
i 
 

 

 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

Performance Evaluation of Sentinel-2 Earth Observation 

Data Cube Generation in the Context of the  

EU Common Agricultural Policy 

 

verfasst von / submitted by 

Stefan Brand BSc 

 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Master of Science (MSc) 

Wien, 2020 / Vienna 2020  

Studienkennzahl lt. Studienblatt / 

degree programme code as it appears on 

the student record sheet: 

UA 066 856 

Studienrichtung  lt. Studienblatt / 

degree programme as it appears on 

the student record sheet: 

Kartographie und Geoinformation 

Betreut von / Supervisor: Ass.-Prof. Mag. Dr. Andreas Riedl 



ii 
 

  



iii 
 

Erklärung  
 
Hiermit versichere ich,  

 dass ich die vorliegende Masterarbeit selbstständig verfasst, andere als die 
angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner 
unerlaubter Hilfe bedient habe,  

 dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland in 
irgendeiner Form als Prüfungsarbeit vorgelegt habe  

 und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit vollständig 
übereinstimmt.  

 
Wien, am…….. 



iv 
 

  



v 
 

Acknowledgments 
I would like to express my thanks to a number of people, who helped make this master’s thesis pos-

sible. First of all, I would like to thank my sponsor EOX IT Services for giving me the opportunity to 

write the thesis in a company environment. In particular, CEO Dr. Gerhard Triebnigg put his trust in 

me from the beginning and Stefan Achtsnit and Joachim Ungar supported me with discussion about 

the research and by answering all my questions. 

My supervisor Ass.-Prof. Andreas Riedl enabled me to finish the thesis quickly by always replying 

promptly to my e-mails. Besides, his concise feedback encouraged me to dig deeper into the research 

topic and perform meticulous scientific writing. 

During the whole process of writing this master’s thesis my mother took a lot of load off me. Thank 

you for always being there for me and supporting my decisions! Unfortunately I have not won the 

race between my girlfriend and me, about who would first finish their studies. ;-) Nevertheless I want 

to thank you for pushing me forward and keeping my self-set deadline in my mind, leading to con-

tinuous research and writing progress. I love you both! 

Lastly, but most importantly, I want to thank my Heavenly Father and His Son Jesus Christ for blessing 

my life and putting me in a position where I can live and learn freely. 

  



vi 
 

Abstract 
Among the EU policies the Common Agricultural Policy (CAP) has one of the biggest budget shares, 

most of which is distributed to farmers. In 2018 the member states’ paying agencies disbursed about 

42 billion Euros of direct payments. In return the farmers commit to environmentally friendly farming 

practices and landscape conservation. (EU, 2020c) Compliance is monitored via On-The-Spot-Checks 

(OTSC), which is time-consuming and only allows for 5 % of farms being inspected. (Devos, Fas-

bender, Griffiths, et al., 2017, p. 4) 

This is where the Copernicus Program with its Sentinel-1 and -2 satellites comes in. In an effort to 

modernize the CAP and improve its efficiency the EU wants to move to Checks by monitoring (CbM) 

and do automatic compliance inspections of all agricultural parcels. CbM is facilitated by training a 

Machine Learning (ML) model using labelled satellite data. The ML model then classifies the agricul-

tural parcels according to crop type and compares this computed crop type to the one declared by 

the farmer. Non-complying parcels are highlighted to the inspectors. 

Since satellite data can be considered big data there are some specific challenges involved. They can 

be mitigated by pre-processing these data into a data cube, which abstracts satellite images from a 

file-based format into a data structure that enables easy analysis. These so-called Earth observation 

data cubes are at the centre of this research. The aim was to contribute information about the re-

source usage of data cube generation because this aspect is largely unexplored at present. 

Program code to generate data cubes using the two applications Euro Data Cube Batch Processing 

and mapchete Hub was written and the performance of the two was measured and compared. Dur-

ing the experiments, optical Sentinel-2 satellite imagery of one to 8.5-months was processed into a 

data cube with half-monthly time slices covering 17,000 km². The hypothesis was that the commer-

cial service Batch Processing can outperform the custom mapchete Hub, which is based on open-

source software and developed by EOX IT services, the sponsor of this thesis. 

The experiments show that there is no clear winner in terms of size (mapchete Hub: 48.37 GiB; Batch 

Processing: 50.40 GiB) and storage costs (USD 1.185/USD 1.235) of the generated data cube. Also the 

processing time is similar up to the point where Batch Processing seems to hit a performance bottle 

neck and mapchete Hub is almost 50 % faster (1:24 vs. 2:03). Batch Processing’s abstract currency 

Processing Unit is generally expensive to buy with real money and therefore mapchete Hub succeeds 

in the processing costs category by far as well. The only drawback of mapchete Hub is that there is no 

pre-defined UTM grid available, so that the user has to define a custom grid. 

The advantage of Batch Processing’s optimized UTM tiling grid especially shows in the extrapolation 

scenario for Austria, which spans two UTM zones. In this scenario EDC Batch Processing comes first in 

regard to processing time (14 % faster than mapchete Hub) and storage size/costs (17 % lower). Still 

mapchete Hub’s processing costs are almost 200 times lower than Batch Processing’s.  

In conclusion, Batch Processing cannot outperform mapchete Hub in a business context due to its 

high processing costs. The results of the experiments allow for valuable insight into the performance 

of data cube generation and can be a reference for future work regarding tiling grids, optimizations 

for later data cube analysis and data cubes consisting of Sentinel-1 radar data. 
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Kurzfassung 
Die Gemeinsame Agrarpolitik (GAP) hat relativ zu den anderen  EU-Politiken einen der größten Bud-

getanteile. Das meiste Geld wird von den Zahlstellen der Mitgliedsländer in Form von Direktzahlun-

gen an die Bauern ausgezahlt (2018: EUR 42 Milliarden). Im Gegenzug verpflichten sich die Bauern zu 

umweltfreundlicher Bewirtschaftungsweise und Landschaftspflege. (EU, 2020c) Die Erfüllung der 

Vorgaben wird mit zeitaufwändigen Vor-Ort-Kontrollen überwacht, die nur eine Kontrolle von 5 % 

aller Höfe erlaubt. (Devos, Fasbender, Griffiths, et al., 2017, p. 4) 

Hier kommt das Copernicus-Programm mit seinen Sentinel-1- und -2-Satelliten ins Spiel. Um die GAP 

zu modernisieren und ihre Effizienz zu steigern, möchte die EU auf Checks by Monitoring (CbM) set-

zen und automatische Kontrollen aller Agrarflächen durchführen. Dies wird ermöglicht, indem ein 

Machine-Learning-Modell mit klassifizierten Satellitendaten trainiert wird. Das Modell klassifiziert 

dann wiederum Felder nach der darauf angebauten Kulturpflanze und vergleicht das Ergebnis mit 

den Angaben der Bauern. Nicht übereinstimmende Agrarflächen werden genauer kontrolliert. 

Da Satellitendaten als Big Data erachtet werden können, gehen sie mit einigen spezifischen Heraus-

forderungen einher. Diese können durch Vorprozessierung zu Datenwürfeln bewältigt werden. Satel-

litenbilder werden so von einem Datei-basierten Format in eine Datenstruktur abstrahiert, die eine 

mühelose Analyse ermöglicht. Die so genannten Erdbeobachtungsdatenwürfel bilden den Hauptfo-

kus dieser Arbeit. Da der Ressourcenverbrauch der Generierung solcher Datenwürfel zurzeit fast 

unerforscht ist, war das Ziel, Informationen zu diesem Forschungsfeld beizutragen. 

Dafür wurde Programmcode zur Datenwürfelgenerierung mittels der beiden Anwendungen Euro 

Data Cube (EDC) Batch Processing (BP) und mapchete Hub (mHub) geschrieben und deren Perfor-

mance gemessen und verglichen. Die Experimente umfassten die Prozessierung von optischen Senti-

nel-2-Satellitenbildaufnahmen über einen Zeitraum von einem bis 8,5 Monaten und einer Ausdeh-

nung von 17.000 km² in einen Datenwürfel mit halbmonatigen Zeitschichten. Die Hypothese war, 

dass der kommerzielle BP-Dienst eine bessere Performanz als die individuelle mHub-Lösung bietet, 

die auf quelloffener Software basiert und von dem Unternehmen EOX IT Services entwickelt wird, 

dem Sponsor dieser Masterarbeit. 

Die Experimente zeigen, dass es bei der Speichergröße (mHub: 48,37 GiB/BP: 50,40 GiB) bzw. der -

kosten (USD 1,185/USD 1,235) des generierten Datenwürfels keinen klaren Sieger gibt. Bis zu einem 

Performanz-Engpass von BP ist auch die benötigte Zeit ähnlich, danach ist mHub beinahe 50 % 

schneller (1:24/2:03). Die abstrakte Währung von BP ist im Allgemeinen teuer in Bezug auf reales 

Geld, wodurch mHub auch bei den Prozessierungskosten bei weitem voranliegt. Der einzige Nachteil 

von mHub ist das Fehlen eines vordefinierten UTM-Rasters, das daher selbst erstellt werden muss. 

Der Vorsprung des optimierten UTM-Kachelrasters von BP zeigt sich vor allem im Extrapolationssze-

nario für ganz Österreich, welches in zwei UTM-Zonen liegt. In diesem Szenario gewinnt EDC BP in 

den Kategorien Prozessierungszeit (14% Vorsprung) und Speichergröße/-kosten (17%). Dennoch kos-

tet die Prozessierung mit mHub fast 200 Mal weniger. 

Letztendlich bietet BP in einem Geschäftsumfeld aufgrund seiner höheren Kosten keine höhere Per-

formanz als mHub. Die Ergebnisse der Experimente erlauben wertvolle Einblicke in die Performanz 

der Datenwürfelgenerierung und können eine Grundlage für zukünftige Forschung bezüglich Kachel-

raster, Optimierungen für die Datenwürfelanalyse und Datenwürfel mit Sentinel-1-Rasterdaten sein. 
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1 Introduction 

1.1 Motivation 
Food security is a recurring topic in a nowadays world struck by climate change, but it has been a 

concern for nations for a long time. Almost from their beginning the European Communities have 

dedicated large parts of their budget to supporting farmers and the food supply under the so-called 

Common Agricultural Policy (CAP) that was founded in 1962. In 2018 about 36 % (EUR 58.82 billion) 

of the European Union’s (EU) budget were spent on the CAP, of which direct payments to farmers 

had the greatest share (EUR 41.74 billion), followed by the other two CAP areas rural development 

(EUR 14.37 billion) and market measures (EUR 2.7 billion). The direct payments benefit around 10 

million farms with 22 million people working regularly in the sector; in return the farmers commit to 

environmentally friendly farming practices and preservation of the countryside. (EU, 2020c) 

Payments to farmers are administered by the EU member states through one or multiple paying 

agencies (PAs) per country. To ensure standardized handling of subsidies across the European Union 

a system named Integrated Administration and Control System (IACS) has been implemented. IACS 

consists of databases and applications to track animal and farm land stock: Besides a database for 

animals, there is a database for all agricultural parcels in the EU (Land Parcel Identification System, 

LPIS) and a graphical tool that helps farmers declare their cultivated crops (geospatial aid application, 

GSAA). The control component of IACS comprises administrative checks of all applications through 

computerised cross checks and physical on-farm checks of a sample of farmers (on-the-spot checks, 

OTSC). (EU, 2020b) 

The IACS process is conducted yearly; in Austria the deadline for the farmers’ declarations is the May 

15th of each year (AMA, 2020, p. 11) and checks for validity are carried out until the end of the crop 

season on November 30th. The OTSC sample size usually is 5% of the farms (Devos, Fasbender, Grif-

fiths, et al., 2017, p. 4), which means that on average an inspector only visits a farm every 20 years. 

First of all, this is accompanied by a lot of manual administrative work for the PAs and the farmers 

and, secondly, irregularities that have arisen on a farm—be it with bad intent or inadvertently—

might not be discovered for years. 

A new development, which can make IACS much more efficient and just, is made possible by the 

newly available Copernicus Programme, specifically through its Sentinel-1 (S1) and Sentinel-2 (S2) 

satellites. The satellite pair S1A (launched in 2014 being the first of almost 20 more Copernicus satel-

lites until 2030) and S1B is equipped with radar sensors, which enable calculation of crop biomass 

and detection of crop harvesting. The S2 constellation similarly consists of two satellites with optical 

sensors that capture multispectral images of the Earth’s surface. This allows for crop type detection, 

crop health analysis and the monitoring of land use change. The combined frequent observations of 

S1 (at least two days revisit time) and S2 (3–4 days), together with geo-tagged photos, drone images 

and supplementary documentation by farmers (e.g. seed labels), facilitate automated IACS checks 

that are commonly referred to as checks by monitoring (CbM) by the European Commission’s Joint 

Research Centre (JRC) and EU legislation. (Devos, Fasbender, Griffiths, et al., 2017; Devos, Fasbender, 

Lemoine, et al., 2017; ESA, 2018a; EU, 2018a, 2018b, 2020a) Sometimes the JRC also labels this new 

scheme of checks Area Monitoring System (AMS). (Loudjani, 2019) 
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Fig. 1: Typical vegetation index time series of autumn barley and sunflower deduced from satellite observations. Source: 
Koetz et al., 2019, p. 20 

In order to mine information from satellite imagery, machine learning (ML) algorithms are employed. 

In general, data scientists train an ML model and apply this model to new data. In terms of CbM, 

satellite imagery is combined with agricultural parcels from the LPIS that have crop type labels at-

tached. The ML model then learns typical vegetation index time series for each crop type (see Fig. 1). 

When new satellite imagery is presented to the algorithm, it can—with certain confidence—

determine the crop type of unlabeled parcels. These predictions are compared to the GSAA farmers’ 

declarations and checked for conformity (see Fig. 2). If the GSAA and the predicted crop type do not 

match, an alarm is raised with the paying agency and further investigations are triggered. 

 
Fig. 2: Example maps for declared crop type, predicted crop type, confidence index and conformity assessment. Source: 
Koetz et al., 2019, p. 16 

1.2 Problem 
CbM can lead to huge efficiency gains for agriculture administrations, but leveraging satellite data 

also poses a challenge for the authorities because they are currently not well-equipped to handle this 

type of data. Satellite imagery is deemed big data or big Earth data by a lot of scientist, whose chal-

lenges are generally explained by the three (Woodcock et al., 2016, p. 13; Giuliani et al., 2017, p. 

101,111, 2018, pp. 8659, 8661; Giuliani, Camara, et al., 2019, p. 1f; Wu et al., 2018, p. 693; Augustin 
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et al., 2019, p. 1; Giuliani, Masó, et al., 2019, p. 2), or sometimes four (Lewis et al., 2017, p. 289f; 

Wang et al., 2019, p. 152) or five (Sudmanns et al., 2020, p. 833f) Vs: 

 Volume: From beginning of the operations until the end of 2019 the Sentinels (1, 2, 3, 

5P) archive contained almost 26 million products amounting to 17.23 PiB1 of data 

(Knowelden & Castriotta, 2020, p. 27) 

 Velocity: During November 2019, on average, 30,471 new products with a volume of 

18.47 TiB2 were published per day (Knowelden & Castriotta, 2020, p. 27f) 

 Variety: There is an ever increasing variety of public and commercial satellite sensors, 

raw and atmospherically corrected imagery and derived data products that pose chal-

lenges in combining the different products for greater insight (e.g. Sentinel-1 and Senti-

nel-2 for CbM) 

 Veracity (Lewis et al., 2017, p. 289f; Wang et al., 2019, p. 152): A lot of things can go 

wrong in the Earth observation pipeline. For example, for Sentinel-2 there is an anomaly 

database listing on-board irregularities that usually cannot be recovered and processing 

issues that potentially can be fixed after having been identified. As a result, some satel-

lite acquisitions might contain errors and later be removed from the archive. 

 Value (Sudmanns et al., 2020, p. 833f): The Copernicus data is available to use for free 

and thus does not generate revenue for the European society. However, this openly ac-

cessible wealth of data fosters business opportunities for companies in many industries. 

Earth observation data cubes have set out to solve these challenges by abstracting individual satellite 

products into a uniform view on the data. Geographical and temporal boundaries of satellite imagery 

are dissolved and offered to users as a hypercube with at least three dimensions (x-coordinate, y-

coordinate, time), potentially covering the whole Earth and all satellite observations since the launch 

of the service. Often there are more than three dimensions because sensors capture multiple wave-

length bands (i.e. red, green, blue of the visible light) and satellite data might carry height informa-

tion. This data representation enables easy analysis of time series and custom areas of interest and is 

perfectly fit for CbM, which deals with the development of agricultural parcels over time. 

1.3 Research Question and Aims 
EOX, the sponsoring company of this master’s thesis, and the Austrian paying agency AMA (Agrar-

markt Austria) have initiated the Monitoring Algorithm Baseline (MAB) project to investigate needs 

of and solutions to the PA’s CbM efforts. AMA’s aim is to update the ML model on a monthly basis 

throughout the crop season, which requires timely additions to an underlying data cube. Two cloud 

services to process satellite data into multi-dimensional data cubes are at hand: mapchete Hub 

(mHub), which is developed in-house, and the Euro Data Cube (EDC), of which EOX is a consortium 

member. Since this cooperation should eventually lead to a commercial data processing offer, re-

source costs incurring to EOX are of utmost relevance in order to select the better option and draft a 

business plan. 

Of special interest is the resource usage during data cube generation (execution time, know-how, 

processing costs) as well as of storing the resulting data cube (required storage space, cloud stor-

age costs). This results in the following questions: 

                                                           
1
 PiB = Pebibyte = 2

50
 bytes 

2
 TiB = Tebibyte = 2

40
 bytes 
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 Can the commercial cloud service EDC outperform the custom mHub application? 

 How can a data cube be generated in each of the two tools? 

 What does performance even mean? 

1.4 State of the Art 
There are not many empirical accounts of resource usage of processing Earth observation data. One 

publication could be found by Wang et al. (2019), who created 7-band satellite mosaics covering 

1,208,000 km² from Landsat-TM (Thematic Mapper) imagery using the Chinese cloud services pro-

vider OpenStack. Wang et al. (2019) processed 28 Landsat scenes amounting to about 10 GB of total 

storage space in North-Eastern China. The mosaic was calculated on a virtual cluster with up to ten 

nodes, each equipped with 8 virtual CPUs3 and 16 GB memory. Using only one node the calculation 

took 350 minutes, whereas three nodes managed the workload within 100 minutes. From five nodes 

(ca. 80 minutes runtime) no speedup could be noticed and ten nodes even led to an increase in run-

time because of the parallelization overhead. 

