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Abstract

To date, all quantum mechanical experiments that have been performed agree with the assumption that

quantum mechanical laws can be applied to any conceivable system. The working hypothesis of this

thesis is that these laws can be extended to the notion of time, and, consequently, to the way in which

two or more events can causally influence one another. This would have far-reaching consequences

as our entire understanding of the world is based on the study of the causal relations between physical

phenomena. The aim of this thesis was, hence, to investigate the consequences of the application of

quantum mechanics to the causal relations among events and to the thermodynamic arrow of time.

The first part of this thesis concerns three studies falling under the umbrella of ‘indefinite causality’,

i.e., the notion according to which the causal structure between events may become genuinely indefi-

nite. Such a scenario is expected to arise naturally in regimes wherein quantum mechanics and general

relativity are both relevant and where the metric and, consequently, the causal structure may “fluctu-

ate”. In quantum optical experiments, indefinite causal structures can be realized by superposing the

trajectories along which two events are occurring in alternative orders. Along this line, the first work

of this thesis constitutes the first experimental demonstration of the indefinite causality of a process

through the measurement of a ‘causal witness’, i.e., a mathematical object designed to produce a cer-

tain outcome whenever a process is not consistent with a well-defined causal order. Following up on

this first study, the second work of this thesis experimentally demonstrates indefinite causality outside

the quantum formalism. This is achieved by showing the incompatibility of the experimental results

with a class of generalised probabilistic theories complying with the assumptions of locality and defi-

nite temporal orders. The third work of this thesis looks beyond the concept of indefinite causality, to

cover a variety of quantum superpositions of trajectories. Trajectories can be used as quantum control

to regulate the order of different noisy communication channels, but this is not the only configuration

in which the channels can be arranged. This third work, hence, experimentally compares different

ways in which two trajectories can be superposed through a pair of noisy channels, demonstrating

that this artifice allows for the transmission of quantum information even when standard quantum

communication protocols (where a system travels along a well-defined trajectory) fail.

The second part of this thesis comprises two studies pertaining to the field of quantum thermodynam-

ics. The linking element between the previous part of this thesis and the present one is rooted in the

concept of thermodynamic arrow of time and its directionality. In fact, the second law of thermody-

namics allows one to associate a positive (negative) entropy variation in a thermodynamic process with

the temporal “forward” (“time-reversal”) direction. The fourth work of this thesis, thus, proposes that

quantum mechanics may permit quantum superpositions between thermodynamic processes yielding

two opposite entropy variations. This would enable the existence of processes with a genuinely in-

definite time’s arrow. In more detail, this work focuses on understanding whether such superpositions

entail any observable consequences, and how a well-defined temporal axis emerges upon performing



suitable measurements of entropy production. In this regard, this work shows that when very large

quantities (in module) are observed in a measurement of the entropy production, this yields the ef-

fective projection of the quantum superposition of thermodynamic time’s arrows onto a well-defined

temporal direction. On the other hand, when small quantities of entropy production are at stake, in-

terference effects play a prominent role in the definition of the nature of the thermodynamic process.

For instance, they can lead to the observation of work probability distributions of a process that may

be more or less reversible than the individual ones composing the superposition, or any classical mix-

ture thereof. All these results revolve around the application of so-called ‘thermodynamic fluctuation

theorems’. Thermodynamic fluctuations relate the difference in free energy between two equilibrium

states with the work performed on a system driven far from equilibrium. Since the definition of work

in quantum contexts is a non-trivial concept, the last study of this thesis proposes a simple interfero-

metric scheme that, leveraging the use of fluctuation theorems, enables a direct estimate of the work

distribution and of the average work dissipated during an isothermal thermodynamic process.

The investigation of indefinite causal structures and of the arrow of time may enable novel quantum

information and quantum thermodynamic tasks, and provide methodological tools for future quantum

theories of gravity. To this end, proposing and implementing experimental approaches towards these

goals, as undertaken in this thesis, may help to lay the groundwork for a deeper understanding of

the concept of time and its role in major physical theories. In my view, this may be where future

conceptual turning points will originate from.
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Zusammenfassung

Alle bisher durchgeführten quantenmechanischen Experimente stimmen mit der Annahme überein,

dass die Gesetze der Quantenmechanik auf jedes denkbare System anwendbar sind. Arbeitshypothese

der vorliegenden Arbeit ist die Möglichkeit, diese Gesetze auf den Zeitbegriff auszudehnen, und damit

auch auf die Art und Weise, in der zwei oder mehr Ereignisse sich gegenseitig kausal beeinflussen

können. Dies hätte weitreichende Konsequenzen, da unser Verständnis der Welt auf der Erforschung

kausaler Beziehungen zwischen physikalischen Phänomenen beruht. Ziel dieser Arbeit war es daher,

die Folgen der Anwendung der Quantenmechanik auf die kausalen Beziehungen zwischen Ereignissen

und auf den thermodynamischen Zeitpfeil zu untersuchen.

Der erste Teil dieser Arbeit befasst sich mit drei Studien, die unter den Begriff der “unbestimmten

Kausalität” fallen, also der Vorstellung, dass die kausale Struktur zwischen Ereignissen in quantenme-

chanische Unbestimmtheit gelangen kann. (Es wird erwartet, dass ein solches Szenario in Systemen

auftritt, für die sowohl die Quantenmechanik als auch die Allgemeine Relativitätstheorie relevant sind

und in denen die Metrik und folglich die kausale Struktur “fluktuieren” kann). In quantenoptischen

Experimenten können solche unbestimmten Kausalstrukturen durch Überlagerung von Trajektorien

realisiert werden, entlang derer zwei Ereignisse in alternativen Ordnungen auftreten. In diesem Sin-

ne bildet die erste Arbeit in der vorliegenden Dissertation den ersten experimentellen Nachweis der

unbestimmten Kausalität eines Prozesses durch die Messung eines ‘kausalen Zeugen’, d.h. eines ma-

thematischen Objekts welches ein bestimmtes Ergebnis erzeugen soll, wenn ein Prozess nicht mit

einer definierten kausalen Ordnung übereinstimmt. Anknüpfend an diese erste Studie bezieht sich

die zweite Arbeit auf den experimentellen Nachweis einer unbestimmten Kausalität außerhalb des

Quantenformalismus. Dies wird erreicht, indem die Unvereinbarkeit der experimentellen Ergebnis-

se mit einer Klasse verallgemeinerter probabilistischer Theorien gezeigt wird, in denen die Lokalität

und definierte zeitliche Ordnungen vorausgesetzt werden. Die als Drittes vorgestellte Arbeit erwei-

tert nunmehr mit der Untersuchung einer Vielzahl von Quantenüberlagerungen von Trajektorien den

Beobachtungsbereich über das Konzept der unbestimmten Kausalität hinaus. Es zeigt sich, dass Tra-

jektorien für die Quantensteuerung der Ordnung verschiedener verrauschter Kommunikationskanäle

anwendbar sind. Dies bildet jedoch nicht die einzige Konfiguration, in der diese letzteren angeordnet

werden können. So wurden in dieser dritten Arbeit verschiedene Möglichkeiten für die Überlage-

rung zweier Trajektorien durch ein Paar verrauschter Kanäle experimentell verglichen. Es wurde ge-

zeigt, dass alle diese Möglichkeiten die Übertragung von Informationen durch die Kanäle selbst dann

ermöglichen, wenn standardmäßige Quantenkommunikationsprotokolle (bei denen sich ein System

entlang einer wohldefinierten Trajektorie bewegt) versagen.

Der zweite Teil dieser Dissertation umfasst zwei Arbeiten, die sich auf das Gebiet der Quanten- Ther-

modynamik beziehen. Das Bindeglied zwischen diesem und dem vorherigen Teil der Arbeit findet

sich im Konzept des thermodynamischen Zeitpfeils und seiner Richtungsabhängigkeit. Tatsächlich



erlaubt es der zweite Hauptsatz der Thermodynamik, eine positive (negative) Entropieänderung in

einem thermodynamischen Prozess mit der zeitlichen “Vorwärts-” (“Zeitumkehrung”) Richtung zu

assoziieren. So wird in der vierten Arbeit dieser Dissertation vorgeschlagen, dass die Quantenme-

chanik sogar Quantenüberlagerungen zwischen thermodynamischen Prozessen erlaubt, welche zwei

entgegengesetzte Entropievariationen ergeben. Damit wird die Existenz von Prozessen mit einem un-

bestimmten Zeitpfeil ermöglicht. Im Detail konzentriert sich diese Arbeit auf die Frage, ob solche

Überlagerungen beobachtbare Konsequenzen haben und wie eine wohldefinierte Zeitachse entsteht,

wenn geeignete Messungen der Entropieproduktion durchgeführt werden. In dieser Hinsicht zeigt

sich dass, wenn für die Entropieproduktion große Werte (im Absolutbetrag) gemessen werden, dies

zu einer effektiven Projektion der Quantenüberlagerung der thermodynamischen Zeitpfeile auf ei-

ne wohldefinierte zeitliche Richtung führt. Geht es hingegen um kleinen Entropieproduktionswerte,

so spielen Interferenzeffekte eine wichtige Rolle für die Definition der Art des thermodynamischen

Prozesses. Sie können beispielsweise zur Beobachtung von Arbeitswahrscheinlichkeitsverteilungen

eines Prozesses führen, der stärker oder leichter umkehrbar ist als die einzelnen Prozesse, welche

die Überlagerung bilden, oder auch jede klassische Mischung daraus. Die letzte Studie dieser Dis-

sertation schließlich knüpft an die in der vorhergehenden Arbeit verwendeten Methoden an. Bei all

den genannten Arbeiten geht es um die Anwendung sogenannter ‘thermodynamischer Fluktuations-

sätze’. Mit Hilfe thermodynamischer Fluktuationen wird es möglich, die Differenz der freien Energie

zwischen zwei Gleichgewichtszuständen mit der Arbeit an einem System in Beziehung zu setzen, wel-

ches aus einem Gleichgewicht getrieben wird. Im Kontext der Quantenmechanik bildet die Definition

von Arbeit ein nicht-triviales Konzept. Daher wurde in dieser letzten Arbeit ein einfaches interfe-

rometrisches Schema aufgestellt, welches unter Ausnutzung der Fluktuationstheoreme eine direkte

Schätzung der Arbeitsverteilung und der durchschnittlichen Arbeit, die während eines isothermischen

thermodynamischen Prozesses dissipiert wird, erlaubt.

Die Untersuchung unbestimmter Kausalstrukturen und des Zeitpfeils führt zur Erschließung neuer

Aufgabenstellungen in der Quanteninformation und der Quantenthermodynamik. Sie ist auch als me-

thodisches Werkzeug für die Entwicklung zukünftiger Quantentheorien der Schwerkraft geeignet. Die

theoretische Formulierung und experimentelle Realisierung dahingehender Ansätze, wie sie in der

vorliegenden Arbeit unternommen werden, kann zur Grundlage für ein tieferes Verständnis der Rolle

der Zeit in den grundlegenden physikalischen Theorien werden. In meinen Augen ist sie von zentraler

Bedeutung für künftige konzeptionelle Wendepunkte in der Wissenschaft.
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Preamble

One of the most debated topics of modern science relates to one of the notions of which we first acquire

an understanding in our lives: the notion of time. The questions that physicists have posed on this

topic are among the most disparate, starting from the very conjecture of its existence [Rovelli, 2017].

In classical physics, time flows in a uniform way and events unfold in a well-defined background

temporal order. It was later realized that time flows differently depending on how observers move and

where they are, for example in relation to objects moving at relativistic speeds [Einstein, 1905], or in

the vicinity of strongly gravitating matter [Einstein, 1915]. This has vast consequences, because of

the way it affects the possibility of two or more events to have mutual causal relations, which is one of

the features on which physical sciences rely in their understanding of Nature. Indeed, in general a pair

of events can either be causally dependent (and hence be cause and effect of one another), or causally

independent (no causal influence). Yet, in various approaches towards a theory of quantum gravity, it

is argued that a ‘fluctuating space-time’ may imply indefiniteness in the causal relations [Butterfield

and Isham, 2001], and thus the notions of time and causal orders among events might need to be

radically revised. Understanding these phenomena is one of the greatest challenges faced by modern

physics, with a major hindrance being that current technologies do not enable observations at the

scales deemed necessary. It is then compelling to ask ourselves whether there is any way to conduct

observations which corroborate the demand of revising our understanding of causality even at the

low-energy scales.

Recently, researchers have undertaken an operational approach to address this task, applying concepts

from quantum information to tackle it from a new perspective, and relate it to space-time physics

[Chiribella et al., 2013; Oreshkov et al., 2012; Zych et al., 2019]. Rather than being based on the

quantities which are conventionally the core of most physical laws (e.g., the position and momentum

of a particle), here predictions are built according to the operations that two or more agents perform on

a probe sample, and to their measurements’ outcomes. If we assume that no signal can be exchanged

between the two agents aside from the probe system itself (i.e., the two agents act inside so-called

‘local laboratories’), then the correlations which can be observed are of two types only: either they are

non-signalling correlations (and hence there is no causal relation between them), or they are signalling

correlations (hence one of the two operations must be in the causal past of the other). Either way, in

standard classical and quantum mechanics, for every pair of events A and B, either A causes B, B

causes A, or the two are independent from each other. However, recently a framework for quantum

mechanics devoid of global causal order has been proposed [Oreshkov et al., 2012], where the order

between events can be genuinely indefinite. According to this framework, there exist bounds on

the correlations among events which hold whenever these occur in a well-defined causal order. The

bounds have been quantified through purposely designed ‘causal inequalities’ [Abbott et al., 2016;

Oreshkov et al., 2012], and it has been shown that quantum mechanics may admit the existence of

correlations which violate them.
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Chapter : Preamble

To date, it is not clear whether these correlations are a mere mathematical artefact of the theory or

if they can be observed experimentally. Nevertheless, there exist experimentally realisable schemes

through which quantum superpositions of causal orders can be observed. The first explicit example of

a process for which quantum mechanics predicts a genuinely indefinite causal structure1 was proposed

in 2012, and is called the ‘quantum switch’ [Chiribella et al., 2013]. Restricting our considerations

to the case of two agents exchanging one qubit of information (i.e., an elementary carrier of quantum

information), a quantum switch can be described as follows. The qubit is transmitted between the two

agents, and the order in which the agents receive and act on it is quantum-mechanically controlled by

a second system. Upon suitable measurements of the second system (e.g., on a diagonal basis), and

conditional on either of the two outcomes, it is possible to achieve a quantum superposition whereby

operations are applied on the system in alternative orders.

A quantum switch was experimentally implemented for the first time in 2015 by superposing the order

of two unitary operations [Procopio et al., 2015]. That experiment was able to solve a specific com-

putational problem more efficiently than any ordered quantum circuit, this indirectly indicated that the

causal order between the performed operations was indefinite. The first objective of the present thesis

was thus to devise and execute an experiment that would provide a direct experimental evidence of the

causal non-separability of the quantum switch. In order to achieve this objective, we used a theoretical

tool that had just been developed at the time, the causal witness [Araújo et al., 2015; Oreshkov and

Giarmatzi, 2016]. Loosely speaking, a causal witness is a purposely designed set of measurements

whose outcome can reveal whether a given ‘process’ is causally ordered or not. To gain a first-hand

understanding of what a process is, consider two observers A and B performing local operations on a

target system. In this context, a process is what defines how the target system is exchanged between

the two local laboratories (and it is hence independent of their individual operations). A ‘causally-

separable process’ will then be a process wherein either A acts before B, B acts before A, or a classical

mixture of the previous two [Oreshkov et al., 2012]. Conversely, a process which does not obey

these requirements is called ‘causally nonseparable’. Since it has been proven that the set of causally-

separable processes is convex [Araújo et al., 2015; Oreshkov and Giarmatzi, 2016], one can always

find a hyperplane which separates the set from any point outside it [Rockafellar, 1970]. The point

outside the set would correspond to a causally-nonseparable process, and the separating hyperplane is

a causal witness.

Chapter 1 of this thesis builds upon these concepts and presents the first experimental realization of

a quantum superposition of orders of non-unitary channels, and the first measurement of a causal

witness. In order to increase the significance of our results, it was important to adopt a witness as

noise-resistant as possible. To this end, we chose to superpose the orders of a unitary and a mea-

surement operation. Clearly, the execution of a standard measurement within the quantum switch

1The terms ‘indefinite causality’, ‘indefinite causal structure’, and ‘indefinite causal order’ all indicate a lack of well-
defined causal order. They will thus be used interchangeably throughout this thesis. On the other hand, ‘causal nonsep-
arability’ specifies this feature in the quantum framework.
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could destroy the coherence between the elements of the superposition by revealing the time when

the measurement is performed. To overcome this problem we developed a scheme wherein, although

the measurement was performed inside the switch, the measurement results were encoded in some

auxiliary degrees of freedom, and were read only “at the end” of the process, thereby preserving its

coherence.

To provide experimental evidence of indefinite causality through the measurement of a causal witness

is a result whose validity depends on multiple assumptions. Indeed, the construction of a causal

witness rests on the assumptions that the system under consideration and the operations applied to it

are described by quantum mechanics. Consequently, the results of the above experiment only hold

as long as these assumptions are correct. So, after the completion of the first study, the question

which we asked ourselves was whether it was possible to devise an experiment to certify indefinite

causality whose validity would extend to a wider class of theories beyond quantum theory. Recurring

to the analogy between a proof of indefinite causality and that of the entanglement of a quantum

state, what we were aiming for is akin to a demonstration of the entanglement of a state through the

violation of a Bell’s inequality. Conversely, our first demonstration of causal indefiniteness was rather

comparable to a measurement of an entanglement witness. Now, even though the quantum switch can

be certified as causally-nonseparable via the measurement of a causal witness, it does not violate any

causal inequality, and hence it cannot be used to draw conclusions on the lack of definite causal order

in a ‘device-independent’ way.

A possible way around was proposed by Zych et al. [2019]. In their work, the authors sought a

demonstration of indefinite causality which, despite not being device-independent (i.e., independent

of the internal functionality of experimental device), would nonetheless be theory-independent (i.e.,

valid for a class of generalized probabilistic theories broader than quantum mechanics). To this end,

the authors derived a Bell-like inequality for causal orders from the assumptions of locality of states

and operations, and definite causal order. To test this inequality, they proposed to use a quantum

superposition of a gravitational mass in two positions to create an entanglement between the causal

orders of the operations performed by two pairs of agents (one close to each position of the gravita-

tional mass). They then showed that a specific set of operations of the agents, together with a suitable

projection of the state of the mass would lead to a violation of the Bell’s inequality and, thus, to the

negation of one or more of the assumptions.

Based on this result, the second aim of this thesis was to extend this novel Bell’s inequality for causal

orders to the case of a quantum optical experiment, and then to violate it experimentally. This ex-

tension and the corresponding results are reported in Chapter 2. To achieve a violation of the Bell’s

inequality for causal orders, we entangled the causal order of two quantum switches (with two pairs

of agents in each, and a target state sent through each switch). The violation confirmed that the col-

lected data could not be described by a class of generalized probabilistic theories assuming that the

initial target states do not violate Bell’s inequalities, that the operations on the target states are local,
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and that they have a predefined order. Via this violation we could provide, as previously announced,

an experimental demonstration of indefinite causality without resorting to the assumption that sys-

tems and operations should be described by the quantum formalism, that is, a theory-independent

demonstration.

The two works presented above were aimed at experimentally demonstrating the existence of pro-

cesses with a genuinely indefinite causal structure via “direct measurements”, i.e., the measurement

of a witness, or the violation of an inequality). One can achieve such demonstrations also in “indirect

ways”, that is, by elaborating information-theoretical tasks which enable one to distinguish the class

of causally indefinite processes from those outside the class, as was done, e.g., in Ref. [Procopio et

al., 2015]. The most powerful of such examples is that, in the context of a distributed-calculation

between three parties, the quantum switch provides an exponential reduction in the number of qubits

communicated against causally-definite one-way quantum communication schemes [Guérin et al.,

2016]. This was experimentally verified by Wei et al. [2019]. The third objective of this thesis was to

provide further evidence of indefinite causality by demonstrating another advantage that had just been

proposed in the literature at that time, and which was gathering considerable interest: the enhance-

ment of channel capacity in classical and quantum communication through noisy channels by placing

the channels in a quantum switch [Chiribella et al., 2018; Ebler et al., 2018; Salek et al., 2018].

Both a few other research teams [Goswami et al., 2020; Guo et al., 2020] and we could experimen-

tally confirm this effect. Yet, we also realized that the quantum switch was not the only process allow-

ing for such an enhancement. In particular, we noticed that causal processes which did not qualify as

causally indefinite (i.e., whereby channels are disposed in series and preceded by quantum-controlled

operations) could provide the same, or even better advantages [Guérin et al., 2019]. Independently

of us, another group came to similar conclusions around that time. While they did not refer to a

causal process, they showed that even quantum superposing two parallel channels leads to the pro-

posed enhancement [Abbott et al., 2020]. This finding naturally changed the kind of objective that

our experimental verification was intended to achieve. Indeed, as the enhancement could not be used

to give evidence of indefinite causality (since this is arguably not a distinctive feature thereof), we

focused on identifying the actual key to achieving such an advantage. As presented in Chapter 3,

we analysed the nature of the advantage by comparing all three schemes mentioned above: the quan-

tum switch, the quantum-control of parallel channels and the channels in series with quantum-control

operations. To this end, we compared the three schemes experimentally, applying them to various

noise models. We realised that the common resource among the three schemes is the establishment

of a coupling between the trajectories of the information carriers and the degree of freedom on which

the noise acts. To extend our findings to a broader spectrum (i.e., beyond the three noise models ex-

perimentally investigated), we carried out a numerical evaluation of the enhancements which can be

achieved with the three schemes in the case of randomly-generated channels. Both the experimental

tests and the simulations showed that, on average, arranging the channels in series and performing
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quantum-controlled operations before them provides a better quantum communication enhancement

than the other two methods.

Up until this point, we have discussed quantum superpositions between causal orders, motivated by

recent developments in our understanding of the notion of causality in quantum mechanics, as well

as by the prediction of the existence of a fluctuating space-time by different approaches to a theory

of quantum gravity. Even though the above results allowed us to draw conclusions on the causal

orders between events and their quantum superposition, they did not lead to formulating broader

conjectures on the existence of a well-defined arrow of time in quantum mechanics. In fact, while the

causal orders between events occurring in each laboratory were indefinite, the temporal direction of

the operations carried out inside the laboratories remained well-defined. In this light, after the works

presented in the first three Chapters of this thesis, we undertook a paradigm shift from the sheer notion

of indefinite causality, and we focused on the study of opposing temporal directions and their quantum

superpositions.

To discuss quantum superpositions between alternative temporal directions, it is necessary to refer to

some physical definition of the time’s arrow. The definition of an ‘arrow of time’ is inherently associ-

ated to the observation of time-asymmetric changes in physical processes. Such physical phenomena

are numerous. In the present thesis, we have chosen to adopt a thermodynamic approach, according

to which the directionality of the time’s arrow can be defined using the second law, which states that

the total entropy of the universe can only either increase or remain constant. At a macroscopic level,

we have a clear perception of the flow of time, and the probability to observe a negative entropy pro-

duction in this regime is negligible. However, this is not equally true at the microscopic level, where

it has been shown that it is possible to observe so-called “fluctuations” in the entropy production. In

particular, while the second law of thermodynamics states that the entropy of an isolated system tends

to increase until the system reaches an equilibrium, this is only true on average —in other words, the

second law is only a statistical law. So, there is a non-zero probability that the entropy of an isolated

system spontaneously decreases. A positive (negative) entropy production is linked to the “forward”

(“time-reversal”) temporal direction. This probability may be quantifiable through the so-called “fluc-

tuation theorems”: in a system far from equilibrium, the ratio between the probability that the entropy

production assumes a positive value and that of it assuming a negative value increases exponentially

with the size of the entropy production. If quantum mechanics is incorporated in this picture, the defi-

nition of a temporal orientation becomes even more complex. Indeed, quantum theory allows, at least

in principle, for the existence of superposition between processes with opposite entropy production.

In this context, the questions which brought us to the formulation of Chapter 4 of this thesis were

the following. Suppose that superpositions of alternative time’s arrow exist in Nature, what could

preclude us from their observation? Could their observation be hindered by an effective projection of

the quantum superposition in a well-defined time direction? If so, which physical phenomenon could

constitute experimental evidence for the existence of such superpositions?
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To answer these questions, we formalized a method to study quantum superpositions between thermo-

dynamic quenches, and we applied it to superpositions between quenches causing opposite entropy

productions. Our approach builds upon the so-called ‘two-point measurement’ (TPM) scheme [Camp-

isi et al., 2011]. This is a technique allowing one to evaluate the work distribution of a given thermo-

dynamic quench by reconstructing the difference in energy before and after the quench through ideal

projective measurements of the Hamiltonian [Talkner and Hänggi, 2016; Talkner et al., 2007]. From

the value of the work and the variation of free energy, it is then possible to reconstruct the so-called

‘dissipative work’, which is equal to the product between the entropy production and the temperature

of the system. In Chapter 4, we propose an extended TPM scheme where i) the forward quench and

its time-reversal twin (each preceded and followed by projective measurements of the Hamiltonian)

are quantum superposed, and ii) the auxiliary degree of freedom, upon which the superposition is

built, is projected onto the diagonal basis. It should be noted that the projective measurements of

the Hamiltonian must maintain the coherence between the forward and time-reversal thermodynamic

processes. To achieve this, we adopted a technique based on the experiment performed in Chapter 1:

we encoded the results of the measurements in one state of the auxiliary system and preserved the co-

herence between the auxiliary states until the end of the overall thermodynamic process, before finally

interfering the different states with each other. With this technique, we demonstrated that quantum

measurements of the dissipative work (or, equivalently, of the entropy production) yield a well-defined

orientation of the time’s arrow. More precisely, when the entropy production is much greater than the

system’s temperature (setting, for simplicity, the Boltzmann’s constant to one), the superposition is

effectively projected onto the forward process, whereas it is projected onto the time-reversal one when

the entropy production assumes the opposite sign. This effective projection restores a definite ther-

modynamic arrow of time. Conversely, when the amount of entropy produced is of the order of the

system’s temperature, the forward and time-reversal thermodynamic processes can interfere, giving

rise to work probability distributions with no classical counterpart. The observation of such work dis-

tributions would prove the existence of superpositions between opposite time’s arrows. Furthermore,

these considerations can be applied not only to superpositions between processes linked by time inver-

sion, but to any pair of thermodynamic processes. With this in mind, we have also applied our results

to the quantum superposition between a heat engine and a power-driven refrigerator, showing that our

findings can also be harnessed to reduce undesired fluctuations in the performance of state-of-the-art

quantum thermodynamic engines.

While working on this last theoretical result, we realized that a modification of our extended TPM

scheme could provide a new method to estimate the work distribution. In particular, in quantum

mechanics, since work is not associated with any observable [Talkner et al., 2007], its definition is

rather complex. Commonly, it is measured through the previously introduced TPM scheme, and this

approach has been implemented in several experiments [An et al., 2015; Wu et al., 2019; Xiong et al.,

2018; Zhang et al., 2018]. However, since the realisation of projective energy measurements before

and after an arbitrary process may be difficult in some experimental scenarios, plus the projective
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measurements may ultimately destroy the system, alternative methods have been proposed [Dorner et

al., 2013; Mazzola et al., 2013]. Yet, the price to pay with these alternative schemes is the need to

use entangling operations, which may be experimentally challenging.

Our proposed method takes advantage of the interference between two paths, one along which the

system is driven out of its thermal equilibrium through the forward process, and one in which it is

driven out of it through the time-reversal process. In Chapter 5, we show that injecting the initial and

final energy eigenstates of the system into the two paths of the interferometer and measuring the fringe

visibility at the output of the interferometer allows one to directly reconstruct the work distribution

and the average dissipative work. The latter is proportional to the average entropy production, and

it is a measure of thermodynamic irreversibility. In the case of a limited experimental control, when

only the thermal states of the initial and final Hamiltonian of the system can be prepared, our method

does not yield an exact estimation of the previous quantities but still provides useful upper limits

on the average dissipative work. Our scheme does not involve any entangling operation nor energy

measurements, and therefore it appears to offer a convenient playground for exploring the role of

quantum coherence in thermodynamic processes.

In conclusion, this thesis is aimed at undertaking a few steps towards a deeper understanding of

causal structures and the concept of time in quantum mechanics through an operational approach to

these questions pursued with both experimental and theoretical analyses. Clearly, each step forward

opens the way to countless further questions. On the one hand, if we consider the field of indefinite

causality, the most puzzling open question is whether a physical process able to violate causal inequal-

ities can be found. This ambitious goal, in turn, encompasses a number of additional questions, such

as whether there exist physically realisable causally-nonseparable processes which are not traceable

back to the quantum switch, and whether such processes can lead to further advantages in quantum

communication and computation. On the other hand, as far as the question about the existence of a

thermodynamic time’s arrow in quantum mechanics is concerned, in this thesis we show some imme-

diate consequences of superposing processes with opposite temporal directionality, and the effects of

carrying out measurements on such superpositions. Along this line, further steps to be taken are the

devising of tests, independent of the quantum theory, proving that the latter does not foresee the exis-

tence of a well-defined thermodynamic arrow of time or, on a more practical side, the application of

the aforementioned results to the elaboration of further enhancements of the performance of quantum

thermodynamic engines.
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In preparation:

• Inferring Work by Quantum Superposing Forward and Time-Reversal Evolutions

G. Rubino, G. Manzano, L. A. Rozema, P. Walther, J. M. R. Parrondo, and Č. Brukner
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Chapter 1

Experimental Verification of an Indefinite Causal
Order

G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner,
and P. Walther

Abstract. Investigating the role of causal order in quantum mechanics has recently re-
vealed that the causal distribution of events may not be a-priori well-defined in quantum
theory. While this has triggered a growing interest on the theoretical side, creating pro-
cesses without a causal order is an experimental task. Here we report the first decisive
demonstration of a process with an indefinite causal order. To do this, we quantify how in-
compatible our set-up is with a definite causal order by measuring a ‘causal witness’. This
mathematical object incorporates a series of measurements which are designed to yield
a certain outcome only if the process under examination is not consistent with any well-
defined causal order. In our experiment we perform a measurement in a superposition of
causal orders—without destroying the coherence—to acquire information both inside and
outside of a ‘causally non-ordered process’. Using this information, we experimentally
determine a causal witness, demonstrating by almost seven standard deviations that the ex-
perimentally implemented process does not have a definite causal order.

Author contributions: G.R., L.A.R., M.A., A.F., and L.M.P. designed the experiment. G.R. built the

setup, and G.R. and L.A.R. carried out data collection. G.R., L.A.R., A.F., and M.A. performed data

analysis. J.M.Z. designed and built the automated components. G.R. and M.A. created the figures.

P.W. and C.B. supervised the project. All authors contributed to writing the paper, based on an initial

draft by G.R..
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Chapter 1: Experimental Verification of an Indefinite Causal Order

1.1 Introduction

The notion of causality is an innate concept, which defines the link between physical phenomena that

temporally follow one another, one manifestly being cause of the other. Nevertheless, in quantum me-

chanics the concept of causality is not as straightforward. For example, when the superposition princi-

ple is applied to causal relations, situations without a definite causal-order can arise [Chiribella et al.,

2013; Oreshkov et al., 2012]. Although this can lead to disconcerting consequences, forcing one to

question concepts that are commonly viewed as the main ingredients of our physical description of the

world [Brukner, 2014], these effects can be exploited to achieve improvements in computational com-

plexity [Araújo et al., 2014; Chiribella, 2012; Hardy, 2009] and quantum communications [Baumeler

and Wolf, 2014; Feix et al., 2015; Guérin et al., 2016]. Recently, this computational advantage was

experimentally demonstrated in [Procopio et al., 2015]. However, the absence of a causal order was

inferred from the success of an algorithm rather than being directly measured. In the present work,

we explicitly demonstrate the realization of a causally non-ordered process by measuring a so-called

‘causal witness’ [Araújo et al., 2015].

In order to make our results stronger (i.e., make the causal witness more robust to noise), we performed

a superposition of the orders of a unitary gate and a measurement operation. In other words, we made

a measurement inside a quantum process with an indefinite order of operations (the quantum switch

[Chiribella et al., 2013]). Performing a standard measurement inside the quantum switch would

destroy its coherence, since it would reveal the time at which the measurement is performed, and

would thus also reveal whether it is performed before or after other operations. In other words, such

a measurement would reveal the causal order between the operations. In our scheme, however, the

measurement outcomes are read out only “at the end” of the process, preserving its coherence. Since

applications of indefinite causal orders will most likely require the superposition of orders of complex

quantum operations, we believe that, in addition to the first direct demonstration of an indefinite causal

order, our measurement in a quantum switch can also be considered a technological step towards such

applications [Araújo et al., 2014; Baumeler and Wolf, 2014; Chiribella, 2012; Feix et al., 2015;

Guérin et al., 2016; Hardy, 2009].

In our usual understanding of causal relations, if we consider two eventsA andB which are connected

by a time-like curve, we will have one of two cases: either ‘A is in the past ofB’, or ‘B is in the past of

A’. However, the application of the superposition principle to such causal relations calls into question

the interpretation of causal orders as a pre-existing property. In fact, the causal order can become

genuinely indefinite. To see this, consider a two-qubit quantum state |φ〉 lying in the composite

Hilbert space HC ⊗HT with HC and HT each being two-dimensional Hilbert spaces. It is possible

to condition the order in which operations are applied to a target state |ψ〉T ∈ HT on the value of a

control state |χ〉C ∈ HC . For example, if the state of the control qubit is |0〉C , the two operators will

be applied in the order A and then B on the state of the target qubit |ψ〉T , and vice versa if the state

2



1.1 Introduction

of the control qubit is |1〉C . Therefore, if the control qubit is in a superposition state 1√
2
(
|0〉+ |1〉

)C ,

a controlled quantum superposition of the situations ‘A is in the past of B’ and ‘B is in the past of A’

is established (Figure 1.1). In the above situation, the causal order is not merely in a superposition. It

is, in fact, entangled with the state of the control qubit.

From this simple example we can see that the causal order between events is not always definite

in quantum mechanics. One could, in the spirit of hidden-variable theories, insist that there might

nonetheless be a well-defined causal order. However, this claim requires, in general, a theory to be

non-local and contextual because of the Bell and Kochen-Specker theorems [Bell, 1964; Kochen and

Specker, 1975]. In fact, one can even establish a no-go theorem that applies to causal orders [Zych et

al., 2019].

Figure 1.1 The quantum switch. Consider a situation wherein the order in which two parties Alice and Bob act on a
target qubit |ψ〉T depends on the state of a control qubit in a basis {|0〉 , |1〉}C . If the control qubit is in the state |0〉C the
target qubit is sent first to Alice and then to Bob (Panel a)), while if the control qubit is in the state |1〉C , it is sent first to
Bob and then to Alice (Panel b)). Both of these situations have a definite causal order, and are described by the process
matrices WA→B and WB→A (Eq. 1.5). If the control qubit is prepared in a superposition state 1√

2

(
|0〉+ |1〉

)C
, then the

entire network is placed into a controlled superposition of being used in the order Alice→ Bob and in the order Bob→
Alice (Panel c)). This situation has an indefinite causal order.

The case described above, called the quantum switch, is the first explicit example wherein it was

shown that quantum mechanics does not allow for a well-defined causal order [Chiribella et al., 2013].

The switch was recently experimentally implemented [Procopio et al., 2015] by superimposing the

order in which two unitary operations acted. That experiment confirmed that a causally non-ordered

quantum circuit can solve a specific computational problem more efficiently than an ordered quantum

circuit. But only indirect evidence of indefinite causal order was observed through the demonstration

of this computational advantage. The primary goal of our current experiment is, therefore, to provide

direct experimental proof of the causal non-separability of the quantum switch. For this purpose, we

used a recently developed theoretical tool: the causal witness [Araújo et al., 2015].
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Chapter 1: Experimental Verification of an Indefinite Causal Order

1.2 Theoretical Framework

A causal witness is a carefully designed set of measurements, whose outcome will tell us if a given

process is causally ordered or not. An intuitive way to introduce causal witnesses is through the well-

known concept of an entanglement witness [Gühne and Tóth, 2009]. First, recall that a composite

quantum system ρ lying in a Hilbert spaceHA⊗HB is separable or entangled depending on whether

it can be written in the form ρ =
∑
i piρ

A
i ⊗ρBi (with ρAi and ρBi states of the subsystemsA andB and

0 ≤ pi ≤ 1,
∑
i pi = 1) or not. Then it can be shown that for all entangled states ρent there exists a

Hermitian operator S, called an ‘entanglement witness’, such that Tr(Sρent) < 0, but Tr(Sρsep) ≥ 0
for all separable states ρsep. Hence, it follows that if one measures an entanglement witness on a state

and finds a negative value the state must be entangled.

A similar quantity was recently introduced to determine if a process matrix W is causally separa-

ble or not[Oreshkov et al., 2012]. A process matrix (the counterpart of the density matrix in the

entanglement witness example) describes causal relations between local laboratories [Baumann and

Brukner, 2016]. Consider two observers Alice and Bob who perform local operations MA and MB

(MA and MB can be arbitrary quantum operations, from simple unitary operations to more complex

measurement channels). By local operations we mean that the only connection that Alice and Bob

have with the external world is given by the quantum state that they receive from it and the state that

they return to it. The process matrix W then details how this quantum state moves between the two

local laboratories (Figure 1.2). Hence, it is independent of the individual operations that Alice and

Bob perform. In the case of the quantum switch, the process matrix first routes the input state to Alice

and Bob in superposition, it then connects Alice’s output to Bob’s input and vice versa, and finally

coherently recombines their outputs.

Since a causal witness characterizes a process rather than a state (unlike an entanglement witness),

it requires a procedure akin to ‘process tomography’ (i.e., ‘causal tomography’, see Section 1.5.5).

Namely, we must probe the process with several different input states ρ(in). Then, for each input

state, Alice and Bob implement several different known operations, and then we perform a final mea-

surement D(out) (Figure 1.2). In general, MA and MB can include measurement operations, so each

could have additional measurement outcomes associated with it. We denote the outcomes of Alice

and Bob’s local operations by a and b, and their choice of operation by x and y, respectively. We label

the specific choice of an input state with z, and the output of a detection operation with d. With this

in mind, the probability of obtaining the outcomes MA
a,x, MB

b,y, and D(out)
d , with the input state ρ(in)

z

can be written, using the Choi-Jamiołkowski isomorphism [Choi, 1975] (see Section 1.6.1), as

p
(
a, b, d|x, y, z

)
= Tr

[(
ρ(in)
z ⊗MA

a,x ⊗MB
b,y ⊗D

(out)
d

)
·W

]
with

∑
a,b,d p

(
a, b, d|x, y, z

)
= 1 for all the possible settings x, y, z and where W is the process

matrix [Araújo et al., 2015].
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Dρ(in) (out)

M
A

M
B

W

Figure 1.2 A process matrix representation of Figure 1.1. The process matrix W describes the “links” between
Alice and Bob. For example, it could simply route the input state ρ(in) to Alice MA and then to Bob MB (solid line), or
vice versa (dashed line). In the case of the quantum switch, it creates a superposition of these two paths, conditioned on the
state of a control qubit. The input state ρ(in), the two local operations MA and MB , and the final measurement D(out) must
all be controllable and known a-priori. The unknown process is represented by the process matrix (shaded grey area
labelled W ). A causal witness quantifies the causal non-separability of W .

To calculate these probabilities for the quantum switch we must construct its process matrix, which

we will call Wswitch. To do this we will again use the Choi-Jamiołkowski isomorphism. As a first

step, consider the identity channel from the output spaceHP1
out of a party P1 to the input spaceHP2

in of

a second party P2. To describe this as a process matrix we can write it as a projector onto a process

vector in the ‘double-ket notation’ [Braunstein et al., 2000; Royer, 1991]:

|1〉〉H
X
in/outH

Y
in/out =

∑
j

|j〉H
X
in/out ⊗ |j〉H

Y
in/out , (1.1)

where j labels a basis over the spaces. We can now use this process matrix to describe an input

state passing first to Alice (HAin → HAout), then to Bob (HBin → HBout), and finally to the output space

(∈ H(out)). This process is described by

|wA→B〉 = |1〉〉H
(in)HAin |1〉〉H

A
outHBin |1〉〉H

B
outH(out)

. (1.2)

Alice and Bob are free to perform measurements MA : HAin → HAout and MB : HBin → HBout,

respectively, but they are not part of the above process vector. Note that swapping the order of Alice

and Bob is as simple as swapping the labels A and B. The vectors |wA→B〉 (describing ‘Alice acts

before Bob’) and |wB→A〉 (describing ‘Bob acts before Alice’) both have a well-defined causal order

(Figure 1.1, Panels a) and b)).

We are now in the position to construct the process matrix of the quantum switch. Recall that for

the quantum switch the control qubit’s state sets the relative amplitudes of Alice→ Bob and Bob→
Alice. Thus the process vector of the quantum switch (when the control qubit initially in the state

5



Chapter 1: Experimental Verification of an Indefinite Causal Order

|0〉C+|1〉C√
2 ) is quite simply:

|wswitch〉 = 1√
2

(
|wA→B〉 |0〉C + |wB→A〉 |1〉C

)
. (1.3)

For the causal witness we will consider here, we will only measure the state of the control qubit after

the switch. Thus, we need to construct the process matrix taking an input state, and returning the state

of the control qubit. This is done by tracing over the switch output (i.e., the target qubit) and fixing

the state of the control qubit to be 1√
2(|0〉 + |1〉). So the process matrix to compute the final state of

the control qubit is represented by the process matrix:

Wswitch = TrH(out)
(
|wswitch〉 〈wswitch|

)
, (1.4)

where TrH(out)(·) is the partial trace over the output system qubit.

Using the same formalism, one can also concisely describe all causally separable processes. Consider

two general process matrices linking the two local laboratories A and B, WA→B and WB→A. Here,

contrary to Eq. 1.2, the link between the laboratories is in general no longer the identity channel.

Then by simply taking an incoherent mixture of two, one can describe all possible causally separable

processes [Araújo et al., 2015]:

W sep := pWA→B + (1− p)WB→A, (1.5)

where 0 ≤ p ≤ 1. Physically, this can be understood as each run of the process having a well-defined

order, with Alice acting first with probability p and Bob acting first with probability 1− p. From this

definition it is apparent that every convex combination of causally-separable process matrices is still

a causally-separable process matrix; thus, the set of causally-separable process matrices is convex.

Causal witnesses are designed to distinguish between causally separable (Eq. 1.5) and causally non-

separable process matrices (such as Eq. 1.4). Indeed, for all causally non-separable process matrices

W n-sep, there exists a Hermitian operator S, called a causal witness, such that

Tr(SW n-sep) < 0, (1.6)

but Tr(SW sep) ≥ 0 for all causally separable process matrices W sep [Araújo et al., 2015], just as in

the entanglement witness example. Such an operator is guaranteed to exist, because the convexity of

the causally-separable process-matrices set ensures that there is always a hyperplane, which separates

the set from a given causally non separable process W n-sep [Rockafellar, 1970] (see Figure 1.8 in the

Materials and Methods, Sec. V).

A causal witness can be written as a linear combination of the states at the input of the process, the

quantum operations of Alice and Bob, and the measurements on the output. This is because the tensor
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products of these elements span the process matrix Hilbert space (the space Wswitch lives in). Using

the notation defined in Eq. 1.1, a causal witness can be expanded as

S =
∑
a,b,d
x,y,z

αa,b,d,x,y,z · ρ(in)
z ⊗MA

a,x ⊗MB
b,y ⊗D

(out)
d , (1.7)

where the coefficients αa,b,d,x,y,z are real numbers which define (together with the input states and

measurements) a particular witness. From the definition in Eq. 1.1, it follows that

Tr(SW ) =
∑
a,b,d
x,y,z

αa,b,d,x,y,zp
(
a, b, d|x, y, z

)
(1.8)

and therefore the evaluation of the quantity Tr(SW ) for a given process W translates into a determi-

nation of probabilities p(a, b, d|x, y, z) for several input states and measurement choices.

In the case where there are no restrictions on which operations we are able to implement, we choose

the coefficients αa,b,d,x,y,z by maximizing the quantity −Tr(SW ) over the set of all possible causal

witnesses, as described in Section 1.5.5. This quantity, for such a optimal witness, corresponds to

the maximum ‘amount of worst-case noise’ that the process under examination can tolerate while

remaining causally non-separable [Araújo et al., 2015]. More precisely, it is the minimal λ ≥ 0 for

which the process matrix

Wλ = 1
1 + λ

(
W n-sep + λΩ

)
(1.9)

becomes causally separable, where Ω is any other process that could have been prepared instead of

the desired W n-sep. We will refer to this quantity as the ‘causal non-separability’ (CNS) of a process

W :

CNS(W ) := −Tr
(
SW

)
. (1.10)

When the −Tr
(
SW

)
< 0, we define the CNS(W ) to be zero.

In practice, however, we may not be able to maximize −Tr(SW ) over the whole set of causal wit-

nesses, as there can be restrictions on which operations Alice and Bob have access to. To fully assess

the CNS, Alice and Bob must be able to implement a complete basis of operators, which gives them

access to the maximal amount of information about the process. We define, therefore, the experi-

mentally certifiable CNS (hereafter referred to as CNSexp(W ) = −Tr
(
SexpW

)
) as the maximum of

−Tr(SW ) over the restricted set of operators. In this case, CNSexp(W ) is no longer the amount of

noise that the process can tolerate before becoming non-separable, but the maximal amount of noise

for which this restricted class of witnesses can still detect its causal nonseparability.

If Alice and Bob were only able to do unitaries, for example, this would drastically diminish the

attainable CNSexp(W )—this path was chosen in Ref [Procopio et al., 2015]. Indeed, since a unitary

operation cannot extract any explicit information from the manipulated state (and, consequently, from
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the process), neither Alice nor Bob can gain any knowledge about their received state when applying

only such gates and consequently the estimated CNSexp(W ) is less efficient. However, if the unitary

operations are replaced with projective measurements then, roughly speaking, information about the

process at different points throughout the switch can be extracted. In fact, if Alice and Bob both have

access to measure and reprepare operations, one can achieve CNSexp(W ) = CNS(W ).

Because of the experimental challenges of coherently adding measure-and-reprepare operations, in

our experiment Alice performs an measure-and-reprepare operation and Bob implements a unitary

channel. Remarkably, it turns out that giving one party a measure-and-reprepare operation and the

other a unitary operation still increases CNSexp(W ) substantially. So the causal witness we will

measure depends both on Alice’s outcome (performed inside the switch) and our final measurement

outcome.

1.3 Experiment and Results

To experimentally implement the quantum switch, we need a control and a target qubit. In our ex-

periment we encode a control qubit in a path degree of freedom of a photon and a target qubit in the

same photon’s polarization. The technique of utilizing multiple degrees of freedom has enabled many

previous quantum technologies [Barreiro et al., 2008; Englert et al., 2001; Lanyon et al., 2009]. For

our present experiment this is convenient as Bob’s unitary gate can be implemented easily with three

waveplates, while Alice can perform a projective measurement with waveplates and a polarizing-

beamsplitter. Note that there are other proposals to coherently control the causal orders of events

[Araújo et al., 2015; Friis et al., 2014; Rambo et al., 2016] (in particular, the first experimental im-

plementation for the quantum switch was proposed by G. Chiribella, R. Ionicioiu, T. Jennewein, and

D. R. Terno in a private communication). In these proposals (as in ours) the target and control system

are encoded in the same particle. In principle, it is also possible to use different particles. With pho-

tons this could be done using a so-called controlled path gate [Zhou et al., 2011], or potentially by

using a spin qubit to control the causal order acting on a photon [Wang et al., 2016].

In our experiment, the realization of the unitary channel is straightforward, but a short remark is

necessary concerning Alice’s measurement. It is clear that a polarizing-beamsplitter enables one to

distinguish the polarization of an incoming photon. However, a polarizing-beamsplitter gives rise to

additional spatial modes (i.e., after the polarizing-beamsplitter there are two output paths). These

two spatial modes can be considered as a new spatial qubit. Then, the action of the polarizing-

beamsplitter is to couple the polarization qubit to this additional qubit. This is formally equivalent to

a von Neumann system-probe coupling, which can model the interaction necessery for any projective

measurement [Von Neumann, 1955] and has been used between path and polarization degrees of

freedom in the experiment reported in Ref. [Rozema et al., 2012]. In our experiment, the polarization
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qubit is the system, and it is coupled (via the polarizing-beamsplitter) to an additional spatial qubit

which is the probe. We can read out information about the system by measuring the probe (with

a photon detector) at a later time. This solves the non-trivial problem of realizing a measurement

operation inside a quantum switch. Most approaches to acquire information inside the switch would

lead to distinguishing information about the order in which the operations were applied, destroying

the quantum superposition. In our solution, however, since the probe qubit is not measured until the

information about the order of application of the operations is erased, the entire process can remain

coherent. This solution also works deterministically, i.e., both of Alice’s outcomes are retained. It also

allows Alice to implement a measurement-dependent repreparation by placing different waveplates in

each of the two outcome modes.

Our implementation of the quantum switch draws inspiration from a previous experiment [Procopio et

al., 2015], in which only orders of unitary operations were superimposed. Therefore, as in [Procopio

et al., 2015], our experimental skeleton consists of a Mach-Zehnder interferometer (MZI) with a loop

in each arm. However, because Alice’s measure-and-reprepare channel adds an additional path degree

of freedom, we need an extra interferometric loop.

A scheme of our experimental apparatus is presented in Figure 1.3. The first step is to set the state

of the system qubit (encoded in the polarization) with a polarizer and a half-waveplate. Then the

photon impinges on a 50/50 beamsplitter; this sets the state of the control qubit (encoded in a path

degree of freedom) in |+〉. Depending on the state of the path qubit, the photon is sent to either

Alice (who performs MA) and then Bob (who performs UB), or vice versa. As described above,

MA is a projective measurement (a sequence of two waveplates and a polarizing-beamsplitter) and a

corresponding repreparation (a sequence of two waveplates in only one of the polarizing-beamsplitter

outputs), and UB is a unitary gate (a sequence of three waveplates). Since the polarizing-beamsplitter

adds a second path qubit this results in four path modes, encoding both the state of the control qubit

and the outcome of the measure-and-reprepare channel. Referring to Figure 1.3, the external (yellow)

interferometer arises from the outcome H - also referred to as a logical 0 - and the internal (blue) one

from the outcome V - a logical 1. We finalize the switch by erasing the information about the order

of the gates. This can be done by applying a Hadamard gate to the control qubit. Since the control

qubit is a path qubit a Hadamard gate can be implemented with a 50/50 beamsplitter. However, in our

experiment there are two path-qubits (the control qubit and Alice’s ancilla measurement qubit). Thus,

we must use two 50/50 beamsplitters: one beamsplitter to interfere the control qubit when Alice’s

ancilla qubit is in the state |0〉, and one beamsplitter when it is in the state |1〉. Finally, each of the

four outputs are coupled into single-mode fibers, which are each connected to single-photon detectors

(SPD). Then detecting a photon in one of the four modes yields the result of both the measurement

of the control qubit in the superposition basis and Alice’s measurement (see the detector labels in

Figure 1.3).

We wish to evaluate the CNS of our quantum switch by experimentally estimating the expectation
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Figure 1.3 Experimental Set-Up. A sketch of our experiment to verify the causal non-separability of the quantum
switch. We produce pairs of single photons using a Type-II spontaneous-parametric-down-conversion source (not shown
here). One of the photons is used as trigger, one is sent to the experiment. The experiment body consists of two
Mach-Zehnder interferometers, with loops in their arms. The qubit control, encoded in a path degree of freedom, dictates
the order in which the operations MA and MB are applied to the target qubit (encoded in the same photon’s polarization)
Alice implements a measurement and repreparation (MA), and Bob implements a unitary operation (MB). After the
interferometers the control qubit is measured, i.e., we check if the photon exits port 0 or port 1. Note that there are two
interferometers, each corresponds to a different outcome for Alice: the yellow path means Alice measured the photon to be
horizontally polarized (a logical 0), and the blue path means she found the photon to be vertically polarized (a logical 1).
The first digit written on the detector labels this outcome. The second digit refers to the final measurement outcome,
which, physically, corresponds to the photon exiting either from port 0 or port 1. In this diagram port 0 (1) means the
photon exits through a horizontally (vertically) drawn port. A half waveplate at 0◦ was used in the reflected arm of the first
beamsplitter in order to compensate the acquired additional phase. Acronyms in the figure are defined as follows: QWP,
quarter waveplate; HWP, half waveplate; BS, beamsplitter; PBS, polarizing-beamsplitter.

value of a causal witness S (Eq. 1.7). In other words, we want to assess Tr(SexpWswitch), where here

Wswitch refers to the process matrix describing our experiment. Since the trace is linear, this can be

done by implementing one term in the sum of S (Eq. 1.7) at a time. To estimate a single term, an

input state is injected into the switch, Alice and Bob each perform an operation inside, and then the

outputs of the overall process are measured. Since the control qubit measurement and Alice’s mea-

surement are both single-qubit projective measurements, there are a total of four possible outcomes.

