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Abstract
A Yang-Mills theory has the purpose of extending the abelian U(1) gauge principle of Quantum
Electrodynamics to the case of a non-abelian SU(n) gauge principal. The Yang-Mills equations
of a Yang-Mills field coupled to a scalar field arise as the equations of motion of the Lagrangian
density of the corresponding field. Some global solutions of this system of equations are studied
for both the presence and the absence of a scalar field φ in section 3. Results on the energy
such as the possibility of splitting the energy in different parts and corresponding estimates in
the system together with conserved quantities are presented in section 4 and 5. Results on the
asymptotic behaviour of the system for the possibility of the scalar field having mass zero are
presented in section 6. Section 7 collects estimates and their proofs in the case the scalar field
has positive mass m > 0.

Zusammenfassung
Eine Yang-Mills Theorie hat den Zweck, das abelsche U(1) Eichprinzip der Quantenelektro-
dynamik für den Fall eines nicht-abelschen SU(n) Eichprinzips zu erweitern. Die Yang-Mills
Gleichungen eines Yang-Mills Feldes, welches an ein skalares Feld gekoppelt, ist erhält man als
Bewegungsgleichungen der Lagrangedichte des dazugehörigen Feldes. Einige globale Lösungen
dieses Systems von Gleichungen werden für beide Fälle, nämlich die Anwesenheit und Abwesenheit
eines skalaren Feldes, in Kapitel 3 studiert. Resultate bezüglich der Energie, wie beispielsweise die
Möglichkeit die Energie in verschiedene Bestandteile aufzuteilen, und dazugehörige Abschätzungen
in dem System werden zusammen mit Erhaltungsgrößen in den Kapiteln 4 und 5 behandelt. Das
asymptotische Verhalten des Systems für die Möglichkeit eines skalaren Feldes mit Masse null
wird in Kapitel 6 analysiert. In Kapitel 7 werden Abschätzungen für den Fall, dass das skalare
Feld eine positive Masse m > 0 hat, behandelt.
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1 Introduction to Yang-Mills theory
First, we start with a brief introduction to Yang-Mills theory itself to gain a first impression of
why one would like to delve deeper into this area of physics and investigate the mathematics
behind it.

We begin with the definition of the action and why we need the Euler-Lagrange equations.[6]

Definition. (Lagrange function and the action)
Let L = L(x1(t), x2(t), · · · , xn(t), ẋ1(t), ẋ2(t), · · · , ẋn(t)) be a first order function (Lagrange
function). The action S is defined by

S =
∫ t1

t0

L(x1(t), x2(t), · · · , xn(t), ẋ1(t), ẋ2(t), · · · , ẋn(t))dt t0, t1 ∈ R.

Now, we want to obtain stationary points of the action S under compactly supported variations.
The following Theorem is the first step obtaining these points.

Theorem 1.1. A field is a stationary point of the action if and only if it satisfies the Euler-
Lagrange equations

d

dt

∂L

∂ẋn
− ∂L

∂xn
= 0, n = 1, 2, ...

Next, we need the definition of a Lie group.

Definition. (Lie group)
A Lie group is a group G, which is simultaneously a differentiable manifold and such that the
group multiplication

µ : G×G 7→ G,

µ(g, h) = g · h

is smooth.

Remark: The smoothness of the inverse operation follows from the smoothness of the multiplica-
tion.

Now we can explain the principal idea of a Yang-Mills theory (YM) with this setup[7]. In
physics, there are four fundamental interactions: the strong interaction, the electromagnetic
interaction, the weak interaction and gravity. A theory states that at very high energies, all
of these interactions were unified into fewer combinations of these four. Physicists managed to
formulate a theory where the electromagnetic interaction could be combined with the weak one
to obtain the electroweak interaction. Gauge groups play an essential role in all these theories
because knowing the corresponding group of the interaction allows mathematics to get a deeper
insight of the theory. A Yang-Mills theory is a non-abelian gauge theory, i.e., a field theory, where
the Lagrangian is invariant under certain Lie groups of local transformations1. Its purpose is,
roughly speaking, to study the unification of the electromagnetic and weak interaction and, in
future, it may also allow to add the strong interaction in this picture. Whether gravity plays a
role in this theory or not is currently studied. Summarizing, the aim of the Yang-Mills theory is
1The global gauge group of a Yang-Mills theory is in fact a connected semisimple compact Lie group whose Lie
algebra consists of skew symmetric matrices. For more information on that topic, see [1].
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to extend the abelian U(1) gauge principle of Quantum Electrodynamics (quantum field theory
of the electromagnetic interaction) to the case of a non-abelian SU(n) gauge principle whose goal
is the construction of a theory that is invariant under SU(n) gauge transformations. With the
purpose of the theory known, we can now continue with obtaining the equations of motions via
the Yang-Mills Lagrangian.
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2 The Yang-Mills Lagrangian and the equations of motion
First we need to acquaint ourselves with the notation that will be used throughout the next
chapters which is based on [3] and [5]. Let G be a compact Lie group with Lie algebra g. The
Lie multiplication will be denoted by × instead of the common [·, ·], i.e., for A,B ∈ g we have
A×B = −B ×A, A×A = 0 and the Jacobi identity is written as follows:

A× (B × C) + C × (A×B) +B × (C ×A) = 0.
Since G was supposed to be compact, g posses a natural inner product denoted by A ·B with the
properties (A×B) · C = A · (B × C). Let |A|2 = A ·A. The choice of this notation comes from
the fact that if we take SU(2) to be our Lie group, its Lie algebra is three-dimensional whose
elements can be regarded as ordinary vectors with the ordinary cross and dot product as the
operations on it. The space-variables are x = (x1, x2, x3) ∈ R3 and the time variable is t ∈ R.
The partial derivatives are written as

∂k = ∂

∂xk
(k = 1, 2, 3), ∂0 = ∂

∂t
.

The functions Aµ, (µ = 0, 1, 2, 3), which we call gauge potentials, are functions on R4 with values
in g. φ shall be a scalar field which also is a function on space-time with values in g. (This
function is called scalar field not because it is a function into R, but rather due to the fact that it
transforms under Lorentz-transformations the way a scalar does[7]).
The covariant derivatives are defined as follows

D0 = ∂0 − gA0× (2.1)
Dk = ∂k + gAk × (k = 1, 2, 3), g ∈ R. (2.2)

The following identity will be used in computations that will follow

DµA ·B +A ·DµB = ∂µ(A ·B) (µ = 0, 1, 2, 3) (2.3)

for C1 vector fields A,B.

The Yang-Mills field strengths are given by

Fµν = ∂µAν − ∂νAµ + gAµ ×Aν , (µ, ν = 1, 2, 3) (2.4)
for some real constant g.
We denote

E1 = F 10, E2 = F 20, E3 = F 30 (2.5)
H1 = F 32, H2 = F 13, H3 = F 21. (2.6)

The physical meaning of the quantities Ei and Hi is that they are the components of the electric
and magnetic field respectively. (Fµν is sometimes called field strength tensor)[4].
Next, we put

ψµ = Dµφ (µ = 0, 1, 2, 3). (2.7)

Let E be the matrix with columns Ek where the Ek ∈ g for (k = 1, 2, 3). If we have a vector
α = (α1, α2, α3) ∈ R3, then we write Eα =

∑
k αkE

k. By denoting |E|2 =
∑
k|Ek|2, we have the

inequality |Eα| ≤ |E||α|.We do the same procedure withH = (H1, H2, H3) and Ψ = (ψ1, ψ2, ψ3).
Let V0 be a real function of a real variable, set V (φ) = V0(|φ|2) and let V ′(φ) denote 2φV ′0(|φ|2).
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We write the Lagrangian density for a Yang-Mills field coupled to a scalar field (YMS) as

L = 1
2

∑
k

|Ek|2 − 1
2

∑
k

|Hk|2 + 1
2 |D

0φ|2 − 1
2 |D

kφ|2 − V (φ). (2.8)

The Euler-Lagrange equations for this Lagrangian are of the following form:

D0H1 = D3E2 −D2E3, (2.9)
D0H2 = D1E3 −D3E1, (2.10)
D0H3 = D2E1 −D1E2, (2.11)
D0E1 = D2H3 −D3H2 + gψ1 × φ, (2.12)
D0E2 = D3H1 −D1H3 + gψ2 × φ, (2.13)
D0E3 = D1H2 −D2H1 + gψ3 × φ, (2.14)∑

k

DkHk = 0, (2.15)∑
k

DkEk = gψ0 × φ, (2.16)

D0ψ0 −
∑
k

Dkψk = −V ′(φ), (2.17)

D0ψj −Djψ0 = gEj × φ, , (j = 1, 2, 3) (2.18)
D1ψ2 −D2ψ1 = −gH3 × φ, (2.19)
D2ψ3 −D3ψ2 = −gH1 × φ, (2.20)
D3ψ1 −D1ψ3 = −gH2 × φ, g ∈ R. (2.21)

The interesting thing about these equations is that only 2.12-2.14, 2.16 and 2.17 result directly
from the Lagrangian L, whereas the other equations appear as constraint equations which follow
from the definitions of the field strengths and the ψµ which we will be dealing with now.