Let me naively translate these performance measurements to the whole area of Austria (83,879 km²) 

and to the data requirements of the MAB project, which includes a data cube of 16 bands at S2 reso-

lution (10 m time 10 m) and 30 time slices. The Landsat-TM instrument has six bands at 30 m resolu-

tion and one band at 120 m resolution (16 x fewer pixels). (NASA, 2020) Therefore first the values for 

one 10-m-resolution band (9 x more pixels than 30 m resolution) will be determined and then the 

other factors will be accounted for. Formula 1 shows the resulting estimation. 

Formula 1: Extrapolation of Wang et al.'s results to the extent of Austria and a Sentinel-2 data cube with 30 time slices 
and 16 bands. 

     
 

  
 
  

                           
          

             
        

This means that it would have taken Wang et al.’s (2019) experiment equipment 66 hours to process 

495 GB of satellite data. It has to be noted that the additional processing time for calculating vegeta-

tion indices is not included in Wang et al.’s (2019) research and they also do not disclose data type 

and file format of the output mosaic. 

1.5 Methodology and Structure of the Thesis 
In the course of this thesis the performance of data cube generation on both mHub and EDC will be 

tested using custom processing scripts applied to a sub region of Austria. The thesis will solely focus on 

Sentinel-2 imagery and not treat Sentinel-1 data. Chapter 0 will introduce the reader to fundamentals 

of computer system performance measurements, remote sensing, cloud computing, Earth observation 

data cubes and data representation formats. It also includes a section on mHub and EDC, respectively. 

Chapter 0 goes into detail about the methodology employed (used performance metrics, test area, 

data cube schema and the code used to generate the data cubes). The results of the experiments will 

be presented in chapter 0 and put into context in chapter 0. A summary of the results of the thesis and 

conclusions can be found in chapter 0.  

                                                           
3
 CPU = Central Processing Unit 
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2 Theory 
This chapter lays the ground for the whole thesis. Important concepts are explained and the latest 

knowledge in the relevant fields is summarized. First of all, computer systems performance is thor-

oughly defined. Detailed chapters about the fundamentals of remote sensing and the Sentinel satel-

lites follow. Thereafter the relatively new cloud computing paradigm is described, including in-depth 

information about Amazon Web Services. The literature about Earth observation data cubes is reca-

pitulated and the two services for data cube generation, Euro Data Cube and mapchete Hub, are 

introduced. A section on in-memory and on-disk data representation concludes the theory chapter. 

2.1 Computer Systems Performance 
Evaluating the performance of a computer system is important because performance ultimately 

translates to cost efficiency. (Obaidat & Boudriga, 2010, p. 1) E.g. is it cheaper to upgrade a computer 

system because of performance gains or does a minute performance increase not justify high instal-

lation costs? 

The major goals of performance evaluation are the following, according to Obaidat & Boudriga (2010, 

p. 5f):  

i. Compare alternative system designs (“find quantitatively the best configuration”) 

ii. Procurement (“find the most cost-effective system for a specific application”) 

iii. Capacity planning (“meet future demands in a cost-effective manner”, e.g. website load) 

iv. System tuning (“find the set of parameter values that produce the best system perform-

ance”) 

v. Performance debugging (find performance bottlenecks, i.e. the reason why a computer sys-

tem does not meet performance expectations) 

vi. Set expectations (in the planning phase of future computer systems) 

vii. Recognize relative performance (contextualize new generations of computer systems) 

Three methods that are used throughout the development process of a system can be discerned 

when conducting performance evaluation: (i) analytical modelling, (ii) simulation, (iii) measurement 

and testing. Analytical models are the least cost-intense evaluation method, but they also render the 

lowest accuracy in comparison to real measurements. However, they are the only relevant means to 

obtain performance values in the early design stage of new computer systems. Simulations form a 

middle course in the sense that they do not require a prototype or a finished system and still provide 

good accuracy given representative input data. The effort for creating a simulation model is consid-

erable, though. (Obaidat & Boudriga, 2010, p. 7f) 

Performance can be formalized by various measures. In computer systems the general interest is on 

how many times an event occurs (count), how long a process takes (time) and how large a specific 

parameter is (size). Performance metrics can be derived from one or multiple measures. For exam-

ple, the performance of a service can be indicated by the following metrics: (Lilja, 2000, p. 9; Obaidat 

& Boudriga, 2010, p. 9) 

 productivity (“rate at which the service is performed”) 

 responsiveness (“time needed to perform the service”) 

 usage metrics (consumed resources) 

 availability (uptime) 

 reliability (“probability that the system survives until some time t”) 
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Depending on their scale, these metrics can be categorized in Higher better metrics (HB – e.g. pro-

ductivity), Lower better metrics (LB – e.g. responsiveness) and Nominal better metrics (NB – e.g. utili-

zation of a system component; a utilization of 100 % is not desirable because it would constitute a 

bottleneck for the whole system). 

Lilja (2000, p. 10ff) write about the “characteristics of a good performance metric”. According to 

them these are: 

i. Linearity (performance value should be proportional to the actual performance) 

ii. Reliability (if one system is better rated than the other, it should always outperform the 

other system in real conditions) 

iii. Repeatability (each execution of a performance evaluation should yield the same results un-

der given conditions) 

iv. Easiness of measurement (the metric should not be hard to measure because otherwise it is 

also prone to incorrect measurements) 

v. Consistency (for comparability the definition of the metric should be the same across sys-

tems) 

vi. Independence (the metric should not be susceptible of manipulations by system manufac-

turers) 

Of these six Obaidat & Boudriga (2010, p. 8) only really mention reliability in their opinion on “a good 

performance metric”. While their other remark “it should be relevant or meaningful” could be any-

thing, they offer a specific perspective from the point of view of performance modelling. In the first 

place “it should be possible to develop models” and then “the model [...] should not be difficult to 

estimate”. By the latter they add the model perspective to Lilja’s notion of easiness of measurement. 

Examples of performance metrics include clock rate, MIPS, MFLOPS and SPEC, which Lilja (2000, pp. 

12–15) discards as not meeting the characteristics of a good performance metric. Execution time, on 

the other hand, “satisfies all of the characteristics of a good performance metric”. However, both 

CPU time (“total time the processor actually spends executing the program”) and wall clock time 

(“total time the user would have to wait to obtain the results”) should be reported to allow users to 

gain an insight on the time a program spends waiting on other programs. In order to compare two 

computer systems speedup factor and relative change in percent can be calculated. (Lilja, 2000, pp. 

17–21) 

2.2 Remote Sensing 
Remote sensing (RS) is defined as “discerning information about the Earth’s surface from afar with-

out direct physical contact”. (Eamus et al., 2016, p. 155) This is possible because we can use sensors 

to measure electromagnetic radiation and analyse the resulting data products. The framework of 

remote sensing consists of the following components (Eamus et al., 2016, p. 157f): 

i. A source of electromagnetic radiation (passive RS: sun or Earth itself; active RS: Radar and Li-

dar) 

ii. The Earth’s surface (reflects, absorbs and emits radiant energy) 

iii. The sensor instruments (measure optical, thermal and microwave signals “over a range of 

spatial, temporal and spectral resolutions”) 

iv. Receiving stations (process and calibrate raw sensor signals) 

v. The user community (scientists and companies) 
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2.2.1 Physical Foundations of Remote Sensing 

In an attempt to understand remote sensing, the first distinction has to be made between passive 

and active RS. In passive RS a sensor measures (a) solar radiation that is reflected from the Earth’s 

surface or (b) terrestrial energy that is emitted from the Earth (e.g. thermal and microwave radia-

tion). Active RS is conducted when the sensor sends electromagnetic waves to Earth, which are then 

reflected on the Earth’s surface. The returned signal is measured by the same sensor that has gener-

ated the signal. (Eamus et al., 2016, p. 167f) Fig. 3 illustrates active and passive RS. 

 
Fig. 3: Passive (above) and active (below) remote sensing. Source: Eamus et al., 2016, Figure 5.1 

Optical, thermal and microwave signals have been mentioned before. Together they are part of the 

electromagnetic spectrum (EMS), which arranges electromagnetic waves according to their wave-

lengths (the distance between two peaks of the electric field) and—for microwave radiation—

frequencies (speed of light divided by wavelength). The optical spectrum is further divided into the 

ultraviolet, visible and infrared regions (Eamus et al., 2016, p. 169ff; Moreira et al., 2013, p. 7): 

i. UV: Ultraviolet region (0.1–0.4 µm useful for atmosphere studies) 

ii. VIS:Visible region (0.4–0.7 µm; visible to human eye  leaf pigments, surface water quality, 

soil minerals) 

a. blue (0.4–0.5 µm) 

b. green (0.5–0.6 µm) 

c. red (0.6–0.7 µm) 

iii. NIR: Near-infrared region (0.7–1.3 µm  leaf structure and morphology) 

iv. SWIR: Shortwave infrared region (1.3–8 µm) 

a. reflected solar radiation (1.3–3 µm  moisture content of vegetation and the upper 

soil surface) 

b. surface emitted signal (3–8 µm  high temperature sources, e.g. fires) 

v. TIR: Thermal infrared region (8–14 µm  surface temperatures, vegetation stress, soil mois-

ture, clouds, minerals, environmental contamination) 
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vi. Microwave region (>0.1 cm/<300 GHz)  penetrates clouds, forest canopies; “useful in 

analyses of soil surface moisture and roughness, as well as plant canopy moisture and 

roughness”) 

a. X-band (2.5–4 cm/12–7.5 GHz) 

b. C-band (4–8 cm/7.5–3.75 GHz) 

c. L-band (15–30 cm/2–1 GHz) 

d. P-band (60–120 cm/0.5–0.25 GHz) 

 
Fig. 4: The spectrum of electromagnetic radiation (not to scale), and its use in satellite remote sensing (SRS). Source: 
Pettorelli et al., 2018, Figure 2.2, cropped 

As can be seen in Fig. 4, VIS and infrared regions can further be classified as multispectral satellite 

remote sensing (SRS) and the microwave region can be called radar SRS. 

Energy can be reflected by, absorbed by or transmitted through an object and the reflected, ab-

sorbed and transmitted parts make up the total energy impacting on an object (irradiance). (Eamus 

et al., 2016, p. 172f) Just like any object, the atmosphere also absorbs, transmits (atmospheric win-

dows) and reflects (atmospheric scattering) radiance. Atmospheric absorption is mainly related to 

the four gases diatomic oxygen (O2; absorbs UV below 0.1 µm, small portions in TIR), ozone (O3; ab-

sorbs UV below 0.3 µm, microwave at around 27 µm), water vapour (H2O; absorbs SWIR at 1.45 µm, 

1.95 µm, 6 µm, and small portion in NIR) and carbon dioxide (CO2; absorbs TIR at 15 µm and SWIR 

between 2.5 and 4.5 µm). (Eamus et al., 2016, p. 180f) 

 
Fig. 5: Gases that affect atmospheric transmission. Source: King & Herring, 2001, cropped 

The portions of the spectrum that are mostly transmitted by the atmosphere are called atmospheric 

windows. These are found in the VIS and NIR (0.3–1.35 µm) and in parts of the SWIR (1.5–1.8 µm; 2–

2.4 µm; 2.9–4.2 µm; 4.5–5.5 µm), the TIR (8–14 µm) and the microwave region (>20mm). (Eamus et 

al., 2016, p. 181) Atmospheric absorption and transmission are illustrated in Fig. 5. 
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In contrast to absorption and transmission, which occur more often in some parts of the EMS than in 

others, atmospheric scattering influences sensor measurements in the whole EMS. It is caused by 

aerosols, small solid (smoke, smog, dust) and/or liquid (haze, fog) particles that are suspended in the 

atmosphere. Solar radiation that impinges on aerosols is scattered in all directions: One part diffusely 

reaches the Earth’s surface and one part is reflected and “augments the signal received at the sen-

sor.” (Eamus et al., 2016, p. 182f) As a result, atmospheric correction has to be applied to turn top-of-

atmosphere (ToA) reflectance into bottom-of-atmosphere (BoA) reflectance. 

2.2.2 Landscape Biophysical Properties and their Characterization 

Vegetation, soil, water and other objects on the Earth’s surface have characteristic absorption, 

transmission and reflectance properties along the EMS. For example, the spectral signature of water 

shows that it does not reflect waves in the NIR, while vegetation particularly well reflects NIR waves 

(Fig. 6). (Eamus et al., 2016, p. 206) This discrepancy between the reflectance in different wavebands 

is used to calculate vegetation and vegetation water indices. (Eamus et al., 2016, pp. 217ff, 225) 

Among the most commonly used indices are the Normalized Difference Vegetation Index4 (NDVI) and 

the Normalized Difference Water Index5 (NDWI). Numerous other indices exist; the Index DataBase 

counts 519 different indices. (IDB, 2020) Eamus et al. (2016, p. 225) conclude their section on vegeta-

tion and vegetation water indices by stating that “[t]he use of multiple [vegetation indices] offers a 

more complete characterization of canopy properties.” 

 
Fig. 6: Spectral signatures of soil, vegetation and water, and spectral bands (see below) of LANDSAT 7. Source: Siegmund 
& Menz, 2005 (as cited in SEOS, n.d.) 

2.2.3 Sensors 

In SRS, sensors mounted on satellites are used to measure electromagnetic radiance reflected on or 

transmitted by the Earth’s surface. Each sensor has a set of resolution properties and optimizing one 

                                                           
4
                         

5
                             (McFeeters, 1996) (as cited in (Du et al., 2016, p. 5)) 
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sensor resolution leads to trade-offs in the remaining sensor properties (especially spatial vs. tempo-

ral resolution) (Eamus et al., 2016, pp. 185–189): 

i. Spatial resolution: captured surface area per pixel, e.g.: 

a. Fine (0.5–5 m length of pixel side) 

b. Moderate (5–100 m) 

c. Coarse (0.1–100 km) 

ii. Spectral resolution: “number of wavebands, their bandwidths, and overall spectral coverage” 

a. Multispectral (4–36 bands) 

b. Hyperspectral (up to 220 bands) 

iii. Temporal resolution: “frequency of sensor observation over a given area on Earth” (from 10–

15 minutes for geostationary meteorological satellites up to a month for fine spatial resolu-

tion sensors) 

iv. Radiometric resolution: number of radiance levels captured by sensor, e.g.: 

a. 8 bit = 28 = 256 discriminable values 

b. 10 bit = 210 = 1,024 

c. 16 bit = 216 = 65,536 

Sensor systems can further be classified by the orbital properties of the satellite. Geostationary satel-

lites orbit the earth at a distance of 36,000–41,000 km and always stay fixed at one position above 

the Earth’s surface, moving as fast as the Earth rotates. One example for geostationary satellites is 

the Meteosat series of satellites for weather observation. The other important class of satellite orbits 

is comprised of polar orbiting satellites. These orbit the Earth “close to the poles, at altitudes of 600–

950 km.” Notable examples for polar orbiting satellites include the SPOT6-VEGETATION, MERIS7, 

MODIS8, Landsat, Ikonos and QuickBird platforms. (Eamus et al., 2016, pp. 191–198) 

A special type of sensors is active microwave sensors, also called radar (radio detection and ranging). 

Imaging radars can further be divided into (a) real aperture radar or side-looking airborne radar 

(SLAR) and (b) synthetic aperture radar (SAR). Pulses of microwaves are generated and sent to Earth 

and the backscattered signal’s amplitude and phase are subsequently measured by the radar sensor. 

The backscattered signal is mainly influenced by the electrical and physical (geometry, roughness) 

properties of the Earth’s surface, which allows drawing conclusions about roughness and moisture 

content of soil and vegetation and about topography. (Eamus et al., 2016, p. 199; Moreira et al., 

2013, p. 7) An important technique is interferometry, whose idea “is to compare for a given scene the 

phase of two or more complex radar images that have been acquired from slightly different positions 

or at different times.” The deferred metric called coherence “describes the degree of correlation 

between [...] two radar images” and can be used to analyse land cover and land use change. (Moreira 

et al., 2013, p. 19ff) 

2.2.4 Level of Processing 

Different processing steps are applied to the data that is transferred from satellite sensors. The re-

sulting data products are classified into several levels of processing. Chuvieco (2020, p. 201) describes 

5 levels of processing ranging from level 0 to level 4. Their characterization is reproduced in Table 1. 
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 Medium Resolution Imaging Radiometer 
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 Moderate Resolution Imaging Spectroradiometer 



14 
 

 

Level Characterization 

0 Raw data without any corrections, “may include different errors and artifacts” 

1 Data with geometric and radiometric corrections, e.g. sensor calibration (converting meas-
ured digital numbers into actual radiance values), applied. May include “generation of top of 
the atmosphere (ToA) temperature or reflectance”. 

2 Data of atmospherically corrected top-of-canopy (ToC)/bottom-of-atmosphere (BoA) reflec-
tance (multispectral) and temperature (TIR) 

3 Data resampled to a certain standard grid (spatially and/or temporally aggregated) 

4 Data of derived variable (evapotranspiration, land cover, ...) 
Table 1: Levels of processing of satellite data. Source: Chuvieco, 2020, p. 201 

2.3 Sentinel Satellites 
The Sentinels are a set of Earth observation satellites that form part of the EU’s Copernicus pro-

gramme. Each of the six missions is made up by a pair of satellites, doubling temporal resolution of 

each platform, respectively. Sentinel-5P is an exception in this regard. It was launched as a precursor 

for Sentinel-5 to bridge the gap between the Envisat satellite and the Sentinel-5 mission. (ESA, 2020c; 

European Commission, n.d.) Table 2 shows an overview of the Sentinel missions. 