For each measurement setting, different input states are sent into the switch and the probabilities of

each outcome are experimentally estimated by sending multiple copies of the same input state. To

compute the final value of the CNSexp(Wswitch), the results of these measurements are weighted by

the corresponding αa,b,d,x,y,z and summed.
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The number of terms in the sum of Eq. 1.7 is determined by the specific witness we wish to evaluate.

In general, Alice and Bob must each implement a set of operators forming a basis over their channels.

For Bob’s unitary channel this requires 10 elements and for Alice’s measure-and-reprepare channel

16 [Araújo et al., 2015]. In our case, we formed Alice’s basis with four (non-commutative) projection

operators, and three unitary repreparation operators when the outcome was H and one operator (the

identity operator) when the outcome was V . This corresponds to 12 measure-and-reprepare channels

when the outcome of Alice’s measurement is H and 4 when it is V , for a total of 16 measure-and-

reprepare operators. For Bob we implement all 10 unitaries.

Varying the input state can make CNSexp(Wswitch) more robust to noise. Hence, for our experiment

we used three different input states: |H〉, |V 〉 and |+〉. Finally, we implemented two different mea-

surement operators D(out) on the control qubit (corresponding to the two outcomes of the projection

onto basis
{
|±〉 = |0〉±|1〉√

2

}
). Thus, for our experiment, the calculation of CNSexp(Wswitch) translates

into

CNSexp(Wswitch) = −
2∑
z=0

1∑
a=0

11∑
x=0

9∑
y=0

1∑
d=0

αa,d,x,y,z p
(
a, d|x, y, z

)
, (1.11)

here we do not need the sum over b, since Bob’s unitaries do not have an outcome. The probability in

Eq. 1.11 is defined as

p
(
a, d|x, y, z

)
:= Tr

[(
ρ(in)
z ⊗MA

a,x ⊗ UBy ⊗D
(out)
d

)
·Wswitch

]
. (1.12)

We must experimentally estimate all of these probabilities to evaluate CNSexp(Wswitch). There are

1440 terms in this sum. However, four outcomes (two from of Alice’s measurement and two from the

final detection) are collected simultaneously (experimentally, this means the counts of four SPDs are

collected in one setting). Therefore, we need 360 different experimental settings. However, for our

witness, of the 360 pre-factors αa,d,x,y,z , 101 are equal to zero, so there are actually only 259 relevant

experimental settings.

With this in place, we are able to experimentally measure the CNSexp(Wswitch) (for information relat-

ing experimental visibility, stability and data taking procedure, see Sections 1.5.2-1.5.4). Figure 1.4

shows some of the probabilities p
(
a, d|x, y, z

)
(Eq. 1.11) for the four outcomes, i.e., for Alice a = 0, 1

and our final measurement d = 0, 1 (the remainder are shown in the Supplemental Information). In

Figure 1.4, the experimentally obtained values are the blue dots and the theoretical predictions are the

bars.

Our main source of error is phase fluctuations in the two interferometers. We therefore performed

a separate measurement (presented in the Section 1.5.4) to characterize this error. The error bars in

Figure 1.4 represent both these phase errors and Poissonian errors due to finite counts. These errors

do not take into account systematic errors, such as waveplate miscalibration, since such systematic

errors represent a deviation of our experimental switch from the ideal switch.
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Chapter 1: Experimental Verification of an Indefinite Causal Order

Figure 1.4 Experimentally estimated probabilities. Each data point represents a probability p
(
a, d|x, y, z

)
in

Eq. 1.11 for a = 0, 1 and d = 0, 1. The blue dots represent the experimental result and the bars the theoretical prediction.
The yellow (blue) bars refer to the external (internal) interferometer. The x-axis is the measurement number, which labels
a specific choice of is input state, measurement channel for Alice and Bob, and final measurement outcome. For our
witness, it runs from 0 to 259, but we only show the first 44 here for brevity Alice and Bob specific choice of operator is
given in Table 1 of the Supplementary Materials.

We can now obtain a value for the CNS of our process by weighting the data presented in Figure 1.4

(and Supplementary Figures 1-3) by αa,d,x,y,z and then summing them. The result is

CNSexp(Wswitch) = 0.202± 0.029. (1.13)

The error bar on CNSexp(Wswitch) was calculated by Gaussian error propagation from the errors of

the individual probabilities. The theoretical maximum value for CNSexp(Wswitch) is 0.2842. The

disagreement between this and our measured result is caused primarily by two effects. First, given the

reduced visibility of the interferometers (which we will discuss in detail shortly) the maximal value

for CNSexp(Wswitch) is 0.2523, when the visibility is 0.9539. The remaining discrepancy comes from

systematic errors, such as waveplate miscalibration, which effectively mean that the unitaries Alice

and Bob implement differ slightly from their targets. For example, we estimate, using a simple Monte

Carlo simulation, that a waveplate calibration error of 3◦ would explain this discrepancy, leading to a

drop in the CNS of approximately 0.043. Still, given our measured result, we can conclude that our

process is causally non-separable by a margin of approximately seven standard deviations. This large

12
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margin demonstrates the effectiveness of performing a measurement operation inside the quantum

switch.

As mentioned above, the causal non-separability (as measured using a causal witness) can be consid-

ered as a measurement of how much noise can be added to the process before it becomes causally

separable. The CNSexp we have discussed so far refers to a worst-case noise model [Araújo et al.,

2015], wherein the desired process is replaced with the process that can do most damage to its causal

nonseparability with a probability

pworst-case := CNSexp(Wswitch)
1 + CNSexp(Wswitch) . (1.14)

Since the replacement is done with the worst-case process, this is a lower bound on the ‘probability

of noise’ that can be tolerated (see Section 1.5.5). For our process pworst-case = 0.168± 0.001.

Figure 1.5 Expectation value of the causal witness ( −Tr
(
SWswitch

)
) in the presence of noise. As the control qubit

(intitially in |+〉) is decohered, the superposition of causal orders becomes an incoherent mixture of causal orders. Hence,
the causal non-separability of the switch is gradually lost. The plot shows the causal non-separability of our experimentally
implemented switch as the visibility of the two interferometers is decreased (from right to left). The experimental data
linearly decreases with visibility just as theory (dashed line) predicts. The gap between theory and experiment is because
of systematic errors. The visibility (x axis) is a measure of the dephasing strength on the control qubit.

We studied the effect of the noise most relevant to our experiment. Namely, dephasing the control

qubit but not the system qubit. This noise is the strongest in our setup because the control qubit is

encoded in a path degree of freedom, which must remain interferometrically stable (see Ref. [Bran-

ciard, 2016] for the formal definition of this noise model). We realized this noise by imbalancing

the path length of the interferometers by more than the photons’ coherence length. The experimental

signature of this imbalance is a reduced visibility of the interferometer. We measured the CNS for
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Chapter 1: Experimental Verification of an Indefinite Causal Order

several visibilities between 0.95 and 0.06. Figure 1.5 shows a decrease in the expectation value of

−Tr
(
SWswitch

)
as the noise increases. There is an offset between the experimental data and the the

theoretical prediction due to systematic errors. However, both theory and experiment follow the same

trend. By extrapolating our fit of the experimental data to−Tr
(
SWswitch

)
= 0 (where the process be-

comes causally separable), we observe a ‘noise tolerance’ of 0.342 for this type of noise. As expected

this is larger than our experimentally measured pworst-case, indicating that it is indeed a lower bound.

1.4 Discussion

Our experiment demonstrates how to perform a measurement inside a quantum switch without de-

stroying the superposition of causal orders. The task was only assumed to be possible in Ref. [Araújo

et al., 2015], but no method to accomplish it was proposed. The difficulty is that performing a standard

measurement necessarily reveals the time at which it is performed, and thus whether it is performed

before or after the partner’s operation. Consequently, the superposition of causal orders becomes in-

coherent. Our way around this is to break the measurement into two steps: first the system coherently

interacts with an ancilla through a unitary operation (namely, the additional path modes introduced

by the local operation in our experiment). Then, after finalizing the quantum switch (interfering these

modes), the ancilla is measured. This allows us to make a “coherent measurement at different times”

and then erase the ordering information.

We demonstrated the causal non-separability of our experimental apparatus by measuring a causal

witness. With the ability to perform a measurement inside the switch we were able to increase the

robustness of the causal witness to noise. Previous experimental work only indirectly accessed the

causal non-separability of the switch and, moreover, only used unitary gates in the switch[Procopio

et al., 2015]. Although some other experiments [Fitzsimons et al., 2015; MacLean et al., 2017;

Ried et al., 2015; Ringbauer et al., 2016] have also studied the topic of causal relations in quantum

mechanics, they focused on a different aspect. For example, in [Fitzsimons et al., 2015; MacLean et

al., 2017; Ried et al., 2015] they distinguish between different causal structures, rather than creating

a genuinely indefinite causal order, as in our work. In fact, the incoherent mixture [Ried et al., 2015]

and a quantum superposition [MacLean et al., 2017] of different causal relations reported previously

are both compatible with one party in the past and the other in the future. Thus, in our language they

correspond to causally-ordered processes.

Our work represents the first experimental realization of a quantum superposition of orders of non-

unitary channels, and the first measurement of a causal witness. We believe this will be an important

step towards the realization of quantum superpositions of the order of more elaborate processes. Since

it has been theoretically demonstrated that causally non-ordered processes can give rise to a reduction

in the query complexity of certain tasks [Araújo et al., 2014; Chiribella, 2012; Hardy, 2009], and lead

14



1.5 Methods

to more efficient communication channels [Feix et al., 2015; Guérin et al., 2016], it is important to

study new techniques to create more complex causally non-ordered processes. In fact, we already

see an advantage in our current work. Making a measurement inside the quantum switch made our

experiment more robust to noise and allowed us to demonstrate, by approximately seven standard

deviations, that our set-up cannot be described by a causally ordered process.

1.5 Methods

1.5.1 Single Photon Source

We generate heralded single-photons using a Type-II spontaneous parametric down-conversion (SPDC)

process in a Sagnac loop [Kim et al., 2006]. The Sagnac loop is realized using a dual-wavelength

polarizing-beamsplitter and two mirrors. The SPDC crystal is a 20-mm-long periodically-poled crys-

tal Potassium Titanyl Phosphate (PPKTP) crystal. The crystal is pumped by a 23.7 mW diode laser

centred at 395 nm. The polarization of the laser is set to be horizontal. With this, we generate degen-

erate pairs of single photons centred at 790 nm, in a separable polarization state |H〉 |V 〉. Polarizers

in the signal and idler modes are used to ensure that the polarization is in a well-defined state. The

down-converted photons are coupled into single-mode fibers. One photon is sent directly to an single-

photon detector, and is used to herald the other photon’s presence for the experiment, while the other

is sent to our experiment. After passing though the experiment we observe a coincidence rate between

the herald detector and the four final-measurement detectors of 3750 pairs per second.

1.5.2 Implementing Alice and Bob’s Channels

As discussed in the main text, in order to experimentally measure a causal witness Alice and Bob

need to implement a series of quantum channels on a polarization qubit inside the quantum switch.

Alice must perform a measure-and-reprepare channel, while Bob implements a unitary channel. Alice

measures in four different bases. We define her different bases by a unitary operator preceding a

projective measurement in the basis {|0〉 , |1〉}. Alice’s pre-measurement operators are listed in the

first column of Table 1.1. When her outcome is |0〉 (in a given basis), Alice implements one of three

different repreparation operators (second column of Table 1.1). On the other hand, when her outcome

is |1〉 she performs the identity channel. Thus she has 16 different measure-and-reprepare maps. Bob

simply implements 10 different unitary operators (third column of Table 1.1).
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Table 1.1 List of operators performed by the two parties. The table shows Alice’s four measurement operators, and
her three repreparation operators which she applies when her outcome is |0〉; when her outcome is |1〉 she performs the
identity. Bob’s ten unitary operators are shown in column three.

Alice - Meas. Alice - Reprep. Bob - Unit. Op.

(1) ( 1 0
0 i ) (1) ( 1 0

0 i ) (1) ( 1 0
0 1 ) (6) 1√

2

(
−i −1
−i 1

)
(2) 1√

2
( 1 1
−i i

)
(2) 1√

2
( 1 −i

1 i

)
(2) ( 0 1

1 0 ) (7) 1√
2
(−i 1
i 1
)

(3) 1√
2

(
1 −i
i −1

)
(3) 1√

2

(
1 −i
i −1

)
(3)

( 0 −1
1 0

)
(8) 1√

2
(
i i
−1 1

)
(4)

( 0 −i
1 0

)
(4)

( 1 0
0 −1

)
(9) 1√

2

(
−i −i
−1 1

)
(5) 1√

2
(
i −1
i 1

)
(10) 1√

2
(−i i

1 1
)

We experimentally implement both Alice’s measurement operators and repreparation operators through

a sequence of two waveplates (quarter-, then half-waveplate), and Alice’s projective measurement in

a polarizing-beamsplitter measuring in {|H〉 , |V 〉}. Bob’s operators are implemented via three wave-

plates (quarter-, then half-, then quarter-waveplate). In Table 1.2 we show the specific waveplates

angles we use for each operator.

1.5.3 Experimentally Estimating Probabilities

Since Alice makes a two-outcome measurement and our final measurement has two outcomes, for

each setting of Alice and Bob there are four different outcomes. Experimentally, each outcome corre-

sponds to a different single-photon detector. For each setting we collect approximately 7500 counts in

total after 2 seconds of data acquisition. From these counts we estimate the four corresponding output

probabilities through the formula

pmn = Cmn
Ctot · ηm · ηmn

, (1.15)

whereCmn is the number of counts collected at one of the detectors and the η factors are different rela-

tive detector efficiencies, described below. Here,m labels Alice’s outcome (experimentally, this labels

in the internal (blue) or external (yellow) interferometer), and n the outcome of the final measurement

(experimentally, port 0 or port 1 of either interferometer). The total number of (efficiency-corrected)

counts, appearing in Eq. 1.15, is

Ctot =
1∑

m=0

1∑
n=0

Cmn
ηm · ηmn

. (1.16)
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Table 1.2 Set of waveplates angles. A list of all of the waveplate angles used to perform the operators listed in
Table 1.1. In our experiment, all combinations of these settings were used, which, together with our three input states,
results in 360 measurement settings. Acronyms in the table are defined as follows: QWP, quarter waveplate; HWP, half
waveplate.

Alice - Meas. Alice - Reprep. Bob - Unit. Op.

(1) 0◦QWP , 0◦HWP , 0◦QWP

(1) 0◦HWP , 0◦QWP (1) 0◦HWP , 0◦QWP (2) 0◦QWP , 45◦HWP , 0◦QWP

(3) 90◦QWP , 45◦HWP , 0◦QWP

(2) 22.5◦HWP , 45◦QWP (2) 22.5◦HWP , 0◦QWP (4) 90◦QWP , 0◦HWP , 0◦QWP

(5) 90◦QWP , 0◦HWP , 45◦QWP

(3) 0◦HWP , −45◦QWP (3) 0◦HWP , −45◦QWP (6) 90◦QWP , 45◦HWP , 45◦QWP

(7) 0◦QWP , 0◦HWP , 45◦QWP

(4) 45◦HWP , 0◦QWP (8) 45◦QWP , 0◦HWP , 90◦QWP

(9) 45◦QWP , 45◦HWP , 90◦QWP

(10) 45◦QWP , 0◦HWP , 0◦QWP

The efficiency factors in the above equations are defined as follows. The single-subscript factor ηm
refers to relative efficiencies between the internal (m = 1) and external (m = 0) interferometer

(Figure 1.3). The other factors ηmn refer to the relative efficiencies between the two ports n = 0 and

n = 1, of interferometer m. Then the absolute efficiency of a given detector is ηm · ηmn . Roughly

speaking, to estimate the relative efficiencies we must send the same number of photons between the

detectors and compare the measured count rates.

To estimate ηmn within each interferometer we send the photons between the two ports by scanning

the phase (when all of the internal waveplates are set to 0) by means of a piezo-electrically driven

translation stage. Plots of representative interference fringes (already efficiency corrected) for each

interferometer are shown in Figure 1.6. By requiring the total counts out of each port to be constant,

we can obtain a relative efficiency between the two ports in each interferometer. In practice, we obtain

the efficiency by plotting the counts out of one port versus the counts out of the other port. If the two

efficiencies are equal, the slope of this line will be 1. However, due to different coupling and detector

efficiencies must enforce this by we requiring

K0 = C00
η0

0
+ C01

η0
1

and K1 = C10
η1

0
+ C11

η1
1
, (1.17)

where K0 and K1 are constants. We will set one efficiency of each pair to 1, since we are interested

in the relative efficiency. Setting (arbitrarily) ηm0 = 1 means that the slope of Cm1 versus Cm0 will be

ηm1 . These plots, for both interferometers, are shown in Figure 1.7.
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If we next estimate ηm, the relative efficiency between two interferometers, we are able to estimate

the required probabilities (Eq. 1.15). To do this we use the state preparation waveplate (Figure 1.3) to

send the photons all to one interferometer or the other. In each case we scan the phase. Then, using

the previously-discussed efficiencies ηmn , we have K0 and K1 (Eq. 1.17). As before, we can set one

of the relative efficiencies to 1, we choose η0 = 1. Then we can calculate the final efficiency as

η1 = mean value(K1)
mean value(K0) . (1.18)

This works because using the waveplates and the polarizing-beamsplitter we can send nearly all of the

incident photons one way or the other.

Using this procedure we now have relative efficiencies between all of the detectors. Note that η0 ·
η0

0 = 1; however, this does not matter as even if we had the absolute efficiency of each detector it

would cancel out in the calculation of the probability (Eq. 1.15), because we must normalise by Ctot.

After evaluating p00, p01, p10, and p11 for each of Alice and Bob’s settings we weight each by the

corresponding αa,d,x,y,z (Eq. 1.11), and sum them all up. This gives us our experimental value of the

causal non-separability.

Figure 1.6 Efficiency-corrected interferometer fringes out of the two interferometers. A plot of the coincidences
between the herald and the two detectors at the output of each interferometers as the interferometer phase is varied.

1.5.4 Stability and Visibility of the Interferometers

Central to our experiment are two interferometers whose overall size is approximately 80 cm × 120
cm. The visibility of the two interferometers is 95%, this is apparent in the interferograms shown in

Figure 1.7. This error can be interpreted as dephasing noise on the control qubit (see the discussion in

the main text).

In addition to the reduced visibility, the phase of the interferometer fluctuates. If the phase fluctuates
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Figure 1.7 Determination of detection efficiency. Triggered coincidences detected in port 1 plotted against those
detected in port 0 for both interferometers. Since total number of photons exiting the interferometer should be constant, the
relative collection/detection efficiency can be determined from the slope of this line.

on the the time scale of the acquisition time this would further decrease the visibility. However, we

find the phase drifts rather slowly, by approximately 0.01 rad in one minute.

To measure the causal witness we need to set 259 different waveplate settings. Moving the waveplates

from one setting to the next takes approximately 30 seconds. Combined with the measurement time of

two seconds this means it takes approximately 30 seconds per measurement setting. Therefore, after

30 measurements the phase drifts enough to cause a noticeable error. To combat this, we automatically

reset the phase to 0 rad every 20 measurement settings by setting the waveplates to 0◦, scanning the

piezo-electrically driven translation stage, and moving to the maximum of the fringe. In spite of this

action there is still residual phase drift.

We performed a seperate measurement, mimicking our experimental procedure, to characterize this

remaining phase drift. We set the waveplates to 0◦ so that we could directly observe the drift phase

drift. As above, we counted for 2 seconds, and reset the phase to 0 rad every 20 measurements. How-

ever, the waveplates remained set to 0◦ the entire time. Therefore, in the absence of phase drift, the

fringe would have remained at a maximum. By measuring the deviation from the ideal values we

estimate that, over the course of our entire data run, we have a residual phase fluctuation of approxi-

mately 0.04 rad. We then propagate this error in order to estimate an error on each probability that we

measure. These are the errorbars drawn in Figure 1.4 and Supplementary Figures 1-3.

1.5.5 Causal Witness Derivation for our Set-Up

Here we define what a ‘causal witness’ is, and sketch the algorithm that was used to compute the

witness suitable for our experimental set-up. We refer the reader to Ref. [Araújo et al., 2015] for an

exhaustive introduction to the subject. Throughout this section we will use the Choi-Jamiołkowski

isomorphism, which we introduce briefly in the Supplementary Materials, Sec. I.
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A process matrix W sep ∈ H(in)⊗HA⊗HB ⊗H(out) (where the Hilbert spaces refer both to the input

and the output of the laboratories) is ‘causally separable’ if it can be written as convex combination of

processes compatible with the causal order A→ B and B → A, that is, as W sep = pWA→B + (1−
p)WB→A.

A ‘causal witness’ S ∈ H(in) ⊗HA ⊗HB ⊗H(out) is a Hermitian operator such that for all ‘causally

non-separable’ process matrices W n-sep, Tr(SW n-sep) < 0, but for any process W sep, Tr(SW sep) ≥
0. The existence of such Hermitian operator S is justified by the separating hyperplane theorem

[Rockafellar, 1970]. As a consequence of this theorem, and because the set of causally separable

processes is convex, for every causally non-separable process W n-sep there exists a causal witness S

such that Tr(SW n-sep) < 0. This is illustrated graphically in Fig. 1.8.

Figure 1.8 Schematic representation of a causal witness. In this two-dimensional representation, the causal witness
is represented by the line (actually, a hyperplane) S. It separates the convex set of process matricesW sep from a given
causally non-separable process matrix W n-sep. Because the set of causally separable processes (Eq. 1.5) is convex, the
separating hyperplane theorem [Rockafellar, 1970] implies that one can always draw a hyperplane to separate it from any
point outside the set (which corresponds to a causally non-separable process). This hyperplane is the causal witness.

The optimal causal witness Sopt for a given process W can be computed efficiently using a ‘semidefi-

nite program’ (SDP) [Araújo et al., 2015]:

min Tr(SW )

s.t. S ∈ S IH(in)⊗HA⊗HB⊗H(out)
/dout − S ∈ W∗

(1.19)

where S andW∗ are, respectively, the set of causal witnesses and set of Hermitian operators that have

non-negative trace with process matrices, as defined in [Araújo et al., 2015], and IH(in)⊗HA⊗HB⊗H(out)

/dout is the identity operator on H(in) ⊗HA ⊗HB ⊗H(out) divided by the dimension of the output

spaces dout := dH (in)dHAout
dHBout

for normalization.

The causal non-separability CNS(W n-sep) = −Tr(SoptW
n-sep) is the minimal λ ≥ 0 such that the
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process matrix

Wλ = 1
1 + λ

(
W n-sep + λΩ

)
(1.20)

is causally separable, optimized over all valid process matrices Ω. This means that it is the minimum

amount of worst-case noise necessary to make W n-sep causally separable or, equivalently, the maxi-

mum (or rather the supremum) amount of worst-case noise that W n-sep can tolerate before becoming

causally separable. Noting that 1
1+λ + λ

1+λ = 1, we see that λ
1+λ can be interpreted as the probability

that the worst-case process Ω is prepared instead of the desired process Wn−sep, and therefore that
CNS(W )

1+CNS(W ) is the maximal such probability that still allows us to see causal non-separability.

Any witness S (in particular, Sopt) can be decomposed with respect to a basis for the space H(in) ⊗
HA ⊗ HB ⊗ H(out). Such a basis consists of the Choi-Jamiołkowski representations of general state

preparations onH(in), general measurement and repreparation operations onHA andHB , and general

measurements onH(out). Having access to such a basis of operations means being able to perform full

‘causal tomography’.

However, in our experimental set-up, Alice can implement general measure-and-reprepare operations

MA
a,x, but Bob can implement only unitary operations UBy , and measurements are done only in the

superposition basis. Thus Sopt will not necessarily be experimentally achievable, and in our case it is

not. To compute the best witness that we can experimentally implement, we add a restriction on the

decomposition of the witness as an additional constraint in the SDP, which then outputs the optimal

experimentally accessible witness Sexp:

min Tr(SW )

s.t. S ∈ S IH(in)⊗HA⊗HB⊗H(out)
/dout − S ∈ W∗

S =
2∑
z=0

1∑
a=0

11∑
x=0

9∑
y=0

1∑
d=0

αa,d,x,y,z · ρ(in)
z ⊗MA

a,x ⊗ UBy ⊗D
(out)
d

(1.21)

where
{
MA
a,x

}
are the 24 Choi-Jamiołkowski representations of measurement-repreparation maps,

among which 16 are linearly independent,
{
UBy

}
the 10 linearly independent Choi-Jamiołkowski

representations unitaries, which are listed in Sec. II, and {D(out)
d } the two projectors onto the super-

position basis.

The algorithm 1.21 returns the coefficients αa,d,x,y,z , which are used to weigh the experimental prob-

abilities p
(
a, d|x, y, z

)
corresponding to Tr

[(
ρ

(in)
z ⊗MA

a,x ⊗ UBy ⊗D
(out)
d

)
·Wswitch

]
to compute the

experimental value for Tr(SexpWswitch).

Analogously to the ideal case, the ‘experimentally accessible causal non-separability’ (i.e.,

CNSexp(Wswitch) = −Tr(SexpWswitch)) is the maximal amount of worst-case noise that can be ad-

mixed to Wswitch before our experimental set-up becomes incapable of certifying that Wswitch is
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causally non-separable, and CNSexp(Wswitch)
1+CNSexp(Wswitch) the maximal probability of preparing the worst-case noise

process instead of the ideal Wswitch.

1.6 Supplemental Information

1.6.1 Choi-Jamiołkowski Isomorphism

In this section we define the Choi-Jamiołkowski isomorphism [Choi, 1975], as used in the main text.

For the sake of clarity, it is convenient to first introduce the isomorphism for unitary operators and

then to generalize it to linear maps.

1.6.1.1 Unitary operators.

Consider an operator U ∈ L(Hin
pur) (where L(Hpur) is the space of linear operators in the Hilbert

space of pure states Hpur) such that U : Hin
pur → Hout

pur. It is always possible to rewrite the operator

U acting on the basis {|j〉} ∈ Hin
pur into a new basis {|k〉} ∈ Hout

pur

U =
∑
j,k

Uk,j |k〉 〈j| (1.22)

where Uk,j = 〈k|U |j〉.

According to the Choi-Jamiołkowski isomorphism, a linear operator acting on a Hilbert space Hin
pur

is isomorphic to a vector inHin
pur ⊗Hout

pur [Araújo et al., 2015; Leifer and Spekkens, 2013]:

CJ : L(Hin
pur)→ Hin

pur ⊗Hout
pur (1.23)

We define a (non-normalized) maximally entangled state via the double-ket notation, as

|1〉〉in, in =
∑
j

|j〉 ⊗ |j〉 ∈ Hin
pur ⊗Hin

pur (1.24)

The application of the Choi-Jamiołkowski isomorphism on the linear operator U gives

CJ(U) =
(
1⊗ U∗

)
|1〉〉in, in =

∑
j

|j〉 ⊗ U∗ |j〉 =
∑
j,k

U∗k,j |j〉 ⊗ |k〉 := |U∗〉〉in, out (1.25)

where U∗ is the complex conjugate and |U∗〉〉 is the Choi-Jamiołkowski representation (or Choi-

Jamiołkowski vector) of U .
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By comparing Eqs. 1.22 and 1.25, one can see the direct correspondence between the operator

|k〉 〈j| and the vector |j〉 ⊗ |k〉. Thus, a unitary operator is represented as a pure state in the Choi-

Jamiołkowski isomorphism.

1.6.1.2 Linear maps.

Consider a linear mapM : Hin → Hout (where H is the Hilbert space of the density matrices, i.e.,

L(Hpur)). The corresponding Choi-Jamiołkowski representation is

M in, out :=
[
I ⊗M

(
|1〉〉 〈〈1|

)]T (1.26)

This equation can be led back to Eq. 1.25 whenM(ρ) = UρU †:

M in, out : =

I ⊗ U
∑
j,j1

|j〉 ⊗ |j〉 〈j1| ⊗ 〈j1|

U †
T =

=

 ∑
j,j1,k,k1

U∗k,jUj1,k1 |j〉 ⊗ |k〉 〈j1| ⊗ 〈k1|

T = |U∗〉〉 〈〈U∗| (1.27)

Thus, an arbitrary linear map is represented by a matrix in the Choi-Jamiołkowski isomorphism.

By looking at the action of a linear operator, such as a time evolution |j〉 7→ |k〉, it turns out that in the

Choi-Jamiołkowski notation it is not required to ascribe a temporal order to the application of different

operators. Consequently, analyzing situations in which the causal order of events is not well-defined

(such as in the quantum switch) in the Choi-Jamiołkowski isomorphism is very convenient.
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S 1.1 Experimentally estimated probabilities. Continuation of Figure 4.
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S 1.2 Experimentally estimated probabilities. Continuation of Figure 4.
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S 1.3 Experimentally estimated probabilities. Continuation of Figure 4.

S 1.4 List of all the experimental measurement settings and the corresponding coefficients. i is the
setting number (corresponding to the x-axis in Figure 4, and in Supplementary Figures 1.1-1.3), z is the input
state (1 = |H〉, 2 = |V 〉, and 3 = |+〉), y is Bob’s choice of unitary (corresponding to the third column of
Tables 1 and 2), xM (xR) is Alice’s choice of measurement (repreparation) operator (corresponding to the first
(second) column of Tables 1 and 2), the αm,n,x,y,z are the weights of outcome mn required for calculating the
witness.

i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

1 1 1 1 1 0.005427 0.054415 0.116229 0.145418
2 1 1 1 2 0.037881 0.000000 0.000000 0.000000
3 1 1 1 3 -0.017971 0.000000 0.000000 0.000000
4 1 1 2 1 0.020993 0.000000 -0.011450 -0.013343
5 1 1 2 2 -0.009789 0.000000 0.000000 0.000000
6 1 1 2 3 0.000000 0.009420 0.000000 0.000000
7 1 1 3 1 -0.017971 0.000000 0.009578 -0.035943
8 1 1 3 2 0.027549 0.000000 0.000000 0.000000
9 1 1 3 3 0.000000 -0.035943 0.000000 0.000000
10 1 1 4 1 0.074656 0.112073 0.149339 0.180312
11 1 1 4 2 0.014995 0.000000 0.000000 0.000000
12 1 1 4 3 -0.008551 0.000000 0.000000 0.000000
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S 1.5 List of all the experimental measurement settings and the corresponding coefficients. i is the
setting number (corresponding to the x-axis in Figure 4, and in Supplementary Figures 1.1-1.3), z is the input
state (1 = |H〉, 2 = |V 〉, and 3 = |+〉), y is Bob’s choice of unitary (corresponding to the third column of
Tables 1 and 2), xM (xR) is Alice’s choice of measurement (repreparation) operator (corresponding to the first
(second) column of Tables 1 and 2), the αm,n,x,y,z are the weights of outcome mn required for calculating the
witness.

i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

13 1 2 1 1 -0.078315 0.010375 0.064196 0.097329
14 1 2 1 2 0.120973 0.000000 0.000000 0.000000
15 1 2 1 3 -0.003813 0.000000 0.000000 0.000000
16 1 2 2 1 0.051055 0.000000 -0.052753 -0.024583
17 1 2 2 2 -0.067166 0.000000 0.000000 0.000000
18 1 2 2 3 0.000000 0.009420 0.000000 0.000000
19 1 2 3 1 -0.003813 0.000000 0.023736 -0.007626
20 1 2 3 2 0.027549 0.000000 0.000000 0.000000
21 1 2 3 3 0.000000 -0.007626 0.000000 0.000000
22 1 2 4 1 -0.023959 0.045125 0.088305 0.119648
23 1 2 4 2 0.098087 0.000000 0.000000 0.000000
24 1 2 4 3 0.005607 0.000000 0.000000 0.000000
25 1 3 1 1 0.000000 0.073456 0.000000 0.000000
26 1 3 1 2 0.000000 -0.023402 0.000000 0.000000
27 1 3 1 3 0.000000 -0.070162 0.000000 -0.076716
28 1 3 2 1 0.000000 -0.067408 0.000000 0.000000
29 1 3 2 2 0.000000 0.045902 0.000000 0.000000
30 1 3 2 3 0.000000 0.009420 -0.054865 -0.010342
31 1 3 3 1 0.000000 -0.070162 0.000000 0.000000
32 1 3 3 2 0.000000 -0.027549 0.000000 0.000000
33 1 3 3 3 0.000000 0.140324 -0.000000 0.042613
34 1 3 4 1 0.000000 0.015468 0.000000 0.000000
35 1 3 4 3 0.000000 -0.079582 -0.054865 -0.119495
36 1 4 1 1 0.000000 0.088690 0.000000 0.000000
37 1 4 1 2 0.000000 -0.032990 0.000000 0.000000
38 1 4 1 3 0.000000 0.003813 0.000000 -0.009079
39 1 4 2 1 0.000000 -0.029026 0.000000 0.000000
40 1 4 2 2 0.000000 0.021395 0.000000 0.000000
41 1 4 2 3 0.000000 0.009420 -0.016783 -0.010642
42 1 4 3 1 0.000000 0.003813 0.000000 0.000000
43 1 4 3 2 0.000000 -0.027549 0.000000 0.000000
44 1 4 3 3 0.000000 -0.007626 -0.000000 -0.031362
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i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

45 1 4 4 1 0.000000 0.047055 0.000000 0.000000
46 1 4 4 2 0.000000 -0.010104 0.000000 0.000000
47 1 4 4 3 0.000000 -0.005607 -0.036642 -0.071253
48 1 5 1 1 0.020724 0.000000 -0.011369 0.000000
49 1 5 1 2 -0.044086 0.000000 0.000000 0.000000
50 1 5 1 3 0.055770 0.000000 0.000000 0.000000
51 1 5 2 1 -0.041202 0.000000 -0.002876 -0.000522
52 1 5 3 1 -0.010092 0.000000 0.035178 -0.033673
53 1 5 4 1 0.069645 0.000000 -0.038195 0.022095
54 1 5 4 2 -0.041871 0.000000 0.000000 0.000000
55 1 5 4 3 -0.003725 0.000000 0.000000 0.000000
56 1 6 1 1 0.000000 0.017241 0.000000 -0.062504
57 1 6 1 2 0.000000 -0.012843 0.000000 0.000000
58 1 6 1 3 0.000000 -0.039821 0.000000 0.000000
59 1 6 2 1 0.000000 0.020875 0.038326 0.061007
60 1 6 2 3 0.000000 0.040654 0.000000 0.000000
61 1 6 3 1 0.000000 -0.081788 -0.153383 -0.071596
62 1 6 3 2 -0.113858 0.000000 0.000000 0.000000
63 1 6 4 1 0.000000 -0.001932 -0.018467 -0.061797
64 1 6 4 2 0.000000 -0.015057 0.000000 0.000000
65 1 6 4 3 0.000000 -0.039821 0.000000 0.000000
66 1 7 1 1 0.000000 0.083643 0.000000 0.000000
67 1 7 1 2 0.000000 -0.056929 0.000000 0.000000
68 1 7 1 3 0.000000 -0.095591 0.000000 -0.008747
69 1 7 2 1 0.000000 -0.020327 0.000000 0.000000
70 1 7 2 3 0.000000 0.040654 -0.000000 0.020327
71 1 7 3 1 0.000000 -0.071696 0.000000 0.000000
72 1 7 3 2 0.000000 0.113858 0.005744 0.018681
73 1 7 4 1 0.000000 0.053896 0.000000 0.000000
74 1 7 4 2 0.000000 -0.056929 0.000000 0.000000
75 1 7 4 3 0.000000 -0.036096 -0.000000 0.021000
76 1 8 1 1 0.104368 0.000000 -0.004718 0.000000
77 1 8 1 2 0.000000 0.043897 0.000000 0.000000
78 1 8 1 3 0.000000 0.039821 0.000000 0.000000
79 1 8 2 1 0.000000 -0.019174 -0.018467 0.002921
80 1 8 3 1 0.000000 0.081788 0.039525 0.071596
81 1 8 4 1 0.042838 0.000000 -0.027922 -0.084733
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i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

82 1 9 1 1 0.000000 -0.066402 0.000000 0.017154
83 1 9 1 2 0.000000 0.073277 0.000000 0.000000
84 1 9 1 3 0.000000 0.055770 0.000000 0.000000
85 1 9 2 1 0.000000 0.010574 -0.018467 -0.026826
86 1 9 2 3 0.000000 -0.059495 0.000000 0.000000
87 1 9 3 1 0.000000 -0.010092 0.013490 0.023581
88 1 9 3 2 0.058759 0.000000 0.000000 0.000000
89 1 9 4 1 0.000000 -0.025200 0.038326 0.014277
90 1 9 4 2 0.000000 0.029720 0.000000 0.000000
91 1 9 4 3 0.000000 0.055770 0.000000 0.000000
92 1 10 1 1 0.000000 -0.083643 0.000000 0.000000
93 1 10 1 2 0.000000 0.029380 0.000000 0.000000
94 1 10 1 3 0.000000 0.095591 0.000000 -0.018802
95 1 10 2 1 0.000000 0.029747 0.000000 0.000000
96 1 10 2 3 0.000000 -0.059495 -0.000000 -0.029747
97 1 10 3 1 0.000000 0.071696 0.000000 0.000000
98 1 10 3 2 0.000000 -0.058759 -0.005744 0.036418
99 1 10 4 1 0.000000 -0.063316 0.000000 0.000000
100 1 10 4 2 0.000000 0.029380 0.000000 0.000000
101 1 10 4 3 0.000000 0.054937 -0.000000 -0.039129
102 2 1 1 1 0.128541 0.113366 0.046187 0.080971
103 2 1 1 2 -0.027217 0.000000 0.000000 0.000000
104 2 1 1 3 -0.011443 0.000000 0.000000 0.000000
105 2 1 2 1 0.021849 0.000000 0.009266 0.008230
106 2 1 2 2 -0.009789 0.000000 0.000000 0.000000
107 2 1 2 3 0.000000 0.009420 0.000000 0.000000
108 2 1 3 1 -0.082301 0.000000 0.030043 -0.079808
109 2 1 3 2 0.027549 0.000000 0.000000 0.000000
110 2 1 3 3 0.000000 -0.035943 0.000000 0.000000
111 2 1 4 1 0.148433 0.122433 0.055408 0.091227
112 2 1 4 2 -0.050102 0.000000 0.000000 0.000000
113 2 1 4 3 -0.002023 0.000000 0.000000 0.000000
114 2 2 1 1 0.060564 0.093553 0.081765 0.112029
115 2 2 1 2 0.055875 0.000000 0.000000 0.000000
116 2 2 1 3 0.002715 0.000000 0.000000 0.000000
117 2 2 2 1 0.051912 0.000000 -0.032037 -0.003010
118 2 2 2 2 -0.067166 0.000000 0.000000 0.000000
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i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

119 2 2 2 3 0.000000 0.009420 0.000000 0.000000
120 2 2 3 1 -0.068143 0.000000 0.044201 -0.051491
121 2 2 3 2 0.027549 0.000000 0.000000 0.000000
122 2 2 3 3 0.000000 -0.007626 0.000000 0.000000
123 2 2 4 1 0.073033 0.091625 0.077693 0.100960
124 2 2 4 2 0.032990 0.000000 0.000000 0.000000
125 2 2 4 3 0.012135 0.000000 0.000000 0.000000
126 2 3 1 1 0.000000 0.013468 0.000000 0.000000
127 2 3 1 2 0.000000 0.041695 0.000000 0.000000
128 2 3 1 3 0.000000 -0.076690 0.000000 -0.075298
129 2 3 2 1 0.000000 -0.068265 0.000000 0.000000
130 2 3 2 2 0.000000 0.045902 0.000000 0.000000
131 2 3 2 3 0.000000 0.009420 -0.035006 0.010374
132 2 3 3 1 0.000000 -0.005832 0.000000 0.000000
133 2 3 3 2 0.000000 -0.027549 0.000000 0.000000
134 2 3 3 3 0.000000 0.140324 0.084795 0.063078
135 2 3 4 1 0.000000 0.012945 0.000000 0.000000
136 2 3 4 2 0.000000 0.064581 0.000000 0.000000
137 2 3 4 3 0.000000 -0.086110 0.035006 -0.085671
138 2 4 1 1 0.000000 -0.031252 0.000000 0.000000
139 2 4 1 2 0.000000 0.032108 0.000000 0.000000
140 2 4 1 3 0.000000 -0.002715 0.000000 0.052293
141 2 4 2 1 0.000000 -0.029883 0.000000 0.000000
142 2 4 2 2 0.000000 0.021395 0.000000 0.000000
143 2 4 2 3 0.000000 0.009420 0.003077 0.010074
144 2 4 3 1 0.000000 0.068143 0.000000 0.000000
145 2 4 3 2 0.000000 -0.027549 0.000000 0.000000
146 2 4 3 3 0.000000 -0.007626 0.084795 -0.010897
147 2 4 4 1 0.000000 -0.069392 0.000000 0.000000
148 2 4 4 2 0.000000 0.054993 0.000000 0.000000
149 2 4 4 3 0.000000 -0.012135 0.016783 0.040049
150 2 5 1 1 -0.055127 0.000000 0.030570 0.000000
151 2 5 1 2 0.041871 0.000000 0.000000 0.000000
152 2 5 1 3 0.003725 0.000000 0.000000 0.000000
153 2 5 2 1 -0.002354 0.000000 -0.040680 0.000522
154 2 5 3 1 0.068851 0.000000 0.023581 0.033673
155 2 5 4 1 -0.006207 0.000000 0.003744 0.022095
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i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

156 2 5 4 2 0.044086 0.000000 0.000000 0.000000
157 2 5 4 3 -0.055770 0.000000 0.000000 0.000000
158 2 6 1 1 0.000000 0.079644 0.000000 -0.038949
159 2 6 1 2 0.000000 -0.098800 0.000000 0.000000
160 2 6 1 3 0.000000 -0.039821 0.000000 0.000000
161 2 6 2 1 0.000000 -0.017973 -0.038326 0.023203
162 2 6 2 3 0.000000 0.040654 0.000000 0.000000
163 2 6 3 1 0.000000 -0.081788 -0.153383 -0.071596
164 2 6 3 2 -0.113858 0.000000 0.000000 0.000000
165 2 6 4 1 0.000000 0.060471 -0.018467 -0.038243
166 2 6 4 2 0.000000 -0.101015 0.000000 0.000000
167 2 6 4 3 0.000000 -0.039821 0.000000 0.000000
168 2 7 1 1 0.000000 0.097092 0.000000 0.000000
169 2 7 1 2 0.000000 -0.056929 0.000000 0.000000
170 2 7 1 3 0.000000 -0.043546 0.000000 -0.074241
171 2 7 2 1 0.000000 -0.020327 0.000000 0.000000
172 2 7 2 3 0.000000 0.040654 -0.000000 0.020327
173 2 7 3 1 0.000000 -0.150638 0.000000 0.000000
174 2 7 3 2 0.000000 0.113858 -0.084795 0.007084
175 2 7 4 1 0.000000 0.067345 0.000000 0.000000
176 2 7 4 2 0.000000 -0.056929 0.000000 0.000000
177 2 7 4 3 0.000000 0.015948 -0.000000 -0.044493
178 2 8 1 1 0.058177 0.000000 -0.041754 0.000000
179 2 8 2 1 0.000000 0.021388 0.018467 -0.000707
180 2 8 3 1 0.000000 0.032070 -0.039525 0.042262
181 2 8 4 1 -0.003353 0.000000 -0.064957 -0.084733
182 2 8 4 2 0.000000 -0.043897 0.000000 0.000000
183 2 8 4 3 0.000000 -0.039821 0.000000 0.000000
184 2 9 1 1 0.000000 -0.064564 0.000000 0.059553
185 2 9 1 2 0.000000 0.029039 0.000000 0.000000
186 2 9 1 3 0.000000 0.055770 0.000000 0.000000
187 2 9 2 1 0.000000 0.051135 0.018467 -0.030454
188 2 9 2 3 0.000000 -0.059494 0.000000 0.000000
189 2 9 3 1 0.000000 -0.010092 0.013490 0.023581
190 2 9 3 2 0.058759 0.000000 0.000000 0.000000
191 2 9 4 1 0.000000 -0.023362 0.038326 0.056677
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i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

192 2 9 4 2 0.000000 -0.014518 0.000000 0.000000
193 2 9 4 3 0.000000 0.055770 0.000000 0.000000
194 2 10 1 1 0.000000 -0.039290 0.000000 0.000000
195 2 10 1 2 0.000000 0.029380 0.000000 0.000000
196 2 10 1 3 0.000000 0.056602 0.000000 -0.024166
197 2 10 2 1 0.000000 0.029747 0.000000 0.000000
198 2 10 2 3 0.000000 -0.059494 -0.000000 -0.029747
199 2 10 3 1 0.000000 0.021979 0.000000 0.000000
200 2 10 3 2 0.000000 -0.058759 -0.084795 0.007084
201 2 10 4 1 0.000000 -0.018963 0.000000 0.000000
202 2 10 4 2 0.000000 0.029380 0.000000 0.000000
203 2 10 4 3 0.000000 0.015948 -0.000000 -0.044493
204 3 1 1 1 0.006362 0.000000 0.005704 0.000000
205 3 1 1 2 -0.005538 0.000000 0.000000 0.000000
206 3 1 1 3 -0.006528 0.000000 0.000000 0.000000
207 3 1 2 1 -0.000747 0.000000 0.024700 0.023953
208 3 1 3 1 0.064330 0.000000 -0.020465 0.043865
209 3 1 4 1 0.007219 0.000000 0.026420 0.021573
210 3 1 4 2 -0.005538 0.000000 0.000000 0.000000
211 3 1 4 3 -0.006528 0.000000 0.000000 0.000000
212 3 2 1 1 0.062140 0.000000 0.058734 0.000000
213 3 2 1 2 -0.114346 0.000000 0.000000 0.000000
214 3 2 1 3 -0.006528 0.000000 0.000000 0.000000
215 3 2 2 1 -0.003495 0.000000 0.049929 0.046434
216 3 2 3 1 0.064330 0.000000 -0.020465 0.043865
217 3 2 4 1 0.062997 0.000000 0.079450 0.021573
218 3 2 4 2 -0.114346 0.000000 0.000000 0.000000
219 3 2 4 3 -0.006528 0.000000 0.000000 0.000000
220 3 3 1 1 0.000000 -0.002186 0.000000 0.000000
221 3 3 1 2 0.000000 -0.059532 0.000000 0.000000
222 3 3 1 3 0.000000 0.006528 0.000000 0.055190
223 3 3 2 1 0.000000 0.057465 0.089871 0.032405
224 3 3 3 1 0.000000 -0.064330 -0.084795 -0.020465
225 3 3 4 1 0.000000 -0.003043 0.000000 0.000000
226 3 3 4 2 0.000000 -0.059532 0.000000 0.000000
227 3 3 4 3 0.000000 0.006528 0.019859 0.075906
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i z y xM xR α0,0,x,y,z α0,1,x,y,z α1,0,x,y,z α1,1,x,y,z

228 3 4 1 1 0.000000 0.002101 0.000000 0.000000
229 3 4 1 2 0.000000 -0.015849 0.000000 0.000000
230 3 4 1 3 0.000000 0.006528 0.000000 0.007220
231 3 4 2 1 0.000000 0.005209 0.013706 0.008497
232 3 4 3 1 0.000000 -0.064330 -0.084795 -0.020465
233 3 4 4 1 0.000000 0.001244 0.000000 0.000000
234 3 4 4 2 0.000000 -0.015849 0.000000 0.000000
235 3 4 4 3 0.000000 0.006528 0.019859 0.027937
236 3 5 1 1 -0.001838 0.000000 0.001838 0.000000
237 3 5 4 1 -0.042400 0.000000 -0.001790 -0.044190
238 3 6 1 1 0.000000 -0.042515 0.000000 0.003526
239 3 6 1 3 -0.038989 0.000000 0.000000 0.000000
240 3 6 3 1 -0.049717 0.000000 0.029334 -0.020384
241 3 6 4 1 0.000000 -0.001953 0.036934 -0.000102
242 3 6 4 3 -0.038989 0.000000 0.000000 0.000000
243 3 7 1 1 0.000000 -0.044353 0.000000 0.000000
244 3 7 1 3 0.000000 0.038989 0.000000 0.005364
245 3 7 3 1 0.000000 0.049717 0.079051 0.029334
246 3 7 4 1 0.000000 -0.044353 0.000000 0.000000
247 3 7 4 3 0.000000 0.038989 0.000000 0.005364
248 3 8 1 1 -0.062403 0.000000 0.062403 0.000000
249 3 8 4 1 -0.023555 0.000000 0.024599 0.001044
250 3 9 1 1 0.000000 0.048954 0.000000 0.003091
251 3 9 1 3 0.052045 0.000000 0.000000 0.000000
252 3 9 3 1 -0.078942 0.000000 0.011597 -0.067346
253 3 9 4 1 0.000000 0.010106 -0.076652 -0.034713
254 3 9 4 3 0.052045 0.000000 0.000000 0.000000
255 3 10 1 1 0.000000 -0.013449 0.000000 0.000000
256 3 10 1 3 0.000000 -0.052045 0.000000 0.065494
257 3 10 3 1 0.000000 0.078942 0.090539 0.011597
258 3 10 4 1 0.000000 -0.013449 0.000000 0.000000
259 3 10 4 3 0.000000 -0.052045 -0.000000 0.065494
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Chapter 2

Experimental Entanglement of Temporal Orders

G. Rubino, L. A. Rozema, F. Massa, M. Araújo, M. Zych, Č. Brukner, and P. Walther

Abstract. The study of causal relations has recently been applied to the quantum realm,
leading to the discovery that not all quantum processes have a definite causal structure.
While such processes have previously been experimentally demonstrated, these demonstra-
tions relied on the assumption that quantum theory can be applied to causal structures and
laboratory operations. Here, we present the first demonstration of entangled temporal orders
beyond the quantum formalism. We do so by proving the incompatibility of our experimen-
tal outcomes with a class of generalized probabilistic theories which satisfy the assumptions
of locality and definite temporal orders. To this end, we derive physical constraints (in the
form of a Bell-like inequality) on experimental outcomes within such a class of theories.
We then experimentally invalidate these theories by violating the inequality, thus providing
an experimental proof, outside the quantum formalism, that nature is incompatible with the
assumption that the temporal order between events is definite locally.

Author contributions: G.R., L.A.R., Č.B. and P.W. designed the experiment. G.R. built the set-up and

carried out the data collection. G.R. and L.A.R. performed data analysis. F.M. built the single-photon

source. G.R., M.Z., M.A. and Č.B. developed the theoretical idea. L.A.R., P.W. and Č.B. supervised

the project. All authors contributed to writing the paper, based on an initial draft by G.R..
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2.1 Introduction

Bell’s theorem revolutionized the foundations of physics, leading to experiments which could demon-

strate that nature cannot be described by a local-causal theory, and paving the way for modern quantum

information [Bell, 1964; Brunner et al., 2014]. One of the strengths of Bell’s theorem is that it al-

lows one to draw conclusions about nature without referring to the underlying physical theory. Over

the past decades, tests of Bell’s theorem have been performed with many different physical systems

thereby entangling various observables (such as spin [Hensen et al., 2015; Lamehi-Rachti and Mittig,

1976; Rowe et al., 2001], polarization [Aspect et al., 1982; Freedman and Clauser, 1972; Giustina et

al., 2015; Shalm et al., 2015], position [Howell et al., 2004], and energy [Kwiat et al., 1993; Rarity

and Tapster, 1990]) of two or more particles. However, since there is no observable associated to the

measurement of the temporal order between events, this test has never been applied to the study of

causal structures.