The Euler-Lagrange equations of 2.8 are of the following form

∂L

∂φ
=

∑
µ

∂µ
∂L

∂(∂µφ) (2.22)

and
∂L

∂Aµ
=

∑
ν

∂ν
∂L

∂(∂νAµ) (µ = 0, 1, 2, 3). (2.23)

The values of the derivatives of L lie in g, hence, we can write
∂L

∂φ
· φ̃ = d

dε
L(φ+ εφ̃|ε=0).

For evaluating equations 2.22 and 2.23, we will need the following two identities:

(i) ∂

∂A

1
2 |A+ (B × C)|2 = A+ (B × C)

and
(ii) ∂

∂B

1
2 |A+ (B × C)|2 = C × (A+ (B × C)).
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For (ii), observe that

d

dε

1
2 |A+ ((B + εB̃)× C)|2 = B̃ × C · (A+ (B × C))

= B̃ · C × (A+ (B × C)) at ε = 0, for C1 vector fields A,B, B̃, C

while (i) is clear.
Now, we evaluate equation 2.22.

∂L

∂φ
= 1

2
∂

∂φ
(|∂0φ− gA0 × φ|2 −

∑
k

|∂kφ+ gAk × φ|2 − 2V (φ))

= gA0 × ψ0 + g
∑
k

Ak × ψk − V ′(φ).

Note that
∂L

∂(∂0φ) = ψ0, and ∂L

∂(∂jφ) = −ψj (j = 1, 2, 3) by (i).

Therefore, 2.22 implies that

∂0ψ0 −
∑
k

∂kψk = gA0 × ψ0 + g
∑
k

Ak × ψk − V ′(φ)

which is equation 2.17.
Now we look at equation 2.23 for µ = 0. Using identity (ii) we find

∂L

∂A0 = 1
2

∂

∂A0 (
∑
k

|∂kA0 + ∂0Ak − gA0 ×Ak|2 + |∂0φ− gA0 × φ|2)

= −g
∑
k

Ak × Ek − gφ× ψ0.

Since L does not depend on ∂0A0 and

∂L

∂(∂jA0) = Ej by (i)

we get that 2.23 implies ∑
k

∂kEk = −g
∑
k

Ak × Ek − gφ× ψ0

which is nothing but equation 2.16.
For equations 2.12-2.14 we consider 2.23 for the case µ = 1. We can write

∂L

∂A1 =1
2

∂

∂A1 (|∂1A0 + ∂0A1 + gA1 ×A0|2 − |∂1A3 − ∂3A1 + gA1 ×A3|2

− |∂2A1 − ∂1A2 − gA1 ×A2|2 − |∂1φ+ gA1 × φ|2).

Using (ii), we obtain

∂L

∂A1 = gA0 × E1 − gA3 × F 13 + gA2 × F 21 − gφ× ψ1

= gA0 × E1 − gA3 ×H2 + gA2 ×H3 − gφ× ψ1.
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Moreover, by using identity (i), we obtain the following results

∂L

∂(∂0A1) = E1,
∂L

∂(∂2A1) = −F 21 = −H3,
∂L

∂(∂3A1) = F 13 = H2.

Since the Lagrangian is independent of ∂1A1 equation 2.23 yields for µ = 1

∂0E1 − ∂2H3 + ∂3H2 = gA0 × E1 − gA3 ×H2 + gA1 ×H3 − gφ× ψ1,

which is exactly 2.12. The other two equations of this form are obtained in a similar way.
Now, since we have computed the part of the Yang-Mills equations that can be derived directly
from the Lagrangian, we will take a closer look at the constraint equations and how they arise
where each in case we will make use of the Jacobi identity.
Consider first equation 2.9. By inserting the definition of H1 we get

D0H1 = D0F 32 =(∂0 − gA0×)(∂3A2 − ∂2A3 + gA3 ×A2)
=∂3∂0A2 − ∂2∂0A3 + g∂0(A3 ×A2)− gA0 × ∂3A2

+ gA0 × ∂2A3 − g2A0 × (A3 ×A2).

Now we substitute in the second line

∂0A2 by E2 − ∂2A0 − gA2 ×A0

and

∂0A3 by E3 − ∂3A0 − gA3 ×A0.

Consequently, we obtain

D0H1 =∂3E2 − ∂2E3 − g∂3(A2 ×A0) + g∂2(A3 ×A0)
+ g∂0(A3 ×A2)− gA0 × ∂3A2 + gA0 × ∂2A3 − g2A0 × (A3 ×A2).

The next step is writing the first two terms as

∂3E2 − ∂2E3 = D3E2 − gA3 × E2 −D2E3 + gA2 × E3,

after which we then evaluate the appearing crossproducts using 2.4 for µ = k, ν = 0 and 2.5. In
doing so, we see that in the expression for D0H1 the quadratic terms cancel pairwise and the
three cubic terms sum to zero by the Jacobi identity. Therefore this establishes equation 2.9 and,
hence, by cyclic permutation of the indices, 2.10 and 2.11 as well.
Now, we will have a closer look at equation 2.15. We find

D1H1 =∂1H1 + gA1 ×H1 = ∂1F 32 + gA1 × F 32

=∂1(∂3A2 − ∂2A3 + gA3 ×A2)
+ gA1 × ∂3A2 − gA1 × ∂2A3 + g2A1 × (A3 ×A2)

D2H2 and D3H3 can be then determined by cyclic permutation of the indices of the above
equation. Taking the sum

∑
kD

kHk, the second-derivative terms cancel pairwise just as the
quadratic ones do. Again, the Jacobi identity shows that the cubic terms vanish upon summation.
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Therefore,
∑
kD

kHk = 0 which is the equation we wanted to obtain.
For equation 2.18 with (j = 1, 2, 3) we have

D0ψj −Djψ0 = D0ψj − ∂jψ0 − gA0 × ψj − gAj × ψ0

= ∂0(∂jφ+ gAj × φ)− ∂j(∂0φ− gA0 × φ)− gA0 × ψj − gAj × ψ0

= g(∂0Aj + ∂jA0)× φ+ gAj × (∂0φ− ψ0) + gA0 × (∂jφ− ψj).

This equation reduces with the identities 2.5 and 2.7 to

g(Ej − gAj ×A0)× φ+ g2Aj × (A0 × φ)− g2A0 × (Aj × φ) = gEj × φ.

For the final equations, consider 2.19. We get

D1ψ2 −D2ψ1 =∂1ψ2 + gA1 × ψ2 − ∂2ψ1 − gA2 × ψ1

=∂1(∂2φ+ gA2 × φ)− ∂2(∂1φ+ gA1 × φ)
+ gA1 × (∂2φ+ gA2 × φ)− gA2 × (∂1φ+ gA1 × φ).

This simplifies to

g(∂1A2 − ∂2A1)× φ+ g2A1 × (A2 × φ)− g2A2 × (A1 × φ).

Using the Jacobi identity together with the substitution

∂1A2 − ∂2A1 = −H3 − gA1 ×A2

we obtain equation 2.19 and, by permutation, the remaining equations as well to finish the
derivation of the Yang-Mills equations. Having derived the equations, the next step is proving
some global existence Theorems.
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3 Existence of global solutions
First, we need to add some new definitions in addition to those of chapter 2 before we can state
and proof two existence Theorems that are covered in [5]. For the beginning, we will only consider
a pure Yang-Mills field, i.e. the scalar field φ = 0.
We define the energy E as

E = 1
2

∫
(|E|2 + |H|2)dx. (3.1)

Furthermore, put
ω = x/r, (r = |x|, x ∈ R3)

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) the standard basis and

vk = ek × ω (k = 1, 2, 3). (3.2)

Next, we need the concept of radial functions.

Definition. A function defined on R3 is called radial if it depends only on the radius r. H̃1
r is

defined to be the completion of C∞c -functions which are radial, under the Dirichlet norm

||∇φ||2 = (
∫
R3
|∇φ|2dx)1/2.

Furthermore, we define L2
r to be the space of radial L2 functions.

The following Theorem is the first of our two existence Theorems of global solutions for the
Yang-Mills equations with the absence of a scalar field φ.

Theorem 3.1. Let α0 ∈ H̃1
r and α1 ∈ L2

r. Let g ∈ R. Then there exists a unique solutions of the
Yang-Mills equations in all space-time with the following properties:

A0(x, t) = 0,
Ak(x, 0) = α0(r)vk, (k = 1, 2, 3) (3.3)
∂tA

k(x, 0) = α1(r)vk,
Ak ∈ C(R; H̃1

r ),
∂tA

k ∈ C(R;L2
r).

