
Dissertation / Doctoral Thesis
Titel der Dissertation / Title of the Doctoral Thesis

Space-Filling Curves for Improved
Cache-Locality in Shared Memory

Environments

verfasst von / submitted by

Dipl-Ing. Martin Albin Perdacher, BSc

angestrebter akademischer Grad / in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften (Dr. techn.)

Wien, 2020 / Vienna, 2020

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

UA 786 880

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Informatik

Betreut von / Supervisor: Univ.-Prof. Dipl.-Inform.Univ. Dr. Claudia Plant

Betreut von / Supervisor: Prof. Dr. Christian Böhm

i

Abstract

Today’s microprocessors consist of multiple cores each of which can perform multi-
ple additions, multiplications, or other operations simultaneously in one clock cycle.
In shared memory environments at least two types of parallelism must be applied
to exploit the maximum performance of the algorithm: MIMD (Multiple Instruc-
tion Multiple Data) where each core simultaneously perform different operations on
different types of input data streams and SIMD (Single Instruction Multiple Data)
where within a core, the same operation is executed at once on various data. Ad-
ditionally, modern microprocessors offer a rich memory hierarchy, including various
levels of cache and registers. Some of these memories (like main memory, L3 cache)
are big but slow and shared among all cores. Others (registers, cache lines, L1 cache)
are fast and exclusively assigned to a single core but small. Only if data access has
a high locality, we can avoid excessive data transfers between the different levels
of the memory hierarchy. Algorithms in linear algebra are often defined by three
or more nested loops. In this thesis, we propose to traverse such loops in an order
defined by a space-filling curve, such as the Hilbert or the Morton-order curve. The
low-level kernels used in this work are based on Advanced Vector Extensions (AVX),
which allow the exploitation of several levels of parallelism in shared memory en-
vironments. We apply our space-filling curves in several algorithms ranging from
linear algebra (matrix-multiplication, Cholesky decomposition, LU factorization) or
clustering (K-means) as well as in database queries (i.e., similarity join).

iii

Kurzfassung

Heutige Mikroprozessoren bestehen aus mehreren Kernen, von denen jeder mehrere
Additionen, Multiplikationen oder andere Operationen gleichzeitig in einem Tak-
tzyklus ausführen kann. In Shared Memory Architekturen müssen zumindest zwei
Arten von Parallelität angewendet werden, um die maximale Leistung des Algorith-
mus auszunutzen: MIMD (Multiple Instruction Multiple Data), bei dem jeder Kern
gleichzeitig verschiedene Operationen an verschiedenen Typen von Eingangsdaten-
strömen ausführt, und SIMD (Single Instruction Multiple Data), bei dem innerhalb
eines Kerns dieselbe Operation an verschiedenen Daten gleichzeitig ausgeführt wird.
Zusätzlich bieten moderne Mikroprozessoren eine reichhaltige Speicherhierarchie mit
verschiedenen Ebenen der Caches für jedes der Register. Einige dieser Speicher (wie
Hauptspeicher, L3-Cache) sind groß, aber langsam und werden von allen Kernen
gemeinsam genutzt. Andere (Register, Cache-Zeilen, L1-Cache) sind schnell und
ausschließlich einem einzigen, aber kleinen Kern zugeordnet. Nur wenn die Daten-
zugriffe eine hohe Lokalität haben, können übermäßige Datentransfer zwischen den
Elementen der Speicherhierarchie vermieden werden. Algorithmen in der linearen
Algebra werden oft durch drei oder mehreren verschachtelte Schleifen definiert. In
dieser Arbeit schlagen wir vor, solche Schleifen in einer Reihenfolge zu durchlaufen,
die durch eine raumfüllende Kurve, wie z.B. die Hilbert- oder die Morton-Ordnung
definiert ist. Die in dieser Arbeit verwendeten Low-Level-Kernel basieren auf Ad-
vanced Vector Extensions (AVX), die die Ausnutzung auf mehreren Ebenen der
Parallelität in gemeinsam genutzten Speicherumgebungen ermöglichen. Wir wen-
den unsere raumfüllenden Kurven in verschiedenen Algorithmen an, die von linearer
Algebra (Matrix-Multiplikation, Cholesky-Zerlegung, LU-Faktorisierung) oder Clus-
tering (K-means) bis hin zu Datenbankabfragen (d.h. Similarity Join) reichen.

v

Acknowledgments

I want to thank both advisors Prof. Claudia Plant and Prof. Christian Böhm, for
their continuous support, patience, and encouragement during the past years, which
shaped my scientific thinking and work. Their precise and efficient work and their
scientific advice contributed to the success of this work. I am also very grateful for
the excellent working environment at the University of Vienna.

I would also like to thank my wife Eva and my son Viktor in this way. Both of
them often had to cut back in order to give me the necessary time for my doctorate.
Evas love, her trust and her unbelievably big heart have given me countless times
the peace of mind I need for a doctoral program.

Big thanks also to my collegues and friends Ben, Sahar, Lukas, Lena, Ylli, Theresa,
Can, Max, Robert, Katerina, and Ewald. Work would be boring without you.

vii

Bibliographic Note

Most of the results of this thesis were successfully published in high-profile con-
ference proceedings and journal articles. Therefore, the chapters of this thesis are
based on the following publications and manuscripts:

• Chapter 3: Christian Böhm, Martin Perdacher, and Claudia Plant. ‘Multi-
core K-means’. In: Proceedings of the 2017 SIAM International Conference
on Data Mining, Houston, Texas, USA, April 27-29, 2017. Ed. by Nitesh V.
Chawla and Wei Wang. SIAM, 2017, pp. 273–281.

– C. Böhm and M. Perdacher jointly devised the project and the main
conceptual ideas and carried out the implementation.

– M. Perdacher additionally performed experiments, discussed and imple-
mented related work.

– C. Plant supervised the project and particularly took care for consistency
of the claimed contributions, experimentation, and related work.

– All authors contributed to the development and evaluation of the proposed
techniques and to paper writing.

• Chapter 5 and 6: The journal version of the paper:

Christian Böhm, Martin Perdacher, and Claudia Plant. ‘A Novel Hilbert Curve
for Cache-locality Preserving Loops’. In: IEEE Transactions on Big Data
(2018), pp. 1–14. issn: 2332-7790

and the previous conference version of this paper:

Christian Böhm, Martin Perdacher, and Claudia Plant. ‘Cache-oblivious loops
based on a novel space-filling curve’. In: 2016 IEEE International Conference
on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016. IEEE
Computer Society, 2016, pp. 17–26

– C. Böhm and M. Perdacher jointly developed the main conceptual ideas,
proofs and implementation where C. Böhm was responsible for the char-
acteristics of the proposed extension of the space-filling curve (“FUR-
Hilbert”) and M. Perdacher developed the integration into various ap-
plication algorithms like Matrix Multiplication and K-means.

– C. Plant supervised the project and particularly took care for consistency
of the claimed contributions, experimentation, and related work.

– All authors contributed to the development and evaluation of the proposed
techniques and to paper writing.

viii

• Chapter 7: Martin Perdacher, Claudia Plant, and Christian Böhm. ‘Cache-
oblivious High-performance Similarity Join’. In: Proceedings of the 2019 In-
ternational Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, 2019, pp. 87–104.

– M. Perdacher and C. Böhm jointly devised the main conceptual ideas and
outlined proofs.

– M. Perdacher was additionally responsible for the overall algorithm, per-
formed experiments, and carried out implementation.

– C. Plant supervised the project and particularly took care for consistency
of the claimed contributions, experimentation, and related work.

– All authors contributed to the development and evaluation of the proposed
techniques and to paper writing.

• Chapter 8: Martin Perdacher, Claudia Plant, and Christian Böhm. ‘Im-
proved Data Locality Using Morton-order Curve on the Example of LU De-
composition’. In: 2020 IEEE International Conference on Big Data, BigData
2020, Atlanta, GA, USA, December 10-13, 2020. Accepted for publication.
Dec. 2020.

– M. Perdacher devised the proposed algorithms, performed experiments
and carried out implementation and discussion.

– C. Plant and C. Böhm supervised the work.

– All authors contributed to the development and evaluation of the proposed
techniques and to paper writing.

All authors agreed on this statement of the responsibilities of the individual
authors.

Contents

Abstract i

Kurzfassung iii

Acknowledgments v

Bibliographic Note vii

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Contributions . 4
1.2 Publications . 5
1.3 Structure of this Thesis . 6

2 Parallelism in Shared Memory Environment 9
2.1 SIMD and MIMD . 9
2.2 Parallelism via Instructions . 11
2.3 Hardware Multithreading . 12
2.4 General Remarks . 13

3 Multi-core K-means 15
3.1 Introduction to a Cache-conscious Approach 15
3.2 K-means . 16
3.3 Multi-core K-means . 16
3.4 Cluster ID Coding . 22
3.5 Experiments . 24

ix

x CONTENTS

3.6 Related Work and Discussion . 28
3.7 Conclusion . 31

4 Construction of Space-Filling Curves 33
4.1 Introduction and Historical Context . 33
4.2 Hilbert Function On the Example of Approximating Polygones 36
4.3 A Quaternary Hilbert Pattern . 37
4.4 Observations . 39
4.5 L-systems . 42
4.6 Concluding Remarks . 43

5 Cache-oblivious Hilbert Curve 45
5.1 Introduction . 45
5.2 Locality of the Hilbert Curve . 46
5.3 Well-known Methods for the Hilbert Curve 46
5.4 Novel Non-recursive Lindenmayer . 52
5.5 Nano-Programs . 59
5.6 Overall Architecture . 62
5.7 Concluding Remarks . 63

6 Applications of Cache-oblivious Hilbert Curve 65
6.1 Algorihtms . 65
6.2 Experimental Evaluation . 69
6.3 Related Work and Discussion . 80
6.4 Conclusion . 83

7 High-Performance Similarity Join 85
7.1 Introduction . 85
7.2 Similarity Join . 88
7.3 Preliminaries . 92
7.4 The FGF-Hilbert Join . 94
7.5 Experimental Evaluation . 104
7.6 Related Work and Discussion . 118
7.7 Conclusion . 121

8 Cache-oblivious Morton-order Curve 123
8.1 Introduction . 123

CONTENTS xi

8.2 Generating Morton-order Curves . 125
8.3 Parallelization . 134
8.4 Application of Morton-order Loops for LU Decompositon and Matrix Mul-

tiplication . 135
8.5 Experimental Evaluation . 139
8.6 Related Work and Discussion . 145
8.7 Conclusion . 148

9 Energy efficiency on Data Movement 149
9.1 Introduction . 149
9.2 Experimental Setup . 150
9.3 Experimental Evaluation . 151
9.4 Discussion . 153
9.5 Conclusion . 155

10 Summary and Conclusion 157
10.1 Future work . 158

Bibliography 161

A Further Experiments 175
A.1 Runtime Performance on Morton-order Curves 175

List of Figures

1.1 Strategies for space-filling curves. 3

2.1 SISD and SIMD paradigm. 10
2.2 MIMD paradigm. 11

3.1 Loop traversal order over n, k, and d. 17
3.2 Vertical and Horizontal Addition, Permutation of Vectors. 19
3.3 Cluster ID coding in IEEE-754 format. 23
3.4 Comparison to Standard K-means. 26
3.5 Speedup with Varying Number of Threads. 27
3.6 Effect of Cluster-ID Coding. 28
3.7 Scalability of the Different Strategies with n, d, and k. 28

4.1 Iterations of the Hilbert curve. 35
4.2 First three approximations of the Hilbert curve using polygons. 36
4.3 The Hilbert value h in decimal format for the first three iterations of the

Hilbert curve. 38
4.4 The Hilbert value h in the quaternary format for the first three iterations of

the Hilbert curve. 40

5.1 Comparison of the Traversal Order for Nested Loops (a) and Hilbert Loops
(b). An improved locality can be recognized in the histories over time for
variable i (c) and j (d), and a considerably improved cache miss rate (e). . . 47

5.2 Mealy-DFA for Inverse Hilbert: (i, j) := H−1(h) to generate variables i and
j from the Hilbert value h. 48

5.3 Recursive generation of (i, j)-pairs following the Hilbert-curve. 52
5.4 Examples of Nano-programs for Grids Ranging from 2×2 to 4×4 (all having

basic orientation d = 2). 58
5.5 Placement of 3× 2 (red) and 3× 3 (green) Grids. 61

xiii

xiv LIST OF FIGURES

5.6 FurHilbertFor (i, j) ∈ {2, ..., 6} × {0, ..., 12}. 62

6.1 Traversal of Cholesky (a) and Floyd/Warshall (b) 66
6.2 Performance of Matrix Multiplication (Xeon). 69
6.3 Performance of Matrix Multiplication on a Manycore System (Xeon Phi). . . 71
6.4 Experiments on matrix multiplication for a smaller cache size (Laptop). . . . 71
6.5 Cache-hit-rate of the matrix multiplication on L1 cache for different matrix

sizes (left) and different thread sizes (right). 72
6.6 Cache-hit-rate of the matrix multiplication on L2 cache for different matrix

sizes (left) and different thread sizes (right). 73
6.7 Cache-hit-rate of the matrix multiplication on L3 cache for different matrix

sizes (left) and different thread sizes (right). 73
6.8 Cache-hit-rate of the matrix multiplication along the complete cache hierarchy

for different matrix sizes (left) and different thread sizes (right). 74
6.9 Experiments on K-means Clustering. 75
6.10 Experiments on Cholesky Decomposition. 77
6.11 Experiments on the Algorithm by Warshall. 78
6.12 Energy efficiency for matrix multiplication. 78
6.13 Energy efficiency for Cholesky decomposition. 79
6.14 Energy efficiency for K-means clustering. 80

7.1 Sorting of 20 vector objects in the Epsilon-Grid Order (EGO). 86
7.2 Imaginary similarity matrix for the ε-similarity join. 87
7.3 Strategies to Process Pairs (i, j) of Objects. 90
7.4 EGO-Join using a FGF-Hilbert loop. 94
7.5 Planning Refinements: Upper bounds of intervals (right side) are stored and

condensed; thus larger areas of the (i, j)-space can be efficiently discarded
from loop traversal (left). 98

7.6 The gain in performance of EGO and FGF-Hilbert Join 107
7.7 Cache misses of Canonical, Hilbert and FGF-Hilbert Join 108
7.8 Runtime of each phase in FGF-Hilbert Join 109
7.9 (a) Full Uniform. (b) 8 Selective Dimensions and 56 Non-selective Dims.

(Uniform, 200K, 64d). 110
7.10 Join with Two Sets. 8 Selective Dimensions and 56 Non-selective Dims. (Uni-

form, 2 · 200K, 64d). 111
7.11 Runtime Experiments (Default: Uniformly Distributed, 600K, 8d). 112

LIST OF FIGURES xv

7.12 Runtime Experiments on Gaussian Data (Gaussian, 600K, 8d). 113
7.13 Runtime Experiments on Real Data. Properties in Table 7.2 114
7.14 Experiments on Skylake CPU (cf. Fig. 7.9) 115
7.15 Runtime Experiments on Skylake CPU (Default: Uniformly Distributed, 600K,

8d; cf. Figure 7.11). 116
7.16 Speedup experiments on real data. Properties in Table 7.2. 117

8.1 Strategies for space-filling curves, violations of monotonicity properties marked
in red. 124

8.2 Morton-order. Interleaving the binary coordinates from i and j yields the
binary z-values shown. 126

8.3 И-order. Interleaving the binary coordinates from i and j yields the binary
z-values shown. 126

8.4 Z-order traversal (tzcnt). 128
8.5 И-order traversal (tzcnt). 129
8.6 Microcell templates . 130
8.7 Microcell placement of 5 {2×3}, 1 {3×3}, 5 {2×4} and 1 {3×4} templates

(c.f. Figure 8.6) into a 13x7 grid. 131
8.8 SIMD parallelization. 135
8.9 Comparison of different Morton-order generation approaches (Xeon-Phi). . . . 140
8.10 Matrix-multiplication on Xeon-Phi. 142
8.11 LU decomposition on Xeon-Phi. 143
8.12 Forward and backward substitution. 144
8.13 Results evaluated on Xeon. 145

9.1 Power meter set-up. 151
9.2 Runtime performance of the matrix-multiplication on Xeon-Phi. 152
9.3 Power consumption of the matrix-multiplication on Xeon-Phi. 153
9.4 Energy efficiency of the Matrix-multiplication on Xeon-Phi. 153
9.5 Runtime performance of the LU decomposition on Xeon-Phi. 154
9.6 Power consumption of the LU decomposition on Xeon-Phi. 154
9.7 Energy efficiency of the LU decomposition on Xeon-Phi. 155

10.1 Interesting Space-Filling curves. 159

List of Tables

5.1 Lookup table to derive the direction code d for the odd cases of `. 57
5.2 Lookup table to derive the direction code d for the even cases of `. 58

7.1 Properties of Synthetic Data. 105
7.2 Properties of Real Data. 106

8.1 Code table for processing microcells . 129

A.1 Runtime on two different Morton order implementations tested on matrix
multiplication. 175

A.2 Runtime on two different Morton order implementations tested on LU decom-
position. 176

xvii

List of Algorithms

1 Recursive Lindenmayer Algorithm. 51
2 The Non-recursive Lindenmayer Alg. 56
3 Lindenmayer with Nano-programs. 60
4 MORTON-ORDER (pext) loop . 127
5 MORTON-ORDER (tzcnt) loop . 130
6 Microcell placement with Morton-order (pext).

Implemented as a preprocessor macro. 133
7 LU block algorithm . 136
8 Canonical LU decomposition . 137
9 Backward substitution algorithm . 137
10 Forward substitution algorithm . 138
11 Matrix multiplication . 139

xix

Chapter 1

Introduction

Multi-core processors are the standard microarchitecture of our everyday life. Multiple
cores are prevalent in current desktop, workstations, notebooks, smartphones, tablets,
NAS systems, or even embedded systems powered by ARM© processors (e.g., Raspberry
Pi 4 equipped with 4-core ARM Cortex-A72). Until 2005, single core processors dom-
inated the PC sector. Before that, attempts to increase performance by using two or
more single-core processors were rarely made. Instead, the focus was on increasing the
clock frequency in addition to new instruction sets such as MMX. Nevertheless, from
frequencies of about 4 GHz on, the resulting heat dissipation was no longer manageable.
One possibility for further development was the introduction of multi-core processors.
The world’s first dual-core processor was POWER4, a 1 GHz processor invented by IBM
in 2001 [26], and it initiated the transition to multi-core systems. This has been the
crucial development responding to the ever increasing demand for computing power [99].
By Multiple Instruction Multiple Data (MIMD) parallelism, multi-core systems
maximize the amount of data that can be processed while keeping the clock speed and
thus the energy consumption manageable.

Besides MIMD, Single Instruction Multiple Data (SIMD) parallelism or vec-
torization has been an important design principle going back to the Cray-1 supercom-
puter of 1976 [2]. In this parallelization principle, the same instruction is applied to
many data streams, as in a vector processor. Modern microprocessors offer instruction
sets for efficiently processing single instructions on multiple data. The most common
are the instruction sets SSE (Streaming SIMD Extensions), AVX (Advanced Vector Ex-
tensions) and its latest extension to 512-bits AVX-512. For example, even smartphone
processors, such as the ARM Cortex-A series of RISC processors, supports with NEON

1

2 CHAPTER 1. INTRODUCTION

an instruction set similar to SSE. The instruction sets operate on a reserved set of regis-
ters such that SIMD and the usual floating-point unit operations of the CPU core can be
interleaved in the same clock cycle. Data within the registers reserved for SIMD (called
YMM0 to YMM32 in AVX-512) can be very efficiently manipulated. For example, on the
Skylake architecture with AVX-512, we have a vector length of 8 double-precision. Each
core is equipped with 2 AVX-512 units, where each unit can perform a Fused-Multiply-
Add (FMA) operation, which is an addition and one multiplication at the same time
(dest = (a ∗ b) + c). Thus, this leads to 32 (= 8 ∗ 2 ∗ 2) double precision FLOPs per
clock cycle. Compared to the previous Broadwell architecture, the processor speed has
doubled, and the cache-hierarchy has significantly grown. However, the L2 cache latency
has not improved, and there are only minor improvements in terms of latency for the L1
cache [66]. This known gap between processor speed and memory hierarchies remains,
and similar characteristics apply to other common architectures. To scale up data mining
methods on current architectures, we need to completely re-engineer algorithms with the
opportunities provided by the hardware in mind.

To overcome this speed difference, caches are used to accelerate access to frequently
used data. Thus, this demands an additional need to develop software algorithms that
consider cache memory. A good part of the available performance cannot be used. The
performance achieved by simple algorithms is very often relatively poor. There are various
highly optimized libraries such as LAPACK [6], OpenBLAS [138] or the ATLAS project
[128], but these implementations are based on hardware-tailored implementations and
optimizations or at least automatically tuned for a given hardware, as in ATLAS. These
libraries can be considered as cache conscious algorithms. They have hardware-
related information such as cache-sizes (or the length of the cache lines) as an explicit
parameter to exploit the memory hierarchy efficiently. One example for such hard-coded
information is the step size in the matrix-matrix multiplication such as:

for I := 0 to n− 1 stepsize s do

for j := 0 to m− 1 do

for i := I to I+s−1 do ai,j :=
∑

k
bi,k·cTj,k

Assuming, that the L1 cache is large enough to store s rows of B and 1 row of CT .
This strategy improves the performance dramatically, because now we have to transfer

3

CT from main memory to cache only dn/se times while we still transfer matrix B once.
Cache-conscious approaches have such hard-coded information at multiple loop levels,
where the step-sizes are tuned for each hardware and cache level respectively. In this
example, we are using the transpose of C, since in C-like languages matrices are stored
in a row-wise order and there it is common practice to transpose C before computing
the scalar product.

Cache-oblivious algorithms [55] uses the cache optimally ignoring constant fac-
tors, such as cache sizes as an explicit parameter. Such an algorithm is designed to
perform well on multiple machines with different memory hierarchies without modifica-
tions. Thus a cache-oblivious algorithm is designed to work well on multiple machines
with different levels of the memory hierarchy of unknown sizes.

ii

jj

(a) Canonical order

ii

jj

(b) Peano curve

ii

jj

(c) Z-order

ii

jj

(d) Hilbert order

ii

jj

(e) И-order

ii

jj

(f) Cache-Conscious

Figure 1.1: Strategies for space-filling curves.

Typically, a cache-oblivious algorithm works by a recursive divide and conquer strat-
egy. The problem is divided into smaller subproblems, where the size of the subproblem
fits into the cache, regardless of its cache size. Instead of this recursive approach, in this
thesis we define the size of our problem by a space-filling curve (cf. Figure 1.1), especially
the Hilbert curve (1.1d), and the Morton-order curve (Figure 1.1c and e).

4 CHAPTER 1. INTRODUCTION

There are countless algorithms in various domains, such as graph traversal, clustering,
or linear algebra. A nested loop structure is the core of these algorithms. The traversal
of such loops over arrays or matrices are typically in canonical order, like Figure 1.1a,
or in a block-oriented order such as Figure 1.1f. In this thesis, we propose to replace
this nested loop structure with an order defined by a space-filling curve, which has the
advantage of preserving the data locality and therefore, supporting today’s rich memory
hierarchy.

Modern hardware usually supports a memory hierarchy of 2-3 levels where this data
locality property enables the benefits of cache-oblivious loops. With the cache-conscious
approach, depicted in Figure 1.1f, we outline one prime example of a cache-conscious
traversal. Here, we have to emphasize that each block (here 4× 4) might depend on the
hardware used.

A space-filling curve is a curve in mathematical analysis, whose range contains the
entire n-dimensional unit hypercube. In the context of scientific computing and through-
out this thesis, we define a one-dimensional ordering of a two-dimensional space, such
that each point or cell of the matrix is visited once. The aim is to conserve locality and
bridge the gap between processor speed and the speed of memory access.

Space-filling curves have become a valuable tool in many scientific applications where
locality in space is essential. The applications in scientific computing are versatile, but
all the applications share a common sense of locality. In [111], the authors define a range
query based on the Z-order and the Hilbert-curve. The latter is the subject of building up
an index for image data [92]. There are also very general approaches of mapping points
to space-filling curves [106], but in contrast to these approaches, we exploit the cache
hierarchy by replacing the canonical loops with loops, which are defined by a space-filling
curve.

1.1 Contributions

In this thesis, we present the following key contributions:

• We present Multi-Core K-means, a cache-conscious implementation for today’s
multi-core microarchitecture.

• We propose to replace nested loops enumerating pairs of (i, j) in canonical order

1.2. PUBLICATIONS 5

by cache-oblivious loops following a space-filling curve, especially the Hilbert-
and the Morton-order curve.

• We overcome the usual limitation of space-filling curves to grids of equal size lengths
n× n where n is a power of 2 or 3.

• We implement our Hilbert- and Morton-order loops as a preprocessor macro, mak-
ing it extremely convenient to be used as a building block in any host algorithm
and facilitates compiler optimization.

• We demonstrate the superiority by applying our loops in several host algorithms,
above all the matrix multiplication, which serves here compared to state-of-the-art
approaches.

• We introduce the idea of using space-filling curves for the refinement order in a
similarity join.

1.2 Publications

Parts of this Ph.D. thesis have been published and presented at international peer-
reviewed conferences and journals:

• Christian Böhm, Martin Perdacher, and Claudia Plant. ‘Cache-oblivious loops
based on a novel space-filling curve’. In: 2016 IEEE International Conference
on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016. IEEE
Computer Society, 2016, pp. 17–26.

6 CHAPTER 1. INTRODUCTION

• Christian Böhm, Martin Perdacher, and Claudia Plant. ‘Multi-core K-means’. In:
Proceedings of the 2017 SIAM International Conference on Data Mining, Houston,
Texas, USA, April 27-29, 2017. Ed. by Nitesh V. Chawla and Wei Wang. SIAM,
2017, pp. 273–281.

• Christian Böhm, Martin Perdacher, and Claudia Plant. ‘A Novel Hilbert Curve
for Cache-locality Preserving Loops’. In: IEEE Transactions on Big Data (2018),
pp. 1–14. issn: 2332-7790.

• Martin Perdacher, Claudia Plant, and Christian Böhm. ‘Cache-oblivious High-
performance Similarity Join’. In: Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. ACM, 2019, pp. 87–104.

• Martin Perdacher, Claudia Plant, and Christian Böhm. ‘Improved Data Locality
Using Morton-order Curve on the Example of LU Decomposition’. In: 2020 IEEE
International Conference on Big Data, BigData 2020, Atlanta, GA, USA, December
10-13, 2020. Accepted for publication. Dec. 2020.

1.3 Structure of this Thesis

In this thesis, we focus on the shared memory architecture. The parallelism in such
environments is briefly summarized in section 2. We look at MIMD and SIMD paral-
lelization techniques and the memory hierarchy in particular. Chapter 3 we focuses on
Multi-core processors and proposes a cache-conscious solution (c.f. Figure 1.1f) with
today’s common cache-hierarchy for the wide-spread clustering algorithm K-means as a
highly relevant use-case for knowledge discovery on big data. We propose an entirely
re-engineered clustering algorithm focusing on the close connection of the MIMD and
SIMD parallelism. However, we observed that the code needs significant changes if we
migrate the code to a different hardware setting. Some step-sizes related to the memory
hierarchy need fine-tuning to tease out the performance last percentage. We address this
issue by rewriting the loops in an order defined by a space-filling curve. Therefore we
deal with cache-oblivious algorithms in the upcoming chapters. Before diving into space-
filling curves and how they are applied in this thesis, we introduce the basic terminology
and observations from previous publications in this field in chapter 4.

In chapter 5 we propose to replace nested loops in algorithms with a loop defined by
the Hilbert curve (c.f. Figure 1.1d). We revisit well-known methods for generating the

1.3. STRUCTURE OF THIS THESIS 7

Hilbert curve and propose our non-recursive solution for arbitrarily shaped rectangles.
On top of our Hilbert curve, we implemented several algorithms, such as the matrix-
multiplication, K-means clustering, Cholesky decomposition, and Floyd’s algorithm to
find the shortest paths of all pairs in a graph. The implementation details and extensive
experiments are summarized in chapter 6.

In chapter 7, we have a detailed look at shared-memory databases, where we apply
the Hilbert curve to the ε-similarity join. In particular, we sort the data according to
the Epsilon Grid Order (EGO), which serves here as a filter technique. We traverse
the remaining part of the non-materialized similarity matrix in a Hilbert-order. In the
experiments, we show our technique’s various building blocks’ impact and demonstrate
its use on various synthetic and real-world data sets.

There are use cases where the Hilbert-curve is not applicable because of certain
algorithms’ data dependencies. LU decomposition is one example. In chapter 8 we
introduce our contribution to the Morton-order curve for two different variants, the Z-
order and the И-order (c.f. Figure 1.1c and e) an inverse version of the Z-order. Extensive
experiments on the LU decomposition, matrix-multiplication, and forward- and backward
substitution show their superiority over the Hilbert curve.

Space-filling curves like the Hilbert curve or the Morton-order curve reduce the cache
misses, and therefore they have an improved data movement pattern. Since data move-
ment is expensive in terms of energy efficiency, it is worth having a look at energy
consumption in chapter 9. We measure energy efficiency with an external wattmeter
between the power supply and the server to have an undistorted result.

We conclude our thesis in chapter 10 and give some outline on possible future re-
search.

Chapter 2

Parallelism in Shared Memory
Environment

In this chapter, we give a high-level introduction to different parallelism levels of shared
memory environments. In section 2.1 we introduce into the MIMD and SIMD parallelism,
the two most important principles, which are explicitly targeted in our work. In this
chapter, we refer to other parallelism techniques such as instruction-level parallelism
in section 2.2 or hardware multithreading in section 2.3, but we do not target these
techniques directly within this thesis. We conclude this chapter with general remarks in
section 2.4.

2.1 SIMD and MIMD

Flynn’s taxonomy is a classification of computer architectures proposed in 1966 [53]. This
taxonomy has been used as a tool in the design of modern processors and their function-
ality [48]. Flynn’s four classifications are based on the number of concurrent instruction
and data streams available in the architecture. The term “stream” refers to a sequence or
flow of either instructions or data from the CPU’s main memory. The instruction stream
is unidirectional, and the data stream is bidirectional. The four-letter abbreviations
SISD, SIMD, MISD, and MIMD were derived from the English descriptions’ first letters.
For example, SISD stands for “Single Instruction stream, Single Data stream”. According
to Flynn, SISD is a sequential computer with no parallelism in either instruction or data
streams, like Intel© Pentium 4. There we have a Control Unit, which takes instructions
from memory, which get forwarded to the Arithmetic-Logic Unit (ALU). In Figure 2.1a

9

10 CHAPTER 2. PARALLELISM IN SHARED MEMORY ENVIRONMENT

CU ALU

memory

(a) Single Instruction Single Data (SISD)

Instruction M0 M1 M2 M3

PU0 PU1 PU2 PU3CU

(b) Single Instruction Multiple Data (SIMD)

Figure 2.1: SISD and SIMD paradigm.

we visualized the information flow.

All input data are transferred via the ALU’s main memory for processing and then
written back to memory. Instead of doing this for only one memory cell, this can be done
for a whole vector of data. This principle is known as “Single Instruction stream Multi-
ple Data streams” (SIMD) and is nowadays implemented in embedded systems powered
by ARM© with the NEON instruction set or in today’s laptops as AVX2 or AVX-512
instruction set, c.f., Figure 2.1b. These instructions operate on multiple data elements
simultaneously that make the processing of loops more efficient. The programmer does
not need to take care of such SIMD instructions because they are generated automati-
cally by the compiler with auto-vectorization. A vectorizing compiler transforms loops
into sequences of vector operands. However, if the loop has a complex structure defined
by macros, the automatic vectorization fails most of the time. Since we replace canonical
loops in algorithms with loops defined by a space-filling curve, it is rarely the case to
successfully vectorize such loops. Therefore, we use AVX-512 intrinsics instructions in
this thesis directly. These are C style functions that provide access to many instructions,
including Intel© SSE, AVX, or AVX-512, without the need to write assembly code. Writ-
ing code with such intrinsic instructions simulates the behavior of having an implemented
auto-vectorized approach. Nevertheless, we believe that future compilers will profit from
the locality assumptions of the Hilbert curve.

The Multiple Instruction stream on Single Data stream (MISD) is an untypical ar-
chitecture that is generally used for fault tolerance systems, such as a space-shuttle flight
control computer [57]. Multiple autonomous processors simultaneously executing dif-
ferent instructions on different data in the Multiple Instruction stream Multiple Data
streams (MIMD) paradigm (c.f. Figure 2.2). MIMD architectures include multi-core
processors and distributed systems, using either a shared or a distributed memory space.

2.2. PARALLELISM VIA INSTRUCTIONS 11

CU ALU

memory

CU ALU

memory

Shared Memory

CU ALU

memory

CU ALU

memory

Figure 2.2: MIMD paradigm.

Most parallel computers, as of 2013, are MIMD systems. An example of a MIMD system
is the Intel© Xeon Phi™. This processor has multiple processing cores (up to 72 in 2017)
to execute different instructions on different data. However, distributed systems with
distributed memory environments like a hypercube or mesh interconnection network are
also considered MIMD parallel systems. However, throughout the context of this thesis,
we focus explicitly on shared memory environments where we refer with the term MIMD
parallelism to threading parallelism in multi- or many-core environments. In such multi-
and many-core environments, both SIMD and MIMD are combined to achieve maximum
performance.

2.2 Parallelism via Instructions

Since about 1985, all processors use pipelining to overlap the execution of instructions
and improve the performance. Such a potential overlap among instructions is called

12 CHAPTER 2. PARALLELISM IN SHARED MEMORY ENVIRONMENT

instruction-level parallelism (ILP). As a simple example, considering that reading from
memory has a higher latency than performing the actual computation. This effect would
cause the CPU to stall. In the meantime, the CPU could decrease a pointer if the
mentioned computation does not depend on this pointer. The primary goal is to do some
productive work instead of stalling for higher latency operations.

We address this issue by loop unrolling, where multiple copies of the loop body are
made. After unrolling, there is more ILP available by overlapping instructions from
different iterations. The compiler has then more options to address the ILP.

2.3 Hardware Multithreading

A related concept to MIMD, especially from a programmer perspective, is hardware mul-
tithreading. While MIMD relies on multiple processes or threads to keep multiple proces-
sors busy, hardware multithreading allows multiple threads to share the functional units
of a single processor in an overlapping fashion to utilize the hardware resources efficiently.
Multithreaded processors, therefore, process several threads quasi-simultaneously. This
kind of parallelism can be done in different ways:

• Fine-grained multithreading: A version of hardware multithreading that switches
between threads on each instruction. This technique allows each core an interleaved
execution of threads. The main goal is to avoid delays or stalls in the instruction
stream (=instruction pipeline). These can occur if a thread reads after it writes,
and the instruction refers to a result that has not yet been calculated or retrieved.

• Coarse-grained multithreading: This type of multithreading occurs if a thread gets
blocked by an event (e.g., L3 cache miss) that typically would create a long latency
stall. While this stall might take hundreds of CPU cycles, the threaded processor
switches the execution to another thread that is ready to run. The stalled thread
is set to ready-to-run after the data arrives.

• Simultaneous multithreading (SMT): Any single thread has a limited amount of
ILP. This multithreading type tries to exploit the ILP parallelism across multiple
threads to decrease the stall time associated with unused issue slots. This can
be done without major changes to the processor architecture: the main additions
needed are the ability to fetch instructions from multiple threads and a larger
register file to hold data from multiple threads. Often there are four concurrent

2.4. GENERAL REMARKS 13

threads (or hyper-threads according to the Intel terminology) per CPU core, but
some processors support even up to eight concurrent threads per core.

Exploiting these levels of parallelism is far beyond the scope of our thesis. In our
experiments, we do not address fine- or coarse-grained multithreading or hyper-threading
explicitly. In all of the mentioned cases above, we rely on default compiler optimizations.
We test the performance of our algorithms always with one thread per core.

2.4 General Remarks

There are even more opportunities in a shared memory environment to address perfor-
mance issues explicitly. One example is how processors can access the address space.
There are two different styles, the Uniform Memory Access (UMA) and the NonUniform
Memory Access (NUMA). In the UMA style, the latency to a word in the memory does
not depend on which processor asks for it. In the NUMA style, memory accesses to
the High Bandwidth Memory (HBM) are much faster than others, depending on which
processor asks which word, typically because the main memory is divided and attached
to different microprocessors or different memory controllers on the same chip. However,
to take advantage of this architecture, the developer must make the application NUMA-
aware. Developers using OpenMP can do so using nested parallelism in OpenMP, where
the so-called teams bind to NUMA nodes, and threads in a team use the processors
within one NUMA node.

In the case of one of our servers, the Intel© Xeon Phi™, which comes with additional
on-package HBM. The HBM can be used as an L3 cache or as a fast addressable memory
or in a hybrid model, where half of the memory is used as cache and the other half as
fast addressable memory.

Since we want to guarantee fair comparisons, we decided to use the HBM entirely as
a third level cache. Furthermore, we do not rely on explicit programming techniques to
bind threads to specific NUMA nodes. Our way of programming guarantees fairness to
comparison partners. We rely on the default hardware and compiler settings for other
concepts, such as speculation or cache-coherence.

Chapter 3

Multi-core K-means

3.1 Introduction to a Cache-conscious Approach

To scale up data mining methods on current architectures, we need to re-engineer al-
gorithms with the current hardware capabilities in mind entirely. As a showcase, we
consider K-means clustering in a shared memory environment, such as current worksta-
tions or laptops. The main memory of current systems is usually large enough to occupy
millions of data points. Therefore, we do not assume disk accesses. Parallel variants
of K-means for distributed (shared-nothing) environments have been proposed [63, 135]
and can be combined with our approach. We focus on exploiting MIMD and SIMD par-
allelism while optimally feeding each core with data along the memory hierarchy from
registers to various cache levels. At first glance, this might seem an easy task since
standards like Open-MP support MIMD parallelism, and SIMD parallelism is enabled
by auto-vectorization performed by common compilers like GNU C++. However, if the
algorithm’s logical flow is not tailored to the opportunities and limitations of current
architectures, we cannot expect significant performance gains.

In section 3.2, we revisit the K-means algorithm to fix the notation and outline the
canonical implementation of the algorithm. We combine the canonical K-means algo-
rithm with MIMD and SIMD parallelization techniques, including efficient use of avail-
able registers, outlined in section 3.3. We propose an elegant way to avoid branching in
section 3.4, where we code current cluster memberships already in the data points. In
our experiments, we compare the auto-vectorized technique and a K-means implementa-
tion based on Intel© BLAS [47] a quasi-standard for linear algebra operations in shared
memory environments. In section 3.7 we give some concluding remarks.

15

16 CHAPTER 3. MULTI-CORE K-MEANS

3.2 K-means

To make this chapter self-contained, we introduce here the K-means algorithm for clus-
tering n data points x0, ..., xn−1 from a d-dimensional vector space. Throughout this
chapter, we will use the notation xi[`] for the `-dimension (0 ≤ ` < d) of data point xi
and xi[`, ..., `+ 3] for a sub-vector.The algorithm starts with random initialization of the
cluster representatives µ1, ..., µk by k randomly selected points from the data set. Then,
it repeats two steps until convergence: (1) assignment step: Each point xi ∈ Rd from the
data set is assigned to that cluster j which minimizes the Euclidean distance ||xi − µj ||,
and (2) re-determination of the cluster centers: each cluster representative is computed
as the center of mass of the associated points (centroid). Often, the collection of sufficient
statistics (count and sum) for the re-determination step is already integrated with the
assignment step. Thus, K-means is canonically implemented by four nested loops:

while not converged
for i := 0 to n−1 ← consider xi
for j := 0 to k−1 ← compare it to µj
for ` := 0 to d−1 ← Euclidean dist. ||xi − µj ||

The `-loop determines the Euclidean distance ||xi − µj ||. The j-loop determines the
minimum among these distances, i.e. min0≤j<k ||xi − µj || and additionally updates the
sufficient statistics. A larger part of this chapter is devoted to changing this order of
loop traversals to improve the transfer of information between main memory, cache, and
registers.