Thus far, in all the well-established physical theories, it was assumed that the order between events

is pre-defined. Nevertheless, it was recently realized that quantum mechanics also allows for the

existence of processes that are neither causally ordered, nor a probabilistic mixture of causally ordered

processes. For example, in quantum mechanics, quantum channels and quantum states are processes

with a definite causal order, meaning that they enable either one-way-signalling (i.e., from a ‘cause’

to an ‘effect’) quantum channels, or no-signaling. Under ‘processes’, we define the set of causal

relations between operations performed in different local laboratories [Brukner, 2014; Chiribella et

al., 2013; Oreshkov et al., 2012]. More precisely, a quantum process is called causally separable if

it can be decomposed as a convex combination of causally ordered processes, otherwise it is causally

non-separable. (Note that the term ‘temporal’ order is used here to refer to operations which cannot

be used to receive signals — in particular, to unitary ones — whereas ‘causal’ order refers to more

general operations which allow for the exchange of information.) Recently, a method for certifying

causal separability, based on ‘causal witnesses’, was developed [Araújo et al., 2015; Branciard, 2016;

Oreshkov and Giarmatzi, 2016], and used to experimentally demonstrate that a certain process — a

quantum switch [Chiribella, 2012] — is causally non-separable [Goswami et al., 2018; Rubino et al.,

2017a].

In the quantum switch, a qubit is transmitted between two parties, and the order in which the par-

ties receive and act on it is entangled with a second system. This can result in a superposition of

temporal orders in which operations are applied on the system in different orders. The existence of

such a superposition has been experimentally demonstrated [Goswami et al., 2018; Procopio et al.,

2015; Rubino et al., 2017a]. However, the certification of this ‘indefiniteness’ of temporal orders

was theory-dependent, requiring the assumption that the system under investigation and the applied

operations were described by quantum theory. In more detail, Ref. [Goswami et al., 2018; Rubino

et al., 2017a] reported the measurement of a value for a causal witness that could not be explained
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by any model making the following three assumptions: there was a definite causal order between the

parties, each party acted only once, and the quantum description of their operations was the correct

one. Nevertheless, the results of these experiments could potentially have also been explained in a

causal manner within a different theory (i.e., outside the quantum theory). Thus, the nature of indef-

inite causal orders has not yet been probed without the assumption that quantum formalism provides

an adequate description of the indefinite causal orders.

In addition to theory-dependent causal witnesses, there are also device-independent ways of certify-

ing indefinite causal orders via ‘causal inequalities’ [Branciard et al., 2016; Oreshkov et al., 2012].

These inequalities only require one to measure the probabilities of outcomes for different parties in

the process under study. Any probabilities that show signalling in only one direction — which can

be interpreted as an influence from the past to the future —, or that is a convex mixture of those

which allow signalling only in one direction (from A to B or from B to A), satisfy causal inequali-

ties. Nevertheless, it can be shown that the quantum switch satisfies all such causal inequalities (see

Refs. [Araújo et al., 2015; Oreshkov and Giarmatzi, 2016] or the Suppl. Information for details), and,

currently, it is not known how to realize a process which violates a causal inequality. The question

then arises if it is at all possible to prove the existence of an indefinite causal order in a manner that

applies to a broader class of theories, not only to quantum theory. Here, we provide an affirmative an-

swer to this question by experimentally violating a Bell inequality applied to temporal orders, thereby

demonstrating that the order of events in our experiment is incompatible with a class of so-called

‘generalized probabilistic theories’ in which the states and the laboratory operations are local, and the

operations are applied in a definite order. We stress that, while our inequality is valid for a class of

generalized probabilistic theories, it does depend on the internal functionality of experimental devices

—i.e., it exploits information concerning the experimental devices composing the set-up—, and in

this sense it does not have the same ‘device-independent’ state as the original Bell’s theorem.

In our work, we generalize a Bell inequality for temporal orders [Zych et al., 2019], and then exper-

imentally violate it. The experimental violation of the Bell inequality presented here demonstrates,

independent of quantum formalism, that nature is incompatible with a class of theories which assumes

the order of events as locally pre-defined.

2.2 Theoretical Framework and Experiment

We now introduce a no-go theorem for definite temporal orders that applies to a class of generalized

probabilistic theories (GPTs) in which the order of local events is assumed to be pre-defined. GPTs are

a general framework that specifies a set of operations which can be applied on physical systems, as-

signs probabilities to experimental outcomes [Dakic and Brukner, 2010; Hardy, 2001, 2011; Masanes

and Müller, 2011], and which encompasses all operational theories – including classical probability
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theory and quantum theory as special cases. The no-go theorem which we present here was previously

derived in the context of gravity [Zych et al., 2019]. Our derivation uses an assumption about the

initial state of the systems which is weaker than that in Ref. [Zych et al., 2019] (we consider Bell-

local states rather than separable states, which are a subset of Bell-local states), and a different notion

of locality. (The relation between the assumptions and implications of the current work and those of

Ref. [Zych et al., 2019] are analyzed in Methods - Sec. 2.5.1-2.5.2.)

We first define what we mean by a causal order in a GPT. Consider a system in the state ω ∈ Ω of

a GPT state space Ω and imagine two parties, Alice and Bob, who perform some operations on this

state. For example, suppose that the operation in Alice’s laboratory is given by a transformation A
and that in Bob’s laboratory is given by a transformation B. Alice’s and Bob’s operations are said

to undergo a process that is ‘causally separable’ in GPTs whenever Alice’s operation happens before

or simultaneously to Bob’s (A � B), Bob’s operation happens before or simultaneously to Alice’s

(B � A), or there is a convex mixture of these two cases:

S(ω) = ζ · B
(
A(ω)

)
+ (1− ζ) · A

(
B(ω)

)
, (2.1)

where 0 6 ζ 6 1 is the probability with which one or the other order is chosen and Y
(
X (·)

)
is a

composition of operations X and Y . (While in the current work we limit our analysis to the case

of only N = 2 parties, an analogue relation can be established for N > 2 parties, giving rise to a

classical mixture of all possible permutations among the N parties, or to a dynamical causal order,

where the causal order between operations may depend on operations performed beforehand [Abbott

et al., 2017].) If a process cannot be written in the form of Eq. (2.1), it is called a ‘causally non-

separable process’.

Within the GPT framework, we now consider ω to be a state of the following composite system: one

system (the control system) governing the order in which the operations A and B are applied, and

another system (the target system) on which the operations are performed. We will further consider

that there are two parties, S1 and S2, each possessing one such composite system. No restrictions are

applied to the state of the control system (thus, for instance, the composite control state may violate a

Bell inequality).

In the Methods - Sec. 2.5.1 we prove a no-go theorem, stating that any two-party system obeying

the following three assumptions cannot violate a Bell inequality (below we briefly summarize our

theorem, saving the detailed version for Methods - Sec. 2.5.1).

I) The initial joint state of the two target subsystems is local (i.e., it does not violate a Bell in-

equality).

II) The laboratory operations are local transformations of the target subsystems (i.e., they do not

increase the amount of a violation of Bell inequalities between the two target subsystems neither
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through the interaction between them, nor through the interaction between individual control

and target subsystems).

III) The order of local transformations on the two target subsystems is well-defined.

We will briefly comment on assumption II here, and refer to Sec. 2.3 for an in-depth analysis of

all three assumptions. Assumption II has two implications: IIa) The laboratory operations cannot

increase the non-local correlations between the target subsystems of parties S1 and S2 (i.e., there is

no non-local interaction between the two subsystems). IIb) Within a single party Si, i = 1, 2, the

laboratory operations do not ‘couple’ the control and target system. Such a ‘coupling’ could transfer

existing non-local correlations between the pair of controls to the pair of targets, thereby enabling a

violation of Bell inequalities.

In the next section, we will present a quantum mechanical process that violates this no-go theorem.

Hence, at least one of the assumptions must not hold for this process. In Sec. 2.3, we will analyse our

experimental data testing a Bell-like inequality to provide evidence in support of assumption I within

the framework of GPTs. Consequently, either assumption II does not hold, assumption III does not

hold, or both assumptions are invalid. On the basis of the data collected for the quantum switch of

system S1 (or S2) individually, we will show that it is not possible to describe our results by violating

only assumption II. Thus, the only viable conclusion is that the order of operations applied on each

system Si is indefinite (i.e., that assumption III is necessarily false).

2.2.1 Entangled quantum switch

To understand a single quantum switch, first imagine two parties, Alice and Bob, who are in two

closed laboratories, i.e., their only interaction with the external environment is through input and

output systems. Suppose that each of the parties performs an operation on the same qubit (a ‘target’

qubit), and that this qubit may be sent first to Alice and then to Bob, or vice versa. Now, in a quantum

switch, one governs the order of the operations on the target qubit according to the state of a second

quantum system, a ‘control’ qubit. If the control qubit is placed in a superposition, this establishes a

quantum-superposition of the order of the two operations. For instance, if the control qubit is in the

state |0〉c, the target qubit is sent first to Alice and then to Bob, and vice versa if the control qubit

is in the state |1〉c. When the control qubit is prepared in the state
(
|0〉c + |1〉c

)
/
√

2, the resulting

process has been shown to be causally non-separable within quantum mechanics [Araújo et al., 2015;

Chiribella, 2012; Chiribella et al., 2013; Rubino et al., 2017a].

Next, consider two quantum switches (S1 and S2), each containing an Alice and a Bob. S1 and S2

are prepared in a state where their control qubits are entangled, but their target qubits are in a product
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Figure 2.1 Entangled quantum switch. Our work is based on two quantum switches (S1 and S2). In each quantum
switch, there are two parties, Alice (UiA ) and Bob (UiB ). A target qubit is first sent to one party, and then to the other. The
order in which the qubit is sent to the two parties is governed by the state of an additional qubit: if the state of the control
qubit is |0〉ci , the target qubit is sent first to Alice and then Bob (Panel a), and vice versa if the control qubit is in the state
|1〉ci (Panel b). In our work, we entangle the control qubits (Panel c). In this case, the order in which the target qubit in
quantum switch S1 passes through U1A and U1B is entangled with the order in which the target qubit in quantum switch S2
passes through U2A and U2B . The control qubits are measured in the basis {|+〉ci , |−〉

c
i}. If the orders inside the two

quantum switches are entangled, it will be possible to violate a Bell inequality by measuring the target qubits after the
quantum switches (BM). This is possible even if the target qubits start in a separable state and only local operations are
applied within each quantum switch.

state (see Fig. 2.1):

|0〉t1 ⊗ |0〉
t
2 ⊗

( |0〉c1 ⊗ |0〉c2 − |1〉c1 ⊗ |1〉c2√
2

)
(2.2)

The superscripts c and t refer to the control and target qubits within one quantum switch, respectively,

while the subscripts 1 and 2 refer to quantum switch S1 and S2. Since we will attempt to observe

a Bell violation with the target qubits, which are in a separable state, this initial condition satisfies

assumption I in quantum theory.

Given this input state and the action of an individual quantum switch, it is straightforward to calculate

the output of the entangled quantum switch system

1√
2

(
U1BU1A |0〉

t
1

)
⊗ |0〉c1 ⊗

(
U2BU2A |0〉

t
2

)
⊗ |0〉c2 −

1√
2

(
U1AU1B |0〉

t
1

)
⊗ |1〉c1 ⊗

(
U2AU2B |0〉

t
2

)
⊗ |1〉c2

(2.3)

where UiA and UiB (i = 1, 2) are the unitaries performed by the two parties Alice and Bob inside each
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quantum switch Si.

Next, we measure the two control qubits in the basis {|+〉 〈+| , |−〉 〈−|}. If we observe both of the

control qubits in the same state (either |+〉c1 |+〉
c
2 or |−〉c1 |−〉

c
2), the target qubits will be in the (in

general) unnormalised state

1√
2
(
U1BU1A |0〉

t
1 ⊗ U2BU2A |0〉

t
2 − U1AU1B |0〉

t
1 ⊗ U2AU2B |0〉

t
2
)
, (2.4)

while, if we find the control qubits in orthogonal states (either |+〉c1 |−〉
c
2 or |−〉c1 |+〉

c
2), the sign

between the two terms in the superposition in the equation above is ‘+’. In general, depending on the

choice of the unitaries in the two quantum switches, the target qubits will be left either in a separable

or in an entangled state. In particular, if we choose the gates

U1A = U2A = σz U1B = U2B = 1 + iσx√
2

, (2.5)

where σx ans σz are the Pauli operators, the state of the target qubits becomes

1√
2
(
|l〉t1 |l〉

t
2 − |r〉

t
1 |r〉

t
2
)
, (2.6)

where |r〉 =
(
|0〉 − i |1〉

)
/
√

2 and |l〉 =
(
|0〉 + i |1〉

)
/
√

2. This is a maximally entangled state and,

as a result, one can now violate a Bell inequality on the target qubits.

Within quantum theory, the entanglement between the targets and the resulting violation of the Bell

inequality can be explained in terms of the indefiniteness of the temporal orders in the two quantum

switches. In other words, such entanglement is not ‘generated’, but rather ‘transferred’ from the con-

trol qubits by means of the indefinite temporal order of the unitaries applied. A related interpretation

of the violation in quantum mechanics is in terms of time-delocalized quantum operations [Oreshkov,

2019] and causal reference frames [Allard Guérin and Brukner, 2018], according to which a frame

can be chosen such that while Bob’s operation acts at a fixed time, Alice’s operation is in a superpo-

sition of being implemented before and after Bob’s operation, thus resulting in an indefinite causal

order between them.

In the class of GPTs considered here, the presence of non-classical correlations can be determined

through a violation of a Bell inequality. In our case, the violation of a Bell inequality with the target

subsystems implies the violation of the no-go theorem for temporal orders, thereby proving that no

underlying GPTs where assumptions I, II and III hold can explain the experimental data. We will

experimentally confirm that I holds both in quantum mechanics, and in our class of GPTs (as detailed

in Methods - Sec. 2.5.3). Then, we will show, both within quantum mechanics and in our class of

GPTs, that one cannot describe our results if only assumption II is invalid. We will thus conclude that
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either assumption III is wrong or both assumptions II and III are false, hence proving the presence of

indefinite causal orders beyond the quantum framework.

2.2.2 Experimental scheme

Figure 2.2 Experimental implementation of an entangled quantum switch. Each quantum switch is composed of a
two-loop Mach-Zehnder interferometer. The interferometers start in the photon-pair source, wherein photon 1 and photon
2 are placed in superposition of the paths 01 and 11, and 02 and 12, respectively (see the Methods - Sec. 2.5.4). (For
simplicity, we have drawn these paths as fibers, however the photons are transmitted via free-space from the source to the
experiment.) These paths are routed such that path 0i sees gate UiA and then gate UiB , and vice versa for the path 1i. Each
gate, acting on the polarization degree of freedom, is made up of waveplates (as described in the main text). The paths 0i
and 1i are then combined on a beam splitter (BS). In quantum switch S1 (S2), the photon is detected after the polarization
measurement at M1 or M2 (M3 or M4). Together with the BS (which applies a Hadamard gate to the qubit encoded in the
path DOF), detecting the photon at M1 or M2 (M3 or M4) projects the path qubit on |+〉 or |−〉, respectively.
Furthermore, within each measurement Mi, the polarization qubit can be measured in any basis by a combination of a
quarter-waveplate (QWP), half-waveplate (HWP), and polarizing beam splitter (PBS).

We create a quantum switch with entangled control qubits using a photonic set-up. Let us first consider

a single quantum switch. Each quantum switch applies gates on a target qubit, where the gates’ order

depends on the state of a control qubit. Experimentally, we encode the control qubit in a path degree

of freedom (DOF), and the target qubit in the polarization DOF of a single photon. The photon is

initially placed in a superposition of two paths (as explained in Fig. 2.2 and the Methods - Sec. 2.5.4).

These paths are labeled 01 and 11 for quantum switch S1 and 02 and 12 for quantum switch S2 in

Fig. 2.2. The two paths are then routed through a two-loop Mach-Zehnder interferometer [Procopio

et al., 2015; Rubino et al., 2017a]. The 0i paths lead the photons through a set of gates acting on the

polarization DOF in the order UiA � UiB . While the paths 1i guide the photons through the gates in

the opposite order UiB � UiA . To generate the maximally entangled state between the target qubits in

Eq. (2.6), we need to implement the non-commuting gates UiA = σz and UiB = (1 + iσx)/
√

2, which

we do with waveplates. In particular, a half-waveplate (HWP) at 0◦ for σz and a sequence of quarter-

waveplate (QWP) and HWP both at 45◦ for (1 + iσx)/
√

2). After this, the two paths are recombined
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on a 50/50 beamsplitter (BS) — which projects the path DOF in the basis {|+〉 〈+| , |−〉 〈−|}. The

path lengths and the relative phases are set by means of a piezo-driven trombone-arm delay line. At

the two outputs of each interferometer, QWPs, HWPs and polarizing beam splitters (PBSs) are used

to perform arbitrary polarization measurements on the target qubits.

To entangle the two quantum switches, we first entangle the path DOFs of the two photons. As

explained in the Methods - Sec. 2.5.4, we generate path-entangled photon pairs that are separable in

their polarization DOF:

|Φ−〉path
1,2 ⊗ (|H〉1 |H〉2)polar. =

( |0〉1 |0〉2 − |1〉1 |1〉2√
2

)path

⊗ (|H〉1 |H〉2)polar.. (2.7)

Each photon is thus delocalized over two paths. The two photons are then sent to their respective

quantum switches, and, since the control qubits began in an entangled state, the order in which the

gates act on the two target qubits becomes entangled.

2.3 Results

Our goal is to demonstrate that the order of application of the gates within the two quantum switches

is genuinely indefinite without assuming that the laboratory operations and the states of the systems

are described by quantum theory. We can arrive at this conclusion in three steps. We will first show

experimental data that violate a Bell inequality. From this we can assert that at least one of the three

assumptions must be false. We will then prove that assumption I is satisfied in our experiment using

both quantum theory and a class of GPTs. Thus, one of the remaining assumptions (i.e., assumptions

II and/or III) must not hold. We will analyse the case in which only assumption II does not hold both

in quantum mechanics and within the set of GPTs. By acquiring additional measurements on a single

quantum switch, we will show that such scenario cannot reproduce the results of our experiment.

Consequently, the only two possible explanations are that either assumption III does not hold, or that

both assumptions II and III are false. In either case, assumption III must be false, and hence the local

operations within the two quantum switches have been applied in an indefinite temporal order.

We begin by performing a Bell test between the target states at the output of the apparatus. This allows

us to experimentally probe a conjunction of all three assumptions.

We first perform polarization-state tomography on the two-qubit output target state after the quantum

switches (which, of course, requires quantum mechanics), using four equivalent measurement set-ups

(orange and blue boxes in Fig. 2.2). Since the 50/50 BSs apply a Hadamard gate on the path qubits,

we post-select the control qubits in the same state (either |+〉c1 |+〉
c
2 or |−〉c1 |−〉

c
2) by grouping the

results of M1 with M3 (orange boxes) and M2 with M4 (blue boxes). The resulting density matrix

is presented in Fig. 2.4, and it shows a clear presence of entanglement. The reconstructed state has
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Figure 2.3 Input control state characterization: State tomography of the target qubits. The real (Panel a) and
imaginary (Panel b) parts of the two-photon polarization state are measured before the two photons enter the quantum
switches. This state has a fidelity 0.935± 0.004 with the ideal state |HH〉, and a concurrence of 0.001± 0.010.

a fidelity of 0.922 ± 0.005 with the ideal one [Eq. (2.6)], and a concurrence of 0.95 ± 0.01. Finally,

to perform a theory-independent measurement, we perform a Bell test (more specifically, we measure

a Clauser-Horne-Shimony-Holt (CHSH) inequality [Clauser et al., 1969]) on the polarization DOF,

obtaining Starget = 2.55 ± 0.08. This violates the inequality, and thus also the no-go theorem, by

almost 7 standard deviations. Hence, in our class of GPTs, no theory satisfying assumptions I, II and

III is compatible with the experimental data.

We now proceed to test the validity of assumption I, which says that the joint target state (shared be-

tween system S1 and S2) does not initially violate a Bell inequality. Within quantum theory, one can

show this by demonstrating that the state is separable; this can be done using quantum state tomog-

raphy, for example. To this end, we performed tomography on the target states before the quantum

switches. The resulting density matrix is shown in Fig. 2.3, Panels a and b. For our experiment, the

target state was nominally prepared in |HH〉; our measured state has a fidelity of 0.935± 0.004 with

|HH〉. Furthermore, the concurrence of the estimated state is 0.001 ± 0.010, indicating that, within

experimental error, the initial target state is separable, in agreement with assumption I. The error bars

are computed using a Monte Carlo simulation of our experiment; the dominant contribution comes

from errors in setting the WPs, and cross-talk in the polarizing BSs.

We will now consider assumption I within a class of GPTs. We assume that the set of ‘fiducial

measurements’ of the class of GPTs contains ‘quantum fiducial measurements’ as a subset. In this

sense, quantum theory is embeddable in the GPT. This is similar to how classical theory can be

embedded in quantum theory (i.e., classical theory has one fiducial measurement in the ‘computational

basis’). In particular, we consider a class of GPTs wherein the state space of a single two-level system

is described by a d-dimensional Bloch ball [Dakic and Brukner, 2010; Masanes et al., 2014] (i.e., there

are three quantum fiducial measurements, and d−3 non-quantum fiducial measurements), with d > 3
in general. For this class of theories, it was shown that a single system is in a pure state if there exists
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a measurement for which the system returns a given result with probability one. Similarly, a bipartite

system is in a pure product state, if the above statement applies to each individual system. In more

detail, in GPTs a state is pure if it cannot be written as a non-trivial mixture of other states. Moreover,

a bipartite system is in a product state if, for all local measurements, the probabilities for outcome

pairs on a bipartite-state are equal to the product of the two marginal probabilities of each subsystem.

Such a state has perfect correlations only for a pair of fiducial measurements, it exhibits no further

correlations in any other pair of fiducial measurements, and it cannot violate a Bell inequality [Dakic

and Brukner, 2010; Hardy, 2001, 2011; Masanes and Müller, 2011].

For our target photon pair we demonstrated that both photons return value H with certainty. This

means that, already from a pair of quantum fiducial measurements, one can conclude that, up to ex-

perimental imperfections, the state is a pure product state, and hence it cannot violate a Bell inequality.

This supports the validity of assumption I in the special case of Bloch-vector theories (see Methods

- Sec. 2.5.1). In Table S1, we compare the probabilities for outcome pairs on a bipartite-state to the

product of the two marginal probabilities of each subsystem. The excellent agreement between the

two probability distributions indicates that the joint target state is indeed a pure product state, and

cannot violate a Bell inequality. This proves that assumption I of our no-go theorem holds for the

class of GPTs under consideration. We quantify to what extent the two distributions agree by calcu-

lating the root-mean-square (RMS) difference between the two distributions, resulting in an average

difference of 0.6 · 10−2 ± 2.7 · 10−2. Although this value is consistent with zero, one could imagine

that this small difference is in fact caused by correlations between the two target systems. In Methods

- Sec. 2.5.3 we show, however, that such small correlations can only give rise to a vanishingly small

violation of Bell’s inequality. The possible level of violation from this amount of potential coupling is

insufficient to explain our experimentally observed violation. Therefore, we have confirmed that the

joint target system starts in an (approximately) separable state. Additionally, in Methods - Sec. 2.5.4,

we experimentally show that the joint control system is initially entangled. We then send this joint

state into our two quantum switches and perform measurements on the output state.

Having proven, both in quantum theory and within the class of GPTs, that our no-go theorem is

violated and that assumption I is justified, we can conclude that either assumption II, or assumption

III, or both must be false. We will now consider the case in which only assumption II is false.

The second assumption of our no-go theorem says that the laboratory operations are local transfor-

mations acting on the target states. As discussed earlier, this has two implications. First, it implies

that the laboratory operations performed in the two quantum switches cannot transform the joint state

of the target systems of S1 and S2 from a local state to a non-local one (IIa). This could be en-

sured by performing the operations with a space-like separation in which case the condition would

be guaranteed in any theory obeying relativistic locality. However, in our experiment, we make the

(well-justified) device-dependent assumption that the laboratory operations are local transformations
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within S1 and S2 in GPTs, since the transformations of the systems take place at spatially separated

parts of the optical table. As a consequence, the first implication of assumption II arguably holds.

Let us consider now the second, more substantial, implication. Since we are analysing the case in

which only assumption II is false while assumption III holds, we will now study the scenario in which

the laboratory operations occur only in a causally-ordered manner.

The second implication of assumption II states that the laboratory operations transform product states

of the control and the target subsystems into product states within each quantum switch (IIb). This

means that the laboratory operations of one party Si do not ‘couple’ the control and the target systems.

Such a coupling would make it possible to transfer non-local correlations from the control systems of

the two parties S1 and S2 to their target systems, and therefore a violation of Bell’s inequalities would

be possible.

We can experimentally prove that our experiment satisfies assumption IIb in a class of GPTs using a

similar technique as for assumption I. We start by placing bounds on the degree of coupling between

the target and the control qubits within a single quantum switch in the presence of only one of the two

operations (i.e., only UA or only UB) inside the quantum switch. We perform the full set of quantum

fiducial measurements. With this, we show that the joint probabilities of the target and the control

subsystems are factorizable into the products of the two marginal probabilities of each subsystem

in the case where either only UA or UB is inserted inside a single quantum switch. From this we

can conclude that the joint probabilities must also remain factorizable after UA and UB are applied

in a well-defined order (or in a classical mixture of the two orders). In other words, in our GPTs,

the optical elements do not couple the control and the target subsystem in the ‘quantum subspace’

of the GPT state space. Moreover, the marginal probabilities measured on the control and the target

subsystem correspond to a pure (product) state. From this we also conclude that there can be no

coupling in the ‘non-quantum subspace’. We analyse this by performing a set of measurements on the

joint control-target system, and by showing that the joint probabilities can be described by the product

of the marginal probabilities (see Tables S2-S3, and Methods - Sec. 2.5.5 for more details). The RMS

difference between the two distributions is, on average, 0.02±0.03. This value is within one standard

deviation of zero, confirming that the probability distribution is consistent with that of a product state.

As we discussed for assumption 1, this small discrepancy could be caused by correlations between

the control and the target systems. However, as we show in Methods - Sec. 2.5.5, these correlations

are too weak to explain our experimentally observed violation of Bell’s inequality.

Hence, the laboratory operations do not couple the control and target systems when they are applied in

a well-defined order. This means that, for our experiment, whenever assumption III holds, assumption

II must also hold. Because the statement a ⇒ b is logically equivalent to not b ⇒ not a, this further

implies that if assumption II is invalid, then assumption III must also be invalid. It follows that the

only two possible scenarios are that (1) assumption II is wrong, and therefore III is also wrong, or (2)
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assumption III is false, independently of assumption II. In either case, it is not possible to explain our

experimental data unless assumption III is discarded, and we can conclude that the local operations in

our experiment were applied in an indefinite order.

a) b)

Figure 2.4 Output state characterization. Panels a and b show the real and imaginary parts, respectively, of the
two-photon polarization state measured after the photons leave the quantum switches. For the data shown here, the two
control qubits were found to be in the same state (either |+〉c1 |+〉

c
2 or |−〉c1 |−〉

c
2). This state has a fidelity of 0.922± 0.005

with the target state (|HV 〉+ |V H〉)/
√

2, and a concurrence of 0.95± 0.01. Performing a Bell measurement directly
using this state results in a CHSH parameter of 2.55± 0.08.

To summarize, in our work we engineered a situation wherein the only way entanglement can be

transferred from one pair of systems to another is by means of causally non-separable processes. In

our experiment, this transfer takes place between different DOFs of photon pairs. Although it is often

easy to transfer the entanglement from one DOF to another, this is typically done with a device that

directly couples the two DOFs; e.g., in the case of path-polarization transfer, a PBS could be used. In

our experiment, we used an entangled quantum switch to accomplish this interchange. Our quantum

switches do not contain any device which directly couples these DOFs (only waveplates, which act

solely on the polarization state, and 50/50 BSs, which act solely on the path state). Rather, here the

interchange occurs because the control qubit (the path) governs the order of the application of gates on

the target qubit (the polarization). Then, since we begin with an entangled state of the control qubits,

this state is transferred to the target qubits via an indefinite order of the application of the gates. In

other words, by choosing a specific set of operations, the temporal superposition of the application

of these operations is mapped onto a superposition of orthogonal states. As a result, this transfer of

entanglement is the signature of an indefinite temporal order.

2.4 Discussion

In this work, we entangled the temporal orders between operations applied by two parties and experi-

mentally showed that the resulting temporal order is indefinite, by violating a Bell inequality using the

joint target system after the quantum switches. We thus verified that the data collected by entangling
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temporal orders in the quantum switches cannot be described by a class of (generalized probabilistic)

theories under the assumption that the initial joint target state does not violate Bell’s inequalities, the

operations on the target states are local, and they have a pre-defined order. This did not require the

assumption that the systems and the operations are described by the quantum formalism. Clearly, for

our demonstration to be loophole-free (as proposed in Ref. [Zych et al., 2019]), the standard Bell

loopholes (fair-sampling and locality) would need to be closed. Further loopholes can arise related to

the implementation of the quantum switch. In fact, it is known that experimental data produced by

the quantum switch can be simulated by a causally-separable process if at least one of the operations

(either A or B) is performed two or more times. In relation to the experimental implementations of

the quantum switch, this is the so-called ‘single-usage loophole’. Closing this loophole would require

an operational verification that each operation in the quantum switch is performed only once. For

example, this could include implementation of a “counter” that would estimate the number of times

an operation is performed, or a process tomography on time-delocalized quantum systems [Oreshkov,

2019]. However, our experiment is immune to the single-usage loophole as even a multiple usage of

local operations on either side of the Bell test cannot result in a violation of Bell’s inequality provided

that the operations are performed in a definite causal order.

All previous studies involving quantum processes with indefinite temporal orders achieved their goal

by superposing the order of operations, rather than entangling them. The first proposal to entangle

the temporal orders was made only recently [Zych et al., 2019]. Here we show that the basis of

this theoretical concept is in fact experimentally accessible. Moreover, we exploit this resource as

a new means to validate indefinite causal structures. Techniques to characterize these structures are

becoming increasingly relevant, as it is known that these processes can lead to linear advantages in

query complexity, and exponential advantages in quantum communication tasks [Araújo et al., 2014;

Chiribella et al., 2013; Feix et al., 2015; Guérin et al., 2016].

2.5 Methods

2.5.1 Proof of No-Go Theorem for Temporal Orders

All previous experimental studies of causally non-separable processes [Procopio et al., 2015; Rubino

et al., 2017a] were dependent on the validity of the quantum theory (i.e., they were theory-dependent),

and all known physically realizable processes satisfy all causal inequalities (see the Suppl. Informa-

tion) [Araújo et al., 2015; Oreshkov and Giarmatzi, 2016]. The latter means that experimental data

taken from a given causally non-separable quantum process could still be understood as arising in

causal manner, for example in an underlying generalized probabilistic theory (GPT). Hence, it is un-

known whether a fully theory-independent experimental proof of indefinite causal order is possible.

48



2.5 Methods

In our current work, we relate a violation of a Bell inequality to the violation of a no-go theorem for

temporal orders, as proposed in Ref. [Zych et al., 2019]. This results in a proof of causal indefiniteness

outside of the quantum framework as it is valid for a large class of generalized probabilistic theories.

In this section, we provide a rigorous introduction to such no-go theorem for temporal orders.

We will begin by giving a brief introduction to the basic elements of GPTs which are necessary for

our no-go theorem. A more detailed discussion of the GPT framework can be found in Ref. [Barrett,

2007; Hardy, 2001; Masanes and Müller, 2011].

In a GPT, a system is described by a state ω that specifies outcome probabilities for all measurements

that can be performed on it. A complete representation of the state is given by specifying the outcome

probabilities of a so-called ‘fiducial set’. The smallest such set defines the number d of degrees of

freedom of the system. We restrict our consideration here to binary systems that have two perfectly

distinguishable states and no more. For example, the fiducial set for a two-level system in quantum

theory consists of the (three) probability outcomes of spin projections along x, y and z. The state

space is a compact and convex set Ω embedded in a vector space. The extremal states of Ω that cannot

be decomposed as a convex mixture of other states are called ‘pure states’. An effect e is defined as

a linear functional on Ω that maps each state onto a probability, i.e., e : Ω → [0, 1], where e(ω) is

the probability to obtain an outcome on the state ω. The linearity is required to preserve the convex

structure of the state space.

A transformationU is a linear map from a state to a state, i.e., U : Ω→ Ω. The transformation is linear

for the same reason that probabilities have to be linear maps of states. The sequence of transformations

U1, ... , Un, in which transformation U1 ‘precedes’ transformation U2, which ‘precedes’ U3, etc., is

represented by a composition of maps: Un ◦ ... ◦ U1. This defines a definite order of transformations,

which we denote as U1 � ... � Un.

We will now introduce a generalization of the no-go theorem for temporal orders, which was originally

proposed in Ref. [Zych et al., 2019].

In the framework of a GPT, the state of a composite system shared between two parties S1 and S2 is

given by ω1,2 ∈ Ω1,2, where Ω1,2 is the state space of a composite system. The state of a composite

system is given by a multiplet consisting of the local states ω1 ∈ Ω1 and ω2 ∈ Ω2 of individual

systems, the correlation tensor T̂ and a potential global parameter ξ [Dakic and Brukner, 2010;

Hardy, 2001, 2011; Masanes and Müller, 2011]:

ω1,2 = ω1,2(ω1, ω2, T̂ , ξ) (2.8)

The fact that subsystems are themselves systems implies that each has a well-defined reduced state

ω1, ω2 which does not depend on which transformations and measurements are performed on the

other subsystem; this is often referred to as ‘no-signaling’. We also assume that transformations and
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measurements performed on subsystems commute with each other, so that one correlation tensor is

enough to describe correlations between them. If this were not the case, we would need to introduce

two correlation tensors, one when S1 applies operations before S2, and the other when S2 performs

operations before S1. Finally, the states in GPT need not to satisfy the local tomography condition

(stating that reduced states and correlation tensor completely describe the systems’ state), but may

include a global parameter ξ.

For the present case of binary systems, the components of the state in Eq. (2.8) are given by

ω
(i)
1 = p(i)(o1 = 1)− p(i)(o1 = −1), (2.9a)

ω
(j)
2 = p(j)(o2 = 1)− p(j)(o2 = −1), (2.9b)

T (i,j) = p(i,j)(o1 o2 = 1)− p(i,j)(o1 o2 = −1), (2.9c)

where i, j = 1, ..., d. Here, for example, p(i)(o1 = 1) is the probability to obtain the outcome o1 = 1
when the i-th measurement is performed on the first subsystem, and p(i,j)(o1 o2 = 1) is the joint

probability to obtain correlated results (i.e., either o1 = o2 = +1 or o1 = o2 = −1) when the i-th

measurement is performed on the first subsystem and the j-th measurement on the second one.

An effect e12 that maps a state onto a probability for a pair of local measurements is given by e12 =
e12(r1, r2, r1r

T
2 ), where ri is the effect on the state of i-th system, and rT denotes transposition of r.

(Note that the global parameter does not contribute to the probability for a pair of local measurements).

The probability to obtain the effect e12 when the system is prepared in the state ω12 is given by

p(e12|ω12) = 1
4
(
1 + (ω1 · r1) + (ω2 · r2) + (r2 · T̂ r1)

)
, (2.10)

where (x · y) is the Euclidean scalar product between two d-dimensional real vectors x and y.

The product state is represented by ωp = ωp(η1, η2, η1η
T
2 , ξp), where the correlation tensor is of a

product form. If we perform a pair of local measurements on the arbitrary product state, the outcome

probability factorizes into the product of the local outcome probabilities.

We next introduce a pair of local (reversible) transformations (U1, U2) : Ω12 → Ω12 as a linear map

from the space of states of a composite system to itself:

(U1, U2)(ω12) = (U1ω1, U2ω2, U1T̂U
T
2 , ξ

′), (2.11)

where the global parameter ξ′ is, in general, changed under the transformations (U1, U2). Since testing

our Bell inequality involves only local transformations and measurements, it is sufficient to specify

effects for those measurements.

In our experiment, ω1 and ω2 themselves are states of composite systems each consisting of a ‘control’

and a ‘target’ subsystem. Hence, the entire system under investigation consists of four subsystems, a
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control and a target subsystems of S1 and a control and a target subsystems of S2. The overall state

is

ω1,2,3,4 = ω1,2,3,4(ωt1, ωc1, ωt2, ωc2, ..., T̂ ij , ..., T̂ ijk, ..., T̂ 1234,Ξ) (2.12)

where c and t refer to the terms ‘control’ and ‘target’ subsystems, T̂ ij , T̂ ijk and T̂ 1234 are correlation

(sub)tensors describing correlations between pairs {i, j}, triple {i, j, k} and quadruple {1, 2, 3, 4} of

subsystems, respectively, and Ξ is the set of all global parameters.

The no-go theorem concerns the reduced state of the two target systems as given by

ωt1,2 = ωt1,2(ωt1, ωt2, T̂ tt, ξt), (2.13)

where ωt1 and ωt2 are states of the target subsystems of S1 and S2, T̂ tt is their correlation tensor, and

ξt is the corresponding global parameter.

Leveraging these definitions, we now present three assumptions, which are the fulcrum of our no-go

theorem for a definite local causal order.

1. The initial joint state of the target system ωt1,2 does not violate a Bell inequality.

Suppose that the two observers can each perform a measurement O1 and O2, respectively. We label

m1 and m2 as arbitrary measurement choices of S1 and S2, and o1 and o2 as the corresponding

outcomes. Under these conditions, we suppose that our input state ωt1,2 can be described through a

local hidden variables theory (i.e., in Bell’s terms, a theory that satisfy ‘local causality’), and therefore

it is associated to the probability distribution

p(o1, o2|m1,m2, ω
t
1,2) =

∫
ρ(λ) p(o1|m1, λ, ω

t
1,2) p(o2|m2, λ, ω

t
1,2) dλ, (2.14)

where λ is often referred to as a ‘hidden variable’. We implicitly assume the ‘freedom of choice’

condition — the assumption that the choices of the measurement settings are independent of λ — is

fulfilled.

2. The laboratory operations are represented by local transformations U ti on the target subsys-
tems. They do not increase the ‘amount’ of violation of Bell inequalities on such subsystems.

This is satisfied in the considered class of GPTs by definition because the “amount of violation of

Bell inequalities” is obtained by maximization over all local transformations as in Eq. (2.11) (or

convex mixtures therefrom), and our ‘laboratory operations’ are assumed to be of such type. For

concreteness, let us consider the CHSH inequality for correlation functions [Clauser et al., 1969] —

a similar reasoning applies to different forms of Bell inequalities. Following the Peres-Horodecki

criterion [Duan et al., 2000; Simon, 2000], the maximal value of the CHSH inequality in quantum

mechanics is given in terms of two largest absolute values of the correlation tensor singular values,
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say t1 and t2, as 2
√
t21 + t22. The singular-value elements cannot increase under local transformations

(i.e., they are invariant under reversible local operations).

3. The order of S1’s and S2’s operations on the target system is well defined.

Suppose first that the orders of application of the local operations performed inside quantum switch

S1 (U t1A � U
t
1B � . . . ) and those performed inside quantum switch S2 (U t2A � U

t
2B � . . . ) are fixed.

Since an ordered sequence of local transformations is still a local transformation, if a state undergoes

such a transformation on S1’s and S2’s sides, the amount of violation of Bell’s inequalities cannot be

increased (and, in particular, the singular values of the correlation tensor cannot increase, neither can

the violation of the CHSH inequality). The amount cannot be increased even if the order of operations

is chosen with a given probability distribution due to convexity. The mutual order between S1’s and

S2’s operations is irrelevant, since we have assumed the two classes of operations to commute.

Theorem. No states, set of transformations and measurements which obey the assumptions I-III can

result in violation of a Bell inequality.

Proof. Following I, suppose that the initial target state ωt1,2 does not violate a Bell inequality. This

means that Eq. (2.14) is fulfilled. Because of III, operations in S1’s and in S2’s laboratories are applied

in a definite order, say U t1A � U t1B � . . . in S1’s side, and U t2A � U t2B � . . . in S2’s side. The state

evolves, therefore, under a composition of the local operations as

. . . (U t1B
, U t2B

) ◦ (U t1A
, U t2A

)(ωt1,2).

Let us restrict ourselves to the case of only two transformations per quantum switch (U tA and U tB).

After the pairs of operations are applied in order U t1A
� U t1B

and U t2A
� U t2B

on the two sides, the state

becomes

ωt1,2
′ = (U t1B

, U t2B
) ◦ (U t1A

, U t2A
)(ωt1,2) =

(
U t1B
◦ U t1A

, U t2B
◦ U t2A

)
(ωt1,2) (2.15)

which is still local due to I - III. Hence

p(o1, o2|m1,m2, ω
t
1,2
′) =

∫
ρ(λ) p(o1|m1, λ, ω

t
1,2
′) · p(o2|m2, λ, ω

t
1,2
′) dλ. (2.16)

In general, the order of operations does not need to be fixed, but can be specified probabilistically by

a further hidden variable ν, whose different values correspond to different permutations of the order

of operations. We obtain

p(o1, o2|m1,m2) =
∫∫

ρ(λ, ν) p(o1|m1, λ, ω
t,ν
1,2) · p(o2|m2, λ, ω

t,ν
1,2) dλ dν, (2.17)
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where ρ(λ, ν) is the joint probability distribution over the two types of variables, and ωt,ν1,2 is the final

state of the target systems upon application of the transformations in the order given by ν.

Hence, we conclude that a local target state subjected to the action of a set of local operations applied

in a pre-defined order can by no means lead to the violation of Bell inequalities, even if the order is

chosen probabilistically in each run of the experiment. This concludes the proof.

2.5.2 Relation between the present work and Ref. [Zych et al., 2019]

In Ref. [Zych et al., 2019], the position of a massive object serves as a ‘control’ quantum system and

a quantum system (e.g., a photon) that is exchanged between Alice’s and Bob’s laboratory as a ‘target’

system. By putting the massive object in a macroscopic superposition of two positions, one closer to

Alice’s and the other closer to Bob’s position, one induces a relative time dilation between Alice’s

and Bob’s laboratory. The superposition of massive objects can effectively lead to ‘entanglement’ of

the temporal order between local operations, enabling the violation of a Bell-type inequality. In the

conceptual framework of general relativity, the resource for the violation is a ‘non-classical space-

time’ created by macroscopic superposition of large masses. In the second-quantized picture, the

superposition can be seen as entanglement in the Fock basis, and the scheme enables one to “swap”

this entanglement to the final entanglement of the target systems. Unfortunately, the physical demands

of the proposal make that experiment infeasible. However, quantum control of the order of events can

also be achieved without the use of gravitational interaction. This can be done, for example, in an

extended quantum circuit model, wherein the order of applied quantum gates is coherently controlled

by an ancillary system (the quantum switch). The difference between the two scheme is that in the

gravitational scheme, the spatio-temporal distance of any pair of events in a space-time region is

influenced by a superposition state of the mass, whereas in the linear optical implementation, only the

order of the gates applied on the propagating system (e.g., photons) is indefinite.

A more detailed analysis of the differences and similarities between the gravitational quantum switch

and its photonic counterpart here presented is given in the Suppl. Information - Sec. 4.

2.5.3 Experimental Proof of Assumption I in GPTs

Recall that assumption I says that the initial target states do not violate a Bell inequality. In the

notation introduced above, the initial target state is ωt1,2. Our demonstration of assumption I presented

here is based solely on experimental data, and can be shown to be valid for a class of GPTs. Our goal

is to prove that the input state is a product state, and thus it is local.

Let us denote the probabilities for measurement outcomes as measured on reduced states of the target

system of S1 and S2 as p(o1|m1, ω
t
1) and p(o2|m2, ω

t
2), respectively. If the state is a local product
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state then the probability for joint outcomes, as measured on the composite system of the two target

subsystems in the initial state ωt1,2, is factorisable, i.e., it can be expressed as

p(o1, o2|m1,m2, ω
t
1,2) = p(o1|m1, ω

t
1) · p(o2|m2, ω

t
2). (2.18)

We experimentally performed a large set of measurements on the input target states, and checked for

this property. The measurements we made are tomographically complete in quantum theory. Nev-

ertheless, in a GPT this might not be the case, as a GPT system may have more degrees of freedom

than a quantum system. We thus restrict our considerations to a class of GPTs for which we assume

that polarization measurements in three unbiased bases for each photon constitute a subset of the full

set of ‘fiducial measurements’. For example, in the case of GPTs whose systems are described by

Bloch vectors of dimension d, three components of the vectors correspond to ‘quantum fiducial mea-

surements’ of a single system. Similarly, in the GPTs, the correlation tensor is given by d2 elements

of which 9 elements (i.e., 3 fiducial measurements for the first times 3 fiducial measurements for the

second system) correspond to the ‘quantum subspace’ of the correlations that are accessible through

quantum measurements.

Our measurements confirm that the joint probabilities for ‘quantum fiducial measurements’ are fac-

torized for the two targets. In general, however, it might be possible that within the subset of quantum

fiducial measurements for a bipartite system the joint probabilities are factorized into a product of

marginal probabilities although the overall state is not a product one. This is because non-zero corre-

lations could exist between non-quantum fiducial measurements. It would then be possible to transfer

correlations from the ‘non-quantum subspace’ into the correlations within the ‘quantum subspace’

by applying some ‘exotic’ (i.e., non-quantum) local transformations. Nevertheless, for our class of

GPTs, where subsystems are represented by Bloch vectors of general dimension d, we know that if

both subsystems individually return probability one for some measurement outcome, the state is a

pure product one and it cannot violate assumption I (Lemma 1 of Ref. [Dakic and Brukner, 2010]).

More precisely, the state would have the form ωt1,2 = ωt1,2(ωt1, ωt2, ωt1(ωt2)T , ξt), with ωt1 and ωt2 being

in pure states, i.e., ||ωt1|| = ||ωt2|| = 1. In our experiment, we obtain outcomes with probability one for

a pair of quantum fiducial measurements on the two target subsystems, and hence the two subsystems

cannot exhibit any further correlations within the non-quantum subspace.

Table S1 shows the values of the probabilities p(o1, o2|m1,m2, ω
t
1,2) (which, for brevity, is indicated

as p1,2 in the Tables) in the first four columns, and the marginal probability products p(o1|m1, ω
t
1) ·

p(o2|m2, ω
t
2) (denoted as p1 ·p2 in the Table) in the last four columns, with almost perfect correlations

in the {H,V } basis. Moreover, the joint and the two marginal probabilities are all almost one for the

HH outcome, confirming the high purity of the bipartite state. It can be seen that the two sets of

probabilities agree well. More quantitatively, let us define the root-mean-square (RMS) distance
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between the two sets of probabilities as

d =
√√√√ 1
N

∑
o1,o2

∑
m1,m2

∆p2
o1,o2,m1,m2 , (2.19)

with

∆po1,o2,m1,m2 = p(o1, o2|m1,m2, ω
T
1,2)− p(o1|m1, ω

T
1 ) · p(o2|m2, ω

T
2 ), (2.20)

and where N is the number of data points. Evaluating this over our results, we obtain a RMS distance

of (0.6± 2.7) · 10−2, indicating that the two distributions are equal within error.

Although the two target systems are approximately in a product state, the small discrepancy between

the two distributions allows for some correlations between the systems. From the full set of the fiducial

measurements in the quantum subspace, we can estimate the singular values of the correlation tensor

and the maximal possible amount of violation of the CHSH inequality for the two target systems to

be 2
√
t21 + t22 = 2.12 ± 0.04. This is more than ten standard deviations lower than the observed

violation of the inequality. Thus, this digression from assumption I cannot explain the violation of the

inequality.

2.5.4 Entangled Photon Source

Figure 2.5 Entangled photon-pair source. a) The source — The beam from a Toptica DL Pro HP 426 laser is focused
on a 30-mm-long PPKTP crystal, phase-matched for degenerate collinear type-II SPDC from 426 nm to 852 nm. The
phase-matching is finely tuned by controlling the temperature of the crystal with a precision greater than 0.01K. The
emitted photons have a bandwidth of approximately 0.2 nm. After the crystal, the residual pump beam is filtered, the
photons are then collimated and sent to a set-up to create entanglement by post-selection (as explained in the main text).
The entanglement is first produced in polarization and then converted into path using polarizing beam splitters. The source
produces ≈ 30.000 path-entangled photon pairs per second with a pump power of 8 mW. b) Set-up used to measure a Bell
Inequality on the path qubits — The two paths composing each qubit are interfered on a beam splitter (BS) projecting each
qubit onto a basis on the equator of the Bloch sphere (see main text for more details).

A periodically-poled potassium titanyl phosphate (PPKTP) crystal, phase-matched for collinear type-

II spontaneous parametric down-conversion (SPDC), converts one photon at 426 nm into two photons

at 852 nm. The photonic state after the crystal can be approximated to a Fock state of two photons in

two orthogonal polarization modes |H, a〉|V, a〉, where a indicates the common spatial mode of the
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two photons defined in Fig. 2.5. Two PBSs are used to separate and then recombine the two pho-

tons. Each photon passes through a HWP set at ±45◦. The state after the second PBS is therefore:(
|H, b〉 |H, c〉 − |H, b〉 |V, b〉 + |H, c〉 |V, c〉 − |V, b〉 |V, c〉

)
/ 2, where b and c indicate the two out-

put spatial modes of the second PBS. By post-selecting on coincidences, only the part of the state

with the photons in two different spatial modes is kept, resulting in the polarization-entangled state(
|H, b〉|H, c〉−|V, b〉|V, c〉

)
/
√

2. We then use two PBSs and two HWPs (Fig. 2.5) to convert this state

into a path-entangled state:
(
|0〉1 |0〉2 − |1〉1 |1〉2

)
/
√

2, where the notation is the same as specified

in Fig. 2.5. A trombone delay line in between the two PBSs is used to compensate temporal delay

between the two photons, and a multi-order QWP in one mode is tilted to compensate for undesired

phases between the two components of the final quantum state. The delay line and the QWP can be

also used to modify the final output state in a controllable way. In particular, by unbalancing the two

paths by the coherence length of the down-converted photons, the entangled state can be converted

into a statistical mixture of the states |0〉1|0〉2 and |1〉1|1〉2.

For our experiment, both the path and the polarization states of the photon pairs are important. To

characterize the polarization state, we can perform two-qubit polarization state tomography using a

QWP, a HWP and a PBS for each photon (Fig. 2.5, Panel a). To characterize the path entanglement,

we perform a Bell measurement on the path qubits using the apparatus shown in Fig. 2.5, Panel b,

which essentially consists of one Mach-Zehnder interferometer for each photon. The phase of the

interferometers sets the measurement bases { 1√
2(|0〉 + e−iφi |1〉), 1√

2(|0〉 − e−iφi |1〉)}. Using these

two interferometers we can measure all what is required for a CHSH parameter:

S =
∣∣C(o1, o2) + C(o′1, o2) + C(o1, o

′
2)− C(o′1, o′2)

∣∣ , (2.21)

where

C(o1, o2) = N++ −N+− −N−+ +N−−
N++ +N+− +N−+ +N−−

. (2.22)

Here, N++ is the number of coincidence events between detectors labelled + for each photon in

Fig. 2.5, Panel b, N+− the number of coincidence events between detectors + and− for each photon,

and so on.

Fig. 2.6 shows the characterization of the entanglement of the joint input control state, where we

verified the initial entanglement by performing a Bell measurement on the joint control system before

the quantum switch, obtaining a CHSH parameter of 2.58± 0.09.

