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Abstract

Most data mining algorithms (e.g. clustering algorithms) are designed for single–type
data sets when attributes consist of only a speci�c data type, e.g. pure numerical or pure
categorical attributes. However, many applications generate a variety of di�erent mixed–
type data sets where attributes might be of di�erent natures. It is already well–understood
that a simple transformation of a data type into another one is not su�cient since, in this
case, relationships between values (such as a certain order among variables) are arti�cially
introduced. Thus, a possible challenge in this respect is to appropriately integrate various data
types such that one could e�ciently analyze objects without any accuracy or information loss.
Therefore, in this thesis, we aim at introducing e�ective and e�cient algorithms dealing with
heterogeneous (mixed–type) data sets Considering various data mining tasks. In this regard,
we utilize interesting characteristics of every data type, e.g. a natural conceptual hierarchy
among categorical information, to introduce novel data mining algorithms. Thereby, we try to
integrate attributes of di�erent data types and preserve the original form of information instead
of converting data types.
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Zusammenfassung

Die meisten Algorithmen aus dem Bereich des Data Mining (z. B. Clustering Algorithmen)
sind für Datensätze mit ein und demselben Typ ausgelegt, das heißt die Attribute bestehen nur
aus einem bestimmten Datentyp, z. B. aus rein numerischen oder rein kategorischen Attributen.
Viele Anwendungen erzeugen jedoch eine Vielzahl verschiedener gemischter Datensätze, bei
denen die Attribute unterschiedlicher Natur sein können. Es ist allgemein bekannt, dass
eine einfache Transformation eines Datentyps in einen anderen nicht ausreicht, da in diesem
Fall Beziehungen zwischen Werten (wie z.B. eine bestimmte Reihenfolge zwischen Variablen)
künstlich eingeführt werden. Daher besteht eine mögliche Herausforderung in dieser Hinsicht
darin, verschiedene Datentypen angemessen zu integrieren, so dass man Objekte e�zient
und ohne Genauigkeits- oder Informationsverlust analysieren kann. Das Ziel in dieser Arbeit
ist es, e�ektive und e�ziente Algorithmen für den Umgang mit heterogenen (gemischten)
Datensätzen unter Berücksichtigung verschiedener Aufgaben des Data Mining einzuführen.
In dieser Hinsicht nutzen wir interessante Eigenschaften jedes Datentyps, z.B. eine natürliche
konzeptuelle Hierarchie zwischen kategorialen Informationen, um neuartige Algorithmen
im Data Mining einzuführen. Dabei versuchen wir, Attribute verschiedener Datentypen zu
integrieren und die ursprüngliche Form der Information zu erhalten, anstatt Datentypen zu
konvertieren.
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CHAPTER 1
Introduction

Data mining is a particular step of a wider process, Knowledge Discovery in Databases (KDD). As
Figure 1.1 shows, a KDD process involves using a database along with any required selection,
pre–processing, sub–sampling, and transformations of the data; applying data mining methods
(algorithms) to enumerate patterns from it; and evaluating the products of data mining to
identify the subset of the enumerated patterns deemed knowledge [23]. Essentially, data mining
consists of applying data analysis and discovery algorithms that, under acceptable computational
e�ciency limitations, produce a particular enumeration of patterns (or models) over the data
[23].

Basic data mining tasks comprise clustering, classi�cation, association rule mining and
frequent pattern mining, regression and anomaly (outlier) detection. Among them, clustering is
one of the interesting data mining tasks which groups data objects in the way that objects in the
same groups (clusters) are more similar (based on some criteria) to each other than to those in
other groups (clusters). Clustering algorithms usually di�er signi�cantly in their understanding
of what constitutes a cluster and how to e�ciently �nd them. After applying a clustering
algorithm and detecting meaningful groups, �nding objects, that are considerably di�erent from
other objects, leads to more accurate data analysis. This process is one of the data mining tasks
which is called anomaly (or outlier) detection.

Most data mining algorithms have been designed only for pure homogeneous data sets.

Data Data Preparation Data Mining 

Transformed 

Data Patterns 

Evaluation Knowledge 

Figure 1.1: Overview of a KDD process.
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2 CHAPTER 1. INTRODUCTION

However, many applications, e.g. population or statistical surveys, climatological reports,
generate a mixture of data objects consisting of attributes from di�erent natures (distributions).
Mining such complex data sets is a non–trivial task and typically is not achieved by well–known
algorithms designed for a special data type. Complex data might be interpreted in di�erent ways.
An important type of complex data is in the form of graphs. Another form of complexity is from
data that are non–i.i.d. (independent and identically distributed), e.g. time series. However, in
most domains, the objects of interest are not independent of each other and are not of a single
type. We call this kind of complex data, which is of interest in this thesis, heterogeneous data.

When mining heterogeneous data sets, one of the basic and straightforward approaches
is to homogenize the data as much as possible. This might be achieved by converting a data
type to another one. However, it is already well–understood that this approach has some severe
drawbacks. Most of the time, a simple conversion or any speci�c assumptions might lead to
information loss. Moreover, relations between values, such as a certain order among objects, are
arti�cially de�ned. Thus, our main approach in this thesis is to preserve original characteristics
of every data type and try to integrate data of di�erent natures as much as possible in order to
avoid any information loss. In this respect, we incorporate useful characteristics of every data
type and introduce an integrative approach to cope with the aforementioned drawbacks.

The remainder of this cumulative Ph.D. thesis is structured as follows. Chapter 2 de�nes
relevant terms and the background one needs to follow various concepts in this thesis. Chapter 3
speci�es the research problem, highlights challenges, and states the research questions. Chapter
4 lists all scienti�c papers that have been published and details the scienti�c contributions that
have been made in the course of this thesis. Finally, Chapter 5 concludes this thesis and gives
an outlook on potential future works.



CHAPTER 2
Background

2.1 Clustering

Clustering is one of various data mining tasks which groups data objects in the way that objects
in the same group (cluster) are more similar (based on some criteria) to each other than to those in
other groups (clusters). Clustering algorithms usually di�er signi�cantly in their understanding
of what constitutes a cluster and how to e�ciently �nd them. In the following, we introduce
some of the most familiar clustering approaches. In the end, we give an introduction about one
of the useful clustering criteria which we often employ in our proposed algorithms.

2.1.1 Clustering Approaches

• Grid–based clustering
One of the well–known clustering approaches is grid–based clustering where any data set
is partitioned using a set of grid–cells and data points are assigned to an appropriate grid
cell. Grid–based methods [1], [43], [38] quantize the object space into a �nite number
of cells (hyper–rectangles) and then perform the required operations on the quantized
space. The main advantage of grid–based methods is their fast processing time which
depends on the number of cells in the grid. In other words, no distance computation is
required and the clustering is performed on summaries and not on the individual objects.
Thus, the complexity of grid–based algorithms is usually O(number of populated grid cells)
and not O(number of objects).
Beyond their ability to deal with noisy data sets, grid–based clustering algorithms are able
to identify clusters irrespective of their shapes. Unlike most of the clustering algorithms
which require an often initialization phase, algorithms in this category are insensitive to
the order of input records and therefore are deterministic.

• Partition–based clustering
Among various clustering approaches, some of them attract a lot of attention because of

3



4 CHAPTER 2. BACKGROUND

their advantages. Partition–based clustering algorithms are popular due to their simplicity
and their relative e�ciency [29], [3]. K–means [29] is a well–know and well–studied rep-
resentative for this approach where initially the data is partitioned into k non–empty sets
(clusters) and iteratively the data points are assigned to their nearest cluster. Despite the
mentioned advantages, clustering algorithms in this group su�er from some drawbacks.
Often in this category, the number of partitions (clusters) k should be speci�ed in the
beginning and results are not deterministic because of their sensitivity to the initialization.
Moreover, they are not suitable to discover clusters with non–convex shapes. As a subset
of this group, model–based clustering algorithms consider a speci�c distribution model to
represent data sets. Among them, Expectation–Maximization (EM) algorithm interprets
the data as a mixture of Gaussian distributions [20].

• Density–based clustering
Algorithms in this category (e.g. [22], [4]) are appropriately designed to deal with arbitrary
shaped clusters. Unlike partition–based algorithms, algorithms in this category are able
to deal with noisy data sets. However, we usually need to specify some parameters
representing characteristics of dense regions which, mostly, are not straightforward to
specify. Additionally, density–based algorithms are not designed to e�ciently deal with
clusters with various densities.

2.1.2 Parameter–free clustering

Most clustering algorithms require to specify input parameters which are usually di�cult to
estimate. However, information–theoretic approaches have been proposed to avoid the di�culty
of estimating input parameters. These algorithms regard the clustering as a data compression
problem by incorporating the Minimum Description Length (MDL)–principle. The cluster model
of these algorithms comprises joint coding schemes supporting numerical and categorical
data. The MDL–principle allows us to balance model complexity and goodness–of–�t. In the
following, we elaborate on this principle.

Minimum Description Length Principle

MDL [7] is a well–known model selection approach to evaluate various models and �nd the most
accurate one considering the minimum description length criterion. MDL–principle regards
the model selection challenge to a data compression problem in the sense that more accurate
models lead to less compression cost. More precisely, let M denote a set of various candidate
models representing the data. Following the two–part MDL [7], the best �tting model M ∈M
is the one which minimizes

DL(D,M) = DL(D|M) +DL(M) (2.1)

where DL(D|M) concerns the description length of the data set D encoded by means of
the model M and DL(M) represents the model complexity, i.e. cost of encoding the model
itself. In MDL–principle, we incorporate the model complexity to avoid any over–�tting caused



2.1. CLUSTERING 5

Figure 2.1: Various accurate and inaccurate �tted PDFs for a synthetic data x generated by a
Gaussian(2, 1) model.

by too complicated models. Therefore, we encode not only the data but also the model used in
the coding process.

We consider DL(D,M) as a model selection indicator. That is, employing a coding scheme,
the number of bits required to encode the data indicates the accuracy of the model used in the
coding process. According to the Shannon coding theorem [37], the ideal code length is related
to the likelihood and is bounded by the entropy. More precisely, for an outcome a the number
of bits required for coding is de�ned by log2

1
P (a) , where P (.) shows the probability of a with

the assumption that limP (a)→0+ P (a) log2(P (a)) = 0. This coding scheme is also known as
log loss. As a consequence, we assign shorter bit strings to outcomes with higher probability
and longer bit strings to outcomes with lower probability.

To elaborate the concept, assume a synthetically generated data following Gaussian distribu-
tion, i.e. x ∼ Gaussian(2, 1). Figure 2.1 shows the probability density function (PDF) w.r.t. the
true model (G1 := Gaussian(2, 1), the blue line) and two other PDFs corresponding to models
with the lower accuracy, i.e. G2 := Gaussian(2, 2) (the red line) and G3 := Gaussian(0, 1)
(the orange line). Applying Shannon’s theorem, we compute the compression cost of the
outcome a = 2 w.r.t. three models as follows:

− log2 PDFG1(2) = − log2(0.4) = 1.32

− log2 PDFG2(2) = − log2(0.2) = 2.32

− log2 PDFG3(2) = − log2(0.05) = 4.32

Thus, the compression cost is in an inverse relationship with the likelihood of an outcome.
The better the model �ts the data (G2 in our example), the more likely the observations are,
and hence the lower the compression cost is. Moreover, PDF is a relative likelihood for every
outcome and it is not necessarily less than or equal to 1. Thus, in order to avoid the negative
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number of bits caused by PDF (.) > 1, we consider a resolution parameter γ in the sense that
the coding cost is − log2 PDF (a) · γ. The parameter γ is a constant real number ensuring that
the coding cost is always positive. Therefore, specifying γ is straightforward and needs to be set
in the way that ∀a ∈ D, PDF (a).γ ≤ 1. Then, by setting γ ≥ max∀a∈D PDF (a) we make
sure that the coding cost is always positive.

2.2 Anomaly Detection

Anomaly (referred to as outliers, noise, deviations or exceptions) detection is a mining task
where the major task is to identify rare items, events, or observations that di�er signi�cantly
from the majority of the data. Anomalies can be some kind of problem such as bank fraud, a
structural defect, medical problems, or errors in a text. Recently, there is a signi�cant interest
in anomaly detection among time series in the data mining community. In this respect, we
introduce regression models and regularization techniques that are well–known to model time
series. Moreover, Granger causality is investigated as one of the useful approaches to capture
temporal dependencies among time series which can be helpful to detect dependency anomalies.

2.2.1 Linear regression

Let y1:n = {y1, . . . , yn} denote the response (dependent) time series of lengthn and {x1:n1 , . . . , x1:np }
be the information set, i.e. the set of all observations w.r.t. regressors x1, . . . , xp.

• Simple linear regression: The linear model for regression is the most simple regression
model which involves a linear combination of the input variables, i.e. at any time point
t, t = 1, . . . , n, the response variable yt is de�ned as:

yt = xt1.β1 + · · ·+ xtp.βp + εt =

p∑

j=1

xtj .βj = x
t.β + εt (2.2)

where xt = (xt1, . . . , x
t
p) and β = (β1, . . . , βp)

T are regressor and coe�cient vectors,
respectively. εt, called error (noise) variable, denotes a random variable that adds noise
to the linear relationship between the response variable and regressors. In a matrix
formulation, one can stack all n equations together as:

y =X.β + ε (2.3)

where y =



y1
...
yn


, ε =



ε1
...
εn


 and X =




x11 . . . x1p
... ···

...

xn1 . . . xnp


 is the information matrix.

Most of the time, the error vector ε is assumed to be the withe noise, i.e. following a
Gaussian distribution with mean value 0 and standard deviation 1, in a linear regression.
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• Autoregression: Usually, an autoregressive model (AR) is used to describe time series
processes in nature, economics, etc. It speci�es that the output variable depends linearly
on its own lagged values in a time series. More precisely, the autoregressive model of
order d for a time series x1:n at time point t is de�ned as:

xt = xt−d · βd + ...+ xt−1 · β1 + εt =
d∑

i=1

xt−i.βi + εt (2.4)

Moreover, AR model can be considered as a special case of linear regression when the
regressors are lagged observations of the response variable.

• Vector Autoregression: A vector autoregressive (VAR) model is an extended version
of AR model when more than one time series are involved in the model. Essentially, it
captures the linear interdependencies among multiple time series. Let x1, . . . , xp denote
p time series of the length n. Thus, a VAR model of order d is de�ned as:

xt = xt−1.A1 + · · ·+ xt−d.Ad + ε
t (2.5)

where Ai, i = 1, . . . , d is a p× p coe�cient matrix w.r.t. i− th equation.

2.2.2 Regularization

Ordinary least square (OLS) is a common approach to estimate linear regression coe�cients.
In this approach, we minimize the sum of the squares of the di�erences between the observed
dependent variable (values of the variable being observed) in the given data set and those
predicted by the linear function. However, this approach might lead to over–�tting while
regularization seems a reasonable solution for it. In other words, since the optimization problem
can be ill–posed, regularization by a penalty function provides an e�cient and sparse solution
leading to less complex models. More precisely, let the regression model (Equation 2.2) be given,
the regularized optimization problem is as follows:

β̂ = argmin
β

n∑

t=1

(yt −
p∑

j=1

xtj .βj)
2 + λR(β) (2.6)

where R(.) is the penalty function and λ is the regularization parameter. Here, we introduce
some of well–known regularization methods.

• Lasso regression: Least Absolute Shrinkage and Selection Operator (Lasso) [40] is one of
the well–known regularization as well as variable selection approaches. In this approach,
one adds L1–norm (denoted by ||.||1) of coe�cients as penalty term to the loss function
when estimating parameters in a regression model. Thus, the optimization problem is
de�ned as:
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β̂ = argmin
β

n∑

t=1

(yt −
p∑

j=1

xtj .βj)
2 + λ||β||1 (2.7)

When λ is zero, Equation 2.7 is equivalent to OLS. Setting very large values for λ leads
to under–�tting since Lasso shrinks the less important coe�cients to zero. Therefore,
Lasso is usually well–known for feature (variable) selection in the case, a huge number of
features (variables) is given. However, one of the limitations of Lasso is that if p >> n,
Lasso selects at most n features.

• Adaptive Lasso: As a variant of Lasso, adaptive Lasso [46] assigns adaptive weights for
penalizing the L1–norm of the regression coe�cients, i.e.

R(β) :=

p∑

j=1

wj |βj | , wj =
1

|β̂(mle)
j |ω

(2.8)

where wj is the weight vector for some ω > 0 and β̂(mle)
j is the maximum likelihood

estimate of the parameters. Adaptive Lasso is an appropriate variant of Lasso since its
consistency as well as its oracle properties are proven [46]. Despite the e�ciency of Lasso
approach, the consistency of this approach is not ensured 1.

• Ridge regression: In this approach we add L2–norm (denoted by || · ||2) of coe�cients
as penalty term to the loss function, i.e.

β̂ = argmin
β

n∑

t=1

(yt −
p∑

j=1

xtj .βj)
2 + λ||β||2 (2.9)

Similar to Lasso, if λ is zero Equation 2.9 is equivalent to OLS and a very large amount
for λ leads to under–�tting resulted by adding too much weight. But unlike Lasso, ridge
regression penalizes the coe�cients if they are too far from zero enforcing them to be
small in a continuous way instead of forcing them to be exactly zero. Thus, it decreases
the model complexity while keeping all variables in the model.