3.3 Multi-core K-means

The main idea to parallelize our algorithm MKM (Multi-core K-means) is to enable
MIMD parallelism at the level of data objects and SIMD parallelism at the level of di-
mensions. We distribute different contiguous subsets of the data objects to different
threads running on different cores. We assign different dimensions of single objects and
cluster representatives to different arithmetic/logic units within a core. For the imple-
mentation of MKM, we rely on Open-MP for MIMD and AVX1 for SIMD parallelism.
For clarity, we base the following description on the common Ivy Bridge Processor Archi-
tecture characteristics with 16 registers of 256-bit size (4 double-precision floating-point
vectors). However, the algorithm can easily be adapted to other micro-architectures.

3.3. MULTI-CORE K-MEANS 17

75

3

n

d

1

1

2 4

2

6

T
h
read

 1

31

2 4

2

T
h
read

 2

k

SIMD

5 7

3

31

sequential
loops

Figure 3.1: Loop traversal order over n, k, and d.

MIMD-parallelism

Our algorithm multi-core K-means assigns different parts of the data set to the different
threads, i.e., contiguous blocks of objects are assigned and processed by the same core.
If several c cores are available, we divide the data set into c, almost equally sized subsets.
For reasons discussed in the next section, we take care that each subset contains a number

18 CHAPTER 3. MULTI-CORE K-MEANS

of objects divisible by four (and the last subset is enlarged by up to 3 vectors [∞, ...,∞]).
If t is the thread number (0 ≤ t < c), the start offset of the corresponding data subset is
determined by 4 ·

⌈
n·t
4·c
⌉
. Additionally, each data vector is zero-padded to ensure that the

data space’s dimension is divisible by 4.

The easiest way of programming MIMD parallelism for multi-core processors is stan-
dards like Open-MP and CILK, where (among other possibilities) we have a special
for-loop enabling parallel threads. In Open-MP, a usual for-loop in C-language syntax
is prefixed by a compiler-hint (“#pragma omp parallel for”). Instead of executing a se-
quential loop, parallel threads are spawned (the number of which can be predefined by
the user). Such loops have limitations, e.g., the loop iterator variable must not be mod-
ified in the loop body. Synchronization of memory access operations in the case of write
dependencies is supported by critical sections (like “#pragma omp critical”).

We use an Open-MP for-loop to parallelize the assignment step, which also collects the
necessary statistics (sum and count of all assigned vectors) for K-means’ next iteration.
After this modified, MIMD-parallel assignment step, the threads are synchronized again,
and a very efficient re-determination step computes from the collected statistics the new
cluster representatives (centroids). MIMD parallelization of this re-determination (which
is in O(d · k) time, constant in n) does not pay off, but SIMD parallelism can be used,
as described later.

We avoid entirely write dependencies by ensuring that each thread writes only to
private variables. During the run of the K-means algorithm, we have two types of write
operations: (1) the cluster IDs as the intermediate result of the assignment step, and (2)
the collection of the statistics (sum and count of all assigned vectors) for the next K-
means iteration. Since we assign blocks of contiguous objects to each thread, we implicitly
assign a block of contiguous cluster-IDs to each thread, and therefore, we have no write
conflicts in (1). The collection of statistics (2) is done in private variables for each thread,
which causes a small memory overhead of O(d · k · c) and the same time complexity for
the (non-parallel) consolidation of the private variables into global variables.

Efficient Use of SIMD Registers.

AVX1 offers us a relatively high number of 16 registers (called YMM0 to YMM15) for
SIMD operations, each of which can store up to 4 double-precision floating-point numbers
(64 values in total). For high performance, it is essential to minimize data transfer from

3.3. MULTI-CORE K-MEANS 19

S[0]+T[0] S[1]+T[1] S[2]+T[2] S[3]+T[3] S[0]+S[1] T[0]+T[1] S[2]+S[3] T[2]+T[3]

T[0] T[1] T[2] T[3]

S[0] S[1] S[2] S[3]

+

+

+

+

R:

T:

S:S[0] S[1] S[2] S[3]S:

T[0] T[1] T[2] T[3]

R:

T:

+

=

+

=

+

=

+

=

R := _mm256_hadd_pd (S, T) ;R := _mm256_add_pd (S, T) ;

T[2] T[3] S[0] S[1]

T[0]

S[0] S[1] S[2] S[3]

R:

T:

S:

R := _mm256_permute2f128 (S, T, 33) ;

T[1] T[2] T[3]

Figure 3.2: Vertical and Horizontal Addition, Permutation of Vectors.

and to these registers. As we want to avoid any restrictions on n, k,, and d, we cannot
safely assume that whole points or centroids fit into the registers. Therefore, our strategy
uses many of the registers (YMM0 to YMM7) to store the intermediate results of 16
distance calculations between four data points (now called the current points) and four
current centroids, respectively. Although it might seem sufficient to use four registers to
store these 16 values, we will discuss later a performance issue why we use two variables
for each distance, marked by “a” and “b”. Moreover, we use five registers, each of which
stores four subsequent dimensions of the current data points and the current centroids.
We need two further registers for intermediate results and one register (YMM15) for the
final minimal distances used in the assignment operation of the four current points. The
following table gives us an overview, where x0, ..., x3 are the four current points and
µ0, ..., µ3 are the four current centroids (actually standing for xi, ..., xi+3, µj , ..., µj+3),
and `, ..., `+ 3 are the four current dimensions:

YMM0 =
[
||x0−µ0||2a, ||x1−µ0||2a, ||x0−µ0||2b, ||x1−µ0||2b

]
YMM1 =

[
||x2−µ0||2a, ||x3−µ0||2a, ||x2−µ0||2b, ||x3−µ0||2b

]
YMM2 =

[
||x0−µ1||2a, ||x1−µ1||2a, ||x0−µ1||2b, ||x1−µ1||2b

]
...

YMM7 =
[
||x2−µ3||2a, ||x3−µ3||2a, ||x2−µ3||2b, ||x3−µ3||2b

]
YMM8, ...,YMM11 = x0, ..., x3 (current 4 dimensions)

YMM12 = µ0, later: µ1, µ2, µ3 (current 4 dimensions)

YMM13,YMM14 : reserved for intermediate results.

YMM15 =
[
minj ||x0 − µj ||, ...,minj ||x3 − µj ||

]
Using this storage scheme, we can efficiently make use of all 16 available SIMD registers.
For this purpose, we have now to change our original loop scheme of K-means involving
four loops into a new one involving eight loops, of which one (marked in blue) is an
Open-MP loop operating MIMD parallel threads rather than sequential iterations. The

20 CHAPTER 3. MULTI-CORE K-MEANS

innermost (green) loop performs SIMD-parallel operations (multiply and add), and two
other innermost loops (iterating over I and J) are not implemented as loops. However,
they are instead explicitly programmed in an unrolled way in the C-language source code
and in the following pseudo-code. The full hierarchy of 8 loops exactly represents how
data objects and cluster representatives are accessed and processed. This order is also
visually depicted in Figure 3.1, where the colors are consistent with the text colors in
our eight loops: the green connected parts are simultaneously processed using SIMD
parallelism, and the two simultaneous threads of MIMD parallelism are braced together
in blue:

while not converged
parallel threads for t := 0 to c− 1 ← MIMD

for i := 4
⌈
nt
4c

⌉
to 4

⌈
n(t+1)

4c

⌉
− 1 step 4

for j := 0 to k − 1 step 4

for ` := 0 to d− 1 step 4

for J := j to j + 3 ← unrolled
for I := i to i+ 3 ← unrolled
for L := ` to `+ 3 ← SIMD

In Figure 3.1, each of the cubic blocks represents the processing of four current points
and four current centroids in four current dimensions (three innermost loops). Note that
the four current dimensions are processed by SIMD parallelism. The traversal pattern
within each cubic block is generated by the two unrolled loops (J, I). The traversal
order across blocks is established by the three loops i, j,, and ` (additionally marked by
numbers).

The assembler instructions to process information in SIMD-registers have been mapped
to higher programming languages like C. “Intrinsic operations” like _mm256_add_pd
and _mm256_mul_pd often use two SIMD registers as operands and store the result
in a third register, as demonstrated for the “add”-operation on the left side of Figure 3.2
where R,S, and T are any of the registers YMM0,...,15, and R[0], ..., R[3] denote the 4
dimensions.

We can jointly load four subsequent values of xi and µj into registers, add, and mul-
tiply them for the Euclidean distance. However, the horizontal sum (the sum of several
components inside a register) of these four intermediate results, which is finally needed
for the Euclidean distance, is a bit more tricky. AVX offers an operation called “hadd”

3.3. MULTI-CORE K-MEANS 21

(horizontal add), which can add only the first two and the last two vector components,
respectively, for two source registers (cf. Figure 3.2, center).

The horizontal sum between the second and third component (e.g.) requires oper-
ations like blend and permute (Fig. 3.2 right side), causes more effort and is thus not
done in the innermost loop (see later). It is better to defer this operation and to store
instead of the two partial sums in independent components of the registers, although we
are thus wasting 4 of the valuable registers. The three innermost of our eight loops are
implemented in an unrolled way as follows (the indices in red color represent the unrolled
loops (I, J, L) and help to figure out modifications in the three repeats of the sequence
(∗)):

for ` := 0 to d− 1 step 4

YMM8 := xi+0[`, ..., `+ 3];
... likewise YMM9,...,11 := xi+1,...,3[`, ..., `+ 3];

YMM12 := µj+0[`, ..., `+ 3];

YMM13 := _mm256_mul_pd(YMM8,YMM12);

YMM14 := _mm256_mul_pd(YMM9,YMM12);

YMM13 := _mm256_hadd_pd(YMM13,YMM14);

YMM0 := _mm256_add_pd(YMM0,YMM13);

YMM13 := _mm256_mul_pd(YMM10,YMM12);

YMM14 := _mm256_mul_pd(YMM11,YMM12);

YMM13 := _mm256_hadd_pd(YMM13,YMM14);

YMM1 := _mm256_add_pd(YMM1,YMM13);

(∗)

... (∗) is 3× repeated with following modifications:... YMM12 := µj+1[`, ..., `+ 3]; add to YMM2 and 3;... YMM12 := µj+2[`, ..., `+ 3]; add to YMM4 and 5;... YMM12 := µj+3[`, ..., `+ 3]; add to YMM6 and 7;

Altogether, we have a number 4 · dd4e of load operations for centroids (from L1-
cache), 4 · dd4e of load operations for data points (from main memory), 16 · dd4e AVX-
multiplications, 8 · dd4e additions, and 8 · dd4e “hadd”-operations. After finishing this
`-loop our registers YMM0,...,7 contain the 16 scalar products of the four current points
xi, ...xi+3 with the four current centroids µj , ..., µj+3. The horizontal sums must then be
completed, and the scalar products must be changed into Euclidean distances using the
following operations:

22 CHAPTER 3. MULTI-CORE K-MEANS

YMM13 := _mm256_blend_pd(YMM0, YMM1, 12);
YMM14 := _mm256_permute2f128(YMM0, YMM1, 33);
YMM14 := _mm256_add_pd(YMM13, YMM14);
YMM13 := _mm256_broadcast_sd(scalar[j + 0]);
YMM13 := _mm256_sub_pd(YMM13, YMM14);

where the constants 12 and 33 are masks to control the blend, and permute operations
and scalar is a pre-computed array containing the self scalar products 〈µj , µj〉 for all
0 ≤ j < k. The broadcast operation sets all components of the register to the same value.
After the subtraction YMM13 contains a vector of four values which are monotonic with
the Euclidean distances:

[
||xi − µj ||, ||xi+1 − µj ||, ||xi+2 − µj ||, ||xi+3 − µj ||

]
Furthermore, YMM13 can be compared to the vector YMM15, which stores in each

component, the minimal previously found distance to a centroid (i.e., among all centroids
µj′ with j′ < j). We use the component-wise minimum operation _mm256_min_pd,
which simultaneously compares the four components of YMM13 to those of YMM15.

3.4 Cluster ID Coding

However, our goal here is to keep track of the minimum distance for each point of xi
but also for the cluster-ID j, which caused the minimum distance. More formally, the
main result of the assignment step of the K-means algorithm is for each point xi the
cluster-ID, which is minj ||xi − µj ||. Our idea to achieve this with clever use of the AVX
SIMD operations and without any expensive branching operations (which cause a break
in the processor’s operation pipeline if the branch prediction fails) to code the cluster-ID
directly in the distance value. According to the IEEE-754 specification, double-precision
floating-point values are represented using a 52-bit fraction (sometimes also called the
mantissa), an 11-bit exponent, and a sign (1 bit), cf. Figure 3.3. For cluster-ID coding,
we use a number dlog2(k)e of the least significant bits of the fraction. This coding does
not change the distance value significantly anyway (if k = 8 and the distance is 1.0, our
ID coding changes the distance value to 1.000000000000001). Nevertheless, a numerical

3.4. CLUSTER ID CODING 23

sign exponent fraction (52 bit)

numerically significant in ||xi-mj|| cluster-ID

26 bit log2k bit

YMM15 := _mm256_min_pd (YMM14, YMM15)

29.5

410.9

29.5

YMM15: 316.3

418.7

316.3

212.8

416.5

212.8

115.0

412.3

412.3

YMM14:

new

YMM15 :
new

Figure 3.3: Cluster ID coding in IEEE-754 format.

analysis of the Euclidean distance reveals that only roughly half of the fraction bits are
numerically significant (in our example, the distance is only known to be between 1.0 and
1.000000015). Therefore, even for unrealistically large k in the order of a million (≈ 220)
our coding affects only that part of the fraction, which is numerically insignificant and
thus filled with random bits. We use the AVX operations for bitwise logic operations
(“and”, “and not”, “or”) for our cluster-ID coding (including the final minimum-operation):

YMM14 := _mm256_broadcast_sd(2dlog2(k)e − 1);

YMM13 := _mm256_andnot_pd(YMM14,YMM13);

YMM14 := _mm256_broadcast_sd(j + 0);

YMM14 := _mm256_or_pd(YMM14,YMM13);

YMM15 := _mm256_min_pd(YMM15,YMM14);

The operation _mm256_broadcast_sd sets all four components to the same value,
a globally constant mask with those bits set that have to take over the cluster-ID.

The impact of the final operation _mm256_min_pd is visualized in the lower part
of Figure 3.3: Both YMM14 and YMM15 contain four distance values with backpacked
cluster IDs each (the color scheme corresponds to the upper part of Figure 3.3 but we

24 CHAPTER 3. MULTI-CORE K-MEANS

now use the decimal representation of distances and cluster IDs). Applying the min-
operation leads to a modification of the third component of YMM15, the only component
in which YMM14 is less than YMM15. But the minimum operation does not only copy
the distance (12.3) from YMM14 to YMM15 but also the corresponding cluster-ID (4).
The consolidation step for the Euclidean distance and the coding step for the cluster-ID
is also repeated for the comparison of the four current data points to µj+1, (stored in
the registers YMM2 and YMM3), µj+2 (YMM4, YMM5), and µj+3 (YMM6, YMM7),
respectively. After finishing the j-loop, YMM15 contains the final minimum distances
and the corresponding coded cluster IDs, which can be extracted again using the mask
operation:

YMM14 := _mm256_broadcast_sd(2dlog2(k)e − 1);

YMM15 := _mm256_and_pd(YMM14,YMM15);

xi,...,i+3.CID := YMM15;

These 4 cluster IDs are then immediately used to update the statistics (count and
sum) in private variables for each thread, again using the AVX operation _mm256_add_pd.
Note that this step causes no branching either. Therefore, apart from loops, our algo-
rithm is completely free from branching statements like if, switch, etc.

Equivalence to Standard K-means

The assignment step is guarantees to assign each point xi to minj ||xi − µj ||, identically
for MKM and standard K-means. Each thread collects the sufficient statistics locally,
but they are consolidated before using them in the next iteration. Therefore, in every
iteration, we obtain the same centroids as standard K-means. Our algorithm MKM is
equivalent to standard K-means. If we assume a common initialization for the centroids,
both algorithms converge to the same result requiring the same number of iterations.

3.5 Experiments

Microarchitecture. All experiments were performed on a quad-core CPU E5-2609
(Sandy Bridge micro-architecture) featuring AVX1. This CPU has a cache size of 4× 32

KB (L1 instruction cache), 4×32 KB (L1 data cache), 4×256 KB (L2 cache), and 10 MB
(shared L3 cache). The latency for load operations from L1 cache to registers is 4 clock

3.5. EXPERIMENTS 25

cycles, with a load bandwidth of 32 bytes per cycle. Reading from L2 cache has a latency
of 11 clock cycles and a bandwidth of 32 bytes per cycle. Our workstation has two such
CPUs on shared memory, so 8 cores are maximally available. All algorithms have been
implemented in C++ and compiled with the GNU g++ compiler version 4.7.1. This
compiler uses the current SSE version as default. The usage of AVX must be specified
as a compiler flag.

Data. The synthetic experiments have been performed on randomly generated data
with d = 20 and k = 40 whenever not otherwise specified. The number of iterations in K-
means depends on the initialization and the structure of the optimization surface. It can
vary greatly even for data originating from a typical data distribution but sampled with
different numbers of objects. Although the number of iterations is always guaranteed to
be identical when comparing all versions of multi-core K-means with standard K-means
within a given configuration (i.e. number of objects n, number of clusters k, number
of dimensions d, etc.) we want also to facilitate comparison across configurations and
we therefore report the time required for 5 iterations whenever not otherwise specified.
Besides synthetic data, we used two real data sets from the UCI Machine Learning
Repository [78]. In our experiments on real data, we run MKM until convergence to get
an impression of the practice’s runtime behavior. The Forest Covertype data consists
of 581,012 instances characterized by 54 attributes. The instances are labeled into 7
classes representing different forest cover types. The Household data consists of 2,049,280
instances described by 7 numerical attributes. We removed instances with missing values
from the original data. For Covertype, we set k to the number of classes and clustered
the Household data with k = 8.

Comparison to Standard K-means.

To see how much performance gain we can achieve by exploiting MIMD and SIMD paral-
lelism, we compare our algorithm MKM to the classical K-means algorithm implemented
in C++. Classical K-means has been implemented in four variants: as a single-threaded
as well as a multi-threaded version, and with compiler options on and off, respectively,
allowing the compiler to use AVX-auto-vectorization. We refer to these variants as “No
Vectorization” and “Auto-vectorization”, and additionally specify the number of threads
for MIMD parallelism, e.g., in Figure 3.4 the numbers 1 (for “No MIMD parallelism”)
and 8 (for the maximum useful MIMD parallelism on eight cores of two processors). The
MIMD parallel versions of standard-K-means distribute, like our own algorithm MKM,
contiguous parts of the data set to the different cores. In Figure 3.4, we can recognize that

26 CHAPTER 3. MULTI-CORE K-MEANS

0

10

20

30

40

50

60

Synthetic
12D

CoverType
54D

Household
7D

R
un

tim
e

[s
] No Vect. 1

No Vect. 8
Autovect. 1
Autovect. 8
MKM 8

Figure 3.4: Comparison to Standard K-means.

standard K-means with no parallelism needs between 39 and 55 seconds to cluster our
three data sets. In this experiment, we report the total runtime until convergence. Using
MIMD parallelism alone reduces this time by a factor between 4.1 and 6.4, and likewise
does SIMD-parallelism alone. The combination of SIMD and MIMD parallelism reduces
the runtime to 0.7 to 1.6 seconds. However, this is still clearly outperformed by our
new algorithm MKM, which needs only 0.3 to 0.5 seconds. We observe this behavior on
synthetic 12-D data and similarly also on the Covertype and the Household data, which
demonstrate the benefits of MKM in practice. Our algorithm enables K-means clustering
large data sets with millions of points in milliseconds on a standard workstation.

Speed-up for Varying Number of Cores.

As Auto-vectorized K-means on multiple cores were the strongest comparison partner,
in our following experiments, we compare our algorithm MKM to standard-K-means
with Auto-vectorization using the same amount of parallel threads as MKM (usually 8).
To systematically vary n, d, and k, we focus these experiments on randomly generated
synthetic data and fix the number of K-means-iterations to 5. First, we examine the be-
havior of the algorithms with a varying number of threads or cores (speedup). Figure 3.5
displays the run-time of 5 iterations of the synthetic dataset (d = 20, k = 40, n = 64 Mil-
lion = 10 GByte). We also plotted the expected run-time in dashed lines when assuming
an ideal, linear speedup with the number of cores. We can recognize that both MKM
and standard-K-means are close to the linear speedup. However, MKM being faster than
standard-K-means by a factor between 5.3 and 6.9. Generating more than eight threads

3.5. EXPERIMENTS 27

did not lead to further improvements since only eight cores were available.

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8

R
un

tim
e

[s
]

Number of Threads

Autovect.
(ideal)
MKM
(ideal)

Figure 3.5: Speedup with Varying Number of Threads.

Evaluation of Cluster-ID Coding.

In Figure 3.6 we evaluate the impact of cluster-ID coding as described in Section 3.4
on the overall performance on the same data as used in speed-up experiment (cf. Fig-
ure 3.5). We compare our algorithm MKM, which applies cluster-ID coding (backpacked
on the numeric representation of the distance) to the same algorithm without ID coding.
The comparison algorithm stores the minimum distance and the corresponding cluster-
ID in separate variables and performs for each distance comparison an IF-THEN-ENDIF
statement (involving a conditional jump in the compiled machine code) to update both.
MKM is by a factor 1.5-1.9 faster with cluster-ID coding, which is remarkable as intu-
itively, a comparison seems much cheaper than the distance calculation. Probably, the
conditional jump is difficult to predict and, therefore, expensive.

Scalability with Varying n, d, and k.

In our last set of experiments, we varied n, d, and k with the standard-setting n = 32

Million, d = 20, k = 40. We can recognize that both algorithms have a close-to-linear
runtime in all these parameters. MKM constantly outperforms the auto-vectorized K-
means by a factor of 5.4 (averaged over all experiments).

28 CHAPTER 3. MULTI-CORE K-MEANS

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8

R
un

tim
e

[s
]

Number of Threads

IF-THEN-ELSE
Cluster ID coding

Figure 3.6: Effect of Cluster-ID Coding.

Autovect. 8 MKM 8 factor no vect 1 core

1 0,887 0,147 6,03401361 6.113

16 13,748 2,534 5,42541436 95,532

32 26,865 5,036 5,33459095

48 43,191 8,274 5,22008702

64 59,179 9,306 6,3592306 2408

258,757791

d = 20 ; k= 40 28,3733365

c=8

iter=5

0

10

20

30

40

50

60

70

0 20 40 60

R
u
n
ti

m
e

[s
]

Number of Objects [Millions]

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Number of Dimensions [d]

0

10

20

30

40

50

60

70

20 40 60 80 100

Number of Clusters [k]

Autovect.

MKM

Figure 3.7: Scalability of the Different Strategies with n, d, and k.

3.6 Related Work and Discussion

Due to the success of K-means there has been a lot of research effort on scaling the
algorithm to massive data. We classify existing approaches into the following categories:

• Algorithms for special environments, e.g., computing clusters [135],

• indexing approaches, mostly based variants of the kd-tree, e.g.,

• different algorithmic approaches allowing a fast approximation of the K-means
result, e.g. [116].

K-means for particular environments. The first category of techniques is most
related to our approach. Most of the existing approaches focus on distributed environ-

3.6. RELATED WORK AND DISCUSSION 29

ments and are often based on MapReduce, e.g., [1, 63, 135]. Usually, the mappers process
different parts of the data, and the reducers perform the update step. The algorithms dif-
fer in the exact implementation of both steps, e.g., the technique [1] involves a combiner
process which locally aggregates the sufficient statistics received from different mappers.
Besides considering the general setting of distributed environments, K-means has been
investigated in the context of specific hardware, e.g., K-means for Graphic Processing
Units [77] or supercomputers [31]. Other approaches even design hardware architectures
[37] or combined hardware- and software architectures [5] for the sole purpose of efficient
K-means clustering. Orthogonal to these approaches for very specific architectures, we
consider how to scale up K-means clustering on a current workstation. Standard work-
stations are equipped with a multi-core CPU supporting inter-core MIMD parallelism
and inner-core SIMD parallelism. Moreover, we can assume that the data fits into the
main memory. For example, 8 GB of main memory is sufficient to occupy 10 million
100-dimensional feature vectors. Hadian and Shahrivari [58] also study the setting of a
single multi-core machine but with the assumption that the data does not fit into main
memory. Similarly to our algorithm MKM, their algorithm splits the data into chunks
that are distributed to the cores. However, their work differs from ours in three central
aspects: Firstly, Hadian and Shahrivari do not consider SIMD parallelism. Secondly,
their technique minimizes random disk accesses regarding memory latency, i.e., page
faults, while we aim to avoid cache misses. Thirdly, in contrast to MKM, their algorithm
is not equivalent to standard K-means in the sense that it converges to the same result
as K-means starting from a common initialization. Inspired by the initialization strategy
K-means++, the algorithm [58] considers the centroids of the chunks as an approxima-
tion of the corresponding part of the data. The results are then merged by a master
thread performing a run of K-means on the chunk centroids. In contrast to MKM, this
approach also belongs to categories (2) and (3) mentioned above.

Indexing. As a large part of the runtime in K-means is spent on distance calcu-
lations, index structures have been proposed to accelerate K-means. Most approaches
are based on the kd-tree, which is a simple index structure suitable for main memory,
which is applied, e.g., in the techniques [58, 103]. Each node of the kd-tree is represented
by a bounding box specifying the minimal axis-parallel hyper-rectangle containing all
associated points. Based on the bounding box and the current centroid locations, some
of the centroids can be excluded for all node data points. Elkan proposed to bound the
distances between points and centroids with the triangle inequality [49]. As a space par-
titioning index structure the kd-tree tends to degrade in high-dimensional spaces. At the

30 CHAPTER 3. MULTI-CORE K-MEANS

same time, the pruning based on the triangle inequality has been experimentally demon-
strated to work up to 1000 dimensions. We apply SIMD parallelism to speed up distance
calculations, a strategy that does not depend on the distribution or the dimensionality
of the data. Moreover, SIMD parallelism can be integrated into indexing strategies in
future work.

Approximations of K-means. Only marginally related to MKM are algorithms
that aim at a fast approximation of the K-means result. One example is the already dis-
cussed algorithm by Hadian and Shahrivari [58], which is based on K-means++ followed
by re-clustering. Another example that deviates even more from classical K-means is
the approach of Shindler et al. [116]. Assuming a streaming environment, the authors
propose a technique based on the online facility location algorithm combined with an ap-
proximate nearest neighbor search. Contrary to these approaches, our method provides
quality bounds on the K-means objective function.

Vectorization. Large parts of the performance gain of MKM over standard K-means
is due to SIMD parallelism. In current practice, auto-vectorization by the compiler is
the most common access to the SIMD instruction sets. However, the achievable speed-
up strongly depends on the application developer’s experience as it requires a specific
loop- and data structures. Only for certain types of rather simple loops, the compiler
can decide if they support safe vectorization. Therefore, algorithms require comprehen-
sive re-engineering. Recently, SIMD accelerated algorithms for specific computationally
demanding tasks have been proposed, e.g., index compression algorithms for similarity
search [139], integer factorization algorithms for cryptography [112] or particle simulation
for astrophysics [96]. Besides these particular and highly optimized algorithms, only a
few more general studies have been performed. Ladra et al. demonstrated that basic
string algorithms, which are building blocks for many applications like ranking, selection,
and suffix trees, effectively support direct usage of the intrinsics provided by SSE4.2 [74].
We position our work in between the highly optimized complex algorithms for specific
tasks and very basic algorithms by contributing building blocks accelerating common
data mining algorithms on vector data, most importantly the efficient implementation of
the argmin function.

3.7. CONCLUSION 31

3.7 Conclusion

In this chapter, we have introduced the algorithm MKM combining inter-core MIMD
parallelism with intra-core SIMD parallelism of current microarchitectures for efficient K-
means clustering. Accessing the computing power of current microarchitectures requires
major re-engineering of the classical K-means algorithm. We optimized the logical flow
of MKM to enable MIMD and SIMD parallelism and to minimize the memory latency.
Moreover, by an innovative coding strategy, we continuously keep track of an object’s
cluster assignment, enabling us to perform K-means clustering without any branching or
case distinction. The massive performance potential of our algorithm MKM combining
SIMD and MIMD parallelism is demonstrated in the experiments with an acceleration of
95–142 over non-parallel standard K-means and 4–5 over auto-vectorized multi-threaded
standard-K-means and a SIMD and MIMD parallel K-means variant based on BLAS.

In the following, we focus on space-filling curves and how they could be used to exploit
the memory hierarchy in today’s shared memory systems in the chapter. Especially we
will look at the Hilbert curve in chapter 5 and at the Morton-order curve in chapter 8.
However, before we go into the details, we introduce some preliminaries to space-filling
curves in general in chapter 4.

Chapter 4

Construction of Space-Filling Curves

This chapter elaborates on previous methods to construct space-filling curves and their
connections to the work presented in this thesis. This is far from being a complete
reference for all the research done in this field. Moreover, we summarize the primary
milestones and guide the reader to understand the context of our work. Furthermore, we
give an introductory example to L-systems (or Lindenmayer systems), a grammar that is
used in the construction of our Hilbert curve. For a more detailed explanation of space-
filling curves’ mathematical and analytical cornerstones, we refer the interested reader
to Sagan [108]. Beyond that, Bader [10] connects space-filling curves thematically with
computer science in general and gives excellent examples for space-filling applications
curves in the context of scientific computing.

4.1 Introduction and Historical Context

The term “curve” goes back to 1887, where Camille Jordan introduced the rigorous defi-
nition of a curve, which has been adopted very often in various domains:

A curve (with endpoints) is a continuous function whose domain is the unit
interval [0,1].

In the most general form, the application is a topological space, and the interval
will lie in a Euclidean space, such as the 2-dimensional plane (a planar curve) or the
3-dimensional space (space curve). The common understanding was that such a curve
is piecewise differentiable and cannot fill up an entire unit square. In 1879 Eugen Netto

33

34 CHAPTER 4. CONSTRUCTION OF SPACE-FILLING CURVES

proved that a curve could not be bijective and continuous at the same time. However, in
1980 Guiseppe Peano [101] and David Hilbert [64] presented curves, that are continuous
and surjective (but not injective). Guiseppe Peano introduced a continuous curve that
passes every point of the unit square [101], which is now known as the Peano curve
(see Figure 1.1b). As this curve visit every point of the unit square, it is called space-
filling. The idea that a one-dimensional curve may completely cover an area or a volume
was, at that time, completely novel and counter-intuitive. More examples followed after
Peano’s publication such as the Koch curve [72], the Cantor Set [32, 117] or the Hilbert
curve [64]. As a result, space-filling curves have been studied by many highly influential
mathematicians, such as Peano, Hilbert, Lebesgue, Sierpinski to name only a few. The
book of Hans Sagan [108] summarizes these curves very well. It provides an excellent
introduction and overview of the mathematical aspects of space-filling curves and their
history. Space-filling curves such as the Hilbert curve are often limited to n×n matrices,
where n is any power of 2 in cases of the Hilbert curve or the Morton-order curve or
in case of the Peano curve n is limited to the power of 3. We address this limitation
in our thesis, but throughout this chapter, we will ignore this limitation and revisit
the construction of space-filling curves to understand better how space-filling curves are
constructed and how to address this issue.

We introduce a sequential order on a d-dimensional array of elements (or cells). Since
we restrict ourselves to the 2-dimensional case, this is nothing more than a 2-dimensional
mapping between a range of array indices {1, ..., n}2 to sequential indices {1, ..., n2}. In
computer science, two- or multidimensional data structures are ubiquitous. They are
present in vectors, matrices, tensors in linear algebra, all kinds of rasterized images, co-
ordinates in general and statistical data in various fields in terms of graphs, baskets, or
time series analysis. These multidimensional data structures need a form of sequential-
ization. This could be a straight forward traversal of the data, storing or retrieving data
from main memory, or introducing a sequential ordering through sorting. This sequential
ordering can be expressed as two nested loops

for i := 0 to n− 1 do

for j := 0 to n− 1 do

or similar constructs as a traversal of 2- or multidimensional arrays. However, what
are the necessary properties to traverse such a data structure? A necessary property is to

4.1. INTRODUCTION AND HISTORICAL CONTEXT 35

generate a 1 to 1 mapping between the 2 dimensional data structure and the sequential
mapping, such that all data items are visited exactly once. In a mathematical sense, this
would be a bijective mapping. Moreover, skipping some indices is not allowed, such that
we would need a continuous mapping as well. According to the definition of Jordan, the
term “curve” is quite appropriate. In mathematical analysis, a space-filling curve is a
curve whose range contains the entire 2-dimensional unit square (or more generally an
n-dimensional unit hypercube).

In the following, we illustrate common approaches to construct space-filling curves.
For this purpose, we will use a prominent example of a space-filling curve, namely the
Hilbert curve. Hilbert was the first to recognize a general geometrical generating pro-
cedure that allowed the construction of an entire class of space-filling curves. The con-
struction of the Hilbert curve is based on a recursive procedure:

1. The squared matrix is divided into four sub-matrices, each with a side length of
half of the parent matrix.

2. For each of the sub-matrices, we need to find a rotated or reflected version of the
original curve.

3. The rotation and reflection of the sub-matrix need to preserve the continuity of the
matrix so that the partial curves can be connected to each other parts.

iteration n = 1 iteration n = 2 iteration n = 3

Figure 4.1: Iterations of the Hilbert curve.

These reflections and rotations can be found again if one considers the iterations of
the Hilbert curve. The iterations describe a recursive building principle. The initial

36 CHAPTER 4. CONSTRUCTION OF SPACE-FILLING CURVES

pattern of the first iteration (n = 1) is called a “Leitmotiv”. In the following iteration
(n = 2) the next pattern is formed based on the previous iteration, such that all matrices
of the current iteration share a common consecutive edge. Figure 4.1 outlines the first
three iterations. One important detail here is that a sub-matrix shares a common edge
with the exit point on this sub-matrix at each entry point of the curve. This detail
combined with the concept of iterations is used in the following to construct the Hilbert
curve based on approximating polygons.

4.2 Hilbert Function On the Example of Approximating
Polygones

0 1
2 1 0 1

4 1 0 1
8 1

Figure 4.2: First three approximations of the Hilbert curve using polygons.

The idea behind the construction with approximating polygons is to assume the
matrix has a side length of 1. The matrix contains 22n cells, each with a side length of
1
2

n. Instead of approximating the cells that are visited directly as depicted in Figure 4.1,
one could also approximate the polygonal line that lies in the sub-matrix. The first three
approximating polygons are presented in Figure 4.2. If we take a detailed look at the
sub-matrices (solid lines), and in particular if one refines the iterations accordingly, we
see that this also holds for the sub-matrices: the Hilbert curve will enter each sub-square
in one particular corner, and will exit the sub-matrix in one of the corners that share a
common edge with the entry corner (arrows at the first iteration). If we connect these
entry and exit corners with a polygon, we obtain the so-called approximating polygon of
a Hilbert curve. Hilbert explained his geometrical generation procedure on basis of an
interval I = [0, 1] which are the approximating polygons. The sequentialisation approach
is then formulated as a function h = H(t), where fh is a surjective mapping function.
The function H maps I → E2. E2 is the 2-dimensional Euclidean space R2 including the

4.3. A QUATERNARY HILBERT PATTERN 37

Euclidean norm which defines the metric. The parameter t ∈ I indicates several time
points in the space. This means H(0) is called the beginning of the Hilbert curve and
H(1) is called its endpoint.

The most important aspect related to our work is mainly how functions are used in
the mathematical and analytical context so far. Here, the function H is used to obtain
a sequential order from the Hilbert order. In the use case of linear algebra, there is an
incremental variable e.g., the Hilbert value, which indicates the current position in our
Hilbert curve. The function requires to deliver the i and j variables to access the array.
This is the reason for using the inverse function H−1 for describing the Hilbert curve in
section 5.4 or the Morton order curve in section 8.2. In the following, we will look at
a decoding algorithm H−1 of the Hilbert curve, which returns the coordinates x and y,
respectively.

4.3 A Quaternary Hilbert Pattern

Chen et al. [36] proposes an approach for encoding h = H(x, y) and decoding (x, y) =

H−1(h) of the Hilbert curve. In the encoding procedure, there are given the coordinates of
a particular point with a pair (x, y) the corresponding Hilbert value h is to be determined.
Conversely, given the Hilbert value, h in the decoding procedure, the coordinates x and
y are to be determined. The standard Hilbert curve with its Hilbert values h in the
decimal representation for each coordinate x and y. The curve from one iteration n is
replicated and moved onto the four quadrants of a larger square of the next iteration
n+ 1 with a suitable rotation. These four curves are joint by three line segments.

We define the upper left quadrant as quadrant 0, the upper right one as quadrant 1,
the lower-right as quadrant 2, and the lower-left quadrant 3. By converting the decimal
digits in Figure 4.3 into quaternary numbers in Figure 4.4 the highest quaternary digit
also indicates the current number of the quadrant. In these Figures, we are using rotated
and mirrored versions of the Hilbert curve compared to the previous sections’ curve
representation. We believe that this rotated version of the Hilbert curve fits the memory
hierarchy in today’s modern computer architecture best, since quadrant 1 profits from
renewed use of the data by quadrant 0 and quadrant 3 profits from quadrant 2. Above all,
the named quadrants are consecutive neighbors. Another regularity in the quaternary
pattern is that quadrant r = 0 of iteration n (denoted as Hn) is a copy, reflected on the
main diagonal, of the pattern of iteration n − 1 (Hn−1). Quadrants r = 1 and r = 2

38 CHAPTER 4. CONSTRUCTION OF SPACE-FILLING CURVES

iteration n = 1

0 1

23

iteration n = 2

0

1 2

3 4 5

67

8 9

101112

1314

15

iteration n = 3

0 1

23

4

5 6

7 8

9 10

11

1213

14 15 16

17 18

19 20 21

2223

24 25

262728

2930

31

32

33 34

35 36 37

3839

40 41

424344

4546

474849

51 52

53

5455

5657

5859

60

61 62

6364

Figure 4.3: The Hilbert value h in decimal format for the first three iterations of the
Hilbert curve.

4.4. OBSERVATIONS 39

of Hn are direct copies of Hn−1 and quadrant r = 3 is a copy reflected on the minor
diagonal. Hn would only have to be extended by the quadrant number for the leading
quaternary digits.

For describing the encoding and decoding algorithm, we use the Cartesian coordinate
system to express the positions of all the elements in the Hilbert matrix. In Figure 4.3,
element h = 0 is the top-left element with coordinates x = 0 and y = 0. As an example,
at iteration n = 3 the position of the cell with the Hilbert value 52 is x = 3 and y = 6.
Both the encoding and the decoding algorithm consists of three steps: initialization,
iteration, and decision.

Encoding algorithm, h = H(x, y)

For the given coordinate pair x and y, we wish to derive the current Hilbert value h. At
first we need to determine the current iteration number n, which is n = blog2(max(x, y))c+
1 and the weight w = 2n−1. After this initialization, an iteration step follows, where the
quadrant r needs to be determined. The paper does not give more details on how they
should be determined, but it seems to be a trivial step to determine on the basis of the
Leitmotiv into which of the 4 quadrants the current coordinates reside. At next, r is
concatenated to the Hilbert value h, the current coordinates x, y are then updated with
respect to w based on a lookup table. The iteration variable n is decremented to repeat
the procedure on a lower iteration level.

Decoding algorithm, (x, y) = H−1(h)

For a given iteration n, we wish to obtain the Cartesian coordinates for a Hilbert value
h. The Hilbert value h is converted to a quaternary digit string, where the length of
the string is the iteration level n. In the iteration step, the least significant digit of h
determines how the pairs are updated. The variables are then updated according to a
different table than the table proposed in the encoding step. Noteworthy mentioning is
that they use different tables for even and odd iterations.