Name 
Dedicated/ 
onboard 

Operated 
by Usage scenario 

Launch 
years 

Sentinel-1 Dedicated ESA9 Radar imaging 2014/2016 

Sentinel-2 Dedicated ESA 
Multispectral imaging for land monitor-
ing 

2015/2017 

Sentinel-3 Dedicated EUMETSAT10 
Sea-surface topography, sea- and land-
surface temperature, ocean/land colour 

2016/2018 

Sentinel-4 Onboard EUMETSAT Atmospheric monitoring N/A 

Sentinel 
-5P Dedicated ESA 

Trace gases and aerosols for air qual-
ity/climate monitoring 

2017 

-5 Onboard EUMETSAT Atmospheric monitoring N/A 

Sentinel-6 Dedicated EUMETSAT 
Radar altimeter for global sea-surface 
height 

N/A 

Table 2: Overview of the Sentinel missions. Dedicated/onboard: Whether the instrument has its own platform or is on 
board some other satellite platform. Sources: ESA, 2020c; European Commission, n.d. 

While both Sentinel-1 and Sentinel-2 products should be used for accurate results in the context of 

checks by monitoring, this thesis focuses on the Sentinel-2 mission and data. The Sentinel-2 mission 

is composed of two satellites (Sentinel-2A/B) and its multispectral instrument features a spectral 

resolution of 13 bands (four 10-m bands, six 20-m bands and three 60-m bands). (Chuvieco, 2020, p. 

90; ESA, 2020e) An overview of the bands is presented in Table 3. 
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Band 
number 

Approx. central 
wavelength (nm) 

Spatial 
resolution Application 

1 443 60 Aerosol detection (atmospheric correction) 

2 493 

10 

Blue 

3 560 Green 

4 665 Red 

5 704 

20 Vegetation red edge 6 740 

7 783 

8 833 10 NIR 

8a 865 20 Vegetation red edge 

9 945 
60 

Water vapour (atmospheric correction) 

10 1374 Cirrus detection 

11 1610 
20 

SWIR – snow/ice/cloud detection, vegetation moisture 
stress assessment 12 2190 

Table 3: Overview of Sentinel-2 bands with their spectral and spatial characteristics and applications. Source: Chuvieco, 
2020, p. 90; ESA, 2020e 

As illustrated in Fig. 7 wavebands are not always equally spaced in the electromagnetic spectrum. For 

example, the narrow 8a-band captures radiation extremes that would be flattened out by the wide 

NIR-band no. 8. 

 
Fig. 7: Sentinel-2: Spatial resolution vs. wavelength. Source: ESA, 2015a, p. 8 

Concerning the temporal resolution the pair of Sentinel-2 satellites has a combined revisit frequency 

of at least 5 days (10 days in Antarctica and non-continental Arctic regions). Since satellite swaths 

overlap in higher latitudes, the revisit frequency in Austria, for example, can go up to three observa-

tions per week. (ESA, 2020f) 

When flying over a continent, the satellites continuously acquire data; this is called a “datatake” The 

datatakes are processed by a ground segment and distributed for free as 100 x 100 km “granules” in 

the UTM11/WGS84 projection. Two versions differing in their level of processing are made available 
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to the public: Level-1C (L1C; ToA, about 600 MB each) and Level-2A (L2A; BoA, about 800 MB each). 

(ESA, 2020d) 

In the process of calculating the L2A product, not only atmospheric correction but also a scene classi-

fication is performed. After resampling to a 60-m spatial resolution, pixels are divided up into cloud-

free, cloudy (with multiple probability levels) and shadowy pixels. The cloud-free pixels are further 

classified as being vegetated, bare, water or covered by snow. The legend of the resulting classifica-

tion map in Fig. 8 also shows an entry for saturated or defective pixels. These are excluded from the 

processing steps from the beginning.  

 
Fig. 8: S2A Scene Classification Values. Source: (ESA, 2020b) 

The official outlet for L1C and L2A Sentinel-2 data is the Copernicus Open Access Hub, but Sentinel 

data can also be downloaded from one of the four Data and Information Access Services (DIAS) or 

from an S312 storage in the AWS (Amazon Web Services) cloud. (AWS, 2020q; ESA, 2020a) 

2.4 Cloud Computing 
Outsourcing computation into the “cloud” is a new13 paradigm that follows the distributed computing 

paradigm (e.g. computing on multiple computers that are connected via a network). (Murugesan & 

Bojanova, 2016, p. 4) The US National Institute of Standards and Technology (NIST) defines cloud 

computing as 

“a model for enabling ubiquitous, convenient, on‐demand network access to a shared pool of 

configurable computing resources (e.g., networks, servers, storage, applications, and ser-

vices) that can be rapidly provisioned and released with minimal management effort or ser-

vice provider interaction.” (Mell & Grance, 2011, p. 2) 

This definition translates to some key characteristics of computing clouds: (Mell & Grance, 2011, p. 2; 

Murugesan & Bojanova, 2016, p. 5) 

  

                                                           
12

 S3 stands for „Simple Storage Service” (AWS, 2020g) 
13

 Amazon “pioneered the cloud IaaS market in 2006”. (Bala et al., 2019) 
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 On-demand self-service: Unilateral provisioning of processing and storage resources 

 Broad network access: Cloud capabilities can be accessed from any device (e.g. smart-

phone, tablet, laptop, workstation) 

 Resource pooling: Physical and virtual resources are dynamically assigned and reas-

signed to multiple users depending on demand 

 Multitenancy: Multiple users (tenants) use the same physical resources 

 Rapid elasticity and scalability: Seemingly infinite resources are scaled up and down rap-

idly commensurate with demand 

 Measured service: Built-in monitoring and reporting and pay-per-use pricing schemes 

Virtualization in this regard is a concept that allocates physical infrastructure to multiple users ena-

bling more efficient resource utilization. For example, an eight-core CPU (central processing unit) 

could be offered to two customers, who each need a four-core CPU. 

Computing clouds can be categorized into three foundational service models that are offered and 

used individually or in combination with each other and additional services. The three service models 

are described here (ordered from less control to more control): (Mell & Grance, 2011, p. 2f; Muruge-

san & Bojanova, 2016, p. 6f) 

 Software as a Service (SaaS): Web apps; users do not have to install local software, but only 

have limited configuration options for the app’s behaviour and cannot control the underlying 

cloud infrastructure. 

 Platform as a Service (PaaS): Users can deploy their own applications in the cloud environ-

ment using the supported programming languages and libraries, but have no control of the 

operating system and the cloud infrastructure. 

 Infrastructure as a Service (IaaS): Raw computer infrastructure (servers, CPU, memory, stor-

age, etc.) is provisioned to the users depending on their requirements and they can install 

and run arbitrary software (operating systems and applications). Instead of buying expensive 

hardware, customers are billed on a per-use basis. 

There are several cloud support services that complement the three service models to a full cloud 

ecosystem, for example: (Murugesan & Bojanova, 2016, p. 7ff) 

 Data Storage as a service (DSaaS): Data is stored in a virtual storage location and is backed 

up and secured by the provider to avoid data loss and theft, respectively 

 Analytics as a Service (AaaS): Software and tools for analysis and mining of big data 

 Desktop as a Service (DaaS): Provision of a virtual desktop infrastructure (VDI); desktop envi-

ronments are streamed via the internet 

 Security as a Service (SecaaS): Providers either secure cloud infrastructure or the customers’ 

on-premises systems using, for example, virus detection, intrusion detection and encryption 

 Identity and Access Management as a Service (IAMaaS): Cloud-based “user provisioning, au-

thentication, authorization, self-service, password management, and deprovisioning” 

 Monitoring as a Service (MaaS): Continuous state monitoring of online services 
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Further, cloud systems can be classified according to their deployment model (ordered from less 

private to more private): (Murugesan & Bojanova, 2016, p. 9) 

 Public cloud: The most popular cloud deployment model; open to anyone 

 Community cloud: Optimized for a particular industry sector 

 Virtual private cloud: Virtual private segment of a public cloud with more control over the 

cloud infrastructure 

 Private cloud: On-premises cloud for internal use; full control over applications and data 

If an enterprise uses more than one of the above mentioned deployment models, the notion of hy-

brid clouds is being used. An enterprise might selectively use some public cloud services and store 

more sensitive data in a private cloud behind its own firewall. (Murugesan & Bojanova, 2016, p. 9f) 

According to market research firm Gartner the leading players in the public cloud IaaS market as of 

July 2019 are Amazon with the Amazon Web Services (AWS), Microsoft with Azure and Google with 

the Google Cloud Platform (GCP) followed by the niche players Oracle, Alibaba Cloud and IBM. All of 

these six global vendors also include PaaS solutions in their portfolio. (Bala et al., 2019) On the con-

trary there are thousands of SaaS providers “from Adobe to Anaplan to Atlassian to Google to Micro-

soft to Okta to Oracle to Salesforce to SAP to Slack.” (Knorr, 2020) 

In the context of this master’s thesis the most relevant cloud computing services are two IaaS offers 

of AWS: Elastic Compute Cloud (EC2) and Simple Storage Service (S3). These and other AWS services 

are located in 24 regions around the globe (3 more planned), which each have two to six availability 

zones amounting to a total of 77 (+9). These availability zones are physically separated from each 

other and are comprised of one or more data centre facilities. Customers can choose to deploy appli-

cations across multiple availability zones in the same region in order to increase service reliability. 

Content is served to end users via a network of 216 Points of Presence (PoP), which also exist in 

places that do not have AWS regions, e.g. in Eastern Europe. (AWS, 2020n, 2020o, 2020j) See Fig. 9 

for an overview of the AWS infrastructure. 

 
Fig. 9: AWS infrastructure diagram. Source: AWS, 2020j 
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EC2 is a virtual computing environment built around so-called instances. There is a range of different 

instance families, some for general purpose computing, some optimized for computing, memory or 

storage and some with GPU14 support for “accelerated computing”. Each of the instance families is 

further differentiated by the number of vCPUs (virtual CPUs) and by the memory and storage avail-

able to the machines. Instance types might have names like a1.large (1 vCPU, 2 GiB15 memory), 

m5.4xlarge (16 vCPU, 64 GiB) or x1e.32xlarge (128 vCPU, 3 904 GiB); altogether there are hundreds 

of distinct instance type configurations available. (AWS, 2020b, 2020c) 

There are five billing options for the EC2 service: (AWS, 2020e) 

 On-demand: Basic plan that is billed per second (Linux operating systems) or per hour (Win-

dows). Example for m5ad.4xlarge with Linux in the Frankfurt region: USD 1.00 per hour. 

(AWS, 2020l) 

 Reserved instances: Commitment to continued use of an instance with or without upfront 

and monthly payments for a 1- or 3-year period. Example: Between USD 0.588 and 

USD 0.630 effectively per hour for a 1-year period (37–41% less than on-demand price). 

(AWS, 2020m) 

 Spot instances: Spare instances that can be reclaimed by AWS at any time when another cus-

tomer has on-demand computing needs. Example: USD 0.2785 per hour (72% less). (AWS, 

2020f) 

 Savings plans: Similar to reserved instances, but instead of committing to a certain instance, 

customers commit to a monthly amount of money for a 1- or 3-year term and can flexibly 

distribute that amount among instances. Example: Between USD 0.762 and USD 0.817 for 1-

year period (18–24% less). (AWS, 2020p) 

 Dedicated hosts: A whole physical server is provisioned exclusively to one customer, which 

enables the customer to use existing server-bound software licences. On-demand, reserva-

tion and savings plans exist. (AWS, 2020a) 

AWS S3 provides object-based cloud storage to customers. An object storage stores data as objects 

instead of as blocks. The equally-sized block structure features high access performance, but file sys-

tem abstraction of conventional storage leads to a considerable overhead. The reason is that conven-

tional file systems have to map the logical structure of files to the individual blocks in the storage 

medium. The variable size of objects solves this on a lower technical level by offloading the storage 

management from the file system to the storage device, combining the good performance of blocks 

with the highly granular security policies and easy manageability of files. Through this solution ob-

ject-based storage devices (OSD) gain self-management, which “includes actions such as reorganizing 

data to improve performance, scheduling regular backups, and recovering from failures.” (Mesnier et 

al., 2003, pp. 84–90) 

In S3 an object storage is called bucket. There are six storage classes with different properties and 

prices: (AWS, 2020i, 2020h, 2020k) 

 Standard: General-purpose class with replication across multiple availability zones. Storage 

price for the first 50 TiB16 in the Frankfurt region: USD 0.0245/GiB 

                                                           
14 

GPU = Graphics Processing Unit 
15

 GiB = Gibibyte (2
30

 bytes) 
16

 TiB = Tebibyte (2
40

 bytes 
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 Standard-IA: Infrequent Access (IA) storage class with lower storage fees (USD 0.0135/GiB), 

but higher prices for PUT, COPY, POST, LIST, GET and SELECT requests; additional data re-

trieval fee 

 One Zone-IA: Same as Standard-IA except for missing replication. Storage price: 

USD 0.0108/GiB 

 Intelligent-Tiering: Combination of frequent and infrequent access storage classes; objects 

are automatically moved to IA if they have not been accessed for 30 consecutive days. Price 

like Standard and Standard-IA with additional monthly Monitoring and Automation fee per 

1 000 objects. 

 Glacier: Low-cost storage option for long-term archiving with three differently-priced re-

trieval options (Expedited: 1–5 minutes retrieval time, Standard: 3–5 hours, Bulk: 5–12 

hours). Storage fees: USD 0.0045/GiB 

 Glacier Deep Archive: Same as Glacier, but with different retrieval times (Standard: 12 hours, 

Bulk: 48 hours). Storage fees: USD 0.0018/GiB 

Besides, storage fees costs arise for PUT, COPY, POST and LIST requests, ranging from USD 0.0054 

(Standard, Intelligent-Tiering) to USD 0.06 (Glacier, Glacier Deep Archive) per 1 000 requests, and 

GET and SELECT requests, ranging from USD 0.00043 (all but IA) to USD 0.001 (IA) per 1 000 requests. 

The IA and Glacier storage classes have additional fees for data retrieval. (AWS, 2020h) 

2.5 Earth Observation Data Cubes 
The concept of data cubes arose in the context of business intelligence and online analytical process-

ing (OLAP) in the 1990s. A data cube would typically provide access to precomputed, summarized 

business or statistics data over multiple dimensions via OLAP queries. (Han et al., 2012, p. 187; Nativi 

et al., 2017, p. 76; Strobl et al., 2017, p. 32) Earth Observation Data Cubes (EODC), a term which was 

coined by Lewis et al. (2016) from Geoscience Australia, are a speciality in this regard because they 

are composed of earth observation data like satellite imagery. Individual geo-referenced satellite 

tiles within a specified time range are stacked in a way that they form a pixel-aligned image cube (see 

Fig. 10). 

 
Fig. 10: Process from image files to a pixel-aligned image cube. Source: (Kopp et al., 2019, p. 8), cropped 

Also sometimes called Big Earth Data Cubes (Baumann, 2017b; Nativi et al., 2017) or Geospatial Data 

Cubes (Strobl et al., 2017, p. 32), an EODC is defined by (Baumann, 2017a) as  

“a massive multi-dimensional array, also called “raster data” or “gridded data”; “massive” entails 

that we talk about sizes significantly beyond the main memory resources of the server hardware. 
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Data values [...] sit at grid points as defined by the d axes of the d-dimensional datacube. Coordi-

nates along these axes allow addressing data values unambiguously.” 

This definition is part of the often-cited (Augustin et al., 2019, p. 1; Giuliani et al., 2017, p. 102; 

Giuliani, Masó, et al., 2019, p. 18; Purss et al., 2019, p. 64; Strobl et al., 2017, p. 32) Datacube Mani-

festo that also identifies six principles or requirements of data cube services: (Baumann, 2017a) 

1. Regularly or irregularly gridded data; at least 1–4 dimensions (e.g. 1D sensor time series, 3D 

x/y/t image time series) 

2. A single access pattern for all axes, irrespective of semantics (spatial, temporal, others) 

3. Efficient trimming and slicing17 along any number of axes in a single request 

4. Similar access performance along any data cube axis 

5. Invisible partitioning 

6. A high-level query language “where users describe what they get, not the detailed algorithm” 

In order to elaborate on the concepts of the Datacube Manifesto (Strobl et al., 2017) present the six 

faces of the data cube. Since a data cube must “allow ingestion, storage, provision, and analysis of 

structured geospatial data” (Strobl et al., 2017, p. 32) it has multiple technical aspects, one half of 

them data-oriented and the other half functionality-oriented (see Fig. 11).  

 
Fig. 11: Data-oriented faces (left) and functionality-oriented faces (right) of a data cube. Source: Strobl et al., 2017, p. 33f 

These are the six faces (Strobl et al., 2017): 

i. Parameter Model: Model that describes the semantics of a cube cell value. Challenges 

arise with incorporating data that describes the same parameter, but is of different ori-

gin or has been pre-processed differently. 

ii. Data Representation: Discretization/Semantical encoding of a parameter, i.e. gridding of 

the spatial domain along a coordinate system 

                                                           
17

 Trimming  data cube subset with same dimensions, Slicing  data cube “slice” with lower dimensions 
(OGC, 2010, p. 3) 
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iii. Data Organisation: Actual arrangement and storage of the data cube: file format, file 

system, database structure. Big Data cubes additionally should deal with partitioning and 

streaming. 

iv. Infrastructure: Storage and processing must be possible within the same IT infrastruc-

ture in a centralised or distributed fashion. 

v. Access and Analysis: Interactive interfaces (APIs18, GUIs19) must be provided for access-

ing, manipulating and analysing the data cube and its metadata. The data cube should 

provide anticipative processing cost estimations and handle access rights and security 

aspects. 

vi. Interoperability: International standards should ensure communication among different 

data cube implementations to avoid silo effects. Different client software should be able 

to access data cube information independently from the implementation. 

The six faces of the data cube have found resonance with (Nativi et al., 2017), who employ standard-

ized software architecture modelling (viewpoints modelling) to them, with interoperability in mind. 

(Nativi et al., 2017, p. 79) By the use of this modelling they identify concerns, stakeholders and soft-

ware design patterns for each of the six faces, summarised as six views (see Fig. 12). Nativi et al. 

(2017, p. 77) argue that the existing experience from OLAP and business intelligence can be reused 

and applied to EODCs. Therefore these existing technologies play an important role in their views. 