• ElasticNet: Since variable selection with Lasso can be too dependent on data and thus
unstable, ElasticNet, �rst, was introduced as a remedy for this issue. Essentially, in this
approach, the solution is to combine the penalties of both lasso and ridge regression to
get the best out of them. More precisely, ElasticNet is a convex combination of Ridge and
Lasso when the optimization problem is de�ned as:

1i.e. the resulting sequence of estimates does not have to converge in probability to the optimal solution for
variable selection under certain conditions (Section 2 in [46]).
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β̂ = argmin
β

n∑

t=1

(yt −
p∑

j=1

xtj .βj)
2 + λ2||β||2 + λ1||β||1 (2.10)

where the λ1 controls the sparseness of a model and λ2 removes the limitation on the
number of selected variables and stabilizes the regularization path.

2.2.3 Generalized Linear Model

Generalized Linear Model (GLM), introduced by Nelder and Baker in [31], is a natural extension
of the linear regression to the case where time series can have any distribution from the
exponential family. Therefore, the response variable is not anymore a simple linear combination
of covariates but its mean value is related to the covariates by a link function. More precisely,
let η =X.β be a linear predictor for the random component y whereX denotes the covariate
(information) matrix and β is the coe�cient vector. We assume, the distribution of y belongs
to the exponential family and µ denotes its mean value, i.e. µ = E[y|X]. Thus, in a GLM
framework the relation between these two components is not anymore linear but de�ned as:

µ = g(η)

where g is the link function, a monotone twice di�erentiable function given by a user. Corre-
sponding to every distribution, there is an appropriate canonical link function (e.g. g = log(.)
for Poisson and g = 1

(.) for Gamma distribution) [31]. Table 2.1 summarizes well–known
distributions from exponential family providing the appropriate canonical link function w.r.t
each distribution. GLM relaxes Gaussian assumptions about the involved processes and the
error term. Therefore, the regression error does not necessarily follow a standard Gaussian
distribution and it might have any distribution from the exponential family leading to more
accurate models.

Distribution Link function
Gaussian µ =X.β

Exponential/Gamma µ = 1
X.β

Inverse Gaussian µ = 1
X.β2

Poisson/Countable µ = exp(X.β)

Bernoulli/Bi(Multi)nomial µ = exp(X.β)
1+exp(X.β)

Table 2.1: Common link functions for various distributions whereX is the covariates matrix, µ
is the mean and β is the coe�cient vector.

2.2.4 Granger Causality

Granger causality, introduced by Granger in the area of economics [25], is a well–known notion
for causal inference among time series. Granger causality captures the temporal causal relations
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among time series. However, it is not meant to be always equivalent to the true causality since
the question of "true causality" is deeply philosophical. This notion of causality is de�ned based
on two principles [21]:

• The cause happens prior to its e�ect;
• The cause has unique information about the future values of its e�ect.

The �rst assumption is intuitively acceptable since the past in�uences the future, not
other way around. On the other hand, the second assumption sounds plausible as well in the
sense that without considering the cause no information about the e�ect is available. Now, let
x1:n = {xt|t = 1, . . . , n} and y1:n = {yt|t = 1, . . . , n} denote two stationary time series x
and y up to time n, respectively. Moreover, let I (t) be all the information accumulated since
time t and I¬y(t) denote all the information apart from the speci�ed time series y up to time
t. Now considering two above assumptions, Granger proposed the following de�nition for a
causal e�ect [25]:

De�nition 2.2.1. Granger Causality: Given two time series x and y, y Granger–causes x if
including previous values of y along with x improves the predictability of x, i.e.

P(xt|I¬y(t− 1)) < P(xt|I (t− 1)) (2.11)

where P denotes the predictability.

In another point of view, let Model 1 denote the autoregressive (AR) model of order d (the
lag) corresponding to time series x. Moreover, let Model 2 denote the augmented AR model
w.r.t. x including the lagged observations of x and y.

xt = xt−d · γt−d + ...+ xt−1 · γt−1 + εt (Model 1)

xt = xt−d · αt−d + ...+ xt−1 · αt−1

+yt−d · βt−d + ...+ yt−1 · βt−1 + εt
(Model 2)

Thus, y Granger–causes x if the second model improves the accuracy when predicting x.
The concept of Granger causality is extendable to more than two time series. Letx1, x2, ..., xp

be p time series where ∀i ∈ {1, ..., p}, xi = {xti|t = 1, ..., n}. The VAR model of order d w.r.t.
all the time series is de�ned as Model 3 in the following:

Xt = Xt−d ·Bt−d + ...+Xt−1 ·Bt−1 + εt (Model 3)

where Xt = (x1
t, ..., xp

t) is the concatenated vector of all time series at time point t. In
this model Bt is a p× p matrix of the regression coe�cients where the i–th row corresponds
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to the coe�cients w.r.t. xi at time t. Essentially, the matrix formulation is an abstract form to
illustrate the temporal dependencies among all the time series.

Basic de�nition of the Granger causality has certain assumptions about the distribution of
time series. More precisely, the processes are assumed to be Gaussian distributed time series in
Model 1,2 and 3 and hence a linear model is considered overall. Moreover, in a linear model the
error term (εt) is an additive Gaussian white noise with mean 0 and variance 1.

2.3 Evaluation Strategies

Let P = {P1, . . . , Pr} denote the ground truth w.r.t. a data mining task, e.g. clustering or
classi�cation where the data set containsN data objects andC = {C1, . . . , Ck} be the achieved
result. Thus, for each pair of data objects xi and xj , there are four di�erent cases:

• xi and xj belong to the same category of C and the same category of P
• xi and xj belong to the same category of C but di�erent categories of P
• xi and xj belong to di�erent categories of C but the same category of P
• xi and xj belong to di�erent categories of C and di�erent categories of P

Let a, b, c, d correspond to the number of pairs for the �rst to fourth cases and L is the total
number of pairs, i.e. L = a+ b+ c+ d.

• Precision: It is also called positive predictive value and is the fraction of relevant instances
among the retrieved instances de�ned as:

Precision =
a

a+ d
(2.12)

Moreover, considering adjacency matrices as outputs, let A∗ and Â denote the true and
the output adjacency matrix, respectively. We distinguish between two entries in the
adjacency matrix A, A[i, j] and A[j, i]. Thus, the evaluation measures for time series
x1, ..., xp are de�ned as:

Precision =
|{(i, j) ∈ P : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈ P : Â[i, j] = 1}|

(2.13)

• Recall: It is also known as sensitivity and is the fraction of the total amount of relevant
instances that were actually retrieved:

Recall =
a

a+ b
(2.14)

In case of matrices, the recall is de�ned as:

Recall =
|{(i, j) ∈ P : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈ P : A∗[i, j] = 1}| (2.15)
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• F–measure: There is clearly a trade–o� between precision and recall as the goal of
prediction where F–measure tries to balance the overall quality of prediction.

F −measure = 2× Precision×Recall
Precision+Recall

(2.16)

• Rand Index: Rand index (RI) is one of the most popular external clustering validation
indices which is a measure of the similarity between two clustering results.

RI =
a+ d

L
(2.17)

• Categorical Utility: In order to evaluate clustering results in terms of categorical at-
tributes we apply categorical utility (CU) criterion. CU attempts to maximize both the
probability that two patterns in the same cluster have attribute values in common and
the probability that patterns from di�erent clusters have di�erent values:

CU =
∑

k

(
Ck

DB

∑

A∈A

∑

j

[P (A = Aj |Ck)
2 − P (A = Aj)

2]) (2.18)

where P (A = Aj |Ck) is the conditional probability that a categorical attribute A has
the value Aj given cluster Ck, and P (A = Aj) is the overall probability of attribute A
having the value Aj in the entire data set. Obviously, the higher the CU value, the better
the clustering performs.

• Normalized Mutual Information: Normalized mutual information (NMI) [41] is an
information–theoretic evaluation measure for clustering results. NMI numerically evalu-
ates pairwise mutual information between ground truth and resulted clusters and con-
tinues normalizing by means of the entropy of either original or resulted clusters. NMI
scales between zero and one representing a random and a perfect clustering, respectively.
Let H(P ) and H(C) denote the entropy of P and C , respectively, de�ned as:

H(P ) = −
r∑

i=1

p(Pi). log(p(Pi)) (2.19)

where p(Pi) shows the probability of the category Pi. Moreover, let I(P,C), the mutual
information of P and C , i.e. the amount of information they have in common, be de�nes
as:

I(P,C) =

r∑

i=1

k∑

j=1

p(Pi ∩ Cj). log(
p(Pi ∩ Cj)

p(Pi).p(Cj)
) (2.20)

Thus, NMI is de�nes as follows:

NMI(P,C) =
I(P,C)√
H(P ).H(C)

(2.21)



CHAPTER 3
Problem Statement and Research

Challenges

3.1 Problem Speci�cation

Essentially, our focus in this thesis is mining heterogeneous data sets and facing challenges
when analyzing such data. Heterogeneity could mean di�erent when considering various
domains. Thus, we distinguish between mixed–type and single–type heterogeneous data sets
in this thesis.

A mixed–type heterogeneous data set consists of attributes from di�erent data types. As
an example, dealing with statistical surveys, heterogeneous data could consist of categorical
attributes(e.g. marital status) and numerical attributes(e.g. the amount of income). To elaborate
on the issue, let us consider the following mixed–type data consisting of three di�erent clusters
illustrated by di�erent shapes (rectangle, circle, cross) in Figure 3.1. The data set comprises two
numerical attributes concerning the position of data objects in a 2D space and a categorical

Figure 3.1: A synthetic example for a mixed–type heterogeneous data.

13
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Figure 3.2: Selected stations of meteorological measurements in Austria.

attribute representing the color of data points (rose, purple, light green, dark green and cyan).
Therefore, a data object in this data set looks like, for example, (1, 2, purple).

On the other side, single–type heterogeneous data comprise a speci�c data type, e.g. nu-
merical time series, where attributes might be of di�erent natures. An example of this category
is a mixture of Poisson distributed time series (e.g. measuring the number of sunny days) and
Gaussian distributed time series (e.g. measuring the amount of precipitation) when observing
the weather characteristics in di�erent stations in a climatological data set is (Figure 3.2).

In the following, we address some of the challenges one needs to face when mining hetero-
geneous data sets.

3.2 Research Challenges

Among the top 10 challenging problems in data mining, identi�ed by [44], there are three
challenges related to complex data indicating the importance of the issue;

• Mining complex knowledge from complex data;
• Developing a unifying theory of data mining;
• Mining sequence data and time series data;

The �rst challenge is related to mining complex data and �nding interesting patterns where
various characteristics of every attribute are preserved. In order to elaborate the issue, we con-
sider the generated mixed–type heterogeneous data set illustrated in Figure 3.1. As mentioned,
when mining such data, one of the basic and straightforward approaches is to homogenize the
data as much as it is possible. This might be achieved by converting a data type to another one.
That is, we simply convert the categorical attribute Color to a numerical attribute by mapping
numbers to various colors, e.g. cyan=1, light green =2, rose=3, and so on. Employing NMI
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Figure 3.3: Clustering results after converting categorical attribute Color to a numerical one.

[41] as an evaluation measure, we apply two popular clustering algorithms, K–means [29]
and DBSCAN [22] on the homogenized data set, to �nd interesting patterns in this example.
These clustering algorithms are essentially designed for pure numerical data sets when distance
measures play a key role. Figure 3.3 shows the low performance of applying them on the
converted data when maximum NMI (achieved by DBSCAN) is 0.52. As a justi�cation, the
distance between various colors is arti�cially de�ned after a data type conversion and it is
not meaningful anymore. Therefore, it might disturb clustering algorithms to �nd the correct
clusters. Thus, our �rst research question is as follows;

Question 1
How can the e�ect of arti�cially de�ned relationships caused by a simple conversion of

data types be avoided when mining heterogeneous data sets?

Although the topic of clustering mixed–type data represented by numerical and categorical
attributes attracted attention, e.g. CFIKP [45], CAVE [27], CEBMDC [26], most of the algorithms
are designed based on the algorithmic paradigm of k–means, e.g. k–Prototypes [28], SpectralCAT
[19], and CoupledMC [42]. Often in this category, not only the number of clusters k has to
be speci�ed by a user, but also the weighting between numerical and categorical attributes
in clustering. Among them, K–means–mixed (KMM) [2] avoids weighting parameters by an
optimization scheme learning the relative importance of the single attributes during runtime.
However, it still needs the number of clusters k as an input parameter.

Model–based clustering algorithms have been also proposed for mixed–type data by incor-
porating a mixture of Gaussian distributions. In between, clustMD [30] is developed using a
latent variable model and employing an expectation maximization (EM) algorithm to estimate
the mixture model. Yet, this algorithm has certain Gaussian assumptions that do not have to
be necessarily ful�lled. On the other hand, clustering algorithms designed for mixed–type
data often do not properly model dependencies and are limited to modeling meta–Gaussian
distributions. Copulas, that provide a modular parameterization of joint distributions, can model
a variety of dependencies but their use with discrete data remains limited due to challenges
in parameter inference. Authors in [34] use Gaussian mixture copulas to model complex de-
pendencies beyond those captured by meta–Gaussian distributions for clustering. However,
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Figure 3.4: Synthetic heterogeneous example. Results of applying existing Granger causal
inference algorithms designed for homogeneous data sets on heterogeneous data. Red edges
show the wrongly detected causal relations and black edges show the correct causal directions.

this approach may not only result in information loss but also fail to capture the discriminative
information between objects.

Thus, most clustering algorithms, although designed for mixed–type data, require a user
to specify parameters which are not straightforward to be set. Therefore, our next research
question arises as follows;

Question 2
How can the data be analyzed without a user having to specify some parameters, i.e.

parameter–free data analysis?

The second challenge implies that most data mining algorithms are "ad–hoc". Many tech-
niques are either designed for a speci�c data type (e.g. pure numerical data) or consider individual
cases, such as clustering or anomaly detection. But there is no unifying framework. In another
point of view, most algorithms avoid spurious correlations which are sometimes related to
the problem of mining for "deep knowledge", e.g. the hidden causes for many observations
[44]. As an example, there might be a strong correlation between the number of sunny days in
"Eisenstadt" in Figure 3.2 and the amount of precipitation in "Wien" when investigating the
climatological measurements in Austria. Considering such information might help to improve
the accuracy of data mining algorithms. But the term "deep knowledge" might have di�erent
interpretations. Here our focus is on the discovery of causal networks from observational
data, where no certain information about their distribution is provided. This is a fundamental
problem with many applications in science. Thus, the next question appears in this regard;

Questions 3
How is it possible to increase the accuracy through "deep knowledge" when mining

heterogeneous data?
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Regarding the third challenge, mining sequence data (and time series) is challenging since
they are non–i.i.d and there is usually a strong correlation among various observations. This
case gets even more complicated when time series are of di�erent natures (heterogeneous single–
type data). Despite the e�ciency of homogeneous algorithms designed for causal inference
on time series, they lead to information loss and inaccuracy when applying on heterogeneous
data. As a reason, homogenizing the data which in this case means transforming a time series
to another one with a speci�c distribution, leads to inaccuracy. On the other side, applying
an algorithm designed for homogeneous data sets on heterogeneous data does not guarantee
high performance. To elaborate, we generated a heterogeneous data set consisting of 4 Poisson
(blue circles in Figure 3.4) and a Gamma (orange circle) distributed time series and applied some
well–known algorithms designed for Granger causal inference on homogeneous data sets, i.e.
GT [25] (short for Granger test), CUTE [17], TCML [5]. As it is explicitly clear in Figure 3.4,
none of them perform e�ectively on this data set in terms of F–measure. GT assumes a Gaussian
distribution and hence a linear relation among time series which leads to ine�ciency. On the
other hand, CUTE needs to binarise time series as it is designed for event sequences where
Bernoulli distributed time series are assumed. It is already well–understood that discretization
and specially binarising the data decreases the accuracy since the distribution of the time series
is not preserved. Thus, our third question shows up;

Question 4
Is it possible to avoid information loss caused by speci�c assumptions when mining

heterogeneous data?





CHAPTER 4
Contributions and Research Results

In this chapter, we elaborate on the di�erent steps of our research approach in Section 4.1.
Afterward, various contributions achieved in the course of this thesis are introduced in Section
4.2. Finally, we address research results containing scienti�c papers in Section 4.3.

4.1 Research Approach

Our general research approach in this thesis comprises several steps. First, we specify the
problem and state the motivation which is essentially avoiding drawbacks of already existing
approaches. In the next step, we address objectives of a possible e�cient and e�ective solution.
A comprehensive solution tries to move towards a parameter–free data analysis when fewer
number of parameters is preferred. After specifying characteristics of an e�ective solution, we
start a loop of iterative design and evaluation. That is, we �rst propose an algorithm, considering
objectives of the problem and the solution. Then, we evaluate the algorithm in various aspects
by conducting several experiments on synthetic and real–world data sets. If the evaluation does
not seem satisfactory, we go a step backward and modify the design as long as it leads to more
convincing results. Finally, when the proposed algorithm sounds promising in various aspects,
e.g. properties of the problem and the solution, design, and evaluation, we try to publish the
paper in outstanding conferences and journals. Figure 4.1 and 4.2 show di�erent steps of our
research approach taken in this thesis in detail.

