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Abstract

Most data mining algorithms (e.g. clustering algorithms) are designed for single-type
data sets when attributes consist of only a specific data type, e.g. pure numerical or pure
categorical attributes. However, many applications generate a variety of different mixed-
type data sets where attributes might be of different natures. It is already well-understood
that a simple transformation of a data type into another one is not sufficient since, in this
case, relationships between values (such as a certain order among variables) are artificially
introduced. Thus, a possible challenge in this respect is to appropriately integrate various data
types such that one could efficiently analyze objects without any accuracy or information loss.
Therefore, in this thesis, we aim at introducing effective and efficient algorithms dealing with
heterogeneous (mixed—-type) data sets Considering various data mining tasks. In this regard,
we utilize interesting characteristics of every data type, e.g. a natural conceptual hierarchy
among categorical information, to introduce novel data mining algorithms. Thereby, we try to
integrate attributes of different data types and preserve the original form of information instead
of converting data types.






Zusammenfassung

Die meisten Algorithmen aus dem Bereich des Data Mining (z. B. Clustering Algorithmen)
sind fiir Datensétze mit ein und demselben Typ ausgelegt, das heifSt die Attribute bestehen nur
aus einem bestimmten Datentyp, z. B. aus rein numerischen oder rein kategorischen Attributen.
Viele Anwendungen erzeugen jedoch eine Vielzahl verschiedener gemischter Datensétze, bei
denen die Attribute unterschiedlicher Natur sein konnen. Es ist allgemein bekannt, dass
eine einfache Transformation eines Datentyps in einen anderen nicht ausreicht, da in diesem
Fall Beziehungen zwischen Werten (wie z.B. eine bestimmte Reihenfolge zwischen Variablen)
kinstlich eingefithrt werden. Daher besteht eine mogliche Herausforderung in dieser Hinsicht
darin, verschiedene Datentypen angemessen zu integrieren, so dass man Objekte effizient
und ohne Genauigkeits- oder Informationsverlust analysieren kann. Das Ziel in dieser Arbeit
ist es, effektive und effiziente Algorithmen fiir den Umgang mit heterogenen (gemischten)
Datensétzen unter Beriicksichtigung verschiedener Aufgaben des Data Mining einzufiihren.
In dieser Hinsicht nutzen wir interessante Eigenschaften jedes Datentyps, z.B. eine natiirliche
konzeptuelle Hierarchie zwischen kategorialen Informationen, um neuartige Algorithmen
im Data Mining einzufithren. Dabei versuchen wir, Attribute verschiedener Datentypen zu
integrieren und die urspriingliche Form der Information zu erhalten, anstatt Datentypen zu
konvertieren.
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CHAPTER

Introduction

Data mining is a particular step of a wider process, Knowledge Discovery in Databases (KDD). As
Figure 1.1 shows, a KDD process involves using a database along with any required selection,
pre—processing, sub—sampling, and transformations of the data; applying data mining methods
(algorithms) to enumerate patterns from it; and evaluating the products of data mining to
identify the subset of the enumerated patterns deemed knowledge [23]. Essentially, data mining
consists of applying data analysis and discovery algorithms that, under acceptable computational
efficiency limitations, produce a particular enumeration of patterns (or models) over the data
[23].

Basic data mining tasks comprise clustering, classification, association rule mining and
frequent pattern mining, regression and anomaly (outlier) detection. Among them, clustering is
one of the interesting data mining tasks which groups data objects in the way that objects in the
same groups (clusters) are more similar (based on some criteria) to each other than to those in
other groups (clusters). Clustering algorithms usually differ significantly in their understanding
of what constitutes a cluster and how to efficiently find them. After applying a clustering
algorithm and detecting meaningful groups, finding objects, that are considerably different from
other objects, leads to more accurate data analysis. This process is one of the data mining tasks
which is called anomaly (or outlier) detection.

Most data mining algorithms have been designed only for pure homogeneous data sets.

Data Data Preparation Data Mining Evaluation Knowledge

Transformed
? Data Patterns

ooo .

Figure 1.1: Overview of a KDD process.




2 CHAPTER 1. INTRODUCTION

However, many applications, e.g. population or statistical surveys, climatological reports,
generate a mixture of data objects consisting of attributes from different natures (distributions).
Mining such complex data sets is a non-trivial task and typically is not achieved by well-known
algorithms designed for a special data type. Complex data might be interpreted in different ways.
An important type of complex data is in the form of graphs. Another form of complexity is from
data that are non-i.i.d. (independent and identically distributed), e.g. time series. However, in
most domains, the objects of interest are not independent of each other and are not of a single
type. We call this kind of complex data, which is of interest in this thesis, heterogeneous data.

When mining heterogeneous data sets, one of the basic and straightforward approaches
is to homogenize the data as much as possible. This might be achieved by converting a data
type to another one. However, it is already well-understood that this approach has some severe
drawbacks. Most of the time, a simple conversion or any specific assumptions might lead to
information loss. Moreover, relations between values, such as a certain order among objects, are
artificially defined. Thus, our main approach in this thesis is to preserve original characteristics
of every data type and try to integrate data of different natures as much as possible in order to
avoid any information loss. In this respect, we incorporate useful characteristics of every data
type and introduce an integrative approach to cope with the aforementioned drawbacks.

The remainder of this cumulative Ph.D. thesis is structured as follows. Chapter 2 defines
relevant terms and the background one needs to follow various concepts in this thesis. Chapter 3
specifies the research problem, highlights challenges, and states the research questions. Chapter
4 lists all scientific papers that have been published and details the scientific contributions that
have been made in the course of this thesis. Finally, Chapter 5 concludes this thesis and gives
an outlook on potential future works.



CHAPTER

Background

2.1 Clustering

Clustering is one of various data mining tasks which groups data objects in the way that objects
in the same group (cluster) are more similar (based on some criteria) to each other than to those in
other groups (clusters). Clustering algorithms usually differ significantly in their understanding
of what constitutes a cluster and how to efficiently find them. In the following, we introduce
some of the most familiar clustering approaches. In the end, we give an introduction about one
of the useful clustering criteria which we often employ in our proposed algorithms.