The energy is a constant,
Ak(x, t) = α(r, t)vk (k = 1, 2, 3) (3.4)
α(r, t) is a real scalar function and
α2

r
(gα− 2

r
)2 is integrable over all spacetime.

From now on, we will let the coupling constant g = 1 without loss of generality.
To prove this Theorem, we will claim four Lemmata which together prove Theorem 3.1.
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Lemma 3.2. For every φ ∈ C∞c (R3) therefore for all φ ∈ H̃1
r we have the following inequalities:∫

φ6dx ≤ c(
∫
|∇φ|2dx)3, and (3.5)∫

φ2r−2dx ≤ 4
∫
|∇φ|2dx, (3.6)

where c is a constant. The first of these inequalities is the Sobolev inequality and the second one
is Hardy’s inequality. Furthermore, every φ ∈ H̃1

r is almost everywhere equal to a function which
is continuous for x 6= 0,

4πrφ2(r) ≤
∫
|∇φ|2dx (3.7)

and

rφ2 → 0 as r → 0 and r →∞. (3.8)

For a proof of these standard PDE inequalities see e.g. [5] or [2].

The next Lemma allows a simplification of the YM system into a single scalar equation.

Lemma 3.3. The formulas 3.2, 3.3 and 3.4 together reduce the YM system to the scalar equation

∂2
t α−∆α+ F (r, α) = 0, (3.9)

with
F (r, α) = 2r−2α− 3r−1α2 + α3 (3.10)

Proof. First, we will make use of the following properties of the vectors vk:∑
k

∂kvk =
∑
k

ωkv
k = 0, (ωk = xk/r)∑

k

|vk|2 = 2 =
∑
j,k

|vj × vk|2,

vk · vl = δkl − ωkωl,∑
j,k

|∂jvk|2 = r−2,

∑
j,k

∂jvk · vj × vk = −2r−1.

Since A0 = 0, we have that

Ek = ∂0Ak = (∂0α)vk, therefore we find∑
k

DkEk =
∑
k

((∂r∂0α)ωkvk + (∂0α)∂kvk + (∂0α)αvk × vk) = 0,

which is precisely 2.16 with φ = 0.
Now, using the definition of Hk, we have

H2 = 2α
r
e2 + (αr −

α

r
)(ω1v

3 − ω3v
1)− ω2α

2ω,

H3 = 2α
r
e3 + (αr −

α

r
)(ω2v

1 − ω1v
2)− ω3α

2ω.

10



Taking now the vector product of H2, H3 with A2, A3 from the respective side we find

A2 ×H3 = 2α2

r
v2 × e3 + α(αr −

α

r
)ω2v

2 × v1 − ω3α
3v2 × ω,

H2 ×A3 = −2
r
α2v3 × e2 + α(αr −

α

r
)ω3v

3 × v1 + ω2α
3v3 × ω.

Taking the sum of the above expressions, we get

A2 ×H3 +H2 ×A3 = (2
r
α2 − α3)v1.

These terms are exactly the nonlinear ones in 2.12 again with φ = 0. The linear terms are
∂2H3 − ∂3H2 which contribute after a tedious computation the following terms

(αrr + 2r−1αr − 2r−2α+ r−1α2)v1.

By cyclic permutation of the indices we then obtain equations 2.13 and 2.14 in the other directions
v2 and v3 respectively. This shows that for α satisfying equation 3.9 the equations 2.12-2.14 are
valid. By definition of the Hk all the other equations follow by lengthy computations.
We find with the help of the expressions of H1, H2, H3 the following

r2|H|2 = 2r2α2
r + (2α− rα2)2 + (2rα2)r.

Therefore we can rewrite the energy in terms of α as follows

E =
∫

(α2
t + α2

r + 1
2α

2(2
r
− α)2)dx (3.11)

provided rα2(r)→ 0 as r → 0 and r →∞.

Now, we will discuss the existence of solutions of equation 3.9 which shows that there exists a
solution of the Yang-Mills equations (in R4).

Lemma 3.4. The scalar equation 3.9 posses a global solution with given Cauchy data α0, α1.

Proof. Since we have a singularity in this equation at r = 0, we consider an approximate equation
for ε > 0

∂ttαε −∆αε + r2

r2 + ε
F (r, αε) = 0. (3.12)

The nonlinear term in this equation is locally Lipschitz from H1 into L2 due to Sobolev’s and
Hardy’s inequalities. Next, we choose smooth functions with compact support α0ε and α1ε which
converge to α0 and α1 in H̃1

r and L2
r respectively. We know that if we fix ε > 0, then equation

3.12 has a unique C∞c solution αε(x, t) at fixed time with given Cauchy data α0ε and α1ε. It can
be shown that this solution exists in a time interval |t| ≤ T . For this, see [10]
Let now G(r, α) be the primitive of F (r, α) with G(r, 0) = 0. Now, we multiply the approximate
equation by the first time derivative of αε to obtain the following equation

∂t(
1
2(∂tαε)2 + 1

2 |∇αε|
2 + r2

r2 + ε
G(r, αε)) = ∇ · (∂tαε∇αε)). (3.13)

Now, if we integrate over all space, we get an approximate energy identity which is time independent
and given by

Eε =
∫

(1
2(∂tαε)2 + 1

2 |∇αε|
2 + r2

r2 + ε
G(r, αε))dx. (3.14)
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By letting t = 0, we see that this expression is determined by the initial data and therefore
independently of ε bounded.
Now, we see that G can be written as a perfect square in the following form:

G(r, αε) = 1
4α

2
ε (αε −

2
r

)2 ≥ 0.

This then leads to the conclusion that the approximate solution αε exists for all time. For a proof
of this conclusion, see [10].
Next, we will use a so called Morawetz’ radial estimate2. Let u = rαε such that

∂2
t u− ∂2

ru+ (r2 + ε)−1(2u− 3u2 + u3) = 0.

If we now multiply this equation by ∂ru and integrate over the radius, we get

d

dt

∫ ∞
0

∂tu · ∂rudr + 1
2(∂ru(0, t))2 +

∫ ∞
0

1
2r(r

2 + ε)−2u2(u− 2)2dr = 0

because u(0, t) = 0. Now, if we integrate over time and substitute u by rα, the last term yields
the bound ∫ ∞

0

∫
r4

(r2 + ε)2α
2
ε (αε −

2
r

)2 dx

r
dt ≤ 2Eε. (3.15)

With the setup we have, we can now pass to the limit. There exists a sequence of ε’s converging
to zero such that we have

αε → α weakly* in L∞(R, H̃1
r ) and

∂tαε → ∂tα in L∞(R, L2
r),

but this means precisely that the derivative terms in equation 3.12 converge in the sense of
distributions. The sequence now may be chosen due to reasons of compactness and diagonalization,
such that αε → α almost everywhere in space-time. Therefore we have α3

ε → α3 a.e. and α3
ε is

bounded in L2
loc(R4), but this means that r2(r2 + ε)−1α3

ε → α3 weakly in L2
loc(R4).We find in a

completely similar fashion that r2(r2 + ε)−1α2
ε → α2 weakly in L3

loc(R), while r−1 ∈ L3/2
loc . Finally,

r2(r2 + ε)−1αε → α weakly in L6
loc(R4) while r−2 ∈ L6/5

loc . What we have shown is that every
term in equation 3.12 converges to their proper limits in the sense of distributions in space-time.
This means that equation 3.9 is valid for α in all of space-time. It now follows that α and αt are
continuous functions of time with values in D′(R3) and that α(x, 0) = α0(r) and αt(x, 0) = α1(r)
which completes the proof.

The last Lemma we need for the proof of Theorem 3.1 is the following.

Lemma 3.5. Let f ∈ L1
loc(R, L2

r), β0 ∈ H̃1
r and β1 ∈ L2

r. Then there is a unique solution of the
linear problem

∂2
t β −∆β + 2r−2β = f, (3.16)

β = β0 and ∂tβ = β1 when t = 0,

such that β ∈ C(R, H̃1
r ) and ∂tβ ∈ C(R, L2

r) and∫
(1
2(∂tβ)2 + 1

2 |∇β|
2 + r−2β2)dx|T0 =

∫ T

0

∫
f · ∂tβdxdt. (3.17)

2These type of estimates were used by Cathleen S. Morawetz in [8].
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The Proof is based on the theory of linear contraction semigroups and the fact that the operator
−∆ + r−2 restricted to C∞c (R3{0}), hence,it will not be proven here. More information regarding
this proof, however, can be found in [9].
The last thing to show is that the solution we found in Lemma 3.4 satisfies the required properties
of Theorem 3.1.
First of all, we get the following inequality with aid of Fatou’s Lemma and 3.15∫ ∞

0

∫
α2(α− 2

r

2 dx

r
dz ≤ 2E(0)). (3.18)

The next step is using Lemma 3.5 with β = α and the function f being

f = 3
r
α2 − α3 = 3

2α(2
r
α− α2) + 1

2α
3.