4.2 Contributions

Generally speaking, our main contribution is to avoid drawbacks of a data type conversion
as well as the inaccuracy caused by speci�c assumptions when mining heterogeneous data
sets. In this respect, we aim at preserving the original data and utilizing useful characteristics
of every data type. In particular, we focus on the clustering of mixed–type heterogeneous
data where a mixture of categorical and numerical attributes is given. As already mentioned,

19
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Problem Speci�cation and Motivations

• Avoiding information loss
• Increasing the accuracy by avoiding arti�cial relations
• Reducing number of parameters

Objectives of a Possible Solution

• E�ciency and scalability
• E�ectiveness in various aspects
• Comprehensiveness
• Fewer of required parameters to be speci�ed

Design and Development

Evaluation

Communication

Figure 4.1: First two steps of our research approach in this thesis.

most existing clustering algorithms are designed for pure numerical attributes and applying
them to a mixed–type data leads to inaccuracy and information loss. Thus, we try to avoid
a data conversion and preserve heterogeneity of data by employing Concept Hierarchies. An
interesting characteristic of categorical data that one could easily utilize is the natural hierarchy
among various categories. To elaborate, let Figure 4.3a show the introduced mixed–type data set
(Section 3.1) where two numerical attributes (D1 and D2) show the position of every data point
in a 2D space and the third attribute shows its color. This data set consists of three di�erent
clusters illustrated in Figure 4.3 by di�erent shapes (rectangle, circle, cross). Considering the
standard scalable range of colors, one can categorize di�erent colors as illustrated in Figure 4.3b
when frequency of every color is assigned to its corresponding node. During clustering of such
data, one might �nd the concept "pink" more representative for a detected cluster consisting
of points with colors purple and rose. We utilize such conceptual hierarchies to summarize
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Problem Speci�cation and Motivations

Objectives of a Possible Solution

Design and Development

• Integrative approach in order to avoid drawbacks of a simple data type
conversion

• Trying to preserve the original data types and avoiding any speci�c
assumptions

• Reducing number of parameters and trying to propose parameter-free
algorithms

• Utilizing the "deep knowledge", i.e., useful characteristics of the data,
correlation mining in terms of causality

Evaluation

• Implementation and simulation of the proposed algorithm
• Conducting experiments and evaluation of the algorithm in various

aspects on synthetic and real-world data sets
• Comparison to state-of-the-arts

Communication

• Publications in conferences and journals
• Talks in conferences and workshops

Figure 4.2: Last three steps of our research approach in this thesis.
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Figure 4.3: a) Synthetically generated mixed–type data, b) A natural hierarchy between colors
based on scalable range of colors.

categorical attributes and introduce a model to represent the data when for solely numerical
data sets approximating data with a Probability Distribution Function (PDF) is well–accepted.

In another point of view, a concept hierarchy provides a meaningful distance measure
among various concepts. Dark green and light green, for instance, are more similar compared
to purple according to the scalable range of colors (Figure 4.3b). It is also con�rmed by the
corresponding concept hierarchy since they belong to the same branch of the tree. Most classic
clustering algorithms, e.g. DBSCAN, are designed based on a distance metric. Therefore, it
sounds reasonable to apply these algorithms on heterogeneous data sets when a meaningful
distance measure for both categorical and numerical attributes is considered. That is, we incor-
porate a uni�ed distance measure for numerical and categorical attributes based on the concept
hierarchy. Thus, it brings us to our �rst contribution as follows;

Contribution 1
Utilizing speci�c characteristics of every data type in order to preserve original data and
avoid the e�ect of arti�cially de�ned relations caused by a simple conversion of data

types.

On the other hand, many data mining approaches consider speci�c assumptions that do
not have to be true necessarily. For instance, many algorithms assume a Gaussian distribution
and a linear model when dealing with time series. However, there are many processes of a
non–Gaussian nature( e.g. Poisson distributed time series) and many applications generating a
mixture of time series having di�erent distributions. We already demonstrated various chal-
lenges dealing with such data in Section 3.2. Essentially, we try to integrate data of di�erent
natures as much as possible to avoid any information loss. In particular, let us focus on �nding
causal dependencies between time series in a heterogeneous data set where time series of di�er-



4.2. CONTRIBUTIONS 23

ent distributions are considered. Moreover, let Granger causality be the causal notion employed
to investigate the existing interactions. As already mentioned in the background (Chapter
2), a basic de�nition of Granger causality has certain assumptions about the distribution of
time series. More precisely, the processes are assumed to be Gaussian distributed time series
and hence a linear model is considered overall. Moreover, in a linear model, the error term
(εt) is an additive Gaussian white noise with mean 0 and variance 1 (Model 1 and Model 2
in Section 2.2.4). However, these assumptions are not necessarily true in most applications.
Thus, it is crucial to generalize the linear models to the non–linear cases in the sense that we
include time series from various distributions and avoid any information loss caused by forcing
Gaussian assumptions. Therefore, we employ Generalized Linear Models (GLMs) to extend the
notion of Granger causality and introduce an integrative framework for causal inference on
heterogeneous time series data regardless of their distributions. GLMs allow us to generalize
simple autoregressive models to the case where several processes of di�erent distributions from
the exponential family are non–linearly related. Altogether, our next contribution is as follows;

Contribution 2
Integrate data of di�erent natures as much as possible to avoid any information loss.

Regarding the third research question and data mining challenges, we are interested in
improving the accuracy when mining heterogeneous data utilizing "deep knowledge". One
could interpret the term "deep knowledge" in di�erent ways. When mining time series, for
instance, one could be interested in discovery of anomalies or outliers. However, classifying
multivariate time series data, there are two types of anomalies:

• univariate anomaly: anomalies occur only within individual time series,
• dependency anomaly: anomalies occur due to changes of temporal dependencies among

various time series.

Dependency anomalies, are more challenging to detect due to complex temporal structures
and interactions among time series. In this regard, the discovery of causal relations among
di�erent processes leads to characterize the evolution in time of regular observations. The
regular pattern can be used to detect deviated observations (i.e. outliers) in anomaly detection.
That is, we incorporate the so–called "deep knowledge" when detecting anomalies in the sense
that "deep knowledge" is interpreted as information about causal interactions among time series.
Back to the climatological example (introduced in Figure 3.2), now an interesting question would
arise: Utilizing the existing temporal dependency between stations could we �nd any anomalies
in terms of the precipitation in a speci�c station (e.g "Wien") when we have measurements for
di�erent stations?

In another point of view, one could interpret incorporating "deep knowledge" as utilizing
concept hierarchies to summarize all the information w.r.t. categorical attributes and improving
clustering algorithms when dealing with heterogeneous data sets. Therefore, our third contri-
bution is as follows;
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Contribution 3
Employing useful characteristics of the data as well as incorporating spurious

correlations to improve the accuracy when mining heterogeneous data.

On the other side, most data mining algorithms require a user to specify several parameters.
Nevertheless, it is usually non–trivial to �nd the most appropriate parameter setting. To face
this issue, parameter–free algorithms are introduced to make this process automatic. Among
various approaches in this regard, we incorporate an e�ective model selection approach, i.e.
Minimum Description Length (MDL) [7] which evaluates various models and �nd the most
accurate one according to the minimum description length criterion. MDL–principle regards
the task of model selection to a data compression problem in the sense that more accurate
models lead to less compression cost. The better the model �ts the major characteristics of
the data, the better the result is. Following the MDL–principle, we encode not only the data
but also the model itself and minimize the overall description length. Simultaneously, we
avoid over–�tting since the MDL tends to a natural trade–o� between model complexity and
the goodness–of–�t. In the context of clustering, MDL can be employed as a clustering cri-
terion as well as a model selection approach, i.e. an approach to make clustering parameter–free.

Contribution 4
Incorporating the MDL–principle for a parameter–free data mining.

4.3 Research results

Considering the aforementioned challenges and research questions, we focus on the clustering of
heterogeneous data sets in this thesis where a parameter–free approach is preferred. Moreover,
we address the anomaly detection of such data as a post–processing phase in data mining.
First, we list various papers that either have been already published in scienti�c conferences,
workshops, and journals or are currently under review. Then, we elaborate on the way each
paper contributes in this thesis to cope the aforementioned challenges.

4.3.1 Publication Overview

• Paper A: Sahar Behzadi, Nikola Müller, Claudia Plant, and Christian Böhm. “Clustering
of Mixed-type Data Considering Concept Hierarchies”. In: The Paci�c-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD). 2019.

• Paper B: Sahar Behzadi, Nikola Müller, Claudia Plant, and Christian Böhm. “Clustering of
Mixed-type Data Considering Concept Hierarchies: problem speci�cation and algorithm”.
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In: International Journal of Data Science and Analytics. 2020.

• Paper C: Sahar Behzadi, M. A. Ibrahim, and Claudia Plant. “Parameter Free Mixed-Type
Density-Based Clustering”. In: International Conference on Database and Expert Systems
Applications (DEXA). 2018.

• Paper D: Sahar Behzadi, Hermann Hinterhauser, and Claudia Plant. “ITGC: Information-
theoretic grid-based clustering”. In: International Conference on Extending Database
Technology (EDBT). 2019.

• Paper E: Sahar Behzadi, Kateřina Hlaváčková-Schindler, and Claudia Plant. “Dependency
anomaly detection for heterogeneous time series: A Granger-Lasso approach”. In: IEEE
International Conference on Data Mining (ICDM) workshops. 2017.

• Paper F: Sahar Behzadi, Kateřina Hlaváčková-Schindler, and Claudia Plant. “Granger
Causality for Heterogeneous Processes”. In: The Paci�c-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD). 2019.

• Paper G: Sahar Behzadi, Niklas Preschern, Kateřina Hlaváčková-Schindler, and Claudia
Plant. “Anomaly Detection in Heterogeneous Time Series by Causality Mining”. In:
Knowledge and Information Systems, submitted for publishing. 2020.

• Paper H: Sahar Behzadi, Benjamin Schelling, and Claudia Plant. “ITGH: Information-
theoretic Granger Causal Inference on Heterogeneous Data”. In: The Paci�c-Asia Confer-
ence on Knowledge Discovery and Data Mining (PAKDD). 2020.

• Paper I: Sahar Behzadi, Benjamin Schelling, and Claudia Plant. “Information-theoretic
Granger Causal Inference on Heterogeneous Data: Problem speci�cation and algorithm”.
In: International Journal of Data Science and Analytics, submitted for publishing. 2020.

4.3.2 Discussion of Results

There are a wide variety of heterogeneous data sets depending on various applications. In this
thesis, we distinguish between mixed–type and single–type heterogeneous data sets as already
explained in Section 3.1. Figure 4.4 summarizes our publications w.r.t. various approaches we
have taken and di�erent tasks addressed in each paper.

Considering the task of clustering, we focus on mixed–type data sets where a mixture
of categorical and numerical attributes is given. Essentially, our approach is to avoid data
type conversion when clustering a mixed–type data set. That is, we aim at preserving the
original characteristics of data and integrate di�erent data types where a non–parametric
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approach is preferred. Thus, we �rst investigate how to incorporate the MDL–principle as
a clustering criterion in Paper D [8] when dealing with pure numerical attributes. In this
paper, we proposed a parameter–free Information–Theoretic Grid–based Clustering (ITGC)
algorithm utilizing MDL. That is, we regard the clustering task as a data compression problem
such that the best clustering is linked to the strongest data compression. First, an adaptive grid
is constructed corresponding to the statistical characteristics of any data set and non–empty
cells are considered as single clusters. Then, we combine the concept of density and grid–based
methods, and employing our MDL–based objective function, we start merging clusters with
their neighbor grid cells only if it pays o� in terms of the compression cost. In this paper, we
address Contribution 4 although the main focus is not on heterogeneous data sets. That is why
we do not include Paper D in Figure 4.4.

Later, we employ our experiences after Paper D for a parameter–free clustering but con-
sidering mixed–type data sets in Paper A [12] and Paper B [13]. Here, we again incorporate
the MDL–principle as a clustering criterion. MDL allows integrative clustering by relating the
concepts of likelihood and data compression while for any attribute a representative model
is required. For solely numerical data sets a PDF represents an approximation of data. For
categorical attributes, we incorporate concept hierarchies among various categories to sum-
marize the categorical information. Beyond the clustering approaches, detecting the most
relevant attributes during this process improves the quality of clustering. However, considering
a data set with an unknown distribution where only a few attributes in the data space are
relevant to characterize a cluster, it is not trivial to recognize the cluster–speci�c attributes.
Thus, in Paper A, we introduce a parameter–free CLustering algorithm for mixed–type data
Including COncept Trees, shortly ClicoT which ensures that only the truly relevant attributes
are marked as cluster–speci�c attributes. The compression–based objective function employed
by ClicoT avoids over–�tting, enhance the interpretability and guarantee the validity of the
result. Hence, we address Contribution 1 and 4 introducing ClicoT which is a model–based
clustering algorithm. Paper B is an extended version of Paper A where we investigate more
aspects of ClicoT.

Another application of concept hierarchies is to employ them as a meaningful distance
measure for both categorical and numerical attributes when dealing with mixed–type data sets.
Back to the synthetic mixed–type example introduced in Section 4.2, Figure 4.5a shows the
corresponding distance hierarchy to the categorical attribute Color while labels are related to
the weights. In this example, we assume the same weight for all the links, nevertheless, one
could assign di�erent weights having more information about the data. To compute the distance
between categorical values, we utilize the distance hierarchy. In this example, for instance,
Rose and Purple are more similar than Rose and Cyan according to the corresponding distance
hierarchy. It is also con�rmed by the nature of colors since Rose and Purple are derivations of
Pink. Employing the same structure, Figure 4.5b depicts a distance hierarchy corresponding to
a numerical attribute. It has only two nodes (i.e. maximum and minimum in the corresponding
range of a numerical attribute) and returns the Euclidean distance as the distance between two
values.

Bene�ting from our experience with distance hierarchies, in Paper C [11], we address
Contribution 1 and introduce a general framework appropriate for clustering algorithms that
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Figure 4.5: a) Distance hierarchy w.r.t. the categorical attribute Color, b) Distance hierarchy for
a numerical attribute.

need a distance measure as one of the prerequisites. Thus, many well–known clustering
algorithms, e.g. DBSCAN [22], could be applied to mixed–type data sets. Here, we focus
on DBSCAN as one of the most e�ective representatives for the density–based clustering
approach which captures dense groups of objects as clusters. DBSCAN requires two parameters,
a positive real number ε and a natural number MinPts showing the radius and the density of a
neighborhood, respectively. Although DBSCAN is well–known due to its performance, setting
appropriate parameters is challenging. To face this challenge, we propose a parameter–free
algorithm incorporating the MDL–principle. That is, we �x MinPts and try a range of various
radius. We apply DBSCAN for every parameter setting and �nd the best parameters in terms of
the compression cost. Therefore, in Paper C, contribution 4 is presented as well.

We concentrate on anomaly detection of single–type heterogeneous data sets for the rest of
the publications. Especially, dependency anomalies in time series are of interest in this thesis
that are caused by changes in temporal dependencies and causal relations. Therefore, we, �rst,
focus on causal inference on heterogeneous data sets and investigate causal interactions to
capture possible temporal dependencies between time series of di�erent distributions. Among
several notions of causality, we incorporate Granger causality [25] which is a popular method
for causal inference in time series due to its computational simplicity. Essentially, it states that
a cause improves the predictability of its e�ect in the future. Hence, various methods for causal
inference di�er in the way how they measure the predictability.

In this respect, graphical Granger models are well–known due to their intuitive interpreta-
tion and computational simplicity. They employ a penalized VAR model to the Granger concept
[5], [6], [18], [39]. Non–zero coe�cients in the corresponding VAR model w.r.t. a time series
reveal a Granger causal relation. Since this problem can be ill–posed, penalizing the VAR model
by means of a penalty function provides an e�cient and sparse solution when the convergence
to the true causal graph is ensured. Thus, in Paper F [10], we introduce a penalized VAR–based
algorithm to detect the Heterogeneous Graphical Granger Model (HGGM) by employing gen-
eralized linear models (GLMs) [10]. GLMs allow us to generalize simple autoregressive models
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to the case where several processes of di�erent distributions from the exponential family are
non–linearly related. Thereby, we introduce an integrative model to detect causal relations
among a large number of heterogeneous time series addressing Contribution 2. Similar to the
other graphical models, we assume that the interactions among the involved processes are
additive. In order to ensure the convergence of HGGM to the true causal graph (i.e. consistency),
we employ the well–know penalization approach, adaptive Lasso, with oracle properties [46].

In another point of view, information theory can be employed for a parameter–free measure-
ment of the predictability addressing Contribution 4. In this respect, we regard the challenge
of causal inference as a data compression problem in Paper H [16] and I [15]. In other words,
employing the MDL–principle, time series y causes x if considering the past of y together
with x decreases the number of bits required to encode x. More deviation in compression cost
reveals stronger causal dependency among two time series. Unlike other information–theoretic
approaches (e.g. entropy–based algorithms [36]), we incorporate the complexity of models
employing the MDL–principle. Thereby, it leads to a natural trade–o� among model complexity
and goodness–of–�t while avoiding over–�tting. To avoid any information loss, we integrate
processes of various distributions without any transformation or certain assumptions. That is,
we utilize GLMs to extend the notion of Granger causality for heterogeneous time series data
regardless of their distributions. Thereby, Contribution 2 is also presented in Paper H and I in
the sense that we introduce an integrative information–theoretic framework for causal inference
on time series while preserving the original distribution of every time series. Moreover, unlike
many other algorithms in this category, we aim at detecting causal networks. To the best of
our knowledge, almost all of the existing algorithms are designed based on a pairwise testing
approach. This approach is ine�cient when dealing with large causal networks. To avoid this
issue, we propose our MDL–based greedy algorithm (ITGH) to detect heterogeneous Granger
causal relations in a GLM framework. Paper I is an extended version of Paper H when we assess
ITGH conducting various extentive synthetic and real–world experiments.

