

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

 “Automatic Rule Extraction from Vulnerability Databases
for Threat Analysis”

verfasst von / submitted by

Sebastian Chlup, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2020 / Vienna 2020

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 066 921

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

 Masterstudium Informatik

Betreut von / Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. Dr. Gerald Quirchmayr

Automatic Rule Extraction from Vulnerability

Databases for Threat Analysis

Sebastian Chlup
sebastian.chlup@ait.ac.at

Universität Wien - Faculty of Computer Science
Währinger Str. 29, 1090 Wien, Austria

Abstract. The aim of this master thesis is to leverage the capabilities
of threat modelling and the threat analysis based on it by enabling a
threat model to access up-to-date threat and vulnerability information.
This information can come from arbitrary sources in structured or un-
structured form. Therefore, this work will discuss an information extrac-
tion process and explore a custom model utilized for the representation
of the resulting data. The repositories serving as information sources are
the National Vulnerability Database and Packetstorm. While the focus
in Packetstorm will be put on the extraction of relevant information, the
NVD is more sophisticated and contains supplementary attributes that
can improve risk treatment. Consequently, suitable mappings of these
additional facets will be considered. This thesis shows a way for extend-
ing an existing rule-based threat model by automating the process of
creating rules from real-world vulnerability data and discusses the devel-
opment of a prototype.

Abstract. Ziel dieser Masterarbeit ist es, einem existierenden Bedro-
hungsmodell Zugriff auf neue Bedrohungs- und Verwundbarkeitsinforma-
tionen zu ermöglichen und dadurch das Potenzial der Bedrohungsmod-
ellierung und der darauf aufbauenden Bedrohungsanalyse zu steigern.
Diese Informationen können aus verschiedenen Quellen stammen und
sowohl in strukturierter, als auch unstrukturierter Form vorliegen. Da-
her wird im Rahmen dieser Arbeit ein Informationsextraktionsprozess
eingeführt und ein speziell darauf ausgelegtes Datenmodell diskutiert.
Als Informationsquellen dienen sowohl die National Vulnerability Data-
base, als auch Packetstorm. Während der Fokus bezüglich Packetstorm
auf die Extraktion relevanter Daten aus unstrukturiertem Text gelegt
wird, stellt die NVD einen großteil ihrer Daten strukturiert zur Verfügung.
Sie beinhaltet zusätzliche Metriken, welche einen wichtigen Beitrag zum
Prozess des Risikomanagements leisten. Folglich wird auch auf mögliche
Mappings dieser zusätzlichen Attribute eingegangen. Diese Masterarbeit
wird ein existierendes, regelbasiertes Bedrohungsmodell mit Hilfe eines
automatisierten Regelerstellungsprozesses um reale Schwachstellendaten
erweitern. Des Weiteren wird die Entwicklung eines Prototypen erörtert
der die genannten Punkte umsetzt.

Keywords: Threat Modelling · Rule Extraction · Vulnerability · Secu-
rity · Threat Intelligence · Threat Analysis · Named Entity Recognition

Acknowledgement

First of all, I would like to express my honest appreciation and gratitude to
my supervisor Univ.-Prof. Dipl.-Ing. Dr. Dr. Gerald Quirchmayr of the Faculty
of Computer Science at the University of Vienna who provided most valuable
advice, helpful expertise and patient support during the entire period of writing
this master thesis. Regular advisory meetings gave me the feeling to be in good,
guiding hands. It is particularly worth mentioning that Univ.-Prof. Dipl.-Ing.
Dr. Dr. Gerald Quirchmayr was available even via telephone at any time and
always had an open ear for urgent questions.

I am also grateful to the Austrian Institute of Technology for numerous in-
ternal discussions imparting the idea of in-depth investigation in the field of
threat modelling and threat intelligence. In fact, AIT’s input rekindled my long-
standing interest in the topic and led to pursuing and extensive research project
whose results have been laid down in the present thesis. Therefore, my grat-
itude extends to Korbinian Christl BSc. for intensive subject-related debates,
to Dipl.-Ing. Dr. Mateis Cristinel for supplying inspiring elementary sources to
get started, and to Christoph Schmittner MSc. for his tremendous support and
highly appreciated reviews.

Special thanks go to my father Mag. Peter Chlup for investing countless hours
into proof-reading my thesis and identifying typing errors with an eagle-eye and
correcting linguistic ambiguities.

Table of Contents

1 Introduction . 1
1.1 Goals . 2
1.2 Envisaged Solution . 2
1.3 Structure of the Thesis . 3

2 Related Work . 4
2.1 Threat Intelligence . 4

2.1.1 Relevance of Threat Intelligence . 5
2.1.2 Types of Threat Intelligence . 6
2.1.3 Challenges of Threat Intelligence . 7
2.1.4 Sources of Threat Intelligence . 8
2.1.5 Reasons for Sharing . 8
2.1.6 Reasons for Not Sharing . 9

2.2 Threat Information Exchange . 9
2.2.1 Formats . 10
2.2.2 Platforms for Threat Exchange . 11

2.3 Information Extraction . 12
2.4 Starting Points for the Master Thesis Identified in Literature

Research . 14
3 Basic Technological Framework . 16

3.1 Threat Modelling . 16
3.2 Threat Modelling Process . 17

3.2.1 System Model . 18
3.2.2 Threat Model . 19
3.2.3 Threat Analysis . 20

3.3 Risk Management . 22
3.3.1 Risk Assessment . 23
3.3.2 Risk Treatment . 24
3.3.3 ISO/SAE DIS 21434 Based Risk Matrix 26

3.4 Rule-Based Approach . 27
3.4.1 STRIDE . 27
3.4.2 Examples of Rules . 28

3.5 Improving Threat Modelling at AIT . 30
3.5.1 Real-World Vulnerability Information 30
3.5.2 Adding more Level of Detail . 31

3.6 Enabling Technologies . 32
3.6.1 Vulnerability Databases . 33
3.6.2 CPE - Common Platform Enumeration 34
3.6.3 CVE - Common Vulnerabilities and Exposures 36
3.6.4 CWE - Common Weakness Enumeration 37
3.6.5 CVSS - Common Vulnerabilities Scoring System 39
3.6.6 NER - Named Entity Recognition . 43

i

4 Model and Method . 47

4.1 Enhancements to Threat Modelling Persued at AIT 47

4.2 High-Level Description of the Applied Approach 49

4.3 Representing Vulnerabilities . 50

4.3.1 Deriving the Requirements for a Vulnerability Model 50

4.3.2 A Model for Automated Rule Generation from
Structured and Unstructured Data Sources 53

4.3.3 Enabling Extendability With the Adapter Pattern 64

4.3.4 Converting CVSS to Risk Matrix . 67

4.3.5 CVSS Based CIA to STRIDE . 72

4.3.6 An Automated Rule Creation Process 73

4.4 Methodological Approach . 76

4.4.1 Identifying Requirements for Rule Creation 76

4.4.2 Analyzing Platform Offerings . 77

4.4.3 Connecting to Platforms . 78

4.4.4 Common Format . 79

4.4.5 Data Extraction . 80

4.4.6 A Rule Structure Supporting Component-Based Threat
Modelling . 81

5 Prototype Implementation . 83

5.1 Architecture . 83

5.1.1 Connecting to NVD and Packetstorm 85

5.1.1.1 Connecting to NVD . 85

5.1.1.2 Connecting to Packetstorm 88

5.1.2 Training of the Named Entity Extractors 90

5.1.3 Integrating the Named Entity Extractors 93

5.1.4 Generating Rule Text . 94

5.1.5 Validating the Information . 96

5.1.5.1 Describing the GUI for a Packetstorm Entry . . . 97

5.1.5.2 Describing the GUI for an NVD Entry 99

5.2 Results . 104

5.2.1 Examples for Generated Rules . 104

5.2.2 Measurement Results . 107

5.2.2.1 Results of the Packetstorm Named Entity
Extractor . 108

5.2.2.2 Results of the NVD Named Entity Extractor . . . 109

5.2.2.3 Results of a Combined Named Entity Extractor 111

5.2.2.4 Applying the Combined Named Entity
Extractor to Packetstorm and NVD Test Sets . . 112

6 Lessons learned . 115

6.1 Describing the Architecture at an Early Stage Reveals Errors . . . 115

6.2 Exploitability is Preferable over Likelihood 115

6.3 STRIDE is NOT for Classification . 115

6.4 A Better System Model Yields Better Results 115

ii

6.5 Representing Products and Versions as Rules Produces a
Large Overhead . 116

6.6 Pre- and Postcondition Add Value . 116
6.7 NER Requires Less Training if the Structure is Homogeneous . . . 116
6.8 Automation Simplifies Rule Creation . 117
6.9 There is a Vast Amount of Online Resources 117
6.10 Outlook . 117

7 Conclusion . 118
References . 121
8 Annex A: Definition of Terms . 130
9 Annex B: Abbreviations . 132
10 Annex C: Implementation . 133

10.1 Installation Guide . 133
10.2 User Guide . 135

10.2.1Selecting the Resource for Rule Extraction 135
10.2.2Adding, Removing or Modifying Affected Products 135
10.2.3Adding, Removing or Modifying References 135
10.2.4Modifying Vulnerabilities, Precondition and Postcondition 136
10.2.5Assigning Values Relevant for Risk Management 136
10.2.6 (Re-)Generate Rule Text . 136
10.2.7Storing the Vulnerability in the Database 136

iii

List of Figures

1 An illustration of the threat modelling process based on (Schmittner
et al., 2019) . 17

2 An example of a simple illustrative system model 19
3 Example of vulnerable components within the simple illustrative

system model . 20
4 Threat catalogue derived from an analysis of the system model 21
5 Threat catalogue countermeasures applied . 22
6 Risk treatment with regard to exploitability and impact based on

(theresilience, 2018), (ENISA, 2020b) . 25
7 Building an NER System based on (Jurafsky & Martin, 2000, p. 762) . 45
8 General Overview of Threat Modelling at AIT . 48
9 Illustration of the applied approach . 49
10 The Model for Vulnerabilities, Represented as Classes 53
11 BaseObject Class . 54
12 BaseObjectWithDescription Class . 55
13 Vulnerability Class . 56
14 Weakness Class . 57
15 Affected Product Class . 57
16 Product Class . 58
17 CPE Class . 59
18 Reference Class . 60
19 CVSS Class . 61
20 Risk Matrix Value Class . 62
21 Precondition Class . 63
22 Postcondition Class . 63
23 Example of systems with different interfaces (Freeman, Robson,

Bates, & Sierra, 2014) . 64
24 Example of systems with different interfaces communicating through

an adapter (Freeman et al., 2014) . 65
25 Example of a system utilizing multiple adapters based on Freeman

et al. 65
26 Illustration of the Adapter Pattern for Connecting to Vulnerability

Databases based on (Freeman et al., 2014) . 66
27 CIA to STRIDE mapping (Hamad, 2020) . 72
28 Entity Extraction . 75
29 System architecture overview of the prototype . 83
30 HTML text of a Packetstorm webpage . 89
31 Annotated example from Packetstorm . 91
32 Annotated example from Packetstorm with multiple versions 91
33 Annotated example from NVD including precondition 92
34 Annotated example from NVD with different formulation 92
35 Complete GUI . 96
36 Description field of the GUI . 97
37 Affected products table of the GUI . 98

iv

38 Vulnerabilities field of the GUI . 98
39 Rule text field of the GUI . 99
40 GUI in case of CVE-2020-24614 . 100
41 Description of a CVE/NVD entry in the GUI . 100
42 Affected products of the GUI with ranges . 101
43 References table of the GUI . 101
44 Example of a CWE derived from an NVD entry 101
45 Example for an extracted precondition of an NVD entry 102
46 Example of an extracted postcondition of an NVD entry 102
47 Examples for CVSS, Exploitability and Impact Scores 103
48 An example of a generated rule . 103
49 An illustrative system model with specified products and versions 104

v

List of Tables

1 A symmetric risk matrix according to ISO/SAE DIS 21434 (ISO/TC
22/SC 32, 2020) . 26

2 Usable information from an NVD entry . 31
3 A list of vulnerability databases . 34
4 CVE Example based on CVE-2020-9586 . 37
5 CVSS base score metric values taken from (FIRST, 2020b) 41
6 Severity Rating (FIRST, 2020b) . 43
7 Named entity classes and examples (Jurafsky & Martin, 2000, p. 762) 44
8 NVD Entry based on CVE-2020-9586 . 52
9 Severity Rating (FIRST, 2020b) . 67
10 Severity Score to Risk Matrix Severity Rating . 68
11 Exploitability Score to Risk Matrix Exploitability Mapping. 68
12 Impact Score to Risk Matrix Impact Mapping . 69
13 CVSS based Risk Matrix . 70
14 CVSS Risk Matrix mapped to values from 1 to 5 71
15 Example of a vulnerability about cross site scripting in angular.js

taken from CVE-2020-7676 . 105
16 Example of a vulnerability about memory disclosure in PostgreSQL

taken from CVE-2019-10209 . 106
17 Example of a vulnerability about deserialization of untrusted data

in Wildfly taken from CVE-2020-10740 . 107
18 Measurements for the Packetstorm classifier with 238 entries 108
19 Measurements for the NVD classifier with 244 entries 110
20 Measurements for the combined classifier with 482 entries 111
21 Measurements for the combined classifier on the Packetstorm test set . 112
22 Measurements for the combined classifier on the NVD test set 113

vi

1 Introduction

Current approaches of applying safety and security analysis already at design
time have shown their effectiveness over the years. However, safety and security
experts can hardly keep up with the amount of emerging threats that new com-
ponents pose to the system under development (Ponemon, 2016). Hence, staying
up to date with threats and possible countermeasures is becoming a vital part
of the whole system lifecycle (Ma & Schmittner, 2016). For this reason, vari-
ous cyber threat intelligence platforms have been developed. They range from
simple blacklists of IP addresses (Li et al., 2019), over vulnerability databases, to-
wards multi-step attack records (Jaeger, Ussath, Cheng, & Meinel, 2015). These
databases contain up-to-date information on threats and vulnerabilities posed
to the system.

We live in a highly interconnected society where human computer interaction
plays an important role. Intrusion may yield safety, financial, operational and
performance impact. Our systems are getting steadily more complex and, conse-
quently, harder to maintain. The more technical components they contain, the
bigger the attack surface (Schmittner et al., 2019; Strobl et al., 2018). As a re-
sult, our devices require a high amount of agile security. The static approach of
security measures and analysis during design time is outdated and cannot cope
with the ever evolving new generation of threats as they are becoming more
manifold and complex.

The ongoing digitalization has its effect on arbitrary sectors. A prominent ex-
ample is the automotive sector where ”hackers seek to access electronic systems
and data, threatening vehicle safety and consumer privacy” (UNECE, 2020).
Thus, there is a new UN regulation stipulating cyber-security for all new vehicle
types which will become mandatory in 2022.

In order to cope with the fact that technological systems are becoming increas-
ingly more complex and new threats pop up every day, threat modelling has been
developed. It enables the identification of security risks within a system model,
more specifically a data flow diagram representing the system under consider-
ation. This system model is checked against an abstract model which contains
potential threats for various components and their configurations. The result is
a catalogue containing threats and vulnerabilities that facilitate risk treatment.
(Schmittner et al., 2019)

Threat modelling can be used with a digital twin of the actual system. The
current approach for threat analysis is to adapt the abstract threat model by
hand which takes a huge amount of time and effort before an analysis can be
conducted. In addition, threat modelling is mainly utilized during the concept
phase and is hard to adapt to new threats. Consequently, there are numerous
improvements to be made.

In contrast to a digital twin of a system, which is highly agile and can be
changed dynamically, the threat model which is a digital twin of potential threats

1

and vulnerabilities is relatively static (Shostack, 2014). The proposed approach is
automating this part by connecting to existing threat intelligence, more precisely
vulnerability databases that can be found on the web and extract information
to extend the abstract threat model. This way, new vulnerabilities can be inte-
grated into the digital twin, both during development and maintenance phase.
Whenever a system component changes or new threats are reported, new vul-
nerability information can be detected by rerunning the analysis. This not only
enables safety and security experts to monitor the system during the whole sys-
tem lifecycle, but also gives them a chance to review the system architecture
with regard to the detected vulnerabilities.

On the one hand, this kind of automation boosts the effectiveness of threat
analysis. On the other hand, the approach makes it easier to stay up-to-date
with threats (Syed, Padia, Finin, Mathews, & Joshi, 2016). Finally, automatic
information extraction will play an important role in reducing the number of
cyber-security vulnerabilities when developing and maintaining a system.

1.1 Goals

The main objective of this master thesis is the reduction of cyber-security vulner-
abilities within systems. It shall be possible to not only apply security measures
during the design phase but during all phases of the product lifecycle. Threat
modelling shall become capable of taking into account real-world vulnerabilities
on top of common generic threats. This shall be done by integrating data from
arbitrary sources in order to achieve greater coverage of known vulnerabilities
with the ultimate goal of making systems more resilient. Thus, this thesis will
add value to an existing threat model by including up-to-date information on
vulnerabilities which will be considered during each phase of the product lifecy-
cle.

1.2 Envisaged Solution

Based on the previously specified goals, this master thesis will provide an ap-
proach on how to automate the enhancement of existing threat models. It will
integrate information from arbitrary sources such as NVD and Packetstorm.
While some data is provided in a structured format, some information can only
be obtained as plain text. This is why the approach proposed here will rely
on extracting structured data as well as a Stanford Named Entity Recognizer
trained on NVD and Packetstorm entries. This leverages the capabilities of threat
modelling by including real-world information on vulnerabilities. Moreover, this
master thesis will discuss a model for representing information about technolog-
ical products and their associated vulnerabilities. Furthermore, it will show a
possible mapping from CVSS to an ISO/SAE DIS 21434 based risk matrix and
propose a possible solution to automatically create content for threat models.

2

1.3 Structure of the Thesis

The following section, 2, will concentrate on the scientific research work related
to this thesis which served as inspiration. In addition, the topic of threat intelli-
gence, as well as its challenges and reasons for (not) sharing information will be
discussed. Furthermore, different exchange formats and platforms have been an-
alyzed. As information needs to be extracted from plain text, various approaches
regarding information extraction will be elaborated on.

Section 3 focuses on the topic of threat modelling and elaborates on the technol-
ogy that AIT’s threat modelling approach already builds upon. Moreover, this
section discusses joint approaches for gathering vulnerability information, and
illuminates enabling technologies.

This is followed by a discussion on a model created in order to represent prod-
ucts with their respective vulnerabilities and methods to convert existing metrics
into a fitting representation. These facts and findings will be covered in section 4.

Afterwards, in section 5 the implementation of the prototype will be explained
including how a connection to existing vulnerability databases is established,
how the data is extracted and the way in which a named entity recognizer has
been trained. This section will be concluded with an evaluation of the results.

Section 6 will elaborate on the experience gained during the writing and the
implementation processes. Finally, section 7 will provide a recapitulation of the
discussed topics in a conclusion.

3

2 Related Work

As the topic of this master thesis is the automatic extraction of information from
vulnerability databases, literature research was mostly conducted in three main
areas. First of all, the topic of threat intelligence including the different types of
threat intelligence were of major interest as they form a level above vulnerability
databases and vulnerability intelligence. Definitions of threat intelligence, rea-
sons for sharing threat/vulnerability information and resulting challenges were
included in the research.

The second main area included research on existing threat information exchange
formats and platforms that integrate them. It is about differences of threat ex-
change formats and the kind of information they provide. This master thesis
focuses on information that is valid for longer time periods. Consequently, more
emphasis was put on platforms that provide threats and vulnerabilities which
pose long time threats, in contrast to fluctuating threat information such as IP
blacklists and file hashes. Moreover, the way in which threat information is pre-
sented was an important aspect when deciding on which formats and as a result,
exchange platforms to focus on. While some formats rely on structured informa-
tion, which can be integrated automatically, other formats include unstructured
data, which requires further analysis and cannot be utilized directly.

The aspect of unstructured data leads to the third and last main research area:
information extraction from unstructured text. More precisely, the topic of Natu-
ral Language Processing (NLP) (Jurafsky & Martin, 2000; Bird, Klein, & Loper,
2009) was included in the research. With these main areas covered, also papers
yielding combinations of the prior were consulted.

The following sections will elaborate on these research areas in more detail.

2.1 Threat Intelligence

According to Tounsi and Rais, cyber threat intelligence is evidence-based knowl-
edge about threats which can contribute to decision-making with the ”ultimate
goal of preventing attacks or at least shortening the window between compromise
and detection” (Tounsi & Rais, 2017, p. 214). Chismon and Ruks define threat
intelligence as follows: ”Information about threats that could inform decisions
is arguably threat intelligence” (Chismon & Ruks, 2015, p. 6). Li et al. describe
threat intelligence as ”contemporary threat data sources” (Li et al., 2019, p. 851).
The Kaspersky company gives a stricter definition of threat intelligence. They
draw a line between threat data and threat intelligence. In contrast to threat
data which may just be a simple list of possible threats they consider it threat
intelligence when ”IT specialists or sophisticated tools read threats and analyze
them.” (Kaspersky, 2020) This analysis includes historical knowledge and pos-
sible countermeasures for a specific problem.

4

This master thesis defines the term of threat intelligence similar to Chismon
and Ruks. More specifically in this thesis, any information that could improve
system security in terms of common vulnerabilities, threat data or possible coun-
termeasures is considered threat intelligence.

According to ENISA threat intelligence is critical for security in organizations
and originates from incident response (ENISA, 2017). It should be integrated
into an organization’s workflow.

A yearly study of the Ponemon Institute (Ponemon, 2019) mentions that 74%
of 1,098 IT security practitioners include threat intelligence in their organiza-
tions cyber-security practices. The usage of threat intelligence not only supports
decision making and improves the resilience of a system, it also illuminates the
risk landscape (Chismon & Ruks, 2015) for safety and security experts. Threat
intelligence can be derived from various sources: from technical sources such as
vulnerability scanning and analysis on the one hand, from organizational or hu-
man sources on the other. (ISO/TC 22/SC 32, 2020).

Threat intelligence is evolving rapidly. The number of newly detected threats
rises drastically every year. Particularly, in large organizations the interest for
threat information is on the increase (ENISA, 2018). Cyber attacks require new
kinds of security defences. Attackers tend to exploit knowledge about known vul-
nerabilities or possibly even configuration errors in hardware or software while
innovating new means of attacks. On the other side, the defenders improve their
defensive measures and thus their resistance to certain attacks. This is done
by utilizing information about possible threats in order to keep their security
practices up to date and forge defensive strategies. (Tounsi & Rais, 2017)

2.1.1 Relevance of Threat Intelligence

Systems are constructed of diverse components with all sorts of communication
channels. But more means of communication also result in a bigger attack sur-
face (Schmittner et al., 2019; Strobl et al., 2018). To counter this, gathering of
threat information is required to ensure security.

Although many organizations collect threat intelligence, the amount they can
gather on their own is limited. Up-to-date information about threats is required
to prevent attacks or at least detect them promptly in order to achieve timely
disaster recovery (Li et al., 2019). New threats appear on a daily basis and it
is almost impossible to process and utilize this information alone (Wagner, Du-
launoy, Wagener, & Iklody, 2016). Malware can bypass firewalls and anti-virus
systems as these rely on signature based pattern matching. Simply changing one
bit in the malware can lead to a different signature and possibly pose a new
threat. Another important aspect are zero-day vulnerabilities which are hard
to spot and often not found until months or even years pass (Tounsi & Rais,
2017). Moreover, threat actors are getting more organized. Consequently, cyber-
security experts try to lower the security risks for their organization (Wang &

5

Chow, 2019). By utilizing the newest data on threats and vulnerabilities, and
feeding them into the security applications they can speed up their response.

Sharing is a trend in the IT community. Some companies such as IBM, Crowd-
strike, Kaspersky and CISCO provide threat intelligence commercially (Li et
al., 2019). While e.g. anti-virus and intrusion detection companies sell threat
intelligence as a by-product, others focus on threat intelligence exclusively.

However, threat intelligence can also be acquired for free. Open Source In-
telligence (OSINT) collects publicly available information on threats (Vadapalli,
Hsieh, & Nauer, 2018). Among them are Common Vulnerabilities and Exposures
(MITRE, 2020a), National Vulnerability Database (NIST, 2020b), AlienVault
OTX (AlienVault , 2020) and MISP (MISP , 2020).

Although new threats need to be identified fast, they also require accurate classi-
fication. Simply posting a threat without further analysis is generally not enough
and may lead to false positives, which is also a major challenge for threat hunting
teams (Ponemon, 2019). Reliable information sources are required.

2.1.2 Types of Threat Intelligence

Chismon and Ruks define 4 types of threat intelligence (Chismon & Ruks, 2015):

1. Firstly, strategic threat intelligence yields high level information and cov-
ers financial impact of cyber attacks. It can be used to understand current
risks and identify new risks. Strategic threat intelligence is usually passed
on via reports and conversations. According to Chismon and Ruks, strategic
threat intelligence has an impact on the decision whether an organization
should enter a certain marketplace, when considering a potential government
hacking competitors.

2. Secondly, operational threat intelligence deals with details of specific
attacks. This information is very rare as it covers knowledge of who might
be going to attack an organization, when they might attack, and how the
attack might happen. For this reason, only governments have access to the
infrastructure to collect this type of information.

3. The third type of threat intelligence is tactical threat intelligence. It cov-
ers attacker methodologies, the tools they use, and their tactics. Moreover,
it serves as a means for preparing an organization’s infrastructure against
current tactics and to reduce vulnerabilities. This information is consumed
by defenders and incident responders.

4. Finally, technical threat intelligence is about low level information. Usu-
ally automatically consumed by machines, it plays an important role in mon-
itoring of malicious activity within an organization. An example for this kind
of information is a list of IP addresses considered as malicious.

6

While strategic and tactical threat intelligence are suited for long term use, op-
erational and technical threat intelligence represent information that is valid
only for short periods of time. But in order for companies to brace themselves
against potential attacks this information is not less important. Strategic and
operational threat intelligence are kinds of high level information that need to be
considered when planning a technological system. By contrast, tactical and tech-
nical information represent the low level side of the medal. With this low level
information, organizations can implement specific countermeasures into their
systems (Chismon & Ruks, 2015).

Miller distinguishes only 3 types of threat intelligence. He defines strategic threat
intelligence as the ”who” and ”why”, operational threat intelligence as the ”how”
and ”where” and tactical threat intelligence as the ”what” (Miller, 2018).

Nevertheless, all this information needs to be integrated into an organization’s
security workflow. Due to the highly complex nature, the enormous amount and
the fluctuating durability of information many challenges arise. The next section
gives an insight into these challenges.

2.1.3 Challenges of Threat Intelligence

Vadapalli et al. point out that the manual methods of open source intelligence
collection and analysis are inadequate because of the volume of newly arising
threats (Vadapalli et al., 2018). On the one hand, information on new threats
and vulnerabilities must be integrated as fast as possible in order to prepare
timely responses. On the other hand, this information may become invalid after
a certain time period (hours, days, months) and is often not useful for attack pre-
vention afterwards (Tounsi & Rais, 2017). The duration of usefulness of threat
information fluctuates strongly. When considering IP address blacklists the infor-
mation may only be valid for a very short time period, especially when it comes
to malware that is utilizing cloud computing services. Also file hashes which are
checked by anti-virus software change at a very fast pace. As a consequence, the
systems need to adapt themselves all the time.

When it comes to zero-day exploits in software, the validity of the threat infor-
mation increases. Customers utilizing a version of the software that is affected
by the exploit can download a patch to improve the system resilience. But also
hardware vulnerabilities represent long term valid vulnerability information.

As far as threat intelligence is concerned, companies - and as such security
experts - need to distinguish what is important for their needs (ENISA, 2014a).
To be more precise, companies need to decide if certain threat information is
relevant to the application domain (Sillaber, Sauerwein, Mussmann, & Breu,
2016). ”Indicators of compromise will generally be considered relevant when a
threat could affect the recipient’s system” (ENISA, 2014a, p. 3). Analysis of the
data takes time, and even though incidents are discovered, they may be pub-

7

lished only weeks or even months later. This is usually done to ensure accuracy
and completeness of the relevant information. The information should be imme-
diately consumable after undergoing verification, being as complete as possible.
Apart from this, legal issues may affect the completeness of the data due to
privacy issues (ENISA, 2014a).

When talking about threat information exchange, the topic of trust is inevitable.
Trust towards the information sharing platform of choice should be guaranteed.
This has to be put into practice not only in terms of data quality, meaning
that the information should be ”reliable and credible” (ENISA, 2017), but more
importantly in access restrictions. In addition, platforms need to ensure that
only authorized participants may access the shared data. This is to ensure that
potential attackers do not get in touch with the published information and con-
sequently exploit potential vulnerabilities (Sauerwein, Sillaber, Mussmann, &
Breu, 2017).

Li et al. introduce threat intelligence metrics. They measure the volume (the
amount of information different threat intelligence providers offer), the differen-
tial contribution (the delta in the data different providers share), the exclusive
contribution, the latency (the time period between the first platform publishing
and other platforms also updating their content), the coverage and the accu-
racy of entries. These are measures that may be used by companies in order to
decide which platform to retrieve their threat information from. Li et al. take
measurements and present the measurement results alongside an analysis. Their
paper deals mostly with IP blacklists and file hashes which belong to the most
common forms of threat intelligence utilized in firewalls and anti-virus software
but has no real impact on the topic of threat modelling at the component level
and the whole system lifecycle.