4.4 Observations

Based on the Hilbert curve in Figure 4.4, we discovered a pattern, which describes the
transitions between individual states between the Hilbert value in quaternary format and

40 CHAPTER 4. CONSTRUCTION OF SPACE-FILLING CURVES

iteration n = 1

0 1

23

iteration n = 2

00

01 02

03 10 11

1213

20 21

222330

3132

33

iteration n = 3

000 001

002003

010

011 012

013 020

021 022

023

030031

032 033 100

101 102

103 110 111

112113

120 121

122123130

131132

133

200

201 202

203 210 211

212213

220 221

222223230

231232

233300301

302 303

310

311312

313320

321322

323

330 331

332333

Figure 4.4: The Hilbert value h in the quaternary format for the first three iterations of
the Hilbert curve.

4.4. OBSERVATIONS 41

the binary representation of the coordinates x and y. These coordinates can also be seen
as iteration variables i and j from a loop:

for h := 0 to n2 − 1 do

(i, j) := H−1(h)

process loop body(i, j)

There is also a connection between the variables i and j, and the Hilbert value h.
First, the binary representation of the Hilbert value requires 2n bits, and the binary
representation for one of the coordinates is required n bits. The algorithm from the
paper [36] (see section 4.3) describes the encoding and decoding approach based on a
quaternary Hilbert value. The quaternary Hilbert value contains already the quadrants
which need to be visited down the iteration hierarchy. As an example we consider Figure
4.4 for iteration n = 3. The Hilbert value 52 in decimal format is in the quaternary
format 303. This cell is located in quadrant 3. After dividing the third quadrant into 4
more quadrants, the cell is located in quadrant 0, and within quadrant 0, it is located in
quadrant 3.

At next, we look at the orientation of the Hilbert value. The complete curve for
n = 3 starts at quadrant 0, traverses through quadrant 1 and 2, and ends in quadrant
3. For abbreviation purposes, we denote this with the symbol A . After dividing the
top-level quadrant into sub-quadrants there are 3 different orientations for the Hilbert
curve, namely t , two times the pattern A and u . The pattern @ is missing. After
deciding on one orientation pattern, we could write down one quaternary digit of the
Hilbert curve and the next binary digit for the variables i and j. If we decide on one
quaternary digit on the Hilbert curve as a state in a state machine, then the transition
between states is equivalent to sub-dividing the matrices.

From the thoughts above, we can conclude for each state there are three different
possible transitions. One transition, which is also very likely, is that the same orientation
will be seen again. Therefore, in building a state machine for the Hilbert curve, it requires
a recursive edge to the current state, and two other transitions are possible. For each
transition, we can describe a bit shift on the variables i and j and two-bit shifts on
the Hilbert value h. The resulting finite automation is explained as deterministic finite
automation of a Mealy type in section 5.3.

42 CHAPTER 4. CONSTRUCTION OF SPACE-FILLING CURVES

4.5 L-systems

A Lindenmayer system (or L-system) is a parallel rewriting system and a type of genera-
tive grammars. Generative grammars have been first proposed by Noam Chomsky in the
1950 [39]. Such a grammar G is used to transform strings and mainly consists of a finite
set of production rules (left-hand side ← right-hand side). Each of these sides consists
of the following symbols:

• A finite set N of nonterminal symbols, that is disjoint from the grammar G. A
nonterminal symbol is represented by uppercase letters and they indicates that
some production rule can be applied.

• A finite set Σ of terminal symbols that is disjoint from N and G. A terminal symbol
is represented by symbols or lowercase letters. They indicate that no production
rule can be applied.

L-systems are introduced and developed by Astrid Lindenmayer, a Hungarian the-
oretical biologist, and botanist in 1968 [81]. Lindenmayer used L-systems to describe
the behaviour of plant cells and to model the growth processes of plant development.
L-systems have also been used to model the morphology of a variety of organisms. Their
recursive nature leads to self-similarity, and thereby they can be used to generate self-
similar fractals or space-filling curves. Similarly to generative grammars, they have

• an alphabet Σ, containing all the terminal symbols.

• ω (start, axiom or initiaor) a string of symbols from Σ which defines an initial state
of the system.

• N a set of production rules, defining how variables can be replaced with combina-
tions of constants and other variables. They are similar to nonterminal symbols.

An L-system is called context-free, if it is based upon context-free grammar. A
context-free grammar is a grammar where each production has the form A ← w, where
A is a nonterminal, and w is a string of terminals and nonterminals. In a context-free
grammar, any nonterminal can be expanded out to any of its productions at any point.
Grammar is the set of strings of terminals that can be derived from the start symbol.

4.6. CONCLUDING REMARKS 43

As a very simple example consider the following L-system:

variables (N): A,B
constants (Σ): none
axiom: A
rules: (A← AB), (B ← A)

which produces:

n = 0 : A
n = 1 : AB
n = 2 : ABA
n = 3 : ABAAB
...

L-systems can be used to generate fractal trees, the cantor set or the Sierpinski
traingle. In section 5.3 we describe how to use the L-systems to describe the Hilbert
curve.

4.6 Concluding Remarks

This chapter gave some general introduction into space-filling curves, their divers appli-
cability, and an introductory example to L-systems. L-systems are a grammar that is
used in our next chapter to describe the Hilbert curve without recursion.

Chapter 5

Cache-oblivious Hilbert Curve

In this chapter, we propose the Hilbert curve. A macro to replace canonical loops in
algorithms to efficiently exploit the performance of modern cache hierarchies.

5.1 Introduction

In chapter 3 we introduced a cache-conscious [4] implementation of the K-means algo-
rithm. For the loop traversal in this algorithm, we have chosen step-sizes on multiple
loop levels (i.e., 4 × 4 × 4 blocks, c.f. Figure 3.1), which are processed in every loop
iteration independently from all other blocks. Provided that we have a single cache large
enough to store blocks with a size of 4×4×4, this strategy is dramatically better because
we utilize the full bandwidth of our single cache. Modern processors support a memory
hierarchy involving up to 3 levels of cache (L1, L2, L3), where the lowest level (L1) is the
smallest, fastest, and the most expensive and the highest level (L3) the cheapest, largest,
but slowest. While we might be able to determine the pure hardware size of all these
cache mechanisms for a given hardware configuration, it is difficult to know (and subject
to frequent changes) how much of the various caches are available for our matrices and
not occupied, e.g., by other concurrent processes or the operating system.

To efficiently support the complete hierarchy of memories of (effectively) unknown
sizes, we need a different concept: a cache-oblivious algorithm [55] is, unlike our
above 3-loop construct, not optimized for single, known cache size. It follows a strategy
supporting a wide range of different cache sizes, which can also be present simultaneously.
The idea is to systematically interchange the increment of the variables i and j such that
the locality of the accesses to both types of objects (i and j) is guaranteed. Space-filling

45

46 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

curves like the Hilbert curve or the Z-order curve act to some degree like the nesting of
a high number (2 · log2 n) of loops going forward and backward with different step-sizes.

5.2 Locality of the Hilbert Curve

In Figure 5.1 we can recognize (a) the cyclic access pattern of nested loops, (b) the
cache-oblivious access pattern of the Hilbert curve, (c) the histories of variable i and (d)
j over time, and (e) the number of cache misses over varying cache size. We can see in
Fig. 5.1(d) that the access pattern of the variable j yields much more locality for the
Hilbert loops compared to the cyclic access pattern of the nested loops. The result (e)
is a dramatically improved number of cache misses, particularly for realistic cache sizes,
like 5-20% of the main memory.

5.3 Well-known Methods for the Hilbert Curve

For an introduction to the Hilbert curve, its historical context, and construction ap-
proaches, we refer the interested reader to chapter 4. Here, we introduce the well-known
approaches in this section following an automaton-theoretic point of view. Many iterative
approaches to generate space-filling curves like [36] can be regarded as a deterministic
finite automaton, and many recursive approaches like [27] as a context-free grammar.

Explicit Enumeration of Hilbert Values

The simplest way of generating a loop over the two variables i and j enumerating the
pairs in Hilbert-order (or any other space-filling curve) is to iterate over all possible
Hilbert values h and to apply the inverse Hilbert function H−1(h). Let us for this section
assume that both i and j iterate over the range 0 ≤ i, j < n where n is a power of two:

for h := 0 to n2 − 1 do
(i, j) := H−1(h);

process object pair (i, j);

For matrix multiplication, we substitute our placeholder:

process object pair (i, j) ⇐ ai,j :=
∑

k
bi,k · cTj,k.

5.3. WELL-KNOWN METHODS FOR THE HILBERT CURVE 47

0

5

10

15

0 64 128 192 256

i

0

5

10

15
0 5 10 15

0

5

10

15
0 5 10 15

Time Stepj

i

j

i

(c)(b)(a)

0

5

10

15

0 64 128 192 256
0

100

200

300

0 8 16 24 32

Nested L.
Hilbert L.

Ca
ch

e
M

iss
es

Cache Size (Objects)Time Step

j

(d) (e)

Nested Loops
Hilbert Loop

Figure 5.1: Comparison of the Traversal Order for Nested Loops (a) and Hilbert Loops
(b). An improved locality can be recognized in the histories over time for variable i (c)
and j (d), and a considerably improved cache miss rate (e).

The inverse Hilbert function is depicted in Figure 5.2 as a deterministic finite au-
tomaton (DFA) of Mealy-type (i.e., the output, the bit-strings representing i and j are
generated at the state transitions of the DFA). The bit-string representation of the Hilbert
value h, divided into groups of 2 bits, is the input of the DFA. State 3 is used as a starting
state to generate the Hilbert curve in the clockwise order. Alternatively, state 2 can also
be used to start to generate an anti-clockwise curve.

Appending a binary digit 1 to the output bit-string i (in symbols: i� 1) represents
the mathematical operation i := 2 · i+ 1. With the example input h = 5210 = 1101002,
our DFA makes upon the first bit-pair 112 of the input string the first transition from

48 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

2

1

3

0

Input: h = 52 = 11 01 00 2; Start = 3 Output: i = 1012 = 5; j = 0112 = 3

00 i 1; j 1

11 i 1; j 0

00 i 0; j 0

11 i 0; j 1

01 i 1; j 0
10 i 1; j 1

01 i 1; j 0
10 i 0; j 0

01 i 0; j 1
10 i 1; j 1

01 i 0; j 1
10 i 0; j 0

Figure 5.2: Mealy-DFA for Inverse Hilbert: (i, j) := H−1(h) to generate variables i and
j from the Hilbert value h.

State 3 to State 0, then for the second bit-pair 012 stays in State 0 and goes finally with
bit-pair 00 to State 1. In these three state transitions it appends 1, 0, and 1 to i; 0, 1,
and 1 to j to finally obtain (i, j) = (5, 3) in decimal system. Each of the log2 n bit-pairs
of h is separately processed by the DFA. In contrast to this O(log n) overhead, a pair of
two nested loops have only a constant overhead per loop iteration (increment i and/or
j). The overhead could be prohibitive for many applications.

When the upper limits of the loops are different (0 ≤ i < n, 0 ≤ j < m) or do
not correspond to a power of two, then we have two options: either we generate a bigger
Hilbert curve and suppress the processing of pairs (i, j) that are actually out of the range:

for h := 0 to 22·dlog2 max{n,m}e − 1 do
(i, j) := H−1(h);

if i < n and j < m then
process object pair (i, j);

or we generate a Hilbert curve of side length 2blog2 min{n,m}c and complement the
missing values later in additional loops with smaller Hilbert curves [40]. Both options
incur a high overhead and deteriorate the goal of cache-obliviousness.

Lindenmayer-Systems

In section 4.5 we give a brief introduction into the basics of Lindenmayer systems and
context free grammar.

5.3. WELL-KNOWN METHODS FOR THE HILBERT CURVE 49

For subsequent calls H−1(h),H−1(h + 1), it is likely that the bit-strings represent-
ing h and h + 1 have a long common prefix for which the DFA makes the same state
transitions. Moreover, by the Hilbert curve’s properties, it is guaranteed that the cor-
responding coordinates (i, j) generated by subsequent Hilbert values differ exactly by 1.
An alternative way to define an iteration overall values of two variables in Hilbert order
avoiding this unnecessary workload is the Lindenmayer system:

Definition 1 (Lindenmayer-System for the Hilbert-Curve). Let A,B be the nonterminal
symbols and ⊕,	, ., π the terminal symbols of a context-free grammar (CFG) involving
the following production rules:

A → π | 	 B . ⊕ A . A ⊕ . B 	
B → π | ⊕ A . 	 B . B 	 . A ⊕

The terminal symbols represent the graphical operations:

	 turn 90 degrees to the left without moving,

⊕ turn 90 degrees to the right without moving,

. go forward one step in the current direction d,

π process object pair (i, j),

on a grid of size n× n where n is a power of two, oriented such that j is drawn from left
to right and i from top down.

Direction: The coding and semantics of d is as follows:

d = 0 ⇔ look left: the next .-step will do j := j − 1,

d = 1 ⇔ look up: the next .-step will do i := i − 1,

d = 2 ⇔ look right: the next .-step will do j := j + 1,

d = 3 ⇔ look down: the next .-step will do i := i + 1.

Axiom (Start Symbol): We use either A with initialization d = 3 or B with
initialization d = 2.

50 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

Level ` of a rule expansion: The expansion of the axiom has level ` = log2 n. If a
nonterminal symbol appears on the right side of a production rule of level `, its expansion
has level `− 1. The terminating productions A→ π and B → π are applied exactly at
level ` = 0.

While the Mealy-DFA of Section 5.3 generates only one (i, j)-pair, the Lindenmayer-
CFG produces the whole n × n Hilbert curve when we start at level ` = log2 n. Axiom
A with d = 3 generates the values in a clockwise order starting from (i, j) = (0, 0) and
ending at (n, 0), and axiom B with d = 2 in an anticlockwise order ending at (0, n).

According to the definition of d, the operations ⊕ and 	 correspond to the cyclic
increment/decrement of d:

d := (d+ 1) mod 4; // ⊕
d := (d+ 3) mod 4; // 	

To avoid expensive (pipeline-breaking) if -else-operations, we use the following im-
plementation of the forward-step:

j := j + ((d− 1) mod 2);

i := i + ((d− 2) mod 2);

h := h + 1;

 // .

The mod-operation preserves the sign. For d = 〈0, ..., 3〉 we get i := i + 〈0,−1, 0,+1〉
and j := j + 〈−1, 0,+1, 0〉. variable (either i or j) is truly affected.

The Lindenmayer system to produce the whole sequence of Hilbert values can be
straightforward implemented with two recursive functions A(`) and B(`), exactly per-
forming the above operations on global variables h, i, j, d ∈ N0:

Analogously function B(`); the labels are not needed for the implementation but
for the following analysis. Note the comments are giving the corresponding terminal
and nonterminal symbols from the context-free grammar. Although all the increase
and decrease operations corresponding to the commands .,⊕, and 	 have now constant
complexity, the recursive implementation still has some drawbacks: Firstly, after the
generation of 4 subsequent (i, j)-pairs, one incarnation of A(`) or B(`) is finished. We

5.3. WELL-KNOWN METHODS FOR THE HILBERT CURVE 51

Algorithm 1 Recursive Lindenmayer Algorithm.
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

function A(`)
if ` = 0 then

process object pair (i, j); // π
else

d := (d+ 3) mod 4; // 	
labelA0: B(`− 1); // B

j := j + ((d− 1) mod 2);
i := i + ((d− 2) mod 2);
h := h+ 1;

 // .

d := (d+ 1) mod 4; // ⊕
labelA1: A(`− 1); // A

j := j + ((d− 1) mod 2);
i := i + ((d− 2) mod 2);
h := h+ 1;

 // .

labelA2: A(`− 1); // A
d := (d+ 1) mod 4; // ⊕
j := j + ((d− 1) mod 2);
i := i + ((d− 2) mod 2);
h := h+ 1;

 // .

labelA3: B(`− 1); // B
d := (d+ 3) mod 4; // 	

have to return to one of labelA0..3 or labelB0..3, perform the next actions and then start
the next recursive calls. In summary, after every 4k iterations, we have to move up
and down on the stack at least for k positions where 1 ≤ k ≤ log2 n. This is still
a logarithmic overhead per loop iteration in a worst-case-analysis (but since the worst
case does not occur frequently, it is indeed constant in the average-case when applying
amortized analysis). Secondly, grids with different side lengths not corresponding to the
powers of two are still open in the recursive solution.

Thirdly, the Lindenmayer system’s recursive nature is an obstacle to the implemen-
tation and compiler-optimization of the host algorithm (like matrix multiplication, etc.).
The core of a host algorithm must be implemented twice in the terminating cases of
the functions A(`) and B(`), which can communicate only via global variables. More
importantly, the compiler has fewer options for optimization. In C-like languages, opti-
mization is only done inside functions, not across function calls. Therefore, it is advisable
to put some effort in making our Lindenmayer system non-recursive, as described in the
following section.

52 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

h = 52 = 11 01 00 2 = 3104; i = 5; j = 3; d =1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

i
labelA3

labelB1

labelB0

Recursion Stack

A p: process object pair (i, j) ;

A B

B

B B B

BB

B

A

A

A A

A

A

labelA0 labelA1 labelA2 labelA3

l = 3:

l = 2:

l = 1:

l = 0:

labelB0 labelB1 labelB2 labelB3

labelB0 labelB1 labelB2 labelB3

Figure 5.3: Recursive generation of (i, j)-pairs following the Hilbert-curve.

5.4 Novel Non-recursive Lindenmayer

The functions A(`) and B(`) are not straightforward to make iterative. In regular time
intervals, we have to leave one or more recursive incarnations ofA(`) orB(`), return to the
middle of another A or B-function on the recursion stack, perform the next action of this
incarnation then, and start new recursive calls again. This can be studied in Figure 5.3,
where we are in the middle of the generation of the Hilbert loop, at i = 5, j = 3, h = 52.
At this point, we have four active incarnations, one of production rule A, two of B, and
the terminating rule A → π. The dark blue printed rule at ` = 3 = log2 n generates
the Hilbert curve of the whole (i, j)-grid (surrounded by a dark blue frame). We are

5.4. NOVEL NON-RECURSIVE LINDENMAYER 53

currently in the last (lower left) sub-quadrant, marked by a light blue frame, and the
corresponding position in production rule A is labelA3, which is expanded in the next,
light blue production rule. In a recursive implementation, we have labelA3 on the stack.
The production rule B(` = 2), in turn, is expanded at labelB1 (next position on the
recursion stack) corresponding to the green production rule (again B) and the green
frame in the grid. When ending the green production rule, we have to return to labelB1

of the light blue rule (` = 2), perform the corresponding action (., between labelB1 and
labelB2), and then make the next recursive call B(` − 1) at labelB2. The labels which
are on the stack, labelA0..3, labelB0..3 agree with the definitions in function A(`) and
B(`). Where appropriate, we will also note e.g. labelX0, meaning: labelA0 or labelB0.

Our idea to make the recursive algorithm iterative is to code the complete recur-
sion stack in a single N0-variable (e.g., 64 bit, possibly a register of the CPU). We will
demonstrate that we do not need a new variable for this purpose. Instead, the current
Hilbert value h, as well as the current direction code d, contain all the information to
derive both the current recursion depth, as well as (for all recursive incarnations of the
methods A and B) the current position where we have to return. We split the proof of
this into two parts: Lemma 1 states that the number of each label on the recursion stack
exactly corresponds to the Hilbert-value grouped in bit-pairs. This is already obvious
from Figure 5.3 where the Hilbert value h = 52 = 11 01 002 = 3104 noted in the 4-adic
system is identical to the numbers on the stack: (labelA3, labelB1, labelB0). Lemma 2
shows how to derive the information whether we are in A(`) or B(`).

Lemma 1 (Label-Number).

Consider an incarnation of the non-terminating rules:

A → 	 B . ⊕ A . A ⊕ . B 	 or
B → ⊕ A . 	 B . B 	 . A ⊕ at level `.

(1) The number pop(`) of processed object pairs (i, j) starting from the incarnation at
level ` is pop(`) = 4`.

(2) The incarnation overall increases h by forw(`) = 4` − 1.

(3) For each Hilbert value h generated at labelX k, the value

a := bh/4`−1c mod 4 equals the label number k.

54 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

Proof. (1) At the bottom level ` = 0, the number of processed object pairs is pop(`) = 1.
For ` ≥ 1, the number of expansions to π is multiplied by four for each level: pop(`) =

4 · pop(`− 1). Consequently, pop(`) = 4`.

(2) At the bottom level, we have a number of forward steps forw(`) = 0. In each higher
level, we have four times as many forward steps as in level ` − 1 plus additional three
performed in the current grammar rule:

∀` ≥ 1 : forw(`) = 4 · forw(`− 1) + 3⇒ forw(`) = 4` − 1.

(3) At the beginning k = 0 of our rule, it is possible that rules of the same level have
been processed before. If so, they must have been completely processed. According to
(2), each of these rules have increased h by forw(`) = 4` − 1, and together with the
final . from the parent rule, we have some multiple r · 4`, (∃r ∈ N0). For k = 0 we have
a = br · 4`/4`−1c mod 4 = (r · 4) mod 4 = 0.

At position k = 1, compared to k = 0, we have increased h by 4`−1, because we have
applied one rule at level `− 1 (cf. (2) again) and performed an additional .-step. Thus,
we have a = b(r · 4` + 4`−1)/4`−1c mod 4 = (4r + 1) mod 4 = 1. In the general case
k ∈ {0, ..., 3} we do this k times: a = b(r · 4` + k · 4`−1)/4`−1c mod 4 = k.

Next we show how to decide according to h and d whether we are in grammar rule
A or B, i.e. the letter of the labels.

Lemma 2 (Production Rule A or B).

(1) The direction code d is the same at the beginning and at the end of a production
rule.

(2) At the beginning and end of the production rule A, the parity of the direction code
d is always odd, at the beginning and end of B always even.

(3) The parity of d combined with the position (e.g. identified by the label) decides if
we are in grammar rule A or B.

Proof. (1) Proof by structural induction over the production rules: In the base clauses,
A→ π and B → π the direction code is not changed, thus (1) is trivially true.

5.4. NOVEL NON-RECURSIVE LINDENMAYER 55

Induction step: Consider the production rule:

A → 	 B . ⊕ A . A ⊕ . B 	

If the direction code is not changed in the expansion of the nonterminals on the right-
hand side, then it is not changed in the application of A because the number of ⊕ is the
same as the number of 	 (two). The same is true for rule B.

(2) By structural induction: Base clauses: At the beginning of the first expansion of
the axiom the statement is trivially true because according to Def. 1 we either start with
A and initialize d = 3 (odd) or start with B and initialize d = 2 (even). Because of (1)
this is also true at the end of the first (topmost) expansion of A or B.
Induction step: Consider again

labelA0↓ labelA1↓ labelA2↓ labelA3↓
A → 	 B . ⊕ A . A ⊕ . B 	

Before expanding B at labelA0 we have applied 	. Note that both operators ⊕
and 	 toggle the parity of d from even to odd and vice versa because they add an odd
number (1 or 3) to d (mod 4). Thus, if d is odd at the start of expansion A (induction
hypothesis), it is even at the start of expansion B, odd again at A at labelA1..2, and
even at B at labelA3. Analogously in the expansion of B: if d is even at the beginning
(induction hypothesis), d is odd at every nonterminal A and even at every B. This is a
complete analysis of all cases, and to summarize the induction step: if (2) is true for the
nonterminal on the left side of a rule (at level `), it must be true for all nonterminals on
the right side and thus for all left sides of the next level (`− 1).

(3) As a consequence of (2), we know the parity at the beginning of a rule expansion.
Since the parity is switched at each ⊕ and 	, we can mark the parity of d for all positions:

A → 	 B . ⊕ A . A ⊕ . B 	
odd | even | odd | even | odd

B → ⊕ A . 	 B . B 	 . A ⊕
even | odd | even | odd | even

We can see that the parity differs between A and B at every position. Therefore,

56 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

the combination of position and parity decides the rule A or B in which we currently
are.

Now, Lemma 1 and 2 would enable us to exactly mimic the recursion with its stack.
However, we would still have the logarithmic worst-case complexity. Instead, we further
transform our algorithm into that in Figure 2 which truly performs a loop enumerating
the Hilbert values h. In its body, we perform the operation π (process (i, j)) and, then
decide where we would be in the recursive system and which action a must be executed.
An action takes always place between two successive recursive calls and has the label
of the latter (e.g. a = 2 is between labelX1 and labelX2), and corresponds always to a
forward-step, potentially preceded or followed by a ⊕ or 	-step. E.g. in production rule
A at a = 1 we perform ⊕ ., and at a = 3 we perform .⊕ etc. As there is no forward-step
before labelX0 and after labelX3 we only consider the three actions a ∈ {1, 2, 3}, but not
0. We will see later how to cope with the ⊕ and 	 at the beginning and end of the rules.

To obtain the right action code, we first increase h. If we are at the end of one or more
production rules on the stack, then increasing h will change one or more 112-bit-pairs at
the end of h into 002. (cf. Lemma 1). In this case, the first bit-pair (from right to left)
6= 002 defines the level ` and the action a to be performed. Therefore, we determine (after
increasing h) the number of 002-bit-pairs at the end in constant time by the following
trick: If the bitwise and-operation is applied to h and its negative complement −h, then
in the result all bits are 0 up to one exception: The last (least significant) 1 which has
been set in h is still set (the result is the largest power of two which divides h with no
rest). The binary logarithm b12 log2(h andbitw −h)c corresponds to the number of zero-

Algorithm 2 The Non-recursive Lindenmayer Alg.
1 function LindenmayerNonRecursive()
2 (i, j) := (0, 0);h := 0; d := 3;
3 while h < n2 do
4 process object pair (i, j);

5 h := h+ 1;
6 ` := b12 log2(h andbitw −h)c+ 1;
7 a := bh/4`−1c mod 4;
8 d := d xorbitw (112 · (isOdd(`−1) xor a = 3));
9 j := j + ((d− 1) mod 2);

10 i := i + ((d− 2) mod 2);
11 d := d xorbitw (isOdd(`−1) xor a = 1);

5.4. NOVEL NON-RECURSIVE LINDENMAYER 57

pairs at the end of h and equals ` − 1. We determine the binary logarithm by casting
the result of the bitwise and to a double-precision floating point number and extracting
the exponent, which is very efficient and works for 1 ≤ h ≤ 252 − 1, the greatest natural
number that can be represented by double-precision floating point numbers (according
to IEEE-754) at no loss of precision. The action code then is extracted from h using

a := bh/4`−1c mod 4, cf. Lemma 1.

Finally, we perform the action in a by modifying d, in-/decreasing i or j, and modifying
d again. The two modifications of d subsume the different ⊕ and 	-operations which
are defined between two labels. Let us first assume we are at level ` = 1, i.e. we do not
have to consider additional ⊕,	-operations from starting or ending recursive calls. As
we know that even and odd direction codes can only be present at certain positions of A
and B (e.g. at labelA0, d is even, at labelB0, d is odd, cf. Lemma 2), we can construct
the lookup table (see Table 5.1) for the result dnew of the ⊕ or 	 operation before and
after the forward step .:

⊕/	 before . (` odd) ⊕/	 after . (` odd)
dold a=1 a=2 a=3 dold a=1 a=2 a=3

0 − − 3 0 1 − −
1 − − 2 1 0 − −
2 − − 1 2 3 − −
3 − − 0 3 2 − −

Table 5.1: Lookup table to derive the direction code d for the odd cases of `.

Here, “−” means dnew = dold (no change) and is used for better visibility. Colors
indicate if the transition from dold to dnew has been caused by grammar rule A (blue)
or B (green), as suggested by the parity of dold. In the actions before ., both bits of d
are reverted (d := d xorbitw 112) whenever a = 3. After ., the lower bit of d is reverted
(d := d xorbitw 012) whenever a = 1. The ⊕ and 	 operations at the begin and end
of production rules have the following influence: if ` is odd, we have an additional even
number of ⊕ and 	. The parity of d does not change and the table above is still valid.
If ` is even, the parity of d toggles before and after . and the table changes into:

Overall we can express the action before and after . by the bitwise logical operations
shown in the algorithm in Figure 2 where (as in C-like languages usually) results of
boolean operations (isOdd, “=”, xor) are represented by 1 or 0 and can thus e.g. be
multiplied with other values. The operations “...+1” in Line 6 and “...−1” in Line 7,8,11

58 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

⊕/	 before . (` even) ⊕/	 after . (` even)
dold a=1 a=2 a=3 dold a=1 a=2 a=3

0 3 3 − 0 − 1 1
1 2 2 − 1 − 0 0
2 1 1 − 2 − 3 3
3 0 0 − 3 − 2 2

Table 5.2: Lookup table to derive the direction code d for the even cases of `.

can be omitted or are removed by the optimizer. They are included in the pseudo-code
for equivalence with the functions A(`), B(`).

1123341234 112230324

3 x 3

12321234

2 x 43 x 22 x 2

2101123212330324210122230324

4 x 43 x 4 Directions:

04:

24:

14: 34:

Figure 5.4: Examples of Nano-programs for Grids Ranging from 2×2 to 4×4 (all having
basic orientation d = 2).

Lemma 3 (Complexity of LindenmayerNonRecursive). The worst-case time complexity
of our algorithm is constant per loop iteration.

Proof. The while-loop (lines 5–11) of our algorithm contains only elementary operations
(+, and, mod, etc.). The number of these operations is constant (24).

5.5. NANO-PROGRAMS 59

5.5 Nano-Programs

We back up our nonrecursive implementation of cache-oblivious loops by a concept called
nano-programs. Nano-programs are small pieces of pre-computed space-filling curves for
grid sizes r×s = 2×2, 2×3, 2×4, 3×4, or 4×4 (see Figure 5.4). Degenerate grids with
size 1× {1, 2, 3, 4} (single loop) and 0× {0, 1, 2, 3, 4} (empty loop) are also possible but
are used only if either i or j overall has these degenerate limits. Nano-programs serve a
two-fold purpose: They further decrease the overhead compared to the method proposed
in the previous section because the management of helping variables like the direction d
is simplified for the pre-computed small grids. The overall number of basic operations
(additions, multiplications etc.) per loop iteration is thus reduced from 24 to 9. The
second and more important purpose of our nano-programs is to enable grid-sizes which
do not precisely correspond to a power of two, because as we show in the following, it is
possible to tesselate a grid of any size n×m by a number of sub-grids each having size
r×s = {2, 3, 4}×{2, 3, 4}. Let us start with the case that n and m are possibly different
but in the same power of two: t := blog2 nc = blog2mc. We can partition the n × m
grid into a number 2t−1 × 2t−1 of sub-grids where the height r is always an integer close
to the average sub-grid height r̃ = n/2blog2 nc−1. The following equation shows that r is
always between 2 and 4:

r̃ = n/2t−1 = n/2blog2 nc−1

{
≥ n/2(log2 n)−1 = 2,

≤ n/2(log2 n)−2 = 4,

Sub-grids of height r = 4 can also occur: e.g. if n/2t−1 = 3.5 then half of the sub-grids
are of height 3 and 4. Analogously the width s: 2 ≤ s = m/2t−1 < 4. The sub-grids all
have size {2, 3, 4} × {2, 3, 4}.

A nano-program is a bit-sequence that can be stored in an integer variable P , which
may be assigned to a register by the compiler while working with it. The bit-sequence
contains codes similar to the direction-codes stored in the variable d (cf. Section 5.3). The
nano-programs read from right to left, and therefore, the first operation to be performed
on the variables i and j can be extracted from P and stored into a temporary variable c by
c := P mod 4. The current operation is then executed (i and j are updated based on c as
in Section 5.3) and removed from P by a right-shift P := bP/4c until the nano-program
is empty. To each sub-grid cell of size r× s there belongs a nano-program of size r · s− 1

digits from a 4-ary system, i.e. (r ·s−1)·2 bit. We have separate nano-programs for every
size of the basis-grid {0, 1, 2, 3, 4}×{0, 1, 2, 3, 4} and for every orientation defined by the

60 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

variable d, totalling in a number of 5 · 5 · 4 = 100 nano-programs of sizes up to 30 bit
(integer register). A few examples of nano-programs (all for orientation d = 2; patterns
for other orientations obtained by rotation) are visualized in Figure 5.4: we can see the
graphical access patterns for 2 × 2...4 × 4 grids and the corresponding nano-programs.
Note that these programs read from right to left, and they are here noted in a 4-ary
system. The first movement of the 2×2 pattern (step down) is coded by the tailing digit
3 of the nano-program 1234 = 2710.

The pseudo-code is embedded in the algorithm LindenmayerNonRecursive() and all
processing of nano-programs highlighted in Algorithm 3. The size (r × s) of each cell of
the nano-program is determined in Line 3 such that the sub-grid heights r = 2, 3, and 4

are evenly distributed to sum up to n (analogously for the widths s). After a complete
nano-program consisting of r · s − 1 steps has been processed, a final movement (lines
11–16) is performed to connect the previous sub-grid cell to the subsequent one.

Algorithm 3 Lindenmayer with Nano-programs.

1 (i, j) := (I, J) := (0, 0); h := 0; d := 3; t := blog2 nc;
2 while h < 22t−2 do
3 r := b (I+1)·n

t c − b I·nt c; s := b (J+1)·m
t c − bJ ·mt c;

4 P := nanoprograms[r][s][d];
5 while P 6= 0 do
6 process object pair (i, j);
7 c :=P mod 4;
8 P :=bP/4c;
9 j := j + ((c− 1) mod 2);

10 i := i− ((2− c) mod 2);
11 h := h+ 1;
... ...
16 i := i+ ((d− 2) mod 2);

}
as in Alg. 2, Line 5–10

17 J := J + ((d− 1) mod 2);
18 I := I + ((d− 2) mod 2);
19 d := d xorbitw (isOdd(`− 1) xor a = 1);

Odd-sized Cells of Nano-programs

As depicted in Figure 5.4, all nano-programs for 2 × 2...4 × 4 grids exist. However, for
the non-square sub-grids (2× 3, 2× 4,, and 3× 4) we need two versions: those beginning
and ending at the longer side and those beginning and ending at the shorter side. For
the 2× 4 nano-programs, both versions exist: in addition to the nano-program 12321234

5.5. NANO-PROGRAMS 61

beginning and ending at the longer side, we can also define the 4 × 2 nano-program
11123334 (read from right to left cf. Fig. 5.4) beginning and ending at the shorter side.
In contrast, a 2 × 3 sub-grid beginning and ending at the longer side would require a
diagonal transition (being less local and requiring more than two bits).

Although odd-sized nano-programs are necessary if we want to support a global grid
size with one or both side lengths being odd, we can completely avoid the non-existing
nano-programs if we carefully plan where to place the 3× {2, 3, 4} nano-programs. Our
key idea is, at most places, to allow only even-sized nano-programs. Every grid where
both side lengths are even can be completely tessellated with only even-sized nano-
programs. If one side length of the grid is even, and the other is odd, we can place all
3×2 and 3×4 nano-programs at that side of the grid opposite to the starting and ending
point, as depicted in Figure 5.5. We have to control the traversal order of the grid (by
specifying the initial direction d = 3 or d = 2) to make sure that the even-sized side
length is opposite to the global starting and ending point (Figure 5.5, middle).

As depicted in Figure 5.5, right side, the situation is more tricky if both side lengths
are odd. There, we have to place a column of 3×2 nano-programs at the right side and a
single 3×3 nano-program at either of the ends of this column (in Figure 5.5, on the upper
right corner). The Hilbert-sub curves at the upper and lower row are, unfortunately, not
oriented such that the remaining 3× 2 nano-programs can be positioned in a single row.
The drawn layout with sub-curves oriented towards the middle is generated by bitwise
logic operations.

Figure 5.5: Placement of 3× 2 (red) and 3× 3 (green) Grids.

62 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

Severely Asymmetric Grids

If blog2 nc < blog2mc like in Figure 5.6 where blog2 nc = 2 and blog2mc = 3 we put
a number m′ = dm/2blog2 nce of independent curves side by side, where the first has
width m− blog2 nc · (m′ − 1) and the remaining have width blog2 nc. All the curves are
anticlockwise (initial d = 2). With this setting it is guaranteed that the nano-programs
of size 3 × {2, 3, 4} can be placed exactly such that no diagonal transitions are needed.
If blog2mc > blog2 nc we analogously put n′ = dn/2blog2mce clockwise curves (initial
d = 3) one above the other. Finally we note that starting with lower bounds for (i, j)

different from (0, 0) is also straightforward possible (cf. Figure 5.6 where we start at
(i, j) = (2, 0)) at no extra cost per loop iteration. Degenerate loops where one or both
variables iterate over one value only or no values at all (empty loops) are also considered,
but these extensions are left out in our pseudo-code for clarity and space restrictions.

121130 1 2 4 5 6 10987

2

3

4

5

6

0 1 0 1 0 1

1

0

j

i I

J

Figure 5.6: FurHilbertFor (i, j) ∈ {2, ..., 6} × {0, ..., 12}.

5.6 Overall Architecture

Having made our code to generate loop iterations completely non-recursive and having
removed all restrictions on loop boundaries for i and j, we will from now on note the
cache-oblivious loops following the FUR-Hilbert curve in our pseudo-codes as follows:

FurHilbertFor (i, j)∈{imin, ..., imax−1}×{jmin, ..., jmax−1}
do process object pair (i, j);

5.7. CONCLUDING REMARKS 63

This is very analogously possible in the source-code for C, C++, etc. where we define
preprocessor macros:

#define FurHilbertFor (i, j, imin, imax, jmin, jmax)

#define FurHilbertEnd (i, j)

of which the first contains Alg. 3, Line 1–5, the part of the code before the place-
holder process object pair (i, j), and the second contains Line 7–19, including all ex-
tensions described in Section 5.5. The C++-file can be downloaded from https://infor-
matik.univie.ac.at/dm/downloads/.

The application of these preprocessor macros is almost as convenient as the applica-
tion of standard loops. FUR-Hilbert loops can be nested with other loops and with each
other. The implementor of the host algorithm can choose freely the name and type of the
iterator variables (for all types allowing to apply the operator “+”) and parenthesize the
loop body as usual with “{ ” and “ }”. In this case editors automatically apply appropriate
indentation. The following lines generate the FUR-Hilbert curve in Figure 5.6:

int i, j;FurHilbertFor (i, j, 2, 7, 0, 13) {
printf(“%d %d\n”, i, j);

}FurHilbertEnd (i, j);

This architecture not only makes our host algorithm clear and well structured, but it
also has significant performance benefits. The whole host algorithm can be implemented
in a single method. It can apply local variables for the management of our loops and
all information needed in the host algorithm inside and outside of the cache-oblivious
loop. These local variables can be assigned to registers by the compiler or upon user
request (e.g., by the keyword register). Various optimizations, including extraction of
loop invariants and loop unrolling, can be made fully automatic by the compiler. These
options are all unavailable in a recursive implementation.

5.7 Concluding Remarks

In this chapter, we have proposed the Hilbert order, a space-filling curve that has been
implemented as a preprocessor macro. In the next two following chapters, we apply
the Hilbert curve to several algorithms. In chapter 6, we apply the Hilbert curve to

64 CHAPTER 5. CACHE-OBLIVIOUS HILBERT CURVE

algorithms from the linear algebra and in chapter 7 to the similarity join problem.

Chapter 6

Applications of Cache-oblivious
Hilbert Curve

On top of FUR-Hilbert loops, we implemented a number of algorithms (matrix multipli-
cation, K-means clustering, Cholesky decomposition, and Floyd-Warshall) and a number
of further algorithms from data mining, linear algebra, database systems, and other fields.
In these algorithms, we additionally parallelized the FUR-Hilbert loops with OpenMP,
marking these parallelized loops with FurHilbertFor∗, and the innermost loops with
SIMD-parallelism using AVX2 (Advanced Vector Extensions) marking those with the
comment “// SIMD.”