We investigate dependency anomalies in Paper E [9] and Paper G [14] utilizing temporal
dependencies among time series, i.e. here, we interpret the term "deep knowledge" as causal
interactions between time series. Thereby, Contribution 3 is addressed in both papers while a
graphical Granger approach has been employed. We �nd the most accurate statistical model
that captures the generation process of the normal (non-anomalous) data, then, investigate any
deviation from this normal pattern. That is, we estimate the likelihood of a new observation
based on the captured model and specify the data as an anomaly if the likelihood is below some
thresholds. More precisely, we assume the training data to be non–anomalous and we name the
model corresponding to the training data the normal pattern. In the next step, we investigate
the test data observations and specify signi�cant deviations to the normal pattern as anomalies.
In particular, we propose an anomaly detection framework for heterogeneous time series in
Paper E which consists of three main building blocks:

• detecting the temporal causal relations,

• identifying an appropriate anomaly score,

• introducing an e�cient approach to specify anomalies.
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Discovery of causal relations has been done in Paper E by employing a modi�cation of the
Granger–Lasso algorithm for heterogeneous data sets where a GLM framework is considered.
Granger–Lasso is a well–known L1 penalization approach that deals with only Gaussian time
series. The Granger–Lasso optimization problem is solved by using the least square cost
function with the Lasso penalty for appropriately transformed input time series. We consider
the same anomaly detection framework In Paper G [14], but here, we incorporate our proposed
heterogeneous graphical Granger model (HGGM) for the discovery of temporal causal relations
and introduce a new anomaly detection algorithm (AD–HGGM) for mixed time series. However,
in both papers, we follow objectives of our second contribution and aim at proposing an
integrative approach to capture the causal relations among time series of di�erent distributions
without enforcing any speci�c assumptions.

When all temporal dependencies are detected, the next step is to specify anomalies com-
paring the captured models w.r.t. training and test data. That is, we employ an anomaly score
to measure the di�erence between two distributions. Thus, we employ Jensen–Shannon (JS)
divergence as an anomaly score in our framework. JS–divergence is symmetric, its square root
is metric and can be used as a distance function. These properties of JS–divergence improves
e�ciency in the sense that JS–divergence saves some computations.

To specify dependency anomalies we need a threshold de�ned based on the non–anomalous
part of the data, i.e. training data. One could consider the entire training data to capture an
anomaly threshold. However, inspired by the AD–GGM algorithm [33], we slide a window over
training data and �nd an anomaly threshold w.r.t. every time window to give more insights
about the exact position of the anomaly. That is, we compute the anomaly score introduced in
the previous section for every window and approximate the distribution of anomaly scores for
non–anomalous data. Employing a signi�cance level α, the α−−quantile of this distribution
is considered as threshold cuto� (refer to Section B in [33]).



CHAPTER 5
Conclusion

In this chapter, we revisit 4 research questions formulated in Section 3.2. Then, we investigate
the relation between every research question and the corresponding contributions. Moreover,
we mention research results w.r.t. every research question addressing various publications in
that respect. Finally, we conclude with a discussion of open topics and potential future works
in Section 5.2.

5.1 Revisiting Research Challenges

Figure 5.1 summarizes relations among research questions (formulated in Section 3.2), contri-
butions (Section 4.2) as well as publications (Section 4.3). In the following, we elaborate how
these central questions have been addressed by scienti�c contributions as well as corresponding
publications.

Research Question 1
How can the e�ect of arti�cially de�ned relationships caused by a simple conversion of

data types be avoided when mining heterogeneous data sets?

• Contribution 1. Utilizing speci�c characteristics of every data type in order to
preserve original data and avoid the e�ect of arti�cially de�ned relations caused
by a simple conversion of data types.

• Contribution 3. Employing useful characteristics of the data as well as incorpo-
rating spurious correlations to improve the accuracy when mining heterogeneous
data.

31
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This research question has been addressed in Contribution 1 and 3 where Contribution 3 is a
general case of Contribution1. Here, the key point is to avoid the drawbacks of a simple data type
conversion. Every data type has several useful characteristics that one could utilize in various
applications. These characteristics might be interpreted as "deep knowledge". Addressing
this research question, our main contribution is to preserve original data and avoid e�ects
of arti�cially de�ned relations caused by data type conversions employing "deep knowledge".
In Paper A and B, we propose a model–based clustering algorithm incorporating the MDL–
principle where for every attribute a representative model is required. For numerical data sets, a
PDF represents an approximation of data. Here, we have two options for categorical attributes:
either converting categorical attributes to numerical ones and considering a PDF to represent
the data, or �nding comprehensive models representing categorical attributes when preserving
the original data. In this respect, we utilize the natural hierarchy among categorical values
and introduce concept hierarchies to summarize categorical information. A concept could be
the color of an object (e.g. light green or cyan), marital status (e.g. married), or the continent
where a country is located (e.g. Asia). More precisely, a concept is a categorical value showing
some characteristics of every data object. Concept hierarchies allow us to express conceptual
interchangeable values by selecting an inner node of a concept hierarchy to describe a cluster.
They not only capture more relevant categories for each cluster but also help to interpret the
clustering results appropriately.

Considering the fact that almost always there is a natural hierarchy w.r.t. categorical values,
we employ concept hierarchies in another way to introduce distance hierarchies as a distance
measure available for both types of attributes (i.e. categorical and numerical). A distance
hierarchy extends the de�nition of concept hierarchies by associating a weight to any link.
Distance hierarchies are also applicable for numerical attributes resulting in a distance function
similar to the weighted Euclidean distance. Thereby, we are allowed to integrate categorical
and numerical attributes without any conversion in this framework. Thus, we, again, employ
this useful characteristic of attributes and introduce an integrative framework to map an object
in a mixed–type data set to a point in the associated distance hierarchy. Finally, in Paper C, we
de�ne a distance function applicable for both data types.

Research Question 2
How can the data be analyzed without a user having to specify some parameters, i.e.

parameter–free data analysis?

• Contribution 4. Incorporating the MDL–principle for a parameter–free data
mining.

This research question has been addressed in Contribution 4 resulting in various publications.
That is, we employ the MDL–principle for di�erent applications. In the context of clustering, the
MDL–principle can be applied either as a clustering criterion or as a model selection approach.
In both cases, the goal is to move toward non–parametric clustering algorithms.
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Considering the �rst application of MDL, we regard the task of clustering as a data com-
pression problem such that the best clustering is linked to the strongest data compression.
Incorporating the MDL–principle, we cluster the data by relating the concept of likelihood
to data compression where for every attribute a representative model is required. Given the
appropriate model corresponding to any attribute, MDL leads to an intuitive clustering result
employing the compression cost as a clustering criterion. The better the model matches major
characteristics of the data, the better the clustering result is. Following the MDL–principle, we
encode not only the data but also the model itself and minimize the overall description length.
Simultaneously, we avoid over–�tting since the MDL–principle tends to a natural trade–o�
between model complexity and goodness–of–�t. Thereby, in Paper D, we introduce a grid–based
clustering algorithm (ITGC) incorporating a MDL–based objective function. Although ITGC is
proposed for pure numerical data sets, we investigate how to incorporate the MDL–principle
for clustering purposes. Later, in Paper A and B, we introduce a model–based clustering algo-
rithm (ClicoT) for mixed–type data sets considering data compression as an optimization goal.
Essentially, MDL allows a uni�ed view on various data types given an appropriate model for
every attribute. Thus, ClicoT �exibly learns the relative importance of the two di�erent sources
of information (i.e. categorical and numerical attributes) for clustering without requiring a user
to specify input parameters which are usually di�cult to estimate.

The second application of MDL is to employ this concept as a model selection tool. That is,
we evaluate various models and �nd the most accurate one in terms of the minimum description
length criterion. Analogous to the previous application of MDL, here, we regard the model
selection challenge to a data compression problem in the sense that more accurate models lead
to less compression cost. In Paper C, we incorporate this concept and propose a parameter–free
version of DBSCAN, i.e. MDBSCAN, for clustering of mixed–type data sets. That is, we �x one
of the required parameters MinPts, i.e. minimum number of points in a neighborhood, and try
a range of various radius. Every parameter setting is assumed as a speci�c model. Then, we
execute DBSCAN for every parameter setting and store the clustering result. Finally, we employ
MDL and evaluate various parameter settings (models) to �nd the best model in terms of the
compression cost.

In another perspective, we incorporate the MDL–principle considering its second appli-
cation to a non–parametric Granger causal inference from single–type data sets. That is, in
Paper H and I, we propose ITGH regarding causality detection as a data compression problem
where any improvement in the predictability is measured in terms of the compression cost. In
other words, employing an information–theoretic indicator, time series y Granger–causes x if
considering the past of y together with x decreases the number of bits required to encode x.
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Research Question 3
How is it possible to increase the accuracy through "deep knowledge" when mining

heterogeneous data?

• Contribution 1. Utilizing speci�c characteristics of every data type in order to
preserve original data and avoid the e�ect of arti�cially de�ned relations caused
by a simple conversion of data types.

• Contribution 3. Employing useful characteristics of the data as well as incorpo-
rating spurious correlations to improve the accuracy when mining heterogeneous
data.

This research question has been addressed in Contribution 1 and 3. The main concept is how
to incorporate useful characteristics and information about the data such that it leads to more
accurate data analysis. This is exactly addressed in Contribution 3. Moreover, Contribution 1 is
a speci�c case of Contribution 3 where we aim at preserving original data and avoiding any data
type conversions. Nevertheless, Contribution 3 has a wider range of applications depending on
how to interpret the term "deep knowledge". In the context of dependency anomaly detection
of time series, "deep knowledge" can be interpreted as temporal causal dependencies among
various time series. Dependency anomalies occur due to any changes in temporal dependencies
comparing training and test data. Therefore, useful information about the causal interactions
among time series improves the captured model w.r.t. time series. Essentially, we determine the
temporal relations among a speci�c time series and others while we employ a causal inference
technique. In a normal case, when no anomalies occur, the temporal causal graph is the same
for training and test data. Thus, when learning temporal dependencies for test data, we improve
accuracy of the model found for the test data by considering the null hypothesis (temporal
dependencies in training data) as another constraint. In this respect, we propose an integrative
anomaly detection framework for discovery of the dependency anomalies in heterogeneous
time series in Paper E. Later, in Paper G, we improve characteristics of the proposed framework
and employ our proposed heterogeneous causal inference algorithm (HGGM) for this application.

Research Question 4
Is it possible to avoid information loss caused by speci�c assumptions when mining

heterogeneous data?

• Contribution 2. Integrate data of di�erent natures as much as possible to avoid
any information loss.

The forth research question has been addressed in Contribution 2. Essentially, here, the
goal is to avoid any information loss caused by considering speci�c assumptions that are not
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necessarily true. In this respect, we aim at integrating information from di�erent natures
in a heterogeneous data set and avoid any presumptions. In Paper F, H, and I, we deal with
Granger causality among time series from di�erent distributions. While the basic de�nition
of Granger causality assumes a Gaussian distribution for all the time series, it does not have
to necessarily be true in every application. Thus, we employ GLMs and extend the de�nition
of Granger causality to a general case where time series may have distributions belonging to
the exponential family. In fact, GLMs allow us to generalize simple autoregressive models to
the case where several processes of di�erent distributions are non–linearly related. That is, the
response variable is not anymore a simple linear combination of covariates but its mean value
is related to the covariates by a link function.

Later, in Paper E and G, we incorporate the proposed heterogeneous Granger causal inference
algorithms for detecting dependency anomalies in time series. Thereby, our approach is not
anymore restricted to only Gaussian time series and no speci�c assumptions about the exact
distribution of time series is considered.

5.2 Future Works

The research presented in this thesis raised several questions and unlocked a number of impor-
tant challenges to be investigated in the future. Thus, the potential future works are listed as
follows:

• Many biological and microbiological applications generate mixed–type data sets. Apply-
ing our proposed clustering algorithms for mixed–type data sets to such data would be
interesting. Particularly, clustering, for instance, various types of disease or grouping
di�erent gene expressions might reveal signi�cant information.

• Clustering of time series as well as data stream is one of interesting and, at the same
time, challenging topics in this context. Therefore, we are interested in assessing the
performance of our proposed algorithm applying to a heterogeneous data stream.

• As a followup, clustering of heterogeneous time series utilizing Granger causal informa-
tion is a potential future work. We might �rst investigate features in terms of possible
causal relations and select most related features in this respect.

• Essentially, Graphs are considered as complex data sets. Among them, attributed graphs
are more complex since corresponding to every node some attributes, might be heteroge-
neous, are associated. Such graphs get more interesting when there are multi relations
among nodes. One of possible future works would be to investigate clustering of multi
attributed graphs when we try to preserve all the characteristics of the nodes.

• Grid–based clustering algorithms may lead to ine�ciency when dealing with huge data
sets in terms of the dimensionality. Thus, focusing on our proposed grid–based clus-
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tering algorithm (ITGC), a possible future work would be to investigate parallelization
approaches in the sense that the required memory to store the grid information could be
distributed.

• As another option for the further investigation for ITGC could be to enhance the parti-
tioning procedure in the sense that it results a sparse grid which is cheaper in terms of
the memory.

• Focusing on distance hierarchies, there are many di�erent ways to appropriately assign
link weights, e.g. [32], [24]. For simplicity in Paper C, we assign a constant weight
to all the links uniformly. Other alternatives and a complete investigation on weight
assignment approaches is an interesting issue deserving further research in the future.

• One of the avenues for future work is to employ our MDL–based approach (ITGH) to
e�ciently detect anomalies in heterogeneous data sets.
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CHAPTER 6
Paper A & Paper B:

Clustering of mixed–type data
considering concept hierarchies:

problem speci�cation and algorithm

This chapter comprises two publications concerning clustering of mixed-type heterogeneous
data, Paper A [12] and its extended journal version Paper B [13]. Here, the journal version is
included which consists of also the conference paper (Paper A).
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Abstract
Most clustering algorithms have been designed only for pure numerical or pure categorical data sets, while nowadays many
applications generate mixed data. It raises the question how to integrate various types of attributes so that one could efficiently
group objects without loss of information. It is already well understood that a simple conversion of categorical attributes into
a numerical domain is not sufficient since relationships between values such as a certain order are artificially introduced.
Leveraging the natural conceptual hierarchy among categorical information, concept trees summarize the categorical attributes.
In this paper, we introduce the algorithm ClicoT (CLustering mixed-type data Including COncept Trees) as reported by
Behzadi et al. (Advances in Knowledge Discovery and Data Mining, Springer, Cham, 2019) which is based on the minimum
description length principle. Profiting of the conceptual hierarchies, ClicoT integrates categorical and numerical attributes
by means of a MDL-based objective function. The result of ClicoT is well interpretable since concept trees provide insights
into categorical data. Extensive experiments on synthetic and real data sets illustrate that ClicoT is noise-robust and yields
well-interpretable results in a short runtime. Moreover, we investigate the impact of concept hierarchies as well as various
data characteristics in this paper.

Keywords Mixed-type data · Information-theoretic clustering
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– Code availability Our algorithm is implemented in Java
and the source code as well as the data sets are publicly
available here: https://tinyurl.com/ucp8289.

2 Introduction

Clustering mixed data is a non-trivial task and typically is
not achieved by well-known clustering algorithms designed
for a specific type. It is already well understood that convert-
ing one type to another one is not sufficient since it might
lead to information loss. Moreover, relations among values
(e.g., a certain order) are artificially introduced. In order to
elaborate the issue, we generate a synthetic mixed-type data
and investigate the impact of converting a categorical data
type to a numerical one while applying well-known cluster-
ing algorithms.

Let Fig. 1 show a synthetically generated mixed-type data
consisting of three different clusters illustrated by different
shapes (rectangle, circle, cross), i.e., shapes are cluster IDs or
ground truth. Thus, there are two Gaussian-shaped clusters
where one of them (points with the shape rectangle) includes
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Fig. 1 Clustering results after converting categorical attribute Color to numerical (color figure online)

only data points having cyan as their color and the other clus-
ter (points with the shape cross) includes data points having
purple and rose as their color. The last cluster (points with
the shape circle) is a line-shaped cluster consisting of dark
green and light green data points.

The data set comprises two numerical attributes concern-
ing the position of data objects and a categorical attribute
representing the color of data points (rose, purple, light green,
dark green and cyan). Therefore, a data object in our syn-
thetic data looks like, for example (1, 2, purple). Numerical
attributes are generated following various random Gaussian
distributions. We simply converted the color to a numerical
attribute by mapping numbers to various colors. Considering
the normalized mutual information (NMI) [17] as an evalu-
ation measure, Fig. 1 depicts the inefficiency of applying
K-means and DBSCAN, two popular clustering algorithms,
on the converted data. Therefore, integrating categorical and
numerical attributes without any conversion is required since
it preserves the original format of any attribute.

Utilizing the minimum description length (MDL) princi-
ple, we can regard the clustering task as a data compression
problem such that the best clustering is linked to the strongest
data set compression. MDL allows integrative clustering by
relating the concepts of likelihood and data compression
while for any attribute a representative model is required.
Although for solely numerical data sets a probability dis-
tribution function (PDF) represents an approximation of
data, finding an appropriate approximation for categorical
attributes is not straightforward. Considering the natural
hierarchy among categorical values, concept hierarchies are
introduced to summarize the categorical information.Back to
the running example, assuming pink as a higher-level hier-
archy for the objects in the cluster consisting of rose and
purple, points with the shape × more accurately represent
the characteristics of the cluster.

