly impacts performance—even more than the choice of format. In respect to

Earth observation data cubes, developers face a trade-off between favouring temporal analysis or

spatial analysis: For a fixed chunk size, temporal analysis is more performant if a chunk covers a small

spatial area, and instead contains a longer time series. Contrary to this, spatial analysis over larger

areas would be more efficient if a chunk includes a wider area rather than more information on the

time axis. Therefore chunking should be matched to the targeted use case.

39

40

3 Methodology
The following sections explain how the knowledge from chapter 0 was applied to the research prob-

lem at hand. Initially, details about the measurements of the performance metrics are disclosed.

Then the test area is located and described, including the tiling approaches of BP and mHub. Since

EDC xcube could not be used for such large areas itself, some properties of its data cube schema are

copied and the resulting schemata are presented. Subsequently, the processing scripts are explained

in detail. Finally, a chapter about the used cloud hardware gives insights into the computing re-

sources available to mapchete Hub.

Fig. 25: Overview of the experiment workflow. Source: Own work

Fig. 25 shows an overview of the experiment workflow, from the satellite data repository on AWS via

the two investigated applications to the resulting data cubes in the AWS S3 bucket. In general, the

experiments were first conducted on EDC Batch Processing and then on mapchete Hub. In both cases

the processing scripts were developed and tested with small areas and not used with the whole area

of interest before they were working properly. A scale-up from short time ranges to the maximum of

8.5 months followed. The idea to conduct the experiments for only one month did not appear before

the Sentinel Hub research account had already been closed down. Therefore results derived from

longer time ranges via linear regression will be reported in chapter 0.

3.1 Performance metrics
Several metrics for computer performance measurements are of interest to make an informed busi-

ness decision. First and foremost direct costs are an important factor, but also other factors like time

and required skills indirectly translate to monetary expenses. The decisive factors for this benchmark

41

were chosen to be wall clock time, processing costs and know-how for the generation of data cubes,

and size and costs for the storage of the results. Each of them will be contextualized using the in-

sights from chapter 2.1 and explained in detail in the following.

Wall clock time describes the responsiveness of the two computer systems EDC Batch Processing and

mapchete Hub. It is easily obtained from mapchete Hub’s REST API because the job metadata con-

tains a runtime field. For simulated parallelization the runtime of the slowest of a set of jobs is as-

sumed for the whole batch. EDC Batch Processing API does not expose a wall clock time parameter.

Thus a work around had to be employed: The create time of the request would be compared to the

last timestamp of the resulting files in the AWS S3 bucket. The difference between these points in

time would be the wall clock time of a Batch Processing request.

Processing costs are—like the remaining metrics—usage metrics for the consumed resources. map-

chete Hub consumes CPU power, S3 requests, network bandwidth and cache space. Consumed CPU

resources can be easily measured by multiplying the runtime by the computing prices for the rele-

vant EC2 instance type. S3 requests are made up of the GET requests to the satellite data repository

and a small number of other requests to S3 buckets. Since the exact number of other requests can-

not be determined and the GET requests make up at least 98 % of all S3 requests, the GET price is

assumed for all of them. Consumed network bandwidth and cache space are very difficult to meas-

ure and do not impact the processing costs significantly. Thus they are ignored for the scope of this

master thesis.

Sentinel Hub has abstracted processing costs by the so-called processing units. These are only linear

in the case of pre-paid plans, but non-linear for the cheaper subscription plans. Both BP and mHub

processing costs lack consistency and independence (the latter because they depend on either Senti-

nel Hub or AWS to set a price tag on processing resources).

Know-how is not a quantitative metric, but can be deduced from the technological skill set that is

required to generate a data cube with the two cloud services. It is not a hard metric and doesn’t offer

any of the characteristics of a good performance metric. Still, human resources are a substantial part

in the value chain of an IT company and must not be disregarded.

Storage size is reported because it can be a limiting factor for data portability and accessibility. Port-

ability is deprecated in the medium term because of the paradigm shift to bring algorithms to the

data instead of the other way round. Accessibility remains an issue because a huge amount of data

can be difficult to post-process efficiently. The size of the computed data cubes is easy to query from

the S3 bucket, however, it might be inconsistent between mapchete Hub and Batch Processing, de-

pending on the chosen file format.

Storage costs are directly calculated from the storage size and are different to the other metrics in

the sense that they are accounted for monthly. Thus a relevant consideration is the length of the

utilization of storage services. The costs suffer from the same limitations as the storage size, and

ultimately they are not even linked to the data cube generation services mapchete Hub and Batch

Processing. While the standard solution to storage is to leave the generated data cubes in the desti-

nation S3 bucket, other options such as low-frequency access cloud archives or local archiving can be

flexibly picked.

42

3.2 Test area
In order to start testing for checks by monitoring with a common test area, AMA and EOX agreed on

an area of interest (AOI), which will further be referred to as MAB AOI (after the joint AMA/EOX pro-

ject MAB: Monitoring Algorithm Baseline). This area was chosen with a high variety of planting zones

in mind. Besides, it lies exclusively in one UTM zone (33N) and does not cross the 12° latitude to UTM

zone 32N. The MAB AOI covers approximately 17,000 km² (154 km between longitudes 14.25° and

16.22° / 125 km between latitudes 47.62° and 48.75°) and contains parts of Lower Austria, Upper

Austria and Styria. An overview map can be seen in Fig. 26.

Fig. 26: Overview map of Austria showing the MAB AOI. Basemap: basemap.at. CRS: EPSG

42
:3857

Both EDC Batch Processing and mapchete Hub divide the world into tiles using a grid in order to be

able to parallelize calculations. For Batch Processing—since the highest possible resolution is re-

quired in the context of this Thesis—the 100.08-km grid is not an option because its highest resolu-

tion is 60 meters. Therefore the author decided to choose the default option “s2gm”. In terms of the

MAB AOI this translates to 57 tiles of 2,004 x 2,004 pixels being processed during one processing

task. The relation of the tiles to the MAB AOI can be seen in Fig. 27.

42

 EPSG = CRS identifier of the European Petroleum Survey Group Geodesy

43

Fig. 27: The 57 S2GM tiles that make up the MAB AOI. Basemap: basemap.at. CRS: EPSG:3857

Tiling grids in mapchete Hub work very differently. They are based on a WMTS tile pyramid (see sec-

tion 2.7) and pre-defined for WGS84 and Web Mercator projections. Because of their cartographic

properties the pre-defined grids cannot ensure a uniform 10-m resolution for raster satellite data.

Thus a custom tile pyramid had to be defined for UTM zone 33 with 1,035 tiles, each of size 81,920 x

81,920 meters (zoom level 0). The grid’s extent is shown in Fig. 28.

Fig. 28: Custom grid for Mapchete Hub to cover UTM zone 33 North with process zones highlighted. Basemap: Open-
StreetMap (Data © OpenStreetMap contributors, Rendering © MapServer and EOX), CRS: EPSG:4326

44

Processing was divided into six process zones, with the opportunity to be parallelized during practical

applications using multiple workers. In the course of this research only one worker was used to run

the processes successively. The process zones are situated on zoom level 0 of the custom tile pyra-

mid (Fig. 28) and were chosen so as to cover the Sentinel-2 tiling grid as well as possible in order to

avoid too many unnecessary downloads of satellite data. Still, as Fig. 29 shows, some S2 tiles will be

downloaded multiple times for more than one process zone.

Fig. 29: Process zones (red) overlapping Sentinel-2 tiles (pink) (ESA, 2015b). Basemap: basemap.at. CRS: EPSG:3857

The actual process tiles use the 10-m resolution of zoom level 5, but because of metatiling activated

and set to 2 they have the extent of zoom-level-4 tiles (512 x 512 pixels = 5,120 x 5,120 meters). In-

creasing the metatiling further did not result in performance gains. The 693 tiles intersected by the

AOI are depicted in Fig. 30.

45

Fig. 30: Process tiles intersected by AOI in relation to process zones. Basemap: basemap.at. CRS: EPSG:3857

3.3 Data Cube Schema
The data cube schema that is followed in the course of this master’s thesis is loosely modelled after

the xcube Dataset Specification (the dimension names copy the xcube convention). (Brockmann Con-

sult, 2018) The differences between the Batch Processing and mapchete Hub approaches are ex-

plained below. The respective schemas are reproduced in Table 7.

Batch Processing data cube schema mapchete Hub data cube schema

Dimensions: (time: 17, x: <MAB width>, y: <MAB
height>)
Coordinates:
 * time (time) datetime64[ns] 2017-09-01–
2018-05-15
 * y (y) float64 <MAB height> (UTM 33N)
 * x (x) float64 <MAB width> (UTM 33N)

Dimensions: (time: 17, x: <MAB width>, y: <MAB
height>)
Coordinates:
 * time (time) datetime64[ns] 2019-09-01–
2020-05-15
 * y (y) float64 <MAB height> (UTM 33N)
 * x (x) float64 <MAB width> (UTM 33N)

46

Data variables:
 B02 (time, y, x) uint16 ...
 B03 (time, y, x) uint16 ...
 B04 (time, y, x) uint16 ...
 B05 (time, y, x) uint16 ...
 B06 (time, y, x) uint16 ...
 B07 (time, y, x) uint16 ...
 B08 (time, y, x) uint16 ...
 B8A (time, y, x) uint16 ...
 B11 (time, y, x) uint16 ...
 B12 (time, y, x) uint16 ...
 NDVI (time, y, x) uint16 ...
 GNDVI (time, y, x) uint16 ...
 BNDVI (time, y, x) uint16 ...
 CVI (time, y, x) float32 ...
 NDSI (time, y, x) uint16 ...
 NDWI (time, y, x) uint16 ...

Data variables:
 B02 (time, y, x) uint16 ...
 B03 (time, y, x) uint16 ...
 B04 (time, y, x) uint16 ...
 B05 (time, y, x) uint16 ...
 B06 (time, y, x) uint16 ...
 B07 (time, y, x) uint16 ...
 B08 (time, y, x) uint16 ...
 B8A (time, y, x) uint16 ...
 B11 (time, y, x) uint16 ...
 B12 (time, y, x) uint16 ...
 NDVI (time, y, x) uint16 ...
 GNDVI (time, y, x) uint16 ...
 BNDVI (time, y, x) uint16 ...
 CVI (time, y, x) uint16 ...
 NDSI (time, y, x) uint16 ...
 NDWI (time, y, x) uint16 ...