2.1.1 Clustering Approaches

+ Grid-based clustering

One of the well-known clustering approaches is grid—-based clustering where any data set
is partitioned using a set of grid—cells and data points are assigned to an appropriate grid
cell. Grid-based methods [1], [43], [38] quantize the object space into a finite number
of cells (hyper—-rectangles) and then perform the required operations on the quantized
space. The main advantage of grid—based methods is their fast processing time which
depends on the number of cells in the grid. In other words, no distance computation is
required and the clustering is performed on summaries and not on the individual objects.
Thus, the complexity of grid-based algorithms is usually O(number of populated grid cells)
and not O(number of objects).

Beyond their ability to deal with noisy data sets, grid—based clustering algorithms are able
to identify clusters irrespective of their shapes. Unlike most of the clustering algorithms
which require an often initialization phase, algorithms in this category are insensitive to
the order of input records and therefore are deterministic.

« Partition-based clustering
Among various clustering approaches, some of them attract a lot of attention because of
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their advantages. Partition-based clustering algorithms are popular due to their simplicity
and their relative efficiency [29], [3]. K-means [29] is a well-know and well-studied rep-
resentative for this approach where initially the data is partitioned into £ non-empty sets
(clusters) and iteratively the data points are assigned to their nearest cluster. Despite the
mentioned advantages, clustering algorithms in this group suffer from some drawbacks.
Often in this category, the number of partitions (clusters) k should be specified in the
beginning and results are not deterministic because of their sensitivity to the initialization.
Moreover, they are not suitable to discover clusters with non-convex shapes. As a subset
of this group, model-based clustering algorithms consider a specific distribution model to
represent data sets. Among them, Expectation-Maximization (EM) algorithm interprets
the data as a mixture of Gaussian distributions [20].

» Density-based clustering
Algorithms in this category (e.g. [22], [4]) are appropriately designed to deal with arbitrary
shaped clusters. Unlike partition-based algorithms, algorithms in this category are able
to deal with noisy data sets. However, we usually need to specify some parameters
representing characteristics of dense regions which, mostly, are not straightforward to
specify. Additionally, density—based algorithms are not designed to efficiently deal with
clusters with various densities.

2.1.2 Parameter—free clustering

Most clustering algorithms require to specify input parameters which are usually difficult to
estimate. However, information-theoretic approaches have been proposed to avoid the difficulty
of estimating input parameters. These algorithms regard the clustering as a data compression
problem by incorporating the Minimum Description Length (MDL)—-principle. The cluster model
of these algorithms comprises joint coding schemes supporting numerical and categorical
data. The MDL-principle allows us to balance model complexity and goodness—of—fit. In the
following, we elaborate on this principle.

Minimum Description Length Principle

MDL [7] is a well-known model selection approach to evaluate various models and find the most
accurate one considering the minimum description length criterion. MDL—-principle regards
the model selection challenge to a data compression problem in the sense that more accurate
models lead to less compression cost. More precisely, let .#Z denote a set of various candidate
models representing the data. Following the two—part MDL [7], the best fitting model M € .#
is the one which minimizes

DL(D, M) = DL(D|M) + DL(M) (2.1)

where DL(D|M) concerns the description length of the data set D encoded by means of
the model M and DL(M) represents the model complexity, i.e. cost of encoding the model
itself. In MDL-principle, we incorporate the model complexity to avoid any over-fitting caused
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Figure 2.1: Various accurate and inaccurate fitted PDFs for a synthetic data x generated by a
Gaussian(2,1) model.

by too complicated models. Therefore, we encode not only the data but also the model used in
the coding process.

We consider DL (D, M) as a model selection indicator. That is, employing a coding scheme,
the number of bits required to encode the data indicates the accuracy of the model used in the
coding process. According to the Shannon coding theorem [37], the ideal code length is related
to the likelihood and is bounded by the entropy. More precisely, for an outcome a the number
of bits required for coding is defined by log, %, where P(.) shows the probability of a with
the assumption that limp(4)_,o+ P(a) logy(P(a)) = 0. This coding scheme is also known as
log loss. As a consequence, we assign shorter bit strings to outcomes with higher probability
and longer bit strings to outcomes with lower probability.

To elaborate the concept, assume a synthetically generated data following Gaussian distribu-
tion, i.e. x ~ Gaussian(2, 1). Figure 2.1 shows the probability density function (PDF) w.r.t. the
true model (G := Gaussian(2, 1), the blue line) and two other PDFs corresponding to models
with the lower accuracy, i.e. G2 := Gaussian(2,2) (the red line) and G3 := Gaussian(0, 1)
(the orange line). Applying Shannon’s theorem, we compute the compression cost of the
outcome a = 2 w.r.t. three models as follows:

—logy PDFg, (2) = —logy(0.4) = 1.32
—logy PDFg,(2) = —logy(0.2) = 2.32
—logy PDFg,(2) = —logy(0.05) = 4.32

Thus, the compression cost is in an inverse relationship with the likelihood of an outcome.
The better the model fits the data (G2 in our example), the more likely the observations are,
and hence the lower the compression cost is. Moreover, PDF is a relative likelihood for every
outcome and it is not necessarily less than or equal to 1. Thus, in order to avoid the negative
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number of bits caused by PDF'(.) > 1, we consider a resolution parameter +y in the sense that
the coding cost is — logy PDF(a) - 7. The parameter - is a constant real number ensuring that
the coding cost is always positive. Therefore, specifying + is straightforward and needs to be set
in the way that Va € D, PDF(a).y < 1. Then, by setting v > maxy,ep PDF(a) we make
sure that the coding cost is always positive.