 
Fig. 12: The six interoperability views. Source: Nativi et al., 2017, p. 83 
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 API = Application Programming Interface 
19

 GUI = Graphical User Interface 
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The six interoperability views are as follows: 

i. Semantic view: (Nativi et al., 2017, Table 1) 

a. Concerns: analytical purpose of cube, information about cube’s content, meta-

data 

b. Stakeholders: Earth system domain experts, community of practitioners and 

business case experts 

c. Patterns: specifications (INSPIRE20 data definition schemas, CF21 convention, 

etc.), semantic and ontological languages (OWL22, RDF23, etc.) 

ii. Geometry View: (Nativi et al., 2017, Table 2) 

a. Concerns: Geometrical representation and discretization of content, dimension 

neutrality (all dimensions should be treated the same) 

b. Stakeholders: Business domain experts, geospatial information experts, business 

intelligence professionals 

c. Patterns: OGC24 feature and coverage general models, CDMs25, OLAP modelling 

iii. Encoding View: (Nativi et al., 2017, Table 3) 

a. Concerns: Multidimensional content encoding and storage (file formats, file sys-

tems, database structures, tiling strategy, etc.), pre-processing and query optimi-

zation 

b. Stakeholders: Multidimensional data storage experts, OLAP experts 

c. Patterns: File systems and formats (e.g. netCDF, HDF, GeoTIFF, GML, JSON, etc.; 

also see section 2.8), multidimensional databases, big data tiling strategies 

iv. Interconnection/platform view: (Nativi et al., 2017, Table 5) 

a. Concerns: software components and services, system design and scalability, ex-

posed APIs and control mechanisms 

b. Stakeholders: Software engineers, HPC26 infrastructure experts 

c. Patterns: SoS27 patterns, software design patterns (separation of concerns, 

transparency, reusability, decentralization), cloud computing interoperability 

patterns 

v. Interaction/interface view: (Nativi et al., 2017, Table 4) 

a. Concerns: system functionality and accessibility to user, set of possible opera-

tions, web-based APIs 

b. Stakeholders: data analysts, business intelligence professionals, web API experts, 

interoperability experts 

c. Patterns: Web APIs (e.g. REST28), interactive notebooks (e.g. Jupyter notebooks), 

OLAP APIs, analytical languages (e.g. OGC WCPS29) 

vi. Composition/Ecosystem view: (Nativi et al., 2017, Table 6) 

                                                           
20

 INSPIRE = Infrastructure for Spatial Information in the European Community 
21

 CF = Climate and Forecast 
22

 OWL = Web Ontology Language 
23

 RDF = Resource Description Framework 
24

 OGC = Open Geospatial Consortium 
25

 CDM = Common Data Model 
26

 HPC = High-Performance Computing 
27

 SoS =  System of Systems 
28

 REST = Representational State Transfer 
29

 WCPS = Web Coverage Processing Service 



24 
 

a. Concerns: system interoperability, distribution, scalability, governance 

b. Stakeholders: SECO30 and SoS experts, international standards experts, interop-

erability experts, system and policy managers, international organizations 

c. Patterns: SECO patterns, DGGS31, SoS architectures and governance styles 

More recently, Augustin et al. (2019, p. 1f) use the term view differently and refer to EO data cubes 

as “logical views on EO data”. Logical in this sense means that EO data is not accessed by file name, 

but via an API or a query language using spatio-temporal coordinates. From a technological perspec-

tive, they distinguish between indexing and ingestion: Indexing simply references the satellite scenes 

in the original data format and ingestion builds a multi-dimensional data structure, making time se-

ries or spatial analysis more efficient. 

In the recent years EODC technologies have rapidly evolved and diversified. One approach have been 

Array Database Management Systems (ADBMS) such as RasDaMan, SciDB and TileDB. They represent 

EO data as multidimensional regular arrays and provide their own query languages and tiling mecha-

nisms (chunking). Another approach has been to use distributed file systems such as Google File Sys-

tem (GFS) or Hadoop Distributed File System (HDFS). Their main advantage for performance is that 

data is processed on the same node as where it is stored. (Gomes et al., 2020, p. 2) 

Still, these approaches do not meet nowadays’ requirements anymore because “in an increasing 

number of cases, the volume is too large to move [EO] data to a local analysis platform”. (Woodcock 

et al., 2016, p. 13) Thus, the Moving Code paradigm needs to be employed: Code must be shipped to 

the data instead of the other way round; moving data must be avoided. Cloud computing infrastruc-

tures like AWS or the European DIAS platforms (see section 2.4) form processing environments 

where the analyses can run on servers close to the data, improving performance. However, the plat-

forms require high technical knowledge to operate; they supply satellite imagery in a file-based way 

and do not provide any abstracted interfaces to the data (Gomes et al., 2020, p. 2f) 

Gomes et al. (2020, pp. 3, 14) identify seven platforms that conform to their definition of a Platform 

for big EO Data Management and Analysis. They define them 

“as computational solutions that provide functionalities for big EO data management, stor-

age and access; that allow the processing on the server side without having to download big 

amounts of EO data sets; and that provide a certain level of data and processing abstractions 

for EO community users and researchers.” 

The seven platforms include  

 Google Earth Engine (GEE), 

 Sentinel Hub (SH), 

 Open Data Cube (ODC), 

 System for Earth Observation Data Access, Processing and Analysis for Land Monitoring (SEPAL), 

 OpenEO, 

 Joint Research Center (JRC) Earth Observation Data and Processing Platform (JEODPP) and 

 pipsCloud. 
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They then proceed with an evaluation on the basis of EO community needs that stem from related 

literature. (Gomes et al., 2020, pp. 14–21) Concluding, Gomes et al. (2020, p. 22) write that to meet all 

user needs a platform would have to provide two forms of processing: An abstracted API and access to 

low-level extensions. The latter form is already implemented in ODC and they “believe that ODC is the 

solution that presents the best conditions to evolve to a platform with these characteristics.” 

Since all of these platforms are relatively young, with GEE being the pioneer (GEE was launched in 

2010), there is almost no empirical research on the performance of these solutions. One paper could 

be found by Wang et al. (2019) that reports performance measurements using the PIPS (Parallel Im-

age Processing System) solution of the Chinese Academy of Sciences Institute of Remote Sensing and 

Digital Earth. (Wang et al., 2019, pp. 155–158) Wang et al. (2019, p. 167f) generated a Landsat-5 mo-

saic composed of 28 satellite images with seven bands over North-Eastern China (approx. 1,208,000 

km²). They used a multi-core cluster with up to 10 nodes with 8 Virtual CPUs and 16 GB memory 

each. When using only one node, a total runtime of over 350 minutes was recorded. At three nodes 

the runtime could be reduced to 100 minutes, while there was no further improvement from five or 

more nodes (about 80 minutes runtime). From ten nodes onwards the runtime increased again. 

2.6 Euro Data Cube 
Taking into account the previous chapter, the Euro Data Cube (EDC) is probably best introduced by its 

differences to the Open Data Cube. The CEO of EDC consortium’s lead company Sinergise from Slo-

venia, Grega Milczinski (2020c), states that there is a difference in target audiences. ODC aims to 

“[g]ive scientists and other users easy ability to perform Exploratory Data Analysis”, whereas EDC 

wants to “[m]ake it easy for developers to build tools” to aid scientists and other users with Explora-

tory Data Analysis. He highlights that ODC would primarily provide software and, in contrast, EDC 

focuses on making web services directly accessible to developers while also providing software for 

those who want to use it. (Milcinski, 2020c) 

As mentioned above, the EDC consortium is lead by the Slovenian company Sinergise and includes 

Brockmann Consult from Germany, EOX (Austria) and gisat (Czech Republic). (EDC Consortium, 

2020a) The consortium was founded in response to an ESA project tender for an EO Data Cube Facil-

ity Service with a project time frame of five years (2018–2022). (ESA, 2018b, p. 1) The Statement of 

Work (SOW) for that tender describes in detail the background and required tasks of the project. A 

paradigm shift from “EO Data Repository” to “EO Information Factory” forms the context of the ten-

der: Instead of downloading massive amounts of satellite data to their local environment, users 

should be able to analyse and exploit the data directly where they are stored. (ESA, 2018b, p. 7) By 

adopting standard data formats and tools that are non-exclusive to earth observation, ESA aims to 

enlarge the user base of EO data from the space community to the larger GIS community. Finally, 

open source software and interoperability standards should remove barriers between (space and 

non-space) data sets, sensor types and data cube implementations. (ESA, 2018b, p. 7ff) 

To this end ESA formulated six “Use Case Scenarios and Service Requirements” (ESA, 2018b, p. 15): 

 Information Layer Publishing & Marketplace: Customers of the data cube should be able to 

publish their own thematic layers and make them available under commercial or non-

commercial licences, generating income in the former case. (ESA, 2018b, p. 15f) 
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 On-Demand Mapping: Instead of data downloads or storage duplication, customers should 

be able to plug in their algorithm and run it directly on the latest source satellite imagery 

within the cloud environment. (ESA, 2018b, p. 16f) 

 Cross-Mission Analysis: The data cube should rely on satellite data already provisioned in the 

cloud and avoid duplication because of the high storage costs of the latter scenario. Custom-

ers should be able to choose resolution, grid and projection dynamically and the data cube 

should harmonise the source data from different satellite missions on the fly. (ESA, 2018b, p. 

17f) 

 Front-End Operator Support: The data cube should provide interfaces that customers can 

use to build front-end services on top of the data cube engine. (ESA, 2018b, p. 19) 

 Virtual Thematic Data Cubes: Through trimming and slicing customers should be able to limit 

the data cube’s view and make only subsets available to their communities. (ESA, 2018b, p. 

19) 

 Data Cube Federation & Interoperability: The contractor should actively participate in the 

standardization process of the Open Geospatial Consortium (OGC). Interoperability with the 

Open Data Cube and with regional data cube instances (“national data on nationally oper-

ated infrastructure”) should be ensured. (ESA, 2018b, p. 19f) 

In order to fulfil these requirements the EDC consortium designed a data cube architecture com-

prised of multiple web services, as can be seen in Fig. 13. At the bottom the data sources are shown: 

Besides the Sentinel satellites’ imagery, data from the Landsat-8 mission and the MODIS instrument 

(NASA32/USGS33), derived Copernicus layers (Copernicus Climate Change Service, Marine Service, 

Land Use Monitoring Service, Atmosphere Monitoring Service) and commercial satellite imagery 

(Airbus SPOT and Pléiades, PlanetScope), among others, are available through the data cube. The 

bring-your-own-data concept allows customers to link their own data to the data cube for combined 

analysis and publish it to a wider user community. (EDC Consortium, 2020b, p. 4f) 

The cloud section in Fig. 13 contains the data repositories from where data can be obtained; options 

are the DIAS systems, AWS and customer-owned object stores. The Euro Data Cube services are built 

on top of that: (EDC Consortium, 2020b, pp. 4, 8–14) 

 Sentinel Hub: A cloud-based REST API combined with custom JavaScript scripts for on-the-fly 

or batch processing of satellite data. 

 xcube: Generation, analysis and publication of custom data cubes, which can be a combina-

tion of EO and non-EO data and/or gridded and non-gridded data 

 geoDB: PostgreSQL with user access management to store feature data, use it for one’s own 

computations and publish it non-commercially or commercially  

 EOxHub: The workspace combines a dashboard, a Jupyter notebooks computing environ-

ment and a marketplace. The latter is a repository where customers can unlock additional 

computing resources, buy the aforementioned web services and share/sell web apps and al-

gorithms to other customers. 
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Fig. 13: Euro Data Cube architecture. Source: EDC Consortium, 2020b, p. 4 

The Sentinel Hub Batch Processing API is of high relevance for this master’s thesis and its technical 

details will be discussed below. A prerequisite for using the EDC is an active EOxHub workspace sub-

scription starting from EUR 99 per month for up to 6 CPUs and up to 24 GB Memory. (EDC Consor-

tium, 2020b, p. 6f) Processing costs with the Sentinel Hub are tracked via an abstract currency called 

processing units (PUs), which can be obtained with real money. One PU is defined as the cost for “an 

output (image) size of 512 x 512 pixels, 3 dataset input bands, one data sample per pixel [...], an 

output (image) format not exceeding 16 bits per pixel, without additional processing (e.g. orthorecti-

fication) applied.” (Sentinel Hub, 2020c) A sample is a particularity of a processing script and de-

scribed below. 

There are subscription plans as well as pre-paid plans available for the Sentinel Hub. The Exploration 

plan for non-commercial use is EUR 30 per month and includes 30,000 processing units. Commercial 

plans offer 70,000 PUs for EUR 100 monthly, 400,000 PUs for EUR 500 and 1,000,000 PUs for 

EUR 1,000. The pre-paid version of the Sentinel Hub subscription sells 1,000 PUs (valid 24 months) 

for EUR 2.50 for the first 400,000 PUs and EUR 1.50 for any additional PUs. Subscription plans simi-

larly can be topped-up for EUR 1.50 per 1,000 PUs. 

2.6.1 EDC Batch Processing API 

The Batch Processing (BP) API is an asynchronous REST API, meaning that results are not returned in 

an immediate response, but delivered to a customer-owned S3 bucket. This makes sense for large 

processing requests that take longer than a few minutes because it is impractical to maintain a ser-

vice connection until the request finishes. The area of interest of these large requests may span an 

entire country or continent and therefore—in order to optimize execution time—they are processed 

in parallel in a distributed fashion. The possible workflows for such an asynchronous request are 

shown in Fig. 14. Using the HTTP34 method POST a new request can be created and commands like 

START, ANALYSE or CANCEL can be issued to the service. The request’s current status can be queried 

via a HTTP GET call. (Milcinski, 2020b; Sentinel Hub, 2020b)  

                                                           
34

 HTTP = Hypertext Transfer Protocol 
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Fig. 14: EDC Batch Processing API asynchronous workflow. Source: Sentinel Hub, 2020b 

After a processing request has been created an initial estimate for the processing units is provided 

when the request’s status is queried. This estimate can be refined by POSTing ANALYSE to the re-

quest’s API endpoint. The command START moves the request into the PROCESSING state, which is 

resolved after “5 minutes to a couple of hours” (Milcinski, 2020b) to DONE or—if some or all tiles 

have failed—to PARTIAL or FAILED, respectively. A request can be cancelled at any time during the 

workflow by issuing the command CANCEL. (Sentinel Hub, 2020b) 
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Fig. 15: Example JSON payload that is attached to a Batch Processing request. Source: (Sentinel Hub, 2020e) 

In order to create a request a JSON35 payload (see Fig. 15) must be attached to the HTTP POST call. 

The payload lets the user specify input parameters like the area of interest, the time range, the out-

put S3 bucket and the tiling grid to be used. Three pre-defined grids are available, with differing spa-

tial resolutions and tile extents (see Table 4). The 10-km and 100.08-km grids are self-explanatory; 

the “s2gm” grid was designed during Sentinel Hub’s Sentinel-2 Global Mosaic (S2GM) project, mainly 

to avoid too many overlaps. All grids are based on the UTM projection. (Milcinski, 2020b) 

Name s2gm grid 10-km grid 100.08-km grid 

Id 0 1 2 

tileWidth [m] 20,040 10,000 100,080 

tileHeight [m] 20,040 10,000 100,080 

resolutions [m] 10.0, 20.0, 60.0 10.0, 20.0 60.0, 120.0, 240.0, 360.0 
Table 4: Sentinel Hub Batch API tiling grids. Source: Sentinel Hub, 2020b 

The JSON payload also includes a so-called evalscript. An evalscript is composed of two mandatory 

functions: The setup function defines the input bands and output format of the image(s) and the 

evaluatePixel function contains the actual processing instructions. An example is shown in Fig. 16: 
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Satellite bands 2 (blue), 3 (green) and 4 (red) are fed into the process and the values are augmented 

by a factor of 2.5. A three-band true-colour image of the requested area of interest is delivered to 

the defined S3 bucket. (Sentinel Hub, 2020d) 

 
Fig. 16: Example of a simple Batch Processing evalscript. Source: Sentinel Hub, 2020d 

The setup function must return an object that has band names as input properties and one or multi-

ple output objects each with a user-defined id (which becomes the file name, optional), a number of 

bands of the respective output image file and a sampleType (optional). The sampleType describes the 

data type of the output image file and can be one of UINT8 (256 distinguishable values), UINT16 

(65,536) or FLOAT32 (decimals between -2127 and 2127). Besides, the setup function’s return object 

can contain a mosaicking specifier that defines which samples are taken into account for the process-

ing. mosaicking can either be set to SIMPLE (only one sample for the complete requested time range 

is evaluated), ORBIT (one sample per orbit within the requested time range) or TILE (all samples 

within the requested time range, possibly from multiple scenes in the same orbit). (Sentinel Hub, 

2020d) 

The second mandatory function is called evaluatePixel. Inside the function one or more sample(s) are 

available, depending on the mosaicking type chosen in setup. One or more scene(s) object(s) carry 

metadata information including the date(s), original name(s) of the satellite image(s) and orbitId(s) 

belonging to the sample(s). Some additional (meta)data can be passed on to evaluatePixel via the 

inputMetadata, customData and outputMetadata arguments. If there is only one output image de-

fined, the function must return a value for each band of that image. For multiple output images val-

ues must be assigned to the respective id that has been set in the setup function. (Sentinel Hub, 

2020d) 

As long as the request’s status is PROCESSING, the results start appearing in the S3 bucket that the 

user specifies. The default folder structure can be seen in Table 5. For every request a new directory 

is created and a JSON file with the request parameters is uploaded. Parallel processing requires a 

partitioning of the area of interest into several tiles, which are processed independently from each 

other. Therefore the bucket will contain a folder for each tile that in turn contains the requested 

output images as JPEG36, PNG37 or Cloud-optimized GeoTIFF38 (COG); (Sentinel Hub, 2020b) the proc-

essing result is not merged to one single file. 
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 JPEG = Joint Photographic Experts Group 
37

 PNG = Portable Network Graphics 
38

 TIFF = Tagged Image File Format 
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Request ID Tile ID Image files 

05baa5b2-3dee-43fe-8e67-b8195b095ed0/ 11375/ rgb.tif 
false-color.tif 
... 

11376/ rgb.tif 
false-color.tif 
... 

11377/ rgb.tif 
false-color.tif 
... 

... ... 

request.json 
Table 5: Illustrative folder structure of Batch Processing API results inside an S3 bucket. Source: own work 

2.7 mapchete Hub 
mapchete Hub is a cloud processing service for satellite imagery and other geodata written in Python. 