2.1.4 Sources of Threat Intelligence

ISO/SAE DIS 21434 contains possible sources of threat intelligence. These sources
can be divided into two categories. On the one hand, threat information can come
from external sources such as researchers, government sources or customers, as
well as from commercial and non-commercial sources such as threat and vul-
nerability databases. On the other hand, internal sources about configuration
information of a system, field information through vulnerability scanning or re-
pairs and results of vulnerability analysis can give security designers an insight
into the threat landscape. (ISO/TC 22/SC 32, 2020)

2.1.5 Reasons for Sharing

In order to keep systems safe and secure, information sharing plays an essential
role (NIS Directive, 2016). But it comes with a lot of challenges. Tounsi and Rais
point out reasons for information sharing. First of all, information about possible
threats and attacks that lie in the past can be used to prevent or handle potential

8

cyber attacks in the future. Tounsi and Rais claim that sharing threat intelligence
accelerates threat detection. Furthermore, the shared information yields insight
into the way threat actors operate (Tounsi & Rais, 2017). This way security
experts can raise the situational risk awareness of their organization, decreasing
the ”likelihood of cascading effects” (Zheng & Lewis, 2015, p. 1) in a system.
In order to protect systems thoroughly, organizations need to include threat
intelligence into their incident-, vulnerability-, and risk-management strategies
(ENISA, 2018). The platforms for information sharing are sufficient when low
confidentiality incidents are reported, as in the Cyber Vault Project. (ENISA,
2018; The Cyber Vault Project , 2020)

2.1.6 Reasons for Not Sharing

Sillaber et al. deal with the difficulties of information sharing (Sillaber et al.,
2016). ENISA; Tounsi and Rais and Chismon and Ruks point out why some
companies do not share their information (ENISA, 2018; Tounsi & Rais, 2017;
Chismon & Ruks, 2015). One of the major points for not sharing threat or
vulnerability information is negative publicity. A company posting information
about a vulnerability in their system publicly, may negatively influence their
market share (Tounsi & Rais, 2017; Chismon & Ruks, 2015). NIS Directive en-
courages information sharing and points out that ”it is essential to ensure that
operators of essential services and digital service providers who participate in
such exchanges are not disadvantaged as a result of their cooperation” (NIS Di-
rective, 2016, § 35).

Another important aspect are legal rules and privacy. The unawareness of laws
and regulations in different states stops entities from sharing. Many people do
not know what information they are allowed to share. Apart from this, some
countries consider threat information sharing a crime (ENISA, 2018). Quality
issues are also a common reason for not sharing. The information may not be
specific enough or too old to be considered actionable. Also the data format
plays an important role. If an organization is unaware of an attack they will not
publish information, as no security incidents were detected. (Chismon & Ruks,
2015; Tounsi & Rais, 2017)

Finally, not sharing may also be the result of authorities holding back informa-
tion about product vulnerabilities as there is no security fix yet available (NIS
Directive, 2016). Potential attackers could exploit this information knowing that
a certain vulnerability has not been acted on.

2.2 Threat Information Exchange

Threat information is posted in different formats and structures (Wang & Chow,
2019). It is shared via various platforms such as social media, news reports and
dedicated platforms for threat intelligence, some commercial and some open
source (Wang & Chow, 2019; Li et al., 2019). Some of them disseminate threat

9

data in unstructured plain text (Ramnani, Shivaram, Sengupta, & M., 2017;
Sillaber et al., 2016). Others utilize standardized representations of threat intel-
ligence information. The latter yield better quality as information is structured
and can be processed more easily by computers in an automated manner. It is
not only important to share threat data fast to avoid attacks, but also to ensure
the feasibility of utilizing this information without losing quality.

2.2.1 Formats

Different standards and formats for threat exchange have been developed over
the years (ENISA, 2014b; Menges & Pernul, 2018; Tounsi & Rais, 2017; Sauer-
wein et al., 2017). Ranging from enumerations towards incident response formats
for threat exchange, different platforms rely on different standards. ENISA and
Menges and Pernul discuss these different standards in detail (ENISA, 2014b;
Menges & Pernul, 2018). An overview of the ones considered the most important
will be discussed shortly in this section.

Common Attack Pattern Enumeration and Classification (CAPEC) has been
developed by MITRE (MITRE, 2020e) and represents a catalogue describing the
techniques and procedures utilized during a possible attack. It is used in STIX
and IODEF which will be explained later.

Also developed by MITRE are CWE and CVE. Actually, CWE, the Common
Weakness Enumeration is a ”list of commonly occurring software weaknesses
and vulnerabilities” (ENISA, 2014b, p. 12). It aims at avoiding vulnerabilities
when building a system. CWE is used in IODEF and STIX.

Probably, the most commonly known enumeration by MITRE is CVE -Common
Vulnerabilities and Exposures. It yields unique identifiers that reference vulner-
abilities and includes a description about vulnerabilities and exposures of various
components. CVE is utilized in a large number of cyber-security products and
is the industry standard for vulnerability identification (MITRE, 2020a). It rep-
resents a standardized basis for the evaluation of vulnerabilities and exposures,
and offers a description for each of them.

As pure CVE is typically not enough for direct processing and is not directly
ingestible without further transformation, NIST (NIST, 2020a) developed the
National Vulnerability Database (NVD). NVD builds on top of CVE. Conse-
quently, every CVE entry is included in NVD. Moreover, the NVD yields addi-
tional information for CVE entries. It extends a CVE entry with CPE for product
identification, CWE for identification of the weakness, it assigns a CVSS (ex-
plained below) and provides hyperlinks to advisories and fixes (MITRE, 2019a).
STIX, IODEF and VERIS, among many others reference CVE entries.

Common Platform Enumeration (CPE), which has already been mentioned be-
fore, has been developed by NIST, and represents a naming scheme for products

10

in order to identify them appropriately, especially in terms of threats and vul-
nerabilities. IODEF and NVD rely on this information.

FIRST (FIRST, 2020a) developed a Common Vulnerability Scoring System
(CVSS) capable of rating vulnerabilities with scores ranging from 0 - least crit-
ical, to 10 - most critical, which is used by many of the above formats.

Following enumeration formats, standardized incident reporting formats will be
discussed. Incident reporting formats have been developed to share information
on threats in various ways. The most common is probably STIX (OASIS CTI
TC , 2020), the Structured Threat Information eXpression. It is used by over
40% of the organizations that include threat intelligence in their security pro-
cesses (Menges & Pernul, 2018) (Ponemon, 2019). STIX, in its current version
2.1 has been developed by OASIS CTI (OASIS CTI TC , 2020). It represents
a standardized opportunity to share information concerning security issues in a
holistic way using the JSON format as representation. STIX contains Indicators
of Compromise (IoCs). IoCs indicate a possible intrusion into a system and iden-
tify potentially malicious activities. They may be malicious files, IP addresses
that are considered malicious or atypical user activities (Sauerwein et al., 2017).
The purpose of STIX not only resides within threat information sharing, but
also also in prevention and response strategies against certain threats (ENISA,
2014b). Due to its complexity, STIX requires software in order to support effi-
cient human readability, but therefore is easily ingestible for machines.

IODEF, the Incident Object Description Exchange Format, currently in version
2.0, is a format that includes attack patterns, vulnerabilities, weaknesses, plat-
forms and scores. To be more precise, it links to CAPEC, CVE, CWE, CPE and
CVSS. IODEF is a semi structured format. It uses XML tags which in some cases
include plain text (Menges & Pernul, 2018). Consequently, it requires manual
analysis by domain experts. IODEF has been developed by IETF (IETF, 2020).

Another commonly used form of threat exchange is the Vocabulary for Event
Recording and Incident Sharing (VERIS) framework (The VERIS Framework ,
2020) which is used for sharing incident reports and also includes metrics. VERIS
contains a structured language for security incidents.

A further kind of information sharing is the Abuse Reporting Format (ARF)
and its extensions MARF and X-ARF (ENISA, 2014b). They extend MIME and
are intended to share spam or incident reports via email. Their main strength is
their inherent low complexity, which results in good human readability. There-
fore, reports require manual analysis. (Menges & Pernul, 2018)

2.2.2 Platforms for Threat Exchange

Sauerwein et al. analyze 22 threat intelligence sharing platforms and claim that
STIX is the de-facto standard for describing threat intelligence (Sauerwein et

11

al., 2017). Moreover, the authors point out that most of the platforms that offer
threat intelligence only collect the data. The responsibility for the analysis and
the integration of the data still resides with the consumers. The platforms mostly
focus on the IoCs, which is information giving insight into possible intrusion and
malicious activities (Sauerwein et al., 2017).

One platform that is not listed as threat intelligence platform in most of the
literature, but yields important information for incident exchange, as it is often
included within formats, is CVE. Its description includes information on vul-
nerabilities of system components like hardware or software. With NVD which
builds on top of CVE, the data can become quite informative in terms of com-
mon weakness enumeration and possible fixes (MITRE, 2019a).

(ENISA, 2017) provides a collection of current threat intelligence platforms dis-
tinguishing between the type of solution - open source, commercial or commu-
nity. Collaborative Research Into Threats (CRITs), the Malware Information
Sharing Platform (MISP) and the Collective Intelligence Framework (CIF) fo-
cus on the domain of open source threat sharing, to name a few.

When it comes to commercial solutions for threat intelligence, scoutTHREAT
(LookingGlass, 2020), ThreatConnect (ThreatConnect, 2020) and ThreatStream
(Anomali, 2020) can be named. In contrast, AlienVault Open Threat Exchange
(OTX) (AlienVault , 2020), Facebook Threat Exchange (Facebook, 2020) and
X-Force Exchange (IBM, 2020) form community solutions. A listing of threat
information exchange platforms can be found in (ENISA, 2017).

2.3 Information Extraction

In terms of threat intelligence representation, some formats support structured
information which is machine readable. Other formats such as articles or descrip-
tions in plain text work with unstructured data. Although unstructured data is
understandable to humans, the uptake of threat information is slow due to lack-
ing automation mechanisms. Machines cannot utilize the information to perform
specific tasks directly. Unstructured text requires conversion to a more compact
representation that computers can work with. Consequently, new mechanisms
need to be developed for the extraction of cyber-security information from un-
structured text. This will speed up the pace of security measures for a system
(Syed et al., 2016). Natural Language Processing (NLP) offers sophisticated
information extraction techniques that can be used for this task (Jurafsky &
Martin, 2000; Bird et al., 2009).

According to Wang and Chow, only a limited number of keywords in a sen-
tence is relevant. All irrelevant information should be omitted while extracting
only the significant information. Wang and Chow mention that extraction from
unstructured data forms a challenge, as there is no fixed pattern and every hu-
man has a different writing style. In (Wang & Chow, 2019) the authors use the

12

Java Annotation Pattern Engine (JAPE) and the General Architecture of Text
Engineering (GATE) framework to extract information from threat intelligence
articles and reports which were then stored inside an ontology.

Another approach in information extraction from unstructured information was
conducted by Vadapalli et al.. The authors utilized the Twitter Streaming API to
download tweets with relevance to cyber-security. The Stanford CoreNLP which
is widely used in the Natural Language Processing (NLP) domain was used
to perform the extraction tasks. In the first step, experiments were conducted
without having a dedicated model trained for cyber-security and resulted in poor
performance. In the next step, the stucco entity-extractor library (stucco/entity-
extractor , 2020) was included in the NLP tasks. This library was implemented
to retrieve cyber-domain entities from unstructured text. Vadapalli et al. also
describe the libraries used for the experiments, which enables the reproducibility
of the results.

Mulwad, Li, Joshi, Finin, and Viswanathan developed a prototype which is able
to transform unstructured text into RDF/OWL. They use an SVM (Support
Vector Machine) classifier to filter out descriptions which contain information
about vulnerabilities. With Named Entity Recognition (NER), relevant entities
were extracted. Afterwards the resulting entities were mapped in OWL (Mulwad
et al., 2011). Joshi, Lal, Finin, and Joshi analyze key concepts from the unstruc-
tured description field of CVE entries using a conditional random fields (CRF)
algorithm (Finkel, Grenager, & Manning, 2005) from Stanford NER , which is
pre-trained to identify people, organzations and places. Additional training was
conducted with data from security blogs, CVE descriptions and security bul-
letins. For data representation Joshi et al. use the Intrusion Detection System
(IDS) ontology (Pinkston, Undercoffer, Joshi, & Finin, 2003) and map the re-
trieved information to DBPedia (DBpedia, 2019) entries.

Satyapanich, Finin, and Ferraro utilized Stanford CoreNLP for word embed-
ding. They conducted experiments with two different approaches, this is to say
one with word2vec (Mikolov, Chen, Corrado, & Dean, 2013) and another one
with BERT (Horev, 2018). The Unified Cybersecurity Ontology (UCO) (Syed
et al., 2016) was used to represent the extracted data in a knowledge graph.
(Satyapanich et al., 2019)

Mittal, Joshi, and Finin introduce Cyber-All-Intel which consists of a data col-
lection engine that collects information from multiple data sources. After pre-
processing, a Security Vulnerability Concept Extractor (SVCE) is applied to the
collected resources. Afterwards the SVCE retrieves cyber domain entities and
their relations and stores them in a knowledge graph based on UCO. They build
two applications - firstly, a mechanism to query the knowledge graph, secondly,
an application to generate alerts based on system profiles. (Mittal et al., 2019)

13

The approach in (Pingle, Piplai, Mittal, & Joshi, 2019) for extracting cyber-
security entities from unstructured text also depends on an NER system, which
was created in (Mittal, Das, Mulwad, Joshi, & Finin, 2016). After conducting
the entity extraction step, word2vec (Mikolov et al., 2013), which was trained
on a cyber-security corpus, served for generating vector embeddings of the re-
trieved data. Moreover, Pingle et al. discuss the representation of information in
knowledge graphs and make use of UCO.

Ramnani et al. build an information extraction system and use the STIX format
as a base for information representation. They follow 3 steps: firstly, the inte-
gration of cyber-security sources, secondly, the categorization of the retrieved
information, and thirdly, the analysis of trends and time-series by filtering out
the information that is relevant for an organization.

Ramnani et al. propose a semi-automated information extraction technique.
Basilisk (Thelen & Riloff, 2002) was applied for pattern detection and NER for
the entity extraction task. The resulting pattern detection system was used for
extracting information from new documents (Ramnani et al., 2017).

Syed et al. extract information from NVD, generate RDF triples therefrom and
map the information to DBPedia entries. The authors utilize stucco extractors
for entity extraction (Syed et al., 2016)(stucco-archive/extractors , 2019).

2.4 Starting Points for the Master Thesis Identified in Literature
Research

In modern connected society security represents one of the major challenges.
Threats and their corresponding security measures affect all kinds of organiza-
tions in the same way. Every company is exposed to some extent. Consequently,
threat intelligence and vulnerability information sharing between different enti-
ties represent a necessary form of exchange in order to make technological sys-
tems more resilient. We have defined threat intelligence as any information that
could improve our systems’ security, listed reasons for information sharing and
analyzed why some companies may not be willing to share their data. Also trust
towards the utilized platform, the participants and the information presented
plays an important role for potential consumers of threat intelligence, which is
why different sharing levels exist. Moreover, the different types of threat intelli-
gence and their consumer groups have been identified. A variety of formats for
threat information exchange have been presented, of which the most commonly
used is STIX. When it comes to vulnerabilities, the NVD provides a powerful
resource.

However, most of this information is still shared in unstructured plain text,
such as reports or blog posts. Consequently, the shared information is not di-
rectly ingestible by machines. In order to process this information NLP can play
an essential role. Most of the publications that were examined utilized a Named
Entity Recognition approach to categorize the retrieved information and map it

14

to a format suitable for representation such as the Unified Cybersecurity Ontol-
ogy (UCO)(Syed et al., 2016).

Threat intelligence can serve as a powerful tool to improve threat modelling.
Additional information on vulnerabilities and intrusion systems facilitates the
development of an abstract model containing the threat information. Analysis
can be conducted in more detail without extensive manual configuration. An
automated approach to integrate threat information can make a vital contribu-
tion in reducing cyber-security vulnerabilities when developing and maintaining
a system.

15

3 Basic Technological Framework

The topic of cyber-security is becoming a rising challenge in modern applica-
tion development. Hardware and software are confronted with an ever changing
risk landscape and developers as well as safety and security analysts need to
be aware of threats that the system under consideration is exposed to. Hence,
security must be considered during the whole design process in the same way as
application developers consider usability and performance (Torr, 2005). We need
to design our hardware and software in a way that they can withstand attacks in
the future. In order to achieve more resilience, threat modelling which is closely
related to risk management approaches can be applied.

The following sections will elaborate on the concepts behind threat modelling
based on an example. Moreover, the threat modelling components, namely, sys-
tem model, threat model and the threat analysis will be focused on. Afterwards,
the closely intertwined topic risk management including risk assessment and risk
treatment will be discussed and brought into relation with threat modelling. Fi-
nally, the concept of rules which constitute the threat model will be explained.

3.1 Threat Modelling

Threat modelling has become an important tool in identifying potential safety
and security risks. Moreover, it helps in detecting weaknesses of the architecture
of the system and can reveal possible design flaws. According to Torr ”Threat
modelling should be treated like any other part of the design and specification
process” (Torr, 2005, p. 66). Applying countermeasures in the early stages of
product development reduces costs.

This master thesis will go a step further and consider threat modelling not
only during the design phase but also during the operational and maintenance
phases. It proposes that threat modelling should be stuck to during the whole
system lifecycle. This way, all the knowledge gained during later phases can be
integrated into the system in order to mitigate certain security flaws and to make
the system more resilient in the future.

As threat modelling serves the purpose of identifying potential safety and se-
curity risks, it can also help with finding mitigation strategies and countermea-
sures towards certain identified threats. Laorden, Sanz, Alvarez, and Bringas
claim that threat modelling provides ”useful guidelines on how to mitigate the
associated risks”(Laorden et al., 2010, p. 2). This is something that the improved
threat modelling approach will build upon, by providing links to references and
solutions addressing certain vulnerabilities of hardware or software components,
as well as pre- and postconditions. The NVD and Packetstorm serve as the main
sources of information.

16

3. Generate threat model by isolating threats for components and derive them
from available sources

4. Compare the threat model to the system model in order to identify potential
threats

5. Conduct risk evaluation on all identified threats and decide on the risk treat-
ment

6. Adapt the system model with mitigation strategies and security countermea-
sures

7. Go back to step 4 to identify newly introduced threats or threats that were
left untreated

Now that the general steps of threat modelling have been pointed out, the fol-
lowing sections will provide more detail.

3.2.1 System Model

The first step in threat modelling requires gathering information on components.
Its objective is to check which components should be used when designing the
system, or for an already running system which components are already inte-
grated. Also the type of communication between components needs to be ana-
lyzed and included inside the model. All this information gathering should be
done as exact and with as much detail as possible (Torr, 2005). All the safety
and security assumptions that are known should be included.

The next step in threat modelling is to find a suiting representation which
serves as a basis for identifying possible weaknesses. In this context the infor-
mation mentioned above resembles a system model.

The approach by AIT uses a data flow diagram for representing the system
model. A data flow diagram is capable of modelling a technological system
graphically. This includes a definition of components, their connections and con-
figuration. This modelled information can be used to conduct an analysis for a
certain component or a configuration of components (Torr, 2005; Ma & Schmit-
tner, 2016). The process of transforming the concept or real-world information of
an application into a graphical representation can already influence the system
design and reveal possible design flaws.

Consider a simple web-application as an example for the system model. It shall
be capable of providing a web-frontend to the end-user that can be accessed over
the internet. Moreover, it shall be capable of storing user generated content and
allow the end-user to log in and out of the application.

Figure 2 shows a system hosting a simple web-application that is exposed to the
end-user. The web-application is hosted by a web-server and all the communica-
tion is running over an internet connection. The web-server itself is connected to
a database. They are located within a trusted environment boundary indicating

18

that both, the web-server and the database trust each other. This system model
will serve as a basis for later examples in this master thesis.

Fig. 2. An example of a simple illustrative system model

It is of utmost importance to make the representation of the technological system
as exact as possible and not to create a representation of the system as it should
be. The components, connections and their configurations need to be modelled
with as much detail as possible in order to be able to detect real threats that
may target the system. Simply designing the data flow diagram in a way the
developer thinks that it should work is not sufficient and might leave existing
threats unrecognized and untreated. (Torr, 2005)

3.2.2 Threat Model

After creating a system model and a representation that fits the requirements
for the system, a second model needs to be established. In order to detect
threats within the system model, this model must be capable of processing known
weaknesses, vulnerabilities and threats. The resulting model is called the threat
model. By applying the threat model to the system model potential threats can
be identified. (Schmittner et al., 2019)

To achieve this, AIT utilizes a rule-based approach. Common configuration errors
are modelled as anti-patterns. The term anti-pattern depicts a configuration that
the system should not include. The rules resemble known configuration issues,
e.g. in terms of communication through trust boundaries, missing encryption
when using wireless communication or missing tamper protection. The informa-
tion for these rules comes from various sources, such as UNECE WP29 (World
Forum for Harmonization of Vehicle Regulations), ETSI (European Telecom-
munications Standards Institute) or the ITU (International Telecommunication

19

Union). The structure of such a rule is explained in section 3.4.

Also the example from before is exposed to potential threats. When consid-
ering the internet connection between the web-application and the web-server
as shown in figure 3, attackers could manipulate their own IP address in or-
der to disguise their actions as coming from a trusted source, also known as IP
Spoofing. Moreover, the web-server itself might become target of a distributed

Fig. 3. Example of vulnerable components within the simple illustrative system model

denial-of-service (DDoS) attack without proper mitigation strategies.

All this information about possible threats is represented within the threat
model. However, what is presented here are just examples of threats the system
could be susceptible to. The results of a real analysis on the system are shown in
the next section. They depend strongly on the configuration of the system model.

As the step of creating a representation of threats and weaknesses manually is
time consuming and various systems utilize similar means of configuration, AIT
decided to create a knowledge-base for this information for distinct domains.
All the information deduced from the sources mentioned before is incorporated
within one single knowledge-base which supports reusability and speeds up the
analysis due to a shorter or even absent threat information gathering process.
(Ma & Schmittner, 2016)

3.2.3 Threat Analysis

Once system model and threat model have been finalized, an analysis can be
conducted. This analysis compares the system model with the threat model
and discloses known threats. The result is a catalogue containing threats posed
to specific components, communication channels or their compounds. Figure 4

20

at all levels of an organization’s structure including the will of stakeholders. It
must be clear who is involved in the decision making process and how these
decisions are made. (ISO/TC 262 Risk management, 2018).

Risk management is considered an iterative process due to the fact that the con-
text of the application may change. New risks regarding threats appear daily,
existing risks may change or even disappear. Hence, the system under consider-
ation must be monitored constantly while identifying new risks that may affect
it. Furthermore, a suitable risk management process provides aid in the identifi-
cation of mitigation strategies as well as in informing decisions in order to allow
timely responses. This is why it is also vital to integrate risk management with
the system’s objectives and to find ways on how to treat objectives that are in
conflict with each other. (ISO/TC 262 Risk management, 2018)

The threat modelling approach that is covered in this master thesis utilizes risk
management based on the ISO 31000 (ISO/TC 262 Risk management, 2018)
and the ISO/SAE DIS 21434 (ISO/TC 22/SC 32, 2020). In the following, the
approach proposed by these two standards will be compared with the approach
at AIT. As risk management highly relies on individuals, each with their own
perceptions and experiences, the results of the risk analysis and consequently,
the risk treatment process arise from subjective points of view.

3.3.1 Risk Assessment

The risk assessment process can be split into three steps, this is to say risk
identification, risk analysis and risk evaluation. (ISO/TC 262 Risk management,
2018; ENISA, 2020a)

Risk Identification describes the process of detecting risks that are interfering
with the objectives of a company or application. It investigates possible causes of
risk, vulnerabilities and threats. Additionally, this step considers the properties
of assets. (ISO/TC 262 Risk management, 2018)
In our example from before, this step is closely related to the threat analysis step
where the system model is checked for possible threats. When a rule fires due to
the fact that a generic anti-pattern has been detected, this can be considered as
a threat modelling based equivalent to risk identification.

Risk Analysis describes the step following risk identification. It deals with
the exploitability of certain events and their impact on the system. Depending
on the application domain, opinions and the viewpoint of an individual, the re-
sults of such an analysis may vary. (ISO/TC 262 Risk management, 2018)
As the threat model holds all relevant information concerning threats, the impact
and exploitability levels, as well as the classification in STRIDE are predefined
based on best practices. One could argue that defining risk levels beforehand
is incorrect in terms of risk management. This objection is well justified, which
is why the values of impact and exploitability reflected in the threat catalogue

23

from before and the risk matrix (which will be discussed in section 3.3.3), are
configurable. The result should rather be considered a proposition than a fixed
value. Different domains might require different approaches.

Risk Evaluation utilizes the outcome of the risk analysis as input. It is relevant
when defining which risks need to be treated and how they shall be treated in
terms of the applied methods (ISO/TC 262 Risk management, 2018). Concern-
ing threat modelling, risk evaluation is the main factor when deciding whether
a threat is relevant or, in other words, whether it is a potential threat.

As there may be multiple solutions for one and the same problem, a solution
suitable for multiple weak-points may be considered. The goal of risk evaluation
is to support the decision making process. While some risks need to be analyzed
further, others may not require any action. Furthermore, the evaluation may
reveal conditions that do not meet the original objectives and, therefore, lead to
a re-evaluation of these objectives.

This final step of the risk assessment is currently not supported by the threat
modelling approach in this thesis. It still requires interaction of individuals and
relies completely on expert knowledge as well as research. However, this master
thesis will add value by integrating online repositories and linking references to
possible solutions and mitigation strategies. It will be capable of providing sug-
gestions to experts in order to ease the risk evaluation process.

After conducting risk assessment action must be taken in order for the eval-
uation to take effect. This is done in a process called risk treatment.

3.3.2 Risk Treatment

Once possible strategies to reduce risk have been identified, experts need to
decide on how certain risks are treated. This involves an evaluation of the ef-
fectiveness of certain treatment options. Moreover, experts discuss whether the
residual risk is tolerable before implementing a treatment option. Should the
risk be inacceptable, other treatment options might be considered or further
treatment may be required (ISO/TC 262 Risk management, 2018). In terms of
threat modelling, the effect of these changes is reflected by running an additional
analysis.

There are four basic options when deciding on the risk treatment (ENISA,
2020b). Figure 6 holds an illustration of abstract risk treatment measures.

When a certain risk has a high exploitability as well as a high impact on the
system, a company may decide to avoid that risk by adapting their system and
eliminating the risk’s cause. However, avoiding risk is only feasible if it does not
interfere with the objectives of the organization.

24

3.3.3 ISO/SAE DIS 21434 Based Risk Matrix

Also the ISO/SAE DIS 21434 (ISO/TC 22/SC 32, 2020) suggests to conduct risk
management according to ISO 31000 (ISO/TC 262 Risk management, 2018).
On top of that it provides propositions for 4x4 risk matrices with respect to
the impact and exploitability that was derived from the risk assessment process.
Moreover, it combines these values to retrieve severity values that support the
decision making process when deciding on which risks to treat.

Concerning the exploitability of a certain risk the following values are possi-
ble (ISO/TC 22/SC 32, 2020):

• Very Low
• Low
• Medium
• High

For the impact the values below may be assigned (ISO/TC 22/SC 32, 2020):

• Negligible
• Moderate
• Major
• Severe

The ISO/SAE DIS 21434 does not enforce the utilization of fixed predefined
severity values. However, it does define severity levels from 1 to 5 with 1 being
the lowest and 5 being the highest possible value. This is due to the fact that
individuals treat risk differently as risk management is a very subjective process.
Also different application domains may be considered more or less critical which
may affect the resulting risk matrix. An example of such a risk matrix is the
symmetric one that is shown in table 1.

Exploitability

Very Low Low Medium High

Impact

Severe 1 3 4 5
Major 1 2 3 4
Moderate 1 2 2 3
Negligible 1 1 1 1

Table 1. A symmetric risk matrix according to ISO/SAE DIS 21434 (ISO/TC 22/SC
32, 2020)

Although the threat modelling approach utilizes this matrix and predefines the
matrix with these exact values, they are freely configurable to support company
and application specific risk management approaches. A different configuration
of this matrix will be discussed in section 4.3.4.

26

Now that the overall procedure of the threat modelling process has been dis-
cussed and demonstrated with an illustrative example and the concept of risk
management has been explained, it is necessary to define the building blocks of
the threat model. In order to understand how the system is analyzed, and where
the displayed threats are coming from, the concept of rules demands explanation.

3.4 Rule-Based Approach

Rules represent the core of the threat model. They are defined as anti-patterns
that should not occur in the system model. More precisely, this approach is based
on (anti-)pattern matching. The rules currently describe generic configuration
errors that might lead to exploits and are based on known weaknesses. When
an analysis is conducted, the system model is checked against the threat model.
Once there is a match, the applicable rule fires, depending on the security as-
sumptions that were made when designing the system model.

A rule consists of:

• a name which resembles a title or short description of the threat or vulner-
ability

• a description which is a textual representation of the threat or vulnerability
that it suffers from, also including high level mitigation strategies

• a STRIDE category to classify the type of threat

• an impact value depicting the severity or consequences of an exploit (FIRST,
2020b)

• an exploitability value depicting the ease of exploiting a vulnerability in
terms of technical means or attack surface (FIRST, 2020b)

• a rule text which represents the anti-pattern in textual form

The following subsections provide a deeper insight into the contents of a rule.
Firstly, STRIDE - a brainstorming method to identify and categorize threats -
will be referred to. This will be followed by some examples of rules.

3.4.1 STRIDE

Many threat modelling approaches rely on STRIDE (Torr, 2005; Abomhara,
Køien, & Gerdes, 2015; Hussain, Kamal, Rasool, & Iqbal, 2014; Desmet, Jacobs,
Piessens, & Joosen, 2005; Shevchenko, 2018). STRIDE extends the CIA (Con-
fidentiality, Integrity, Availability) model and correlates threats with security
attributes (Lautenbach & Islam, 2016), thus yielding a view on threats from
the attacker’s perspective. By providing a brainstorming methodology based on
six different categories it helps in identifying potential threats posed to a system.

27

Its goal is to make it easier to find possible attacks. Therefore, a component or
component configuration is analyzed by each category to identify those threats.
In the case of AIT’s threat modelling approach the brainstorming has been con-
ducted beforehand and the outcome has then been fed into the threat model.
Consequently, STRIDE is used here to classify threats within six distinct cate-
gories. However, it is sometimes not feasible to provide an exact categorization
as a threat may belong to multiple STRIDE classes. These categories utilized
during brainstorming and the consequent categorizations are (Shostack, 2014;
Hamad, 2020):

Spoofing means pretending to be someone else. It violates authentication, e.g.
IP Spoofing.

Tampering is referred to when an entity modifies data, data flows or processes.
It messes with the integrity of the data e.g. when someone adds/removes packets
over a network, or changes contents of data.

Repudiation means claiming to be irresponsible for a certain event. It vio-
lates the ”non-repudiation” property of a system.

Information Disclosure describes getting access to data without proper au-
thorization. This affects the confidentiality of the data.

Denial of Service threats tend to consume all the resources of services and
hinder actual traffic from reaching its target. A common example is establish-
ing a very high amount of connections to either cause the service to crash, or
to block legitimate communication. A denial-of-service attack messes with the
availability of a system.