2.2 Anomaly Detection

Anomaly (referred to as outliers, noise, deviations or exceptions) detection is a mining task
where the major task is to identify rare items, events, or observations that differ significantly
from the majority of the data. Anomalies can be some kind of problem such as bank fraud, a
structural defect, medical problems, or errors in a text. Recently, there is a significant interest
in anomaly detection among time series in the data mining community. In this respect, we
introduce regression models and regularization techniques that are well-known to model time
series. Moreover, Granger causality is investigated as one of the useful approaches to capture
temporal dependencies among time series which can be helpful to detect dependency anomalies.

2.2.1 Linear regression

Lety'™ = {y!, ..., 4"} denote the response (dependent) time series of length n and {z1™, . .. ,a:},:”}
be the information set, i.e. the set of all observations w.r.t. regressors 1, ..., xp.

« Simple linear regression: The linear model for regression is the most simple regression
model which involves a linear combination of the input variables, i.e. at any time point

t,t = 1,...,n, the response variable 3 is defined as:
P
y' =i/ +---+x§)ﬂp—|—et = Zxﬁ-ﬂj =zt B+ ¢ (2.2)
j=1
where xt = (2,... ,xfg) and B = (B1,...,5,)" are regressor and coefficient vectors,

respectively. ¢!, called error (noise) variable, denotes a random variable that adds noise
to the linear relationship between the response variable and regressors. In a matrix
formulation, one can stack all n equations together as:

y=X.B+e (2.3)
1 1
r] ... X
Y1 €1 ,p
wherey = | : |,e= ]| :|and X = | =~ - " | is the information matrix.
Yn €n o xg

Most of the time, the error vector € is assumed to be the withe noise, i.e. following a
Gaussian distribution with mean value 0 and standard deviation 1, in a linear regression.
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« Autoregression: Usually, an autoregressive model (AR) is used to describe time series
processes in nature, economics, etc. It specifies that the output variable depends linearly
on its own lagged values in a time series. More precisely, the autoregressive model of
order d for a time series x!" at time point ¢ is defined as:

d
et=a" B+ .+t B+ = Z:pt_i.,é’i+et (2.4)
i=1

Moreover, AR model can be considered as a special case of linear regression when the
regressors are lagged observations of the response variable.

» Vector Autoregression: A vector autoregressive (VAR) model is an extended version
of AR model when more than one time series are involved in the model. Essentially, it
captures the linear interdependencies among multiple time series. Let x1, ..., x;, denote
p time series of the length n. Thus, a VAR model of order d is defined as:

b=t 1A+ 4+t A+ € (2.5)

where A;,i =1,...,dis ap X p coefficient matrix w.r.t. i — th equation.

2.2.2 Regularization

Ordinary least square (OLS) is a common approach to estimate linear regression coefficients.
In this approach, we minimize the sum of the squares of the differences between the observed
dependent variable (values of the variable being observed) in the given data set and those
predicted by the linear function. However, this approach might lead to over—fitting while
regularization seems a reasonable solution for it. In other words, since the optimization problem
can be ill-posed, regularization by a penalty function provides an efficient and sparse solution
leading to less complex models. More precisely, let the regression model (Equation 2.2) be given,
the regularized optimization problem is as follows:

n P
B = arg mﬁin Z(yt — Z xiﬁ])Q + AR(3) (2.6)
t=1

j=1

where R(.) is the penalty function and X is the regularization parameter. Here, we introduce
some of well-known regularization methods.

« Lasso regression: Least Absolute Shrinkage and Selection Operator (Lasso) [40] is one of
the well-known regularization as well as variable selection approaches. In this approach,
one adds L;-norm (denoted by ||.||1) of coefficients as penalty term to the loss function
when estimating parameters in a regression model. Thus, the optimization problem is

defined as:
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n p
B=argmin} (v = > 7;.0)" + MBlh (2.7)

t=1 j=1

When A is zero, Equation 2.7 is equivalent to OLS. Setting very large values for \ leads
to under—fitting since Lasso shrinks the less important coefficients to zero. Therefore,
Lasso is usually well-known for feature (variable) selection in the case, a huge number of
features (variables) is given. However, one of the limitations of Lasso is that if p >> n,
Lasso selects at most n features.

« Adaptive Lasso: As a variant of Lasso, adaptive Lasso [46] assigns adaptive weights for
penalizing the L;—-norm of the regression coefficients, i.e.

1

—— (2.8)
mle
By e

p
R(B) =Y wjlf;| , w;=
=1

where w; is the weight vector for some w > 0 and B](mle) is the maximum likelihood
estimate of the parameters. Adaptive Lasso is an appropriate variant of Lasso since its
consistency as well as its oracle properties are proven [46]. Despite the efficiency of Lasso

approach, the consistency of this approach is not ensured !.

« Ridge regression: In this approach we add Lo—norm (denoted by || - ||2) of coefficients
as penalty term to the loss function, i.e.

n p
B =arg mgnZ(yt = @87 + A8l (2.9)
j=1

t=1

Similar to Lasso, if X is zero Equation 2.9 is equivalent to OLS and a very large amount
for A leads to under—fitting resulted by adding too much weight. But unlike Lasso, ridge
regression penalizes the coeflicients if they are too far from zero enforcing them to be
small in a continuous way instead of forcing them to be exactly zero. Thus, it decreases
the model complexity while keeping all variables in the model.

« ElasticNet: Since variable selection with Lasso can be too dependent on data and thus
unstable, ElasticNet, first, was introduced as a remedy for this issue. Essentially, in this
approach, the solution is to combine the penalties of both lasso and ridge regression to
get the best out of them. More precisely, ElasticNet is a convex combination of Ridge and
Lasso when the optimization problem is defined as:

'i.e. the resulting sequence of estimates does not have to converge in probability to the optimal solution for
variable selection under certain conditions (Section 2 in [46]).
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t=1

n p
B = argmin D =2k 8% + Xl|Bll2 + MlIBIh (2.10)
j=1

where the A\; controls the sparseness of a model and Ay removes the limitation on the
number of selected variables and stabilizes the regularization path.