2.5.5 Experimental Proof of Assumption IIb in GPTs under the assumption of III

In this section, we experimentally prove the validity of assumption IIb for the case in which assump-

tion III holds. Assumption IIb states that the laboratory operations do not couple (i.e., do not generate

non-classical correlations between) the control and the target subsystems, within a given party Si,
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Figure 2.6 Input control state characterization: Bell measurement on the order qubits. Each curve is a
measurement of a Bell correlation term C

(
O1(φ1),O2(φ2)

)
on the control qubits, wherein the phase of φ1 is fixed, and

the phase φ2 is scanned. As described in Eq. (2.21) of the Methods - Sec. 2.5.4, we test the Clauser-Horne-Shimony-Holt
(CHSH) inequality [Clauser et al., 1969] achieving a violation of 2.59± 0.09. For the data in the green curve, the phase
φ1 was nominally shifted by π/4 rad with respect to the blue curve. The red shaded areas represent the regions where
values of φ1 and φ2 correspond with those used to construct our CHSH parameter (Eq. (2.21) of the Methods - Sec. 2.5.4).
In particular, O = (O1,O2) where Oi(φ1, φ2) = cos(φi)σx + cos(φi)σz . These data confirm that the two photons start
in a path-entangled state, and the polarization state is initially separable.

i = 1, 2. To test it, we first prepare the control and target subsystems in a tomographically-complete

set of product states within quantum theory, i.e.,

p(oc, ot|mc,mt, ωi = ωcωt) = p(oc|mc, ωc) · p(ot|mtωt) (2.23)

for all states ωi = ωc ωt from a tomographically-complete set of product states. In the GPTs,

Eq. (2.23) shows that, for a product state from the quantum subspace, the probability for a joint

outcome factorizes into the product of the probabilities for individual outcomes. We then set a single

quantum switch to have only one operation inserted, either UiA or UiB . We finally verify that, for the

full set of preparations, the control and target subsystems are still in a product state after the quantum

switch, when this contains only UiA or only UiB . More precisely, we verify that

p(oc, ot|mc,mt, UiAωi) = p(oc|mc, UiAωc) p(ot|mt, UiAωt) (2.24a)

p(oc, ot|mc,mt, UiBωi) = p(oc|mc, UiBωc) p(ot|mt, UiBωt), (2.24b)

for any state from a complete set of product states, and by linear extension to an arbitrary product

state ωi. We do this using the same technique we used to verify that the target qubits began in an input
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state (Methods - Sec. 2.5.3). Finally, we make use of the following property: if neither operation UiA
nor UiB alone couple the two subsystems, then also a sequence of the two operations cannot couple

them as long as they are performed in a definite causal order. This conclusion follows directly from

Eqs. (2.23)-(2.24b):

p(oc, ot|mc,mt, UiB ◦ UiAωi) = p(oc|mc, UiB ◦ UiAωc) p(ot|mt, UiB ◦ UiAωt) (2.25)

Note that even under a multiple usage of UiA and UiB there can be no coupling when the operations

are performed in a definite causal order. This finalizes the proof of assumption IIb.

Tables S2-S3 report the values of the probabilities p(oc, ot|mc,mt, ω1) (which, for brevity, are indi-

cated as pc,t in the Tables) compared with the marginal probability products p(oc|mc, ω
c
1)·p(ot|mt, ω

t
1)

(denoted as pc · pt in the Tables).

The tomographically-complete sets of fiducial quantum measurements reported in Tables S2-S3 were

performed as follows. In order to vary the input state of the control system among |+〉c, |−〉c,
|R〉c =

(
|0〉c − i |1〉c

)
/
√

2, and |L〉c =
(
|0〉c + i |1〉c

)
/
√

2, we set the relative phase between the

two trajectories after the first beamsplitter by means of a delay stage mounted on a calibrated piezo-

actuator. Instead, by blocking either path, we prepared |0〉c and |1〉c. Likewise, we measure the path

qubit in the following way. To measure in {|+〉c , |−〉c}, or {|R〉c , |L〉c}, we suitably set the relative

phase between the two paths before recombining them at the second beamsplitter. This can be done

by adding the required phase for state preparation and subtracting the phase for state measurement.

Such a phase is then converted into a path delay and sent to the piezo-actuated delay stage. (We use

the same delay stage to both set the phase of the path state, and to measure it in {|+〉c , |−〉c}, or

{|R〉c , |L〉c}.) To measure in the {|0〉 , |1〉} basis, we block either path before the 50/50 beamsplitter,

and we then sum the counts from the two paths after the beamsplitter.

The displayed output probabilities p(oc, ot|mc,mt, ω1) are very close to those corresponding to a

product state. This is indicated by the fact that the RMS distance [Eq. (2.19)] between these two sets

of probabilities (the measured joint probabilities p(oc, ot|mc,mt, ω1), and that given by the product

p(oc|mc, ω
c
1) · p(ot|mt, ω

t
1)) is (2 ± 3) · 10−2 when only operation UiA was acting on the system,

and (3 ± 3) · 10−2 when only operation UiB was present. Moreover, the displayed output proba-

bilities p(oc, ot|mc,mt, ω1) are very close to those of a pure (product) state, which means that there

cannot be any correlations in the non-quantum subspace. More precisely, the non-vanishing dis-

crepancy between the two probability distributions could be caused by a weak coupling between the

control and the target system. Using the same technique as in Methods - Sec. 2.5.3, we can estimate

that the correlations established through this coupling are too weak to violate the CHSH inequality

(2
√
t21 + t22 = 1.76 ± 0.04). The coupling between each pair of the control and the target systems

can “swap” the correlations from the bipartite state of the control system to that of the target system.

However, assuming that the transferred amount of correlations to the target system cannot be larger
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that the amount produced through the coupling between each pair of the target and control system, we

conclude that the coupling cannot result in the target systems violating the Bell’s inequality.

This confirms within experimental error, under the hypothesis that assumption III is valid, that as-

sumption IIb holds in our experiment. Furthermore, this proof holds not only within quantum theory

but also for our class of GPTs. In other words, our measurements imply that in both of the two

quantum switches, individually, the laboratory operations do not couple the target and the control sub-

systems in GPTs when these operations are executed in a definite causal order. From this experimental

test, we thus conclude that in our experiment assumption II cannot be false unless assumption III is

also violated.

2.5.6 Data Analysis

In order to convert the coincidence counts into probabilities, we weight each measured count rate

by the net detection efficiency of the corresponding detector pair. We estimate these efficiencies in

two parts. First, we measure the relative coupling efficiencies between the output ports M1 and M2 of

quantum switch S1, andM3 andM4 of quantum switch S2. Then, within each output port, we measure

the relative efficiency of the detector in the transmitted port and the reflected port. We find relative

efficiencies between ≈ 0.85 and 1. For more details, see the Methods of our previous work [Rubino

et al., 2017a].

The main source of error in our experiment was phase fluctuations. In the Bell measurement, this

dephasing is mainly due to two contributions. (1) Undesired phase-shifts in the interferometer (which

we estimated to be about 0.97◦). (2) Fluctuations of the source, which produces time varying phase

between the |HH〉 and |V V 〉 terms. In our source, we estimate this to be approximately 1.9◦, which

is caused by a combination of fluctuations in the pump laser wavelength, and the phase-matching

temperature. We convert these errors into an error in the Bell parameter using Gaussian error propa-

gation. To calculate the error for the Bell measurements on the polarization qubits after the quantum

switches, we consider the same error sources as above (where now the phase shifts in the measure-

ment interferometer are replaced by phase shifts in the quantum switches). However, we also consider

errors arising from setting the polarization measurements. Finally, to estimate the errors in the results

extracted from tomography (i.e., fidelity and concurrence), we performed a Monte Carlo simulation

considering the phase fluctuations discussed above.

2.5.7 Additional consistency tests: the insertion of noise

In this section, we present two further tests of consistency of our experimental proof.
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Figure 2.7 Bell parameter in the presence of various decoherence sources. a) For these data, the initial
entanglement of control qubits is decreased passing from the entangled state 1√

2

(
|0, 0〉 − |1, 1〉

)
to a mixture of |0, 0〉 and

|1, 1〉. We measure the Bell parameter both on the input path qubits (squares) and output polarization qubits (circles) as the
source is decohered. Here, the Bell parameter is plotted versus the visibility of the entangled state in its anti-correlated
basis. The dashed line is a simulation of the experimental results. b) For these data, the coherence of the superposition of
the orders of operations inside the quantum switches is decreased, leading to a classical mixture of orders. To control this
transition, we decrease the visibility of either only one of the two interferometers (circles), or of both interferometers at the
same time (squares). Each graph shows the Bell parameter plotted versus the visibility of one interferometer. The dashed
lines are linear fits to the data. The horizontal dashed blue line, in both plots, is the classical limit for a Bell violation.
When the state of the control qubit is too decohered, we can no longer violate a Bell inequality.

First, we decreased the entanglement of the joint control system by increasing the delay of the inter-

ferometer inside the source (see the Methods - Sec. 2.5.4). The more mixed the state of the control

system becomes, the smaller is the amount of violation of a Bell inequality with the target systems

which we can achieve, up until reaching the threshold of non-violation. The Bell parameter versus

the ‘source visibility’ (i.e., the two-photon visibility in its anti-correlated basis) is plotted in Fig. 2.7a.

The dashed line is a calculation of the expected Bell parameter, including the imperfect visibility of

the two interferometers. All the data points agree with the expected trend within error. The small step

at an entanglement visibility of around 0.5 was caused by a lower fringe visibility which increased the

systematic error in setting the phases φ1 and φ1 + π/4 (see Fig. 2.3).

As a second test, we decreased the degree of causal non-separability of the two processes. To do

this, we introduced distinguishing information between the paths corresponding to the orders UiA �
UiB and UiB � UiA (in only one quantum switch, squares in Fig. 2.7b, and in both simultaneously,

circles in Fig. 2.7b) by lengthening one of the paths with respect to the other, effectively reducing the

visibility of the interferometers comprising the quantum switches. As this occurs, we transition from a

superposition of temporal orders to a mixture of them (in other words, to a causally-separable process,

which satisfies assumption III). If all three assumptions are met, one cannot violate a Bell inequality

between the two systems. Indeed, we experimentally observe that as the visibility is decreased, the

Bell parameter also decreases (Fig. 2.7, Panel b).
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2.6 Supplemental Information

2.6.1 quantum switch and Causal Inequalities

The quantum switch [Procopio et al., 2015; Rubino et al., 2017a] has been shown not to violate

causal inequalities, making it impossible to use such a violation as a theory-independent proof that

the causal order of the operations in the quantum switch is indefinite. Here, we briefly re-examine

such reasoning following Refs. [Araújo et al., 2015; Oreshkov and Giarmatzi, 2016].

We introduce the x, y and z indices to refer, respectively, to the measurements choices of Alice, Bob

and Charlie. We call a, b and c their respective measurement results. It is always possible to re-write

p(a, b, c|x, y, z) as

pswitch(a, b, c|x, y, z) = p(c|a, b, x, y, z) p(a, b|x, y, z). (2.26)

It should be noticed that, regardless of the causal order between operations in Alice’s and Bob’s labo-

ratory, the operation in Charlie’s laboratory always occurs after them. In other words, his operation is

in the future light cone of both Alice’s and Bob’s operations. Thus, a and b cannot depend on z, so

p(a, b|x, y, z) = p(a, b|x, y). (2.27)

As previously observed, after tracing out Charlie’s laboratory in the quantum switch, the process

matrix of Alice and Bob is causally separable. Hence, one can rewrite p(a, b|x, y) in the form of a

convex mixture, obtaining

pswitch(a, b, c|x, y, z) = p(c|a, b, x, y, z)
[
ζ · pA�B(a, b|x, y) + (1− ζ) · pB�A(a, b|x, y)

]
, (2.28)

with ζ ≥ 0. We can combine the probabilities pA�B(a, b|x, y) (pB�A(a, b|x, y)) and p(c|a, b, x, y, z)
as a product of the probability respecting the order A � B (B � A) with the probability respecting

the order {A,B} � C

pswitch(a, b, c|x, y, z) = ζ · pA�B�C(a, b, c|x, y, z) + (1− ζ) · pB�A�C(a, b, c|x, y, z). (2.29)

Therefore, the quantum switch is a process whose probabilities have a ‘causal model’, i.e., it can

always be understood as arising from events that are causally ordered, or from a convex mixture of

causally ordered events. Hence, it satisfies all causal inequalities.
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2.6.2 Hidden local definite causal order

In general, while experimental tests can be used to prove that the conjunction of the assumptions

underlying a given no-go theorem does not describe the phenomenology observed within quantum

mechanics, they do not provide information on which of the assumptions is to be discarded. In this

experiment, the application of the Bell’s theorem to temporal orders allowed us to test a conjunction

of all our assumptions; yet, in order to verify which assumptions are valid, additional tests on a sin-

gle quantum switch were necessary. This notwithstanding, it is worth noting that testing only one

single quantum switch would not have provided an as stringent information. In fact, as we showed

above the experimental data taken from a single quantum switch cannot violate causal inequalities,

and hence can be understood as arising from an underlying causal model, in the spirit of simulation of

quantum statistics by hidden variables. Such a model generates statistics compatible with operations

performed on a system in a definite order, or in a convex mixture therefrom. In terms of probabilities,

the statistics in the quantum switch pswitch(a, b, c|x, y, z) =
∫
dλ ρ(λ) pcausal(a, b, c|x, y, z, λ), where

pcausal(a, b, c|x, y, z, λ) = pA4B4C(a, b, c|x, y, z) or pB4A4C(a, b, c|x, y, z), could hence be mim-

icked by an underlying causal hidden variable model. The statistics obtained measuring the double

quantum switch with entangled temporal orders rules out a local causal hidden variable model that

allows for this description, i.e., its statistics is incompatible with

p2-switches(a1, b1, c1, a2, b2, c2|x1, y1, z1, x2, y2, z2) =

=
∫
dλ ρ(λ) pcausal(a1, b1, c1|x1, y1, z1, λ) pcausal(a2, b2c2|x2, y2, z2, λ). (2.30)

In other words, the causal model is called ‘local’ if the statistics can be understood as originating from

(a convex mixture of) operations performed in each local laboratory according to a definite causal

order. Our experimental data rule out the models in Eq. (2.30) for the special case where Alice and

Bob both apply a single operation with a single outcome (unitary).

2.6.3 Device-Independency and Theory-Independency

Causal witnesses, violation of Bell inequalities for temporal orders, and violation of causal inequal-

ities build a hierarchy of the notion of ‘the lack of causality’. The weakest notion of the lack of

causality is that of causal non-separability, which is formulated using quantum theory. A violation of

a causal inequality is the strongest notion as it is formulated solely in terms of observable probabil-

ities p(a, b|x, y) without any assumption about the internal function of experimental devices — it is

therefore device-independent. The violation of a Bell inequality for temporal orders should be con-

sidered, in our view, a stronger proof of lack of causality than the measurement of a causal witness,

but a weaker proof than a violation of a causal inequality. The reason why it is weaker than a causal

inequality violation is that, although it too is formulated in terms of the probabilities p(a, b|x, y, ω),
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it also involves the notion of state ω and the assumption how laboratory operations act on it (see

Methods - Sec. A of the main text) — this causes the proof to be device-dependent. However, it can

be defined for a class of generalized probabilistic theories, and hence it does not rely on the quan-

tum formalism. It is thus more general than the notion of a causal witness. Although the quantum

switch violates a weaker notion of causality, shaped for quantum theory, it cannot violate the stronger

(device-independent) notion of causal inequalities. The open question addressed in our work is: “Can

we still use the quantum switch to perform a proof of indefinite causal orders independent of quantum

formalism?” The answer is affirmative, and this study represents an experimental demonstration of

this.

2.6.4 On the Physical Implementability of the quantum switch

Skepticism has been expressed about whether a tabletop experiment can demonstrate indefinite causal

structures. In Ref. [MacLean et al., 2017], the authors claim that it is not possible to implement the

quantum switch without ‘exotic physical scenarios’. In particular, they argue that one would need a

closed time-like curve, and even then such an implementation would be inconsistent, being able to

generate logical contradictions such as the grandfather paradox. These criticisms are based on the

assumption that causal structures must be represented via directed graphs. In this representation, the

quantum switch becomes a directed graph with a cycle, which could indeed be inconsistent and could

generate logical contradictions.

The tension between directed acyclic graphs (DAG) and causal structures in the quantum switch is

akin to the tension between classical “hidden” variable theories and quantum theory. For example,

in order to describe an interferometric experiment in terms of classical variables, one is forced to say

that the interfering system follows some exotic trajectories or in some non-local manner follows two

classical trajectories ‘at once’. However, within quantum theory one interprets interferometric tests as

demonstrating that the very assumption that a system does follow a definite path is violated.

The formal sense in which the causal order of applying operations in a quantum switch is non-classical

has been recently studied in Ref. [Oreshkov, 2019]. The motivation of that work was to understand

where and when the operations happen in the quantum switch, which is precisely the question brought

up in the context of a DAG representation. The author shows that the operations applied on systems

in a quantum switch act on subsystems that are not localised in time, i.e., on ‘time-delocalised’ sub-

systems. It is further shown that standard quantum theory, without exotic closed timelike-curves, is

compatible with such time-delocalised operations and that they indeed realise genuine non-separable

quantum processes. The work also concludes that experimental realisations of the quantum switch,

including specifically its entangled version described in this work, are genuine realisations of such

time-delocalised processes. In other words, there is a well-defined fashion in which temporal rela-

tions between the application of operations in a quantum switch cannot be represented with DAGs.
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In fact, the Bell theorem for temporal orders [Zych et al., 2019] and its version in this work can be

interpreted as a limitation on achievable correlations when operations acting on a quantum system

can be embedded in a causal structure compatible with an underlying DAG (or a probabilistic mixture

thereof).

Therefore, the suitable conclusion to draw is that the causal structure in the quantum switch cannot

be represented by a DAG since the latter can only represent what are called definite causal struc-

tures [Miklin et al., 2017]. What our work demonstrates experimentally is that the quantum switch

represents an indefinite causal structure incompatible with any DAG, just like experimental violations

of Bell’s inequalities show that there exist correlations incompatible with local hidden variables.

The authors of Ref. [MacLean et al., 2017] further argue that, in a genuine quantum switch, operations

must be performed in the same spatio-temporal regions in each term of the superposition, so that only

their order is swapped. As mentioned above, Ref. [Oreshkov, 2019] showed that this is not necessary:

in the quantum switch a single operation can be ‘time-delocalised’ over two (or more) spatio-temporal

regions. In the originally proposed implementation of the quantum switch [Chiribella et al., 2013], as

well as in ours, one could in principle register the time at which the signal passes through each box,

which would decohere the superposition and make the interference between the causal orders vanish.

However, since we do observe coherence, such information does not exists (i.e., it is not stored in any

physical degree of freedom, as this would alter the results of the experiment). The above requirement

of ‘the same spatio-temporal regions’ whose order is simply swapped is in principle realisable in

a gravitational implementation of the quantum switch for a certain choice of coordinates. There, a

massive object is prepared in a spatial superposition, which results in the causal order between two

events being opposite in the two superposed terms. More precisely, a choice of coordinates can be

found such that gate A is performed at a single time (the proper time of a local clock). However,

an alternative choice of coordinates may as well be done such that the gate A is performed in a

superposition of different times (according to the coordinate time or the time of a distant observer)

in different superposed terms, before and after the gate B. Therefore, even in this gravitational case,

it is always possible to make a choice of coordinates where the operations appear to be performed at

different times in the different superposed terms. Thus, it is in fact insubstantial to argue whether the

operations are “really performed at the same times, and their order is swapped”, or they are “merely

performed in superposition of different times”, as this depends on the choice of coordinates in which

one wishes to describe the scenario (see [Allard Guérin and Brukner, 2018; Zych et al., 2019] for

further discussions). Furthermore, note that, contrary to the arguments of [MacLean et al., 2017], this

proposal does not allow for the information to travel back in time, nor does it require closed time-like

curves, and it does not give rise to any logical paradoxes.

In Ref. [MacLean et al., 2017], another criticism follows from the observation that the quantum switch

can easily be ‘simulated’ by using additional copies of the boxes A and B, as was already noted in

the original proposal of the quantum switch [Chiribella et al., 2013]. In particular, one could use an
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unfolded Mach-Zehnder interferometer, with gates A1 and B1 in one arm and gates B2 and A2 on the

other. The straightforward response is that we do not use an unfolded Mach-Zehnder interferometer,

but rather a folded one, and therefore that we use a single copy of each box instead of two. The

number of applications of a box can operationally be determined by a counter (i.e., a ‘flag’) that is

raised each time the operation is applied on the system. The very fact that an unfolded Mach-Zehnder

interferometer requires two copies of each box to ‘simulate’ the statistics of a folded one is a signature

that the latter exhibits an indefinite causal order. Moreover, we also note that, in the unfolded version

of the interferometer, it would be necessary to actively make A1 precisely equivalent to A2, whereas

in our case this clearly follows from the implementation itself, as the gates are physically the same. It

should also be emphasized that the present Bell-type proof of an indefinite causal order is valid even

if the local gates are used more than once, as clarified in the main text.

Furthermore, following the reasoning in Ref. [MacLean et al., 2017], one could say that it is in prin-

ciple possible to make the gate A (B) act differently when it comes before or after B (A), as in each

case the photon passes through A (B) at different times. This is true, but also applies to the originally

proposed implementation. To make it locally impossible, one could use the above mentioned super-

position of a massive object to control the order of operations in two space-time regions. In such a

scenario, indeed, Alice (Bob) in her (his) local laboratory cannot make the gate A (B) act differently

in case the operation A (B) is performed before or after B (A). Nevertheless, a distant observer for

whom Alice’s (Bob’s) operation happens in a superposition of two coordinate-times could make such

contingency occur with a cleverly designed set-up (e.g., by sending a signal which triggers Alice’s

operation to change once it is received, as depicted in Fig. 2.8). As a consequence, as much as in the

case of a table-top experiment the operation A can be made to act differently depending on whether

it happens before or after B, in its gravitational counterpart this can be achieved by a distant observer

who triggers some change for certain time-coordinates. In conclusion, the requirement that operations

A and B must even in principle be forbidden to change depending on the order has no absolute mean-

ing (i.e., it cannot be realized in all reference frames). Moreover, if the operations differed or their

time was revealed (or stored in any degree of freedom), the results of the experiment would differ.

Finally, because of the differences highlighted above, one may object that the physics that describes a

photonic quantum switch is not equivalent to the one which is behind the gravitational quantum switch

for all possible observers. This is indeed correct. In fact, in the first case, the physics is described by

Maxwell equations on Minkowski space-time, whereas in the latter case it is non-classical space-time

that determines the dynamics. However, although a local as well as a global observer could tell the

difference between the gravitational and the photonic quantum switch, it is not the case for a quantum

particle which travels along the two superposed paths in either versions of the quantum switch. In

fact, in both cases the particle experiences a genuine quantum superposition of causal orders. And

this is precisely the purpose of this experimental work: we do not aim to draw conclusions concerning

global/local observers, but on the system undergoing the quantum process. Therefore, neither of the
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schemes (i.e., the gravitational and the photonic quantum switch) is a ‘simulation’ of one another.

They are rather two equivalent representations of the dynamics experienced by a quantum particle in

presence of a quantum superposition of causal orders, i.e., two representations of a quantum switch.

Figure 2.8 Schematic of a gravitational quantum switch. A quantum system is exchanged between Alice’s and
Bob’s laboratories. The order in which such ‘target’ system is exchanged is governed by a second system, a ‘control’
system, which is encoded in the position of a massive object. By putting the massive object in a macroscopic superposition
of two positions, one closer to Alice’s and the other closer to Bob’s position, one induces a relative time dilation between
Alice’s and Bob’s laboratories. If an outside observer sends some system at a suitably chosen time, let us call it tA�B , the
observer could influence the functioning of the device that implements A, e.g., when it acts second but not when it acts
first, making the operation of Alice act different depending on the order.
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Table 2.1 Comparison between the two-states probabilities p(o1, o2|m1,m2, ω
t
1,2) and the products of

marginal single-state probabilities p(o1|m1, ω
t
1) · p(o2|m2, ω

t
2) for the input target states. - Part I. The

compatibility between the two sets of probabilities shows the separability of the input target state ωt
1,2. We

indicate with ‘H’ and ‘V’ the states of horizontal and vertical polarization, with ‘D’ and ‘A’ the diagonal and
anti-diagonal states, with ‘R’ and ‘L’ the circular polarization states right- and left-handed. The experimental
error associated to each of these probabilities is ±0.01.

Measur. Basis p1,2 p1,2⊥ p1⊥,2 p1⊥,2⊥ p1 · p2 p1 · p2⊥ p1⊥ · p2 p1⊥ · p2⊥

H, H 0.97 0.03 0.00 0.00 0.97 0.03 0.00 0.00
H, V 0.01 0.99 0.00 0.00 0.01 0.99 0.00 0.00
H, A 0.58 0.41 0.00 0.00 0.59 0.41 0.00 0.00
H, D 0.42 0.58 0.00 0.00 0.42 0.58 0.00 0.00
H, R 0.39 0.61 0.00 0.00 0.39 0.61 0.00 0.00
H, L 0.61 0.38 0.00 0.00 0.62 0.38 0.00 0.00
V, H 0.00 0.00 0.96 0.04 0.00 0.00 0.96 0.04
V, V 0.00 0.00 0.03 0.97 0.00 0.00 0.03 0.97
V, A 0.00 0.00 0.61 0.39 0.00 0.00 0.61 0.39
V, D 0.00 0.00 0.38 0.61 0.00 0.00 0.38 0.61
V, R 0.00 0.00 0.35 0.64 0.00 0.00 0.35 0.64
V, L 0.00 0.00 0.64 0.36 0.00 0.00 0.64 0.36
A, H 0.39 0.01 0.53 0.02 0.41 0.01 0.54 0.02
A, V 0.01 0.37 0.02 0.54 0.02 0.39 0.02 0.54
A, A 0.24 0.16 0.34 0.21 0.26 0.16 0.34 0.21
A, D 0.18 0.22 0.21 0.33 0.18 0.24 0.23 0.31
A, R 0.16 0.25 0.18 0.35 0.16 0.27 0.19 0.34
A, L 0.26 0.14 0.36 0.19 0.27 0.14 0.36 0.19
D, H 0.55 0.02 0.45 0.02 0.53 0.02 0.45 0.02
D, V 0.01 0.57 0.02 0.45 0.01 0.54 0.01 0.46
D, A 0.32 0.26 0.29 0.18 0.32 0.24 0.28 0.20
D, D 0.23 0.35 0.18 0.29 0.22 0.34 0.18 0.29
D, R 0.21 0.37 0.16 0.31 0.19 0.37 0.16 0.31
D, L 0.35 0.22 0.32 0.17 0.34 0.20 0.31 0.18
R, H 0.65 0.02 0.33 0.01 0.64 0.02 0.33 0.01
R, V 0.01 0.66 0.01 0.30 0.02 0.66 0.01 0.31
R, A 0.39 0.27 0.22 0.13 0.40 0.26 0.21 0.14
R, D 0.29 0.39 0.12 0.19 0.28 0.40 0.13 0.19
R, R 0.27 0.41 0.11 0.20 0.26 0.42 0.12 0.19
R, L 0.41 0.25 0.22 0.12 0.41 0.24 0.22 0.13
L, H 0.32 0.01 0.63 0.04 0.32 0.02 0.63 0.03
L, V 0.01 0.32 0.03 0.64 0.01 0.32 0.02 0.65
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Table 2.2 Comparison between the two-states probabilities p(o1, o2|m1,m2, ω
t
1,2) and the products of

marginal single-state probabilities p(o1|m1, ω
t
1) · p(o2|m2, ω

t
2) for the input target states. - Part I. The

compatibility between the two sets of probabilities shows the separability of the input target state ωt
1,2. We

indicate with ‘H’ and ‘V’ the states of horizontal and vertical polarization, with ‘D’ and ‘A’ the diagonal and
anti-diagonal states, with ‘R’ and ‘L’ the circular polarization states right- and left-handed. The experimental
error associated to each of these probabilities is ±0.01.

Measur. Basis p1,2 p1,2⊥ p1⊥,2 p1⊥,2⊥ p1 · p2 p1 · p2⊥ p1⊥ · p2 p1⊥ · p2⊥

L, A 0.18 0.14 0.42 0.27 0.19 0.13 0.41 0.28
L, D 0.14 0.21 0.23 0.41 0.13 0.22 0.24 0.40
L, R 0.12 0.23 0.22 0.43 0.12 0.23 0.22 0.43
L, L 0.21 0.12 0.44 0.24 0.21 0.12 0.43 0.25

Table 2.3 Comparison between the two-states probabilities p(oc, ot|mc,mt, ω1) and the products of
marginal single-state probabilities p(oc|mc, ω

c
1) · p(ot|mt, ω

t
1) for the control and the target states when

only operation UiA is acting on the input state. We denoted as 0, 1, +, −, l and r the analogue of the
polarization states H, V, D, A, L, R in the path degree of freedom. The two sets of probabilities associated to
the control and the target states in output are compatible within experimental errors. The experimental error
associated to each of these probabilities is ±0.01.

Meas. Basis Prep.-Meas. pc,t pc,t⊥ pc⊥,t pc⊥,t⊥ pc · pt pc · pt⊥ pc⊥ · pt pc⊥ · pt⊥
(target) Basis (control)

H + 0.95 0.00 0.04 0.00 0.95 0.00 0.04 0.00
D + 0.47 0.48 0.01 0.03 0.47 0.49 0.02 0.02
R + 0.48 0.47 0.01 0.03 0.47 0.48 0.02 0.02
H − 0.07 0.00 0.92 0.01 0.07 0.00 0.91 0.01
D − 0.04 0.04 0.48 0.44 0.04 0.04 0.48 0.44
R − 0.04 0.04 0.41 0.51 0.04 0.04 0.41 0.51
H r 0.55 0.00 0.44 0.01 0.55 0.01 0.44 0.00
D r 0.20 0.26 0.28 0.26 0.22 0.24 0.26 0.28
R r 0.28 0.24 0.18 0.30 0.24 0.28 0.22 0.26
H l 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00
D l 0.30 0.28 0.21 0.21 0.30 0.28 0.22 0.21
R l 0.27 0.30 0.20 0.23 0.27 0.30 0.20 0.23
H 0 0.51 0.00 0.49 0.00 0.50 0.00 0.49 0.00
D 0 0.26 0.30 0.26 0.17 0.30 0.27 0.23 0.21
R 0 0.28 0.26 0.23 0.23 0.27 0.26 0.24 0.23
H 1 0.56 0.00 0.43 0.01 0.56 0.00 0.44 0.00
D 1 0.27 0.29 0.22 0.23 0.27 0.29 0.21 0.23
R 1 0.28 0.28 0.17 0.27 0.25 0.31 0.20 0.24
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Table 2.4 Comparison between the two-states probabilities p(oc, ot|mc,mt, ω1) and the products of
marginal single-state probabilities p(oc|mc, ω

c
1) · p(ot|mt, ω

t
1) for the control and the target states when

only operation UiB is acting on the input state. The two sets of probabilities associated to the control and
the target states in output are compatible within experimental errors. The experimental error associated to each
of these probabilities is ±0.01.

Meas. Basis Prep.-Meas. pc,t pc,t⊥ pc⊥,t pc⊥,t⊥ pc · pt pc · pt⊥ pc⊥ · pt pc⊥ · pt⊥
(target) Basis (control)

H + 0.47 0.33 0.11 0.09 0.47 0.33 0.12 0.08
D + 0.50 0.27 0.18 0.06 0.51 0.25 0.16 0.08
R + 0.75 0.02 0.23 0.01 0.75 0.02 0.23 0.00
H − 0.11 0.15 0.49 0.25 0.16 0.11 0.44 0.29
D − 0.12 0.12 0.60 0.16 0.17 0.07 0.55 0.21
R − 0.25 0.01 0.67 0.07 0.24 0.02 0.68 0.06
H r 0.43 0.44 0.10 0.03 0.46 0.41 0.07 0.06
D r 0.54 0.32 0.09 0.05 0.54 0.32 0.09 0.05
R r 0.86 0.01 0.11 0.02 0.84 0.03 0.13 0.00
H l 0.16 0.06 0.49 0.29 0.14 0.08 0.51 0.27
D l 0.13 0.09 0.62 0.15 0.17 0.05 0.59 0.19
R l 0.20 0.01 0.73 0.05 0.20 0.01 0.73 0.05
H 0 0.26 0.28 0.26 0.19 0.29 0.26 0.24 0.22
D 0 0.40 0.14 0.41 0.05 0.44 0.10 0.37 0.09
R 0 0.48 0.04 0.42 0.06 0.47 0.05 0.44 0.05
H 1 0.32 0.23 0.29 0.15 0.34 0.22 0.27 0.17
D 1 0.32 0.24 0.32 0.12 0.36 0.20 0.28 0.16
R 1 0.56 0.00 0.41 0.03 0.54 0.02 0.43 0.01

69





Chapter 3

Experimental Quantum Communication
Enhancement by Superposing Trajectories

G. Rubino, L. A. Rozema, D. Ebler, H. Kristjánsson, S. Salek, P. Allard Guérin, A. A.
Abbott, C. Branciard, Č. Brukner, G. Chiribella, and P. Walther

Abstract. In quantum communication networks, wires represent well-defined trajectories
along which quantum systems are transmitted. In spite of this, trajectories can be used as a
quantum control to govern the order of different noisy communication channels, and such
a control has been shown to enable the transmission of information even when quantum
communication protocols through well-defined trajectories fail. This result has motivated
further investigations on the role of the superposition of trajectories in enhancing communi-
cation, which revealed that the use of quantum-control of parallel communication channels,
or of channels in series with quantum-controlled operations can also lead to communication
advantages. Building upon these findings, here we experimentally and numerically compare
different ways in which two trajectories through a pair of noisy channels can be superposed.
We observe that, within the framework of quantum interferometry, the use of channels in se-
ries with quantum-controlled operations generally yields the largest advantages. Our results
contribute to clarify the nature of these advantages in experimental quantum-optical sce-
narios, and showcase the benefit of an extension of the quantum communication paradigm
in which both the information exchanged and the trajectory of the information carriers are
quantum.

Author contributions: G.R. and L.A.R. designed the experiment. G.R. built the set-up and carried

out the data collection. G.R. and L.A.R. performed data analysis. All authors contributed to the

interpretation of the results and to writing the paper, based on an initial draft by G.R. and L.A.R..
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3.1 Introduction

The ability to establish secure communication linkages is of paramount importance in any information

technology. Quantum cryptography protocols [Bennett and Brassard, 1984; Ekert, 1991] achieve this

in a stunning way, enabling a sender and receiver to communicate securely even in the presence

of an eavesdropper with unlimited computational power. The crucial ingredient for this feat is the

availability of reliable transmission lines for quantum particles. In this framework, any noisy process

affecting the transmission is attributed to the presence of an eavesdropper, and when the noise exceeds

a given threshold, the security of the communication is considered compromised. For this reason, the

mitigation of any noise arising from faulty transmission lines is an integral part of the efforts to enable

secure communication.

Within the quantum communication networks paradigm, quantum communication protocols encode

information in quantum states, yet they treat the propagation of information carriers as classical [Chiri-

bella et al., 2009]. Nevertheless, the information carriers can propagate along non-classical trajecto-

ries, experiencing a coherent superposition of alternative quantum evolutions [Åberg, 2004; Aharonov

et al., 1990; Oi, 2003]. Taking advantage of this fact, Gisin et al. [Gisin et al., 2005] realized that

quantum superpositions of trajectories can be harnessed to reduce the noise induced by a pair of noisy

communication channels. Therein, it was shown that when the quantum information carriers 1 are sent

through two noisy channels in a quantum superposition of trajectories, interference between the two

resulting noisy processes can sometimes lead to partial cancellation of the noise via post-selection.

Recently, interest in this discovery has been revived by studies emerging from quantum foundations.

In particular, it was shown that the superposition of trajectories can generate setups where the order

of different channels is in a quantum superposition. These setups produce the same output as a math-

ematical map called the ‘quantum switch’ [Chiribella et al., 2013], a higher-order operation which

takes two quantum channels as input and combines them in a quantum-controlled order. The quan-

tum switch is an instance of a causally-indefinite process; such processes are currently the target of

wide-ranging research both for fundamental reasons [Ämin Baumeler and Wolf, 2016; Hardy, 2007;

Oreshkov et al., 2012], and for their potential to provide advantages in quantum computation [Araújo

et al., 2017; Chiribella, 2012; Chiribella et al., 2013; Colnaghi et al., 2012; Facchini and Perdrix,

2015; Hardy, 2009; Taddei et al., 2020], quantum communication complexity [Baumeler and Wolf,

2014; Feix et al., 2015; Guérin et al., 2016], and quantum metrology [Zhao et al., 2020]. Moreover,

the particular class of causally-indefinite processes based on the superposition of alternative orders

can be probed via current experimental technologies, as has been recently done by encoding informa-

tion in various degrees of freedom of single photons [Goswami et al., 2020, 2018; Guo et al., 2020;

Procopio et al., 2015; Rubino et al., 2017a,b; Taddei et al., 2020; Wei et al., 2019].

1We use the notion of ‘particles’ as a synonym for quantum systems which, naturally, can be delocalised in space and time.
These quantum systems are used as carriers of quantum information, and in this sense we interchangeably refer to them
also as ‘information carriers’.
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It was further proposed [Chiribella et al., 2018; Ebler et al., 2018; Salek et al., 2018] that the quantum

switch can also reduce noise in classical and quantum communication. These findings triggered a host

of subsequent proposals [Caleffi and Cacciapuoti, 2020; Procopio et al., 2020, 2019; Sazim et al.,

2020; Wilson et al., 2020], and even a few experiments [Goswami et al., 2020; Guo et al., 2020],

highlighting the advantage of using quantum superpositions of noisy channels in alternative orders to

reduce transmission noise.

However, alongside the body of work focused on superpositions of alternative orders, the use of

superpositions of trajectories in quantum communication has also been investigated [Abbott et al.,

2020; Chiribella and Kristjánsson, 2019; Guérin et al., 2019; Kristjánsson et al., 2020; Loizeau and

Grinbaum, 2020]. In this context, theoretical studies have pointed out that causal-indefiniteness is

not necessarily required to reduce the noise in classical and quantum communication [Abbott et al.,

2020; Guérin et al., 2019; Loizeau and Grinbaum, 2020]. In particular, similar or even better advan-

tages can be achieved by using a quantum-control of parallel noisy channels [Abbott et al., 2020],

or by placing channels in series with quantum-controlled operations [Guérin et al., 2019]. Indeed, in

Ref. [Guérin et al., 2019] it was even shown that the Shor quantum error correcting code can be used

to find a channel layout in series with quantum-controlled gates which allows any arbitrary noise to be

completely eliminated. This suggested the need for a thorough information-theoretic understanding

of the resources in play, and a unified description of such protocols. One such approach is presented in

Refs. [Chiribella and Kristjánsson, 2019; Kristjánsson et al., 2020]. On the other hand, the compari-

son of different protocols can be also viewed as an experimental task, wherein one wishes to classify

and quantify the experimental resources required for a physical implementation of the various types

of superpositions of trajectories and their corresponding advantages 2.

We take the experimental approach here, focusing on three different types of superpositions of tra-

jectories which have been identified in the literature, namely, quantum-control of parallel channels

(Fig. 3.1a)), channels in series with quantum-controlled operations (Fig. 3.1b)), and quantum-control

of channel order (Fig. 3.1c)). While previous experimental studies [Goswami et al., 2020; Guo et al.,

2020] focused only on the reduction of noise with an indefinite causal order, no experimental work had

so far implemented the other proposed schemes, nor had they compared them with indefinite causal

structures to provide an exhaustive assessment of the resources in play. We find that the common re-

source in all the three schemes considered is the establishment of a coupling between the trajectories

of the information carriers and the degree of freedom on which the noise acts. On this basis, we pro-

pose a fundamentally new understanding of the resources required for this noise reduction than that

proposed in previous experimental works in this field [Goswami et al., 2020; Guo et al., 2020].

We experimentally apply the above three schemes to various noise models. This enables us to exam-

ine the utility and trade-offs of these different types of superpositions in the goal of communicating

2In this Chapter, in contrast to Ref. [Kristjánsson et al., 2020], we consider resources as an experimental concept, corre-
sponding to the physical devices and their interactions as they occur in the laboratory.
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Figure 3.1 Combining two channels in a superposition of trajectories. A sender and a receiver
communicate under the restriction that the information carrier must cross at least one noisy region. a)
Quantum-Control of Parallel Channels. A quantum particle is placed in a quantum superposition of two
trajectories, each branch containing a single noisy channel. b) Channels in Series with Quantum-Controlled
Operations. Each of the branches of the superposition passes through the noisy channels in the same order,
but different unitary operations are applied locally in each branch. c) Quantum-Control of Channel Order.
The information carriers are routed through the two channels in different orders. This setup can achieve a
genuinely indefinite order of the two channels. d) Classical Trajectories. Throughout this Chapter, we will
compare the three quantum superpositions of channels above to classical trajectories. In this regard, if one has
access to classical-like trajectories only, one can send the photon through one or the another noisy regions with
probabilities q and 1− q.

through a pair of noisy channels. In particular, in order to perform a comparative analysis of the

performance of the three types of superpositions, we measure the coherent information (which is a

lower bound for the quantum channel capacity) in the presence of XY, bit-flip, phase-flip and BB84-

channels. We show that, within the paradigm of quantum interferometry, the use of channels in

series with quantum-controlled operations generally outperforms or equals the other schemes in all

the noise models which we consider. While here we study the three schemes individually in order to

focus on the source of the coupling between the trajectory and the degree of freedom on which the

noise acts, one could of course also combine the different types of superpositions (and, for instance,

insert quantum-controlled operations also in the other two schemes), yielding different—potentially

larger—advantages from those presented here.

The rest of this Chapter is structured as follows. Section 3.2.1 introduces the three different architec-

tures for the quantum superpositions of trajectories through two noisy channels, and summarizes their

performance when applied to a simple noise model. Section 3.2.2 reviews the key figures of merit that

we use to quantify the performance of our experimental quantum channels, i.e., the quantum capacity

and the coherent information. Section 3.2.3 outlines our experiments, and Section 3.3 presents the

corresponding results. Finally, Section 3.4 concludes.
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3.2 Theoretical Framework and Experiment

3.2.1 Quantum Superpositions of Trajectories

For simplicity, we will focus on two communication channels and two trajectories, as this already

captures the key features of the general idea.

All experiments hereafter discussed were performed using single photons, where the trajectory is

naturally defined by the photon’s path. Quantum information is initially encoded in one of the internal

degrees of freedom of the particle (we refer to Section 3.5.1 for a discussion of the case of classical

information); in our case, in its polarization. Then, using linear optical elements, it is relatively easy to

place a photon in a superposition of trajectories [Goswami et al., 2018; Procopio et al., 2015; Rubino

et al., 2017a,b]. We will further consider, as does related work, that the noise acts only on the internal

degree of freedom (DOF).

To introduce the basic idea, we will start by considering a particular noise model, which was studied

for quantum-controlled orders in [Chiribella et al., 2018]. Given some single-qubit input state ρ

encoded in the internal DOF, the noisy process C either applies a Pauli-X or -Y operation to the

internal state with equal probability:

CEB(ρ) = 1
2XρX + 1

2Y ρY. (3.1)

If the input to this process is a pure state |ψ〉I = α |0〉I + β |1〉I (where the subscript I denotes the

internal DOF), the output is, in general, a mixed state, with all coherence in the computational basis

extinguished:

CEB(|ψ〉I 〈ψ|I) =
(
|β|2 0

0 |α|2
)
, (3.2)

and as such, it cannot be used to transmit any quantum information. One might, of course, still

employ it to transmit classical information in the computational basis. This channel is an example of

a so-called ‘entanglement-breaking’ (EB) channel, which would destroy any preexisting entanglement

between the transmitted qubit and any other system.

In a standard quantum communication scenario with a single trajectory, information, which is taken

to be encoded in an internal DOF of an information carrier, must often propagate through multiple

channels. Depending on the physical implementation, the channels can be linked together in different

manners. With two channels and classical-like trajectories, the channels can either be put in series,

or in a classical mixture of the two (depicted in Fig. 3.1d))—more complex combinations can also be

realized, but they all perform strictly worse than a classical mixture. If two copies of the channel of

Eq. (3.1) are put in series, the result is a maximally-dephasing channel C(ρ) = 1
2ρ+ 1

2ZρZ, where Z

is the Pauli-Z matrix. This also destroys all coherence in the computational basis, and cannot transmit
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any quantum information. Similarly, placing two of these channels in a classical mixture will not

allow the transmission of any quantum information.

In a typical single-trajectory quantum communication scenario, it can be shown that, if each channel

is unable to transmit quantum information (i.e., its quantum capacity—to be defined later—is zero),

then any combinations of the two channels should also result in a zero capacity channel. This is known

as a bottleneck inequality [Yu et al., 2020]. In the following subsections, we will show that this is not

the case when the trajectories are superposed in a quantum fashion. Thus, the bottleneck inequality

does not directly apply to communication scenarios with quantum trajectories [Guérin et al., 2019;

Salek et al., 2018].

3.2.1.1 Quantum-Control of Parallel Channels

The first layout that we consider uses a quantum superposition of configurations where two inde-

pendent channels are placed in parallel, and their use is controlled by a quantum system, as illus-

trated in Fig. 3.1a). This was originally introduced for error filtration [Gisin et al., 2005], and it was

more recently reviewed in the general framework of communication through superposed channels in

Refs. [Abbott et al., 2020; Chiribella and Kristjánsson, 2019]. In this scheme, different independent

noisy channels are placed in each branch of the superposition. In Ref. [Gisin et al., 2005], it was

shown that by performing a measurement on the trajectory in a suitable basis, and then post-selecting,

one can non-deterministically filter out errors in the communication channel. We will now consider

an initial pure state encoded in the internal DOF |ψ〉I = α |0〉I + β |1〉I, independent noisy channels

realised by applying a Pauli-X and -Y with equal probabilities—as described previously and result-

ing in Eq. (3.1)— and two trajectories in an equal superposition |+〉T =
(
|0〉T + |1〉T

)
/
√

2 (where

T refers to the trajectory DOF). It is then straightforward to calculate the output (the full calculation

is presented in Section 3.5.2), and to observe that performing a measurement on the trajectory DOF

in the {|+〉T , |−〉T} basis, and finding |−〉T =
(
|0〉T − |1〉T

)
/
√

2 (which, as shown in Section 3.5.2,

occurs with probability 1/4) leaves the internal DOF in the pure state:

β |0〉I − iα |1〉I , (3.3)

which can be unitarily rotated back to |ψ〉I. On the other hand, when the trajectory state is found to

be |+〉T (which happens with probability 3/4), the output state is partially mixed:(
|β|2 −iα∗β/3

iαβ∗/3 |α|2
)
. (3.4)

This output state has a reduced purity, but it still maintains some coherence. Although this is not

necessarily the optimal measurement strategy or the best noise model to showcase this scheme, it

illustrates that a quantum-controlled superposition of noisy channels allows some coherence to reach
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the receiver. Hence, the sender and the receiver can communicate some quantum information. We will

quantify the amount of quantum information precisely in Section 3.2.3. Communication advantages

in this case have been attributed to the ability to quantum coherently control which channel to use

[Abbott et al., 2020].

This type of architecture is relatively easy to imagine deploying in practice. Most modern quantum

communication takes place via optical fibers. As is often the case, these fibers can be noisy, resulting

in a reduced ability to transmit information. Since a photon can easily be sent through a superposition

of two (or more) fibers, the use of such parallel architectures could already improve security in existing

communication networks.

3.2.1.2 Channels in Series with Quantum-Controlled Operations

A different way to significantly reduce the noise produced by some channels is to let them be traversed

by two trajectories in a superposition, and by allowing different operations in each branch of the

superposition. In this case, we will place our two channels in series, resulting in the architecture

presented in Fig. 3.1b). In each branch, the channels 1 and 2 are placed in the same order, and

different unitary operations may be inserted. (Such unitary operations are labeled as U1, U2 and

U3 in Fig. 3.1b). In principle, however, more operations could be inserted along the trajectories).

This scheme was originally presented in Ref. [Guérin et al., 2019], where it was referred to as a

‘superposition of direct pure processes’.

Let us now consider the action of the superposition of trajectories in series with the noise model

of Eq. (3.1), setting, following the notation of Fig. 1b), U1 = Y , U2 = I, U3 = I (I being the

identity operator). We will again consider the initial state of the system to be |ψ〉I |+〉T. This time, we

will imagine performing a measurement in the computational basis on the qubit stored in the internal

DOF. As we show in Section 3.5.2, finding the internal qubit in |0〉I projects the trajectory state into

|ψ〉T, while finding it in |1〉I projects the trajectory state into X |ψ〉T. Hence, this superposition of

trajectories perfectly filters out the noise arising from the noisy channels. (Notice that the ability to

completely restore an arbitrary initial state of the information qubit implies that, were the information

carrier initially entangled with an additional qubit, due to linearity this entangled state would be

completely restored in turn.)

It is easy to imagine the implementation of this scheme in a real-world scenario. The two paths (e.g.,

optical fibers) are simply sent through a few noisy transmission channels in series. (For the scheme

to work, the action of each noisy channel must be correlated along the different paths.) Since the two

paths are physically distinct, the different unitary operations can easily be applied in each branch of the

superposition independently. Such operations can be performed with simple linear optical elements,

or even directly using calibrated optical fibers, which always implement some unitary polarization
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rotation. In Ref. [Guérin et al., 2019] it was also pointed out that, by superposing more than two

trajectories, one can perfectly compensate for any arbitrary noise.

3.2.1.3 Quantum-Control of Channel Order

The original source of inspiration for this architecture is the quantum switch [Chiribella et al., 2013],

a higher-order operation which takes quantum gates and applies them in a quantum superposition of

alternative orders. Within quantum-interferometry, a quantum-optical switch exploiting superposition

of trajectories in flat space-time has been proposed [Araújo et al., 2014; Friis et al., 2014], and

experimentally demonstrated [Goswami et al., 2020, 2018; Guo et al., 2020; Procopio et al., 2015;

Rubino et al., 2017a,b; Taddei et al., 2020; Wei et al., 2019]. For two quantum operations, this is a

quantum process in which a particle is placed in a superposition of two paths, each of which is routed

through the two quantum operations in alternative orders (see Fig. 3.1c)). This scheme features all the

necessary requirements for an advantage in quantum information processing over standard channels

[Goswami et al., 2020; Guo et al., 2020], and it can be provably characterized as a causally-indefinite

process [Araújo et al., 2015; Branciard, 2016; Goswami et al., 2018; Oreshkov, 2019; Oreshkov and

Giarmatzi, 2016; Rubino et al., 2017a,b].

Applying the quantum switch to two copies of the channel in Eq. (3.1), one finds that the output state

is [Chiribella et al., 2018]

1
2 |ψ〉I 〈ψ|I ⊗ |+〉T 〈+|T + 1

2Z |ψ〉I 〈ψ|I Z ⊗ |−〉T 〈−|T . (3.5)

Analogously to the previous two examples, we will now measure the trajectory in the {|+〉T , |−〉T}
basis. If the outcome is |+〉T, the state has been transmitted perfectly, whereas if one finds |−〉T, a

simple phase correction is required to exactly restore the initial state.

The resources required to implement the quantum-optical switch in the laboratory are relatively min-

imal, it simply requires linear optical elements to route the photon through the two noisy channels in

a superposition of their orders. However, in order to be effective, this layout requires the action of

the two noisy channels on the photon to be suitably correlated both in space and time (as in Fig. 3 of

Ref. [Kristjánsson et al., 2020]). Instead, in standard communication networks [Minář et al., 2008],

the noisy regions are usually localized in space and fixed in time. Any such network would thus re-

quire the photon to travel back toward the sender to enter the second channel, and this scheme requires

this return trip to occur without traversing any further noisy region (which could happen if the two

channels introduce noise in the direction from the sender to the receiver, but not vice versa).
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3.2.1.4 Comparison

Comparison of different schemes in this work — In all of the three schemes above, a particle is placed

in a quantum superposition of two trajectories which are then routed through various devices and

noisy communication channels. All three methods result in a coupling of the internal state to the state

of the trajectory, and the two trajectories must maintain coherence in order to show a communication

advantage. (Practically, this is required since the trajectory is measured in a superposition basis.)

This coupling to the trajectory DOF is a necessary requirement to achieve any advantages. In the

parallel and indefinite order layouts the channels themselves or the routing through their different

orders give rise to the coupling, whereas in the series scheme this coupling is created by the quantum-

controlled operations. In light of this, it has been proposed that the quantum-controlled operations

used in the superpositions of channels in series (Fig. 3.1b)) should be considered as additional re-

sources (referred to as ‘encoding’, ‘decoding’ and ‘repeaters’ in Refs. [Chiribella and Kristjánsson,

2019; Kristjánsson et al., 2020]), as they can couple the internal DOF to the trajectory independently

of the choice of noisy channels. However, these operations do not require any additional experimental

resources beyond the transmission lines themselves (for example, polarization rotations can arise from

the mere twisting of optical fibers, and are effectively unavoidable), which are the same experimental

resources used for the other two schemes.