Elevation of Privilege describes threats that exploit vulnerabilities within
a system allowing a user to execute code without authorization or as admin.

STRIDE is only utilized for enumerating possible flaws of a system. It does
not cover mitigation mechanisms or attack patterns.
After talking about STRIDE and the identification of potential threats within a
system, the next section will show an excerpt of rules regarding the system and
threat model from the examples before.

3.4.2 Examples of Rules

As already specified, rules fire when an anti-pattern is detected, more precisely,
when there is a configuration in the system model that is considered exploitable.
This is also the case for the system model from before, where a threat catalogue
was derived which served as input for the subsequent risk treatment. In order to
make clear why some of the threats were detected, the threats that were treated
in the example introduced in section 3.2.3 will be explained.

28

In terms of the distributed denial-of-service attack threat, the according rule
looks like the following:

Type(”Server”).tv(DDoS Mitigation != YES)

The above rule checks for an element of type server contained in the diagram
which has a DDoS Mitigation that is not ”yes”. ”tv” stands for tagged value
and depicts an attribute. It is relevant to specify that is is not ”yes” rather than
”no” due to the fact that the value could also be ”undefined”. As it may simply
not have been specified, it is of importance to also include possibly not consid-
ered values within the analysis. As specified in section 3.2.3 applying a DDos
Mitigation can eliminate this threat.

The second result that was revealed in the threat catalogue and then under-
went risk treatment was the IP Spoofing threat whose rule text is displayed
below:

Type(”ANY”).hasConnector(Connector.from(Type(”ANY”))
.tv(Authentication != YES))

This rule specifies any element that has a connector to any other element where
no Authentication is specified. This basically means that anybody may access
the provided service while they could tell the service to be someone else. This
threat was mitigated by adding authentication e.g. in the form of login creden-
tials, cookies containing session data or json web tokens.

Finally, the rule regarding SQL Injection will be shown:

Type(”ANY”).tv(Input Sanitization != YES)
.hasConnector(Connector.to(Type(”Database Server”)))

It searches for any element that has no Input Sanitization and a connector to
an element of type database server. This structure basically describes an entity,
most likely a server that does not sanitize the input before forwarding it to the
database which might result in a possible SQL Injection. This is due to the fact
that unsanitized data may execute unwanted queries on the database. Therefore,
all queries should be checked and only allowed statements should be executed.
By adding Input Sanitization this threat can be mitigated.

An exact specification of the grammar underlying these rules can be found in

29

the grammar documentation1. Of course, also other, more sophisticated rules can
be formulated utilizing this grammar. E.g. multiple attributes could be defined
and combined with a logical ”and”/”or”. However, these few examples should
provide sufficient insight into the capabilities of such rules. Moreover, for the
approach envisaged in this master thesis only ”type” and ”tv” are relevant to
identify specific products.

This section dealt with examples for rules with regard to the illustrative system
model. In the following, shortcomings of the current threat model and possible
improvements will be discussed.

3.5 Improving Threat Modelling at AIT

Although the current approach of integrating common configuration errors and
generic threats into an analysis yields an improved design phase and can con-
tribute to the process of making systems more resilient, it is not sufficient for real-
world applications with running systems that are exposed to real-world threats.
This generic approach does not include threats introduced through software up-
dates or zero-day vulnerabilities. It helps in designing secure systems with best
practice information but without regard to real threats. This approach is suited
for the design phase but not for the operational phase. It is quite limited due
to the fact that many components have security flaws even though they should
theoretically be safe. To improve this, vulnerability data from online reposito-
ries can be used to derive information concerning specific software or hardware
products.

3.5.1 Real-World Vulnerability Information

The CVE (MITRE, 2020a) and the CPE (Cheikes, Waltermire, & Scarfone,
2011) represent a promising source of information. From these it is possible to
derive vulnerable products, the version that is vulnerable, as well as the specific
vulnerability. On top of that, the NVD (NIST, 2020d) adds more information
by assigning a score to the vulnerabilities and providing references to advisories
that may help fixing the vulnerabilities.

The information that can be used to improve the currently generic threat model
is shown in table 2.
By utilizing this additional information regarding specific products, it is fea-
sible to analyze real-world threats. Therefore, it is possible to include known
vulnerabilities of existing products and consequently, to deduce threats that are
applicable.

The product alongside its version can be used to identify specific hardware or

1 https://documentation.threatget.com/20.09/Administration/Rules.html#

full-specification-of-the-language

30

https://documentation.threatget.com/20.09/Administration/Rules.html#full-specification-of-the-language
https://documentation.threatget.com/20.09/Administration/Rules.html#full-specification-of-the-language

Product The exact product that is vulnerable
Version The exact versions of the product that are vulnerable
Vulnerability The description of the vulnerability that the product

suffers from
CVSS The vulnerability score assigned by NVD
References A reference to advisories and solutions
Precondition A description of prerequisites for compromising the system
Postcondition A description of an attacker’s possibilities after

compromising the system

Table 2. Usable information from an NVD entry

software components. These can be linked with vulnerability, CVSS, references,
pre- and postconditions. Adding a product to the graphical model and specifying
the version attribute enables the automatic detection of vulnerabilities that are
associated with the specific product.

Moreover, the CVSS enables the assignment of a severity score to each vul-
nerability. Comparing the scores of various threats can support decision making
when deciding on which risks to treat. It also gives an insight into the impact
and the exploitability of a vulnerability (FIRST, 2020b). The references that the
NVD provides describe possible solutions to vulnerabilities for specific versions
of software or hardware. They provide patches that can be applied to compo-
nents in order to fix vulnerabilities or supply advisories on how to securely utilize
the components.

The pre- and postcondition are not included in all vulnerability descriptions.
Nonetheless, when an attacker exploits a vulnerability, the postcondition delin-
eates what they can do after compromising the system. Furthermore, a precon-
dition tells us conditions that are required in order to compromise a system.
This yields additional reasoning on risk treatment.

Integrating all this additional information into the threat model and the threat
analysis process can leverage awareness of currently unknown risks of system
components. Moreover, it can inform decision on mitigation strategies to be
used.

3.5.2 Adding more Level of Detail

During the course of the previous sections, the threat modelling process was ex-
plained. However, to make our system more resilient towards real-world threats,
it is necessary to integrate additional up-to-date information into the generic
threat model to make it applicable for actual known threats.

31

The current process is very well suited for the concept phase of a product. Usu-
ally system developers start with a high level system design before deciding on
the exact system components to integrate. This is something that can already be
covered with the existing approach of integrating generic threats into the system
and simply defining whether or not e.g. communication in a wireless network is
encrypted.

The method described above can give a good overview of the threat landscape in
terms of which measures needs to be considered when developing a technological
system. Although it enables the creation of a high level design, it does not con-
sider flaws in software or hardware that are integrated into a system. However, it
is simply not possible to know about all the vulnerabilities that products suffer
from. And in the same way developers cannot be familiar with all the attack
patterns used by adversaries. Technology is evolving. The result is an increasing
amount of attack types.

Although a high level system design represents a first step into application secu-
rity, more level of detail is required. Only knowing that unencrypted communi-
cation across trust boundaries is insecure is not sufficient. When implementing a
technological system it is important to know what real weaknesses and vulnera-
bilities there are, and which threats exist to exploit them. Consequently, specific
information on components presents a vital contribution to the threat analysis
process.

The more that is known about a system, the more effective the result of the
threat modelling process will be (Torr, 2005). This enables the search for specific
vulnerabilities within system components.

The sharing of information about threats and vulnerabilities enables experts
to react faster to incidents. However, the time passing between the disclosure
of a vulnerability and the application of a patch is time in which the system is
vulnerable. To keep systems resilient, it is therefore of great importance to be
aware of the newest potential security risks (Meland et al., 2014; Tounsi & Rais,
2017).

But adding all this information by hand, is a very inefficient process. Moreover,
manually scanning through resources daily is time consuming. When considering
the CVE/NVD with approximately 140.000 entries, this becomes impossible to
maintain. This is why the goal of this master thesis is to automate this decisive
step and connect to existing online repositories, retrieve their data and generate
rules automatically utilizing the technologies discussed in the following section.

3.6 Enabling Technologies

In order to allow for an more time-efficient method to derive rules, various tech-
nologies were evaluated. The following sections describe the technologies that
were selected for automatically integrating real-world information.

32

3.6.1 Vulnerability Databases

A vulnerability database represents efforts about security flaws within hardware
and software. Due to the fact that gathering all this information provides a
major challenge because of the vast amount of data, there are joint efforts to
collect vulnerabilities from various sources and put them together in one single
database. (Granova & Slaviero, 2014).

When the number of yearly reported security issues was located around 3.500 in
the year 2000, this number increased to over 20.000 in 2017. This results from
an increasing amount of software published, as well as a growing awareness of
possible security risks. (Eiram, 2018)

One of the major roots for vulnerability databases is the Common Vulnerabilities
and Exposures (CVE) which serves as a dictionary for enumerating vulnerabil-
ities in order to uniquely identify them. It is fed with information from various
software vendors, government agencies and vulnerability researchers (MITRE,
2019b). But CVE is more of an enumeration instead of a vulnerability database.
It is important to consider the granularity as well as the amount of information
associated with a vulnerability. The information provided in a single CVE entry
is usually not enough and requires a lot of additional manual work.

Therefore, NIST provides the National Vulnerability Database (NVD). ”The
NVD is the U.S. government repository of standards based vulnerability man-
agement data [...]. This data enables automation of vulnerability management,
security measurement, and compliance. The NVD includes databases of security
checklist references, security related software flaws, misconfigurations, product
names, and impact metrics.” (NIST, 2020d). The NVD builds upon the CVE
and further investigates CVE entries. It adds additional value by making the
information within a CVE accessible in a structured manner and provides infor-
mation on the exact products (CPE) used, while providing the weakness (CWE)
as well as references for mitigation strategies. Moreover, the associated impact
metrics (CVSS) can help with measuring security. The NVD is freely accessible.
(MITRE, 2019a)

Another free resource for security information and vulnerability intelligence is
Packetstorm. It promotes itself as ”important for the personal Internet user,
corporations, and governments to stay aware of vulnerabilities that may affect
their systems” (Packetstorm, 2020). Furthermore, Packetstorm provides tools to
support mitigation and publishes all information through RSS feeds, Facebook
and Twitter.(Packetstorm, 2020)

Other providers, such as VulDB and VulnDB charge fees for accessing their
data. Therefore, they offer more comprehensive information on vulnerabilities.
These paid vulnerability aggregators cover additional tactical information that
cannot be found in the original reports. Furthermore, they include more metrics

33

to leverage reasoning in terms of risk severity. A list of existing vulnerability
databases can be found in table 3.

Database Link
CVE https://cve.mitre.org/

NVD https://nvd.nist.gov/

Packet Storm Security https://packetstormsecurity.com/

Vulners https://vulners.com/

VulDB https://vuldb.com/de/

VulnDB https://vulndb.cyberriskanalytics.com/

Snyk https://snyk.io/

Exploit-DB https://www.exploit-db.com/

Microsoft Security
Bulletins

https://docs.microsoft.com/en-us/security

-updates/securitybulletins/securitybulletins

Mozilla Foundation
Security Advisories

https://www.mozilla.org/en-US/security/

advisories/

Vulnerability Lab https://www.vulnerability-lab.com/

0day today https://0day.today/

Rapid7 https://www.rapid7.com/db/

Vulnerable Things
(Pilot)

https://vulnerablethings.com/

Table 3. A list of vulnerability databases

This master thesis focuses on free alternatives and will include data from the
NVD and Packetstorm. But before going into detail about that, technologies that
the NVD builds upon require explanation. These technologies will be elaborated
on in the following sections.

3.6.2 CPE - Common Platform Enumeration

The Common Platform Enumeration 2.3 represents standardized methods of as-
signing names to IT products. It can be used to uniquely describe applications,
operating systems or hardware devices on the market and, consequently, helps
in identifying products used within a company. Moreover, it supports the IT
management policies of a company by relating these products or assets with vul-
nerability information, configuration data and remediation policies by uniquely
identifying installed products. These standardized methods also enable auto-
mated decision making when finding one of these products within the work
environment. (Cheikes et al., 2011)

The CPE supports three methods of representing an IT product. The following

34

https://cve.mitre.org/
https://nvd.nist.gov/
https://packetstormsecurity.com/
https://vulners.com/
https://vuldb.com/de/
https://vulndb.cyberriskanalytics.com/
https://snyk.io/
https://www.exploit-db.com/
https://docs.microsoft.com/en-us/security-updates/securitybulletins/securitybulletins
https://docs.microsoft.com/en-us/security-updates/securitybulletins/securitybulletins
https://www.mozilla.org/en-US/security/advisories/
https://www.mozilla.org/en-US/security/advisories/
https://www.vulnerability-lab.com/
https://0day.today/
https://www.rapid7.com/db/
https://vulnerablethings.com/

examples show these possible representations for the Microsoft Internet Explorer
8.0.60001 Beta (Cheikes et al., 2011):

1. The well-formed CPE name (WFN) is an ”abstract logical construction”(Cheikes
et al., 2011, p. 1). An example is given below:

wfn:[part=”a”,vendor=”microsoft”,product=”internet explorer”,
version=”8\.0\.6001”,update=”beta”]

2. But CPE also supports machine-readable encodings that bind to WFN. It
allows for binding the WFN to a Uniform Resource Identifier (URI) which
is mostly used for backward compatibility with CPE 2.2. The URI represen-
tation of the example from before looks like the following:

cpe:/a:microsoft:internet explorer:8.0.6001:beta

3. The binding that is utilized in CPE 2.3 is the representation as a formatted
string or formatted string binding. It adds more information to a product by
adding additional attributes. Below is an example of such a formatted string
binding:

cpe:2.3:a:microsoft:internet explorer:8.0.6001:beta:*:*:*:*:*:*

As can be seen in the formatted string binding example above, some attributes
are only marked with an asterisk (”*”). This is due to the reason that these
attributes are not specified within this CPE string. In general a CPE entry con-
sists of eleven attributes to be considered upon creation.

A CPE starts with a specification of the version. In this case, ”cpe” and ”2.3” in-
dicate a CPE version 2.3. After this version specification, the specific attributes
are assigned. These possible attributes are listed below (Cheikes et al., 2011):

• part - depicts whether a product is an a: application, o: operating system
or h: hardware device

• vendor - depicts the creator/maintainer of the product
• product - represents the name of the product
• version - specifies the version of the product
• update - describes the update version of the product
• edition - specifies edition-related terms by the product vendor. It is used
for CPE 2.2 backwards compatibility

• language - describes the language of the user interface, defined in RFC5646
• software edition - describes the specific edition of the software for certain
markets

• target software - describes the targeted environment
• target hardware - describes the instruction set architecture. (e.g. x86, x64,
Java Virtual Machine, Common Language Runtime, VMs)

• other - describes any other information that is not covered within the other
attributes

35

In our case only the first five attributes are set. The attribute part with value
a means that the product is an application. Moreover, vendor - which in this
example is microsoft - shows the creator the respective product. The product
internet explorer as well as version 8.0.6001 give information on the product
and its version. In case of this example the update attribute tells us that we
are dealing with a beta version of the microsoft internet explorer.

Not all attributes contained in a CPE need to be included to form a valid entry.
Some yield additional information, this is to say details about target software
or target hardware which give more insight into products that may be aimed
at cross-platform operation.

CPE provides compact and standardized methods of describing software and
hardware in a unique way enabling the exact identification of a product within a
system. This information can become useful when conducting threat modelling
with real-world applications to detect related vulnerabilities. This is where the
CVE, which contains a high amount of these related vulnerabilities, plays an
important role. It will be discussed in the following section.

3.6.3 CVE - Common Vulnerabilities and Exposures

The Common Vulnerabilities and Exposures (CVE) has existed since 1999 and
was launched by the MITRE Corporation. It is a community effort on an inter-
national basis with the aim of becoming a standardized basis for vulnerability
exchange, tool evaluation and vulnerability referencing. Until the launch of CVE,
companies had their own custom ways of reporting vulnerabilities which made it
complicated to distinguish between vulnerabilities that were already covered and
possibly untreated vulnerabilities. This led to many gaps in the system design
and, consequently, caused many security issues.(MITRE, 2019b)

Since then the CVE has become the industry standard for vulnerability identi-
fication. It provides a basis for data exchange between cyber-security products
and helps in identifying vulnerable products. Moreover, it can aid the decision for
choosing tools for a company when vulnerabilities are publicly known. (MITRE,
2019b)

CVE ”is a list of common identifiers for publicly known cyber-security vulnerabil-
ities” (MITRE, 2019b). It is used to uniquely identify vulnerabilities and share
information regarding vulnerabilities. Each CVE entry has a unique identifier,
the CVE ID. This makes is possible to identify each vulnerability in systems
distinctly. Furthermore, a CVE includes a standardized description for vulnera-
bilities. It can be seen as a dictionary that can be consulted with regard to its
ID. Integrating CVE into a product raises the awareness of vulnerabilities and -
if applied correctly - can lead to improved security. (MITRE, 2019b)

CVEs are created by so-called CVE Numbering Authorities (CNAs). When an

36

entity discovers a potential vulnerability that they think is currently unreported
they can send a request to a CNA. These CNAs can assign CVE IDs to vulner-
abilities concerning specific products (MITRE, 2020b) and create a description
alongside references. Afterwards the entry is added to the CVE list and is ready
to be consumed by the community. Table 4 provides an example for a CVE entry.

CVE ID CVE-2020-9586
Description Adobe Character Animator versions 3.2 and earlier have

a buffer overflow vulnerability. Successful exploitation
could lead to arbitrary code execution.

References https://helpx.adobe.com/security/
products/character animator/apsb20-25.html

Table 4. CVE Example based on CVE-2020-9586

The CVE is publicly available and free to use. The entries contained in the
CVE dictionary contain promising information to be used in threat modelling.
The information that can be obtained is with regard to real-world information
and contains vulnerabilities of existing components.

3.6.4 CWE - Common Weakness Enumeration

The Common Weakness Enumeration (CWE) was launched in 2006 by the
MITRE Corporation. It is a community effort to aid developers and design-
ers to prevent common architectural flaws that might lead to vulnerabilities
before product deployment. Its main goal is to identify weaknesses in prod-
ucts. ”“Weaknesses” are flaws, faults, bugs, vulnerabilities, or other errors in
software or hardware implementation, code, design, or architecture that if left
unaddressed could result in systems, networks, or hardware being vulnerable to
attack.”(MITRE, 2020c).

Originally developed for software weaknesses, the CWE was soon adapted to
also support hardware weaknesses. CWE presents a common language for weak-
nesses. CWE entries are represented in a hierarchical structure in tree form
(NIST, 2020c). This allows different levels of granularity. The CWE is abstract
on the top level nodes but gets more specific and more detailed the deeper the
tree is traversed.

When considering a buffer overflow or in this case the CWE-121: Stack-based
Buffer Overflow, the hierarchical structure was derived from the CWE website’s
”list of weaknesses” concerning software development2 and is as follows:

2 https://cwe.mitre.org/data/definitions/699.html

37

https://cwe.mitre.org/data/definitions/699.html

– Software Development
• API / Function Errors
• Audit / Logging Errors
• ...
• Memory Buffer Errors

∗ Buffer Copy without Checking Size of Input (’Classic Buffer Over-
flow’)

∗ Write-what-where Condition
∗ ...
∗ CWE-787: Out-of-bounds Write

· CWE-121: Stack-based-Buffer Overflow
· CWE-122: Heap-based-Buffer Overflow
· CWE-123: Write-what-where Condition
· CWE-124: Buffer Underwrite (’Buffer Underflow’)
· ...

At the very top level, Software Development represents the CWE list that the
weakness is located in. Below that are numerous child elements that are meant to
divide CWEs into categories. In this case it is theMemory Buffer Errors category
which contains the CWE-787: Out-of-bounds Write. To make this CWE more
fine granular, various further child elements are attached (NIST, 2020c), such as
the CWE-121: Stack-based-Buffer Overflow or the CWE-122: Heap-based-Buffer
Overflow.

CWEs consist of a description and of relationships between parent and child
elements (MITRE, 2020c) - every parent knows its children and every child
knows its parent. But it also contains an abstract version of a flow of action.
CWE entries also link to other CWEs that can follow when a specific weakness
is exploited and - vice-versa - what could have happened before it was exploited.
Many CWEs include examples for demonstration, e.g code examples that il-
lustrate how a Stack-based Buffer Overflow might be enabled. Also detection
methods such as the suggestion of using analysis tools are contained within a
CWE (MITRE, 2020c). Furthermore, a CWE may include potential mitigation
strategies for the different phases of product development. In case of the Stack-
based Buffer Overflow mitigation during build and compilation phase it suggests:

”Run or compile the software using features or extensions that automatically pro-
vide a protection mechanism that mitigates or eliminates buffer overflows. For
example, certain compilers and extensions provide automatic buffer overflow de-
tection mechanisms that are built into the compiled code. Examples include the
Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY SOURCE GCC
flag, StackGuard, and ProPolice.” (MITRE, 2020d)

38

The information presented in a CWE is quite informative and can help in un-
derstanding and handling potential weaknesses of a technological system.

3.6.5 CVSS - Common Vulnerabilities Scoring System

The Common Vulnerabilities Scoring System (CVSS) was launched in 2005 and
is currently managed by the Forum of Incident Response and Security Teams
(FIRST). It is an ”open framework for communicating the characteristics and
severity of software vulnerabilities” (FIRST, 2020b, p. 1). Its main objective is
to assign a criticality score between 0 and 10 to a vulnerability by considering
different metrics.

The CVSS comprises three groups regarding the metrics (FIRST, 2020b):

1. The base score which usually stays unchanged after assignment and stays
the same in all various environments. It is a score that works agnostic of its
environment.

2. The temporal score which can be assigned when the criticality of a cer-
tain vulnerability changes over time. This can be due to advanced exploit
mechanisms or patches.

3. The environmental score includes the characteristics of the system envi-
ronment to refine the criticality.

The NVD focuses on the CVSS base score. Therefore, this master thesis will also
focus on the capabilities of the base score and utilize its means of vulnerability
scoring.

The CVSS base score is used in vulnerability and, consequently, in threat man-
agement. It represents an important part of decision making when determining
which risks to treat and how to treat them. It can provide help in ranking threats
within an organization’s infrastructure. (FIRST, 2020b)

A CVSS score consists of two sub-metrics. On the one hand, it comprises the
exploitability metrics which describe the difficulty and the efforts required in
reaching an exploit. It incorporates the properties that need to be fulfilled in
order to start a successful attack. On the other hand, impact metrics help in
identifying the consequences of a potential exploit and the effect on a compo-
nent (FIRST, 2020b). These metrics will be discussed in the following.

The exploitability metrics are comprised of (FIRST, 2020b):

1. Attack Vector (AV), which describes the location of the potential attack.
The nearer the adversary needs to be to the target the lower the score. If
an attack can be conducted over the network, the value will be larger than
an attack that requires physical interaction. This is due to a larger attack
surface, as adversaries over the network represent a much larger group than
insiders.

39

2. Attack Complexity (AC), which deals with properties that cannot be
directly controlled by the attacker and may depend on additional knowledge
about the attack target. The higher the amount of knowledge required, the
lower the final CVSS score actually is.

3. Privileges Required (PR), which represents a metric that tells if an ad-
versary requires additional privileges in order to conduct an exploit.

4. User Interaction (UI), which describes whether an attack can be con-
ducted directly or if a possible exploit requires additional user input.

The exploitability metrics represent the effort and the technical means to conduct
successful attacks, while the impact metrics are made up of (FIRST, 2020b):

1. Confidentiality (C), which represents the impact on the confidentiality of
information when an exploit happens. It deals with possibly missing access
restrictions and information disclosure.

2. Integrity (I), which represents the impact on the integrity of data. ”In-
tegrity refers to the trustworthiness and veracity of information” (FIRST,
2020b, p. 10)

3. Availability (A), which represents the effects on the availability of a com-
ponent. An attack targeting availability results in reduced availability or
total unavailability. It usually refers to a service and whether its resources
are accessible. Attackers tend to consume the bandwidth or the processing
time of the service.

All these metrics have numbers assigned to them depending on the severity level
of the observed metric. The respective values can be found in the CVSS 3.1
specification document and the ones regarding the base score are listed in table
5.

When looking at table 5 in detail, one will notice that the value of ”Privi-
leges Required” is affected by an attribute called scope. The additional scope
attribute, which is also included inside a CVSS score but not directly considered
a metric, deals with taking different security scopes into account. More precisely,
a compromised component can influence another component within a different
security scope which could also represent a third party.

A CVSS score is created by assigning a value to each of these metrics. The
resulting CVSS is displayed in the form of a vector string which is a representa-
tion of the metrics with their assigned values in textual form. An example for a
base score in vector string format is shown below3:

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

The first part before the slash denotes the CVSS version which in this case is
3.1. The remaining slices between the slashes represent the metric with the as-
signed values. E.g. AV:N, which represents the Attack Vector with an assigned

3 https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/

S:U/C:H/I:H/A:N

40

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

Metric Metric Value Numerical Value
Attack Vector Network (N) 0.85

Adjacent (A) 0.62
Local (L) 0.55

Physical (P) 0.2
Attack Complexity Low (L) 0.77

High (H) 0.44
Privileges Required None (N) 0.85

Low (L) 0.62 if scope unchanged, else 0.68
High (H) 0.27 if scope unchanged, else 0.5

User Interaction None (N) 0.85
Required (R) 0.62

Confidentiality, High (H) 0.56
Integrity, Low (L) 0.22
Availability None (N) 0.0

Table 5. CVSS base score metric values taken from (FIRST, 2020b)

value of Network or AC:L which represents the Attack Complexity with an
assigned value of Low. All the slices that are contained inside a vector string
are represented in table 5.

After assigning values to the metrics, two equations, one that calculates the
exploitability and one that calculates the impact are combined to receive the
final base score. The resulting numerical value then gives an insight into the
criticality of a vulnerability. The vector string from before has the following
values associated:

• AttackVector (AV) - Network - 0.85
• AttackComplexity (AC) - Low - 0.77
• PrivilegesRequired (PR) - None - 0.85
• UserInteraction (UI) - None - 0.85
• Scope - Unchanged
• Confidentiality (C) - High - 0.56
• Integrity (I) - High - 0.56
• Availability (A) - None - 0.0

The calculation4 for the exploitability works as follows (FIRST, 2020b):

Exploitability = 8.22 ∗AV ∗AC ∗ PR ∗ UI (1)

This results in:

Exploitability = 8.22 ∗ 0.85 ∗ 0.77 ∗ 0.85 ∗ 0.85 ≈ 3.887 (2)

4 Please note that the abbreviated version of the values from above is utilized within
the formulas

41

The calculation for the impact starts with calculating the impact sub-score (ISS)
(FIRST, 2020b):

ISS = 1− [(1− C) ∗ (1− I) ∗ (1−A)] (3)

ISS = 1− [(1− 0.56) ∗ (1− 0.56) ∗ (1− 0.0)] = 0.8064 (4)

Afterwards the impact score is calculated depending on whether the scope is
changed or not. If the scope is unchanged, as in our case, the calculation is as
follows:

Impact = 6.42 ∗ ISS (5)

Impact = 6.42 ∗ 0.8064 ≈ 5.117 (6)

If the scope is changed the calculation requires the following equation:

Impact = 7.52 ∗ (ISS − 0.029)− 3.25 ∗ (ISS − 0.02)15 (5a)

By combining these equations the base score can be derived (FIRST, 2020b).

If the impact is 0 or smaller:

BaseScore = 0 (7)

If the scope is unchanged as in our case the formula below is used:

Base Score = Roundup(Minimum[(Impact+ Exploitability), 10]) (8)

Base Score = Roundup(Minimum[(5.117 + 3.887), 10]) = 9.1 (9)

If the scope is changed another formula applies:

BaseScore = Roundup(Minimum[1.08 ∗ (Impact+ Exploitability), 10]) (8a)

The calculation for the base score in this example yields a 9.1 which is highly
critical, as severity values range from 0 to 10. Additionally, the CVSS 3.1 specifi-
cation includes a Rating scale to divide scores into different categories depending
on the value of the score.

Table 6 shows the severity ratings for the ranges of a CVSS score.

CVSS can play an important part in the risk management of the application

42

Rating CVSS Score
None 0.0
Low 0.1 - 3.9

Medium 4.0 - 6.9
High 7.0 - 8.9

Critical 9.0 - 10.0

Table 6. Severity Rating (FIRST, 2020b)

of threat modelling. The exploitability metric of the score will be mapped as
likelihood inside the risk matrix, while the result from the impact equation can
represent the impact inside the matrix as well as provide aid with the STRIDE
classification for rules. Thus, by conducting an appropriate mapping, the CVSS
can enhance risk management by utilizing exploitability and impact metrics to
derive the severity score for the risk matrix. Moreover, the CVSS base score itself
can also represent an important part of the decision making process. In addition,
applying parts of the CVSS to threat modelling, can enhance rule creation and
enable automated severity scores and STRIDE classification.

3.6.6 NER - Named Entity Recognition

Named Entity Recognition represents a fundamental task within the topic of
Natural Language Processing (NLP) (Lei et al., 2014) and is denoted as the
”starting point for most information extraction applications”(Jurafsky & Mar-
tin, 2000, p. 761). The purpose of Named Entity Recognition is to detect en-
tities within a text and to classify them according to predefined classes. There
are various applications that utilize Named Entity Recognition in their infor-
mation extraction tasks. They range from question answering systems, machine
translation systems, summarization systems (Goyal, Kumar, & Gupta, 2017) to
news-oriented information extraction systems where focus is put on detecting
people, locations and organizations.

A listing of possible classes and examples for a news-oriented environment is
presented in Table 7.
It features very simple examples of Named Entity Recognition where only one
label per sentence is assigned. But this example still gives a good insight into
an application of Named Entity Recognition. Named entities are not always just
single words, they can also consist of multiple constituent words, such as Mt.
Sanitas and Mini Cooper in table 7. Two capitalized words may represent a
name and may be an indicator of a named entity. But also other words could
be an indicator: E.g. the degree of Dr. might indicate a possible categorization
(Jurafsky & Martin, 2000) for the following capitalized words inside the People
class. Or in a more modern example a BSc or MSc following two capitalized
words may indicate People. Even numbers might represent a possible date,
money or price entity.

43

Class Example
People Turing is often considered to be the father of modern

computer science.
Organization The IPCC said it is likely that future tropical cyclones

will become more intense.
Location The Mt. Sanitas loop hike begins at the base of Sunshine

Canyon.
Vehicle The updated Mini Cooper retains its charm and agility.