Then, we obtain the bound∫
f2dx ≤ 3 sup

r
(rα2) ·

∫
α2(α− 2

r
)2 dx

r
+

∫
α6dx.

By 3.7 and 3.18 the first term on the right hand side is integrable over time. By Sobolev’s
inequality and 3.11 the last term is bounded over time as well. This means that f ∈ L1

loc(R, L2
r)

and we have the requirements to apply Lemma 3.5. Now, we only have to prove uniqueness. Let
α and α∗ be two solutions with the required properties of Theorem 3.1 and let β = α− α∗. Then
β satisfies 3.16 with

f = 3
r

(α2 − α2
∗)− (α3 − α3

∗)

with Cauchy data that vanishes. We find

f = 3
2β(2

r
α− α2) + 3

2β(2
r
α∗ − α2

∗) + 1
2β

3,

such that∫
f2dx ≤ 3 sup

r
(rβ2)

∫
((α2 − 2

r
α)2 + (α2

∗ −
2
r
α∗)2)dx

r
+

∫
β6dx ≤ (l(t) + c)

∫
|∇β|2dx

using 3.5, 3.7 and 3.18, where l(t) is integrable over time and c a numerical constant.
If we denote the left hand side of 3.17 by E(T ), we find

E(T ) ≤
∫ T

0
(l(t) + c)1/2E(t)dt

which means that E(T ) = 0, hence β = 0 and α = α∗. Now, the scalar equation in Lemma
3.3 is invariant under time reversal and since the solution of it is unique, we conclude that the
consveration of Energy must be valid and, hence, the proof is complete.

Having discussed the existence and uniqueness of solutions of the Yang-Mills equations, we
will now state a similar Theorem considering the YM equations coupled to a scalar field.
The energy in this case is given by

E = 1
2

∫
(|E|2 + |H|2 + |ψ0|2 +

∑
k

|ψk|2 + 2V (φ))dx.

13



Theorem 3.6. Let α0, β0 ∈ H̃1
r and α1, β1 ∈ L2

r. Let g ∈ R and let the Potential V be
V (φ) = c2|φ|2 + c4|φ|4 with c2 ≥ 0, c4 ≥ 0. Then there exists a unique solution of YMS with the
following properties:

A0 = (x, t) = 0, Ak(x, t) = α(r, t)vk(k = 1, 2, 3) (3.19)
φ(x, t) = β(r, t)ω (ω = xk/r) (3.20)
α(x, 0) = α0(r), ∂tα(x, 0) = α1(r), β(x, 0) = β0(r), ∂tβ(x, 0) = β1(r)
φ,Ak ∈ C(R, H̃1

r ), ∂tφ, ∂tAk ∈ C(R, L2
r., )

The energy E is a constant and, furthermore, c4β
4/r and the following expression are integrable

over all space time :
α2

r
(gα− 2

r
) and β2

r
(gα− 1

r
)2. (3.21)

Proof. In contrast to the existence proof with the absence of a scalar field, the substitution results
in two scalar equations of the form

αtt −∆α+ 2
r2α−

3
r
α2 + α3 + β2(α− 1

r
) = 0 (3.22)

βtt −∆β + 2
r2 β + 2αβ(α− 2

r
) + 2βV ′0(β2) = 0 (3.23)

For the energy we have

E =
∫

(α2
t + α2

r + 1
2α

2(α− 2
r

)2 + 1
2β

2
t + 1

2β
2
r + β2(α− 1

r
)2 + V0(β2))dx.

By the assumptions on V0, each term in the energy expression is bounded. We introduce in
a similar way to Lemma 3.4 the factor r2(r2 + ε)−1. Passing to the limit is possible, since the
degree of the potential V0 is 4. 3.21 is a conclusion of Theorem 7.2 that will be proven in the
last section. The estimates and the uniqueness are proven by applying the same procedure as in
proving Theorem 3.1.

Remark. Theorem 3.6 is also true for c2 < 0 with the difference that 3.21 is only valid for finite
time integrals and the assumption that α0, β0 ∈ L2.
The following Theorem is a more general existence Theorem but also one where uniqueness is not
given.

Theorem 3.7. Assume that V0 is C1 and such that

V0(s) ≥ 0 and V ′0(s) ≥ 0 for s ≥ s0.

Let α0, β0, α1, β1 be as in Theorem 3.6. Then there exists a solution of the Yang-Mills equation
coupled to a scalar field that satisfies the requirements of Theorem 3.6 with the exception that
φ,Ak are weakly continuous with values in H̃1

r ,∂tφ, ∂tA
k ware weakly continuous with values in

L2
r, the energy satisfies E(t) ≤ E(0) and 3.21 are integrable over all space with the restriction of

taking only finite time intervals.

For a proof of this Theorem, see [5] and [12].
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4 The role of energy in the Yang-Mills system
In this section, we will talk about the propagation of the energy and underline the importance of
analysing the energy on its own, since it contains valuable information in studying the Yang-Mills
system[3].

Theorem 4.1. The Yang-Mills system is causal. The Yang-Mills system coupled to a scalar field
is causal if the potential V is non-negative.

Let us take any C∞ solution of the Yang-Mills system with a scalar field. The law of conservation
of energy reads

∂0e =
∑

∂kpk,

where e denotes the energy density and pk the momentum densities (more detail on these
expressions will follow in section 5). Integrating this over a piece of the solid light cone with base
B, top T and side K and applying the divergence Theorem, we obtain the following expression∫

T

e−
∫
B

e+ 1√
2

∫
K

(
∑
k

ωkp
k + e) = 0.

It can be shown (e.g.[4]) that
|
∑
k

ωkp
k| ≤ e

which means the integral over K is non-negative, thus, yielding the following inequality∫
T

edx ≤
∫
B

edx. (4.1)

So if e = 0 on B, the Cauchy-data vanishes in the solid cone depending on B, which expresses
the causality. More precisely, the solutions constructed in the previous section satisfy 4.1. This
inequality is valid for the approximate solutions for each ε that is smooth, see [10]. The validity
for the exact solution is implied by the passage to the weak limit in the previous section if
B ⊆ {t = 0}, i.e. the time the Cauchy data are prescribed.Therefore, 4.1 is valid for any of the
solutions described by Theorems 3.1,3.6,3.7.

Now, we will state and prove a Theorem that lets us split the energy into three different
parts.

Theorem 4.2. (Energy splitting)
Consider a solution satisfying any of the conditions (I)-(III) below. Then, there exists a decompo-
sition of the energy density e into non-negative parts

e = efor + eback + eang

such that ∫
R3

(eback + eang)dx→ 0, as t→∞∫
R3

(efor + eang)dx→ 0, as t→ −∞.
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The expressions in the Theorem will be defined in its proof. efor carries all the energy forward in
time and eback carries all the energy backwards in time, asymptotically. Now, assume that the
initial data satisfy

∫
(r2 + 1)edx <∞ =: (∗) and one of the following:

(I): The solution is of class C2 of the YMS where (∗) holds at all times and where G is a compact
Lie group and, furthermore, 0 ≤ 4V (φ) ≤ φ · V ′(φ).
(II)It is a solution of YM given in Theorem 3.1.
(III)It is a solution of YMS given in Theorem 3.6 where V (φ) = C4|φ|4, C4 ≥ 0.

Proof. This result is a consequence of the invariance of the equations under the conformal group[3],
specifically the first inversional identity, which reads∫

((t2 + r2)e+ 2Tr(
∑
k

ωkp
k) + 2tφ · ψ0 − φ · φ)dx ≤ const. (4.2)

under assumption (I) with

pk = pkYM + ψ0 · ψk , (k=1,2,3) and
p1
YM = H2 · E3 −H3 · E2 etc.

Now we split the integrand in 4.2 into a Yang-Mills part IYM and a scalar part Is, i.e. I = IYM+Is,
where

IYM = 1
2(t2 + r2)(|E|2 + |H|2) + 2Tr(

∑
k

ωkp
k
YM )

and

Is = t2 + r2

2 (|ψ0|2 +
3∑
1

)|ψk|2 + 2V (φ)) + 2tψ0 · (Ψx+ φ)− |φ|2.

Define Xk = ψk + xkr
−2φ and let Ξ be the matrix with columns X1, X2, X3. We will use the

following identity, which will be proven in section 6.

|Ξ|2 = |Ψ|2 + r−2∂r(r|φ|2).