It was also noted that the number of noisy channels traversed by the particle in each branch of the

superposition differs between the three schemes [Abbott et al., 2020; Kristjánsson et al., 2020;

Kristjánsson et al., 2020; Loizeau and Grinbaum, 2020]: the quantum-control of parallel channels

contains only one channel in each interferometer arm, whereas the other two schemes contain two

channels per arm. When the information carrier crosses several noisy channels in sequence, the over-

all noise is always equal to (in the case, e.g., of two EB channels) or greater than (e.g., in the case of

two depolarising channels of the form ρ′ = pρ + (1 − p)I2 ) that introduced by one channel. How-

ever, although the quantum-control of channel order needs at least two channels to create the required

coupling between the trajectory and the internal DOF, it is still able to overcome the (potentially

additional) noise caused by the multiple noisy channels.

Comparison to previous work — The origin of the communication enhancement in the three schemes

studied here has been a subject of recent debate in the literature [Abbott et al., 2020; Chiribella and

Kristjánsson, 2019; Guérin et al., 2019; Kristjánsson et al., 2020; Loizeau and Grinbaum, 2020].

This debate revolved around the understanding of the role of causal indefiniteness in the task of noise

reduction. In fact, after it was discovered that such an enhancement could be achieved by placing

the channels in an indefinite causal order, it was later found that other configurations, which did not

have an indefinite causal order, could achieve the same or even a better enhancement. This called into

question whether indefinite causality is necessary to achieve such effects.
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In this work, we compare experimentally and numerically all the proposed setups leading to noise

cancellation in quantum communication, and we quantify the achieved advantages over quantum

communication schemes with classical trajectories. This represents the first experimental compari-

son among these different schemes, which provides an answer to the debate on experimental grounds

by presenting an experimentally-relevant analysis of the resources in play. In particular, we com-

pare the schemes with respect to their experimental requirements within an interferometric paradigm,

rather than studying them as higher-order operations from a strictly theoretical viewpoint [Chiribella

and Kristjánsson, 2019; Kristjánsson et al., 2020]. To this end, we focus on the following four points:

i. we illustrate that all three schemes use the same resource when considering experimental quantum

interferometry, ii. we show that this resource is the coupling of the degree of freedom carrying the

information to the trajectory degree of freedom, iii. we experimentally prove that, for the set of tested

noisy channels, the superposition of channels in series with quantum-controlled operations features

the highest performance, and iv. we numerically show that, in the vast majority of cases, this holds

for generic randomly-generated channels.

We will now proceed to quantify the amount of quantum information which can be transmitted using

these various schemes individually for different noise models. Overall, we find that, for all the types of

noise considered, the use of channels in series with quantum-controlled operations exceeds or equals

the performance of the quantum-control of parallel channels and quantum-control of channel order.

3.2.2 Quantifying Channel Performance

In order to rigorously compare the ability of the different schemes to transmit quantum information,

an experimentally accessible figure of merit is necessary. The quantum capacity Q(C) of a channel C
is the number of qubits that are transmitted for each use of that channel [Devetak, 2005; Lloyd, 1997].

In general, this is a rather complex function that can be difficult to even theoretically assess, making

its use as a quantifier somewhat limited in practice. However, it is lower bounded by [Lloyd, 1997]:

Q(C) ≥ max
ρAB

Ic(C, ρAB), (3.6)

where Ic is the coherent information [Schumacher and Nielsen, 1996] of the channel with respect to

ρAB , which is defined as

Ic(C, ρAB) := S(ρ′B)− S(ρ′AB) , (3.7)

where ρAB is a bipartite state, ρ′AB := (IA⊗C)(ρAB) is the output state obtained by applying channel

C on system B, ρ′B := TrA[ρ′AB] is its marginal state, and S(ρ) := −Tr[ρ log ρ] is the von Neumann

entropy. Although a comparison of the coherent information of two channels does not necessarily

translate into a comparison of the quantum capacity of the channels (except, of course, when the

lower bound is maximal, as in this case it coincides with the quantum capacity), we will employ
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it as our quantifier for channel performance here. In addition to the practical motivation of being

a more readily computable quantifier, this choice is further motivated by the fact that the coherent

information has an operational meaning beyond that of the quantum capacity. Namely, it provides

the one-way distillable entanglement when maximised over local operations performed by the sender,

and, if maximised over LOCC operations, it gives the two-way distillable entanglement [Devetak and

Winter, 2005], which is typically considered to be the amount of ‘useful entanglement’ which can be

transmitted using the channel.

Let us briefly consider a few simple examples, assuming a 2-qubit system, with ρAB set to a maximally-

entangled pure state. If the channel is unitary (i.e., noiseless), then the initially pure state remains pure

after the application of the channel, thus S
(
C(ρ′AB)

)
= 0. However, since ρAB is maximally entan-

gled, tracing out the subsystem A will leave the subsytem B in a maximally mixed one-qubit state

with entropy S
(
C(ρ′B)

)
= 1. Therefore the coherent information of a unitary channel, with respect to

a maximally entangled probe state is 1. If, on the other hand, the channel induces decoherence, the en-

tangled probe state will become mixed, and the second term will increase: S
(
C(ρ′AB)

)
> 0. Because

the first term cannot be larger than 1, as decoherence is induced the coherent information decreases.

IC(C, ρAB) is often maximized when ρAB is a maximally-entangled state. This was proven to be the

case for the quantum switch and a specific noisy model in [Salek et al., 2018]. Furthermore, numer-

ical optimisations suggest that a maximally-entangled Bell state maximises the coherent information

for the cases we study here. In any case, the evaluation of Ic for any arbitrary state sets a lower bound

for the quantum capacity of the channel. Throughout the rest of this Chapter, when we refer to the

coherent information, we do so with reference to a maximally-entangled Bell state.

One could consider estimating IC(C, ρAB) directly by probing the channel with an entangled state

[Cuevas et al., 2017]. In this case, however, the trade-off is that this state will be more prone to errors

in the preparation phase (and such errors are to be considered in addition to all the others already

mentioned). Thus, our experimental approach will be to first perform quantum process tomography

on the superposition of communication channels. With the resulting estimate of the experimental

channels, we will then be able to compute Ic with ideal maximally-entangled states, and will use this

metric to quantify the performance of the various schemes.

In our experiment, we study single-qubit channels acting on the polarization DOF, and equal superpo-

sitions of trajectories. Since, as we have seen previously, the coherence between the two trajectories

is crucial, both the internal DOF and the trajectory must be fully characterized. In general, this re-

quires two-qubit process tomography on the path (trajectory) qubit and the polarization qubit. To

perform this characterization, we use heralded single photons in order to maintain the connection to

the interpretation of the quantum capacity as the information transmitted per information-carrying

system.

Notice that the sender only ever encodes information in the polarization DOF, whereas the receiver
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must measure both the trajectory and the polarization DOFs. Hence, this is effectively a 1-to-2 qubit

channel. Because of this, performing full two-qubit process tomography provides more information

than is strictly required.

3.2.3 Experiment

Implementing Noisy Channels— In our experiment, we encode and transmit information in the inter-

nal polarization DOF. We induce noise on this DOF using liquid crystal waveplates (LCWP), which

can rapidly implement different polarization rotations to effectively decohere the polarization state in

a precise and controllable manner [Rozema et al., 2014]. The LCWP retardance can be changed be-

tween 0 rad and 2π rad in approximately 100 ms by varying the applied voltage (see Section 3.5.3 for

more details). Using these fast LCWPs we can change the operations on-the-fly to actively decohere

the photon’s polarization, in contrast to previous experiments wherein decoherence was achieved by

averaging the results during the data analysis [Goswami et al., 2020; Guo et al., 2020]. Neverthe-

less, the two methods yield the same results, so we will make use of both techniques interchangeably.

Physically, the noise models we study can be understood as randomly applying one of four operations

(I, X , Y , or Z). The probability of each operation to occur defines the noisy channel.

Specifically, we implement four different noisy channels. The first is a generalization of the entanglement-

breaking channel CEB(ρ) discussed above. However, in this general case, the X and Y operations are

applied with probability 1− p and p, respectively (one recovers the CEB(ρ) for p = 1/2):

CpXY (ρ) = (1− p)XρX + pY ρY. (3.8)

We also study the well-known bit-flip (BF) CpBF(ρ) and phase-flip (PF) CpPF(ρ) (or dephasing) channels:

CpBF(ρ) = (1− p) ρ+ pXρX, (3.9a)

CpPF(ρ) = (1− p) ρ+ pZρZ, (3.9b)

respectively. Finally we study a depolarizing channel CpBB84(ρ), known as the BB84-channel [Smith

and Smolin, 2008]:

CpBB84(ρ) = (1− p)2ρ+ (1− p) pXρX + (1− p) pZρZ + p2 Y ρY. (3.10)

For the BB84-channel, when the noise probability is p = 0.5 the channel is completely depolarizing,

mapping any input to the maximally-mixed state. In Section 3.5.4, we also report a numerical estima-

tion of the performance of the three layouts in the generic case of randomly-generated channels.
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To realize a single channel we use two LCWPs. The first LCWP’s optic axis is set to 0◦, and can thus

implement either Z or the identity operation by setting the retardance to π rad or 0 rad, respectively.

The second LCWP’s optic axis is set to 22.5◦ to execute X or the identity operation, again by setting

the retardance to π rad or 0 rad, respectively. When the first LCWP performs Z and the second X ,

the net result is Y (up to a phase). Hence, with these two LCWPs we are able to carry out all four

required unitary operations, and switch between them in about 100 ms.

In light of this, a straightforward implementation would be to generate a random number from some

defined distribution before a photon enters the channel, and then to set the operations accordingly.

However, the net result is the same if we allow several photons to pass through the channel for each

coin flip, provided that we average over a sufficiently large number of coin flips. This is advantageous,

as it allows us to increase the single-photon count rate well above the switching speed of the LCWPs.

In our experiment, we employ two different methods for the data acquisition. In the first, we change

the applied operation every second. Since our photon rate (detected at the output, after the experiment)

is of the order of 3000 Hz, this means that approximately 3000 subsequent heralded photons experi-

ence the same unitary operation (see Section 3.5.5 for more details). Our Monte Carlo simulations

show that, with these numbers, 100 seconds (and 100 different operations) per measurement setting

are sufficient to achieve a process fidelity (i.e., the fidelity to achieve the desired noisy channel) above

99% (for details, see Section 3.5.6). In order to ensure an optimal implementation while maintaining

a reasonable duration of the data-taking procedure, we used 1000 different internal configurations for

our experiment, resulting in a fidelity of 99.98% per channel. In the second technique, we simply

take data for each input state and each measurement setting with the LCWPs set to implement a fixed

unitary operation. We then weight the data from these different configurations according to the prob-

ability distribution of the desired noise model. (This method was also demonstrated in [Goswami et

al., 2020; Guo et al., 2020].)

Creating Superpositions of Trajectories— As shown in Fig. 3.2, we experimentally create different

superpositions of trajectories by placing single photons in an equal quantum superposition of paths

using a 50/50 beamsplitter. The single photons are generated with a standard type-II down-conversion

source described in Fig. 3.2d) and in Section 3.5.7. These two paths (trajectories) are then routed

through a series of LCWPs, which implement different noisy channels, in a parallel configuration

(Panel a)), in series (Panel b)), or in a quantum superposition of the two alternative orders (Panel

c)).

All three set-ups are realised through Mach-Zehnder interferometers. In the first case (Fig. 3.2a)),
one channel is placed in each interferometer arm. In the second case (Fig. 3.2b)), the channels are

arranged in series in both arms of the interferometer, and additional operations are performed before

each channel through waveplates. Finally, the third scheme (Fig. 3.2c)) is accomplished using a

folded Mach-Zehnder interferometer in which the two channels appear in alternating order in each
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Figure 3.2 Experimental Setup. a) Quantum-Control of Parallel Channels. After their polarization is set
via a half waveplate (HWP) and a quarter waveplate (QWP), single photons are injected into a Mach-Zehnder
interferometer. One noisy channel is placed into each arm of the interferometer, and each channel is realized
through two liquid crystal waveplates (LCWP), the first positioned at 0◦ (to implement I or Z by changing the
retardance), the second at 22.5◦ (I or X). By means of a piezo-electric trombone delay line, the photon
interfering on the second beamsplitter of the interferometer can be projected onto the bases {|+〉T, |−〉T} or
{|R〉T, |L〉T} of the trajectory. Finally, the photons’ polarization is measured through a sequence of QWP,
HWP and a polarizing beamsplitter. b) Channels in Series with Quantum-Controlled Operations. As in the
previous scheme, the photons are prepared in polarization via QWP and HWP and injected into a
Mach-Zehnder interferometer. In this case, the two noisy channels are placed in the two superposed branches
in series with the same order. Also in this case, the channels are realized through LCWPs. Furthermore, before
each noisy channel, additional unitary operations are realized through sequences of QWP, HWP and QWP
(before the first channel, the QWP, HWP and QWP are placed in one branch of the trajectory only, whereas
between the two channels the waveplates are in both branches, since we only implement cases where
U2 = U3). The rest of the setup is the same as in the previous case. c) Quantum-Control of Channel Order.
The preparation and measurement of the photons in polarization happens as in the previous schemes, as well
as the realization of the noisy channels, and the projection of the trajectory DOF. In this case, however, the
Mach-Zehnder interferometer is folded into two loops so that the photon can travel through the two channels
in the two alternative orders in each arm of the interferometer. d) Heralded single-photon source. We
generate photon pairs using a type-II spontaneous-parametric-down-conversion source. One photon is directly
detected with an avalanche photodiode (upper arm), whereas the other is coupled into an optical fiber and sent
to one of the setups a), b) or c). The interferometers in setups a), b), and c) all contain two compensation
HWP at the beginning and at the end of the reflected arm, so as to compensate for the phase shifts due to the
reflection from the beamsplitter.

of the interferometer’s arms. The setup presented in Fig. 3.2c) represents a possible realization of a

quantum-optical switch wherein the system qubit is encoded in the polarization DOF, and the control

qubit in the path DOF. Other encodings for this type of process have been proposed [Friis et al., 2014;

Rambo et al., 2016] and experimentally demonstrated [Goswami et al., 2018; Wei et al., 2019].

Regardless of the detailed implementation, all proposals to implement a quantum-optical switch use

one DOF to route a photon through channels in different orders, while the channels act on some other
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DOF.

In order to perform quantum process tomography to extract the coherent information, we must prepare

a tomographically-complete set of input states, and measure in a tomographically-complete number

of different bases. In brief, we use waveplates before the first beamsplitter to prepare the state of the

polarization qubit in either |0〉I, |+〉I, |R〉I, or |L〉I (where |R〉I = (|0〉I − i |1〉I)/
√

2, |L〉I = (|0〉I +
i |1〉I)/

√
2), and waveplates and polarizing beamsplitters after the second beamsplitter to measure in

all bases (i.e., {|0〉I , |1〉I}, {|+〉I , |−〉I}, and {|R〉I , |L〉I}). In our experiment, we set the state of

the path DOF to |+〉T, |−〉T, |R〉T, or |L〉T by varying the relative phase of the paths after the first

beamsplitter using a pair of mirrors placed on a trombone-delay stage controlled by a piezo-electric

actuator. To prepare the state to |0〉T or |1〉T, we simply block one or the other path. We measure

the path DOF analogously, by setting the different phases, or blocking one of the two paths. The full

details of our process tomography protocol are presented in Section 3.5.8.

3.3 Results

XY-Channel— Below, we present our results for the three combinations of the noisy channels de-

scribed in equations (3.8)–(3.10). We will first consider two copies of the XY-channel (Eq. (3.8)). In

Section 3.2.1, we observed that when p = 0.5 both the channels in series with quantum-controlled op-

erations and the quantum-control of channel order (with U1 = Y , U2 = U3 = I) are able to transmit

quantum information perfectly. In Fig. 3.3, we observe that such a perfect ‘activation’ (in our case,

the term refers to a combination of two noisy channels which enables one to communicate through

such a combination with less noise than either individually) is theoretically possible for all values of

p. In fact, the purple and brown lines show the coherent information for two XY-channels combined in

series and in indefinite order, respectively. For both of these situations, the theoretical coherent infor-

mation is equal to 1 for all p, meaning that one qubit per use can be transferred. In the same plot, our

experimental data are presented as squares (for the quantum-control of parallel channels), circles (for

the channels in series with quantum-controlled operations) and crosses (for the quantum-control of

channel order) with matching colors. The dominant source of the statistical errors is the uncertainty in

determining the initial states for the process tomography. (In fact, the input states were prepared and

characterized at the output of the source, but they were then sent to each experiment via 3m long op-

tical fibers, which introduced additional noise.) This uncertainty leads to the error bars on all the data

sets presented in Figs. 3.3–3.5 (see Section 3.5.5 for more details on error estimation). Nevertheless,

all plots display a good agreement between experiment and theory. As expected, the experimentally

measured coherent information is slightly lower than that predicted theoretically. This offset is mainly

due to the following systematic errors: i. the imperfect visibility when the two trajectories are recom-

bined on the second beamsplitter, ii. phase drifts which can occur during the experimental runs, and

iii. slight calibration errors in the LCWPs implementing the channels and the waveplates used for
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Figure 3.3 Experimental XY-Channel noise data. The theoretical trends associated with the channels in
series with quantum-controlled operations and the quantum-control of channel order show full activation. The
experimental data do not perfectly match the theoretical trends because, for p = 0.5, the channel produces an
equal mixture of X- and Y -operations, and such case can be experimentally realised with a lower fidelity than
the one in which only one of the two operations is performed (i.e., when p = 0 or 1). It follows that, in the
central region, the experimental data are further apart from the theoretical trend than they are on the upper end.
The quantum-control of parallel channels does not allow full activation, and thus it is positioned below the
previous two trends. In this case, the experimental data are closer to the theoretical expectation. The reason of
the higher agreement is that, in the case of the disposition of noisy channels in parallel, only one channel is
present in each branch of the interferometer. As a consequence, the experimental imperfections affecting each
branch are smaller than in the dispositions of channels in series and in indefinite order. Finally, the coherent
information associated to only one XY -channel is theoretically lower than all the other layouts. A detailed
analysis of the error estimation and the systematic error is provided in Section 3.5.5. The labels
‘QC-//-channels’, ‘Series w/ QC-ops.’ and ‘QC-order’ stand for ‘quantum-control of parallel channels’,
‘channels in series with quantum-controlled operations’ and ‘quantum-control of channel order’, respectively.
The same labels will be used in all plots.

state preparation and measurement. These systematic effects are not included in the calculation of

our experimental errors. Full details of the measurement procedure, including photon count rates and

measurement times, as well as the statistical and systematic errors affecting the data are presented in

Section 3.5.5.

The orange data set reported in Fig. 3.3 corresponds to the coherent information when the two XY-

channels are used in a quantum-controlled superposition. In Section 3.2.1, we illustrated that, when

p = 0.5, the output still displays a partial dependence on the input state. However, calculating the

coherent information reveals that this is not sufficient to transmit a single qubit per use (i.e., the co-

herent information is less than 1). Nevertheless, the orange curve indicates that quantum information

can still be transmitted, although not a the maximum rate.

The turquoise curve in Fig. 3.3 represents the coherent information of a single trajectory traversing a
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Figure 3.4 Experimental BF- and PF-noise data. The experimental data of quantum-control of parallel
channels and the quantum-control of channel order are in good agreement with the theoretical trends.
Conversely, the configuration of the channels in series with quantum-controlled operations shows a constant
offset between the experimental data and the expected theoretical trend. This discrepancy is due to the fact
that, in this case, all the liquid crystals are arranged in series, with the additional presence of waveplates
realizing a Hadamard gate, and hence this configuration is the one that exhibits the greatest amount of
experimental imperfections along each path. In spite of this, for most values of p the coherent information that
can be achieved with the series configuration is still above all others by several standard deviations.

single copy of the channel, which is 1−H(p), where H(p) = −p log(p)− (1− p) log(1− p) is the

Shannon entropy. (The shaded area underneath represents the region within which any activation by

either channel layout is less effective than directly using one of the noisy channels.) Because in our

experiment we assume that the noise strengths p of the two channels are always identical, using the

channels in a classical mixture, as depicted in Fig 3.1d), will also result in the capacity of a single use

of the channel. If a single trajectory was sent through two copies of the channel in a row, the coherent

information would be even lower, since the second channel would further decohere the polarization

state. We see in this first case that for all values of the noise parameter p, all three superposition

methods transmit more quantum information than only using a single-trajectory.

Bit-Flip and Phase-Flip Channels— Ref. [Salek et al., 2018] showed that a quantum superposition of

the causal order of a bit-flip and a phase-flip channel can transmit more quantum information than the

amount which can travel through each channel individually. (Referring to Fig. 3.1, this corresponds

to replacing channel 1 with the bit-flip channel (Eq. (3.9a)), and channel 2 with the phase-flip channel

(Eq. (3.9b)). Note that, contrary to the other cases, here we consider two different types of noisy

channels C1, C2, rather than two copies of the same channel). In light of this, Ref. [Guérin et al.,

2019] pointed out that this idea can also be applied when the noisy channels are placed in series,

provided that one allows quantum-controlled operations before and between them, and that this trick
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allows one to transmit quantum information perfectly (when U1 = Y , U2 = U3 = H , where H is the

Hadamard operation).

We experimentally confirm the predictions of Refs. [Guérin et al., 2019; Salek et al., 2018] in Fig. 3.4.

There, we see that, regardless of the noise strength, the channels in series with quantum-controlled

operations can, in theory, perfectly transmit quantum information (i.e., the purple line is equal to 1).

Our experimental data (purple circles) confirm this, although they do show a slight offset due to the

systematic errors discussed above. In this case, the quantum-control of channel order (brown curve for

theory, and crosses for experiment) does not work as well. Nonetheless, we do find that for a range of p

it outperforms the single use value 1−H(p). For this choice of noisy channels, the quantum-control of

parallel channels (orange curve) can transmit more information than their quantum-controlled order.

For a large range of p, it is larger than the value achievable through the quantum-control of channel

order, and the slight theoretical advantage of this latter over the quantum-control of parallel channels

for large enough values of p is not observable in our experimental data.

For a fair comparison, we mention that changing the quantum-controlled operations Ui depending on

the type of noise could be regarded as an additional resource. In fact, setting the optimal quantum-

controlled operations requires one to characterize the noise prior to using the channels. In Section

3.5.9, we compare the performance of the channels in series with quantum-controlled operations for

the same unitaries that we use for the XY- and BB84-channels (namely, for U1 = Y , U2 = U3 = I).

There, we observe that setting U2 = U3 = I results in a performance that is comparable to that of

the quantum-control of channel order, and which still outperforms the single-use capacity. In doing

so, the quantum-controlled operations remain fixed in this configuration independently of the type of

noise.

BB84-Channel— As a final example, we consider two copies of the depolarizing BB84-channel

(Eq. (3.10)). These results are shown in Fig. 3.5. Also in this case, the channels in series with

quantum-controlled operations (this time with U1 = Y , U2 = U3 = I), shown in purple, achieves the

largest enhancement. While with only two trajectories it is not possible to perfectly transmit quantum

information through these noisy channels, Ref. [Guérin et al., 2019] showed that with additional tra-

jectories any type of noise can be perfectly corrected with the quantum superposition of channels in

series. The quantum-control of channel order in this case outperforms both the single-use coherent

information (1− 2H(p)) and the coherent information of the quantum-control of parallel channels.

These three examples show that, depending on the type of noise, different superpositions of channels

can lead to the ability to transmit different amounts of quantum information. The physical origin

of this ability is an effective coupling between the trajectory and the internal degree of freedom. In

the present paper, this coupling is verified by the observed correlations between the states of the

aforementioned two degrees of freedom. While these correlations were only sketched in the case of

the EB channel in sections 3.2.1.1-3.2.1.3, analogous relations hold also in the case of the other noisy
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Figure 3.5 Experimental BB84-channel noise data. As in the previous plots, the continuous lines show the
expected theoretical trends, while the squares, circles and crosses represent the experimental data
corresponding to the quantum-control of parallel channels, the channels in series with quantum-controlled
operations, and the quantum-control of channel order, respectively. All the experimental data are in high
agreement with the expected theoretical trends.

channels studied in this section. In all the cases we investigated here (wherein the schemes are used

individually), even in the presence of experimental imperfections, using the channels in series with

quantum-controlled operations appears to be the best candidate to evade the effects of the noise.

3.4 Discussion

In this work, we experimentally and numerically explored how the degradation of quantum infor-

mation due to its propagation through noisy channels can be mitigated, and in several cases fully

suppressed. This was achieved by sending quantum information carriers through a pair of noisy chan-

nels in various superpositions of trajectories. In particular, we studied three types of schemes: the

quantum-control of parallel noisy channels, channels in series with quantum-controlled operations,

and the quantum-control of channel order.

All of these schemes bear much in common with error filtration [Gisin et al., 2005]. More recently,

this has been refined in a number of theoretical works [Abbott et al., 2020; Caleffi and Cacciapuoti,

2020; Chiribella et al., 2018; Chiribella and Kristjánsson, 2019; Ebler et al., 2018; Guérin et al.,

2019; Jia and Costa, 2019; Kristjánsson et al., 2020; Loizeau and Grinbaum, 2020; Procopio et al.,

2020; Salek et al., 2018; Sazim et al., 2020; Wilson et al., 2020], tied into the concept of indef-

inite causal orders. While enhanced communication based on an indefinite causal order has been
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experimentally demonstrated [Goswami et al., 2020; Guo et al., 2020], an experimental study com-

paring different superpositions of trajectories in presence of various types of noise has been lacking.

Our work is aimed at bridging this gap, by suggesting common ground based on the experimental

resources that each of the analysed schemes requires.

Our results suggest that, in most quantum-optical communication scenarios, creating a superposition

of trajectories through channels in series with quantum-controlled operations should lead to the largest

noise reduction. One can easily imagine characterizing the error introduced in various communication

channels, and from there setting the unitary operations accordingly. Moreover, Ref. [Guérin et al.,

2019] illustrated that these types of schemes can be extended to superpositions of more than two tra-

jectories to achieve complete error cancellation for any type of noise. We have shown experimentally

that with only two trajectories it is already possible to completely cancel (after accounting for exper-

imental errors) all the noise arising from two out of the three types of noisy channels we considered.

Furthermore, the quantum-controlled operations could also be introduced in the other two schemes

and, potentially, they could match the performance of the layout with channels in series.

The large experimental communication enhancements presented here highlight the practical relevance

of extending the quantum communication paradigm to scenarios in which not only the information

carriers, but also the trajectories along which they propagate are quantum. We expect that the relative

ease of implementation of these schemes will enable them to be readily put into practice for the noise-

reduction of real-world long-distance quantum communication applications.

3.5 Methods

3.5.1 Communication Advantages when Transmitting Classical Information

The present work focuses on the transmission of quantum information through channels placed in

a quantum superpositions of trajectories. This is, however, not the only possible choice: the work

which initiated this research direction discussed communication advantages in transmitting classical

information through a quantum-control of channel order [Ebler et al., 2018]. In the following, we

briefly comment on our choice of figure of merit, and we explain how the scenarios in Fig. 3.1 compare

for transmitting classical information.

Classical communication is determined by the amount of classical correlations which a quantum chan-

nel can maintain between its input and output. Generally, the classical capacity of a quantum chan-

nel is only zero for the class of erasure channels which replaces any input by a fixed output state.

Sending quantum information, on the other hand, is a more ambitious task: here, the capability of

a channel to preserve quantum correlations (i.e., entanglement) during the processing quantifies the

90



3.5 Methods

transmissible quantum information. Indeed, quantum information was shown to be the most diffi-

cult to communicate [Wilde, 2013], and at the same time the most valuable resource for information

theoretic tasks and computation. For instance, sending quantum information can ensure secure com-

munication [Bennett and Brassard, 1984], it can be used to distill secret keys for cryptography [Wilde,

2013], and it is crucial for tasks like distributed quantum computation [Beals et al., 2013; Broadbent

et al., 2009]. Furthermore, trivially, quantum information can also be used to communicate classical

information [Holevo, 1973]. Hence, in this work we focus on advantages for the most difficult type of

information transmission.

Comparing the superposition schemes from Fig. 3.1 in the case of a classical communication yields

an analogous behavior to the case of quantum communication. It was already shown in Appendix G

of Ref. [Gisin et al., 2005], that superpositions of quantum channels [Fig. 3.1a)] yield at least the

amount of transmissible classical information of classical trajectories [Fig. 3.1d)]. The same holds

true for the advantages through the quantum-control of channel order [Fig. 3.1c)] considered in the

initial work [Ebler et al., 2018]. Later, Ref. [Abbott et al., 2020] showed that quantum-control of par-

allel channels [Fig. 3.1a)] can outperform the quantum-control of channel order [Fig. 3.1c)] for certain

communication tasks. Numerical simulations support generality of this claim for classical informa-

tion by comparing the two scenarios for random channels [Loizeau and Grinbaum, 2020]. Finally,

quantum controlled sequences of channels [Fig. 3.1b)] was found to allow for the highest classical

communication rates, as it has a larger set of allowed encoding schemes, which allow for phase kick-

backs that cause partial information exchange with the trajectory degree of freedom [Guérin et al.,

2019].

3.5.2 Case Study: Activation of the EB-Channels in the Three Layouts

In this section, we briefly evaluate the output state of the three superposition techniques for the noisy

channel described by Eq. (3.1). We carry out our study by interpreting the action of the two channels

as follows. Each channel randomly applies either X or Y with probability 1/2. Hence, the ‘internal

configuration’ of the superposition can be understood as either i. both channels 1 and 2 implement

X , ii. channel 1 implements X , while channel 2 implements Y , iii. channel 1 implements Y , whereas

channel 2 implements X , or iv. both channels 1 and 2 implement Y . The final output state will then

be a mixture of the output states in these four configurations, each with probability 1/4.

Throughout this section, we will assume that the input state is |ψ〉I |+〉T, where |ψ〉 = α |0〉 + β |1〉,
and I (T ) labels the internal (trajectory) DOF.

Quantum-Control of Parallel Channels— In this scheme, one noisy channel is placed in each tra-

jectory. The action of the two channels in parallel can be interpreted as creating a mixture of the
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following four unnormalised states at the output:

X |ψ〉I |0〉T +X |ψ〉I |1〉T (3.11a)

X |ψ〉I |0〉T + Y |ψ〉I |1〉T (3.11b)

Y |ψ〉I |0〉T +X |ψ〉I |1〉T (3.11c)

Y |ψ〉I |0〉T + Y |ψ〉I |1〉T , (3.11d)

where the four states correspond to internal configurations of X −X , X − Y , Y −X , and Y − Y ,

for channel 1 and channel 2, respectively. These states can be rewritten (up to further normalisation)

as:

X |ψ〉I |+〉T (3.12a)

(X |ψ〉I + Y |ψ〉I) |+〉T + (X |ψ〉I − Y |ψ〉I) |−〉T (3.12b)

(X |ψ〉I + Y |ψ〉I) |+〉T − (X |ψ〉I − Y |ψ〉I) |−〉T (3.12c)

Y |ψ〉I |+〉T . (3.12d)

Now, measuring the trajectory DOF in the {|+〉T , |−〉T} basis and obtaining |−〉T (which happens

with probability 1/4) projects the internal DOF into X |ψ〉I − Y |ψ〉I, which can be rewritten (after

renormalisation and up to an irrelevant global phase) as in Eq. (3.3). This is a pure state, which implies

that some ability to transmit quantum information has been restored in post-selection. If, on the other

hand, one obtains the result |+〉T (with probability 3/4), it is straightforward to show that the internal

DOF is projected in the mixed state described by Eq. (3.4).

In the recent papers on superpositions of trajectories [Abbott et al., 2020; Chiribella and Kristjánsson,

2019], it was shown that the output of a quantum-controlled superposition of two channels depends

on additional parameters related to the physical realisation of the channels (‘transformation matri-

ces’ in [Abbott et al., 2020] and ‘vacuum amplitudes’ in [Chiribella and Kristjánsson, 2019]). In

our scheme, these additional parameters reduce to the relative phase between the vacuum and the

single-photon subspace of the unitary operations (e.g., the Pauli-X and -Y from above, with trans-

formation matrix Γ = (X + Y )/2). More precisely, the vacuum extension of a qubit unitary U is

U ′ = eiφ |vacuum〉 〈vacuum| + U , where U acts in the single-photon subspace. In the calculation

above, the phase is implicitly set to zero, which is in agreement with our experiment.

Channels in Series with Quantum-Controlled Operations— Let us now consider the action of the

superposition of trajectories in series with the quantum-controlled operations (Fig. 3.1b)), with U1 =
Y , U2 = I, U3 = I. In this case, the input state is transformed into (|ψ〉I |0〉T + Y |ψ〉I |1〉T)/

√
2

before interacting with the noisy channels.

Again, we can compute the four effective unnormalised states which arise from the different internal
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configurations of the noisy channels:

XX |ψ〉I |0〉T +XXY |ψ〉I |1〉T (3.13a)

Y X |ψ〉I |0〉T + Y XY |ψ〉I |1〉T (3.13b)

XY |ψ〉I |0〉T +XY Y |ψ〉I |1〉T (3.13c)

Y Y |ψ〉I |0〉T + Y Y Y |ψ〉I |1〉T . (3.13d)

The order of the above states refers to internal configurations X −X , X − Y , Y −X , and Y − Y .

These states can be rewritten (up to phases) as:

|0〉I |ψ
′〉T + i |1〉IX |ψ

′〉T (3.14a)

|0〉I |ψ
′〉T − i |1〉IX |ψ

′〉T (3.14b)

|0〉I |ψ
′〉T − i |1〉IX |ψ

′〉T (3.14c)

|0〉I |ψ
′〉T + i |1〉IX |ψ

′〉T , (3.14d)

where |ψ′〉 = α |0〉− iβ |1〉. As a result, we see that measuring the internal DOF in the computational

basis {|0〉I , |1〉I} projects the trajectory into either |ψ′〉T or X |ψ′〉T, upon obtaining outcomes |0〉I
or |1〉I, respectively (each with equal probabilities). Both of these states can be unitarily corrected,

allowing one to achieve perfect quantum information transfer through these channels. (Even though

here, for simplicity, we restricted ourselves to the case p = 1/2, the same reasoning applies whatever

the mixing probability p in the definition of the channels, Eq. (3.8)).

Quantum-Control of Channel Order— For this scheme, we make use of the fact that the output of the

quantum switch for unitary operations A and B is

1
2{A,B} |ψ〉I |+〉T −

1
2[A,B] |ψ〉I |−〉T , (3.15)

where [A,B] is the commutator of A and B, and {A,B} is their anti-commutator. It is then easy to

notice that the four output states (up to phases) are

|ψ〉I |+〉T (3.16a)

Z |ψ〉I |−〉T (3.16b)

Z |ψ〉I |−〉T (3.16c)

|ψ〉I |+〉T . (3.16d)

Again, the order of the above states refers to the internal configurations X −X , X − Y , Y −X , and

Y − Y . This leads to the mixture described by Eq. (3.5), and it implies that measuring the trajectory

in the {|+〉T , |−〉T} basis projects the internal DOF into either |ψ〉I, or Z |ψ〉I. (As above, the same
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Figure 3.6 Experimental characterization of a liquid crystal waveplate (LCWP) at 0◦. Since the crystal
is positioned at 0◦, it will be able to switch from an identity operation to a Pauli-Z. To characterize the voltage
corresponding to a Pauli-Z, we send through it photons in the polarization basis {|±〉 = (|0〉 ± |1〉)/

√
2}, and

we measure for which voltage the population inversion occurs. The estimated errors are Poissonian.

reasoning also applies whatever the mixing probability p in Eq. (3.8).)

3.5.3 Liquid Crystals Characterization

In essence, a liquid crystal waveplate (LCWP) can be understood as a standard crystalline retarder

whose amount of retardance can be continuously varied by applying a voltage. Fig. 3.6 shows the

characterization of one of our LCWPs. In our experiment, we used Meadowlark Liquid Crystal Vari-

able Retarders. Their beam deviation is estimated to 2 arc min, their reflectance (per surface) is 0.5%,

and their surface quality is 40-20 scratch and dig.

3.5.4 Numerical Comparison for Random Channels

To further compare the three schemes, we present a numerical evaluation of the coherent informa-

tion which can be achieved with each channel layout for a large set of randomly-generated chan-

nels. The numerical procedure is carried out as follows. First, we randomly generate a quantum

completely-positive and trace-preserving (CPTP) channel using the quantinf MATLAB package

available at http://www.dr qubit.org/matlab.html. (The package uses the routine outlined in 3.) Then,

3We made use of the randChan function of the quantinf MATLAB package, which returns a randomly generated
2× 2 quantum channel in the Kraus representation. It achieves this by generating a random isometry, and converting it
onto the Kraus representation. Below, we provide further details on how these two tasks are achieved.
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a) b)

Figure 3.7 Histogram of the coherent information achieved with the three channel layouts when the
two copies of the same randomly-generated channel is used in each of the three layouts. The histograms
report the frequency with which a random channel (y-axis, in logarithmic scale) yields a given amount of
coherent information (x-axis), normalized to the total number of channels used. a) Histogram with 103 bins
between a coherent information of 0 and 0.85. As can be seen, the configuration of channels in series with
quantum-controlled operations consistently achieves the highest coherent information on average. b)
Histogram of the same data with 105 bins displayed for values of coherent information from 0 to 0.001.
By increasing the resolution for small values of coherent information, it is possible to observe in greater detail
the absence of the peak at zero for the quantum superposition of channels in series with quantum-controlled
operations. In this region, the performance of the quantum-control of parallel channels and that of
quantum-control of channel order is comparable.

we estimate the coherent information when i. two copies of the same channel (Fig. 3.7) or ii. two

different randomly-generated channels (Fig. 3.8) are inserted in the three types of quantum superposi-

tions of trajectories. The coherent information of the resulting superposition is then estimated using a

maximally entangled state |Φ+〉 as input 4. For the configuration of quantum-control of parallel chan-

nels, as shown in [Abbott et al., 2020], the output state depends not only on the CPTP map, but also on

the specific implementation of the channel. We therefore discuss three methods to generate different

implementations for each randomly generated CPTP map, but we present results only from the one

corresponding to the experimental implementation reported in the main text. For the configuration of

channels in series with quantum-controlled operations, we set U1 = Y , and U2 = U3 = I. Further

details on our numerical procedure are reported in Subsection 3.5.4.1. Histograms of our results with

respect to the coherent information are presented in Figs. 3.7-3.8, for 2.6 × 106 iterations (Fig. 3.7)

Step 1) The program generates a random isometry in the following way: Step 1.1) it generates two 2 × 2 matrices, A
and B, of real floating-point random entries drawn from a standard normal distribution (i.e., µ = 0, σ = 1, being µ the
mean of the distribution, and σ its variance) using the randn function; Step 1.2) it builds C = (A + iB)/

√
2; Step

1.3) it performs an economy-size QR decomposition such that C = Q ∗ R (where Q is an orthogonal matrix, and R is
an upper triangular matrix); Step 1.4) it diagonalises and normalises the matrix R into R′ = diag

(
diag(R)/|diag(R)|

)
;

Step 1.5 it creates a new matrix V = Q ∗R′, which is the desired isometry.
Step 2) The program converts the isometry V into the Kraus representation by left-multiplying it by states in the com-
putational basis.

4As before, the choice of a maximally-entangled state lower bounds the quantum capacity, and numerical simulations
suggest that such states maximise the amount of coherent information of a given channel.
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Figure 3.8 Histogram of the coherent information achieved with the three channel layouts when two
different randomly-generated channels are used. The overall trend here is comparable to that of two copies
of the same random channel (Fig. 3.7). However, in this case, the quantum-control of the parallel channels
performs, on average, better than the quantum-control of channel order. Moreover, in general, all three layouts
tend to perform worse than in the case of two copies of the same random noisy channel (i.e., the maximum
amount of coherent information which can be achieved through each layout is generally lower than in the case
shown in Fig. 3.7).

and 3.3 × 106 iterations (Fig. 3.8). In essence, this can be interpreted as the probability to obtain

a given value of coherent information with each of the three layouts. We observe that, on average,

channels in series with quantum-controlled operations achieve a better performance than the other two

methods, while the quantum-control of parallel channels (quantum-control of channel order) exhibits

the lowest performance when operated with two copies of the same channel (two different randomly-

generated channels). We also note that, in many cases, both the quantum-control of parallel channels

and the quantum-control of channel order fail to obtain any activation, leading to large peaks at zero in

each of their histograms. Interestingly, this peak is not present in the case of the layout in series with

quantum-controlled operations. This suggests that an activation (albeit small) of the noisy channels

can always be achieved using this layout with only two trajectories.

Finally, Fig. 3.9 shows a histogram, wherein the difference between the coherent information of

the quantum superposition of channels in series with quantum-controlled operations and that of the

quantum-control of parallel channels (CISeries w/ QC-ops. − CIQC-//-channels) and of quantum-control of

channel order (CISeries w/ QC-ops.−CIQC-order) is plotted for each random pair of channels. Generally, the

quantum superposition of channels in series with quantum-controlled operations can achieve coherent

information values higher than two other layouts. However, the negative values in the histograms

show that this is not always the case. This is in line with what illustrated in Section 3.5.9, where we

highlight the fact that, if the unitaries U1, U2 and U3 were not optimised for given noisy channels, a

higher coherent information might be obtainable with the other layouts. While Ref. [Guérin et al.,

2019] proved that, by superposing a larger number of trajectories, one can always find an optimal
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choice of quantum-controlled unitaries which can outperform the other two channels’ layouts, we

leave it as an open question whether or not this is also true for the restricted case of two trajectories

only.

a) b)

Figure 3.9 Histograms of the difference between coherent information achievable with quantum
superposition of channels in series with quantum-controlled operations and the other two layouts in the
case of a) two independent copies of the same random channel, and b) two different randomly-generated
channels. The histograms show, for each random channel, the difference between the coherent information of
the quantum superposition of channels in series with quantum-controlled operations and that of the
quantum-control of parallel channels [(CISeries w/ QC-ops.)− (CIQC-//-channels)] and of quantum-control of channel
order [(CISeries w/ QC-ops.)− (CIQC-order)]. While, to a large extent, the layout using the channels in series with
quantum-controlled operations tends to outperform the other two schemes, the negative values indicate that
this is not always the case.

3.5.4.1 Summary of Numerics

In this subsection, we provide further details on how we constructed the output states in the three

schemes. We start by randomly generating two single-qubit channels, using the Kraus decomposition.

Since any qubit channel has a Kraus decomposition with 4 operators or less, this results in two sets of

Kraus operators {A0, A1, A2, A3} and {B0, B1, B2, B3}. We will always use the two-qubit Bell state

|Φ+〉 to probe the channel and calculate the coherent information. Then, the full three-qubit state we

consider is given by:

|ψin〉T,I,H = |+〉T ⊗ |Φ
+〉I,H , (3.17)

where T is the trajectory qubit, I is the system which will experience the noisy channel (information

qubit), and H is the auxiliary (hypothetical) qubit used to evaluate the coherent information. We will

use A(I)
i = Ai ⊗ I as shorthand, where Ai acts on the state of the information qubit and I on that of

the auxiliary qubit.

Quantum-Control of Parallel Channels— We construct the output state, following Ref. [Abbott et al.,
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2020], as

ρout
T,I,H =1

2
[
|0〉 〈0|T ⊗ CA(ρin

I,H) + |1〉 〈1|T ⊗ CB(ρin
I,H)

]
(3.18)

+1
2
[
|0〉 〈1|T ⊗ ΓA ρin

I,H Γ†B + |1〉 〈0|T ⊗ ΓB ρin
I,H Γ†A

]
,

where ρin
I,H = |Φ+〉 〈Φ+|I,H. Here, CA and CB are the application of either channel

CΞ(ρin
I,H) =

3∑
i=0

Ξi ρin
I,H Ξ†i (3.19)

with Ξi = Ai, Bi, and the transformation matrices ΓΞ are

ΓΞ =
3∑
i=0
〈EΞ|i〉Ξi, (3.20)

where {|i〉} are orthogonal states of the environment. The transformation matrices ΓΞ are related to

a specific purification of the channels, and they depend on the initial states of the environment |EA〉
and |EB〉 used in this purification. These states will be given by the actual physical implementation of

the channel, and they can lead to different activations using the quantum-controlled channels. Given

some Kraus representations of the channels, we numerically investigated three different states of the

environment. First, as used in Ref. [Abbott et al., 2020], we set |EA〉 = |EB〉 = 1
2
∑3
i=0 |i〉. Second,

we generate |EA〉 and |EB〉 randomly from the Haar measure for each different channel. In this case

we do not optimise over |EA〉 and |EB〉, we simply take one random state for each. Finally, we set

the weights of the environment based on the randomly-generated channel as:

|EΞ〉 =
3∑
i=0

√
w

(Ξ)
i |i〉 , (3.21)

where

w
(Ξ)
i = Tr

(
Ξ(I)
i ρ

in
I,HΞ(I)

i

†)
, (3.22)

which, in our case of a maximally entangled input state, reduces to Tr
(
Ξ(I)
i Ξ(I)

i

†)
/2.

The appropriate method to generate the states of the environment depends on the physical realisation

of the channels. Within our framework, the description of quantum-control of parallel channels given

in the main text, for the channels we realised experimentally, coincides with the third option, with

Ξi = wiσi, where σi is a Pauli unitary, and the weights wi are given by the coefficients in Eqs. (3.8)-

(3.10). Correspondingly, we present the results for this case in Figs. 3.7-3.9 5. Moreover, on average

5Although an optimisation over all environmental states may produce higher values of the coherent information, the choice
of environmental states presented in Figs. 3.7-3.9 corresponds to the one which was experimentally realised with our
photonic Mach-Zehnder interferometer without further control over the environment or the noisy channels. To adhere
to the spirit of experimentally comparing schemes pursued in this Chapter, we thus chose not to optimise explicitly over
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the final method (i.e., setting the state of the environment based on the Kraus operators) performs the

best among the aforementioned three. This can perhaps be explained by the fact that, compared to the

other ones, this method generally leads to a larger norm of the transformation matrices ΓΞ, which is

crucial for the communication advantages [Abbott et al., 2020; Kristjánsson et al., 2020; Kristjánsson

et al., 2020].

Channels in Series with Quantum-Controlled Operations— For the numerical evaluation of this lay-

out, we must also include in the description the controlled-unitaries which are applied before the noisy

channels:

C-U = |0〉 〈0|T ⊗ I + |1〉 〈1|T ⊗ U. (3.23)

For all of the numerical results presented here, we set U = Y , where Y is the Pauli-Y operator. Then,

we construct 16 combined Kraus operators

Ki,j = B
(I)
j A

(I)
i , (3.24)

and when, e.g., the initial trajectory state is |+〉T, we compute the output state as

ρout
T,I,H = 1

2
∑
k,l

Uk |k〉 〈l|T (U †)l ⊗
∑
i,j

Ki,jρ
in
I,HK

†
i,j , (3.25)

where we used the notation according to which U0 = I.

Quantum-Control of Channel Order— For the switch we will use a simplification. We know that for

a given pair of Kraus operators, the output state when the trajectory is prepared in |+〉T and the input

is one half of the maximally entangled state |Φ+〉I,H is:

ρi,j =
{
A

(I)
i , B

(I)
j

}
ρ+

T,I,H
{
A

(I)
i , B

(I)
j

}† +
[
A

(I)
i , B

(I)
j

]
ρ−T,I,H

[
A

(I)
i , B

(I)
j

]†
, (3.26)

where {A(I)
i , B

(I)
j } and [A(I)

i , B
(I)
j ] are the anti-commutator and commutator of A(I)

i and B(I)
j , and

ρ+
T,I,H = |+〉 〈+|T ⊗ |Φ+〉 〈Φ+|I,H and ρ−T,I,H = |−〉 〈−|T ⊗ |Φ+〉 〈Φ+|I,H. Then the net output state

is simply

ρout
T,I,H =

∑
i,j

ρi,j . (3.27)

From these output states we then evaluate the coherent information as described in the main text.

3.5.5 Data Acquisition and Error Estimation

Below, we briefly outline the details of the data acquisition and the error estimation in our experi-

ment.

all implementations of the randomly chosen channels (following the approach, e.g., of Ref. [Abbott et al., 2020]).
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As discussed above, we followed two methods to experimentally construct of the noisy channels. In

the first, we realized the noise within each channel by generating random numbers in the range [0, 1].
Based on this number, and on the type of noise we wanted to realize (Eqs. (3.8)–(3.10)), we assigned

a unitary operation from the set {I, X, Y, Z}. In order to ensure a high fidelity of the noise channel

(> 99%), we repeated this procedure 1000 times, measuring each configuration for 1s, and integrating

the data taking procedure over these 1000 runs. In the second method, we measured all the possible

combinations of unitary operations between the two noisy channels 1 and 2, and we then created

the desired noise during our data analysis, following the procedure proposed in Ref. [Goswami et

al., 2020]. The first method was used to create the noisy channels in the indefinite order channel

layout, while the second method was used for all other layouts. We did not observe any significant

difference in the performance of the two methods (provided that we applied enough random unitary

operations, see Section 3.5.6). However, the first method required several days of measurement, the

second less than an hour. Since full QPT was not required for the indefinite order arrangement, we

only used the first method for these data, and used the second method for all of the remaining channel

configurations.

We collect ≈ 23000 entangled photon pairs per second directly from our source. Of these pairs, we

selected only one separable polarization component (i.e., |H,V 〉), halving the count rate. Finally, the

photons were sent through optical fibers to the different experiments. Because of experimental imper-

fections due to the non-zero reflectivity of the various optical elements, the non-ideal fiber coupling,

and the optical fiber’s losses (the distance to travel in optical fiber between the source and the various

experiments is about 3m), approximately 3000 photons per second were detected at the end of the

experiment.

Finally, because of the long measurement times (particularly, in the case of the physical implementa-

tion of the noise in the channels), we observed phase drifts in the two arms of the interferometer. In

order to correct these drifts, so as to ensure that we always prepared and projected the desired path

qubit states, we actively stabilized the interferometer by means of the delay line controlled by a piezo-

actuator. We measured and reset the phase every 20 minutes (which, according to our tests, ensured

phase drifts below 1%). Given these count rates, it follows that we measured about 3 × 106 photons

for each internal configuration in case of physical implementation of the noisy channels, and about

3000 counts for each internal configuration in case of implementation of the noisy channels during

data analysis.

The aforementioned imperfections in the path qubit had various consequences in our experiment.

First, the phase drift on this qubit caused an uncertainty on the input state, since the phase of the path

qubit can fluctuate over time. Moreover, if the phase drifts during the experiment, the purity of the

input state can be reduced. In light of this, and of the high number of accumulated counts, the main

statistical error in our experiment was related to the input state used for QPT. Therefore, to calculate

all our experimental error bars, we determined the input state as follows. We performed quantum
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tomography of the quantum state directly on the path and polarization qubits in absence of ‘internal

operations’ (i.e., setting to identity all the optical components meant to implement the noisy channels

later on). We then observed the variation of this state as a function of time, and used this variation to

analyze our data for a ‘worst-case’ state, a ‘best-case’ state, and a ‘most-likely’ state. This spread in

the input states led to the error bars and the data-points presented in all of our experimental data.

The second main cause of experimental errors in the path qubit arises from the imperfect visibility

of the Mach-Zehnder interferometers used to measure it. This reduced visibility, ≈ 0.93 − 0.96 (de-

pending on the amount of optical elements in each interferometer arm) essentially corresponds to a

slight loss of coherence in the two trajectories and, therefore, to a decrease in the ability of the trajec-

tories to restore quantum information. This leads to a systematic offset in our data. Likewise, a slight

miscalibration of our waveplates and liquid crystal waveplates may have occurred, this would lead to

further systematic errors. These systematic errors have not been included in our error bar calculation.

We note, in particular, that a considerably reduced visibility of the interferometer may constitute the

greatest experimental challenge in the application of our techniques to real-world quantum communi-

cation.

3.5.6 Fidelity of Channel Implementation

As described in the main text, we implemented the noisy channels in two different ways. In this

section, we will discuss the first method, wherein we randomly apply either a Pauli-X , -Y , -Z or

the identity operation for one second of our data acquisition time. The probability of each operation

is given by the type of noisy channel we wish to implement (i.e., by one of Eqs. (3.8)–(3.10)). The

natural question is how many operations must we average over to ensure a faithful implementation of

the noisy channels.

