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Abstract

Two main constructions of local Fourier bases are presented. The first consists in
constructing a simple orthonormal Wilson basis ψm,n where both ψm,n and its Fourier

transform ψ̂m,n have exponential decay. These are modifications of a Gabor system in
a way that the redundancy of a Gabor frame is removed but the good time-frequency
localization is preserved. We describe three equivalent ways to show that ψm,n is an
orthonormal basis, two of them using frame theory and Gabor analysis.

The second construction is based on the idea of finding smooth orthogonal
projections of functions over intervals. For every interval I we can construct several
orthonormal bases for L2(I) consisting of trigonometric functions multiplied by the
characteristic function of I and, given a partition {αk} of R, these bases can be
patched together to form an orthonormal basis of L2(R). To improve the frequency
localization, we show that we can replace the characteristic function of each interval
in the partition by a smooth bell function bk ∈ CN(R) with compact support for
N ∈ N ∪ {∞}. These bases are called “local Fourier bases”.

In the case of a uniform partition and considering a suitable parity, Wilson bases
are a particular case of local Fourier bases.

Two applications of local Fourier bases are presented. Firstly, we show that local
Fourier bases are unconditional bases for the modulation spaces on R and, as a
consequence, the function spaces defined by the approximation with respect to a
local Fourier bases are the modulation spaces. The second application consists in
the use of local Fourier bases for the extraction of a gravitational waves.
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Zusammenfassung

Es werden zwei Hauptkonstruktionen von lokalen Fourierbasen erläutert. Die erste
besteht darin, eine einfache Wilson-Orthonormalbasis ψm,n zu bilden, wobei sowohl

ψm,n als auch die entsprechende Fouriertransformation ψ̂m,n exponentiell abfallen.
Solche Basen entstehen aus der Modifikation eines Gaborframes, sodass die Redun-
danz des Gaborsystems behoben wird, aber die gute Zeitlokalisierung erhalten bleibt.
Wir präsentieren drei äquivalente Beweise dafür, dass ψm,n eine Orthonormalbasis
ist; in zwei Fällen werden Frametheorie und Gaboranalysis verwendet.

Die zweite Konstruktion beruht auf der Grundidee, glatte orthogonale Projek-
tionen von Funktionen auf Intervallen zu finden. Für jedes Intervall I können wir
mehrere Orthonormalbasen von L2(I) konstruieren, die aus trigonometrischen Funk-
tionen multipliziert mit der charakteristischen Funktion von I bestehen. Für eine
gegebene Partition {αk} von R können diese Basen zu einer Orthonomalbasis von
L2(R)

”
zusammengeklebt“ werden. Um die Lokalisierungsfrequenz zu verbessern,

zeigen wir, dass man die charakteristische Funktion auf jedem Intervall in der Parti-
tion durch eine glatte Funktion bk ∈ CN (R) mit kompaktem Träger für N ∈ N∪{∞}
ersetzen kann. Diese Basen werden

”
lokale Fourierbasen“ genannt.

Im Falle einer gleichmäßigen Partition mit passender Parität sind Wilsonbasen
ein Spezialfall von lokalen Fourierbasen.

Schließlich werden zwei Anwendungen von lokalen Fourierbasen präsentiert. Er-
stens wird gezeigt, dass lokale Fourierbasen unbedingte Basen von den Modula-
tionsräumen auf R darstellen; es folgt daraus, dass Funktionsräume, die durch
die Approximation bezüglich einer lokalen Fourierbasis definiert sind, die Modula-
tionsräume sind. Die zweite Anwendung besteht in der Verwendung von lokalen
Fourierbasen bei der Messung von Gravitationswellen.
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Introduction

One of the goals in signal processing and time-frequency analysis is to find a convenient
series expansion of functions in L2(R). A first attempt could be the so called
Gabor system {e2πimxχ[0,1](x − n)}m,n∈Z = {MmTnχ[0,1](x)}m,n∈Z which forms an
orthonormal basis of L2(R). Note that all elements in the basis consists of translation
and modulation of χ[0,1]. This example presents one of the limitations on the
properties we expect from a Gabor basis. In fact, computing the Fourier transform
of χ[0,1], we see that

χ̂[0,1](ω) =

∫ 1

0

e−2πixωdx = e−πiω
sin(πω)

πω

oscillates and has slow decay. These considerations and the discontinuity of χ[0,1],
make the orthonormal basis {MmTnχ[0,1](x)}m,n∈Z unattractive for its application in
time-frequency analysis.

A natural consequence is to ask if we can replace the characteristic function by a
continuous function g and still obtain an orthonormal basis. For this aim, in the 1946,
in his famous article “Theory of communication”, Gabor proposed to decompose
every signal with respect to time-frequency shifts of the Gaussian g(t) = 2

1
4 e−πt

2
as

MmbTnag(x) = e2πimbxg(x− na), m, n ∈ Z. (1)

with a = b = 1.
Unfortunately, in the 1980s, the Balian-Low theorem states that functions of type

(1) can only be orthonormal bases if(∫
R
x2|g(x)|dx

)(∫
R
ω2|ĝ(ω)|dω

)
= ∞.

This means that a function g generating a Gabor orthonormal basis cannot be well
localized in both time and frequency. Moreover, the proof of the Ron-Shen duality
principle for Gabor frames in the mid 1990s, had some important consequence in
stating the necessary condition for a Gabor system of type (1) to be a frame. In
particular, {MmbTnag}m,n∈Z is a frame only if ab ≤ 1, and, at ab = 1 a normalized
tight Gabor frame is an orthonormal basis. Hence, if we abandon the requirement
that (1) is a basis to improve the time-frequency localization, we obtain a highly
redundant expansion with ab < 1.
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4 INTRODUCTION

Several researchers tried to overcome the negative aspect of this theorem, in
particular, two different constructions coming from distinct motivations are probably
the most striking and constitute the core of this thesis. The first construction
came from quantum mechanics and followed the idea of K. Wilson [30]. In 1987,
he proposed an idea on how to overcome the Balian-Low barrier: replacing the
exponential e2πimbx with sines and cosines, allowing the localization of the functions
of the basis around two frequencies with opposite sign. This construction has been
simplified by Ingrid Daubechies, Stéphane Jaffard and Jean-Lin Journé in [15] to
yield what is now called a Wilson basis {Ψl,n}l∈N,n∈Z defined by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ψ0,n(x) = ϕ(x− n),

Ψl,n(x) = 1√
2
eπiln[Ml + (−1)l+nM−l]Tn

2
ϕ(x)

=
√

2ϕ
(
x− n

2

){cos(2πlx), if l + n is even,

sin(2πlx), if l + n is odd.

l ∈ N \ {0}, n ∈ Z

(2)

where ϕ is real and even, both ϕ and its Fourier transform ϕ̂ have exponential
decay and can be constructed as a rapidly converging superposition of Gaussians.
Moreover, both Ψl,n and Ψ̂l,n have exponential decay. The construction produces
an orthonormal basis that possesses the desired time-frequency localization while
keeping much of the structure of a Gabor system. In Chapter 2 we will reformulate
this approach following [15].

In particular, it is proved that for every ϕ ∈ L2(R) such that ||ϕ(x)||2 = 1,
{Mm

2
Tnϕ}m,n∈Z being a tight frame is equivalent to {Ψl,n}l∈N,n∈Z being an orthonor-

mal basis. We have that the transition from a tight Gabor frame of redundancy 2 to
the Wilson system (2) removes incredibly the redundancy and leads to a basis for
L2(R). Moreover, there exists ϕ ∈ CN(R) with N ∈ N ∪ {∞} and compact support
and ϕ ∈ S(R) such that {Ψl,n}l∈N,n∈Z is an orthonormal basis for L2(R).

The second construction was first made by Malvar [24] and emerged in the context
of subband coding theory: he wanted to eliminate the aliasing effect of subband
coding when two blocks overlap in the block by block discrete cosine transform. His
solution consists in a modulated lapped transform which cancels the aliasing effects
and allows a perfect reconstruction. These bases were independently formulated in a
generalized form by Coifman and Meyer [13]. The paper [2] by Auscher, Weiss and
Wickerhauser shows that these two apparently different constructions are actually
particular cases of a family called “local Fourier bases”. They proved that for a given
partition {αj}j∈Z with interval length lj = αj+1 − αj and a sequence εj > 0 such
that αj + εj ≤ αj+1 − εj+1, then for any smoothness N ∈ N ∪ {∞}, bell functions
b[αj ,αj+1] ∈ CN (R) with supp b[αj ,αj+1] ⊆ [αj − εj, αj+1 + εj+1] can be constructed such
that with a suitable choice of “parity” each of the systems

(i)
{√

2
lj
b[αj ,αj+1](x) sin

(
2k+1
2

π
lj

(x− αj)
)
, k ∈ N ∪ {0}, j ∈ Z

}
;

(ii)
{√

2
lj
b[αj ,αj+1](x) sin

(
k π
lj

(x− αj)
)
, k ∈ N, j ∈ Z

}
;
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(iii)
{√

2
lj
b[αj ,αj+1](x) cos

(
2k+1
2

π
lj

(x− αj)
)
, k ∈ N ∪ {0}, j ∈ Z

}
;

(iv)
{√

1
lj
b[αj ,αj+1](x),

√
2
lj
b[αj ,αj+1](x) cos

(
k π
lj

(x− αj)
)
, k ∈ N, j ∈ Z

}
forms an orthonormal basis for L2(R). Each of (i)-(iv) is called local Fourier basis.
Thanks to the support condition, these functions are well localized on [αj, αj+1] and
by the smoothness of b[αj ,αj+1], they are well localized in the frequency-plane. This
construction will be discussed in Chapter 3.

This thesis is organized as follows: Chapter 1 presents a collection of preliminaries.
We establish the main definitions and results about the Fourier transform and the
basics of frame theory in Hilbert spaces. In addition to some characterization of Riesz
bases and Riesz sequences, a short introduction to Gabor analysis and the duality
principle is presented. Finally, the Zak transform and the modulation spaces are
introduced. Chapter 2 consists in the construction of Wilson bases by Daubechies,
Jaffard and Journé. Chapter 3 includes the construction of local Fourier bases by
Auscher, Weiss and Wickerhauser and, in addition, we will show that the Wilson
bases constructed by Daubechies, Jaffard and Journé are actually a special case of
those constructed by Auscher, Weiss and Wickerhauser following [1].

Chapter 4 and Chapter 5 describe two interesting applications of the local Fourier
bases. In Chapter 4, we will show that Wilson orthonomal bases as constructed by
Daubechies, Jaffard and Journé are unconditional bases for the modulation spaces on
R and, as a consequence, the abstract function spaces defined by the approximation
properties with respect to a local Fourier basis are the modulation spaces. In Chapter
5, following the paper of Chassande-Mottin, Jaffard and Meyer [11], we explain how
local Fourier bases played an important role in the algorithm for the extraction of
the first detected gravitational wave in September 2015.





Chapter 1

Prerequisites

In this chapter we present a collection of results which will be useful to understand
the most important topic of this thesis. In the first section we review the main points
about the Fourier transform, in the second we recall the basics of frame theory in
Hilbert spaces and in the third section we consider some important results in Gabor
analysis such as the duality principle. In the fourth section we present the Zak
transform and its properties and in the last section we recall the basics of modulation
spaces.

1.1 Fourier Transform

In this first section we refer to Chapter 1 of the book by Gröchenig “Foundations of
Time-Frequency Analysis” [19] and we present the fundamentals of Fourier analysis
needed to understand the main results of this thesis. Most of the theorems are stated
without proof.

Definition 1.1. Let f ∈ L1(Rd). For ω ∈ Rd, we define the Fourier transform of f
at ω by

f̂(ω) =

∫
Rd

f(x)e−2πix·ωdx.

Note that, since |f̂(ω)| ≤
∫
Rd |f(x)| = ||f ||1, then f̂ is well-defined for any ω. We

can now present some basic properties of the Fourier transform.

Lemma 1.1 (Properties of the Fourier Transform). Let f ∈ L1(Rd), µ, η ∈ Rd,
s ∈ (0,∞), A ∈ GL(d,R). The following holds:

(i) Let Tµf(x) = f(x−µ) be the translation operator. Then T̂µf(ω) = e−2πiµ·ωf̂(ω).

(ii) Let Mηf(x) = e2πiη·xf(x) be the modulation operator. Then M̂ηf(ω) = Tηf̂(ω).

(iii) Let Dsf(x) = s−
d
2 f(x

s
) be the dilation operator. Then D̂sf(ω) = D 1

s
f̂(ω).

(iv) Let f ∗(x) = f(−x) be the involution. Then f̂ ∗(ω) = f̂(ω).

7



8 CHAPTER 1. PREREQUISITES

(v) Let UAf(x) = | det(A)|−1f(A−1x). Then ÛAf(ω) = f̂(ATω).

From the definition it is easy to see that ||f̂ ||∞ ≤ ||f ||1 and the following results
hold:

Lemma 1.2 (Riemann-Lebesgue). If f ∈ L1(Rd), then f̂ is uniformly continuous
and lim|ω|→∞ |f̂(ω)| = 0.

Lemma 1.3. Let f, g ∈ L1(Rd). Then
∫
Rd f̂(ω)g(ω)dω =

∫
Rd f(y)ĝ(y)dy.

We can state an inversion formula for the Fourier transform.

Theorem 1.4 (Inversion Formula). Assume f ∈ L1(Rd) and f̂ ∈ L1(Rd). Then

f(x) =

∫
Rd

f̂(ω)e2πix·ωdω for a.e. x ∈ Rd.

Proof (Sketch). Choose g(ω) = e−δπ|ω|
2
e2πix·ω = Mxe

−δπ|ω|2 . Then, ĝ(y) = δ−
d
2 e−

π|y−x|2
δ .

We apply the previous lemma to a given f to obtain∫
Rd

f̂(ω)e−δπ|ω|
2

e2πix·ωdω  
LHS

=

∫
Rd

f̂(ω)g(ω)dω =

∫
Rd

f(y)ĝ(y)dy = δ−
d
2

∫
Rd

f(y)e−
π|y−x|2

δ dy  
RHS

.

Choose δn > 0, δn −→ 0 and consider the LHS: since the integrand is bounded
by |f̂(ω)| ∈ L1(Rd) and converges pointwise to f̂(ω)e2πix·ω, then by the dominated
convergence the LHS tends to

∫
Rd f̂(ω)e2πix·ωdω. Since the RHS is a convolution

between f and an approximate identity, it tends to f(x) almost everywhere and
f(x) =

∫
Rd f̂(ω)e2πix·ωdω almost everywhere.

If we abandon the requirement that the Fourier transform is defined pointwise by
Definition 1.1, we can extend it to other spaces.

Theorem 1.5 (Plancherel). If f ∈ L1(Rd) ∩ L2(Rd) then

||f ||2 = ||f̂ ||2.

Moreover, the Fourier transform extends to a unitary operator on L2(Rd) and satisfies
Parseval’s formula

⟨f, g⟩ = ⟨f̂ , ĝ⟩ for all f, g ∈ L2(Rd). (1.1)

Finally we recall the Poisson summation formula which relates the Fourier series
with the Fourier transform on Rd.

Theorem 1.6. Assume that for C, ε > 0, we have |f(x)| ≤ C(1 + |x|)−d−ε and
|f̂(ω)| ≤ C(1 + |ω|)−d−ε for all x, ω ∈ Rd. Then, f and f̂ are continuous and∑

k∈Zd

f(x+ k) =
∑
k∈Zd

f̂(k)e2πik·x. (1.2)

The identity holds pointwise for all x ∈ Rd, and both sums converge absolutely for all
x ∈ Rd.
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The conditions on the dacay of f and f̂ are needed for the absolute convergence
of the sums and the pointwise validity of (1.2). A weaker version of Poisson summa-
tion formula is obtained by replacing the absolute convergence of the first sum by
convergence in L2(Rd) and pointwise equality by equality almost everywhere. We
have that: if

∑
k∈Zd f(x + k) ∈ L2(Td) and

∑
k∈Zd |f̂(k)|2 < ∞, then (1.2) holds

almost everywhere.

1.1.1 Periodic Analytic Functions

It will be useful to recall the following theorem from Chapter 3 of the textbook by
Simon [27] which is a consequence of the Cauchy integral formula related to Fourier
series. In particular we will use Theorem 1.7 in Chapter 2.

Theorem 1.7. Let a, b > 0 and Ωa,b = {z ∈ C : −a < Im(z) < b}. Then any
analytic function f on Ωa,b satisfying f(z + 1) = f(z) has an expansion

f(z) =
∑
k∈Z

cke
2πikz (1.3)

converging uniformly on compact subsets of Ωa,b and such that for any y ∈ (−a, b)

ck =

∫ 1

0

f(x+ iy)e−2πik(x+iy)dx.

Moreover, for any ε > 0, there exists a Cε such that

|ck| ≤ Cε min{e−2π(a−ε)k, e2π(b−ε)k} for all k. (1.4)

Conversely, if {ck}k∈Z is a sequence obeying (1.4) for all k and ε, then the series
(1.3) converges on compact subsets of Ωa,b and defines an analytic function f obeying
the periodicity property f(z + 1) = f(z).

Remark 1.1. For periodic functions, analyticity conditions are equivalent to exponen-
tial decay hypotheses on its Fourier series coefficients. If one drops the periodicity
requirement and replaces Fourier series by Fourier transform, there are analogous
theorems associated with the work of Paley and Wiener.

1.2 Frame Theory

Bases are very important when studying Banach spaces and Hilbert spaces. The
main feature of a basis {ek}k∈Z of elements in a Banach space B is that every element
f of the space has a unique expansion in terms of the elements of the basis.

Definition 1.2. Let B be a Banach space. A sequence {ek}k∈Z in B is a (Schauder)
basis for B if, for every f ∈ B, there exist unique coefficients {ck(f)}k∈Z such that

f =
∑
k∈Z

ck(f)ek. (1.5)
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In particular, (1.5) means that the series f =
∑

k∈Z ck(f)ek converges with respect
to the chosen order of the elements.

There is another important type of convergence for which rearrangements of
the elements or interchanging a summation with the action of a linear operator are
permitted.

Definition 1.3. Let {fk}k∈Z be a countable set in a Banach space B. The series∑
k∈Z fk is said to converge unconditionally to f ∈ B if for every ε > 0 there exists a

finite set F0 ⊆ Z such that⏐⏐⏐⏐f −
∑
k∈F

fk
⏐⏐⏐⏐
B
< ε for all finite sets F ⊇ F0.

This means that the net of partial sums sF =
∑

k∈F fk converges to f .
If (1.5) converges unconditionally for each f ∈ B, we call {ek}k∈Z an unconditional

basis.

Definition 1.4. A countable set {ek}k∈Z of vectors in a Banach space B is called
an unconditional basis for B if

(i) the finite linear combinations of ek’s span a dense subspace of B, and

(ii) there exists C > 0, such that for all µ = {µk}k∈Z ∈ ℓ∞(Z) and all finite
sequences {ck}k∈Z, ⏐⏐⏐⏐⏐

⏐⏐⏐⏐⏐∑
k∈Z

ckµkek

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ ≤ C||µ||∞

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐∑
k∈Z

ckek

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ .

In other words, if {ek}k∈Z is a basis which is not unconditional, there exists a
permutation σ for which {eσ(k)}k∈Z is not a basis.

Unfortunately, the conditions to a basis can be very difficult to satisfy and for
this reason it can be convenient to use frames.
A frame is a sequence of elements {fk}k∈Z in H which satisfies (1.5), but the
coefficients need not be unique. Frames are widely use in signal analysis to reconstruct
the information from a signal. Here we will give a brief review on the main concepts
about frames and Gabor frames, stated without proof. For more details, see the
book of Ole Christensen [12].