2.2.3 Generalized Linear Model

Generalized Linear Model (GLM), introduced by Nelder and Baker in [31], is a natural extension
of the linear regression to the case where time series can have any distribution from the
exponential family. Therefore, the response variable is not anymore a simple linear combination
of covariates but its mean value is related to the covariates by a link function. More precisely,
let n = X.3 be a linear predictor for the random component y where X denotes the covariate
(information) matrix and 3 is the coefficient vector. We assume, the distribution of y belongs
to the exponential family and u denotes its mean value, i.e. u© = E[y|X]. Thus, in a GLM
framework the relation between these two components is not anymore linear but defined as:

w=g(n)

where ¢ is the link function, a monotone twice differentiable function given by a user. Corre-
sponding to every distribution, there is an appropriate canonical link function (e.g. g = log(.)
for Poisson and g = i for Gamma distribution) [31]. Table 2.1 summarizes well-known
distributions from exponential family providing the appropriate canonical link function w.r.t
each distribution. GLM relaxes Gaussian assumptions about the involved processes and the
error term. Therefore, the regression error does not necessarily follow a standard Gaussian
distribution and it might have any distribution from the exponential family leading to more
accurate models.

Distribution Link function
Gaussian uw=X.p
Exponential/Gamma W= %
~ — 1
Inverse Gaussian "= xg
Poisson/Countable w=exp(X.B)

Bernoulli/Bi(Multi)nomial | ;= %

Table 2.1: Common link functions for various distributions where X is the covariates matrix, i
is the mean and (3 is the coefficient vector.

2.2.4 Granger Causality

Granger causality, introduced by Granger in the area of economics [25], is a well-known notion
for causal inference among time series. Granger causality captures the temporal causal relations
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among time series. However, it is not meant to be always equivalent to the true causality since
the question of "true causality" is deeply philosophical. This notion of causality is defined based
on two principles [21]:

« The cause happens prior to its effect;

+ The cause has unique information about the future values of its effect.

The first assumption is intuitively acceptable since the past influences the future, not
other way around. On the other hand, the second assumption sounds plausible as well in the
sense that without considering the cause no information about the effect is available. Now, let
o' = {2t = 1,...,n} and '™ = {y|t = 1,...,n} denote two stationary time series =
and y up to time n, respectively. Moreover, let .# (¢) be all the information accumulated since
time ¢ and .#-,(t) denote all the information apart from the specified time series y up to time
t. Now considering two above assumptions, Granger proposed the following definition for a
causal effect [25]:

Definition 2.2.1. Granger Causality: Given two time series x and y, y Granger—causes x if
including previous values of y along with x improves the predictability of x, i.e.

P (2 Iyt —1)) < P2 I(t 1)) (2.11)
where & denotes the predictability.

In another point of view, let Model 1 denote the autoregressive (AR) model of order d (the
lag) corresponding to time series . Moreover, let Model 2 denote the augmented AR model
w.r.t. x including the lagged observations of x and y.

zt =27 Yeed + o+ 2Ty € (Model 1)

t t—d t—1
= Qg+ ...+ X S O—1

B B (Model 2)
T Bt Ay T B €

Thus, y Granger—causes z if the second model improves the accuracy when predicting x.

The concept of Granger causality is extendable to more than two time series. Let x1, z2, ..., 7}
be p time series where Vi € {1, ..., p},x; = {a%;|t = 1,...,n}. The VAR model of order d w.r.t.
all the time series is defined as Model 3 in the following:

Xt=X"""B, 44+ .+ X" - B_1+¢ (Model 3)

where X' = (z1%,...,x,") is the concatenated vector of all time series at time point ¢. In
this model By is a p X p matrix of the regression coefficients where the ¢—th row corresponds
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to the coefficients w.r.t. ; at time ¢. Essentially, the matrix formulation is an abstract form to
illustrate the temporal dependencies among all the time series.

Basic definition of the Granger causality has certain assumptions about the distribution of
time series. More precisely, the processes are assumed to be Gaussian distributed time series in
Model 1,2 and 3 and hence a linear model is considered overall. Moreover, in a linear model the
error term (') is an additive Gaussian white noise with mean 0 and variance 1.

2.3 Evaluation Strategies

Let P = {Pi,..., P.} denote the ground truth w.r.t. a data mining task, e.g. clustering or
classification where the data set contains N data objects and C' = {C1, ..., C} } be the achieved
result. Thus, for each pair of data objects x; and x;, there are four different cases:

+ z; and x; belong to the same category of C' and the same category of P
+ z; and x; belong to the same category of C but different categories of P
+ z; and x; belong to different categories of C' but the same category of P

+ x; and x; belong to different categories of C and different categories of P

Let a, b, ¢, d correspond to the number of pairs for the first to fourth cases and L is the total
number of pairs,i.e. L=a+ b+ c+d.

« Precision: Itis also called positive predictive value and is the fraction of relevant instances
among the retrieved instances defined as:

a
a+d

Precision = (2.12)

Moreover, considering adjacency matrices as outputs, let A* and A denote the true and
the output adjacency matrix, respectively. We distinguish between two entries in the
adjacency matrix A, A[i, j] and A[j,i]. Thus, the evaluation measures for time series
x1, ..., Tp are defined as:

{Gi.g) € P Ali,j) = A*[i, j1}]
[{(,5) € P Afi, j] = 1}

Precision = (2.13)

« Recall: It is also known as sensitivity and is the fraction of the total amount of relevant
instances that were actually retrieved:

Recall = — i ; (2.14)
In case of matrices, the recall is defined as:
. P Ali il = A*li. 4
Recall — 1W7) € [i, J] [i, 51} (2.15)

{(i,5) € P+ A*[i, j] = 1}|
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o F-measure: There is clearly a trade—off between precision and recall as the goal of

prediction where F-measure tries to balance the overall quality of prediction.