Table 7. Named entity classes and examples (Jurafsky & Martin, 2000, p. 762)

Text is often a source of ambiguity. One and the same expression may be subject
to various semantic interpretations. A proper name, for example, may well take
different meanings. Considering the term of JFK different named entity classes
could be assigned, as JFK could be the former president of the USA but also
an airport (Jurafsky & Martin, 2000). Obviously, entities may belong to various
categories.

Another example of ambiguities based on the word Washington is given by
Jurafsky and Martin:

1. [People Washington] was born into slavery on the farm of James Burroughs.

2. [Organization Washington] went up 2 games to 1 in the four-game series.

3. Blair arrived in [Location Washington] for what may well be his last state
visit.

As a matter of fact, Washington can have various meanings. In the cases pre-
sented here, it could be president Washington, an organization (in this case a
sports team) or a location such as the city named Washington. Multiple labels
seem suitable for the word Washington. Therefore, looking only at the words as
such is not sufficient and requires more context.

Named Entity Recognition approaches this problem with a sequence labelling
task (Che, Wang, Manning, & Liu, 2013). Sentences are tagged word-by-word.
A common approach to this is the IOB scheme. Where I denotes that a word
is part of a named entity, B describes the beginning of a named entity and O
represents words that are outside of named entities (Jurafsky & Martin, 2000).
The approach of sequence labelling serves the purpose of training classifiers to
label words with tags that may indicate a named entity.

When selecting the features utilized during training one should be careful
that these features are reliable predictors for the classes to be assigned. These
features do not necessarily have to be contained within the words to be classi-
fied. They may also be a representation of the context that named entities are

44

4. False Negatives (FN) are entities that are incorrectly considered irrelevant.

These measures are utilized in the following metrics for calculating the perfor-
mance of the Named Entity Recognition System (Bird et al., 2009):

Precision is a metric that compares the number of correctly classified entities
to the total number of classified named entities, including incorrectly classified
ones.

Precision =
TP

(TP + FP)
(10)

Recall represents the ratio of correctly classified entities and the total number
of entities that should have been classified.

Recall =
TP

(TP + FN)
(11)

F1 measure denotes a way of combining precision and recall within a single
score. It is their harmonic mean. The result is in the range of 0 to 1, where a
value close to 1 points out that the system is performing well while a value close
to 0 means poor performance.

F1measure =
2 ∗ Precision ∗Recall

Precision+Recall
(12)

Many applications focus on the extraction of people, locations and organizations,
which is why many libraries (Bird et al., 2009; Finkel et al., 2005; Honnibal &
Montani, 2017) offer pre-trained solutions that already offer these classes. When
it comes to the security sector, however, there are - to the best of our knowledge
and due to intense research - no pre-trained entity extractors contained within
these libraries. Only two external solution regarding cyber domain entities also
targeting CVE were found (stucco/entity-extractor , 2020; Mariani, 2020). How-
ever, (stucco/entity-extractor , 2020) did not feature pre- and postcondition and
(Mariani, 2020) was focused on Linux Kernel specific entries.

46

4 Model and Method

Section 3 provided an overview of the current capabilities of the threat mod-
elling approach at AIT and discussed technologies that the improved approach
envisaged in this master thesis will build upon. On top of this basis, an outline of
the affected steps of the threat modelling process as well as a high-level descrip-
tion of the necessary components for automatically improving the threat model
will be given. Furthermore, a generic model for representing vulnerabilities from
arbitrary sources will be introduced. This will be followed by a description of
methods for mapping between the attributes from the NVD and the vulnerabil-
ity model. Finally, the factors that influenced the model and the methods will
be discussed.

4.1 Enhancements to Threat Modelling Persued at AIT

This section provides an overview of the current threat modelling approach and
elaborates on possible improvements to be made. As discussed in section 3 the
goal of this master thesis is to enhance the current generic threat modelling pro-
cess with data from real-world applications. Although high-level information is
very well suited for the concept phase, it is not sufficient when taking the whole
system lifecycle into account.

Threats evolve over time, new vulnerabilities are detected within existing ap-
plications that may have been previously unnoticed. This takes effect especially
when third party components are integrated into the system under considera-
tion. Knowing about the exact vulnerabilities of hardware or software increases
the precision of threat analysis results and yields additional information on the
components to be integrated. Figure 8 gives an overview of the overall threat
modelling process at AIT and shows where improvements can be implemented.

As already explained in section 3 there are two models utilized within the threat
modelling approach:

Firstly, there is the system model which is a representation of the system un-
der consideration and contains all security assumptions relevant to the system.
It is a reflection of the system and its respective system components, communi-
cation channels and trust boundaries, as designed in reality.

Secondly, the threat model is currently a representation of generic threats and
weaknesses that is capable of pointing out configuration errors. This is achieved
with a rule-based approach where the rules are anti-patterns, this is to say pat-
terns that a system should not contain. The threat model represents an extensible
knowledge base, which can be extended by creating new rules.

Once threat model and system model have been developed thoroughly, the
threat analysis step is conducted which compares the two models with each
other, applies the rules to the system model and detects threats regarding the
system configuration. The resulting threat analysis report then reveals threats
posed to the system.

47

JSON file, such as vulnerability score, references and associated weaknesses. The
resulting format is the vulnerability model which will be discussed in section 4.3.

From this model it is feasible to derive rules. These rules are based on compo-
nent specific information and, thus, allow for an exact identification of vulnerable
products. Real-world information in the form of rules leverages the capabilities
of threat modelling and leads to an improved threat model.

Consequently, applying the improved threat model inside a threat analysis en-
ables the detection of real-world vulnerabilities that existing products suffer
from. The resulting threat analysis report utilizes the scoring and the detected
vulnerabilities to improve the risk treatment process. The model behind this will
be discussed in the following sections.

4.3 Representing Vulnerabilities

The vulnerability intelligence data gathered will be used to generate new rules
with real-world vulnerability information. But different repositories provide this
data in different formats. Some utilize structured formats that are XML or JSON
based. Other platforms provide their information in an unstructured format that
requires further analysis and cannot be directly integrated into the system. The
following sections will explain the derivation of a common format, an adapter-
based approach for joining information from various sources and the transforma-
tion into this common format. Afterwards, the extraction process of vulnerability
related information from unstructured content will be elaborated on.

4.3.1 Deriving the Requirements for a Vulnerability Model

First of all, a common format needs to be defined, which makes it possible
to unite the information from different sources into one common scheme that
allows for the static generation of rules. In order to represent information on real
vulnerabilities, this format must include:

1. The product that is vulnerable
2. The vulnerable versions of the product
3. The vulnerability that the product suffers from

These three attributes are the minimum requirements for creating rules that
resemble actual vulnerabilities. They also represent the minimum information
needed to identify a vulnerability within a system that utilizes third party com-
ponents.

This information is contained in the following example taken from the exploits
posted on Packetstorm5:

5 https://packetstormsecurity.com/files/tags/exploit/

50

https://packetstormsecurity.com/files/tags/exploit/

Impress CMS
︸ ︷︷ ︸

Product

version 1.4.0
︸ ︷︷ ︸

Version

suffers from a cross site scripting vulnerability
︸ ︷︷ ︸

Vulnerability

.

As shown above, the three required attributes are contained within the text.
Impress CMS represents the product name, version 1.4.0 gives information
about the affected version of the software and cross site scripting vulnerability
depicts the vulnerability. In the case of Packetstorm, the information presented
is unstructured and requires further analysis as it cannot be directly ingested
and converted into a common format. However, this can be done with Named
Entity Recognition which was discussed in section 3. The exact process of re-
trieving the data, pre-processing, creating a training set and the training of the
classifiers will be discussed in section 5.

The next example has been taken from the CVE-2020-95866:

Adobe Character Animator
︸ ︷︷ ︸

Product

versions 3.2 and earlier
︸ ︷︷ ︸

Version

have a

buffer overflow vulnerability
︸ ︷︷ ︸

Vulnerability

. Successful exploitation could lead to

arbitrary code execution
︸ ︷︷ ︸

Postcondition

.

The above sentences also contains the three attributes that are required to form
a rule. Adobe Character Animator as the product, version 3.2 and earlier, rep-
resents the version. Buffer overflow vulnerability denotes the vulnerability
that the CVE entry describes. Moreover, this entry contains a postcondition,
this is to say actions that a potential adversary can take once the vulnerability
has been exploited. In this case, a successful exploit of a buffer overflow vul-
nerability enables the postcondition arbitrary code execution. As not all CVE
entries contain postconditions, this attribute should be optional. The same
constraint is also relevant for a precondition.

When talking about the CVE, also the NVD deserves mentioning. It holds addi-
tional information on CVE entries and provides them within a REST API that
returns data in JSON format. The data contained within the NVD entry of the
previous CVE entry is shown in table 8.

The information that can be retrieved from the NVD is static and already

6 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9586

51

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9586

Attribute Example
CVE ID CVE-2020-9586
Description Adobe Character Animator versions 3.2 and earlier have

a buffer overflow vulnerability. Successful exploitation
could lead to arbitrary code execution.

CVSS Base Score 7.8
CVSS Vector String CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
References https://helpx.adobe.com/security/products/character

animator/apsb20-25.html
CWE CWE-120: Buffer Copy without Checking Size of Input

(’Classic Buffer Overflow’)
Affected Products cpe:2.3:a:adobe:character animator:*:*:*:*:*:*:*:*
Version Up to (including) 3.2

Table 8. NVD Entry based on CVE-2020-9586

provides most of the unstructured textual description of a CVE entry within
a structured format. The affected product is represented in a CPE string that
allows for automatic extraction of the product name without the requirement
of further text analysis. Furthermore, a CPE entry also contains the affected
version of a product. When taking a look at the CWE attribute, the weakness
that the product suffers from is also included. Consequently, the minimum re-
quirements for rule creation are fulfilled with this simple extraction step.

But the NVD contains more information that could improve threat analysis.
The CVSS base score, as well as the CVSS vector string can improve the risk
treatment process and the references provide aid when considering countermea-
sures.

All this information can be extracted automatically without the need for
Natural Language Processing. The only information that cannot be retrieved
from CVE/NVD without further analysis are the pre- and postcondition which
require Named Entity Recognition to be detected. Both attributes could be used
for generating attack graphs (Lallie, Debattista, & Bal, 2020; Ou, Boyer, & Mc-
Queen, 2006; Jha, Sheyner, & Wing, 2002), which will not be included inside
this master thesis but are well worth future research. Nevertheless, when con-
sidering other sources such as Packetstorm the information is presented in plain
text which requires additional steps, such as the Named Entity Recognition.

Before defining a vulnerability model, the requirements need to be specified.
These requirements are listed below:

1. It shall be possible to integrate data from various sources
2. The model shall be capable of representing vulnerabilities

(a) The affected product(s) as well as affected versions
(b) The weakness that an existing system suffers from

52

(c) The description of the vulnerability in textual form

3. The model shall contain a score (if available) to enable proper risk treatment
4. The model shall include references to advisories and solutions (if available)

The discussed requirements represent additional information that are being inte-
grated into the threat model, leveraging the capabilities of the threat modelling
process. Section 4.3.2 discusses the vulnerability model based on the derived
requirements.

4.3.2 A Model for Automated Rule Generation from Structured and Un-
structured Data Sources

To integrate information from different sources and to allow structured format-
ting as well as textual representation of vulnerability related information, a com-
mon format has been derived from the requirements discussed in the previous
section as well as from the format provided by the NVD (Byers & Owen, 2019).
Figure 10 shows a class diagram of the resulting vulnerability model.

Fig. 10. The Model for Vulnerabilities, Represented as Classes

The central element of this common format is Vulnerability. It contains a de-
scription, as well as information on the affected product(s) and the affected
version(s). If the vulnerability was retrieved from a CVE entry or other source
where an id was assigned, this is represented by by setting an optional ”vulnId”
attribute. Moreover, a vulnerability contains information about the associated

53

weakness that it suffers from. The scoring is provided inside the entity CVSSS-
core and helps in rating vulnerabilities. The entity Reference represents links
to advisories and solutions that are correlated with the vulnerability. The risk
matrix value is relevant for later risk treatment as it contains exploitability and
impact values. Finally, pre- and postcondition yield additional information on
prerequisites for an attack as well as actions or conditions that can be achieved
after exploiting the system.

In the following this class diagram representation will be explained in more detail
by providing a class by class clarification of the entities, relations and attributes.

BaseObject is the main object that contains attributes that are required by all
inheriting classes. It is the superclass for the CVSSScore, the Reference class,
the Product and the BaseObjectWithDescription. Its attributes are:

Fig. 11. BaseObject Class

• id - to assign a unique identifier for the representation within the database
• created - the date when an entry was created
• modified - the date when an entry was last modified

These attributes make the inheriting object identifiable and traceable.

BaseObjectWithDescription extends the BaseObject with a description at-
tribute. Currently, the BaseObjectWithDescription class is only inherited by the
Vulnerability class and could therefore be omitted. However, as other classes such
as Weakness may include a description in the future a decision to keep this class
as made.
Due to the fact that it adds a description and extends the BaseObject, it holds
the following attributes:

• id (inherited) - to assign a unique identifier for the representation within
the database

• created (inherited) - the date when an entry was created
• modified (inherited) - the date when an entry was last modified

54

Fig. 12. BaseObjectWithDescription Class

• description - the textual description of entities, in this case the description
of a vulnerability

Any entity that contains a description in textual form inherits this class. Conse-
quently, the entity Vulnerability utilizes the BaseObjectWithDescription as its
superclass, making it possible to include a vulnerability description in its re-
spective entries. Storing and providing this textual information contributes to
requirement 2c defined in section 4.3.1.

Please note that the inherited attributes will only be included in the follow-
ing descriptions where required for understanding, all others will be considered
implicit from here on.

Vulnerability describes the central element of the data format. It links with
all other major classes. Thus, the association of a vulnerability with a respective
weakness, the affected product(s), the CVSSScore, the references to advisories
as well as the impact and exploitability values contained in the risk matrix value
enable a representation suitable for threat modelling and the subsequent risk
management process. The sources for vulnerabilities may vary which is why the
CVE class was not directly included into the Vulnerability class, making it pos-
sible to incorporate various distinct sources.

As Vulnerability represents the central element, it holds the following attributes:

• description (inherited) - the description for the vulnerability presented
in online sources, e.g. CVE/NVD, Packetstorm

• vulnId - the ID of the vulnerability in the resource (if available)

• riskMatrixValue - a wrapper class representing the exploitability and the
impact scores for later display on the risk matrix

• score - the CVSS Base Score, as it was assigned by the creating entity (only
included if available)

• affectedProducts - a list of products that are affected by the vulnerabil-
ity. This information is required to detect vulnerabilities in the respective
components

• advisories - a list of references to advisories focusing on this vulnerability
(only included if available)

55

Fig. 13. Vulnerability Class

• associatedWeaknesses - the weakness(es) specific to this vulnerability.
It is a list because some CVE/NVD entries contain multiple CWEs (only
included if available)

• shortDescription - a short text containing only the vulnerability itself
• strideValue - The associated STRIDE value as defined in 3.4.1
• postconditions - a list of possible postconditions
• preconditions - a list of required preconditions to achieve successful attack

Except for the description of the vulnerability and the affected product includ-
ing its version(s), all attributes are optional for threat modelling. The goal here
is to include all the information that is available and improve the threat model
with new contents as long as the minimum requirements listed in section 4.1 are
fulfilled.

This class fulfills requirements 1, 2, 3 and 4 as it links all the required as well
as the optional information concerning one specific vulnerability in one place.
It is able to include the score as well as references. Moreover, the fact that it is
optional to add CVEs and represent vulnerabilities in a general form, makes it
possible to integrate different data sources.

Weakness contains an associated weakness that a vulnerability suffers from.
Its content is derived from the CWE. It only contains the id of a CWE. This
is sufficient to reveal the corresponding weakness and provide more detailed in-
formation as well as mitigation and detection strategies by allowing security
experts to look up the corresponding CWE online utilizing the id. The following
attributes are contained within Weakness:

• cweid - the id of the weakness in the CWE

56

Fig. 14. Weakness Class

The information within a CWE can provide aid when identifying weaknesses for
hardware or software systems. Especially when no references to advisories are
available, it is possible to retrieve high level mitigation strategies by consulting
the CWE dictionary. This class contributes to fulfilling requirement 2b.

AffectedProduct represents a product or range of products that are affected
by a vulnerability. It contains the product itself which could be a CPE, as well
as a simple string concatenation of vendor and the product name. If there is no
range specified then the version of the product itself is considered vulnerable.

Fig. 15. Affected Product Class

In order to represent the product ranges affected by a vulnerability, the fol-
lowing attributes are necessary:

• product - the product that is affected by the vulnerability
• version - the vulnerable version of the product
• startIncluding - a value indicating the first version that has a certain vul-
nerability. It does not necessarily have to be a zero-day vulnerability but
could rather have been introduced due to updates.

• endIncluding - a value indicating the last vulnerable version of a product. If
e.g. version 0.17 is vulnerable and there is a fix in version 0.18, endIncluding
will be 0.17.

• endExcluding - a value indicating the first invulnerable version of a prod-
uct. If e.g. version 0.17 is vulnerable and there is a fix in version 0.18, then
endExcluding will be 0.18.

57

The AffectedProduct class is relevant, due to the fact that a product could suf-
fer from multiple vulnerabilities but within different versions. Thus, allowing
the association of multiple products with multiple vulnerabilities and storing
the affected version makes them uniquely identifiable. Therefore, it contributes
to fulfilling requirement 2a.

Product presents an instance of a specific product. It contains the title of a
product as well as an indicator if it was derived from a CPE entry. This class
represents a generic product allowing for attaching arbitrary versions without
needing to create one instance per version.

Fig. 16. Product Class

The class holds the following attributes:

• title - the title of the product created from vendorname + productname

• hasCPE - boolean value indicating whether this product was derived from
the CPE

Although the CPE already contains a vast amount of products and platforms,
there are products which are not registered with the CPE, or products that were
newly developed and consequently not yet included into the CPE. This is why
this class shall take care of products that are within the CPE and products that
are not. Moreover, this class plays an important role in fulfilling requirement 2a
by outlining the product.

CPE, the Common Platform Enumeration has been chosen as a representa-
tion for products and platforms as it provides a standardized way of uniquely
identifying products. Figure 17 shows the CPE class which is an extension of
the Product class. Thus, it is an exact representation of the CPE attributes dis-
cussed in section 3.6.2.

This class has been derived from the Common Platform Enumeration: Nam-
ing Specification Version 2.3 (Cheikes et al., 2011). Thus, its attributes are:

• cpeId - the complete CPE entry as formatted string binding

58

Fig. 17. CPE Class

• part - indicates whether a product represents an application, an operating
system or a hardware device. It is of type CPEValue which can hold one of
three values: a: application, o: operating system, h: hardware device

• vendor - a value describing the creator of a product
• update - a value indicating a specific update, service pack or bug fix release
of a given product

• edition - a value for backward compatibility with CPE 2.2. It specifies
edition-related terms by the product vendor

• language - a value describing the language of the user interface of the prod-
uct, defined in RFC5646

• softwareEdition - a value indicating the class of users that the product is
aimed at

• targetSoftware - a value depicting the environment which the software is
tailored to

• targetHardware - a value depicting the instruction set architecture. (e.g.
x86, x64, Java Virtual Machine, Common Language Runtime, VMs)

• other - a value describing any other descriptive information that does not
belong to any of the other categories

• vulnerable - a value indicating whether there is a known vulnerability for
this CPE

Please note that the descriptions for the attributes ranging from part to other
have been derived from Cheikes et al.. This class is used as a representation of
known products in a standardized way. It makes the definition of a product more
fine granular and contributes to the fulfillment of requirement 2a.

Reference describes advisories on vulnerabilities. In case of a CVE/NVD entry,

59

these references can include additional information about vulnerabilities as well
as possible solutions or information on patches. Figure 18 shows the layout of
the class.

Fig. 18. Reference Class

As it is not possible to cover all the information contained throughout various
differently structured webpages, only the hyperlinks to webpages are included to
provide further guidance. The information is not further analyzed or processed.
Consequently, only the attributes contained in figure 18 are required and will be
explained below:

• url - the url of the advisory webpage
• name - the name of the security advisory which is similar to an id
• source - the originator of this information

The information gathered through the references as well as through the associ-
ated weaknesses of a vulnerability can complement each other and can give a
clearer insight into the threat landscape. This is why this class contributes to
requirement 4.

CVSSScore describes a representation of the CVSS Base Score related to vul-
nerabilities. Some more sophisticated online resources such as the NVD asso-
ciates vulnerabilities in their repositories with CVSS scores. As mentioned in
section 3.6.5, including CVSS Scores where possible can improve the capabilities
of a rule and yield information for the risk treatment process. The resulting class
is shown in figure 19.

The CVSS Score class has been derived from the format specified by FIRST,
which is also described in section 3.6.5. Moreover, the format retrieved from the
NVD also played an important role when designing this class. As the attributes
were already explained in section 3.6.5 only a short description of the attributes
and possible values will be given here:

• attackVector - indicates the required location of an attacker. Possible val-
ues are: Network, Adjacent, Local, Physical

60

Fig. 19. CVSS Class

• attackComplexity - indicates how much knowledge about a system is re-
quired to start an attack. Possible values are: Low, High

• privilegesRequired - indicates the level of privileges that are required to
start an exploit. Possible values are: None, Low, High

• userInteraction - indicates whether user interaction is required for a suc-
cessful exploit. Possible values are: None, Required

• confidentialityImpact - indicates the impact on the confidentiality of in-
formation. Possible values are: None, Low, High

• integrityImpact - indicates the impact on the integrity of information.
Possible values are: None, Low, High

• availabilityImpact - indicates the impact on the availability of a service.
Possible values are: None, Low, High

• scope - indicates whether the scope is (un-)changed. It affects the calculation
of the base score. Possible values are: Unchanged, Changed

• exploitabilityScore - refers to the calculated exploitability score
• impactScore - refers to the calculated impact score
• vectorString - represents the CVSS Base Score as string vector
• baseScore - represents the calculated CVSS Base Score ranging from 0.0 -

10.0
• baseSeverity - hints at the severity from 0.0 - 10.0 which is mapped ac-

cording to the severity rating scheme in table 6. Possible values are: None,
Low, Medium, High, Critical

The CVSS Score serves as a means to measure qualitative attributes by assigning
values to them. These attributes are included in the descriptions above. The
respective possible values for CVSSValue are listed below. CVSSScore alongside

61

CVSSValue enable the inclusion of a scoring system into vulnerabilities and
satisfy requirement 3.

CVSSValue as included in the class above represents an enumeration that
was derived from the values of the CVSS. It therefore holds all the possible values
(FIRST, 2020b).

• NONE

• LOW

• MEDIUM

• HIGH

• NETWORK

• ADJACENT aka. ADJACENT NETWORK

• LOCAL

• PHYSICAL

• REQUIRED

• UNCHANGED

• CHANGED

The above values represent all the possible settings that a CVSS Base Score con-
tains which affect the exploitability as well as the impact score. Consequently,
changing these values results in a different Base Score.

RiskMatrixValue holds the values for exploitability and impact that are also
represented in the risk matrix and is relevant for later risk evaluation as well as
risk treatment. Figure 20 shows the respective class.

Fig. 20. Risk Matrix Value Class

In order to represent the risk matrix as best as possible the attributes are the
following:

• exploitability - represents the exploitability value in the risk matrix. The
following values can be assigned from the ExploitabilityValue enumera-
tion: Very Low, Low, Medium, High

• impact - represents the impact value in the risk matrix. The following values
can be assigned from the ImpactValue enumeration: Negligible, Moderate,
Major, Severe

62

By assigning exploitability and impact scores, the corresponding field within the
risk matrix can be identified, yielding the severity of a vulnerability.

Upon reading the content of entries in Packetstorm and CVE/NVD, two addi-
tional properties were identified, namely precondition and postcondition. From
this following classes have been derived.

Precondition represents actions or conditions required to exploit a vulnera-
bility. The respective class is shown in figure 21.

Fig. 21. Precondition Class

The precondition consists of only one attribute which is explained below:

• precondition - a precondition specifies an action that must be conducted
before an attack can be started. This could be social engineering e.g.persuading
a possible victim to visit a specific link or installing malicious files.

This class also utilizes the precondition as id, as each precondition should exist
only once.

Postcondition represents possible actions that can be conducted after com-
promising a system. This class is represented by figure 22.

Fig. 22. Postcondition Class

Similar to the class before, there is only one attribute which is described be-
low:

• postcondition - a postcondition specifies an action that can be conducted
following a successful exploit. This could be arbitrary code execution after
exploiting a remote SQL injection vulnerability.

63

The Adapter Pattern allows for a simple extendability in the future when ad-
ditional databases will be added. Some of these databases contain additional
information while others focus on the essentials and the minimum requirements
when identifying vulnerabilities. One of these additions is the CVSS Score which
also needs to undergo a transformation in order to fit into the custom vulnerabil-
ity model. The logic behind this transformation will be explained in the following
section.

4.3.4 Converting CVSS to Risk Matrix

Section 3.3.3 introduced the adaptable risk matrix meant for company specific
risk management. When analyzing the process of generating rules, one needs to
consider that every rule requires an impact and an exploitability value. These
attributes can be found in the CVSS, whose exploitability shall be mapped to
the exploitability in the risk matrix columns while the impact inside the CVSS
can represent the impact rows in the risk matrix. Therefore, the results of the
calculated impact and exploitability scores can be utilized.

In order to find an accurate mapping, the severity ratings of a CVSS require
examination. To provide a better overview, severity ratings are repeated below
in table 9.

Rating CVSS Score
None 0.0
Low 0.1 - 3.9

Medium 4.0 - 6.9
High 7.0 - 8.9

Critical 9.0 - 10.0

Table 9. Severity Rating (FIRST, 2020b)

As mentioned before in section 3.3.3, the risk matrix contains values between 1
and 5. Table 9 also holds 5 possible values: None, Low, Medium, High, Criti-
cal. Therefrom, it is feasible to derive a mapping that satisfies the allowed values
between 1 and 5 for the risk matrix. A possible mapping is described in table 10.

However, simply mapping severity is not sufficient. This section has already
dealt with representing the impact and exploitability scores within the risk ma-
trix. Accordingly, the maximum values for impact and exploitability need to be
determined. By applying the formula for calculating the impact and exploitabil-
ity scores as well as setting the attributes to the worst case values specified in
table 5 the maximum impact and exploitability scores can be derived.

67

CVSS Score Risk Matrix Severity
0.0 1

0.1 - 3.9 2
4.0 - 6.9 3
7.0 - 8.9 4
9.0 - 10.0 5

Table 10. Severity Score to Risk Matrix Severity Rating

In order to receive the worst case result for exploitability, the following values
are required:

• Attack Vector - Network - 0.85
• Attack Complexity - Low - 0.77
• Privileges Required - None - 0.85
• User Interaction - None - 0.85

Applying formula 1 for calculating the exploitability score from section 3.6.5 and
setting the values from above, leads to the following result:

Exploitability = 8.22 ∗ 0.85 ∗ 0.77 ∗ 0.85 ∗ 0.85 ≈ 3.887 ≈ 3.9 (13)

The resulting exploitability score represents the maximum possible value for this
metric. It can be divided into four categories that resemble the structure of the
risk matrix. These values range from 0.0 to 3.9. Consequently, the score can be
mapped to the values associated with the exploitability inside the risk matrix.
Table 11 shows the exploitability mapping.

Exploitability Score Risk Matrix Exploitability
0.0 - 0.65 Very Low
0.66 - 1.95 Low
1.96 - 3.25 Medium
3.26 - 3.9 High

Table 11. Exploitability Score to Risk Matrix Exploitability Mapping

Due to the distribution of the CVSS score criticality as depicted in table 10, it
was decided to divide 3.9 by 3 to retrieve the sizes of the appropriate ranges for
the mapping. As a consequence, a scope of 3 ranges - each of a size of 1.3 - were
derived. Two of the resulting values were then utilized as the range for Low
and Medium. The third range was split into two values of 0.65 (2 ∗ 0.65 = 1.3)
whereVery Low andHigh represent the lower and upper bounds for the values.

68

The same procedure can be conducted with the impact score. The maximum
for its attributes are listed below.

• Confidentiality - High - 0.56
• Integrity - High - 0.56
• Availability - High - 0.56

By applying formula 3 for calculating the impact score from section 3.6.5 and
setting the values from above, the following result is received for the impact
subscore (ISS):

ISS = 1− [(1− 0.56) ∗ (1− 0.56) ∗ (1− 0.56)] = 0.914816 (14)

To calculate the maximum result, we need to assume a change of scope. There-
fore, formula 5a applies:

Impact = 7.52∗(0.914816−0.029)−3.25∗(0.914816−0.02)15 ≈ 6.0477 ≈ 6 (15)

Again the maximum value can be divided into four categories resembling the
impact rows inside the risk matrix. The values range from 0.0 to 6.0. The map-
ping was conducted in the same way as for the exploitability. Table 12 displays
the impact mappings.

Impact Score Risk Matrix Impact
0.0 - 1.0 Negligible
1.1 - 3.0 Moderate
3.1 - 5.0 Major
5.1 - 6.0 Severe

Table 12. Impact Score to Risk Matrix Impact Mapping

These resulting exploitability and impact values can afterwards be used to de-
fine the severity within the risk matrix. Risk is a subjective matter, which is
why distinct use cases may require different risk evaluation and risk treatment
strategies. Different individuals also consider risk differently (ISO/TC 262 Risk
management, 2018). Of course, a CVSS Score could be mapped to the generic
risk matrix described in section 3.3.3 but a more accurate mapping can be ob-
tained by adapting the existing risk matrix according to the formulas used within
the CVSS.

The step size was the main factor that influenced the resulting matrix. As lower
and upper bounds were only half in size and because it was necessary to represent
the minimum value of 0.0 and the maximum value of 10.0, these minimum and

69

maximum values were utilized. In terms of exploitability this means 0.0 and 3.9,
whereas for the impact 0.0 and 6.0 were used. As the ranges for values inside are
specified in both directions, the mean was defined to be the basis for calculation.
This means that for exploitability Low is represented by 1.3 and Medium by
2.6. As far as the impact is concerned, Moderate is attributed a value of 2 and
Major is defined as 4.