1.2.1 Bases and Bessel sequences

Lemma 1.8. Let {fk}k∈Z be a sequence in H and suppose that
∑

k∈Z ckfk is conver-
gent for all {ck}k∈Z ∈ ℓ2(Z). Then

T : ℓ2(Z) → H, T{ck}k∈Z =
∑
k∈Z

ckfk (1.6)



1.2. FRAME THEORY 11

is a well-defined bounded operator. The adjoint operator is given by

T ∗ : H → ℓ2(Z), T ∗f = {⟨f, fk⟩}k∈Z. (1.7)

Furthermore, ∑
k∈Z

|⟨f, fk⟩|2 ≤ ||T ||2 ||f ||2, ∀f ∈ H.

Definition 1.5. A sequence {fk}k∈Z of elements in a Hilbert space H is called a
Bessel sequence if there exists a constant B > 0 such that∑

k∈Z

|⟨f, fk⟩|2 ≤ B||f ||2, ∀f ∈ H,

The next theorem shows that the Bessel condition can be expressed in terms of
the operator T in (1.6).

Theorem 1.9. Let {fk}k∈Z be a sequence in H and B > 0 be given. Then {fk}k∈Z
is a Bessel sequence with bound B if and only if

T : {ck}k∈Z →
∑
k∈Z

ckfk

is a well-defined bounded operator from ℓ2(Z) into H and ||T || ≤
√
B.

Definition 1.6. A sequence {ek}k∈Z of elements in a Hilbert space H is an orthonor-
mal system if

⟨ek, ej⟩ = δk,j.

An orthonormal basis is an orthonormal system {ek}k∈Z which is a basis for H.

Remark 1.2. Note that an orthonormal system {ek}k∈Z is a Bessel sequence.

The next theorem gives equivalent conditions for an orthonormal system {ek}k∈Z
to be an orthonormal basis.

Theorem 1.10. Let {ek}k∈Z be an orthonormal system in a Hilbert space H, then
the following are equivalent:

(i) {ek}k∈Z is an orthonormal basis.

(ii) f =
∑

k∈Z⟨f, ek⟩ek, ∀f ∈ H.

(iii) ⟨f, g⟩ =
∑

k∈Z⟨f, ek⟩⟨ek, g⟩, ∀f, g ∈ H.

(iv)
∑

k∈Z |⟨f, ek⟩|2 = ||f ||2, ∀f ∈ H.

(v) span{ek}k∈Z = H.

(vi) If ⟨f, ek⟩ = 0, ∀k ∈ N, then f = 0.
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Lemma 1.11. Let {ek}k∈Z be a sequence of elements in a Hilbert space H. Suppose
the following properties hold:

||ek|| = 1, k ∈ Z and (1.8)∑
k∈Z

⟨g, ek⟩⟨ek, h⟩ = ⟨g, h⟩, ∀g, h ∈ L2(R). (1.9)

Then {ek}k∈Z is an orthonormal basis.

Proof. We first show that {ek}k∈Z is an orthonormal system. Consider (1.8) and
(1.9) with g = h = ej, we have:

1
(1.8)
= ||ej||2

(1.9)
=

∑
k∈Z

|⟨ej, ek⟩|2 = 1 +
∑
k ̸=j

|⟨ej, ek⟩|2.

We have
∑

k ̸=j |⟨ej, ek⟩|2 = 0 which implies ⟨ek, ej⟩ = δk,j. By Definition 1.6, {ek}k∈Z
is an orthonormal system. By Theorem 1.10, condition (1.9) is equivalent to {ek}k∈Z
being an orthonormal basis if {ek}k∈Z is an orthonormal system.

Definition 1.7. Two sequences {fk}k∈Z and {gk}k∈Z in H are called biorthogonal if

⟨gk, fj⟩ = δk,j, ∀j, k ∈ Z.

In particular, if a biorthogonal sequence for {fk}k∈Z exists, it is uniquely deter-
mined if and only if {fk}k∈Z is complete in H.

Theorem 1.12. Assume that {ek}k∈Z is a (Schauder) basis for the Hilbert space H.
Then there exists a unique family {gk}k∈Z in H such that

f =
∑
k∈Z

⟨f, gk⟩ek, ∀f ∈ H.

Moreover, {gk}k∈Z is a basis for H, and {ek}k∈Z and {gk}k∈Z are biorthogonal.

1.2.2 Riesz basis

Definition 1.8. A sequence {fk}k∈Z of a Hilbert space H is a Riesz sequence if there
exist bounds A,B > 0 such that for all finite sequences c ∈ ℓ2(Z),

A||c||2 ≤

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐∑
k∈Z

ckfk

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
2

≤ B||c||2.

A Riesz sequence which generates the whole space H is called a Riesz basis for
H.

The following lemma gives equivalent conditions for a sequence to be a Riesz
basis.
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Lemma 1.13. For a sequence {fk}k∈Z in a Hilbert space H, the following conditions
are equivalent:

(i) {fk}k∈Z is a Riesz basis for H.

(ii) There is an equivalent inner product on H for which {fk}k∈Z is an orthonormal
basis for H.

(iii) {fk}k∈Z is a complete Bessel sequence, and it has a complete biorthogonal
sequence {gk}k∈Z which is also a Bessel sequence.

An interesting result about Riesz sequences that will come in handy later is the
following:

Proposition 1.14. Let {fk}k∈Z be a Bessel sequence in H. Then the following are
equivalent:

(i) {fk}k∈Z is a Riesz sequence with lower bound A;

(ii) {fk}k∈Z has a biorthogonal system {gk}k∈Z which is a Bessel sequence with
bound A−1.

1.2.3 Frames

Definition 1.9. A sequence {fk}k∈Z in a Hilbert space H is a frame for H if there
exist constants A,B > 0 such that

A||f ||2 ≤
∑
k∈Z

|⟨f, fk⟩|2 ≤ B||f ||2, ∀f ∈ H, (1.10)

where A,B are called frame bounds.

If A = B, then {fk}k∈Z is called a tight frame.
Since a frame {fk}k∈Z is a Bessel sequence, the operator T defined by (1.6) is well-
defined and T is called the synthesis operator or the pre-frame operator. The adjoint
T ∗ defined by (1.7) is called the analysis operator.
By composing T and T ∗, we obtain the frame operator

S : H → H, Sf = TT ∗f =
∑
k∈Z

⟨f, fk⟩fk (1.11)

which is positive, bounded, invertible and, by (1.10), satisfies

A⟨f, f⟩ ≤ ⟨Sf, f⟩ ≤ B⟨f, f⟩, ∀f ∈ H. (1.12)

Moreover, its inverse S−1 is positive and has a self-adjoint square root {S− 1
2} such

that {S− 1
2fk}k∈Z is a tight frame. The sequence {S−1fk}k∈Z is again a frame and is

called a canonical dual frame for {fk}k∈Z in the sense that

f =
∑
k∈Z

⟨f, S−1fk⟩fk =
∑
k∈Z

⟨f, fk⟩S−1fk, ∀f ∈ H, (1.13)

and both series converge unconditionally for all f ∈ H.
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1.3 Gabor Analysis in L2(R)
The purpose of Gabor analysis is to represent functions f ∈ L2(R) as a superposition
of translated and modulated versions of a fixed function g ∈ L2(R), where the
translation and modulation operators are those described in Lemma 1.1.

Definition 1.10. Let g ∈ L2(R) and a, b > 0 we call Gabor system a collection of
the form {MmbTnag}m,n∈Z, more explicitly

MmbTnag(x) = e2πimbxg(x− na), x ∈ R.

The Gabor system {MmbTnag}m,n∈Z only involves translates with parameters na,
n ∈ Z and modulations with parameters mb, m ∈ Z. The points {(na,mb)}m,n∈Z
form a lattice in R2.

Definition 1.11. A Gabor frame is a frame for L2(R) of the form {MmbTnag}m,n∈Z
with a, b > 0 and a fixed function g ∈ L2(R).

We state now a necessary condition for a Gabor system to be a frame.

Theorem 1.15. Let g ∈ L2(R) and a, b > 0 be given. Then the following hold:

(i) Assume {MmbTnag}m,n∈Z is a frame for L2(R), then ab ≤ 1.

(ii) Assume that {MmbTnag}m,n∈Z is a frame for L2(R). Then {MmbTnag}m,n∈Z is
a Riesz basis if and only if ab = 1.

Note that the assumption ab ≤ 1 is not enough for {MmbTnag}m,n∈Z to be a frame
and, in particular, the Theorem shows that it is only possible for {MmbTnag}m,n∈Z to
be a frame if ab ≤ 1; and, assuming that {MmbTnag}m,n∈Z is a frame, it is overcomplete
if and only if ab < 1. As a quantitative measure of the overcompleteness we use the
redundancy:

Definition 1.12. Given a Gabor frame {MmbTnag}m,n∈Z, the number (ab)−1 is called
the redundancy.

A result that relates the parameters a and b with the frame bounds is the following,
proved by Daubechies in [14]:

Proposition 1.16. Let g ∈ L2(R) and a, b > 0 be given. If {MmbTnag}m,n∈Z is a
Gabor frame with bounds A,B, then

A ≤ ||g||2

ab
≤ B.

If {MmbTnag}m,n∈Z is a tight Gabor frame, then A = ||g||2
ab

.
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For a Gabor frame {MmbTnag}m,n∈Z with associated frame operator S, the frame
decomposition in (1.13) shows that, for every f ∈ L2(R),

f =
∑
m,n∈Z

⟨f, S−1MmbTnag⟩MmbTnag. (1.14)

We know that frames are particularly useful when the frame decomposition takes
a simple form, which is the case if either the frame is tight or we have access to a
convenient dual frame.

Theorem 1.17. Let g ∈ L2(R) and a, b > 0 be given, and assume {MmbTnag}m,n∈Z
is a Gabor frame with frame operator S. Then the following hold:

(i) The canonical dual frame also has the structure of Gabor frame and is given by
{MmbTnaS

−1g}m,n∈Z.

(ii) The canonical tight frame associated with {MmbTnag}m,n∈Z is given by

{MmbTnaS
− 1

2 g}m,n∈Z.

The function S−1g is called the canonical dual window or the canonical dual
generator. By the previous theorem, the frame decomposition (1.14) associated with
the Gabor frame {MmbTnag}m,n∈Z takes the form

f =
∑
m,n∈Z

⟨f,MmbTnaS
−1g⟩MmbTnag ∀f ∈ L2(R).

We consider now one of the most important results in Gabor analysis, known as
the duality principle. The duality principle concerns the relationship between frame
properties for a function g with respect to the lattice {(na,mb)}m,n∈Z and with
respect to the adjoint lattice {(n

b
, m
a

)}m,n∈Z. It was discovered independently between
the 1995 and the 1997 by three groups of researchers: Janssen [22], Daubechies,
Landau, and Landau [16], and Ron and Shen [26].

Theorem 1.18 (Duality Principle). Let g ∈ L2(R) and a, b > 0 be given. Then
the following are equivalent:

(i) {MmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B;

(ii) {Mm
a
Tn

b
g}m,n∈Z is a Riesz sequence with bounds abA, abB.

The importance of Theorem 1.18 lies in the fact that it often is easier to prove
that {Mm

a
Tn

b
g}m,n∈Z is a Riesz sequence than to prove directly that {MmbTnag}m,n∈Z

is a frame.
We present the following corollary of the duality principle which will be useful in

Chapter 2 to prove Proposition 2.5.

Corollary 1.19. Let g ∈ L2(R) satisfying
∫
|g(x)|2dx = 1. Then the following are

equivalent:
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(i) The Gabor system {MmbTnag}m,n∈Z constitutes a tight frame.

(ii) The Gabor system {Mm
a
Tn

b
g}m,n∈Z is an orthonormal system.

Proof.
(ii) =⇒ (i) Suppose {Mm

a
Tn

b
g}m,n∈Z is an orthonormal system. By Remark 1.2, any

orthonormal system is a Bessel sequence with bound B = 1 and is biorthogonal
to itself. By Proposition 1.14 {Mm

a
Tn

b
g}m,n∈Z is a Riesz sequence with bounds

A = B = 1. By the duality principle for Gabor frame, expressed by Theorem 1.18,
we have that {MmbTnag}m,n∈Z is a tight frame with constant Ã = A

ab
.

(i) =⇒ (ii) Suppose {MmbTnag}m,n∈Z is a tight frame. By Proposition 1.16 the

constant A = ||g||2
ab

= 1
ab

. By the duality principle, {Mm
a
Tn

b
g}m,n∈Z is a Riesz

sequence with constant abA = ||g||2 = 1. Recall that a Riesz sequence is a Riesz
basis for its closed span, hence∑

m,n

|⟨f,Mm
a
Tn

b
g⟩|2 = ||f ||2 for all f ∈ span{Mm

a
Tn

b
g}m,n∈Z.

By Theorem 1.13, there exists a unique sequence {g̃m,n}m,n∈Z in span{Mm
a
Tn

b
g}m,n∈Z

such that {g̃m,n}m,n∈Z is a Riesz basis for span{Mm
a
Tn

b
g}m,n∈Z, {Mm

a
Tn

b
g}m,n∈Z and

{g̃m,n}m,n∈Z are biorthogonal and f =
∑

m,n⟨f, g̃m,n⟩Mm
a
Tn

b
g for all f ∈ span{Mm

a
Tn

b
g}m,n∈Z.

Thus, we have that for every f ∈ span{Mm
a
Tn

b
g}m,n∈Z

||f ||2 = ⟨f, f⟩ = ⟨
∑
m,n

⟨f, g̃m,n⟩Mm
a
Tn

b
g, f⟩ =

∑
m,n

⟨f, g̃m,n⟩⟨Mm
a
Tn

b
g, f⟩

||f ||2 =
∑
m,n

|⟨f,Mm
a
Tn

b
g⟩|2 =

∑
m,n

⟨f,Mm
a
Tn

b
g⟩⟨Mm

a
Tn

b
g, f⟩

and by uniqueness of the biorthogonal basis in span{Mm
a
Tn

b
g}m,n∈Z it must be

g̃m,n = Mm
a
Tn

b
g. Then {Mm

a
Tn

b
g}m,n∈Z is biorthogonal to itself and hence it is a

orthonormal system.

1.4 The Zak Transform

The Zak transform is one of the most used tools for the analysis of Gabor systems
{MmbTna}m,n∈Z for the case ab ∈ Q. Applications of the Zak transform to Gabor
analysis can be found in the book by Gröchenig “Foundations of Time-Frequency
Analysis” [19]. In this section we will refer to the book by Christensen [12] and the
article of Janssen [21].

Definition 1.13. Let α > 0 be a given parameter, the Zak transform Zαf of
f ∈ L2(R) is defined by

(Zαf)(s, t) =
√
α
∑
k∈Z

f(α(s− k))e2πikt, for s, t ∈ R. (1.15)
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The next lemma summarizes two fundamental properties of the Zak transform.

Lemma 1.20. Consider the Zak transform Zα, α > 0, and f ∈ L2(R). Then the
following two properties hold almost everywhere:

(i) quasiperiodicity:

Zαf(s+ 1, t) = e2πitZαf(s, t), (1.16)

(ii) periodicity:

Zαf(s, t+ 1) = Zαf(s, t). (1.17)

Proof.
(i) Quasiperiodicity. Consider the change of variable k̃ = k − 1 then

Zαf(s+ 1, t) =
√
α
∑
k∈Z

f(α(s+ 1 − k))e2πikt

=
√
α
∑
k̃∈Z

f(α(s− k̃))e2πi(k̃+1)t

= e2πitZαf(s, t).

(ii) Periodicity.

Zαf(s, t+ 1) =
√
α
∑
k∈Z

f(α(s− k))e2πik(t+1) = Zαf(s, t).

In Chapter 2 we will use the following property.

Proposition 1.21. Let the Zak transform Z2 with α = 2 and consider the Gabor
system {Mm

2
Tnf}m,n∈Z. Then:

(i) Z2Mm
2
T2nf(s, t) = e2πimse−2πintZ2f(s, t),

(ii) Z2Mm
2
T2n−1f(s, t) = e2πimse−2πintZ2f(s+ 1

2
, t).

Proof.

(i) Z2Mm
2
T2nf(s, t) =

√
2
∑
k∈Z

e2πitke2πim(s−k)f(2(s− k) − 2n)

= e2πims
√

2
∑
k∈Z

e2πitkf(2(s− n− k))

= e2πimsZ2f(s− n, t)

= e2πimse−2πitnZ2f(s, t);
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(ii) Z2Mm
2
T2n−1f(s, t) =

√
2
∑
k∈Z

e2πitke2πim(s−k)f(2(s− k) − (2n− 1))

= e2πims
√

2
∑
k∈Z

e2πitkf(2(s− n+
1

2
− k))

= e2πimsZ2f(s− n+
1

2
, t)

= e2πimse−2πitnZ2f(s+
1

2
, t).

For functions in L2(R) the Zak transform is defined almost everywhere, in fact
{f(α(s− k))}k∈Z ∈ ℓ2(Z) for almost all s. We consider the following interpretation
of the Zak transform.

Lemma 1.22. Let α > 0 and Q = [0, 1) × [0, 1), the Zak transform Zα is a unitary
map of L2(R) onto L2(Q), i.e., Zαf converges almost everywhere on Q.

Proof. Consider first the case α = 1 and let f ∈ L2(R). To show that Z1 is
well-defined as a function in L2(Q), we define

Fk(s, t) = f(s− k)e2πikt, k ∈ Z,
then Fk ∈ L2(Q). We observe that⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐∑
k∈Z

Fk

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
2

L2(Q)

=

⟨∑
k∈Z

Fk,
∑
j∈Z

Fj

⟩
L2(Q)

=
∑
k∈Z

∑
j∈Z

⟨Fk, Fj⟩L2(Q)

=
∑
k∈Z

⟨Fk, Fk⟩L2(Q) +
∑
k∈Z

∑
j∈Z
j ̸=k

⟨Fk, Fj⟩L2(Q)

=
∑
k∈Z

||Fk||2L2(Q) +
∑
k∈Z

∑
j∈Z
j ̸=k

∫ 1

0

f(s− k)f(s− j)

(∫ 1

0

e2πi(k−j)tdt

)
ds

  
=0

=
∑
k∈Z

∫ 1

0

∫ 1

0

|Fk(s, t)|2dtds =
∑
k∈Z

∫ 1

0

|f(s− k)|2ds = ||f ||22.

Hence,
∑

k∈Z Fk converges in L2(Q) and Z1 is an isometry from L2(R) into L2(Q). To
prove that Z1 is unitary, we show that Z1 maps the orthonormal basis {MmTnχ[0,1]}m,n∈Z
for L2(R) onto the orthonormal basis {e2πimse−2πint}m,n∈Z for L2(Q). We consider
the Gabor basis {MmTnχ[0,1]}m,n∈Z for L2(R) and we apply the Zak transform for
(s, t) ∈ Q:

(Z1MmTnχ[0,1])(s, t) =
∑
k∈Z

e2πim(s−k)χ[0,1](s− n− k)e2πikt

= e2πimse−2πint
∑
k∈Z

χ[0,1](s− k)e2πikt

= e2πimse−2πint.
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For the general case α > 0, we use the dilation Zαf = Z1(Dα−1f). In particular,
since the dilation is a unitary operator and we have proved that Z1 is unitary, then
Zα is itself unitary.

Remark 1.3. Since the Zak transform is unitary, then Z−1
α = Z∗

α and for every
f, g ∈ L2(R) we have

⟨f, g⟩ = ⟨Z−1
α Zαf, g⟩ = ⟨Z∗

αZαf, g⟩ = ⟨Zαf, Zαg⟩.

We formulate an inverse of the Zak transform for Zαf ∈ L2(Q).