P 2 x Precision x Recall (2.16)
— measure = .
Precision + Recall

Rand Index: Rand index (RI) is one of the most popular external clustering validation
indices which is a measure of the similarity between two clustering results.

a+d

I =
R L

(2.17)

Categorical Utility: In order to evaluate clustering results in terms of categorical at-
tributes we apply categorical utility (CU) criterion. CU attempts to maximize both the
probability that two patterns in the same cluster have attribute values in common and
the probability that patterns from different clusters have different values:

CU = Z Gk Z STIP(A = Aj|Cr)? — P(A = A;)?) (2.18)

AEJA/ J

where P(A = A;|C}) is the conditional probability that a categorical attribute A has
the value A; given cluster C, and P(A = A;) is the overall probability of attribute A
having the value A; in the entire data set. Obviously, the higher the CU value, the better
the clustering performs.

Normalized Mutual Information: Normalized mutual information (NMI) [41] is an
information—-theoretic evaluation measure for clustering results. NMI numerically evalu-
ates pairwise mutual information between ground truth and resulted clusters and con-
tinues normalizing by means of the entropy of either original or resulted clusters. NMI
scales between zero and one representing a random and a perfect clustering, respectively.

Let H(P) and H(C) denote the entropy of P and C, respectively, defined as:
Z p(F;).log(p(F;)) (2.19)

where p(P;) shows the probability of the category P;. Moreover, let I(P, C'), the mutual
information of P and C, i.e. the amount of information they have in common, be defines
as:

p(P.NC;)
;;meC log( (P)p(cj)) (2.20)

Thus, NMI is defines as follows:
I(P,C)

NMI(P,C) = H(P).H(C)

(2.21)
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Problem Statement and Research
Challenges

3.1 Problem Specification

Essentially, our focus in this thesis is mining heterogeneous data sets and facing challenges
when analyzing such data. Heterogeneity could mean different when considering various
domains. Thus, we distinguish between mixed-type and single-type heterogeneous data sets
in this thesis.

A mixed-type heterogeneous data set consists of attributes from different data types. As
an example, dealing with statistical surveys, heterogeneous data could consist of categorical
attributes(e.g. marital status) and numerical attributes(e.g. the amount of income). To elaborate
on the issue, let us consider the following mixed—-type data consisting of three different clusters
illustrated by different shapes (rectangle, circle, cross) in Figure 3.1. The data set comprises two
numerical attributes concerning the position of data objects in a 2D space and a categorical

Figure 3.1: A synthetic example for a mixed-type heterogeneous data.

13
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Figure 3.2: Selected stations of meteorological measurements in Austria.

attribute representing the color of data points (rose, purple, light green, dark green and cyan).
Therefore, a data object in this data set looks like, for example, (1, 2, purple).

On the other side, single-type heterogeneous data comprise a specific data type, e.g. nu-
merical time series, where attributes might be of different natures. An example of this category
is a mixture of Poisson distributed time series (e.g. measuring the number of sunny days) and
Gaussian distributed time series (e.g. measuring the amount of precipitation) when observing
the weather characteristics in different stations in a climatological data set is (Figure 3.2).

In the following, we address some of the challenges one needs to face when mining hetero-
geneous data sets.

3.2 Research Challenges

Among the top 10 challenging problems in data mining, identified by [44], there are three
challenges related to complex data indicating the importance of the issue;

+ Mining complex knowledge from complex data;
+ Developing a unifying theory of data mining;

« Mining sequence data and time series data;

The first challenge is related to mining complex data and finding interesting patterns where
various characteristics of every attribute are preserved. In order to elaborate the issue, we con-
sider the generated mixed-type heterogeneous data set illustrated in Figure 3.1. As mentioned,
when mining such data, one of the basic and straightforward approaches is to homogenize the
data as much as it is possible. This might be achieved by converting a data type to another one.
That is, we simply convert the categorical attribute Color to a numerical attribute by mapping
numbers to various colors, e.g. cyan=1, light green =2, rose=3, and so on. Employing NMI
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Original Data D2 K-means, NMI = 0.43 bz DBSCAN,NMI =052 D2

Figure 3.3: Clustering results after converting categorical attribute Color to a numerical one.

[41] as an evaluation measure, we apply two popular clustering algorithms, K-means [29]
and DBSCAN [22] on the homogenized data set, to find interesting patterns in this example.
These clustering algorithms are essentially designed for pure numerical data sets when distance
measures play a key role. Figure 3.3 shows the low performance of applying them on the
converted data when maximum NMI (achieved by DBSCAN) is 0.52. As a justification, the
distance between various colors is artificially defined after a data type conversion and it is
not meaningful anymore. Therefore, it might disturb clustering algorithms to find the correct
clusters. Thus, our first research question is as follows;

Question 1
How can the effect of artificially defined relationships caused by a simple conversion of
data types be avoided when mining heterogeneous data sets?

Although the topic of clustering mixed-type data represented by numerical and categorical
attributes attracted attention, e.g. CFIKP [45], CAVE [27], CEBMDC [26], most of the algorithms
are designed based on the algorithmic paradigm of k-means, e.g. k-Prototypes [28], Spectral CAT
[19], and CoupledMC [42]. Often in this category, not only the number of clusters &k has to
be specified by a user, but also the weighting between numerical and categorical attributes
in clustering. Among them, K-means-mixed (KMM) [2] avoids weighting parameters by an
optimization scheme learning the relative importance of the single attributes during runtime.
However, it still needs the number of clusters k as an input parameter.