Beyond the clustering approaches, detecting the most rel-
evant attributes during this process improves the quality of
clustering. However, considering a data set with an unknown
distribution where only few subgroups in the data space are
actually relevant to characterize a cluster, it is not trivial

to recognize the cluster-specific attributes. Thus, we intro-
duce an information-theoretic greedy approach to specify the
most relevant attributes. As a result, the novel parameter-
free CLustering algorithm for mixed-type data Including
COncept Trees, shortly ClicoT, provides a natural interpre-
tation. The approach consists of several contributions:

– Integration ClicoT integrates two types of information
considering data compression as an optimization goal.
ClicoT flexibly learns the relative importance of the two
different sources of information for clustering without
requiring the user to specify input parameters which are
usually difficult to estimate.

– Interpretation In contrast to most clustering algorithms,
ClicoT not only provides information about which
objects are assigned to which clusters, but also gives an
answer to the central question why objects are clustered
together. As a result of ClicoT, each cluster is character-
ized by a signature of cluster-specific relevant attributes
providing appropriate interpretations.

– Robustness The compression-based objective function
ensures that only the truly relevant attributes are marked
as cluster-specific attributes. Thereby, we avoid over-
fitting, enhance the interpretability and guarantee the
validity of the result.

– UsabilityClicoT is convenient to be used in practice since
the algorithm scales well to large data sets. Additionally,
the compression-based approach avoids difficult estima-
tion of input parameters, e.g., the number or the size of
clusters.

Moreover, in this paper we elaborate the concept hierar-
chies and investigate the impact of them on the performance
ofClicoT.Wealso addresswhether or not various characteris-
tics of data sets, e.g., proportion of categorical and numerical
attributes, have any influence on the effectiveness of ClicoT
via extensive experiments.
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3 Clusteringmixed data types

To design a mixed-type clustering algorithm, we need to
address three fundamental questions: How to model numeri-
cal attributes to properly characterize a cluster?How tomodel
categorical attributes?Andfinally how to efficiently integrate
heterogeneous attributeswhen themost relevant attributes are
specified? In principle, a PDF summarizes values by approx-
imating meaningful parameters. However, the idea of using
a background PDF for categorical attributes is not intuitive
at first; therefore, we employ concept hierarchies.

3.1 Concept hierarchy

In this paper, a concept could be color of an object (e.g.,
light green or cyan), marital status (e.g., married) or the con-
tinent where a country is located (e.g., Asia). More precisely,
a concept is a categorical value showing some characteris-
tics of every data object. As mentioned, concept hierarchies
allow us to express conceptual interchangeable values by
selecting an inner node of a concept hierarchy to describe
a cluster. Concept hierarchies not only capture more rele-
vant categories for each cluster but also help to interpret the
clustering result appropriately. Let DB denote a database
consisting of n objects. An object o comprises m categorical
attributes A = {A1, A2, . . . , Am} and d numerical attributes
X = {x1, x2, . . . , xd}. For a categorical attribute Ai , we
denote different categorical values by Ai

( j). An Element
represents a categorical value or a numerical attribute and
we denote the number of all Elements by E . Considering
the natural hierarchy between different categories, for each
categorical attribute Ai a concept hierarchy is already avail-
able as follows:

Definition 1 Concept Hierarchy Let TAi = (N , E) be a tree
with root Ai denoting the concept hierarchy corresponding
to the categorical attribute Ai with the following properties:

1. TAi consists of a set of nodes N = {n1, n2, . . . , ns}where
any node is corresponding to a categorical concept. E is
a set of directed edges E = {e1, e2, . . . , e(s−1)}, where
n j is a parent of nz if there is an edge el ∈ E so that
el = (n j , nz).

2. The level l(n j )of a noden j is the height of the descendant
sub-tree. If n j is a leaf, then l(n j ) = 0. In a concept, tree
leaf nodes are categorical values existing in the data set.
The root node is the attribute Ai which has the highest
level, also called the height of the concept hierarchy.

3. Each node n j ∈ N is associated with a probability p(n j )

which is the frequency of the corresponding category in
a data set.

Color

PurpleRosé

.31 .29
Light
Green

.07
Dark
Green

.07

Cyan

.26

1.0

Fig. 2 Aflat concept tree for the categorical attribute color (color figure
online)

Fig. 3 Concept tree corresponding to the running example w.r.t. the
natural hierarchy among various colors (color figure online)

4. Each node n j represents a sub-category of its parent;
therefore, all probabilities of the children sum up to the
probability of the parent node.

To elaborate, let us consider the synthetic example illus-
trated in Sect. 2 (see Fig. 1). In this example, the only
categorical attribute is color, while two other attributes are
numeric. Therefore, A = {A1} and X = {x1, x2} where A1

is color and X1, X2 show X and Y -axis in a two-dimensional
space. Every data point in this data set can have one of the fol-
lowing colors: cyan, rose, purple, light green and dark green.
Thus, the set of categorical values w.r.t. A1 is { cyan, rose,
purple, light green and dark green}. As a default, we assume
a flat concept tree to summarize the frequency of categori-
cal values, especially, when there is no meaningful hierarchy
among different categories. A flat hierarchy consists of a one
level tree including all the categories in the leaf level with-
out any hierarchy. Figure 2 depicts a default flat concept tree
corresponding to the running example. However, usually, for
each categorical attribute a concept hierarchy is available
due to the natural hierarchy among different categories. For
instance, considering the natural scalable range of colors, one
can categorize different colors as illustrated in Fig. 3. Here,
the height is 2 showing another concept level (level 1) which
categorizes the color of data points, e.g., green categorizes
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Fig. 4 Concept tree for categorical attribute marital status w.r.t. Adult
data set

dark green and light green in a same category based on the
natural scalable range of colors. The node labels show back-
ground probabilities p(n j ) (i.e., frequency) for each node.
This initialization of the background distribution is once per-
formed before assigning objects to clusters.

Categorical attributes are more often observed in real
applications, e.g., population surveys. As an example, we
focus onAdult data, a real-world data set from theUCI repos-
itory [7]. Adult data set without missing values, extracted
from the census bureau database, consists of 48,842 instances
of 11 attributes. The class attribute Salary indicates whether
the salary is over 50K or lower. Categorical attributes con-
sist of different information about people in this survey,
e.g., work-class, education, occupation and marital status.
Focusing on the categorical feature marital status, every
person belongs to a unique category including divorced,
never married, married-spouse-absent, etc. The leaf level
shows various marital status one could have in both con-
cept trees illustrated in Fig. 4. The left concept tree without
any hierarchy (Fig. 4a) shows the default flat hierarchy can
be considered in the beginning. However, we can categorize
various status based on whether or not a person is married. In
this case, three different categories, i.e., married-civ-spouse,
married-spouse-absent and married-AF-spouse, fall in the
same category, married. All other categorical values, i.e.,
divorced, separated, widowed and never-married, cannot be
located in the same category since people having these status
are single. Therefore, we consider another category, single,
which seems more plausible for those status. Thus, Fig. 4b
shows one of the possible concept hierarchies one can assume
w.r.t. marital status for Adult data. We investigate this data
set in more detail in Sect. 6.

ClicoT profits the concept hierarchy to provide more
interpretable results. But also non-hierarchical categorical
attributes can be regarded as a simple flat concept hierarchies
with height one. We claim our algorithm performs appropri-
ately in comparison with other algorithms for this case as
well.

3.2 Cluster-specific elements

Besides an efficient clustering approach, finding relevant
attributes to capture the best fitting model is important. Usu-
ally, the clustering result is disturbed by irrelevant attributes.
To make the model for each cluster more precise, we distin-
guish between relevant and irrelevant attributes. Each cluster
c is associated with a subset of the numerical and categorical
relevant elements denoted by cluster-specific elements. Cate-
gorical cluster-specific elements are represented by a specific
concept hierarchy which diverges from the background hier-
archy (i.e., the concept hierarchy of the entire database).

Definition 2 Cluster A cluster c is described by:

1. A set of objects Oc ⊂ DB.
2. A cluster-specific subspace I = Xc∪Ac, whereXc ⊆ X

and Ac ⊆ A.
3. For any categorical attribute Ai ∈ Ac, the correspond-

ing cluster-specific concept hierarchy is a tree T c
Ai =

(Nc, Ec) with nodes and edges as specified in Defini-
tion 1. Nc ⊂ N indicates the cluster-specific nodes. For
computing the probabilities associated with the cluster-
specific nodes instead of all n objects, only the objects
Oc in cluster c are applied, i.e., p(n j ) = |n j |

|Oc| .

The idea of cluster-specific nodes allows to specify an
inner node as a representative for each cluster. ClicoT aims
at finding a partition ofDB into clusters, and simultaneously
at discovering the cluster-specific subspace for each cluster.

3.3 Integrative objective function

Given the appropriate model corresponding to any attribute,
MDL allows a unified view on mixed data. The better the
model matches major characteristics of the data, the better
the result is. Following the MDL principle [16], we encode
not only the data but also the model itself and minimize the
overall description length. Simultaneously, we avoid over-
fitting since the MDL principle tends to a natural trade-off
between model complexity and goodness-of-fit.

Definition 3 Objective Function Considering cluster c the
description length (DL) corresponding to this cluster is
defined as:

DL(c) = DLn(X ) + DLc(A) + DL(model(c)) (1)

The first two terms, i.e., DLn andDLc, represent coding costs
concerningnumerical and categorical attributes, respectively.
The last term (DL(model)) denotes the model encoding cost.
Essentially, numerical and categorical attributes contribute
simultaneously and in the same way. We incorporate the
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required coding cost for both types, numerical and categori-
cal, without any data type conversion. Thus, instead of data
type conversion we integrate all attributes avoiding infor-
mation loss. Our proposed objective function minimizes the
overall description length of the database which is defined
as:

DL(DB) =
∑

c∈C
DL(c) (2)

Coding Numerical Attributes Considering Huffman cod-
ing scheme, the description length of a numerical value oi
is defined by − log2 PDF(oi ). We assume the same PDF to
encode the objects in various clusters and clusters compete
for an object while the description length is computed by
means of the same PDF for every cluster. Therefore, any
PDF would be applicable and using a specific model is not
a restriction [4]. For simplicity, we select Gaussian PDF,
N (μ, σ ). Moreover, we distinguish between the cluster-
specific attributes in any cluster c, denoted by Xc, and the
remaining attributes X \ Xc (Definition 2). Let μi and σi
denote the mean and variance corresponding to the numeri-
cal attribute xi in cluster c. If xi is a cluster-specific element
(xi ∈ Xc), we consider only cluster points to compute the
parameters otherwise (x j ∈ X \ Xc) the overall data points
will be considered. Thus, the coding cost for numerical
attributes in cluster c is provided by:

DLn(X ) =
∑

xi∈X

∑

oi∈Oc

− log2
(
N (μi , σi )

)
(3)

Coding Categorical Attributes Analogously, we employ
Huffman coding scheme for categorical attributes. The asso-
ciatedprobability to a category is its frequencyw.r.t. either the
specific or the background hierarchy (Definition 1). Similar
to numerical attributes, we assume Ac as the set of cluster-
specific categorical attributes and A \ Ac for the rest. Let
o j denote a categorical object value corresponding to the
attribute A j . We define f (A j , o j ) as a function which maps
o j to a node in either a specific or a background hierarchy
depending on A j . In summary, f (.) is defined as:

f (A j , o j ) =
{
n j ∈ T c

A j A j ∈ Ac

n j ∈ TA j A j ∈ A \ Ac

Thus, the categorical coding cost for a cluster c is given by:

DLc(A) =
∑

A j∈A

∑

o j∈Oc

− log2
(
p( f (A j , o j )

)
) (4)

Model Complexity Without taking the model complexity
into account, the best result will be a clustering consisting of
singleton clusters. This result is completely useless in terms

of the interpretation. Focusing on cluster c, the model com-
plexity is defined as:

DL(model(c)) = idCosts(c) + SpecificIdCosts(c)

+ paramCosts(c) (5)

The idCosts are required to specify which cluster is
assigned to a object while balancing the size of clusters.
Employing the Huffman coding scheme, idCosts are defined
by |Oc| · log2 n

|Oc| where |Oc| denotes the number of objects
assigned to cluster c. Moreover, in order to avoid information
loss we need to specify whether an attribute is a cluster-
specific attribute or not. That is, given the number of specific
elements s in cluster c, the coding costs corresponding to
these elements, SpecificIdCosts, is defined as:

SpecificIdCosts(c) = s · log2
E

s
+ (E − s) · log2

E

(E − s)
(6)

Following fundamental results from information theory
[16], the costs for encoding themodel parameters are reliably
estimated by:

paramCosts(c) = numParams(c)

2
· log2 |Oc| (7)

For any numerical cluster-specific attribute, we need to
encode its mean and variance while for a categorical one the
probability deviations to the default concept hierarchy need
to be encoded, i.e., numParams(c) = |X | · 2+ ∑

Ai∈A |Nc|.
Moreover, we need to encode the probabilities associated
with the default concept hierarchy, as well as the default
(global) means and variances for all numerical attributes.
However, these costs are summarized to a constant term
which does not influence our subspace selection and clus-
tering technique.

4 Algorithm

Together with the main building blocks of ClicoT, two other
steps are required to achieve an appropriate parameter free
clustering: (1) recognizing the cluster-specific elements and
(2) probability adjustments.

4.1 How to specify cluster-specific elements?

The optimization process in the objective function tends to
mark an element with the most cost saving as a cluster-
specific. Let the specific coding cost denote the cost where an
element ismarked as specific and the non-specific coding cost
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Algorithm 1 Cluster-specific elements
1: Deviation (Element ei )
2: scc := specific coding cost
3: nscc := non-specific coding cost
4: dev := deviation in terms of coding cost
5: if ei is numerical then
6: // case 1: ei is specific
7: // find N (μi , σi ) w.r.t. Oc and compute DLn(.)

8: s = s + 1
9: scc = ∑

c∈C DL(c)
10:
11: // case 2: ei is not specific
12: // find N (μi , σi ) w.r.t. DB and compute DLn(.)

13: nscc = ∑
c∈C DL(c)

14:
15: else if ei is categorical then
16: // case 1: ei is specific
17: A j := categorical attribute w.r.t. ei
18: TA j := concept tree w.r.t. A j
19: // adjust TA j and get T c

A j

20: for all Vertex V in TA j do
21: ProcessHierarchy(V )
22: end for
23: // find DLc(.) w.r.t. specific concept tree T c

A j

24: P(o) = P(n) where n ∈ T c
A j

25: s = s + 1
26: scc = ∑

c∈C DL(c)
27:
28: // case 2: ei is not specific
29: // find DLc(.) w.r.t. background concept tree TA j

30: P(o) = P(n) where n ∈ TA j

31: nscc = ∑
c∈C DL(c)

32: end if
33:
34: // find the deviation
35: dev = |nscc − scc|
36: return dev

indicates the cost otherwise. Consulting the idea that cluster-
specific elements have the most deviation of specific and
non-specific cost and therefore saves more coding costs, we
introduce a greedy method to recognize them. Algorithm 1
summarizes how to find the coding cost deviation w.r.t. every
element ei .We sort the elements according to their deviations
and specify the first element as a cluster-specific element.
We continue marking elements until marking more elements
does not pay off in terms of the coding cost. Note that differ-
ent nodes of a concept hierarchy have the same opportunity
to be specific. Additionally marking a categorical element
influences the specific concept hierarchy; therefore, we have
to consider the adapted probabilities (next section).

4.2 Probability adjustment

To adjust the probabilities for a numerical cluster-specific
attribute, we can safely usemean and variance corresponding
to the cluster. In contrast, learning the cluster-specific concept
hierarchy is more challenging since we need to maintain the

Algorithm 2 Concept tree updates
1: ProcessHierarchy (Vertex V )

2: ssp := sum of specific probabilities
3: sup := sum of unspecific probabilities
4: if V is a leaf then
5: if V is specific then
6: return (V .probabili t y, 0)
7: end if
8: return (0, V .backgroundProbabili t y)
9: end if
10: // now V is not a leaf
11: (ssp, sup) := (0, 0)
12: for all C in children(V ) do
13: (s, u) := processHierarchy(C)

14: (ssp, sup) := (ssp + s, sup + u)

15: end for
16: if V is specific or root then
17: f actor := (V .probabili t y − ssp)/sup
18: for all C in children(V ) do
19: propagateDownFactor(C, f actor)
20: end for
21: return (V .probabili t y, 0)
22: end if
23: return (ssp, sup)

integrity of a hierarchy. According to Definition 1, we assure
that node probabilities of siblings in each level sum up to the
probability of the parent node. Moreover, node probabilities
should sum up to one for each level.

Algorithm 2 summarizes the adjustment process where
ProcessHierarchy() is a recursive procedure to update the
concept tree assuming marked cluster-specific elements. It,
firstly, determines all probabilities in a concept hierarchy
starting from the following configuration: Initially, all nodes
are assigned to the background probability of the overall
data set (V .backgroundProbability). An arbitrary number of
(internal and/or leaf) nodes aremarked as cluster-specific and
assigned to different probabilities, taken from the currently
considered cluster (V .probability). The recursive procedure
is always started at the root node. When descending the con-
cept hierarchy recursively, for each node we keep track of
two sums, that of the specific probabilities inside the com-
plete subtree (ssp) and that of the unspecific ones (sup).
When returning from a recursion, we pass exactly these two
variables to the caller, enabling him to determine how much
the remaining probabilities must be adjusted. Whenever we
return from the recursion and reach a cluster-specific node,
we determine an adjustment factor according to the formula

f actor = V .probabili t y − ssp

sup
(8)

which is the factor correcting the deviation between all
cluster-unspecific nodes in the sub-tree from the probabil-
ity which we have in the current specific node. This factor
is propagated down the concept hierarchy using the proce-
dure PropagateDownFactor() in Algorithm 3 which is again
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Fig. 5 Update concept hierarchies considering pink as a cluster-specific node (color figure online)

recursive and descends the sub-tree only in the non-cluster-
specific nodes, because only for those we can adapt the
probabilities. If ConceptTreeUpdate() returns to a cluster-
unspecific node, it only sums up ssp and sup and delivers this
information to its caller without directly down-propagating
anything. Overall, the recursive method ProcessHierarchy()
visits every node of the concept hierarchy once (and only
once). During this whole recursive procedure, it is also guar-
anteed that PropagateDownFactor() also visits every node at
most once. Thus, themethod is linear in the number of nodes.