Proposition 1.23. Let Zαf ∈ L2(Q) be the Zak transform of f . Then:

f(x) = Z−1
α (Zαf)(x) =

1√
α

∫ 1

0

Zαf
(x
α
, t
)
dt. (1.18)

Another useful property is the relation between the Zak transform and the
Schwartz space.

Theorem 1.24. If f ∈ S(R), then Zαf ∈ C∞(R2). Conversely, if F ∈ C∞(R2) such
that the quasiperiodicity (1.16) and periodicity (1.17) conditions are satisfied, then
F = Zαf for a (unique) f ∈ S(R).

1.4.1 Fourier Transform and Zak Transform

It is sometimes useful to define the Zak transform Zαf by using the Fourier transform
of f instead of f itself. In fact, using Poisson summation formula and Properties 1.1
we have that, for f ∈ W (Rd) and f̂ ∈ W (Rd) the following equality holds for all s, t.

Zαf(s, t) =
√
α
∑
k∈Z

f(αs− αk)e2πikt

=
√
α
∑
k∈Z

f(αs+ αk)e2πik(−t)

=
∑
k∈Z

(M−tT−sD 1
α
f)(k)

=
∑
k∈Z

e2πitsMsT−tDαf̂(k)

=
√
α
−1
∑
k∈Z

e2πitse2πiskf̂

(
1

α
(k + t)

)
= e2πitsZ 1

α
f̂(t,−s). (1.19)

With slight modifications we can show that the formula holds for almost all s, t for
f ∈ L1(R) and f̂ ∈ L1(R).
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1.5 Modulation Spaces

In this section we recall some basic facts about the short-time Fourier transform from
Chapter 3 of [19] and the main properties of the modulation spaces from Chapter 11
of [19] and the article [20].

1.5.1 Short-time Fourier Transform

For a signal f(x), the variable x usually represents the time, while its Fourier
transform f̂ evaluated at a point ω provides information about the content of
oscillations with frequency ω. The time information is lost when applying the Fourier
transform, and it is not possible to know which frequencies appear at which time. A
way to address this problem is to multiply the signal f by a window function g such
that g is constant on a small interval I and decays fast and smooth to zero outside I,
and then apply the Fourier transform. We obtain information about the frequency
content on I. We define in this way the short-time Fourier transform.

Definition 1.14. Let g ∈ L2(Rd) \ {0} be a window function and f ∈ L2(Rd). Then
the short-time Fourier transform (STFT) of f with respect to g is defined as

Vgf(x, ω) = ⟨f,MωTxg⟩ =

∫
Rd

f(t)g(t− x)e−2πit·ωdt, for x, ω ∈ Rd.

Note that, applying Parseval’s identity (1.1), we can rewrite the STFT as

Vgf(x, ω) = (f · Txg)̂(ω) = ⟨f,MωTxg⟩ = ⟨f̂ , TωM−xĝ⟩ = e−2πix·ωVĝf̂(ω,−x).

Evidently, if g, f ∈ L2(Rd) then Vgf(x, ω) = (f · Txg)̂(ω) is defined pointwise. The
representation as an inner product makes it possible to generalize the STFT beyond
L2(Rd) via duality.

Definition 1.15. The Schwartz class of functions S(Rd) consists of all C∞-functions
f on Rd such that

||f ||α,β = sup
x∈Rd

|xαDβf(x)| ≤ ∞ for all multi-indices α, β ∈ Nd.

Let S ′(Rd) be its topological dual. In particular, Vgf(x, ω) = ⟨f,MωTxg⟩ is
well-defined for all tempered distributions f ∈ S ′(Rd) if g ∈ S(Rd). Practically,
a good choice for g can be any non-zero Schwartz function, such as the Gaussian
g(x) = e−πx

2
. In fact, the Gaussian is a rapidly decreasing and Fourier invariant

function.
To summarize, if g is centered at 0 and has most of its content on a small interval,

then Vgf(x, ω) = ⟨f,MωTxg⟩ measures the magnitude of f near x. At the same time,

Vgf(x, ω) = ⟨f̂ , TωM−xĝ⟩ and Vgf measures the magnitude of f̂ near ω.
The next property is called the covariance property of the STFT.
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Lemma 1.25. Whenever Vgf is well define, we have

Vg(TµMηf)(x, ω) = e−2πiµ·ωVgf(x− µ, ω − η) for x, µ, ω, η ∈ Rd.

Moreover,
|Vg(TµMηf)(x, ω)| = |Vgf(x− µ, ω − η)|. (1.20)

1.5.2 Modulation spaces

The short-time Fourier transform describes the global time-frequency distribution
of a signal but, even assuming Vgf ∈ L2(Rd), we are not able to estimate precisely
the time-frequency localization of the function f . Considering “weights” in the
time-frequency plane makes the measurement of the decay of the short-time Fourier
transform more precise.

Definition 1.16. Let w be a nonnegative continuous function on R2d. We call w a
weight if, for some constants C > 0 and s ≥ 0, it holds

w(x1 + ω1, x2 + ω2) ≤ C(1 + |x|)sw(ω1, ω2)

for all x =

[
x1
x2

]
, ω =

[
ω1

ω2

]
, and x1, x2, ω1, ω2 ∈ Rd.

Modulation spaces are mathematical tool to measure the joint time-frequency
distribution of a tempered distribution f ∈ S ′(Rd).

Definition 1.17. Let g ∈ S(Rd) \ {0}, let w be a weight on R2d and 1 ≤ p, q ≤ ∞.
Then the modulation space Mp,q

w (Rd) is the space of all tempered distributions
f ∈ S ′(Rd) such that the norm

||f ||Mp,q
w

=

(∫
Rd

(∫
Rd

|Vgf(x, ω)|pw(x, ω)pdx

) q
p

dω

) 1
q

<∞

is finite.

Note that the norm on Mp,q
w is ||f ||Mp,q

w
= ||Vgf ||Lp,q

w
. It can be shown that the

definition is independent of the window function; in fact, different non-zero windows
g ∈ S(Rd) yield equivalent norms.

The duality between the spaces Lp,qw and Lp
′,q′
1
w

suggests a similar statement for

modulation spaces.

Theorem 1.26. Let g ∈ S(Rd) \ {0}. If 1 ≤ p, q <∞, then (Mp,q
w )∗ = Mp′,q′

1
w

under

the duality

⟨f, h⟩ =

∫ ∫
Rd

Vgf(x, ω)Vgh(x, ω)dxdω

for f ∈Mp,q
w and h ∈Mp′,q′

1
w

.
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In this thesis we will consider the case d = 1 and p = q and we will write Mp
w

instead of Mp,p
w .

The next result shows that we characterize the modulation spaces by means of
Gabor frames and hence the modulation spaces have a nice Gabor expansion.

Theorem 1.27. Given g ∈ S(R) and a, b > 0 small enough, then there exists a dual
window h ∈ S(R), such that every f ∈ S ′(R) can be written as

f =
∑
m,n∈Z

⟨f,MmbTnah⟩MmbTnag. (1.21)

Moreover,

f ∈Mp
w ⇐⇒

( ∑
m,n∈Z

|⟨f,MmbTnah⟩|pw(na,mb)p

) 1
p

<∞. (1.22)

and the sequence space of norm in (1.22) is equivalent to the norm in Mp
w. Fur-

thermore, if 1 ≤ p, q <∞, the Gabor expansion (1.21) converges unconditionally in
Mp,q

w .



Chapter 2

Wilson Bases

In 1991, Ingrid Daubechies, Stéphane Jaffard and Jean-Lin Journé in [15], following
the basic idea of Wilson orthonormal bases for L2(R), constructed what now are
known as Wilson bases. They were able to overcome the barrier presented by the
Balian-Low theorem which states that it is not possible to have good time-frequency
localization of Gabor frames at the critical density. In particular, their construction
gives a modification of Gabor systems in a way that the redundancy of a Gabor frame
is deleted and the time-frequency localization is preserved. Basically, they constructed
a real function ϕ with ϕm,n(x) = Mm

2
Tnϕ(x) such that with the definitions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ̂1,n(ω) = M−nϕ(ω) = ϕ−2n,0(ω),

ψ̂2l+κ,n(ω) = 1√
2
e−2πinωeiπκω[ϕ(ω − l) + (−1)l+κϕ(ω + l)]

= 1√
2
eiπκωM−n[Tl + (−1)l+κT−l]ϕ(ω)

= 1√
2
[ϕ−(2n−κ),l + (−1)l+κϕ−(2n−κ),−l](ω)

l ∈ N \ {0}, κ = 0 or 1.

(2.1)

the family

ψm,n with m ∈ N \ {0} and n ∈ Z (2.2)

forms an orthonormal basis.
We can relabel the ψm,n to make the notation simpler:

Ψ0,n = ψ1,n

Ψl,2n−κ = ψ2l+κ,n, l ̸= 0, κ = 0 or 1

to obtain{
Ψ̂0,n(ω) = ϕ−2n,0(ω),

Ψ̂l,n(ω) = ψ̂2l+κ,n+κ
2

(ω) = 1√
2
[ϕ−n,l + (−1)l+nϕ−n,−l](ω), l ̸= 0.

Note that the functions ψm,n in (2.1) can be obtained by the inverse Fourier

transform of ϕ. If ϕ is real and even, then the inverse Fourier transform of ϕ and ϕ̂

23
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coincide and we can rewrite⎧⎪⎨⎪⎩
ψ1,n(x) = ϕ̂(x− n) = Tnϕ̂(x),

ψ2l+κ,n(x) = 1√
2
ϕ̂(x+ κ

2
− n)eπilκ[e2πilx + (−1)l+κe−2πilx]

= 1√
2
eπilκ[Ml + (−1)l+κM−l]Tn−κ

2
ϕ̂(x).

Relabelling as before, one gets⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ψ0,n(x) = Tnϕ̂(x),

Ψl,n(x) = 1√
2
eπiln[Ml + (−1)l+nM−l]Tn

2
ϕ̂(x)

=
√

2ϕ̂(x− n
2
)

{
cos(2πlx), if l + n is even,

sin(2πlx), if l + n is odd.

l ∈ N \ {0}, n ∈ Z

(2.3)

It is surprising that both Ψl,n and Ψ̂l,n constructed in this way have the same
structure.

It is still mysterious how they came up with this formula, and the paper they
wrote is entirely dedicated to prove that formulation (2.1) has all the properties we
are looking for. In addition, they presented a way to construct ϕ where both ϕ and
its Fourier transform ϕ̂ have exponential decay and can be constructed as a rapidly
converging superposition of Gaussians.

We follow the presentation of [15]. The first result is the following.

Proposition 2.1. Let ϕ ∈ L2(R) be a real-valued function. Then the functions ψm,n
defined by (2.1) and (2.2) form an orthonormal basis for L2(R) if and only if∑

l∈Z

T−lϕ(ω)T−lϕ(ω + 2j) = δj0 a.e., (2.4)

where δj0 is the Kronecker delta.

Proof. By Lemma 1.11, {ψm,n}m∈N\{0},n∈Z is an orthonormal basis, if properties (1.8)
and (1.9) hold.
1. Claim: {ψm,n}m∈N\{0},n∈Z satisfies (1.9) if and only if

∑∞
l=−∞ T−lϕ(ω)T−lϕ(ω +

2j) = δj0 a.e.
Suppose (1.9) holds true, then apply Parseval’s identity to the first inner product
and Poisson summation formula (1.2) to M−ωT−xψm,0 in the eighth equality. We
obtain that for every g, h ∈ L2(R):

⟨g, h⟩ =
∞∑
m=1

∞∑
n=−∞

⟨g, ψm,n⟩⟨ψm,n, h⟩

(1.1)
=

∞∑
m=1

∞∑
n=−∞

⟨ĝ, ψ̂m,n⟩⟨ψm,n, h⟩

=
∞∑
m=1

∞∑
n=−∞

∫
ĝ(ω)ψ̂m,n(ω)

(∫
ψm,n(x)h(x)dx

)
dω
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=
∞∑
m=1

∞∑
n=−∞

∫
ĝ(ω)M−nMnψ̂m,n(ω)

(∫
ψm,n(x)h(x)dx

)
dω

=
∞∑
m=1

∞∑
n=−∞

∫
ĝ(ω)Mnψ̂m,n(ω)

(∫
e2πinωψm,n(x)h(x)dx

)
dω

=
∞∑
m=1

∫
ĝ(ω)ψ̂m,0(ω)

(∫ ∞∑
n=−∞

ψm,0(x+ n)e−2πinωh(x)dx

)
dω

=
∞∑
m=1

∫
ĝ(ω)ψ̂m,0(ω)

(∫ ∞∑
n=−∞

M−ωT−xψm,0(n)h(x)dx

)
dω

=
∞∑
m=1

∫
ĝ(ω)ψ̂m,0(ω)

(∫ ∞∑
k=−∞

e2πiωxMxT−ωψ̂m,0(k)h(x)dx

)
dω

=
∞∑
m=1

∫
ĝ(ω)ψ̂m,0(ω)

(∫ ∞∑
k=−∞

ψ̂m,0(ω + k)e2πix(ω+k)h(x)dx

)
dω

=
∞∑
m=1

∞∑
k=−∞

∫
ĝ(ω)ψ̂m,0(ω)ψ̂m,0(ω + k)

(∫
e2πix(ω+k)h(x)dx

)
  

=ĥ(ω+k)

dω

=
∞∑
m=1

∞∑
k=−∞

∫
ĝ(ω)ψ̂m,0(ω)ψ̂m,0(ω + k)ĥ(ω + k)dω

=
∞∑

k=−∞

∫
ĝ(ω)ĥ(ω + k)

∞∑
m=1

ψ̂m,0(ω)ψ̂m,0(ω + k)dω.

Since we assumed ϕ ∈ L2(R) then ψ̂m,n ∈ L2(R). Using the periodization trick we

have that
∑

||ψ̂m,n||2 ∈ L1(T) and then, applying Fubini, summation and integration
commute. Moreover, since ϕ ∈ L2(R), the Poisson summation formula is defined
almost everywhere and the series converges uniformly almost everywhere. From the
previous computations we have that

∫
ĝ(ω)ĥ(ω)dω =

∞∑
k=−∞

∫
ĝ(ω)ĥ(ω + k)

∞∑
m=1

ψ̂m,0(ω)ψ̂m,0(ω + k)dω a.e.

Hence, condition (1.9) holds true if and only if

∞∑
m=1

ψ̂m,0(ω)ψ̂m,0(ω + k) = δk0 a.e. (2.5)

Since ϕ is real, ϕ(ω) = ϕ(ω) and, using definition in (2.1), replace ψ̂m,n in (2.5). We
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have

∞∑
m=1

ψ̂m,0(ω)ψ̂m,0(ω + k)

= ϕ(ω)ϕ(ω + k) +
1

2

∞∑
l=1

1∑
κ=0

Mκ
2
[Tl + (−1)l+κT−l]ϕ(ω) ·Mκ

2
[Tl + (−1)l+κT−l]ϕ(ω + k)

= ϕ(ω)ϕ(ω + k) +
1

2

∞∑
l=1

{[Tl + (−1)lT−l]ϕ(ω) · [Tl + (−1)lT−l]ϕ(ω + k)

+ (−1)k[Tl + (−1)l+1T−l]ϕ(ω) · [Tl + (−1)l+1T−l]ϕ(ω + k)}

= ϕ(ω)ϕ(ω + k) +
1

2

∞∑
l=1

[Tlϕ(ω)Tlϕ(ω + k) + T−lϕ(ω)T−lϕ(ω + k)]  
=
∑

l∈Z,l ̸=0 T−lϕ(ω)T−lϕ(ω+k)

[1 + (−1)k]

+
1

2

∞∑
l=1

[Tlϕ(ω)T−lϕ(ω + k) + T−lϕ(ω)Tlϕ(ω + k)]  
=
∑

l∈Z,l ̸=0 T−lϕ(ω)Tlϕ(ω+k)

(−1)l[1 − (−1)k]

= ϕ(ω)ϕ(ω + k) +
1

2

∑
l∈Z,
l ̸=0

[T−lϕ(ω)T−lϕ(ω + k)][1 + (−1)k]

+
1

2

∑
l∈Z,
l ̸=0

(−1)l[T−lϕ(ω)Tlϕ(ω + k)][1 − (−1)k].

We notice that if k is even, then k = 2j and

∞∑
m=1

ψ̂m,n(ω)ψ̂m,n(ω + 2j) =
∞∑

l=−∞

T−lϕ(ω)T−lϕ(ω + 2j).

If k is odd, then k = 2j + 1 and

∞∑
m=1

ψ̂m,n(ω)ψ̂m,n(ω + 2j + 1) =
∞∑

l=−∞

(−1)lT−lϕ(ω)Tlϕ(ω + 2j + 1) = 0

since taking l′ = −l + 2j + 1 and substituting we have

∞∑
l=−∞

(−1)lT−lϕ(ω)Tlϕ(ω + 2j + 1) =
∞∑

l′=−∞

(−1)−l
′+2j+1Tl′ϕ(ω + 2j + 1)T−l′ϕ(ω) = 0.

We obtain that (2.5) holds if and only if

∞∑
l=−∞

T−lϕ(ω)T−lϕ(ω + 2j) = δj0 a.e.
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2. Claim: {ψm,n}m∈N\{0},n∈Z satisfies (1.8) if and only if
∫ +∞
−∞ ϕ(ω)ϕ(ω+ 2l)dω =

δl0.
Consider condition (1.8): we have to show ||ψm,n|| = 1 for m ∈ N \ {0} and n ∈ Z.

For m = 1, then ||ψ1,n||2 = ||ψ̂1,n||2 =
∫ +∞
−∞ |ϕ(ω)|2dω;

for m = 2l + κ, l ≥ 1 and κ = 0 or 1, then

||ψ̂m,n||2 =
1

2

∫ +∞

−∞
|Tlϕ(ω)+(−1)l+κT−lϕ(ω)|2dω = 1+(−1)l+κ

∫ +∞

−∞
ϕ(ω)ϕ(ω+2l)dω.

From the previous consideration we have that ||ψm,n||2 = 1 if and only if∫ +∞

−∞
ϕ(ω)ϕ(ω + 2l)dω = δl0. (2.6)

3. Claim: {ψm,n}m∈N\{0},n∈Z forms an orthonormal basis if and only if
∑

l∈Z ϕ(ω+
l)ϕ(ω + l + 2j) = δj0 a.e.
Note that, if condition (2.4) holds true, then (2.6) is satisfied, in fact:∫ +∞

−∞
ϕ(ω)ϕ(ω + 2l)dω =

∑
k∈Z

∫ 1

0

T−kϕ(ω)T−kϕ(ω + 2l)dω =

∫ 1

0

δl0dω = δl0.

To summarize, if condition (2.4) is satisfied then, respectively by claims 1 and 2,
condition (1.9) and ||ψm,n|| = 1 hold true. Hence, by Lemma 1.11, {ψm,n}m∈N\{0},n∈Z
forms an orthonormal basis. Conversely, if {ψm,n}m∈N\{0},n∈Z forms an orthonormal
basis, i.e. conditions (1.8) and (1.9) hold, then, by item 1, (2.4) holds. Thus,
we have proved that {ψm,n}m∈N\{0},n∈Z forms an orthonormal basis if and only if∑

l∈Z ϕ(ω + l)ϕ(ω + l + 2j) = δj0 a.e.

2.1 Equivalent formulation using Zak Transform

We can simplify the condition of Proposition 2.1 by using the Zak transform, which
has been introduced in Section 1.4 to rewrite our problem into a different form.
For our aim we choose α = 2 in the definition of the Zak transform (1.15):

Z2ϕ(s, t) =
√

2
∑
k∈Z

e2πitkϕ(2(s− k)). (2.7)

We recall that the function Z2g is periodic in the second and quasiperiodic in the
first variable from Proposition 1.20:

Z2ϕ(s, t+ 1) = Z2ϕ(s, t),

Z2ϕ(s+ 1, t) = Z2ϕ(s, t)e2πit.