To answer this, we used Monte Carlo simulations to study the average ‘process fidelity’ Fav as a

function of the number of applied operations. We computed the average process fidelity (defined

in Ref. [Gilchrist et al., 2005]) by i. randomly generating 10000 single qubit states from the Haar

measure, ii. computing the ideal output state ρid using Eqs. (3.8)–(3.10), iii. simulating the output by

applying N randomly chosen operations ρsim, and then iv. computing the average fidelity between ρid

and ρsim for all N input states. Already for N = 25, the average process fidelity is larger than 0.99.

As an example, a plot of the average ‘process infidelity’ (1−Fav) for the BB84-channel with p = 0.5
is shown in Fig. 3.10. (For the infidelity, a value of 0 indicates a perfect implementation.) We chose

this as a representative example since the BB84-channel takes a slightly longer time to converge than

all the others (this is because the BB84-process randomly applies one of the 4 operations, while all

the others only choose among 2 operations). So, the case shown in Fig. 3.10 represents the worst case

among all the ones studied. Nevertheless, even such a channel converges to the ideal noisy channel
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Figure 3.10 Monte Carlo simulation of the BB84-channel with p = 0.5. A plot of the average process
infidelity between the ideal process and the simulated process versus the number of applied operations used to
simulate the noisy channel. The infidelity is defined as 1− Fav, where Fav is the fidelity. Hence, smaller
infidelities indicate a higher degree of agreement.

quite rapidly with N . Finally, since we always implement two channels simultaneously, we apply

1000 different operations, which is far beyond this limit.

3.5.7 Single-Photon Source

A CW laser centered at 392nm emits the pump beam for a source producing single photons through

a process of type-II spontaneous-parametric-down-conversion. The pump beam traverses a focusing

lens with f = 12.5cm, and then reaches, at the proper distance, a 3mm-thick beta-barium borate

(BBO) crystal. Within the crystal, single photons are generated at a wavelength centred at 784nm. To

compensate for the spatial and temporal walk-off of the resulting single photon pairs, they are sent

each through a BBO crystal of 1.5mm thickness. They are finally filtered in polarization through a

longpass filter, and a bandpass filter centered at 785nm with a full-weight-half-maximum of 10nm.

The photon pairs rate is 23000/s with a pump power of 85mW.

3.5.8 Quantum Process Tomography

Our experimental measurements consist, in general, of performing two-qubit quantum process tomog-

raphy (QPT) on a path and a polarization qubit. Basically, QPT requires two steps, i. preparing the

system in a tomographically-complete set of states before the process, and ii. measuring the system

in a complete basis set after the process. For the polarization qubit, this is relatively straightforward.

In fact, in all of three superposition methods outlined in Fig. 3.2, the photons enter the experiment in
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a single path. At this point a QWP and a HWP are inserted, which allow us to prepare any single-

qubit polarization state. After this, the path qubit is prepared by a 50/50 beamsplitter in a quantum

superposition of two paths. After the noisy channels, the paths are recombined by another 50/50

beamsplitter. On each of the output paths we place a QWP, a HWP and a polarizing beamsplitter to

implement the polarization measurements. Although they are physically different elements, we ensure

that the waveplates in each output arm are always set to the same angle, and hence perform the same

measurement.

Even though, in all of the communication schemes presented in the main text, the trajectory is simply

initialized in an equal superposition (i.e., the path qubit starts out in |+〉T), one must prepare this

qubit in a complete set of states in order to perform QPT. In order to change the input state of the

path qubit between |+〉T, |R〉T =
(
|0〉T − i |1〉T

)
/
√

2, and |L〉T =
(
|0〉T + i |1〉T

)
/
√

2, we set the

relative phase between the two trajectories after the first beamsplitter using a delay stage mounted

on a calibrated piezo-actuator. We can also easily prepare |0〉T and |1〉T by blocking either path.

Analogously, we measure the path qubit in two different ways. To measure in {|+〉T , |−〉T}, or

{|R〉T , |L〉T}, we suitably set the relative phase between the two paths before recombining them at

the second beamsplitter. We use the same delay stage to both set the phase of the path state, and to

measure it in {|+〉T , |−〉T}, or {|R〉T , |L〉T}. This can be done by adding the required phase for

state preparation and subtracting the phase for state measurement. Such a phase is then converted into

a path delay and sent to the piezo-actuated delay stage. To measure in the {|0〉 , |1〉} basis, we block

either path before the 50/50 beamsplitter, and we then sum the counts from the two paths after the

beamsplitter.

To collect a complete set of data, we prepare the path qubit in {|0〉T , |+〉T , |R〉T , |L〉T}, and for

each of these path states we prepare the polarization qubit in {|0〉I , |+〉I , |R〉I , |L〉I}, for a total of

16 input states. We then measure each of these 16 two-qubit states by setting 9 different two-qubit

basis settings:
{
|0, 0〉 , |0,+〉 , |0, R〉 , |+, 0〉 , |+,+〉 , |+, R〉 , |R, 0〉 , |R,+〉 , |R,R〉

}
I,T. However,

for each measurement setting we measure all four outcomes. For example, when the measurement is

set to |0, 0〉I,T, we obtain the projections onto |0, 0〉I,T, |0, 1〉I,T, |1, 0〉I,T, and |1, 1〉I,T. This yields 36

different measurement results for each of the 16 input states, providing an over-complete data set, on

which we perform a least-squares QPT routine.

Equipped with this mathematical description of our experimental channel, we can compute the action

of our experiment on one qubit of a maximally-entangled Bell state when the path qubit is set to |+〉T.

From this, we evaluate the coherent information (Eq. (3.7)). Fixing the state of the path qubit in this

manner results in the coherent information of the effective one-to-two-qubit channel.

We carry out this method based on full QPT for the cases of quantum-control of parallel channels

and channels in series with quantum-controlled operations, but for the quantum-control of channel

order we can make a simplification to lower bound the coherent information which saves significant
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measurement time. For these data, we only prepare the path state |+〉T, and then measure it in the

{|+〉T , |−〉T} basis, as described above. With these measurements, we lower bound the coherent

information in our channels as follows. We first reconstruct two single-qubit χ-matrices for the target

systems, χ|+〉 and χ|−〉, using single-qubit process tomography on the polarization qubit. In particular,

χ|+〉 is the single-qubit effective process that the information qubit experiences when the trajectory

measurement results is |+〉T, whereas χ|−〉 is the effective process when the trajectory measurement

outcome is |−〉T

Next, we compute the action of the one-qubit χ-matrix on a maximally-entangled Bell state, to eval-

uate the two values of the coherent information I |+〉c and I |−〉c in Eq. (3.7). Afterwards, we simply

calculate their average, with each term weighted by their respective post-selection probabilities p|+〉
and p|−〉:

ILB
c = p|+〉I |+〉c + p|−〉I |−〉c . (3.28)

In general, ILB
c sets a lower bound on Ic because of the data processing inequality for coherent

information [Nielsen and Chuang, 2000; Schumacher and Nielsen, 1996]. Furthermore, in absence of

additional errors, it can be shown that ILB
c = Ic in the case of the quantum switch.

3.5.9 Fixing the Quantum-Controlled Operations Independently of the Noise
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Figure 3.11 Experimental BF- and PF-noise data for sub-optimal quantum-controlled operations. The
trend of the scheme featuring the channels in series with quantum-controlled operations (Series w/ QC-ops.)
performs worse than the quantum-control of channel order (QC-order) for all p ≥ 0.67, but better than the
quantum-control of parallel channels (QC-//-channels) for p ≥ 0.84. The experimental data for the
sub-optimal choice of Series w/ QC-ops. is in good agreement with the expected trend.

In some cases, for instance in a rapidly-varying noise environment, it may be impossible to estimate
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the type of noise and adapt the quantum-controlled operations accordingly. In these situations, one

would need to fix such operations independently of the noise. For our noise varieties, the operations

U2 and U3 were set to I in the cases of the XY- and BB84-channels, and to H for the BF-and-PF

case, whereas U1 = Y in all three cases. If we were to keep the same quantum-controlled operations

in the BF-and-PF case as in the XY and BB84 cases, the efficiency of the scheme would be reduced,

and the channel activation due to the channels in series with quantum-controlled operations would

result comparable to that of the two other schemes (i.e., the quantum-control of parallel channels,

and the quantum-control of channel order). The theoretical trend and the experimental data points

corresponding to this case are shown on Fig. 3.11. Colors and data points shapes are the same as in

Figs. 3.3–3.5.
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Chapter 4

Time’s Arrow of a Quantum Superposition of
Thermodynamic Evolutions

G. Rubino, G. Manzano Paule, and Č. Brukner

Abstract. A priori, there exists no preferential temporal direction as microscopic phys-
ical laws are time-symmetric. Still, the second law of thermodynamics allows one to asso-
ciate the ‘forward’ temporal direction to a positive variation of the total entropy produced
in a thermodynamic process, and a negative variation with its ‘time-reversal’ counterpart.
This definition of a temporal axis is normally considered to apply in both classical and
quantum contexts. Yet, quantum physics admits also superpositions between forward and
time-reversal processes, thereby seemingly eluding conventional definitions of time’s ar-
row. In this work, we demonstrate that a quantum measurement of entropy production can
distinguish the two temporal directions, effectively projecting such superpositions of ther-
modynamic processes onto the forward (time-reversal) time-direction when large positive
(negative) values are measured. Remarkably, for small values (of the order of plus or mi-
nus one), the amplitudes of forward and time-reversal processes can interfere, giving rise to
entropy-production distributions featuring a more or less reversible process than either of
the two components individually, or any classical mixture thereof. Finally, we extend these
concepts to the case of a thermal machine running in a superposition of the heat engine and
the refrigerator mode, illustrating how such interference effects can be employed to reduce
undesirable fluctuations.

Author contributions: G.R., G.M. and Č.B. contributed to all aspects of the research, with the leading

input of G.R..
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Chapter 4: Time’s Arrow of a Quantum Superposition of Thermodynamic Evolutions

4.1 Introduction

In spite of it being seemingly straightforward, physics is still nowadays seeking to provide a compre-

hensive understanding of the apparent passage of time [Halliwell et al., 1996]. The concept of time is

intimately related to the observation of a change in physical systems. However, the recognition that,

at their most fundamental level, physical systems generally obey time-reversal laws led to the reali-

sation that systems’ evolutions do not intrinsically differentiate between forward and backward time

directions. Attempts to uphold with physical arguments the evidence of the time flow are being made

on multiple fronts, mainly on the basis of empirical observations: we see that entropy in the universe

increases (thermodynamic time’s arrow), that the universe expands (cosmological time’s arrow), that

causes always precede their effects (causal time’s arrow). Likewise, there have been several propos-

als as to the explanation of the time’s arrow in a quantum-mechanical contexts [Erker et al., 2017;

Jennings and Rudolph, 2010a,b; Maccone, 2009; Mlodinow and Brun, 2014]. The peculiarity of the

quantum framework is that it enables for processes to be placed in quantum superposition. Applied to

the notion of thermodynamic time’s arrow, this implies that quantum mechanics can allow the super-

position of processes producing opposite variations in the entropy. This raises the question of how a

well-defined thermodynamic arrow of time can be established in the quantum framework when such

superpositions are in place. To address this question, in this work we show that a measurement of the

entropy production has a decisive role in restoring a definite thermodynamic time’s arrow. We then

also investigate interference effects in such superpositions, and we apply our results to the more con-

crete scenario of quantum-thermodynamic engines. Our investigations bear a conceptual similarity

with the field of indefinite quantum causality, wherein the order of operations is placed in a quan-

tum superposition [Chiribella, 2012; Chiribella et al., 2013; Oreshkov et al., 2012]. In the present

case, however, instead of exploring causal superpositions between different orders of operations, we

analyse superpositions of thermodynamic processes related by time-reversal symmetry.

In thermodynamics, the time’s arrow is introduced by the second law of thermodynamics, according

to which the total entropy of the universe can only either increase, or remain constant. Consequently,

one might think that observations of entropy changes are all we need to distinguish the past from the

future: an overall increase in entropy shall be identified with the direction of time ‘forward’, while

a overall decrease in entropy with its ‘time-reversal’ counterpart. Yet, for a microscopic system,

fluctuations blur the direction of the time’s arrow, and the time flow is only defined on average.

This can be illustrated in terms of a ‘guessing the time directionality game’ which was introduced

by C. Jarzynski in Ref. [Jarzynski, 2011]. There, the author supposes to record the motion of a

non-equilibrium thermodynamic process, and then to toss a coin. Depending on the outcome of the

coin, he either plays the movie in the order in which it took place, or in the time-reversal one. In

order to determine in which order the movie is being shown, the optimal guessing strategy for a

macroscopic system follows from the second law of thermodynamics: if 〈W 〉 > ∆F , the movie

proceeds in the correct order, while if 〈W 〉 < ∆F , the movie is being run backwards. Here, 〈W 〉 is
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the average work performed on the system by the external driving mechanism, and ∆F the difference

in free energies of the thermodynamic states at the beginning and at the end of the movie. However,

for a microscopic system, the author shows that the optimal guessing strategy exploits the so-called

‘fluctuation theorems’ [Campisi et al., 2011; Esposito et al., 2009; Evans and Searles, 2002; Seifert,

2012], together with Bayesian probabilistic reasoning [Maragakis et al., 2008; Shirts et al., 2003].

We review this study briefly in the Supplemental Note 4.6.1.

In one of its most famous versions [Bochkov and Kuzovlev, 1977; Bochkov and Kuzovlev, 1981;

Crooks, 1999; Jarzynski, 1997], the fluctuation theorem describes the fluctuations of the dissipative

work Wdiss = W −∆F associated to the observation of a particular value of W in a single realisation

of a non-equilibrium driving protocol (i.e., a single shot of the movie):

P (+W )
P̃ (−W )

= eβWdiss , (4.1)

where P (+W ) represents the probability that a workW is invested along the forward thermodynamic

evolution, whereas P̃ (−W ) is the probability linked to recovering the same amount of work along the

time-reversal evolution, both of which start in equilibrium with a thermal bath. Furthermore, the

dissipative work Wdiss is the work invested in a thermodynamic transformation between equilibrium

states having a free energy difference ∆F , which cannot be recovered by reversing the process. The

relation to the entropy production (or total entropy) ∆Stot in the process is established through the

relation: ∆Stot = βWdiss, where β = (kBT )−1 is the inverse temperature, with kB being the Boltz-

mann constant and T the temperature of the bath [Kawai et al., 2007; Parrondo et al., 2009]. From

this equation, it follows that both the probability of total-entropy-decreasing events (βWdiss < 0) in

the forward evolution, and that of total-entropy-increasing ones (βWdiss > 0) using the time-reversal

dynamics vanish exponentially with the size of the total entropy variation:

P (βWdiss < −ξ) ≤ e−ξ, (4.2a)

P̃ (βWdiss > +ξ) ≤ e−ξ, (4.2b)

for any ξ ≥ 0, and where the second inequality (4.2b) arises from the fact that, in the time-reversal

process, the dissipative work equals −Wdiss. In other words, large reductions in the total entropy

are unlikely in the forward evolution, while events leading to a large entropy production are unlikely

in the time-reversal one. (Notice that the sign of the entropy change is defined to match that of the

dissipate work in the forward process.) Interestingly, it is evidenced that, when βWdiss is of the order

of one, it is inherently impossible to tell in which of the two orders the process has occurred. In this

region, the directionality of time flow cannot be inferred, and the time’s arrow is, so to say, blurred. A

clear temporal directionality is then reestablished for β|Wdiss| � 1.

We remark that, here, ‘forward’ and ‘time-reversal’ are interchangeable labels since each process

represents the time-inverted version of the other. Moreover, it is worth noticing that considerations on
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time-inversion only take on relevance in the absence of complete time-symmetry, as this latter may

lead to ∆Stot equal to zero in every single realisation. In order to exhibit time-asymmetry, in the

present study the two conjugated processes are assumed to start from equilibrium states, a standard

procedure in the derivation of fluctuations theorems [Campisi et al., 2011; Esposito et al., 2009].

This introduces a final (implicit) thermalization step which enables irreversibility to emerge (see, e.g.,

Refs. [Landi and Paternostro, 2020; Manzano et al., 2018; Parrondo et al., 2009]).

In what follows, we will explore what confers a definite thermodynamic time’s arrow to quantum su-

perpositions between ‘forward’ and ‘time-reversal’ processes (i.e., thermodynamic processes whose

quenches are correlated by time-inversion symmetry). After constructing a quantum superposition

between two such processes (Section 4.2.1) and the mathematical framework for their evaluation

(Section 4.2.2), we will show that, in the quantum case, analogously to the classical one, quantum

measurements of work (or, equivalently, entropy production) can distinguish the past from the future:

when the measured dissipative work equals βWdiss � 1, the superposition is effectively projected

onto the forward process, whereas when βWdiss � −1, it is effectively projected onto the time-

reversal one, hence recovering a definite thermodynamic arrow of time (Section 4.3.1). However,

when β|Wdiss| is of the order of one, the forward and the time-reversal thermodynamic processes can

quantum mechanically interfere, resulting in a work probability distribution describing work fluctua-

tions which have no classical counterpart. More precisely, in the case of interference, the probabilities

take on values which cannot be obtained by any classical (convex) mixture of the forward and the

time-reversal processes (Section 4.3.2). Finally, extending our approach, we examine a quantum su-

perposition of a work-extracting heat engine and power-driven refrigerator, and we show that such a

device can achieve efficiency statistics which no thermal process acting probabilistically as one or the

other engine could accomplish (Section 4.3.3).

4.2 Theoretical Framework

4.2.1 Superposition of Forward and Time-Reversal Dynamics

We start by defining the framework used to characterize thermodynamic processes and work fluctua-

tions. First, we will introduce all the necessary elements to formally construct a state representing the

quantum superposition of a thermodynamic process evolving in the forward temporal direction, and

one evolving in the time-reversal direction. Then, we will discuss how to characterize work and en-

tropy production fluctuations in such superposition states using an extended two-point-measurement

(TPM) scheme, and we illustrate how the outcomes achieved through processes with well-defined

time directions can be recovered inside our framework.
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We consider a thermodynamic system S being, in both forward and time-reversal processes, initially

in equilibrium with a thermal reservoir at inverse temperature β. The process occurring in the forward

direction will be realized by a quench U(t, 0) induced by the time-dependent Hamiltonian H
(
λ(t)

)
executing a controlled protocol Λ ≡ {λ(t); 0 ≤ t ≤ τ} in the time-frame t ∈ [0, τ ]. Its time-reversal

twin will be described by a quench Ũ(τ − t, 0) associated to the implementation of the time-reversal

protocol Λ̃ ≡ {λ̃(τ − t); 0 ≤ t ≤ τ}, where λ̃ is the time-reversed control parameter (associated to

the parity of the Hamiltonian parameters under time-reversal). The micro-reversibility principle for

non-autonomous systems establishes a strong relation between forward and time-reversal quenches

lying at the core of fluctuation theorems [Andrieux and Gaspard, 2008; Campisi et al., 2011]:

Ũ(τ − t, 0) = ΘU †(τ, t) Θ†, (4.3)

where Θ denotes the (anti-unitary) time-reversal operator acting on the system’s Hilbert space, which

flips the sign of observables with odd parity under time-reversal. This operator verifies the relations

Θ 1i = −1iΘ, and Θ Θ† = Θ†Θ = 1. In our configuration, the micro-reversibility principle in

Eq. (4.3) holds whenever the system Hamiltonian verifies ΘH
(
λ(τ − t)

)
Θ† = H

(
λ̃(τ − t)

)
.

In order to describe superpositions of forward and time-reversal processes, the initial equilibrium

states of the system S can be purified by including the environment E with a generic HamiltonianHE

in the description (where the environment may include the thermal reservoir as well as other relevant

degrees of freedom which get entangled with the system). These purifications are not unique, and

they can be represented by joint states of the system and the environment of the form

|ψ0〉S,E =
∑
k

√√√√e−βE
(0)
k

Z0
|E(0)

k 〉S |ε
(0)
k 〉E , (4.4a)

|ψ̃0〉S,E =
∑
k

√√√√e−βE
(τ)
k

Zτ
Θ|E(τ)

k 〉S |ε
(τ)
k 〉E , (4.4b)

where E(0)
k and E(τ)

k are the eigenvalues of the Hamiltonian at times t = {0, τ}, i.e., H[λ(0)] and

H[λ(τ)], whereas |E(0)
k 〉S and |E(τ)

k 〉S are the corresponding eigenvectors (for the sake of brevity,

we will henceforth omit the subscript S in the system’s energy eigenvectors). Furthermore, |ε(0)
k 〉E ,

|ε(τ)
k 〉E represent the set of states of the environmental degree of freedom at initial and final times,

which can always be chosen as sets of orthogonal states. Notice that the environment may possess

further degrees of freedom which are not entangled with the system under consideration, and which

we will thus not explicitly account for.

The state |ψ0〉S,E above corresponds to the initial state of the process evolving in the forward direction,

whereas |ψ̃0〉S,E is the initial state of the process which takes place in the time-reversal fashion. Notice

that, by tracing out the environmental degrees of freedom, we recover the corresponding Gibbs thermal
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states for the system ρth
0 ≡ TrE

(
|ψ0〉〈ψ0|S,E

)
= e−βH[λ(0)]/Z0 and ρ̃th

0 ≡ TrE
(
|ψ̃0〉〈ψ̃0|S,E

)
=

Θ e−βH[λ(τ)]Θ†/Zτ = e−βH[λ̃(τ)]/Zτ , being Z0 = Tr
(
e−βH[λ(0)]), and Zτ = Tr

(
e−βH[λ(τ)]) the

partition functions.

Moreover, we introduce an auxiliary system A whose two orthogonal states {|0〉A, |1〉A} govern the

evolution of the process in the two temporal directions. This is a quantum analogue of the coin

tossed to decide classically which process to run (forward or time-reversal). With this in place, the

global Hamiltonian of the system, the environment, and the auxiliary qubit readsH(t) ≡
(
|0〉 〈0|A ⊗

H[λ(t)] + |1〉 〈1|A ⊗ H̃[λ(τ − t)]
)
⊗ HE . We then entangle each orthogonal auxiliary state to one

of the initial states in Eq. (4.4). The overall initial state of system, environment and auxiliary hence

reads:

|Ψ0〉S,E,A = α0 |ψ0〉S,E ⊗ |0〉A + α1 |ψ̃0〉S,E ⊗ |1〉A, (4.5)

with arbitrary coefficients α0, α1 ∈ C, |α0|2+|α1|2 = 1. If, subsequently, in each branch of the super-

position in Eq. (4.5) the forward and time-reversal quenches are respectively applied, the evolved state

at some arbitrary instant of time t ∈ [0, τ ] is given by |Ψ(t)〉S,E,A = α0
[
U(t, 0) ⊗ 1E,A

]
|ψ0〉S,E ⊗

|0〉A + α1|
[
Ũ(t, 0) ⊗ 1E,A

]
|ψ̃0〉S,E ⊗ |1〉A. In this expression, the first and the second amplitudes

correspond to the forward and the time-reversal directions, respectively. Furthermore, we assume that

the system does not interact with the environment during the timescale of the quenches (however,

after the quench, the system thermalises through the interaction with the thermal reservoir). This is

verified whenever the quenches are implemented in a fast timescale as compared to the characteris-

tic relaxation time of the system in interaction with the environment. Furthermore, we will consider

the quenches U(t, 0) and Ũ(t, 0) in the superposition to be implemented by some external (classical)

control. As we discuss in the Supplemental Note 4.6.2, this limit is adequate in our setup, and it

corresponds to the case in which the control mechanism acts approximately as an ideal reservoir of

energy and coherence [Åberg, 2014; Bartlett et al., 2007; Korzekwa et al., 2016; Malabarba et al.,

2015], as is the case, for instance, with lasers or radio-frequency pulses.

Taking a gas enclosed in a vessel as a pictorial example, the aforementioned state can be constructed

by entangling the position of the piston with a further auxiliary quantum system, thereby establishing

a quantum superposition of the following two processes: i. a process wherein the gas particles are

initially in thermal equilibrium confined in one half of the vessel by a piston, and the piston is pulled

outwards, and ii. the reverse process, in which the piston is pushed towards the gas, starting from an

initial state where the gas occupies the entire vessel in thermal equilibrium.

4.2.2 Extended Two-Point Measurement Scheme

We will now measure the work of the system undergoing the above-mentioned superposition of for-

ward and time-reversal dynamics. In order to implement such a measurement, we formally construct
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a procedure described by a set of measurement operators forming a completely positive and trace-

preserving (CPTP) map. In this regard, we will refer to a standard TPM procedure to measure work

in quantum thermodynamic processes [Campisi et al., 2011]. Implementations of the TPM in quan-

tum setups [Batalhão et al., 2014; De Chiara et al., 2015; Dorner et al., 2013; Mazzola et al., 2013;

Roncaglia et al., 2014], as well as suitable extensions [Åberg, 2018; Debarba et al., 2019; Moham-

mady and Romito, 2019; Perarnau-Llobet et al., 2017], have recently received increasing attention.

Our procedure can be seen as a generalization of the TPM scheme to situations where different ther-

modynamic processes are allowed to be superposed, and may consequently interfere.

In the TPM scheme, work is defined as the energy difference between the initial and final states of

the system, which are measured through ideal projective measurements of the system Hamiltonian

implemented before and after the thermodynamic process associated to the protocol Λ [Talkner and

Hänggi, 2016; Talkner et al., 2007]. This measurement scheme can be performed, individually, both

for the forward and the time-reversal processes, enabling the construction of the work probability

distributions P (W ) and P̃ (W ), respectively.

As far as the forward process is concerned, the probability to observe a transition |E(0)
n 〉 → |E(τ)

m 〉
is given by pn,m = pm|n p

(0)
n , where p(0)

n = e−βE
(0)
n /Z0 is the probability of observing the energy

E
(0)
n at t = 0, and pm|n =

∣∣∣〈E(τ)
m |U(τ, 0)|E(0)

n 〉
∣∣∣2 is the conditional probability of measuring E(τ)

m

at t = τ after having measured E(0)
n at the beginning of the process. Similarly, for the time-reversal

process one has p̃m,n = p̃n|m p̃
(0)
m , where p̃(0)

m = e−βE
(τ)
m /Zτ is the probability to obtain the energy

E
(τ)
m at the beginning of the time-reversal process, and p̃n|m =

∣∣∣〈E(0)
n |Θ†Ũ(τ, 0)Θ|E(τ)

m 〉
∣∣∣2 is the

corresponding conditional probability for observing the inverse transition Θ |E(τ)
m 〉 → Θ |E(0)

n 〉 given

that one obtained E(τ)
m in the first measurement. The micro-reversibility principle in Eq. (4.3) relates

the conditional probabilities in the forward and time-reversal processes as p̃n|m = pm|n [Andrieux

and Gaspard, 2008; Campisi et al., 2011].

The TPM scheme allows one to compute the stochastic work invested by the external driver in a

single realisation of the protocol Λ, Wn,m ≡ E
(τ)
m − E(0)

n , associated to the outcomes of initial and

final energy measurements. Its probability distribution reads:

P (W ) =
∑
n,m

pn,m · δ(W −Wn,m). (4.6)

Analogously, the probability distribution associated to the work invested in the time-reversal protocol,

W̃n,m = E
(0)
n − E(τ)

m = −Wn,m, is given by:

P̃ (W ) =
∑
n,m

p̃n,m · δ(W − W̃n,m). (4.7)

Hereafter, we consider an extension of the TPM scheme in which we include energy measurements at
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Figure 4.1 Schematic representation of a superposition of a forward thermodynamic quench with its
time-reversal counterpart. A thermodynamic system S is coupled to a auxiliary system A. Depending on the state of the
auxiliary system, |0〉A) or |1〉A, the system S is initially prepared in a thermal state of the initial or final Hamiltonians,
H(0) and H(τ), respectively. It is then sent through a thermodynamic quench U(t, 0) or its time reversal Ũ(t, 0) in the
time-frame t ∈ [0, τ ]. Before and after each quench, the system’s energy is measured. The measurement outcomes E(0)

n

and E(τ)
m are found when the auxiliary system is in |0〉A, whereas the outcomes E(0)

m and E(τ)
n are obtained when the

auxiliary system is in |1〉A. The auxiliary system is measured in the basis
{
|±〉A = (|0〉A ± |1〉A)/

√
2
}

, while the system
may eventually undergo a second thermalisation with the environment.

t = 0 and t = τ in both branches of the superposition between a forward and a time-reversal processes,

as illustrated in Fig. 4.1. More precisely, starting with the initial state in Eq. (4.5), and conditionally on

the auxiliary state, we consider the application of the projectors |E(0)
n 〉 〈E(0)

n | and Θ |E(τ)
m 〉 〈E(τ)

m |Θ†

to the initial states |ψ0〉S,E and |ψ̃0〉S,E , respectively. Subsequently, the unitary quenches U(τ, 0) and

Ũ(τ, 0) are implemented in each branch, after which the projectors |E(τ)
m 〉 〈E(τ)

m | and Θ |E(0)
n 〉 〈E(0)

n |Θ†

are respectively applied. Consequently, given the outcomes E(0)
n and E(τ)

m , a work Wn,m is invested

in the forward-dynamics branch by applying the protocol Λ, whereas the work invested in its time-

reversal counterpart Λ̃ is W̃n,m = −Wn,m (that is, the same amount of work as in the forward dynam-

ics is here extracted).

The operator representing the application of the scheme through which the work W is obtained can

be written as:

MW =
∑
n,m

[
|E(τ)

m 〉〈E(τ)
m |U(τ, 0)|E(0)

n 〉〈E(0)
n | ⊗ 1E ⊗ |0〉〈0|A

+ Θ|E(0)
n 〉〈E(0)

n |Θ†Ũ(τ, 0)Θ|E(τ)
m 〉〈E(τ)

m |Θ† ⊗ 1E ⊗ |1〉〈1|A
]
· δ
(
W −Wn,m

)
. (4.8)

The set of operators {MW } forms a CPTP map, E(ρ) ≡
∫
dWMWρM

†
W , acting on the composite

S,E,A system and fulfilling
∫
dWM †WMW = 1. The map E describes the average effect of the

measurement scheme on an arbitrary initial state of the composite system ρ, while the operations

EW (ρ) ≡MWρM
†
W provide the probability P(W ) ≡ Tr[EW (ρ)] to measure the work W .

It is important to stress that the operations EW preserve the coherence between the forward and time-

reversal thermodynamic processes. Indeed, performing a standard quantum measurement on the pro-
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cess would destroy the coherence, as it would reveal the time at which the measurement has been

performed, and, from this, also whether the outcome Em was observed before (in the forward pro-

cess) or after the outcome En (in the time-reversal process). In other words, such a measurement

would reveal the time direction, and it would be equivalent to the projection of the auxiliary qubit

in the basis
{
|0〉A, |1〉A

}
. However, there exist also measurement schemes in which the result is en-

coded in an auxiliary system through its entanglement with the measured system, and the result is then

read only at the end of the whole evolution, thereby preserving its coherence. (Such a measurement

scheme was recently used to measure the system undergoing superposition of causal orders [Rubino

et al., 2017a].) In such a scheme, the system on which the thermodynamic quenches act and the

auxiliary system can be encoded on two different degrees of freedom of the same quantum system. If

the auxiliary degree of freedom is of sufficient dimension, it is possible to encode the results of each

measurement taking place within the process in a state of this system. The coherence between these

states has to be maintained until the end of the overall thermodynamic process, and the different states

are then interfered with each other. (For simplicity, in this study we consider only two states of the

auxiliary system (Fig. 4.1). Nevertheless, all the conclusions drawn herein can be extended to the case

of more than two states).

In order to evaluate the work probability distribution in the extended TMP scheme, it is also crucial to

take into account the mutual phases between the conditional probabilities. We thus write, in general

〈E(τ)
m |U(τ, 0)|E(0)

n 〉 := √pm|n eiΦn,m , (4.9a)

〈E(0)
n |U †(τ, 0)|E(τ)

m 〉 :=
√
p̃n|m e

−iΦ̃m,n , (4.9b)

and we notice that

√
p̃m|ne

−iΦ̃m,n = 〈E(0)
n |U †(τ, 0)|E(τ)

m 〉 =
(√
pn,m e

iΦn,m)∗ = √pn|m e−iΦn,m ,

from which we get Φn,m = Φ̃m,n, since p̃m|n = pn|m.

We now consider the concatenation of the operation MW with a projection of the auxiliary qubit

onto an arbitrary state |ξ〉A. By applying this sequence of operations to the initial state in Eq. (4.5),

we derive the (unnormalized) state of the composite system associated to the work outcome W and

projection of the auxiliary qubit onto |ξ〉A:

|Ψξ
W 〉S,E,A ≡

(
1S,E ⊗ |ξ〉〈ξ|A

)
◦MW |Ψ0〉S,E,A = |Ξξ0〉+ |Ξξ1〉 , (4.10)

where we identified the two branches of the superposition corresponding to the forward (|Ξξ0〉) and
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the time-reversal dynamics (|Ξξ1〉). They read, respectively:

|Ξξ0〉 = α0〈ξ|0〉
∑
n,m

√
pn,m e

iΦn,m |E(τ)
m 〉 |ε(0)

n 〉E |ξ〉A · δ(W −Wn,m), (4.11a)

|Ξξ1〉 = α1〈ξ|1〉
∑
n,m

√
pn,m e

−iΦn,m Θ|E(0)
n 〉 |ε(τ)

m 〉E |ξ〉Ae−
β
2 (Wn,m−∆F ) · δ(W −Wn,m), (4.11b)

where, in the second equation, we made use of p̃n,m = pn,m e
−β(Wn,m−∆F ) (see the Supplementary

Note 4.6.3), and of the relation between the forward and time-reversal phases Φ̃m,n = Φn,m.

The joint probability of measuring the work W and projecting the auxiliary state onto |ξ〉A is hence

given by P(ξ,W ) =
∣∣∣∣|Ψξ

W 〉S,E,A
∣∣∣∣2. Furthermore, from the joint probabilities P(ξ,W ), one can

obtain the conditional ones Pξ(W ) := P(W |ξ) = P(ξ,W )/P(ξ), which we will hereafter refer to

as ‘post-selected work probability distributions’, and where P(ξ) =
∫
dW P(ξ,W ). By introducing

the notation qξ0 = |α0|2
∣∣〈ξ|0〉∣∣2/P(ξ) and qξ1 = |α1|2

∣∣〈ξ|1〉∣∣2/P(ξ), we can rewrite Pξ(W ) as:

Pξ(W ) = qξ0 P (W ) + qξ1 P̃ (−W ) + 2 Re
(
Iξ(W )

)
, (4.12)

where we identified the probability distributions for the work in the forward process P (W ), and in

the time-reversal one P̃ (−W ) as given in Eqs. (4.6)-(4.7), respectively. From this, we obtain the

interference term:

Iξ(W ) =α∗0α1〈0|ξ〉〈ξ|1〉
P(ξ)

∑
n,m

∑
n′,m′

√
pn,m pn′,m′e

−β2 (Wn′,m′−∆F ) e−i(Φn,m+Φn′,m′ ) 〈E(τ)
m |Θ |E

(0)
n′ 〉

〈ε(0)
n |ε

(τ)
m′ 〉 · δ(W −Wn,m) δ(W −Wn′,m′). (4.13)

The functional dependence of Pξ(W ) on W consists of two parts: i. an “incoherent” part, reflecting

the fact that each work value W obtained in the scheme is compatible with running the process in one

or the other temporal direction with a given probability (i.e., investing the work W when running the

protocol Λ, and extracting the same amount of work−W when executing its time-reversal counterpart

Λ̃), and ii. a “coherent” part, which is a genuinely quantum feature arising from the superposition of

the two temporal directions of the quench.

We recall that, from a quantum-mechanical perspective, there is, a priori, no preferential temporal

direction. Moreover, in the case |α0| = |α1| = 1/
√

2, the forward state |Ξξ0〉 and the time-reversal

one |Ξξ1〉 in Eq. (4.11) have the same amplitudes in the superposition. However, as in the standard

scenario of well-defined temporal directions 4.6.1, one may use the properties of the work probability

distribution Pξ(W ) together with Bayesian reasoning to infer the time’s arrow of the thermodynamic

process. As we will see shortly, in some cases, the thermodynamic time’s arrow can be determined

even in a single realisation of the process, which effectively projects the state |Ψξ
W 〉S,E,A onto either

its forward or its time-reversal component.
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4.3 Results

4.3.1 Effective Projection onto a Definite Time’s Arrow

In the following, we demonstrate that measuring work values such that W − ∆F � β−1, or W −
∆F � −β−1, in single realisations of the extended TPM scheme effectively results in projecting the

state |Ψξ
W 〉S,E,A in Eq. (4.10) onto either the forward or the time-reversal components in Eq. (4.11)

(i.e., |Ξξ0〉 or |Ξξ1〉, respectively). In order to show this, we consider the probabilities for the superposi-

tion state |Ψξ
W 〉S,E,A to be found in either || |Ξξ0〉 ||2 or || |Ξξ1〉 ||2, respectively. In particular, we notice

that the term || |Ξξ1〉 ||2 is upper bounded by

|| |Ξξ1〉 ||2 = |α0|2
∣∣〈ξ|0〉∣∣2 ∑

n,m

pn,m e
−β(Wn,m−∆F )

· δ(W −Wn,m) 6 e−βWdiss
∑
n,m

pn,m = e−βWdiss , (4.14)

where we used the fact that |α0|2
∣∣〈ξ|0〉∣∣2 6 1, and

∑
n,m pn,m = 1. Consequently, in the limit

βWdiss � 1, we have || |Ξξ1〉 ||2 ≈ 0, and hence || |Ξξ0〉 ||2 ≈ 1, that is, |Ψξ
W 〉S,E,A ' |Ξ

ξ
0〉. Indeed,

applying the detailed fluctuation theorem in Eq. (4.1) to Eq. (4.12), we obtain:

Pξ(W ) = P (W )
(
qξ0 + qξ1e

−βWdiss
)
+2 Re

(
Iξ(W )

)
≈ qξ0 P (W ), (4.15)

where we made use of the fact that Iξ(W ) ∝ e−βWdiss/2. Therefore, we obtained that, whenever one

performs a measurement of the work in the extended TPM scheme and observesW −∆F � β−1 (or,

equivalently, ∆S = βWdiss � 1), the state of the system is projected onto the forward component

of the quantum superposition without measuring the auxiliary qubit (similarly to what one would

obtain, had one projected the joint state |Ψ(t)〉S,E,A through a projective measurement |0〉〈0|A on the

auxiliary system, and subsequently observed the work valueW ). The probability to observe this work

value in the extended TPM scheme is given by Eq. (4.15).

Analogously, whenever the result of the extended TPM scheme is such that W −∆F � −β−1 (or,

equivalently, ∆S = βWdiss � −1), one can neglect the term || |Ξξ0〉 ||2 ≤ eβWdiss , and thus obtain the

projection |Ψξ
W 〉S,E ' |Ξ

ξ
1〉. In this case, we correspondingly achieve:

Pξ(W ) = P̃ (−W )
(
qξ0e

βWdiss + qξ1
)
+2 Re

(
Iξ(W )

)
≈ qξ1 P̃ (−W ). (4.16)

Hence, here the joint state is projected onto the time-reversal component of the quantum superposi-

tion (as if a projective measurement |1〉〈1|A on the auxiliary system was performed, followed by the
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Figure 4.2 Schematic representation of the two-point measurement scheme in the forward process for our spin- 1
2

system. A spin- 1
2 particle in the thermal state of the initial Hamiltonian is measured in its eigenbasis {|z±〉} at time t = 0.

After the action of the quench described by the time-dependent Hamiltonian in Eq. (4.19), it is measured in the eigenbasis
{|x±〉} of the final Hamiltonian at time t = τ . Depending on the measured states at the two times, the thermodynamic
quench causes an energy change ∆E = 0,±~ω, with ω being the spin’s natural frequency, and ~ the reduced Planck
constant.

observation of the work value W ). Similarly to the previous case, Eq. (4.16) provides the probability

to get such an outcome in an estimation of the work.

4.3.2 Interference Effects in the Work Distribution

In the previous section we observed that, for individual runs of the process’ superposition, whenever

the observed entropy production is of the order |∆S| � 1 (or, equivalently, |W −∆F | � β−1), the

system is effectively projected onto a state with a definite thermodynamic time’s arrow. Conversely, if

the measured entropy production is |∆S| . 1 (or equivalently |W −∆F | . β−1), the superposition

state Eq. (4.10) resulting from the application of the extended TPM scheme lacks a definite time’s

arrow, exhibiting interference effects.

As an illustrative example, we study the effect of interference in the work distribution in the case of a

spin-1
2 system, as illustrated in Fig. 4.2. In particular, in the forward quench, the spin system is sub-

jected to a magnetic field whose direction is rotating within the x−z plane at constant angular velocity

Ω around the y-axis (ω being the spin’s natural frequency)H(Ωt) = ~ω
2
[
1+cos

(
Ωt
)
σz+sin

(
Ωt
)
σx
]
.

In the extended TPM scheme, we superpose the forward quench and its time-reversal twin, and we

project the auxiliary system onto the diagonal basis
{
|±〉A = (|0〉A ± |1〉A)/

√
2
}

. This leads to the

work probability distributions P±(W ), which illustrates the role played by the interference term. In

the limit of a rapid quench (ω � Ω) (and hence of a large degree of irreversibility), the distributions

are presented in Fig. 4.3 (yellow and blue bars), together with the one corresponding to a classical

mixture of the forward and time-reversal processes (turquoise bars), where here P (W ) = P̃ (−W ).
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P(W) + P( W)
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Figure 4.3 Work probability distribution for a spin-1/2 system undergoing a superposition of forward and its
time-reversal thermodynamic process. The coherent work probabilities P±(W ) and the work probabilities of a classical
mixture

(
P (W ) + P̃ (−W )

)
/2 are compared in the limit of the rapid quench ω � Ω for ϕ = π. The results are

temperature-independent.

While the classical mixture displays large fluctuations in the work probability distributions, the con-

tribution of the interference term in P±(W ) can sharpen [P+(W )] or flatten [P−(W )] the coherent

work distribution, effectively increasing or decreasing the degree of reversibility, respectively. Specif-

ically, the probability that the process will occur in a reversible fashion (i.e., that W = 0) is higher for

P+(W = 0) [lower for P−(W = 0)] than for a classical mixture (see Methods-Section 4.5.1). Since

in this example, reversibility means adiabaticity, in the post-selected case, we can obtain a probability

distribution P+(W ) corresponding to that of a slower realisation of the quench. In this sense, through

our protocol, one can achieve a net “speed-up” of the realisation of an adiabatic quench.

4.3.3 Interference of cycles in a SWAP engine

Thus far, we discussed the possibility of generating a superposition of two thermodynamic processes

linked together by temporal inversion, i.e., a process and its time-reversal version. However, nothing

prevents us from applying the methods developed above to a pair of generic processes, not necessarily

temporally related to each other. In Methods-Section 4.5.2, we apply the concepts introduced above

to the more practical scenario of quantum thermal devices performing thermodynamic tasks [Maslen-

nikov et al., 2019; Peterson et al., 2019; Roßnagel et al., 2016; Van Horne et al., 2020]. In particular,

we superpose two processes that correspond to two different modes of operation of a thermal machine,

namely, a heat engine and a refrigerator (see Fig. 4.6). To this end, we build upon one of the simplest

models of a cyclic SWAP engine operating with just two qubits and using two thermal reservoirs at
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different temperatures [Campisi et al., 2015].

d.a. b. c.

Figure 4.4 Joint probability distributions of performing work W and absorbing heat Qc from the cold reservoir.
The four plots correspond to a. the heat engine cycle, b. the refrigerator cycle, c. the superposition of both engine and
refrigerator when the auxiliary system is projected onto |+〉A, and d. the same superposition when the auxiliary system is
projected onto |−〉A. We used the following set of parameters: ε1 = ε∗1 = 3.5ε2, ε∗2 = 0.2ε2, kBT1 = 8ε2, and
kBT2 = ε2 (see Methods-Section 4.5.2).

Depending on the ratio between the energies of the two qubits, our device can either function as a

heat engine, extracting work W < 0 out of a heat current from the hot to the cold reservoirs Qc < 0,

or as a power-driven refrigerator, extracting heat from the cold reservoir Qc > 0 at the price of an

input work W > 0. Their respective joint probability distributions PE(W,Qc) and PR(W,Qc) for

performing work W and absorbing heat Qc are shown in Fig. 4.4 Panels a.-b.. Moreover, with the

use of a auxiliary qubit, one can run the machine in a superposition of the heat-engine and the refrig-

erator modes. Upon measuring the auxiliary qubit in the diagonal basis {|+〉A, |−〉A}, one obtains

processes whose joint probability distributions P±(W,Qc) display interference effects, as shown in

Fig. 4.4 Panels c.-d.. More specifically, the interference can increase or reduce the probability of the

device not performing any task (i.e., W = Qc = 0), in a way that no convex mixture of the two

processes is able to match, P+(0, 0) > |α0|2PH(0, 0) + |α1|2PR(0, 0) > P−(0, 0). This implies that

the interference effect in P−(W,Qc) can diminish the probability that the machine fails to perform

either of the two tasks, effectively increasing the single-shot performance of the resulting process. It

should be noted that this enhancement in performance cannot be found on average, since both distri-

butions P±(W,Qc) contribute to that. However, the benefit of the post-selection is, as in its standard

application in quantum information, that depending on the result obtained on the auxiliary system,

one can conditionally run the machine with an improved performance.

4.4 Discussion

Viewed in isolation, a thermodynamic system coupled to a reservoir undergoes a dynamic which is

generally non-unitary, even though the joint state of the system and the environment evolves in a

unitary, reversible fashion. Depending on whether this dynamics favours events involving a positive

or a negative change in the total entropy, it is possible to establish the temporal direction of the quench
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which the system has been subjected to (i.e., the time’s arrow is aligned along the direction where the

total entropy increases 1). However, it can be expected that the joint state of the system and the

environment may as well evolve in an arbitrary superposition of the two, whereby the direction of

evolution is controlled by a further quantum system. The core questions behind this work are i. how

a definite (thermodynamic) arrow of time can emerge in such a picture, and ii. whether forward-in-

time and backward-in-time thermodynamic processes can interfere and what the signature of this shall

be.

In this work, we showed that the coherence between the two temporal directions is effectively lost

when the entropy production in the process is measured: the observation of a large increase (decrease)

of dissipative work effectively projects the system in the forward (time-reversal) temporal direction.

Conversely, for small values of the observed dissipative work (of the order of β−1), the system and

the auxiliary state display interference effects. This aspect bears important implications, insofar as,

by measuring the state of the control, the system can exhibit a work (entropy production) distribution

which is classically impossible. This feature can be best observed when both the forward and the time-

reversal processes are, to a high degree, irreversible (i.e., the probability of zero entropy production

is low). In this case, indeed, the quantum superposition between the two irreversible processes can

result in a dynamics which is no longer such (i.e., the above probability can be significantly increased

due to constructive interference). Formally, this means that when the distribution of the work P±(W )
is affected by interference effects, this can result in a probability distribution radically different from

any classic mixture of P(W ) and P̃(−W ). As a consequence, P±(W ) does not generally satisfy the

fluctuation theorem (4.1). This is not extremely surprising given that the process generating P±(W )
does not verify the requirements needed for the work fluctuation theorems. In particular, the initial

state in Eq. (4.5) is not a thermal state neither of the system alone, nor of the system together with

the control, and the work performed is defined differently in the two quenches of the superposition.

Nevertheless, this violation has a crucial implication: it entails that the distribution P±(W ) cannot

be generated by any thermodynamic process starting in equilibrium with the environment, and being

subsequently driven out of it by means of any given protocol Λ. Consequently, our procedure provides

a recipe to generate thermodynamic processes with a work probability distribution which cannot be

reproduced within the standard framework of fluctuation theorems.

Finally, we also presented how the aforementioned results can be extended beyond the case of su-

perpositions of mutually time-reversal processes. We exemplified this by studying the quantum su-

perposition between two alternative thermodynamic tasks, namely, a thermal machine running in a

quantum superposition of a heat engine, and a power-driven refrigeration. In this regard, we proved

that our findings can also lead to practical implications, as interference effects can be used to reduce

undesired fluctuations, paving the way for their adoption in more general contexts for enhancing the

performance of standard thermodynamic engines.

1Notice that, under our sign convention, this means that the time’s arrow matches a positive entropy change in the case of
the forward process, and a negative entropy change for the time-reversal process.
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4.5 Methods

4.5.1 Case Study: A Spin-1
2 System

In this section, we detail on the interference effects between forward and time-reversal thermodynamic

evolution of a spin-1
2 system. To this end, we further develop the general expression of Eq. (4.12).

Specifically, we project the auxiliary system onto the diagonal basis |ξ〉A =
{
|±〉A = (|0〉A ± |1〉A)/

√
2
}

.

This leads to the joint state of the system and the environment |Ψ±W 〉S,E,A ≡
(
1S,E ⊗ |±〉〈±|A

)
◦

MW |Ψ0〉S,E,A.

The corresponding post-selected work probability distribution, conditioned on the projection of the

auxiliary system onto |±〉A, reads:

P±(W ) = q±0 P (W ) + q±1 P̃ (−W ) + 2 Re
(
I±(W )

)
, (4.17)

where the interference term I±(W ) is given by Eq. (4.13) with 〈0|±〉A = 1/
√

2 and 〈±|1〉A =
±1/
√

2. We recall that the states Θ |E(0)
n 〉 in the above expressions are the eigenstates of the Hamilto-

nian ΘH[λ(0)]Θ† = H[λ̃(0)]. Moreover, we notice that the distribution P±(W ) in Eq. (4.17) differs

by the term I±(W ) 6= 0 from what one would have obtained by applying the extended TPM scheme

to a (classical) convex mixture |α0|2 |0〉〈0|A ⊗ ρth
0 + |α1|2 |1〉〈1|A ⊗ ρ̃th

0 of the initial states.

For the outcome W = 0, the interference term in Eq. (4.13) can be simplified when ∆F = 0, and the

sets of eigenvalues of the initial and final Hamiltonians coincide, i.e., E(0)
n = E

(τ)
n . In that case:

I±(W = 0) =± α∗0α1
2P(ξ)

∑
n,n′

√
pn,npn′,n′ e

−i(Φn,n+Φn′,n′ )

〈ε(0)
n′ |ε

(τ)
n 〉 〈E

(τ)
n′ |Θ |E

(0)
n 〉 . (4.18)

As a result, it emerges that the interference effects can increase (decrease) the probability of observ-

ing the work value W = 0. This yields to a work probability distribution P±(W ) analogous to

the one potentially generated by a more reversible (irreversible) process than the forward and time-

reversal processes themselves, or any classical mixture therefrom. We remark that the interference

term I±(W ) may show non-zero values for W 6= 0 in general, as we will see below.

We conclude by evaluating Eq. (4.17) in the concrete example sketched in the main text. We consider

a spin system with natural frequency ω in a magnetic field ~λ(t) whose direction is rotating within the

x− z plane at constant angular velocity around the y-axis:

H
[~λ(t)

]
= ~ω

2
[

1 + ~λ(t) · ~σ
]

= ~ω
2
[

1 + cos
(
Ωt
)
σz + sin

(
Ωt
)
σx
]
, (4.19)

122



4.5 Methods

where ~λ
(
t
)

=
(
λ0 sin

(
Ωt
)
, 0, λ0 cos

(
Ωt
))

and λ0 = 1 is the dimensionless magnetic field, and where

the protocol reads Λ = {~λ(t) ; 0 ≤ t ≤ π/(2Ω)}. We notice that ΘH
[~λ(t)

]
Θ† = H[−~λ(t)],

implying that the time-reversal of the control parameter corresponds to a flip of the magnetic field.

At the initial and final times of the protocol, the Hamiltonian is diagonal in the {|z±〉} and {|x±〉}
bases, respectively. Therefore, |E(0)

n 〉 = {|z±〉S}, with corresponding eigenvalues E(0)
n = {0, ~ω},

and |E(τ)
m 〉 = {|x±〉S = 1√

2
(
|z−〉S±|z+〉S

)
}, with eigenvalues E(τ)

m = {0, ~ω} (we shifted the lower

energy level by ~ω/2 to avoid negative energy eigenvalues). As a result, F0 = Fτ = −log
(
1+e−β~ω

)
and Wn,m = {~ω, 0,−~ω}.

In the frame rotating around the y-axis at frequency Ω, the Hamiltonian becomes time-independent,

and the unitary governing the evolution can be obtained straightforwardly. Turning back to the

Schrödinger picture, the applied unitary U(t, 0) reads:

U(t, 0) = e−
i
2 Ωσyte−

i
2 [ω (1+σz)−Ωσy ] t. (4.20)

This is used below to compute the work distribution.