Algorithm 3 Down-propagation of the adjustment factor
1: PropagateDownFactor (Vertex V ,double factor)
2: if V is unspecific then
3: V .probability := V .probability · factor
4: if V is not leaf then
5: for all C ∈ V .children do
6: PropagateDownFactor(C , factor)
7: end for
8: end if
9: end if

To clarify, let Fig. 5 show the procedure on the concept
hierarchy corresponding to the running example (Fig. 1)
where labels denote the frequencies. Moreover, let pink be
a cluster-specific node for the cluster with the shape ×. The
adjustment starts with the root node and processes its chil-
dren. Then, it continues computing the relative probabilities
for the specific concept hierarchy rather by background prob-
ability fraction (Fig. 5a). 80% relative probability should be
distributed between two children, rose and purple, based on
the computed propagation factor. During the next step, the
remaining 20% probability is assigned level-wise to blue and
green to assure that probabilities in each level sum up to 1
(Fig. 5b). Again each parent propagates down its probability
(Fig. 5c). The result is a concept hierarchy best fitting to the
objects when the background distributions are preserved.

4.3 ClicoT algorithm

ClicoT is a top-down parameter-free clustering algorithm.
That is, we start from a cluster consisting of all objects and

Algorithm 4 ClicoT
1: input DB
2: learn background distributions of each attribute
3: C ′ = {C0} with C ′

0 = Oi ∈ DB
4: repeat
5: // try to split until convergence
6: C = C ′
7: cost = DL(DB|C) // current cost
8: C ′ = {C ′

1 . . .C ′
k−1} split worst Ci ∈ C to {C ′

i ,C
′
k}

9: while clustering C ′ changes do
10: C ′

i = {Oj : mini DL(Oj |C ′
i )} // assign objects

11: Select cluster-specific elements by a greedy method for each
cluster and compute costs

12: Update each attribute of C ′
i

13: end while
14: cost′ = DL(DB|C ′) // split cost
15: until cost > cost′
16: k = |C |
17: return C , k

iteratively split down the most expensive cluster c in terms
of the coding cost to two new clusters {c′

a, c′
b}. Then, we

apply a k-means-like strategy and assign every point to clos-
est cluster which is nothing else than the cluster with the
lowest increase in the coding cost. Employing the greedy
algorithm, we determine the cluster-specific elements and
finallywecompute the compression cost for clustering results
in two cases, before and after splitting (Definition 3). If the
compression cost after splitting, i.e., C′ with |C′| = k + 1, is
cheaper than the cost of already accepted clustering C with
|C| = k, then we continue splitting the clusters. Otherwise
the termination condition is reached and the algorithm will
be stopped.

5 Related work

Driven by the need of real applications, the topic of cluster-
ingmixed-typedata representedbynumerical and categorical
attributes has attracted attentions, e.g., CFIKP [19], CAVE
[10], CEBMDC [8]. In between, most of the algorithms are
designed based on the algorithmic paradigmof k-means, e.g.,
k-Prototypes [11]. Often in this category not only the num-
ber of clusters k but also the weighting between numerical
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and categorical attributes in clustering has to be specified by
the user. Among them, K-means-mixed (KMM) [1] avoids
weighting parameters by an optimization scheme learning
the relative importance of the single attributes during run-
time, although it needs the number of clusters k as input
parameter. KMM employs data conversion and discretize
numerical attributes into categorical ones and then calculate
the interactions in terms of categorical ways. Almost sim-
ilarly, SpectralCAT [6] and CoupledMC [18] both conduct
k-means clustering on continuous features and use a validity
index to choose clustering label as new continuous features.
These methods calculate the couplings based on discretized
numerical data which may lead to information loss due to
failure in capturing the distribution of the continuous data.

Following a mixture of Gaussian distributions, model-
based clustering algorithms have been also proposed for
mixed-type data. In between, ClustMD [13] is developed
using a latent variable model and employing an expecta-
tion maximization (EM) algorithm to estimate the mixture
model. Yet, this algorithm has a certain Gaussian assump-
tion which does not have to be necessarily fulfilled. On the
other hand, clustering algorithms for mixed-data often do not
properly model dependencies and are limited to modeling
meta–Gaussian distributions. Copulas, that provide a modu-
lar parameterizationof joint distributions, canmodel a variety
of dependencies, but their use with discrete data remains lim-
ited due to challenges in parameter inference. Authors in [15]
use Gaussian mixture copulas, to model complex dependen-
cies beyond those captured by meta–Gaussian distributions,
for clustering. However, this approach may not only result
in information loss but also fail to capture the discriminative
information between objects.

Some of the approaches utilize the unique characteris-
tics of any data type to avoid the drawbacks of converting a
data type to another one. Profiting of the concept hierarchy,
these algorithms introduce an integrative distance measure
applicable for both numerical and categorical attributes. The
algorithm DH [9] proposes a hierarchical clustering algo-
rithm using a distance hierarchy which facilitates expressing
the similarity between categorical and numerical values.
As another method, MDBSCAN [2] employs a hierarchical
distance measure to introduce a general integrative frame-
work applicable for the algorithms which require a distance
measure, e.g., DBSCAN. On the other hand, information-
theoretic approaches have been proposed to avoid the diffi-
culty of estimating input parameters. These algorithms regard
the clustering as a data compression problem by hiring the
minimum description length (MDL). The cluster model of
these algorithms comprises joint coding schemes supporting
numerical and categorical data. The MDL principle allows
balancingmodel complexity andgoodness-of-fit. INCONCO
[14] and Integrate [5] are two representative for mixed-type
clustering algorithms in this family.While Integrate has been

designed for general integrative clustering, INCONCO also
supports detectingmixed-type attribute dependency patterns.

Recently, deep neural networks are widely used for
clustering. Among them, authors in [12] propose an auto-
instructive representation learning scheme to enable margin-
enhanced distance metric learning for a discrimination-
enhanced representation. Finally, they feed the learned rep-
resentation into both partition-based (k-means) and density-
based (DBSCAN) clustering methods.

6 Evaluation

In this section, we assess the performance of ClicoT com-
pared to other clustering algorithms in terms of NMI which
is a common evaluation measure for clustering results. NMI
numerically evaluates pairwise mutual information between
ground truth and resulted clusters scaling between zero and
one. We conducted several experiments evaluating ClicoT
in comparison with KMM [1], INCONCO [14], DH [9],
ClustMD [13], Integrate [5] and MDBSCAN [2]. In order to
be fair in any experiment, we input the corresponding con-
cept hierarchy to the algorithms which are not designed for
dealing with it. That is, we encode the concept hierarchy as
an extra attribute so that categorical values belonging to the
same category have the same value in this extra attribute.
Our algorithm is implemented in Java, and the source code
as well as the data sets is publicly available1.

6.1 Mixed-type clustering of synthetic data

In order to cover all aspects of ClicoT, we first consider a syn-
thetic data set. Then, we continue experiments by comparing
all algorithms in terms of the noise-robustness. Finally, we
will discuss the runtime efficiency.

Clustering Results In this experiment, we evaluate the
performance of all the algorithms on the running exam-
ple (Fig. 1) while all parametric algorithms are set up with
the right number of clusters. The data have two numerical
attributes concerning the position of any data point and a cat-
egorical attribute showing the color of the points. Figure 6
shows the result of applying the algorithms where different
clusters are illustrated by different colors. As it is explicitly
shown in this figure, ClicoT, with NMI 1, appropriately finds
the initially sampled three clusters where green, pink and
blue are cluster-specific elements. Setting the correct num-
ber of cluster and trying various Gaussian mixture models,
ClustMD results in the next accurate clustering. Although
MDBSCAN utilizes the distance hierarchy, it is not able to
capture the pink and green clusters. KMMcannot distinguish
among various colors. Since two clusters pink and green

1 https://tinyurl.com/ucp8289.
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Fig. 7 Comparing
noise-robustness of ClicoT to
other algorithms
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are heavily overlapped, Integrate cannot distinguish among
them. DH and INCONCO result on this data set inefficiently
finding almost only one cluster.

Noise-robustness In this section, we benchmark noise-
robustness of ClicoT w.r.t the other algorithms in terms of
NMI by increasing the noise factor. To address this issue,
we generate a data set with the same structure as the run-
ning example when adding another category, brown, to the
categorical attribute color as noise. Regarding numerical
attributes, we increase the variance of any cluster. We start
from 5% noise (noise factor = 1) and iteratively increase the
noise factor ranging to 5. Figure 7 clearly illustrates noise-
robustness of ClicoT compared to others.

Flat Hierarchy In this section, we investigate the case
when no appropriate hierarchy is considered. That is, we
assume a flat concept tree with no hierarchy (e.g., Fig. 2) and
run the following two experiments. Firstly, we focus on the

running example introduced inSect. 2 (seeFig. 1) and assume
a flat hierarchy for the categorical attribute Color where no
higher level concept categorizes the colors (Fig. 2).

As expected also observed from Fig. 8, ignoring a mean-
ingful hierarchy for categorical attributes decreases the
performance of ClicoT. However, ClicoT-flat (NMI = 0.60)
is still comparable to MDBSCAN and more effective than
KMM, Integrate, INCONCO and DH. In this data set, Clus-
ter 3 (the line shape cluster illustrated by green circles in
Fig. 1) highly overlaps two other clusters at some points.
The data points in this cluster have the colors light green and
dark green. As it is observed from the result of ClicoT-flat
(Fig. 8), ignoring a meaningful hierarchy for the colors leads
to an inefficiency in the sense that numerical attributes get
cluster-specific and hence important while clustering. There-
fore, parts of Cluster 3 which overlap with two other clusters
(middle part and tail of Cluster 3) are wrongly grouped.
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Fig. 8 Result of ClicoT applied on running example assuming a flat
concept tree for colors (Fig. 2) (color figure online)
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Fig. 9 Comparing ClicoT and ClicoT-flat assuming various noise fac-
tors

In the next investigation, we repeat the noise experiment
applying ClicoT-flat. Here, the goal is to compare ClicoT and
ClicoT-flat in various cases when the data set gets more noisy
iteratively.As the plot in Fig. 9 depicts, ClicoT is alwaysmore
effective in comparison with ClicoT-flat, although the per-
formance of ClicoT-flat is still comparable in the beginning
when the noise factor is smaller. It again approves the role of
a meaningful hierarchy in order to increase the efficiency.

Scalability To evaluate the efficiency of ClicoT w.r.t the
other algorithms, we generated a 10-dimensional data set
(5 numerical and 5 categorical attributes) with three Gaus-
sian clusters. Then, respectively, we increased the number

of objects ranging from 2000 to 10,000. In the other case,
we generated different data sets of various dimensionality
ranging from 10 to 50 where the number of objects is fixed.
Figure 10 depicts the performance of all algorithms in terms
of the runtime complexity. Regarding the first experiment
on the number of objects, ClicoT is slightly faster than oth-
ers while increasing the dimensionality Integrate performs
faster. However, the runtime of this algorithm highly depends
on the number of clusters k initialized in the beginning (we
set k = 20). That is, this algorithm tries a range of k and out-
puts the best results. Therefore, by increasing k the runtime
is also increasing.

Proportion How would ClicoT behave when various
proportions of categorical and numerical attributes are con-
sidered in the data sets? What happens when the majority
of attributes are numerical and vice versa? In this exper-
iment, we address the mentioned questions and generate
various synthetic data sets each of which having a differ-
ent proportion of categorical and numerical attributes. The
x-axis in Fig. 11 shows the proportion factor, while for
factor 1, for example, we generate 2 numerical and 2 cat-
egorical attributes. In Fig. 11, the yellow bins show the
case when we increase the number of numerical attributes
while the categorical attributes are set two, e.g., factor 3 =
6 numerical attributes
2 categorical attributes . For the categorical attributes, we
assume a flat hierarchy with 3 various categories in every
experiment. Analogously the green bins in Fig. 11 illustrate
the results of applying ClicoT when the proportion factor is
achieved by proportion = #categorical attributes

#numerical attributes .
As observed in Fig. 11 having various number of numer-

ical or categorical attributes as well as different proportions
does not influence the performance of our proposed algo-
rithm. ClicoT is very well designed to deal with any kind
of data structures since it always utilizes cluster-specific
attributes and marks the most relevant attributes as specific.
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Fig. 10 Investigating the runtime efficiency of ClicoT in comparison
with other algorithms. Two various cases are considered: a when the
number of objects is increasing while the dimensionality is fixed, b

when the number of objects is fixed and the dimensionality (number of
categorical and numerical attributes) is increasing
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Fig. 12 Cluster-specific categories for Cluster 12 and Cluster 26 w.r.t.
the categorical attribute Fuel System
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Fig. 13 Concept tree for 3 categorical attributes of Adult data set

Table 1 Cluster specific attributes for attribute Relationship based on
the most deviation

C2 C3

Family − 0.24 0.359

Wife 0.025 − 0.047

Own child 0.111 − 0.154

Husband − 0.398 0.59

Other relative 0.02 − 0.028

No family 0.24 − 0.359

Unmarried 0.074 − 0.105

Not in family 0.165 − 0.253

Bold numbers in the table show maximum deviations corresponding to
each attribute

6.2 Experiments on real-world data

Finally, we evaluate clustering quality and interpretability of
ClicoT on real-world data sets. We used MPG, Automobile
and Adult data sets from the UCI Repository [7] as well as
Airport data set from the public project Open Flights2.

MPG MPG is a slightly modified version of the data set
provided in the StatLib library. The data concern city-cycle
fuel consumption in miles per gallon (MPG) in terms of 3
categorical and 5 numerical attributes consisting of different
characteristics of 397 cars. We consider MPG ranging from
10 to 46.6 as the ground truth and divide the range to 7 inter-
vals of the same length. Considering a concept hierarchy for
the name of cars, we group all the cars so that we have three
branches: European, American and Japanese cars.Moreover,
we divide the range of model year attribute to three intervals:
70–74, 75–80 and after 80. We leave the third attribute as a
flat concept hierarchy since there is no meaningful hierarchy
between variation of cylinders. Comparing ClicoT (NMI =
0.4) to the other algorithms INCONCO (0.17), KMM (0.37),
DH (0.14),MDBSCAN(0.02), ClustMD (0.33) and Integrate
(0), ClicoT correctly finds 7 clusters each of which is com-
patiblewith one of theMPGgroups. Cluster 2, for instance, is
compatible with the first group of MPGs since the frequency
of the first group in this cluster is 0.9. In this cluster, Amer-
ican cars with the frequency of 1.0 and cars with 8 cylinders
with the frequency of 1 and model year in first group (70–
74) with the frequency of 0.88 are selected as cluster-specific
elements.

Automobile This data set provides 205 instances with
26 categorical and numerical attributes. The first attribute
defining the risk factor of an automobile has been used as
class label. Altogether there are 6 different classes. Due
to many missing values, we used only 17 attributes. Com-
paring the best NMI captured by every algorithm, ClicoT

2 http://openflights.org/data.html.
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Fig. 14 Result of ClicoT on
Open Flights data set

Fig. 15 Result of KMM on
Open Flights data set

(NMI = 0.38) outperforms KMM (0.23), INCONCO (0.20),
Integrate (0.17),DH (0.04), ClustMD (0.16) andMDBSCAN
(0.02). Furthermore, ClicoT gives an insight into the inter-
pretability of the clusters. As illustrated in Fig. 12, Cluster
12, for instance, is characterized mostly by the fuel system of
2bbl, but also by 1bbl and 4bbl. Also we see that Cluster 26
is consisting of both mpfi and slightly of mfi, too. Concern-

ing the risk analysis this clustering serves, ClicoT allows to
recognize which fuel systems share the same insurance risk.

Adult Data Set Adult data set without missing values,
extracted from the census bureau database, consists of 48,842
instances of 11 attributes. The class attribute Salary indi-
cates whether the salary is over 50K or lower. Categorical
attributes consist of different information, e.g., work-class,
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Fig. 16 Result of MDBSCAN
on Open Flights data set

education, occupation. A detailed concept hierarchy is pro-
vided in Fig. 13. Although compared to INCONCO (0.05),
ClustMD (0.0003), MDBSCAN (0.004), DH (0) and Inte-
grate (0), our algorithm ClicoT (0.15) outperforms all other
algorithms except KMM (0.16) which is slightly better. In
order to give more insights into discovered clusters, we use
two other evaluation measures, Categorical Utility (CU) and
Rand Index, and compare the result of ClicoT toKMMwhich
in this experiment is slightly more efficient in terms of NMI.