Moreover, the inverse transform of (2.7) is given by

ϕ(x) =
1√
2

∫ 1

0

(Z2ϕ)

(
x

2
, t

)
dt. (2.8)

We can rewrite the previous proposition in the following way.
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Proposition 2.2. Let ϕ ∈ L2(R) be a real-valued function. Then {ψm,n}m∈N\{0},n∈Z
defined by (2.1) and (2.2) forms an orthonormal basis for L2(R) if and only if the
Zak transform Z2ϕ of ϕ, as defined by (2.7) satisfies

|Z2ϕ(s, t)|2 + |Z2ϕ(s+
1

2
, t)|2 = 2 (2.9)

for almost all s, t ∈ [0, 1]2.

Proof. We consider the inverse Zak transform and we rewrite equation (2.4) in terms
of Z2ϕ. We divide the sum in odd and even part, apply the quasiperiodicity property
of the Zak transform and use the delta point measure. Recall that since ϕ is real,
then Z2ϕ(s, t) = Z2ϕ(s,−t).∑

l∈Z

T−lϕ(ω)T−lϕ(ω + 2j)

=
1

2

∑
l∈Z

∫ 1

0

[∫ 1

0

Z2ϕ

(
ω + l

2
, t

)
Z2ϕ

(
ω + l

2
+ j, t′

)
dt′
]
dt

=
1

2

∑
k∈Z

∫ 1

0

[∫ 1

0

Z2ϕ

(
ω

2
+ k, t

)
Z2ϕ

(
ω

2
+ k + j, t′

)
+ Z2ϕ

(
ω + 1

2
+ k, t

)
Z2ϕ

(
ω + 1

2
+ k + j, t′

)
dt′
]
dt

=
1

2

∫ 1

0

[∫ 1

0

∑
k∈Z

e2πik(t+t
′)

  ∑
n∈Z δ(t

′−(n−t))

e2πijt
′
{
Z2ϕ

(
ω

2
, t

)
Z2ϕ

(
ω

2
, t′
)

+ Z2ϕ

(
ω + 1

2
, t

)
Z2ϕ

(
ω + 1

2
, t′
)}

dt′
]
dt

=
1

2

∑
k∈Z

∫ 1

0

e2πij(n−t)
[
Z2ϕ

(
ω

2
, t

)
Z2ϕ

(
ω

2
, n− t

)
+ Z2ϕ

(
ω + 1

2
, t

)
Z2ϕ

(
ω + 1

2
, n− t

)]
dt

=
1

2

∫ 1

0

e−2πijt

[⏐⏐⏐⏐Z2ϕ

(
ω

2
, t

)⏐⏐⏐⏐2 +

⏐⏐⏐⏐Z2ϕ

(
ω + 1

2
, t

)⏐⏐⏐⏐2]dt
Note that Z2ϕ(s, ·) is square integrable for almost all s. In fact, by the definition of
Zak transform this is equivalent to

∑
k |ϕ(2s− 2k)|2 being summable for almost all s

and this is satisfied for ϕ ∈ L2(R). Impose that

δj0 =
1

2

∫ 1

0

e−2πijt

[⏐⏐⏐⏐Z2ϕ

(
ω

2
, t

)⏐⏐⏐⏐2 +

⏐⏐⏐⏐Z2ϕ

(
ω + 1

2
, t

)⏐⏐⏐⏐2]dt
Hence, the equality is satisfied if and only if |Z2ϕ(s, t)|2 + |Z2ϕ(s+ 1

2
, t)|2 = 2. Thus,

we have proved that
∑∞

l=−∞ T−lϕ(ω)T−lϕ(ω + 2j) = δj0 if and only if |Z2ϕ(s, t)|2 +
|Z2ϕ(s+ 1

2
, t)|2 = 2.
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2.2 Wilson basis with good localization

The next step is to construct ϕ satisfying (2.4) where both ϕ and ϕ̂ have exponential
decay.
We prove the following theorem which gives us a recipe to construct the desired
function ϕ.

Theorem 2.3. Consider a real-valued function g such that both g and its Fourier
transform ĝ have exponential decay, i.e.,

|g(x)| ≤ Ce−ζ|x|, (2.10)

|ĝ(ω)| ≤ Ce−γ|ω|. (2.11)

Consider Z2g and assume that

inf
t,s∈[0,1]

[|(Z2g)(s, t)|2 + |(Z2g)(s+
1

2
, t)|2] > 0. (2.12)

Define

Φ(s, t) =
√

2
(Z2g)(s, t)

[|(Z2g)(s, t)|2 + |(Z2g)(s+ 1
2
, t)|2] 12

(2.13)

and, using (2.8), define the function ϕ by ϕ = Z−1
2 Φ. Then ϕ is real, both ϕ and its

Fourier transform ϕ̂ have exponential decay, and {ψm,n}m∈N\{0},n∈Z defined by (2.1)
and (2.2) forms an orthonormal basis for L2(R).

Proof.
1. Claim: ϕ is real.
First of all, by decreasing properties of g, Z2g is continuous and well defined. Since g
is real, Z2g(s,−t) = Z2g(s, t). Using (2.13), we notice that Φ(s,−t) = Φ(s, t). Then,
by equation (2.8)

ϕ(x) =
1√
2

∫ 1

0

Φ
(x

2
, t
)
dt =

1√
2

∫ 1

0

Φ
(x

2
,−t
)
dt =

1√
2

∫ 0

−1

Φ
(x

2
, t
)
dt

=
1√
2

∫ 1

0

Φ
(x

2
, t
)
dt = ϕ(x),

where we have used a change of variable and the periodicity property of the Zak
transform.
2. Claim: ϕ has exponential decay.
We want to find an extension of Φ to R× (R + i(−ζ̃ , ζ̃)) which is analytic for every
fixed s so that we can apply Theorem 1.7 and show that the Fourier coefficients ϕ(l)
of the series defined by Φ have exponential decay.
Firstly, we extend the domain of Z2g from R2 to R× (R + i(− ζ

π
, ζ
π
)).

Consider the series Z2g(s, t + iτ) =
√

2
∑

l∈Z e
2πi(t+iτ)lg(2(s − l)). By the decay
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property (2.10) of g, this expression converges absolutely for |τ | < ζ
π
. The function

Z2g(s, z) is continuous on R× (R + i(− ζ
π
, ζ
π
)), Z2g(s, ·) is analytic on (R + i(− ζ

π
, ζ
π
))

for every s ∈ R and, the properties of periodicity and quasiperiodicity hold. Define

G(s, z) = Z2g(s, z)Z2g(s,−z) + Z2g(s+
1

2
, z)Z2g(s+

1

2
,−z).

G(s, ·) is analytic for every s ∈ R on R+ i(− ζ
π
, ζ
π
), and, for all z ∈ R+ i(− ζ

π
, ζ
π
), and

s ∈ R, G satisfies the following periodic properties:

G(s, z + 1) = G(s, z) = G(s+
1

2
, z). (2.14)

Thanks to (2.11), ĝ ∈ L1(R) and using the inverse Fourier transform we can see that
g is uniformly continuous on R. Moreover, it can also be shown that Z2g is uniformly
continuous on [0, 1] × (R + i(− ζ

π
, ζ
π
)), and, by (2.14), G is uniformly continuous on

R× (R + i(− ζ
π
, ζ
π
)). Finally, we note that G

⏐⏐
R×R is real and, by (2.12), it is bounded

away from 0. Hence, there exists ζ̃ > 0 such that |G| is bounded from below away

from 0 on R× (R + i(−ζ̃ , ζ̃)). We can define the uniformly continuous function G− 1
2

on R × (R + i(−ζ̃ , ζ̃)), which is analytic in z ∈ R + i(−ζ̃ , ζ̃), for every s ∈ R. We
can rewrite the definition (2.13) as

Φ(s, z) =
√

2G(s, z)−
1
2Z2g(s, z).

This is an analytic in R× (R + i(−ζ̃ , ζ̃)) and satisfies the periodicity and quasiperi-
odicity conditions. Recall that, by definition of Zak transform

Φ(s, z) =
√

2
∑
l∈Z

e2πizlϕ(2(s− l))

and recalling Theorem 1.7 with a, b = ζ̃, f = Φ and cl = ϕ(2(s− l)) we then have
that for all ζ̃ > 0 such that

ζ̃ < min

(
ζ

π
, inf{|τ | : G(s, t+ iτ) = 0 for some s, t ∈ [0, 1]}

)
,

there exists a constant Cζ̃ such that

|ϕ(x)| ≤ Cζ̃e
−πζ̃|x|.

3. Claim: ϕ̂ has exponential decay.
We apply the same argument as in claim 2 to find an extension of Φ to (R+i(−γ̃, γ̃))×
R which is analytic for every fixed t so that we can apply Theorem 1.7. Using the
exponential decay of ĝ expressed by (2.11) and recalling from the Prerequisites in
1.4.1 the relation between the Zak transform of a function and the Zak transform
of its Fourier transform we have that the relation Z2g(s, t) = e2πist(Z 1

2
ĝ)(t,−s)
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extends analytically in s to Z2g(w, t) = e2πiwt(Z 1
2
ĝ)(t,−w) for every t ∈ R and

w = s+ iσ ∈ R + i(− γ
4π
, γ
4π

). We can define

Γ(w, t) = Z2g(w, t)Z2g(w,−t) + Z2g(w +
1

2
, t)Z2g(w +

1

2
,−t),

for w = s + iσ ∈ R + i(− γ
4π
, γ
4π

) and for t ∈ R. Following the same approach as
before, Γ(w, t) is analytic and there exists γ̃ > 0 such that |Γ| is bounded below away
from 0 on (R + i(−γ̃, γ̃)) × R. Hence, Φ can be extended to an analytic function on
(R + i(−γ̃, γ̃)) × R by

Φ(w, t) =
√

2Z2g(w, t)Γ(w, t)−
1
2 ,

which satisfies the periodicity and quasiperiodicity conditions. We use again 1.4.1
and we have

Φ(w, t) = e2πiwt(Z 1
2
ϕ̂)(t,−w).

Applying Theorem 1.7 we obtain that for all γ̃ such that

γ̃ < min
(γ
π
, 4 inf{|σ| : Γ(s+ iσ, t) = 0 for some s, t ∈ [0, 1]}

)
,

there exists a constant Cγ̃ such that

|ϕ̂(ω)| ≤ Cγ̃e
−πγ̃|ω|.

4. Claim: {ψm,n}m∈N\{0},n∈Z forms an orthonormal basis for L2(R).
By Proposition 2.2, {ψm,n}m∈N\{0},n∈Z forms an orthonormal basis for L2(R) if and
only if |Φ(s, t)|2 + |Φ(s+ 1

2
, t)|2 = 2 for almost all s, t ∈ [0, 1]2.

|Φ(s, t)|2 + |Φ(s+
1

2
, t)|2

= 2

[
|Z2g(s, t)|2

|Z2g(s, t)|2 + |Z2g(s+ 1
2
, t)|2

+
|Z2g(s+ 1

2
, t)|2

|Z2g(s+ 1
2
, t)|2 + |Z2g(s+ 1, t)|2  

=|Z2g(s,t)|2

]
= 2.

Hence, we have construct a function ϕ with exponentially decreasing ϕ and ϕ̂ such
that {ψm,n}m∈N\{0},n∈Z forms an orthonormal basis for L2(R).

Remark 2.1. It must be underlined that the definition of Z2ϕ in (2.13) allowed the
exponential decay of g and ĝ to be preserved in ϕ and ϕ̂.

With the ingredients of Theorem 2.3 we can then construct an orthonormal
Wilson basis of the type described by (2.1) and (2.2). We end this section giving an
explicit example.

Example 2.1. Consider the Gaussian g(x) = (2ν)
1
4 e−νπx

2
and its Fourier trans-

form ĝ(y) = ( 2
ν
)
1
4 e−

π
ν
y2 , they both are exponentially decreasing. Compute the Zak

transform of g

Z2g(s, t) =
√

2(2ν)
1
4 e−4νπs2

∑
l∈Z

e−4νπl2e2πl(4νs+it). (2.15)
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To construct an orthonormal Wilson basis, we need to show that condition (2.12) is
satisfied: it can be done by proving that Z2g(s, t) = 0 only once in [0, 1]2. Recall
from [29] that the third Jacobi theta function is defined by

θ3(z|τ) = 1 + 2
∞∑
l=1

cos(2πlz)eiπτl
2

=
∑
l∈Z

eiπτl
2

e2πilz. (2.16)

Comparing (2.15) and (2.16) we see that

Z2g(s, t) =
√

2(2ν)
1
4 e−4νπs2θ3(t− 4iνs|4iν).

With this definition, Z2g has only one zero in [0, 1]2 at s = 1
2

and t = 1
2

by [29].
Hence, condition (2.12) is satisfied. The construction in Theorem 2.3 leads to a
Wilson basis with exponential phase space localization. In particular, the decay
rates of ϕ and ϕ̂ can be adjusted by taking different ν in the Gaussian. In fact,

taking ν = 1
2

we obtain that, ∀ε > 0, there exists Cε so that |ϕ(x)| ≤ Cεe
− (π−ε)|x|

2

and |ϕ̂(y)| ≤ Cεe
−(π−ε)|x|. While, taking ν = 1√

2
, we can bound ϕ and ϕ̂ by |ϕ(x)| ≤

Cεe
− (π−ε)|x|√

2 and |ϕ̂(y)| ≤ Cεe
− (π−ε)|y|√

2 .

2.3 Equivalent formulation using tight frames

Another important result is the interpretation of Proposition 2.1 in terms of frames.
In [15], it is shown that {ψm,n}m∈N\{0},n∈Z forms an orthonormal basis for L2(R)
if and only if {Mm

2
Tnϕ}m,n∈Z is a tight frame with redundancy 2. Geometrically,

this means that a tight frame contains twice as many vectors as an orthonormal
basis and the formula (2.1) provides a way to eliminate the redundancy and to form
an orthonormal basis. Hence, starting from a tight Gabor frame of redundancy 2,
it is possible to construct an orthonormal basis for L2(R) whose generator is well
localized in time and frequency, for example the window function can be chosen to
be a Schwartz function or a C∞-function with compact support.

Before showing the main result of this section, we will prove the following
proposition that provides a starting point in the construction of ϕ as in Theorem 2.3
considering any well-localized g so that {gm

2
,n}m,n∈Z is a frame.

Proposition 2.4. Consider the Gabor system with a = 1 and b = 1
2
defined by

{gm
2
,n(x) = Mm

2
Tng(x),m, n ∈ Z} with g ∈ L2(R) and real-valued. Then {gm

2
,n}m,n∈Z

is a frame with lower bound A and upper bound B if and only if the Zak transform
Z2g of g, as defined by (2.7), satisfies

A = inf
t,s∈[0,1]

[|Z2g(s, t)|2 + |Z2g(s+
1

2
, t)|2] > 0 and

B = sup
t,s∈[0,1]

[|Z2g(s, t)|2 + |Z2g(s+
1

2
, t)|2] <∞

for almost all s, t ∈ [0, 1]2.
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Proof. We want to find which conditions on g make {Mm
2
Tng}m,n∈Z a frame. Recall

the division in n even and odd of the Zak transform in Proposition 1.21 and consider
Remark 1.3. First study the case n = 2n′. For h ∈ L2(R)

⟨h, gm
2
,2n′⟩ = ⟨Z2h, Z2gm

2
,2n′⟩

=

∫ 1

0

(∫ 1

0

Z2h(s, t)Z2g(s, t)e2πitn
′
e−2πimsds

)
dt

= (Z2h · Z2g)̂ (m,−n′)

We have that (Z2h ·Z2g)̂ (m,−n′) are the Fourier coefficients of the periodic function
Z2h · Z2g. Recall the frame operator in (1.11). Define S(g) =

∑
m,n Sm

2
,n and

Sm
2
,nf = ⟨gm

2
,n, f⟩gm

2
,n. Using Parseval’s theorem, for h1, h2 ∈ L2(R) we have∑

m,n′∈Z

⟨h1, Sm
2
,2n′h2⟩ =

∑
m,n′∈Z

⟨h1, gm
2
,2n′⟩⟨gm

2
,2n′ , h2⟩

=
∑

m,n′∈Z

⟨Z2h1, Z2gm
2
,2n′⟩⟨Z2gm

2
,2n′ , Z2h2⟩

=
∑

m,n′∈Z

(Z2h1 · Z2g)̂ (m,−n′) · (Z2h2 · Z2g)̂ (m,−n′)

=

∫ 1

0

(∫ 1

0

Z2h1(s, t)Z2h2(s, t)|Z2g(s, t)|2ds
)
dt.

We obtain that Z2[
∑

m,n∈Z Sm
2
,2n′ ]Z−1

2 is multiplication by |Z2g(s, t)|2 in L2(Q) and,

analogously, Z2[
∑

m,n∈Z Sm
2
,2n′−1]Z

−1
2 corresponds to multiplication by |Z2g(s+ 1

2
, t)|2.

Hence, S(g) =
∑

m,n Sm
2
,n is unitarily equivalent to multiplication by |Z2g(s, t)|2 +

|Z2g(s + 1
2
, t)|2 on L2(Q). We have that S(g) satisfies (1.12), i.e. {gm

2
,n}m,n∈Z is a

frame, if and only if

0 < A ≤ |Z2g(s, t)|2 + |Z2g(s+
1

2
, t)|2 ≤ B <∞

for almost all s, t ∈ [0, 1].

Note that if we choose g in Proposition 2.4 such that both g and ĝ have exponential
decay and such that {Mm

2
Tng}m,n∈Z is a frame, then condition (2.12) of Theorem

2.3 is satisfied. Hence with the definition (2.13) for Z2ϕ, we meet the request of
Theorem 2.3 and we can construct an exponentially decreasing function ϕ to form
the orthonormal basis {ψm,n}m∈N\{0},n∈Z defined by (2.1) and (2.2).

We summarize our findings so far.

Proposition 2.5. Let ϕ ∈ L2(R) be real-valued such that
∫
|ϕ(x)|2dx = 1. Then the

following are equivalent:

(i) {ψm,n}m∈N\{0},n∈Z, as defined by (2.1) and (2.2), constitutes an orthonormal
basis.



34 CHAPTER 2. WILSON BASES

(ii) The Zak transform Z2ϕ of ϕ satisfies |Z2ϕ(s, t)|2 + |Z2ϕ(s+ 1
2
, t)|2 = 2 a.e.

(iii) The Gabor system {ϕm
2
,n(x) = Mm

2
Tnϕ(x), m,n ∈ Z} constitutes a tight frame.

(iv) The Gabor system {ϕm,2n(x) = MmT2nϕ(x), m,n ∈ Z} is an orthonormal
system.

Proof.
(i) ⇐⇒ (ii) Follows directly from Propositions 2.1 and 2.2.
(ii) =⇒ (iii) By Proposition 2.4 with g = ϕ we have

S(ϕ) = Z−1
2 {multiplication by [|Z2ϕ(s, t)|2 + |Z2ϕ(s+

1

2
, t)|2]}Z2. (2.17)

If (ii) holds, then |Z2ϕ(s, t)|2 + |Z2ϕ(s+ 1
2
, t)|2 = 2 and S(ϕ) = 2Id. Hence,∑

m,n

|⟨ϕm
2
,n, f⟩|2 = 2||f ||2

and, by definition, {ϕm
2
,n}m,n∈Z is a tight frame.