4.5.1.1 Effect of Interference on Reversibility

In this subsection, we will represent the environment as a spin-1
2 system which is left unaffected during

the quench. For instance, we can assume that the purification of the thermal states in Eq. (4.4a)-(4.4b)

read

|ψ0〉S,E =
√

1
Z0
|z−〉S |z−〉E +

√
e−β~ω

Z0
|z+〉S |z+〉E , (4.21a)

|ψτ 〉S,E =
√

1
Z0
|x−〉S |z−〉E +

√
e−β~ω

Z0
|x+〉S |z+〉E . (4.21b)

Furthermore, we will assume to begin the protocol in the state in Eq. (4.5) with α0 = 1/
√

2, α1 =
e−iϕ/

√
2, with ϕ being a controllable phase between the forward and the time-reversal processes.

Next, we compute P±(W ):

P±(W = 0) = 1
2P(±)

(
p0,0 + p1,1

)
(4.22)

∓ 1
2
√

2P(±)
[
p0,0 cos

(
2Φ0,0 + ϕ

)
+ p1,1 cos

(
2Φ1,1 + ϕ

)]
,

where we used the fact that 〈E(τ)
n′ |Θ|E

(0)
n 〉 = 1/

√
2 for n = 1, n′ = 0, and 〈E(τ)

n′ |Θ|E
(0)
n 〉 = −1/

√
2
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otherwise 2, whereas 〈ε(0)
n′ |ε

(τ)
n 〉E = δn,n′ , and where the marginal probability of the auxiliary system

reads P(±) = 1
2 ±

1
2
√

2
[
p0,0 cos

(
2Φ0,0 + ϕ

)
+ p1,1 cos

(
2Φ1,1 + ϕ

)]
, with p0,0 = |〈x−|U(τ,0)|z−〉|2

1+e−β~ω ,

eiΦ0,0 = 〈x−|U(τ,0)|z−〉√
|〈x−|U(τ,0)|z−〉|

, and p1,1 = |〈x+|U(τ,0)|z+〉|2
1+e−β~ω e−β~ω, eiΦ1,1 = 〈x+|U(τ,0)|z+〉√

|〈x+|U(τ,0)|z+〉|
. From

this result, we deduce that it is possible to observe interference between thermodynamic processes

occurring in the forward and time-reversal temporal directions. Following the same procedure for the

cases W = ±~ω, we get

P±(W = ~ω) = p0,1
4P(±)

(
1 + e−β~ω

)
, (4.23a)

P±(W = −~ω) = p1,0
4P(±)

(
1 + eβ~ω

)
, (4.23b)

which do not feature interference. In the last expressions, p0,1 = |〈x+|U(τ,0)|z−〉|2
1+e−β~ω , eiΦ0,1 = 〈x+|U(τ,0)|z−〉√

|〈x+|U(τ,0)|z−〉|
,

and p1,0 = |〈x−|U(τ,0)|z+〉|2
1+e−β~ω e−β~ω, eiΦ1,0 = 〈x−|U(τ,0)|z+〉√

|〈x−|U(τ,0)|z+〉|
. We illustrate the probability distribu-

tion in Eq. (4.22)-(4.23) in Fig. 4.3 of the main text.

4.5.1.2 Interference Terms for Varying ±~ω

In the previous case study, we represented the environment as a spin-1
2 system which is left unmodified

by the thermodynamic quench. This caused the cancellation of all interference terms in P±(W =
±~ω). In this subsection, on the contrary, we suppose that the environment undergoes a spin-flip

during the quench:

|ψ0〉S,E =
√

1
Z0
|z−〉S |z−〉E +

√
e−β~ω

Z0
|z+〉S |z+〉E , (4.24a)

|ψτ 〉S,E =
√

1
Z0
|x−〉S |z+〉E +

√
e−β~ω

Z0
|x+〉S |z−〉E . (4.24b)

This change results in 〈ε(0)
n′ |ε

(τ)
n 〉E = 0, for n′ = n. For the sake of simplicity, below we will also set

ϕ = π.

The three probabilities discussed in the previous section become therefore:

P±(W = 0) = 1
2P(±)

(
p0,0 + p1,1

)
, (4.25)

P±(W = ~ω) = p0,1
4P(±)

[
1 + e−β~ω ±

√
2 e−

β~ω
2 cos

(
2Φ0,1

)]
,

P±(W = −~ω) = p1,0
4P(±)

[
1 + eβ~ω ∓

√
2 e

β~ω
2 cos

(
2Φ1,0

)]
,

2To evaluate 〈E(τ)
n′ |Θ|E(0)

n 〉S , we made use of the fact that the time-reversal operator Θ for a spin- 1
2 system acts as

Θ = iσyK, where K is the complex conjugation operator. Thus, Θ|z±〉 = ∓|z∓〉.
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Figure 4.5 Work probabilities of a spin-1/2 system under the time-dependent Hamiltonian with a varying
amount ~ω of work invested. For values of ~ω smaller or of the order of β−1 = kBT = 1/2 (kB = ~ = 1), the work
probabilities P+(W = ~ω) and P−(W = ~ω) (see Eq. (4.25); turquoise and purple curves) strongly depend on the
interference terms. For values ~ω � β−1, P+(W = ~ω)+ P−(W = ~ω) (green curve) tends to the value p0,1 (yellow
curve), which is obtained by projecting the process to the forward direction and obtaining the work difference ~ω. This
illustrates that observing large work values ~ω � β−1 (~ω � −β−1) effectively projects the process onto the forward
(time-reversal) direction.

where the marginal probability of the auxiliary system is nowP(±) = 1
2±

1
2
√

2
[
p0,1 e

−β~ω2 cos(2Φ0,1)−

p1,0 e
β~ω

2 cos(2Φ1,0)
]
, and where p0,0, Φ0,0, p1,1, and Φ1,1 are the same as in case study 4.5.1.1.

In Fig. 4.5, we show the work probability distributions for varying ~ω. For work values ~ω smaller

than, or of the order of β−1, we observe strong interference effect, as shown by the difference between

P+(W = ~ω) and P−(W = ~ω). For work values ~ω � β−1, this difference vanishes, and the

probability P(W = ~ω) := P+(W = ~ω) + P−(W = ~ω) to obtain the work value ~ω tends to the

probability p0,1 of first projecting the auxiliary system onto the forward direction, and then obtaining

the work value ~ω. This trend shows that the observation of large work values effectively projects the

system into a well-defined temporal direction.

4.5.2 Superposing cycles in a quantum heat engine

We consider one of the simplest models of a cyclic heat engine operating with two strokes [Campisi et

al., 2015]. This consists of two qubits only, each with energy eigenstates {|0〉i , |1〉i} for i = 1, 2, and

with different energy spacing, H1 = ε1 |1〉 〈1|1 and H2 = ε2 |1〉 〈1|2. The engine works as follows.

In the first stroke, the qubits start in equilibrium at different inverse temperatures β1 = 1/kBT1 and
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Figure 4.6 Schematic representation of the SWAP engine cycle operating as a heat engine (Left) and as a
refrigerator (Right). Two qubits (circles) start the cycle in equilibrium with their corresponding reservoirs (squares) at
inverse temperature β1 and β2. Subsequently, a SWAP operation is applied to the two systems. In the heat engine mode of
operation (Left), a work −W is extracted leading to a decrease of temperature in the first qubit, β′1 > β1, and an increase
in the second one, β′2 < β2. The qubits are then equilibrated with their respective reservoirs, resulting in a net transfer of
heat from the hot reservoir +Qh and a release of heat into the cold one −Qc. Vice versa, in the refrigeration mode (Right),
a work +W is externally supplied to overheat the first qubit β′′1 < β1, and reduce the temperature of the second one,
β′′2 > β2. This leads to a final release of heat into the hot reservoir −Qh, and the absorption of heat from the cold one
+Qc, hence refrigerating it.

β2 = 1/kBT2, where we assume β1 ≥ β2 for concreteness, and they interact through a unitary SWAP

operation of the form:

USWAP =
( 1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1

)
. (4.26)

In the second stroke, the qubits are put in contact with respective local reservoirs at β1 and β2 until they

thermalize. The cyclic application of these two stokes leads to a systematic operation of the device

which consumes/extracts an average amount of work 〈W 〉 in the first stroke, while absorbing/releasing

an amount of heat 〈Qi〉 i = h, c from the hot and cold thermal environments in the second ones. This

device functions as a heat engine, 〈W 〉 ≤ 0, whenever β1/β2 < ε2/ε1 < 1. On the other hand, a

power-driven refrigerator extracting heat from the cold reservoir, 〈Qc〉 ≥ 0, can be obtained when

ε2/ε1 < β1/β2. The functioning of the thermal engine is illustrated in Fig. 4.6.

The simplicity in the operation of this device makes it specially appealing for the extended TPM

scheme introduced above. We consider a bipartite system S consisting on the two engine qubits,

and we identify the thermodynamic process with the SWAP operation in Eq. (4.26). In order to

cast the operation of the engine in the form of a standard thermodynamic protocol Λ, we introduce

an interaction Hamiltonian between the two qubits of the form Hint ≡ g
(
|01〉 〈10| + |01〉 〈10|

)
.

This interaction term is switched on and off at the initial and final times of the protocol, t = 0
and t = τ , respectively, i.e., H[λ(t)] = H1 + H2 + λ(t)Hint, with λ(t) = 1 ∀ t ∈ (0, τ), while

λ(0) = λ(τ) = 0. By tuning the coupling strength g and the final time τ , the quench U(τ, 0) =
exp

[
−i(H1 +H2 +Hint)τ/~

]
reproduces the SWAP unitary in Eq. (4.26), which belongs to the class

of optimal unitaries for work extraction in the setup [Campisi et al., 2015].
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We now consider the superposition of two cycles, both of them as described above with the very same

quench USWAP. However, in the first one, we denote the energy spacings of the qubits ε1 and ε2,

chosen such that β1/β2 < ε2/ε1 < 1 (work extraction). Instead, in the second cycle, the spacings

of the qubits are modified to be ε∗1 and ε∗2, where we chose the new ones to verify ε∗2/ε
∗
1 < β1/β2

(refrigeration). In any case, the temperatures are fixed, and the two qubits start the evolution in a

bipartite thermal state of the form:

ρth
0 = e−β1H1

Z1
⊗ e−β2H2

Z2
, (4.27)

where Z1 = 1 + e−β1ε1 and Z2 = 1 + e−β2ε2 are the local partition functions for each qubit. Since

the protocol is cyclic, H(0) = H(τ), the initial and final system eigenstates coincide |E(0)
k 〉 =

|E(τ)
k 〉, so that the superscripts can be dropped for simplicity. The purified initial states of system and

environment are then given by:

|ψE
0 〉S,E =

∑
k,l=0,1

√
e−β1ε1k

Z1

e−β2ε2l

Z2
|k〉1|l〉2 |εk〉R1 |εl〉R2 ,

|ψR
0 〉S,E =

∑
k,l=0,1

√
e−β1ε∗1k

Z∗1

e−β2ε∗2l

Z∗2
|k〉1|l〉2 |εk〉R1 |εl〉R2 ,

where we introduced the reservoir states |εk〉R1
and |εl〉R2

to purify the local mixed states in Eq. (4.27),

and where we denoted the corresponding partition functions as Z∗1 = 1+e−β1ε∗1 and Z∗2 = 1+e−β2ε∗1 .

In order to incorporate also the auxiliary system, we consider the following initial state:

|Ψ0〉S,E,A = α0|ψE
0 〉S,E |0〉A + α1|ψR

0 〉S,E |1〉A , (4.28)

where we associated the initial states for the heat engine and the heater to the two orthogonal states

|0〉A and |1〉A of the control, respectively.

We consider an extension of the TPM scheme as in the previous sections, in which we include in-

dependent energy measurements on both engine qubits in both branches of the superposition. How-

ever, the role played before by the forward and time-reversal evolutions is now played by the heat

engine and refrigeration processes. More precisely, conditional on the state |0〉A and |1〉A of the

quantum control, we consider the application of the projectors Πn1,n2 ≡ |n1〉 〈n1|1 ⊗ |n2〉 〈n2|2 and

Πn2,n1 ≡ |n2〉 〈n2|1⊗|n1〉 〈n1|2 to the initial states |ψ0〉ES,E and |ψ̃0〉
R
S,E , respectively. Then, we apply

the SWAP unitary (4.26) in both branches. Finally, the projectors Πm1,m2 = |m1〉 〈m1|1⊗|m2〉 〈m2|2
and Πm2,m1 = |m2〉 〈m2|1 ⊗ |m1〉 〈m1|2 are respectively applied to each branch. In this way, the

changes in energy of the qubits in the work extraction cycle are ∆E(1)
n1,m1 = ε1(m1 − n1) and

∆E(2)
n2,m2 = ε2(m2 − n2), while in the refrigeration cycle they read ∆E(1)∗

n2,m2 = ε∗1(m2 − n2) and

∆E(2)∗
n1,m1 = ε∗2(m1 − n1).
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The implementation of the scheme leads to the following operators depending on the energy changes

in the two qubits:

M∆E1,∆E2 =
∑
n1,m1

∑
n2,m2

[
|0〉〈0|A ⊗Πm1,m2UΠn1,n2 ⊗ 1E · δ

(
∆E1 −∆E(1)

n1,m1

)
· δ
(
∆E2 −∆E(2)

n2,m2

)
+ |1〉〈1|A ⊗Πm2,m1U Πn2,n1 ⊗ 1E · δ

(
∆E1 −∆E(1)∗

n2,m2

)
· δ
(
∆E2 −∆E(2)∗

n1,m1

)]
. (4.29)

As before, these are Kraus operators fulfilling
∫
d∆E1 d∆E2M

†
∆E1,∆E2

M∆E1,∆E2 = 1, associated

to the occurrence of the outcomes ∆E1 and ∆E2 for the energy changes in the engine qubits during

the protocol. The operator in Eq. (4.29) is then applied to the initial state in Eq. (4.28) giving rise to

the (unnormalized) state M∆E1,∆E2 |Ψ0〉S,E,A.

Finally, by including the final projection of the auxiliary system onto the state |ξ〉A, we can calculate

the conditional probability distribution analogous to Eq. (4.12). To this end, it is useful to introduce the

coefficients qξ0 = |α0|2|〈ξ|0〉|2/P (ξ) and qξ1 = |α1|2|〈ξ|1〉|2/P (ξ), where P (ξ) denotes the marginal

probability for post-selecting on |ξ〉A:

P (ξ) = |α0|2
∣∣〈ξ|0〉∣∣2 + |α1|2

∣∣〈ξ|1〉∣∣2 + 2 Re
[
α∗0α1〈0|ξ〉〈ξ|1〉

]
· f, (4.30)

and f :=
(

1+
√
e
−β1(ε1+ε∗1)−β2(ε2+ε∗2)√

Z1Z∗1Z2Z∗2

)
. The conditional probability of obtaining ∆E1 and ∆E2 in the

interferometric scheme, given that the auxiliary system is found in the state |ξ〉A, can then be written

as:

Pξ(∆E1,∆E2) =qξ0PE(∆E1,∆E2) + qξ1PR(∆E1,∆E2) + 2 Re
[
I(∆E1,∆E2)

]
. (4.31)

Here, we identified the distributions of a heat engine and a refrigerator operating in independent cycles

as:

PE(∆E1,∆E2) =
∑
n,m

e−β1ε1n

Z1

e−β2ε2m

Z2
· δ
(
∆E1 −∆E(1)

n,m

)
· δ
(
∆E2 + ∆E(2)

n,m

)
, (4.32a)

PR(∆E1,∆E2) =
∑
n,m

e−β1ε∗1m

Z∗1

e−β2ε∗2n

Z∗2
· δ
(
∆E1 + ∆E(1)∗

n,m

)
· δ
(
∆E2 −∆E(2)∗

n,m

)
, (4.32b)

whereas the interference term is:

I(∆E1,∆E2) =α∗0α1 〈0|ξ〉〈ξ|1〉
P (ξ) f · δ(∆E1) · δ(∆E2), (4.33)

which only affects the case in which both energy changes are zero.

The work performed by the machine during the unitary quench USWAP equals the total energy change

of the system,W = ∆E1 +∆E2, which is distributed among the two qubits. This energy is dissipated
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as heat into the reservoirs at the end of the cycle, so that we can identify Qh = ∆E1 as the heat input

from the hot reservoir and Qc = −∆E2 as the heat extracted from the cold one. Applying a change

of variable ∆E1 → W − ∆E2, and identifying ∆E2 → −Qc in Pξ(∆E1,∆E2) [Eq. (4.31)], we

obtain the joint probability of the machine to perform work W , and extract heat Qc from the cold

reservoir during the superposition of both cycles conditioned on the projection |ξ〉A of the control,

namely, Pξ(W,Qc).

In Fig. 4.4 we show the probability distributions of the engine [PE(W,Qc)], the refrigerator [PR(W,Qc)],

and the superposition of both of them [Pξ(W,Qc), with |ξ〉A ≡ |±〉A], for the choice of parameters in-

dicated in the caption. As can be appreciated in Fig. 4.4 Panels a.-b., both the engine and refrigeration

processes are characterized by a joint probability with three peaks, one corresponding to extracting

work W < 0 and dumping heat into the cold reservoir Qc < 0 (left peak), one where the engine does

not consume work nor exchange heat with the reservoirs, W = Qc = 0 (middle peak), and finally a

third one where an external input of work W > 0 helps to refrigerate the cold reservoir Qc > 0 (right

peak). The difference between the heat engine and refrigerator cycles is that, while in the former the

left peak is higher than the right one, warrantying work extraction on average 〈W 〉 < 0, in the latter

case the situation is the opposite, enforcing refrigeration on average 〈Qc〉 > 0. However, in both cases

the highest peak in the distribution is the middle one (W = Qc = 0), which implies that the machine

will most probably perform no tasks at all.

Remarkably, this issue can be handled by means of the interference effects as given by Eq. (4.33). Su-

perposing the engine and refrigeration cycles, we obtain either the constructive addition of the middle

peak in both cycles, or their destructive suppression, depending on the auxiliary system post-selection.

As can be seen in Figs. 4.4 Panels c.-d. the central peak can be either enhanced in P+(W,Qc) or al-

most suppressed P−(W,Qc), while the other four peaks in the probability distribution decrease or

increase accordingly. We note that the other four peaks are placed as the left and right peaks in

Fig. 4.4 Panels a.-b., two of which correspond to the heat engine mode of operation, and the other

two to the refrigerator mode. The case P−(W,Qc) is particularly interesting as it ensures that, in each

cycle of the (superposition) process, with high probability we will perform either one useful task or

the other, but certainly one of the two. The relative weights of the two tasks may be balanced at con-

venience by, e.g., selecting different coefficients α0 and α1 in the initial superposition in Eq. (4.28),

at the price of loosing amplitude in the interference term. By continuously varying the state |ξ〉A onto

which the auxiliary qubit is projected, we can interpolate between the distributions P+(W,Qc) and

P−(W,Qc). Finally, it is worth noticing that this effect cannot be generated by any convex mixture of

cycles, which would simply lead to a convex mixture of the probability distributions PE(W,Qc) and

PR(W,Qc).
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4.6 Supplemental Information

4.6.1 Guessing the Time’s Direction in a Thermodynamic Process

In 1927, Sir A. Eddington introduced the notion of ‘arrow of time’ [Eddington, 1928] to refer to the

temporal directionality that he saw as deeply rooted in the second law of thermodynamics. He ex-

plained that, according to this law, in order to determine the direction in which time is flowing for

a macroscopic system subjected to an irreversible process, it is sufficient to examine the relation be-

tween the work W performed on the system, and the variation of its free energy ∆F : time must flow

in the direction in which W > ∆F . This apparently unequivocal description weakens in the micro-

scopic case, where it is possible to occasionally observe ‘fluctuations’ from the Clausius inequality. It

follows that, in the microscopic case, it is no longer possible to univocally determine the direction of

time from the sign of W −∆F .

With the aim to refine these considerations, in Ref. [Jarzynski, 2011], C. Jarzynski evaluated the

possibility of defining the temporal direction of a thermodynamic process from a given set of data. In

the following, we go over his reasoning briefly.

Let us imagine filming a microscopic system that, subjected to a thermodynamic process Λ(t), varies

from an initial state at time t = 0, to a final state at time t = τ . We will suppose that i. the camera is

able to record the motion of each particle constituting the system, ii. we are given full knowledge of

the Hamiltonian function of the system H
(
Λ(t)

)
, and of the value of ∆F = Fτ − F0. Depending on

the result obtained from the coin toss, the movie will be shown to us in either the correct or reverse

order. Our goal is to determine, based on the given information, whether the movie is shown in the

correct or reverse order.

This problem can be addressed using statistical inference. We call L(F | γ) the likelihood that the pro-

cess is shown in the forward direction F if the microscopic trajectory γ is shown. Likewise, L(R | γ)
is the likelihood that the process is shown in the time-reversal direction R given the microscopic

trajectory γ. Obviously, the two terms sum up to one:

L(F | γ) + L(R | γ) = 1. (4.34)

We call W the work performed on the system for the trajectory γ. For a macroscopic system, accord-

ing to the Clausius inequality, we have that, if W > ∆F , we are observing the process F , whilst we

are observing R if W < ∆F . In this case, then, L(F | γ) = θ (W −∆F ), with θ( · ) being the unity

step function. We now evaluate the likelihood corresponding to the microscopic case. From Bayesian

theory, we know that

L(F | γ) = P (γ |F ) · P (F )
P (γ) , (4.35)
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where P (F ) is the probability that we have been shown the process in the forward direction (i.e., 1/2),

while P (γ) = P (F )P (γ|F ) + P (R)P (γ|R) is a normalization constant. We write the analogous

formula for L(R | γ), and combine them together in Eq. (4.34):

P (γ |F ) · P (F )
P (γ) + P (γ |R) · P (R)

P (γ) =

= P (γ |F )
2P (γ)

[
1 + e−β(W−∆F ) ] = 1. (4.36)

In addition, we used the fact that P (γ |R) = e−β(W−∆F ) P (γ |F ), which is one of the main formu-

lations of the fluctuation theorems, and which can be justified as follows:

P (γ |F )
P (γ |R) = e−βH(Λ(0))

Z
(
Λ(τ)

) (
e−βH(Λ̃(0))

Z
(
Λ̃(τ)

) )−1

=
Z
(
Λ̃(τ)

)
Z
(
Λ(τ)

)eβ[H(Λ(τ))−H(Λ(0))] = eβ(W−∆F ), (4.37)

where we assumedH(Λ̃(0)) = H(Λ(τ)), and where, in the second-last equality, we used the fact that,

from Liouville’s theorem, we know that the volume occupied by the system in the phase space does

not change, and therefore Z
(
Λ̃(τ)

)
= Z

(
Λ(τ)

)
. Note that, while this argumentation applies to the

case of classical physics, one can arrive at Eq. (4.37) also by using the quantum formalism [Campisi

et al., 2011].

From Eq. (4.36), we obtain that

L(F | γ) =
(
1 + e−β(W−∆F )

)−1
=
(
1 + e−βWdiss

)−1
, (4.38)

where we have called Wdiss = W −∆F . This equation has been experimentally tested recently in a

driven quantum dot setup [Hofmann et al., 2017].

Fig. 4.7 shows the discrepancy between the function θ(Wdiss), valid in the macroscopic case, and

Eq. (4.38), true in the microscopic one. While in the macroscopic case the direction of time is always

well-defined, in the microscopic scenario there is a region in which this directionality is genuinely

indefinite, and the region widens with increasing the system’s temperature.

4.6.2 Description of the External Control Parameter

It is commonly considered that the unitary U(t, 0) acting on the system is implemented by some

externally-controlled parameter of the Hamiltonian (classical field). In our case, such an external

control could also be included explicitly in the quantum description of the joint state [Eq. (5) of the
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Figure 4.7 Likelihood L(F | γ) as a function of the dissipative work Wdiss. (Left) Comparison between the trend
of the unity step function, valid in the macroscopic case, and the likelihood L(F | γ) depicting the microscopic case.
The shaded areas represent the regions where the time’s arrow in the microscopic case is not univocally defined, conversely
to the macroscopic one. (Right) Trend of L(F | γ) for different values of the inverse temperature β. It is interesting to
notice that this function does not depend on the features of the system, nor on the thermodynamic protocol Λ(t). In fact,
we observe that the lower the inverse temperature (and hence the higher the system’s temperature), the wider the region
within which the time’s arrow is not well-defined.

main text] as an energy reservoir (or ‘battery’) interacting with the system:

|Ψ0〉S,E,A,B =
(
α0 |ψ0〉S,E ⊗ |0〉A + α1 |ψ̃0〉S,E ⊗ |1〉A

)
⊗ |b〉B , (4.39)

where |b〉B corresponds to an arbitrary initial state of the battery system used for the implementation

of both quenches U and Ũ . It is clear that, in order to allow coherent operations on the system, such

a battery needs to be also a source of coherence [Åberg, 2014; Korzekwa et al., 2016; Malabarba et

al., 2015]. In the limit of the battery acting as an ‘unbounded’ reference frame [Bartlett et al., 2007]

(i.e., infinite source of coherence), a classical-driving is recovered. More precisely, given an arbitrary

unitary U acting on the system alone, one can find an energy-preserving unitary V (U) acting on the

enlarged Hilbert space of the system and the battery, such that TrB[V (U)
(
ρS ⊗ |b〉〈b|B

)
V (U)†] ≈

UρSU
†, where ρS is an arbitrary state of the system (see, e.g., Ref. [Åberg, 2014] for a detailed proof).

Furthermore, taking the battery to be initially in a strong coherent state, the states of the battery before

and after the application of V (U) become almost indistinguishable [Åberg, 2014; Dakić and Brukner,

2016].

For example, following Ref. [Åberg, 2014], the battery may be approximated by a doubly-infinite

ladder HB =
∑
z ω |z〉 〈z|B (e.g., an harmonic oscillator far from its ground state), which is assumed

to be almost continuous in comparison with any energy spacing in the system, ω � E
(t)
m − E(t)

n for

all m,n and t ∈ [0, τ ]. Then, arbitrary unitaries on the system may be implemented by inducing rigid

translations in the energy ladder. In particular, we consider the global unitary V ≡ |0〉 〈0|A⊗V (U) +
|1〉 〈1|A ⊗ Ṽ (Ũ), which, conditionally on the state of the auxiliary system, applies to each branch in
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Eq. (4.39) the corresponding system-battery unitaries:

V (U) ≡
∑
n,m

|E(τ)
m 〉 〈E(τ)

m |U(τ, 0) |E(0)
n 〉 〈E(0)

n |

⊗∆(Wn,m/ω), (4.40a)

Ṽ (Ũ) ≡
∑
n,m

Θ |E(0)
n 〉 〈E(0)

n |Θ†Ũ(τ, 0)Θ |E(τ)
m 〉 〈E(τ)

m |Θ†

⊗∆(−Wn,m/ω), (4.40b)

where we introduced the battery translation operator ∆(δ) ≡
∑
k |k + δ〉 〈k|B , verifying ∆(δ)† =

∆(−δ) and ∆(δ1)∆(δ2) = ∆(δ1 + δ2). Notice that, in V (U), any energetic transition |E(0)
n 〉 →

|E(τ)
m 〉 induced by U on the system is exactly compensated by a translation on the battery of pro-

portional magnitude, ∆(Wn,m/ω), where we recall that Wn,m = E
(τ)
m − E(0)

n . Similarly, in Ṽ (Ũ)
the time-reversed transitions Θ |E(τ)

m 〉 → Θ |E(0)
n 〉 are compensated by the opposite battery transla-

tions. As a consequence, the global Hamiltonian of the system, the auxiliary qubit and the battery

at initial and final times, H0 ≡ |0〉 〈0|A ⊗ (H[λ(0)] + HB) + |1〉 〈1|A ⊗ (H̃[λ(τ)] + HB) and

Hτ ≡ |0〉 〈0|A ⊗ (H[λ(τ)] + HB) + |1〉 〈1|A ⊗ (H̃[λ(0)] + HB), generate exactly the same en-

ergy distribution when applied, respectively, to the global initial and final states |Ψ0〉S,E,A,B and

V|Ψ0〉S,E,A,B (assuming the auxiliary qubit internal states |0〉 and |1〉 to have the same energy). This

guarantees energy conservation.

In this situation, it is convenient to consider that the battery is initiated in a coherent state of the form

|η(L, l0)〉B =
∑L−1
l=0 |l + l0〉B /

√
L, corresponding to a highly coherent state of length L. These

states verify [Åberg, 2014]:

〈η(L, l0)|∆(δ)|η(L, l0)〉 = max(0, 1− |δ|/L), (4.41)

and hence the displaced state ∆(δ)|η(L, l0)〉 becomes indistinguishable from the original state |η(L, l0)〉
when L � |δ|. Therefore, whenever we choose in Eq. (4.39) the initial state of the battery as

|b〉B ≡ |η(L, l0)〉 for L � maxn,m(|Wn,m|/ω), the back-reaction over the battery due to the imple-

mentation of the quenches U and Ũ may be safely neglected. This implies that, in any such protocol

and for any outcomes m and n of the extended two-point measurement scheme introduced in Sec. II,

the associated changes in the state of the battery would be unnoticeable.

In light of this, assuming the battery to be in a strong coherent state in the amplitude corresponding

to both the forward and the time-reversal directions, we conclude that the battery ends in a nearly-

indistinguishable state from its initial one, and that it can be, to a good approximation, factorized

from the rest. Consequently, considering explicitly the battery in the quantum description of the joint

state does not introduce any extra source of decoherence in our interferometric scheme, and hence the

battery can be fully replaced by a classical external control.
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Finally, we also remark that in our interferometric setup we do not require the battery to be used

‘catalytically’ [Åberg, 2014], hence avoiding the accumulation of (finite-size) errors leading to the

battery degradation [Vaccaro et al., 2018]. For instance, the battery could be reprepared in its ready-

to-work state at the beginning of every realization of our scheme.

4.6.3 Relation between Entropy Production and Work

In the main body, all our results are formulated in terms of the work performed during the quench.

There is, however, a link between this latter and the entropy production [Batalhão et al., 2015; Kawai

et al., 2007; Parrondo et al., 2009]. Indeed, the stochastic entropy production can be constructed

from the stochastic work as:

∆Sn,m := β
(
Wn,m −∆F

)
, (4.42)

where ∆F := Fτ − F0 = − log(Zτ/Z0) is the difference in free energies between the equilibrium

states at times t = {0, τ}. Again, as a consequence of p̃n|m = pm|n, a generalized version of the

fluctuation theorem for the stochastic entropy production in Eq. (4.42) can be obtained [Kawai et al.,

2007; Sagawa, 2012]:

ln
(pn,m
p̃m,n

)
= ln

(
p

(0)
n

p̃
(0)
m

)
= ∆Sn,m. (4.43)

This equation conveys a well-defined meaning to the entropy production in terms of irreversibility by

linking it to the ratio between the probability of transitions |E(0)
n 〉 → |E(τ)

n 〉 in the forward dynamics,

and the probability of the inverse transition Θ |E(τ)
m 〉 → Θ |E(0)

n 〉 in the time-reversal dynamics.

Moreover, following Eq. (4.43), reversible processes, for which pn,m = p̃m,n, necessarily produce

zero entropy for every single realization of the protocol Λ, i.e., ∆Sn,m = 0 (or, equivalently, Wn,m =
∆F ) for all n,m.
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Chapter 5

Inferring Work by Quantum Superposing
Forward and Time-Reversal Evolutions

G. Rubino, G. Manzano, L. A. Rozema, P. Walther, J. M. R. Parrondo, and Č. Brukner

Abstract. The study of thermodynamic fluctuations allows to relate the free energy dif-
ference between two equilibrium states with the work done on a system through processes
far from equilibrium. This finding plays a crucial role in the quantum regime, where the
definition of work becomes non-trivial. Based on these relations, here we propose and
experimentally realize a simple interferometric scheme allowing a direct estimation of the
work distribution and the average work dissipated during an isothermal thermodynamic pro-
cess. We show that our scheme provides useful upper bounds on the average work dissipated
even in experimental scenarios which do not consent full control over the thermodynamic
process, and we propose methodological variations depending on the possible experimen-
tal limitations encountered. Finally, we exemplify its applicability by implementing our
method on a photonic system, on which the thermodynamic process acts through the polar-
ization rotations induced by liquid crystals acting in a discrete temporal regime.

Author contributions: G.R. and L.A.R. designed the experiment. G.R. built the set-up and is carrying

out the data collection. G.R., G.M., J.M.R.P. and Č.B. developed the theoretical idea. P.W., J.M.R.P.

and Č.B. supervised the project. All authors contributed to writing the paper, based on an initial draft

by G.R..
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5.1 Introduction

While microscopic dynamical physical laws of both classical and quantum physics are time-symmetric,

and hence reversible, the dynamics of macroscopic mean quantities exhibits a preferred temporal di-

rection. The physical law formalizing this concept is the second law of thermodynamics, whereby the

‘arrow of time’ [Eddington, 1928] is associated with a production of positive average entropy [Callen,

1985]. According to this law, for instance, if we take a vessel divided by a wall, and put a gas in

one half of the vessel, when removing the wall we will observe with a near-unity probability the gas

expanding and occupying the whole vessel. Because of its unidirectional temporal evolution, this phe-

nomenon has often been used to differentiate between past and future. There is, however, a non-zero

probability that at a time all the molecules may happen to visit a half of the vessel. In this regard,

the development of so-called ‘fluctuation theorems’, both for classical [Crooks, 1999; Evans et al.,

1993; Jarzynski, 1997, 2011; Seifert, 2012] and quantum [Åberg, 2018; Albash et al., 2013; Alham-

bra et al., 2016; Campisi et al., 2011; Esposito et al., 2009; Funo et al., 2018; Manzano et al., 2015,

2018; Rastegin and Życzkowski, 2014] systems, has led to the sharpening of our understanding of

the second law as a statistical law, where the entropy of a system away from equilibrium can sponta-

neously decrease rather than increase with non-zero probability. As specified by those theorems, the

ratio between the probability of entropy-decreasing events and that of entropy-increasing ones van-

ishes exponentially with the size of the fluctuations, and can hence be neglected in the macroscopic

limit [Jarzynski, 2011].

Fundamental and empirical basis for the study of entropy production and thermodynamic irreversibil-

ity in isothermally driven systems is typically provided by the notion of dissipated work, Wdiss ≡
W −∆F (namely, the work invested in a thermodynamic transformation between equilibrium states

having a free energy difference ∆F , which cannot be recovered by reversing the driving protocol)

[Crooks, 1999; Deffner and Lutz, 2011; Jarzynski, 1997; Kawai et al., 2007; Parrondo et al., 2009].

The fluctuations of the dissipated work in any such processes can be characterized by constructing

the work probability distribution, P (W ), associated to the observation of a particular value of W in a

single realization of the driving protocol. Such fluctuations are constrained by a refined version of the

second law: the Crook’s fluctuation theorem, according to which

P (W )
P̃ (−W )

= eβWdiss , (5.1)

where P̃ (−W ) is the probability of recovering the workW in the time-reversal dynamics, β = 1/kBT
is the inverse temperature of the surrounding thermal environment, and kB is the Boltzmann con-

stant. According to Eq. (5.1), this probability ratio decreases exponentially with the amount of dis-

sipated work, Wdiss, in the realization. Furthermore, Eq. (5.1) implies the famous Jarzynski equality

〈e−βWdiss〉 = 1, where the brackets denote the statistical average with respect to P (W ). The Jarzyn-

ski’s equality has severe implications by itself, such as the exponential decay of the probability to
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observe negative values of Wdiss in the forward dynamics (explicitly, P (Wdiss < −ζ) ≤ e−βζ for any

ζ ≥ 0) [Jarzynski, 2011].

Work fluctuations have been measured in small classical systems leading to both testing the Crook’s

theorem and the Jarzynski equality, and developing applications like measurements of free-energy [Collin

et al., 2005; Gieseler et al., 2014; Liphardt et al., 2002; Tietz et al., 2006; Toyabe et al., 2010; Wang

et al., 2002]. In quantum physics, since work is not associated to any observable [Talkner et al.,

2007], its definition becomes more complex, and it usually demands the use of the so-called ‘two-

point measurement (TPM) scheme’ [Campisi et al., 2011]. In the TPM scheme, work is represented

as the difference between the initial and final energies of the system, obtained by performing two

projective measurements of the Hamiltonian at the beginning and at the end of the forward as well

as of the time-reversal process (extensions to non-ideal measurements have been also considered re-

cently [Debarba et al., 2019; Ito et al., 2019]). This approach has been directly implemented in

several experiments [An et al., 2015; Wu et al., 2019; Xiong et al., 2018; Zhang et al., 2018]. How-

ever, since implementing projective energy measurements before and after an arbitrary process may

be challenging in certain experimental scenarios, and the measurement might be destructive for the

system measured, alternative methods for extracting the work distribution were proposed to circum-

vent this requirement. For example, in Refs. [Dorner et al., 2013; Mazzola et al., 2013], a scheme

based on Ramsey interferometry using a single probe qubit was proposed, and subsequently imple-

mented [Batalhão et al., 2015, 2014], to extract the characteristic function of work in a NMR plat-

form. A similar method to sample the work probability distribution from a generalized measurement

scheme was introduced in Ref. [Roncaglia et al., 2014], and tested experimentally on an ensemble of

cold atoms [Cerisola et al., 2017]. Nevertheless, the price to pay in these alternative schemes is the

need of entangling operations which are standardly experimentally demanding. Developing new and

simpler methods allowing for a direct estimation of the work probability distribution and irreversibility

(thus refraining from the TPM scheme) is therefore of prime interest in quantum thermodynamics.

In this Chapter, we theoretically propose a simple interferometric method for quantifying the work dis-

tribution and the average dissipative work associated to a given driving protocol Λ during a isothermal

thermodynamic process. The method enables to directly read out the relevant transition probabilities

between eigenstates of the initial and the final Hamiltonians, which are needed to build the work

probability distribution and the relative entropy (or Kullback-Leibler divergence) between the den-

sity operators in forward and time-reversal dynamics, following a driving protocol Λ. The latter was

shown to be equal to the dissipative work, reinforcing the deep connection between thermodynamic

and information-theoretical irreversibility put forward in Refs. [Kawai et al., 2007; Parrondo et al.,

2009]. Remarkably, the method requires no entangling operations, and it does not require to run the

scheme twice (i.e., once for the forward, and once for the time-reversal process). More precisely, in

the proposed method we superpose two interferometric paths: along one path the system is affected

by a non-equilibrium quench implementing the first half of the driving protocol Λ (i.e., from t = 0
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to t = τ/2), while along the other the system is affected by the time-reversal version of the second

half of the protocol (from t = τ/2 to t = τ ). We show that the fringe visibility in the interferometer

allows the quantification of the full work probability distribution associated to any arbitrary protocol

Λ, and of the relative entropy between the states in the forward and the time-reversal dynamics at any

instant of time, assuming that the initial and final Hamiltonians are known. We will also demonstrate

our scheme experimentally with a single photon interferometer, where the thermodynamic system is

represented in terms of the polarization of a single photon. In our experiment, the thermality of the

photon will be given by the degree of entanglement with an auxiliary photon, and the time-dependent

Hamiltonian will be realized by traveling of the photon through a sequence of liquid crystal polar-

ization rotators, whose rotation is such that each crystal will simulate a different time instant of the

(discretised) thermodynamic process.

5.2 Theoretical Framework and Experiment

Consider a thermodynamic system S that is driven by a time-dependent Hamiltonian H(Λ(t)) de-

pending on some control parameter Λ(t) which varies from t = 0 to t = τ , according to a protocol

Λ = {Λ(t) : 0 ≤ t ≤ τ}. The system starts the evolution in a thermal state ρth
0 = exp[−β(H0 − F0)]

in equilibrium with a thermal reservoir at inverse temperature β, where F0 is the free energy cor-

responding to the initial Hamiltonian H0 ≡ H
(
Λ(0)

)
. The system is then isolated from the envi-

ronment, and the driving protocol Λ is applied, bringing the system to an out-of-equilibrium state

ρ(t) = U(t, 0) ρth
0 U

†(t, 0), where U(t, 0) = −→
T exp[− i

~
∫ t

0 H
(
Λ(t′)

)
dt′], −→T being the so-called

‘time-ordering’ operator resulting from the Dyson decomposition. Once the driving protocol is ended

at time τ , the system may eventually equilibrate again from ρτ = ρ(τ) to the reservoir temperature,

thereby reaching the thermal state ρth
τ = exp

[
−β(Hτ − Fτ )

]
, corresponding to the final Hamiltonian

Hτ ≡ H(Λ(τ)) and the free energy Fτ .

Together with the above thermodynamic process, we consider its time-reversal twin. In the reverse

process, the system starts the evolution at time t = 0 with Hamiltonian ΘHτΘ† in equilibrium with

the thermal reservoir, that is, ρ̃th
0 ≡ Θρth

τ Θ† = exp
[
−β(ΘHτΘ† − Fτ )

]
. Here, Θ is the (anti-unitary)

time-reversal operator, responsible for changing the sign of observables with odd parity (such as

momentum, or spin under time-reversal). The time-reversal operator fulfills Θ 1i = −1iΘ and

Θ Θ† = Θ†Θ = 1. The system is then driven according to the time-reversal protocol Λ̃ = {Λ̃(t) ≡
Λ(τ − t) : 0 ≤ t ≤ τ}, corresponding to the inverse sequence of values of the control parameter. This

brings the system out-of-equilibrium to the state ρ̃(t) = Ũ(t, 0) ρ̃th
0 Ũ

†(t, 0) at intermediate times,

where now Ũ(t, 0) = −→T exp
[
− i

~
∫ t

0 ΘH
(
Λ̃(t′)

)
Θ†dt′

]
. After completing the protocol Λ̃, the system

may return back to equilibrium at time t = τ , reaching ρ̃th
τ = Θ ρth

0 Θ† = exp[−β(ΘH0Θ† − F0)].

We denote by
∣∣E(0)

n
〉

the initial energy eigenstates of the system in the forward process, and by
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p
(0)
n = e−β(E(0)

n −F0) the probability that the system has energy E(0)
n . Analogously, the initial eigen-

states of the system in the time-reversal process read Θ
∣∣E(τ)

m
〉
, with p̃(0)

m = e−β(E(τ)
m −Fτ ) being the

corresponding probabilities to measure the energyE(τ)
m . The work probability distribution in the TPM

scheme results then [Campisi et al., 2011]:

P (W ) =
∑
m,n

p(0)
n pm|n δ

(
W − (E(τ)

m − E(0)
n )

)
, (5.2)

where we introduced the conditional probabilities pm|n =
∣∣〈E(τ)

m |U(τ, 0)|E(0)
n 〉

∣∣2 to find the system in

the eigenstate |E(τ)
m 〉 in the second projective energy measurement after the unitary evolution U(τ, 0),

given that it was found to be in |E(0)
n 〉 in the first measurement. Likewise, the work distribution in

the time-reversal process reads P̃ (W ) =
∑
m,n p̃

(0)
m p̃n|m δ

(
W − (E(0)

n − E(τ)
m )

)
, for which p̃n|m =∣∣∣〈E(0)

n |Θ†Ũ(τ, 0) Θ|E(τ)
m 〉

∣∣∣2. The micro-reversibility relation for non-autonomous systems [Campisi

et al., 2011] reads:

Θ† Ũ(τ − t, 0) Θ = U †(τ, t). (5.3)

Using the micro-reversibility relation (4.3), we obtain p̃n|m = pm|n. This relation is the key property

to obtain Crook’s theorem in Eq. (5.1) 1. Furthermore, we assume that the Hamiltonian is invariant

under time-reversal (i.e., ΘH(t) = H(t)Θ). As a consequence, the relations Θ |E(0)
n 〉 = |E(0)

n 〉 and

Θ |E(τ)
m 〉 = |E(τ)

m 〉 are also verified.

In Refs. [Kawai et al., 2007; Parrondo et al., 2009], the authors derived an important relation closely

connected to Crook’s theorem linking the dissipative work produced during the protocol Λ with the

relative entropy between the density operators in forward and time-reversal dynamics at any interme-

diate instant of time:

β〈Wdiss〉 = S
(
ρ(t) ||Θ†ρ̃(τ − t) Θ

)
, (5.4)

where S(ρ||σ) := Tr
[
ρ ln(ρ)−ρ ln(σ)

]
≥ 0 is the relative entropy between two generic states ρ and σ.

Reversible processes for which the state in the forward dynamics is statistically indistinguishable from

the one generated in the time-reversal dynamics do not dissipate work, 〈Wdiss〉 = 0, and therefore all

the work performed during the protocol Λ, 〈W 〉 = ∆F , can be recovered back implementing the time-

reversal protocol Λ̃. Importantly, the equality in Eq. (5.4) is obtained in the case of a closed system

following unitary dynamics, as in the TPM scheme presented above. For open systems, the equality

above is instead replaced by an inequality after tracing out environmental degrees of freedom [Kawai

et al., 2007; Parrondo et al., 2009].

In the following, we present an interferometric scheme that allows us to directly measure the condi-

tional probabilities pm|n (and therefore p̃n|m) without implementing the TPM scheme, but resorting

to the visibility of fringes in the interferometer. This enables us to construct P (W ) and P̃ (W ), and

1The same result can be extended to Hamiltonians which are not invariant under time-reversal. In such a case, the initial
state of the time-reversal process needs to incorporate the broken symmetry, that is, ρ̃th

0 = Θ ρth
τ
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Figure 5.1 Diagrammatic representation of the forward and time-reversal evolutions of the thermodynamic
system. An initial thermal state ρth

0 with Hamiltonian H0 is driven into a final, non-equilibrium state ρτ . It then eventually
equilibrates at the reservoir temperature, reaching the thermal state ρth

τ . (If the driving process was reversible, quasi-static,
the system would have ended in the state ρth

τ , immediately after the drive.) Along the driving process the Hamiltonian is
changed from H0 to Hτ . Analogously, in the process’ time-reversal twin a thermal state ρ̃th

0 = ρth
τ with Hamiltonian Hτ

evolves into a state ρ̃τ and then it eventually equilibrates to the state ρ̃th
τ = ρth

0 .

hence the relative entropy S
(
ρ(t) ||Θ†ρ̃(τ − t) Θ

)
in Eq. (5.4).

5.3 Results

With the aim to propose a practical implementation for our alternative scheme, we introduce a second

degree of freedom, which we will refer to as ‘auxiliary system’. This is placed at a time t < 0 in a

quantum superposition. For example, we can consider the system to be put in a quantum superposition

of two different paths 1√
2
(
|0〉A + |1〉A

)
, as shown in Fig. 5.2, where with {|0〉A , |1〉A} we denote

the basis in which the auxiliary system has been encoded. Suppose now that, in one of the two states

of the superposition (say, |0〉A), the system is prepared in state |E(0)
n 〉, while on the other state of the

superposition (|1〉A) the preparation is |E(τ)
m 〉 for a certain choice of n and m.

The operation U(τ/2, 0) is then applied to S in the path |0〉A, while, on the path |1〉A, the operation

Ũ(τ/2, 0) is performed, followed by the time-inversion operation Θ†. Therefore, at the time τ/2, the

state of system and path degree of freedom will read:

ρS,A(τ/2) :=1
2
{
|0〉A 〈0|A ⊗ U(τ/2, 0) |E(0)

n 〉 〈E(0)
n |U †(τ/2, 0) (5.5)

+ |0〉A 〈1|A ⊗ U(τ/2, 0) |E(0)
n 〉 〈E(τ)

m | Ũ †(τ/2, 0) Θ

+ |1〉A 〈0|A ⊗Θ†Ũ(τ/2, 0) |E(τ)
m 〉 〈E(0)

n |U †(τ/2, 0)

+ |1〉A 〈1|A ⊗Θ†Ũ(τ/2, 0) |E(τ)
m 〉 〈E(τ)

m | Ũ †(τ/2, 0) Θ
}
.
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Figure 5.2 Schematic representation of the interferometric technique to directly estimate the work dissipation. A
thermodynamic quantum system S is in its thermal state ρth

0 at time t = 0. An additional degree of the quantum system,
e.g., the path degree of freedom, is put in a quantum superimposition of the two states |0〉A and |1〉A. The operation
U(τ/2, 0) is then applied to S when traveling along the path |0〉A, resulting in state ρ τ

2
, while the operation Ũ(τ/2, 0)

followed by the time-inversion operation Θ† is applied to S in the thermal state ρ̃th
0 along the path |1〉A, resulting in state

ρ̃ τ
2

. The two quantum superimposed amplitudes are then interfered with each other, and the auxiliary system is measured
in the

{
|±〉A =

(
|0〉A ± |1〉A

)
/
√

2
}

basis.

If now we marginalize on the path degree of freedom (i.e., we trace out the thermodynamic system),

we obtain

ρA(τ/2) := TrS [ρS,A(τ/2)] = 1
2
{
|0〉A 〈0|A + |1〉A 〈1|A

+ |0〉A 〈1|A TrS
[
U(τ/2, 0) |E(0)

n 〉 〈E(τ)
m | Ũ †(τ/2, 0) Θ

]
+

+ |1〉A 〈0|A TrS
[
Θ† Ũ(τ/2, 0) |E(τ)

m 〉 〈E(0)
n |U †(τ/2, 0)

]}
. (5.6)

Similarly, if we trace out the auxiliary system, we achieve a mixture between the state of the driven

system at time τ/2 in forward and time-reversal processes:

ρS(τ/2) = 1
2
[ =ρn(τ/2)︷ ︸︸ ︷
U(τ/2, 0) |E(0)

n 〉 〈E(0)
n |U †(τ/2, 0) +

=Θ† ρ̃m(τ/2) Θ︷ ︸︸ ︷
Θ† Ũ(τ/2, 0) |E(τ)

m 〉 〈E(τ)
m | Ũ †(τ/2, 0) Θ

]
.

(5.7)

Ultimately, our aim is to relate the information gained by measuring the output ports of the interfer-

ometer to the work statistics and the ‘degree of reversibility’ of the thermodynamic processes. To this

end, we will exploit the expression of the visibility Vm,n of the interferometer fringes, which depends
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on the amount of overlap between the two terms that are interfered:

Vm,n :=
∣∣∣TrS

[
U(τ/2, 0) |E(0)

n 〉 〈E(τ)
m | Ũ †(τ/2, 0) Θ

]∣∣∣. (5.8)

Now, we crucially apply the micro-reversibility relation in Eq. (4.3), to realize that Θ† Ũ †(τ/2, 0) Θ =
U(τ, τ/2). Inserting this into Eq. (5.8), and using the cyclic property of the trace, we obtain the main

result of our proposal:

Vm,n =
∣∣∣TrS

[
U(τ, 0) |E(0)

n 〉 〈E(τ)
m |
]∣∣∣ =

∣∣∣〈E(τ)
m |U(τ, 0) |E(0)

n 〉
∣∣∣ = √pm|n, (5.9)

where, in the last equality, we identified the expression of the conditional probabilities pm|n of the

TPM scheme.

Running this scheme for the N2 different initial states, n,m = 1, 2, ..., N (where N is the dimension

of the system Hilbert space), and assuming that we know the eigenenergies E(0)
n , E(τ)

m , and the equi-

librium free energies F0 and Fτ (or, equivalently, the initial probabilities p(0)
n and p̃(0)

m ), we can readily

reconstruct the full probability distribution in Eq. (4.6):

P (W ) =
∑
m,n

p(0)
n V2

m,nδ
(
W − (E(τ)

m − E(0)
n )

)
, (5.10)

and its time-reversal twin P̃ (W ). Furthermore, we can rewrite the r.h.s. of Eq. (5.4) in terms of known

quantities:

β〈Wdiss〉 = S
(
ρ(t) ||Θ†ρ̃(τ − t) Θ

)
=
∑
n

p(0)
n log p(0)

n −
∑
m,n

p(0)
n V2

m,n log p̃(0)
m , (5.11)

which can be alternatively obtained from the average of the work probability distribution in Eq. (5.10),

〈W 〉 =
∫∞
−∞WP (W ) dW , and the free energy difference between the initial equilibrium states,

∆F = Fτ − F0. As a consequence, this scheme allows, through Eqs. (5.10) and (5.11), the direct

estimation of the work dissipation, and the testing of the Jarzynski equality.