Now that the mapping for the exploitability and impact values has been ex-
plained, the results of the exploitability and impact score need to be combined
in order to retrieve the final risk matrix. As the worst case is considered here,
the CVSS Base Score formula that includes a scope change must be included
in the calculation. Consequently, the values for the risk matrix are calculated
according to formula 8a.

When considering an exploitability of Very Low and an impact of Severe, the
result is the following:

Base Score = Roundup(Minimum[1.08 ∗ (6.0 + 0.0), 10]) = 6.5 (16)

This can be done for every element in the risk matrix. Another example for
calculating the Base Score for the matrix is shown below with an exploitability
of Low and an impact of Severe:

Base Score = Roundup(Minimum[1.08 ∗ (6.0 + 1.3), 10]) = 7.9 (17)

This calculation can be conducted by computing the Base Scores with all respec-
tive impact and exploitability values. The result is a 4x4 risk matrix presented
in table 13.

Exploitability

Very Low Low Medium High

Impact

Severe 6.5 7.9 9.3 10.0
Major 4.4 5.8 7.2 8.6
Moderate 2.2 3.6 5.0 6.4
Negligible 0.0 1.5 2.9 4.3

Table 13. CVSS based Risk Matrix

Due to the definition of the CVSS score as well as its calculation, impact has
more effect on the overall score than exploitability, which is made evident in the
corresponding table cells. In the CVSS, high exploitability but negligible impact
receives a lower score than severe impact and very low exploitability. Please note
that the risk matrix specified in table 13 contains crisp borders which may lead
to a severity classification that is slightly higher or lower than the original CVSS

70

score.

Simply representing the CVSS score mapped inside a risk table is still not suffi-
cient. To represent the CVSS based risk matrix within the range of 1 to 5, one
last conversion is required. This conversion can be deduced from table 10. By
mapping the values from the CVSS score to severity, a conformant risk matrix
can be derived. The resulting matrix is presented in table 14.

Exploitability

Very Low Low Medium High

Impact

Severe 3 4 5 5
Major 3 3 4 4
Moderate 2 2 3 3
Negligible 1 2 2 3

Table 14. CVSS Risk Matrix mapped to values from 1 to 5

Table 14 shows results that differ from the generic risk matrix presented in
section 3.3. In contrast to the generic matrix, the mapped CVSS-based risk ma-
trix is asymmetric due to the fact that the impact takes more effect. This is also
reflected by table 11 and table 12. While the steps have a size of 0.65 and 1.3 for
the exploitability, the steps of 1.0 and 2.0 for the impact are bigger. Generally,
the newly created matrix treats risk more critically. However, the score must be
derived depending on an organization’s needs. Therefore, this matrix should be
considered a suggestion. Different organizations may configure their risk matri-
ces differently.

Although the unmapped matrix in table 13 contains a 0.0 entry, this value is
mapped to 1. This is not only for reasons of conforming to the constraint of
allowing only values between 1 to 5 inside the risk matrix, but also to observe
the risk. A value of 0.0, which is defined as none in CVSS, would mean that
there is no risk although there is a known vulnerability. Consequently, a mapped
value of 1 defines that the given vulnerability should still be inspected and be
considered in the risk treatment process.

As the risk treatment process not only depends on quantifying risks correlated
with vulnerabilities or threats, the type of threat posed to the system is also
highly relevant. This is why a rule also requires a categorization which the next
section will elaborate on.

71

into classifying vulnerability descriptions into STRIDE categories. Therefore, a
machine learning approach would be required alongside supervised training.

As the categorization of threats and vulnerabilities is not the main topic of
this master thesis, the machine learning approach to cover this issue is consid-
ered out of scope but may be adopted in future research.

Consequently, a different solution was selected to deal with this problematique.
As the CVSS includes the values none, low, high for confidentiality, integrity and
availability, a mapping of these three categories can be achieved. By selecting the
highest rated category from the CIA model, information disclosure, tampering,
and denial-of-service categories can be assigned to the resulting rule.

Should a vulnerability have multiple maximum values, then there must be a
user controlled assignment to a rule. However, this approach ignores spoofing,
repudiation and elevation of privilege. Consequently a manual review might be
necessary.

Now that all the relevant pieces for the model have been discussed, these need
to be brought together. The following section provides an explanation on how
these components work together and how manual rule creation can be improved
by automation.

4.3.6 An Automated Rule Creation Process

The rule creation process starts with a basic step of data collection. An HTTP
client is utilized to connect to existing vulnerability or exploit databases and re-
trieve data from them. In case of the CVE entries within the NVD this data is
exposed via a REST API. It can be accessed through parameterized URLs and
returns NVD entries in JSON format based on the specified query params.

In case of Packetstorm, the data is not presented through a REST API, but
needs to be accessed with a webcrawler. Therefore, the HTML needs to be ana-
lyzed and the entries are extracted programmatically in plain text format.

In order to keep the required traffic to a minimum and for testing purposes,
the initial requests are stored on disk for further processing.

Storing the data in a file before undergoing further analysis is mainly because
of two reasons. Firstly, for simplifying the implementation process. Writing a
programme conducting data extraction, may yield coding errors. This is either
due to a misconception of an attribute which may be mapped incorrectly, or
due to libraries that throw an exception in a case that the programmer did not
consider. Moreover, establishing a connection, downloading all the required in-
formation and afterwards running into an error is more time consuming than
working with a local file.
Secondly, a part of the data contained within these files can be utilized as train-

73

ing and test sets for the classifiers used in Named Entity Recognition.

Of course, this step of storing information will be omitted in the future and
direct connections with the databases will be established without taking further
steps in between. But for the course of this master thesis keeping this informa-
tion stored is considered as required.

Once the information has been stored inside a file, the classifiers for the Named
Entity Recognition need to be trained. This is not a common step in the rule
creation process but is rather done once. Consequently, only the resulting entity
extractor will be utilized in the extraction step. The training of the classifiers
will be covered in section 5.

The entity extraction step requires the data to be loaded from disk. This
can be done using the adapter pattern to allow for different formats. Depending
on the information source and its quality regarding the structure, it can either
be directly mapped to the vulnerability representation model or be staged for
further analysis.

When further analysis is required, the Named Entity Recognition step is ex-
ecuted. This is done to analyze unstructured text and retrieve categorized por-
tions of the text - named entities. In order to keep the database clean and to
only provide valid and consistent data, extracted information requires validation.

As information is extracted automatically when utilizing a machine learning
approach, there will likely be errors. To counter this, a validation step is intro-
duced. This way the error rate can be reduced, thus keeping the quality of the
data inside the database high. Moreover, validation can provide an insight into
aspects that may have been neglected or unnoticed during training. Therefore,
the information gathered during this step will flow into improving the classifiers.

In the validation step, a human entity reviews the extracted data and mod-
ifies the results where necessary before they are mapped to the vulnerability
model. Once the transformation is complete, the vulnerability can be inserted
into the database where it is linked with existing products and weaknesses. A
flow diagram outlining the described topics is presented in figure 28.

Once entities have been extracted they will be stored inside a relational database
constructed of the entities specified in the vulnerability model. This enables a
static representation of the information in a common format capable of rep-
resenting various information sources. From this static format it is feasible to
generate rules without the need of manual user interaction. For demonstration
purposes, the GUI of the prototype in section 5.1.5 will display the rules before
storing the data into the database. However, in the future the static represen-
tation based on the vulnerability model will enable the automated creation of

74

rules even for a different or adapted grammar.

Therefore, the rule generation step can be kept simple. The vulnerability data
is loaded from the database in the common vulnerability format. Afterwards, the
generator component, which will be explained in section 5, statically generates
rules according to the provided data.

Once the three steps of data collection, entity extraction and rule gen-
eration have been conducted, these generated rules can be integrated into the
threat model leveraging its capabilities as a digital twin of real-world systems.

The following section elaborates on the methodological approach and what in-
fluenced the decision for technologies for the vulnerability model and the rule
creation process.

4.4 Methodological Approach

In order for the reader to comprehend what factors influenced the decisions in-
side this thesis, the following sections shall provide insight. The requirements for
creating a rule had to be specified before deciding on the platforms to use. The
focus was put on platforms that offer data which is valid for longer time periods.
After this, connections to the platforms were established to find out in what
form the information is returned to decide on the mechanisms to use. From this
a common format was derived. However, not all information was directly usable.
Therefore, some initial data was downloaded and annotated to train a named
entity extractor. Finally, possible formulations of a rule from the provided data
were evaluated.

In the following, the methodological approach to building a rule generator from
online resources will be explained.

4.4.1 Identifying Requirements for Rule Creation

Before starting off with online research on the information that can be integrated,
the minimum requirements for uniquely identifying a vulnerability within a com-
ponent had to be specified. Therefore, a feasibility study was conducted and
the entries in the CVE were analyzed. Originally only three attributes, namely
product, version and vulnerability were considered as relevant. These three
attributes are contained within every CVE entry.

Afterwards the capabilities of the existing rule structure were analyzed in or-
der to decide whether a representation of component-based vulnerabilities is
possible. As the grammar allows for specifying arbitrary attributes, it was found
feasible to create rules according to CVE entries.

76

Once the task was considered feasible, multiple different platforms were ana-
lyzed and their offerings were compared to the capabilities of threat modelling.

4.4.2 Analyzing Platform Offerings

In this phase existing blogs, threat intelligence platforms, and vulnerability
databases were consulted. The aim was to learn about their capabilities and
to find out about the information they contain.

When considering component-based security targeted at specific products, blogs
and articles did not yield sufficient results. They were mostly about security in
general an the abstract ideas of what a system should (not) look like. Articles
represented a more abstract and high level form of threat intelligence. Moreover,
they contained information on attacks that were attempted, exploits that hap-
pened or attacker methodologies, mostly without component specific data.

Wang and Chow provide a list of articles and blogs. These served as a starting
point for the search. Among the consulted resources were: securelist7, fireeye8,
krebsonsecurity9 and schneier10. Although this information is suited for high
level decision making, it does not fulfill the requirements for representing spe-
cific components and their vulnerabilities and has thus not been included in the
further process of generating rules.

The next type of resource that was analyzed were threat intelligence platforms
such as AlienVault OTX11 and MISP12. These present vital information for run-
ning systems in the form of indicators of compromise. The existence of these
indicators of compromise may hint at a possible intrusion or existence of mal-
ware in a system, e.g. an IP address, a file hash, or a specific file name. These
platforms and their data are necessary for running systems, they are not ap-
plicable to the current state of threat modelling, as it is based on the system
architecture as well as the utilized components.

Short-lived threats such as malicious IP addresses, will not be included in the
threat model, as these are often valid only for short time periods. Furthermore,
also long-lived information such as file hashes and file names that are used in
anti-virus software will not be included as well, for they do not affect the system
architecture. Of course, firewall configurations and anti-virus software need to be
considered during system development. Therefore this information should only
affect the system design on a high level. It should be included but only for the
conceptualisation of a system as it is too specific and probably already invalid
after a short time period.

7 https://securelist.com/
8 https://www.fireeye.com/
9 https://krebsonsecurity.com/

10 https://www.schneier.com/
11 https://otx.alienvault.com/
12 https://www.misp-project.org/

77

https://securelist.com/
https://www.fireeye.com/
https://krebsonsecurity.com/
https://www.schneier.com/
https://otx.alienvault.com/
https://www.misp-project.org/

The last area for searching for information was vulnerability intelligence. Mani-
fold, databases representing vulnerabilities and exploits are in use. The starting
point in this area was the CVE, which provided the structure of product, ver-
sion as well as vulnerability and led to the NVD. The latter provided a much
higher amount of additional information including severity ratings for vulnera-
bilities. This facilitated the use of more information within a rule. Furthermore,
as the CPE and the associated weakness are included within an entry inside
the NVD in a structured format, the first idea was to integrate this information
without the need for natural language processing.

Unfortunately, the CVE/NVD does not cover all vulnerabilities but only the
ones that have CVE IDs assigned by CNAs. This is why more research in this
area was conducted. Among these resources were Packetstorm13, 0day14, Vul-
nDB15, VulDB16 and Rapid717. As VulnDB, VulDB and Rapid7 represent vul-
nerability and exploit databases that require payment, these have currently not
been added to the rule generation process. Consequently, Packetstorm and 0day
have been selected for further analysis.

Although 0day claims to be ”the ultimate database of exploits and vulnera-
bilities and a great resource for vulnerability researchers and security profession-
als”(0day Today Team, 2020) they also offer exploit tools that require payment.
Therefore, this resource was omitted for ethical reasons. This is why Packetstorm
was chosen as second resource.

Packetstorm entries contain the product, version and vulnerability in
textual form and require further analysis with natural language processing. Un-
fortunately, Packetstorm does not assign CPEs or severity scores. But still the
minimum requirements for representing rules are fulfilled. When analyzing the
entries within Packetstorm, it was discovered that pre- and postconditions could
also be extracted from some of the entries. As many CVE entries also reflect
both of the prior within their description this idea was adopted to be also inte-
grated in the analysis of CVE entries. This is why CVE/NVD entries undergo
the entity extraction step as well, although they were originally not considered
relevant for text analysis.

But before going into detail about the extraction, the data had to be collected.

4.4.3 Connecting to Platforms

As the NVD offered their data feeds within JSON format, the original idea was
to download and integrate these JSON files by extracting the contained infor-
mation. Although the goal of retrieving vulnerability data from these JSON files

13 https://packetstormsecurity.com/
14 https://en.0day.today/
15 https://vulndb.cyberriskanalytics.com/
16 https://vuldb.com/de/
17 https://www.rapid7.com/

78

https://packetstormsecurity.com/
https://en.0day.today/
https://vulndb.cyberriskanalytics.com/
https://vuldb.com/de/
https://www.rapid7.com/

could be fulfilled, a better solution was found soon. The NVD offers access to a
REST API through which all CVE entries can be queried. This makes it easier
to retrieve specific entries or entries according to their modification dates, as
CVE entries may also be modified after being published.

Connecting to the REST API is simple and clean. But there are some restric-
tions. The NVD tries to prohibit denial-of-service attacks and thus, limits the
amount of requests that can be executed. Consequently, there should be a few
seconds of idle time within the application before setting off a new request.(Byers
& Owen, 2019)

As Packetstorm does not provide a REST API or something similar, the con-
nection to Packetstorm was established with a simple HTTP client and a we-
bcrawler. By studying the structure of the HTML, the important tags alongside
their identifiers could be found and data extracted therefrom.

To join this information together, a common format had to be defined.

4.4.4 Common Format

When identifying the minimum requirements for representing component-based
vulnerabilities within rules, there was already a rough idea of a format. But the
analysis of the format returned from the NVD (Byers & Owen, 2019) gave sur-
prising insights into a more sophisticated representation of vulnerability data.
Instead of simply mapping a product alongside its version as two attributes, it
provided additional value in including the Common Platform Enumeration, as
well as ranges of version of an affected product. Furthermore, the presence of
possible solutions and identified weaknesses affected the final format consider-
ably.

The inclusion of a severity rating was not regarded feasible in the beginning
as only text analysis of descriptions was considered which did not include any
information on the severity of events. Originally the value for impact and ex-
ploitability of a rule or in this case of a vulnerability should be set manually.
But the CVSS score provided in NVD entries allowed for the automatic derival
of impact and exploitability values for risk treatment. It took some effort to find
a mapping meeting the conditions of the risk matrix. There were basically three
ideas:

1. The first one was assigning custom values to each of the attributes used in the
metrics of a CVSS score. The sum of either the exploitability or the impact
values should then be mapped to the values utilized within the risk matrix
depending on a certain threshold. This idea was discarded once the CVSS
specification (FIRST, 2020b) was consulted, which contained the real values
for each of the attributes. As the mapping would not have been correct, it
was not considered scientific.

79

2. As the maximum values are 3.9 for the exploitability and 6.0 for the impact
score, a mapping from 1 to 4 was considered to match the requirements of
the risk matrix. The idea behind this was to utilize percentual values in
order to map 6.0 to a maximum of 4.0 by simply dividing 4.0 by 6.0, and
analogously dividing 4.0 by 3.9. This enabled the mapping of arbitrary val-
ues within the allowed range to the four impact and exploitability values
contained in the risk matrix. But defining fitting thresholds for these trans-
formed values seemed to to be a trial and error approach which is why this
idea was discarded as well.

3. In order to not over-complicate the mapping between the CVSS score and the
risk matrix, the score was simply divided by the number of possible impact
and exploitability values. This way an intermediate risk matrix could be
derived. By assigning the original severity ratings from none to critical to
values from 1 to 5 a mapping corresponding to the CVSS could be derived,
thus reflecting a CVSS correctly within the risk matrix.

Once a common format had been defined, the next step was to conduct some
experiments concerning data extraction from unstructured text.

4.4.5 Data Extraction

Before conducting data extraction, it was necessary to define labels required for
later categorization of the named entities. Originally the following values were
considered relevant:

• Vendor
• Software
• Hardware
• Version
• Vulnerability
• Postcondition

A small training set containing approximately 40 sentences was manually an-
notated with these labels. This resulting training set was then used to train a
CRF classifier in the Stanford NER tool. Afterwards the classifiers were tested
against arbitrary entries of Packetstorm followed by a qualitative analysis. Con-
sequently, the resulting categories for the named entities were evaluated. More
details about CRF classifiers can be found in (Finkel et al., 2005).

The results for version and vulnerability were promising. As far as the post-
condition is concerned, there was not enough training data containing this label
to draw any assumptions. However, this configuration turned out to be prob-
lematic as it requires the classifiers to distinguish between vendors and soft-
ware/hardware. As it often manual research is necessary to find out the vendor
of a product as well as differentiating between a software and hardware product,
these three values were omitted and combined into one single entity, namely the
product. Moreover, during the qualitative analysis it was found that some entries

80

contain preconditions, which proved to be interesting to include for the future.
Consequently, the existing labels were adapted to the following:

• Product
• Version
• Vulnerability
• Precondition
• Postcondition

The original 40 sentences were then re-annotated with the new labels where all
labels containing vendor, software or hardware were renamed to product. The
resulting model yielded better results on Packetstorm entries than the original
model. In order to evaluate the effectiveness on CVE/NVD entries the trained
classifiers were also applied to CVE/NVD descriptions. While the classifiers per-
formed well on text that was formulated in a similar way as the text contained
within Packetstorm entries, it performed poorly on entries that deviated from
that structure.

Due to the fact that CVE/NVD entries contain structured information the
product, version and vulnerabilities do not lie in the focus of the extraction for
these entries. Consequently, these entries require more focus on preconditions
and postconditions.

Therefore, we made a decision to train three distinct entity extractors. The
first one focuses on Packetstorm entries only. The second one is trained only on
CVE/NVD entries where focus was put on entries containing pre- and postcon-
ditions. The third and final one contains a combination of both. The results of
these three distinct models will be discussed and evaluated in section 5.2.

As the final result of the envisaged solution requires the generation of rules suit-
able for threat analysis, the following section will discuss potential approaches
to achieve this goal.

4.4.6 A Rule Structure Supporting Component-Based Threat Modelling

The main topic for generating rules was to find a way to represent the affected
product and version as complete and compact as possible within a rule. As the
entries within the selected vulnerability databases are specific to components
rather than connections between components, it has turned out that these rules
can be formulated in a very simple way. To identify the vulnerability for a com-
ponent the ”type” and the ”tv” attributes containing product and version infor-
mation must be contained within a rule. The ”connector” related information
can be omitted. In order to find a suitable representation for the provided vul-
nerabilities in the form of rules, three different approaches have been identified
and analyzed:

1. Formulate the product and the version as the type of the component
2. Formulate the product as the type of the component and the version as a

tagged value

81

3. Formulate the product as well as the version as tagged values of any type

Taking a closer look at approach number 1 yields a number of problems as the
approach is not dynamic enough. An example for such a rule is displayed below:

Type(”BIG-IP 15.0.0”)

Although the rule above is capable of revealing threats within BIG-IP 15.0.0, it
cannot cover version ranges, as it is specific to only version 15.0.0. Consequently,
one would need to formulate one rule for every affected product version, which
will result in a vast amount of rules. Moreover, it would be necessary to create
diagram elements for every version that is available.

Approach number 2 yields an improvement over the previously explained type
of rule. An example is given below:

Type(”BIG-IP”).tv(version = ”15.0.0”)

By removing the version from the ”type” attribute it is possible to omit the
necessity of creating one rule per element as well as the creation of new diagram
elements for every version. This approach only requires one new element and
one new rule to be defined.

But we can still do better by utilizing approach number 3, exemplified in the
following illustration:

Type(”ANY”).tv(product = ”BIG-IP” AND version = ”15.0.0”)

In this example, the product name has been moved from ”type” to the tagged
value ”product” which eliminates the need of creating specially crafted elements.

As the third approach produced the least overhead, it was selected for later
use in the prototype.

This section discussed a model for storing vulnerabilities, methods to convert
various formats into a fitting representation and the methodological approach
of the single steps of this thesis. These topics serve as a basis for the prototype
discussed in the following section.

82

chine. However, the implementation was written in Java 8 and is, therefore, plat-
form independent. Another reason behind the utilization of Java is the fact that
most of the development in this area at AIT has been conducted within Java.
Consequently, a possible future integration will be rather seamless. Gradle18 is
used as a build tool for the prototype allowing for a simple setup anywhere.

In order to give the user a clearly arranged layout, a GUI has been created with
JavaFX19, enabling a painless modification of rules and their input data. JavaFX
is a library that allows for the creation of a GUI represented as XML file. With
a tool called Scenebuilder20 it is possible to drag and drop GUI components into
an application window that can later be utilized within an application. JavaFX
allows for a fast GUI definition. Although the diagram contains only a JavaFX
GUI component, it actually also consists of a GUI controller which fills the GUI
with information. Moreover, it transforms the user validated information into
the vulnerability model suitable for storage.

Depending on the settings, the GUI controller holds the interface IAdapter which
is of type PacketstormAdapter or NVDAdapter. The approach described here is
basically the same as the one described in section 4.3.3 with the only difference
that in our case the ”Client” is the GUI controller. Both adapter implementa-
tions work in the same way. They provide a method to connect to the database
and store the retrieved resources inside a file.

Another method allows for loading this stored information and then transform
it into a representation that the GUI can handle. This step also involves Named
Entity Recognition. As literature research has revealed that many approaches
using information extraction (Vadapalli et al., 2018; Joshi et al., 2013; Satya-
panich et al., 2019; Syed et al., 2016) depend on Stanford CoreNLP (Manning
et al., 2014), it has been decided to also go down that road. There are also other
NLP libraries such as NLTK (Bird et al., 2009) and SpaCy (Honnibal & Mon-
tani, 2017), which are commonly used. However, it has to be taken into account
that they rely on python as a basis and have therefore not been considered for
the implementation.

Both adapter implementations contain a method to store the extracted informa-
tion that is displayed in the GUI. A PostgreSQL database is used for persistent
storage. It is an open source database and is already utilized by AIT’s implemen-
tation of threat modelling that we build upon here. As the prototype works with
objects, Hibernate21 is used for Object Relational Mapping (ORM). ORM is an
”attempt to make incompatible systems cooperate, communicate, and exchange

18 https://docs.gradle.org/current/userguide/userguide.html
19 https://openjfx.io/
20 https://www.oracle.com/java/technologies/javafxscenebuilder-1x-archive

-downloads.html
21 https://hibernate.org/orm/

84

https://docs.gradle.org/current/userguide/userguide.html
https://openjfx.io/
https://www.oracle.com/java/technologies/javafxscenebuilder-1x-archive-downloads.html
https://www.oracle.com/java/technologies/javafxscenebuilder-1x-archive-downloads.html
https://hibernate.org/orm/

information” (Kouraklis, 2019, p. 1). More specifically, it enables mapping the
Java objects to a relational database and vice-versa.

The process behind the prototype is a simple ETL (extract, transform, load)
process of the data warehouse (Mehler-Bicher et al., 2019). The extraction step
is conducted in the phase where the online repositories are queried for their in-
formation in its original format. The transformation consists of two sub-steps.
For the training and its respective annotation process, data cleansing was ini-
tially performed on the dataset in order to only allow reasonable documents.
Single outliers could drastically reduce the measured performance of the classi-
fier if contained in the test set and would never be useful if inside the training
set. The other sub-step concerning the transformation is the application of the
NER classifier on the documents. The results are then put into the format suit-
able for vulnerability representation. Finally, the prototype allows for loading
data that has been validated by an expert into the database by clicking a ”save”
button.

This section dealt with a description of the architecture, technology choices and
concepts forming the foundation of the prototype. The following sections will
elaborate on the prototype implementation in more detail.

5.1.1 Connecting to NVD and Packetstorm

As the application requires data from online resources, connections have to be
established. This is realized utilizing the adapter pattern. When connecting to
the NVD or Packetstorm different instantiations of the adapter are used while
still communicating through the same interface with the core application. This
is due to the fact that the data for NVD and Packetstorm need to be accessed
in different ways.

5.1.1.1 Connecting to NVD

As far as the NVD is concerned, REST services can be used to retrieve vulner-
abilities. This way all the resources (vulnerabilities) can be accessed by setting
parameters within a URL, yielding a result in JSON format. In order to retrieve
a specific CVE entry one can conduct a query in the following form (Byers &
Owen, 2019):

https://services.nvd.nist.gov/rest/json/cve/1.0/<cveId>

<cveId> denotes a placeholder for an existing CVE ID. However, retrieving
specific CVE entries is not sufficient as the end-user will most likely not know
about the CVE ID regarding a certain product. Moreover, we need to know the
vulnerable products in order to identify their vulnerabilities. Therefore, a collec-
tion of vulnerabilities can be retrieved via the REST API. This can be done by

85

sending a request to the following base URL (Byers & Owen, 2019):

https://services.nvd.nist.gov/rest/json/cves/1.0

Additionally, specific result collections can be retrieved by adding query pa-
rameters (Byers & Owen, 2019).

At the time of writing, the prototype utilized two of the query parameters,
namely startIndex and resultsPerPage. The startIndex allows setting off
continuous requests by increasing the startIndex for every request to retrieve
new data. The resultsPerPage parameter limits the maximum number of re-
trieved elements within a collection. This parameter has proved vital when con-
necting to the NVD. Although the page size is limited to 5000 entries, the proto-
type’s resultsPerPage are limited to a value of 500. This is due to the fact that
larger sizes e.g. 700 and 1000, in some cases results in too large data amounts,
causing content to be cut off and yield an ”unexpected end of file error”. The
size of 500 yielded complete results.

A query as it is utilized within the prototype is shown below. It retrieves the
first 500 results.

https://services.nvd.nist.gov/rest/json/cves/1.0?resultsPerPage=500&
startIndex=0

Of course, there are approximately 140.000 CVE entries. Consequently, the pro-
totype iterates while incrementing the startIndex until all CVE entries are
retrieved. To outline the process of retrieving data, the pseudo-code for the con-
nection to the NVD is given in algorithm 1.

When taking a closer look at the algorithm one might notice the extra ”while”
loop if the connection could not be established as well as ”wait” statements.
These two clauses are required due to the configuration of the NIST firewall.
In order to prohibit denial-of-service attacks, NIST limits the access to their
database (Byers & Owen, 2019). As the documentation does not mention the
amount of required waiting time between requests, a decision to wait 30 seconds
when a connection cannot be established has been made. Moreover, there is a
waiting time of 7 seconds before setting of a new request with increased startIn-
dex. This way it is feasible to retrieve all the data from the NVD at once.

Another important aspect to consider is that during the prototype development,
the downloaded data was first stored in a file which was later used as input for
the application. The reason for this was to reduce network traffic and speed up
application development while accessing the data locally. Furthermore, having

86

Algorithm 1: Retrieving data from NVD

begin
initialize startIndex;
initial query to get total results;
while there are more results do

create request with new startIndex;
while connection not established do

try to establish a connection;
if connection successful then

store data;
break;

else
wait 30s;

increment startIndex;
wait 7s;

store data in file;

static files simplified the analysis of the contents in terms of what was offered
and how data could be accessed. Additionally, it enabled extracting the data for
later training of the classifiers.

In the future this static process will change to a more dynamic approach where
only the newest data will be queried utilizing a modification date within the
requests which is supported by the NVD. More specifically, these parameters
are called modStartDate and modEndDate. Hence, specific entries before,
after or in between certain modification dates can be accessed. A query could
look like the following:

https://services.nvd.nist.gov/rest/json/cves/1.0?
modStartDate=2019-12-31T00:00:00:000 UTC-00:00

The spring framework provides the libraries for establishing a connection to
NVD’s REST API. The utilized classes are:

• org.springframework.web.client.RestTemplate - to establish a connec-
tion, retrieve the data in JSON format and map it to generated classes

• org.springframework.web.util.UriComponentsBuilder - to build the
URL with its query parameters

Due to the fact that the NVD provided its own custom format, a representation
of the JSON file had to be created as java classes. Therefore, the idea was to use
a class generator called org.jsonschema2pojo to create classes from a JSON

87

schema. Although there is a schema22 provided by the NVD, it did not represent
the JSON data returned by the NVD REST API at the time of writing. Conse-
quently, the required classes were directly generated from the JSON file which
contained all NVD entries. This way it was feasible to generate classes without
the need of programming the exact representation by hand. It enabled the map-
ping of the JSON file to java objects, thus, simplifying the latter mapping to the
custom format which was described in section 4.3.2.

The data retrieval for Packetstorm proved to be simpler as it did not require
any waiting time or mapping to an intermediate format. It will be described in
the next section.

5.1.1.2 Connecting to Packetstorm

In contrast to NVD, Packetstorm does not provide a RESTful interface to ac-
cess resources in XML or JSON format. It works with HTML webpages. Con-
sequently, an approach to generate classes representing intermediate objects is
not applicable. Although Packetstorm offers data within an RSS feed, it does
not support historic data. Therefore, an analysis of the returned HTML pages
has been conducted and relevant contents have been isolated.

As there is no structured information within a Packetstorm entry, the descrip-
tion and the published date have been considered as the most important aspects.
Figure 30 shows an excerpt of an HTML page in Packetstorm. Every <dl> tag
with class=”file” represents an entry on the web page. The nested objects with
class=”detail” hold the vulnerability description. Knowing this, it is feasible
to loop through all entries on the webpage and extract their data.

For the purposes of this master thesis only the exploit section of Packetstorm was
considered. Other categories in Packetstorm are advisories, tools and whitepa-
pers. However, they have not been regarded as relevant as advisories are mostly
linked to CVE entries which are already covered by connecting to the NVD.
Moreover, tool promotion and papers do not lie in the focus of this thesis.