It extends the open-source software library mapchete with the libraries Celery and MongoDB into an 

asynchronous REST API that can be controlled via a command-line tool called mhub. The mapchete 

Hub code is developed and maintained by Joachim Ungar with contributions from Petr Ševčík (both 

EOX IT Services GmbH). (EOX, 2020a) 

Ungar is also the creator of the name-giving mapchete Python library itself that takes large amounts 

of input data, chunks it into smaller parts (tiles) and processes them, several at a time. Optionally—as 

mapchete was designed for web maps—a tile pyramid in the Web Map Tile Service (WMTS) format 

can be requested as output format (see Fig. 17). A tile pyramid consists of multiple zoom levels: For 

example, the Web Mercator projection zoom level 0 covers the whole world on one single tile while 

level 1 covers the world on four tiles, and so on. Each zoom level has its own tile matrix and individ-

ual tiles are referenced by their zoom level, their row and their column. Besides the predefined tile 

pyramids for the WGS84 and Web Mercator projections, users can define their own custom tile 

pyramids for any other existing projection. (EOX, 2020f, 2015/2020) 

 
Fig. 17: Web Mercator tile pyramid. Source: EOX, 2020f 
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Per definition, each WMTS tile has a pixel size of 256 x 256 pixels. (Masó, 2016) For processing, the 

small tile size can mean some unnecessary computational overhead. In order to provide more effi-

cient processing, mapchete employs a concept known as metatiling. Instead of running a process on 

multiple smaller tiles, tiles are first united to larger metatiles. mapchete’s metatiling parameter can 

be set to 2, 4, 8 or 16, resulting in tile sizes of 512, 1,024, 2,048 or 4,096 pixels squared, respectively. 

(EOX, 2020f, 2020b) 

Configuration of mapchete is done using a Python process file and a YAML39 configuration file that 

must have a .mapchete file extension. Apart from the pyramid definition, the .mapchete file makes it 

possible to specify input data and output format. An example can be seen in Fig. 18.  

 
Fig. 18: Example for a .mapchete YAML file. Source: EOX, 2015/2020 

The actual processing script must be made available to mapchete as a separate Python file. It must 

include an execute function, which receives an mp object and, optionally, one or multiple custom 

variables. The mp object exposes the process parameters and offers various functions to open and 

manipulate the input data that is referenced under the input key in the configuration file. Custom 

variables can be defined in the .mapchete configuration file and are used to overwrite default values 

that the user can specify in the execute function (e.g. the resampling parameter in Fig. 18 and Fig. 

19). After processing, the execute function must return one or more multi-dimensional arrays. (EOX, 

2020c) 
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 YAML = YAML Ain't Markup Language 
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Fig. 19: Example of a simple mapchete processing script. Source: EOX, 2015/2020 

mapchete cannot out-of-the-box use satellite imagery stored in the cloud. An input plug-in called 

mapchete Satellite makes this functionality available via additional configuration parameters. Specifi-

cally, mapchete Satellite provides access to Sentinel-1, Sentinel-2 and MODIS archives stored in the 

AWS and Mundi DIAS clouds. The parameters that must at least be added to the .mapchete file are 

the start_time and end_time of the time stack that is to be processed (see Fig. 20). (EOX, 2020d) 

 
Fig. 20: Example of .mapchete file input section for satellite imagery from a cloud repository. Source: EOX, 2020d 

mapchete Hub processing requests (or jobs) are managed by the asynchronous job queue library 

Celery. A queue is a structure that handles objects in a first-in/first-out manner. Celery takes over the 

task to assigns jobs to workers. Whenever a job is finished, it leaves the queue and Celery allocates 

the now unoccupied worker to the next pending job in the queue. (Celery, 2020b; Garner, 2020) 

In order for this workflow to function properly, Celery needs a service to receive and send messages 

and a database where it can store the current state of a job. (Celery, 2020a) This is handled by map-

chete Hub using MongoDB. (EOX, 2020a) According to their website, “MongoDB is a general purpose, 

document-based, distributed database”. (MongoDB, 2020b) Document-based in this sense means 

that data is not stored as tables like in traditional relational databases. Instead, MongoDB uses a 

JSON-like object representation that is more familiar to developers and optimized for distributing 

documents across multiple servers in the cloud. (MongoDB, 2020a) Fig. 21 shows an example docu-

ment reproduced as a JSON. 
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Fig. 21: MongoDB document example reproduced as JSON. Source: MongoDB, 2020b 

Putting it all together, a mapchete Hub instance is a combination of multiple services resulting in an 

asynchronous pendent to mapchete. The code base contains scripts for the CLI (command-line inter-

face) that help start the required services in the cloud. For users the command-line utility mhub is 

provided that follows mapchete’s CLI syntax and features additional functionality for mapchete Hub’s 

asynchronous nature. Using mhub it is possible to list all jobs, execute or cancel jobs and query a job’s 

status, among several other commands. (EOX, 2020a) 

The results of a processing job are stored alongside a metadata.json file in a chosen directory on the 

user’s S3 bucket as COG, PNG or GeoJSON (for vector data) (EOX, 2020e) or as multi-dimensional 

arrays in the netCDF or zarr formats. For the latter option the open-source plug-in mapchete_xarray 

must be installed. (EOX, 2019/2020) An example output directory structure can be seen in Table 6. 

User-defined directory Zoom level Tile matrix row Tile matrix column 

data_cube/ 5/ 800/ 60.zarr 
61.zarr 
62.zarr 
63.zarr 
... 

801/ 60.zarr 
61.zarr 
62.zarr 
63.zarr 
... 

... ... 

metadata.json 
Table 6: Illustrative folder structure of Mapchete Hub results inside an S3 bucket. Source: own work 
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2.8 Data representation 
Several file formats have been discussed in the previous chapters like COG or netCDF. Generally, one 

has to distinguish between in-memory data representation and persistent file storage. While COG or 

netCDF are used to persist data in a file system, in-memory data is being used during computations. 

Software packages can transform data from one state into the other. 

Most programming languages have simple structures in place to form collections of data, e.g. arrays 

in JavaScript or lists in Python. They can store simple data types like numbers or text together in one 

variable and their notation would be as follows:  

list_or_array = [1, “two”, 3.4, etc] 

In contrast to JavaScript, Python also features some more sophisticated data structures that are 

added through plug-in libraries: NumPy arrays, pandas Series and DataFrame, as well as xarray 

DataArray and DataSet. All of them offer unique benefits that might be speed improvements or la-

belled data tables to make data handling easier. 

NumPy (short for Numerical Python) introduces n-dimensional homogeneous arrays to Python. Ho-

mogeneous in this regard means that a NumPy array only contains data of the same data type (e.g. 

only integers). This allows for faster mathematical computations and much less memory consump-

tion. NumPy arrays can represent what would usually be called a vector (one-dimensional), a matrix 

(two-dimensional) or any higher-dimensional grid. (The SciPy community, 2020) An example of a 

three-dimensional NumPy array with a 16-bit integer data type can be seen here: 

>>> np.ones( (2,3,4), dtype=np.int16 ) 

array([[[1, 1, 1, 1], 

        [1, 1, 1, 1], 

        [1, 1, 1, 1]], 

 

       [[1, 1, 1, 1], 

        [1, 1, 1, 1], 

        [1, 1, 1, 1]]], dtype=int16) 

pandas extends on NumPy functionality by attaching an index and labels to vectors and matrices. 

Vectors correspond to pandas Series, where each vector entry has an index value attached. Data-

Frames mimic spreadsheets and can have both an index and column labels. Examples are shown 

below: (the pandas development team, 2020)

pd.Series(np.random.randn(5), in-

dex=['a', 'b', 'c', 'd', 'e']) 

a    0.469112 

b   -0.282863 

c   -1.509059 

d   -1.135632 

e    1.212112 

dtype: float64 

 

pd.DataFrame(data, columns=['a', 

'b']) 

   a   b 

0  1   2 

1  5  10 
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xarray combines the labels from pandas and the performance benefits of NumPy’s n-dimensional 

arrays into DataArrays that can further be collected into DataSets. DataArrays do not necessarily 

have a uniformly-spaced coordinate system. Instead arbitrary coordinates can be specified, like 

points in time or text coordinates. The dimensions are like the column labels in pandas and describe 

the coordinates semantically. Additionally, custom metadata (so-called attributes) can be attached to 

a DataArray. A DataSet is a container for DataArrays and “is designed as an in-memory representa-

tion of the data model from the netCDF file format.” (xarray Developers, 2020a) A sample DataArray 

is reproduced here: 

xr.DataArray(data, coords=[times, locs], dims=["time", "space"]) 

<xarray.DataArray (time: 4, space: 3)> 

array([[0.127, 0.967, 0.26 ], 

       [0.897, 0.377, 0.336], 

       [0.451, 0.84 , 0.123], 

       [0.543, 0.373, 0.448]]) 

Coordinates: 

  * time     (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 2000-01-04 

  * space    (space) <U2 'IA' 'IL' 'IN' 

According to its maintainer Unidata (2018), the netCDF40 file format “is a community standard for 

sharing scientific data.” Among others, they highlight these features: 

 Self-describing: Metadata is built into the file 

 Scalable: Users can access small parts of a large dataset in the cloud 

 Appendable: Data can later be appended to an existing netCDF file 

 Sharable: „One writer and multiple readers may simultaneously access the same netCDF 

file” (Unidata, 2018) 

The file format’s latest iteration netCDF-4 is based on the HDF541 format, which promises optimized 

performance through chunking (structuring data in multiple chunks for subset access or parallel 

computation), compression and encryption. (HDF Group, 2017; Unidata, 2020) There is another file 

format (and library) that provides similar functionality to HDF5—but claiming more flexibility—called 

zarr. While facilitating chunked and compressed NumPy arrays in-memory, zarr can also persist them 

on a local file system or in an object storage in the cloud. (Zarr Developers, 2019, 2020) xarray can 

leverage this zarr feature and store DataArrays and DataSets as zarr files. (xarray Developers, 2020b) 

The last relevant storage format to be discussed in this thesis is Cloud Optimized GeoTIFF (COG). 

Despite sticking to the original GeoTIFF specification, COG imagery files are structured in a way that 

makes them more quickly accessible over the internet. This is achieved through tiling and overviews. 

Tiles are the imagery equivalent of chunks and allow file access in portions. Overviews are represen-

tations of an image with a lower resolution. They increase storage size of the file, but enable fast 

display of images when zoomed out. Tiling and overviews are combined with HTTP GET range re-

quests, which make it possible that files serve only parts of themselves to the user. (cogeotiff, 2020) 
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 HDF = Hierarchical Data Format 
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A recent study by Yee et al. (2020) compared the performance of COG, netCDF and zarr for Earth 

observation data. They found that, in general, COG is faster than zarr and netCDF has the poorest 

performance when it comes to various analysis operations (see Fig. 22; details to be gathered from 

the original study). 

 
Fig. 22: Chart showing performance benchmark of COG, netCDF and zarr. Source: Yee et al., 2020, p. 18 

netCDF also doesn’t perform well when the percentage of the file that has to be read for an opera-

tion is evaluated. In half of the cases zarr beats COG and vice-versa (see Fig. 23). 

 
Fig. 23: Chart showing file size read benchmark of COG, netCDF and zarr. Source: Yee et al., 2020, p. 20 
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Yee et al. (2020, p. 23) also compared the file size of four datasets in different formats and the zarr 

version had a bigger storage footprint than netCDF in two of the three cases where it was tested. The 

authors of the study, however, note that this would be due to zarr’s default compression settings 

which are optimized for certain use cases and lead to feeble results in others. The file size compari-

son is shown in Fig. 24. 

 
Fig. 24: Chart showing file size comparison of COG, GeoTIFF (non-COG), netCDF and zarr. Source: Yee et al., 2020, p. 23 

In their final remarks Yee et al. (2020, p. 24f) emphasize that file packaging (e.g. how data is struc-

tured inside a file) highly impacts performance—even more than the choice of format. In respect to 

Earth observation data cubes, developers face a trade-off between favouring temporal analysis or 

spatial analysis: For a fixed chunk size, temporal analysis is more performant if a chunk covers a small 

spatial area, and instead contains a longer time series. Contrary to this, spatial analysis over larger 

areas would be more efficient if a chunk includes a wider area rather than more information on the 

time axis. Therefore chunking should be matched to the targeted use case. 
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3 Methodology 
The following sections explain how the knowledge from chapter 0 was applied to the research prob-

lem at hand. Initially, details about the measurements of the performance metrics are disclosed. 

Then the test area is located and described, including the tiling approaches of BP and mHub. Since 

EDC xcube could not be used for such large areas itself, some properties of its data cube schema are 

copied and the resulting schemata are presented. Subsequently, the processing scripts are explained 

in detail. Finally, a chapter about the used cloud hardware gives insights into the computing re-

sources available to mapchete Hub. 

 
Fig. 25: Overview of the experiment workflow. Source: Own work 

Fig. 25 shows an overview of the experiment workflow, from the satellite data repository on AWS via 

the two investigated applications to the resulting data cubes in the AWS S3 bucket. In general, the 

experiments were first conducted on EDC Batch Processing and then on mapchete Hub. In both cases 

the processing scripts were developed and tested with small areas and not used with the whole area 

of interest before they were working properly. A scale-up from short time ranges to the maximum of 

8.5 months followed. The idea to conduct the experiments for only one month did not appear before 

the Sentinel Hub research account had already been closed down. Therefore results derived from 

longer time ranges via linear regression will be reported in chapter 0. 

3.1 Performance metrics 
Several metrics for computer performance measurements are of interest to make an informed busi-

ness decision. First and foremost direct costs are an important factor, but also other factors like time 

and required skills indirectly translate to monetary expenses. The decisive factors for this benchmark 
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were chosen to be wall clock time, processing costs and know-how for the generation of data cubes, 

and size and costs for the storage of the results. Each of them will be contextualized using the in-

sights from chapter 2.1 and explained in detail in the following. 

Wall clock time describes the responsiveness of the two computer systems EDC Batch Processing and 

mapchete Hub. It is easily obtained from mapchete Hub’s REST API because the job metadata con-

tains a runtime field. For simulated parallelization the runtime of the slowest of a set of jobs is as-

sumed for the whole batch. EDC Batch Processing API does not expose a wall clock time parameter. 

Thus a work around had to be employed: The create time of the request would be compared to the 

last timestamp of the resulting files in the AWS S3 bucket. The difference between these points in 

time would be the wall clock time of a Batch Processing request. 

Processing costs are—like the remaining metrics—usage metrics for the consumed resources. map-

chete Hub consumes CPU power, S3 requests, network bandwidth and cache space. Consumed CPU 

resources can be easily measured by multiplying the runtime by the computing prices for the rele-

vant EC2 instance type. S3 requests are made up of the GET requests to the satellite data repository 

and a small number of other requests to S3 buckets. Since the exact number of other requests can-

not be determined and the GET requests make up at least 98 % of all S3 requests, the GET price is 

assumed for all of them. Consumed network bandwidth and cache space are very difficult to meas-

ure and do not impact the processing costs significantly. Thus they are ignored for the scope of this 

master thesis. 

Sentinel Hub has abstracted processing costs by the so-called processing units. These are only linear 

in the case of pre-paid plans, but non-linear for the cheaper subscription plans. Both BP and mHub 

processing costs lack consistency and independence (the latter because they depend on either Senti-

nel Hub or AWS to set a price tag on processing resources). 

Know-how is not a quantitative metric, but can be deduced from the technological skill set that is 

required to generate a data cube with the two cloud services. It is not a hard metric and doesn’t offer 

any of the characteristics of a good performance metric. Still, human resources are a substantial part 

in the value chain of an IT company and must not be disregarded. 

Storage size is reported because it can be a limiting factor for data portability and accessibility. Port-

ability is deprecated in the medium term because of the paradigm shift to bring algorithms to the 

data instead of the other way round. Accessibility remains an issue because a huge amount of data 

can be difficult to post-process efficiently. The size of the computed data cubes is easy to query from 

the S3 bucket, however, it might be inconsistent between mapchete Hub and Batch Processing, de-

pending on the chosen file format. 

Storage costs are directly calculated from the storage size and are different to the other metrics in 

the sense that they are accounted for monthly. Thus a relevant consideration is the length of the 

utilization of storage services. The costs suffer from the same limitations as the storage size, and 

ultimately they are not even linked to the data cube generation services mapchete Hub and Batch 

Processing. While the standard solution to storage is to leave the generated data cubes in the desti-

nation S3 bucket, other options such as low-frequency access cloud archives or local archiving can be 

flexibly picked. 
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3.2 Test area 
In order to start testing for checks by monitoring with a common test area, AMA and EOX agreed on 

an area of interest (AOI), which will further be referred to as MAB AOI (after the joint AMA/EOX pro-

ject MAB: Monitoring Algorithm Baseline). This area was chosen with a high variety of planting zones 

in mind. Besides, it lies exclusively in one UTM zone (33N) and does not cross the 12° latitude to UTM 

zone 32N. The MAB AOI covers approximately 17,000 km² (154 km between longitudes 14.25° and 

16.22° / 125 km between latitudes 47.62° and 48.75°) and contains parts of Lower Austria, Upper 

Austria and Styria. An overview map can be seen in Fig. 26. 

 
Fig. 26: Overview map of Austria showing the MAB AOI. Basemap: basemap.at. CRS: EPSG

42
:3857 

Both EDC Batch Processing and mapchete Hub divide the world into tiles using a grid in order to be 

able to parallelize calculations. For Batch Processing—since the highest possible resolution is re-

quired in the context of this Thesis—the 100.08-km grid is not an option because its highest resolu-

tion is 60 meters. Therefore the author decided to choose the default option “s2gm”. In terms of the 

MAB AOI this translates to 57 tiles of 2,004 x 2,004 pixels being processed during one processing 

task. The relation of the tiles to the MAB AOI can be seen in Fig. 27. 
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 EPSG = CRS identifier of the European Petroleum Survey Group Geodesy 
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Fig. 27: The 57 S2GM tiles that make up the MAB AOI. Basemap: basemap.at. CRS: EPSG:3857 

Tiling grids in mapchete Hub work very differently. They are based on a WMTS tile pyramid (see sec-

tion 2.7) and pre-defined for WGS84 and Web Mercator projections. Because of their cartographic 

properties the pre-defined grids cannot ensure a uniform 10-m resolution for raster satellite data. 