6.1 Algorihtms

Matrix Multiplication

Matrix multiplications are vastly used in software implementations and have numerous
applications[17]. The basic algorithm to multiply B ∈ Rn×p and C ∈ Rp×m1 can be
implemented using a FUR-Hilbert loop because it has no general data dependencies. If
p is too large e.g. for a cache-size of 32K say p � s := 1024, to fit at least a few of
the rows of B and C T fit into the L1 cache, it is necessary to decompose the matrices
horizontally into groups of s (divisible by 4 to ensure alignment with cache lines) columns
before applying the FUR-Hilbert loop:

1stored as C T, additionally each row aligned to cache lines

65

66 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

γ
β

α

(a) (b)

Figure 6.1: Traversal of Cholesky (a) and Floyd/Warshall (b)

for K := 0 to p− 1 stepsize s do

FurHilbertFor∗ (i, j) ∈ {0, ..., n− 1}×{0, ...,m− 1} do
for k := K to min{K + s, p} − 1 do
ai,j := ai,j + bi,k · cTj,k;

}
// SIMD

K-means Clustering

K-means, the most popular clustering algorithm, is like the related EM and K-medoid
methods, implemented in a loop which convergences after alternately performing assign-
ment and update steps. The expensive assignment step determines for each point xi the
distance to each cluster representative µj (0≤j<k) and assigns it to that cluster ID hav-
ing minimal distance. We must keep track of the winner distance and the corresponding
cluster ID for each point. This can be facilitated in a SIMD-parallel way by backpacking
[25] the cluster ID in the least significant bits of the distance, noted 〈dist , cID〉:

FurHilbertFor∗ (i, j) ∈ {0, ..., n− 1}×{0, ..., k − 1} do
double h := ||xi − µj ||;
〈dist i, cID i〉 := min{〈dist i, cID i〉, 〈h, j〉};

}
// SIMD

6.1. ALGORIHTMS 67

Cholesky Decomposition

Having numerous applications in data mining and simulation, Cholesky decomposition
is an algorithm that factorizes a symmetric, positive definite matrix A ∈ Rn×n into a left
triangular matrix L such that A = LL T. It determines the entries `i,j as follows:

`i,j := 1
`j,j

(
ai,j −

∑
0≤k<j

`i,k · `j,k
)
if j<i; `i,i :=

√
ai,i −

∑
0≤k<i

`2i,k

In the computation of element `i,j we read the whole matrix row `j,∗. This data depen-
dency must be considered when changing the loop order of (i, j) either by space-filling
curves or by parallelism. We achieve this by decomposing the lower left triangle matrix
L into square blocks of a side length β being a power of two. The largest block of side
length β = 2blog2(n−1)c is placed in the lower left corner of L starting from row imin = β

(cf. Figure 6.1(a); if the overall dimension n of the matrix is not a power of two, then the
blocks at the bottom lines are suitably trimmed and become a non-square β × γ rectan-
gle). Recursively, to each placed square of side length β we connect one with side length
β
2 on the upper left corner and on the lower right corner until the triangle is completely
tesselated when we reach at β=1 or at some other defined basic resolution (for SIMD
parallelism using AVX 1 or 2 we use 4 × 4 squares as basic elements, which degenerate
to triangles at the diagonal of the matrix). Inside each block it is guaranteed that the
data dependency plays no role since always imin>jmax. We can apply FUR-Hilbert loops
as well as SIMD and MIMD parallelism inside such a block but have to make sure that
the blocks are ordered sequentially top-down and within the same row from left to right.
The recursive block-generation is made iterative in the following pseudo-code which also
considers the case of a matrix dimension n being not equal to a power of two:

`0,0 :=
√
a0,0 ;

for α := 1 to n− 1 do
β := α andbitw −α; γ := min{α+ β, n} − 1;

FurHilbertFor∗ (i, j) ∈ {α, ..., γ}×{α−β, ..., α−1} do
`i,j := 1

`j,j

(
ai,j −

∑
0≤k<j `i,k · `j,k

)
; // SIMD

`α,α :=
√
aα,α −

∑
0≤k<α `

2
α,k ;

68 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

The Algorithms by Floyd and Warshall

The Algorithm by Warshall [126] finds connected components (the transitive closure of
the boolean adjacency matrix A ∈ Bn×n) in a directed or undirected graph. The standard
algorithm uses three nested loops, resulting in an O(n3) algorithm:

for i := 0 to n− 1 do
for j := 0 to n− 1 do if aj,i then

for k := 0 to n− 1 do if ai,k then aj,k := true;

Although the data dependencies are actually similar as in our previous example, Cholesky
decomposition, it is not possible to restrict the operations to one half of the matrix
only. The upper and lower triangle can then be decomposed in larger blocks similar
to Cholesky, which are subject to MIMD-parallelism and traversed in an order based on
space-filling curves. The operation in the innermost loop can be transformed into a logical
OR-operation, which can be executed by SIMD-parallel operations. This is particularly
attractive since AVX allows us to perform up to 256 such operations simultaneously on
a single core.

for α := 1 to n− 1 do
β := α andbitw −α; γ := min{α+ β, n} − 1;

FurHilbertFor∗ (i, j) ∈ {α, ..., γ}×{α−β, ..., α−1} do
if aj,i then ∀k:aj,k :=aj,k ∨ ai,k; // SIMD

for∗ j := α to γ do
if aj,α then ∀k:aj,k :=aj,k ∨ aα,k; // SIMD

The overall traversal scheme of the two outer loops (i and j) is depicted in Fig-
ure 6.1(b). The algorithm by Floyd operates on a weighted matrix A ∈ Rn×n and uses
the same algorithmic pattern like Warshall. The line:

if aj,i then ∀k:aj,k :=aj,k ∨ ai,k; // SIMD

is replaced by:
∀k:aj,k := min{aj,k, aj,i + ai,k} // SIMD.

6.2. EXPERIMENTAL EVALUATION 69

6.2 Experimental Evaluation

Experiments have been performed on Intel Xeon E5-2680v3 CPU (2.5GHz, 12 cores) with
256GB RAM and Debian GNU/Linux 8 (Jessie) as the operating system. Each core is
associated with 64 KB of L1 and 256 KB of L2 cache. The last level cache (LLC) is the
shared L3 cache with a size of 30 MB. All measurements are averaged over 20 runs using
double precision arithmetics.

Matrix Multiplication

Our algorithm FUR-Hilbert, as discussed in Section 5.6, is implemented in C++ and com-
piled with GCC version 4.9.2. We compare our algorithm to the algorithm “TifaMMy”
for matrix multiplication based on the Peano Curve introduced by Bader et al. [12,
61] (source code has been obtained by the authors compiled with ICC version 16.0.3).
Furthermore, we compare our algorithm to the specifically for Intel processors hardware-
and hand-optimized Intel MKL library (https://software.intel.com/en-us/intel-mkl) ver-
sion 11.3 (operation: dgemm). Intel MKL can accelerate popular frameworks like Apache
Spark, Pythons NumPy, and SciPy. As a baseline, we also compare to the classical matrix
multiplication coded in c++ transposing the input matrix for improved cache locality.
The code has been auto-vectorized using the GNU C++ compiler.

5 000 14 0000

20

40

60

Size of matrix

R
un

ti
m
e
[s
ec
]

1 2 4 8 120

50

100

150

200

250

Number of cores
FUR-Hilbert MKL-BLAS Peano (TifaMMy) Auto-vect.

Figure 6.2: Performance of Matrix Multiplication (Xeon).

Figure 6.2 (left) displays the runtime in seconds varying the size of the input ma-
trices from 1 000 to 14 000. For larger problem sizes, the highly optimized MKL library

70 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

slightly outperforms FUR-Hilbert. It processes the largest matrix in 17.50 seconds. Our
algorithm needs 19.15 seconds and is at least 30% faster than the approach by Bader et
al. (Peano). Peano requires 13.15 seconds. Our approach is more than ten times faster
than auto-vectorization, which needs 1.7 minutes. Figure 6.2 (right) displays the runtime
varying the number of threads. All techniques process two matrices with 10 000 elements
each. All methods profit a lot from multi-threading. Auto-vectorization and Peano show
almost linear speed-up, albeit at a low level of overall performance. FUR-Hilbert shows
similar speed-up characteristics as MKL-BLAS.

Matrix Multiplication on a Manycore-System

The experiments have been performed on Intel Xeon Phi 7210 (KNL), with a processor
base frequency of 1.3 GHz and 64 cores. We are using the memory mode “Cache Mode”
and the cluster mode “All2All”. Each core is associated with a 32 KB L1 data cache
and shares 1 MB of L2 cache with another core on the same tile. In the “Cache Mode”,
the MCDRAM behaves as a memory-side direct-mapped cache in front of DDR4, which
can be seen as a high bandwidth/high capacity L3 cache. Figure 6.3 (left) demonstrates
the runtime spent for various problem sizes. Our algorithm outperforms MKL-BLAS
for matrix sizes smaller than 9 000. For the largest problem size of 15 360 MKL-BLAS
is around 14% faster and needs 5.87 seconds, whereas our approach needs 6.86 seconds.
Nevertheless, our approach is 3.73 times faster than Peano (“TifaMMy”), which has a
runtime of 24.96 seconds. Figure 6.3 (right) illustrates the runtime needed for different
number of threads used. The matrix size is 7 680 and our approach takes only 0.918

seconds. Our approach is 76% faster than MKL-BLAS, which needs 1.62 seconds, whereas
“TifaMMy” needs 3.47 seconds and the auto-vectorized approach needs 15.14 seconds.

Matrix Multiplication on Laptop

The experiments have been performed on MacBook Pro (13 inches, late 2016) with a 2.0
GHz dual-core Intel Core i5. Each core is associated with a 128 KB L1 cache, 512 KB
L2 cache, and 4 MB shared L3 cache. Unfortunately, we could not run “TifaMMy” on
macOS Sierra since it was not designed to run on multiple Mac OS X platforms. The
tested implementations have been running independently from all other applications. We
turned off background applications to get unaltered runtime measurements.

We are using 2 threads as the default configuration since we have only 2 cores. The 4
threads measurement is tested with the support of hyper-threading. We can see a similar

6.2. EXPERIMENTAL EVALUATION 71

5 000 14 0000

20

40

60

Size of matrix

R
un

ti
m
e
[s
ec
]

8 16 24 32 40 48 56 640

20

40

60

80

Number of cores

Figure 6.3: Performance of Matrix Multiplication on a Manycore System (Xeon Phi).

5000 100000

20

40

60

Size of matrix

R
un

ti
m
e
[s
ec
]

1 2 40

50

100

150

200

250

Number of cores
FUR-Hilbert MKL-BLAS Auto-vect.

Figure 6.4: Experiments on matrix multiplication for a smaller cache size (Laptop).

behavior of the Hilbert curve on the laptop as it has on our servers. However, MKL-
BLAS performs better on laptop systems. In Figure 6.4 left we tested various sizes of
matrices up to a size of 10 000. For the multiplication of the largest matrices, the hand-
optimized version of Intel MKL needs 22.97 seconds, whereas our Hilbert approach needs
31.76 seconds. In comparison to the auto-vectorized variant, our Hilbert implementation
is roughly 9 times faster. For the threading experiment in Figure 6.4 (right) the default
dimension of the input matrix is 8 000. Our version is close to the performance achieved
by MKL-BLAS and even for hyper-threading 9 times faster than the auto-vectorized

72 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

approach.

Cache hierachy on Matrix Multiplication

The access time to memory is one of the bottlenecks for CPU core performance. Today’s
hierarchical cache structure reduces latency and hence speeds up the CPU clock. Here,
we examine the cache hit footprint of our algorithm for the matrix multiplication. We
are using Intel Vtune Amplifier XE 2017 to explore the cache access pattern of all al-
gorithms among the L1, L2, and L3 hierarchy and calculate the cache hit rate for the
L1 cache as: L1_HIT

L1_HIT+L1_MISS . Furthermore, we use “perf” version 3.16.7-ckt20 https:/
/perf.wiki.kernel.org/ and the event cache-misses:u to detect a cache miss among the
whole cache hierarchy. The :u tail excludes the kernel space and measures only the user
space of the algorithms. The cache hit rate for “perf” is calculated as: 1− cache-misses:u

cache-references:u .
We use the maximum number of threads (12) for the variation in problem size, and ma-
trices of size 10 000 are processed for the threads’ variation.

5 000 14 00095

96

97

98

99

100

Size of matrix

L1
ca
ch
e-
hi
t-
ra
te

[%
]

0 2 4 6 8 10 12
95

96

97

98

99

100

Number of cores
FUR-Hilbert MKL-BLAS Peano (TifaMMy)

Figure 6.5: Cache-hit-rate of the matrix multiplication on L1 cache for different matrix
sizes (left) and different thread sizes (right).

The Figures 6.5 to 6.8 illustrate the cache hit rate for each cache level respectively
and the cache hit rate for the entire cache hierarchy. For the L1 cache-hit-rate (Figure
6.5), the hardware optimized MKL-BLAS is the most cache-efficient algorithm. Our
algorithm performs well for small sizes and as well as Peano for larger sizes. All of the
algorithms reached at least 97.5% of the L1 cache hit rate. For the L2 cache (Figure
6.6) hit rate, our algorithm performs best and remains within a lower bound of 94%

6.2. EXPERIMENTAL EVALUATION 73

5 000 14 000

75

80

85

90

95

100

Size of matrix

L2
ca
ch
e-
hi
t-
ra
te

[%
]

0 2 4 6 8 10 12

75

80

85

90

95

100

Number of cores
FUR-Hilbert MKL-BLAS Peano (TifaMMy)

Figure 6.6: Cache-hit-rate of the matrix multiplication on L2 cache for different matrix
sizes (left) and different thread sizes (right).

5 000 14 000

40

60

80

100

Size of matrix

L3
ca
ch
e-
hi
t-
ra
te

[%
]

0 2 4 6 8 10 12

50

60

70

80

90

100

Number of cores
FUR-Hilbert MKL-BLAS Peano (TifaMMy)

Figure 6.7: Cache-hit-rate of the matrix multiplication on L3 cache for different matrix
sizes (left) and different thread sizes (right).

whereas Peano and MKL-BLAS have lower bounds of 87% and 72%. The last level cache
(LLC), illustrated in Figure 6.7, is the slowest but largest in the cache hierarchy. Our
algorithm shows good performance and uses most of the LLC for large matrix sizes and
the maximum number of threads, whereas MKL-BLAS drops down in cache hit rates.
The Peano algorithm performs relatively equal to our algorithm but shows a performance
decrease for large problem sizes.

74 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

5 000 14 000

85

90

95

100

Size of matrix

To
ta
lc

ac
he

-h
it
-r
at
e
[%

]

0 2 4 6 8 10 12

85

90

95

100

Number of cores
FUR-Hilbert MKL-BLAS Peano (TifaMMy)

Figure 6.8: Cache-hit-rate of the matrix multiplication along the complete cache hierar-
chy for different matrix sizes (left) and different thread sizes (right).

We also captured the access pattern of memory access, which could be served by any
of the cache levels in Figure 6.8. For the total cache hit rate, our algorithm competes
with MKL-BLAS for sizes between 2 000 and 12 000 but drops down at both tails for
matrix sizes of 1 000 and 14 000. Our algorithm clearly outperforms the Peano algorithm
in both variations of matrix sizes and thread counts.

K-means

Here, we extended our K-means implementation [25] with the Hilbert curve. We use
the same comparison methods as for matrix multiplication but exclude the Peano-curve
based algorithm by Bader et al. [9, 12] since this approach is not designed to support
K-means and is outperformed by MKL-BLAS on the task of matrix multiplication. The
MKL library also does not include K-means. However, it can be used to speed up distance
calculations. The MKL-based technique computes the scalar products between objects
and cluster centers by matrix multiplication. As the runtime of K-means strongly depends
on the number of iterations, we compare it for a fixed number of 5 iterations. As a primary
setting, we consider a 20-dimensional data set with 1 048 576 data objects, and 24 000
clusters. A high number of clusters causes massive runtime but is practically relevant,
e.g., for the coarse quantization step of the product quantization indexing technique [68].

Figure 6.9 (left) displays the runtime when varying the number of objects. Our
technique processes 1 million objects in less than 8 seconds, while auto-vectorization

6.2. EXPERIMENTAL EVALUATION 75

0 500 000 1 000 0000

50

100

150

Number of objects

R
un

ti
m
e
[s
ec
]

0 10 20 30 40 50
0

50

100

Dimensionality

0 12 000 24 0000

50

100

Number of clusters

R
un

ti
m
e
[s
ec
]

1 2 4 8 120

100

200

300

Number of cores
FUR-Hilbert MKL-BLAS Auto-vect.

Figure 6.9: Experiments on K-means Clustering.

needs 2.88 minutes for 5 iterations of K-means. The next sub-figure varies the number of
dimensions. The rightmost sub-figures display the speed-up, which is similar to matrix-
multiplication.

We have also tested the hardware-optimized library DAAL (Intel Data Analytics
Acceleration Library, https://software.intel.com/en-us/intel-daal), but DAAL does not
compete in this setting. DAAL is a library of optimized algorithmic building blocks
for data analysis and solves problems that are associated with “Big Data”. This includes
regression, classification, or related problems, as well as clustering problems like K-means.
We have been using DAAL with the current version of Intel Parallel Studio XE (version

76 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

2017 update 3). Unfortunately, DAAL cannot handle settings with a high number of
clusters, where K > 2 050. Even for K = 1 000 or K = 2 000 it performs worse than our
auto-vectorization approach and needs 49.42 and 97.74 seconds for completion. We had
been running DAAL in the batch processing mode, with the same settings used for our
algorithms.

Cholesky Decomposition

All implementations of the Cholesky decomposition take a positive-definite matrix A and
apply the decomposition of the form A = LLT in double precision. Our algorithm is im-
plemented using C++ (compiled with GCC version 6.4.0 and OpenMP 4.5). The Linear
Algebra PACKage (LAPACK) is a standard software library for numerical linear algebra.
It provides routines for solving systems of linear equations and linear least squares. We
compare our algorithm to the hardware optimized library LAPACK implemented in the
Intel Math Kernel Library (MKL version 17.0 update 4, see https://software.intel.com/en-
us/mkl/features/linear-algebra). We also compare our implementation to the well-known
Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA version 2.8.0).
The PLASMA project is a modern replacement of LAPACK with a software framework
for developing asynchronous operations and out of order scheduling with the QUARK
runtime. In contrast to LAPACK, which relies on BLAS level 2 calls, PLASMA uses
BLAS level 3 calls, especially suitable for algorithms like Cholesky decomposition [30]. As
a baseline, we also compare our algorithm to a classical implementation of the Cholesky
decomposition, which has been automatically vectorized using the Gnu GCC compiler
(Auto-vect.).

Figure 6.10 (left) displays the runtime in seconds on different dimensions of the input
matrix varying from 1 000 to 12 000. For the largest matrix of 12 000, the hardware opti-
mized MKL-LAPACK algorithm shows the best performance with 2.04 seconds, whereas
our algorithm FUR-Hilbert needs 3.66 seconds. However, our algorithm is at least 20%
faster than the PLASMA library, which needs 7.18 seconds and 17 times faster than the
auto-vectorization taking 123.64 seconds to completion.

Figure 6.10 (right) displays the runtime varying the number of threads. Each algo-
rithm processes a matrix of size 5 000. All algorithms profit from multithreading. Here
again, for the highest number of threads, the MKL-LAPACK algorithm shows the best
performance with 0.12 seconds. Our algorithm needs 0.39 seconds, and for this setting,
we are six times faster than the PLASMA library, which needs 2.53 seconds, and ten

6.2. EXPERIMENTAL EVALUATION 77

5000 120000

10

20

30

Size of matrix

R
un

ti
m
e
[s
ec
]

1 2 4 8 120

5

10

15

20

25

Number of cores
FUR-Hilbert MKL-BLAS PLASMA Auto-vect.

Figure 6.10: Experiments on Cholesky Decomposition.

times faster than auto-vectorization, which needs 4.12 seconds.

Algorithm by Floyd and Warshall

For the experiments on the algorithm of Warshall (described in Section 6.1) we have
generated a graph with 3 densely connected subsets of nodes (clusters). Two nodes within
a cluster are connected with a probability of 1% and two nodes in separate clusters are not
connected, so we have 3 connected components. In Figure 6.11 we compare our packed
FUR-Hilbert approach to the canonical approach. For a number of 40 000 nodes our
approach is 1.81 times faster than the canonical implementation, where our algorithms
needs 6.18 seconds and the canonical implementation 11.19 seconds. The same speedup
of 1.81 remains for the variation in the number of cores used, where our algorithm spends
5.33 seconds and the canonical implementation 9.62 seconds.

Energy Efficiency

Energy is an indispensable resource with limited availability in all kinds of computing
systems and critical in case of cost and availability. We measure the energy consumption
of our Intel Xeon E5 with the power meter “Power HiTester 3334”, which supports power
integration measurements. This way of measuring is probably the most accurate approach
to measure power and energy efficiency. There are also other APIs that allow us to read
internal performance counters, such as Running Average Power Limit (RAPL) [127].
However, these were not available for our current hardware. Our power meter, the Hioki

78 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

0 10 20 30 400

2

4

6

8

10

Number of nodes in thousands

R
un

ti
m
e
[s
ec
]

1 2 4 8 120

5

10

15

20

25

Number of cores

Canonical
FUR-Hilbert

Figure 6.11: Experiments on the Algorithm by Warshall.

3334 AC/DC Power HiTESTER, has a measurement accuracy of ±0.1%. The 3334 is
an AC/DC power meter that measures inrush current and power consumption, ideal for
DC, and current and power integration applications to meet energy efficiency standards.
We are using the serial port (RS-232) and a custom C API to communicate with the
power meter, which allows us to measure the algorithms power consumption without any
overhead. The code of our API is available to the public2.

6000 8000 10000 12000 14000
0

2

4

6

8

10

0
.7

7 1.
78

3
.4

1

5.
8
3

9
.2

7

0.
24 0
.5

6 1.
21 1
.8

2 2.
91

0
.2

2

0
.4

3

0.
65 1
.2

7 1.
88

0
.2

1

0.
39 0
.7

3

1.
13 1
.8

4

E
ne

rg
y
co
ns
um

pt
io
n
[W

h]

(Xeon)

Auto-vect. Peano (TifaMMy) MKL-BLAS Hilbert

Figure 6.12: Energy efficiency for matrix multiplication.

2https://gitlab.cs.univie.ac.at/coloops/HIOKI-3334

https://gitlab.cs.univie.ac.at/coloops/HIOKI-3334

6.2. EXPERIMENTAL EVALUATION 79

Our algorithm is the most energy-efficient one for matrix multiplication, as illustrated
in Figure 6.12. Our algorithm slightly outperforms the other algorithms for varying
matrix sizes with one exception, where the problem size is 10 000. For other problem
sizes, the gain over MKL-BLAS is between 2% and 11% and over Peano (“TifaMMy”)
between 16% and a factor of 160%. We are up to 5 times more energy-efficient than
auto-vectorization, but we left it out in Figure 6.12 for clarity of presentation.

6000 8000 10000 12000 14000
0

0.5

1

1.5

0
.3

6 0.
5

0
.6

6

0.
95

1
.3

3

4
.2
·1

0−
2

6.
9
·1

0−
2

0.
1
4 0
.2

3 0.
32

7.
1
·1

0−
2

0
.1

3

0
.2

1 0
.3

6

0.
6
6

E
ne
rg
y
co
ns
um

pt
io
n
[W

h]

(Xeon)

PLASMA MKL-BLAS Hilbert

Figure 6.13: Energy efficiency for Cholesky decomposition.

Figure 6.13 displays the energy efficiency of the Cholesky decomposition. Here, we
compare our algorithm with current state-of-the-art approaches on this microarchitecture.
The Intel Math Kernel Library (MKL) version of LAPACK, named MKL-LAPACK, is
the most energy-efficient algorithm. Our algorithm is between 2 and 5 times more energy-
efficient than PLASMA. We are approximately 7 times more energy-efficient than auto-
vectorization.

Our K-means algorithm outperforms MKL-BLAS in runtime and this is also true for
energy consumption. For the largest problem size of 1 048 576, our algorithm consumes
0.726 Wh, whereas our BLAS implementation uses 1.923 Wh. Furthermore, the energy
consumption of our auto-vectorization takes 13.882 Wh. BLAS consumes a factor of 2.64

more, and the auto-vectorized algorithm consumes even a factor of 19.12 more than our
algorithm.

80 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

65 536 131 072 262 144 524 288 1 048 576
0

0.5

1

1.5

2

2.5

0.
1
3 0
.2

5 0.
4
9

1

1.
9
2

6.
4
·1

0−
2

0.
1 0
.1

8 0.
3
7

0
.7

3

E
ng

er
y
co
ns
um

pt
io
n
[W

h]
(Xeon)

MKL-BLAS Hilbert

Figure 6.14: Energy efficiency for K-means clustering.

6.3 Related Work and Discussion

Cache-oblivious Algorithms

The notion of cache-obliviousness has been first introduced by Frigo et al. in 1999 [55].
A cache oblivious algorithm performs well on any type of multi-level memory hierarchy
without knowing the structure and the hierarchy parameters, e.g., cache and memory
size, transfer block size, and bandwidth.

Cache-oblivious algorithms [55] have attracted considerable attention as they are
portable to almost all environments and architectures. Algorithms and data structures
for basic tasks like sorting, searching, matrix multiplication, and specialized tasks like
ray tracing [88] or homology search in bioinformatics [51] have been proposed. The two
fundamental design patterns of cache-oblivious algorithms are localized memory access
and divide-and-conquer. Space-filling curves (SFC) integrate both ideas. A SFC defines
a 1D ordering of the points of an n-dimensional space such that each point is visited once.
Probably the most widely used SFC is the Z-order due to its simple recursive scheme.
The Hilbert and the Peano SFC provide better locality properties at the expense of
more computational overhead. To theoretically formalize cache-obliviousness, Figo et
al. introduced the assumption of an ideal cache, which is characterized by ideal page
replacement and full associativity. The authors prove that algorithms designed with this

6.3. RELATED WORK AND DISCUSSION 81

idealized setting in mind only degrade in performance by a constant factor in realistic
settings such as LRU replacement strategy and set-associative caches. Most related to
our work, Bader et al. proposed to use the Peano curve for matrix multiplication and
LU-decomposition [9, 12]. Their algorithms process the input matrices in a block-wise
and recursive fashion where the Peano curve guides the processing order and the memory
access pattern. We considerably improve memory locality and runtime by introducing
the Fast Un-restricted Hilbert curve. Classical SFCs are restricted to traverse data of a
specific size, e.g. multiples of powers of two or three. Bader et al. use the Peano curve
with zero paddings.

We introduce a Hilbert curve supporting arbitrary problem sizes, which is of general
interest also for other applications. We propose a highly efficient iterative algorithm to
compute the Hilbert values on the fly. Most existing non-recursive approaches are based
on lookup tables, causing memory overhead, e.g., [36]. For the determination of a single
Hilbert value, most iterative techniques are linear in the resolution, which corresponds to
the number of iterations in the loop, thus causing substantial overhead. In contrast, our
solution removes the recursion overhead of the Lindenmayer-System [54] and introduces
compact nano-programs fitting into registers for the traversal of small patches. Our
approach processes a single pair of indices i, j in constant time, iterate through the loop
in linear time, and therefore causes negligible overhead. Recursive approaches, e.g., [27,
54] are associated with logarithmic worst-case time complexity for processing a single
index pair and are not suitable to support comfortable loop programming.

Optimized Techniques for Specific Tasks or Hardware

In [11, 61] Bader et al. present variants of their algorithms for matrix operations. As in [9,
12], the general algorithmic scheme is recursive partitioning according to the Peano curve.
To tailor the algorithm to specific hardware properties, small matrix blocks are processed
with optimized assembler code. For every microarchitecture, comprehensive adjustments
are required to reach performance competitive with optimized libraries like BLAS [47],
LAPACK [6], DAAL or MKL. The library BLAS (Basic Linear Algebra Subprograms)
provides basic linear algebra operations together with programming interfaces to C and
Fortran. Specific implementations for various infrastructures are available, e.g., ACML
for AMD Opteron processors or CUBLAS for NVIDIA GPUs. The Math Kernel Library
(MKL) contains highly vectorized math processing routines for Intel processors.

In contrast to our work, these implementations are very hardware-specific and mostly

82 CHAPTER 6. APPLICATIONS OF CACHE-OBLIVIOUS HILBERT CURVE

vendor-optimized. Moreover, they are designed to efficiently support specific linear al-
gebra operations while aiming to support loop processing in general. Our experiments
demonstrate that our cache-oblivious approach reaches a performance close to BLAS
on the task of matrix multiplication and outperforms BLAS when applied to support
K-means clustering.

As K-means probably is the most wide-spread clustering algorithm other highly op-
timized techniques for specific hardware have been proposed, e.g. for mobile devices [5],
GPUs [15] or computing clusters [113]. Compared to such specialized techniques, it is
out of the scope of this work as K-means clustering only serves as an exemplary host
algorithm.

The algorithm byWarshall was also studied in a Bachelor thesis proposed by Naschen-
weng [90]. In this thesis, the student developed an implementation of a cache efficient
version of the algorithm by Warshall using the Hilbert curve pattern to traverse a matrix
in a triple-nested for-loop. The implementation was vectorized using AVX-512 SIMD in-
trinsics and experimentally evaluated on our Intel Xeon Phi. In the comparison against a
reference implementation of the Boost library, his implementation showed superior per-
formance in terms of runtime efficiency for certain blocking factors. In this thesis, the
student also showed that data dependencies must be taken carefully into account and
could lead to an incorrect result.

Energy Efficiency on Data Movement

The energy cost of data movement from memory to registers has been identified as one
of the limiting factors for the development of efficient and sustainable exascale systems.
In terms of energy, the cost is two orders of magnitude higher than the cost of computing
a double-precision register-to-register floating-point operation [129].

In general, an L3 cache miss is approximately three times more expensive than an L2
cache miss, and an L2 cache miss is approximately three times more expensive than an
L1 cache miss. In the Figures 6.5, 6.6, 6.7 and 6.8 we have examined the cache footprint
of the matrix multiplication, where our algorithm avoids expensive cache misses most
effectively. In cases of the runtime performance for the matrix multiplication, we observe
that our algorithm is slightly behind MKL-BLAS (cf. Figure 6.2), but slightly ahead in
cases of energy-efficiency (cf. Figure 6.12). We believe that this is due to our efficient
cache access pattern induced by our Hilbert curve. The cache access pattern for the L2

6.4. CONCLUSION 83

cache in Figure 6.6 and the L3 cache in Figure 6.7 shows that our approach has a better
cache hit rate for L2 and L3 caches.

6.4 Conclusion

We introduced Fast Unrestricted (FUR-) Hilbert in chapter 5, a new space-filling curve
with the property that every arbitrary n×m rectangle can be filled by making only axis-
parallel, single-step moves in a recursively bisected data space. The original Hilbert-curve
has a similar property but is restricted to squares (n = m) where the side length n must
be a power of two. Also, our algorithm that generates the FUR-Hilbert curve is highly ef-
ficient because it is non-recursive and has a constant worst-case complexity per generated
pair of coordinates in contrast to O(log n) for previous methods. These two advantages
make it particularly attractive to replace pairs of nested loops in important host algo-
rithms (e.g., matrix multiplication and clustering) with our FUR-Hilbert curve, leading
to cache-oblivious accesses of the corresponding objects. In extensive experiments, we
demonstrated the superiority of such cache-oblivious loops.

Chapter 7

Cache-oblivious High-Performance
Similarity Join

This chapter has a detailed look at shared memory databases with special attention to
the similarity join. After a general introduction in section 7.1, we give a more specific
introduction into the context of our work in section 7.2, where we formalize the similarity
join including the problem setting and the filter- and refinement in more detail. In section
7.3, we will revisit the Epsilon Grid Order (EGO) and how we can apply the Hilbert curve
in this algorithm. The full method FGF-Hilbert Join is explained in section 7.4. In our
experiments in section 7.5, we evaluate the performance of the FGF-Hilbert Join, followed
by a discussion including the related work in section 7.6. We give some concluding
remarks in section 7.7.

7.1 Introduction

Finding pairs of similarities in data is one of the most crucial challenges in current
database systems. These similarities are meaningful to many applications such as dedu-
plicate detection, the ranking of search queries, data analytics, clustering, or data consol-
idation. In such use cases, the similarity is not exact. Instead, it is more an approximate
similarity expressed for vector data as an ε-similarity. In such a similarity join, we are
looking for pairs where the absolute difference between the two pairs is not higher than ε.
A simple nested loop algorithm to test all possible pairs is quadratic in its runtime, which
is very time consuming since the distance calculation for approximate pairs is expensive
in terms of runtime performance. Considering Relational Database Management Sys-

85

86 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

Figure 7.1: Sorting of 20 vector objects in the Epsilon-Grid Order (EGO).

tems (RDBMS) the solution should be generic and as performant as possible. It should
be able to handle large and high dimensional datasets. A query in the computer science
bibliography dblp (https://dblp.uni-trier.de/) for the term “similarity join” returns
more than 400 results. These results contain solutions for different data types, such as
streams, time-series, or images in different settings. For every data type, the similarity
is expressed in a different similarity (or dissimilarity) measure. The edit similarity join
[133] uses the edit distance, whereas the similarity of sets is calculated using the Ham-
ming or Jaccard distance [44]. Every different setting has its own optimization principles
and possibilities. This chapter focuses on vector data for millions of objects with up to
64 dimensions. The similarity join combines vectors based on the Euclidean distance.
Typically, such algorithms apply a filter step and then refine the pairs of candidate vec-
tors. In such a filter-step, the join candidates are excluded (e.g., by an index structure
or sorting), which are not eligible for a join partner. In the following refinement step,
the algorithm probe pairs of candidate vectors using nested loops.

An effective way to prune (or to filter) the space of vector data is to apply the ε-Grid
Order (EGO), as shown in Figure 7.1. There, the data is sorted according to a grid
consisting of ε steps. The value-range is expressed with the order of the colors in the
rainbow. If two cells have the same color, then they are in the same ε-range. The 20 data
points in the one dimensional dataset in Figure 7.1 are split into 7 grids cells. The EGO
is an imaginary grid, which gets never materialized. The data points’ ordering within
one grid cell is determined from the varepsilon-grid in its next dimension, although the
example in Figure 7.1 is restricted to only one dimension.

Based on the vector data from Figure 7.1 the possible join candidates can be visualized
in an imaginary similarity matrix (c.f. Figure 7.2). In this example, a self-similarity join
is considered. To avoid duplicates in the final result, only the upper triangle of the
similarity matrix is considered. The discarded lower triangle is marked in grey in Figure
7.1. Data points that are more than ε distant can be safely discarded with the epsilon

https://dblp.uni-trier.de/

7.1. INTRODUCTION 87

Figure 7.2: Imaginary similarity matrix for the ε-similarity join.

grid order. The region below the discarded points on the upper triangle is called stripe.
The algorithm probe pairs of candidate vectors of the stripe region using nested loops in
a refinement step. This chapter proposes to traverse these loops in a Hilbert order since
it dramatically improves the data locality. As we demonstrate the easy transformation
from conventional loops into cache-oblivious loops, we believe that many algorithms
for complex joins and other database operations could be transformed systematically
into cache-oblivious vectorized multi-core algorithms. In chapter 5, we introduced the
Hilbert curve with the property that arbitrarily sized rectangles can be filled. Our novel
space-filling curve Fast General Form (FGF) Hilbert combines the locality properties
of FUR-Hilbert with a filter-and-refinement technique to efficiently perform a similarity
join.

88 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

7.2 Similarity Join

Join algorithms with a complex join predicate like band-, similarity-, and k-nearest-
neighbor-joins are essential for data mining algorithms like clustering, classification of
massive data [18, 20]. Typically, they operate in a multi-step paradigm with a filter and
a refinement step. The filter step constructs an index or sorts the data and applies a
simplified and more efficient variant of the join predicate. The subsequent refinement
step traverses two nested loops to apply the actual join predicate to all candidate pairs.
Such a filter-and-refinement paradigm is correct and complete if the result of the filter
step is a superset of the final join result or, in other words, if the join predicate of the
filter step is a lower bound of the final join predicate. However, most existing solutions
like [19, 44, 69, 70] are not designed for main memory databases running on multi-core
systems with a complex memory hierarchy. We address this research gap with a parallel
technique for the similarity join with optimal cache locality.

Problem Statement

We consider the similarity join of one or two setsX = {x0, ...,xn−1} andY = {y0, ...,ym−1}
of d-dimensional vectors which is defined using a threshold ε:

SimJoinε(X,Y) :=
{

(xi,yj) ⊆X×Y
∣∣ ||xi−yj || ≤ ε

}
SimSelfJoinε(X) :=

{
(xi,xj) ⊆X×X

∣∣ ||xi−xj || ≤ ε
}

where ||xi − xj || is the Euclidean distance. We denote the components of the vector
xi by

xi,k where i ∈ {0, ..., n−1} and k ∈ {0, ..., d−1}.

Our objective is a time- and space-efficient algorithm on modern multi-core proces-
sors with SIMD and MIMD (Single/Multiple Instructions Multiple Data) parallelisms
supported by a complex memory hierarchy. While we focus our subsequent discussion
on SimSelfJoinε(X) our technique is also applicable to the general SimJoinε(X,Y).

Filter and Refinement

Multi-step query processing with filter and refinement steps is often performed on index
structures like R-trees [28] supporting the join predicate (Euclidean distance, in our case).
However, the index construction is expensive. Therefore, a good alternative is to sort the

7.2. SIMILARITY JOIN 89

data set according to a function which supports the join predicate. A simple example
for such an ordering (denoted ≤simple) is to select one of the components of the vector,
e.g. the first dimension xi,0:

xi ≤simple xj :⇔ xi,0 ≤ xj,0.

We can use a simple predicate |xi,0 − xj,0| ≤ ε as filter step and compute the actual
Euclidean distance (refinement step) only for those pairs (xi,xj) which pass the filter step.
If the filter predicate is a lower bound of the actual join predicate, it is guaranteed that
the result set is complete (no false dismissals). Our ordering function ≤simple guarantees
that the candidates to be refined form contiguous sequences in the sorted set (locality).
The order ≤simple uses one dimension for the filter step only, resulting in a bad filter
selectivity. In this chapter, we use the well-known Epsilon Grid Order (EGO):

xi ≤EGO xj (cf. Definition 2),

which partitions the d-dimensional data space into a grid of squares of side length ε,
and orders these grid cells by numbering them lexicographically (cf. Section 7.3). Using
this strategy, all dimensions are used in the filter step (to guarantee good filter selectivity)
while maintaining the lower-bounding property of the filter step (completeness) and the
candidates for refinement are adjacent in the sorted set (locality). Due to locality, the
potential join partners of a given point xi form a contiguous interval [lb(i), ..., ub(i)] in
the sorted data set such that only those candidate pairs (xi,xj) with lb(i) ≤ j ≤ ub(i)

need to be considered. Note that i and j always refer to positions in the sorted data set
throughout this chapter. For query processing we use this algorithm:

sort X according to ≤EGO;
determine lb(i) and ub(i) for each i ∈ {0, ..., n− 1};
for i := 0 to n− 1 do

for j := lb(i) to ub(i) do

}
// Filter Step

if ||xi − xj || ≤ ε then
report (xi,xj);

}
// Refinement Step

Cache-conscious Algorithms

To gain the maximum performance, we exploit modern computing hardware by vector-
ization (Single Instruction Multiple Data, SIMD) and multi-core parallelization (Multiple

90 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

0

7

0 7j

i

0 7j0 7j

ss

0 7j

(a) Canonic (b) Cache-consc. (c) Z-order (d) Hilbert

0

7

i

Figure 7.3: Strategies to Process Pairs (i, j) of Objects.