As Packetstorm provides its data on webpages, there is a default limit of 25
entries per page. Consequently, navigation between those pages is required. This
can be done by accessing the following URL and incrementing the<pageNumber>
starting from 1.

https://packetstormsecurity.com/files/tags/exploit/page<pageNumber>

The connection to Packetstorm as well as the data retrieval process is outlined
in algorithm 2.

22 https://csrc.nist.gov/schema/nvd/feed/1.1/nvd cve feed json 1.1.schema

88

For this purpose, the spring framework is used to connect to Packetstorm. Fur-
thermore, a webcrawler contained in the Jsoup library is utilized to parse the
HTML. Therefore, the Packetstorm adapter makes use of the following classes:

• org.springframework.web.client.RestTemplate - to establish a connec-
tion and retrieve the HTML page

• org.springframework.web.util.UriComponentsBuilder - to build the
URL with its query parameters

• org.jsoup.Jsoup - to parse the retrived HTML into a document
• org.jsoup.nodes.Document - the document representation of the HTML

file
• org.jsoup.nodes.Element - An HTML element containing tags, attributes
and child nodes

• org.jsoup.nodes.Elements - A list of elements. Relevant when filtering for
the class ”file” within the document

In contrast to the data contained in the NVD, the content of Packetstorm is
unstructured and no XML or JSON schema is provided. Thus, there is no inter-
mediate format for storage. However, only the description of an entry in Pack-
etstorm is relevant and consequently, no additional structure is required before
undergoing the Named Entity Recognition step. This leads us to the next section,
the training of the named entity extractors.

5.1.2 Training of the Named Entity Extractors

Before applying a named entity extractor to plain text, it is necessary to train a
classifier. This requires the annotation of documents in order to form a training
and a test set. For this annotation step the tool doccano (Nakayama, Kubo,
Kamura, Taniguchi, & Liang, 2018) with the sequence labelling configuration
has proved to be useful. It provides a neat user interface enabling the creation
of labels beforehand and assigning shortcuts to each of them which allows for a
rapid annotation process.

Also other approaches to annotation were tested out, namely ”.tsv” files in-
side Excel or the BRAT23 rapid annotation tool. Annotating with ”.tsv” files
was considered useful only when annotating smaller sets.
It is easy to lose track of the sentence structure due to the fact that it requires
tokenized sentences that are annotated word by word where each words presents
a row. Although BRAT is an established tool, doccano has been chosen over it
due to the fact that it provides a more appealing user interface and user interac-
tion in general. Moreover, doccano allows the import of a single file that is split
line by line instead of requiring multiple individual files as input.

As specified in section 4.4.5 the labels utilized for classification are Product,

23 https://brat.nlplab.org/about.html

90

https://brat.nlplab.org/about.html

Version, Vulnerability, Precondition and Postcondition. Four examples
of annotated documents are contained in figures 31, 32, 33 and 34.

Figure 31 shows a standard entry within Packetstorm. It contains a product,
version, vulnerability and postcondition.

Fig. 31. Annotated example from Packetstorm

While product and version are straightforward and usually represented in the
same structure of a product followed by its version, vulnerability and postcondi-
tion require more specification. In case of entries within Packetstorm the vulner-
ability is often introduced with a ”suffers from” and ended with ”vulnerability”.
Postconditions are in most cases preceded by an ”allows for”. So whenever there
is a ”suffers from”, the sequence is labelled as vulnerability, while sequences
with a previous ”allows for” are categorized as postcondition. The chosen for-
mulations are only exemplary and documents are not limited to this wording.
However, a large amount of documents is based on these.

The next example as shown in figure 32 contains multiple versions as well as
multiple vulnerabilities.

Fig. 32. Annotated example from Packetstorm with multiple versions

As before, the structure is product followed by version. In this case multiple
versions including ranges are contained within the entry. Consequently, we have
defined a guideline to combine ranges inside one single version label that can
later be split. However, additional ranges are labelled individually. Moreover,
when there are multiple vulnerabilities, multiple labels are provided.

As Packetstorm rarely provides preconditions, the following two examples fo-
cus on entries regarding the CVE/NVD. Figure 33 illustrates a vulnerability
containing a precondition.

91

Fig. 33. Annotated example from NVD including precondition

While product and version are provided in the same structure as before, addi-
tional information can be gained here. The ”authenticated user” indicates that
authentication is required in order to exploit the vulnerability. Moreover, in con-
trast to Packetstorm CVE/NVD entries usually do not contain the term ”suffers
from”. Vulnerabilities within the text can come in various forms. In this case
the ”bypass security” vulnerability is preceded by ”could allow an authenticated
user to”. Furthermore the postcondition that results from the security bypass is
given after the ”and”.

The next example as provided in figure 34 describes a different formulation.

Fig. 34. Annotated example from NVD with different formulation

As before the text requires further understanding in order to annotate the en-
tities correctly. In general, wordings like ”local attacker”, ”remote attacker” or
”authenticated user” refer to preconditions. So these often but not always refer
to specific word sequences instead of being preceded by specific formulations.
However, in case of the example shown in figure 34 - ”an attacker must first
obtain the ability to” - definitely indicates a precondition. A formulation such
as ”results from” indicates a vulnerability in the system. Whereas, ”results in”
or ”can leverage” introduces postconditions.

The examples above illustrate considerations for the annotation process. It is
important to mention here that entries may also be phrased differently and that
not all word constructs can be included here. The text has been annotated to

92

the best of our knowledge and reviewed.

Once the annotation had been fully conducted, the file was exported as JSON
format. However, in order to train a CRF classifier contained within the Stanford
NLP library, a conversion to ”.tsv” format was required. Therefore, the text was
programmatically tokenized and already created labels were assigned word by
word. A complete list of all the annotated documents, as well as the program
code can be found on the DVD whose content is explained in annex C. For later
evaluation three CRF-based named entity extractors were trained based on the
annotated files. One extractor for Packetstorm, one for NVD and one contain-
ing training data from both sources were implemented. The results in terms of
precision, recall and F1 measure will be evaluated in section 5.2.

After discussing the approach for labelling the named entities, the following sec-
tion will elaborate on how the output of the resulting named entity extractors
has been included into the final application.

5.1.3 Integrating the Named Entity Extractors

Now that the annotation process has been discussed, this section will give insight
into how the extracted information is utilized within the prototype.

The extracted information is mapped to the format described in section 4.3.2.
NVD entries are already structured and all the information except for pre- and
postcondition can be directly extracted. But Packetstorm provides information
only in unstructured form. Therefore, in context of Packetstorm all applicable
attributes within the model are filled, based on the results of the entity extractor.

This is important especially when it comes to the versions of a specific prod-
uct that are affected by a vulnerability. The NVD provides this information as
CPE entries and additionally contains ranges by specifying ”versionStartInclud-
ing”, ”versionEndIncluding” and ”versionEndExcluding” (Byers & Owen, 2019).
Packetstorm in contrast, requires this information to be extracted from text. In
terms of a single version this is not an issue, as it can be directly specified after
the extraction step. However, a little bit more effort is required when ranges of
products are included. Examples and mappings are given below:

• versions 15.0.0 through 15.1.0.3 - can be mapped to the model as ”startIn-
cluding” with a value of 15.0.0 and ”endIncluding” with a value of 15.1.0.3

• prior to 9.2.1 - can be mapped as ”startIncluding” with a value of ”*” and
”endExcluding” with a value of 9.2.1

As depicted above, entity extraction alone is not enough in terms of versions as
they may require additional processing in order to be mapped to the model.

Pre- and postcondition as well as the vulnerability are also extracted and dis-
played as text, enabling a more compact description. Although NVD already

93

provides information in the form of the CWE, the vulnerability is extracted
from text anyway to give further insight into the issue.

As not all information needs to be mapped from both data-sources, the adapter
pattern helps to create two different processes to achieve this aim. The entity
extraction step is not conducted within the main programme, but within the
adapters to allow for two different CRF classifiers to be used. Only their output
in the form of the vulnerability model is fed back into the main programme
where the information is displayed and may be adapted by the end-user.

The resulting information can then be utilized to formulate a rule. This topic
will be covered in the next section.

5.1.4 Generating Rule Text

Section 3.4 already gave an explanation of what a rule must contain as a whole
and that this information is extracted partly from text and partly from struc-
tured information sources and then fed into a rule. But for this information to be
revealed after an analysis, the rule text (anti-pattern) must be specified. Some
examples for component-based rules that can already be represented were dis-
cussed in section 4.4.6. This section will provide some additions.

When considering an entry from Packetstorm, we can extract the product and
the version which are the requirements for generating the rule text that will
be evaluated against the system model during an analysis. All this enables the
identification of vulnerable system components. On the one hand, when only
individual versions are considered vulnerable this task is quite simple as only
the specific versions need to be specified. On the other hand, ranges are cur-
rently not supported when conducting an analysis. Consequently, it is necessary
to introduce new keywords to the grammar. Proposals for such keywords are
discussed below. The following values for ”startIncluding”, ”endIncluding” and
”endExcluding” refer to the vulnerability model which was explained in section
4.3.2.

In case of affected products where the values ”startIncluding” and ”endInclud-
ing” are specified, the keyword ”BETWEEN” could be used, to allow the
formulation of a rule text with regard to such a range. A corresponding example
is shown below:

Type(”ANY”).tv(product = ”BIG-IP” AND (version BETWEEN(”15.0.0”,
”15.1.0.3”) OR version BETWEEN(”14.1.0”, ”14.1.2.5”)))

The structure inside ”BETWEEN” allows for specifying lower and upper
bounds of version ranges.

94

When it comes to affected products containing ”startIncluding” and ”endExclud-
ing”, the keyword could be ”BETWEENEX”. An example would be analogous
to the one above which is why it will be omitted here. The difference to ”BE-
TWEEN” is that ”BETWEENEX” defines a lower bound that is included
in the analysis but the upper bound presents a version where the vulnerability
has already been solved.

In other cases the version may be defined as ”prior to...” or ”before ...”. For
this, the keyword ”BEFORE” could be utilized. Such a configuration is indi-
cated when the ”version” or ”startIncluding” are specified as ”*” depicting that
any version version is affected, accompanied by an ”endExcluding”. An example
is given below:

Type(”ANY”).tv(product = ”McAfee Web Gateway” AND (version
BEFORE(”9.2.1”)))

Additionally, it is also possible that the ”endIncluding” value is specified, which
depicts that all previous versions including the specified version are affected by
a vulnerability. This could be represented with the ”UNTIL” keyword and is
analogous to the example above.

In contrast to zero-day vulnerabilities as it is the case for rules utilizing the
keyword ”BEFORE” or ”UNTIL”, vulnerabilities may be introduced in a
certain version of software or hardware. If there is no available fix yet, then
only the value for ”startIncluding” is set. This basically means that all versions
starting from the specified entry are affected. Therefore, the keyword ”FROM”
could be a possible way for representation. An example rule for this case is dis-
played below:

Type(”ANY”).tv(product = ”Linux linux kernel” AND (version
FROM(”4.8”)))

These representations are not yet possible. Moreover, it currently not feasible at
all to include ranges without adding every possible version one by one. However,
ranges could be integrated in the future, enabling a simpler representation. As
far as the implementation of the prototype is concerned, the creation of rules is
based on these newly introduced keywords and done programmatically.

In order to validate the data that is extracted and to create valid rule text,
the following section introduces a GUI enabling a validation process.

95

5.1.5 Validating the Information

As even well-trained NER systems yield incorrect results, there is always a cer-
tain error rate when developing software in the area of natural language process-
ing. The application developed here is relevant to the security domain. Conse-
quently, the results should be as correct as possible in order to identify existing
security threats. Therefore, the error should be as low as possible in order to
omit the incorrectly identified threats which the system actually does not suffer
from. More importantly, threats that are incorrectly not identified although they
are relevant to the system must be kept at a minimum.

Sentences might be formulated differently or contain special characters which
the extractor does not recognize. Possibly, they were previously unknown to the
extractor as some special cases were not included within the training set. Or
they may have been included in the training set, but to an extent that their
weight is too low to be identified correctly. Furthermore, word sequences could
be incorrectly categorized as certain named entities although they are not rele-
vant which might produce wrong results.

For these reasons a graphical user interface has been developed to give the end
user insight into the rules to be generated and to enable a revision of the ex-
tracted data. The complete GUI is shown in figure 35. This GUI reflects every-

Fig. 35. Complete GUI

96

thing that that is required for storing vulnerabilities and has been specified so
far:

• the Description
• the ID taken from the online resource (if available)
• the Product(s)

NOTE: The columns inside the GUI were renamed for better understanding.
The ”Exact Version” represents a specific version of a product. ”From” de-
picts ”startIncluding”, ”To (Including)” stands for ”endIncluding” and ”To
(Excluding)” represents ”endExcluding”.

• the References (if available)
• the identified Vulnerabilities
• the Weakness (if available)
• the Precondition (if available)
• the Postcondition (if available)
• the CVSS score mapped to the allowed risk values (if available)
• the STRIDE category (if available)
• the Rule Text corresponding to the vulnerability

By selecting one of the two buttons Get CVE/NVD or Get PS the end user
can select the data source to generate rules from. In the following, each part of
the GUI will be explained in detail.

5.1.5.1 Describing the GUI for a Packetstorm Entry

The description field is simply an HTML text viewer. After running entity
extraction on the provided text, the resulting named entities are matched again
with the text which is afterwards colorized utilizing the HTML style attribute.
An example is given in figure 36.

Fig. 36. Description field of the GUI

For each type of entity a different color was chosen in order to highlight the
original text. This step was inspired by the Stanford NER programme (Finkel
et al., 2005) which was used for the experiments before integrating the workflow

97

It has been specified that the originally generic web application is an angu-
lar.js application in version 1.7.1. Moreover, the Web server is a Wildfly server
in version 19.5.2. Finally, the database server is hosting a PostgreSQL database
in version 11.3.

By analyzing this system configuration with some newly created rules, new vul-
nerabilities will be revealed. Examples are given in tables 15, 16 and 17.

Example 1 Cross Site Scripting in angular.js
Description angular.js prior to 1.8.0 allows cross site scripting. The

regex-based input HTML replacement may turn
sanitized code into unsanitized one. Wrapping ”<
option>” elements in ”<select>” ones changes parsing
behavior, leading to possibly unsanitizing code.

Product angular angular.js
EndExcluding 1.8.0
Vulnerabilities cross site scripting
Weakness CWE-79
Postcondition possibly unsanitizing code
CVSS 5.4
Exploitability MEDIUM
Impact MODERATE
References https://lists.apache.org/thread.html/rfa2b19d01d10a

8637dc319a7d5994c3dbdb88c0a8f9a21533403577a@
%3Cozone-issues.hadoop.apache.org%3E,
https://snyk.io/vuln/SNYK-JS-ANGULAR-570058, ...

Generated Rule Text Type(”ANY”).tv((product=”angularjs angular.js” &
version BEFORE(”1.8.0”)))

Table 15. Example of a vulnerability about cross site scripting in angular.js taken
from CVE-2020-7676

Table 15 displays a rule regarding the web application. As specified above, it is
an angular.js 1.7.1 application. When taking a closer look at table 15 one can
see that ”EndExcluding” is set to 1.8.0 and no other version attribute has been
set. Therefore, our application is affected by this vulnerability due to the fact
that every version ”BEFORE” 1.8.0 suffers from cross site scripting. Moreover,
the associated weakness is CWE-79: ”Improper Neutralization of Input During
Web Page Generation (’Cross-site Scripting’)”, and the postcondition describes
that an exploit may lead to an unsanitization of code. By looking up the ex-
ploitability and impact values inside the risk matrix specified in table 14 we
can derive a severity of 3 which matches the medium CVSS value of 5.4. When
considering risk treatment, this is a vulnerability which experts may want to fix.

105

Example 2 Memory Disclosure in PostgreSQL
Description Postgresql, versions 11.x before 11.5, is vulnerable to a

memory disclosure in cross-type comparison for
hashed subplan.

Product postgresql postgresql
StartIncluding 11.0
EndExcluding 11.5
Vulnerabilities memory disclosure
Weakness CWE-125, CWE-200
CVSS 2.2
Exploitability LOW
Impact MODERATE
STRIDE INFORMATION DISCLOSURE
References https://www.postgresql.org/about/news/1960/,

https://bugzilla.redhat.com/show bug.cgi?id=CVE-
2019-10209

Generated Rule Text Type(”ANY”).tv((product=”postgresql postgresql” &
version BETWEENEX(”11.0,11.5”)))

Table 16. Example of a vulnerability about memory disclosure in PostgreSQL taken
from CVE-2019-10209

In table 16 we can see a memory disclosure vulnerability affecting our Post-
greSQL database server. In this case, the specified version 11.3 lies within the
range of the vulnerable version 11.0 and 11.5, where 11.5 is excluded and, there-
fore, not considered vulnerable anymore. Consequently, a rule created from this
input must utilize the suggested keyword ”BETWEENEX” when checking
for vulnerabilities of that range. Furthermore, this vulnerability has two CWEs
assigned which provide further information to the experts. In general, this vul-
nerability is considered less severe as utilizing the risk matrix as lookup table
yields a severity level of 2. It is well possible that an organization is willing to ac-
cept the resulting risk. However, depending on the application domain, as well as
an organization’s objective it may also be fixed by applying mitigation measures.

The final example that is exemplified in table 17 is a deserialization of untrusted
data in Wildfly. All versions up to 20.0.0 are affected. As our version 19.5.2 is
included, our product lies within the range and is therefore vulnerable to de-
serialization of untrusted data (CWE-502). In this case the exploitability score
is low while the impact score is classified as severe. This is why the matching
risk matrix value sets a severity score of 4. Consequently, an organization will
consider transferring that risk if possible. In case the component is necessary to
reach their objective, it will mitigate that risk.

106

Example 3 Deserialization of Untrusted Data in Wildfly
Description A vulnerability was found in Wildfly in versions before

20.0.0.Final, where a remote deserialization attack is
possible in the Enterprise Application Beans(EJB) due
to lack of validation/filtering capabilities in wildfly.

Product redhat wildfly
EndExcluding 20.0.0
Weakness CWE-502
CVSS 7.5
Exploitability LOW
Impact SEVERE
References https://bugzilla.redhat.com/show bug.cgi?id=CVE-

2020-10740
Generated Rule Text Type(”ANY”).tv((product=”redhat wildfly” &

version BEFORE(”20.0.0”)))

Table 17. Example of a vulnerability about deserialization of untrusted data in Wildfly
taken from CVE-2020-10740

The presented examples represent only a portion of potentially detected vulnera-
bilities. A server could for example run multiple web applications with a different
basis (e.g. angular.js, vue.js). Moreover, the machine that the web-server is run-
ning on could be further specified. Maybe there is even other software running on
the machine. Although this additional information might not be directly relevant
for the built application itself, it is very well necessary to include everything that
is known into the evaluation. An application that is not coupled to the system
may still pose a threat in case it is exploited.

For simple identification of a vulnerability, a description and the product with
its version attributes are sufficient. Nevertheless, the examples above include
additional information about vulnerabilities that can inform decision and will
have their impact on risk treatment.

This section discussed results of the rule generation utilizing the illustrative
example from section 3. In the following, measurement results regarding the
Named Entity Recognition task will be explained.

5.2.2 Measurement Results

Section 3.6.6 introduced means to measure (not) correctly identified entities.
Therefore, this section will deal with the respective measures and compare the
results of three approaches towards the named entity extraction task. In order
to get statistically relevant results, the experiments were conducted 100 times.
Moreover, the original sets were shuffled for every iteration and afterwards split

107

into a training and a test set.

To omit the effect of outliers that appear only once in the whole dataset and are
totally different in their structure in contrast to the other documents, they were
removed from the respective datasets. Although these outliers would not have
a drastically negative effect on the training set, the measurement results would
be affected intensely if contained in the test set. E.g. one document in Packet-
storm contained approximately 70 versions in a format different from any other
document, that, if not contained in the training set would boost the number of
false negatives extremely.

The training set size has been defined to be 70% of the original set which served
for training the named entity extractor. Consequently, the resulting entity ex-
tractor has been tested against a set with a size of 30% of the original set.
Precision, recall and F1measure will be displayed for each of the five categories:
product, version, precondition, postcondition and vulnerability. Moreover, the
number of true positives, false positives and false negatives will be illustrated as
well. Please note that the values in the following tables are rounded.

5.2.2.1 Results of the Packetstorm Named Entity Extractor

The first entity extractor that will be discussed here is the one consisting only
of entries from Packetstorm. A total of 238 entries were annotated. For each
iteration 167 annotated documents were put into the training set. The test set
consists of 71 entries. The measurement results are contained in table 18.

Precision Recall F1measure TP FP FN
Product 0.964 0.912 0.937 65.87 2.47 6.38
Version 0.943 0.887 0.913 60.82 3.66 7.85
Precondition 0.0 0.0 0.0 0 0.053 2.94
Postcondition 0.689 0.416 0.504 3.72 1.8 5.46
Vulnerability 0.856 0.834 0.845 66.54 11.26 13.33
Total 0.911 0.847 0.878 196.95 19.24 35.78

Table 18. Measurements for the Packetstorm classifier with 238 entries

In terms of the categorization of a product, the results seem quite promising.
The precision tells us about the accuracy of the detected product entities. It has
a value of 96.4% and is, consequently, very high. Moreover, the recall concerning
the product is an excellent outcome as well, as it measures all correctly identified
entities by all that should have been identified. 91.2% of the entries that should
be labelled were correctly categorized. As for the weighted average of precision
and recall, namely the F1measure, the resulting value is 93.7%.

108

When taking a look at the identified version, the values for precision and re-
call are also favorable. Although the results are not as good as for the product,
they are still quite close to each other. This probably results from the fact that a
large amount of Packetstorm entries start with the product name accompanied
by the specification of the version. Furthermore, the structure within entries is
quite similar.

The poor outcome for the precondition entity can be attributed to the fact that
the entries in Packetstorm contain only a marginal quantity of preconditions.
Consequently, it is unlikely that a random training set contains enough entries
to correctly identify preconditions. Moreover, the test set must also contain en-
tries including a precondition to be detected.

In terms of the postcondition, the extractor produced much better but still only
mediocre results. As far as the precision is concerned it has a fair outcome of
68.9%. However, a recall of 41.6% is still pretty low. When taking a look at the
F1measure, a little bit more than 50% is not a very good result and shows us
that precision and recall are not very well balanced in this case. But as for the
precondition, the amount of postconditions included in Packetstorm entries was
still relatively low.

A more encouraging result is the vulnerability category. The precision as well as
the recall are located in the low to mid 80 percentages, which results from the
fact that vulnerabilities often come in the form of a word sequence ending with
”vulnerability”.

In general, the total results are highly satisfactory. An overall precision of 91.1%
tells us that this amount of identified entities is categorized correctly. The some-
what lower result for the recall of 84.7% is still satisfying, as human interaction
is required for validation of the resulting rules anyway. Even the F1measure is
quite high with it being 87.8% which tells us that precision as well as recall have
provided good results.

The homogeneous structure of most of the Packetstorm entries is an impor-
tant contributor to the results shown in table 18. In contrast, the low rate of
annotated entities regarding pre- and postconditions yielded mediocre perfor-
mance. To enhance the performance of the classifier, more training data with
special regard to pre- and postconditions would be needed.

This section has dealt with the extractor trained on Packetstorm entries only.
Therefore, the next section will describe the results of the NVD based extractor.

5.2.2.2 Results of the NVD Named Entity Extractor

As far as the NVD NER classifier is concerned, a total of 244 entries were anno-
tated. As before the entries were shuffled and then divided into a training and

109

test set. The training set consists of 171 documents, while the test set contains
73 NVD entries. Table 19 contains the results of the measurements.

Precision Recall F1measure TP FP FN
Product 0.861 0.732 0.791 65.68 10.73 24.32
Version 0.878 0.814 0.844 72.47 10.03 16.58
Precondition 0.819 0.662 0.731 27.86 6.15 14.29
Postcondition 0.641 0.543 0.587 36.71 20.46 31.13
Vulnerability 0.760 0.598 0.669 51.75 16.4 34.72
Total 0.800 0.678 0.734 254.47 63.77 121.04

Table 19. Measurements for the NVD classifier with 244 entries

Again, the precision for product and the version are fairly high, due to the
similarity in the word sequence. Nonetheless, the results of the NVD extractor
are a bit worse than for the Packetstorm classifier. As CVE descriptions inside
the NVD utilize various different formulations, the product and version names
are not always mentioned at the beginning of an entry. In many cases they are
located somewhere in the middle of a sentence. Therefore, the word sequence
itself is an indicator, but in contrast to Packetstorm the positioning inside the
sentence as well as the context surrounding this sequence may be arbitrary. This
makes it more complicated as a product may consist of an arbitrary number of
words where sometimes even the user is unsure of how to categorize this infor-
mation. The arbitrary position as well as long product names are reasons why
the recall for a product here is much lower than for the Packetstorm extractor.
Considering the heterogeneity of the data F1measures of 79.1% and 84.4% are
satisfactory results.

In terms of the detection of preconditions, the NVD based classifier outperforms
the Packetstorm extractor. 81.9% of the classified entities are classified correctly.
However, in comparison the recall for the precondition is rather low due to the
high amount of false negatives in relation to the amount of true positives.

Assigning a postcondition or a vulnerability label can be quite cumbersome, for
the human annotator as well as for the classifier. Although a precision of 76% for
the vulnerability label is generally not a bad result, the result of 64.1% for the
postcondition is far from optimal. The reason behind this is that postconditions
and vulnerabilities themselves often use the same wording which is adapted in
the classifier and introduces ambiguity. Therefore, assigning the correct label is
strongly correlated to the context and the surrounding word sequences. This is
also why the recall for both of these measures is below 60% and why the number
of false positives for the precondition is high. To counter this, a larger training
set would be required to trim the classifier to certain contexts instead of relying

110

too much on simple wording.

The total results are acceptable but could be better. Moreover, the heterogene-
ity within the training data affects the resulting classifier. In the future a larger
training set could be used in order to further enhance the performance of the
named entity extractor and to reduce the effect of ambiguity.

The last two sections have dealt with entity extractors specific to the domains
of Packetstorm and the NVD. In order to evaluate synergies between entity
extractors, a combined classifier has been developed based on both data sets.

5.2.2.3 Results of a Combined Named Entity Extractor

The combined entity extractor has been trained and tested based on 238 doc-
uments from Packetstorm and 244 from the NVD. This makes a total of 482
entries. For the experiments, both datasets were merged and randomized. From
this a training set of 338 and a test set of 144 were created. As before, measure-
ments in terms of precision and recall were conducted. The results are listed in
table 20.

Precision Recall F1measure TP FP FN
Product 0.889 0.817 0.852 131.66 16.48 29.6
Version 0.904 0.856 0.880 133.2 14.14 22.27
Precondition 0.803 0.614 0.694 27.1 6.57 17.29
Postcondition 0.633 0.544 0.584 42.11 24.63 35.49
Vulnerability 0.810 0.715 0.759 119.1 28.19 47.46
Total 0.835 0.750 0.790 453.17 90.01 152.11

Table 20. Measurements for the combined classifier with 482 entries

On the one hand, the extractor produces worse results in terms of product and
version as far as Packetstorm is concerned. On the other hand, the precision and
the recall for both categories are better than in the original NVD extractor. The
reason for this behaviour is the fact that product and version in NVD entries
differ from their equivalents in Packetstorm due to different surrounding con-
texts.

The precision for the precondition of 80.3% for the combined extractor is very
close to the precision of the original NVD extractor with 81.9%. However, the
recall is a bit lower. The good precision being almost the same as for the NVD
extractor is due to the amount of preconditions contained in the training data for
the NVD. In contrast to that, Packetstorm hardly contained any preconditions.
Consequently, this result is closely related to the NVD classifier.

111

When considering the ambiguity of postcondition and vulnerability based on
the wording, the result for vulnerability lies somewhere in the middle between
the two distinct extractors while the detection of the postconditions is worse.

It may seem that the combined classifier with a total precision of 83.5% and a re-
call of 75% performs better than the extractor specifically tailored to CVE/NVD
entries. But the results here do not represent a test against only CVE/NVD en-
tries but a test against the combined NVD and Packetstorm documents. Conse-
quently, the combined named entity extractor should be directly tested against
the test set from Packetstorm and the test set derived from the NVD.

5.2.2.4 Applying the Combined Named Entity Extractor to Packetstorm
and NVD Test Sets

For the following experiments the combined named entity extractor was trained
on 50% Packetstorm and 50% CVE/NVD data, in contrast to a completely
randomized training. More precisely, it was trained on exactly 167 Packetstorm
documents and respectively 171 from the NVD. Nonetheless, the experiment was
conducted 100 times with varying training and test sets for each of the two data
sources. The combined extractor was then applied to test sets for Packetstorm
and CVE/NVD documents separately. The results are displayed in tables 21 and
22.

Precision Recall F1measure TP FP FN
Product 0.941 0.912 0.926 66.04 4.14 6.35
Version 0.936 0.896 0.915 60.93 4.14 7.2
Precondition 0.054 0.088 0.031 0.08 0.97 2.53
Postcondition 0.525 0.588 0.544 5.33 5.12 3.76
Vulnerability 0.875 0.829 0.851 66.13 9.44 13.74
Total 0.893 0.856 0.874 198.51 23.78 33.5

Table 21. Measurements for the combined classifier on the Packetstorm test set

For the precision the classifier performed worse than its Packetstorm tailored
counterpart in terms of product, version and postcondition categories. While
product and version precision fell only marginally, the postcondition’s precision
fell by as much as 16.4%. The recall, however, is the same as far as the prod-
uct is concerned. For the version it is slightly higher and for postcondition it
went up by 17.2%. This effect is due to the larger training set which results in
more postconditions being detected as the number of false negatives is reduced.
Nonetheless, the amount of false positives also rises due to formulations coming
from the NVD training set.

As for precondition and vulnerability categories the precision marginally rose

112

due to the fact that the training set consisted of a much larger amount of pre-
conditions and vulnerabilities that were annotated for the NVD.

The total results are slightly worse in terms of precision, but a bit more favourable
in terms of recall. When taking a look at the F1measure, the Packetstorm spe-
cific result is 87.8% while the F1measure presented here yields 87.4%. These
results are very close. Although the recall for the combined classifier is a little
bit better than for the tailored extractor, the F1measure for the specific classi-
fier is slightly higher. In our case the balance between precision and recall is the
main decision factor. Therefore, the F1 measure is the preferable metric. On the
one hand, information should not be accidentally added. On the other hand, as
much information as possible should be detected. Moreover, product and ver-
sion serve as our anti-pattern specifiers and thus, are the main point of interest
in terms of Packetstorm entries. Therefore, the extractor specifically tailored to
Packetstorm should be favoured.