(iii) =⇒ (ii) If {ϕm
2
,n}m,n∈Z is a tight frame, then there exists a constant A > 0 such

that
∑

m,n |⟨ϕm
2
,n, f⟩|2 = A||f ||2. By Proposition 1.16, we have that A = (ab)−1||ϕ||2

and, since a = 1, b = 1
2

and ||ϕ||2 = 1, then A = 2. The frame operator in (1.11) is
S(ϕ) = 2Id and using (2.17) we have |Z2ϕ(s, t)|2 + |Z2ϕ(s+ 1

2
, t)|2 = 2.

(iii) ⇐⇒ (iv) Follows directly from Corollary 1.19 with a = 1 and b = 1
2
.

Since one can prove the existence of oversampled Gabor frames with good time-
frequency localization, we can impose smoothness and decay conditions on the
window. In this way ψm,n, defined by (2.1) and (2.2), form an orthonormal basis
with the required time-frequency localization while preserving much of the structure
of a Gabor system. Hence, for Wilson bases there is compatibility between good
time-frequency localization and non-redundancy.

Remark 2.2. It is important to notice that we can use Proposition 2.5 to construct
tight frames with exponential localization in both time and frequency.

Remark 2.3. It must be underlined that the equivalence (iv) of Proposition 2.5 was
not proved by Daubechies, Jaffard, and Journé in [15] since the main key to prove this
equivalence is the duality principle for Gabor frames. In fact, the duality principle
was discovered only betweent the 1995 and the 1997 by three groups of researchers:
Janssen [22], Daubechies, Landau, and Landau [16], and Ron and Shen [26] and
hence this equivalence was not available in the 1991 when [15] was published.

The following result shows the existence of other useful window functions ϕ
different to the one described in Theorem 2.3.

Corollary 2.6. (i) There exists a window function ϕ ∈ S(R) such that
{ψm,n}m∈N\{0},n∈Z as defined by (2.1) and (2.2), forms an orthonormal basis
for L2(R).
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(ii) There exists a window function ϕ ∈ C∞(R) with compact support such that
{ψm,n}m∈N\{0},n∈Z, as defined by (2.1) and (2.2), forms an orthonormal basis
for L2(R).

Proof. The idea is to construct ϕ in S(R) or in C∞(R) with compact support such
that one of the conditions in Proposition 2.5 is satisfied.
(i) Consider g as in Theorem 2.3, then g ∈ S(R). By Theorem 2.3, ϕ and ϕ̂ are of
exponential decay and hence ϕ ∈ S(R).
(ii) Recall Proposition 2.1, we want to construct ϕ ∈ C∞(R) with compact support
such that condition (2.4) is satisfied. Let supp(ϕ) ⊆ [−1, 1], if we consider condition
(2.6) in the proof of Proposition 2.1, we have that if l = 0 then ϕ(ω)ϕ(ω + 2l) = 0
for every ω ∈ R. By computations in claim 3 of Proposition 2.1, condition (2.4) is
satisfied if

∑
k∈Z ϕ(ω+k)2 = 1. The sum is periodic in ω with period 1, hence we only

need to check the condition for ω ∈ [0, 1]. Moreover, ϕ has support in [−1, 1], then
it suffices to find ϕ such that ϕ(ω)2 + ϕ(ω − 1)2 = 1 for ω ∈ [0, 1]. Take g ∈ C∞(R)
such that

g(x) =

{
0, x ≤ 0,

1, x ≥ 1,

0 ≤ g(x) ≤ 1 for all x.

Define ϕ as

ϕ(ω) =

{
sin
[
π
2
g(ω + 1)

]
, ω ≤ 0,

cos
[
π
2
g(ω)

]
, ω ≥ 0.

Since g ∈ C∞(R), then ϕ ∈ C∞(R) with support in [−1, 1] and satisfies condition
(2.4) of Proposition 2.1 which is equivalent to (ii) of Proposition (2.5). Thus, ψm,n
form an orthonormal basis for L2(R).

Remark 2.4. It is important to notice that in point (ii) of the previous proof, the
regularity of ϕ strongly depends on the regularity of the function g. In fact, for
g ∈ Ck(R), then ϕ ∈ Ck(R).

Remark 2.5. It might be interesting to ask whether it is possible to construct the
analogue of a Wilson system for a tight Gabor frame with redundancy different from
2. In 1997, in [9] and [8], Bölcskei, Gröchenig, Hlawatsch and Feichtinger constructed
the analogue of a Wilson system for a tight Gabor frame with even redundancy 2N
for N ∈ Z being under certain condition a tight frame with the frame bound reduced
by factor 2. Later Gröchenig posed a challenging question, whether there exists a
Wilson basis for the case of redundancy 3. A positive answer to this question has
been not given yet but the results of Wojdillo in [31] seem promising: in fact, he
constructed a system whose elements are the combinations of the time-frequency
shifts with redundancy 3.

Remark 2.6. It easily follow that a tensor product of orthonormal Wilson basis forms
an orthonormal basis for L2(Rd). Unfortunately, tensoring Wilson bases has some
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undesirable side effects, among others, they are associated with highly redundant
Gabor frames of redundancy 2d. In [6] Bownik, Jakobsen, Lemvig and Okoudjou
presented a construction which improved the tensoring method by showing that we
can even construct multi-dimensional orthonormal Wilson bases starting from tight
Gabor frames of redundancy 2k with k = 1, 2, ..., d where k = d corresponds to the
tensoring method.



Chapter 3

Malvar bases

In signal processing, it can be useful sometimes to focus on local properties of a
signal. Consider a function f on R, we are interested in its properties on a finite
interval I. For every interval I there are several types of orthonormal bases consisting
of trigonometric functions:

(i) sin
(
2k+1
2

π
|I|x
)
χI(x), k = 0, 1, 2, ...;

(ii) sin
(
k π
|I|x
)
χI(x), k = 1, 2, 3, ...;

(iii) cos
(
2k+1
2

π
|I|x
)
χI(x), k = 0, 1, 2, ...;

(iv) cos
(
k π
|I|x
)
χI(x), k = 0, 1, 2, ....

From these orthonormal bases of L2(I) we can construct an orthonormal basis of L2(R)
by considering any partition {αk}k∈R of R such that αk < αk+1 and limk→±∞ αk =
±∞. We can patch together these bases using that L2(R) = ⊕∞

k=−∞L
2([αk, αk+1]).

On one hand, these bases are well localized in x but, on the other hand, the using of
the characteristic function of I produces artificial discontinuities that prevent a good
frequency localization.

In this chapter we will construct the so called local Fourier bases or Malvar
bases. These bases are orthonormal bases for L2(R) which can be constructed for
any partition of R and such that the characteristic function of I is replaced by a
CN -function with compact support and N ∈ N∪{∞}. The idea is to find a projection
that have arbitrarily smooth cut off to avoid the undesirable effects produced by
multiplication by the characteristic function of I. In this section we present the
construction of the Malvar bases by Auscher, Weiss and Wickerhauser in [2].

3.1 Smooth projection on the [0,∞) half ray

Consider first the special case I = [0,∞) and our goal is to construct a smooth “bell”
function that approximates χ[0,∞]. Since any projection is idempotent, multiplication
by a function gives a projection only if the function takes the values 0 or 1 almost

37
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everywhere on R; this proves that the projection we are looking for cannot be given
simply by multiplication by a smooth function. The next lemma gives us a sufficient
and necessary condition for a particular operator to be an orthogonal projection.

Lemma 3.1. Let ρ be a non-negative function with support in [−ε,∞) for ε > 0
and such that

ρ(x) = 1, if x ≥ ε and

ρ(x) + ρ(−x) = 1,∀x ∈ R. (3.1)

Let t be a real-valued, even function and define the operator PI as

(PIf)(x) = ρ(x)f(x) + t(x)f(−x).

Then PI is an orthogonal projection if and only if t(x) = ±
√
ρ(x)ρ(−x).

Proof.
1. Firstly, PI must be self-adjoint, i.e. ⟨PIf, g⟩ = ⟨f, PIg⟩ for every f, g ∈ L2(R).
Since t is real-valued and even, we have t(−x) = t(x) and recalling that ρ is a real
function then we obtain

⟨PIf, g⟩ =

∫ +∞

−∞
(ρ(x)f(x) + t(x)f(−x))g(x)dx

=

∫ +∞

−∞
ρ(x)f(x)g(x)dx+

∫ +∞

−∞
t(x)f(−x)g(x)dx

=

∫ +∞

−∞
f(x)ρ(x)g(x)dx+

∫ +∞

−∞
t(x)f(−x)g(x)dx

=

∫ +∞

−∞
f(x)ρ(x)g(x)dx+

∫ +∞

−∞
t(−x)f(x)g(−x)dx

=

∫ +∞

−∞
f(x)ρ(x)g(x)dx+

∫ +∞

−∞
f(x)t(x)g(−x)dx

= ⟨f, PIg⟩.

2. Secondly, we ask PI to satisfy the idempotent property P 2
I = PI :

(P 2
I f)(x) = ρ(x)(PIf)(x) + t(x)(PIf)(−x)

= ρ(x)(ρ(x)f(x) + t(x)f(−x)) + t(x)(ρ(−x)f(−x) + t(−x)f(x))

= (ρ(x)2 + t(x)t(−x))f(x) + t(x)f(−x)(ρ(x) + ρ(−x))  
=1 by (3.1)

= (ρ(x)2 + t(x)t(−x))f(x) + t(x)f(−x).

We ask (P 2
I f)(x) to be equal to (PIf)(x):

(P 2
I f)(x) = (PIf)(x) ⇐⇒ ρ(x) = ρ(x)2 + t(x)t(−x)

⇐⇒ ρ(x)(1 − ρ(x))  
=ρ(−x)

= t(x)t(−x).

Since t is an even function, this is equivalent to t(x) = ±
√
ρ(x)ρ(−x).
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Our findings show that, under the previous assumptions on ρ and t, PI is a
projection if and only if

(PIf)(x) = ρ(x)f(x) ±
√
ρ(x)ρ(−x)f(−x). (3.2)

The next step consists in constructing an explicit smooth function ρ that satisfies
(3.1).

Lemma 3.2. Let ψ ∈ CN−1(R) be an even non-negative function with N ∈ N∪{∞}
such that supp(ψ) ⊂ [−ε, ε] with ε > 0 and

∫
R ψ = π

2
and define θ(x) =

∫ x
−∞ ψ(t)dt.

Then the function ρ(x) = sin2(θ(x)) satisfies (3.1).

Proof. Firstly, we notice that

θ(x) + θ(−x) =

∫ x

−∞
ψ(t)dt+

∫ −x

−∞
ψ(t)dt  

=
∫+∞
x ψ(t)dt

since ψ is even

=

∫ +∞

−∞
ψ(t)dt =

π

2
.

Define now sε(x) = sin(θ(x)) and cε(x) = cos(θ(x)), we have that

cε(x) = cos
[π

2
− θ(−x)

]
= sin(θ(−x)) = sε(−x)

and
s2ε(x) + c2ε(x) = 1.

We finally define ρ(x) = s2ε(x). Since ρ ∈ CN , then ρ is smooth and satisfies the
properties (3.1), in fact:

1. ρ(x) = sin2
( ∫ x

−∞ ψ(t)dt
)

= sin2(π
2
) = 1 if x ≥ ε, since supp(ψ) ⊂ [−ε, ε];

2. ρ(x) + ρ(−x) = s2ε(x) + s2ε(−x) = s2ε(x) + c2ε(x) = 1.

−ε 0 ε

√
2
2

1
sε(x)

cε(x)

Figure (3.1). The functions sε and cε.

Thanks to Lemma 3.2 we can rewrite (3.2) as

(P0f)(x) = s2ε(x)f(x) ± sε(x)cε(x)f(−x), (3.3)

where P0 is a smooth projection associated to [0,∞).
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Remark 3.1. For the half ray (−∞, 0], a similar calculation leads to the projection

(P 0f)(x) = c2ε′(x)f(x) ± cε′(x)sε′(x)f(−x).

Furthermore, it is important to notice that the projections depends on the choice of
the sign before the second summand and hence we have four projections

P 0,ε′

+ , P 0,ε′

− , P+
0,ε, P

−
0,ε. (3.4)

3.2 Smooth projection on a bounded interval

Let I = [α, β], α, β ∈ R. First of all, we need to translate our projections P0 and
P 0 to arbitrary points α and β on R. Define Pα = TαP0T−α and P β = TβP

0T−β the
translates of P0 and P 0 by α and β with the translation operator (Tγf)(x) = f(x−γ)
defined in Lemma 1.1. We obtain

(Pαf)(x) = (TαP0T−αf)(x) = (P0T−αf)(x− α)

= s2ε(x− α)T−αf(x− α) ± sε(x− α)cε(x− α)T−αf(−(x− α))

= s2ε(x− α)f(x) ± sε(x− α)cε(x− α)f(2α− x). (3.5)

and analogously,

(P βf)(x) = c2ε′(x− β)f(x) ± sε′(x− β)cε′(x− β)f(2β − x). (3.6)

Recall from functional analysis that if P is an orthogonal projections and T is a
unitary operator then TPT ∗ is an orthogonal projection. Hence, Pαf and Pβf are
orthogonal projections. We observe that 2α− x and x are symmetric with respect
to α, in fact, they lie on opposite sides and are equidistant to α. This provide a
motivation for the following definition:

Definition 3.1. Let f be a function on R. f is said to be even with respect to α
on [α− ε, α + ε] if f(2α− x) = f(x) on this interval. Analogously, f is said to be
odd with respect to α on [α− ε, α + ε] if f(2α− x) = −f(x) on this interval. These
definitions can be extended to all of R if the properties hold for all x ∈ R.

Lemma 3.3. For a general interval I = [α, β] with −∞ < α < β < +∞ such that
α + ε ≤ β − ε′ with ε, ε′ > 0, the operators Pα and P β defined in (3.5) and (3.6)
commute and the operator PI = P[α,β] = PαP

β = P βPα is an orthogonal projection.

Proof. By a general result of functional analysis: if Pα and P β are two orthogonal
projections and [Pα, P

β] = 0, then (PαP
β)∗ = PαP

β and (PαP
β)2 = PαP

β. Hence,
P[α,β] = PαP

β = P βPα is an orthogonal projection. To prove the lemma it is enough
to show that PαP

β = P βPα. Firstly, we note that if g is an even function with
respect to α, then Pα(gf) = g(Pαf) for g ∈ L∞(R) and f ∈ L2(R), which means that
g commutes with Pα. Analogously, if g is an even function with respect to β, then
P β(gf) = g(P βf). Hence, since χ[α−ε,α+ε] is even with respect to α and χ[β−ε′,β+ε′]
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is even with respect to β, they commute with the respective projection. Moreover,
by the constructions of PI in Lemmas 3.1 and 3.2, for x > α+ ε, Pαf(x) = f(x) and
analogously, for x < β − ε′, Pβf(x) = f(x). We then have:

Pαf = Pαχ[α−ε,α+ε]f + Pαχ(α+ε,∞)f = χ[α−ε,α+ε]Pαf + χ(α+ε,∞)f

P βf = P βχ(−∞,β−ε′)f + P βχ[β−ε′,β+ε′]f = χ(−∞,β+ε′)f + χ[β−ε′,β+ε′]P
βf.

Since α+ ε ≤ β − ε′, and applying P β to the first equality and Pα to the second one,
we obtain:

P βPαf = P β{χ[α−ε,α+ε]Pαf + χ(α+ε,∞)f}
= P βχ[α−ε,α+ε]Pαf + P βχ(α+ε,β−ε′)f + P βχ[β−ε′,β+ε′]f

= χ[α−ε,α+ε]Pαf + χ(α+ε,β−ε′)f + χ[β−ε′,β+ε′]P
βf.

Similarly,

PαP
βf = Pα{χ(−∞,β+ε′)f + χ[β−ε′,β+ε′]P

βf}
= Pαχ[α−ε,α+ε]f + Pαχ(α+ε,β−ε′)f + Pαχ[β−ε′,β+ε′]P

βf

= χ[α−ε,α+ε]Pαf + χ(α+ε,β−ε′)f + χ[β−ε′,β+ε′]P
βf

Hence,

PαP
βf = P βPαf = χ[α−ε,α+ε]Pαf + χ(α+ε,β−ε′)f + χ[β−ε′,β+ε′]P

βf. (3.7)

We observe that PI = P[α,β] depends on α, β, ε, ε′ and the sign we choose at α
and β. Hence, if α, β, ε and ε′ are fixed, from the choice of signs we obtain four
projections. Let us now introduce a function bI which depends on α, β, ε and ε′ but
not on the sign.

Definition 3.2. Let I = [α, β], with −∞ < α < β < +∞ such that α + ε ≤ β − ε′

with ε, ε′ > 0 and sε and cε′ as in Lemma 3.2. We call the bell over I the function bI
defined by

bI(x) = sε(x− α)cε′(x− β), for all x ∈ R.

We have the following basic properties of bI .

Proposition 3.4 (Properties of bI). The function bI as defined by Definition 3.2
satisfies

(i) supp(bI) ⊆ [α− ε, β + ε′].

Properties on the interval [α− ε, α + ε]:

(ii) bI(x) = sε(x− α);
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(iii) bI(2α− x) = sε(α− x) = cε(x− α);

(iv) b2I(x) + b2I(2α− x) = s2ε(x− α) + c2ε(x− α) = 1.

(v) supp(bI(x)bI(2α− x)) ⊆ [α− ε, α + ε].

(vi) bI(x) = 1 when x ∈ [α + ε, β − ε′].

Properties on the interval [β − ε′, β + ε′]:

(vii) bI(x) = cε′(x− β);

(viii) bI(2β − x) = cε′(β − x) = sε′(x− β);

(ix) b2I(x) + b2I(2β − x) = 1.

(x) supp(bI(x)bI(2β − x)) ⊆ [β − ε′, β + ε′].

(xi) b2I(x) + b2I(2α− x) + b2I(2β − x) = 1 on supp(bI).

α− ε α α + ε β − ε′ β β + ε′

Figure (3.2). The bell bI over [α, β].

Proof.
(i) By definition of bI , sε and cε′ we have

bI(x) = sε(x− α)cε′(x− β) = sin

(∫ x−α

−∞
ψε(t)dt

)
cos

(∫ x−β

−∞
ψε′(t)dt

)
(3.8)

For x ≤ α− ε, the sine is 0 since supp(ψε) ⊂ [−ε, ε].
For x ≥ β+ε′, the cosine is 0 since the interval of integration contains all the support
of ψε′ and the integral is π

2
.

(ii) By definition, cε′(x − β) = cos
( ∫ x−β

−∞ ψε′(t)dt
)
. For x ≤ α + ε, we have that

α+ε−β < −ε′, the integral is 0 and the cosine is 1. Thus, on the interval [α−ε, α+ε]
bI(x) = sε(x− α).
(iii) By definition, bI(2α−x) = sε(α−x)cε′(2α−x−β). Consider cε′(2α−x−β) and
note that for x ≤ α+ε, we have 2α− (α+ε)−β < −ε′ and hence, as for proof of (ii),
cε′(2α− x− β) = 1 for x ∈ [α− ε, α+ ε]. Thus, bI(2α− x) = sε(α− x) = cε(x− α)
on the interval [α− ε, α + ε].
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(iv) Using (ii) and (iii), b2I(x)+b2I(2α−x) = s2ε(x−α)+c2ε(x−α) = 1 on [α−ε, α+ε].
(v) By definition

bI(x)bI(2α− x) = sε(x− α)cε′(x− β)sε(α− x)cε′(2α− x− β).