Table 7: Comparison of data cube schemas of the data cubes generated using Batch Processing (left) and mapchete Hub
(right). Differences highlighted in grey.

The target dimensions spatially cover the MAB AOI and temporally span 17 time slices. These are

defined as half-month slices (1st to 15th/16th to last day of the month) that describe the averaged data

of all satellite observations in that half-month. The data cube shall contain data of the 8.5 months

between the start of the winter season on 1st September and the first due date on 15th May of the

following year.

The variables were chosen so as to match those used in the machine learning pipeline that is devel-

oped in the MAB project. There are 16 variables packed into the data cube, of which ten are original

satellite bands (variables starting in Bxx) and six are derived vegetation, water and salinity indices

(IDB, 2020):

 NDVI (Normalized Difference Vegetation Index)

 GNDVI (Green Normalized Difference Vegetation Index)

 BNDVI (Blue Normalized Difference Vegetation Index)

 CVI (Chlorophyll vegetation index)

 NDSI (Normalized Difference Salinity Index)

 NDWI (Normalized Difference Water Index)

There are two differences between the BP and mHub schemas: One is the different time range and

the other one concerns the data type of the CVI variable. The BP data cube contains data from Sep-

tember 2017 to May 2018, which is the original test time range of the MAB project. Since some S2

granules in the AWS data source that mHub connects to were missing the CRS (coordinate reference

system) metadata, it was decided for the mHub data cube to use data from September 2019 to May

2020, which has correct CRS data attached to it.

The normalized-difference indices are defined in the interval [-1; 1]; thus they can easily be mapped

to the interval [0; 65,535], which is the data space of a uint16 variable (16-bit unsigned integer 216

= 65,536 non-negative values). The CVI43 is—per definition—not constrained to the range [-1; 1], but

43

47

in theory goes up to infinity; a real-world dataset has a CVI of 12 at the 99th quantile. As a result it is

not possible to naively map it to a certain interval. In order to store decimal places, we must there-

fore either use a float data type (32-bit float32 takes twice the storage space as uint16) or stretch the

data values by a multiplication factor. The latter approach was used for the mHub data cube: CVI

values are multiplied by a factor of 1,000 conserving three decimal places. The highest CVI value that

can be stored in a uint16 variable using this technique is 65.5.

3.4 Data Cube Generation Code
This section presents the code that was used for generating the data cubes. Development of the SHM

data cube script was done using a Jupyter notebook and therefore there are IPython commands em-

bedded in that part of the code.

3.4.1 Utility function

To generate the half-monthly date intervals, a utility function was developed to be used for both

applications in the benchmark. The utility function date_interval_endpoints takes as arguments a

start time, an end time and the day_of_new_interval, which describes the start day of the second

interval of each month. The output is a list of Python’s datetime objects corresponding to the end-

points of the half-monthly intervals. E.g. the endpoints for September 2019 with

day_of_new_interval set to 16 would be [datetime(2019,9,1,0,0), datetime(2019,9,15,23,59,59),

datetime(2019,9,16,0,0), datetime(2019,9,30,23,59,59)]. The code is reproduced in 00.

First of all, hours, minutes and seconds, if any, are stripped from the start and end times. Then a list

of all interval endpoints in between the start and end date is generated (if day_of_new_interval=16:

the 1st, 15th, 16th and last day of each month). Start and end time are added to the list if not included

yet anyways. Finally, the time of all right endpoints is set to 23:59:59 effectively making the intervals

right-closed.

3.4.2 Batch Processing

3.4.2.1 evalscript

The code for generating a data cube using the BP service was executed in a Jupyter Lab environment

on the Euro Data Cube and depends on an evalscript (see section 2.6.1) written in JavaScript. The

evalscript contains the actual processing logic that is sent to the service and is presented in Annex

B.1. It contains double curly brackets instead of single curly brackets because this is required if

parsed with Python string formatting.

The evalscript is based on an example provided by Sentinel Hub (Milcinski, 2020a) and was exten-

sively modified and expanded. Apart from the required setup and evaluatePixel functions there are

several custom helper functions. The functions validate, calculateIndex and interpolatedValue are for

the most part unchanged from the provided example (besides extending index calculation results to

the interval [-1; 1] instead of [0; 1]). fillResultArray (and the main function evaluatePixel) had to be

rewritten almost entirely in order to allow for modular customization via the Python execution envi-

ronment. evaluatePixel additionally was changed from bi-weekly to outputting half-monthly intervals

(half a month can have 13,15 or 16 days). The various functions are explained in detail in the follow-

ing.

The setup function describes the input and output bands of the evalscript. The band arrays are gen-

erated dynamically inside the Jupyter Lab notebook (see below). Among the input bands there are

48

always the dataMask and the SCL (Scene Classification Layer) bands that are evaluated in the validate

function. The validate function takes a sample as input and returns “false” if the sample’s dataMask

signals “no data” or if the sample was classified as cloud shadow, medium or high cloud probability,

thin cirrus, snow/ice or as saturated or defective. In all other cases validate returns “true”.

For vegetation/water/salinity index calculation there is calculateIndex, which takes as arguments two

numbers and returns the normalized difference of the two. Additionally it maps values from the in-

terval [-1; 1] to the interval [0; 1] so that they eventually fit into a uint16 that cannot hold negative

values.

The interpolatedValue function takes an array of numbers as input and returns zero or the first entry

of the array if the array is empty or only has one single entry, respectively. For arrays with more than

one entry interpolatedValue returns the mean of the numbers in the array.

fillResultArray is used in the evalscript to populate the results object, which is eventually written to

the output COGs. It takes as input an object that has the input bands and index identifiers as keys

and arrays of satellite data samples for one date interval as values. First, fillResultArray loops through

the input bands and populates results with the return value of interpolatedValue for that interval.

Then the requested indices are looped through and calculated using the previously determined mean

band values.

In the main part of the evalscript index components are defined (e.g. NDVI is calculated from the NIR

and red bands), helper variables are inserted from the Jupyter Lab notebook (most notably the base

structure of the results object) and the evaluatePixel function is described. As explained in section

2.6.1, evaluatePixel can receive several input arguments, of which we use the samples and the scenes

arrays. The first command of the function determines whether the most recent observation is in the

first or second half of the month. Then the function goes through the samples array and checks if the

sample is outside the current interval. If so, the interval is passed to fillResultArray and a new interval

is started. Else the sample is validated and pushed to the current interval. Eventually fillResultArray is

invoked for a last time and the results object is returned so that BP can write it to the output COGs.

3.4.2.2 Jupyter notebook

The workflow needs some preparations before the evalscript can be sent to the BP service and final

commands in order to store metadata with the data cube. These preparations were performed in a

Jupyter Lab notebook, which is why the code contains IPython commands. The whole notebook’s

code is reproduced in Annex B.2.

First of all, the credentials for accessing BP are loaded and some libraries are imported. Since one of

the data cube’s defining dimensions is the time, some special calculations needed to be done in this

domain. Therefore two modules (date and datetime) of the Python core package datetime are in-

cluded. BackendApplicationClient from the oauthlib.oauth2 module and OAuth2Session from the

requests_oauthlib package are needed to instantiate the connection to the BP service. Finally boto3

establishes a connection to the AWS bucket that holds the data cube’s data and lets me file metadata

there.

Cell 2 (Annex B.2.1) describes the process of fetching an authorization token to Sentinel Hub’s Batch

API, as described in their documentation (Sentinel Hub, 2020a). The next cells up to the penultimate

one configure the request that is sent to BP. The third cell (B.2.2) is intended for user input. Start and

49

end date as well as bands and indices of the resulting data cube can be set and the target S3 bucket

is defined. Using these input variables the relevant parameters for the processing request are calcu-

lated in cells 4 and 5 (B.2.3). The date interval endpoints are created using the utility function de-

scribed in chapter 3.4.1. These endpoints are used to derive the interval midpoints that serve as

metadata for the time axis of the data cube. Next the array templates for the evalscript and JSON

payload are generated depending on the chosen input bands and indices in cell 3. It becomes appar-

ent in line 4 of cell 5 that the resulting COGs’ number of “bands” depends on the number of time

slices instead of the actual satellite bands as usual.

The evalscript is ingested in cell 6 (B.2.4). As explained in section 3.4.2.1, the prepared variables are

then replaced by the variables generated in the Jupyter notebook in the prior cells. In cell 7 the MAB

AOI is defined using its GeoJSON representation. It is one of the parameters that make up the JSON

payload of the processing request. Besides, we have to choose the type of satellite data that will be

processed (here: Sentinel-2 Level 2A), the tiling grid that is used (see chapter 2.6.1), the spatial reso-

lution and—apart from some other values—the time range. The latter was subsequently extended

starting at 2017-09-01 in order to cautiously approach the target time range of 8.5 months.

Eventually the payload is posted to the REST endpoint of the BP service. Another request is posted

immediately afterwards to the START endpoint to kick off the processing of the request. Then the

Jupyter notebook connects to the S3 bucket, where the data cube will lie, and uploads metadata

such as the labels of the bands, the request ID of that specific request and a list of date interval mid-

points.

The resulting file structure of the data cub can be seen in Table 8. As mentioned above, there is one

COG per satellite band or vegetation index and each COG stores the time series for that band/index.

This is in contrast to conventional GeoTIFF use; since GeoTIFFs have no concept of time they would

usually store the satellite bands as their layers.

COGs Band contents

B02.tif 2017-09-01–2017-09-15
2017-09-15–2017-09-30
…

B03.tif 2017-09-01–2017-09-15
2017-09-15–2017-09-30
…

B04.tif 2017-09-01–2017-09-15
2017-09-15–2017-09-30
…

… …
Table 8: Structure of one Batch Processing tile in the S3 bucket. Source: own work

50

3.4.3 mapchete Hub

3.4.3.1 Process script

The process script for mapchete Hub is an ordinary Python script that is uploaded to the server by

the mhub command line utility. A template was provided by EOX with the basic structure up to the

point where the multi-dimensional array is available for further manipulation. The whole script is

reproduced in Annex C.1.