Model-based clustering algorithms have been also proposed for mixed-type data by incor-
porating a mixture of Gaussian distributions. In between, clustMD [30] is developed using a
latent variable model and employing an expectation maximization (EM) algorithm to estimate
the mixture model. Yet, this algorithm has certain Gaussian assumptions that do not have to
be necessarily fulfilled. On the other hand, clustering algorithms designed for mixed-type
data often do not properly model dependencies and are limited to modeling meta—Gaussian
distributions. Copulas, that provide a modular parameterization of joint distributions, can model
a variety of dependencies but their use with discrete data remains limited due to challenges
in parameter inference. Authors in [34] use Gaussian mixture copulas to model complex de-
pendencies beyond those captured by meta—Gaussian distributions for clustering. However,
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Ground Truth & ITGH CUTE
F-measure=1.00 F-measure = 0.30 F-measure = 0.00 F-measure = 0.57

Figure 3.4: Synthetic heterogeneous example. Results of applying existing Granger causal
inference algorithms designed for homogeneous data sets on heterogeneous data. Red edges
show the wrongly detected causal relations and black edges show the correct causal directions.

this approach may not only result in information loss but also fail to capture the discriminative
information between objects.

Thus, most clustering algorithms, although designed for mixed—type data, require a user
to specify parameters which are not straightforward to be set. Therefore, our next research
question arises as follows;

Question 2
How can the data be analyzed without a user having to specify some parameters, i.e.
parameter—free data analysis?

The second challenge implies that most data mining algorithms are "ad-hoc". Many tech-
niques are either designed for a specific data type (e.g. pure numerical data) or consider individual
cases, such as clustering or anomaly detection. But there is no unifying framework. In another
point of view, most algorithms avoid spurious correlations which are sometimes related to
the problem of mining for "deep knowledge", e.g. the hidden causes for many observations
[44]. As an example, there might be a strong correlation between the number of sunny days in
"Eisenstadt" in Figure 3.2 and the amount of precipitation in "Wien" when investigating the
climatological measurements in Austria. Considering such information might help to improve
the accuracy of data mining algorithms. But the term "deep knowledge" might have different
interpretations. Here our focus is on the discovery of causal networks from observational
data, where no certain information about their distribution is provided. This is a fundamental
problem with many applications in science. Thus, the next question appears in this regard;

Questions 3
How is it possible to increase the accuracy through "deep knowledge" when mining
heterogeneous data?
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Regarding the third challenge, mining sequence data (and time series) is challenging since
they are non-i.i.d and there is usually a strong correlation among various observations. This
case gets even more complicated when time series are of different natures (heterogeneous single-
type data). Despite the efficiency of homogeneous algorithms designed for causal inference
on time series, they lead to information loss and inaccuracy when applying on heterogeneous
data. As a reason, homogenizing the data which in this case means transforming a time series
to another one with a specific distribution, leads to inaccuracy. On the other side, applying
an algorithm designed for homogeneous data sets on heterogeneous data does not guarantee
high performance. To elaborate, we generated a heterogeneous data set consisting of 4 Poisson
(blue circles in Figure 3.4) and a Gamma (orange circle) distributed time series and applied some
well-known algorithms designed for Granger causal inference on homogeneous data sets, i.e.
GT [25] (short for Granger test), CUTE [17], TCML [5]. As it is explicitly clear in Figure 3.4,
none of them perform effectively on this data set in terms of F-measure. GT assumes a Gaussian
distribution and hence a linear relation among time series which leads to inefficiency. On the
other hand, CUTE needs to binarise time series as it is designed for event sequences where
Bernoulli distributed time series are assumed. It is already well-understood that discretization
and specially binarising the data decreases the accuracy since the distribution of the time series
is not preserved. Thus, our third question shows up;

Question 4
Is it possible to avoid information loss caused by specific assumptions when mining
heterogeneous data?
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Contributions and Research Results

In this chapter, we elaborate on the different steps of our research approach in Section 4.1.
Afterward, various contributions achieved in the course of this thesis are introduced in Section
4.2. Finally, we address research results containing scientific papers in Section 4.3.

4.1 Research Approach

Our general research approach in this thesis comprises several steps. First, we specify the
problem and state the motivation which is essentially avoiding drawbacks of already existing
approaches. In the next step, we address objectives of a possible efficient and effective solution.
A comprehensive solution tries to move towards a parameter—free data analysis when fewer
number of parameters is preferred. After specifying characteristics of an effective solution, we
start a loop of iterative design and evaluation. That is, we first propose an algorithm, considering
objectives of the problem and the solution. Then, we evaluate the algorithm in various aspects
by conducting several experiments on synthetic and real-world data sets. If the evaluation does
not seem satisfactory, we go a step backward and modify the design as long as it leads to more
convincing results. Finally, when the proposed algorithm sounds promising in various aspects,
e.g. properties of the problem and the solution, design, and evaluation, we try to publish the
paper in outstanding conferences and journals. Figure 4.1 and 4.2 show different steps of our
research approach taken in this thesis in detail.

4.2 Contributions

Generally speaking, our main contribution is to avoid drawbacks of a data type conversion
as well as the inaccuracy caused by specific assumptions when mining heterogeneous data
sets. In this respect, we aim at preserving the original data and utilizing useful characteristics
of every data type. In particular, we focus on the clustering of mixed-type heterogeneous
data where a mixture of categorical and numerical attributes is given. As already mentioned,
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Problem Specification and Motivations

+ Avoiding information loss

+ Increasing the accuracy by avoiding artificial relations

+ Reducing number of parameters

|

Objectives of a Possible Solution

» Efficiency and scalability
« Effectiveness in various aspects
« Comprehensiveness

« Fewer of required parameters to be specified

L )
!
( Design and Development )
[
( Evaluation )
!
( Communication )

Figure 4.1: First two steps of our research approach in this thesis.