This allows us to write Is as follows

Is = I∗s −
1

2r2 ∂r((t
2 + r2)r|φ|2),

where
I∗s = t2 + r2

2 (|ψ0|2 + |Ξ|2 + 2V (φ)) + 2tψ0 · Ξx.

Now, take a look at IYM . First, define (E,H) = Tr(ETH)so, that |E|2 = (E,E). Then, define
ω×E as the matrix with columns ω2E

3−ω3E
2, ω3E

1−ω1E
3, ω1E

2−ω2E
1 and note the identity

|E|2 = |Eω|2 + |ω × E|2.
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Using this, we can write IYM as follows

IYM = r2 + t2

2 (|E|2 + |H|2) + 2Tr(
3∑
1
ωkp

k
YM ) (4.3)

= 1
2(r2 + t2)(|E|2 + |H|2) + rt(E,ω ×H)− rt(H,ω × E)

= 1
4(r2 + t2)(|Eω|2 + |Hω|2) + 1

8(r + t)2(|E + ω ×H|2

+ |H − ω × E|2) + 1
8(r − t)2(|E − ω ×H|2 + |H + ω × E|2).

For I∗s , we recall the following identities

1
4(r ± t)2|ψ0 ± Ξω|2 = 1

4(r2 ± 2rt+ t2)(|ψ0|2 + |Ξω|2 ± 2ψ0 · Ξω)

and obtain

1
4(r + t)2|ψ0 + Ξω|2 + 1

4(r − t)2|ψ0 − Ξω|2

= 1
2(r2 + t2)(|ψ0|2 + |Ξω|2) + 2rtψ0 · Ξω

= I∗s −
(r2 + t2)

2 (|Ξ|2 − |Ξω|2 + 2V (φ)). (4.4)

Using the last two equations 3.10 and 3.11, we find

I = IYM + Is = IYM + I∗s −
1

2r2 ∂r((r
2 + t2)r|φ|2)

which we can further write as follows

I = r2 + t2

4 (|Eω|2 + |Hω|2 + 2(|Ξ|2 − |Ξω|2 + 2V (φ))) (4.5)

+ (r + t)2

8 (|E + ω ×H|2 + |H − ω × E|2 + 2|ψ0 + Ξω|2)

+ (r − t)2

8 (|E − ω ×H|2 + |H + ω × E|2 + 2|ψ0 − Ξω|2)

− 1
2r2 ∂r((r

2 + t2)r|φ|2).

Now, if we define the energy parts as follows

4eang = |Eω|2 + |Hω|2 + 2(|Ξ|2 − |Ξω|2) + 4V (φ),
8eback = |E + ω ×H|2 + |H − ω × E|2 + 2|ψ0 + Ξω|2,
8efor = |E − ω ×H|2 + |H + ω × E|2 + 2|ψ0 − Ξω|2,

then equation 4.5 implies that these three expressions do indeed have the claimed properties and
thus proves Theorem 4.2 under assumption (I).
Next we will show the proof of Theorem 4.2 under the assumption of (III), since (II) is only
a special case of (III) for φ = 0. Our task here is to derive an analogous form of 4.2 for the
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approximate equation and the prove will be them completed by passing to the limit.
We recall from the previous section the equations for α, β

αtt −∆α+ F1(r, α, β) = 0, (4.6)
βtt −∆β + F2(r, α, β) = 0, (4.7)

with

F1(r, α, β) = 2
r2α−

3
r
α2 + α3 + β2(α− 1

r
) (4.8)

F2(r, α, β) = 2
r2 β + 2αβ(α− 2

r
) + 2βV ′0(β2). (4.9)

Furthermore we recall the approximate equations

αtt −∆α− r2

r2 + ε
F1(r, α, β) =0 (4.10)

βtt −∆β + r2

r2 + ε
F2(r, α, β) = 0 (4.11)

with solutions α = αε, β = βε that also have smooth Cauchy data with compact support.
The energy density of this approximation is given by

eε = 1
2(α2

t + α2
r) + 1

4(β2
t + β2

r ) (4.12)

+ r2

r2 + ε
(1
4α

2(α− 2
r

)2 + 1
2β

2(α− 1
r

)2 + 1
2V0(β2)).

We only sketch the derivation of the inversional identity for the approximate equations since it is
a special case of 4.2 3.
First, we multiply 4.10 by

(r2 + t2)αt + 2Tr(αr) + 2tα

and use the multiplier
1
2(r2t2)βt + trβr + tβ

on equation 4.11. These two expressions are then summed and integrated over R3 with the
Lebesgue measure dx = 4πr2dr to obtain the following identity

d

dt

∫
R3

((r2 + t2)(1
2α

2
t + 1

2α
2
r + 1

4β
2
t + 1

4β
2
r + 2rtαtαr + rtβtβr (4.13)

+ 2tααt + tββt − α2 − 1
2β

2)dx

+
∫
R3

r2(r2 + t2)
r2 + ε

(αtF1 + 1
2βtF2)dx

+
∫
R3

r3t

r2 + ε
(2αrF1 + βrF2)dx

+
∫
R3

r2t

r2 + ε
(2αF1 + βF2)dx = 0.

3This calculation is tedious but it can be found in more detail in [11].
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Using the expressions for F1 and F2, we get

αtF1 + 1
2βtF2 = ∂

∂t
(α

2

r2 −
α3

r
+ α4

4 + α2β2

2 − αβ2

r
+ β2

2r2 + 1
2V0(β2))

and
2αF1 + βF2 = 4α2

r2 + 2β2

r2 −
6α3

r
+ 2α4 + 4α2β2 − 6αβ2

r
+ 2β2V ′0(β2)

and similarly

2αrF1 + βrF2 = ∂

∂r
(2α2

r2 −
2α3

r
+ α4

2 −
2
r
αβ2 + β2

r2 + α2β2 + V0(β2))

+ 4
r3α

2 − 2
r2α

3 − 2
r2αβ

2 + 2
r3 β

2.

Now we can compute the third term of 4.13 using integration by parts to find∫
R3

r3t

r3 + ε
(2αrF1 + βrF2)dx

=
∫
R3

r2t

r2 + ε
(−2α2

r2 + 4α3

r
− β2

r2 + 4αβ2

r
− 3α4

2 − 3α2β2 − 3V0(β2))dx

− 2ε
∫
R3

r2t

r2 + ε
(2α2

r2 −
2α3

r
+ α4

2 −
2
r
αβ2 + β2

r2 + α2β2 + V0(β2))dx

Using the above computations, we now can obtain the first inversional identity

d

dt

∫
Idx = Jε = 2εt

∫
r2

(r2 + ε)2Qdx, (4.14)

with
Q = 1

2α
2(α− 2

r
)2 + β2(α− 1

r
)2 + V0(β2),

and

I = 1
2(r2 + t2)(α2

t + α2
r + 1

2(β2
t + β2

r )) (4.15)

+ rt(2αtαr + βtβr) + t(2ααt + ββt)− α2 − 1
2β

2

+ r2(r2 + t2)
2(r2 + ε) Q.

Considering the case of YMS, we have an analogous estimate to 3.15 which is∫ ∞
0

∫
r3

(r2 + ε)2Q(αε, βε)dxdt ≤ const.

The next step is estimating Jε with the above inequality. For this, let δ = ε3/4. Then

A :=
∫ T

0
2εt

∫
r>δ

r2

(r2 + ε)2Qdxdt ≤ 2ε1/4T

∫ T

0

∫
r3

(r2 + ε)2Qdxdt

≤ 2ε1/4Tc.
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We also have
B :=

∫ T

0
2εt

∫
r>δ

r2

(r2 + ε)2Qdxdt ≤
1
ε
T 2 sup

t

∫
r<δ

r2Qdx

Furthermore, we have Q ≤ cr−3 for r < 1 by the definition of Q and using equation 3.7, therefore

B ≤ cε−1T 2
∫ δ

0
r2r−3r2 ≤ cε−1T 2δ2 = cT 2√ε.

So, in conclusion, for any T we have∫ T

0
Jε(t)dt→ 0 as ε→ 0.

From 4.14, it now follows that

lim
ε→0

∫
I(αε, βε)|t=T dx = lim

ε→0

∫
I(αε, βε)|t=0dx. (4.16)

As before, we express I as a sum of squares as follows

I(αε, βε) = 1
4(r + t)2(∂tαε + 1

r
∂r(rαε))2 + 1

4(r − t)2(∂tαε −
1
r
∂r(rαε))2 (4.17)

+ 1
8(r + t)2(∂tβε + 1

r
∂r(rβε))2 + 1

8(r − t)2(∂tβε −
1
r
∂r(rβε))2

+ r2(r2 + t2)
2(r2 + ε) (1

2α
2
ε (αε −

2
r

)2 + β2
ε (αε −

1
r

)2 + V0(β2
ε ))

− 1
2r2 ∂r((t

2 + r2)(rα2
ε + 1

2rβ
2
ε ))

The last term integrates to zero. The right-hand side of 4.16 can be chosen to converge to∫
I(α, β)dx at t = 0, since it only depends on the intial data. Fix now a time T, then the following

expressions

(r ± T )(∂tαε ±
1
r
∂r(rαε)),

(r ± T )(∂tβε ±
1
r
∂r(rβε))

at time T converge in the sense of distributions on R3 to the same expressions with ε omitted
similar as in section 2. Therefore 4.16 and 4.17 combined imply that each of them does indeed
converge weekly in L2(R3) to the same limit. Furthermore, the last term in 4.17 converges a.e.
which implies that∫

I(α, β)|t=T dx ≤ lim inf
ε→0

∫
I(αε, βε)|t=T dx =

∫
I(α, β)|t=0dx

which is exactly the integrated term of 4.5 and completes the proof.