The processing script is applied to every tile in a process zone. The first condition in the mandatory

execute function checks whether a part of the AOI was passed to the mapchete process for the cur-

rently processed tile. If no section of the AOI is present, the tile does not intersect the AOI. In this

case an empty tile is returned, nothing is written to the output directory and the next tile will be

worked off.

Else a four-dimensional xarray DataArray is created that holds the satellite data along the requested

input bands, time range and geographical coordinates of that tile. The dimensions of the DataArray

are subsequently renamed according to their semantic meaning. Since in a DataArray all dimensions

are equally matched, the multi-dimensional array is converted to a DataSet, promoting the bands

dimension. This way the syntax of index calculations becomes more readable later.

Before continuing with indexes the half-monthly time slices are calculated. The

date_interval_endpoints function is used again to create start and end points that are then passed to

a pandas IntervalIndex. The DataSet can use this index to group satellite observations by time and

automatically calculate the average per half-month. Since xarray cannot store an IntervalIndex into a

zarr, the midpoints of the intervals are retrieved and stored instead. In the end the indices are calcu-

lated, all data is typed to uint16 and the data cube is returned as a DataArray again because map-

chete_xarray cannot to date handle DataSets.

3.4.3.2 .mapchete file

The process configuration file (see Annex C.2) has multiple sections defining input, output, the tile

pyramid, etc. First of all, the path to the process file is specified. The input section then contains the

data that will be processed. One the one hand there is the MAB AOI, which is provided to the process

as a GeoJSON file hosted in the S3 bucket of this thesis. On the other hand the satellite data to be

downloaded is described. S2-L2A data with cloud masks is requested from AWS within a time range

starting on September 1st, 2019 and ending one up to eight and a half months later. Some connec-

tion- and computing-related parameters can be tuned too, like the remote_timeout (timeout in sec-

onds for external services if they have connection issues). xarray is defined as the output format and

the data cube is stored as zarrs at the specified S3 bucket path. COG would not be an option because

the resulting four-dimensional data cube cannot be represented properly in one COG and multiple

mapchete processes would be required to reproduce the file structure that Batch Processing uses.

Finally, the custom tile pyramid is specified via its CRS (epsg), bounds and shape. zoom_levels and

metatiling round off the characteristics of the resulting data cube.

The command to send the .mapchete file to mapchete Hub using mhub is as follows:

mhub -h demo-m.hub.eox.at execute /mnt/datacubes.mapchete -b 431970.0

5396920.0 513890.0 5478840.0 --queue masterdatacube_queue

51

It is issued six times: Once for each process zone with its respective bounds.

3.5 Hardware
Sentinel Hub’s hardware is not disclosed to the public. Therefore only the hardware that mapchete

Hub runs on can be discussed here. According to EOX (2020h, 2020g) “usually” the cluster consists of

“machines with 64mem, 16cpu” of the m5a family. These would be m5a.4xlarge instances. The

worker available to the master thesis experiments is limited to 8 CPUs and 32 GiB and the experi-

ments make use of the maximum CPU load allocated, which corresponds to an m5a.2xlarge instance.

These feature AMD EPYC 7000 series processors with up to 2.5 GHz clock speed. (AWS, 2020d)

Fig. 31: Screenshot of EOX-internal CPU and memory dashboard. Annotations: own work

The experiments were conducted on August 13th and 14th, 2020 and the tracked CPU and memory

loads are shown in Fig. 31. The hills in the upper diagram show the CPU load of the experiments with

different time ranges. I interpret the valleys as the start of a new experiment because they only seem

to occur for the upper two process zones with a very small amount of tiles to be processed (see Fig.

30). The lower diagram shows spikes for the memory consumed during each job (one job per process

zone).

52

53

54

4 Results
This section documents the results of the experiments that were conducted during the course of the

master’s thesis. Performance measurements of Euro Data Cube and mapchete Hub are elaborated on

and compared to each other. Furthermore, a report on the required skills to employ both tools is

presented. The spatial extent of the processed data is described in section 3.2 and the measuring

methods are explained in detail in chapter 3.1.

4.1 Resource usage of Euro Data Cube
Table 9 gives an overview of the measurements taken from processing the 57 s2gm tiles that cover

the MAB (Monitoring Algorithm Baseline) AOI.

ntimeslices Execution Time
Processing Costs

(PU)
Size (GiB)

Storage Costs
(USD/month)

2 0:08:36a 23 917 7.15 0.175

4 0:16:55 53 172 13.28 0.325

6 0:26:12 82 917 18.62 0.456

8 0:34:55 113 603 24.08 0.590

10 0:43:51 147 445 29.59 0.725

12 0:51:35 174 328 34.84 0.854

17 2:03:29 247 670 50.40 1.235
Table 9: Performance measurements of experiments with Sentinel Hub Batch Processing API (57 processed tiles). Grey
values are inferred using linear regression. Storage costs derived from size. Prices taken from AWS website. (AWS,
2020h)
a
 Linear regression only takes into account values for 4–12 time slices

As can be seen in Fig. 32, execution time rose linearly for four through twelve time slices, but experi-

enced a steep increase for 17 time slices (8 ½ months), which took over two hours to process (linear

progression would be about 1:15 hours).

Fig. 32: Chart showing execution time plotted against the number of time slices in the data cube.

The same trend is not true for the processing costs (expressed in Processing Units). Fig. 33 demon-

strates that the calculated Processing Units increased proportionally to the number of time slices in

the data cube. 8 ½ months cost almost 250,000 PUs.

4
6

8

10 12

17

0:00:00

0:20:00

0:40:00

1:00:00

1:20:00

1:40:00

2:00:00

2:20:00

0 5 10 15 20

Ti
m

e

n_timeslices

Execution Time

55

Fig. 33: Chart showing processing costs plotted against the number of time slices in the data cube.

Also the file size of the final data cube increased proportionally with the number of time slices. As

Fig. 34 shows, a 17-time-slices data cube of the MAB AOI processed with Euro Data Cube occupies

about 50 Gibibytes of storage space. On AWS S3 these would be USD 1.23 per month to store the

data cube.

Fig. 34: Chart showing the storage size of the processed data cubes in Gibibytes plotted against the number of time slices.

As for the skill set required to generate a data cube on the Euro Data Cube, intermediate knowledge

of JavaScript is a prerequisite in order to code the evalscript. Then, to send the evalscript to the EDC

Batch Processing service, one must communicate with its REST API. This can either be done via a

command line interface or via another script (ideally written in Python because Sentinel Hub’s docu-

mentation is tailored to it). The Euro Data Cube’s Jupyter Hub web interface can be used for these

tasks, but they can also be completed on a local machine. Alternatively users can communicate with

the API via a dedicated desktop GUI client such as Postman.

4

6

8

10 12

17

 -

 50 000

 100 000

 150 000

 200 000

 250 000

 300 000

0 5 10 15 20

P
U

s

n_timeslices

Processing Costs

4
6

8

10 12

17

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 5 10 15 20

G
iB

n_timeslices

Storage Size

56

4.2 Resource usage of mapchete Hub
Results for the experiments with Mapchete Hub can be found in Table 10. Altogether 693 tiles (zoom

level 5 with metatiling) were processed within 6 processing zones (zoom level 0).

ntimeslices Execution Time
Processing Costs

(USD)
Size (GiB)

Storage Costs
(USD/month)

2 00:13:05 0.19 7.21 0.177

4 00:23:17 0.31 13.39 0.328

6 00:30:28 0.50 18.78 0.460

8 00:38:59 0.67 23.46 0.575

10 00:49:08 0.81 29.43 0.721

12 00:58:59 0.96 34.25 0.839

17 01:24:02 1.34 48.37 1.185

Table 10: Performance measurements of experiments with Mapchete Hub (2 756 tiles processed in 6 zones). Processing
costs include costs for S3 requests and CPU time (m5a.2xlarge spot instances). Storage costs derived from size. Prices
taken from AWS website. (AWS, 2020e, 2020h)

As Fig. 35 shows, the execution time rises linearly from two time slices (13 minutes) to 17 time slices

(1 hour 24 minutes).

Fig. 35: Mapchete Hub: Chart showing execution time plotted against the number of time slices in the data cube.

The same observation can be made for the processing costs (see Fig. 36), albeit with a little excep-

tion: There is a bend in the results for smaller time ranges. The reasons for this bend are the S3 re-

quests, as Fig. 37 shows more illustratively. There is a steep increase between four and eight time

slices and the graph’s gradient only becomes similar to the CPU time graph from 10 time slices on-

wards. Processing costs range between USD 0.19 for two time slices (3,708 CPU seconds and 97,357

S3 requests) and USD 1.34 for 17 time slices (24,133 / 902,624).

2

4
6

8 10

12

17

00:00:00

00:20:00

00:40:00

01:00:00

01:20:00

01:40:00

0 5 10 15 20

Ti
m

e

n_timeslices

Execution Time

57

Fig. 36: Mapchete Hub: Chart showing processing costs plotted against the number of time slices in the data cube.

Fig. 37: Mapchete Hub: Chart showing measured CPU time and S3 requests plotted against the number of time slices in
the data cube.

Storage size scales well and shows no anomalies. A two-time-slices data cube (7.21 GiB) costs

USD 0.18 to store for a month in a S3 bucket, while AWS charges USD 1.19 for a 17-time-slices data

cube (48.37 GiB). Details are depicted in Fig. 38.

 $-

 $0.20

 $0.40

 $0.60

 $0.80

 $1.00

 $1.20

 $1.40

2 4 6 8 10 12 14 16

U
SD

n_timeslices

Processing Costs

costs - CPU (m5a) costs - requests

 -

 100 000

 200 000

 300 000

 400 000

 500 000

 600 000

 700 000

 800 000

 900 000

 1 000 000

00:00:00

01:00:00

02:00:00

03:00:00

04:00:00

05:00:00

06:00:00

07:00:00

0 2 4 6 8 10 12 14 16 18

re
q

u
e

st
s

Ti
m

e

n_timeslices

Raw Data

CPU time S3 requests

58

Fig. 38: Mapchete Hub: Chart showing the storage size of the processed data cubes in Gibibytes plotted against the num-
ber of time slices.

A mapchete Hub user mainly needs intermediate Python skills. Besides, for using the custom UTM grid,

they must be able to define their own custom pyramid taking into account pixel sizes and zoom-levels.