most existing clustering algorithms are designed for pure numerical attributes and applying
them to a mixed-type data leads to inaccuracy and information loss. Thus, we try to avoid
a data conversion and preserve heterogeneity of data by employing Concept Hierarchies. An
interesting characteristic of categorical data that one could easily utilize is the natural hierarchy
among various categories. To elaborate, let Figure 4.3a show the introduced mixed-type data set
(Section 3.1) where two numerical attributes (D7 and D) show the position of every data point
in a 2D space and the third attribute shows its color. This data set consists of three different
clusters illustrated in Figure 4.3 by different shapes (rectangle, circle, cross). Considering the
standard scalable range of colors, one can categorize different colors as illustrated in Figure 4.3b
when frequency of every color is assigned to its corresponding node. During clustering of such
data, one might find the concept "pink" more representative for a detected cluster consisting
of points with colors purple and rose. We utilize such conceptual hierarchies to summarize
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Problem Specification and Motivations

7

Objectives of a Possible Solution

Av4

Design and Development

Integrative approach in order to avoid drawbacks of a simple data type
conversion

Trying to preserve the original data types and avoiding any specific
assumptions

Reducing number of parameters and trying to propose parameter-free
algorithms

Utilizing the "deep knowledge", i.e., useful characteristics of the data,
correlation mining in terms of causality

[

Evaluation

Implementation and simulation of the proposed algorithm

Conducting experiments and evaluation of the algorithm in various
aspects on synthetic and real-world data sets

Comparison to state-of-the-arts

!

Communication

L/

Publications in conferences and journals

Talks in conferences and workshops

Figure 4.2: Last three steps of our research approach in this thesis.
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D1

Level

Figure 4.3: a) Synthetically generated mixed-type data, b) A natural hierarchy between colors
based on scalable range of colors.

categorical attributes and introduce a model to represent the data when for solely numerical
data sets approximating data with a Probability Distribution Function (PDF) is well-accepted.

In another point of view, a concept hierarchy provides a meaningful distance measure
among various concepts. Dark green and light green, for instance, are more similar compared
to purple according to the scalable range of colors (Figure 4.3b). It is also confirmed by the
corresponding concept hierarchy since they belong to the same branch of the tree. Most classic
clustering algorithms, e.g. DBSCAN, are designed based on a distance metric. Therefore, it
sounds reasonable to apply these algorithms on heterogeneous data sets when a meaningful
distance measure for both categorical and numerical attributes is considered. That is, we incor-
porate a unified distance measure for numerical and categorical attributes based on the concept
hierarchy. Thus, it brings us to our first contribution as follows;

Contribution 1
Utilizing specific characteristics of every data type in order to preserve original data and
avoid the effect of artificially defined relations caused by a simple conversion of data

types.

On the other hand, many data mining approaches consider specific assumptions that do
not have to be true necessarily. For instance, many algorithms assume a Gaussian distribution
and a linear model when dealing with time series. However, there are many processes of a
non-Gaussian nature( e.g. Poisson distributed time series) and many applications generating a
mixture of time series having different distributions. We already demonstrated various chal-
lenges dealing with such data in Section 3.2. Essentially, we try to integrate data of different
natures as much as possible to avoid any information loss. In particular, let us focus on finding
causal dependencies between time series in a heterogeneous data set where time series of differ-
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ent distributions are considered. Moreover, let Granger causality be the causal notion employed
to investigate the existing interactions. As already mentioned in the background (Chapter
2), a basic definition of Granger causality has certain assumptions about the distribution of
time series. More precisely, the processes are assumed to be Gaussian distributed time series
and hence a linear model is considered overall. Moreover, in a linear model, the error term
(€%) is an additive Gaussian white noise with mean 0 and variance 1 (Model 1 and Model 2
in Section 2.2.4). However, these assumptions are not necessarily true in most applications.
Thus, it is crucial to generalize the linear models to the non-linear cases in the sense that we
include time series from various distributions and avoid any information loss caused by forcing
Gaussian assumptions. Therefore, we employ Generalized Linear Models (GLMs) to extend the
notion of Granger causality and introduce an integrative framework for causal inference on
heterogeneous time series data regardless of their distributions. GLMs allow us to generalize
simple autoregressive models to the case where several processes of different distributions from
the exponential family are non-linearly related. Altogether, our next contribution is as follows;

Contribution 2
Integrate data of different natures as much as possible to avoid any information loss.

Regarding the third research question and data mining challenges, we are interested in
improving the accuracy when mining heterogeneous data utilizing "deep knowledge". One
could interpret the term "deep knowledge" in different ways. When mining time series, for
instance, one could be interested in discovery of anomalies or outliers. However, classifying
multivariate time series data, there are two types of anomalies:

« univariate anomaly: anomalies occur only within individual time series,

« dependency anomaly: anomalies occur due to changes of temporal dependencies among
various time series.

Dependency anomalies, are more challenging to detect due to complex temporal structures
and interactions among time series. In this regard, the discovery of causal relations among
different processes leads to characterize the evolution in time of regular observations. The
regular pattern can be used to detect deviated observations (i.e. outliers) in anomaly detection.
That is, we incorporate the so—called "deep knowledge" when detecting anomalies in the sense
that "deep knowledge" is interpreted as information about causal interactions among time series.
Back to the climatological example (introduced in Figure 3.2), now an interesting question would
arise: Utilizing the existing temporal dependency between stations could we find any anomalies
in terms of the precipitation in a specific station (e.g "Wien") when we have measurements for
different stations?

In another point of view, one could interpret incorporating "deep knowledge" as utilizing
concept hierarchies to summarize all the information w.r.t. categorical attributes and improving
clustering algorithms when dealing with heterogeneous data sets. Therefore, our third contri-
bution is as follows;
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Contribution 3
Employing useful characteristics of the data as well as incorporating spurious
correlations to improve the accuracy when mining heterogeneous data.

On the other side, most data mining algorithms require a user to specify several parameters.
Nevertheless, it is usually non-trivial to find the most appropriate parameter setting. To face
this issue, parameter—free algorithms are introduced to make this process automatic. Among
various approaches in this regard, we incorporate an effective model selection approach, i.e.
Minimum Description Length (MDL) [7] which evaluates various models and find the most
accurate one according to the minimum description length criterion. MDL-principle regards
the task of model selection to a data compression problem in the sense that more accurate
models lead to less compression cost. The better the model fits the major characteristics of
the data, the better the result is. Following the MDL-principle, we encode not only the data
but also the model itself and minimize the overall description length. Simultaneously, we
avoid over-fitting since the MDL tends to a natural trade—off between model complexity and
the goodness—of-fit. In the context of clustering, MDL can be employed as a clustering cri-
terion as well as a model selection approach, i.e. an approach to make clustering parameter—free.