Instruction Multiple Data, MIMD), which is available today’s inexpensive retail hard-
ware.

However, the effect of both kinds of parallelism is severely limited by excessive ac-
cesses to main memory which is a centralized component in today’s systems. Although
alleviated through a number of cache memories (usually three levels, partially exclusive
to single cores) and registers, these faster memories become only effective if the memory
accesses are highly local. If our inner loop (j in our last code example) iterates over a
number of vectors which do not fit into cache, this locality requirement is not fulfilled, and
the cache does not well prevent us from the expensive memory accesses. An additional
loop (I) makes our algorithm cache-conscious:

sort X according to ≤EGO; determine lb(i) and ub(i);
for I := 0 to n− 1 stepsize ss do

for j := lb(I) to ub(I + ss− 1) do
for i := I to I + ss− 1 do

if ||xi − xj || ≤ ε then report (xi,xj);

Provided that we have a single cache, and we have carefully chosen the step size ss
such that ss+1 vectors of X fit into that cache, this loop blocking strategy is dramatically
better: the number of transfers from main memory to cache is approximately reduced by
the factor ss. The canonic order of two nested loops and the cache-conscious order can
be compared in Figure 7.3 (a) and (b) where ss = 4.

7.2. SIMILARITY JOIN 91

Cache-oblivious Algorithms

Modern processors support a hierarchy of different memories with variants of the LRU
strategy (“Least Recently Used”):

• L1, L2, and L3 cache (ordered by decreasing speed),

• a set of registers, even faster than the L1 cache,

• the translation look-aside buffer for the fast translation between virtual and physical
memory addresses.

All these memories profit from the locality of accesses. When following the cache-
conscious approach, a separate optimization for each of these memories is needed, result-
ing in a high number of loops. While we might be able to determine the pure hardware
size of all these memories for a given hardware configuration, it is difficult to know (and
subject to frequent changes) how much is available to our current join algorithm and not
occupied by other processes.

To efficiently support the complete hierarchy of memories of (effectively) unknown
sizes, we need a different concept: a cache-oblivious algorithm [55] is, unlike our
above 3-loop construct, not optimized for a single, known cache size but supports a wide
range of different cache sizes. The idea is to systematically interchange the increment of
the variables i and j such that the locality of the accesses to both types of objects (xi
and xj) is guaranteed using space-filling curves like the Z-order (Fig. 7.3c) or Hilbert (d)
curve [64]. In this work, we do not use space-filling curves as an index structure of the
d-dimensional vector space (like e.g. [94]) but rather for the traversal order of objects in
filter and refinement.

We propose the FGF-Hilbert Join (FGF for Fast General Form) applying our new
variant of a cache-oblivious loop called FGF-Hilbert loop as follows:

sort X according to ≤EGO; determine lb(i) and ub(i);
fgf hilbert loop (i, j) ∈ {0 · · ·n− 1} × {0 · · ·n− 1}

with constraint lb(i) ≤ j and j ≤ ub(i) do
if ||xi − xj || ≤ ε then report (xi,xj);

92 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

7.3 Preliminaries

In this section, we introduce the most important and well-known building blocks of
our technique, the Epsilon Grid Order, filter, and refinement techniques, followed by a
discussion to reduce the overhead produced by the algorithm.

In our notation, we follow a view based on deterministic finite-state automata (DFA)
and context-free grammars (CFG) to allow a rigorous mathematical treatment and prove
the correctness of the FGF-Hilbert curve. Many iterative approaches to generate space-
filling curves like [36] can be regarded as DFA, and many recursive approaches like [27]
as CFG. See also section 5.3.

Epsilon Grid Order

The Epsilon Grid Order (EGO) is an ordering-based filter-refinement technique which has
originally been proposed for hard-disk oriented database systems [19, 70]. The general
idea is to lay a d-dimensional grid over the data space where the distance of the grid
lines exactly corresponds to the radius ε of the join condition, by rounding-down:

⌊xi,k
ε

⌋
.

Thus it is guaranteed that join partners must be positioned in neighboring grid cells.
EGO orders the grid cells canonically, i.e. the first attribute is the strongest ordering
condition. If two vectors xi and xj are rounded to the same value in the first attribute,⌊xi,0
ε

⌋
=
⌊xj,0
ε

⌋
, then the second attribute is considered, and so on.

Formally we define the ordering operator ≤EGO which is a total pre-order (a reflexive,
transitive, and total relation; ≤EGO is not anti-symmetric):

Definition 2 (EGO).

xi ≤EGO xj :⇔ one of the following conditions holds:

(1)
⌊xi,k

ε

⌋
=
⌊xj,k

ε

⌋
for all k with 0 ≤ k < d, or

(2) there exists a dimension D with 0 ≤ D < d such that⌊ xi,k
ε

⌋
=

⌊ xj,k
ε

⌋
for all k < D and⌊xi,D

ε

⌋
<

⌊xj,D
ε

⌋
.

Iterative Generation of Hilbert Values

The simplest way of generating a loop enumerating the pairs (i, j) in Hilbert-order is
to iterate over all possible Hilbert values h and to apply the inverse Hilbert function
(i, j) := H−1(h). The Hilbert value h is the order number of a pair (i, j) starting with

7.3. PRELIMINARIES 93

h = 0 at (0, 0) and ending with h = 63 at (7, 0), cf. Figure 7.3(d). Hilbert curves [64]
need a square-like grid with a side length being a power of two. We round-up n to the
next-higher power of two using dne2 := 2dlog2 ne.

for h := 0 to (dne2)2 − 1 do
(i, j) := H−1(h); // cf. Appx. A
if i < n and j < n then // (T1)

if lb(i) ≤ j and j ≤ ub(i) then // (T2)
if ||xi − xj || ≤ ε then // (T3)

report (xi,xj);

(T1) tests if i and j are generally in the allowed value range; (T2) tests if i and j fulfill
the constraints defined by the Epsilon Grid Order; and (T3) performs the refinement
step.

Many different methods [16, 36] have been proposed for the computation of the Hilbert
function h = H(i, j) and its inverse (i, j) = H−1(h). These approaches can be regarded
as DFA producing output, the pair (i, j), bit by bit during state transitions (“Mealy-
DFA”). The input (the Hilbert value h) is considered number in the 4-adic system which
is processed digit by digit. The run-time is proportional to the number of digits, O(log n).
This effort is due in each iteration of the loop. The DFA for H−1 is described in Section
5.3 and the recursive generation of Hilbert values in Section 5.3.

Discussion

Both iterative and recursive approaches share the disadvantage that they are inherently
designed for square grids where the side-length is a power of two. If some general form,
maybe a general rectangle (like [23]) or a more complex polygon is needed, the well-
known solution is to produce Hilbert values for the smallest power-of-two square that
contains the form and to ignore all values which are outside. The overhead of producing
unnecessary pairs is high. Our filter step based on the Epsilon Grid Order produces
a complex shape to be filled with the space-filling curve. With FGF-Hilbert loops, we
propose a method that omits empty parts of arbitrarily complex shapes, cf. Section 7.4.

The recursive solution has the disadvantage that the actual refinement step of the join
must be called from the two recursive functions A(`) and B(`). This causes a complex
structure of the overall join algorithm and limits the compiler’s optimization options
(which is mostly focused on the optimization inside a single method). Like the iterative

94 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

1 algorithm FGF-HilbertJoin(ε)
2 sort (x0, ...xn−1) using ≤EGO;
3 for i := 0 to n− 1 do
4 Pi := ε2

4 −
1
2

∑
k x

2
i,k;

5 for each stripe s do determine lb(s)(i) and ub(s)(i);
6 for each stripe s do condense lb(s) and ub(s);
7 for each stripe s do
8 FGF-Hilbert loop (i, j) ∈ {0 · · ·n−1}× {0 · · ·n−1}

with constraint lb(s)(i) ≤ j and j ≤ ub(s)(i)
jumping over lb(s)` (i) > jmax or jmin >ub

(s)
` (i) do

9 if 〈xi,xj〉+ Pi + Pj ≥ 0 then report (xi,xj);

Figure 7.4: EGO-Join using a FGF-Hilbert loop.

solutions, the FGF-Hilbert loop is non-recursive.

7.4 The FGF-Hilbert Join

This section describes our solution for the similarity join, using the Epsilon Grid Order
(EGO) as a filter step and our new FGF-Hilbert loop. We assume a modern multi-
core CPU that allows MIMD-parallelism by multiple threads, and we used here Open-
MP (easily adaptable to other architectures like CILK or POSIX-threads). For SIMD-
parallelism, we rely on AVX-512, which allows using 32 vector-registers of 512 bit (i.e.,
vectors of 8 components in double-precision floating-point arithmetic). A straightforward
adaptation to other AVX or SSE variants is also possible. We assume that our data is
stored in the main memory n× d array (in row-major order), starting at a cache-aligned
address.

We start by giving an overview of our algorithm along with its pseudo-code, cf.
Figure 7.4. The building blocks are then discussed in detail in the subsequent sections.
The algorithm starts by sorting the data set X according to ≤EGO. Then we scan
X to make some pre-computations: in Line 4, we compute the norms of the vectors
which will be discussed in Section 7.4. In Line 5 and 6 we determine the lower and
upper bounds lb(i) and ub(i) to plan which pairs (i, j) must be considered later in the
refinement step, cf. Section 7.4. Finally, in Line 8, we traverse our cache-oblivious loop
by a particularly fast variant of the Hilbert-curve, which is of constant time-complexity,
non-recursive, and allows to omit areas of the space which are not covered by candidate

7.4. THE FGF-HILBERT JOIN 95

pairs (cf. Section 7.4). The refinement step in Line 9 is computed indirectly via the
scalar product, cf. Section 7.4.

Determination of the Bounds

Previous works like [70] determine during the run of the recursive (divide-and-conquer)
join algorithm if two subsets of EGO-ordered points can generate candidates. In contrast,
our method plans carefully according to the epsilon grid order before the actual join which
candidate pairs will be considered and stores the potential partners of a point xi using
lower and upper bounds lb(i), ub(i). ub(i) is the index of the last vector for which:

xub(i) ≤EGO xi +
[ε.
.
.
ε

]
.

The function ub(i) is monotonically increasing. The monotonicity allows us to determine
ub(i) for all points in linear time, by an algorithm which follows after the proof:

Lemma 4 (Monotonicity of the function ub(i)).

i ≤ j ⇔ ub(i) ≤ ub(j).

Proof. “⇒”: let i ≤ j. Then we know that xi ≤EGO xj in the EGO-sorted data set.
According to Definition 2, we distinguish between two cases:

(1)
⌊xi,k

ε

⌋
=
⌊xj,k

ε

⌋
for all k < d. In this case, we also know that

⌊xi,k+ε
ε

⌋
=
⌊xj,k+ε

ε

⌋
,

because
⌊xi,k+ε

ε

⌋
=
⌊xi,k

ε

⌋
+ 1 and

⌊xj,k+ε
ε

⌋
=
⌊xj,k

ε

⌋
+ 1. Therefore, we have:

xi +
[ε.
.
.
ε

]
≤EGO xj +

[ε.
.
.
ε

]
, and thus ub(i) ≤ ub(j).

(2) In the second case of Definition 2, we know that there exists a dimension D such
that: ⌊xi,k

ε

⌋
=
⌊xj,k
ε

⌋
for all k < D, and

⌊xi,D
ε

⌋
<
⌊xj,D

ε

⌋
.

96 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

Likewise as in (1) we can conclude that⌊xi,k + ε

ε

⌋
=
⌊xj,k + ε

ε

⌋
and

⌊xi,D + ε

ε

⌋
<
⌊xj,D + ε

ε

⌋
,

and thus that ub(i) ≤ ub(j) holds also in this case.

The direction “⇐” of the equivalence is analogous.

From the monotonicity of ub(i) it follows that we can compute the complete set of
upper bounds ub(i) in a simple linear scan through the data set:

ub(0) := 0;

for i := 0 to n− 1 do

while xub(i) ≤EGO xi +
[ε.
.
.
ε

]
do ub(i) := ub(i) + 1;

ub(i+ 1) := ub(i);

This algorithm has two nested loops but is anyway O(n) because each iteration of the
inner loop starts with the last value ub(i) of its previous iteration.

For a general join, we define analogously lb(i) as first vector for which xi−
[ε.
.
ε

]
≤EGO

xlb(i). The function lb(i) is like ub(i) monotonic. For a self-join, the lower boundary is
the point itself (lb(i) = i), because we need to report the symmetric results (xi,xj) and
(xj ,xi) only once.

In Figure 7.5 we see an example, where in each row i the area between j = lb(i)

and j = ub(i) is underlaid in gray (note that we are considering here a self-join, and in
this special case always lb(i) = i). We call the gray area “the stripe”. We will see in
Section 7.4 that our FGF-Hilbert-curve partitions, like many other space-filling curves,
the data space recursively into squares of a side length being a power of two (2`). We need
to determine efficiently if such a bisection quadrant {imin, ..., imax} × {jmin, ..., jmax} can
be completely excluded from the FGF-Hilbert loop generation (cf. Section 7.4). These
boundaries are simply determined by rounding down and up to the next multiple of 2`:

imin = 2` · bi/2`c, imax = 2` · bi/2` + 1c − 1.

7.4. THE FGF-HILBERT JOIN 97

Therefore, we also determine condensed versions of ub(i):

ub`(i) := max{ub(imin), ..., ub(imax)},

as depicted on the right side of Figure 7.5. These values occupy only an additional space
of dne2 integers and can be stored in the same (suitably enlarged) array as the original
ub(i), e.g. before them. Let us assume that the array UB stores the original ub(i) at the
position UB[dne2 + i]. The condensed values can also be produced in linear time:

for i := dne2−1 to 1 do UB[i] := max(UB[2i],UB[2i+1]);

and then, ub`(i) is stored in UB[bi/2`c+dne2/2`]. By dne2 := 2dlog2 ne we denote rounding
up to the next higher power of two. In Figure 7.5, we can see on the right side the
condensed versions of ub(i), namely ub1(i), ..., ub3(i). For instance, the entry ub2(0) = 9

tells us that for the first 2` = 4 rows we need to consider only up to 9 columns and allows
us to jump over the complete 4×4 quadrant in the upper right corner (green arrow from
(i, j) = (0, 12) to (3, 12)).

The interval {lb(i), ..., ub(i)} can be split into sub-intervals {lb(0)(i), ..., ub(0)(i)} to
{lb(S−1)(i), ..., ub(S−1)(i)} where our original lb(i) and ub(i) are now lb(0)(i) and ub(S−1)(i).
The expected largest gap in the original interval is between xi + [0,+ε, ...,+ε]T and
xi + [+ε,−ε, ...,−ε]T. The additional upper and lower bounds can be defined, deter-
mined, and condensed in the same way as ub(i). Visually, this leads to the transition
from one stripe in Figure 7.5 to a number S of stripes, each traversed by the space-filling
curve (cf. Line 7 in Fig. 7.4).

Cache-oblivious Loops by FGF-Hilbert

We show how to traverse the marked gray area in Figure 7.5 by the red space-filling curve.
We start by explaining how to generate the Hilbert values without any overhead and then
elaborate on how to only process the relevant area as Line 9 in Figure 7.4). We derive this
novel solution from the well-known Hilbert value generation by a Lindenmayer system.
In contrast to the O(log n) recursive implementation, our solution is non-recursive and
has a constant time complexity for each generated (i, j)-value pair.

Our fundamental idea is that all information that is stored in a stack of a recursive
Lindenmayer implementation is already coded in the Hilbert value h and the current
direction c. Consider for instance the situation depicted in Figure 5.3 where we have on

98 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

7
8
8
9

10
12
12
13
13
13
13
13
13
13

ub(i)

8

9

12

13

13

13

13 13

13

13

9

13

13

13

(condensed)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

i

ub1(i) ub2(i) ub3(i)j0 2 4 6 8 10 12

Figure 7.5: Planning Refinements: Upper bounds of intervals (right side) are stored and
condensed; thus larger areas of the (i, j)-space can be efficiently discarded from loop
traversal (left).

the stack labelA2, labelA3, and labelB3 when generating pair (i, j) = (7, 4). If we write
the corresponding Hilbert value 47 in a four-adic system using the digits {04, 14, 24, 34}
we obtain 4710 = 2334 which exactly reflects the numbers k of the labels labelXk on the
stack. We prove by structural induction in Lemma 1 in Appendix B that the Hilbert
value h, written as a 4-adic number, always equals the sequence of the numbers of the
labels on the stack. Moreover, we can also recover the letters X ∈ {A,B} of the labels
to indicate if we are in function A(`) or B(`). This can be decided according to the
combination of this number k and the parity(c) ∈ {even, odd} of the current direction
as proven in Lemma 2 in Appendix B.

With these two lemmata, we could simply make the functions A(`) and B(`) non-
recursive by analyzing the simulated stack in the Hilbert value h digit by digit and
putting the operations ⊕,	, and . in case distinctions. Our algorithm would benefit
from this transformation by better optimization options. However, we would keep the
O(log n) overhead of the recursive implementation because of the processing of h digit
by digit (with a logarithmic number of digits).

7.4. THE FGF-HILBERT JOIN 99

To overcome this drawback, we focus our analysis on the forward steps in Figure 5.3:
each production rule has three such .-steps, the first of them between the recursive calls
at labelX0 and labelX1. The .-steps are preceded or followed by ⊕ or 	-operations. We
call the combination of . and the preceding or following ⊕ or 	 an action and number
them by a ∈ {1, 2, 3}. There is no action a = 0 or a ≥ 4 because no .-step exists
before labelX0 or after labelX3. Action a is always executed between the recursive calls
at labelXa−1 and labelXa. In the simulated stack, the 4-adic representation of h, we
determine the action a as follows:

h := h+ 1;

` :=
⌊
1
2 log2(h andbitw −h)

⌋
; // number of trailing 04

a := (h/4`) mod 4; // fetch last digit 6=04

To obtain the correct action code, we first increase h. If we are at the end of one or
more production rules, increasing h changes one or more digits 34 at the end of h (the
simulated stack) 04. (cf. Lemma 1). In this case, the first digit (from right to left) 6=04

pins down the level ` and the action a to be performed. Since a 4-adic digit corresponds
to a pair of two bits, we determine the number ` of 002-bit-pairs at the end in constant
time by the CPU-instruction TZCNT (Trailing Zero Bit Count), which is available in
the instruction set extension BMI1 (Bit Manipulation Instructions) on Haswell and later
CPU architectures. The same can be achieved by applying the bitwise and-operation
to h and its negative complement −h, which gives us the largest power of two dividing
h with no rest. The binary logarithm can also be determined by casting the result of
andbitw to a double-precision floating-point number and extracting the exponent, which
is also very efficient and precise for 1 ≤ h ≤ 252 − 1, the greatest natural number that
can be represented by double-precision floating-point numbers (according to IEEE-754)
at no loss of precision. The corresponding operations are also available for vectors in
AVX-512. The action code is finally extracted from h using a := (h/4`) mod 4.

In section 5.4 we prove that all ⊕ and 	-operations before and after the .-step (in-
cluding those ⊕,	 which are encountered when entering/leaving a recursive incarnation
at the begin/end of a production rule) are subsumed by bitwise logic operations (exploit-
ing the convention of C++ that boolean values {true, false} are coded by the int values
{1, 0} which can be multiplied and subject to bitwise logic operations):

100 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

c := c xorbitw (112 · (a = 3 xor isOdd(`))); // before .
c := c xorbitw (a = 1 xor isOdd(`)); // after .

We implement the .-step (cf. Def. 1(c)) in a way avoiding if then else which is expensive
(“pipeline breaking”) on today’s processors:

// c ∈ { 0, 1, 2, 3}
i := i + (c− 2) mod 2; // i := i+ { 0,−1, 0,+1}
j := j + (c− 1) mod 2; // j := j + {−1, 0,+1, 0}

Note that the operation mod 2 preserves the sign and evaluates for c ∈ {0, 1, 2, 3} to the
values in the comments. Thus, only one variable (either i or j) is truly modified by ±1.
This results in the pseudo-code in Figure 2.

Lemma 5 (Complexity of LindenmayerNonRecursive). The worst-case time and space
complexity of our algorithm is O(const.) per loop iteration.

Proof. The body of our while-loop in Lines 5–11 of Figure 2 operates on 6 variables
(i, j, h, c, `, a) in 24 elementary operations (+, and, mod, etc.). Thus, the worst-case
time and space complexity is constant per loop iteration.

Constraint Enforcement

Constraints (lb(i)≤j and j≤ub(i)) can be enforced in the tests T1, T2, T3 (cf. Sect. 5.3)
but an additional time overhead of Hilbert value generation is caused for the (i, j)-pairs
which do not satisfy the constraint, even for those between n and dne2. Conventional
nested loops like those in Section 7.2 and 7.2 do not yield this overhead. Therefore, we
jump over bisection quadrants of an arbitrary level whenever it is guaranteed that no
(i, j)-pair of the quadrant satisfies the constraint, see the green arrows in Figure 7.5.

When h has a number ` of digits 04 at its end, the non-recursive Lindenmayer algo-
rithm performs an action at level ` and enters a new incarnation of a production rule at
level `−1 corresponding to a bisection quadrant of size 2`× 2`.

According to Def 1(c), if c ≥ 2 (“looking right or down”), then we enter the quadrant
at its upper left corner (imin, jmin) = (i, j) and we can determine the lower right corner
(imax, jmax) by adding 2` − 1 to i and j, respectively. If c ≤ 1 (“looking left or up”),
then we enter the quadrant at its lower right corner and we compute the upper left

7.4. THE FGF-HILBERT JOIN 101

corner by subtracting 2`−1. We have to translate our constraint formulas into jump-over
conditions operating on these corner coordinates. The constraint i ≤ j is translated
into: jumping over imin > jmax. If the latter is true, then the constraint is guaranteed
to be false for all (i, j) pairs with imin ≤ i ≤ imax and jmin ≤ j ≤ jmax, and we can jump
to the last (i, j)-pair of the quadrant by adding 4`−1 to h. To i or j we have to add or
subtract the side length 2`−1, depending on c and the parity of `: If ` is even we then
simply perform an (2`−1)-fold forward step (.) in direction c by applying:

j := j + (2` − 1) ·
(
(c− 1) mod 2

)
;

i := i + (2` − 1) ·
(
(c− 2) mod 2

)
;

h := h + (4` − 1);

 (2`−1) -fold .

If ` is odd, then the directions change before and after applying the (2`− 1)-fold
forward step: c is changed from 0 to 1 (and reverse) and from 2 to 3 (and reverse) which
is expressed in a simple formula: c xorbitw(` andbitw1).

The effect of jumping over bisection quadrants (marked by green arrows) can be
studied using a 14× 14-grid in Figure 7.5 where we jump over 12 quadrants of size
2× 2, three quadrants of size 4× 4 and one of size 8× 8 which are excluded because
j < i or j > ub(i) (outside the gray marked area). This strategy saves us a total of 144
generated (i, j)-pairs. The generation of condensed ub`(i) values depicted on the right
side is discussed in Section 7.4.

In all pseudo-codes we note the FGF-Hilbert loop with constraints and jump-over
conditions as follows:

FGF-Hilbert loop (i, j) ∈ {0, · · · , n} × {0, · · · , n}
with constraint lb(i) ≤ j and j ≤ ub(i)
jumping over lb`(imin) > jmax or jmin > ub`(imin) do ...

For C and C++ code we provide a preprocessor macro having the constraint and jump-
over conditions as parameters in which the names of iterator variables like (i, j) can
be arbitrarily selected. For the jump-over condition the macro automatically provides
variables for the quadrant boundaries imin, etc. and the level `. Therefore, the use of
the FGF Hilbert loop is as easy as in our pseudo-codes. Moreover, the compiler has full
flexibility for optimization because all applied algorithms are non-recursive and thus the
complete join algorithm is in a single method.

102 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

Euclidean Distance by Scalar Product

The Euclidean distance of the refinement step can be computed more efficiently through
the scalar product:

Scalar Product: 〈xi,xj〉 :=
∑

0≤k<d
xi,k xj,k.

We apply the binomial theorem (a − b)2 = a2 + b2 − 2ab to our join condition which
yields:

||xi − xj ||2 =
∑

0≤k<d
(xi,k − xj,k)2 ≤ ε2 ⇔

∑
0≤k<d

x2i,k +
∑

0≤k<d
x2j,k − 2

∑
0≤k<d

xi,k xj,k − ε2 ≤ 0 ⇔

∑
0≤k<d

xi,k xj,k︸ ︷︷ ︸
〈xi,xj〉

+ ε2

4 −
1
2

∑
0≤k<d

x2i,k︸ ︷︷ ︸
Pi

+ ε2

4 −
1
2

∑
0≤k<d

x2j,k︸ ︷︷ ︸
Pj

≥ 0

After sorting but before performing the actual join, we can pre-compute the values
Pi := ε2

4 −
1
2

∑
k x

2
i,k. In the refinement step, we then have to perform for each Euclidean

distance only d fused multiply/add operations (plus two further additions) rather than
d subtractions and d fused multiply/add operations. On today’s architectures this pays
off for d ≥ 3 and is twice as fast in the limit d =∞.

SIMD Parallelism (Vectorization)

Modern vector architectures like SSE or AVX allow us to compute arithmetic and logical
operations on vectors consisting of 2, 4, 8, or 16 components. For instance AVX-512
allows 8 double-precision operations per clock cycle and processor core, which can even
be a fused multiply/add operation of the form R1 := R2 + R3 · R4, where R1, ..., R4 are
selected from 32 available vector registers (per core). The fused multiply/add operations
are ideal for the computation of the scalar product. Of equally high importance is to
minimize data transfers between main memory caches and registers (which require, for
instance, 4 clock cycles for a transfer from the L1 cache into a register; all other transfers
are even more expensive). To guarantee good re-use of information once transferred
into registers, we compute quasi-simultaneously 8 × 8 scalar products and reserve 16 of
the registers for the intermediate results of these scalar products. Therefore, we change

7.4. THE FGF-HILBERT JOIN 103

Lines 3, 8, and 9 of our pseudo-code given in Figure 7.4 such that they operate with
a step-size 8 for i and j, respectively. The refinement step in Line 9 is then computed
simultaneously for a complete square of size 8 × 8. In addition to the direct report of
(xi,xi), ..., (xi+7,xi+7) in Line 9 we compute the refinement steps for the corresponding
upper triangle of the 8 × 8-block at the diagonal (e.g. 〈xi,xi+1〉 + Pi + Pi+1 etc.) and
report these join results.

MIMD Parallelism with OpenMP

Concepts like OpenMP or CILK can manage parallel threads for different cores of the
CPU. For Line 2 in Fig. 7.4, we implemented a MIMD-parallel version of Quicksort,
which opens new threads (using OpenMP tasks) in the recursive calls. Although other
algorithms like Mergesort allow a higher degree of parallelism (perhaps including the
additional opportunity of SIMD-parallelism), it turned out that the sorting step uses
only a small percentage of the overall response time (which has been included in all
experiments, cf. Fig. 7.8). The sorting step is not the main focus here in this chapter.

The loop in Line 3 and condensing (Line 6) can be straightforwardly parallelized
using the construct “omp parallel for” where the data set is statically partitioned into
equally-sized chunks assigned to parallel threads.

Before performing the loop over the stripes s and the FGF-Hilbert loops in Line 8
and 9 we partition the data sets into different chunks for the i-variable. As the intervals
defined by {lb(s)(i), ..., ub(s)(i)}, 0 ≤ s < S are of different size for each i, we determine
these chunks ch such that they yield approximately the same workload:

workload(ch) =
∑
i∈ch

(∑
0≤s<S

ub(s)(i)− lb(s)(i)
)
.

These load-balanced chunks are assigned to different threads using “omp parallel for”.
Each thread performs S individual FGF-Hilbert loops with additional constraints and
jump-overs enforcing i to be in the chunk assigned to the thread.

104 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

7.5 Experimental Evaluation

Experimental Setup

We share our code, and most of our test data to make our experiments transparent and
comprehensible. Code and experimental data is available1.

Hardware

Most experiments have been performed on Intel© Xeon Phi™ 7210 codename Knights
Landing (KNL) with 1.3 GHz and 64 cores, 96 GB main memory, and CentOS 7.4.1708
as the operating system. A KNL processor socket has 32 active tiles, where each tile
consists of two cores. Each core has 32 kB instruction and 32 kB data cache for L1
and supports AVX-512 SIMD instructions. The L2 cache of 1 MB is shared among
two cores within a tile. The KNL processor family has an improved cache and memory
organization, where one can choose between five different clustering modes (see https:

//colfaxresearch.com/knl-numa/) and three different memory modes (see https://

colfaxresearch.com/knl-mcdram/). For all our experiments, we have used the quadrant
mode in combination with the cache-mode since this configuration complies to multi-core
commodity hardware[67]. Our configuration results in 16 MB shared L3 cache among
all cores. We have repeated our synthetic experiments on Intel© Skylake™CPU (see
Section 7.5) to demonstrate that our algorithm is superior on a range of different CPU
architectures.

Data

In our experiments, we compare FGF-Hilbert Join on uniform synthetic data (Table 7.1)
as well as on publicly available real data (Table 7.2). In our diagrams, we specify the
number of data points n (K for thousands, and M for millions) and the dimensionality
d. Throughout all our experiments, we scaled all features to the range between 0 and 1.

Selectivity as Average Number of Neighbors

The standard definition of selectivity [50] of a join operation X on Y is selectivity =
|XonY|
|X×Y| . However, this measure is not very intuitive for large data sets because although
each object may join with a huge number of other objects, the selectivity may appear
very small, due to the quadratic growth of the denominator. More intuitive is the average

1https://gitlab.cs.univie.ac.at/martinp16cs/hilbertJoin

https://colfaxresearch.com/knl-numa/
https://colfaxresearch.com/knl-numa/
https://colfaxresearch.com/knl-mcdram/
https://colfaxresearch.com/knl-mcdram/
https://gitlab.cs.univie.ac.at/martinp16cs/hilbertJoin

7.5. EXPERIMENTAL EVALUATION 105

Dataset n d Description

Gaussian 1M 8d rand. Gaussian distr.
Uniform_200 200K 64d rand. uniformly distr.
Uniform_600 600K 64d rand. uniformly distr.
Uniform_select 200K 64d 8 select. dims., (Sec. 7.3)

Table 7.1: Properties of Synthetic Data.

number of join partners per object which is n multiplied with the selectivity:

nSelectivity := n · selectivity =
|SimJoinε(X)|

n
.

Throughout our experiments, we are interested in an nSelectivity between 1 and 100. This
means that each point has, on average, between 1 and 100 neighbors in its ε-region. We
experimentally determine our ε-region, to obtain the required nSelectivity. We provide
nSelectivity in our plots with a black dashed line, and its range can be viewed on the
right y-axis.

Speedup

Our speedup measure is defined as TAV
TP

, where TAV is the time required for the auto-
vectorization in a single-threaded environment and TP is the parallel program we want to
measure. Usually, such speedup plots are compared with a diagonal line from the bottom
left to the top right representing the ideal speedup. However, our method heavily uses
pruning, so we often exceed such ideal speedup curves by a large margin.

Implementation details and Comparison Methods

Our implementation and all competitive methods are implemented in C++ using GNU
compiler 6.1.0, OpenMP 4.5 for MIMD and AVX-512 for SIMD parallelism. We used
Dimensional Reordering, proposed by [70] as a preprocessing step.

For a fair runtime comparison all algorithms (including SuperEGO) were restricted
to the computation of the self -join and consider only pairs (xi,xj) with i ≤ j. To
demonstrate the superiority on the non-self join, in Section 7.5 this restriction was
removed in all methods. All methods report the cardinality of the join result.

Auto-Vectorization. We compare to an auto-vectorized implementation of the
nested-loop similarity join, since it gives a solid baseline for multi-core environments.

106 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

Dataset n d ε

Activity Recognition[118] 33.7M 10d 10−4

BigCross[3, 58] 11.6M 57d 10−2

Higgs[14] 11M 29d 10−1

IoT Botnet[87] 502K 115d 10−8

Table 7.2: Properties of Real Data.

Our auto-vectorized approach is also explicitly parallelized using OpenMP and illustrates
the effect of a naive implementation with full advantage of SIMD instructions.

BLAS. Since the major effort of a similarity-join is devoted to the computation of
the distances between two join partners xi and xj , it appears reasonable to determine
a matrix M containing the scalar products in its elements mi,j = 〈xi,xj〉. Matrix
M is computed through a matrix multiplication of the data matrix and its transpose
M = X · XT. A highly optimized SIMD and MIMD parallel matrix multiplication is
available in BLAS (Basic Linear Algebra Subroutines) [47]. To avoid excessive use of
memory, we calculate the results block by block with a block size of 5120, which was
optimized experimentally. In a MIMD and SIMD parallel algorithm, the entries of M
were processed as in Section 7.4.

SuperEGO has been introduced by Kalashnikov in [69] as an improved version of
EGO∗ [70]. In the multi-core environment this is the most relevant comparison partner.
We obtained the code via the author’s website2 which uses POSIX threads instead of
OpenMP. We modified the recursive calls in the code to consider only those pairs (xi,xj)
with i ≤ j to be fair to our competitor.

Detailed Performance Analysis of FGF-Hilbert Join

Figure 7.6 analyzes the impact of the various building blocks introduced here in this thesis
on the runtime performance. In particular we investigate the impact of the Hilbert-curve
(see Section 7.4), the impact of the distance by Scalar product (Section 7.4) and, finally,
the full technique FGF-Hilbert Join, including the Epsilon Grid Order (Section 7.3).

First, we show the benefit of using a Hilbert curve in contrast to the canonical
nested loops. Therefore, we have implemented two methods CANO-Euclid and Hilbert-
Euclid. Their only difference is the traversal of the similarity matrix, where CANO-Euclid

2https://www.ics.uci.edu/~dvk/code/SuperEGO.html

https://www.ics.uci.edu/~dvk/code/SuperEGO.html

7.5. EXPERIMENTAL EVALUATION 107

0.06 0.075 0.090 0.105 0.1200

5

10

15

20

25

EGO

Hilbert

Epsilon

R
un

ti
m
e
[s
ec
]

(a) Performance Gains

FGF-Hilbert
CANO-Euclid
Hilbert-Euclid
Hilbert-Scalar
nSelectivity

0
50

10
0

15
0

20
0

Figure 7.6: The gain in performance of EGO and FGF-Hilbert Join .

traverses it line by line, thus in canonical order and Hilbert-Euclid uses the traversal by
Hilbert order introduced in Section 7.4. For a nSelectivity between 1 and 100, we observe
a runtime for Cano-Euclid between 27.0 and 28.9 seconds, whereas Hilbert-Euclid takes
only between 18.0 and 23.8 seconds. This is a runtime improvement of a factor between
1.21 and 1.5. We attribute this effect is to the efficient use of the cache hierarchy.

The impact of using different distance computations is not very large, but still
evident. We compare the two methods HilbertEuclid and Hilbert-Scalar. They differ in
the distance computation, where Hilbert-Euclid uses the Euclidean distance and Hilbert-
Scalar uses the Euclidean distance by scalar product, introduced in Section 7.4. Both
approaches iterate over each pair of points and also over the dimensions from 0 to d−1.
Whenever the squared partial distance already exceeds our ε2, the methods continue
with the next pair of points. Hilbert-Scalar outperforms Hilbert-Euclid in almost all
cases. For this dataset, the performance gain is between 1 and 2 seconds, with the
exception of ε = 0.075, where both approaches are equal. We attribute this performance
advantage to a reduced number of numerical operations.

Now, we combine all building blocks with an additional filter step, the Epsilon Grid
Order (see Section 7.3). It gives our method FGF-Hilbert Join an extra boost in terms
of runtime efficiency. FGF-Hilbert Join takes on this dataset only between 3 and 8

seconds. In comparison to our already SIMD and MIMD effective method Cano-Euclid,

108 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

this results in a speedup factor between 3.3 and 8.7.

L1 L2 L3

0.1

0.08

0.06

0.04

0.02

0.2873

Cache level

C
ac
he

M
is
s
R
at
e

(b) Cache Misses

Cano-Euclid
Hilbert-Euclid
FGF-Hilbert

Figure 7.7: Cache misses of Canonical, Hilbert and FGF-Hilbert Join .

The cache miss rate [67] of Cano-Euclid, Hilbert-Euclid and FGF-Hilbert Join is
presented in Figure 7.7. We took the average of the cache miss rates over ε from 0.06

to 0.12. The cache misses for Hilbert-Scalar are identical to those of Hilbert-Euclid and
thus not shown. The difference in the runtime between Cano-Euclid and Hilbert-Euclid
is due to the efficient cache use. While Cano-Euclid misses 29% of L1, 4% of L2, 0.3%
of L3 both the Hilbert-Euclid and FGF-Hilbert Join are nearly optimal with 0.7% (L1),
0.04% (L2) and 0.002% (L3). There are 41 times fewer L1 accesses and 85 times fewer
L2 accesses by the use of the FGF-Hilbert curve!

FGF-Hilbert Join consists of three individual phases:

Sorting: EGO-sort is applied to the data (Section 7.4).

Planning:Determining the bounds lb(s)(i), ub(s)(i) for refinement (Section 7.4).

Join:Traversal of the FGF-Hilbert loop (Section 7.4).

Figure 7.8 illustrates the absolute runtime performance on each individual part. For
our dataset of one million objects FGF-Hilbert Join takes in total 2.200 seconds for the
smallest ε of 0.06. We sort our data in parallel using OpenMP which takes 0.33 seconds

7.5. EXPERIMENTAL EVALUATION 109

0.06 0.075 0.090 0.105 0.1200

2

4

6

8

10

Epsilon

R
un

ti
m
e
[s
ec
]

(c) Runtime of Phases

Sorting
Planning

Join

Figure 7.8: Runtime of each phase in FGF-Hilbert Join .

or 13% of the total runtime. For the highest nSelectivity the sorting rate (as percentage
to the full runtime) decreases to 3.7%. Our planning phase takes 0.59 seconds or 27%

and the actual join takes 1.28 seconds or 58% of the runtime. For an ε of 0.12, where the
nSelectivity is increased from 1 to 214 the runtime of the join gets increased from 58%

to 88% of the total runtime.

Experiments on Synthetic Data

Uniformly Distributed Data.

The challenge on uniformly distributed data is that filter-refinement techniques tend
to fail to improve the runtime behavior, due to the “curse of dimensionality”. Our
experiments show, that our technique performs well even on a 64d dataset.

In Figure 7.9, we compare our approach in a uniformly distributed high-dimensional
setting. The dataset for Figure 7.9a has 64 dimensions, where each attribute ranges from
0 to 1. The dataset for Figure 7.9b has also 64 dimensions, but only 8 of them range
between 0 and 1. To simulate maximum correlation the other 56 attributes share the value
of the 8th attribute. This means, the dataset in Figure 7.9b has 8 selective dimensions,
where our Epsilon Grid Order (Section 7.3) and our approach (Section 7.4) efficiently

110 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

filters out non-join-candidates. In both cases, with and without selective dimensions, our
approach is the best choice. The auto-vectorized approach and BLAS are insensitive to
variations of ε. They have the same runtime behavior of roughly 9 seconds for BLAS
and 28 seconds for auto-vectorization. Super-EGO cannot handle such high dimensional
and uniformly distributed case (left), but works fine in the selective-dimensional setting
(right). Particularly worthy of emphasis is for the completely uniform case in Figure
7.9a, FGF-Hilbert Join is still faster than the highly hardware-optimized BLAS variant.

Join with 2 Sets.

The FGF-Hilbert Join as a join between 2 setsX andY is outlined in Figure 7.10. Similar
to Figure 7.9 we use here 8 selective and 56 non-selective dimensions. For increasing
selectivity (Figure 7.10a), FGF-Hilbert Join is roughly 7.5 times faster than SuperEGO
and twice as fast as BLAS. For different sizes of X and Y (Figure 7.10b) FGF-Hilbert
Join is about 75% faster than BLAS and about 7.5 faster than SuperEGO and between
4 and 5 times faster than auto-vectorization.