Corollary 4.3. Under the assumptions of Theorem 4.2,
∫

(|Eω|2 + |Hω|2)dx = O(t−2).If A0 = 0,
then

∫
|Aω|2dx = O(log|t|2) as t→ ±∞.

Proof. The first statements follows immediately, since |Eω|2 + |Hω|2 ≤ 4eang. Now, we do a
gauge transformation where A0 = 04. Then Ek = ∂0Ak, so that Eω = ∂0Aω and

d

dt

∫
|Aω|2dx =

∫
Aω · Eωdx ≤ c((l + t2)−1

∫
|Aω|2dx)1/2

with l being integrable over time. This proves the corollary.
4The temporal gauge condition A0 = 0 can always be assumed. See e.g [7].
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5 Conservation laws
This section is dedicated to the discussion of conservation laws and the invariance of YMS-system
under the conformal group[3].

We recall that the energy is obtained by multiplying 2.9 with H1, 2.10 with H2 and 2.11 with
H3. Next we do the same thing with 2.12-2.14 with Ej , j = 1, 2, 3 and sum the resulting six
equations. Together with 2.3, we obtain the following identity

∂0eYM =
∑
k

(∂kpkYM + gψk × φ · Ek), (5.1)

where eYM = 1
2(|E|2 + |H|2) and

p1
YM = H2 · E3 − E2 ·H3,

P 2
YM = H3 · E1 − E3 ·H1,

p3
YM = H1 · E2 − E1 ·H2.

Now, we multiply 2.17 by ψ0 and 2.18 by ψj , (j = 0, 1, 2, 3) and sum the resulting four equations
to get

1
2∂

0
∑
k

|ψµ|2 = −V ′(φ) · ψ0 +
∑
k

∂k(ψ0 · ψk) + g
∑
k

Ek × φ · ψk

= −∂0V (φ) +
∑
k

(∂k(ψ0 · ψk) + gEk × φ · ψk) (5.2)

Then, we obtain the energy conservation law

∂0e =
∑
k

∂kpk (5.3)

by adding equations 5.1 and 5.2, where

e = 1
2(|E|2 + |H|2 +

∑
µ

|ψµ|2) + V (φ) (5.4)

and
pk = pkYM + ψ0 · ψk, (k = 1, 2, 3). (5.5)

Our next step is the computation of the momenta. Consider

p1 = H2 · E3 −H3 · E2 + ψ0 · ψ1.

Using 2.3 we find
∂0p1 = I + II,

with

I = D0H2 · E3 +H2 ·D0E3 −D0H3 · E2 −H3 ·D0E2,

II = D0ψ0 · ψ1 + ψ0 ·D0ψ1.
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Together with equations 2.9-2.14 and 2.17-2.18, we obtain

I = (D1E3 −D3E1) · E3 +H2 · (D1H2 −D2H1 + gψ3 × φ)
− (D2E1 −D1E2) · E2 −H3 · (D3H1 −D1H3 + gψ2 × φ),

II = (
∑
k

Dkψk − V ′(φ)) · ψ1 + ψ0 · (D1ψ0 + gE1 × φ).

Next, we use 2.3 to rewrite the previous equations as

I = 1
2∂

1(|E2|2 + |E3|2 + |H2|2 + |H3|2)

− ∂2(E1 · E2 +H1 ·H2)− ∂3(E1 · E3 +H1 ·H3)
+ E1 · (D2E2 +D3E3) + (D2H2 +D3H3) ·H1

+ gH2 · ψ3 × φ− gH3 · ψ2 × φ;

II = 1
2∂

1(|ψ0|2 + |ψ1|2 − 2V (φ)) + ∂2(ψ1 · ψ2) + ∂3(ψ1 · ψ3)

− ψ2 ·D2ψ1 − ψ3 ·D3ψ1 + gψ0 · E1 × φ.

Using 2.16, the third line of I becomes

− 1
2∂

1(|E1|2 + |H|2) + gE1 · ψ0 × φ.

Using 2.19-2.21, we rewrite the second line of II as

− 1
2∂

1(|ψ2|2 + |ψ3|2)− gψ2 ·H3 × φ+ gψ3 ·H2 × φ+ gψ0 · E1 × φ.

The cubic terms vanish and for j = 1 we obtain the Momentum Conservation Law

∂0pj = ∂jf +
∑
k

∂kqjk, (5.6)

with
f = e− |Ψ|2 − 2V (φ),

and
qjk = −Ej · Ek −Hj ·Hk + ψj · ψk.

The equations for j = 2, 3 are obtained in a similar way.
The other eleven identities are derived from 5.3 and 5.6 and are as follows:

∂0(xje+ tpj) = ∂j(tf) +
∑
k

∂k(xjpk + tqjk), (j = 1, 2, 3), (5.7)

∂0(x2p
1 − x1p

2) = ∂1(x2f)− ∂2(x1f) +
∑
k

∂k(x2q
1k − x1q

2k). (5.8)
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By cyclic permutation, two similar laws are obtained.

∂0(te+
∑
k

xkp
k + ψ0 · φ) + V ′(φ) · φ− 4V (φ)

=
∑
k

∂k(tpk + xkf +
∑
j

xjq
jk + ψk · φ), (5.9)

∂0((t2 + r2)e+ 2t
∑
k

xkp
k + 2tψ0 · φ− |φ|2) + 2t(V ′(φ) · φ− 4V (φ))

=
∑
k

∂k((t2 + r2)pk + 2t(xkf +
∑
j

xjq
jk + ψk · φ)), (5.10)

∂0(txje+ 1
2(t2 − r2)pj + xj

∑
k

xkp
k + xjψ

0 · φ) + xj(φ · V ′(φ)− 4V (φ))

= ∂j( t
2 − r2

2 f) +
∑
k

∂k(txje− xjφ · ψk + t2 − r2

2 qjk + xjxkf + xj
∑
m

xmq
mk) (5.11)

(j = 1, 2, 3).

Now, we have the tools to work with the main Theorem of this chapter.
Theorem 5.1. 5.1 If V (φ) = c|φ|4, the system is invariant under the conformal group.
Note, that 4V (φ) = φ · V ′(φ), so all 15 identities are conservation laws. In fact, they are exactly
those conservation laws that follow from the invariance via Noether’s Theorem[6]. We will not
prove the invariance directly as it is a very tedious computation.
We present a detailed derivation of the first inversional law 5.10 as an example now.
First, multiply 5.3 by r2 + t2 and 5.6 by 2txj . This gives the sum of four equations which can be
written as follows

∂0((r2 + t2)e+ 2t
∑
j

xjp
j) =

=
∑
k

∂k((r2 + t2)pk + 2txkf + 2t
∑
j

xjq
jk) + 2t(e− 3f −

∑
k

qkk). (5.12)

The last expression reads

e− 3f −
∑
k

qkk = −2e+ |E|2 + |H|2 + 2|Ψ|2 + 6V (φ) = −|ψ0|2 + |Ψ|2 + 4V (φ).

Now, we multiply 2.17 by φ and use 2.3 to get

∂0(ψ0 · φ)− ψ0 ·D0φ−
∑
k

(∂k(ψk · φ)− ψk ·Dkφ) = −φ · V ′(φ).

This can be written as follows by using 2.7

∂0(ψ0 · φ) + V ′(φ) · φ = |ψ0|2 − |Ψ|2 +
∑
k

∂k(ψk · φ). (5.13)

Multiplying this by 2t, we get

∂0((2tψ0 − φ) · φ) + 2tφ · V ′(φ) = 2t(|ψ0|2 − |Ψ|2) +
∑
k

∂k(2tψk · φ).

5.10 is then obtained by adding this result to 5.12.
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6 Asymptotics for the zero mass case
The following sections will be dealing with the asymptotic behaviour of the YMS-system, i.e., the
case where the scalar field has zero mass and the other one being the possibility of the scalar
field having positive mass[3].
First, we start with a Theorem which gives us information about the behaviour of the energy
density. After proving it, we will state two corollaries which give extra information about the
growth and the non-existence of finite energy solutions of a specific form.