Contribution 4
Incorporating the MDL-principle for a parameter—free data mining.

4.3 Research results

Considering the aforementioned challenges and research questions, we focus on the clustering of
heterogeneous data sets in this thesis where a parameter—free approach is preferred. Moreover,
we address the anomaly detection of such data as a post—processing phase in data mining.
First, we list various papers that either have been already published in scientific conferences,
workshops, and journals or are currently under review. Then, we elaborate on the way each
paper contributes in this thesis to cope the aforementioned challenges.

4.3.1 Publication Overview

« Paper A: Sahar Behzadi, Nikola Miiller, Claudia Plant, and Christian B6hm. “Clustering
of Mixed-type Data Considering Concept Hierarchies”. In: The Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD). 2019.

« Paper B: Sahar Behzadi, Nikola Miiller, Claudia Plant, and Christian Bohm. “Clustering of
Mixed-type Data Considering Concept Hierarchies: problem specification and algorithm”.
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In: International Journal of Data Science and Analytics. 2020.

« Paper C: Sahar Behzadi, M. A. Ibrahim, and Claudia Plant. “Parameter Free Mixed-Type
Density-Based Clustering”. In: International Conference on Database and Expert Systems
Applications (DEXA). 2018.

« Paper D: Sahar Behzadi, Hermann Hinterhauser, and Claudia Plant. “ITGC: Information-
theoretic grid-based clustering”. In: International Conference on Extending Database
Technology (EDBT). 2019.

« Paper E: Sahar Behzadi, Katefina Hlavackova-Schindler, and Claudia Plant. “Dependency
anomaly detection for heterogeneous time series: A Granger-Lasso approach”. In: IEEE
International Conference on Data Mining (ICDM) workshops. 2017.

« Paper F: Sahar Behzadi, Katefina Hlavackova-Schindler, and Claudia Plant. “Granger
Causality for Heterogeneous Processes”. In: The Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD). 2019.

« Paper G: Sahar Behzadi, Niklas Preschern, Katefina Hlavackova-Schindler, and Claudia
Plant. “Anomaly Detection in Heterogeneous Time Series by Causality Mining”. In:
Knowledge and Information Systems, submitted for publishing. 2020.

« Paper H: Sahar Behzadi, Benjamin Schelling, and Claudia Plant. “I'TGH: Information-
theoretic Granger Causal Inference on Heterogeneous Data”. In: The Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining (PAKDD). 2020.

« Paper I: Sahar Behzadi, Benjamin Schelling, and Claudia Plant. “Information-theoretic
Granger Causal Inference on Heterogeneous Data: Problem specification and algorithm”.
In: International Journal of Data Science and Analytics, submitted for publishing. 2020.

4.3.2 Discussion of Results

There are a wide variety of heterogeneous data sets depending on various applications. In this
thesis, we distinguish between mixed-type and single-type heterogeneous data sets as already
explained in Section 3.1. Figure 4.4 summarizes our publications w.r.t. various approaches we
have taken and different tasks addressed in each paper.

Considering the task of clustering, we focus on mixed-type data sets where a mixture
of categorical and numerical attributes is given. Essentially, our approach is to avoid data
type conversion when clustering a mixed-type data set. That is, we aim at preserving the
original characteristics of data and integrate different data types where a non—parametric
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approach is preferred. Thus, we first investigate how to incorporate the MDL-principle as
a clustering criterion in Paper D [8] when dealing with pure numerical attributes. In this
paper, we proposed a parameter—free Information-Theoretic Grid-based Clustering (ITGC)
algorithm utilizing MDL. That is, we regard the clustering task as a data compression problem
such that the best clustering is linked to the strongest data compression. First, an adaptive grid
is constructed corresponding to the statistical characteristics of any data set and non-empty
cells are considered as single clusters. Then, we combine the concept of density and grid-based
methods, and employing our MDL-based objective function, we start merging clusters with
their neighbor grid cells only if it pays off in terms of the compression cost. In this paper, we
address Contribution 4 although the main focus is not on heterogeneous data sets. That is why
we do not include Paper D in Figure 4.4.

Later, we employ our experiences after Paper D for a parameter—free clustering but con-
sidering mixed—-type data sets in Paper A [12] and Paper B [13]. Here, we again incorporate
the MDL—principle as a clustering criterion. MDL allows integrative clustering by relating the
concepts of likelihood and data compression while for any attribute a representative model
is required. For solely numerical data sets a PDF represents an approximation of data. For
categorical attributes, we incorporate concept hierarchies among various categories to sum-
marize the categorical information. Beyond the clustering approaches, detecting the most
relevant attributes during this process improves the quality of clustering. However, considering
a data set with an unknown distribution where only a few attributes in the data space are
relevant to characterize a cluster, it is not trivial to recognize the cluster—specific attributes.
Thus, in Paper A, we introduce a parameter—free CLustering algorithm for mixed-type data
Including COncept Trees, shortly ClicoT which ensures that only the truly relevant attributes
are marked as cluster—specific attributes. The compression-based objective function employed
by ClicoT avoids over—fitting, enhance the interpretability and guarantee the validity of the
result. Hence, we address Contribution 1 and 4 introducing ClicoT which is a model-based
clustering algorithm. Paper B is an extended version of Paper A where we investigate more
aspects of ClicoT.

Another application of concept hierarchies is to employ them as a meaningful distance
measure for both categorical and numerical attributes when dealing with mixed-type data sets.
Back to the synthetic mixed-type example introduced in Section 4.2, Figure 4.5a shows the
corresponding distance