Using proof of (i), for x ≤ α− ε, sε(x− α) = 0.
Consider sε(α− x) = cε(x− α) = cos

( ∫ x−α
−∞ ψε(t)dt

)
. For x ≥ α + ε, the integral is

π
2

and the cosine is 0. Hence, supp(bI(x)bI(2α− x)) ⊆ [α− ε, α + ε].
(vi) Studying equation (3.8), we note that for x ≥ α + ε the sine is 1, while for
x ≤ β − ε′ the cosine is 1. Hence, in the interval [α + ε, β − ε′], bI(x) = 1.
(vii), (viii), (ix), (x) can be proved similarly to (ii), (iii), (iv) and (v) respectively.
(xi) Using (iv), (vi) and (ix) we have

1 =

⎧⎪⎨⎪⎩
b2I(x) + b2I(2α− x), for x ∈ [α− ε, α + ε];

b2I(x), for x ∈ (α + ε, β − ε′);

b2I(x) + b2I(2β − x), for x ∈ [β − ε′, β + ε′].

Thus, b2I(x) + b2I(2α− x) + b2I(2β − x) = 1 on supp(bI).

The following corollary provides a new definition for PI .

Corollary 3.5. Let I = [α, β], with −∞ < α < β < +∞ such that α + ε ≤ β − ε′

with ε, ε′ > 0 and bI(x) = sε(x− α)cε′(x− β), for all x ∈ R be the bell function over
I. Let PI be defined as in Lemma 3.3, then

(PIf)(x) = b2I(x)f(x)± bI(x)bI(2α−x)f(2α−x)± bI(x)bI(2β−x)f(2β−x). (3.9)

Proof. Using (3.5) and (3.6), we can rewrite (3.7) using Proposition 3.4 as:

(PIf)(x) = (PαP
βf)(x) = χ[α−ε,α+ε](Pαf)(x) + χ(α+ε,β−ε′)f(x) + χ[β−ε′,β+ε′](P

βf)(x)

= χ[α−ε,α+ε](s
2
ε(x− α)f(x) ± sε(x− α)cε(x− α)f(2α− x)) + χ(α+ε,β−ε′)f(x)

+ χ[β−ε′,β+ε′](c
2
ε′(x− β)f(x) ± sε′(x− β)cε′(x− β)f(2β − x))

= χ[α−ε,α+ε](b
2
I(x)f(x) ± bI(x)bI(2α− x)f(2α− x)) + χ(α+ε,β−ε′)b

2
I(x)f(x)

+ χ[β−ε′,β+ε′](b
2
I(x)f(x) ± bI(x)bI(2β − x)f(2β − x))

= b2I(x)f(x) ± bI(x)bI(2α− x)f(2α− x) ± bI(x)bI(2β − x)f(2β − x).

To summarize, PI is a smooth version of the operator of pointwise multiplication
by the characteristic function of I.

We note that we have four choices for the sign associated with endpoints α and
β of I. The choice of ± associated with α is referred to as the polarity of P[α,β] at α,
and the choice of ± associated with β is referred to as the polarity of P[α,β] at β. In
particular if we choose “+” before the second summand in (3.9), we say that the
projection has positive polarity at α. Polarities are very important when we want to
study the properties of PI and PJ when I and J are two adjacent intervals.
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Definition 3.3. Let I = [α, β] and J = [β, γ] be two adjacent intervals, ε, ε′, ε′′ > 0.
We say that they have compatible bell functions bI and bJ if

(i) α + ε ≤ β − ε′ < β + ε′ ≤ γ − ε′′, and,

(ii) bI(x) = sε(x− α)cε′(x− β), bJ(x) = sε′(x− β)cε′′(x− γ).

Remark 3.2. Considering the compatibility of the bell functions bI and bJ we note
that applying Proposition 3.4 to bJ (with β, J and ε′ replacing α, I and ε) we obtain:

bI(x) = bJ(2β − x), for x ∈ [β − ε′, β + ε′];

b2I(x) + b2J(x) = 1, for x ∈ [β − ε′, β + ε′];

b2I(x) + b2J(x) = b2I∪J(x), for all x ∈ R.

• In the first equality we used Proposition 3.4 (iii) to obtain bJ(2β − x) =
cε′(x− β) for x ∈ [β − ε′, β + ε′]. Applying (vii) we have bI(x) = cε′(x− β) for
x ∈ [β − ε′, β + ε′].

• Using (ii) and (vii) in a similar way as before, provides us the second equality.

• The third equality follows from the second one.
In fact,

√
b2I(x) + b2J(x) = sε(x− α)cε′′(x− γ) for all x and this is equivalent

to b2I + b2J = b2I∪J .

The next theorem provides us the main property of these projections and allows
us to decompose L2(R) as a direct sum of orthogonal subspaces.

Theorem 3.6. Let I = [α, β] and J = [β, γ] be two adjacent intervals with compatible
bell functions and suppose PI and PJ have opposite polarities at β. Then:

(i) PI + PJ = PI∪J ,

(ii) PIPJ = PJPI = 0, i.e. PI and PJ are orthogonal to each other.

Proof.
(i) Let PI = PαP

β and let Id be the identity operator, then by (3.7) we have

PI + PJ = χ[α−ε,α+ε]Pα + χ(α+ε,β−ε′)Id+ χ[β−ε′,β+ε′]P
β

+ χ[β−ε′,β+ε′]Pβ + χ(β+ε′,γ−ε′′)Id+ χ[γ−ε′′,γ+ε′′]P
γ.

In particular note that, since PI and PJ have opposite polarities at β and applying
(3.5) with α = β and (3.6) then:

χ[β−ε′,β+ε′]P
βf(x) + χ[β−ε′,β+ε′]Pβf(x)

= χ[β−ε′,β+ε′](P
βf(x) + Pβf(x))

= χ[β−ε′,β+ε′](c
2
ε′(x− β)f(x) ± sε′(x− β)cε′(x− β)f(2β − x)

+ s2ε′(x− β)f(x) ∓ sε′(x− β)cε′(x− β)f(2β − x))

= χ[β−ε′,β+ε′]f(x).
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Hence, χ[β−ε′,β+ε′]P
β + χ[β−ε′,β+ε′]Pβ = χ[β−ε′,β+ε′]Id and

PI + PJ = χ[α−ε,α+ε]Pα + χ(α+ε,γ−ε′′)Id+ χ[γ−ε′′,γ+ε′′]P
γ = PI∪J .

By Lemma 3.3, PI∪J is an orthogonal projection.
(ii) To show that PI and PJ are orthogonal to each other we use a general result
about projections on a Hilbert space: if P and Q are orthogonal projections on a
Hilbert space such that P +Q is an orthogonal projection, then PQ = QP = 0.
Note that, since P +Q is an orthogonal projection, then (P +Q)2 = P 2 +Q2 +PQ+
QP = P + Q + PQ + QP = P + Q and PQ = −QP . Applying the idempotent
property of the projections we obtain: PQ = P 2Q = −PQP = QP 2 = QP . Thus,
PQ = −QP = QP = 0.

Recall the following result from functional analysis.

Remark 3.3. Let H be an Hilbert space and {Hk}k∈Z be a sequence of mutually
orthogonal closed subspaces. We call the orthogonal direct sum of the spaces Hk the
space

V =
∞⨁

k=−∞

Hk

which denotes the closed subspace consisting of all f =
∑

k∈Z fk with fk ∈ Hk and∑
k∈Z ||fk||2 <∞.

A natural consequence of Theorem 3.6 is the following theorem.

Theorem 3.7. Let {αk}k∈Z be a sequence of real numbers and {εk}k∈Z a sequence
of positive numbers such that αk + εk < αk+1 − εk+1. For every k ∈ Z, let Ik−1 =
[αk−1 − εk−1, αk + εk] and Ik = [αk − εk, αk+1 + εk+1] be two adjacent intervals with
compatible bell functions and Pk−1 = P[αk−1,αk] and Pk = P[αk,αk+1] have opposite
polarity at αk. Then L

2(R) possesses the decomposition as orthogonal direct sum

L2(R) =
∞⨁

k=−∞

Pk(L
2(R)).

Proof. Note that if limk→±∞ αk = ±∞ then R =
⋃∞
k=−∞ Ik. Since

⋃N
k=−N Ik =

[α−N , αN+1] then, by (i) in Theorem 3.6,
∑N

k=−N Pk = P[α−N ,αN+1] and by (ii) we
have that Pk(L

2(R)) ⊥ Pj(L
2(R)) for k ̸= j.

The idea is to apply the Lebesgue’s dominated convergence theorem to show that for
every f ∈ L2(R), we have limN→∞ ||f−

∑N
k=−N fk|| = 0 where fk = Pkf ∈ Pk(L

2(R)).
Recalling the definition of PI for a general interval I, (3.7) we have that:

P[α−N ,αN+1]f = χ[α−N−ε−N ,α−N+ε−N ]Pα−N
f + χ(α−N+ε−N ,αN+1−εN+1)f

+ χ[αN+1−εN+1,αN+1+εN+1]P
αN+1f.

By definition of Pα−N
, |Pα−N

f(x)| is dominated by |f(x)| + |f(2α−N − x)| on
χ[α−N−ε−N ,α−N+ε−N ] and Pα−N

f converges to 0 pointwise.
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Similarly, by definition of PαN+1 , |PαN+1f(x)| is dominated by |f(x)|+ |f(2αN+1−x)|
on χ[αN+1−εN+1,αN+1+εN+1] and PαN+1

f converges to 0 pointwise.
Hence, by dominated convergence, both ||χ[α−N−ε−N ,α−N+ε−N ]Pα−N

f || → 0 and
||χ[αN+1−εN+1,αN+1+εN+1]P

αN+1f || → 0 as N → ∞. Thus, we have that

lim
N→∞

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐f −

N∑
k=−N

Pkf

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ = lim

N→∞
||f − P[α−N ,αN+1]f ||

= lim
N→∞

||f − χ(α−N+ε−N ,αN+1−εN+1)f || = 0.

We have shown that L2(R) is an orthogonal direct sum of the projections Pk.

Finally, we want to characterize the subspace PI(L
2(R)).

Let us first give another definition:
We define

Sf(x) = bI(x)f(x) ± bI(2α− x)f(2α− x) ± bI(2β − x)f(2β − x) (3.10)

and we rewrite equation (3.9) as

(PIf)(x) = bI(x)Sf(x). (3.11)

We note that there are four choices for Sf(x) depending on the sign considered:

• S+
+f(x) = bI(x)f(x) + bI(2α− x)f(2α− x) + bI(2β − x)f(2β − x) is even with

respect to α on [α− ε, α + ε] and even with respect to β on [β − ε′, β + ε′].

In fact, bI(2β−x) = sε(2β−x−α)cε′(β−x) = sin
( ∫ 2β−x−α

−∞ ψε(t)dt
)

cos
( ∫ β−x

−∞ ψε′(t)dt
)

and for x ∈ [α− ε, α + ε], the interval of integration contains the all support
of ψε′ and hence the cosine is 0. Thus, bI(2β − x) = 0 for x ∈ [α − ε, α + ε].
Then, on [α− ε, α + ε]

S+
+f(2α− x) = bI(2α− x)f(2α− x) + bI(2α− (2α− x))f(2α− (2α− x))

= bI(2α− x)f(2α− x) + bI(x)f(x)

= S+
+f(x).

Hence, S+
+f is even with respect to α on [α− ε, α+ ε]. Similarly, we can prove

that S+
+f is even with respect to β on [β − ε′, β + ε′].

• S+
−f(x) = bI(x)f(x) − bI(2α− x)f(2α− x) + bI(2β − x)f(2β − x) is odd with

respect to α on [α − ε, α + ε] and even with respect to β on [β − ε′, β + ε′].
To show that S+

−f is odd with respect to α on [α− ε, α + ε] we have from the
previous point that bI(2β − x) = 0 for x ∈ [α− ε, α + ε] and in this case

S+
−f(2α− x) = bI(2α− x)f(2α− x) − bI(2α− (2α− x))f(2α− (2α− x))

= bI(2α− x)f(2α− x) − bI(x)f(x)

= −S+
−f(x).
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• S−
+f(x) = bI(x)f(x) + bI(2α− x)f(2α− x)− bI(2β − x)f(2β − x) is even with

respect to α on [α− ε, α + ε] and odd with respect to β on [β − ε′, β + ε′].

• S−
−f(x) = bI(x)f(x) − bI(2α− x)f(2α− x) − bI(2β − x)f(2β − x) is odd with

respect to α on [α− ε, α + ε] and odd with respect to β on [β − ε′, β + ε′].

Theorem 3.8. Let I = [α, β] be an interval, bI the bell function associated with I
and S : L2(R) → L2(R) the operator defined by (3.10) such that it has the same
polarity as I at α and β. Then f ∈ PI(L

2(R)) if and only if f = bISg for some
g ∈ L2(R).

Proof.
(=⇒) From (3.11) and (3.9) it is easy to see that every element of PI(L

2(R)) is in
the form f = bISg.
(⇐=) Suppose f = bISg with g ∈ L2(R) and recall that Sg is even or odd on
[α−ε, α+ε] according to the choice of polarity at α, and even or odd on [β−ε′, β+ε′]
according to the choice of polarity at β. Applying (3.9) to f and using (i), (iv), (vi)
and (ix) of Proposition 3.4, we have:

(PIbISg)(x) = b2I(x)bI(x)Sg(x) ± bI(x)b2I(2α− x)Sg(2α− x) ± bI(x)b2I(2β − x)Sg(2β − x)

= χ[α−ε,α+ε](x)bI(x)[b2I(x)Sg(x) + b2I(2α− x)Sg(2α− x)  
=Sg(x)

]

+ χ(α+ε,β−ε′)(x)bI(x)Sg(x)

+ χ[β−ε′,β+ε′](x)bI(x)[b2I(x)Sg(x) + b2I(2β − x)Sg(2β − x)  
=Sg(x)

]

= bI(x)Sg(x).

3.3 Local sine and cosine bases

In this part we present orthonormal bases for the subspace PI(L
2(R)) introduced in

the previous section. We will see that these bases are related to certain trigonometric
systems and consistent with the polarity of PI . In fact, if PI is chosen with alternating
polarity at the endpoints of I, the elements of the basis will be locally even at the
left endpoint and locally odd at the right endpoint or locally odd at the left endpoint
and locally even at the right endpoint. In addition, the bases for these subspaces will
be expressed in terms of trigonometric functions and the associated bell function.
We start by considering I = [0, 1] and we have the following result:

Proposition 3.9. Each one of the following systems forms an orthonormal basis
for L2([0, 1]):

(i) {
√

2 sin(2k+1
2
πx), k ∈ N ∪ {0}};
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(ii) {
√

2 sin(kπx), k ∈ N};

(iii) {
√

2 cos(2k+1
2
πx), k ∈ N ∪ {0}};

(iv) {1,
√

2 cos(kπx), k ∈ N}.

The polarities of each of the functions in the first basis are (−,+), in the second basis
they are (−,−), in the third they are (+,−) and in the fourth they are (+,+).

Proof. We will prove the result for the case (i).
Consider I = [0, 1] and suppose PI has polarities − and + at 0 and 1, respectively.
Let f ∈ L2([0, 1]) and extend f to the interval [0, 2] such that it is even with respect
to 1. Then we extend it to a new function F on [−2, 2] such that F is odd with
respect to 0, consistently with the choice of the polarities at PI . The function F
can be developed into a Fourier series on [−2, 2] by means of the orthonormal basis{

1
2
, 1√

2
sin
(
kπx
2

)
, 1√

2
cos
(
kπx
2

)}
for k = 1, 2, .... Since F is odd on [−2, 2], the cosines

play no role in the Fourier expansion of F . Moreover, the functions sin
(
2k+1
2
πx
)
,

k = 0, 1, 2, ... are even with respect to 1. Hence, we can represent F as

F (x) =
∞∑
k=0

ck sin

(
2k + 1

2
πx

)
,

where

ck = 2

∫ 1

0

F (x) sin

(
2k + 1

2
πx

)
dx,

and the series converges in the norm of L2([−2, 2]). Note that by a deep the-
orem of Carleson in [10], the pointwise almost everywhere convergence of the
Fourier series holds true. If we restrict to [0, 1] and we normalize, we find that{√

2 sin
(
2k+1
2
πx
)
, k ∈ N∪{0}

}
is an orthonormal basis for L2([0, 1]) with polarities

of its elements at 0 and 1 that match the polarities of PI .
The other statements can be obtained in a similar way.

We use this result to obtain an orthonormal basis for PI(L
2(R)) for I = [α, β].

Theorem 3.10. Let I = [α, β] and consider the associated bell function bI(x) =
sε(x − α)cε′(x − β). Suppose PI is the smooth projection associated with negative
polarity at α and positive polarity at β, then

(i)
{√

2
|I|bI(x) sin

(
2k+1
2

π
|I|(x− α)

)
, k ∈ N ∪ {0}

}
is an orthonormal basis for PI(L

2(R)).

Moreover, if f ∈ PI(L
2(R)) then the series√
2

|I|

∞∑
k=0

ckbI(x) sin

(
2k + 1

2

π

|I|
(x− α)

)
(3.12)

converges to f(x) in L2(I) and almost everywhere in [α− ε, β + ε′].
If we choose the polarities (−,−), (+,−) and (+,+) at (α, β), the same result
is true if we use, respectively, the systems
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(ii)
{√

2
|I|bI(x) sin

(
k π
|I|(x− α)

)
, k ∈ N

}
;

(iii)
{√

2
|I|bI(x) cos

(
2k+1
2

π
|I|(x− α)

)
, k ∈ N ∪ {0}

}
;

(iv)
{√

1
|I|bI(x),

√
2
|I|bI(x) cos

(
k π
|I|(x− α)

)
, k ∈ N

}
.

Proof. We will prove the theorem for the case (i) and in a similar way we can prove
the others. Consider first for simplicity I = [0, 1], let ε, ε′ > 0 with ε + ε′ ≤ 1
and consider the associated bell function bI(x) = sε(x)cε′(x− 1). Suppose that the
polarities of PI are − at 0 and + at 1 and in this case we can write (3.11) as

PIf(x) = bI(x){bI(x)f(x) − bI(−x)f(−x) + bI(2 − x)f(2 − x)} = bI(x)S+
−f(x).

We will first show the completeness of the system.
1. Claim: the system {

√
2bI(x) sin(2k+1

2
πx), k ∈ N ∪ {0}} is complete.

Since S+
−f(x) is odd with respect to 0 and even with respect to 1 because of the

properties of bI , S
+
−f has the right polarity to be represent by the orthonormal basis

(i) in Proposition 3.9. Hence, we can write

S+
−f(x) =

√
2

∞∑
k=0

ck sin

(
2k + 1

2
πx

)
, (3.13)

where

ck =
√

2

∫ 1

0

S+
−f(x) sin

(
2k + 1

2
πx

)
dx,

with convergence in L2([0, 1]). Equality (3.13) is valid on [−ε, 1 + ε′] in the L2-sense.
If we multiply (3.13) on both sides by bI(x) we have that any f ∈ PI(L

2(R)) satisfies

f(x) =
√

2
∞∑
k=0

ckbI(x) sin

(
2k + 1

2
πx

)

and the convergence holds in L2([−ε, 1 + ε′]). Hence, the system
{
√

2bI(x) sin
(
2k+1
2
πx
)
, k ∈ N∪{0}} is complete in PI(L

2(R)) when PI has polarities
(−,+).
2. Claim: the system {

√
2bI(x) sin

(
2k+1
2
πx
)
, k ∈ N ∪ {0}} is orthonormal.

Let ek = sin(2k+1
2
πx), k = 0, 1, 2, ..., and g(x) =

√
2bI(x)el(x) we will show that

2

∫ 1+ε′

−ε
b2I(x)ek(x)el(x)dx = δkl, k, l = 0, 1, 2, ....