Variation of Data Properties.

In Figure 7.11 we demonstrate the variation of different properties like ε, dimensionality
d, the number of objects n, and the number on threads on uniformly distributed data. In
the first plot (Figure 7.11a) FGF-Hilbert Join achieves a runtime of 2 seconds for ε = 0.18

2.3 2.35 2.40 2.45 2.50

20

40

60

80

100

120

Epsilon

R
un

ti
m
e
[s
ec
]

(a) Uniform 64 dim

0
20

40
60

80
10
0

0.30 0.35 0.40 0.45 0.500

10

20

30

40

Epsilon

R
un

ti
m
e
[s
ec
]

(b) 8 Selective Dimensions

0
50

10
0

15
0

20
0

FGF-Hilbert Auto-vect. BLAS SuperEGO nSelectivity

Figure 7.9: (a) Full Uniform. (b) 8 Selective Dimensions and 56 Non-selective Dims.
(Uniform, 200K, 64d).

7.5. EXPERIMENTAL EVALUATION 111

and for ε = 0.34 a runtime of 9.13 seconds. FGF-Hilbert Join is in every setting at least
10 times faster than Super-EGO and up to 45 times faster than auto-vectorization, as
well as 90 times faster than the method using BLAS. In our next plot in Figure 7.11b,
we increase the dimensionality up to 32 features. FGF-Hilbert Join is in all cases the
fastest method. We will see later in real data experiments that FGF-Hilbert Join is the
fastest method even for very high dimensional cases, like D = 115. We also scale across
a variation in the number of data points n up to 4 million data points (see Figure 7.11c).
In the setting of 4 million data points and d = 16, FGF-Hilbert Join with a runtime of
518 seceonds is 5.8 times faster than BLAS and 6.3 times faster than auto-vectorization.
Super-EGO spent approximately the same time as auto-vectorization and BLAS for only
half of the objects.

Gaussian Distributed Data.

Our experiment in Figure 7.12 uses the same setting as described in our experiments
on uniformly distributed data. Comparing the two Figures 7.12a and Figure 7.11a,
where we keep the nSelectivity on the same level, we can see that our FGF-Hilbert Join
performs similarly in the Gaussian setting as in the uniformly distributed setting. The
runtime of FGF-Hilbert Join ranges from 2 to 9 seconds. In contrary to our approach,
Super-EGO performs in the Gaussian distributed setting worse than in the uniformly
distributed setting. The difference in runtime becomes visible with a higher nSelectivity,
where Super-EGO takes in the uniformly case 119 seconds and in the Gaussian case 138

0.7 0.75 0.8 0.85 0.9 0.950

10

20

30

40

Epsilon

R
un

ti
m
e
[s
ec
]

(b) 8 Selective Dimensions

0
50

10
0

15
0

20
0

90:10 80:20 70:30 60:40 50:500

20

40

60

Balance Ratio |X| : |Y|

R
un

ti
m
e
[t
ho

us
an

d
se
c]

(b) Balance of 2 Datasets
0

20
40

60
80

10
0

FGF-Hilbert Auto-vect. BLAS SuperEGO nSelectivity

Figure 7.10: Join with Two Sets. 8 Selective Dimensions and 56 Non-selective Dims.
(Uniform, 2 · 200K, 64d).

112 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

0.18 0.22 0.26 0.3 0.34
0

50

100

150

Epsilon

R
un

ti
m
e
[s
ec
]

(a) Epsilon

0
50

10
0

15
0

20
0

2 4 8 16 320

50

100

150

Dimensionality

R
un

ti
m
e
[s
ec
]

(b) Dimensionality

0
20

40
60

80
10
0

0.1 0.2 0.5 1 2 4

1

2

3

n [in millions]

R
un

ti
m
e
[t
ho

us
an

d
se
c]

(c) Number of Objects

0
20

40
60

80
10
0

8 16 24 32 40 48 56 640

50

100

150

Threads

Sp
ee
du

p

(d) Speedup

FGF-Hilbert Auto-vect. BLAS SuperEGO nSelectivity

Figure 7.11: Runtime Experiments (Default: Uniformly Distributed, 600K, 8d).

seconds, thus 16% more runtime.

Next, we compare the two different distributions in terms of speedup experiments,
where Figure 7.12b describes the Gaussian distributed case and Figure 7.11d shows the
uniformly distributed case. We observe a similar runtime behavior.

Experiments on Real Data

Higgs Dataset.

This large dataset makes methods like BLAS or auto-vectorization to an infeasible tool
for productive usage. In Figure 7.13a BLAS needs 23 500 seconds and auto-vectorization

7.5. EXPERIMENTAL EVALUATION 113

0.06 0.075 0.090 0.105 0.1200

50

100

150

Epsilon

R
un

ti
m
e
[s
ec
]

(a) Runtime Varying ε

0
50

10
0

15
0

20
0

8 16 24 32 40 48 56 640

50

100

150

Threads

Sp
ee
du

p

(b) Speedup

FGF-Hilbert Auto-vect. BLAS SuperEGO nSelectivity

Figure 7.12: Runtime Experiments on Gaussian Data (Gaussian, 600K, 8d).

even 40 400 seconds. We use a dashed line for these two methods, since we could use only
a single run for these methods. Throughout our real data experiments, only methods
which rely on pruning or effective indexing are of practical use. The runtime of Super-
EGO ranges from 3 000 seconds for ε = 0.3 to more than 9 400 seconds for ε = 0.45.
However, FGF-Hilbert Join is the fastest method with 290 seconds for ε = 0.3 and 540

seconds for ε = 0.45.

Activity Recognition Dataset.

In Figure 7.2b our reference implementations without filter and refine techniques, per-
formed poorly. Therefore, we have decided to take them out of our plots. BLAS and
auto-vectorization spent more than a day on a single run. For ε = 2 · 10−4 FGF-Hilbert
Join is with 47 seconds 1.77 times faster than Super-EGO which takes 83.7 seconds. For
ε = 12 · 10−4, where FGF-Hilbert Join took 50 seconds in computation, it is 2.3 times
faster than Super-EGO.

IoT Botnet Dataset.

The detection of IoT botnet data [87] is a challenge for ε approaches, not only because
of the high dimensionality, but also in the similarity of the data points. To achieve our
desired nSelectivity of roughly 1 to 100 neighbors in the ε-region we need an epsilon of
10−8. The runtime of FGF-Hilbert Join (see Figure 7.13c) with an average of 2.6 seconds
is more than 7.2 times faster than Super-EGO, which has a runtime of roughly 18s.

114 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

0.30 0.33 0.36 0.39 0.42 0.45

10

20

30

40

Epsilon

R
un

ti
m
e
[t
ho

us
an

d
se
c]

(a) Higgs

0
50

10
0

15
0

2 4 6 8 10 12

0
20

40
60

80
10
0
12
0

Epsilon ·10−4

R
un

ti
m
e
[s
ec
]

(b) Activity Recognition

0
50

10
0

15
0

20
0

1 2 3 4 5 60

100

200

300

Epsilon ·10−8

R
un

ti
m
e
[s
ec
]

(c) IOT Botnet

0
10
0

20
0

30
0

0.04 0.06 0.08 0.10 0.12 0.140

200

400

600

800

Epsilon

R
un

ti
m
e
[s
ec
]

(d) BigCross

0
50

10
0

15
0

20
0

FGF-Hilbert Auto-vect. BLAS SuperEGO nSelectivity

Figure 7.13: Runtime Experiments on Real Data. Properties in Table 7.2

.

BigCross Dataset.

The join algorithm implemented with BLAS and auto-vectorization took more than 8

hours to complete. Super-EGO with a runtime of 133 (ε = 0.04) is lagging behind FGF-
Hilbert Join , which has a runtime of 45 seconds. For a growing nSelectivity of in average
111 neighbours for each point, the gap between those two approaches rises to a factor of
up to 4.3, where FGF-Hilbert Join has a runtime of 520 and Super-EGO of 2270 seconds,
cf. Figure 7.2d.

7.5. EXPERIMENTAL EVALUATION 115

Experiments on Skylake CPU

Our experiments on Intel® Skylake™CPU3 show similar behavior like on KNL. In Figure
7.14 we have a similar setting as before in Figure 7.9. On the Skylake CPU, FGF-Hilbert
Join is still the best choice. Although, the difference between BLAS and FGF-Hilbert
Join is less evident, we have a larger speedup in comparison to auto-vectorization (from
a factor of 3 to 6) and Super-EGO (from 11 to 12) for full uniformly distributed data
(Figure 7.14a). For the data with 8 selective dimensions (Figure 7.14b), we are 30%

faster than BLAS and outperform auto-vectorization and Super-EGO with a factor of 2

at least.

Figure 7.15 has a similar setting as previously shown in Figure 7.11 with comparable
runtime behavior. Our approach outperforms our comparison partners in every aspect.

Speedup experiments on real data

In real data experiments we deal with large datasets and speedup experiments would
take quite a long time. For example one single threaded run on the BigCross dataset
would take 1 day. The aim of speedup experiments is to visualize scaling among various
thread sizes, which is similar if we take a fraction of the data. Therefore, we have decided
to use only 10% of the data points for our speedup experiments. The experiments with
variations on ε are always with the full size and all 64 threads of our machine. For the

3Hardware information: https://tinyurl.com/y8vgn52c

2.3 2.35 2.40 2.45 2.50

20

40

60

80

100

Epsilon

R
un

ti
m
e
[s
ec
]

(a) Full Uniform

0
20

40
60

80
10
0

0.30 0.35 0.40 0.45 0.500

10

20

30

40

50

Epsilon

R
un

ti
m
e
[s
ec
]

(b) 8 Sel. Dim. out of 64
0

50
10
0

15
0

20
0

FGF-Hilbert Auto-vect. BLAS SuperEGO nSelectivity

Figure 7.14: Experiments on Skylake CPU (cf. Fig. 7.9)

https://tinyurl.com/y8vgn52c

116 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

0.18 0.22 0.26 0.3 0.34
0

50

100

150

Epsilon

R
un

ti
m
e
[s
ec
]

(a) Epsilon

0
50

10
0

15
0

20
0

2 4 8 16 320

100

200

300

400

Dimensionality

R
un

ti
m
e
[s
ec
]

(b) Dimensionality

0
20

40
60

0.1 0.2 0.5 1 2 4

5

10

N in millions

R
un

ti
m
e
[t
ho

us
an

d
se
c]

(c) Number of Objetcs

0
20

40
60

80
10
0

1 2 4 8 12 16

100

200

300

Threads

Sp
ee
du

p

(d) Speedup

FGF-Hilbert Auto-vect. BLAS SuperEGO nSelectivity

Figure 7.15: Runtime Experiments on Skylake CPU (Default: Uniformly Distributed,
600K, 8d; cf. Figure 7.11).

Higgs dataset (see Figure 7.16a) our approach FGF-Hilbert Join is with 7.26 seconds
more than 1770 times faster than the single-threaded auto-vectorization approach, which
needed 12866.93 seconds. In contrast to that, Super-EGO achieves a speedup of 284 with
a runtime of 45.23 seconds.

The most impressive speedup could be achieved with the largest dataset i.e. Activ-
ity recognition dataset. FGF-Hilbert Join is up to 10 000 times faster than the auto-
vectorized method.

The dataset IOT botnet is by far the smallest dataset but has very high dimension-
ality. An additional property of this TCP dataset is that the points are relatively dense.

7.5. EXPERIMENTAL EVALUATION 117

8 16 24 32 40 48 56 64

500

1000

1500

Threads

Sp
ee
du

p
(a) Higgs

4 8 16 24 32 40 48 56 64

2 k

4 k

6 k

8 k

10 k

Threads

(b) Activity recognition

FGF-Hilbert
Auto-vect.
BLAS

Super-EGO

8 16 24 32 40 48 56 64

100

200

300

Threads

Sp
ee
du

p

(c) IOT botnet

FGF-Hilbert
Auto-vect.
BLAS

Super-EGO

8 16 24 32 40 48 56 64

500

1,000

1,500

2,000

Threads

(d) BigCross

Figure 7.16: Speedup experiments on real data. Properties in Table 7.2.

Unfortunately, Super-EGO failed to compute the dimensional reordering because of the
small epsilon of ε = 10−8. We decided to turn the dimensional reordering off for this par-
ticular dataset. This is why Super-EGO does not finds selective dimensions. Therefore,
not much speedup could be achieved on this particular dataset. However, our method
spent only 0.3 seconds with the use of 64 threads. This is a speedup of 333. The algo-
rithm spent approximately 60% of its runtime in dimensional reordering, indexing, and
sorting. These runtimes explain why we see a flat speedup curve for this experiment.

The BigCross dataset shows a similar result, as we have already seen in other datasets,
such as Higgs or Activity recognition dataset. Here, we observe a speedup of 2421, where
the runtime of the single-threaded auto-vectorization is 25 889 seconds and our algorithm
spent only 10, 69 seconds for the total runtime with 64 threads.

118 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

7.6 Related Work and Discussion

The similarity join finds similar pairs of objects within a distance of ε. There are various
approaches for different data types. The data can be of any type, as long as a dis-
tance function exists. Fixed-length text data often uses Hamming distance [65] and the
similarity between variable length text is often measured using the edit distance [133].
A common measure for set data is the Jaccard distance [43, 134], whereas the similarity
of documents is processed with cosine-like similarity measures [8, 114]. In this chapter
we focus on double precision vector data for multi-core environments.

Approximate nearest neighbor search techniques can also be applied to the similar-
ity join problem, however without guarantees on completeness and exactness of the result.
There may be false positives as well as false negatives. Recently an approach [137] to
Locality Sensitive Hashing (LSH) is used on a representative point sample, to reduce the
number of lookup operations. LSH is of interest in theoretical foundational work, where a
recursive and cache-oblivous LSH approach [95] was proposed. The topic of approximate
solutions for the similarity join is also an emerging field in deep learning [97]. There
are approximative approaches which target low dimensional cases (spatial joins in 2–3
dimensions [29]) or higher (10–20) dimensional cases [7]. Very high-dimensional cases,
with dimensions of 128 and above have been targeted with Symbolic Aggregate approX-
imation (SAX) techniques [83]) to generate approximate candidates. SAX techniques
rely on several indirect parameters like PAA size or the iSAX alphabet size. We consider
exact solutions to the similarity join on d-dimensional vectors, where d is typically in the
range of {2, ..., 64}.

There are preconstructed indexing techniques, which are based on space-filling
curves and applied to the similarity join problem. Specifically, where the data is sorted
efficiently with respect to one or more Z-order curves [44, 73, 79] in order to test the
intersection of the hypercubes in the datastructures. Others propose space-filling curves,
to reduce the storage cost for the index [35]. LESS [79] targets GPUs and not multi-core
environments. ZC and MSJ [73] as well as the SPB-tree index [35], although simple, they
require space transformations and preprocessing, which make them hard to parallelize.
On the contrary, our approach processes the similarity matrix using the Hilbert curve
to efficiently exploit the cache hierarchy in modern computer architectures. To the best
of our knowledge, this has not been done previously in the context of similarity join
algorithms.

7.6. RELATED WORK AND DISCUSSION 119

Our approach belongs to the EGO family of ε-join algorithms. The EGO-join
algorithm is the first algorithm in this family introduced by Böhm et al. in [19]. The
Epsilon Grid Order (EGO) was introduced as a strict order (i.e., an order which is
irreflexive, asymmetric, and transitive). It was shown that all join partners of some
point x lie within an ε-interval of the Epsilon Grid Order. Algorithms of the EGO family
exploit this knowledge for the join operation. The EGO-join has been re-implemented
as a recursive variant with additional heuristics to quickly decide whether two sequences
are non-join-able [71]. Further improvements proposed two new members of this family,
the EGO∗ [70] algorithm and its extended version called Super-EGO [69] target multi-
core environments using a multi-process/multi-thread programming model. Super-EGO
proposes a dimensional reordering [69], which has also been applied to our join technique.
In our experiments (Section 7.5), Super-EGO encounters some difficulties with uniformly
distributed data, particularly when the number of data objects exceeds millions of points
or the dimensionality is above 32.

If the similarity join runs multiple times on the same instances of the data, one might
consider index-based approaches [21, 35, 98], such as R-tree [28] or M -tree [41].
Index-based approaches have the potential to reduce the execution time, since the index
stores pre-computed information that significantly reduces query execution time. This
pre-computational step could be costly, especially in the case of List of Twin Clusters
(LTC) [98], where the algorithm needs to build joint or combined indices for every pair
of points in the dataset. The D-Index [45] and its extensions (i.e. eD-Index [46] or i-Sim
index [102]) build a hierarchical structure of index levels, where each level is organized
into separable buckets and an exclusion set. The most important drawback of D-Index,
eD-Index and i-Sim is that they may require rebuilding the index structure for different
ε.

Data partitioning across multiple machines is out of the scope of our method.
Our assumption is based on shared memory envirnoments, where we assume that the
data fits into main memory. The case of relational join algorithms has been studied
extensively in the past [52, 110, 125]. The similarity join has been successfully applied
in the distributed environment with different MapReduce variants [52, 76, 85]. Another
distributed version is proposed in [140]. There, a multi-node solution with load-balancing
is used, that does not require re-partitioning on the input data. This variant focuses on
minimization of data transfer, network congestion and load-balancing across multiple
nodes.

120 CHAPTER 7. HIGH-PERFORMANCE SIMILARITY JOIN

The similarity join has been already implemented for Graphics Processing Units
(GPUs). In [22] the authors use a directory structure to generate candidate points.
On datasets with 8 million points, the proposed GPU algorithm is faster than its CPU
variant, when the ε-region has at least 1 or 2 average neighbors. LSS [79] is another sim-
ilarity join variant for the GPU, which is suited for high dimensional data. Unfortunetly
both [79] and [22] are targeted to NVIDIA GPUs and have been optimized for an older
version of CUDA.

Cache-oblivious Algorithms

Cache-oblivious algorithms [55] have attracted considerable attention as they are portable
to almost all environments and architectures. Algorithms and data structures for basic
tasks like sorting, searching, or query processing [60] and for specialized tasks like ray
reordering [88] or homology search in bioinformatics [51] have been proposed. Two im-
portant algorithmic concepts of cache-oblivious algorithms are localized memory access
and divide-and-conquer. Our Hilbert curve integrates both ideas. The Hilbert curve de-
fines a 1D ordering of the points of an 2-dimensional space such that each point is visited
once. Most related to our work, Bader et al. proposed to use the Peano curve for matrix
multiplication and LU-decomposition [9, 12]. The algorithms process input matrices in
a block-wise and recursive fashion where the Peano curve guides the processing order
and thus the memory access pattern. In [23], cache-oblivious loops have been applied to
K-means clustering and matrix multiplication. We considerably improve memory locality
and runtime by introducing the Fast General Form (FGF-) Hilbert curve (see Section
7.4).

Optimized Techniques for Specific Tasks or Hardware

The library BLAS (Basic Linear Algebra Subprograms) [47] provides basic linear alge-
bra operations together with programming interfaces to C and Fortran. BLAS is highly
hardware optimized: specific implementations for various infrastructures are available,
e.g. ACML for AMD Opteron processors or CUBLAS for NVIDIA GPUs. The Math
Kernel Library (MKL) contains highly vectorized math processing routines for Intel pro-
cessors. In contrast to our work, these implementations are very hardware-specific and
mostly vendor-optimized. Moreover, they are designed to efficiently support specific lin-
ear algebra operations. Our experiments demonstrate that our cache-oblivious approach
reaches a performance better than BLAS on the task of the similarity join for points of
dimensions in the range of {2, ..., 64}.

7.7. CONCLUSION 121

7.7 Conclusion

Databases running in-memory on multi-core microarchitectures depend upon the efficient
usage of all levels of the cache hierarchy for high performance. The FGF-Hilbert Join
optimally exploits the complete cache hierarchy ranging from super-fast registers to the
relatively slower L3 cache by processing potential join partners in the order defined by
the FGF-Hilbert curve, which is a novel space-filling curve. This curve inherits from
the classical Hilbert curve its optimal locality but allows traversing regions of arbitrary
size and shape. FGF-Hilbert Join integrates this idea into a filter-refinement algorithm.
After the filter step, potential candidates are efficiently refined in FGF-Hilbert order
by multiple threads in parallel using highly efficient SIMD parallelism for the distance
calculations. Experiments demonstrate that FGF-Hilbert Join outperforms comparison
methods designed for disk-based systems. In future work, we want to consider similarity
joins on general metric spaces, with k-nearest neighbor predicates, multi-way joins, and
other database operators.

Chapter 8

Cache-oblivious Morton-order Curve

8.1 Introduction

The LU decomposition (or factorization) is an essential element used in many linear
algebra applications. Furthermore, it is used in LINPACK to benchmark the performance
of modern multi-core processor environments. The LU decomposition algorithm is used
in many linear algebra applications, such as solving linear equations of the form Ax = b.
Solving such systems with linear equations in A with multiple right-hand vectors x is
a common task for all kinds of scientific fields and computer-aided workloads. The LU
decomposition decomposes the matrix A into two factors - a lower triangular matrix L
and an upper triangular matrix U :

A = LU (8.1)

The advantage of breaking up one linear set A into two successive ones L,U is that
the solution of the triangular set of equations is relatively trivial by first solving for the
auxiliary vector y, where L · y = b by forwarding substitution and then solving U · x = y

for x by a backward substitution.

In previous chapters, we applied the Hilbert curve to the various algorithms, but
unfortunately, the Hilbert curve is not applicable in the case of the LU decomposition.
The LU decomposition and many other algorithms, such as Crout algorithm [107], the
forward- and backward substitution process, or dynamic programming approaches such
as the Needleman-Wunsch algorithm [91] have data dependencies to previously calculated

123

124 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

entries in the matrix. The current cell accesses cells to the top and to the left for its
computation. In other words, before visiting a cell in a matrix, all entries to the top
and to the left must have been precomputed. Throughout this chapter, we call this data
dependency issue a monotonicity property. This monotonicity property are fulfilled by
the Morton order curve (Z-order and И-order), but not by the Peano- or Hilbert curve
(cf. red lines in Figure 8.1).

ii

jj

(a) Peano curve

ii

jj

(b) Hilbert order

ii

jj

(c) Z-order

ii

jj

(d) И-order

Figure 8.1: Strategies for space-filling curves, violations of monotonicity properties
marked in red.

This chapter is organized as follows: in section 8.2 we introduce two different Morton-
order generation approaches. One is based on pattern extraction (pext), and the other
is based on counting trailing zeros (tzcnt). Both generation approaches have the major

8.2. GENERATING MORTON-ORDER CURVES 125

drawback that they are only applicable for n×n matrices, where n is limited to a power
of 2. We address this limitation and extend the traversal to arbitrary n ×m matrices
with a concept called microcells. We outline our parallelization for MIMD and SIMD
in section 8.3 and evaluate our Morton-order traversal combined with microcells, for ex-
ample, algorithms such as matrix-multiplication, the forward and backward substitution
process, and to the LU decomposition in section 8.4. In section 8.5 we evaluate our
different Morton-order approaches with experiments on two different hardware settings
for Multi- and Many-core microarchitectures. We give a detailed discussion in section
8.6 and conclude in section 8.7.

8.2 Generating Morton-order Curves

Here we show two different approaches to generate the traversal in Morton-order. The
traditional approach is based on pattern extracting (pext) of interleaving bits, and a
novel approach based on counting the trailing zeros (tzcnt). Both approaches reverse
the process of bit-interleaving. Its time complexity is linear in the number of bits of
m, which means O(logm). However, the coordinate pairs assigned to subsequent order
values of m and m+1 are not entirely independent. Therefore, we do not need the whole
O(logm) process of reverse bit interleaving. We introduce microcells to eliminate well-
known limitations to loop bounds of the power of 2. Both approaches (pext and tzcnt)
are then combined with microcells to get later evaluated in the experiments section
8.5. A common way of handling arbitrary-sized matrices is to apply “padding”, such
that the padded matrix can be subjected to Morton-ordering [122]. As we will see in
our experiments, both approaches based on microcells are roughly 5% faster than the
approach based on padding.

Traditional Generation with Dilated Integers

The Morton-order curve has been introduced by Morton et. al. in 1966 [89] as an
effective approach to access files on the example of geodetic databases. An effective way
to generate Morton-order curves using dilated integers have been proposed by Wiese et.
al. [130]. The main idea is to derive the (i, j) pair from a Z-order value m, where m
is between 0 and 2t. Let m = Morton pext(i, j) be the function which determines for a
coordinate pair (i, j) ∈ N2 the Morton-order value m and (i, j) = Morton−1pext(z) be its
inverse. The sequence of every even bit from the binary representation from z forms
its i-dilation and the sequence of every odd bit builds its j-dilation. This is depicted in

126 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

Figure 8.2, where the the Morton-order value z is colored black in the decimal format
with its binary representation to the right. The corresponding i and j values are depicted
in blue and red.

ii

jj

00 01 10 11

00

01

10

11

010 00002 110 00012 410 01002 510 01012

210 00102 310 00112 610 01102 710 01112

810 10002 910 10012 1210 11002 1310 11012

1010 10102 1110 10112 1410 11102 1510 11112

Figure 8.2: Morton-order. Interleaving the binary coordinates from i and j yields the
binary z-values shown.

ii

jj

00 01 10 11

00

01

10

11

010 00002

110 00012

410 01002

510 01012

210 00102

310 00112

610 01102

710 01112

810 10002

910 10012

1210 11002

1310 11012

1010 10102

1110 10112

1410 11102

1510 11112

Figure 8.3: И-order. Interleaving the binary coordinates from i and j yields the binary
z-values shown.

As a simple example for the Z-order in Figure 8.2, consider the value 6 in decimal

8.2. GENERATING MORTON-ORDER CURVES 127

system denoted as 610, which is 01102 in its binary representation. The i-dilation of 610

is 012 (110) and its j-dilation results into a j-value of 102 (210). On today’s hardware this
can be effectively computed using the instrinsic function _pext_u64 (m) (c.f. Algorithm
4). The variables EVEN and ODD are masks in binary representation, where every even
or odd bit is set. The function _pext_u64(mask, m) extracts bits from the unsigned
64-bit integer m at the corresponding bit locations specified by the masks EVEN and
ODD. The actual loop body which performs the productive work on the generated pairs
(i, j) is indicated by the placeholder “process loop body” at line 7. In the case of matrix
multiplication, this would be the scalar product of the ith row of the matrix A with the
jth column of the matrix B and store it in Ci,j .

Algorithm 4 goes through the cells of the matrix in a Z-order, but it can be easily
adapted to the case of the И-order by exchanging the EVEN and ODD parameters for i
and j respectively at the _pext_u64 function (c.f. Figure 8.3).

Algorithm 4 MORTON-ORDER (pext) loop
Input: t ∈ N
Output: i, j in Morton order
1: (i, j)← 0
2: EV EN ← 0xaaaaaaaa
3: ODD ← 0x55555555
4: for m← 0 to 2t − 1 do
5: i← _pext_u64(m, EVEN)
6: j ← _pext_u64(m, ODD)
7: process loop body (i,j)
8: end for

Generation of Morton Loops by Counting Trailing Zeros

Here, we present an alternative way to generate the Morton order curve by counting
the trailing zeros (tzcnt) from the binary representation of the control variable. Let
m = Morton tzcnt(i, j) be the function which determines for a coordinate pair (i, j) ∈ N2

the Morton-order value m and (i, j) = Morton −1tzcnt(m) be its inverse. We propose here
a novel approach for a loop generating the pairs (i, j) in Morton order which is non-
recursive and has only a constant time complexity per loop iteration. We exploit the
general observation that when proceeding from m to m + 1, one of the variables i or
j is increased by one, and in the other, some trailing bits are set to zero (cf. Figure
8.4 for the Z-order and Figure 8.5 for the И-order). Both the selection of the variable
and the number of bits depends on the number a of trailing bits that the Morton order

128 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

value m has. This number can be determined as a := log2(m andbitw (−m)), where
−m is the two-complement. This operation of counting the trailing bits is equivalent to
the operation a := _tzcnt_u64 (m), which is available in hardware on most of today’s
processors. If a is odd, we increase i and reset j. If a is even, we increase j and reset i.
Due to the Morton order’s recursive structure, the number of bits to be reset is da2e which
is rounded up explicitly in the following pseudo-code segment. A bitwise and performs
the reset and a shift-left operation noted by �.

ii

jj

Traversal in Z-order

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49 50

51 52

52dec → 110100bin

a = 2; (i, j)cur = (5, 5)

Z-order (case one): j := j + 1

510 → 0001012

andbitw − 210 → 1111102

(inext) : 410 → 0001002

(i, j)next = (4, 6)

Figure 8.4: Z-order traversal (tzcnt).

Microcells

The two basic algorithms (pext and tzcnt), introduced in the previous section, generate
the sequence of all (i, j) ∈ {0, ..., n−1}2 ⊆ N2

0 if n is a power of two. We improve this basic
algorithm for the more general case in which n is not a power of two, and that i and j have
different upper and lower boundaries. Firstly, if the range of i-values is more than twice
the range of j-values, we stack two or more independent Morton curves above each other
(c.f. Algorithm 6 loop at line 13). Analogously, if the range of j-values is more than twice
the range of i values, we put independent curves side by side. This case is illustrated in
Figure 8.7. For the case, where i and j are within the same power of two, the independent
curves have then the property that dlog2(imax − imin)e = dlog2(jmax − jmin)e(=: ν), i.e.
they are fairly square-like (c.f. Algorithm 6 loop at line 20). The remaining asymmetry

8.2. GENERATING MORTON-ORDER CURVES 129

ii

jj

Traversal in И-order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

52dec → 110100bin

a = 2; (i, j)cur = (5, 5)

И-order (case two): i = i+ 1

510 → 0001012

andbitw − 210 → 1111102

(jnext) : 410 → 0001002

(i, j)next = (6, 4)

Figure 8.5: И-order traversal (tzcnt).

Code Value

0 stop
1 n.a.
2 -3
3 -2
4 -1
5 0
6 +1
7 n.a.

Table 8.1: Code table for processing microcells

and deviation of the side lengths from being a power of two is then handled by a concept
of microcells (c.f. Algorithm 6 loop at line 27).

Microcells enable the use of arbitrary loop bounds, which do not correspond to a
power of 2. We disassemble any grid of size n×m into a number of sub-grids, each having
size r × s = {2, 3, 4} × {2, 3, 4}. We generate a simple Morton loop with n = 2blog2(n)c−1

and fill every generated pair with a sub-grid of size {2×2}, {2×3}, {2×4}, {3×3}, {3×4},
or {4 × 4}, each obeying the monotonicity properties of Morton order (cf. Figure 8.6).
Any grid of any size ni×nj can be generated in this way, and the resulting loop generates
every of these ni · nj pairs at constant time and space.

130 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

Algorithm 5 MORTON-ORDER (tzcnt) loop
Input: n ∈ N
Output: i, j in Morton order
1: (i, j)← 0
2: for m← 1 to n2 do
3: process loop body (i, j)
4: // calculate (i, j) for next iteration:
5: a← _tzcnt_u64(m) //count trailing zero bits
6: if a mod 2 = 1 // И-order a mod 2 = 0 then
7: //case one
8: i← i+ 1
9: j ← j andbitw (−1� a+1

2); // reset da2e bits
10: else
11: //case two
12: j ← j + 1
13: i← i andbitw (−1� a

2); // reset da2e bits
14: end if
15: end for

2x2

05565i←−−−−
05646j←−−−−

3x2

0556565i←−−−−−
0564646j←−−−−−

3x3

0555664565i←−−−−−−−
0566356646j←−−−−−−−

4x3

0564565664565i←−−−−−−−−−
0556646356646j←−−−−−−−−−−

4x2

055656565i←−−−−−−−
056464646j←−−−−−−−

4x3

0564565664565i←−−−−−−−−−
0556646356646j←−−−−−−−−−−

4x4

05565456565654565i←−−−−−−−−−−−−
05565456565654565j←−−−−−−−−−−−−

Figure 8.6: Microcell templates

8.2. GENERATING MORTON-ORDER CURVES 131

ii

jj

Microcell placement in a 7x13 grid

Z = 0 Z = 1

Z = 2 Z = 3

Figure 8.7: Microcell placement of 5 {2×3}, 1 {3×3}, 5 {2×4} and 1 {3×4} templates
(c.f. Figure 8.6) into a 13x7 grid.

The implementation is summarized in Algorithm 6 and here we accompany this al-
gorihtm by an example which is depicted in Figure 8.7. In this example i ranges from
0 to 7 and j from 0 to 13. At first, we divide the problem of arbitrary loop bounds
into a problem, where m and n are possibly different, but in the same power of two:
t := blog2(n)c = blog2(m)c. In our example (t = 2) these are the three thickly bordered
grids, where in the first one i ranges from 0 to 7 and j ranges from 0 to 4. We can place
several Morton orders of the size 2t (22) side by side, where the first one has the width of
2t, which corresponds to the stepsize in Algorithm 6 at line number 12. In other words,
in the first loop we loop over the thick grid and in the second loop (at line 20) we iterate
over microcells. The variables I and J represent the offsets for the cells in this grid. In
this example, the variable J will become {0, 2, 4}, and I remains at zero. Each cell has
a m × n subgrid, where we can span a Morton-order with the size of 2t−1 × 2t−1 over
the microcells, where Z ranges from 0 to 3. In each iteration we determine the size of
the next microcell template (idiff and jdiff), which will be processed in the next loop
at line 27. Our microcells are small templates, containing lookup tables to calculate the
absolute differences from one iteration to the next. A microcell template is a bit-sequence
which can be stored in an integer variable. The bit-sequence contains codes that store

132 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

the difference to calculate the current i and j variables based on the previous ones. The
codes are summarized in Table 8.1 and they can be easily accessed using an andbitw

operation, which extracts the last 3 bits from the current microcell template. The micro-
cell template reads from right to left, and therefore, the difference can be extracted and
stored in a temporary variable. The remaining part of the algorithm is used to ensure
the Morton order placement of the microcells (c.f. blue line in Figure 8.7) and has been
explained in Algorithm 4.

The user can freely choose the names of iterator variables i and j and can also define
local variables inside and outside the Morton loop’s loop body. The compiler has all the
options to optimize the generated code because all functionality is in a single method.

Architecture and Usability

Our algorithm is non-recursive, and it removes all restrictions on loop boundaries for i and
j. The resulting Morton-loop has been implemented as a preprocessor-macro in C/C++,
which facilitates its usage in any given algorithm. We will note our cache-oblivious loops
following the Morton-order curve in our pseudo-codes as follows:

MORTON-ORDER (i, j) ∈ {0, . . . , imax− 1} × {0, . . . , jmax− 1} do
process loop body (i,j)

END-MORTON-ORDER

In this example i ranges from 0 to imax and j − 1 ranges from 0 to jmax− 1. This
case is very analogous to in our source-code for C/C++ where we define our preprocessor
macro:

int i,j;
ZORDLOOP_START (i, j, imin, imax, jmin, jmax){ printf("%d, %d",i,j);
}ZORDLOOP_END (i, j)

In the literature, there is often a recommendation to use iterators for such applica-
tions, but iterators are very specific in how they are used for their application. Iterators
are bound to specific pointers in matrices, and in contrast to this, macros are much
more generic because they generate loop indices. The Morton-order can also be used
in indexing techniques, where the Morton-order helps resolve the index structure. This

8.2. GENERATING MORTON-ORDER CURVES 133

Algorithm 6 Microcell placement with Morton-order (pext).
Implemented as a preprocessor macro.
Input: imin, imax, jmin, jmax ∈ N
Output: i, j in Morton order
1: EV EN ← 0xaaaaaaaa
2: ODD ← 0x55555555
3: (i, j)← (imin, jmin)
4: (irange, jrange)← (imax − imin, jmax − jmin)
5: if irange < jrange then
6: t← blog2(irange)c
7: kbound ← (jrange/t/2) ∗ e // where kbound ≥ 1
8: else
9: t← blog2(jrange)c

10: kbound ← (irange/t/2) ∗ e // where kbound ≥ 1
11: end if
12: stepsize ← 2t−1

13: for k ← 0 to kbound by stepsize do
14: if irange < jrange then
15: I ← imin, J ← k + jmin
16: else
17: I ← k + imin, J ← jmin
18: end if
19: Z ← 0
20: while Z < stepsize2 do
21: II ← I+ _pext_u64(Z, EVEN)
22: JJ ← J+ _pext_u64(Z, ODD)
23: idiff ← (II + 1) ·

⌊ irange
stepsize

⌋
− II ·

⌊ irange
stepsize

⌋
24: jdiff ← (JJ + 1) ·

⌊ jrange
stepsize

⌋
− JJ ·

⌊ jrange
stepsize

⌋
25: imicroTemplate ← microcellI idiff ,jdiff
26: jmicroTemplate ← microcellJ idiff ,jdiff
27: repeat
28: process loop body(i, j)
29: i← II + (imicroTemplate andbitw 7)− 5
30: j ← JJ + (jmicroTemplate andbitw 7)− 5
31: imicroTemplate � 3, jmicroTemplate � 3
32: until imicroTemplate = 0
33: Z ← Z + 1
34: end while
35: end for

134 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

macro can be used in any host algorithm with any arbitrary minimum and maximum
boundaries and keeps the algorithm well structured. Additionally, this has significant
performance benefits. The whole algorithm can be implemented as a single method. The
compiler has all options for optimizations, including extraction of loop invariants, and
loop unrolling can be made fully automatic by the compiler.

We also tested an implementation based on an object-oriented approach because
there, we could use a strategy pattern to eliminate the branching with the if-statement
in line 14-18 (Algorithm 6). The strategy pattern could determine beforehand whether
we have an i-dominant rectangle or an j-dominant rectangle. However, it turned out
that this abstraction induced an overhead that was larger than its performance gain. We
believe that this is due to optimizations based on the compiler, which could be applied
in the macro version but not in the object-oriented version.

8.3 Parallelization

We combine our Morton-order curve with explicit parallelization techniques to enhance
the efficiency of our algorithm. On the coarse-grained level, Parallel threads for differ-
ent cores of the CPU can be managed by concepts like OpenMP or CILK. We are us-
ing OpenMP for the Multiple Instruction Multiple Data (MIMD) parallelization, where
each of the processors works on an independent part of our matrix. The parallelization
using the construct “#pragma omp parallel” is packed into the pseudo-code keyword
MORTON-ORDER, where each core works on independent chunks of data. The typ-
ical usage pattern of our Morton-order loop is outlined in Listing 8.1.

At line 6, we determine which thread is using which part of the matrix. We are using
the Morton-order curve to loop over cells with a size of 24×8. These relatively large cells
enable us to utilize the full bandwidth of AVX-512. AVX-512 enables Single Instruction
Multiple Data (SIMD) parallelism, which is commonly known as vectorization.

AVX-512 intrinsic functions use data types with a length of 512 bits (=8 double
precision) as operands representing the registers in Intel’s Xeon Phi and Skylake-X CPUs.
Each computational core is equipped with 32 registers, and the matrix multiplication or
LU decomposition, which are clearly I/O bounded problems. In our source code, we
load 3 consecutive 512-bit registers (3 · 8 = 24) and multiply them with a value of each
of the 8 rows. This means in each iteration we take a cell of A build a vector using
_mm512_set_pd and multiply it with a vector of B and store the scalar product from

8.4. APPLICATION OF MORTON-ORDER LOOPS FOR LU DECOMPOSITON
AND MATRIX MULTIPLICATION 135

Listing 8.1: Morton-order usage pattern
#pragma omp p a r a l l e l
{

. . .
ME=omp_get_thread_num () ;
T=omp_get_num_threads () ;
imin=ME∗T∗n/24 ; imax=(ME+1)∗T∗n/24 ;
jmin=0;jmax=m/8 ;
ZORDER_START(i , j , imin , imax , jmin , jmax){

. . .
for (. . .){ . . .
}
. . .

}ZORDER_END(i , j)
}

A

B

C

Figure 8.8: SIMD parallelization.