Thus a custom tile pyramid had to be defined for UTM zone 33 with 1,035 tiles, each of size 81,920 x 

81,920 meters (zoom level 0). The grid’s extent is shown in Fig. 28. 

 
Fig. 28: Custom grid for Mapchete Hub to cover UTM zone 33 North with process zones highlighted. Basemap: Open-
StreetMap (Data © OpenStreetMap contributors, Rendering © MapServer and EOX), CRS: EPSG:4326 
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Processing was divided into six process zones, with the opportunity to be parallelized during practical 

applications using multiple workers. In the course of this research only one worker was used to run 

the processes successively. The process zones are situated on zoom level 0 of the custom tile pyra-

mid (Fig. 28) and were chosen so as to cover the Sentinel-2 tiling grid as well as possible in order to 

avoid too many unnecessary downloads of satellite data. Still, as Fig. 29 shows, some S2 tiles will be 

downloaded multiple times for more than one process zone. 

 
Fig. 29: Process zones (red) overlapping Sentinel-2 tiles (pink) (ESA, 2015b). Basemap: basemap.at. CRS: EPSG:3857 

The actual process tiles use the 10-m resolution of zoom level 5, but because of metatiling activated 

and set to 2 they have the extent of zoom-level-4 tiles (512 x 512 pixels = 5,120 x 5,120 meters). In-

creasing the metatiling further did not result in performance gains. The 693 tiles intersected by the 

AOI are depicted in Fig. 30. 
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Fig. 30: Process tiles intersected by AOI in relation to process zones. Basemap: basemap.at. CRS: EPSG:3857 

3.3 Data Cube Schema 
The data cube schema that is followed in the course of this master’s thesis is loosely modelled after 

the xcube Dataset Specification (the dimension names copy the xcube convention). (Brockmann Con-

sult, 2018) The differences between the Batch Processing and mapchete Hub approaches are ex-

plained below. The respective schemas are reproduced in Table 7. 

Batch Processing data cube schema mapchete Hub data cube schema 

Dimensions:  (time: 17, x: <MAB width>, y: <MAB 
height>) 
Coordinates: 
 * time (time) datetime64[ns] 2017-09-01–
2018-05-15 
 * y (y) float64 <MAB height> (UTM 33N) 
 * x (x) float64 <MAB width> (UTM 33N) 

Dimensions:  (time: 17, x: <MAB width>, y: <MAB 
height>) 
Coordinates: 
 * time (time) datetime64[ns] 2019-09-01–
2020-05-15 
 * y (y) float64 <MAB height> (UTM 33N) 
 * x (x) float64 <MAB width> (UTM 33N) 
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Data variables: 
 B02 (time, y, x) uint16 ... 
 B03 (time, y, x) uint16 ... 
 B04 (time, y, x) uint16 ... 
 B05 (time, y, x) uint16 ... 
 B06 (time, y, x) uint16 ... 
 B07 (time, y, x) uint16 ... 
 B08 (time, y, x) uint16 ... 
 B8A (time, y, x) uint16 ... 
 B11 (time, y, x) uint16 ... 
 B12 (time, y, x) uint16 ... 
 NDVI (time, y, x) uint16 ... 
 GNDVI (time, y, x) uint16 ... 
 BNDVI (time, y, x) uint16 ... 
 CVI (time, y, x) float32 ... 
 NDSI (time, y, x) uint16 ... 
 NDWI (time, y, x) uint16 ... 

Data variables: 
 B02 (time, y, x) uint16 ... 
 B03 (time, y, x) uint16 ... 
 B04 (time, y, x) uint16 ... 
 B05 (time, y, x) uint16 ... 
 B06 (time, y, x) uint16 ... 
 B07 (time, y, x) uint16 ... 
 B08 (time, y, x) uint16 ... 
 B8A (time, y, x) uint16 ... 
 B11 (time, y, x) uint16 ... 
 B12 (time, y, x) uint16 ... 
 NDVI (time, y, x) uint16 ... 
 GNDVI (time, y, x) uint16 ... 
 BNDVI (time, y, x) uint16 ... 
 CVI (time, y, x) uint16 ... 
 NDSI (time, y, x) uint16 ... 
 NDWI (time, y, x) uint16 ... 

Table 7: Comparison of data cube schemas of the data cubes generated using Batch Processing (left) and mapchete Hub 
(right). Differences highlighted in grey. 

The target dimensions spatially cover the MAB AOI and temporally span 17 time slices. These are 

defined as half-month slices (1st to 15th/16th to last day of the month) that describe the averaged data 

of all satellite observations in that half-month. The data cube shall contain data of the 8.5 months 

between the start of the winter season on 1st September and the first due date on 15th May of the 

following year. 

The variables were chosen so as to match those used in the machine learning pipeline that is devel-

oped in the MAB project. There are 16 variables packed into the data cube, of which ten are original 

satellite bands (variables starting in Bxx) and six are derived vegetation, water and salinity indices 

(IDB, 2020): 

 NDVI (Normalized Difference Vegetation Index) 

 GNDVI (Green Normalized Difference Vegetation Index) 

 BNDVI (Blue Normalized Difference Vegetation Index) 

 CVI (Chlorophyll vegetation index) 

 NDSI (Normalized Difference Salinity Index) 

 NDWI (Normalized Difference Water Index) 

There are two differences between the BP and mHub schemas: One is the different time range and 

the other one concerns the data type of the CVI variable. The BP data cube contains data from Sep-

tember 2017 to May 2018, which is the original test time range of the MAB project. Since some S2 

granules in the AWS data source that mHub connects to were missing the CRS (coordinate reference 

system) metadata, it was decided for the mHub data cube to use data from September 2019 to May 

2020, which has correct CRS data attached to it. 

The normalized-difference indices are defined in the interval [-1; 1]; thus they can easily be mapped 

to the interval [0; 65,535], which is the data space of a uint16 variable (16-bit unsigned integer  216 

= 65,536 non-negative values). The CVI43 is—per definition—not constrained to the range [-1; 1], but 

                                                           
43
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in theory goes up to infinity; a real-world dataset has a CVI of 12 at the 99th quantile. As a result it is 

not possible to naively map it to a certain interval. In order to store decimal places, we must there-

fore either use a float data type (32-bit float32 takes twice the storage space as uint16) or stretch the 

data values by a multiplication factor. The latter approach was used for the mHub data cube: CVI 

values are multiplied by a factor of 1,000 conserving three decimal places. The highest CVI value that 

can be stored in a uint16 variable using this technique is 65.5. 

3.4 Data Cube Generation Code 
This section presents the code that was used for generating the data cubes. Development of the SHM 

data cube script was done using a Jupyter notebook and therefore there are IPython commands em-

bedded in that part of the code.  

3.4.1 Utility function 

To generate the half-monthly date intervals, a utility function was developed to be used for both 

applications in the benchmark. The utility function date_interval_endpoints takes as arguments a 

start time, an end time and the day_of_new_interval, which describes the start day of the second 

interval of each month. The output is a list of Python’s datetime objects corresponding to the end-

points of the half-monthly intervals. E.g. the endpoints for September 2019 with 

day_of_new_interval set to 16 would be [datetime(2019,9,1,0,0), datetime(2019,9,15,23,59,59), 

datetime(2019,9,16,0,0), datetime(2019,9,30,23,59,59)]. The code is reproduced in 00. 

First of all, hours, minutes and seconds, if any, are stripped from the start and end times. Then a list 

of all interval endpoints in between the start and end date is generated (if day_of_new_interval=16: 

the 1st, 15th, 16th and last day of each month). Start and end time are added to the list if not included 

yet anyways. Finally, the time of all right endpoints is set to 23:59:59 effectively making the intervals 

right-closed. 

3.4.2 Batch Processing 

3.4.2.1 evalscript 

The code for generating a data cube using the BP service was executed in a Jupyter Lab environment 

on the Euro Data Cube and depends on an evalscript (see section 2.6.1) written in JavaScript. The 

evalscript contains the actual processing logic that is sent to the service and is presented in Annex 

B.1. It contains double curly brackets instead of single curly brackets because this is required if 

parsed with Python string formatting. 

The evalscript is based on an example provided by Sentinel Hub (Milcinski, 2020a) and was exten-

sively modified and expanded. Apart from the required setup and evaluatePixel functions there are 

several custom helper functions. The functions validate, calculateIndex and interpolatedValue are for 

the most part unchanged from the provided example (besides extending index calculation results to 

the interval [-1; 1] instead of [0; 1]). fillResultArray (and the main function evaluatePixel) had to be 

rewritten almost entirely in order to allow for modular customization via the Python execution envi-

ronment. evaluatePixel additionally was changed from bi-weekly to outputting half-monthly intervals 

(half a month can have 13,15 or 16 days). The various functions are explained in detail in the follow-

ing. 

The setup function describes the input and output bands of the evalscript. The band arrays are gen-

erated dynamically inside the Jupyter Lab notebook (see below). Among the input bands there are 
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always the dataMask and the SCL (Scene Classification Layer) bands that are evaluated in the validate 

function. The validate function takes a sample as input and returns “false” if the sample’s dataMask 

signals “no data” or if the sample was classified as cloud shadow, medium or high cloud probability, 

thin cirrus, snow/ice or as saturated or defective. In all other cases validate returns “true”. 

For vegetation/water/salinity index calculation there is calculateIndex, which takes as arguments two 

numbers and returns the normalized difference of the two. Additionally it maps values from the in-

terval [-1; 1] to the interval [0; 1] so that they eventually fit into a uint16 that cannot hold negative 

values. 

The interpolatedValue function takes an array of numbers as input and returns zero or the first entry 

of the array if the array is empty or only has one single entry, respectively. For arrays with more than 

one entry interpolatedValue returns the mean of the numbers in the array.  

fillResultArray is used in the evalscript to populate the results object, which is eventually written to 

the output COGs. It takes as input an object that has the input bands and index identifiers as keys 

and arrays of satellite data samples for one date interval as values. First, fillResultArray loops through 

the input bands and populates results with the return value of interpolatedValue for that interval. 

Then the requested indices are looped through and calculated using the previously determined mean 

band values. 

In the main part of the evalscript index components are defined (e.g. NDVI is calculated from the NIR 

and red bands), helper variables are inserted from the Jupyter Lab notebook (most notably the base 

structure of the results object) and the evaluatePixel function is described. As explained in section 

2.6.1, evaluatePixel can receive several input arguments, of which we use the samples and the scenes 

arrays. The first command of the function determines whether the most recent observation is in the 

first or second half of the month. Then the function goes through the samples array and checks if the 

sample is outside the current interval. If so, the interval is passed to fillResultArray and a new interval 

is started. Else the sample is validated and pushed to the current interval. Eventually fillResultArray is 

invoked for a last time and the results object is returned so that BP can write it to the output COGs. 

3.4.2.2 Jupyter notebook 

The workflow needs some preparations before the evalscript can be sent to the BP service and final 

commands in order to store metadata with the data cube. These preparations were performed in a 

Jupyter Lab notebook, which is why the code contains IPython commands. The whole notebook’s 

code is reproduced in Annex B.2. 

First of all, the credentials for accessing BP are loaded and some libraries are imported. Since one of 

the data cube’s defining dimensions is the time, some special calculations needed to be done in this 

domain. Therefore two modules (date and datetime) of the Python core package datetime are in-

cluded. BackendApplicationClient from the oauthlib.oauth2 module and OAuth2Session from the 

requests_oauthlib package are needed to instantiate the connection to the BP service. Finally boto3 

establishes a connection to the AWS bucket that holds the data cube’s data and lets me file metadata 

there. 

Cell 2 (Annex B.2.1) describes the process of fetching an authorization token to Sentinel Hub’s Batch 

API, as described in their documentation (Sentinel Hub, 2020a). The next cells up to the penultimate 

one configure the request that is sent to BP. The third cell (B.2.2) is intended for user input. Start and 
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end date as well as bands and indices of the resulting data cube can be set and the target S3 bucket 

is defined. Using these input variables the relevant parameters for the processing request are calcu-

lated in cells 4 and 5 (B.2.3). The date interval endpoints are created using the utility function de-

scribed in chapter 3.4.1. These endpoints are used to derive the interval midpoints that serve as 

metadata for the time axis of the data cube. Next the array templates for the evalscript and JSON 

payload are generated depending on the chosen input bands and indices in cell 3. It becomes appar-

ent in line 4 of cell 5 that the resulting COGs’ number of “bands” depends on the number of time 

slices instead of the actual satellite bands as usual. 

The evalscript is ingested in cell 6 (B.2.4). As explained in section 3.4.2.1, the prepared variables are 

then replaced by the variables generated in the Jupyter notebook in the prior cells. In cell 7 the MAB 

AOI is defined using its GeoJSON representation. It is one of the parameters that make up the JSON 

payload of the processing request. Besides, we have to choose the type of satellite data that will be 

processed (here: Sentinel-2 Level 2A), the tiling grid that is used (see chapter 2.6.1), the spatial reso-

lution and—apart from some other values—the time range. The latter was subsequently extended 

starting at 2017-09-01 in order to cautiously approach the target time range of 8.5 months. 

Eventually the payload is posted to the REST endpoint of the BP service. Another request is posted 

immediately afterwards to the START endpoint to kick off the processing of the request. Then the 

Jupyter notebook connects to the S3 bucket, where the data cube will lie, and uploads metadata 

such as the labels of the bands, the request ID of that specific request and a list of date interval mid-

points. 

The resulting file structure of the data cub can be seen in Table 8. As mentioned above, there is one 

COG per satellite band or vegetation index and each COG stores the time series for that band/index. 

This is in contrast to conventional GeoTIFF use; since GeoTIFFs have no concept of time they would 

usually store the satellite bands as their layers. 

COGs Band contents 

B02.tif 2017-09-01–2017-09-15 
2017-09-15–2017-09-30 
… 

B03.tif 2017-09-01–2017-09-15 
2017-09-15–2017-09-30 
… 

B04.tif 2017-09-01–2017-09-15 
2017-09-15–2017-09-30 
… 

… … 
Table 8: Structure of one Batch Processing tile in the S3 bucket. Source: own work 
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3.4.3 mapchete Hub 

3.4.3.1 Process script 

The process script for mapchete Hub is an ordinary Python script that is uploaded to the server by 

the mhub command line utility. A template was provided by EOX with the basic structure up to the 

point where the multi-dimensional array is available for further manipulation. The whole script is 

reproduced in Annex C.1. 

The processing script is applied to every tile in a process zone. The first condition in the mandatory 

execute function checks whether a part of the AOI was passed to the mapchete process for the cur-

rently processed tile. If no section of the AOI is present, the tile does not intersect the AOI. In this 

case an empty tile is returned, nothing is written to the output directory and the next tile will be 

worked off. 

Else a four-dimensional xarray DataArray is created that holds the satellite data along the requested 

input bands, time range and geographical coordinates of that tile. The dimensions of the DataArray 

are subsequently renamed according to their semantic meaning. Since in a DataArray all dimensions 

are equally matched, the multi-dimensional array is converted to a DataSet, promoting the bands 

dimension. This way the syntax of index calculations becomes more readable later. 

Before continuing with indexes the half-monthly time slices are calculated. The 

date_interval_endpoints function is used again to create start and end points that are then passed to 

a pandas IntervalIndex. The DataSet can use this index to group satellite observations by time and 

automatically calculate the average per half-month. Since xarray cannot store an IntervalIndex into a 

zarr, the midpoints of the intervals are retrieved and stored instead. In the end the indices are calcu-

lated, all data is typed to uint16 and the data cube is returned as a DataArray again because map-

chete_xarray cannot to date handle DataSets. 

3.4.3.2 .mapchete file 

The process configuration file (see Annex C.2) has multiple sections defining input, output, the tile 

pyramid, etc. First of all, the path to the process file is specified. The input section then contains the 

data that will be processed. One the one hand there is the MAB AOI, which is provided to the process 

as a GeoJSON file hosted in the S3 bucket of this thesis. On the other hand the satellite data to be 

downloaded is described. S2-L2A data with cloud masks is requested from AWS within a time range 

starting on September 1st, 2019 and ending one up to eight and a half months later. Some connec-

tion- and computing-related parameters can be tuned too, like the remote_timeout (timeout in sec-

onds for external services if they have connection issues). xarray is defined as the output format and 

the data cube is stored as zarrs at the specified S3 bucket path. COG would not be an option because 

the resulting four-dimensional data cube cannot be represented properly in one COG and multiple 

mapchete processes would be required to reproduce the file structure that Batch Processing uses. 

Finally, the custom tile pyramid is specified via its CRS (epsg), bounds and shape. zoom_levels and 

metatiling round off the characteristics of the resulting data cube. 

The command to send the .mapchete file to mapchete Hub using mhub is as follows: 

mhub -h demo-m.hub.eox.at execute /mnt/datacubes.mapchete -b 431970.0 

5396920.0 513890.0 5478840.0 --queue masterdatacube_queue 
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It is issued six times: Once for each process zone with its respective bounds. 

3.5 Hardware 
Sentinel Hub’s hardware is not disclosed to the public. Therefore only the hardware that mapchete 

Hub runs on can be discussed here. According to EOX (2020h, 2020g) “usually” the cluster consists of 

“machines with 64mem, 16cpu” of the m5a family. These would be m5a.4xlarge instances. The 

worker available to the master thesis experiments is limited to 8 CPUs and 32 GiB and the experi-

ments make use of the maximum CPU load allocated, which corresponds to an m5a.2xlarge instance. 

These feature AMD EPYC 7000 series processors with up to 2.5 GHz clock speed. (AWS, 2020d) 

 
Fig. 31: Screenshot of EOX-internal CPU and memory dashboard. Annotations: own work 

The experiments were conducted on August 13th and 14th, 2020 and the tracked CPU and memory 

loads are shown in Fig. 31. The hills in the upper diagram show the CPU load of the experiments with 

different time ranges. I interpret the valleys as the start of a new experiment because they only seem 

to occur for the upper two process zones with a very small amount of tiles to be processed (see Fig. 

30). The lower diagram shows spikes for the memory consumed during each job (one job per process 

zone). 
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4 Results 
This section documents the results of the experiments that were conducted during the course of the 

master’s thesis. Performance measurements of Euro Data Cube and mapchete Hub are elaborated on 

and compared to each other. Furthermore, a report on the required skills to employ both tools is 

presented. The spatial extent of the processed data is described in section 3.2 and the measuring 

methods are explained in detail in chapter 3.1. 