However in terms of NVD entries, the precondition and the postcondition are of
main interest, as the other data can usually be extracted in a structured manner.
Product, version and vulnerability are basically additional information. Table 22
holds the results for the NVD test set.

Precision Recall F1measure TP FP FN
Product 0.856 0.741 0.794 66.12 11.21 23.37
Version 0.877 0.824 0.849 72.28 10.11 15.39
Precondition 0.809 0.649 0.718 26.88 6.34 14.74
Postcondition 0.665 0.536 0.592 37.11 18.88 32.36
Vulnerability 0.737 0.600 0.661 51.77 18.59 34.45
Total 0.796 0.679 0.733 254.16 65.13 120.29

Table 22. Measurements for the combined classifier on the NVD test set

On the one hand, the precision for product and version slightly dropped as
before. On the other hand, the recall went up by a bit. Furthermore, the classi-
fier performed worse for both measures in terms of precondition. As far as the
vulnerability category is considered, the precision fell while the recall slightly
went up. In terms of postcondition, there is an increase of precision by 2.4%
with a precision value of 66.5% with a slight negative effect on the recall. The
results are generally very close to the trimmed extractor.

For the NVD the most important features are the pre- and postcondition, as the
other information can mostly be extracted from the structured JSON format.
Some additional information can be gained by also extracting the vulnerability
which is also an influence factor for the following decision.

113

A look at the F1measure reveals that the NVD extractor should be selected
over the combined extractor. It is higher in both precondition and vulnerability
categories and only slightly lower for the postcondition. Moreover, the overall
F1score is also preferable. Therefore, the specific extractor should be selected for
this data source.

In general, the classifiers tailored to a specific type of document performed supe-
rior to the combined extractor. However, depending on the relevant information,
an extractor with an overall lower scoring - but with higher scoring in a specific
category - may be selected.

The results shown here could change by utilizing training sets of different sizes
for Packetstorm and the NVD. Moreover, a larger training set may also increase
precision and recall of all the extractors. Depending on the use case, one might
use specifically tailored extractors which probably perform better on the same
data source. However, if it is only possible to include one single extractor for
multiple data sources, a combined ”all-purpose” classifier can be used.

114

6 Lessons learned

This section provides an overview on what was learned while writing this mas-
ter thesis. It covers topics that came up during the planning, as well as the
implementation phase.

6.1 Describing the Architecture at an Early Stage Reveals Errors

Before starting the implementation phase, the vulnerability model was planned
in the form of a class diagram. Although it seemed sound in the beginning,
the process of describing the classes one by one and explaining their inter-
dependencies provided useful insight in terms of reusability and extendability
of the code. What was found here is that describing a system with a first draft
of the architecture can reveal planning errors and, thus help in redesigning the
system. Moreover, a model should be revised multiple times before starting the
implementation as it can reduce the need of time-consuming modification and
redefinition in the future.

6.2 Exploitability is Preferable over Likelihood

In terms of likelihood it is an open challenge to find reliable data as it is ac-
tually a probability value. In addition, it is difficult to compute as there are
many parameters involved depending on system components (to be) used. With
exploitability it is feasible to act fact based. It can be determined more easily
than the likelihood due to the fact that a technical description can serve as a
basis for the exploitability value. Therefore, in the context of threat modelling,
exploitability should be preferred over likelihood.

6.3 STRIDE is NOT for Classification

An important point that came up during the course of this master thesis is the
fact that the intention behind STRIDE is to identify possible threats posed to
the system or utilized components. Therefore, it is often hard to utilize it for
threat classification as there may be multiple possible categories for a single
threat. Consequently, it was not considered one of the main aspects, which is
also why the mapping from CIA to STRIDE was chosen over a deeper additional
text analysis.

6.4 A Better System Model Yields Better Results

One of the major purposes of this work is the improvement of an existing threat
model. This is done by adding information concerning product specific vulner-
abilities from online resources. Up-to-date information allows for fine-granular
modelling with regard to real components. However, enhancing the threat model
is only half the job. It is of great importance to ensure that the system model is

115

defined as precisely as possible and contains - in the best of all cases - product
specific information. This leverages the capabilities of threat modelling as not
only generic information is considered during the analysis but also real-world
threats and vulnerabilities are drawn into consideration. A precise threat model
involves a great deal of effort for the system developer. Nevertheless, this effort
can help in reducing the exploitability of the system and thus, may reduce cost
in the future.

6.5 Representing Products and Versions as Rules Produces a Large
Overhead

On the one hand, having a large amount of rules leverages the threat model as a
digital twin. On the other hand, internal discussions have revealed that having a
high amount of rules slows down the analysis process drastically, as all rules are
always checked against the system model. Therefore, a more favourable approach
towards this is to utilize the vulnerability model inside the analysis without the
need of defining rules. This could be done by storing the data regarding the
product specific vulnerabilities inside a local database. This way, the products
can be be queried directly, reducing the number of rules and making the scan
faster. However, this is currently not possible and would require modifications
in the original application. Nonetheless, the approach will be integrated in the
future.

6.6 Pre- and Postcondition Add Value

The pre- and postcondition were identified after conducting the first experiments
with a very simple classifier inside the Java Stanford NER tool. The original idea
was to extract product, version and vulnerability only. During the annotation
process and after application of the classifier on test data, it was found that many
entries contain a pre- and/or postcondition. As there were ongoing discussions on
creating attack trees and attack graphs at AIT for the future, these additional
categories were added to the classifiers. This enables rules that only fire if a
certain precondition has been met and rules that have certain postconditions as
an output. In this way, paths that an intruder may take in order to compromise
the system may be revealed, which enables mitigation before a potential attack.

6.7 NER Requires Less Training if the Structure is Homogeneous

During the first experiments it was discovered that entries within Packetstorm
are mostly similar in structure and wording. Thus, even a training set of 40 en-
tries yielded promising results, which was also the reason to persue the approach
of utilizing Named Entity Recognition. It can serve as a powerful tool without
the need of a lot of training if the input is homogeneous enough to classify word
sequences that were never annotated.

116

6.8 Automation Simplifies Rule Creation

Another major point discussed in this master thesis is the automation of rule
creation. As the current process is very inefficient in terms of timely related
factors, automation provides a speed up. By generating rules related to products
based on NVD and Packetstorm, writing rules as such is not necessary. The only
task required for the person validating the information is checking the input
data, especially in terms of product specific information which can boost the
productivity when creating rules.

6.9 There is a Vast Amount of Online Resources

The amount of resources regarding threat intelligence is on the rise. New threats
are posted daily, new components are developed and new vulnerabilities are pub-
lished. Furthermore, some vulnerabilities posted on various different platforms
may express identical facts which requires additional analysis to omit duplicates.
It is hard - if not impossible - to keep up with and to integrate all the informa-
tion. However, there are efforts in joining together multiple data sources such
as VulnDB. Nonetheless, platforms with different focus and different underly-
ing data-sources are being developed and take their place in representing threat
intelligence.

6.10 Outlook

In the future, additional online resources besides NVD and Packetstorm will be
integrated, which will increase the coverage of known vulnerabilities. Moreover,
classifiers will be trained on larger training sets in order to enhance the quality
of the entity recognition task. In addition, extracted pre- and postconditions will
serve as input for automatic attack graph generation to help experts understand
potential attack chains of individual attack steps (Lallie et al., 2020; Phillips &
Swiler, 1998; Ammann, Pamula, Street, & Ritchey, 2005) by visualizing cyber
attacks. It has to be considered that risk depends on the actual situation and that
a risk matrix containing crisp borders may not be applicable in all application
domains. Therefore, a fuzzy system allowing for more flexible classification could
be utilized in the future. All these aforementioned points will provide further
insight into the threat landscape and, thus, lead to an improved risk management
process. An abstraction and generalization of the results achieved in this thesis
might in an ideal case lead to their application in the wider field of cyber threat
intelligence.

117

7 Conclusion

Threat modelling serves as a means to reveal posed threats (Torr, 2005) as well
as vulnerabilities that a system under consideration suffers from. It is an iterative
process (Ma & Schmittner, 2016) that compares a digital twin of a real-world
system with a digital twin of threats and vulnerabilities, and checks for patterns
that should not be contained within the system model. We illustrated the current
process underlying threat modelling on the basis of an example and performed
an exemplary risk management process. However, until then we were working
with focus on engineering phases as well as generic components and did not
consider the exact products. As every component comes with its own respective
vulnerabilities this is a definite shortcoming. Consequently, we searched for an
approach to extend the underlying threat model with information on commonly
known vulnerabilities and found out that vast amounts of resources are shared
online.

Information sharing enables faster incident response towards the newest threats
and provides the possibility to reveal and, consequently, act on vulnerabilities
(Tounsi & Rais, 2017; ENISA, 2018). Information comes in various formats and
is shared via distinct platforms, each with a different focus. All these platforms
have their own strengths and weaknesses (Wang & Chow, 2019; Li et al., 2019).
Some are even focused on specific domains. Utilizing intelligence from multiple
sources facilitates a more sophisticated analysis.

We focused on vulnerability intelligence and inherent vulnerability databases
as they contain long-term valid information relevant to threat modelling. More-
over, the different formats and measures provided by these databases all take
their rightful place in threat and vulnerability management. Taking these for-
mats and measures into account, a custom format capable of integrating various
data sources was derived. By gathering descriptions, scores, references, associ-
ated weaknesses and affected products it becomes feasible to pinpoint vulnera-
bilities.

In addition, possible mappings for CIA to STRIDE and CVSS to an ISO/SAE
DIS 21434 based risk matrix were elaborated on. While the CIA to STRIDE
mapping did not produce outstanding results as STRIDE is basically an ex-
tended inversion of CIA, the CVSS mapping was more promising. This is due to
the fact that it is feasible to create a custom mapping without major restrictions.
The CVSS base score, its exploitability and the impact were mapped to a 4x4
matrix with severity levels of 1 to 5. This lead to a more critical, asymmetric
risk matrix (table 14) than the default symmetric one (table 1). The resulting
risk matrix is relevant for risk management and the respective risk treatment op-
tions to be chosen. However, the discussed matrix includes crisp borders, which
in some cases results in an inaccurate classification of the severity level.

Although many vulnerability databases offer information in a structured for-

118

mat, not all information can be retrieved in this way. Parts of this information,
especially descriptions, are formulated in plain text and thus require further
analysis as they cannot be directly ingested by a machine (Syed et al., 2016;
Wang & Chow, 2019; Ramnani et al., 2017) and hereupon be utilized for threat
analysis. In order to also allow for this type of data to be included into the
threat model, an information extraction task was applied. Information extrac-
tion, which in this case is Named Entity Recognition, enables the analysis of text
sequences and their respective categorization (Jurafsky & Martin, 2000; Bird et
al., 2009). In this way it becomes feasible to put word sequences into distinct
categories and utilize the extracted information in future threat analyses.

To join all the retrieved information together, a prototype has been developed. It
is capable of extracting information from arbitrary sources utilizing the adapter
pattern. Currently, one adapter for Packetstorm and another one for CVE/NVD
have been implemented. Moreover, the prototype displays the retrieved data
in order for the end user to validate and, eventually, adapt the presented con-
tent in case the NER classifier has not correctly identified all relevant entities.
Furthermore, the prototype handles the discussed mappings by outputting data
according to the custom vulnerability model and stores them in a database.
This enables automated rule generation from the stored vulnerability informa-
tion even for arbitrary grammars. For now, only vulnerabilities contained in
Packetstorm and the CVE/NVD have been integrated. However, in the future
this approach could be adapted and extended to process more complex data
sources.

Towards the end of this thesis, we evaluated test results for three entity ex-
tractors, of which all provided promising results. It was found out that the
classifiers that were trained only on one specific resource produced superior re-
sults compared to an entity extractor based on multiple distinct datasets. This
is due to the fact that homogeneous structure bears an advantage when training
an NER system. The greater the similarity between training and test data, the
bigger precision, recall and their respective F1measure will be. This is also why
the CVE/NVD results are inferior compared to the results from Packetstorm.
CVE entries are submitted by public sources and then sent to CVE Numbering
Authorities of the respective state before being published. This is why vulnera-
bilities often come in different formulations, which leads to more heterogeneity
in the dataset. In general, the datasets were rather small. A larger dataset could
improve the resulting extractors. This is particularly relevant for heterogeneous
data sources encompassing many outliers which could affect the results nega-
tively.

Before this work, it was not feasible to create product specific rules efficiently.
This is due to the fact that the amount of data presented online can hardly
be managed manually by experts. It becomes apparent when considering that
the CVE alone contains more than 140.000 vulnerabilities. Although it is the

119

de-facto standard for vulnerability enumeration, it does not cover all existing
vulnerabilities, which is why further databases have been developed and even
more are expected to come. By automating rule creation, it becomes possible to
establish rules in a standardized way, meaning that all of the resulting rules are
generated utilizing the same structure as their basis.

New vulnerabilities are detected day by day. As security experts it is our duty
to prevent possible attacks as best as possible. Therefore, it is essential to pay
attention to the ever-evolving risk landscape in order to make our systems more
resilient and to inform decisions based on detected threats and vulnerabilities.
Staying up-to-date with current developments and including them into all phases
of the product lifecycle, both in terms of an updated system - as well as threat
model, will reduce the number of cyber-security vulnerabilities and their inher-
ent threats. Automation in terms of rule generation and data extraction from
real-world information can serve as an important tool in reaching this goal and
improve the current threat model.

120

References

0day Today Team. (2020). 0day.today Exploit Database. Retrieved 2020-08-31,
from https://0day.today/

Abomhara, M., Køien, G., & Gerdes, M. (2015). A STRIDE-Based Threat Model
for Telehealth Systems.

AlienVault. (2020, April). Retrieved 2020-04-29, from https://otx.alienvault

.com/ (Library Catalog: otx.alienvault.com)
Ammann, P., Pamula, J., Street, J., & Ritchey, R. (2005). A Host-Based Ap-

proach to Network Attack Chaining Analysis. In 21st Annual Computer
Security Applications Conference (ACSAC’05) (pp. 72–84). Tucson, AZ,
USA: IEEE. Retrieved 2020-05-07, from http://ieeexplore.ieee.org/

document/1565236/ doi: https://doi.org/10.1109/CSAC.2005.6
Anomali. (2020). ThreatStream - Threat Intelligence Platform. Retrieved 2020-

05-04, from https://www.anomali.com/products/threatstream (Li-
brary Catalog: www.anomali.com)

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python
(1st ed.). O’Reilly Media, Inc.

Byers, B., & Owen, H. (2019, September). Automation Support for CVE Re-
trieval. , 21.

Che, W., Wang, M., Manning, C. D., & Liu, T. (2013). Named Entity Recogni-
tion with Bilingual Constraints. , 11.

Cheikes, B., Waltermire, D., & Scarfone, K. (2011, August). Com-
mon Platform Enumeration: Naming Specification Version 2.3 (Tech.
Rep. No. NIST Internal or Interagency Report (NISTIR) 7695). Na-
tional Institute of Standards and Technology. Retrieved 2020-08-
05, from https://csrc.nist.gov/publications/detail/nistir/7695/

final doi: https://doi.org/https://doi.org/10.6028/NIST.IR.7695
Chismon, D., & Ruks, M. (2015). Threat Intelligence: Collecting, Analysing,

Evaluating. MWR Infosecurity.
The Cyber Vault Project. (2020, April). Retrieved 2020-04-20, from https://

nsarchive.gwu.edu/project/cyber-vault-project

DBpedia. (2019). Retrieved 2020-05-03, from https://wiki.dbpedia.org/

Desmet, L., Jacobs, B., Piessens, F., & Joosen, W. (2005). Threat Modelling
for Web Services Based Web Applications. In D. Chadwick & B. Preneel
(Eds.), Communications and Multimedia Security (pp. 131–144). Boston,
MA: Springer US.

Eiram, C. (2018, January). What You Don’t Know About The Vulner-
ability Ecosystem Can Lead To A Data Breach. Retrieved 2020-
10-05, from https://www.riskbasedsecurity.com/2018/01/17/

what-you-dont-know-about-the-vulnerability-ecosystem-can-lead

-to-a-data-breach/ (Section: News)
ENISA. (2014a). Actionable information for security incident response.

Author. Retrieved 2020-04-17, from https://www.enisa.europa.eu/

publications/actionable-information-for-security

121

https://0day.today/
https://otx.alienvault.com/
https://otx.alienvault.com/
http://ieeexplore.ieee.org/document/1565236/
http://ieeexplore.ieee.org/document/1565236/
https://doi.org/10.1109/CSAC.2005.6
https://www.anomali.com/products/threatstream
https://csrc.nist.gov/publications/detail/nistir/7695/final
https://csrc.nist.gov/publications/detail/nistir/7695/final
https://doi.org/https://doi.org/10.6028/NIST.IR.7695
https://nsarchive.gwu.edu/project/cyber-vault-project
https://nsarchive.gwu.edu/project/cyber-vault-project
https://wiki.dbpedia.org/
https://www.riskbasedsecurity.com/2018/01/17/what-you-dont-know-about-the-vulnerability-ecosystem-can-lead-to-a-data-breach/
https://www.riskbasedsecurity.com/2018/01/17/what-you-dont-know-about-the-vulnerability-ecosystem-can-lead-to-a-data-breach/
https://www.riskbasedsecurity.com/2018/01/17/what-you-dont-know-about-the-vulnerability-ecosystem-can-lead-to-a-data-breach/
https://www.enisa.europa.eu/publications/actionable-information-for-security
https://www.enisa.europa.eu/publications/actionable-information-for-security

ENISA. (2014b). Standards and tools for exchange and process-
ing of actionable information. Author. Retrieved 2020-04-
17, from https://www.enisa.europa.eu/publications/standards-and

-tools-for-exchange-and-processing-of-actionable-information

ENISA. (2017). Exploring the opportunities and limitations of current Threat
Intelligence Platforms. Author. Retrieved 2020-04-17, from https://

www.enisa.europa.eu/publications/exploring-the-opportunities

-and-limitations-of-current-threat-intelligence-platforms

ENISA. (2018). ENISA Threat Landscape Report 2018. Author. Retrieved
2020-04-17, from https://www.enisa.europa.eu/publications/enisa

-threat-landscape-report-2018

ENISA. (2020a). The Risk Management Process [Page]. Re-
trieved 2020-11-26, from https://www.enisa.europa.eu/topics/

threat-risk-management/risk-management/current-risk/

risk-management-inventory/rm-process/rm-process

ENISA. (2020b). Risk Treatment [Page]. Retrieved 2020-12-01, from
https://www.enisa.europa.eu/topics/threat-risk-management/

risk-management/current-risk/risk-management-inventory/

rm-process/risk-treatment/risk-treatment

Facebook. (2020). Facebook ThreatExchange. Retrieved 2020-05-04, from
https://developers.facebook.com/programs/threatexchange/ (Li-
brary Catalog: developers.facebook.com)

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-
local information into information extraction systems by Gibbs sampling.
In Proceedings of the 43rd Annual Meeting on Association for Compu-
tational Linguistics - ACL ’05 (pp. 363–370). Ann Arbor, Michigan:
Association for Computational Linguistics. Retrieved 2020-10-09, from
http://portal.acm.org/citation.cfm?doid=1219840.1219885 doi:
https://doi.org/10.3115/1219840.1219885

FIRST. (2020a). Common Vulnerability Scoring System SIG. Retrieved 2020-05-
04, from https://www.first.org/cvss (Library Catalog: www.first.org)

FIRST. (2020b). Common Vulnerability Scoring System version 3.1 Specification
Document Revision 1. Retrieved 2020-08-05, from https://www.first

.org/cvss/v3-1/cvss-v31-specification r1.pdf

Freeman, E., Robson, E., Bates, B., & Sierra, K. (2014). Head first design
patterns (Second release ed.). Beijing Boston Famham Sebastopol Tokyo:
O’Reilly. (OCLC: 1085988254)

Goyal, A., Kumar, M., & Gupta, V. (2017, October). Named Entity Recognition:
Applications, Approaches and Challenges. , 15.

Granova, A., & Slaviero, M. (2014). Cyber Warfare. In Cyber Secu-
rity and IT Infrastructure Protection (pp. 205–232). Elsevier. Re-
trieved 2020-10-05, from https://linkinghub.elsevier.com/retrieve/

pii/B9780124166813000082 doi: https://doi.org/10.1016/B978-0-12-
416681-3.00008-2

122

https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-of-actionable-information
https://www.enisa.europa.eu/publications/exploring-the-opportunities-and-limitations-of-current-threat-intelligence-platforms
https://www.enisa.europa.eu/publications/exploring-the-opportunities-and-limitations-of-current-threat-intelligence-platforms
https://www.enisa.europa.eu/publications/exploring-the-opportunities-and-limitations-of-current-threat-intelligence-platforms
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/rm-process
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/rm-process
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/rm-process
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/risk-treatment/risk-treatment
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/risk-treatment/risk-treatment
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/rm-process/risk-treatment/risk-treatment
https://developers.facebook.com/programs/threatexchange/
http://portal.acm.org/citation.cfm?doid=1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://www.first.org/cvss
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://linkinghub.elsevier.com/retrieve/pii/B9780124166813000082
https://linkinghub.elsevier.com/retrieve/pii/B9780124166813000082
https://doi.org/10.1016/B978-0-12-416681-3.00008-2
https://doi.org/10.1016/B978-0-12-416681-3.00008-2

Hamad, M. (2020). A Multilayer Secure Framework for Vehicular Systems. Re-
trieved 2020-08-28, from https://www.researchgate.net/publication/

341597533 A Multilayer Secure Framework for Vehicular Systems

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental
parsing. (To appear)

Horev, R. (2018, November). BERT Explained: State of the art lan-
guage model for NLP. Retrieved 2020-05-04, from https://

towardsdatascience.com/bert-explained-state-of-the-art

-language-model-for-nlp-f8b21a9b6270 (Library Catalog: to-
wardsdatascience.com)

Hussain, S., Kamal, A., Rasool, G., & Iqbal, S. (2014, January). Threat Mod-
elling Methodologies: A Survey. , 26 , 1607–1609.

IBM. (2020). IBM X-Force Exchange. Retrieved 2020-05-04, from
https://exchange.xforce.ibmcloud.com/ (Library Catalog: ex-
change.xforce.ibmcloud.com)

IETF. (2020, May). IETF Homepage. Retrieved 2020-05-04, from https://

www.ietf.org/ (Library Catalog: www.ietf.org)

ISO/TC 22/SC 32. (2020). ISO/SAE DIS 21434 Road vehicles — Cybersecu-
rity engineering. ISO - International Standardization Organization. Re-
trieved 2020-05-01, from https://www.iso.org/cms/render/live/en/

sites/isoorg/contents/data/standard/07/09/70918.html

ISO/TC 262 Risk management. (2018). ISO 31000 - Risk management - guide-
lines. (No. 31000). (OCLC: 1030875208)

Jaeger, D., Ussath, M., Cheng, F., & Meinel, C. (2015, November). Multi-
step Attack Pattern Detection on Normalized Event Logs. In 2015
IEEE 2nd International Conference on Cyber Security and Cloud Com-
puting (pp. 390–398). New York, NY, USA: IEEE. Retrieved 2020-
04-24, from http://ieeexplore.ieee.org/document/7371512/ doi:
https://doi.org/10.1109/CSCloud.2015.26

Jha, S., Sheyner, O., & Wing, J. (2002). Two formal analyses of attack
graphs. In Proceedings 15th IEEE Computer Security Foundations Work-
shop. CSFW-15 (pp. 49–63). Cape Breton, NS, Canada: IEEE Com-
put. Soc. Retrieved 2020-04-24, from http://ieeexplore.ieee.org/

document/1021806/ doi: https://doi.org/10.1109/CSFW.2002.1021806

Joshi, A., Lal, R., Finin, T., & Joshi, A. (2013, September). Extracting Cy-
bersecurity Related Linked Data from Text. In 2013 IEEE Seventh Inter-
national Conference on Semantic Computing (pp. 252–259). (ISSN: null)
doi: https://doi.org/10.1109/ICSC.2013.50

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition (1st ed.). USA: Prentice Hall PTR.

Kaspersky. (2020). Threat Intelligence Definition. Why Threat Intelligence Is
Important for Your Business and How to Evaluate a Threat Intelligence
Program. Retrieved 2020-04-26, from https://www.kaspersky.com/

123

https://www.researchgate.net/publication/341597533_A_Multilayer_Secure_Framework_for_Vehicular_Systems
https://www.researchgate.net/publication/341597533_A_Multilayer_Secure_Framework_for_Vehicular_Systems
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://exchange.xforce.ibmcloud.com/
https://www.ietf.org/
https://www.ietf.org/
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/09/70918.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/09/70918.html
http://ieeexplore.ieee.org/document/7371512/
https://doi.org/10.1109/CSCloud.2015.26
http://ieeexplore.ieee.org/document/1021806/
http://ieeexplore.ieee.org/document/1021806/
https://doi.org/10.1109/CSFW.2002.1021806
https://doi.org/10.1109/ICSC.2013.50
https://www.kaspersky.com/resource-center/definitions/threat-intelligence
https://www.kaspersky.com/resource-center/definitions/threat-intelligence

resource-center/definitions/threat-intelligence (AO Kaspersky
Lab)

Kouraklis, J. (2019, August). In the Land of ORM. In (pp. 1–18).

Lallie, H. S., Debattista, K., & Bal, J. (2020, February). A review of
attack graph and attack tree visual syntax in cyber security. Com-
puter Science Review , 35 , 100219. Retrieved 2020-04-25, from https://

linkinghub.elsevier.com/retrieve/pii/S1574013719300772 doi:
https://doi.org/10.1016/j.cosrev.2019.100219

Laorden, C., Sanz, B., Alvarez, G., & Bringas, P. (2010, January). A Threat
Model Approach to Threats and Vulnerabilities in On-line Social Networks.
In (Vol. 85, pp. 135–142).

Lautenbach, A., & Islam, M. (2016, March). HEAling Vulnerabilities to EN-
hance Software Security and Safety - Security models. Retrieved 2020-08-
28, from https://autosec.se/wp-content/uploads/2018/03/HEAVENS

D2 v2.0.pdf

Lei, J., Tang, B., Lu, X., Gao, K., Jiang, M., & Xu, H. (2014, Septem-
ber). A comprehensive study of named entity recognition in Chinese
clinical text. Journal of the American Medical Informatics Association,
21 (5), 808–814. Retrieved 2020-08-11, from https://academic.oup.com/

jamia/article/21/5/808/758234 (Publisher: Oxford Academic) doi:
https://doi.org/10.1136/amiajnl-2013-002381

Li, V. G., Dunn, M., Pearce, P., McCoy, D., Voelker, G. M., Savage, S., &
Levchenko, K. (2019). Reading the Tea Leaves: A Comparative Analysis
of Threat Intelligence. , 18.