4.3 Comparison
The measurements that are described in the previous sections enable a detailed comparison of map-

chete Hub and EDC Batch Processing. Execution time and storage size of the resulting data cube can

be compared directly. EDC Batch Processing performed slightly faster (4–8 minutes) than mapchete

Hub until twelve time slices (see Fig. 39). Scaling up seemingly posed a problem to Batch Processing

as execution time increased dramatically in relation to the number of processed time slices resulting

in Mapchete Hub being almost 40 minutes faster for 8 ½ months. The differences in storage sizes

between the COG (Batch Processing) and zarr (mapchete Hub) data cubes are very small, only

amounting to 2 GiB for the largest measured data cube.

Fig. 39: Execution time (left) and storage size (right) comparison between Batch Processing and mapchete Hub

2

4
6

8 10

12

17

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 5 10 15 20

G
iB

n_timeslices

Storage Size

00:00

00:20

00:40

01:00

01:20

01:40

02:00

02:20

0 2 4 6 8 10 12 14 16 18

Execution Time

EDC Batch Processing API

Mapchete Hub

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 2 4 6 8 10 12 14 16 18

Storage Size

EDC Batch Processing API

Mapchete Hub

59

Storage costs can be deduced from the storage size and thus follow the same trend (USD 0.05 more

per month for 17 time slices generated by Batch Processing). Processing costs cannot be compared

easily as Batch Processing calculates with Sentinel Hub’s processing units. In contrast, usage of map-

chete Hub in the course of this thesis does not include any operational costs other than AWS cloud

services fees. For example, while processing one month of satellite data costs USD 0.19 with map-

chete Hub, it would be at least USD 24 with Batch Processing (not taking into account fees for EOx-

Hub and assuming the most cost-effective subscription plan: 1,000,000 PUs for EUR 1,000). A sum-

mary of all results can be found in Table 11.

Performance indicator EDC Batch Processing API mapchete Hub

Execution time Faster for ≤ six months, bad
scale-up

Constant scale-up, better per-
formance for 8 ½ months

Processing costs Depending on subscription plan
much highera

Only AWS cloud services costs,
very low

Storage size Slightly bigger from eight time
slices on (COG)

Slightly smaller from 8 time
slices on (zarr)

Storage costs " "

Required skill set Intermediate JavaScript Intermediate Python
Define custom pyramid

Table 11: Summary of performance EDC – Batch Processing API vs. Mapchete Hub
a
 Assuming the most cost-effective subscription plan: 1,000,000 PUs for EUR 1,000. Also see 2.6 and 4.4.

4.4 Scenarios
The outcome of the experiments serves as the basis for two scenarios: (1) Processing the monthly-

growing data cube throughout the crop season and storing it until the end of the season, and (2)

processing satellite data for the whole of Austria.

The first scenario includes generating a data cube for the 8 ½ months between September 1st and

May 15th of the following year, growing the data cube monthly till November 30th. Estimating the

cumulative wall clock time and processing costs at the end of the season is trivial: Throughout the

season there are six additional process runs for full months (15/6, 15/7, 15/8, 15/9, 15/10, and

15/11) and on 30/11 a run for half a month. We thus assume 6.5 full-month process runs, whose

results have to be added to the 8.5-months values:

Formula 2: Formula to estimate the cumulative wall clock time and processing costs to generate a data cube for the
whole crop season, as well as the resulting total storage size

Inserting into Formula 2 Batch Processing would take 2:59 and processing costs would amount to

403,000 PUs. mapchete Hub would finish processing in 2:49 cumulative wall clock time and costs

would amount to USD 2.56.

Total occupied storage space is estimated in the same way using Formula 2; the data cube for the

whole season will contain satellite data for 15 months. The Batch Processing data cube would have

96.87 GiB in size at the end of the season, while the mapchete Hub data cube would occupy 95.25

GiB of storage space.

60

Fig. 40: Illustrative diagram showing the development of data cube size over time and the respective processing dates of
the scenarios. Source: own work

Storage costs are more complicated to estimate as the storage cost bills add to each other every

month. After the first month on June 15th only the costs for storing a 8.5-months data cube have to

be paid; on July 15th the bill includes the initial 8.5-months data cube and two additional two half-

month time slices. This goes on every 15th of the month until end of November, resulting in five (and

a half) bills with additional monthly data cube slices included (an illustrative diagram can be found in

Fig. 40). In order to efficiently calculate the total costs by the end of the season we must employ

series calculation:

Formula 3: Storage costs calculation of scenario one.

If we insert the values for Batch Processing into Formula 3, we get USD 11.18, while storing the map-

chete Hub data cube for the whole time costs USD 10.88.

In order to estimate the outcome of scenario 2, we must first determine the number of tiles that

would be processed if a data cube of Austria was generated. The EDC Batch Processing service makes

it easy to find out that number. We simply create a request for the boundaries of Austria, but do not

START it. Instead, the /tiles endpoint is queried for a JSON representation of all the tiles of the re-

quest. This JSON representation is transformed into a GeoJSON so that it can be displayed on a map

and analysed (see Fig. 41). Batch Processing would in total process 266 tiles making it 4.67 times

more than for the MAB AOI.

61

Fig. 41 All Batch Processing tiles of tile grid 0 in Austria. EPSG:31297

Doing the same investigation for mapchete Hub tiles requires more manual work. The existing cus-

tom tile pyramid for UTM zone 33N is duplicated to UTM zone 32N and the process zones that over-

lap completely are removed using QGIS. Then the process tiles are generated and all that lie outside

Austria’s boundaries discarded. In the end 32 process zones and 3,906 process tiles remain, of which

138 tiles of UTM zone 32 overlap with 145 tiles of UTM zone 33 (see Fig. 42) amounting to an overlap

of 3,404 km². Altogether 3,906 tiles are a factor of 5.64 in comparison to the MAB AOI.

Fig. 42: All mapchete Hub process zones (red outline) and process tiles (pink) in Austria. EPSG:31297

62

The results of scenario 1 and 2 combined can be found in Table 12. The large number of tiles that

overlap in the mapchete Hub estimate gives Batch Processing the advantage in the outcome of the

benchmark. Batch Processing performs better in all categories except pricing, which arguably cannot

be reliably compared.

Performance indicator EDC Batch Processing API mapchete Hub

Execution time 13:57 15:53

Processing costs 1 881 000 PUs USD 14.4

Storage size 452 GiB 537 GiB

Storage costs USD 52.2 USD 61.3
Table 12: Comparison between Batch Processing API (factor 4.67) and mapchete Hub (5.64) of the extrapolation of the
experiment results to the whole season and the geographical extent of Austria

Still an estimate for the processing costs of Batch Processing in Euro is attempted employing the pric-

ing schedule presented in chapter 2.6. Assuming pre-paid PUs, costs would amount to EUR 3,222

(400,000 PUs à EUR 2.5/1,000 PUs, 1,481,000 à 1.5/1,000 PUs). If subscription plans are chosen and

adapted monthly we must return to the individual experiment results from chapter 4.1 and multiply

by the augmentation factors to convert from the MAB AOI to Austria’s extent. 1,156,619 PUs

(247,670 PUs x 4.67) would result in a fee of EUR 1,235.5 (subscription for 1,000,000 PUs and remain-

ing PUs á 1.5/1,000 PUs) for the initial data cube calculation of 8 ½ months. Additionally, monthly

time slices would be at 111,692 PUs (23,917 PUs x 4.67) each. Seven subscriptions for 70,000 PUs

would have to be bought and, subtracting the half month, six of them would have to be topped-up

by 41,692 PUs. In all, the subscription would sum up to about EUR 2,314.

63

64

5 Discussion
In response to the main research question “Can the commercial cloud service EDC outperform the

custom mHub application?” the results show that it partially can. In the experiment setup EDC has

better performance in terms of wall clock time until finish of processing (except for long satellite

imagery time series of more than half a year). Besides EDC users do not need the cartographical

knowledge to define a custom tiling grid. However, storage space usage and resulting storage costs

of the mHub data cube are lower in most cases. Processing costs cannot be compared directly, but

taking into account EDC Sentinel Hub fees, mHub excels in this category. The picture is different for

the extrapolation scenarios over the entire season and the whole of Austria. While processing costs

of EDC Batch Processing still sky-rocket, it is about 14% faster than mHub and storage size/costs are

ca. 19% lower.

This large speed and data cube size advantage of Batch Processing for a bigger area can be traced to

the efficient layout of the tiling grid that Sentinel Hub has in use and the avoidance of major over-

laps. This is not obvious if only one UTM zone is involved, but only becomes apparent because Aus-

tria lies in UTM zones 32 and 33.

During the experiment within the MAB AOI, Batch Processing seemed to hit a performance bottle-

neck for long time series of satellite data (the behaviour could be observed for eight and a half

months). This could be due to memory limits that prevented Batch Processing from loading the

whole time series into memory resulting in excess read and write operations to external storage.

Chapter 3.5 explains that mHub had 32 GiB of memory available, which were being taken advantage

of increasingly from one experiment step to the next. Nonetheless, at the maximum time series

length of eight and a half months only less than 25 GiB were being made use of. So there would have

been more memory resources at mHub’s disposal for further scale-up.

mapchete Hub’s execution time might also be influenced by the conversion of the cube from DataAr-

ray to DataSet and back. While Batch Processing’s evalscript is highly optimized, the processing script

used for mapchete Hub converts the data for convenience. This improves the readability of the index

calculations, but may have a negative impact on computing speed because of the extra conversions.

On the other hand, xarray’s vectorized computations might indeed be very fast in comparison to

looping through a set of samples in JavaScript. If nothing else, calculating the average of the satellite

observation values using a pandas IntervalIndex is a lot less complicated than the custom evalscript

functions.

The storage size of the resulting data cubes in the experiments is possibly influenced by the chosen

file format and the chunking that Batch Processing and mapchete Hub apply. The first option does

not offer any configuration in this regard because the four-dimensional data cube cannot be repre-

sented by COGs and therefore the “chunking” is fixed (there is one “chunk” per raster band). map-

chete Hub also does not let the user specify chunking, but the zarr library uses some default values.