4.1 Resource usage of Euro Data Cube 
Table 9 gives an overview of the measurements taken from processing the 57 s2gm tiles that cover 

the MAB (Monitoring Algorithm Baseline) AOI. 

ntimeslices Execution Time 
Processing Costs 

(PU) 
Size (GiB) 

Storage Costs 
(USD/month) 

2 0:08:36a 23 917 7.15 0.175 

4 0:16:55 53 172 13.28 0.325 

6 0:26:12 82 917 18.62 0.456 

8 0:34:55 113 603 24.08 0.590 

10 0:43:51 147 445 29.59 0.725 

12 0:51:35 174 328 34.84 0.854 

17 2:03:29 247 670 50.40 1.235 
Table 9: Performance measurements of experiments with Sentinel Hub Batch Processing API (57 processed tiles). Grey 
values are inferred using linear regression. Storage costs derived from size. Prices taken from AWS website. (AWS, 
2020h) 
a
 Linear regression only takes into account values for 4–12 time slices 

As can be seen in Fig. 32, execution time rose linearly for four through twelve time slices, but experi-

enced a steep increase for 17 time slices (8 ½ months), which took over two hours to process (linear 

progression would be about 1:15 hours). 

 
Fig. 32: Chart showing execution time plotted against the number of time slices in the data cube. 

The same trend is not true for the processing costs (expressed in Processing Units). Fig. 33 demon-

strates that the calculated Processing Units increased proportionally to the number of time slices in 

the data cube. 8 ½ months cost almost 250,000 PUs.  
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Fig. 33: Chart showing processing costs plotted against the number of time slices in the data cube. 

Also the file size of the final data cube increased proportionally with the number of time slices. As 

Fig. 34 shows, a 17-time-slices data cube of the MAB AOI processed with Euro Data Cube occupies 

about 50 Gibibytes of storage space. On AWS S3 these would be USD 1.23 per month to store the 

data cube. 

 
Fig. 34: Chart showing the storage size of the processed data cubes in Gibibytes plotted against the number of time slices. 

As for the skill set required to generate a data cube on the Euro Data Cube, intermediate knowledge 

of JavaScript is a prerequisite in order to code the evalscript. Then, to send the evalscript to the EDC 

Batch Processing service, one must communicate with its REST API. This can either be done via a 

command line interface or via another script (ideally written in Python because Sentinel Hub’s docu-

mentation is tailored to it). The Euro Data Cube’s Jupyter Hub web interface can be used for these 

tasks, but they can also be completed on a local machine. Alternatively users can communicate with 

the API via a dedicated desktop GUI client such as Postman. 
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4.2 Resource usage of mapchete Hub 
Results for the experiments with Mapchete Hub can be found in Table 10. Altogether 693 tiles (zoom 

level 5 with metatiling) were processed within 6 processing zones (zoom level 0). 

ntimeslices Execution Time 
Processing Costs 

(USD) 
Size (GiB) 

Storage Costs 
(USD/month) 

2 00:13:05 0.19 7.21 0.177 

4 00:23:17 0.31 13.39 0.328 

6 00:30:28 0.50 18.78 0.460 

8 00:38:59 0.67 23.46 0.575 

10 00:49:08 0.81 29.43 0.721 

12 00:58:59 0.96 34.25 0.839 

17 01:24:02 1.34 48.37 1.185 

Table 10: Performance measurements of experiments with Mapchete Hub (2 756 tiles processed in 6 zones). Processing 
costs include costs for S3 requests and CPU time (m5a.2xlarge spot instances). Storage costs derived from size. Prices 
taken from AWS website. (AWS, 2020e, 2020h) 

As Fig. 35 shows, the execution time rises linearly from two time slices (13 minutes) to 17 time slices 

(1 hour 24 minutes). 

 
Fig. 35: Mapchete Hub: Chart showing execution time plotted against the number of time slices in the data cube. 

The same observation can be made for the processing costs (see Fig. 36), albeit with a little excep-

tion: There is a bend in the results for smaller time ranges. The reasons for this bend are the S3 re-

quests, as Fig. 37 shows more illustratively. There is a steep increase between four and eight time 

slices and the graph’s gradient only becomes similar to the CPU time graph from 10 time slices on-

wards. Processing costs range between USD 0.19 for two time slices (3,708 CPU seconds and 97,357 

S3 requests) and USD 1.34 for 17 time slices (24,133 / 902,624). 
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Fig. 36: Mapchete Hub: Chart showing processing costs plotted against the number of time slices in the data cube. 

 

 
Fig. 37: Mapchete Hub: Chart showing measured CPU time and S3 requests plotted against the number of time slices in 
the data cube. 

Storage size scales well and shows no anomalies. A two-time-slices data cube (7.21 GiB) costs 

USD 0.18 to store for a month in a S3 bucket, while AWS charges USD 1.19 for a 17-time-slices data 

cube (48.37 GiB). Details are depicted in Fig. 38. 
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Fig. 38: Mapchete Hub: Chart showing the storage size of the processed data cubes in Gibibytes plotted against the num-
ber of time slices. 

A mapchete Hub user mainly needs intermediate Python skills. Besides, for using the custom UTM grid, 

they must be able to define their own custom pyramid taking into account pixel sizes and zoom-levels.  

4.3 Comparison 
The measurements that are described in the previous sections enable a detailed comparison of map-

chete Hub and EDC Batch Processing. Execution time and storage size of the resulting data cube can 

be compared directly. EDC Batch Processing performed slightly faster (4–8 minutes) than mapchete 

Hub until twelve time slices (see Fig. 39). Scaling up seemingly posed a problem to Batch Processing 

as execution time increased dramatically in relation to the number of processed time slices resulting 

in Mapchete Hub being almost 40 minutes faster for 8 ½ months. The differences in storage sizes 

between the COG (Batch Processing) and zarr (mapchete Hub) data cubes are very small, only 

amounting to 2 GiB for the largest measured data cube. 

 
Fig. 39: Execution time (left) and storage size (right) comparison between Batch Processing and mapchete Hub 
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Storage costs can be deduced from the storage size and thus follow the same trend (USD 0.05 more 

per month for 17 time slices generated by Batch Processing). Processing costs cannot be compared 

easily as Batch Processing calculates with Sentinel Hub’s processing units. In contrast, usage of map-

chete Hub in the course of this thesis does not include any operational costs other than AWS cloud 

services fees. For example, while processing one month of satellite data costs USD 0.19 with map-

chete Hub, it would be at least USD 24 with Batch Processing (not taking into account fees for EOx-

Hub and assuming the most cost-effective subscription plan: 1,000,000 PUs for EUR 1,000). A sum-

mary of all results can be found in Table 11. 

Performance indicator EDC Batch Processing API mapchete Hub 

Execution time Faster for ≤ six months, bad 
scale-up 

Constant scale-up, better per-
formance for 8 ½ months 

Processing costs Depending on subscription plan 
much highera 

Only AWS cloud services costs, 
very low 

Storage size Slightly bigger from eight time 
slices on (COG) 

Slightly smaller from 8 time 
slices on (zarr) 

Storage costs " " 

Required skill set Intermediate JavaScript Intermediate Python 
Define custom pyramid 

Table 11: Summary of performance EDC – Batch Processing API vs. Mapchete Hub 
a
 Assuming the most cost-effective subscription plan: 1,000,000 PUs for EUR 1,000. Also see 2.6 and 4.4. 

4.4 Scenarios 
The outcome of the experiments serves as the basis for two scenarios: (1) Processing the monthly-

growing data cube throughout the crop season and storing it until the end of the season, and (2) 

processing satellite data for the whole of Austria. 

The first scenario includes generating a data cube for the 8 ½ months between September 1st and 

May 15th of the following year, growing the data cube monthly till November 30th. Estimating the 

cumulative wall clock time and processing costs at the end of the season is trivial: Throughout the 

season there are six additional process runs for full months (15/6, 15/7, 15/8, 15/9, 15/10, and 

15/11) and on 30/11 a run for half a month. We thus assume 6.5 full-month process runs, whose 

results have to be added to the 8.5-months values: 

Formula 2: Formula to estimate the cumulative wall clock time and processing costs to generate a data cube for the 
whole crop season, as well as the resulting total storage size 

                

Inserting into Formula 2 Batch Processing would take 2:59 and processing costs would amount to 

403,000 PUs. mapchete Hub would finish processing in 2:49 cumulative wall clock time and costs 

would amount to USD 2.56. 

Total occupied storage space is estimated in the same way using Formula 2; the data cube for the 

whole season will contain satellite data for 15 months. The Batch Processing data cube would have 

96.87 GiB in size at the end of the season, while the mapchete Hub data cube would occupy 95.25 

GiB of storage space.  
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Fig. 40: Illustrative diagram showing the development of data cube size over time and the respective processing dates of 
the scenarios. Source: own work 

Storage costs are more complicated to estimate as the storage cost bills add to each other every 

month. After the first month on June 15th only the costs for storing a 8.5-months data cube have to 

be paid; on July 15th the bill includes the initial 8.5-months data cube and two additional two half-

month time slices. This goes on every 15th of the month until end of November, resulting in five (and 

a half) bills with additional monthly data cube slices included (an illustrative diagram can be found in 

Fig. 40). In order to efficiently calculate the total costs by the end of the season we must employ 

series calculation: 

Formula 3:  Storage costs calculation of scenario one. 

                                

 

   

          

If we insert the values for Batch Processing into Formula 3, we get USD 11.18, while storing the map-

chete Hub data cube for the whole time costs USD 10.88. 

In order to estimate the outcome of scenario 2, we must first determine the number of tiles that 

would be processed if a data cube of Austria was generated. The EDC Batch Processing service makes 

it easy to find out that number. We simply create a request for the boundaries of Austria, but do not 

START it. Instead, the /tiles endpoint is queried for a JSON representation of all the tiles of the re-

quest. This JSON representation is transformed into a GeoJSON so that it can be displayed on a map 

and analysed (see Fig. 41). Batch Processing would in total process 266 tiles making it 4.67 times 

more than for the MAB AOI. 



61 
 

 
Fig. 41 All Batch Processing tiles of tile grid 0 in Austria. EPSG:31297 

Doing the same investigation for mapchete Hub tiles requires more manual work. The existing cus-

tom tile pyramid for UTM zone 33N is duplicated to UTM zone 32N and the process zones that over-

lap completely are removed using QGIS. Then the process tiles are generated and all that lie outside 

Austria’s boundaries discarded. In the end 32 process zones and 3,906 process tiles remain, of which 

138 tiles of UTM zone 32 overlap with 145 tiles of UTM zone 33 (see Fig. 42) amounting to an overlap 

of 3,404 km². Altogether 3,906 tiles are a factor of 5.64 in comparison to the MAB AOI. 

 
Fig. 42: All mapchete Hub process zones (red outline) and process tiles (pink) in Austria. EPSG:31297 
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The results of scenario 1 and 2 combined can be found in Table 12. The large number of tiles that 

overlap in the mapchete Hub estimate gives Batch Processing the advantage in the outcome of the 

benchmark. Batch Processing performs better in all categories except pricing, which arguably cannot 

be reliably compared.  

Performance indicator EDC Batch Processing API mapchete Hub 

Execution time 13:57 15:53 

Processing costs 1 881 000 PUs USD 14.4 

Storage size 452 GiB 537 GiB 

Storage costs USD 52.2 USD 61.3 
Table 12: Comparison between Batch Processing API (factor 4.67) and mapchete Hub (5.64) of the extrapolation of the 
experiment results to the whole season and the geographical extent of Austria 

Still an estimate for the processing costs of Batch Processing in Euro is attempted employing the pric-

ing schedule presented in chapter 2.6. Assuming pre-paid PUs, costs would amount to EUR 3,222 

(400,000 PUs à EUR 2.5/1,000 PUs, 1,481,000 à 1.5/1,000 PUs). If subscription plans are chosen and 

adapted monthly we must return to the individual experiment results from chapter 4.1 and multiply 

by the augmentation factors to convert from the MAB AOI to Austria’s extent. 1,156,619 PUs 

(247,670 PUs x 4.67) would result in a fee of EUR 1,235.5 (subscription for 1,000,000 PUs and remain-

ing PUs á 1.5/1,000 PUs) for the initial data cube calculation of 8 ½ months. Additionally, monthly 

time slices would be at 111,692 PUs (23,917 PUs x 4.67) each. Seven subscriptions for 70,000 PUs 

would have to be bought and, subtracting the half month, six of them would have to be topped-up 

by 41,692 PUs. In all, the subscription would sum up to about EUR 2,314. 
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5 Discussion 
In response to the main research question “Can the commercial cloud service EDC outperform the 

custom mHub application?” the results show that it partially can. In the experiment setup EDC has 

better performance in terms of wall clock time until finish of processing (except for long satellite 

imagery time series of more than half a year). Besides EDC users do not need the cartographical 

knowledge to define a custom tiling grid. However, storage space usage and resulting storage costs 

of the mHub data cube are lower in most cases. Processing costs cannot be compared directly, but 

taking into account EDC Sentinel Hub fees, mHub excels in this category. The picture is different for 

the extrapolation scenarios over the entire season and the whole of Austria. While processing costs 

of EDC Batch Processing still sky-rocket, it is about 14% faster than mHub and storage size/costs are 

ca. 19% lower. 

This large speed and data cube size advantage of Batch Processing for a bigger area can be traced to 

the efficient layout of the tiling grid that Sentinel Hub has in use and the avoidance of major over-

laps. This is not obvious if only one UTM zone is involved, but only becomes apparent because Aus-

tria lies in UTM zones 32 and 33. 

During the experiment within the MAB AOI, Batch Processing seemed to hit a performance bottle-

neck for long time series of satellite data (the behaviour could be observed for eight and a half 

months). This could be due to memory limits that prevented Batch Processing from loading the 

whole time series into memory resulting in excess read and write operations to external storage. 

Chapter 3.5 explains that mHub had 32 GiB of memory available, which were being taken advantage 

of increasingly from one experiment step to the next. Nonetheless, at the maximum time series 

length of eight and a half months only less than 25 GiB were being made use of. So there would have 

been more memory resources at mHub’s disposal for further scale-up. 

mapchete Hub’s execution time might also be influenced by the conversion of the cube from DataAr-

ray to DataSet and back. While Batch Processing’s evalscript is highly optimized, the processing script 

used for mapchete Hub converts the data for convenience. This improves the readability of the index 

calculations, but may have a negative impact on computing speed because of the extra conversions. 

On the other hand, xarray’s vectorized computations might indeed be very fast in comparison to 

looping through a set of samples in JavaScript. If nothing else, calculating the average of the satellite 

observation values using a pandas IntervalIndex is a lot less complicated than the custom evalscript 

functions. 

The storage size of the resulting data cubes in the experiments is possibly influenced by the chosen 

file format and the chunking that Batch Processing and mapchete Hub apply. The first option does 

not offer any configuration in this regard because the four-dimensional data cube cannot be repre-

sented by COGs and therefore the “chunking” is fixed (there is one “chunk” per raster band). map-

chete Hub also does not let the user specify chunking, but the zarr library uses some default values. 

The enormous discrepancy in processing costs can be explained by two reasons. On the one hand 

mHub’s underlying software mapchete is open-source and not a commercially-sold product, while 

Sentinel Hub is proprietary software. On the other hand Sentinel Hub’s Processing Units include a 

profit margin that is not factored in for mHub. 
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Putting the results in relation to the extrapolated findings of Wang et al. (2019) (see chapter 0), who 

processed 495 GB of satellite data in 66 hours, we can note that both Batch Processing and mapchete 

Hub process data about 4.5 times faster than Wang et al.’s (2019) experiment setup in the OpenStack 

cloud. Our extrapolation, of course, did not factor in any synergetic performance improvements and 

simply assumed linear scaling. Therefore our extrapolation is probably biased and the difference is 

not as exorbitant. Nonetheless, Wang et al.’s (2019) input data and our resulting data cubes can be 

placed in the same league with regard to storage size. 

In terms of a prospective business plan the most important factor to consider will be processing 

costs. In view of the whole crop season, mapchete Hub’s higher wall clock time result does not con-

stitute a relevant decision factor. Increased storage costs do play a small role, but can be mitigated 

by an optimization of the tiling grid. While mapchete Hub, in the context of this evaluation, needed a 

custom tiling pyramid, Batch Processing comes with fixed fees that easily outweigh the minor task of 

creating a tiling grid. Working time for developing the processing scripts incurs with both options and 

the surplus work of designing a tiling pyramid hardly counts in comparison to the high processing 

costs of Batch Processing. 

Limitations of this research include the experiment design without multiple tests of the same number 

of time slices, which negatively impacts reliability of the results. Through linear regression the results 

within the same test series were counterchecked to each other. This revealed the outlier in the Batch 

Processing results, which can either be a systematic bottleneck or a coincidental system failure. An-

other limitation is the fact that networking and caching costs have been disregarded when measuring 

mapchete Hub’s processing costs. Additionally, the differing data cube schemes theoretically in-

crease Batch Processing’s storage space and costs by 6 % (16 uint16 bands vs. 15 uint16 bands and 

one float32 band) compared to mapchete Hub’s, with the time range being another minor discrep-

ancy. Finally, the hardware setups could not be compared because Sentinel Hub does not disclose 

their cloud configuration. 

Despite these limitations our research contributes to the scarce records on performance of satellite 

data processing. Our methodology, including program code, is thoroughly disclosed and the results 

are presented in detail, leading to unprecedented insights into the performance of generating Earth 

observation data cubes. 
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6 Conclusions 
This master thesis aimed to measure the performance of the two data cube generation tools EDC 

Batch Processing and mapchete Hub. The results show that in a business context Batch Processing 

cannot outperform mapchete Hub due to almost 200 times higher (EUR 2,314 vs. USD 14.4) process-

ing costs for a 30-months data cube of half-monthly time slices covering Austria. 

An unexpected finding is the high impact of tiling grid optimization. While EDC Batch Processing’s 

pre-defined UTM-based tiling grid has almost no overlaps, the custom tile pyramid designed for 

mapchete Hub leads to duplicate processing of about 3,400 km² of satellite data. This in turn makes 

Batch Processing 14% faster than mapchete Hub and the resulting data cube 19% smaller. 