Theorem 6.1. Assume that V satisfies the inequalities

0 ≤ 4V (s) ≤ s · V ′(s)

Let R > 0 and 0 < ε ≤ 1. Then, as t→∞∫
|x|<R+(1−ε)t

edx = O(t−2),

where e is the energy density 5.4, provided that
∫
r2edx <∞ at all times.

Proof. We integrate 5.10 first over all space. Assume that the solution is smooth and satisfies∫
r2edx <∞ at all times. This lets the right side vanish and we obtain∫

((r2 + t2)e+ 2t
∑
k

xkp
k + 2tφ · ψ0 − φ · φ)dx ≤ const = C.

Next, we split this integrand into two parts, one being the the pure Yang-Mills field IYM and
the other one the scalar field Is. Let ω = x

r
and take unit vectors α, β such that α, β, ω form an

orthonormal basis for R3 with α× β = ω. For orthonormal basis vectors, we have

|E|2 = |Eα|2 + |Eβ|2 + |Eω|2

and a similar one with E replaced by H. Then we have the following equation5

eY ±
∑
k

ωkp
k
YM = 1

2(|Eω|2 + |Hω|2 + |Eα∓Hβ|2 + |Eβ ±Hα|2). (6.1)

In particular, |
∑
k ωkp

k
YM | ≤ eYM , therefore

IYM ≥ (t− r)2eYM . (6.2)

The next step is expressing Is as a sum of squares. Let χk = ψk + xk
r2 φ and define Ξ to be the

matrix with columns χ1, χ2, χ3. By the spatial components of 2.7, we get

|Ξ|2 = |Ψ|2 + 1
r2 ∂

r(r|φ|2), (6.3)

where r = |x| and r∂r =
∑
k xk∂

k.

5A derivation can be found in [4].

24



Thus we find

Is = t2 + r2

2 (|ψ0|2 + |Ψ|2 + 2V (φ)) + 2tψ0 · (Ψx+ φ)− |φ|2

= I∗s −
1

2r2 ∂
r((t2 + r2)r|φ|2), (6.4)

with

I∗s = t2 + r2

2 (|ψ0|2 + |Ξ|2 + 2V (φ)) + 2tψ0 · Ξx (6.5)

≥ (t− r)2

2 (|ψ0|2 + |Ξ|2 + 2V (φ)) ≥ 0.

This means that for any subset B of space we have∫
B

(IYM + I∗s )dx ≤
∫

(IYM + Is)dx ≤ C.

By choosing B = {x : |x| < R+ (1− ε)t}, we obtain from 6.2 and 6.5

(εt−R)2
∫
B

(eYM + 1
2 |ψ

0|2 + 1
2 |Ξ|

2 + V (φ))dx ≤ C

for t > Rε−1.Using 6.3 again, we find∫
B

|Ψ|2dx ≤
∫
B

|Ξ|2dx ≤ 2C(εt−R)−2

for t > Rε−1.

The method on how to prove the following two corollaries can be found in [4].

Corollary 6.2. Assume that any finite energy solution can be approximated by cut-off solutions
in the energy norm, uniformly in time. Then, for any finite energy solution and for each R > 0
and 0 < ε ≤ 1, we have

lim
t→∞

∫
|x|<R+(1−ε)t

edx = 0.

Corollary 6.3. Under the same assumptions, there is no finite energy solution of the form

E = E(x− ct), H = H(x− bt), φ = φ(x− at),

where a,b,c are constant vectors of norm less than one, except for the trivial solution

E = H = 0, φ = const, V (φ) = 0.

The method of how to prove these corollaries can be found in [4].
Remark: By 6.1 and 6.4, the integral over all space of certain components of e is O(t−2).

25



7 Estimates for the case the scalar field has positive mass
The following Theorem shows us that certain components of the fields are square integrable over
light cones[3].

Theorem 7.1. For any finite energy solution,∫
|x|=t

(2V (φ) + |ψ0 + Ψω|2 + |Ψα|2 + |Ψβ|2

+ |Eω|2 + |Hω|2 + |Eα−Hβ|2 + |Eβ +Hα|2)dS ≤ const,

where dS is the usual surface measure on {|x| = t}. If V = 0, each term is positive and therefore
integrable on the cone.

Proof. We integrate 5.3 over the four dimensional region {|x| < t < T} and then let T →∞ to
obtain

2
∫
|x|=t

(e+
∑
k

ωkp
k)dS ≤ 2

√
2

∫
edx = const,

with ωk = xk
r
. The YM terms in the integrand are written as in 6.1. The other terms are 2V (φ)

and
|ψ0|2 + |Ψ|2 + 2ψ0 ·Ψω = |ψ0 + ψω|2 + |Ψα|2 + |ψβ|2.

This finishes the proof.

Now, with that result, we can turn our focus again to the study of the asymptotic behaviour in
case the potential V (φ) includes a mass term. Typically, one works with

V (φ) = m2
0|φ|2 + c|φ|p+1(m > 0, c > 0, p > 1).

For this reason, assume φ · V ′(φ) ≥ 2V (φ) ≥ 0. For the next steps, we will use the summation
convention. Multiply first 5.6 by a function 2lj(x) (j = 1, 2, 3) and sum over j to obtain

2∂0(ljpj) + 2(∂j lj)f + 2∂klj · qjk = 2∂j(ljf) + 2∂k(ljqjk).

Let m = ∂j lj . Multiply 5.13 by m to obtain

∂0(mψ0 · φ) +m(|Ψ|2 − |ψ0|2 + V ′(φ) · φ)
= ∂k(mψk · φ)− (∂km)ψk · φ

= ∂k(mψk · φ− 1
2(∂km)|φ|2) + 1

2(∂k∂km)|φ|2.

By summing these two equations, we find

∂0(2ljpj +mψ0 · φ)

+ 2∂klj · qjk +m(2f + |Ψ|2 − |ψ0|2 + V ′(φ) · φ)− 1
2(∂k∂km)|φ|2

= ∂k(2lkf + 2ljqjk +mψk · φ− 1
2(∂km)|φ|2). (7.1)
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The last equation 7.1 can be written as ∂0X + Z = ∂kY k. Then, we evaluate Z by substituting
the expressions for f and qjk:

Z =(mδjk − 2∂klj)(Ej · Ek +Hj ·Hk) + 2(∂klj)ψj · ψk

+m(φ · V ′(φ)− 2V (φ))− 1
2(∂k∂km)|φ|2.

In 7.1 we have
X = 2ljpj +mψ0 · φ = 2ljpjYM + 2ψ0 · (ljψj + m

2 φ).

Therefore,
|X| ≤ 2|ljpjYM |+ |ψ

0|2 + |ljψj + m

2 φ|
2. (7.2)

The last term can be written as

|ljψj + m

2 φ|
2 = |ljψj |2 + 1

2mlj∂
j(|φ|2) + m2

4 |φ|
2

= |ljψj |2 + ∂j(1
2 ljm|φ|

2)− 1
2(lj∂jm+ 1

2m
2)|φ|2. (7.3)

Choose lj(x) = xj
r
. Then

∂klj = δjk/r − xjxk/r3 and m = ∂j lj = 2
r
.

Therefore, mδjk − 2∂klj = 2xjxk/r3,

lj∂
jm+ 1

2m
2 = 0 and ∂k∂km = 0 for x 6= 0.

From 7.2 and 7.3, it follows that

|X| ≤ 2eYM + |ψ0|2 + |Ψ|2 + ∂j(1
2 ljm|φ|

2).

This means that
∫
|X|dx is bounded by twice the energy. Now, we integrate 7.1 over the exterior

of a small sphere {|x| > ε} and let ε→ 0. Then, on the right side of the resulting equation, the
terms in 7.1 of the form ∂kY k drop out except for the last term which yields

−1
2

∫
|x|>ε

∂k((∂km)|φ|2)dx =
∫
|x|>ε

∂k(xk
r3 |φ|

2)dx

= − 1
ε2

∫
|x|=ε
|φ(x, t)|2dSx → −4π|φ(0, t)|2 ≤ 0

as ε→ 0. On the left side, we have the integral of

Z = 2
r

(|Er|2 + |Hr|2 + |Ψ|2 − |Ψr|2 + V ′(φ) · φ− 2V (φ)),

with
Er = 1

r
Ex, Hr = 1

r
Hx, Ψr = 1

r
Ψx.