The enormous discrepancy in processing costs can be explained by two reasons. On the one hand

mHub’s underlying software mapchete is open-source and not a commercially-sold product, while

Sentinel Hub is proprietary software. On the other hand Sentinel Hub’s Processing Units include a

profit margin that is not factored in for mHub.

65

Putting the results in relation to the extrapolated findings of Wang et al. (2019) (see chapter 0), who

processed 495 GB of satellite data in 66 hours, we can note that both Batch Processing and mapchete

Hub process data about 4.5 times faster than Wang et al.’s (2019) experiment setup in the OpenStack

cloud. Our extrapolation, of course, did not factor in any synergetic performance improvements and

simply assumed linear scaling. Therefore our extrapolation is probably biased and the difference is

not as exorbitant. Nonetheless, Wang et al.’s (2019) input data and our resulting data cubes can be

placed in the same league with regard to storage size.

In terms of a prospective business plan the most important factor to consider will be processing

costs. In view of the whole crop season, mapchete Hub’s higher wall clock time result does not con-

stitute a relevant decision factor. Increased storage costs do play a small role, but can be mitigated

by an optimization of the tiling grid. While mapchete Hub, in the context of this evaluation, needed a

custom tiling pyramid, Batch Processing comes with fixed fees that easily outweigh the minor task of

creating a tiling grid. Working time for developing the processing scripts incurs with both options and

the surplus work of designing a tiling pyramid hardly counts in comparison to the high processing

costs of Batch Processing.

Limitations of this research include the experiment design without multiple tests of the same number

of time slices, which negatively impacts reliability of the results. Through linear regression the results

within the same test series were counterchecked to each other. This revealed the outlier in the Batch

Processing results, which can either be a systematic bottleneck or a coincidental system failure. An-

other limitation is the fact that networking and caching costs have been disregarded when measuring

mapchete Hub’s processing costs. Additionally, the differing data cube schemes theoretically in-

crease Batch Processing’s storage space and costs by 6 % (16 uint16 bands vs. 15 uint16 bands and

one float32 band) compared to mapchete Hub’s, with the time range being another minor discrep-

ancy. Finally, the hardware setups could not be compared because Sentinel Hub does not disclose

their cloud configuration.

Despite these limitations our research contributes to the scarce records on performance of satellite

data processing. Our methodology, including program code, is thoroughly disclosed and the results

are presented in detail, leading to unprecedented insights into the performance of generating Earth

observation data cubes.

66

67

68

6 Conclusions
This master thesis aimed to measure the performance of the two data cube generation tools EDC

Batch Processing and mapchete Hub. The results show that in a business context Batch Processing

cannot outperform mapchete Hub due to almost 200 times higher (EUR 2,314 vs. USD 14.4) process-

ing costs for a 30-months data cube of half-monthly time slices covering Austria.

An unexpected finding is the high impact of tiling grid optimization. While EDC Batch Processing’s

pre-defined UTM-based tiling grid has almost no overlaps, the custom tile pyramid designed for

mapchete Hub leads to duplicate processing of about 3,400 km² of satellite data. This in turn makes

Batch Processing 14% faster than mapchete Hub and the resulting data cube 19% smaller.

Given that Batch Processing and mapchete Hub use completely different tile sizes an interesting topic

for further research would be to find the optimal tile size for cloud computing. Batch Processing’s

performance bottleneck indicates that tile sizes (chunk sizes) cannot grow indefinitely. For the spe-

cific use case of processing long time series, optimal chunks will probably be limited in geographic

extent. mapchete Hub’s relatively small tile size might have led to the application handling longer

time series just as well as shorter time ranges.

The same question of chunking applies to analysis performance: Some chunk sizes might yield faster

analysis results than others. The data cubes that were generated during the experiments of this the-

sis are not optimized for analysis at all. Ideally all tiles scattered over many directories would be ab-

stracted to one single view on the data cube. Preliminary attempts showed that xarray, in principle,

can provide such a unified view over multiple files, but this feature is not implemented for COGs or

zarrs (only for netCDF). Thus additional investigation is needed on how to offer a unified view on a

tiled data cube in COG or zarr format.

Finally, this research only covers Sentinel-2 data, but CbM (Checks by monitoring) additionally re-

quires Sentinel-1 radar observations. There is no need for another performance comparison between

data cube services, but applying the performance metrics explored here to Sentinel-1 would be an

interesting follow-up work—even if only for finding out the specifics of processing radar data.

Multiple iterations in the experiment design should be considered in future research, as reliability of

the results of the present thesis is limited due to a lack of repetitions. Nevertheless this thesis con-

tributes valuable evidence on the performance of data cube generation, which before was a largely

unexplored topic.

69

70

7 Literature
AMA. (2020). AMA Merkblatt—Allgemeine Informationen.

https://www.ama.at/getattachment/aba3cbb9-0039-4cae-a540-

06dad9df167e/Merkblatt_2020_ALLGEMEIN.pdf

Augustin, H., Sudmanns, M., Tiede, D., Lang, S., & Baraldi, A. (2019). Semantic Earth Observation Data

Cubes. Data, 4(3), 102. https://doi.org/10.3390/data4030102

AWS. (2020a). Amazon EC2 Dedicated Host Pricing. Amazon Web Services, Inc.

https://aws.amazon.com/ec2/dedicated-hosts/pricing/

AWS. (2020b). Amazon EC2 Features. Amazon Web Services, Inc.

https://aws.amazon.com/ec2/features/

AWS. (2020c). Amazon EC2 Instance Types. Amazon Web Services, Inc.

https://aws.amazon.com/ec2/instance-types/

AWS. (2020d). Amazon EC2 M5 Instances—General purpose compute workloads. Amazon Web Ser-

vices, Inc. https://aws.amazon.com/ec2/instance-types/m5/

AWS. (2020e). Amazon EC2 Pricing. Amazon Web Services, Inc. https://aws.amazon.com/ec2/pricing/

AWS. (2020f). Amazon EC2 Spot Instances Pricing. Amazon Web Services, Inc.

https://aws.amazon.com/ec2/spot/pricing/

AWS. (2020g). Amazon S3. Amazon Web Services, Inc. https://aws.amazon.com/de/s3/

AWS. (2020h). Amazon S3 Pricing. Amazon Web Services, Inc. https://aws.amazon.com/s3/pricing/

AWS. (2020i). Amazon S3 Storage Classes. Amazon Web Services, Inc.

https://aws.amazon.com/s3/storage-classes/

AWS. (2020j). AWS Global Cloud Infrastructure. Amazon Web Services, Inc.

https://infrastructure.aws/

AWS. (2020k). Cloud Data Archiving | Long-term Object Storage | Amazon S3 Glacier. Amazon Web

Services, Inc. https://aws.amazon.com/glacier/

AWS. (2020l). EC2 On-Demand Instance Pricing. Amazon Web Services, Inc.

https://aws.amazon.com/ec2/pricing/on-demand/

AWS. (2020m). EC2 Reserved Instance Pricing. Amazon Web Services, Inc.

https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/

AWS. (2020n). Global Infrastructure. Amazon Web Services, Inc. https://aws.amazon.com/about-

aws/global-infrastructure/

AWS. (2020o). Global Infrastructure Regions & AZs. Amazon Web Services, Inc.

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

AWS. (2020p). Savings Plans Pricing. Amazon Web Services, Inc.

https://aws.amazon.com/savingsplans/pricing/

AWS. (2020q). Sentinel-2—Registry of Open Data on AWS. https://registry.opendata.aws/sentinel-2/

Bala, R., Gill, B., Smith, D., & Wright, D. (2019). Magic Quadrant for Cloud Infrastructure as a Service,

Worldwide. Gartner. https://www.gartner.com/en/documents/3947472/magic-quadrant-

for-cloud-infrastructure-as-a-service-wor

71

Baumann, P. (2017a). The Datacube Manifesto.

https://external.opengeospatial.org/twiki_public/pub/CoveragesDWG/Datacubes/The-

Datacube-Manifesto.pdf

Baumann, P. (2017b). Standardizing big earth datacubes. 2017 IEEE International Conference on Big

Data (Big Data), 67–73. https://doi.org/10.1109/BigData.2017.8257912

Brockmann Consult. (2018, May 31). Xcube Dataset Specification.

https://xcube.readthedocs.io/en/latest/cubespec.html#basic-schema

Celery. (2020a). First Steps with Celery—Celery 4.4.7 documentation.

https://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html

Celery. (2020b, May 16). Homepage | Celery: Distributed Task Queue.

https://web.archive.org/web/20200516055757/http://www.celeryproject.org/

Chuvieco, E. (2020). Fundamentals of Satellite Remote Sensing: An Environmental Approach, Third

Edition. CRC Press LLC.

http://ebookcentral.proquest.com/lib/univie/detail.action?docID=6026405

cogeotiff. (2020). Cloud Optimized GeoTIFF in depth. https://www.cogeo.org/in-depth.html

Devos, W., Fasbender, D., Griffiths, P., Lemoine, G., Loudjani, P., Milenov, P., Sima, A., Wirnhardt, C.,

European Commission, & Joint Research Centre. (2017). Second discussion document on the

introduction of monitoring to substitute OTSC: Rules for processing applications in 2018-2019.

http://publications.europa.eu/publication/manifestation_identifier/PUB_KJNA29369ENN

Devos, W., Fasbender, D., Lemoine, G., Milenov, P., European Commission, & Joint Research Centre.