Firstly, we study the integral in [−ε, ε]. We recall that on [−ε, ε], the expansion of
the function g is even and gbI is odd. Using (iv) of Proposition 3.4 with α = 0, we
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have ∫ ε

−ε

√
2bI(x)ek(x)g(x)dx

=
√

2

∫ ε

0

{g(x)bI(x) − g(−x)bI(−x)}ek(x)dx

= 2

∫ ε

0

{
b2I(x) sin

(
2l + 1

2
πx

)
+ b2I(−x) sin

(
2l + 1

2
πx

)}
ek(x)dx

= 2

∫ ε

0

{bI(x)2 + bI(−x)2}el(x)ek(x)dx

= 2

∫ ε

0

{s2ε(x) + c2ε(x)}el(x)ek(x)dx

= 2

∫ ε

0

el(x)ek(x)dx.

Using (vii) and (viii) of Proposition 3.4 and, since on [1 − ε′, 1 + ε′] the expansion of
the function g is even, we obtain∫ 1+ε′

1−ε′

√
2bI(x)ek(x)g(x)dx

=
√

2

∫ 1

1−ε′
{g(2 − x)bI(2 − x) + g(x)bI(x)}ek(x)dx

= 2

∫ 1

1−ε′

{
b2I(2 − x) sin

(
2l + 1

2
π(2 − x)

)
+ b2I(x) sin

(
2l + 1

2
πx

)}
ek(x)dx

= 2

∫ 1

1−ε′
{b2I(2 − x) + b2I(x)}el(x)ek(x)dx

= 2

∫ 1

1−ε′
{s2ε′(x− 1) + c2ε′(x− 1)}el(x)ek(x)dx

= 2

∫ 1

1−ε′
el(x)ek(x)dx.

Moreover, bI(x) = 1 on [ε, 1 − ε′] and by Proposition 3.9, {
√

2 sin
(
2k+1
2
πx
)
, k ∈

N ∪ {0}} is an orthonormal basis in L2([0, 1]). Hence, we obtain that

√
2

∫ 1+ε′

−ε
bI(x)ek(x)g(x)dx = 2

∫ 1

0

el(x)ek(x)dx = δkl.

The case for the general interval I = [α, β] follows from these results by translation
and dilation.
3. Claim: the series (3.12) converges almost everywhere to f(x).
If f ∈ PI(L

2(R)), we have seen in claim 1 that

f(x) =

√
2

|I|

∞∑
k=0

ckbI(x) sin

(
2k + 1

2

π

|I|
(x− α)

)



3.3. LOCAL SINE AND COSINE BASES 51

with convergence in L2(I)-norm and coefficients

ck =

√
2

|I|

∫ β+ε′

α−ε
f(x)bI(x) sin

(
2k + 1

2

π

|I|
(x− α)

)
dx, k = 0, 1, 2, ....

From computations in claim 1, the coefficients can also be calculated as

ck =

√
2

|I|

∫ β

α

S+
−f(x) sin

(
2k + 1

2

π

|I|
(x− α)

)
dx.

Since f ∈ L2(R) and bI is bounded, we can rewrite S+
−f = b−1

I f and it is square
integrable over [α, β]. From Carleson’s theorem we have that√

2

|I|

∞∑
k=0

ck sin

(
2k + 1

2

π

|I|
(x− α)

)
−→ S+

−f(x), almost everywhere in [α, β].

Multiplying both sides by bI(x) we have that (3.12) converges for almost every
x ∈ [α, β] and since both sides are odd with respect to α on [α− ε, α + ε] and even
with respect to β on [β− ε′, β+ ε′] we can extend the almost everywhere convergence
to [α− ε, β + ε′].

Similarly, the choice of polarities (−,−), (+,−) and (+,+) at (α, β) yields the
orthonormal basis (ii), (iii) and (iv) respectively.

The orthonormal bases presented in the previous theorem are also known as local
Fourier bases for the interval I. This result, together with Theorem 3.7, can be used
to obtain bases for L2(R).

Theorem 3.11. Let {αj}j∈Z a strictly increasing sequence of real numbers such that
limj→±∞ αj = ±∞. Let αj + εj ≤ αj+1 − εj+1 and lj = αj+1 − αj for all j ∈ Z. If
we choose the polarities (−,+) for each smooth projection Pj = P[αj ,αj+1] we obtain
that the system

(i)
{√

2
lj
b[αj ,αj+1](x) sin

(
2k+1
2

π
lj

(x− αj)
)
, k ∈ N ∪ {0}, j ∈ Z

}
is an orthonormal

basis for L2(R).
Moreover, if f ∈ L2(R), then the series

∑
j∈Z

∞∑
k=0

√
2

lj
ckb[αj ,αj+1](x) sin

(
2k + 1

2

π

lj
(x− αj)

)
(3.14)

converges to f(x) almost everywhere.

If we choose the polarities (−,−), (+,−) and (+,+) at (αj, αj+1), the following
systems are orthonormal bases for L2(R):

(ii)
{√

2
lj
b[αj ,αj+1](x) sin

(
k π
lj

(x− αj)
)
, k ∈ N, j ∈ Z

}
;
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(iii)
{√

2
lj
b[αj ,αj+1](x) cos

(
2k+1
2

π
lj

(x− αj)
)
, k ∈ N ∪ {0}, j ∈ Z

}
;

(iv)
{√

1
lj
b[αj ,αj+1](x),

√
2
lj
b[αj ,αj+1](x) cos

(
k π
lj

(x− αj)
)
, k ∈ N, j ∈ Z

}
.

Proof. Consider the case (i), analogously we can show the other cases.

Thanks to Theorem 3.10, we have that
{√

2
lj
b[αj ,αj+1](x) sin

(
2k+1
2

π
lj

(x− αj)
)
, k ∈ N ∪ {0}

}
is an orthonormal basis for P[αj ,αj+1](L

2(R)). If we consider the decomposition of
L2(R) in Theorem 3.7 we obtain that{√

2

lj
b[αj ,αj+1](x) sin

(
2k + 1

2

π

lj
(x− αj)

)}
j∈Z, k∈N

is an orthonormal basis for L2(R).
To show the almost everywhere convergence to a function f(x) of the series (3.14),

we define

θk,j =

√
2

lj
b[αj ,αj+1](x) sin

(
2k + 1

2

π

lj
(x− αj)

)
, k = 0, 1, 2, ..., j ∈ Z. (3.15)

We have the L2(R)-convergence of (3.14) to a function f ∈ L2(R) with respect to the
basis (3.15). Applying Carleson’s theorem we obtain almost everywhere convergence
of (3.14) to a function f ∈ L2(R). In fact:

lim
N→∞

∑
|j|≤N

∞∑
k=0

⟨f, θk,j⟩θk,j(x) = f(x) for almost every x ∈ R.

The orthonormal bases presented in this theorem are called local Fourier bases for
L2(R). In the next section we present a result by Auscher [1] which relates Malvar
bases and Wilson bases.

3.4 Malvar bases and Wilson bases

In the previous section we presented what are known as local Fourier bases for L2(R).
We can distinguish two types of bases: the first type is when all intervals have
different polarity at their endpoints, i.e. (−,+) for all or (+,−) for all. These bases
were formulated by Coifman and Meyer in [13]. The necessity of flexible partitions
in signal segmentation for audio processing motivated Malvar to construct a discrete
analogous where the basis functions are sampled at appropriate rates [24].
The second type are those bases that have the same polarity at the endpoints. Thus,
the sequence of pairs of polarity must alternate (+,+) and (−,−). We show that
Wilson bases presented in Chapter 2 are a particular case of local Fourier bases of
this type.
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Let In = [−1
4

+ n
2
, 1
4

+ n
2
] for n ∈ Z. If n is even we set In to have polarity (+,+)

and if n is odd we set In to have polarity (−,−). We obtain in this way a uniform
covering of R with compatible adjacent intervals. Finally, let bn be the bells over In
and define bn(x) = b0

(
x− n

2

)
. Let [u] be the integer part of u. We study the cases

n even and n odd.

• For n = 2n′, we take the basis of the form (iv) in Theorem 3.10. We obtain:

2b0(x− n′) cos

(
2kπ

(
x−

(
−1

4
+ n′

)))
= 2b0(x− n′) cos

(
2kπ

(
x+

1

4

))
= 2b0(x− n′)

{
(−1)[k/2] cos(2πkx), if k is even,

(−1)[k/2]+1 sin(2πkx), if k is odd.
(3.16)

• For n = 2n′ + 1, we take the basis (ii) in Theorem 3.10 and in a similar way as
before it holds:

2b0

(
x− 2n′ + 1

2

)
sin

(
2kπ

(
x−

(
−1

4
+

2n′ + 1

2

)))
= 2b0

(
x− 2n′ + 1

2

)
sin

(
2kπ

(
x− 1

4

))
= 2b0

(
x− 2n′ + 1

2

){
(−1)[k/2] sin(2πkx), if k is even,

(−1)[k/2]+1 cos(2πkx), if k is odd.
(3.17)

Note that in equations (3.16) and (3.17) the first terms are elements of the Fourier
local basis associated with the respective interval In.
Set now ϕ̂(x) =

√
2b0(x), we recognize on the right hand side, up to powers of (−1),

elements of the Wilson basis of type (2.3), in fact if we change the index k in l we
obtain

• For n = 2n′:

Ψ̃l,2n′(x) =
√

2ϕ̂(x− n′)

{
(−1)[l/2] cos(2πlx), if l is even,

(−1)[l/2]+1 sin(2πlx), if l is odd.
(3.18)

• For n = 2n′ + 1:

Ψ̃l,2n′+1(x) =
√

2ϕ̂

(
x− 2n′ + 1

2

){
(−1)[l/2] sin(2πlx), if l is even,

(−1)[l/2]+1 cos(2πlx), if l is odd.

(3.19)

Thus, we can see that up to unimodular multiplicative constants, the basis Ψ̃l,n

formed by (3.18) and (3.19) are the same as Ψl,n in (2.3). Moreover, it must be

underlined that this construction yields basis functions ϕ̂(x) =
√

2b0(x) with compact
support and prescribed smoothness.
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Remark 3.4. It is important to point out that E. Laeng in his article [23] constructed
a family of basis of Wilson type. He considered the frequency domain covered by
a family of symmetric intervals, possibly of different sizes. His construction can be
shown to be a local Fourier basis of the second type we described above. Moreover,
he showed that his construction can be extended for Rd, d > 1.

Remark 3.5. It must be underlined that local Fourier basis of the second type can
also be seen as a refinement of the first type. In fact, we can split a generic interval
I following polarity (+,−) at the extremal points into two parts, we obtain polarity
(+,+) for the left part and polarity (−,−) for the right part and then we can use
Theorem 3.6 to obtain the claim. In a similar way we can obtain the claim if we
start with an interval with polarity (−,+). This means that Fourier basis of the first
type are somehow generic for all this collection of bases.



Chapter 4

Non-Linear Approximation Spaces

In Theorem 3.11 of Chapter 3 we have shown that, given a partition {αj}j∈Z with
interval length lj = αj+1−αj , and a sequence {εj}j∈Z such that αj +εj ≤ αj+1−εj+1,
then, for any N ∈ N ∪ {∞}, there exists a bell function bj = b[αj ,αj+1] ∈ CN(R) with
supp(bj) ⊆ [αj − εj, αj+1 + εj+1] such that{

Ψj,k(x) =

√
2

lj
bj(x) sin

(
k
π

lj
(x− αj)

)
, k ∈ N, j ∈ Z

}
(4.1)

is an orthonormal basis for L2(R). Recall that for every j ∈ Z, the bell function
bj(x) = sεj (x−αj)cεj+1

(x−αj+1) is defined following Definition 3.2. With respect to
the chosen polarity three other bases with similar structure can be constructed. In
this chapter we will work with (4.1) and the other cases follow considering suitable
typographical modifications. Thanks to the results in Section 3.4 and considering
that ϕj = T−αj

bj, for all j ∈ Z, we can write the functions (4.1) as

Ψj,k =
1

2

√
2

lj
Tαj

[
M k

2lj

±M− k
2lj

]
ϕj (4.2)

Our goal in this chapter is to identify the function spaces that occur when a local
Fourier basis is used while approximating. We cannot expect that the approximation
spaces resulting from the use of a particular local Fourier basis are all independent
of the chosen partition. We will see that the restriction

0 <
1

A
≤ lj ≤ A <∞ for all j ∈ Z (4.3)

for A > 1 guarantees that the approximation properties are independent of the precise
details of the basis. Moreover, we will prove that the corresponding approximation
spaces are the modulation spaces.

Following the presentation in the article by Gröchenig and Samarah [20], we will
show in the first section that local Fourier bases are unconditional bases for modulation
spaces. In the second section, we will present the approximation properties following
Section 12.4 of [19]. Most of the proofs are given as a sketch and we put more
emphasis on the use of local Fourier bases.

55
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4.1 Unconditional bases for modulation spaces

Recall from the prerequisites the Definition 1.17 of modulation space. For the purpose
of nonlinear approximation, we are interested only in the case p = q and we will
write Mp,p

w = Mp
w. We recall that the dual space of Mp

w is Mp′
1
w

with 1
p

+ 1
p′

= 1.

In Section 3.4 we have shown that orthonormal Wilson bases are a particular
case of local Fourier bases with a uniform partition αj = j

2
+ 1

4
, a particular choice

of polarity and where the bell function is of exponential decay. The following result
about Wilson basis was proved by Feichtinger, Gröchenig and Walnut in [18].

Theorem 4.1. The Wilson basis (2.3) constructed using ϕ and ϕ̂ of exponential
decay is an unconditional basis for Mp

w with 1 ≤ p <∞.

Following the paper [20], we want to show an analogous result considering local
Fourier bases in the class of CN(R).

To prove our claim we will need the following results. The first lemma is a
weighted version of Schur’s test.

Lemma 4.2. Let w1(i) with i ∈ I and w2(j) with j ∈ J be two weight functions on
index sets I and J , respectively. Let A = (aj,i)j∈J,i∈I be an infinite matrix such that∑

i∈I

|aj,i|w1(i)
−1 ≤ C0w2(j)

−1 <∞ for all j ∈ J and (4.4)∑
j∈J

|aj,i|w2(j) ≤ C1w1(i) <∞ for all i ∈ I. (4.5)

for some constants C0, C1 > 0. Then A is bounded from ℓpw1
(I) into ℓpw2

(J) for
1 ≤ p ≤ ∞.

Proof (Sketch). Assume first 1 < p <∞ and let c = {ci}i∈I ∈ ℓpw1
(I). Using Hölder’s

inequality and inequalities (4.4) and (4.5) we can show that ||Ac||p
ℓpw2

≤ C
p/p′

0 C1||c|pℓpw1
.

To show the cases p = 1 we only need (4.5) and for p = ∞ only (4.4).

The next lemma provides a pointwise estimate for the short-time Fourier trans-
form.

Lemma 4.3. Let g ∈ C∞(R) such that supp(g) ⊆ [−L,L]. Let

F =
{
ϕ ∈ CN(R) : supp(ϕ) ⊆ [−K,K] and max

k=0,1,...,N
||ϕ(k)||1 ≤ B

}
.

Set C = K + L, then there exists a constant C0 > 0 depending only on B,K and N
such that

sup
ϕ∈F

|Vgϕ(x, y)| ≤ C0
1

(1 + |y|)N
χ[−C,C](x), for all x, y ∈ R.

Proof (Sketch). Note that for |x| > C, |Vgϕ(x, y)| = 0 for all y ∈ R. Hence we
consider only the interval |x| ≤ C. Consider now two cases:
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• |y| ≤ 1: |Vgϕ(x, y)| = |⟨ϕ,MyTxg⟩| ≤ ||ϕ||1||g||∞ ≤ B||g||∞.

• |y| ≥ 1: apply integration by partsN times to Vgϕ(x, y) =
∫ K
−K(ϕ·Txg)(t)e−2πiytdt

and since ϕ ∈ F we have a bound for the derivative of ϕ. We obtain an estimate
for |Vgϕ(x, y)| which is independent of ϕ ∈ F and hence the claim.

A consequence of Lemma 4.3 is the following.

Lemma 4.4. Suppose condition (4.3) holds and infj εj > 0 for all j ∈ Z. Then
{ϕj = T−αj

bj, j ∈ Z} ⊆ F for some B,K,N .

Proof. Since supp(bj) ⊆ [αj − εj, αj+1 + εj+1], then supp(ϕj) ⊆ [−εj, αj+1 − αj +
εj+1] ⊆ [−A, 2A]. For K = 2A, we have suppϕj ⊆ [−K,K]. To show the bound on
the derivatives we notice that by definition and normalizing, θεj (x) = 1

εj

∫ x
−∞ ψ

(
t
εj

)
dt.

The derivatives of bj are sums of products containing θ
(k)
εj (x), θ

(k)
εj+1(x) and sines

and cosines, and, since ψ ∈ CN−1(R) and infj εj > 0, then ||θ(k)εj ||∞ = ε−kj ||ψ(k−1)||∞
which is bounded for k = 1, ..., N . Thus, {ϕj = T−αj

bj, j ∈ Z} ⊆ F .

Now we can prove the following general result.

Theorem 4.5. Suppose {Ψj,k}(j,k)∈Z×N ⊆ CN(R) is a local Fourier basis such the
associate partition satisfies 0 < 1

A
≤ lj ≤ A < ∞ for all j ∈ Z and infj εj > 0. Let

w be a weight function as in Definition 1.16 with parameters C = 1 and s < N − 1,
then {Ψj,k}(j,k)∈Z×N is an unconditional basis for Mp

w and every distribution f ∈Mp
w

has a unique expansion

f =
∑

(j,k)∈Z×N

⟨f,Ψj,k⟩Ψj,k (4.6)

with unconditional convergence in the norm of Mp
w. Moreover, there exists a constant

C > 1 such that

1

C
||f ||Mp

w
≤

⎛⎝ ∑
(j,k)∈Z×N

|⟨f,Ψj,k⟩|pw
(
αj,

k

2lj

)p⎞⎠ 1
p

≤ C||f ||Mp
w
. (4.7)

If p = ∞, then {Ψj,k}(j,k)∈Z×N is a weak basis, i.e, the expansion (4.6) converges only
in the weak ∗-topology with respect to the predual M1

1
w

.

Proof. To prove the statement we need to extend the orthonormal expansion (4.6)
from L2(R) to Mp

w. For this we will extend the analysis operator (1.7) and synthesis
operator (1.6) associated to the orthonormal basis {Ψj,k}(j,k)∈Z×N to other function
or sequence spaces.

Since {Ψj,k}(j,k)∈Z×N is an orthonormal basis, T ∗(f) = {⟨f,Ψj,k⟩}(j,k)∈Z×N is a well-
defined operator from L2(R) onto ℓ2(Z×N) and T ({cj,k}(j,k)∈Z×N) =

∑
(j,k)∈Z×N cj,kΨj,k

is its adjoint.
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Let ηj,k = (αj,
k
2lj

) with (j, k) ∈ Z× N be the points in the time-frequency plane

associated to Ψj,k and define w′(j, k) = w(ηj,k) . Recall that, with this definitions,
the space ℓpw′(Z× N) is defined as

ℓpw′(Z× N) =

{
{cj,k}(j,k)∈Z×N :

( ∑
(j,k)∈Z×N

|cj,k|pw(ηj,k)
p

) 1
p

<∞
}
.

1. Claim: there exists a constant C1 > 0 such that
|VgΨj,k(x, y)| ≤ C1(Tηj,k + Tηj,−k

)χ[−C,C](x)(1 + |y|)−N for all x, y ∈ R.

Consider Ψj,k as defined by (4.2) and note that by (4.3), we have
√

1
2lj

≤
√

A
2
.