Before any comparison, we briefly explain about new
evaluation strategies. Rand index is one of the most popu-
lar external clustering validation indices. Assuming P as the
true clustering of data set with N data objects and C as clus-
tering result, for each pair of data objects xi and x j , there are
four different cases:

– Case 1 xi and x j belong to the same clusters of C and
the same category of P

– Case 2 xi and x j belong to the same clusters of C but
different categories of P

– Case 3 xi and x j belong to different clusters of C but the
same category of P

– Case 4 xi and x j belong to different clusters of C and
different categories of P

Let a, b, c, d correspond to number of pairs for the first to
fourth cases and L is the total number of pairs (L = a + b+
c + d). Thus, Rand index is defined as follows, with larger

values indicating better results:

Rand index = a + d

L

On the other side, in order to evaluate the clustering result
in terms of categorical attributes we apply the categorical
utility criterion. CU attempts to maximize both the probabil-
ity that two patterns in the same cluster have attribute values
in common and the probability that patterns from different
clusters have different values:

CU=
∑

k

⎛

⎝ Ck

DB
∑

A∈A

∑

j

[P(A = A j |Ck)
2 − P(A = A j )

2]
⎞

⎠

where P(A = A j |Ck) is the conditional probability that
attribute A has the value A j given clusterCk , and P(A = A j )

is the overall probability of attribute i having A j in the entire
data set. Obviously, the higher the CU value, the better the
clustering performs.

Considering the Rand index as the metric, ClicoT (0.592)
performs almost the same asKMM(0.604).However, ClicoT
(0.41) slightly outperforms KMM (0.39) in terms of CU.
Meaning that, clusters resulted byClicoT aremore efficiently
distinguished in terms of categorical attributes compared to
KMM.

On the other side, a deeper look to the clusters found by
ClicoT shows interesting and interpretable results. ClicoT
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Fig. 17 Result of INCONCO
and integrate on Open Flights
data set

Fig. 18 Result of DH on Open
Flights data set

finds 4 clusters in which Cluster 2, the biggest cluster, con-
sists of almost 56% of objects. As Table 1 shows, in this
cluster Husband is specified as the cluster-specific element,
since it has the most deviation in terms of coding cost, but
negative. The probability of instances having Husband as
categorical value and the salary<= 50K is zero in this clus-
ter. Therefore, along with the negative deviation this means

that in Cluster 2 persons with the role as husband in a family
earn more than 50K .

According to this table, for Cluster 3 Husband is cluster-
specific as well. It has the most positive deviation and also
the highest probability in this cluster, 0.99 which approves
specifying this categorical value as cluster specific. In this
cluster, almost 60% of persons having Husband as a role
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earn more than 50k per year which is compatible with the
overall distribution of the salary in Cluster 2 (Table 1).

Open Flights Data Set The public project Open Flights
provides worldwide information about airports, flights and
airlines. Here, we consider instances of airports in order to
carry out a cluster analysis. The data set consists of 8107
instances each of which represents an airport. The numeric
attributes show the longitude and latitude , the sea height in
meters and the time zone. Categorical attributes consist of the
country, where the airport is located and the day light saving
time. We constructed the concept hierarchy of the country
attribute so that each country belongs to a continent. Since
there is no ground truth provided for this data set, we inter-
pret the result of ClicoT (Fig. 14) and illustrate the result of
applying other algorithms (Figs. 15, 16, 17, 18). INCONCO,
Integrate andDH found almost only one cluster whichmakes
any interpretation for this result nonsense (Figs. 17 and 18).

Clustering results illustrated in Fig. 14 consist of 15
clusters showing that ClicoT appropriately grouped almost
geographically similar regions in the clusters. Therefore, we
set the number of clusters for the other algorithms which
required a user to specify it as 15. Starting from west to
east, North American continent divided into five clusters.
Obviously here the attribute of the time zone was chosen
as specific because the clusters are uniquely made accord-
ing to this attribute. In comparison with ClicoT, KMM found
almost one cluster here and grouped all airportswith different
time zones together (Fig. 15). On the other hand,MDBSCAN
groups all the airports continentally ignoring the time zone
while the same concept hierarchy asClicoT is given (Fig. 16).

Moving to the south, ClicoT pulled a plausible separa-
tion between South and North America. Considering South
America as cluster-specific element and due to the rather
low remaining airport density of SouthAmerica ClicoT com-
bined almost all of the airports to a cluster (red). In Western
Europe, there are some clusters, which can be distinguished
by their geographic location. Additionally, many airports
around and in Germany are be grouped together.

7 Conclusion

To conclude, we have developed and demonstrated that
ClicoT is not only able to cluster mixed-typed data in a noise-
robust manner, but also yielded most interpretable cluster
descriptions. By using data compression as the general prin-
ciple ClicoT automatically detects the number of clusters
within any data set without any prior knowledge. Moreover,
the experiments impressively demonstrated that clustering
can greatly benefit from a concept hierarchy. Therefore,
ClicoT excellently complements the approaches for mining
mixed-type data.
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right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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Abstract. Nowadays many applications generate mixed data objects
consisting of numerical and categorical attributes. Simultaneously deal-
ing with mixed objects is more challenging and various approaches con-
vert one type to another one to face this issue. But in many cases this
leads to information loss. Therefore integrating categorical and numeri-
cal attributes sounds reasonable since it keeps the original format of any
attribute. In this paper we focus on clustering and especially density-
based clustering as one of the well-known clustering approaches well-
performed on arbitrary shape clusters. Density-based clustering algo-
rithms require a distance measure to discover dense regions. Therefore
we introduce the distance hierarchy as a distance measure appropriate for
both categorical and numerical attributes. However setting the param-
eters regarding any parametric clustering algorithm could be another
issue. Therefore we employ minimum description length principle to
automate this process.

Keywords: Density-based clustering · Distance hierarchy
Parameter free clustering · Minimum description length

1 Introduction

Clustering is one of the various data mining tasks which groups most similar
data objects together. Many well-known clustering algorithms (e.g. K-means [10]
or DBSCAN [11]) measure the euclidean distance as a similarity measure in the
sense that the closest object to a specific object is the most similar one. Although
this approach sounds reasonable for pure numerical data, considering a mixture
of categorical and numerical attributes might challenge its efficiency. However
many applications generate a mix of data objects consisting of numerical and
categorical attributes.

It is already well-understood that converting one type to another one is not
sufficient since it might lead to information loss. Moreover relations between
values such as a certain order are artificially introduced. For instance, assuming
various regions such as China or United States one can’t really define an order
or the distances between them.
c© Springer Nature Switzerland AG 2018
S. Hartmann et al. (Eds.): DEXA 2018, LNCS 11030, pp. 19–34, 2018.
https://doi.org/10.1007/978-3-319-98812-2_2
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In the meantime integrating categorical and numerical attributes without any
conversion seems reasonable since it keeps the original format of any attribute.
Considering the fact that almost always there is a natural hierarchy regarding
categorical values we introduce distance hierarchy as a distance measure available
for both types of attributes. A distance hierarchy extends the concept hierarchy
by associating a weight to any link [8]. Also one could assume a distance hierarchy
corresponding to any numerical attribute resulting in the euclidean distance.

b c a 

Min

Max

w

Fig. 1. Synthetic dataset. (a) Three generated clusters with two numerical and one
categorical attributes (color). (b) A natural hierarchy between colors. (c) A distance
hierarchy corresponding to numerical attributes. (Color figure online)

Figure 1a illustrates a generated dataset comprised of two numerical
attributes showing the position of each object and a categorical attribute con-
taining several colors. With respect to the natural hierarchy among various colors
Fig. 1b shows the corresponding distance hierarchy to the categorical attribute
Color while labels are related to the weights. In this example we assume the
same weight for all the links however one could assign different weights due
to more information on dataset. To compute the distance between categorical
values we utilize the distance hierarchy in the sense that a distance hierarchy
provides insights of objects. For instance Rose and Purple are more similar than
Rose and Cyan w.r.t. the distance hierarchy. However it is confirmed by the
nature of colors since Rose and Purple are derivations of Pink. Preserving the
same structure Fig. 1c depicts a distance hierarchy corresponding to the numer-
ical attribute in this example. It has only two nodes and returns the euclidean
distance as the distance between two numerical values.

By profiting the distance hierarchy we introduce a general framework appro-
priate for clustering algorithms which need a distance measure as one of the pre-
requisites. There are many existing clustering approaches e.g. partition-based,
density-based, hierarchical clustering to mention a few. In between density-based
algorithms are well-known due to their performance on different (even arbitrary
shaped) datasets. DBSCAN is one of the most effective representatives for this
approach which captures dense groups of objects as clusters. The basic idea is
that if a particular point belongs to a cluster, it should be near to lots of other
points in that cluster. In this paper we select DBSCAN to compare results of
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the proposed framework with state-of-the-art algorithms dealing with mixed-
data types.

DBSCAN requires two parameters, a positive real number ε and a natural
number MinPts showing the radius and the density of a neighborhood respec-
tively. Although DBSCAN is well-known due to its performance, setting appro-
priate parameters that meet all the aspects of a dataset could be challenging. To
face this challenge we propose a parameter free approach by means of Minimum
Description Length (MDL) principle which links the best clustering with the
strongest compression of data.

In this paper we develop a parameter-free mixed-type clustering algorithm
modifying DBSCAN which is based on an optimization strategy utilizing MDL.
Our contributions consist of:

– An integrated framework: We introduce distance hierarchy as a distance
measure suitable for both categorical and numerical attributes in the sense
that we integrate both types.

– DBSCAN for mixed-data: We modify DBSCAN, a well-known density-
based clustering algorithm, so that it is applicable for mixed-type data.

– Parameter-free clustering: Utilizing MDL principle we introduce a fast
noise-robust algorithm without specifying parameters.

In Sect. 3 we introduce the problem specification and introduce a framework
suitable for mixed datasets by means of distance hierarchies. In the following we
modify DBSCAN in Sect. 4. Section 5 defines a non-parametric version of MDB-
SCAN following principles of MDL. Finally in Sect. 6 we evaluate our algorithm
comparing to others.

2 Related Work

Nowadays to analyze many real applications one need to deal with mixed-
type data represented by numerical and categorical attributes. For example,
the approaches K-Means-Mixed (KMM) [1], k-Prototypes [9], INCONCO [15],
Integrate [3], CFIKP [18], CAVE [7], DH [4] as well as CEBMDC [19].

Most of these approaches use the algorithmic paradigm of k-Means. Often,
e.g. in k-Prototypes, not only the number of clusters k, but also the weighting
between numerical and categorical attributes should be specified.

The algorithm KMM needs the number of clusters k as input parameter but
avoids weighting parameters by an optimization scheme learning the relative
importance of the single attributes during runtime. To avoid the difficulty of
estimating input parameters, information-theoretic approaches have been pro-
posed. These algorithms (e.g. INCONCO and Integrate) are based on the idea
of data compression. The cluster model of these algorithms comprises joint
coding schemes supporting numerical and categorical data. The MDL princi-
ple allows balancing model complexity and goodness-of-fit. While Integrate has
been designed for general integrative clustering, INCONCO also supports detect-
ing mixed-type attribute dependency patterns. The algorithm DH [4] proposes
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a hierarchical clustering algorithm using a distance based on the concept hier-
archy which facilitates expressing the similarity between categorical values and
also unifies distance measuring of numerical and categorical values.

3 Mixed-Data Framework for Clustering

Clustering is the task of grouping different objects of a dataset DB into k clusters
C = {C1, C2, ..., Ck}. Objects in the same group (cluster) are more similar to each
other than to those in other groups (clusters). As mentioned before there are
many efficient clustering algorithm that require a distance measure as one the
prerequisites. However finding an appropriate distance measure applicable for
both categorical and numerical values at the same time is not a trivial task.
In this section we introduce a distance measure based on the natural concept
hierarchy related to any attribute. A distance hierarchy avoids loss of information
by preserving the natural original orders.

Considering a mixed-type data we assume an object O consists of m cat-
egorical attributes A = {A1, A2, ..., Am} and d numerical attributes X =
{X1,X2, ...,Xd}. For a categorical attribute Ai, we denote its domain by
Dom(Ai) and different categorical values by Ai

j . According to the natural hier-
archy within categorical or numerical values we assume a distance hierarchy
corresponding to any attribute. In the following we define the distance hierarchy
and introduce a general framework for clustering.

3.1 Distance Hierarchy

Basically a concept hierarchy (tree) consists of concept nodes and links, in
which leaf nodes represents more specific concepts while parent nodes are gen-
eral concepts. Regarding the i-th attribute a distance hierarchy, denoted by
DHi = (N, E ,W ), extends the corresponding concept tree by associating a
weight to each link. The definition of distance hierarchy in this paper is inspired
by [8].

A DHi has the following properties:

1. DHi consists of a set of nodes N = {n1, n2, ..., ns} and a set of edges E =
{e1, e2, ..., e(s−1)}, where nj is a parent of nz if (nj , nz) ∈ E . W denotes the
set of weights assigned to any link to facilitate the computation of distance
between values.

2. Each node nj is a concept and represents a sub-category of its parent. Usually
data objects are distributed in leaf level. The root node represents associated
attribute respectively.

3. The level l(nj) of a node nj is the height of the descendant sub-tree. If ni

is a leaf node (e.g. categorical values), then l(nj) = 0. The root node is the
attribute Ai which has the highest level, also called the height of the concept
hierarchy.
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There are many different ways to assign link weights of a distance hierarchy
[6,13]. For simplicity in this paper we assign uniformly a constant weight to
all links. Other alternatives and a complete investigation on weight assignment
approaches is an interesting issue deserving further research in the future.

Let x = (Nx, dx) denote a point in a distance hierarchy comprising an anchor
and a positive real value offset represented by Nx and dx respectively. The anchor
is a leaf node and the offset represents the distance from the root to x. In the
following we explain how to compute the distance between any two categorical
or numerical values.

A DHi regarding to a numerical attribute Xi consists of only two nodes, a
root Min and a leaf Max (e.g. Fig. 1c). The associated link weight w equals to
the range of Xi, i.e., wi = (maxXi

− minXi
). Let p = (Max, dp) denote a point

in a numerical distance hierarchy. Therefore the anchor is always Max and the
offset dp is the distance from the point to the root Min.

3.2 Distance Function and Framework

To clearly define the distance function we need the following definitions:

Definition 1. Ancestor. A point p is an ancestor of q if p is one of the nodes
existing on the path from q to the root in the corresponding distance hierarchy.

Definition 2. Lowest Common Ancestor (LCA). Considering two nodes
p and q in a distance hierarchy the lowest common ancestor or LCA(p, q) is
defined as p if p is an ancestor of q otherwise the deepest tree node that is an
ancestor of p and q.

Definition 3. Lowest Common Point (LCP). If p = q the lowest common
point or LCP (p, q) is defined as p (or q) otherwise LCA(p, q).

Now we are well-equipped to introduce the distance function. Let dist(p, q)
denote the distance between two points p and q w.r.t. the distance hierarchy
where p and q could be either categorical or numerical values.

dist(p, q) = dp + dq − 2dLCP (p,q) (1)

where LCP (p, q) is the lowest common point of p and q according to the distance
hierarchy and dLCP (p,q) is the distance between the least common point and the
root.

Figure 2 depicts an example how to compute the distance between two points
W = (Rose, 2),X = (Purple, 2) by means of the distance hierarchy correspond-
ing to the categorical attribute color. W and X belong to the same category and
as illustrated in Fig. 2a Pink is the lowest common ancestor of W and X. There-
fore LCP (p, q) = LCA(p, q) and dLCP (p,q) = 1 w.r.t. Equation 1 and finally
dist(X,W ) = |2 + 2 − 2 ∗ 1| = 2.

However considering Y = (Cyan, 2) and W = (Rose, 2) existing in different
categories they naturally should have bigger distance which is approved by our
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Fig. 2. Computing the distance between colors. (a) Distance between Rose and
Purple, LCA(Rose, Purple) = Pink. (b) Distance between Cyan and Rose,
LCA(Rose,Cyan) = Color. (Color figure online)

distance metric. Looking at Fig. 2b one could easily find the least common point
of Y and W which is the root node (Color). Therefore the distance between W
and Y is |2 + 2 − 2 ∗ 0| = 4.

To introduce a general framework for clustering we require mapping objects
to distance hierarchies. As mentioned before any attribute of a data object is
associated with a distance hierarchy. Let o = [o1, o2, ..., on] denote an object with
n categorical and numerical attributes and let DH = {DH1,DH2, ...,DHn} be
the set of distance hierarchies associated to any attribute. oi could be either
a categorical value belonging to Dom(Ai) or a numerical value. A categorical
attribute Ai associates with DHi in the way that the set of domain values of Ai

corresponds to the leaf nodes of DHi. As explained before a numerical attribute
Xj associates with DHj which is a degenerated hierarchy (See Sect. 3.1).

Any attribute value oi is mapped by means of a mapping function hi to a
point in its associated distance hierarchy. For instance let oi be a categorical value
then the mapping hi(oi) maps oi to a leaf node p = (oi, doi) in the corresponding
distance hierarchy DHi. For a numerical value oj the mapping hj(oj) maps oj
to p = (Max, oj − Minj) in DHj .

Finally the distance between two mixed-type objects o1 = [o11, o12, ..., o1n]
and o2 = [o21, o22, ..., o2n] is measured as follows:

d(o1, o2) =

⎛
⎝ ∑

i=1,n

wi(o1i − o2i)
L

⎞
⎠

1/L

=

⎛
⎝ ∑

i=1,n

wi(hi(o1i) − hi(o2i))
L

⎞
⎠

1/L

(2)
where by L = 2 the distance is similar to a weighted Euclidean distance.