(2017). Technical guidance on the decision to go for substitution of OTSC by monitoring.

http://publications.europa.eu/publication/manifestation_identifier/PUB_KJNA29370ENN

Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water Bodies’ Mapping from Sentinel-2

Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Pro-

duced by Sharpening the SWIR Band. Remote Sensing, 8(4), 354.

https://doi.org/10.3390/rs8040354

Eamus, D., Huete, A., & Yu, Q. (2016). Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Re-

mote Sensing and Modelling. Cambridge University Press.

https://doi.org/10.1017/CBO9781107286221

EDC Consortium. (2020a). Euro Data Cube. https://eurodatacube.com/

EDC Consortium. (2020b). Euro Data Cube Services. https://cockpit.hub.eox.at/storage/uploads/edc-

editor/Euro_Data_Cube_summary_brochure.pdf

EOX. (2020a). Mapchete Hub. https://gitlab.eox.at/maps/mapchete_hub

EOX. (2020b). Mapchete Process Configuration—Mapchete 0.35 documentation.

https://mapchete.readthedocs.io/en/stable/configuration.html

EOX. (2020c). Mapchete Process—Mapchete 0.35 documentation.

https://mapchete.readthedocs.io/en/stable/processes.html

EOX. (2020d). Mapchete Satellite. https://gitlab.eox.at/maps/mapchete_satellite

EOX. (2020e). Output Formats—Mapchete 0.35 documentation.

https://mapchete.readthedocs.io/en/stable/process_output.html

72

EOX. (2020f). Tiling and projections—Mapchete 0.35 documentation.

https://mapchete.readthedocs.io/en/latest/tiling.html

EOX. (2020). Ungarj/mapchete_xarray [Python]. https://github.com/ungarj/mapchete_xarray (Origi-

nal work published 2019)

EOX. (2020). Ungarj/mapchete [Python]. https://github.com/ungarj/mapchete (Original work pub-

lished 2015)

EOX. (2020g, August 13). Think we had this discussion already...

https://eox.slack.com/archives/CU590JHB9/p1597300810008900?thread_ts=1597244595.00

4700&cid=CU590JHB9

EOX. (2020h, August 13). Usually in our cluster...

https://eox.slack.com/archives/CU590JHB9/p1597301563009500?thread_ts=1597244595.00

4700&cid=CU590JHB9

ESA. (2015a). Bulletin 161.

ESA. (2015b). Sentinel-2 tiling grid [Map].

https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__201512

09T095117_V20150622T000000_21000101T000000_B00.kml

ESA. (2018a, May 25). Sentinels modernise Europe’s agricultural policy.

http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinels_modernise_Eur

ope_s_agricultural_policy

ESA. (2018b). STATEMENT OF WORK - Procurement of EO Data Cube Facility Service: 2018-2022.

ESA. (2020a). Copernicus Open Access Hub. https://scihub.copernicus.eu/

ESA. (2020b). Level-2A Algorithm. Sentinel-2 MSI Technical Guide - Sentinel Online.

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-

2a/algorithm

ESA. (2020c). Overview.

http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Overview4

ESA. (2020d). Product Types. Sentinel-2 MSI - User Guides - Sentinel Online.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types

ESA. (2020e). Radiometric Resolutions. Sentinel-2 MSI - User Guides - Sentinel Online.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric

ESA. (2020f). Revisit and Coverage. Sentinel-2 MSI - User Guides - Sentinel Online.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage

EU. (2018a). Commission Implementing Regulation (EU) 2018/746 of 18 May 2018 amending Imple-

menting Regulation (EU) No 809/2014 as regards modification of single applications and

payment claims and checks. http://data.europa.eu/eli/reg_impl/2018/746/oj/eng

EU. (2018b, May 25). Modernising the CAP: Satellite data authorised to replace on-farm checks [Text].

European Commission - European Commission.

https://ec.europa.eu/info/news/modernising-cap-satellite-data-authorised-replace-farm-

checks-2018-may-25_en

EU. (2020a). Copernicus In Brief. https://www.copernicus.eu/en/about-copernicus/copernicus-brief

73

EU. (2020b). Integrated Administration and Control System (IACS) [Text]. European Commission -

European Commission. https://ec.europa.eu/info/food-farming-fisheries/key-

policies/common-agricultural-policy/financing-cap/financial-assurance/managing-

payments_en

EU. (2020c). The common agricultural policy at a glance [Text]. European Commission - European

Commission. https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-

agricultural-policy/cap-glance_en

European Commission. (n.d.). Infrastructure | Copernicus. Retrieved April 15, 2020, from

https://www.copernicus.eu/en/about-copernicus/infrastructure

Garner, B. (2020, April 24). Celery Tutorial: A Must-Learn Technology for Python Developers. Medium.

https://medium.com/swlh/python-developers-celery-is-a-must-learn-technology-heres-how-

to-get-started-578f5d63fab3

Giuliani, G., Camara, G., Killough, B., & Minchin, S. (2019). Earth Observation Open Science: Enhanc-

ing Reproducible Science Using Data Cubes. Data, 4(4), 147.

https://doi.org/10.3390/data4040147

Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H., & Peduzzi, P.

(2017). Building an Earth Observations Data Cube: Lessons learned from the Swiss Data Cube

(SDC) on generating Analysis Ready Data (ARD). Big Earth Data, 1(1–2), 100–117.

https://doi.org/10.1080/20964471.2017.1398903

Giuliani, G., Chatenoux, B., Honeck, E., & Richard, J.-P. (2018). Towards Sentinel-2 Analysis Ready

Data: A Swiss Data Cube Perspective. IGARSS 2018 - 2018 IEEE International Geoscience and

Remote Sensing Symposium, 8659–8662. https://doi.org/10.1109/IGARSS.2018.8517954

Giuliani, G., Masó, J., Mazzetti, P., Nativi, S., & Zabala, A. (2019). Paving the Way to Increased Inter-

operability of Earth Observations Data Cubes. Data, 4(3), 113.

https://doi.org/10.3390/data4030113

Gomes, V. C. F., Queiroz, G. R., & Ferreira, K. R. (2020). An Overview of Platforms for Big Earth Obser-

vation Data Management and Analysis. Remote Sensing, 12(8), 1253.

https://doi.org/10.3390/rs12081253

Han, J., Kamber, M., & Pei, J. (2012). Data Cube Technology. In Data Mining (pp. 187–242). Elsevier.

https://doi.org/10.1016/B978-0-12-381479-1.00005-8

HDF Group. (2017). HDF5 Sell Sheet. https://www.hdfgroup.org/wp-

content/uploads/2017/12/HDF512-17.pdf

IDB. (2020). IDB - List of available Indices. https://www.indexdatabase.de/db/i.php

King, M., & Herring, D. (2001). Research Satellites for Atmospheric Science, 1978-Present. In J. Hol-

ton, J. Pyle, & J. Curry (Eds.), Encyclopedia of Atmospheric Sciences. Academic Press.

https://earthobservatory.nasa.gov/features/RemoteSensingAtmosphere

Knorr, E. (2020). The 2020 IDG Cloud Computing Survey. InfoWorld.Com.

Knowelden, R., & Castriotta, A. G. (2020). Copernicus Sentinel Data Access 2019—Annual Report.

https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2019/COPE-SERCO-

RP-20-0570_-_Sentinel_Data_Access_Annual_Report_Y2019_v1.0.pdf

74

Koetz, Defourny, Bontemps, Bajec, Cara, de Vendictis, Kucera, Malcorps, Milcinski, Nicola, Rossi, Sci-

arretta, Slacikova, Tutunaru, Udroiu, & Zavagl. (2019). SEN4CAP - Sentinels for CAP monitor-

ing approach.

Kopp, S., Becker, P., Doshi, A., Wright, D. J., Zhang, K., & Xu, H. (2019). Achieving the Full Vision of

Earth Observation Data Cubes. Data, 4(3), 94. https://doi.org/10.3390/data4030094

Lewis, A., Lymburner, L., Purss, M. B. J., Brooke, B., Evans, B., Ip, A., Dekker, A. G., Irons, J. R.,

Minchin, S., Mueller, N., Oliver, S., Roberts, D., Ryan, B., Thankappan, M., Woodcock, R., &

Wyborn, L. (2016). Rapid, high-resolution detection of environmental change over continen-

tal scales from satellite data – the Earth Observation Data Cube. International Journal of Digi-

tal Earth, 9(1), 106–111. https://doi.org/10.1080/17538947.2015.1111952

Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, J., Wood-

cock, R., Sixsmith, J., Wu, W., Tan, P., Li, F., Killough, B., Minchin, S., Roberts, D., Ayers, D.,

Bala, B., Dwyer, J., … Wang, L.-W. (2017). The Australian Geoscience Data Cube—

Foundations and lessons learned. Remote Sensing of Environment, 202, 276–292.

https://doi.org/10.1016/j.rse.2017.03.015

Lilja, D. J. (Ed.). (2000). Metrics of performance. In Measuring Computer Performance: A Practitio-

ner’s Guide (pp. 9–24). Cambridge University Press; Cambridge Core.

https://doi.org/10.1017/CBO9780511612398.003

Loudjani, P. (2019). … After early years and those to come ….

https://ec.europa.eu/jrc/sites/jrcsh/files/1-tuesday26-11.zip

Masó, J. (2016, January 19). OGC® Web Map Tile Service (WMTS) Simple Profile [Implementation

Standard]. WMS SWG; Open Geospatial Consortium. http://docs.opengeospatial.org/is/13-

082r2/13-082r2.html

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation

of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

https://doi.org/10.1080/01431169608948714

Mell, P. M., & Grance, T. (2011). The NIST Definition of Cloud Computing.

https://www.nist.gov/publications/nist-definition-cloud-computing

Mesnier, M., Ganger, G. R., & Riedel, E. (2003). Object-based storage. IEEE Communications Maga-

zine, 41(8), 84–90. https://doi.org/10.1109/MCOM.2003.1222722

Milcinski, G. (2020a). Eo-learn_Batch.postman_collection.json [JSON].

Milcinski, G. (2020b, January 7). Large-scale data preparation—Introducing Batch Processing. Medi-

um. https://medium.com/sentinel-hub/large-scale-data-preparation-introducing-batch-

processing-b3a58755b8a1

Milcinski, G. (2020c, June 16). Euro Data Cube.

https://www.youtube.com/watch?time_continue=108&v=lqckgCfucas&feature=emb_logo

MongoDB. (2020a). Document Database. MongoDB. https://www.mongodb.com/document-

databases

MongoDB. (2020b). The most popular database for modern apps. MongoDB.

https://www.mongodb.com

75

Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A

tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–

43. https://doi.org/10.1109/MGRS.2013.2248301

Murugesan, S., & Bojanova, I. (2016). Cloud Computing. In Encyclopedia of Cloud Computing (pp. 1–

14). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118821930.ch1

NASA. (2020, August 24). The Thematic Mapper. Landsat Science. https://landsat.gsfc.nasa.gov/the-

thematic-mapper/

Nativi, S., Mazzetti, P., & Craglia, M. (2017). A view-based model of data-cube to support big earth

data systems interoperability. Big Earth Data, 1(1–2), 75–99.

https://doi.org/10.1080/20964471.2017.1404232

Obaidat, M., & Boudriga, N. (2010). Introduction and Basic Concepts. In Fundamentals of Perform-

ance Evaluation of Computer and Telecommunication Systems (pp. 1–20). John Wiley & Sons,

Ltd. https://doi.org/10.1002/9780470567203.ch1

OGC. (2010). OGC® WCS 2.0 Interface Standard (P. Baumann, Ed.).