Thus, we have proven that∫ ∞
−∞

∫
Zdxdt+ 4π

∫ ∞
−∞
|φ(0, t)2dt ≤ 4

∫
edx = 4e0. (7.4)
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Theorem 7.2. Assume that φ · V ′(φ) ≥ 2V (φ) ≥ 0. Consider a smooth solution of finite energy.
Then ∫ ∫

(|Er|2 + |Hr|2)1
r
dxdt <∞, (7.5)∫ ∫

(|Ψ|2 − |Ψr|2)1
r
dxdt <∞, (7.6)∫ ∫

(φ · V ′(φ)− 2V (φ))1
r
dxdt <∞. (7.7)

These integrals, and the ones below, are taken over all space and time. Furthermore, if δ > 0,∫ ∫
(|E|2 + |H|2 + |Ψ|2) 1

(1 + r)1+δ dxdt <∞ (7.8)∫ ∫
|φ|2 1

(1 + r)3+δ dxdt <∞. (7.9)

Proof. The first three estimates follow immediately from the integrability of Z in 7.4. Using the
second term in 7.4 and translating the origin x = 0 to any other point, we obtain

π

∫ ∞
−∞
|φ(x, t)|2dt ≤ e0 for all x .

Hence, ∫
(
∫
|φ(x, t)|2dt)(1 + r)−3−δdx ≤ π−1e0

∫
(1 + r)−3−δdx <∞.

This proves 7.9. To prove 7.8, we need to choose this more general form for our multiplier

lj(x) = xj
r
ζ(r).

Then

∂klj = ζ

r
δjk − (ζ

r
− ζ ′)xjxk/r2,

m = ∂j lj = 2
r
ζ + ζ ′,

mδjk − 2∂klj = ζ ′δjk + 2(ζ
r
− ζ ′)xjxk/r2.

The weight function ζ is chosen to satisfy the following constraints (*):

(i) ζ bounded, ζ
r
≥ ζ ′ ≥ 0

(ii) ∂k∂km = 4
r
ζ ′′ + ζ ′′ ≤ 0

(iii) lj∂
jm+ 1

2m
2 = 4

r
ζζ ′ + 1

2(ζ ′)2 + ζζ ′′ ≥ 0.

Therefore, by 7.2 and 7.3 it follows that
∫
|X|dx is bounded by a constant multiple of e0.

The general expression for Z leads to the following inequality

Z ≥ζ ′|E|2 + 2(ζ
r
− ζ ′)|Er|2 + ζ ′|H|2

+ 2(ζ
r
− ζ ′)|Hr|2 + 2ζ

r
(|Ψ|2 − |Ψr|2) + 2ζ ′|Ψr|2. (7.10)
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All of these six terms are non-negative and, therefore, integrable over space-time.
Next, choose

ζ(r) = 2− (r + 1)−δ,

with δ > 0. We check the constraints (*). Through explicit calculation, we find ζ ′ = δ(r+ 1)−1−δ

and

ζ/r − ζ ′ =r−1(r + 1)−δ(2(r + 1)δ − 1 + δr(r + 1)−1)
> r−1(r + 1)−δ(1− δ) > 0.

This means that 7.8 follows from 7.10 which means the only thing left to do is the verification of
(*). Indeed,

4ζ ′′/r + ζ ′′′ = −δ(δ + 1)r−1(r + 1)−3−δ((2− δ)r + 4) < 0

and

4r−1ζζ ′ + 1
2(ζ ′)2 + ζζ ′′ ≥ (4r−1ζ ′ + ζ ′′)ζ

= ζδr−1(r + 1)−2−δ(4 + (3− δ)r) ≥ 0.

Corollary 7.3. If φ · V ′(φ) ≥ 2V (φ) ≥ 0, there are no "classical lumps" of finite energy. That
is, if E(x), H(x), φ(x) is a solution which is independent of time and has finite energy, then
E = H = φ = 0.

Going back to 7.8, we are missing an estimate on |ψ0|2. To obtain one, we need a slightly stronger
assumption on V.

Theorem 7.4. Assume that V is of the form

V (φ) = 1
2m

2
0|φ|2 +W (φ)

where
0 ≤ αW (φ) ≤ φ ·W ′(φ).

We assume m0, δ, and R are positive constants and α > 2. Then∫ ∫
W (φ)1

r
dxdt <∞, (7.11)∫ ∫

|ψ0|2 1
(r + 1)3+δ dxdt <∞, (7.12)∫ ∞

−∞

∫
|x|<R

e dxdt <∞, (7.13)∫
|x|<R

e dx→ 0 as |t| → ∞. (7.14)

Proof. We have

φ · V ′(φ)− 2V (φ) = φ ·W ′(φ)− 2W (φ) ≥ (α− 2)W (φ).
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Therefore 7.7 implies 7.11. Now, we multiply 5.13 by (r + 1)−3−δ = ξ(r). Hence,

∂0(ξψ0 · φ) + ξ(m2
0|φ|2 + φ ·W ′(φ))

= ξ(|ψ0|2 − |Ψ|2) + ∂k(ξψk · φ) + (3 + δ)(r + 1)−4−δr−1xkψ
k · φ. (7.15)

The last term is bounded by a constant times

(r + 1)−1−δ|Ψ|2 + (r + 1)−3−δ|φ|2,

which is integrable over space-time. As for the first term in 7.15,∫
ξψ0 · φdx ≤ 1

2

∫
(|ψ0|2 + |φ|2)dx ≤ (1 +m−2

0 )e0

due to the mass term in the energy. The terms ξ|Ψ|2, ξ|φ|2 and ξφ ·W ′(φ) are also integrable
over space time since

φ ·W ′(φ) = (φ · V ′(φ)− 2V (φ)) + 2W (φ).
This means that 7.15 implies that ξ|ψ0|2 is also integrable. This is 7.12. Since

2e = |E|2 + |H|2 + |Ψ|2 + |ψ0|2 +m2
0|φ|2 + 2W (φ),

7.13 follows from 7.8,7.9,7.11 and 7.12 as soon as we replace the factor (r+ 1) in the denominators
by the constant R+ 1. Now we derive 7.14 from 7.13 by using a Morawetz method[8]. Let

f(t) =
∫ R+1

R

∫
|x|<ρ

e dxdρ ≥
∫
|x|<R

e dx.

We will show that the derivative f ′(t) is bounded (t ∈ R). Since f(t) is integrable by 7.13, we
only need to show that its derivative is bounded. Now

f ′(t) =
∫ R+1

R

∫
|x|<ρ

∂0e dxdρ

=
∫ R+1

R

∫
|x|=ρ

(
∑
k

xk
r
pk)dSxdρ by(4.3)

=
∫
R<|x|<R+1

(
∑
k

xk
r
pk)dx.

Thus, |f ′(t)| ≤
∫
R<|x|<R+1 e dx ≤

∫
edx = e0 and the Theorem is proven.

Finally, we establish the square integrability of the potentials Aµ.
First assume only that V (φ) ≥ 0. It follows, as in [4], that

(
∑
µ

∫
|Aµ(x, t)|2dx)1/2 ≤

∑
µ

∫
(|Aµ(x, 0)|2dx)1/2

+
∫ t

0
(
∫
|E(x, s)|2dx)1/2ds

in, say, the Lorentz gauge. This comes from multiplying 2.4 with ν = 0 and µ = k by Ak,
summing over k = 1, 2, 3, and integrating. In particular,∫ ∑

µ

|Aµ(x, t)|2dx = O(1 + t2)
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for all t. We can also estimate
∫
|φ|2dx, even though m = 0 . Next, we integrate

φ · ψ0 = φ ·D0φ = 1
2∂

0(|φ|2) (7.16)

to obtain
∂0

∫
|φ|2dx ≤ 2(

∫
|φ|2dx)1/2(

∫
|ψ0|2dx)1/2.

Therefore

(
∫
|φ(x, t)|2dx)1/2 ≤(

∫
|φ(x, 0)|2dx)1/2

+
∫ t

0
(
∫
|ψ0(x, s)|2dx)1/2ds.

Since V (φ) ≥ 0, ∫
|φ(x, t)|2dx = O(1 + t2) for all t.

We can find stronger bounds on
∫
|φ|2dx if we assume that ϕ · V ′(φ) ≥ 4V (φ) ≥ 0 and that∫

r2edx <∞. Supposing that, we rewrite 5.10 in the following form

1
2

∫
(r2 + t2)(|E|2 + |H|2)dx+ 2t

∫
r

∑
k

ωkp
k
YMdx+

∫
(t2 + r2)V (φ)dx

+ 1
2r

2(|Ψ|2 − |Ψr|2)dx+ t

∫
ϕ · ψ0dx

+ 1
2

∑
k

∫
|tψk + xkψ

0|2dx+ 1
2

∫
|Ψx+ tψ0 + φ|2dx ≤ C.

It follows that
t

∫
φ · ψ0dx ≤ C

so that 7.16 yields
1
2

∫
∂0(|φ|2)dx ≤ C

t
.

for t ≥ 1, say.
Hence,

∫
|φ(x, t)|2dx = O(log(t)) as t→∞.
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