_mm512_fmadd_pd in the corresponding C vector (c.f. Figure 8.8). This technique
enables us to utilize the full bandwidth of AVX-512.

8.4 Application of Morton-order Loops for LU
Decompositon and Matrix Multiplication

There are many different variants for dense LU factorization. A set of n linear equations
in n variables is solved by performing LU factorization and solving the resulting triangular
systems. There are many variants like Crout’s algorithm [107], which performs an in-place
factorization, but it is typical to transform this problem to a block LU decomposition.
The level of granularity for this block factorization range from a simple case of four blocks,

136 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

which will be outlined here, to a large case of panel factorization [59, 80] or constructed
dependency graphs using directed acyclic graphs [84]. The major benefit of applying a
block algorithm here is to exploit the properties of the matrix multiplication. The matrix
multiplication is I/O bounded, and therefore it enables better performance for the LU
decomposition. We consider the simple case of a block LU-factorization A = LU ∈ Rn×n,
where the matrix A ∈ Rn×n is nonsingular. Then we can write:

[
A00 A01

A10 A11

]
=

[
L00 0

L10 L11

]
·

[
U00 U01

0 U11

]
(8.2)

Algorithm 7 LU block algorithm
Input: A ∈ Rn×n
Output: L,U ∈ Rn×n
1: Compute L00 and U00 by factorizing A00 = L00U00

2: Compute L10 by solving L10 = U−100 A10 using backward substitution
3: Compute U01 by solving U01 = L−100 A01 using forward substitution
4: Compute the Schur complement of L00U00 which is A11 = A11−L10U01 using parallel

matrix multiplication
5: Compute the block LU factorization for L11U11 recursively on A11

The block LU factorization is outlined in Algorithm 7. The code is implemented as an
in-place version, but we present the pseudo-code as an out-of-place variant for the sake
of better readability. In the first step (line number 1) we perform a LU decomposition
on a small block using a straight forward parallel implementation of a row block LU
factorization [86]. Unfortunately, suppose we apply a space-filling curve in this step.
The effect will be very little because we need at least three loops (two loops to describe
the traversal of the space-filling curve and one additional inner nested loop) to apply our
technique successfully. There are only two for the elimination step. The next steps in the
block LU factorization algorithm are the backward substitution, the forward substitution
and the matrix multiplication (lines 2 to 4 in Algorithm 7). Each of these algorithms
will be explained individually in the following.

8.4. APPLICATION OF MORTON-ORDER LOOPS FOR LU DECOMPOSITON
AND MATRIX MULTIPLICATION 137

Algorithm 8 Canonical LU decomposition
Input: matrices A00 ∈ Rn×n
Output: L00 ∈ Rn×n and U−100 ∈ Rn×n
1: for k ← 0 to n do
2: for i← k + 1 to i < n do
3: ai,k = ai,k/ak,k
4: end for
5: for i← k + 1 to i < n do
6: for j ← k + 1 to j < n do
7: ai,j = ai,j ∗ ak,j
8: end for
9: end for

10: end for

The canonical LU decomposition in Algorithm 8 is based on a row-cyclic algorithm
for LU decomposition [86]. This canonical LU decomposition is the first step in our
block algorithm, where we compute L00 and U00, by factorizing A00 = L00U00. This part
is an example where the Morton-order curve has minimal impact on performance and
cache-efficiency. In this algorithm all computations for k = 1 depend on the previous
computations for k = 0. Therefore, the parallelization is applied on both inner for loops
at line 2 and 5. There are two-nested loops left, but we would need three nested loops to
apply our technique successfully. The two outer loops shape the Morton-order curve, and
the additional inner loop supports the Morton-order in addressing the L1 cache. As we
will see in the experiments section, the Morton-order curve optimizes L2 and L3 cache
access. However, since this part of the LU decomposition is often very small, this has
minimal impact on the performance and certainly not on larger cache hierarchies than
the L1 cache.

Algorithm 9 Backward substitution algorithm
Input: matrices U00 ∈ Rn×n and A10 ∈ Rm×n
Output: L10 ∈ Rm×n = U−100 A10

1: MORTON-ORDER (l, k) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1} do
2: for i← 0 to i < k do
3: ll,k = al,k − (al,i · ui,k)
4: end for
5: ll,k = ll,k/uk,k
6: END-MORTON-ORDER

In the next step, we apply backward substitution to obtain L10. We are using

138 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

OpenMP for the parallelization step, where we partition A10 among several threads.
Each of the threads updates an equal number of columns from A10 and computes the
backward substitution for its part of A10. The algorithm is outlined in Algorithm 9,
where we loop over the A10 matrix using our Morton-order curve. Our curve traverses
over single cells of the matrix, but parts of this matrix are unrolled by an optimized
loop unrolling strategy. In the case of the backward- and forward-substitution, this is
summarized parts of 8 by 8 matrix cells.

The forward substitution algorithm works similarly, and it is outlined in Algorithm
10, where we partition the matrix A01 among the threads and compute the resulting part
of the U01 matrix independently. Both substitution algorithms perform on a triangular
matrix, and in order to apply a space-filling curve, we need to ensure that the curve
fulfills the monotonicity properties because of the data dependencies to the left and the
top.

Algorithm 10 Forward substitution algorithm
Input: matrices L00 ∈ Rn×n and A01 ∈ Rn×m
Output: U01 ∈ Rn×m = L−100 A01

1: MORTON-ORDER (k, i) ∈ {0, . . . , n− 1} × {0, . . . , k − 1} do
2: for j ← 0 to m do
3: uk,j = ak,j − (ai,j · lk,i)
4: end for
5: END-MORTON-ORDER

Matrix multiplication is an algorithm where any space-filling curve can be applied
straightforwardly because it has no general data dependencies. For the forward and
backward algorithm, the space-filling curve for the matrix multiplication traverse through
groups of matrix cells, which are summarized by loop unrolling strategy. For the matrix
multiplication, we are using 8-by-24 cells. The basic algorithm from our introduction
is outlined in Algorithm 11. It essentially multiplies the rows of A ∈ Rm×p with the
columns of B ∈ Rp×n. If we consider large matrices, where the rows of a.,k and b.,k are
too large for the small caches, then we need to decompose the matrices horizontally into
groups of s (Algorithm 11 line 3 to 5). We use OpenMP for the parallelization, where
we partition an imaginary grid of the matrix C among the threads so that the rows from
matrix A and B are distributed equally.

8.5. EXPERIMENTAL EVALUATION 139

Algorithm 11 Matrix multiplication
Input: matrices A ∈ Rm×p , B ∈ Rp×n and C ∈ Rm×n
Output: C = AB − C
1: for K ← 0 to p− 1 by stepsize s do
2: MORTON-ORDER (i, j) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1} do
3: for k ← K to min{K + s, p} − 1 do
4: ci,j = ci,j − (ai,k · bTj,k)
5: end for
6: END-MORTON-ORDER
7: end for

8.5 Experimental Evaluation

We share our code to make our experiments transparent and comprehensible. Code and
experimental data is available1.

Microarchitecture and Evaluation Measures

Our experiments have been performed on Intel© Xeon Phi™ 7210 codename Knights
Landing (KNL) with 1.3 GHz and 64 cores, 96 GB main memory, and CentOS 7.4.1708
as the operating system. A KNL processor socket has 32 active tiles, where each tile
consists of two cores. Each core has 32 kB instruction and 32 kB data cache for L1
and supports AVX-512 SIMD instructions. The L2 cache of 1 MB is shared among
two cores within a tile. The KNL processor family has an improved cache and memory
organization, where one can choose between five different clustering modes (see https:

//colfaxresearch.com/knl-numa/ and three different memory modes (see https://

colfaxresearch.com/knl-mcdram/). For all our experiments, we have used the quadrant
mode in combination with the cache-mode since this configuration complies with multi-
core commodity hardware[67]. Our configuration results in a 16 MB shared L3 cache
among all cores. We investigated the cache access pattern on four different levels, namely
L1, L2, L3 clean (i.e., L3c), and L3, allowing dirty reads (i.e., L3d). We describe the
cache pattern with a metric defined as cache miss-rate, which is defined for each individual
cache level as 1-cache hitrate [67]. Cache-oblivious algorithms should perform well on
different hardware infrastructure, so we decided to evaluate our approach to a second
different CPU infrastructure, our Xeon. The Xeon (Skylake) server is equipped with 16

cores, each with a base frequency of 2.1 GHz, but the frequency can increase up to 3.7

1https://gitlab.cs.univie.ac.at/martinp16cs/mortonlu

https://colfaxresearch.com/knl-numa/
https://colfaxresearch.com/knl-numa/
https://colfaxresearch.com/knl-mcdram/
https://colfaxresearch.com/knl-mcdram/
https://gitlab.cs.univie.ac.at/martinp16cs/mortonlu

140 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

GHz under heavy load. Each of the cores is equipped with AVX-512 SIMD instructions,
32 kB L1 data cache, and 1 MB L2 cache. The L3 cache with 22 MB is shared among all
cores. The operating system is Ubuntu Linux 18.04.4 LTS. All experiments have been
performed with 50 repetitions and the GNU compiler version 9.1.0.

Arbitrary Sized Morton-order

We evaluate our Morton-order variants against five different comparison methods. We
start with the problem of applying the Morton-order to arbitrarily sized matrices. This
problem is usually addressed with padding [34, 122, 130], but we show the performance
advantage of microcells in contrast to such approaches. This implementation does not
store any intermediate results and is labeled as “Dilated (padding)”. In this approach, we
proceed as follows. We calculate the largest power of 2, which just fits into the matrix.
Algorithm 4 is then applied until this sub-matrix is completely processed. If this sub-
matrix fits again into the initial matrix, we repeat the algorithm one more time until we
have to reduce the sub-matrix to the next smaller power of 2. For our running example
in Figure 8.7, which is a quite uncommon scenario, we fill the 13×7 grid with 3 matrices
of order 22, 6 matrices of order 21 and 19 single cells.

4K 8K 12K 16K 20K

200

400

600

800

m,n, k

G
flo

ps

(a) Matrix Multiplication

4K 8K 12K 16K 20K

200

400

600

nk

(b) LU decomposition

Morton-pext Morton-tzcnt Dilated (padding)

Figure 8.9: Comparison of different Morton-order generation approaches (Xeon-Phi).

In our Morton-pext approach we combine our microcells approach together with the
pattern extraction (pext) as described in Algorithm 6. The second approach, called
Morton-tzcnt is a combination of our microcells with a Morton-order generated by the
trailing zeros approach (tzcnt) described in Algorithm 5.

8.5. EXPERIMENTAL EVALUATION 141

In Figure 8.9 we compare these two approaches for the matrix multiplication and LU
decomposition. In the case of the matrix multiplication in the Figure on the left, the main
thing to notice here is if we generate a large curve, the dilated approach’s performance
and the performance of Morton-tzcnt drops down. The performance of Morton-pext is
stable. The runtime for the dilated approach using padding is 19.80, and the runtime
for Morton-pext is about 18.78 for a matrix size of 20 000. These runtimes show a
performance gain of 5.4% for microcell support. Our implementation of Morton-tzcnt
has a runtime of 20.96 seconds.

For the LU decomposition, we observe a similar performance behavior. The runtime
for Morton-pext, which is the fastest method has a runtime of 8.96 seconds. The run-
time for the dilated approach is about 10.88 seconds and for Morton-tzcnt the runtime
performance drops down from 621 GFlops and 7.44 seconds to 470 GFlops and 11.43

seconds.

The results pesented here in the Figure 8.9 are difficult to read, so we have again
attached the runtimes in tabular form in the appendix, c.f., Table A.1 for matrix multi-
plication and Table A.2 for the LU decomposition.

Morton-order Matrix Multiplication

The runtime performance for the method Morton-tzcnt was poor compared to the other
approaches. For the remaining part of this chapter, we focus on our method Morton-pext,
which has superior performance properties. In the following experimental evaluation,
Morton-pext is the baseline for both Morton-order curves, the Z-order and И-order.

In the following, we compare our approach against the current state-of-the-art algo-
rithms and evaluate the gain of using microcells by testing the performance against a
method that traverses in Morton order but having microcells not implemented. We label
this method with “plain M”, for plain Morton. We look-ahead and calculate the next
power-of-2 i and j values and store them intermediately with this method. The canon-
ical order is an interesting baseline since, for C-like languages, we have a row-oriented
memory layout. Bader et al have introduced the Peano curve. as a recursive storage
scheme for matrix elements in cache-oblivious algorithms [9, 12] and is implemented in
a framework called TifaMMy2. The Hilbert curve has been introduced by Böhm et al.
and is implemented exactly as our approach except for the Hilbert curve [24] traversal

2obtained by https://sourceforge.net/projects/tifammy/

https://sourceforge.net/projects/tifammy/

142 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

instead of using Morton order.

A textbook example for an application of cache-oblivious algorithms is matrix mul-
tiplication. Since we do not have a data dependency here, we can apply all different
comparison methods. A clear picture emerges from the evaluation of the performance
of all different methods depicted in Figure 8.10a. Three methods show a more or less
similar performance behavior, namely Z-order, Hilbert, and И-order. A closer look at
these methods for matrices with a size of m = n = k = 20 000 that the И-order is su-
perior with 875 GFlops, followed by Hilbert with 840 GFlops and the Z-order with 810

Gflops. These three methods are approximately twice as fast as the Peano curve with 395

Gflops or the canonical variant of our approach with 344 Gflops. The cores for Xeon Phi
are relatively slow (1.3 GHz), and the plain Morton curve generates the upcoming curve
pattern for the next power of 2 values. This leads to some values of n to an inefficient
computation. The average runtime of plain Morton is roughly 5.15 seconds for a matrix
size of 12 000, and 3.93 seconds for the И-order . This is a performance improvement of
more than 30%.

4K 8K 12K 16K 20K

0.5

1.0

m,n, k

T
flo

ps

(a) Performance

L1 L2 L3c L3d

0.20

0.15

0.10

0.05

Cache level

C
ac
he

M
is
s
R
at
e

(b) Cache-access

Canonical Plain M. Peano Hilbert Z-Order И-order

Figure 8.10: Matrix-multiplication on Xeon-Phi.

The effects of the space-filling curves on the cache access pattern is outlined in Figure
8.10b. Considering the cache as a whole, the И-order has a relatively low miss-rate,
followed by Hilbert and the Z-order. For the Xeon-Phi processor, there are two cores
together on a “tile”, which share the same L2 cache, and the L3 cache is shared among
all cores. Therefore, the L1 and L2 cache, as well as the L3c and L3d cache, should be
considered together. There is a high cache miss-rate (more than 60% for L1 and L3c) for

8.5. EXPERIMENTAL EVALUATION 143

the Peano approach, but almost all (>99%) of the access in L2 and L3d hit. The largest
difference between the Morton order approaches and the canonical approaches is in the
L2 cache. We discuss this phenomenon in Section 8.6.

4K 8K 12K 16K 20K
0

200

400

600

n

G
flo

ps

(a) Performance

L1 L2 L3c L3d

0.15

0.10

0.05

Cache level

C
ac
he

M
is
s
R
at
e

(b) Cache-access

Canonical Plain M. TifaMMy Z-Order И-order

Figure 8.11: LU decomposition on Xeon-Phi.

LU Decomposition

For the LU decomposition (cf. Figure 8.11a) we have a similar picture, as seen before
for the matrix multiplication. Both Morton order methods are superior compared to the
canonical order and the block recursive scheme for LU decompostion (TifaMMy). For
a matrix size of n = 20 000. The И-order has a performance of 653 GFlops and the
Z-order curve performance of 612 Gflops, whereas TifaMMy is around 362 Gflops and
the canonical approach lags with 276 Gflops. The gain in runtime performance of the
И-order in comparison to the plain Morton curve is roughly 80% for a matrix size of
n = 20 000.

We captured the cache-access pattern and represent it in Figure 8.11b. Considering
the L1 and L2 cache as a joint access pattern, both Morton methods show a more efficient
cache-access in L1 and L2 than the canonical order and TifaMMy. The cache-access
pattern is also closely coupled with the runtime performance. For slow algorithms, it
tends to have a better cache-access pattern since the method has more time to access
the cache (cf. TifaMMy for L3c and L3d). For the LU decomposition, we also measured
the time spent in forward and backward substitution illustrated in Figure 8.12. For both
substitution algorithms, we have similar behavior in the runtime. The И-order is followed

144 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

closely by the Z-order curve, and the canonical variant lags behind. The gain of И-order
compared to plain Morton is for the forward substitution roughly 25% and the backward
substitution roughly 41% for a matrix size of n = 20 000.

4K 8K 12K 16K 20K
0

100

200

300

400

n

G
flo

ps

(a) Forward Subst.

4K 8K 12K 16K 20K
0

100

200

300

n

(b) Backward Subst.

Canonical Plain M. Z-Order И-order

Figure 8.12: Forward and backward substitution.

Performance on Different Hardware

Cache-oblivious algorithms tend to perform well on different hardware systems. The
results evaluated on our Xeon server are depicted in Figure 8.13. In Figure 8.13a we
have evaluated the matrix multiplication and in Figure 8.13b the LU decomposition
algorithm. We see a similar runtime behaviour compared to Figure 8.10a. However,
the difference between the methods is less evident. For the matrix size of N = 20 000,
we observe a superior performance for И-order with 644 Gflops, and both approaches
Z-order and Hilbert perform more or less the same with 636 Gflops for Z-order and 635

Gflops Hilbert. The canonical approach is around 297 Gflops and TifaMMy around 285

Gflops. In the case of the matrix multiplication, the advantage of И-order (644 Gflops)
over our plain variant (607 Gflops) is about 6% and for the LU decomposition roughly
11%.

The difference in runtime between the И-order and the Z-order curve is somewhat
more visible for the performance of the LU decomposition in Figure 8.13b, since the
LU decomposition includes the forward and backward algorithm, as well as the matrix
multiplication. For the matrix multiplication and a matrix size of m,n, k = 20 000 in
Figure 8.13a the И-order has 644 Gflops, followed by 635 Gflops Hilbert and 636 Gflops

8.6. RELATED WORK AND DISCUSSION 145

4K 8K 12K 16K 20K
0

200

400

600

m,n, k

G
flo

ps
(a) Matrix Multiplication

4K 8K 12K 16K 20K
0

100

200

300

400

n k

(b) LU Decomposition

Canonical Plain M. Peano Hilbert Z-Order И-order

Figure 8.13: Results evaluated on Xeon.

for Morton. These methods’ performance pattern is on both servers very similar if we
compare it to the LU decomposition on the Xeon Phi in Figure 8.11. The И-order leads
with 403 Gflops, followed by the Z-order curve as a runner-up at 392 Gflops. TifaMMy
and the canonical variant share third place at 267 Gflops and 256 Gflops.

8.6 Related Work and Discussion

We introduced two different methods, Morton-pext and Morton-tzcnt. We combined both
methods with our microcells and in the experiments, we have seen a superior performance
for Morton-pext. We believe that the performance drop is because the branch prediction
by the compiler for the if in Algorithm 5 at line 6 fails to predict the correct branch.
Based on Morton-pext, we have two different Morton-order traversals based on the Z-
order and on the И-order. Both traversals show superior performance in comparison to
the state-of-the-art in the literature.

Cache-oblivious Algortihms

The notion of cache-obliviousness has been first introduced by Frigo et al. in 1999 [55].
A cache-oblivious algorithm performs well on any multi-level memory hierarchy without
knowing the structure and the hierarchy parameters, e.g., cache and memory size, transfer
block size, and bandwidth. The two fundamental design patterns of cache-oblivious
algorithms are localized memory access pattern and a divide and conquer approach.

146 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

Space-filling curves integrate both ideas. Morton presented his ordering in 1966 to index
frames in a geodetic database [89]. It has been applied to several algorithms and data
structures for tasks like sorting, searching, or indexing [100, 130] as well as communication
strategy among nodes [75] in distributed systems.

Most related to our work, Bader et al. proposed to use the Peano curve for matrix-
matrix multiplication [9, 12] and LU decomposition [62]. Both algorithms are combined
in one framework, which is called TifaMMy. The Peano approach’s implementation
is a recursive block scheme, whereas our approach is based on non-recursive Morton
order loops. If the blocks in such a recursive scheme do not fit into the cache, it leads
to such high miss rates. We have tested various block-sizes without success, and we,
therefore, infer that these are effects of optimized building blocks. The Hilbert-curve
[24], is slower then the И-order and cannot be applied to LU decomposition because the
Hilbert curve does not fulfill the monotonicity properties. Compared to our canonical
approach, both algorithms’ nested loop structure, the matrix multiplication, and the LU
decomposition are reflected in the cache-pattern. Our space-filling curves target the L2
cache to a greater extent. Previous approaches on Morton-order curves have been applied
in Single-Threaded environments, [123, 130] but they are limited to n× n arrays, where
n is to the power of 2 or 3.

Morton order storage’s common drawback is that straightforward application is only
possible for square matrices whose side is an integer of power of two. Other matrix
sizes require special treatment, such as padding [33, 34, 130]. Our implementation called
“Dilated padding” is directly comparable with the approach proposed by Valsam and
Skjellum [122]. In this approach, the authors propose to use small kernel operations on
the matrix multiplication and traverse these kernels in a Morton-order by recursively
divide the matrix into 2 by 2 submatrices of where one part is as large as the greatest
power of 2. In some cases, this leads to large jumps, where the data locality is not
preserved. As an example, think of a 5 × 5 matrix. After the 2 × 2 part is finished,
there is a reset to the matrix’s minimum boundaries. Such large resets do not occur in
microcell approaches. Therefore it is more data-local.

Applications of Space-filling curves

Morton-order curves are vastly used in various research areas. The basic idea is to sort
the input data set according to the Morton-order. Once sorted, the points can be stored
in a binary search tree, or more specifically in a linear [56] or pointer-based quadtree

8.6. RELATED WORK AND DISCUSSION 147

[109]. In magnetic resonance imaging (MRI) [115] space-filling curves reduce the readout
time and increase the peak signal-to-noise ratio (PSNR). In computer graphics rendering
a 3D Morton-order is used to build a high-resolution 3D voxel grid for efficient I/O search
[13]. The authors developed a library, called “libmorton” which allows the user to encode
m = morton (i, j) and decode (i, j) = morton−1(m) Morton-order values. Unfortunately,
this library is restricted to squarred grid sizes. Similar to sorting, there exists some
transformation techniques on tensors, where the tensors are reordered according to a
blocked Morton ordering [82, 100].

Space-filling curves, such as the Morton-order, have also been applied to hardware
systems different than the CPU, such as distributed systems [75] and GPUs [93, 121].
The Morton order reduces the latency for distributed systems based on idealized com-
munication patterns [75]. In the case of the GPU, the memory hierarchy consisting of
global, local, and texture memory which can be efficiently walked through [93] or indexed
using the Morton-order curve [44, 79].

Optimized Techniques for Specific Tasks or Hardware

The Math Kernel Library (MKL) is a library of optimized math routines for science,
engineering, and financial applications. Core math functions include BLAS (Basic Lin-
ear Algebra Subprograms) [47] and LAPACK (Linear Algebra PACKage) [6]. BLAS is a
de facto standard for low-level routines in linear algebra, such as the matrix multiplica-
tion routine DGEMM (Double precision GEneral rectangular Matrix- matrix Multiply).
LAPACK is a standard software library for numerical linear algebra, such as matrix
factorizations like the LU decomposition, such as the routine DGETRF (Double preci-
sion GEneral TRiangular Factorization), as well as forward and backward substitution
routines. Intel MKL library achieves similar performance as OpenBLAS [138], and the
implementation of OpenBLAS is heavily tailored with many hand-crafted optimizations
for specific processor types and therefore not a suited comparison method especially for
cache-oblivious algorithms. Furthermore, such approaches transform the layout of matri-
ces to optimize I/O efficiency. State-of-the-art approaches for distributed computing are
libraries such as ScaLAPACK [38] or BLACS https://software.intel.com/en-us/

mkl-developer-reference-c-blacs-routines. Special cases, such as sparse LU de-
composition on hybrid systems [136] have been published as well. Other algorithms,
such as [59] build upon the ATLAS framework by using low-overhead kernel primitives
generated by the ATLAS framework. Furthermore, they suggest profiling critical path
operations, where any element should be prototyped and timed. Such critical paths of

https://software.intel.com/en-us/mkl-developer-reference-c-blacs-routines
https://software.intel.com/en-us/mkl-developer-reference-c-blacs-routines

148 CHAPTER 8. CACHE-OBLIVIOUS MORTON-ORDER CURVE

existing highly tuned building blocks could be tracked in a directed acyclic graphs [84].

These optimized variants are far beyond our research scope since we want to demon-
strate the positive effects of Morton-order traversal. The LU decomposition is a suitable
application since it has requirements on monotonicity properties. The performance of
such depends on the matrix-multiplication, where we can compare to other space-filling
curves.

8.7 Conclusion

In this chapter, we introduced the Morton order curve, a space-filling curve that enables
us to exploit the properties of today’s modern cache hierarchies. There are two differ-
ent variants, the Z-order curve and the И-order with slight performance advantages for
the И-order. Here, we have applied our Morton-order curves to Multi- and Many-core
environments. Our microcells concept allows us to fill any arbitrary ni × nj rectangle
and gives performance advantages of up to 80%, depending on the application and the
underlying hardware. The Morton-order curve is not restricted to data dependencies in
comparison to Peano or Hilbert. These properties make our Morton-order curve particu-
larly attractive to replace pairs of nested loops in host algorithms. We believe that many
algorithms in the field of linear algebra would profit from a Morton order traversal.

Chapter 9

Energy efficiency on Data Movement

Microprocessor performance scaling in recent years has been achieved by scaling through-
put, i.e., by processing more threads concurrently by an increasing number of cores and
employing techniques, such as Simultaneous MultiThreading (SMT) and vectorization
(i.e., SIMD). While there is an increasing demand for computational power, the number
of processing cores and threads are limited by the power and energy budget. A large con-
sumer of this energy budget is the memory hierarchy. How much energy of this budget
is occupied depends on the system used and on its application. Modern microprocessors
with a rich memory hierarchy usually consume around 50% [124], whereas programmable
processors consume in average around 70% [42]. An extreme case is video encoders where
the memory to power consumption is up to 90%, including off-chip memory communica-
tion [119].

The space-filling curves proposed in this thesis have different traversals for matrices
and different data access patterns. Therefore, we think another interesting aspect of our
space-filling curves is to look at energy consumption and efficiency. In this chapter, we
compare different space-filling curves for their energy behavior and measure their cache-
access patterns to draw sound conclusions. We start with an introduction in section
9.1, followed by the experimental setup in section 9.2. Our experiments are described in
section 9.3. We discuss our results in section 9.4 and conclude in section 9.5.

9.1 Introduction

In the early days of energy-efficient computing, there have been some estimates of
application-specific integrated circuits (ASIC). These are programmable processors cus-

149

150 CHAPTER 9. ENERGY EFFICIENCY ON DATA MOVEMENT

tomized for a particular use rather than integrated for general-purpose use like micropro-
cessors. For example, a chip designed to run in a digital voice recorder or a high-efficiency
Bitcoin miner is an ASIC. For such chips, the main responsibilities for the cache are sup-
plying data and instructions. These consume 70% of the processors energy, divided as
28% for data and 42% for instructions supply [42]. Performing arithmetic consumes
6%, and performing clock- and control-logic consumes 24%. After all, microprocessors
from commodity hardware or in the server segment often have a higher clock frequency
and have far more computing cores and a richer cache hierarchy. Actual numbers are
difficult to determine as the cache hierarchy’s power consumption cannot be measured
independently. Educated guesses for the energy consumption of the memory hierarchy
in the literature range are around 50% [124]. Jenga, a system that eliminates access to
unwanted cache levels to improve performance and energy-efficiency, saves 23% energy
on average [120].

9.2 Experimental Setup

Measuring Power with a Watt Meter

Using a watt meter is the easiest and most accurate approach to measure power and
energy efficiency. There are also other APIs that allow reading internal performance
counters, such as Running Average Power Limit (RAPL) [127], but these were not avail-
able for Xeon Phi x200 (only for coprocessors, offloaded from a host system). The power
meter in use was Hioki 3334 AC/DC Power HiTESTER with a measurement accuracy
of ±0.1%. The 3334 is an AC/DC power meter that measures inrush current and power
consumption, ideal for DC, and current and power integration applications to meet en-
ergy efficiency standards. Ideally, a programmer wants to know the power measurements
associated with specific parts of their application. Such information allows the program
to be modified to both improve performance and be more power-efficient. For this rea-
son, we developed a C/C++ interface to query the current state and perform energy
measurements during our program’s runtime. Our machine of interest is connected to
the power meter over the RS-232C interface using a crossover cable (see Figure 9.1).

Furthermore, we have developed a program to start, stop, reset or query current
power consumption from our watt meter. The code is available to the public1.

1https://gitlab.cs.univie.ac.at/coloops/HIOKI-3334

https://gitlab.cs.univie.ac.at/coloops/HIOKI-3334

9.3. EXPERIMENTAL EVALUATION 151
P
ow

er
so
ur
ce

Voltampere
Sensor Load

Power Meter
Recorder

Measurement data

Voltampere System under test
(Xeon Phi)

RS-232C

Measurement
data

Measurement control

Figure 9.1: Power meter set-up.

Evaluation Metrics

The performance is reported as the number of floating-point operations executed per
second (FLOPS/s), while the energy-efficiency corresponds to the number of operations
per Joule (OPS/J). We consider the number of operations, GFLOPS, for the matrix
multiplication, which is defined as 109 · 2 ·mnk, where m,n and k define the size of the
matrices which are multiplied. The matrix multiplication has a runtime complexity of
O(nmk), and in the innermost loop, we have two operations, one multiplication and one
addition. For the LU decomposition where we factorize A into A = LU , and where A is
nonsingular of an order of n, we have 2

3n
3 floating-point multiplications and additions.

This approximation is commonly used to estimate the number of operations [131]. The
watt meter measured energy consumption, which indicates the measures in Watt-hours
[Wh]. This specific measure represents a constant power over a period of time. A related
measure, commonly used in the literature is Watt seconds [Ws]. One Watt second is
equivalent to 1 Joule [J]. Our energy efficiency is expressed in a ratio of Million Operations
per Second (MOPS) divided by Wh [MOPS/Wh]. The conversion to [OPS/s] or [OPS/J]
can be easily done with one multiplication by a factor of 3600.

9.3 Experimental Evaluation

We compare different approaches for the matrix traversals in terms of energy efficiency,
based on better data movement. Therefore, we need to set the runtime performance
in relation to energy efficiency. The performance evaluation in terms of 109 (=Giga)

152 CHAPTER 9. ENERGY EFFICIENCY ON DATA MOVEMENT

10000 12000 14000 16000 18000 20000
0

200

400

600

800

1,000

1,200

29
5
.2

5

29
7
.7

5

32
3
.2

5

31
5
.1

8

33
7
.3

4

33
9
.7

6

34
9
.8

8

35
7
.2

36
5.

3
1

3
50
.3

8

34
2.

43

41
7
.1

8

42
2
.9

1

42
6
.3

42
8
.8

6

43
2
.1

43
3
.8

2

43
8
.4

3

43
9
.4

8

44
1
.7

2

4
41 44
1
.2

9

81
9
.4

7

81
9
.3

6

82
1

83
1
.8

1

83
3
.2

6

82
8
.9

8

83
3
.7

6

82
9
.5

4

81
6
.6

82
4
.0

8

81
1.

9
1

83
9
.8

7

84
6
.7

9

82
4
.7

3

86
2
.2

1

86
3
.1

6

86
6
.4

9

87
3
.4

3

84
2
.2

3

8
38
.4

1

85
1
.8

9

8
50
.6

5

87
2
.6

87
9
.1

4

87
7
.3

6

89
1
.2

9

89
1
.3

8

89
7
.1

3

89
2
.7

4

86
9
.4

6

8
70
.8

7

87
6
.8

8
77
.9

2

[G
flo

ps
]

Runtime performance

Canonical Peano (TifaMMy) dilated (padding) Hilbert И-order

Figure 9.2: Runtime performance of the matrix-multiplication on Xeon-Phi.

floating-point operations [Gflops] is presented in Figure 9.2. The canonical order serves
here as an interesting baseline, where each consecutive row is traversed from the beginning
to the end. The matrix multiplication that follows a recursive storage scheme in an order
defined by a Peano curve for matrix elements has been introduced by Bader et al. [9, 12]
and is implemented in a framework called TifaMMy2. The Dilated (padding) approach
follows a Morton-order, where the matrix is padded with sub-matrices, each with side
lengths equal to a power of 2. The Hilbert-order has been introduced in chapter 5 as well
as the И-order in chapter 8.

For the matrix multiplication a clear winner in terms of runtime performance, energy
consumption (c.f. Figure 9.3) and energy efficiency (c.f. Figure 9.4) is the И-order. In
all three categories, the Hilbert curve is the runner up, followed by the dilated (padding)
approach. All of these named approaches are at least twice as fast as the canonical
traversal of the matrix.

For the LU decomposition there is a very similar pattern in terms of runtime per-
formance (c.f. Figure 9.5), power consumption (Figure 9.6 and energy efficiency (Figure
9.7). The Hilbert curve is left out in this comparison, because of its data dependencies
issues (see chapter 8).

2obtained by https://sourceforge.net/projects/tifammy/

https://sourceforge.net/projects/tifammy/

9.4. DISCUSSION 153

10000 12000 14000 16000 18000 20000
0

1

2

3

4

0.
48 0.

62 0.
75 0.

99 1.
16 1
.4

1
.7

1
.9

8 2
.2

9

2.
83

3.
31

0.
32 0.
42 0.
53 0.

68 0.
84 1.

0
2 1
.2

4 1
.4

7 1
.7

3 2.
07

2.
3
9

0
.1

9

0
.2

5

0.
32 0.
41 0.
5 0.
62 0.

7
6

0.
91 1
.0

9 1
.2

9 1
.5

1

0
.1

9

0
.2

4

0
.3

1

0.
39 0.
4
8

0.
58 0.
72 0.

8
8

1.
0
3

1
.2

1

1
.3

9

0.
18

0.
24

0.
3 0
.3

9

0
.4

7

0
.5

7

0.
71 0.

86 1.
01 1.

2 1.
38

[W
h]

Power consumption

Canonical Peano (TifaMMy) dilated (padding) Hilbert И-order

Figure 9.3: Power consumption of the matrix-multiplication on Xeon-Phi.

10000 12000 14000 16000 18000 20000
0

2

4

6

8

10

1.
61 2.

09 2.
31

3.
13 3.
43 4.

12 4
.8

5 5
.5

3 6
.2

6

8.
0
8

9.
66

0
.7

7

0
.9

8

1
.2

3

1.
59 1.
94 2.

35 2.
83 3.

35 3
.9

2 4
.6

8 5
.4

3

0
.2

4

0
.3

1

0
.3

9

0.
49

0.
6

0.
75

0.
91 1.
09 1.
33 1
.5

6

1
.8

6

0.
22

0.
29

0
.3

8

0
.4

5

0
.5

6

0.
67

0.
82 1.
04 1.
23 1.
42 1.
6
4

0.
21

0.
27

0.
34

0
.4

3

0
.5

3

0
.6

4

0.
8 0.
98 1.
16 1.
36 1.
5
7

[M
O
P
S/

W
h]

Energy efficiency

Canonical Peano (TifaMMy) dilated (padding) Hilbert И-order

Figure 9.4: Energy efficiency of the Matrix-multiplication on Xeon-Phi.

9.4 Discussion

The overall impression would lead to a conclusion, where the И-order traversal performs
best in cases of runtime performance, has the lowest energy consumption, and is, there-
fore, the most energy-efficient solution. However, the hidden variable here is the runtime,
which influences both the energy consumption and the runtime performance in terms of

154 CHAPTER 9. ENERGY EFFICIENCY ON DATA MOVEMENT

10000 12000 14000 16000 18000 20000
0

200

400

600

800

24
3
.5

3

25
7
.6

8

25
0.

07

25
7
.8

8

26
8
.1

2

26
8
.9

2

27
2
.8

5

27
5
.4

5

27
6
.6

3

27
8.

66

27
6.

72

32
7.

75

33
5.

88

33
5.

2

34
0
.8

5

34
5
.7

5

34
9
.1

3

35
5

35
7
.9

5

36
0
.9

7

36
1.

96

36
3.

16

48
4.

96

51
8.

29

53
5
.5

9

55
6
.8

7

57
2
.6

2

58
5
.3

1

60
4
.5

6

61
4
.7

6

62
4
.9

63
0.

73

63
6.

45

45
7.

86

49
1
.7

7

52
0
.2

8

54
7
.1

2

56
9
.7

1

59
7
.5

8

61
3
.3

7

62
7
.1

6

64
0.

58

64
7.

26

65
5
.7

1

[G
flo

ps
]

Runtime performance

Canonical Peano (TifaMMy) dilated (padding) И-order

Figure 9.5: Runtime performance of the LU decomposition on Xeon-Phi.

10000 12000 14000 16000 18000 20000
0

0.5

1

1.5

0.
19 0.
24 0.

31 0
.3

9

0
.4

7 0
.5

7 0
.6

9 0
.8

2 0
.9

6 1.
13

1.
32

0.
15 0.
19 0
.2

4

0
.3 0
.3

7

0
.4

5 0.
54 0.

64 0.
75

0.
89

1.
03

0
.1 0
.1

3

0
.1

6

0
.1

9

0
.2

3

0
.2

7

0.
33 0.
39 0.

45 0
.5

3 0
.6

1

0
.1

1

0
.1

3

0
.1

6

0
.1

9

0
.2

4

0
.2

7

0.
32 0.
37 0.

44 0
.5

2

0
.5

9[W
h]

Power consumption

Canonical Peano (TifaMMy) dilated (padding) И-order

Figure 9.6: Power consumption of the LU decomposition on Xeon-Phi.

Gflops. Therefore, it is more an indicator of being energy efficient and not proof. Another
indicator is the cache access pattern. The И-order has a lower number of expensive cache
misses (L2 and L3) than all others. See section 8.5 for more details. A tool to measure
the cache’s energy consumption is RAPL [127], unfortunately at the time of writing, this
is not available to our servers under test.

9.5. CONCLUSION 155

10000 12000 14000 16000 18000 20000
0

1

2

3

4

5

6
0
.7

9

0
.9

1 1
.2

4 1
.5

2

1
.7

3 2
.1

1 2.
54 2.

97

3.
46

4
.0

7

4
.7

8

0
.4

5

0
.5

7

0
.7

2

0
.8

9

1
.0

7

1.
29 1.

52 1.
79 2.

08 2
.4

6 2
.8

3

0
.2

1

0
.2

5

0
.2

9

0.
35

0.
4

0.
47

0.
55

0
.6

3

0
.7

2

0
.8

4

0
.9

6

0
.2

3

0
.2

6

0
.3

1

0.
35

0.
42

0.
45

0
.5

3

0
.6 0
.6

8

0
.8 0
.9

[M
O
P
S/

W
h]

Energy efficiency

Canonical Peano (TifaMMy) dilated (padding) И-order

Figure 9.7: Energy efficiency of the LU decomposition on Xeon-Phi.

9.5 Conclusion

The measurement with a wattmeter is an accurate approach if we want to measure the
total energy consumption of the system. However, to determine the power consumption
of each subsystem (e.g., cache, stalling of CPU cycles, variation in clock frequencies) is
quite challenging. An indicator that the Morton order traversal leads to energy-friendly
cache access is delivered by the cache-access pattern measured by Intel© Vtune, but to
ensure that the energy has been saved in a particular subsystem, we would need to test
the subsystem independently from all other parts.

Chapter 10

Summary and Conclusion

In this thesis, we revisited algorithms for shared-memory environments, especially for
multi- and many-core processors. We have identified and discussed various approaches in
the context of MIMD and SIMD parallelism and linked these together with an efficient
technique to traverse today’s memory hierarchy, including registers, cache, and main
memory. Our methods improve data locality, reduce cache-misses, and enhance runtime
behavior.