Pettorelli, N., Schulte to Buehne, H., Shapiro, A., & Glover-Kapfer, P. (2018). Conservation Technology

Series Issue 4: SATELLITE REMOTE SENSING FOR CONSERVATION.

https://doi.org/10.13140/RG.2.2.25962.41926

Purss, M. B. J., Peterson, P. R., Strobl, P., Dow, C., Sabeur, Z. A., Gibb, R. G., & Ben, J. (2019).

Datacubes: A Discrete Global Grid Systems Perspective. Cartographica: The International

Journal for Geographic Information and Geovisualization, 54(1), 63–71.

Sentinel Hub. (2020a). Authentication. https://docs.sentinel-

hub.com/api/latest/#/API/authentication?id=python

Sentinel Hub. (2020b). Batch Processing API. https://docs.sentinel-

hub.com/api/latest/#/BATCH_API/batch_processor?id=tiling-grids

Sentinel Hub. (2020c). Definition of a Processing Unit. https://docs.sentinel-

hub.com/api/latest/api/overview/processing-unit/

Sentinel Hub. (2020d). Evalscript v3. https://docs.sentinel-hub.com/api/latest/evalscript/v3/

Sentinel Hub. (2020e). Examples of Batch Processing Workflow. https://docs.sentinel-

hub.com/api/latest/api/batch/examples/

SEOS. (n.d.). Introduction to Remote Sensing. Retrieved April 9, 2020, from https://seos-

project.eu/remotesensing/remotesensing-c01-p06.html

Siegmund, A., & Menz, G. (2005). Fernes nah gebracht—Satelliten- und Luftbildeinsatz zur Analyse

von Umweltveränderungen im Geographieunterricht. In Geographie und Schule (Vol. 27, Is-

sue 154, pp. 2–10, S. 49).

Strobl, P., Baumann, P., Lewis, A., Szantoi, Z., Killough, B., Purss, M., Craglia, M., Nativi, S., Held, A., &

Dhu, T. (2017). The six faces of the data cube. https://doi.org/10.2760/383579

Sudmanns, M., Tiede, D., Lang, S., Bergstedt, H., Trost, G., Augustin, H., Baraldi, A., & Blaschke, T.

(2020). Big Earth data: Disruptive changes in Earth observation data management and analy-

sis? International Journal of Digital Earth, 13(7), 832–850.

https://doi.org/10.1080/17538947.2019.1585976

76

the pandas development team. (2020). Intro to data structures. Pandas 1.1.1 Documentation.

https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe

The SciPy community. (2020). NumPy: The absolute basics for beginners. NumPy v1.20.Dev0 Manual.

https://numpy.org/devdocs/user/absolute_beginners.html

Ungar, J. (2020a). Datacubes.mapchete [Python]. EOX.

https://github.com/StefanBrand/masterdatacube

Ungar, J. (2020b). Xarray_export.py [Python]. EOX. https://github.com/StefanBrand/masterdatacube

Unidata. (2018). NetCDF Factsheet.

https://www.unidata.ucar.edu/publications/factsheets/current/factsheet_netcdf.pdf

Unidata. (2020). NetCDF: An Introduction to NetCDF.

https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_introduction.html#netcdf_4_fo

rmat

Wang, L., Yan, J., Ma, Y., Yan, J., & Ma, Y. (2019). Remote Sensing Product Production in an Open-

Stack-Based Cloud Computing Environment. In Cloud Computing in Remote Sensing (pp. 151–

173). Chapman and Hall/CRC. https://doi.org/10.1201/9780429488764-7

Woodcock, R., Cecere, T., Mitchell, A., Killough, B., Dyke, G., Ross, J., Albani, M., Ward, S., & Labahn,

S. (2016). CEOS Future Data Access & Analysis Architecture Study.

http://ceos.org/document_management/Meetings/Plenary/30/Documents/5.2_Future-

Data-Architectures-Interim-Report_v.1.pdf

Wu, Y., Xiang, Y., Ge, J., & Muller, P. (2018). High-Performance Computing for Big Data Processing.

Future Generation Computer Systems, 88, 693–695.

https://doi.org/10.1016/j.future.2018.07.054

xarray Developers. (2020a). Data Structures. Xarray 0.15.1 Documentation.

https://xarray.pydata.org/en/stable/data-structures.html

xarray Developers. (2020b). Reading and writing files. Xarray 0.15.1 Documentation.

https://xarray.pydata.org/en/stable/io.html#zarr

Yee, C., Durbin, C., Quinn, P., & Shum, D. (2020). Task 51—Cloud-Optimized Format Study (Technical

Paper No. EED2-TP-125, Rev. 01). Raytheon Company.

http://wiki.esipfed.org/images/3/38/EED2-TP-125_Rev01_CloudOptimizeStudy.pdf

Zarr Developers. (2019, July 12). Zarr. Zarr 2.4.0 Documentation.

https://zarr.readthedocs.io/en/stable/index.html

Zarr Developers. (2020, January 9). Tutorial. Zarr 2.4.0 Documentation.

https://zarr.readthedocs.io/en/stable/tutorial.html

77

78

Annex A date_interval_endpoints
Source: Own work

def date_interval_endpoints(starttime, endtime, day_of_new_interval):

 """

 Return a list of half-month endpoints.

 Keyword arguments:

 - starttime: datetime or date

 - endtime: datetime or date

 - day_of_new_interval: int

 Returns:

 - dates: list(datetime)

 """

 from datetime import datetime

 from dateutil.relativedelta import relativedelta as rdelta

 from dateutil.rrule import rrule, MONTHLY

 from pandas import to_datetime

 starttime = datetime(*starttime.timetuple()[:3],0,0)

 endtime = datetime(*endtime.timetuple()[:3],0,0)

 d=day_of_new_interval

 dates = list(rrule(MONTHLY, dtstart=starttime, until=endtime, bymonthday=[

1,d-1,d,-1]))

 # add starttime/endtime if not included in dates

 if not dates[0].day == 1 and not dates[0].day == d:

 dates = [starttime] + dates

 if (not dates[-1].day == to_datetime(dates[-1]).daysinmonth and

 not dates[-1].day == d-1):

 dates = dates + [endtime]

 # set time of right endpoints to 23:59:59

 for i in range(1,len(dates),2):

 dates[i] = dates[i]+rdelta(hour=23, minute=59, second=59)

 return dates

79

Annex B Batch Processing code

B.1 Evalscript
Source: Milcinski, 2020a; own work

//VERSION=3

//double curly brackets render as single curly brackets in python format strin

gs

/* FUNCTIONS */

function setup() {{

 return {{

 input: [{{

 bands: {bands},

 units: "DN"

 }}],

 output: {output_array},

 mosaicking: Mosaicking.ORBIT

 }}

}}

function validate (sample) {{

 if (sample.dataMask!=1) return false;

 var scl = sample.SCL//Math.round(sample.SCL);

 if (scl === 3) {{ // SC_CLOUD_SHADOW

 return false;

 }} else if (scl === 9) {{ // SC_CLOUD_HIGH_PROBA

 return false;

 }} else if (scl === 8) {{ // SC_CLOUD_MEDIUM_PROBA

 return false;

 }} else if (scl === 7) {{ // SC_CLOUD_LOW_PROBA

 //return false;

 }} else if (scl === 10) {{ // SC_THIN_CIRRUS

 return false;

 }} else if (scl === 11) {{ // SC_SNOW_ICE

 return false;

 }} else if (scl === 1) {{ // SC_SATURATED_DEFECTIVE

 return false;

 }} else if (scl === 2) {{ // SC_DARK_FEATURE_SHADOW

 //return false;

 }}

 return true;

}}

function calculateIndex(a,b)

{{

80

 if ((a+b)==0) return 0;

 // stretch [-1,+1] to [0,1]

 return ((a-b)/(a+b)+1)/2;

}}

function interpolatedValue(arr)

{{

 //here we define the function on how to define the proper value -

 e.g. linear interpolation; we will use average

 if (arr.length==0) return 0;

 if (arr.length==1) return arr[0];

 var sum = 0;

 for (j=0;j<arr.length;j++)

 {{sum+=arr[j];}}

 return Math.round(sum/arr.length);

}}

function fillResultArray(i, int_bands)

{{

 for (var k=0; k<bands.length; k++) {{

 if(int_bands[bands[k]].length==0) results[bands[k]][i] = 0

 else results[bands[k]][i] = interpolatedValue(int_bands[bands[k]])

 }}

 for (var k=0; k<ixs.length; k++) {{

 if(ixs[k]!=="CVI") {{

 results[ixs[k]][i] = 65535*calculateIndex(

 results[ic[ixs[k]][0]][i],

 results[ic[ixs[k]][1]][i]

)

 }} else {{

 // output sample type for CVI is FLOAT32

 results[ixs[k]][i] = results["B08"][i]*results["B05"][i] / (results["B

03"][i]*results["B03"][i])

 }}

 }}

}}

/* MAIN */

var ic = {{ // index components

 "NDVI": ["B08", "B04"],

 "GNDVI": ["B08", "B03"],

 "BNDVI": ["B08", "B02"],

 "NDSI": ["B11", "B12"],

 "NDWI": ["B03", "B08"]

}}

81

var bands = Object.keys({int_bands})

var ixs = {indices}

var results = {results_object}

// We split each month into two halves. This will make it easier to append mon

ths to data cube later

var day_of_new_interval = {day_of_new_interval}

var endtime = new Date({enddate_unix}) // UNIX epoch in ms

function evaluatePixel(samples, scenes) {{

 var is_in_last_half_of_month = endtime.getUTCDate() >= day_of_new_interval

 var i = 0; // interval number

 var int_bands_empty = {int_bands}

 var int_bands = int_bands_empty

 for (var j = 0; j < samples.length; j++) {{

 // if scene is outside of current half of month, fill result array and cha

nge half of month

 // algorithm starts with most recent observation

 if ((!is_in_last_half_of_month && scenes[j].date.getUTCDate() >= day_of_n

ew_interval) ||

 (is_in_last_half_of_month && scenes[j].date.getUTCDate() < day_of_new_i

nterval))