LookingGlass. (2020). scoutTHREAT Threat Intelligence Platform | Look-
ingGlass. Retrieved 2020-05-04, from https://www.lookingglasscyber

.com/products/threat-platforms/scoutthreat/ (Library Catalog:
www.lookingglasscyber.com)

Ma, Z., & Schmittner, C. (2016, November). Threat Model-
ing for Automotive Security Analysis. In (pp. 333–339). doi:
https://doi.org/10.14257/astl.2016.139.68

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & Mc-
Closky, D. (2014). The Stanford CoreNLP Natural Language Process-
ing Toolkit. In Proceedings of 52nd Annual Meeting of the Associa-
tion for Computational Linguistics: System Demonstrations (pp. 55–60).
Baltimore, Maryland: Association for Computational Linguistics. Re-
trieved 2020-10-25, from http://aclweb.org/anthology/P14-5010 doi:
https://doi.org/10.3115/v1/P14-5010

Mariani, S. (2020, September). Phat3/CVE-analyzer. Retrieved 2020-11-26,
from https://github.com/Phat3/CVE-analyzer (original-date: 2018-
10-29T18:19:27Z)

Mehler-Bicher, A., Mehler, F., Kuntze, N., Kunz, S., Ostheimer, B., Steiger,
L., & Weih, H.-P. (2019). Wirtschaftsinformatik Klipp und Klar.
Wiesbaden: Springer Fachmedien Wiesbaden. Retrieved 2020-10-25,
from http://link.springer.com/10.1007/978-3-658-26494-9 doi:

124

https://www.kaspersky.com/resource-center/definitions/threat-intelligence
https://www.kaspersky.com/resource-center/definitions/threat-intelligence
https://linkinghub.elsevier.com/retrieve/pii/S1574013719300772
https://linkinghub.elsevier.com/retrieve/pii/S1574013719300772
https://doi.org/10.1016/j.cosrev.2019.100219
https://autosec.se/wp-content/uploads/2018/03/HEAVENS_D2_v2.0.pdf
https://autosec.se/wp-content/uploads/2018/03/HEAVENS_D2_v2.0.pdf
https://academic.oup.com/jamia/article/21/5/808/758234
https://academic.oup.com/jamia/article/21/5/808/758234
https://doi.org/10.1136/amiajnl-2013-002381
https://www.lookingglasscyber.com/products/threat-platforms/scoutthreat/
https://www.lookingglasscyber.com/products/threat-platforms/scoutthreat/
https://doi.org/10.14257/astl.2016.139.68
http://aclweb.org/anthology/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://github.com/Phat3/CVE-analyzer
http://link.springer.com/10.1007/978-3-658-26494-9

https://doi.org/10.1007/978-3-658-26494-9

Meland, P. H., Paja, E., Gjære, E. A., Paul, S., Dalpiaz, F., & Giorgini, P.
(2014, April). Threat Analysis in Goal-Oriented Security Requirements
Modelling. International Journal of Secure Software Engineering , 5 , 1–19.
doi: https://doi.org/10.4018/ijsse.2014040101

Menges, F., & Pernul, G. (2018, March). A comparative analysis of incident
reporting formats. Computers & Security , 73 , 87–101. Retrieved 2020-
04-14, from http://www.sciencedirect.com/science/article/pii/

S0167404817302250 doi: https://doi.org/10.1016/j.cose.2017.10.009

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013, September). Efficient Es-
timation of Word Representations in Vector Space. arXiv:1301.3781 [cs] .
Retrieved 2020-04-26, from http://arxiv.org/abs/1301.3781 (arXiv:
1301.3781)

Miller, S. (2018, January). What is Strategic Threat Intelligence? Retrieved
2020-05-03, from https://www.anomali.com/blog/what-is-strategic

-threat-intelligence (Library Catalog: www.anomali.com)

MISP. (2020, April). Retrieved 2020-04-29, from https://www.misp-project

.org/

MITRE. (2019a, August). CVE and NVD Relationship. Retrieved 2020-04-17,
from https://cve.mitre.org/about/cve and nvd relationship.html

MITRE. (2019b, November). CVE - Home. Retrieved 2020-08-05, from
https://cve.mitre.org/about/index.html

MITRE. (2020a, April). CVE - Common Vulnerabilities and Exposures (CVE).
Retrieved 2020-04-29, from https://cve.mitre.org/

MITRE. (2020b, July). CVE - CVE Numbering Authorities. Retrieved
2020-08-05, from https://cve.mitre.org/cve/cna.html#submitting

cve entry info

MITRE. (2020c, February). CWE - About - CWE Overview. Retrieved 2020-
08-05, from https://cwe.mitre.org/about/index.html

MITRE. (2020d, June). CWE - CWE-121: Stack-based Buffer Over-
flow (4.2). Retrieved 2020-11-25, from https://cwe.mitre.org/data/

definitions/121.html

MITRE. (2020e, April). The MITRE Corporation. Retrieved 2020-04-20, from
https://www.mitre.org/

Mittal, S., Das, P. K., Mulwad, V., Joshi, A., & Finin, T. (2016, August). Cy-
berTwitter: Using Twitter to generate alerts for cybersecurity threats and
vulnerabilities. In 2016 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM) (pp. 860–867). doi:
https://doi.org/10.1109/ASONAM.2016.7752338

Mittal, S., Joshi, A., & Finin, T. (2019, May). Cyber-All-Intel: An AI for Security
related Threat Intelligence. arXiv:1905.02895 [cs] . Retrieved 2020-01-10,
from http://arxiv.org/abs/1905.02895 (arXiv: 1905.02895)

Mulwad, V., Li, W., Joshi, A., Finin, T., & Viswanathan, K. (2011, August).
Extracting Information about Security Vulnerabilities from Web Text. In
(Vol. 3, pp. 257–260). doi: https://doi.org/10.1109/WI-IAT.2011.26

125

https://doi.org/10.1007/978-3-658-26494-9
https://doi.org/10.4018/ijsse.2014040101
http://www.sciencedirect.com/science/article/pii/S0167404817302250
http://www.sciencedirect.com/science/article/pii/S0167404817302250
https://doi.org/10.1016/j.cose.2017.10.009
http://arxiv.org/abs/1301.3781
https://www.anomali.com/blog/what-is-strategic-threat-intelligence
https://www.anomali.com/blog/what-is-strategic-threat-intelligence
https://www.misp-project.org/
https://www.misp-project.org/
https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://cve.mitre.org/about/index.html
https://cve.mitre.org/
https://cve.mitre.org/cve/cna.html#submitting_cve_entry_info
https://cve.mitre.org/cve/cna.html#submitting_cve_entry_info
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://www.mitre.org/
https://doi.org/10.1109/ASONAM.2016.7752338
http://arxiv.org/abs/1905.02895
https://doi.org/10.1109/WI-IAT.2011.26

Nakayama, H., Kubo, T., Kamura, J., Taniguchi, Y., & Liang, X.
(2018). doccano: Text annotation tool for human. Retrieved from
https://github.com/doccano/doccano (Software available from
https://github.com/doccano/doccano)

NIS Directive. (2016, July). Directive (EU) 2016/1148 of the European Par-
liament and of the Council of 6 July 2016 concerning measures for a high
common level of security of network and information systems across the
Union. (194). Retrieved 2020-05-04, from http://data.europa.eu/eli/

dir/2016/1148/oj/eng (Code Number: 194)

NIST. (2020a, April). National Institute of Standards and Technology [text].
Retrieved 2020-04-20, from https://www.nist.gov/ (Library Catalog:
www.nist.gov)

NIST. (2020b, April). NVD. Retrieved 2020-04-29, from https://nvd.nist

.gov/

NIST. (2020c). NVD CWE Slice. Retrieved 2020-08-05, from https://nvd

.nist.gov/vuln/categories

NIST. (2020d). NVD - General Information. Retrieved 2020-10-05, from
https://nvd.nist.gov/general

OASIS CTI TC. (2020, April). Retrieved 2020-04-20, from https://oasis

-open.github.io/cti-documentation/

Ou, X., Boyer, W. F., & McQueen, M. A. (2006). A scalable approach
to attack graph generation. In Proceedings of the 13th ACM confer-
ence on Computer and communications security - CCS ’06 (pp. 336–
345). Alexandria, Virginia, USA: ACM Press. Retrieved 2020-04-24,
from http://dl.acm.org/citation.cfm?doid=1180405.1180446 doi:
https://doi.org/10.1145/1180405.1180446

Packetstorm. (2020). About Packet Storm. Retrieved 2020-10-05, from https://

packetstormsecurity.com/about/

Phillips, C., & Swiler, L. P. (1998). A graph-based system for
network-vulnerability analysis. In Proceedings of the 1998 work-
shop on New security paradigms - NSPW ’98 (pp. 71–79). Char-
lottesville, Virginia, United States: ACM Press. Retrieved 2020-04-24,
from http://portal.acm.org/citation.cfm?doid=310889.310919 doi:
https://doi.org/10.1145/310889.310919

Pingle, A., Piplai, A., Mittal, S., & Joshi, A. (2019). RelExt: Relation Extrac-
tion using Deep Learning approaches for Cybersecurity Knowledge Graph
Improvement.

Pinkston, J., Undercoffer, J., Joshi, A., & Finin, T. (2003, June). A Target-
Centric Ontology for Intrusion Detection.

Ponemon. (2016). The Value of Threat Intelligence: A Study of North American
& United Kingdom Companies. Ponemon Institute.

Ponemon. (2019). The Value of Threat Intelligence: Annual Study of North
American & United Kingdom Companies. Ponemon Institute. Re-
trieved from https://stratejm.com/wp-content/uploads/2019/08/

2019 Ponemon Institute-Value of Threat Intelligence Research

126

https://github.com/doccano/doccano
http://data.europa.eu/eli/dir/2016/1148/oj/eng
http://data.europa.eu/eli/dir/2016/1148/oj/eng
https://www.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/general
https://oasis-open.github.io/cti-documentation/
https://oasis-open.github.io/cti-documentation/
http://dl.acm.org/citation.cfm?doid=1180405.1180446
https://doi.org/10.1145/1180405.1180446
https://packetstormsecurity.com/about/
https://packetstormsecurity.com/about/
http://portal.acm.org/citation.cfm?doid=310889.310919
https://doi.org/10.1145/310889.310919
https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf
https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf
https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf

Report from Anomali.pdf

Ramnani, R., Shivaram, K., Sengupta, S., & M., A. (2017, February). Semi-
Automated Information Extraction from Unstructured Threat Advisories.
In (pp. 181–187). doi: https://doi.org/10.1145/3021460.3021482

Ross, R., Pillitteri, V., Dempsey, K., Riddle, M., & Guissanie, G. (2020, Febru-
ary). Protecting controlled unclassified information in nonfederal systems
and organizations (Tech. Rep. No. NIST SP 800-171r2). Gaithersburg,
MD: National Institute of Standards and Technology. Retrieved 2020-11-
10, from https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-171r2.pdf doi: https://doi.org/10.6028/NIST.SP.800-
171r2

Satyapanich, T. W., Finin, T., & Ferraro, F. (2019, December). Ex-
tracting Rich Semantic Information about Cybersecurity Events. Sec-
ond Workshop on Big Data for CyberSecurity, held in conjunc-
tion with the IEEE Int. Conf. on Big Data. Retrieved 2020-01-
13, from https://ebiquity.umbc.edu/paper/html/id/873/Extracting

-Rich-Semantic-Information-about-Cybersecurity-Events

Sauerwein, C., Sillaber, C., Mussmann, A., & Breu, R. (2017). Threat Intelli-
gence Sharing Platforms: An Exploratory Study of Software Vendors and
Research Perspectives. In Wirtschaftsinformatik.

Schmittner, C., Tummeltshammer, P., Hofbauer, D., Shaaban, A., Meidlinger,
M., Tauber, M., . . . Brandstetter, M. (2019, January). Threat Modeling
in the Railway Domain. In (pp. 261–271).

Shevchenko, N. (2018, December). Threat Modeling: 12 Available Methods.
Retrieved 2020-10-05, from https://insights.sei.cmu.edu/sei blog/

2018/12/threat-modeling-12-available-methods.html

Shostack, A. (2014). Threat modeling: designing for security. Indianapolis, IN:
Wiley. (OCLC: 855043351)

Sillaber, C., Sauerwein, C., Mussmann, A., & Breu, R. (2016, October).
Data Quality Challenges and Future Research Directions in Threat
Intelligence Sharing Practice. In Proceedings of the 2016 ACM on
Workshop on Information Sharing and Collaborative Security (pp. 65–
70). Vienna, Austria: Association for Computing Machinery. Retrieved
2020-04-19, from https://doi.org/10.1145/2994539.2994546 doi:
https://doi.org/10.1145/2994539.2994546

Strobl, S., Hofbauer, D., Schmittner, C., Maksuti, S., Tauber, M., & Delsing, J.
(2018, May). Connected cars — Threats, vulnerabilities and their impact.
In 2018 IEEE Industrial Cyber-Physical Systems (ICPS) (pp. 375–380).
doi: https://doi.org/10.1109/ICPHYS.2018.8387687

stucco-archive/extractors. (2019, August). stucco-archive. Retrieved 2020-04-26,
from https://github.com/stucco-archive/extractors (original-date:
2013-07-30T18:57:48Z)

stucco/entity-extractor. (2020, March). Stucco. Retrieved 2020-04-21, from
https://github.com/stucco/entity-extractor (original-date: 2014-
01-05T13:23:45Z)

127

https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf
https://stratejm.com/wp-content/uploads/2019/08/2019_Ponemon_Institute-Value_of_Threat_Intelligence_Research_Report_from_Anomali.pdf
https://doi.org/10.1145/3021460.3021482
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-171r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-171r2.pdf
https://doi.org/10.6028/NIST.SP.800-171r2
https://doi.org/10.6028/NIST.SP.800-171r2
https://ebiquity.umbc.edu/paper/html/id/873/Extracting-Rich-Semantic-Information-about-Cybersecurity-Events
https://ebiquity.umbc.edu/paper/html/id/873/Extracting-Rich-Semantic-Information-about-Cybersecurity-Events
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://doi.org/10.1145/2994539.2994546
https://doi.org/10.1145/2994539.2994546
https://doi.org/10.1109/ICPHYS.2018.8387687
https://github.com/stucco-archive/extractors
https://github.com/stucco/entity-extractor

Swanson, M., Bowen, P., Phillips, A. W., Gallup, D., & Lynes, D. (2010). Con-
tingency planning guide for federal information systems (Tech. Rep. No.
NIST SP 800-34r1). Gaithersburg, MD: National Institute of Standards
and Technology. Retrieved 2020-11-10, from https://nvlpubs.nist.gov/

nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf (Edition:
0) doi: https://doi.org/10.6028/NIST.SP.800-34r1

Syed, Z., Padia, A., Finin, T., Mathews, L., & Joshi, A. (2016, February). UCO:
A Unified Cybersecurity Ontology..

Thelen, M., & Riloff, E. (2002). A bootstrapping method for learn-
ing semantic lexicons using extraction pattern contexts. In Proceed-
ings of the ACL-02 conference on Empirical methods in natural lan-
guage processing - EMNLP ’02 (Vol. 10, pp. 214–221). Not Known:
Association for Computational Linguistics. Retrieved 2020-05-03, from
http://portal.acm.org/citation.cfm?doid=1118693.1118721 doi:
https://doi.org/10.3115/1118693.1118721

theresilience. (2018, June). Risk Treatment Methods. Retrieved 2020-10-03, from
https://www.theresilience.ml/risk-treatment-methods/

ThreatConnect. (2020). ThreatConect Homepage. Retrieved 2020-05-04, from
https://threatconnect.com/ (Library Catalog: threatconnect.com)

Torr, P. (2005, September). Demystifying the Threat-Modeling Process.
IEEE Security and Privacy Magazine, 3 (5), 66–70. Retrieved 2020-
07-29, from http://ieeexplore.ieee.org/document/1514406/ doi:
https://doi.org/10.1109/MSP.2005.119

Tounsi, W., & Rais, H. (2017, September). A survey on technical threat intel-
ligence in the age of sophisticated cyber attacks. Computers & Security ,
72 . doi: https://doi.org/10.1016/j.cose.2017.09.001

UNECE. (2020, June). UN Regulations on Cybersecurity and Software Updates
to pave the way for mass roll out of connected vehicles. Retrieved 2020-
10-09, from http://www.unece.org/?id=54667

Vadapalli, S. R., Hsieh, G., & Nauer, K. S. (2018). TwitterOSINT: Automated
Cybersecurity Threat Intelligence Collection and Analysis using Twitter
Data. Place of publication not identified: CSREA Press.

The VERIS Framework. (2020). Retrieved 2020-04-20, from http://

veriscommunity.net/

Wagner, C., Dulaunoy, A., Wagener, G., & Iklody, A. (2016, October).
MISP: The Design and Implementation of a Collaborative Threat In-
telligence Sharing Platform. In Proceedings of the 2016 ACM on
Workshop on Information Sharing and Collaborative Security (pp. 49–
56). Vienna, Austria: Association for Computing Machinery. Retrieved
2020-04-12, from https://doi.org/10.1145/2994539.2994542 doi:
https://doi.org/10.1145/2994539.2994542

Wang, T., & Chow, K. P. (2019, July). Automatic Tagging of Cyber Threat
Intelligence Unstructured Data using Semantics Extraction. In 2019 IEEE
International Conference on Intelligence and Security Informatics (ISI)
(pp. 197–199). doi: https://doi.org/10.1109/ISI.2019.8823252

128

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-34r1.pdf
https://doi.org/10.6028/NIST.SP.800-34r1
http://portal.acm.org/citation.cfm?doid=1118693.1118721
https://doi.org/10.3115/1118693.1118721
https://www.theresilience.ml/risk-treatment-methods/
https://threatconnect.com/
http://ieeexplore.ieee.org/document/1514406/
https://doi.org/10.1109/MSP.2005.119
https://doi.org/10.1016/j.cose.2017.09.001
http://www.unece.org/?id=54667
http://veriscommunity.net/
http://veriscommunity.net/
https://doi.org/10.1145/2994539.2994542
https://doi.org/10.1145/2994539.2994542
https://doi.org/10.1109/ISI.2019.8823252

Zheng, D. E., & Lewis, J. A. (2015). Cyber Threat Information Sharing: Rec-
ommendations for Congress and the Administration. , 18.

129

8 Annex A: Definition of Terms

Availability describes the timely and reliable access of information and services.
(Swanson, Bowen, Phillips, Gallup, & Lynes, 2010; Ross, Pillitteri, Dempsey,
Riddle, & Guissanie, 2020)

Confidentiality deals with access restrictions and, consequently, allowing only
authorized staff to access information. Moreover, confidentiality includes means
for the protection of privacy and prevents information disclosure. (Swanson et
al., 2010; Ross et al., 2020)

Exploits abuse vulnerabilities that are located within the target system. They
make use of preconditions in order to compromise the system and possibly cause
damage. Furthermore, a successful exploit can result in new preconditions that
allow for deeper access into the system and, consequently, further exploitation.
(Lallie et al., 2020)

Exploitability is an alternative measure of likelihood. It does not depend on
a probability value but rather utilizes categories implying the exposure of the
system. To be more precise, exploitability describes the attack surface and, conse-
quently, the effort and the required knowledge necessary for launching an attack
(FIRST, 2020b). It can be based on a technical description of the system under
consideration and the experience of experts.

Impact describes the magnitude of the damage that results from a potential
exploit. It deals with disclosure (confidentiality impact), modification (integrity
impact), and loss of information (availability impact) which are subject to unau-
thorized influence (Swanson et al., 2010). Impact describes the harmful effect on
an organization’s operations, assets, individuals or external entities that an ex-
ploit may result in (Ross et al., 2020). Moreover, it characterizes the impact on
safety, financial, operational and privacy aspects (ISO/TC 22/SC 32, 2020).

Integrity depicts protection against unauthorized modification or destruction
of information (Swanson et al., 2010; Ross et al., 2020). It also includes non-
repudiation and authenticity. Therefore, it can be referred to as granting the
veracity and trustworthiness of information (FIRST, 2020b).

Likelihood is a value describing the probability of an exploit or an occurring
risk. It generally depends on a lot of parameters, particularly in the cyber-
security sector, which is why this thesis replaces it with the term ”exploitability”.

Precondition describes system properties that must be given in order to con-
duct a successful exploit or attack step. For example, a precondition manifests
due to the reachability from the outside of a component or service. Moreover, a
certain software known to be vulnerable only on a specific operating system may
form a precondition. Also convincing a user to install malicious software could

130

be a precondition for a successful exploit. For a vulnerability to be exploitable
there must always be a precondition. All further attack steps could be prevented
by addressing the initial precondition (Lallie et al., 2020). However, a precon-
dition could lead to a postcondition, which may then be utilized as the next
precondition. E.g., a postcondition which discloses information could allow an
attacker to retrieve an admin password which could then be used as precondition
for additional attack steps.

Postcondition describes the result of an exploit and capabilities that the at-
tacker gains through a successful attack. One exploit may have one or multiple
postconditions. Moreover, a postcondition may become a precondition for fur-
ther exploits or attack steps. (Lallie et al., 2020)

Rules are anti-patterns that the system model is checked against in order to
identify threats and vulnerabilities. They represent potentially vulnerable sys-
tem components or component configurations known to be insecure in terms
of both software and hardware. Moreover, they support the risk management
process by holding name, description, impact and exploitability values, links to
advisories, as well as pre- and postconditions.

Risk represents a measure of how much a system (component) is threatened
by certain circumstances or situations. In our case, risk is portrayed by the
severity level represented in the risk matrix. It is a function of the impact and
the exploitability of a certain event. (Ross et al., 2020)

Threat depicts any situation or circumstance leading to a potentially (nega-
tive) impact on confidentiality, integrity, availability, organizations, assets, as
well as external entities. (Ross et al., 2020)

Vulnerability describes an exploitable weakness in the system under consid-
eration. Moreover, a vulnerability includes the affected products as well as the
exact versions that suffer from this weakness. It results from flaws in the de-
sign, implementation or management of the system. Vulnerabilities emerge due
to preconditions that allow for an exploit within the system under consideration.
(Lallie et al., 2020)

Weaknesses express flaws, faults or bugs in either software or hardware. These
weaknesses may result in a vulnerable system and may arise due to planning,
coding or architectural errors. (MITRE, 2020c)

131

9 Annex B: Abbreviations

CAPEC Common Attack Pattern Enumeration and Classification

CIA Confidentiality, Integrity, Availability

CPE Common Platform Enumeration

CRF Conditional Random Fields

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

CVSS Common Vulnerabilities Scoring System

DIS Draft International Standard

ENISA European Union Agency for Cybersecurity (originally: European
Network and Information Security Agency)

GUI Graphical User Interface

ISO International Standardization Organization

MIME Multipurpose Internet Mail Extensions

NER Named Entity Recognition

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NVD National Vulnerability Database

OWL Web Ontology Language

RDF Resource Description Format

SAE Society of Automotive Engineers

SQL Structured Query Language

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service, Elevation of Privilege

UN United Nations

UNECE United Nations Economic Commission for Europe

132

10 Annex C: Implementation

The implementation, as well as the gradle build script are located on the DVD.
In case you want to take a look at the implementation in detail and reproduce
the measurements, the whole source code is located on the DVD and can be
imported into an IDE by importing the project folder called ”Rule Extractor”
as gradle project (it has been tested with eclipse). If you want to try out the
prototype please follow the installation guide which is provided in the following
section.

10.1 Installation Guide

In order to create an executable version of the prototype, Java 8 JDK is required.
The supported database is PostgreSQL, which is required for the prototype to
store the data. The DVD contains the following resources:

• jdk-8u161-windows-x64.exe - an installer for the Java 8 jdk
• postgresql-10.15-1-windows-x64.exe - an installer for the postgresql database

in version 10
• Rule Extractor - the gradle project containing the source code as well as
the resources
* src/main/java/at/ac/ait contains all the Java code relevant for the
application
- adapter contains all the adapter interface, its implementations, a
list of all utilized file names throughout the application as well as a
wrapper for named classified entities

- annotated contains classes generated from the schema utilized in
doccano json files

- jsonclassgen contains a class able to generate Java classes from a
given json file. It includes its own ”main” method and can only be
used during development

- main/model contains all classes of the vulnerability model
- main/model/enumeration contains all the enums relevant to store
the type of product, the cvss value, the type of entity, as well as value
for impact, exploitability and STRIDE

- NVD/types contains all classes generated from the NVD json file.
It represents an intermediate format which is later mapped to the
vulnerability model

- rulegen contains the ”RuleGenerator” class which is the entrypoint
of the application It starts the GUI but also allows for importing
datasets to do training and measurements. However, this is only
possible in development mode by changing the code. Moreover, the
folder contains the GUIController as well as intermediate classes re-
quired to represent and modify data within the GUI

* src/main/resources/at/ac/ait/files contains all the resources uti-
lized within the application (changes can only be applied in development
mode e.g. within an IDE)

133

- annotated contains the datasets created with doccano ending with
”.json1”. Training and test sets that are automatically separated and
created from these ”.json1” are also located here. It also contains the
”gzipped” entity extractors that result from training

- gui contains an ”fxml” representation of the GUI
- NVD contains a demonstration file regarding NVD data utilized in
the final application

- PS contains a demonstration file regarding Packetstorm data utilized
in the final application

- META-INF contains a ”logback.xml” file to prohibit output from
Hibernate as this would otherwise slow down the application. ”per-
sistence.xml” contains the configuration for the database connection
and script creation

• Rule Extractor.jar - the executable jar file
• ruleext.dump - the dump of the database, containing the schema

Please make sure to install the Java JDK and PostgreSQL for the application
to work. The JDK as well as the PostgreSQL can be installed with default
configuration. Make sure to also install pgAdmin which is also contained in the
PostgreSQL installation. As password for PostgreSQL choose ”root” (without
the quotation marks). This is preconfigured for the application. However, in case
you have an existing PostgreSQL database in version 10, it is possible to change
the ”value” attributes in following lines of code in ”META-INF/persistence.xml”
to adapt password, username and the url to the database.

<property name=”javax.persistence.jdbc.url”
value=”jdbc:postgresql://localhost:5432/ruleext” />

<property name=”javax.persistence.jdbc.user” value=”postgres” />

<property name=”javax.persistence.jdbc.password” value=”root” />

Once everything has been installed, open pgAdmin. It should be possible to
search for it in the searchbar. When asked for the password type in ”root” (with-
out the quotation marks). Now expand the ”Servers” and the ”PostgreSQL 10”
items in the browser.

Right click ”Databases” an navigate to ”Create > Database...”. This will open
a new window. Set the field called ”Database” to ”ruleext” and ensure that
”UTF8” is specified as ”Encoding” in the ”Definition” Tab. Click the ”Save”
button. This will create the ”ruleext” database.

Now click on the text ”ruleext” (although the whole line is marked it does
not select it otherwise) and right-click it afterwards. This will open a context
menu. Inside this context menu select ”Restore...”. Again this will open a win-
dow. The only thing that needs to be done here is to click on the three dots next
to the file name and select the ”ruleext.dump” located on the DVD. If the file

134

is not displayed in the provided explorer make sure to specify the Format (in
the right bottom corner of the window) as ”All Files”. Once ”ruleext.dump” has
been selected, click on ”Select” in the right bottom corner. Finally, clicking on
”Restore” will create a database from the provided schema.

The DVD comes with an executable ”.jar” file. In case you need to change the
configuration or want to build the application yourself, it is possible to execute
the ”build.bat” which executes a gradle build and generates a ”.jar” file. A build
can also be triggered manually by navigating to the ”Rule Extractor” folder in
the command prompt and typing ”gradlew jar”. When utilizing the ”build.bat”
the resulting ”.jar” file can be found in the same folder as the ”build.bat” is
located. When building manually, it will be located in ”Rule Extractor\build
\libs”.

Double clicking on the resulting ”.jar” file will open the application.

10.2 User Guide

The components of the GUI have already been explained in section 5.1.5. This
section will provide information on how the user can interact with the GUI.

10.2.1 Selecting the Resource for Rule Extraction

The GUI provides two buttons in the upper left corner called Get CVE/NVD
and Get PS. These two buttons allow the selection of the data source as well
as the associated model. Get CVE/NVD selects the provided demonstration
dataset and loads the model for the NVD extraction. Get PS works the same
way, but in contrast, it loads the resources for Packetstorm.

Clicking on the button may result in a short waiting time as the resources are be-
ing processed and the entity manager factory must be created. Once finished, the
first entry is shown in the GUI and all fields display the extracted information.

10.2.2 Adding, Removing or Modifying Affected Products

The product table presents the affected products as well as their versions. How-
ever, in case of an incorrect/incomplete classification, the user may want to add,
modify or remove an entry from this table. Therefore, clicking the Add button
adds an empty editable row to this table. Moreover, by clicking Remove the
selected row is removed from the table. To modify, the content of an affected
product, a cell can be clicked and adapted. In order to apply the changes, it is
necessary to hit the enter button.

10.2.3 Adding, Removing or Modifying References

This works the same way as modifying affected products.

135

10.2.4 Modifying Vulnerabilities, Precondition and Postcondition

The text fields for vulnerabilities, precondition and postcondition are editable.
By clicking into the fields their content can be adapted. In case an additional
entry shall be added, a semicolon (”;”) can be utilized as separator. The Weak-
ness field is not editable, as the associated weakness is derived from the NVD
and must only be contain existing CWE-IDs.

10.2.5 Assigning Values Relevant for Risk Management

This section explains the interaction with the CVSS, Exploitability, Impact
and STRIDE components of the GUI.

It was decided that the CVSS field is read-only, in order to keep the correct
value for decisions in the risk management process. The Exploitability and
Impact values, however, are editable. This enables a reassignment of the val-
ues, in case the automatically derived value is too high or low in the eyes of the
expert. Moreover, it enables the assignment of an Exploitability or Impact to
entries that do not contain a CVSS.

As far as the field for STRIDE is concerned, not all NVD entries allow for
a decision on a respective value. In the case of Packetstorm these values are not
contained at all (at least not in structured form). Therefore, the assignment is
mostly conducted manually.

10.2.6 (Re-)Generate Rule Text

When a new entry is loaded for display inside the GUI, the rule text is automat-
ically generated. However, in case the content inside the affected product table
is updated, the ”Generate Rule” button must be clicked to update the Rule
text field. The ”Rule text” field itself is not editable as it shall only display
the automatically generated rule text.

10.2.7 Storing the Vulnerability in the Database

Once all the content presented in the GUI has been reviewed and potentially
adapted, a click on the Save button in the below the Rule text field triggers
storing it in the database. Once the saving is complete, the next entry is loaded
and displayed.

136

	Introduction
	Goals
	Envisaged Solution
	Structure of the Thesis

	Related Work
	Threat Intelligence
	Relevance of Threat Intelligence
	Types of Threat Intelligence
	Challenges of Threat Intelligence
	Sources of Threat Intelligence
	Reasons for Sharing
	Reasons for Not Sharing

	Threat Information Exchange
	Formats
	Platforms for Threat Exchange

	Information Extraction
	Starting Points for the Master Thesis Identified in Literature Research

	Basic Technological Framework
	Threat Modelling
	Threat Modelling Process
	System Model
	Threat Model
	Threat Analysis

	Risk Management
	Risk Assessment
	Risk Treatment
	ISO/SAE DIS 21434 Based Risk Matrix

	Rule-Based Approach
	STRIDE
	Examples of Rules

	Improving Threat Modelling at AIT
	Real-World Vulnerability Information
	Adding more Level of Detail

	Enabling Technologies
	Vulnerability Databases
	CPE - Common Platform Enumeration
	CVE - Common Vulnerabilities and Exposures
	CWE - Common Weakness Enumeration
	CVSS - Common Vulnerabilities Scoring System
	NER - Named Entity Recognition

	Model and Method
	Enhancements to Threat Modelling Persued at AIT
	High-Level Description of the Applied Approach
	Representing Vulnerabilities
	Deriving the Requirements for a Vulnerability Model
	A Model for Automated Rule Generation from Structured and Unstructured Data Sources
	Enabling Extendability With the Adapter Pattern
	Converting CVSS to Risk Matrix
	CVSS Based CIA to STRIDE
	An Automated Rule Creation Process

	Methodological Approach
	Identifying Requirements for Rule Creation
	Analyzing Platform Offerings
	Connecting to Platforms
	Common Format
	Data Extraction
	A Rule Structure Supporting Component-Based Threat Modelling

	Prototype Implementation
	Architecture
	Connecting to NVD and Packetstorm
	Connecting to NVD
	Connecting to Packetstorm

	Training of the Named Entity Extractors
	Integrating the Named Entity Extractors
	Generating Rule Text
	Validating the Information
	Describing the GUI for a Packetstorm Entry
	Describing the GUI for an NVD Entry

	Results
	Examples for Generated Rules
	Measurement Results
	Results of the Packetstorm Named Entity Extractor
	Results of the NVD Named Entity Extractor
	Results of a Combined Named Entity Extractor
	Applying the Combined Named Entity Extractor to Packetstorm and NVD Test Sets

	Lessons learned
	Describing the Architecture at an Early Stage Reveals Errors
	Exploitability is Preferable over Likelihood
	STRIDE is NOT for Classification
	A Better System Model Yields Better Results
	Representing Products and Versions as Rules Produces a Large Overhead
	Pre- and Postcondition Add Value
	NER Requires Less Training if the Structure is Homogeneous
	Automation Simplifies Rule Creation
	There is a Vast Amount of Online Resources
	Outlook

	Conclusion
	References
	Annex A: Definition of Terms
	Annex B: Abbreviations
	Annex C: Implementation
	Installation Guide
	User Guide
	Selecting the Resource for Rule Extraction
	Adding, Removing or Modifying Affected Products
	Adding, Removing or Modifying References
	Modifying Vulnerabilities, Precondition and Postcondition
	Assigning Values Relevant for Risk Management
	(Re-)Generate Rule Text
	Storing the Vulnerability in the Database