Starting with our cache-conscious approach in chapter 3, where we tackled the K-
means problem on multi-core environments, we could already recognize that there is no
gold standard for all different microarchitectures. We have extended the standard K-
means algorithm to an efficient algorithm designed for multi-core environments by clever
usage of our cluster encoding strategy and horizontal additions and permutations of
vectors in AVX2. However, the horizontal add function does not exist anymore for AVX-
512, and cache-sizes and latencies keep changing for every evolving processor generation.
The family of cache-oblivious algorithms addresses these drawbacks, and we extended
this family in the remaining chapters of this thesis with our cache-oblivious loops. These
loops replace two-nested loops in any host algorithm to traverse the memory hierarchy
in an order defined by a space-filling curve to improve the data locality.

We introduced novel space-filling curves, which are based on well known space-filling
curves from mathematical analysis, such as the Hilbert curve and the Morton-order curve.
Our space-filling curves, such as FUR-Hilbert from chapter 5 have the advantage of filling
arbitrary n×m rectangles while making only single-step moves in a recursively bisected
space. The original curves are restricted to squares (n = m), where the side length n

157

158 CHAPTER 10. SUMMARY AND CONCLUSION

must be a power of two.

In chapter 6 we applied the Hilbert curve to algorithms, such as the matrix multipli-
cation, the K-means clustering algorithm, the algorithm by Floyd and Warshall, and the
Cholesky decomposition and evaluated its performance through experimental evaluation.

The FGF-Hilbert Join introduced in chapter 7 is a similarity join, which optimally
exploits the complete cache hierarchy by processing potential join partners in the order
defined by the FGF-Hilbert curve. This curve inherits from the classical Hilbert curve
its optimal locality but allows traversing regions of arbitrary size and shape. FGF-
Hilbert Join integrates this idea into a filter-refinement algorithm. After the filter step,
potential candidates are efficiently refined in FGF-Hilbert order by multiple threads in
parallel using highly efficient MIMD and SIMD parallelism for the distance calculations.

Our contribution to the Morton-order curve in chapter 8 completes our work on
cache-oblivious space-filling curves. Our two different variants, the Z-order curve, and
the И-order showed superior performance over FUR-Hilbert and the Peano curve and
are not restricted to data dependencies shown for the LU decomposition.

10.1 Future work

Processors have different SIMD lengths, clock frequencies, cache-sizes, and cache la-
tencies. Therefore, it is impossible to address all concerns and questions raised in
shared memory environments. Nevertheless, exciting aspects in the context of space-
filling curves that have not been covered throughout this thesis are an exploration of
the memory hierarchy if other applications already occupy the cache. We believe that
space-filling curves can make significant contributions in these situations.

This thesis is a proof of concept for other space-filling curves. There are still many
other space-filling curves that have not been applied in the context of high-performance
computing. The Peano-Meander or the Switch-back Peano curve [132] looks like a mix-
ture of a Hilbert and Peano curve. In Figure 10.1, we visualized the third iteration of
both curves.

However, in terms of data dependencies, it would be interesting to generate a new
space-filling curve. One has to build a new “Leitmotiv” based on the patterns u , t , Z
or И . These patterns do not violate data dependencies observed in the most common

10.1. FUTURE WORK 159

ii

jj

(a) Peano-Meander curve

ii

jj

(b) Switch-back Peano curve

Figure 10.1: Interesting Space-Filling curves.

algorithms and serve as a good start.

Until now, very little work has been done to apply space-filling curves on the GPU.
Today’s Nvidia GPUs consist of memory hierarchies of up to 40 GB for the current
Ampere microarchitecture. It would be interesting to test if the same effects of our work
for the CPU are applicable for the GPU and its immense memory hierarchy.

Bibliography

[1] In: Internet and Distributed Computing Systems. Vol. 9258. Lecture Notes in Com-
puter Science. 2015. isbn: 978-3-319-23236-2.

[2] S. J. Ackerman, Ahmed Emam, G. Jack Lipovski, and Stanley Y. W. Su. ‘Imple-
mentation of a Context-Addressed Pipeline3 SIMD Architecture - Abstract’. In:
SIGIR Forum 10.4 (1976), pp. 27–28.

[3] Marcel R. Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,
Christiane Lammersen, and Christian Sohler. ‘StreamKM++: A clustering al-
gorithm for data streams’. In: ACM Journal of Experimental Algorithmics 17.1
(2012).

[4] Maha Alabduljalil, Xun Tang, and Tao Yang. ‘Cache-conscious performance opti-
mization for similarity search’. In: The 36th International ACM SIGIR conference
on research and development in Information Retrieval, SIGIR ’13, Dublin, Ireland
- July 28 - August 01, 2013. Ed. by Gareth J. F. Jones, Paraic Sheridan, Diane
Kelly, Maarten de Rijke, and Tetsuya Sakai. ACM, 2013, pp. 713–722.

[5] Fengwei An and Hans Jürgen Mattausch. ‘K-means clustering algorithm for mul-
timedia applications with flexible HW/SW co-design’. In: Journal of Systems Ar-
chitecture - Embedded Systems Design 59.3 (2013), pp. 155–164.

[6] E. Anderson et al. LAPACK Users’ Guide (Third Ed.) Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1999. isbn: 0-89871-447-8.

[7] Alexandr Andoni and Piotr Indyk. ‘Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions’. In: Commun. ACM 51.1 (2008),
pp. 117–122.

[8] Nikolaus Augsten and Michael H. Böhlen. Similarity Joins in Relational Database
Systems. Synthesis Lectures on Data Management. Morgan & Claypool Publish-
ers, 2013.

161

162 BIBLIOGRAPHY

[9] Michael Bader. ‘Exploiting the Locality Properties of Peano Curves for Parallel
Matrix Multiplication’. In: Euro-Par Conference. 2008, pp. 801–810.

[10] Michael Bader. Space-Filling Curves - An Introduction with Applications in Scien-
tific Computing. Vol. 9. Texts in Computational Science and Engineering. Springer,
2013. isbn: 978-3-642-31045-4.

[11] Michael Bader, Robert Franz, Stephan Günther, and Alexander Heinecke. ‘Hardware-
Oriented Implementation of Cache Oblivious Matrix Operations Based on Space-
Filling Curves’. In: Parallel Processing and Applied Mathematics, 7th International
Conference, PPAM 2007, Gdansk, Poland, September 9-12, 2007, Revised Selected
Papers. 2007, pp. 628–638.

[12] Michael Bader and Christian E. Mayer. ‘Cache Oblivious Matrix Operations Using
Peano Curves’. In: PARA Workshop. 2006, pp. 521–530.

[13] Jeroen Baert, Ares Lagae, and Philip Dutré. ‘Out-of-Core Construction of Sparse
Voxel Octrees’. In: Comput. Graph. Forum 33.6 (2014), pp. 220–227.

[14] P. Baldi, P. Sadowski, and D. Whiteson. ‘Searching for exotic particles in high-
energy physics with deep learning’. In: Nature Communications 5 (2014). Article,
4308 EP –.

[15] Janki Bhimani, Miriam Leeser, and Ningfang Mi. ‘Accelerating K-Means cluster-
ing with parallel implementations and GPU computing’. In: HPEC Conference.
2015, pp. 1–6.

[16] Theodore Bially. ‘Space-filling curves: Their generation and their application to
bandwidth reduction’. In: IEEE Trans. Information Theory 15 (1969), pp. 658–
664.

[17] Markus Bläser. ‘Fast Matrix Multiplication’. In: Theory of Computing, Graduate
Surveys 5 (2013), pp. 1–60.

[18] Christian Böhm, Bernhard Braunmüller, Markus M. Breunig, and Hans-Peter
Kriegel. ‘High Performance Clustering Based on the Similarity Join’. In: CIKM.
2000, pp. 298–305.

[19] Christian Böhm, Bernhard Braunmüller, Florian Krebs, and Hans-Peter Kriegel.
‘Epsilon Grid Order: An Algorithm for the Similarity Join on Massive High-
Dimensional Data’. In: SIGMOD Conf. 2001. 2001, pp. 379–388.

[20] Christian Böhm and Florian Krebs. ‘The k -Nearest Neighbour Join: Turbo Charg-
ing the KDD Process’. In: Knowl. Inf. Syst. 6.6 (2004), pp. 728–749.

BIBLIOGRAPHY 163

[21] Christian Böhm and Hans-Peter Kriegel. ‘A Cost Model and Index Architecture
for the Similarity Join’. In: ICDE. 2001, pp. 411–420.

[22] Christian Böhm, Robert Noll, Claudia Plant, and Andrew Zherdin. ‘Indexsup-
ported Similarity Join on Graphics Processors’. In: Datenbanksysteme in Business,
Technologie und Web BTW 2009. 2009, pp. 57–66.

[23] Christian Böhm, Martin Perdacher, and Claudia Plant. ‘A Novel Hilbert Curve
for Cache-locality Preserving Loops’. In: IEEE Transactions on Big Data (2018),
pp. 1–14. issn: 2332-7790.

[24] Christian Böhm, Martin Perdacher, and Claudia Plant. ‘Cache-oblivious loops
based on a novel space-filling curve’. In: 2016 IEEE International Conference
on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016. IEEE
Computer Society, 2016, pp. 17–26.

[25] Christian Böhm, Martin Perdacher, and Claudia Plant. ‘Multi-core K-means’. In:
Proceedings of the 2017 SIAM International Conference on Data Mining, Houston,
Texas, USA, April 27-29, 2017. Ed. by Nitesh V. Chawla and Wei Wang. SIAM,
2017, pp. 273–281.

[26] Douglas C. Bossen, Joel M. Tendler, and Kevin Reick. ‘Power4 System Design for
High Reliability’. In: IEEE Micro 22.2 (2002), pp. 16–24.

[27] Greg Breinholt and Christoph Schierz. ‘Algorithm 781: Generating Hilbert’s Space-
filling Curve by Recursion’. In: ACM Trans. Math. Softw. 24.2 (June 1998),
pp. 184–189. issn: 0098-3500.

[28] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. ‘Efficient Processing
of Spatial Joins Using R-Trees’. In: SIGMOD Conf. 1993. 1993, pp. 237–246.

[29] Brent Bryan, Frederick Eberhardt, and Christos Faloutsos. ‘Compact Similarity
Joins’. In: ICDE. 2008, pp. 346–355.

[30] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. ‘A class of
parallel tiled linear algebra algorithms for multicore architectures’. In: Parallel
Computing 35.1 (2009), pp. 38–53.

[31] Y. Dora Cai, Rabindra Robby Ratan, Cuihua Shen, and Jay Alameda. ‘Grouping
game players using parallelized k-means on supercomputers’. In: XSEDE Confer-
ence. 2015, 10:1–10:7.

[32] Georg Cantor. ‘Ueber unendliche, lineare Punktmannichfaltigkeiten’. In: Mathe-
matische Annalen 17.3 (1880), pp. 355–358.

164 BIBLIOGRAPHY

[33] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thot-
tethodi. ‘Recursive Array Layouts and Fast Matrix Multiplication’. In: IEEE
Trans. Parallel Distrib. Syst. 13.11 (2002), pp. 1105–1123.

[34] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thot-
tethodi. ‘Recursive Array Layouts and Fast Parallel Matrix Multiplication’. In:
Proceedings of the Eleventh Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’99, Saint-Malo, France, June 27-30, 1999. Ed. by Gary L.
Miller and Vijaya Ramachandran. ACM, 1999, pp. 222–231.

[35] Lu Chen, Yunjun Gao, Xinhan Li, Christian S. Jensen, and Gang Chen. ‘Effi-
cient Metric Indexing for Similarity Search and Similarity Joins’. In: IEEE Trans.
Knowl. Data Eng. 29.3 (2017), pp. 556–571.

[36] Ningtao Chen, Nengchao Wang, and Baochang Shi. ‘A new algorithm for encoding
and decoding the Hilbert order’. In: Softw., Pract. Exper. 37.8 (2007), pp. 897–
908.

[37] Tse-Wei Chen, Chih-Hao Sun, Hsiao-Hang Su, Shao-Yi Chien, D. Deguchi, I. Ide,
and H. Murase. ‘Power-Efficient Hardware Architecture of K-Means Clustering
With Bayesian-Information-Criterion Processor for Multimedia Processing Appli-
cations’. In: Emerging and Selected Topics in Circuits and Systems, IEEE Journal
on 1.3 (2011), pp. 357–368. issn: 2156-3357.

[38] Jaeyoung Choi, James Demmel, Inderjit S. Dhillon, Jack J. Dongarra, Susan Os-
trouchov, Antoine Petitet, Ken Stanley, David W. Walker, and R. Clinton Whaley.
‘ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Com-
puters - Design Issues and Performance’. In: Applied Parallel Computing, Com-
putations in Physics, Chemistry and Engineering Science, Second International
Workshop, PARA ’95, Lyngby, Denmark, August 21-24, 1995, Proceedings. 1995,
pp. 95–106.

[39] Noam Chomsky. ‘Three models for the description of language’. In: IRE Trans.
Inf. Theory 2.3 (1956), pp. 113–124.

[40] Kuo-Liang Chung, Yi-Luen Huang, and Yau-Wen Liu. ‘Efficient algorithms for
coding Hilbert curve of arbitrary-sized image and application to window query’.
In: Inf. Sci. 177.10 (2007), pp. 2130–2151.

[41] Paolo Ciaccia, Marco Patella, and Pavel Zezula. ‘M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces’. In: VLDB’97. 1997, pp. 426–
435.

BIBLIOGRAPHY 165

[42] William J. Dally, James D. Balfour, David Black-Schaffer, James Chen, R. Curtis
Harting, Vishal Parikh, JongSoo Park, and David Sheffield. ‘Efficient Embedded
Computing’. In: Computer 41.7 (2008), pp. 27–32.

[43] Dong Deng, Yufei Tao, and Guoliang Li. ‘Overlap Set Similarity Joins with The-
oretical Guarantees’. In: SIGMOD Conf. 2018. 2018, pp. 905–920.

[44] Jens-Peter Dittrich and Bernhard Seeger. ‘GESS: a scalable similarity-join algo-
rithm for mining large data sets in high dimensional spaces’. In: SIGKDD. 2001,
pp. 47–56.

[45] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and Pavel Zezula. ‘D-Index:
Distance Searching Index for Metric Data Sets’. In: Multimedia Tools Appl. 21.1
(2003), pp. 9–33.

[46] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. ‘Similarity Join in Metric
Spaces Using eD-Index’. In: DEXA 2003. 2003, pp. 484–493.

[47] Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S. Duff. ‘A set
of level 3 basic linear algebra subprograms’. In: ACM Trans. Math. Softw. 16.1
(1990), pp. 1–17.

[48] Ralph Duncan. ‘A Survey of Parallel Computer Architectures’. In: Computer 23.2
(1990), pp. 5–16.

[49] Charles Elkan. ‘Using the Triangle Inequality to Accelerate k-Means’. In: ICML
Conference. 2003, pp. 147–153.

[50] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Addison Wesley, 5th edition, 2006.

[51] Miguel Ferreira, Nuno Roma, and Luís M. S. Russo. ‘Cache-Oblivious parallel
SIMD Viterbi decoding for sequence search in HMMER’. In: BMC Bioinformatics
15 (2014), p. 165.

[52] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-Christoph
Freytag. ‘Set Similarity Joins on MapReduce: An Experimental Survey’. In: PVLDB
11.10 (2018), pp. 1110–1122.

[53] Michael J Flynn. ‘Very high-speed computing systems’. In: Proceedings of the
IEEE 54.12 (1966), pp. 1901–1909.

[54] F.D. Fracchia, P. Prusinkiewicz, and A. Lindenmayer. Synthesis of Space-filling
Curves on the Square Grid. Amsterdam, The Netherlands: Elsevier Sci. Pub. B.
V., 1991, pp. 341–366. isbn: 9780773101715.

166 BIBLIOGRAPHY

[55] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
‘Cache-Oblivious Algorithms’. In: 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. 1999,
pp. 285–298.

[56] Irene Gargantini. ‘An Effective Way to Represent Quadtrees’. In: Commun. ACM
25.12 (1982), pp. 905–910.

[57] David K. Gifford and Alfred Z. Spector. ‘The Space Shuttle Primary Computer
System’. In: Commun. ACM 27.9 (1984), pp. 872–900.

[58] Ali Hadian and Saeed Shahrivari. ‘High performance parallel k-means clustering
for disk-resident datasets on multi-core CPUs’. In: The Journal of Supercomputing
69.2 (2014), pp. 845–863.

[59] Md Rakib Hasan and R. Clint Whaley. ‘Effectively Exploiting Parallel Scale for All
Problem Sizes in LU Factorization’. In: 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014. 2014,
pp. 1039–1048.

[60] Bingsheng He, Yinan Li, Qiong Luo, and Dongqing Yang. ‘EaseDB: a cache-
oblivious in-memory query processor’. In: SIGMOD Conf. 2007. 2007, pp. 1064–
1066.

[61] Alexander Heinecke and Carsten Trinitis. ‘Cache-oblivious matrix algorithms in
the age of multicores and many cores’. In: Concurrency and Computation: Practice
and Experience 27.9 (2010), pp. 2215–2234.

[62] Alexander Heinecke and Carsten Trinitis. ‘Making TifaMMy fit for tomorrow: To-
wards future shared memory systems and beyond’. In: 2011 International Confer-
ence on High Performance Computing & Simulation, HPCS 2012, Istanbul,
Turkey, July 4-8, 2011. 2011, pp. 517–524.

[63] Duong Van Hieu and Phayung Meesad. ‘Fast K-Means Clustering for Very Large
Datasets Based on MapReduce Combined with a New Cutting Method’. In: KSE
conference. 2014, pp. 287–298.

[64] David Hilbert. ‘Über die stetige Abbildung einer Linie auf ein Flächenstück’. In:
Mathematische Annalen 38 (1891).

[65] ThienLuan Ho, Seungrohk Oh, and Hyunjin Kim. ‘New algorithms for fixed-length
approximate string matching and approximate circular string matching under the
Hamming distance’. In: The Journal of Supercomputing 74.5 (2018), pp. 1815–
1834.

BIBLIOGRAPHY 167

[66] Intel 64 and IA-32 Architectures Optimization Reference Manual.

[67] James Jeffers, James Reinders, and Avinash Sodani. Intel Xeon Phi Processor
High Performance Programming: Knights Landing Edition 2Nd Edition. 2nd. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016. isbn: 0128091940,
9780128091944.

[68] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. ‘Product Quantization for
Nearest Neighbor Search’. In: IEEE Trans. Pattern Anal. Mach. Intell. 33.1 (2011),
pp. 117–128.

[69] Dmitri V. Kalashnikov. ‘Super-EGO: fast multi-dimensional similarity join’. In:
VLDB J. 22.4 (2013), pp. 561–585.

[70] Dmitri V. Kalashnikov and Sunil Prabhakar. ‘Fast similarity join for multi-dimensional
data’. In: Inf. Syst. 32.1 (2007), pp. 160–177.

[71] Dmitri V. Kalashnikov and Sunil Prabhakar. ‘Similarity Join for Low-and High-
Dimensional Data’. In: (DASFAA ’03). 2003, pp. 7–16.

[72] Helge van Koch. ‘Sur une courbe continue sans tangente, obtenue par une con-
struction geometrique elementaire/Van Koch Helge’. In: Arkiv for Matematik 1
(1904), pp. 681–704.

[73] Nick Koudas and Kenneth C. Sevcik. ‘High Dimensional Similarity Joins: Algo-
rithms and Performance Evaluation’. In: IEEE Trans. Knowl. Data Eng. 12.1
(2000), pp. 3–18.

[74] Susana Ladra, Oscar Pedreira, José Duato, and Nieves R. Brisaboa. ‘Exploiting
SIMD Instructions in Current Processors to Improve Classical String Algorithms’.
In: ADBIS conference. 2012, pp. 254–267.

[75] Shigang Li, Yunquan Zhang, and Torsten Hoefler. ‘Cache-Oblivious MPI All-to-
All Communications Based on Morton Order’. In: IEEE Trans. Parallel Distrib.
Syst. 29.3 (2018), pp. 542–555.

[76] Ye Li, Jian Wang, and Leong Hou U. ‘Multidimensional Similarity Join Using
MapReduce’. In: Web-Age Information Management. 2016, pp. 457–468.

[77] You Li, Kaiyong Zhao, Xiaowen Chu, and Jiming Liu. ‘Speeding up k-Means
algorithm by GPUs’. In: J. Comput. Syst. Sci. 79.2 (2013), pp. 216–229.

[78] M. Lichman. UCI Machine Learning Repository. 2013.

168 BIBLIOGRAPHY

[79] Michael D. Lieberman, Jagan Sankaranarayanan, and Hanan Samet. ‘A Fast Simi-
larity Join Algorithm Using Graphics Processing Units’. In: ICDE. 2008, pp. 1111–
1120.

[80] Jonathan Lifflander, Phil Miller, Ramprasad Venkataraman, Anshu Arya, Laxmikant
V. Kalé, and Terry Jones. ‘Mapping Dense LU Factorization on Multicore Super-
computer Nodes’. In: 26th IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012. 2012, pp. 596–606.

[81] Aristid Lindenmayer. ‘Mathematical models for cellular interaction in develop-
ment: Parts I and II.’ In: Journal of Theoretical Biology 18 (1968).

[82] K. Patrick Lorton and David S. Wise. ‘Analyzing block locality in Morton-order
and Morton-hybrid matrices’. In: SIGARCH Computer Architecture News 35.4
(2007), pp. 6–12.

[83] Youzhong Ma, Shijie Jia, and Yongxin Zhang. ‘A novel approach for high-dimensional
vector similarity join query’. In: Concurrency and Computation: Practice and Ex-
perience 29.5 (2017).

[84] Tobias Maier, Peter Sanders, and Jochen Speck. ‘Locality Aware DAG-Scheduling
for LU-Decomposition’. In: 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2015, Hyderabad, India, May 25-29, 2015. 2015, pp. 82–
92.

[85] Samuel McCauley and Francesco Silvestri. ‘Adaptive MapReduce Similarity Joins’.
In: SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond.
2018, 4:1–4:4.

[86] Panagiotis D. Michailidis and Konstantinos G. Margaritis. ‘Implementing Parallel
LU Factorization with Pipelining on a MultiCore Using OpenMP’. In: 13th IEEE
International Conference on Computational Science and Engineering, CSE 2010,
Hong Kong, China, December 11-13, 2010. 2010, pp. 253–260.

[87] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. ‘Kitsune: An
Ensemble of Autoencoders for Online Network Intrusion Detection’. In: Network
and Distributed System Security Symposium, NDSS. 2018.

[88] Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio, Hye-Sun Kim,
Yun-Ji Ban, Seung Woo Nam, and Sung-Eui Yoon. ‘Cache-oblivious ray reorder-
ing’. In: ACM Trans. Graph. 29.3 (2010).

[89] G. H. Morton. ‘A computer oriented geodetic data base and a new technique in
file sequencing’. In: 1966.

BIBLIOGRAPHY 169

[90] Ernst Naschenweng. ‘A Cache Optimized Implementation of the Floyd-Warshall
Algorithm Using Hardware Acceleration Through Intel Intrinsics’. Bachelor’s The-
sis. Währinger Straße 29, 1090 Vienna: University of Vienna, Research Group of
Data Mining, 2018.

[91] Saul B. Needleman and Christian D. Wunsch. ‘A general method applicable to
the search for similarities in the amino acid sequence of two proteins’. In: Journal
of Molecular Biology 48.3 (1970), pp. 443 –453. issn: 0022-2836.

[92] Giap Nguyen, Patrick Franco, and Jean-Marc Ogier. ‘Space-Filling Curve for Im-
age Dynamical Indexing’. In: Computer and Information Sciences III - 27th Inter-
national Symposium on Computer and Information Sciences, Paris, France, Oc-
tober 3-4, 2012. Ed. by Erol Gelenbe and Ricardo Lent. Springer, 2012, pp. 311–
319.

[93] Anthony E. Nocentino and Philip J. Rhodes. ‘Optimizing memory access on GPUs
using morton order indexing’. In: Proceedings of the 48th Annual Southeast Re-
gional Conference, 2010, Oxford, MS, USA, April 15-17, 2010. Ed. by H. Conrad
Cunningham, Paul Ruth, and Nicholas A. Kraft. ACM, 2010, p. 18.

[94] Jack A. Orenstein. ‘Spatial Query Processing in an Object-oriented Database
System’. In: SIGMOD Conf. 1986. 1986, pp. 326–336.

[95] Rasmus Pagh, Ninh Pham, Francesco Silvestri, and Morten Stöckel. ‘I/O-Efficient
Similarity Join’. In: Algorithmica 78.4 (2017), pp. 1263–1283.

[96] Szilárd Páll and Berk Hess. ‘A flexible algorithm for calculating pair interactions
on SIMD architectures’. In: Computer Physics Communications 184.12 (2013),
pp. 2641–2650.

[97] Nicolas Papernot and Patrick D. McDaniel. ‘Deep k-Nearest Neighbors: Towards
Confident, Interpretable and Robust Deep Learning’. In: CoRR abs/1803.04765
(2018). arXiv: 1803.04765.

[98] Rodrigo Paredes and Nora Reyes. ‘Solving similarity joins and range queries in
metric spaces with the list of twin clusters’. In: J. Discrete Algorithms 7.1 (2009),
pp. 18–35.

[99] Jeff Parkhurst, John A. Darringer, and Bill Grundmann. ‘From single core to
multi-core: preparing for a new exponential’. In: 2006 International Conference
on Computer-Aided Design, ICCAD 2006, San Jose, CA, USA, November 5-9,
2006. Ed. by Soha Hassoun. ACM, 2006, pp. 67–72.

https://arxiv.org/abs/1803.04765

170 BIBLIOGRAPHY

[100] Filip Pawlowski, Bora Uçar, and Albert-Jan Yzelman. ‘A multi-dimensional Morton-
ordered block storage for mode-oblivious tensor computations’. In: J. Comput.
Science 33 (2019), pp. 34–44.

[101] Peano. ‘Sur une courbe, qui remplit toute une aire plane’. In: Mathematische
Annalen 36 (1890), pp. 157–160.

[102] Spencer S. Pearson and Yasin N. Silva. ‘Index-Based R-S Similarity Joins’. In:
SISAP. 2014, pp. 106–112.

[103] Dan Pelleg and Andrew Moore. ‘X-means: Extending K-means with Efficient Es-
timation of the Number of Clusters’. In: ICML conference. 2000, pp. 727–734.

[104] Martin Perdacher, Claudia Plant, and Christian Böhm. ‘Cache-oblivious High-
performance Similarity Join’. In: Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Nether-
lands, June 30 - July 5, 2019. ACM, 2019, pp. 87–104.

[105] Martin Perdacher, Claudia Plant, and Christian Böhm. ‘Improved Data Local-
ity Using Morton-order Curve on the Example of LU Decomposition’. In: 2020
IEEE International Conference on Big Data, BigData 2020, Atlanta, GA, USA,
December 10-13, 2020. Accepted for publication. Dec. 2020.

[106] Loren K. Platzman and John J. Bartholdi III. ‘Spacefilling curves and the planar
travelling salesman problem’. In: J. ACM 36.4 (1989), pp. 719–737.

[107] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical recipes: the art of scientific computing, 3rd Edition. Cambridge
University Press, 2007.

[108] Hans Sagan. Space-filling curves. Universitext Series. Springer-Verlag, 1994. isbn:
9780387942650.

[109] Hanan Samet. ‘The Quadtree and Related Hierarchical Data Structures’. In: ACM
Comput. Surv. 16.2 (1984), pp. 187–260.

[110] Donovan A. Schneider and David J. DeWitt. ‘A Performance Evaluation of Four
Parallel Join Algorithms in a Shared-Nothing Multiprocessor Environment’. In:
SIGMOD Conf. 1989. 1989, pp. 110–121.

[111] Ayon Sen, A. S. M. Sohidull Islam, and Md. Yusuf Sarwar Uddin. ‘MARQUES:
Distributed multi-attribute range query solution using space filling curve on DTHs’.
In: International Conference on Networking Systems and Security, NSysS 2015,
Dhaka, Bangladesh, January 5-7, 2015. IEEE, 2015, pp. 1–9.

BIBLIOGRAPHY 171

[112] Binanda Sengupta and Abhijit Das. Use of SIMD-Based Data Parallelism to Speed
up Sieving in Integer-Factoring Algorithms. Cryptology ePrint Archive, Report
2015/044. 2015.

[113] Saeed Shahrivari and Saeed Jalili. ‘Single-pass and linear-time k-means clustering
based on MapReduce’. In: Inf. Syst. 60 (2016), pp. 1–12.

[114] Zeyuan Shang, Yaxiao Liu, Guoliang Li, and Jianhua Feng. ‘K-Join: Knowledge-
Aware Similarity Join’. In: ICDE. 2017, pp. 23–24.

[115] Shubham Sharma, K. V. S. Hari, and Geert Leus. ‘Space Filling Curves for MRI
Sampling’. In: 2020 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP 2020, Barcelona, Spain, May 4-8, 2020. IEEE, 2020,
pp. 1115–1119.

[116] Michael Shindler, Alex Wong, and Adam Meyerson. ‘Fast and Accurate k-means
For Large Datasets’. In: NIPS conference. 2011, pp. 2375–2383.

[117] H. J. S. Smith. On the Integration of Discontinuous Functions. Nov. 1874.

[118] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel
Baun Kjærgaard, Anind K. Dey, Tobias Sonne, and Mads Møller Jensen. ‘Smart
Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for
Activity Recognition’. In: Embedded Networked Sensor Systems, SenSys. 2015,
pp. 127–140.

[119] Mehul Tikekar, Chao-Tsung Huang, Chiraag Juvekar, Vivienne Sze, and Anantha
P. Chandrakasan. ‘A 249-Mpixel/s HEVC Video-Decoder Chip for 4K Ultra-HD
Applications’. In: IEEE J. Solid State Circuits 49.1 (2014), pp. 61–72.

[120] Po-An Tsai, Nathan Beckmann, and Daniel Sánchez. ‘Jenga: Software-Defined
Cache Hierarchies’. In: Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017.
ACM, 2017, pp. 652–665.

[121] Satori Tsuzuki and Takayuki Aoki. ‘Effective Dynamic Load Balance using Space-
Filling Curves for Large-Scale SPH Simulations on GPU-rich Supercomputers’.
In: 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Sys-
tems, ScalA@SC 2016, Salt Lake, UT, USA, November 14, 2016. IEEE Computer
Society, 2016, pp. 1–8.

[122] Vinod Valsalam and Anthony Skjellum. ‘A framework for high-performance ma-
trix multiplication based on hierarchical abstractions, algorithms and optimized
low-level kernels’. In: Concurr. Comput. Pract. Exp. 14.10 (2002), pp. 805–839.

172 BIBLIOGRAPHY

[123] David W. Walker. ‘Morton ordering of 2D arrays for efficient access to hierarchical
memory’. In: Int. J. High Perform. Comput. Appl. 32.1 (2018), pp. 189–203.

[124] Jiajun Wang, Prakash Ramrakhyani, Wendy Elsasser, and Lizy Kurian John. ‘Re-
ducing Data Movement and Energy in Multilevel Cache Hierarchies without Los-
ing Performance: Can you have it all?’ In: 28th International Conference on Par-
allel Architectures and Compilation Techniques, PACT 2019, Seattle, WA, USA,
September 23-26, 2019. IEEE, 2019, pp. 383–394.

[125] Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. ‘Scalable all-pairs sim-
ilarity search in metric spaces’. In: SIGKDD. 2013, pp. 829–837.

[126] StephenWarshall. ‘A Theorem on Boolean Matrices’. In: J. ACM 9 (1962), pp. 11–
12.

[127] Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr
Luszczek, Daniel Terpstra, and Shirley Moore. ‘Measuring Energy and Power
with PAPI’. In: 41st International Conference on Parallel Processing Workshops,
ICPPW 2012, Pittsburgh, PA, USA, September 10-13, 2012. IEEE Computer So-
ciety, 2012, pp. 262–268.

[128] R. Clinton Whaley, Antoine Petitet, and Jack J. Dongarra. ‘Automated empirical
optimizations of software and the ATLAS project’. In: Parallel Computing 27.1-2
(2001), pp. 3–35.

[129] Thomas Wirtz, Rong Ge, Ziliang Zong, and Zizhong Chen. ‘Power and energy
characteristics of MapReduce data movements’. In: International Green Comput-
ing Conference, IGCC 2013, Arlington, VA, USA, June 27-29, 2013, Proceedings.
2013, pp. 1–7.

[130] David S. Wise. ‘Ahnentafel Indexing into Morton-Ordered Arrays, or Matrix Lo-
cality for Free’. In: Euro-Par 2000, Parallel Processing, 6th International Euro-Par
Conference, Munich, Germany, August 29 - September 1, 2000, Proceedings. 2000,
pp. 774–783.

[131] Rongteng Wu and Xiaohong Xie. ‘Two-Stage Column Block Parallel LU Factor-
ization Algorithm’. In: IEEE Access 8 (2020), pp. 2645–2655.

[132] W Wunderlich. ‘Über Peano-Kurven.’ In: Elemente der Mathematik 28 (1973),
pp. 1–10.

[133] Chuan Xiao, Wei Wang, and Xuemin Lin. ‘Ed-Join: an efficient algorithm for
similarity joins with edit distance constraints’. In: PVLDB 1.1 (2008), pp. 933–
944.

BIBLIOGRAPHY 173

[134] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. ‘Efficient
similarity joins for near-duplicate detection’. In: ACM Trans. Database Syst. 36.3
(2011), 15:1–15:41.

[135] Yujie Xu, Wenyu Qu, Zhiyang Li, Changqing Ji, Yuanyuan Li, and Yinan Wu.
‘Fast Scalable k-means++ Algorithm with MapReduce’. In: ICA3PP conference.
2014, pp. 15–28.

[136] Ichitaro Yamazaki and Xiaoye S. Li. ‘New Scheduling Strategies and Hybrid Pro-
gramming for a Parallel Right-looking Sparse LU Factorization Algorithm on
Multicore Cluster Systems’. In: 26th IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012. 2012,
pp. 619–630.

[137] Chenyun Yu, Sarana Nutanong, Hangyu Li, Cong Wang, and Xingliang Yuan.
‘A Generic Method for Accelerating LSH-Based Similarity Join Processing’. In:
IEEE Trans. Knowl. Data Eng. 29.4 (2017), pp. 712–726.

[138] Xianyi Zhang, Qian Wang, and Yunquan Zhang. ‘Model-driven Level 3 BLAS
Performance Optimization on Loongson 3A Processor’. In: 18th IEEE Interna-
tional Conference on Parallel and Distributed Systems, ICPADS 2012, Singapore,
December 17-19, 2012. 2012, pp. 684–691.

[139] Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun Nie,
Hongfei Yan, and Ji-Rong Wen. ‘A General SIMD-Based Approach to Accelerating
Compression Algorithms’. In: ACM Trans. Inf. Syst. 33.3 (2015), 15:1–15:28.

[140] Weijie Zhao, Florin Rusu, Bin Dong, and Kesheng Wu. ‘Similarity Join over Array
Data’. In: SIGMOD Conf. 2016. 2016, pp. 2007–2022.

Appendix A

Further Experiments

A.1 Runtime Performance on Morton-order Curves

N Runtime (pext) GFLOPS (pext)

1080 0.02528560 99.80929
2040 0.05674588 299.32351
3000 0.10799772 500.18867
4080 0.21694396 626.17247
5040 0.33183284 771.90906
6000 0.52795712 818.31903
7080 0.83910536 847.86541
8040 1.22086588 851.42188
9000 1.75569396 830.45738
10080 2.41217496 849.20357
11040 3.14761644 854.99675
12000 4.00843500 862.19411
13080 5.13225008 872.06854
14040 6.34974896 871.73409
15000 7.70795608 875.73250
16080 9.49125264 876.13560
17040 11.71310596 844.84022
18000 13.80301960 845.05089
19080 16.30293752 852.12832
20040 18.78117756 857.04377

Runtime (tzcnt) GFLOPS (tzcnt)

0.02567013 98.21039
0.05767773 294.52095
0.11159680 483.99828
0.22232593 611.21640
0.35442280 723.40718
0.55517820 778.81669
0.85860920 827.11213
1.22177987 850.80200
1.80084493 809.93762
2.50227400 819.12002
3.25397660 827.55675
4.15032567 833.21511
5.31713333 842.18406
6.58571127 840.84710
7.97758180 846.55658
9.84341187 844.82968
12.53866927 789.42072
15.05740027 775.90689
18.05350733 772.58042
20.96695720 771.67350

Table A.1: Runtime on two different Morton order implementations tested on matrix
multiplication.

175

176 APPENDIX A. FURTHER EXPERIMENTS

N Runtime (pext) GFLOPS (pext)

1080 0.0565760 15.05235
2040 0.1470210 38.55971
3000 0.2188178 82.38057
4080 0.3319146 136.52417
5040 0.4607914 185.35968
6000 0.5827974 247.21604
7080 0.7519278 314.81322
8040 0.9773798 354.63445
9000 1.2025738 404.27311
10080 1.5352118 444.90485
11040 1.8739252 478.83964
12000 2.2783454 505.75729
13080 2.7932188 534.23548
14040 3.3228154 555.39365
15000 3.8951066 577.76800
16080 4.6595276 594.98591
17040 5.4327788 607.26237
18000 6.2750236 619.71103
19080 7.4001814 625.85387
20040 8.9609248 599.65432

Runtime (tzcnt) GFLOPS (tzcnt)

0.0597580 14.09585
0.1443688 39.28681
0.2225354 80.97075
0.3384730 133.88474
0.4660542 183.26344
0.5889154 244.64207
0.7566930 312.83242
0.9869642 351.19145
1.1984746 405.67026
1.5366988 444.47598
1.8717652 479.38502
2.2795128 505.50180
2.8086294 531.31211
3.3426794 552.09495
3.8972954 577.44179
4.6557162 595.47314
5.4261852 607.99708
6.2708224 620.12559
7.4479432 621.86005
11.4387290 470.48430

Table A.2: Runtime on two different Morton order implementations tested on LU de-
composition.

	Abstract
	Kurzfassung
	Acknowledgments
	Bibliographic Note
	List of Figures
	List of Tables
	Introduction
	Contributions
	Publications
	Structure of this Thesis

	Parallelism in Shared Memory Environment
	SIMD and MIMD
	Parallelism via Instructions
	Hardware Multithreading
	General Remarks

	Multi-core K-means
	Introduction to a Cache-conscious Approach
	K-means
	Multi-core K-means
	Cluster ID Coding
	Experiments
	Related Work and Discussion
	Conclusion

	Construction of Space-Filling Curves
	Introduction and Historical Context
	Hilbert Function On the Example of Approximating Polygones
	A Quaternary Hilbert Pattern
	Observations
	L-systems
	Concluding Remarks

	Cache-oblivious Hilbert Curve
	Introduction
	Locality of the Hilbert Curve
	Well-known Methods for the Hilbert Curve
	Novel Non-recursive Lindenmayer
	Nano-Programs
	Overall Architecture
	Concluding Remarks

	Applications of Cache-oblivious Hilbert Curve
	Algorihtms
	Experimental Evaluation
	Related Work and Discussion
	Conclusion

	High-Performance Similarity Join
	Introduction
	Similarity Join
	Preliminaries
	The FGF-Hilbert Join
	Experimental Evaluation
	Related Work and Discussion
	Conclusion

	Cache-oblivious Morton-order Curve
	Introduction
	Generating Morton-order Curves
	Parallelization
	Application of Morton-order Loops for LU Decompositon and Matrix Multiplication
	Experimental Evaluation
	Related Work and Discussion
	Conclusion

	Energy efficiency on Data Movement
	Introduction
	Experimental Setup
	Experimental Evaluation
	Discussion
	Conclusion

	Summary and Conclusion
	Future work

	Bibliography
	Further Experiments
	Runtime Performance on Morton-order Curves