Given that Batch Processing and mapchete Hub use completely different tile sizes an interesting topic 

for further research would be to find the optimal tile size for cloud computing. Batch Processing’s 

performance bottleneck indicates that tile sizes (chunk sizes) cannot grow indefinitely. For the spe-

cific use case of processing long time series, optimal chunks will probably be limited in geographic 

extent. mapchete Hub’s relatively small tile size might have led to the application handling longer 

time series just as well as shorter time ranges. 

The same question of chunking applies to analysis performance: Some chunk sizes might yield faster 

analysis results than others. The data cubes that were generated during the experiments of this the-

sis are not optimized for analysis at all. Ideally all tiles scattered over many directories would be ab-

stracted to one single view on the data cube. Preliminary attempts showed that xarray, in principle, 

can provide such a unified view over multiple files, but this feature is not implemented for COGs or 

zarrs (only for netCDF). Thus additional investigation is needed on how to offer a unified view on a 

tiled data cube in COG or zarr format. 

Finally, this research only covers Sentinel-2 data, but CbM (Checks by monitoring) additionally re-

quires Sentinel-1 radar observations. There is no need for another performance comparison between 

data cube services, but applying the performance metrics explored here to Sentinel-1 would be an 

interesting follow-up work—even if only for finding out the specifics of processing radar data. 

Multiple iterations in the experiment design should be considered in future research, as reliability of 

the results of the present thesis is limited due to a lack of repetitions. Nevertheless this thesis con-

tributes valuable evidence on the performance of data cube generation, which before was a largely 

unexplored topic.  
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Annex A date_interval_endpoints 
Source: Own work 

def date_interval_endpoints(starttime, endtime, day_of_new_interval): 

    """ 

    Return a list of half-month endpoints. 

 

    Keyword arguments: 

    - starttime: datetime or date 

    - endtime: datetime or date 

    - day_of_new_interval: int 

 

    Returns: 

    - dates: list(datetime) 

    """ 

 

    from datetime import datetime 

    from dateutil.relativedelta import relativedelta as rdelta 

    from dateutil.rrule import rrule, MONTHLY 

    from pandas import to_datetime 

 

    starttime = datetime(*starttime.timetuple()[:3],0,0) 

    endtime = datetime(*endtime.timetuple()[:3],0,0) 

    d=day_of_new_interval 

 

    dates = list(rrule(MONTHLY, dtstart=starttime, until=endtime, bymonthday=[

1,d-1,d,-1])) 

 

    # add starttime/endtime if not included in dates 

    if not dates[0].day == 1 and not dates[0].day == d: 

        dates = [starttime] + dates 

 

    if (not dates[-1].day == to_datetime(dates[-1]).daysinmonth and  

        not dates[-1].day == d-1): 

        dates = dates + [endtime] 

 

    # set time of right endpoints to 23:59:59 

    for i in range(1,len(dates),2): 

        dates[i] = dates[i]+rdelta(hour=23, minute=59, second=59) 

     

    return dates 
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Annex B Batch Processing code 

B.1 Evalscript 
Source: Milcinski, 2020a; own work 

//VERSION=3 

//double curly brackets render as single curly brackets in python format strin

gs 

 

/* FUNCTIONS */ 

 

function setup() {{ 

  return {{ 

    input: [{{ 

      bands: {bands},  

      units: "DN" 

    }}], 

    output: {output_array}, 

    mosaicking: Mosaicking.ORBIT        

  }} 

}} 

 

function validate (sample) {{ 

  if (sample.dataMask!=1) return false; 

   

  var scl = sample.SCL//Math.round(sample.SCL); 

   

  if (scl === 3) {{ // SC_CLOUD_SHADOW 

    return false; 

  }} else if (scl === 9) {{ // SC_CLOUD_HIGH_PROBA 

    return false;  

  }} else if (scl === 8) {{ // SC_CLOUD_MEDIUM_PROBA 

    return false; 

  }} else if (scl === 7) {{ // SC_CLOUD_LOW_PROBA 

    //return false; 

  }} else if (scl === 10) {{ // SC_THIN_CIRRUS 

    return false; 

  }} else if (scl === 11) {{ // SC_SNOW_ICE 

    return false; 

  }} else if (scl === 1) {{ // SC_SATURATED_DEFECTIVE 

    return false; 

  }} else if (scl === 2) {{ // SC_DARK_FEATURE_SHADOW 

    //return false; 

  }} 

  return true; 

}} 

 

function calculateIndex(a,b) 

{{ 
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  if ((a+b)==0) return 0; 

  // stretch [-1,+1] to [0,1] 

  return ((a-b)/(a+b)+1)/2; 

}} 

 

function interpolatedValue(arr) 

{{ 

  //here we define the function on how to define the proper value -

 e.g. linear interpolation; we will use average  

  if (arr.length==0) return 0; 

  if (arr.length==1) return arr[0]; 

  var sum = 0; 

  for (j=0;j<arr.length;j++) 

  {{sum+=arr[j];}} 

  return Math.round(sum/arr.length); 

}} 

 

function fillResultArray(i, int_bands) 

{{ 

  for (var k=0; k<bands.length; k++) {{ 

    if(int_bands[bands[k]].length==0) results[bands[k]][i] = 0 

    else results[bands[k]][i] = interpolatedValue(int_bands[bands[k]]) 

  }} 

   

  for (var k=0; k<ixs.length; k++) {{ 

    if(ixs[k]!=="CVI") {{ 

        results[ixs[k]][i] = 65535*calculateIndex( 

            results[ic[ixs[k]][0]][i], 

            results[ic[ixs[k]][1]][i] 

        )  

    }} else {{ 

        // output sample type for CVI is FLOAT32 

        results[ixs[k]][i] = results["B08"][i]*results["B05"][i] / (results["B

03"][i]*results["B03"][i]) 

    }} 

  }} 

}} 

 

/* MAIN */ 

 

var ic = {{  // index components 

  "NDVI":  ["B08", "B04"], 

  "GNDVI": ["B08", "B03"], 

  "BNDVI": ["B08", "B02"], 

  "NDSI":  ["B11", "B12"], 

  "NDWI":  ["B03", "B08"] 

}} 
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var bands = Object.keys({int_bands}) 

var ixs = {indices} 

 

var results = {results_object} 

 

// We split each month into two halves. This will make it easier to append mon

ths to data cube later 

var day_of_new_interval = {day_of_new_interval} 

var endtime = new Date({enddate_unix}) // UNIX epoch in ms 

 

function evaluatePixel(samples, scenes) {{ 

   

  var is_in_last_half_of_month = endtime.getUTCDate() >= day_of_new_interval 

  var i = 0; // interval number 

  var int_bands_empty = {int_bands} 

  var int_bands = int_bands_empty 

   

  for (var j = 0; j < samples.length; j++) {{ 

     

    // if scene is outside of current half of month, fill result array and cha

nge half of month 

    // algorithm starts with most recent observation 

    if (( !is_in_last_half_of_month && scenes[j].date.getUTCDate() >= day_of_n

ew_interval) || 

    (  is_in_last_half_of_month && scenes[j].date.getUTCDate() <  day_of_new_i

nterval)) 

    {{ 

      fillResultArray(i, int_bands) 

       

      int_bands = int_bands_empty //reset values 

      is_in_last_half_of_month = !is_in_last_half_of_month; 

      i++; 

    }} 

     

    if (validate(samples[j])) 

    {{ 

      // push input samples into their respective arrays 

      for (var k=0; k<bands.length; k++) {{ 

        int_bands[bands[k]].push(samples[j][bands[k]]) 

      }} 

    }}   

  }} 

   

  //execute this for the last interval  

  fillResultArray(i, int_bands); 

   

  return results 

}} 
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B.2 EDC Batch Processing Jupyter Notebook 
# load credentials from environment variables 
%load_ext dotenv 
%dotenv 
 
# util 
import boto3 
 
# date & time 
from datetime import date, datetime 
from util import date_interval_endpoints as endpoints 
 
# Oauth 
from oauthlib.oauth2 import BackendApplicationClient 
from requests_oauthlib import OAuth2Session 

B.2.1 Get authorization token 

Source: Sentinel Hub, 2020a; own work 

# Your client credentials 
client_id = %env SH_CLIENT_ID 
client_secret = %env SH_CLIENT_SECRET 
 
# Create a session 
client = BackendApplicationClient(client_id=client_id) 
oauth = OAuth2Session(client=client) 
 
token = oauth.fetch_token(token_url='https://services.sentinel-
hub.com/oauth/token', 
                          client_id=client_id, client_secret=client_secret) 

B.2.2 Configure request (evalscript) 

Enter start and end date, input bands, indices. The resulting files will have two time intervals per 

month, being split at day_of_new_interval. 

startdate = date(2017,9,1) # Y,M,D 
enddate = date(2018,05,15)  # Y,M,D 
 
input_bands = [ 
    "B02", 
    "B03", 
    "B04", 
    "B05", 
    "B06", 
    "B07", 
    "B08", 
    "B8A", 
    "B11", 
    "B12" 
] 
 

indices = [ 
    "NDVI", 
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    "GNDVI", 
    "BNDVI", 
    "CVI", 
    "NDSI", 
    "NDWI" 
] 
 
bucket_name = "eox-masterdatacube" 
 
day_of_new_interval = 16 # leave this unchanged in most of the cases 

B.2.3 Calculate parameters 

eps = endpoints(startdate, enddate, day_of_new_interval) 
 
timestamps  = [int(d.timestamp()) for d in eps]   # timestamps for arithmetic 
avg_times = [(left+right)/2 for left,right in zip(timestamps[::2],timestamps[1
::2])] 
avg_times = [datetime.utcfromtimestamp(a) for a in avg_times] 
avg_times = [dt.isoformat() for dt in avg_times] 
 
masks = ["SCL", "dataMask"] # SCL ... Scene Classification Layer 
 
output_bands = input_bands + indices 
output_array =  [ { 'id': "\"" + ob + "\"", 'bands': len(avg_times), "sampleTy
pe": "SampleType.UINT16"} for ob in output_bands ] 
for oa in output_array: 
    if oa["id"] == '"CVI"': 
        oa["sampleType"] = "SampleType.FLOAT32" 
output_array = str(output_array).replace("'", '') 
 
int_bands = '{' + ','.join([f'{ib}: []' for ib in input_bands]) + '}' 
results_object = '{' + ','.join([f'{ob}: []' for ob in output_bands]) + '}' 
responses = [{"identifier": ob,"format": {"type": "image/tiff"}} for ob in out
put_bands] 

B.2.4 Evalscript & Payload 

Source: Sentinel Hub, 2020e; own work 

with open('evalscript.js', 'r') as file: 
    evalscript = file.read() 
     
evalscript = evalscript.format( 
    bands              =str(input_bands+masks), 
    output_array       =output_array, 
    results_object     =results_object, 
    day_of_new_interval=day_of_new_interval, 
    enddate_unix       =datetime(*enddate.timetuple()[:3],23,59,59).timestamp(
)*1000, 
    int_bands          =int_bands, 
    indices            =indices 
) 
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mab_geometry = { "type": "Polygon", "coordinates":  
    [ 
        [ 
            [ 14.249086675661697, 48.549686576488739, 0.0 ], 
            [ 14.804694846753847, 48.546347802635076, 0.0 ], 
            [ 14.804740209647099, 48.662420784507489, 0.0 ], 
            [ 14.802209327231056, 48.752811114695149, 0.0 ], 
            [ 16.224291241591107, 48.74506103134155, 0.0 ], 
            [ 16.19780424032631, 47.621347235969026, 0.0 ], 
            [ 14.263435524016538, 47.627863161515464, 0.0 ], 
            [ 14.249086675661697, 48.549686576488739, 0.0 ] 
        ] 
    ] 
} 
 
payload = { 
  "processRequest": { 
    "input": { 
      "bounds": { 
        "properties": { 
          "crs": "http://www.opengis.net/def/crs/OGC/1.3/CRS84" 
        }, 
        "geometry": mab_geometry 
      }, 
      "data": [ 
        { 
          "type": "S2L2A", 
          "dataFilter": { 
            "timeRange": { 
              "from": eps[0].isoformat() + 'Z', # starttime 
              "to": eps[-1].isoformat() + 'Z'   # endtime 
            }, 
            "mosaickingOrder": "mostRecent", 
            "maxCloudCoverage": 100, 
            "previewMode": "DETAIL" 
          } 
        } 
      ] 
    }, 
    "output": { 
      "responses": responses 
    }, 
    "evalscript": evalscript 
  }, 
  "tilingGridId": 0, 
  "bucketName": bucket_name, 
  "resolution": 10.0, 
  "description": "Test MAB" 
} 
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B.2.5 Send request 

Source: Sentinel Hub, 2020e; own work 

url = 'https://services.sentinel-hub.com/batch/v1/process/' 
 
response = oauth.request("POST", url, json = payload).json() 
request_id = response["id"] 
print(f"Status of request {request_id}: {response['status']}") 
 
oauth.request("POST", f'{url}{request_id}/start') 
print('Processing started.') 
 
s3 = boto3.resource('s3') 
bk = s3.Bucket(bucket_name) 
 
bk.put_object(Key=request_id + '/userdata.json', Body=json.dumps({ 
    'bands': output_bands, 
    'request_id': request_id, 
    'time': avg_times 
})) 
print('Metadata saved to bucket') 
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Annex C mapchete Hub code 

C.1 datacube.py 
Source: Ungar, 2020b; own work 

from datetime import datetime 

import numpy as np 

from shapely.geometry import shape 

from pandas import IntervalIndex 

import xarray as xr 

 

from mapchete_satellite.exceptions import EmptyStackException 

from mapchete_satellite.settings import SENTINEL2_BAND_INDEXES 

 

def execute( 

    mp, 

    bands=[2, 3, 4, 5, 6, 7, 8, 9, 11, 12], 

    resampling="cubic_spline", 

    read_threads=1 

): 

    """ 

    Extract satellite data slices to 4D xarray. 

 

    Inputs 

    ------ 

    satellite_cube 

        S2AWS or S2Mundi input 

 

    Parameters 

    ---------- 

    bands : int or list of int 

        Indexes of bands considered. 

    resampling : str (default: 'nearest') 

        Resampling used when reading data. 

    read_threads : 1 

        Number of parallel read threads. 

 

    Output 

    ------ 

    xarray.DataArray 

    """ 

    if "aoi" in mp.params["input"]: 

        with mp.open("aoi") as aoi: 
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            if not len(aoi.read()): 

                return "empty" 

 

    with mp.open("satellite_cube") as sat: 

        try: 

            # create 4D xr.DataArray with named slice_ids and named bands 

            in_cube = sat.read_cube( 

                indexes=bands, 

                resampling=resampling, 

                mask_clouds=True, 

                threads=read_threads 

            ) 

            band_names = [SENTINEL2_BAND_INDEXES[sat.processing_level][i] for 

i in bands] 

 

            cube = xr.DataArray( 

                # apply masks and swap "bands" and "timestamp" axes 

                in_cube.data.transpose(1, 0, 2, 3), 

                # named dimension indexes 

                coords={ 

                    "bands": [b.split('_')[0] for b in band_names], 

                    "timestamps": list(in_cube.timestamps), 

                }, 

                # named dimensions 

                dims=("bands", "timestamps", "x", "y"), 

            ) 

 

            # temporarily convert to xarray.DataSet 

            cube = cube.to_dataset("bands") 

 

            # new interval starts at day 16 of month 

            eps = date_interval_endpoints(*sat._time_range, 16) 

            int_idx = IntervalIndex.from_arrays(eps[::2], eps[1::2]) 

            avg_cube = cube.groupby_bins('timestamps', bins=int_idx).mean('tim

estamps') 

            avg_cube = avg_cube.rename({'timestamps_bins': 'time'}) # xcube Da

taset spec 

            avg_cube.coords['time'] = int_idx.mid # zarr cannot have IntervalI

ndex as coords 

 

            for idx, (ic1, ic2) in ics.items(): 

                if ic1 in avg_cube and ic2 in avg_cube: 
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                    # 2**16 

                    avg_cube[idx] = calculate_index(avg_cube[ic1], avg_cube[ic

2]) * 65335 

 

            # CVI calculation 

            if "B03" in avg_cube and "B05" in avg_cube and "B08" in avg_cube: 

                avg_cube['CVI'] = (avg_cube.B08 * avg_cube.B05 / avg_cube.B03*

*2) * 1000 

 

            # Typing conforming to SH Mass output 

            avg_cube = avg_cube.astype(np.uint16) 

 

            # convert to xarray.DataArray again for writing 

            return avg_cube.to_array("bands") 

 

        except EmptyStackException: 

            return "empty" 

 

def date_interval_endpoints(starttime, endtime, day_of_new_interval): 

... 

 

def calculate_index(a, b): 

    """Calculate one of the ices indexes.""" 

    # stretch [-1,+1] to [0,1] 

    return ((a - b) / (a + b) + 1) / 2 

 

# index components 

ics = { 

    "NDVI": ["B08", "B04"], 

    "GNDVI": ["B08", "B03"], 

    "BNDVI": ["B08", "B02"], 

    "NDSI": ["B11", "B12"], 

    "NDWI": ["B03", "B08"] 

} 
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C.2 datacubes.mapchete 
Source: Ungar, 2020a; own work 

process: datacube.py 

input: 

  aoi: s3://eox-masterdatacube/mapchete_cubes/mab.geojson 

  satellite_cube: 

    format: S2AWS 

    level: L2A 

    with_cloudmasks: true 

    start_time: 2019-09-01 

    end_time: 2020-05-15 

    max_products: 3700 

    remote_timeout: 60 

    cache: 

      path: /mnt/data/cache 

      intersection_percent: 0.5 

      bands: [2, 3, 4, 5, 6, 7, 8, 9, 11, 12] 

output: 

  format: xarray 

  path: s3://eox-masterdatacube/mapchete_cubes/mdc_17_01/ 

  dtype: uint16 

  storage: zarr 

pyramid: 

  grid: 

    shape: [115, 9] 

    bounds: [186210.0, -9800.0, 923490.0, 9411000.0] 

    is_global: False 

    epsg: 32633 

  metatiling: 2 

zoom_levels: 5 

 
 