 {{

 fillResultArray(i, int_bands)

 int_bands = int_bands_empty //reset values

 is_in_last_half_of_month = !is_in_last_half_of_month;

 i++;

 }}

 if (validate(samples[j]))

 {{

 // push input samples into their respective arrays

 for (var k=0; k<bands.length; k++) {{

 int_bands[bands[k]].push(samples[j][bands[k]])

 }}

 }}

 }}

 //execute this for the last interval

 fillResultArray(i, int_bands);

 return results

}}

82

B.2 EDC Batch Processing Jupyter Notebook
load credentials from environment variables
%load_ext dotenv
%dotenv

util
import boto3

date & time
from datetime import date, datetime
from util import date_interval_endpoints as endpoints

Oauth
from oauthlib.oauth2 import BackendApplicationClient
from requests_oauthlib import OAuth2Session

B.2.1 Get authorization token

Source: Sentinel Hub, 2020a; own work

Your client credentials
client_id = %env SH_CLIENT_ID
client_secret = %env SH_CLIENT_SECRET

Create a session
client = BackendApplicationClient(client_id=client_id)
oauth = OAuth2Session(client=client)

token = oauth.fetch_token(token_url='https://services.sentinel-
hub.com/oauth/token',
 client_id=client_id, client_secret=client_secret)

B.2.2 Configure request (evalscript)

Enter start and end date, input bands, indices. The resulting files will have two time intervals per

month, being split at day_of_new_interval.

startdate = date(2017,9,1) # Y,M,D
enddate = date(2018,05,15) # Y,M,D

input_bands = [
 "B02",
 "B03",
 "B04",
 "B05",
 "B06",
 "B07",
 "B08",
 "B8A",
 "B11",
 "B12"
]

indices = [
 "NDVI",

83

 "GNDVI",
 "BNDVI",
 "CVI",
 "NDSI",
 "NDWI"
]

bucket_name = "eox-masterdatacube"

day_of_new_interval = 16 # leave this unchanged in most of the cases

B.2.3 Calculate parameters

eps = endpoints(startdate, enddate, day_of_new_interval)

timestamps = [int(d.timestamp()) for d in eps] # timestamps for arithmetic
avg_times = [(left+right)/2 for left,right in zip(timestamps[::2],timestamps[1
::2])]
avg_times = [datetime.utcfromtimestamp(a) for a in avg_times]
avg_times = [dt.isoformat() for dt in avg_times]

masks = ["SCL", "dataMask"] # SCL ... Scene Classification Layer

output_bands = input_bands + indices
output_array = [{ 'id': "\"" + ob + "\"", 'bands': len(avg_times), "sampleTy
pe": "SampleType.UINT16"} for ob in output_bands]
for oa in output_array:
 if oa["id"] == '"CVI"':
 oa["sampleType"] = "SampleType.FLOAT32"
output_array = str(output_array).replace("'", '')

int_bands = '{' + ','.join([f'{ib}: []' for ib in input_bands]) + '}'
results_object = '{' + ','.join([f'{ob}: []' for ob in output_bands]) + '}'
responses = [{"identifier": ob,"format": {"type": "image/tiff"}} for ob in out
put_bands]

B.2.4 Evalscript & Payload

Source: Sentinel Hub, 2020e; own work

with open('evalscript.js', 'r') as file:
 evalscript = file.read()

evalscript = evalscript.format(
 bands =str(input_bands+masks),
 output_array =output_array,
 results_object =results_object,
 day_of_new_interval=day_of_new_interval,
 enddate_unix =datetime(*enddate.timetuple()[:3],23,59,59).timestamp(
)*1000,
 int_bands =int_bands,
 indices =indices
)

84

mab_geometry = { "type": "Polygon", "coordinates":
 [
 [
 [14.249086675661697, 48.549686576488739, 0.0],
 [14.804694846753847, 48.546347802635076, 0.0],
 [14.804740209647099, 48.662420784507489, 0.0],
 [14.802209327231056, 48.752811114695149, 0.0],
 [16.224291241591107, 48.74506103134155, 0.0],
 [16.19780424032631, 47.621347235969026, 0.0],
 [14.263435524016538, 47.627863161515464, 0.0],
 [14.249086675661697, 48.549686576488739, 0.0]
]
]
}

payload = {
 "processRequest": {
 "input": {
 "bounds": {
 "properties": {
 "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84"
 },
 "geometry": mab_geometry
 },
 "data": [
 {
 "type": "S2L2A",
 "dataFilter": {
 "timeRange": {
 "from": eps[0].isoformat() + 'Z', # starttime
 "to": eps[-1].isoformat() + 'Z' # endtime
 },
 "mosaickingOrder": "mostRecent",
 "maxCloudCoverage": 100,
 "previewMode": "DETAIL"
 }
 }
]
 },
 "output": {
 "responses": responses
 },
 "evalscript": evalscript
 },
 "tilingGridId": 0,
 "bucketName": bucket_name,
 "resolution": 10.0,
 "description": "Test MAB"
}

85

B.2.5 Send request

Source: Sentinel Hub, 2020e; own work

url = 'https://services.sentinel-hub.com/batch/v1/process/'

response = oauth.request("POST", url, json = payload).json()
request_id = response["id"]
print(f"Status of request {request_id}: {response['status']}")

oauth.request("POST", f'{url}{request_id}/start')
print('Processing started.')

s3 = boto3.resource('s3')
bk = s3.Bucket(bucket_name)

bk.put_object(Key=request_id + '/userdata.json', Body=json.dumps({
 'bands': output_bands,
 'request_id': request_id,
 'time': avg_times
}))
print('Metadata saved to bucket')

86

Annex C mapchete Hub code

C.1 datacube.py
Source: Ungar, 2020b; own work

from datetime import datetime

import numpy as np

from shapely.geometry import shape

from pandas import IntervalIndex

import xarray as xr

from mapchete_satellite.exceptions import EmptyStackException

from mapchete_satellite.settings import SENTINEL2_BAND_INDEXES

def execute(

 mp,

 bands=[2, 3, 4, 5, 6, 7, 8, 9, 11, 12],

 resampling="cubic_spline",

 read_threads=1

):

 """

 Extract satellite data slices to 4D xarray.

 Inputs

 satellite_cube

 S2AWS or S2Mundi input

 Parameters

 bands : int or list of int

 Indexes of bands considered.

 resampling : str (default: 'nearest')

 Resampling used when reading data.

 read_threads : 1

 Number of parallel read threads.

 Output

 xarray.DataArray

 """

 if "aoi" in mp.params["input"]:

 with mp.open("aoi") as aoi:

87

 if not len(aoi.read()):

 return "empty"

 with mp.open("satellite_cube") as sat:

 try:

 # create 4D xr.DataArray with named slice_ids and named bands

 in_cube = sat.read_cube(

 indexes=bands,

 resampling=resampling,

 mask_clouds=True,

 threads=read_threads

)

 band_names = [SENTINEL2_BAND_INDEXES[sat.processing_level][i] for

i in bands]

 cube = xr.DataArray(

 # apply masks and swap "bands" and "timestamp" axes

 in_cube.data.transpose(1, 0, 2, 3),

 # named dimension indexes

 coords={

 "bands": [b.split('_')[0] for b in band_names],

 "timestamps": list(in_cube.timestamps),

 },

 # named dimensions

 dims=("bands", "timestamps", "x", "y"),

)

 # temporarily convert to xarray.DataSet

 cube = cube.to_dataset("bands")

 # new interval starts at day 16 of month

 eps = date_interval_endpoints(*sat._time_range, 16)

 int_idx = IntervalIndex.from_arrays(eps[::2], eps[1::2])

 avg_cube = cube.groupby_bins('timestamps', bins=int_idx).mean('tim

estamps')

 avg_cube = avg_cube.rename({'timestamps_bins': 'time'}) # xcube Da

taset spec

 avg_cube.coords['time'] = int_idx.mid # zarr cannot have IntervalI

ndex as coords

 for idx, (ic1, ic2) in ics.items():

 if ic1 in avg_cube and ic2 in avg_cube:

88

 # 2**16

 avg_cube[idx] = calculate_index(avg_cube[ic1], avg_cube[ic

2]) * 65335

 # CVI calculation

 if "B03" in avg_cube and "B05" in avg_cube and "B08" in avg_cube:

 avg_cube['CVI'] = (avg_cube.B08 * avg_cube.B05 / avg_cube.B03*

*2) * 1000

 # Typing conforming to SH Mass output

 avg_cube = avg_cube.astype(np.uint16)

 # convert to xarray.DataArray again for writing

 return avg_cube.to_array("bands")

 except EmptyStackException:

 return "empty"

def date_interval_endpoints(starttime, endtime, day_of_new_interval):

...

def calculate_index(a, b):

 """Calculate one of the ices indexes."""

 # stretch [-1,+1] to [0,1]

 return ((a - b) / (a + b) + 1) / 2

index components

ics = {

 "NDVI": ["B08", "B04"],

 "GNDVI": ["B08", "B03"],

 "BNDVI": ["B08", "B02"],

 "NDSI": ["B11", "B12"],

 "NDWI": ["B03", "B08"]

}

89

C.2 datacubes.mapchete
Source: Ungar, 2020a; own work

process: datacube.py

input:

 aoi: s3://eox-masterdatacube/mapchete_cubes/mab.geojson

 satellite_cube:

 format: S2AWS

 level: L2A

 with_cloudmasks: true

 start_time: 2019-09-01

 end_time: 2020-05-15

 max_products: 3700

 remote_timeout: 60

 cache:

 path: /mnt/data/cache

 intersection_percent: 0.5

 bands: [2, 3, 4, 5, 6, 7, 8, 9, 11, 12]

output:

 format: xarray

 path: s3://eox-masterdatacube/mapchete_cubes/mdc_17_01/

 dtype: uint16

 storage: zarr

pyramid:

 grid:

 shape: [115, 9]

 bounds: [186210.0, -9800.0, 923490.0, 9411000.0]

 is_global: False

 epsg: 32633

 metatiling: 2

zoom_levels: 5