Recalling the covariance property of the STFT (1.20) and applying Lemmas 4.3 and
4.4, we have the following estimate for the STFT of a local Fourier basis.
For ηj,k ∈ R2, x, y ∈ R

|VgΨj,k(x, y)| =

√
1

2lj

⏐⏐Vg(Tαj

[
M k

2lj

±M− k
2lj

]
ϕj
)
(x, y)

⏐⏐
≤

√
1

2lj

(⏐⏐Tηj,kVgϕj(x, y)
⏐⏐+
⏐⏐Tηj,−k

Vgϕj(x, y)
⏐⏐)

≤
√
A

2
C0(Tηj,k + Tηj,−k

)χ[−C,C](x)(1 + |y|)−N .

2. Claim: the operator T ∗, associated to Ψj,k defined in (1.7), is a bounded operator
from Mp

w into ℓpw′(Z× N) for 1 ≤ p ≤ ∞.
Theorem 1.27 asserts that for g ∈ C∞(R) with compact support, a, b > 0 small
enough, there exists a dual window h ∈ S(R), such that every f ∈ S ′(R) can be
written as

f =
∑
m,n∈Z

⟨f,MmbTnah⟩MmbTnag.

Moreover, for 1 ≤ p <∞ the Gabor expansion converges unconditionally in Mp
w.

We can write
{T ∗f}j,k =

∑
m,n∈Z

⟨f,MmbTnah⟩⟨MmbTnag,Ψj,k⟩.

To show the statement it is enough to prove that the operatorA(j,k),(m,n) = ⟨MmbTnag,Ψj,k⟩
maps the sequence cm,n = ⟨f,MmbTnah⟩ ∈ ℓpw1

(Z × Z) with w1(n,m) = w(na,mb),
into ℓpw′(Z × N) with w′(j, k) = w(ηj,k). To do that we use Lemma 4.2 and show
conditions (4.4) and (4.5).

• Condition (4.4) is satisfied.
Take Definition 1.16 with x = (αj − na, ±k

2lj
−mb) and ω = (na,mb), then we

have

w

(
αj,

±k
2lj

)
≤ w(na,mb)

(
1 + |αj − na| +

⏐⏐⏐⏐±k2lj
−mb

⏐⏐⏐⏐)s . (4.8)
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Considering claim 1, inequality (4.8) and recalling that |αj − na| ≤ C. Then
we have

∑
m,n∈Z

|A(j,k),(m,n)|w1(n,m)−1

=
∑
m,n∈Z

|⟨MmbTnag,Ψj,k⟩|w(na,mb)−1

=
∑
m,n∈Z

|VgΨj,k(na,mb)|w(na,mb)−1

≤ C1

∑
m,n∈Z

w(na,mb)−1(Tηj,k + Tηj,−k
)χ[−C,C](na)(1 + |mb|)−N

≤ C1

∑
m,n∈Z

w

(
αj,

±k
2lj

)−1

χ[−C,C](na− αj)

(
1 +

⏐⏐⏐⏐±k2lj
−mb

⏐⏐⏐⏐)−N

×
(

1 + |αj − na| +

⏐⏐⏐⏐±k2lj
−mb

⏐⏐⏐⏐)s
≤ C1

2C

a
w

(
αj,

±k
2lj

)−1∑
m∈Z

(
1 +

⏐⏐⏐⏐±k2lj
−mb

⏐⏐⏐⏐)−N(
1 + C +

⏐⏐⏐⏐±k2lj
−mb

⏐⏐⏐⏐)s.
Note that since |αj − na| ≤ C, then the sum over n contains at most 2C

a
terms.

Since s < N − 1, the sum is finite with bound independent of j and k.

• Condition (4.5) is satisfied.
In a similar way as before and considering that there are at most 2CA terms
αj in every interval of length 2C we obtain

∑
(j,k)∈Z×N

|⟨MmbTnag,Ψj,k⟩|w(ηj,k)

≤ C12CAw(na,mb) sup
j∈Z

∑
k∈N

(
1 +

⏐⏐⏐⏐mb− ±k
2lj

⏐⏐⏐⏐)−N(
1 + C +

⏐⏐⏐⏐mb− ±k
2lj

⏐⏐⏐⏐)s.
for the same reason as before, the sum is finite with bound independent of m
and n.

3. Claim: the operator T , associated to Ψj,k defined in (1.6), is a bounded operator
from ℓpw′(Z× N) into Mp

w for 1 ≤ p ≤ ∞.
We consider first the case p <∞.
Let {cj,k}(j,k)∈Z×N be finitely supported and f̃ in the dual space Mp′

1/w of Mp
w. By
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claim 2 we have:

||T{cj,k}(j,k)∈Z×N||Mp
w

= sup
||f̃ ||

M
p′
1/w

≤1

⏐⏐⏐⏐⟨ ∑
(j,k)∈Z×N

cj,kΨj,k, f̃

⟩⏐⏐⏐⏐
= sup

||f̃ ||
M

p′
1/w

≤1

⏐⏐⏐⏐ ∑
(j,k)∈Z×N

cj,k{T ∗(f̃)}j,k

⏐⏐⏐⏐
≤ sup

||f̃ ||
M

p′
1/w

≤1

||c||ℓp
w′

||T ∗(f̃)||
ℓp

′
1/w′

≤ ||c||ℓp
w′

||T ∗||op.

Hence, T is bounded on ℓpw′ . Moreover, T{cj,k}(j,k)∈Z×N converges unconditionally.
In fact, for any ε > 0, there exists a finite subset Iε ⊆ Z× N such that, for all finite
subsets I ⊇ Iε, it holds:⏐⏐⏐⏐⏐⏐⏐⏐ ∑

(j,k)/∈I

cj,kΨj,k

⏐⏐⏐⏐⏐⏐⏐⏐
Mp

w

≤ ||T ∗||op
( ∑

(j,k)/∈I

|cj,k|pw(ηj,k)
p

) 1
p

< ε

The case p = ∞ it is shown by taking the supremum over M1
1/w and showing that T

is bounded on M∞
w and the sum is w∗-convergent.

4. Claim: {Ψj,k}(j,k)∈Z×N is an unconditional basis for Mp
w and inequalities (4.7) are

satisfied.
By point 2 and 3 we have that T and T ∗ are bounded on ℓpw′ and Mp

w and the
expansion (4.6) extends from L2(R) to Mp

w.
Consider the case p <∞. Since the series converges unconditionally, then finite

linear combinations are dense in Mp
w.

Moreover, by (4.6) and f = TT ∗f then

||f ||Mp
w
≤ ||T ||op ||T ∗f ||ℓp

w′
≤ ||T ||op ||T ∗||op ||f ||Mp

w
.

Dividing by ||T ||op and noticing that ||T ∗f ||ℓp
w′

=
(∑

(j,k) |⟨f,Ψj,k⟩|pw
(
αj,

k
2lj

)p) 1
p

,

we have the bound in (4.7). Let {µj,k}(j,k)∈Z×N ∈ ℓ∞. Since in a finite linear
combination f =

∑
(j,k) cj,kΨj,k the coefficients are unique and cj,k = ⟨f,Ψj,k⟩ =

{T ∗f}j,k, then we have⏐⏐⏐⏐⏐⏐⏐⏐∑
(j,k)

µj,kcj,kΨj,k

⏐⏐⏐⏐⏐⏐⏐⏐
Mp

w

≤ ||T ||op||(µj,kcj,k)(j,k)||ℓp
w′

≤ ||T ∗||op ||µ||∞ ||c||ℓp
w′

≤ ||T ∗||op ||T ||op ||µ||∞ ||f ||Mp
w
.

Hence, {Ψj,k}(j,k)∈Z×N is an unconditional basis for Mp
w.

The case p = ∞ is proved in the same way considering that the expansion (4.6)
holds with w∗-convergence.
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Remark 4.1. Note that, with a bit more effort, we can prove a similar statement for
Mp,q

w for 1 ≤ p, q <∞ and p ̸= q. Moreover, these results can be extended to higher
dimensions using the tensor product [19].

4.2 Characterization of modulation spaces

Unconditional bases are crucial for data compression whose aim is to approximate a
function f by a finite linear combination of type

∑
n∈F cnen. The compressed version

of the data is formed by the finitely many coefficients {cn : n ∈ F}. Basically, smaller
is the number of coefficients needed to approximate f with a certain accuracy, better
the data compression works. The idea is to study the error σN (f) as N → ∞ of the
best approximation using N coefficients and to consider its rate of convergence to 0.
If the convergence is fast, then fewer coefficients are enough to approximate f up to
an error ε > 0 than when the convergence is slow. Hence, the rate of convergence
σN(f) → 0 describes how well data compression works for f . In this section we
investigate data compression when approximating with local Fourier bases.
Consider the set of all linear combinations consisting of at most N elements of Ψj,k

ΣN =

{
p =

∑
(j,k)∈F

cj,kΨj,k : F ⊆ Z× N, cardF ≤ N

}
We define the N -term approximation error in L2(R) by

σN(f) = inf
p∈ΣN

||f − p||2.

σN(f) is the error we make by approximating f with a linear combination of N
functions from Ψj,k. Moreover, since ΣN +ΣN = Σ2N then ΣN is not a linear subspace
of L2(R) and hence this type of problem is called non-linear approximation problem.

To find the optimal approximation p ∈ ΣN we let f =
∑

(j,k) cj,kΨj,k and we
choose the N terms whose coefficients have the largest modulus using a bijection
π : N ↦−→ Z × N which satisfies |cπ(1)| ≥ |cπ(2)| ≥ ... . We call an = |cπ(n)| the
non-increasing rearrangement of c. Then the best approximation of f in L2 by ΣN is

popt =
N∑
n=1

cπ(n)Ψπ(n).

Since {Ψj,k} is an orthonormal basis for L2(R), then the L2-error is

σN(f) = inf
p∈ΣN

||f − p||2 = ||f − popt||2 =

( ∞∑
n=N+1

|cπ(n)|2
) 1

2

=

( ∞∑
n=N+1

a2n

) 1
2

.

We study first the approximation problem for non-negative and non-increasing

sequences {an}n∈N. We consider σN(a) =

(∑∞
n=N+1 a

2
n

) 1
2

.

The next lemma of Stechkin [28] relates the rate of convergence of σN(a) to the
ℓp-norm of a for 0 < p < 2 .
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Lemma 4.6. Let {an}n∈N be a non-negative and non-increasing sequence, 0 < p < 2
and α = 1

p
− 1

2
. Then there exists a constant C > 0 such that

1

C
||a||p ≤

( ∞∑
N=1

(NασN−1(a))p
1

N

) 1
p

≤ C||a||p.

Proof. Using Cauchy-Schwarz and the fact that {an}n∈N is non-negative and non-
increasing, we have

a2m ≤ a2m−1 ≤
1

m

2m−1∑
k=m

ak ≤
√

1

m

(2m−1∑
k=m

a2k

) 1
2

≤
√

1

m
σm−1(a).

Since −p
2

= pα− 1, then

||a||pp =
∞∑
m=1

(ap2m−1 + ap2m) ≤ 2
∞∑
m=1

(√
1

m
σm−1(a)

)p
= 2

∞∑
m=1

(mασm−1(a))p
1

m
.

The other inequality requires a little more effort. Since {an}n∈N is decreasing, we
have

2kap
2k+1 ≤

2k+1−1∑
m=2k

apm ≤ 2kap
2k

and also
∞∑
m=k

2map2m+1 ≤
∞∑

m=2k

apm ≤
∞∑
m=k

2map2m .

Since 1
N

(NασN−1(a))p = N− p
2σN−1(a)p is decreasing and ℓp ⊆ ℓ2 for p < 2, we have

that
∞∑
N=1

N− p
2σN−1(a)p ≤

∞∑
k=0

2k(1−
p
2
)σ2k−1(a)p

=
∞∑
k=0

2k(1−
p
2
)

( ∞∑
m=2k

a2m

) p
2

≤
∞∑
k=0

2k(1−
p
2
)

( ∞∑
m=k

(2
m
2 a2m)2

) p
2

≤
∞∑
k=0

2k(1−
p
2
)

∞∑
m=k

(2
m
2 a2m)p

=
∞∑
m=0

( m∑
k=0

2k(1−
p
2
)

)
2

pm
2 ap2m

≤ C
∞∑
m=0

2map2m

≤ C ′||a||pp.
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Remark 4.2. The previous theorem can be generalize to hold for σN,q(a) =

(∑∞
n=N+1 a

q
n

) 1
q

,

α = 1
p
− 1

q
and 0 < p < q ≤ ∞

The next theorem describes for which class of functions data compression with
local Fourier bases works well. We prove that a function f can be approximated well
by using a local Fourier basis if and only if f ∈Mp

1 .

Theorem 4.7. Let {αj}j∈Z be a partition satisfying (4.3) and such that infj εj > 0.
Let {Ψj,k}(j,k)∈Z×N be an associated local Fourier basis in CN(R), N > 1. Then for
1 ≤ p < 2 and α = 1

p
− 1

2

∞∑
N=1

1

N
(NασN−1(f))p <∞ ⇐⇒

∫
R2

|Vgf(x, ω)|pdxdω <∞ (4.9)

Proof. First of all, we note that∫
R2

|Vgf(x, ω)|pdxdω <∞ ⇐⇒ f ∈Mp
1 .

Let f =
∑

(j,k)∈Z×N cj,kΨj,k ∈ L2(R) and an = |cπ(n)| be a non-increasing rearrange-

ment of the coefficients cj,k = ⟨f,Ψj,k⟩. By inequality (4.7) with w = 1 we have
that

1

C
||f ||Mp

1
≤
( ∑

(j,k)∈Z×N

|⟨f,Ψj,k⟩|p
) 1

p

= ||c||p = ||a||p ≤ C||f ||Mp
1
.

By Lemma 4.6 and since σN(a) = σN(f), we have equivalence (4.9).

Remark 4.3. As for Remark 4.2, this result can be extended to measure the approxi-
mation error in the M q

w-norm. In fact, for 1 ≤ p < q <∞ and α = 1
p
− 1

q
, f ∈Mp

w if

and only if
∑∞

N=1
1
N

(NασN−1(f)Mq
w

)p <∞.





Chapter 5

Gravitational Waves

One very interesting and recent application of Wilson bases is to the detection of the
gravitational waves. Gravitational waves are “ripples” in space-time caused by some
of the most violent and energetic processes in the universe such as colliding black
holes, supernovae (massive stars exploding at the end of their lifetime), and colliding
neutron stars. In 1916, the year after the final formulation of the field equations
of general relativity, Albert Einstein predicted the existence of gravitational waves.
Einstein showed that massive accelerating objects would modify space-time in such
a way that “waves” of undulating space-time would propagate in all directions away
from the source. These cosmic ripples would travel at the speed of light, carrying
with them information about their origins.

Experiments to detect gravitational waves began in the 1960s and by the early
2000s, a set of initial detectors was completed, including TAMA 300 in Japan, GEO
600 in Germany, the Laser Interferometer Gravitational-Wave Observatory (LIGO)
in the United States, and Virgo in Italy. Combinations of these detectors made joint
observations from 2002 through 2011. Only on September 14, 2015, the Advanced
LIGO became the first that physically sensed the undulations in space-time caused
by gravitational waves generated by a binary black hole system merging to form a
single black hole 1.3 billion light-years away.

The gravitational signal resulting from the coalescence of two black holes or
two neutron stars is related to the trajectory that will lead to the union of the two
components. This dynamic phenomenon and, consequently, the emitted gravitational
wave can be predicted thanks to Damour, Blanchet and their collaborators [5, 4, 7].
They were able to calculate the analytic form of a gravitational wave generated by
coalescence of two neutron stars and they obtained that

s(t) = c|t− t0|−
1
4 cos(ω|t− t0|

5
8 + φ)

where c is a constant, ω ≫ 1 and t0 is the time of the coalescence of the two neutron
stars. The instantaneous frequency is ∼ |t− t0|−

3
8 . Note that the analytic form of a

gravitational wave is what in signal processing is called a chirp, in fact, a chirp is a
frequency modulated signal analytically described by

F (t) = A(t)eiϕ(t)

65
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where A(t) = |F (t)|. In particular chirps are defined by a strong acceleration of ϕ(t),
i.e |ϕ(t)′′| ≫ 1. This means that the problem of detection of gravitational waves
become the extraction of a chirp buried inside a noisy signal.

When looking for a particular astrophysical source, the analytical form of the

(a) 20 − 20M⊙ binary black hole waveform
(spins s1z = 0.4 and s2z = 0.7).

(b) 15 − 15M⊙ binary black hole waveform
(zero spins, eccentricity e = 0.3).

Figure (5.1). Theoretical models of gravitational-wave signals
emitted during the merger of two black holes. The waveform is a
chirp signal with a time increasing (power-law) instantaneous
frequency. Several examples are shown where the astrophysical

parameters are varied, such as the component masses and spins s1z
and s2z or the eccentricity e of the binary orbital motion. Those
signals are processed through a whitening filter obtained from the
detector noise power spectral distribution. This filtering discards
the part of the original signal where the instrumental noise is large
(low and high frequencies, below ∼ 30 Hz and above few kHz) and
retains the frequency band where the noise is low. (Image from [3])

gravitational wave can be used to improve the search sensitivity. An approach is
to search specifically for the time-frequency patterns associated with the waveform
model. Such an approach is called “adaptive filtering method” and aims at selecting
components that are likely to describe the gravitational wave signal and prevent
the search algorithm from selecting those due to transient noise. The expected
improvement is larger when the signal model can be completely characterized by a
small number of time-frequency components. Many different analytic techniques have
been used to detect the gravitational signal from transient sources, like binary mergers
of black holes and neutron stars and, one of them was able to identify the signal in
only 3 minutes. This method was based on the decomposition of the observations
in the so called Wilson orthonormal bases which provided a local Fourier analysis
of the signal. In the 2012, Necula, Klimenko and Mitselmakher in their article
[25] proposed to use the Wilson bases for the detection of the gravitational waves.
Klimenko developed a search algorithm called “Coherent WaveBurst” which has
been successfully applied in this context. The idea of the algorithm consists in using
a wavelet (the Meyer scaling function) such that its Fourier transform has compact
support as the window and considers a collection of Wilson bases (usually seven to
nine) based on different window durations and bandwidths. These bandwidths are
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distributed in powers of two, ranging from 1 to 64 Hz. The union of these orthonormal
bases forms a redundant dictionary, which constitutes a tight frame. The main idea
of the process is the following: the two LIGO detectors, one in Livingston (Louisiana)
and one in Hanford (Washington), at a distance of approximately 3000 km produce
two independent measurements of the gravitational waves. Coherent WaveBurst

Figure (5.2). Top row, left: H1 observed. Since the gravitational
wave arrived first at L1 and 6.9 (+0.5− 0.4) ms later at H1, in the

second figure L1 strain (blue) is reported and for a visual
comparison the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative

orientations). Second row: Gravitational wave strain projected onto
each detector in the 35− 350 Hz band. Solid lines show a numerical
relativity waveform for a system with parameters consistent with
those recovered from the gravitational wave confirmed by an

independent calculation. Shaded areas show 90% credible regions
for two waveform reconstructions: one that models the signal as a
set of sine-Gaussian wavelets and one that models the signal using
binary black hole template waveforms. These reconstructions have

a 95% overlap.
(Image from http ://dx.doi.org/10.7935/K5MW2F23 )

maps the time series data given by each of these detectors to the time-frequency
plane by projecting onto a Wilson bases: in the two decompositions the coefficients
whose amplitude significantly differ from what is obtained in the presence of noise
alone are identified. This allows a better separation between frequencies and the
elimination of sinusoidal artifacts like, for example, the mechanical resonances in the
systems for the attenuation of the seismic noise. Moreover, this representation of the
data can be quickly computed and inverted by means of the Fast Fourier transform.



68 CHAPTER 5. GRAVITATIONAL WAVES

These two aspects lead to a great numerical efficiency of the algorithm.
This approach not only makes it possible to detect mergers of two black holes,

but also of other astrophysical phenomena, including those for which we do not know
the structure in advance.
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