5.3.1 Limited preparation and bounds on work dissipation

In the previous section, we assumed that we have the ability to prepare the energy eigenstates of the

initial and final Hamiltonians of the system. Nonetheless, it could be the case that, due to technological

limitations, one may not be able to prepare these pure states in the laboratory. For instance, if we do

not have full control over the system in its preparation stage, and cannot isolate it from the reservoir,

we may only be able to prepare the thermal states ρth
0 and ρth

τ . In the following we explore what we

can still learn about the work dissipation by exploiting our interferometric scheme in such a situation.
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We anticipate that, although the full work probability distribution is no longer recoverable in this case,

we are still able to provide useful upper bounds on the dissipative work done in the process.

As before, we prepare our auxiliary degree of freedom in a quantum superposition 1√
2
(
|0〉A + |1〉A

)
at t < 0. The initial states for the system in the two branches will now be, in general, the mixed

thermal states ρth
0 and ρth

τ . However, hereafter we will make use of their ‘purifications’, which can

be considered as useful mathematical tools, and may correspond physically to all the environmental

degrees of freedom E, such that the overall joint state of the system and these degrees of freedom is

pure. (Notice that here the environment includes, but it is not limited to, the thermal reservoir). We

denote the purifications of the thermal states, respectively, as |ψ(0)〉S,E and |ψ̃(0)〉S,E , and they verify

TrE
[
|ψ(0)〉S,E 〈ψ(0)|S,E

]
= ρth

0 and TrE
[
|ψ̃(0)〉S,E 〈ψ̃(0)|S,E

]
= ρ̃th

0 = ρth
τ .

Again, we perform the operationU(τ/2, 0) in the path |0〉A according to the protocol Λ, and Ũ(τ/2, 0)
in the path |1〉A according to Λ̃, followed by Θ†. Notice that the unitaries U(τ/2, 0) and Ũ(τ/2, 0)
only act on the system of interest, with no interactions with the environment. We can then compute

the global state of the system, the environment and the auxiliary system at τ/2 similarly as before, and

obtain the marginal states for the auxiliary degree of freedom and the composite system consisting of

the system and environment. For the latter, we obtain a mixture over the states of the system and the

environment at τ/2 in the forward and time-reversal dynamics:

ρS,E(τ/2) = 1
2
[
ρ

(+)
S,E + ρ

(−)
S,E

]
, (5.12)

where

ρ
(+)
S,E =

(
U(τ/2, 0)⊗ 1E

)
|ψ(0)〉S,E 〈ψ

(0)|S,E
(
U †(τ/2, 0) ⊗ 1E

)
, (5.13a)

ρ
(−)
S,E =

(
Θ† Ũ(τ/2, 0)⊗ 1E

)
|ψ̃(0)〉S,E 〈ψ̃

(0)|S,E
(
Ũ †(τ/2, 0) Θ⊗ 1E

)
. (5.13b)

The corresponding state of the system only, will be then an equal probability mixture of the states

ρS(τ/2) = TrE
[
ρ

(+)
S,E

]
and Θ† ρ̃S(τ/2) Θ = TrE

[
ρ

(−)
S,E

]
.

The visibility, determined by the off-diagonal elements of the auxiliary degree of freedom, reads in

this case:

V =
∣∣∣TrS,E

[(
U(τ/2, 0)⊗ 1E) |ψ(0)〉S,E 〈ψ̃

(0)|S,E(
Ũ †(τ/2, 0) Θ⊗ 1E

)]∣∣∣ ∣∣∣〈ψ̃(0)|S,E
(
U(τ, 0)⊗ 1E

)
|ψ(0)〉S,E

∣∣∣, (5.14)

which can no longer be related to the different outcomes of a TPM scheme. This notwithstanding, as

we will shortly see, one can still make use of this information in an alternative way.

From Ref. [Englert, 1996], we know that the visibility V of the interferometer fringes and the distin-

guishabilityD(ρ, σ) between two “which-path detector states” ρ and σ (i.e., two states from which we
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can optimally infer the which-path information, would we perform a measurement to distinguish be-

tween them) are mutually exclusive. In particular, it has been shown that these two quantities respect

the complementarity relationship

V2 +D2(ρ, σ) 6 1, (5.15)

and that this relation becomes an equality if the “detector states” are in pure states, as it is in our case.

The distinguishability between the two states is given by the trace-norm distance between them, i.e.,

D(ρ, σ) := 1
2 ||ρ− σ|| :=

1
2Tr
[√

(ρ− σ)† (ρ− σ)
]
.

In our case, D
(
ρ

(+)
S,E , ρ

(−)
S,E

)
gives us an estimation of how well one can distinguish between the two

paths in the interferometer by measuring the system and the environment. However, we are inter-

ested in the trace-norm distance between the marginal states of the system only. We can there-

fore use the fact that the trace distance is non-increasing under partial trace, i.e., D
(
ρ

(+)
S,E , ρ

(−)
S,E

)
≥

D
(
ρS(τ/2),Θ† ρ̃S(τ/2) Θ

)
, to get:

V2 +D2(ρS(τ/2),Θ† ρ̃S(τ/2) Θ
)
6 V2 +D2(ρ(+)

S,E , ρ
(−)
S,E

)
= 1. (5.16)

Finally, we relate the distinguishability between the system states at τ/2 in the forward and time-

reversal dynamics with the relative entropy in Eq. (5.4), and hence to the average dissipated work

during the protocol Λ. This can be done using the upper bounds obtained in Eqs. (17) and (19) of Ref.

[Audenaert and Eisert, 2005]. Minor manipulations of these equations lead to the formulation of the

following theorem:

Theorem. Let ρ and σ be two strictly positive density operators in a finite-dimensional Hilbert space

H. Then

S(ρ||σ) 6 ||ρ− σ||
2
2

ασ
6
||ρ− σ||2

ασ
(5.17)

where ασ ∈ (0, 1] is the smallest eigenvalue of σ, and ||%||2 =
√

Tr[%† %] denotes the Frobenius (or

Euclidean) norm, which verifies ||%||2 ≤ ||%||.

Furthermore, setting the dimension of the Hilbert space to dim(H) ≡ d, we also have:

S(ρ||σ) 6 ||ρ− σ|| log(d/
√
ασ) + e−1 = D(ρ, σ) log(d2/ασ) + e−1. (5.18)

Combining Eqs. (5.16) and the bounds (5.17)-(5.18), we obtain the following two bounds for the

dissipative work during the original thermodynamic process:

〈Wdiss〉 6 kBT 4
(
1− V2)/α ≡ B2, (5.19)

〈Wdiss〉 6 kBT
[√

1− V2 log(d2/α) + e−1] ≡ Blog, (5.20)
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where we have used the relation between the dissipative work and the relative entropy in Eq. (5.4). Ad-

ditionally, we denoted α ≡ αρ̃S(τ/2) = αρth
τ

= e−β(Eτmax−Fτ ), whereEτmax is the maximum eigenvalue

of the Hamiltonian Hτ . This follows from the fact that the states ρ̃S(τ/2) and ρ̃S(0) = ρth
τ have the

same spectrum due to their unitary equivalence, that is, ρ̃S(τ/2) = Ũ(τ/2, 0) ρ̃S(0) Ũ †(τ/2, 0).

5.3.2 Limited control over experimental settings

In this section, we consider the situation where the ability to control the application of the protocol Λ
is heavily affected by experimental limitations such as (i). impossibility to split the protocol Λ in two

halves and invert the second half, or (ii). difficulties in applying the time-reversal operation Θ† at the

end of the second branch of the interferometer. If any of these circumstances applies, the requirements

for the usability of the interferometric scheme proposed above may not be met. In light of this, here

we propose an alternative set-up to be applied in such situations. The main price to pay is that the

time needed to run the scheme for any initial state is doubled.

In this alternative scheme, we will take advantage of the unitary equivalence of the system states in

the forward and time-reversal dynamics. In addition, the relation between the dissipated work and the

relative entropy in Eq. (5.4) is verified for any intermediate instant of time t ∈ [0, τ ]. As a conse-

quence, we can observe interference between the states in the forward and time-reverse dynamics also

at the extremes of the interval, where one of the two states is thermal. In the following, we present the

scheme in the case of interference at time τ in the forward dynamics (corresponding to t = 0 in the

time-reversal dynamics), but an analogous scheme can be developed for interference at time t = 0 in

the forward dynamics (corresponding to t = τ in the time-reversal one).

As in the previous case, we start by preparing the auxiliary degree of freedom in the quantum super-

position 1√
2
(
|0〉A + |1〉A

)
at t < 0. Once again, the initial states of the system in the two branches

may either be the pure states |E(0)
n 〉 along the path |0〉A and |E(τ)

m 〉 along |1〉A, or the mixed thermal

states ρth
0 and ρth

τ , respectively, depending on whether we have full control over the system in the

preparation stage. However, in contrast to the previous case, we implement the whole protocol Λ over

the system in the path |0〉A, while the branch |1〉A remains unaffected.

Assuming, for concreteness, initial pure states, the global state of the system and the auxiliary system

after time τ can be evaluated and, tracing the system degrees of freedom, we obtain:

ρA(τ) := TrS [ρS,A(τ)] = 1
2
{
|0〉A 〈0|A + |1〉A 〈1|A

+ |0〉A 〈1|A TrS
[
U(τ, 0) |E(0)

n 〉 〈E(τ)
m |
]

+ |1〉A 〈0|A TrS
[
|E(τ)

m 〉 〈E(0)
n |U †(τ, 0)

]}
. (5.21)
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Consequently, in this case the visibility directly give us the conditional probabilities for the work

probability distribution:

Vm,n :=
∣∣∣TrS

[
U(τ, 0) |E(0)

n 〉 〈E(τ)
m |
]∣∣∣ = √pm|n, (5.22)

and we recover Eqs. (5.10) and (5.11).

Likewise, when the initial states in the two interferometer paths are the mixed thermal states, we find

again, for the visibility:

V =
∣∣∣TrS,E [(U(τ, 0)⊗ 1E) |ψ(0)〉S,E 〈ψ̃

(0)|S,E ]
∣∣∣ =

∣∣∣〈ψ̃(0)|S,E (U(τ, 0)⊗ 1E) |ψ(0)〉S,E
∣∣∣, (5.23)

which is equivalent to Eq. (5.14). Consequently, the bounds developed in Eqs. (5.19) and (5.20) for

the dissipated work apply also in this situation.

5.3.3 Photonic Realization

We will apply our scheme to an illustrative experimental set-up in which the thermodynamic system

is represented by a single qubit realized through the polarization degree of freedom of a single photon,

the auxiliary qubit is encoded in its path, and the time-dependent thermodynamic process is performed

in discrete time-steps tk by sending the photon through a sequence of liquid crystal waveplates each

executing the (time-independent) Hamiltonian H
(
Λ(tk)

)
at time step tk. As we are still in the data

acquisition phase of this experiment, we will only present our proposal for the implementation of this

scheme, omitting the presentation of the corresponding experimental results.

The Hamiltonian of the qubit system can be written as follows:

H
(
Λ(t)

)
= ~ω

2
[
1 + cos

(
Λ(t)

)
σz + sin

(
Λ(t)

)
σx
]
, (5.24)

where the control parameter reads Λ(t) = Ωt for the range Λ(0) = 0 to Λ(τ) = π
2 . Consequently,

the Hamiltonian is given by the spin operator within the x − z plane, which rotates at constant an-

gular velocity Ω around the y-axis, ω being the qubit’s natural frequency. At the initial and final

times of the protocol, the Hamiltonian is diagonal in the σz and σx bases, respectively. Therefore,

|E(0)
n 〉 = {|z−〉 , |z+〉} with corresponding energies E(0)

n = {0, ~ω}, and |E(τ)
m 〉 = {|x−〉 , |x+〉},

where |x−〉 = 1/
√

2(|z−〉 − |z+〉) and |x+〉 = 1/
√

2(|z−〉 + |z+〉)), with same eigenvalues E(τ)
m =

{0, ~ω}. This implies that F0 = Fτ = − log(1 + e−β~ω), and thus ∆F = Fτ − F0 = 0 such that

Wdiss = W .

In the frame rotating around the y-axis at frequency Ω, the Hamiltonian becomes time-independent,

and the unitary governing the evolution can be obtained straightforwardly (see Section 5.5.1 for de-
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tails). Turning back to the Schrödinger picture, the applied unitary U(t, 0) reads:

U(t, 0) = e−i
Ωt
2 σye−

i
2

[
ω (1+σz)−Ωσy

]
t. (5.25)

In order to simulate the time-dependence of the Hamiltonian H
(
Λ(t)

)
in Eq. (5.24), we take N dis-

crete time-steps, where at each step we implement a different time-independent Hamiltonian. Through

this artifice, we can discretise the Hamiltonian time dependence. In the k-th step, the control parame-

ter takes a fixed value λk ≡ Ωτk/N , where τ = π
2Ω is the final time. Inserting λk = kπ

2N in Eq. (5.24),

we have, for each step k = 1, ..., N :

Hk = ~ω
2

[
1 + cos

( kπ
2N

)
σz + sin

( kπ
2N

)
σx

]
. (5.26)

Therefore, any initial state |ψR(0)〉 evolves according to

e−
i
~HN ∆t · · · e−

i
~H2 ∆te−

i
~H1 ∆t |ψR(0)〉 , (5.27)

where ∆t = π
2NΩ . We can view the Hamiltonian at each step as a rotation for an angle θ = π

2N
ω
Ω

around the axis whose direction ~dk = (sin
(
kπ
2N
)
, 0, cos

(
kπ
2N
)
) changes from step to step.

This evolution can be implemented by means of a sequence of liquid crystal wave-plates (LCWPs).

The k-th LCWP rotates the photon’s polarization about an axis ~dk, and the angle of rotation is given

by the retardance which we can charge by an externally applied voltage. Hence, to simulate the full

Hamiltonian we can use a series of N LCWPs, each with an optic axis set at ϑk = kπ
4N ∈ [0, π/2], and

with the same retardance for all LCWPs (i.e., θ).

We apply our scheme inserting pairs of the eigenstates of the Hamiltonians H0 and Hτ to the interfer-

ometer. In particular, along path |0〉A we apply the discretised Hamiltonian H
(
Λ(tk)

)
for k = 1, 2, 3,

while along path |1〉A we perform H
(
Λ(tk)

)
for k = 6, 5, 4. In this case, we recover the whole work

probability distribution, together with the average dissipative work during the process, which we use

to test the fluctuation relations.

In the second case, we test the upper bounds to the dissipative work obtained in Eqs. (5.19) and (5.20)

by inserting the thermal states of the two Hamiltonians. More precisely, we insert a single photon

from a pair of photons in a partially entangled state |ψ〉th0 = a |z+〉 |z+〉+ b |z−〉 |z−〉, where a, b ∈ C.

The state of injected photon is obtained by tracing out the second photon, ρth
0 = |a|2 |z+〉 〈z+| +

|b|2 |z−〉 〈z−|. This corresponds to a thermal state for the choice |a|2 = exp(−β~ω)
Z0

and |b|2 = 1
Z0

,

with Z0 = 1 + exp(−β~ω). Specifically, if T → 0, ρ = |z−〉 〈z−|, while if T → ∞, ρ = 1/2. As

in the previous case, we apply H
(
Λ(tk)

)
for k = 1, 2, 3 along the path |0〉A to realize the fist half of

the forward process, and H
(
Λ(tk)

)
for k = 6, 5, 4 along the path |1〉A to implement the second half

of the time-reversal one.
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Figure 5.3 Experimental set-up of the photonic realization of the thermodynamic process. A CW laser diode
emitting at 392nm pumps a BBO crystal (3 mm), giving rise to the generation of single photon pairs at 784nm via
spontaneous parametric down conversion (SPDC). The pump beam is focused inside the crystal by a focusing lens. The
single photons in each pair are made indistinguishable by compensating their spatio-temporal walk-off through BBO
crystals (1.5 mm), and longpass and bandpass filters. The produced photons are indistinguishable and entangled in
polarization. To give rise to pure (mixed) states, one of the two photons is detected with (without) polarization resolution.
Both cases are tested in our experiment. The remaining single photon is sent through the set-up simulating the quantum
test of thermodynamic irreversibility. The state ρth

0 is prepared in polarization (via a quarter- (QWP) and a half- (HWP)
waveplates), and then injected in the Mach-Zehnder interferometer. One arm of the interferometer performs the unitary
U(τ/2, 0) by means of a sequence of liquid crystal waveplates (LCWPs), the other prepares the photon in the state
ρ̃th

0 = ρth
τ and then implements the unitary Θ† Ũ(τ/2, 0) through LCWPs. After the two paths are recombined on a beam

splitter (BS), the interference fringes are measured by varying the length of the trombone delay-line positioned along one
of the two interferometric paths. The single photons are finally detected through avalanche-photodiodes (APDs).

The ratio ω/Ω determines the adiabaticity of the realized process. In the limit ω/Ω� 1, we obtain a

fully adiabatic process, where the populations of Hamiltonian eigenstates remain constant through

the entire evolution (see Section 5.5.2 for a detailed analysis). Moreover, since the Hamiltonian

H
(
Λ(t)

)
has the same eigenvalues at all times, we conclude (see Eq. (5.35) in Section 5.5.2) that,

under adiabatic evolution, a system starting in a thermal state at t = 0 will remain in equilibrium

at the same temperature at all later times. On the contrary, in the limit of a sudden quench of the

Hamiltonian, ω/Ω� 1, the system remains in its initial state.

In the upper part of Fig. 5.4, we show the theoretical work probability distribution associated to the

rotation protocol Λ for a fixed inverse temperature β = 0.3(~Ω)−1 and three values of the frequency

ratio ω/Ω = {0.3, 1.5, 3.5} (black, blue, red). Since the eigenvalues of the Hamiltonian H
(
Λ(t)

)
are constant, the work probability distribution can only take on three values {−~ω, 0, ~ω}. When

approaching the adiabatic limit (ω � Ω), the external values spread along the W axis and the central

peak at W = 0 increases until it becomes a delta peak. On the contrary, in the sudden quench limit

(ω � Ω), the central peak is quickly eliminated, and the external ones become closer to W = 0.
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Figure 5.4 (Left) Work probability distribution and (Bottom) bounds on the dissipative work for the qubit
system under the action of the time-dependent Hamiltonian H

(
Λ(t)

)
. (Top) Work probability distribution in Eq. (4.6)

for three different protocol velocities (black, blue, red) corresponding to ω/Ω = {0.3, 1.5, 3.5} for a fixed inverse
temperature β = 0.3(~Ω)−1. (Right) Dissipative work as defined in Eq. (5.4) (blue solid line) and bounds (5.19) and
(5.20) (red and orange dashed lines) as a function of the inverse environmental temperature β for the case ω = 1.5Ω. Work
is expressed in units of ~Ω.

In the lower part of Fig. 5.4 we show the performance of the bounds for the dissipative work in

Eqs. (5.19) and (5.20). We assume the equality in Eq. (5.16), and take a rotation frequency Ω =
1.5ω. As it can be appreciated in the plot, in the low temperatures regime (right side) the logarithmic

bound Blog becomes the best option while B2 diverges due to the exponential decrease of αρth
τ

=
e−β[Eτmax−F (τ)] with temperature. On the contrary, when temperature is increased (left part), B2 starts

to perform better as soon as kBT becomes higher than the system energy splitting (kBT > ~ω).

When increasing Ω (not shown in the Figure), logarithmic and quadratic bounds become tighter in

their respective temperature regimes of performance. This tendency becomes even more dramatic

when approaching the sudden quench limit (ω � Ω). In the opposite limit of a near adiabatic pro-

cesses (where the dissipative work vanishes), the quadratic bound still performs good for high temper-

atures, but, contrary to previous cases, the logarithmic bound becomes worst even in the limit of small

temperatures. Nevertheless, the bounds do not appear to become saturated in any of the parameters’

regime.

5.4 Discussion

In this work, we have developed a new method to measure the thermodynamical irreversibility of a

process which a quantum system undergoes by using interferometric tools. The method utilizes the

intereference between two paths, one along which the system is driven out of thermal equilibrium in

the forward, and one where it is driven in the time-reversal process. We demonstrated that inserting

the energy eigenstates of the initial and final Hamiltonians of the system in the two paths of the in-

terferometer and measuring the fringe visibility enable us to reconstruct directly the work distribution
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and the average dissipative work. The latter is known to be equal to a production of positive average

entropy, and it is a measure of thermodynamical irreversibility. In the case of a limited experimental

control, when only the thermal states of the initial and final Hamiltonians of the system can be pre-

pared, our method provides useful upper bounds on the average dissipative work. The scheme involves

no entangling operations and no energy measurements, and it might thus offer a suitable playground

for studying the role of quantum coherence in thermodynamic processes.

5.5 Methods

5.5.1 Time-Independent Hamiltonian Description

In order to reach a description in terms of a time-independent Hamiltonian, we use a picture in which

the states rotate at the same rate as the Hamiltonian around the ~y-axis: |ψ(t)〉 = e−i
Ωt
2 σy |ψ0(t)〉.

We write the time-dependent Schrödinger equation i~ d
dt |ψ(t)〉 = H

(
Λ(t)

)
|ψ(t)〉 with this substitu-

tion for |ψ(t)〉, as

~Ω
2 σy |ψ0(t)〉+ i~

d

dt
|ψ0(t)〉 = ei

Ωt
2 σyH

(
Λ(t)

)
e−i

Ωt
2 σy |ψ0(t)〉 . (5.28)

We focus now on the r. h. s. of this equation. By substituting the expression Eq. (5.24) for the

Hamiltonian, we get

ei
Ωt
2 σyH

(
Λ(t)

)
e−i

Ωt
2 σy |ψ0(t)〉 = ~ω

2
[
1 + cos

(
Ωt
)
ei

Ωt
2 σyσze

−iΩt
2 σy+

+ sin
(
Ωt
)
ei

Ωt
2 σyσxe

−iΩt
2 σy

]
|ψ0(t)〉 (5.29)

We now write the Pauli matrices in the σy operator’s eigenbasis, and we correspondingly evaluate the

two terms in Eq. (5.29):

cos (Ωt)σz − sin (Ωt)σx = ei
Ωt
2 σyσze

−iΩt
2 σy (5.30a)

cos (Ωt)σx + sin (Ωt)σz = ei
Ωt
2 σyσxe

−iΩt
2 σy (5.30b)

From this, Eq. (5.29) becomes ei
Ωt
2 σyH

(
Λ(t)

)
e−i

Ωt
2 σy = ~ω

2
(
1 + σz

)
. By substituting this result

into Eq. (5.28), we obtain

i~
d

dt
|ψ0(t)〉 = ~

2
[
ω
(
1 + σz

)
− Ωσy

]
|ψ0(t)〉 . (5.31)

We have thus reduced the Schrödinger equation with a time-dependent Hamiltonian into one with a
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time-independent Hamiltonian. By calling

sinξ = ω√
ω2 + Ω2

cosξ = −Ω√
ω2 + Ω2

, (5.32)

where by ξ we defined the angle between the direction ~n = (0, cosξ, sinξ) and ~y-axis within z-y

plane, we can therefore rewrite Eq. (5.31) as

i~
d

dt
|ψ0(t)〉 = ~ω

2 1 + ~
2
√
ω2 + Ω2 ~n · ~σ |ψ0(t)〉 . (5.33)

The solution of this equation is |ψ0(t)〉 = e−i
ω
2 t−

i
2
√
ω2+Ω2 ~n·~σ t |ψ0(0)〉. Neglecting the global phase

(e−i
ω
2 t), we thus get

|ψ(t)〉 = e−i
Ωt
2 σy |ψ0(t)〉 = exp

(
−iΩt2 σy

)
exp

(
− i2

√
ω2 + Ω2 ~n · ~σ t

)
|ψ(0)〉 .

We now introduce an eigenstate basis {|~n±〉} of ~n · ~σ (i.e., ~n · ~σ |~n±〉 = ± |~n±〉), where |~n+〉 =
cos
(
ξ/2

)
|y+〉+ sin

(
ξ/2

)
|y−〉, and |~n−〉 = −sin

(
ξ/2

)
|y+〉+ cos

(
ξ/2

)
|y−〉, with {|y±〉} being the

eigenbasis of σy.

If we write the initial state |ψ0(0)〉 in terms of this new basis in the general form |ψ0(0)〉 = c1 |~n+〉+
c2 |~n−〉, where c1 and c2 are complex numbers, it is straightforward to obtain a solution for Eq.

(5.34):

|ψ(t)〉 =
[
c1 e
− i

2
√
ω2+Ω2 t cos

(
ξ/2

)
− c2 e

i
2
√
ω2+Ω2 t sin

(
ξ/2

)]
e−i

Ωt
2 |y+〉

+
[
c1 e
− i

2
√
ω2+Ω2 t sin

(
ξ/2

)
+ c2 e

i
2
√
ω2+Ω2 t cos

(
ξ/2

)]
ei

Ωt
2 |y−〉 . (5.34)

Finally, to set c1 and c2, we suppose that the initial state |ψ0(0)〉 was an eigenstate of the initial

HamiltonianH(t = 0) = ~ω
2 (1+ σz), i.e., |z+〉 = (|y+〉+|y−〉)/

√
2 and |z−〉 = −i(|y+〉−|y−〉)/

√
2.

Then c1 =
[
cos(ξ/2) + sin(ξ/2)

]
/
√

2 and c2 = −
[
sin(ξ/2) − cos(ξ/2)

]
/
√

2 for |z+〉 and c1 =
−i
[
cos(ξ/2)− sin(ξ/2)

]
/
√

2 and c2 = i
[
sin(ξ/2) + cos(ξ/2)

]
/
√

2 for |z−〉.

Let us denote by |ψ±(τ)〉 the final states evolved from the two initial states |z±〉. If initially the system

was in the thermal state, i.e., ρth
0 = 1

Z0

[
|z−〉 〈z−|+ e−~ωβ |z+〉 〈z+|

]
, then the final state will be

ρτ = 1
Z0

[
|ψ−(τ)〉 〈ψ−(τ)|+ e−~ωβ |ψ+(τ)〉 〈ψ+(τ)|

]
. (5.35)

5.5.2 Slow- and Fast-Varying Hamiltonians

Let us separate the two cases of a slow-varying Hamiltonian ω � Ω (which will correspond to

an adiabatic thermodynamic process), and that of a rapidly-varying Hamiltonian ω � Ω. We will
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assume below that the initial state is always |z+〉.

Slow-Varying Hamiltonian (ω � Ω). Recalling the definitions given in Eq. (5.32), we obtain sinξ '
1 and cosξ ' 0, and hence ξ ' π/2. In this case |ψ(t)〉ω�Ω '

(
e−i

Ωt
2 |y+〉+ ei

Ωt
2 |y−〉

)
/
√

2, where

we have neglected the global phase e−iωt. We recall that, in the σy eigenbasis, σx |y±〉 = ±i |y∓〉 and

σz |y±〉 = |y∓〉, the action of the Hamiltonian H
(
Λ(t)

)
onto the state |ψ(t)〉 in case of an adiabatic

evolution of the system will result in H
(
Λ(t)

)
|ψ(t)〉ω�Ω ' ~ω |ψ(t)〉ω�Ω. We conclude that, if

a system is in an eigenstate of the time-dependent Hamiltonian (5.24) at time t = 0, it remains in

the eigenstate of the Hamiltonian at any later time t. Since the Hamiltonian H
(
Λ(t)

)
has the same

eigenvalues at all times, we conclude from Eq. (5.35) that, under the adiabatic evolution, a system

starting in a thermal state of the Hamiltonian (5.24) at t = 0 at temperature T will remain in the

thermal state of the Hamiltonian at the temperature T at all later times. Specifically, the system will

end up in the thermal state of σx at t = τ . In this sense, the system ‘thermalizes’ under a slow change

of the Hamiltonian.

Rapidly-Varying Hamiltonian (ω � Ω). In this case, sinξ ' 0 and cosξ ' −1, thus ξ ' π:

|ψ(t)〉ω�Ω '
|y+〉+ |y−〉√

2
. (5.36)

We therefore conclude that the state does not dependent on time, which indicates that, under a rapid

change of the Hamiltonian, the system remains in its initial state.
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Concluding Discussion

At its inception, quantum mechanics was conceived as a theory of atomic physics. Since then it

has gradually been expanded to include almost all sectors of modern physics, except gravity and its

related aspects [Hardy and Spekkens, 2010]. Naturally, one of the primary objectives of contemporary

physical sciences is to formulate a theory meant to unify these two. Should this ambitious goal ever be

achieved, it is to be expected that this will involve a radical revision1 of both theories that it is intended

to reconcile —just as the emergence of general relativity has led to a fundamental modification of

Newtonian gravity and special-relativistic field theory. The present thesis aimed to investigate the

quantum-mechanical definition of quantities that transcend those which are commonly “quantized”,

and whose reformulation could be the basis of a future revision (or extension) of quantum theory.

Namely, the causal order between events and the (thermodynamic) arrow of time.

Over the last decade, it has emerged that it is possible to construct physical theories without the notions

of a well-defined causal order between the events, a feature that could be an important ingredient in

the construction of a theory of quantum gravity. Since space-time relations can be understood as

deriving from more fundamental causal relations, this indeterminacy, in turn, might require a revision

of the notions of space and time in quantum mechanics. The aim of the first part of this thesis was

to experimentally investigate some of the main results of the novel research area which has stemmed

from these considerations, i.e., indefinite causality. In particular, in Chapter 1 we demonstrated the

causal non-separability of an experimental photonic quantum switch by measuring a causal witness.

In Chapter 2, we experimentally entangled the causal orders between the operations of two pairs of

agents by extending the apparatus of the previous work to a so-called entangled quantum switch. This

entanglement enabled the violation of a Bell’s inequality for causal orders, and thus provided a proof

of indefinite causality beyond the quantum formalism. In Chapter 3, we compared schemes exhibiting

indefinite causality and schemes lacking such characteristics. We studied the practical task of reducing

the noise introduced by noisy channels in quantum communication where the channels are embedded

in either of the above schemes. We found that indefinite causality does not appear to be a necessary

property to accomplish the task, as causally-definite schemes yield equal or better performances than

causally-indefinite ones.

The second part of this thesis aimed to extend quantum-mechanical indefiniteness to the concept of

the (thermodynamic) arrow of time. In Chapter 4, we presented a framework for the study of quantum

superpositions between opposite thermodynamic time directions. In particular, we investigated the

operational consequences of the quantum interference between processes with opposing time’s arrows,

and we found that a quantum measurement of the entropy production can reestablish a well-defined

1I shall remark that this is not the only possible way of looking at it. An alternative view is that the quantum formalism is
a framework which can be applied to a variety of fields (e.g., quantum mechanics, quantum electrodynamics, quantum
field theory, etc.). According to this understanding, the quantum theory will not be revised, but rather extended to new
domains, thereby reshaping our current understanding of these scientific sectors.
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Chapter 5: Concluding Discussion

temporal direction in such a superposition. Finally, in Chapter 5, we proposed a new interferometric

method to estimate the irreversibility of thermodynamic processes in the quantum regime.

In a broader context, works in this thesis look at scenarios where the causal relations between events

and the thermodynamic time’s arrow may be quantum-mechanically undefined. The formulation of

all of our current physical theories is based on the notion of a “linear time”, according to which events

unfold as a well-defined sequence in a background temporal structure. The question then arises of

how to formulate future theories which incorporate indeterminacy in causal relations and time direc-

tionality, and which can nevertheless be used to make predictions about observable phenomena. One

possible answer is that predictions should be based on the notion of “operational events”2, detached

of the concept of space-time. In this respect, one of the contributions of this thesis has been to pro-

vide further insights into the notion of events through dedicated experimental investigations. More

specifically, while historically events were tied to space-time points, the process matrix formalism

and the experimental works presented herein show that these may rather be tied to operations, even if

this action entails the extension of operations to space-time regions [Oreshkov, 2019]. Such a view

can then encompass scenarios where events can even take place in quantum superpositions of oppo-

site causal orders, although these superposition are still realised within laboratory conditions with a

fixed background time. One can go further and conjecture the possibility of observing signatures of

quantum superpositions of alternative arrows of time. A first step towards this possibility has been

pursued in this thesis through the exploration of quantum superpositions of thermodynamic arrows of

time. Extensions to quantum superpositions of other notions of time’s arrows, as well as a compre-

hensive understanding of the notion of events in space-time are likely to be an important ingredient

for building the conceptual foundations for future theories of gravity.

Open questions in the fields of the foundations of quantum mechanics, of indefinite causality, and of

the quantum-mechanical definition of the arrow of time are still numerous, and every time we find

new answers they open the way to even more new questions. In a way, this can be viewed as one of

the main objectives of this thesis and, as I see it, of fundamental scientific research in general: to help

provide some answers, but also and above all to pose new and more mature questions.

2This view is usually referred to as the “operational approach”, according to which a theory is expected to specify the
probabilities of results that will be observed given certain preparation and measurement procedures. The alternative
approach is the so-called “realist” one, according to which there is some deeper reality underlying the equations of
quantum theory which ultimately explains why we see the relative frequencies we do [Hardy and Spekkens, 2010].
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1.1 The quantum switch. Consider a situation wherein the order in which two parties Alice and Bob act

on a target qubit |ψ〉T depends on the state of a control qubit in a basis {|0〉 , |1〉}C . If the control qubit

is in the state |0〉C the target qubit is sent first to Alice and then to Bob (Panel a)), while if the control

qubit is in the state |1〉C , it is sent first to Bob and then to Alice (Panel b)). Both of these situations have

a definite causal order, and are described by the process matrices WA→B and WB→A (Eq. 1.5). If the

control qubit is prepared in a superposition state 1√
2

(
|0〉+ |1〉

)C
, then the entire network is placed into

a controlled superposition of being used in the order Alice→ Bob and in the order Bob→ Alice (Panel

c)). This situation has an indefinite causal order. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A process matrix representation of Figure 1.1. The process matrix W describes the “links” between

Alice and Bob. For example, it could simply route the input state ρ(in) to Alice MA and then to Bob

MB (solid line), or vice versa (dashed line). In the case of the quantum switch, it creates a superposition

of these two paths, conditioned on the state of a control qubit. The input state ρ(in), the two local

operations MA and MB , and the final measurement D(out) must all be controllable and known a-priori.

The unknown process is represented by the process matrix (shaded grey area labelled W ). A causal

witness quantifies the causal non-separability of W . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Experimental Set-Up. A sketch of our experiment to verify the causal non-separability of the quantum

switch. We produce pairs of single photons using a Type-II spontaneous-parametric-down-conversion

source (not shown here). One of the photons is used as trigger, one is sent to the experiment. The

experiment body consists of two Mach-Zehnder interferometers, with loops in their arms. The qubit

control, encoded in a path degree of freedom, dictates the order in which the operationsMA andMB are

applied to the target qubit (encoded in the same photon’s polarization) Alice implements a measurement

and repreparation (MA), and Bob implements a unitary operation (MB). After the interferometers

the control qubit is measured, i.e., we check if the photon exits port 0 or port 1. Note that there are

two interferometers, each corresponds to a different outcome for Alice: the yellow path means Alice

measured the photon to be horizontally polarized (a logical 0), and the blue path means she found

the photon to be vertically polarized (a logical 1). The first digit written on the detector labels this

outcome. The second digit refers to the final measurement outcome, which, physically, corresponds to

the photon exiting either from port 0 or port 1. In this diagram port 0 (1) means the photon exits through

a horizontally (vertically) drawn port. A half waveplate at 0◦ was used in the reflected arm of the first

beamsplitter in order to compensate the acquired additional phase. Acronyms in the figure are defined

as follows: QWP, quarter waveplate; HWP, half waveplate; BS, beamsplitter; PBS, polarizing-beamsplitter. 10
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1.4 Experimentally estimated probabilities. Each data point represents a probability p
(
a, d|x, y, z

)
in

Eq. 1.11 for a = 0, 1 and d = 0, 1. The blue dots represent the experimental result and the bars the

theoretical prediction. The yellow (blue) bars refer to the external (internal) interferometer. The x-axis

is the measurement number, which labels a specific choice of is input state, measurement channel for

Alice and Bob, and final measurement outcome. For our witness, it runs from 0 to 259, but we only

show the first 44 here for brevity Alice and Bob specific choice of operator is given in Table 1 of the

Supplementary Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Expectation value of the causal witness ( −Tr
(
SWswitch

)
) in the presence of noise. As the control

qubit (intitially in |+〉) is decohered, the superposition of causal orders becomes an incoherent mixture

of causal orders. Hence, the causal non-separability of the switch is gradually lost. The plot shows the

causal non-separability of our experimentally implemented switch as the visibility of the two interfer-

ometers is decreased (from right to left). The experimental data linearly decreases with visibility just as

theory (dashed line) predicts. The gap between theory and experiment is because of systematic errors.

The visibility (x axis) is a measure of the dephasing strength on the control qubit. . . . . . . . . . . 13

1.6 Efficiency-corrected interferometer fringes out of the two interferometers. A plot of the coinci-

dences between the herald and the two detectors at the output of each interferometers as the interferom-

eter phase is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Determination of detection efficiency. Triggered coincidences detected in port 1 plotted against those

detected in port 0 for both interferometers. Since total number of photons exiting the interferometer

should be constant, the relative collection/detection efficiency can be determined from the slope of this

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Schematic representation of a causal witness. In this two-dimensional representation, the causal wit-

ness is represented by the line (actually, a hyperplane) S. It separates the convex set of process matrices

W sep from a given causally non-separable process matrix W n-sep. Because the set of causally separa-

ble processes (Eq. 1.5) is convex, the separating hyperplane theorem [Rockafellar, 1970] implies that

one can always draw a hyperplane to separate it from any point outside the set (which corresponds to a

causally non-separable process). This hyperplane is the causal witness. . . . . . . . . . . . . . . 20
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2.1 Entangled quantum switch. Our work is based on two quantum switches (S1 and S2). In each quantum

switch, there are two parties, Alice (UiA ) and Bob (UiB ). A target qubit is first sent to one party, and

then to the other. The order in which the qubit is sent to the two parties is governed by the state of an

additional qubit: if the state of the control qubit is |0〉ci , the target qubit is sent first to Alice and then

Bob (Panel a), and vice versa if the control qubit is in the state |1〉ci (Panel b). In our work, we entangle

the control qubits (Panel c). In this case, the order in which the target qubit in quantum switch S1 passes

through U1A and U1B is entangled with the order in which the target qubit in quantum switch S2 passes

through U2A and U2B . The control qubits are measured in the basis {|+〉ci , |−〉
c
i}. If the orders inside

the two quantum switches are entangled, it will be possible to violate a Bell inequality by measuring

the target qubits after the quantum switches (BM). This is possible even if the target qubits start in a

separable state and only local operations are applied within each quantum switch. . . . . . . . . . 40

2.2 Experimental implementation of an entangled quantum switch. Each quantum switch is composed

of a two-loop Mach-Zehnder interferometer. The interferometers start in the photon-pair source, wherein

photon 1 and photon 2 are placed in superposition of the paths 01 and 11, and 02 and 12, respectively

(see the Methods - Sec. 2.5.4). (For simplicity, we have drawn these paths as fibers, however the photons

are transmitted via free-space from the source to the experiment.) These paths are routed such that path

0i sees gate UiA and then gate UiB , and vice versa for the path 1i. Each gate, acting on the polarization

degree of freedom, is made up of waveplates (as described in the main text). The paths 0i and 1i are

then combined on a beam splitter (BS). In quantum switch S1 (S2), the photon is detected after the

polarization measurement at M1 or M2 (M3 or M4). Together with the BS (which applies a Hadamard

gate to the qubit encoded in the path DOF), detecting the photon at M1 or M2 (M3 or M4) projects the

path qubit on |+〉 or |−〉, respectively. Furthermore, within each measurementMi, the polarization qubit

can be measured in any basis by a combination of a quarter-waveplate (QWP), half-waveplate (HWP),

and polarizing beam splitter (PBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Input control state characterization: State tomography of the target qubits. The real (Panel a)

and imaginary (Panel b) parts of the two-photon polarization state are measured before the two photons

enter the quantum switches. This state has a fidelity 0.935 ± 0.004 with the ideal state |HH〉, and a

concurrence of 0.001± 0.010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Output state characterization. Panels a and b show the real and imaginary parts, respectively, of

the two-photon polarization state measured after the photons leave the quantum switches. For the data

shown here, the two control qubits were found to be in the same state (either |+〉c1 |+〉
c
2 or |−〉c1 |−〉

c
2).

This state has a fidelity of 0.922± 0.005 with the target state (|HV 〉+ |V H〉)/
√

2, and a concurrence

of 0.95± 0.01. Performing a Bell measurement directly using this state results in a CHSH parameter of

2.55± 0.08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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2.5 Entangled photon-pair source. a) The source — The beam from a Toptica DL Pro HP 426 laser is

focused on a 30-mm-long PPKTP crystal, phase-matched for degenerate collinear type-II SPDC from

426 nm to 852 nm. The phase-matching is finely tuned by controlling the temperature of the crystal

with a precision greater than 0.01K. The emitted photons have a bandwidth of approximately 0.2

nm. After the crystal, the residual pump beam is filtered, the photons are then collimated and sent to

a set-up to create entanglement by post-selection (as explained in the main text). The entanglement is

first produced in polarization and then converted into path using polarizing beam splitters. The source

produces≈ 30.000 path-entangled photon pairs per second with a pump power of 8 mW. b) Set-up used

to measure a Bell Inequality on the path qubits — The two paths composing each qubit are interfered on

a beam splitter (BS) projecting each qubit onto a basis on the equator of the Bloch sphere (see main text

for more details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Input control state characterization: Bell measurement on the order qubits. Each curve is a mea-

surement of a Bell correlation term C
(
O1(φ1),O2(φ2)

)
on the control qubits, wherein the phase of

φ1 is fixed, and the phase φ2 is scanned. As described in Eq. (2.21) of the Methods - Sec. 2.5.4, we

test the Clauser-Horne-Shimony-Holt (CHSH) inequality [Clauser et al., 1969] achieving a violation of

2.59±0.09. For the data in the green curve, the phase φ1 was nominally shifted by π/4 rad with respect

to the blue curve. The red shaded areas represent the regions where values of φ1 and φ2 correspond

with those used to construct our CHSH parameter (Eq. (2.21) of the Methods - Sec. 2.5.4). In particular,

O = (O1,O2) whereOi(φ1, φ2) = cos(φi)σx + cos(φi)σz . These data confirm that the two photons

start in a path-entangled state, and the polarization state is initially separable. . . . . . . . . . . . 57

2.7 Bell parameter in the presence of various decoherence sources. a) For these data, the initial entan-

glement of control qubits is decreased passing from the entangled state 1√
2

(
|0, 0〉 − |1, 1〉

)
to a mixture

of |0, 0〉 and |1, 1〉. We measure the Bell parameter both on the input path qubits (squares) and output

polarization qubits (circles) as the source is decohered. Here, the Bell parameter is plotted versus the

visibility of the entangled state in its anti-correlated basis. The dashed line is a simulation of the exper-

imental results. b) For these data, the coherence of the superposition of the orders of operations inside

the quantum switches is decreased, leading to a classical mixture of orders. To control this transition, we

decrease the visibility of either only one of the two interferometers (circles), or of both interferometers

at the same time (squares). Each graph shows the Bell parameter plotted versus the visibility of one

interferometer. The dashed lines are linear fits to the data. The horizontal dashed blue line, in both plots,

is the classical limit for a Bell violation. When the state of the control qubit is too decohered, we can no

longer violate a Bell inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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2.8 Schematic of a gravitational quantum switch. A quantum system is exchanged between Alice’s and

Bob’s laboratories. The order in which such ‘target’ system is exchanged is governed by a second system,

a ‘control’ system, which is encoded in the position of a massive object. By putting the massive object in

a macroscopic superposition of two positions, one closer to Alice’s and the other closer to Bob’s position,

one induces a relative time dilation between Alice’s and Bob’s laboratories. If an outside observer sends

some system at a suitably chosen time, let us call it tA�B , the observer could influence the functioning

of the device that implementsA, e.g., when it acts second but not when it acts first, making the operation

of Alice act different depending on the order. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Combining two channels in a superposition of trajectories. A sender and a re-

ceiver communicate under the restriction that the information carrier must cross at

least one noisy region. a) Quantum-Control of Parallel Channels. A quantum par-

ticle is placed in a quantum superposition of two trajectories, each branch containing

a single noisy channel. b) Channels in Series with Quantum-Controlled Opera-
tions. Each of the branches of the superposition passes through the noisy channels in

the same order, but different unitary operations are applied locally in each branch. c)
Quantum-Control of Channel Order. The information carriers are routed through

the two channels in different orders. This setup can achieve a genuinely indefinite or-

der of the two channels. d) Classical Trajectories. Throughout this Chapter, we will

compare the three quantum superpositions of channels above to classical trajectories.

In this regard, if one has access to classical-like trajectories only, one can send the

photon through one or the another noisy regions with probabilities q and 1− q. . . . 74
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3.2 Experimental Setup. a) Quantum-Control of Parallel Channels. After their polar-

ization is set via a half waveplate (HWP) and a quarter waveplate (QWP), single pho-

tons are injected into a Mach-Zehnder interferometer. One noisy channel is placed into

each arm of the interferometer, and each channel is realized through two liquid crystal

waveplates (LCWP), the first positioned at 0◦ (to implement I or Z by changing the

retardance), the second at 22.5◦ (I or X). By means of a piezo-electric trombone de-

lay line, the photon interfering on the second beamsplitter of the interferometer can be

projected onto the bases {|+〉T, |−〉T} or {|R〉T, |L〉T} of the trajectory. Finally, the

photons’ polarization is measured through a sequence of QWP, HWP and a polarizing

beamsplitter. b) Channels in Series with Quantum-Controlled Operations. As in

the previous scheme, the photons are prepared in polarization via QWP and HWP and

injected into a Mach-Zehnder interferometer. In this case, the two noisy channels are

placed in the two superposed branches in series with the same order. Also in this case,

the channels are realized through LCWPs. Furthermore, before each noisy channel,

additional unitary operations are realized through sequences of QWP, HWP and QWP

(before the first channel, the QWP, HWP and QWP are placed in one branch of the tra-

jectory only, whereas between the two channels the waveplates are in both branches,

since we only implement cases where U2 = U3). The rest of the setup is the same

as in the previous case. c) Quantum-Control of Channel Order. The preparation

and measurement of the photons in polarization happens as in the previous schemes,

as well as the realization of the noisy channels, and the projection of the trajectory

DOF. In this case, however, the Mach-Zehnder interferometer is folded into two loops

so that the photon can travel through the two channels in the two alternative orders

in each arm of the interferometer. d) Heralded single-photon source. We generate

photon pairs using a type-II spontaneous-parametric-down-conversion source. One

photon is directly detected with an avalanche photodiode (upper arm), whereas the

other is coupled into an optical fiber and sent to one of the setups a), b) or c). The

interferometers in setups a), b), and c) all contain two compensation HWP at the be-

ginning and at the end of the reflected arm, so as to compensate for the phase shifts

due to the reflection from the beamsplitter. . . . . . . . . . . . . . . . . . . . . . . . 84
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3.3 Experimental XY-Channel noise data. The theoretical trends associated with the

channels in series with quantum-controlled operations and the quantum-control of

channel order show full activation. The experimental data do not perfectly match the

theoretical trends because, for p = 0.5, the channel produces an equal mixture of X-

and Y -operations, and such case can be experimentally realised with a lower fidelity

than the one in which only one of the two operations is performed (i.e., when p = 0 or

1). It follows that, in the central region, the experimental data are further apart from

the theoretical trend than they are on the upper end. The quantum-control of parallel

channels does not allow full activation, and thus it is positioned below the previous two

trends. In this case, the experimental data are closer to the theoretical expectation. The

reason of the higher agreement is that, in the case of the disposition of noisy channels

in parallel, only one channel is present in each branch of the interferometer. As a

consequence, the experimental imperfections affecting each branch are smaller than

in the dispositions of channels in series and in indefinite order. Finally, the coherent

information associated to only one XY -channel is theoretically lower than all the

other layouts. A detailed analysis of the error estimation and the systematic error

is provided in Section 3.5.5. The labels ‘QC-//-channels’, ‘Series w/ QC-ops.’ and

‘QC-order’ stand for ‘quantum-control of parallel channels’, ‘channels in series with

quantum-controlled operations’ and ‘quantum-control of channel order’, respectively.

The same labels will be used in all plots. . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Experimental BF- and PF-noise data. The experimental data of quantum-control

of parallel channels and the quantum-control of channel order are in good agreement

with the theoretical trends. Conversely, the configuration of the channels in series

with quantum-controlled operations shows a constant offset between the experimental

data and the expected theoretical trend. This discrepancy is due to the fact that, in

this case, all the liquid crystals are arranged in series, with the additional presence

of waveplates realizing a Hadamard gate, and hence this configuration is the one that

exhibits the greatest amount of experimental imperfections along each path. In spite

of this, for most values of p the coherent information that can be achieved with the

series configuration is still above all others by several standard deviations. . . . . . . 87

3.5 Experimental BB84-channel noise data. As in the previous plots, the continuous

lines show the expected theoretical trends, while the squares, circles and crosses repre-

sent the experimental data corresponding to the quantum-control of parallel channels,

the channels in series with quantum-controlled operations, and the quantum-control

of channel order, respectively. All the experimental data are in high agreement with

the expected theoretical trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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3.6 Experimental characterization of a liquid crystal waveplate (LCWP) at 0◦. Since

the crystal is positioned at 0◦, it will be able to switch from an identity operation to a

Pauli-Z. To characterize the voltage corresponding to a Pauli-Z, we send through it

photons in the polarization basis {|±〉 = (|0〉 ± |1〉)/
√

2}, and we measure for which

voltage the population inversion occurs. The estimated errors are Poissonian. . . . . 94

3.7 Histogram of the coherent information achieved with the three channel layouts
when the two copies of the same randomly-generated channel is used in each of
the three layouts. The histograms report the frequency with which a random channel

(y-axis, in logarithmic scale) yields a given amount of coherent information (x-axis),

normalized to the total number of channels used. a) Histogram with 103 bins be-
tween a coherent information of 0 and 0.85. As can be seen, the configuration of

channels in series with quantum-controlled operations consistently achieves the high-

est coherent information on average. b) Histogram of the same data with 105 bins
displayed for values of coherent information from 0 to 0.001. By increasing the

resolution for small values of coherent information, it is possible to observe in greater

detail the absence of the peak at zero for the quantum superposition of channels in

series with quantum-controlled operations. In this region, the performance of the

quantum-control of parallel channels and that of quantum-control of channel order is

comparable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.8 Histogram of the coherent information achieved with the three channel layouts
when two different randomly-generated channels are used. The overall trend here

is comparable to that of two copies of the same random channel (Fig. 3.7). However,

in this case, the quantum-control of the parallel channels performs, on average, better

than the quantum-control of channel order. Moreover, in general, all three layouts tend

to perform worse than in the case of two copies of the same random noisy channel (i.e.,

the maximum amount of coherent information which can be achieved through each

layout is generally lower than in the case shown in Fig. 3.7). . . . . . . . . . . . . . 96

3.9 Histograms of the difference between coherent information achievable with quan-
tum superposition of channels in series with quantum-controlled operations and
the other two layouts in the case of a) two independent copies of the same ran-
dom channel, and b) two different randomly-generated channels. The histograms

show, for each random channel, the difference between the coherent information of the

quantum superposition of channels in series with quantum-controlled operations and

that of the quantum-control of parallel channels [(CISeries w/ QC-ops.)−(CIQC-//-channels)]

and of quantum-control of channel order [(CISeries w/ QC-ops.) − (CIQC-order)]. While,

to a large extent, the layout using the channels in series with quantum-controlled op-

erations tends to outperform the other two schemes, the negative values indicate that

this is not always the case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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3.10 Monte Carlo simulation of the BB84-channel with p = 0.5. A plot of the aver-

age process infidelity between the ideal process and the simulated process versus the

number of applied operations used to simulate the noisy channel. The infidelity is de-

fined as 1−Fav, where Fav is the fidelity. Hence, smaller infidelities indicate a higher

degree of agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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4.5 Work probabilities of a spin-1/2 system under the time-dependent Hamiltonian with a varying
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5.2 Schematic representation of the interferometric technique to directly estimate the work dissipa-

tion. A thermodynamic quantum system S is in its thermal state ρth
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2
. The two quantum
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verification of an indefinite causal order. In: Science Advances 3 (2017), Nr. 3

[Rubino et al. 2017b] RUBINO, Giulia ; ROZEMA, Lee A. ; MASSA, Francesco ; ARAÚJO,
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