4 Mixed-Type Density-Based Algorithm

During the previous section we introduced a framework to map a mixed-type
object to a point in the associated distance hierarchy and finally we defined a
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distance function to compute the distance between objects. As mentioned before
the proposed framework is a general framework applicable for any clustering
algorithm dealing with mixed-type datasets while it requires a distance metric
inside its algorithm. For instance k-means algorithm [10], an efficient clustering
algorithm to find Gaussian clusters, assign any object to the closest centroid
in terms of distance between the point and any centroid. However applying
such algorithms on mixed data types requires either converting attributes which
lead to information loss or investigating an appropriate distance metric for both
categorical and numerical values. Utilizing the proposed framework enables us
to apply an efficient clustering algorithm, designed for pure types of attributes,
for a hybrid case.

There are many efficient clustering algorithms dealing with only one type of
attributes. In this paper we focus on density-based approaches due to their per-
formance on different datasets (even arbitrary shaped). Particularly we modify
DBSCAN [11] and call it MDBSCAN. DBSCAN is one of the well-known rep-
resentatives for this approach which captures dense groups of objects as clusters.
The basic idea is that if a particular point belongs to a cluster, it should be near
to lots of other points in that cluster.

More specifically, DBSCAN needs a positive value ε showing the radius of a
neighborhood around a point p and the minimum number of points in this ε-
neighborhood denoted by MinPts. Then we start from a random point, find all
the points within its ε-neighborhood then if the number of those points are bigger
than Minpts we build a cluster and keep adding points to it by considering the
same procedure for each point in this neighborhood.

To capture the points belonging to the ε-neighborhood of an object p we need
to compute the distance between all other objects w.r.t. p. This is exactly where
our framework plays a role so that DBSCAN would be applicable for mixed-type
datasets while Euclidean distance is not a suitable distance any more.

5 Parameter Free Clustering Algorithm

As explained in Sect. 4 DBSCAN requires two parameters, a positive value ε
showing the radius of a neighborhood and the minimum number of points in
this ε-neighborhood denoted by MinPts. Selection of a higher Minpts leads to
more dense clusters. Simultaneously a smaller ε forces points to be closer to each
other so that they could be considered as a part of a cluster. Although DBSCAN
is an efficient clustering algorithm, its efficiency highly depends on parameters
while they are hard to specify in advance. Therefore investigating an approach
to make this algorithm parameter-free tends to a more effective DBSCAN.

We regard this challenge as a data compression problem applying the prin-
ciple of Minimum Description Length (MDL). In the following we explain how
to make MDBSCAN parameter-free by utilizing (MDL) principle.
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5.1 Minimum Description Length (MDL)

MDL is a well-known principle for estimating statistical informations and com-
pressing of data. Regarding clustering as a data compression problem allows us
a unifying view, naturally balancing the influence of categorical and numerical
attributes in clustering. MDL allows integrative clustering by relating the con-
cepts of likelihood and data compression. To maximize the data compression we
assign a shorter description length to regular data objects and longer descrip-
tions to outliers w.r.t. a coding scheme. Following the MDL principle [16], we
encode not only the data but also the model itself and minimize the overall
description length. The less number of clusters exist in a model the weaker the
model fits to the data. On the other side, a model with more clusters tends to
be more complex, but has a better fit to the data [3]. The MDL principle finds
a natural trade-off between model complexity and goodness-of-fit and thereby
avoids over-fitting. In this paper we refer to clustering results as a model associ-
ated with data. After clustering to find the compression measure or description
length regarding the model we apply MDL as follows:

Definition 4. Description Length. Let C = {C1, C2, ..., Ck} denote the clus-
tering result consisting of k clusters. The overall description length (DL) of the
dataset DB is defined as:

DL(DB) =
∑
Ci∈C

DL(Ci)

where DL(Ci) denotes the description length w.r.t. the cluster Ci and is defined
as:

DL(Ci) = DLc(X ) + DLc(A) + DL(model(Ci)) (3)

The first two terms represent coding costs necessary for encoding the numer-
ical and categorical attributes respectively using a specific coding scheme. The
last term is the cost of model encoding.

As mentioned we need a coding scheme to find the coding or description
length corresponding to any cluster. Huffman coding is one of the well-known
coding schemes where the description length of a value oi is defined by:

PDF (oi).log2PDF (oi)

where PDF stands for Probability Distribution Function. The output can be
interpreted as the numbr of bits necessary to transfer information from a sender
to a receiver via a communication chanel. Since the PDF is part of the codebook,
any distribution function can be applied [2].
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5.2 Coding Numerical Values

Since any distribution function is applicable in the proposed coding scheme and
since selection of a specific PDF is not a severe restriction, for simplicity we
select Gaussian distribution to illustrate numerical attributes. Thus, for any
numerical attribute Xi ∈ X we assume PDF (Xi) = N (μi, σi). More precisely
for a numerical value x the Gaussian probability distribution function is defined
as follows:

PDF (x) =
1

σi

√
2π

exp

(
− (x − μi)2

2σi2

)
.

where μi and σi are mean and variance computed by means of data objects in
cluster Ci. Therefore the coding cost corresponding to numerical attribute Xi

is:

DL(Xi) = −
∑
x∈Xi

PDF (x). log2 PDF (x)

Finally based on Huffman coding scheme the first term of Eq. 3 (numerical coding
cost) w.r.t. the cluster Ci is provided by:

DLCi
(X ) =

∑
Xi∈X

DL(Xi)

5.3 Coding Categorical Values

The proposed Huffman coding scheme is applicable on categorical attributes as
well. However we consider the frequency of any categorical value (leaf nodes in
a distance hierarchy) as the associated probability distribution function to the
categorical attribute. More precisely considering a categorical attribute Ai ∈ A
then for any categorical value Aj

i ∈ Dom(Ai) we define PDF (Aj
i) in a cluster

Cz as |Aj
i|

|Cz| . Thus, based on the coding scheme the cost of coding categorical
attributes in a specific cluster Cz is defined as:

DLCi
(A) =

∑
Ai∈A

∑
Aj

i∈Ai

−PDF (Ai
j). log2 PDF (Ai

j)

5.4 Coding the Model

As mentioned considering MDL principles we encode not only the data but
also the model itself and minimize the overall description length. So far we
have explained how to encode the data consisting of two parts; categorical and
numerical part. In this section we elaborate how to encode the model associated
with the data so that, back to our example, a receiver has enough information to
decode the data. Thus decoding the model one needs to know to which cluster
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an object belongs and which parameters specify the cluster model. The first
concept is called cluster id denoted by IDCost and the last one is parameter cost
denoted by ParamCost. The IDCost follows the principle of Huffman coding
which implies that we assign shorter bits to the larger clusters. Therefore the
cluster id cost w.r.t. the cluster Cz is provided by log2

|DB|
|Cz| where |Cz| shows

the number of objects in cluster Cz.
Following the theory of MDL [17] and focusing on a specific cluster Cz the

parameter cost to model all the objects in this cluster can be approximated
by Pz

2 . log2 |Cz|. Pz denotes the number of parameters in cluster Cz required
to encode the model. We already assumed a Gaussian distribution to model
numerical attributes. Therefore any numerical attribute Xi is described by two
parameters: μi and σi. Regarding categorical attributes we need to encode all
the probabilities corresponding to categorical values. Therefore for an attribute
Ai with |Ai| categorical values the number of parameters required to be coded
is |Ai| − 1.

Algorithm 1. Parameter free MDBSCAN
Min − DL :=0;
foreach radius ε ∈ range R do

result = MDBSCAN(ε,4);
DL := Compute the description length for results;
if (DL < Min − DL) then

Min − DL= DL;
BestResult = result;

return BestResult;

5.5 Algorithm

As explained MDBSCAN requires two parameters to be specified: ε and MinPts.
Referring to original DBSCAN algorithm [11] authors employ k − dist graph
to find the best parameter setting. However they claim that for k > 4 the
k − dist graphs do not differ significantly from the 4 − dist graph. Therefore
they recommend to set the MinPts as 4. In this paper we stay with the same
strategy and fix MinPts as 4 but varying the radius of a ε-neighborhood.

Algorithm 1 summarizes our proposed non-parametric MDBSCAN algo-
rithm. Considering MinPts = 4 we apply MDBSCAN iteratively for a specific
range of ε. At the end of each iteration the overall description length DL will be
computed following the principle of MDL. Thus for various parameter setting
(models) we achieve a comparison score by means of DL. Finally, at the end of
iterations we select the parameter setting with the minimum DL i.e. the most
compressed model resulting the best clustering.

6 Evaluation

To assess the efficiency and effectiveness of our non-parametric MDBSCAN
we compare our proposed algorithm to state-of-the-art mixed-type clustering
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algorithms. We selected K-Means-Mixed (KMM) [1], INCONCO [15] and DH
[8] so that we can cover all aspects of MDBSCAN. In this section extensive
experiments on synthetic and real datasets will demonstrate the advantages of
MDBSCAN over other clustering algorithms. All algorithms are implemented
in Java and the source code as well as the datasets are available here: https://
tinyurl.com/ybqq35xc.

Normalized mutual information (NMI) [12] is an information theoretic eval-
uation measure for clustering results. In this paper we employ NMI to assess our
algorithm in comparison to others. NMI numerically evaluates pairwise mutual
information between ground truth and resulted clusters and continues normal-
izing by means of the entropy of either original or resulted clusters. NMI scales
between zero and one representing a random and a perfect clustering, respec-
tively.

6.1 Synthetic Data Experiments

By synthetically generating various datasets we aim to evaluate MDBSCAN
covering different aspects e.g. effectiveness, noise-robustness, scalability (Fig. 3).

MDBSCAN, NMI=1 KMM, NMI=0.56 

INCONCO, NMI=0.0002 DH, NMI=0.00002 

Fig. 3. Clustering results. MDBSCAN, INCONCO, KMM as well as DH.

– Effectiveness: In this experiment we consider the same dataset as the run-
ning example illustrated in Fig. 1a. Also NMI is applied to assess the effective-
ness of a clustering algorithm. As mentioned before a dataset with 3 clusters
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Fig. 4. Comparison in terms of noise-robustness and runtime complexity. (a) Noise-
robustness experiment. (b) Runtime experiment by increasing the number of objects
while the dimension is 3. (c) Runtime experiment for 10 attributes. (d) Runtime exper-
iment by increasing the dimensionality. (Color figure online)

which consists of 1000 objects with 2 numerical attributes showing the posi-
tion of any object and a categorical attribute denoting the colors. (Different
clusters are illustrated with different shapes in Fig. 1a).
Figure 4 clearly demonstrates that MDBSCAN perfectly outperforms other
algorithms in terms of NMI while NMI = 1 shows the best clustering result
one could achieve. We illustrate different clusters with different colors to make
the comparison more clear. Colors are shown with various shapes. MDBSCAN
has been able to assign all Purple and Rose objects to a cluster although some
of Purples are positioned in another clusters. (See triangle points in the blue
cluster.)

– Noise-robustness: To address noise-robustness we introduce a noise factor
for both types of attributes. In this experiment we generated a relatively
same synthetic dataset as what was generated for the previous experiment.
Considering the related distance hierarchy we introduce another category
Brown as noise objects distributed in all clusters. We start from 5%. |Ci|
noise objects inside any cluster then keep increasing this factor from 1 to
5 times. Moreover for numerical attributes we increase the variance of each
numerical attribute by the same factor ranging from 1 to 5 in order to cover
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all disturbing aspects. Increasing the variance tends to more mixed clusters.
Figure 4a shows the results in terms of NMI running all competitors. As it is
clear MDBSCAN outperforms other algorithms regarding any factor of noise
while it is non-parametric and finds the exact number of clusters during any
experiment.

– scalability: We utilize two approaches to address the scalability of our algo-
rithm in comparison to other algorithms. By first approach we increase the
number of objects ranging from 2000 to 10000 while the number of attributes
is fixed. We considered two different cases in this approach: 1 - the number
of attributes is 3 (the data set with almost the same structure as the running
example), 2 - the number of attributes is set to 10 (d numerical dimension
and 5 categorical). Figure 4a, b indicates that MDBSCAN in both cases is
faster than KMM and DH. But in comparison to INCONCO it is faster in
the beginning but after almost 5000 objects they have relatively the same
run time. However according to the next experiment one could come to the
conclusion that MDBSCAN is faster. The other approach is dealing with
dimensionality i.e. while the number of objects is fixed the dimensionality is
increasing iteratively ranging from 10 to 50. Figure 4d illustrates clearly what
we have claimed for MDBSCAN.

6.2 Real Data Experiments

Finally, we evaluate our proposed algorithm MDBSCAN in comparison to other
algorithms on real world datasets. As real world problems we used Teaching
Assistant Evaluation and Contraceptive Method Choice from UCI repository [5]
and Airport dataset from the public project Open Flights [14].

– Teaching Assistant Evaluation: The data is provided by [5] and consists
of evaluations of teaching performance over three regular semesters and two
summer semesters teaching assistant (TA) assignments. There are 3 roughly
equal-sized categories (low, medium and high) illustrating the scores. The
data has 151 objects each of which concerns teaching performance in terms
of 4 categorical attributes (Whether the TA is a native English speaker or not,
Course instructor, Course, Summer or regular semester) and one numerical
(Class size) attribute. In this experiment we consider a flat hierarchy since
there is no meaningful hierarchy among categorical values.
Based on the experimental results MDBSCAN (0.25) outperforms signifi-
cantly the other algorithms in terms of NMI: INCONCO (0.006), KMM (0.02)
and DH (0.02). As mentioned the ground truth is the scores divided to 3 clus-
ters however MDBSCAN found 5 clusters. Although the number of clusters
found by MDBSCAN differs from the released labels, it captured character-
istics of the dataset better than other algorithms comparing in terms of their
mutual information (NMI).

– Contraceptive Method Choice: This dataset is a subset of the 1987
National Indonesia Contraceptive Prevalence Survey [5]. Samples are mar-
ried women who were either not pregnant or do not know if they were at
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the time of interview. The data consists of 7 categorical and 2 numerical
attributes. In this experiment we consider a natural hierarchy for categorical
attributes when it makes sense. For instance categorical values corresponding
to “Standard-of-living index” consist of 1, 2, 3 and 4. We consider “1” as the
lowest standard, “2” and “3” as medium and finally “4” as the highest stan-
dard of living. Analogously one could consider the same natural hierarchy for
Wife’s and Husband’s education. For the rest we assume a flat hierarchy.
The target attribute which is used as a ground truth during our experiments
is the contraceptive method used by women. This attribute is supposed to
group women based on their demographic and socio-economic characteristics.
Applying all competitors MDBSCAN (0.35) outperforms other algorithms
KMM (0.03), INCONCO (0.04) and DH (0.0001) in terms of NMI.

– Open Flights Dataset: The public project Open Flights provides informa-
tion about airports distributed worldwide. The data consists of 8107 instances
each of which has numeric attributes showing the longitude and latitude, the
sea height in meters and the time zone. Moreover each object consists of cat-
egorical attributes denoting the country, where the airport is located, and the
day light saving time. We constructed the concept hierarchy of the country
attribute so that each country belongs to a continent. Again three other com-
parison algorithms (KMM, INCONCO and DH) were applied to this dataset.
INCONCO and DH could not find hidden clusters and both of them found
only one cluster for this dataset which is not meaningful.
Since there is no ground truth regarding the Airport dataset, we first run
MDBSCAN and then set the number of clusters required by KMM as the
number of clusters found by MDBSCAN in the sense that we could compare
them. Figure 5 depicts the discovered clusters after applying MDBSCAN and
KMM. MDBSCAN reasonably finds 6 main clusters corresponding to 6 main
continents (we consider Russia as European country in distance hierarchy)
and two smaller clusters illustrated as roughly noise clusters. However the
result of KMM algorithm seems random finding 6 clusters in Asia. For another

MDBSCAN KMM 

Fig. 5. Clustering results on airport dataset. Comparing MDBSCAN and KMM on
Airport dataset.
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example KMM groups all the airports located in Australian continent, parts
of Eastern Asia and Russia as one cluster while it is hard to interpret this
result.

7 Conclusion

To conclude, we introduced an integrative framework to cluster mixed-type
datasets consisting of categorical and numerical attributes. In this framework
we defined a distance measure, applicable for both types, by means of distance
hierarchy. Utilizing this distance measure we avoid converting a data type to
another one which tends to information loss and artificially introduced certain
orders. Moreover we modified DBSCAN, one of the most efficient and effective
density-based clustering algorithm, so that it is able to deal with mixed-type
data. Employing MDL principles, we introduced a compression-based approach
to score various models and to make MDBSCAN parameter-free. Finally the
experiments on synthetic and real datasets indicate the advantages of MDB-
SCAN in comparison to other state-of-the-art clustering algorithms. However
due to Gaussian assumptions considered during the parameter-free procedure
may lead to an inaccurate model when the original dataset is non-Gaussian.
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ABSTRACT
Grid-based clustering algorithms are well-known due to their
efficiency in terms of the fast processing time. On the other
hand, when dealing with arbitrary shaped data sets, density-
based methods are most of the time the best options. Accordingly,
a combination of grid and density-based methods, where the
advantages of both approaches are achievable, sounds interesting.
However, most of the algorithms in these categories require a
set of parameters to be specified while usually it is not trivial
to appropriately set them. Thus, we propose an Information-
Theoretic Grid-based Clustering (ITGC) algorithm by regarding
the clustering as a data compression problem. That is, we merge
the neighbour grid cells (clusters) when it pays off in terms of
the compression cost. Our extensive synthetic and real-world
experiments show the advantages of ITGC compared to the well-
known clustering algorithms.

1 INTRODUCTION
Among various clustering approaches some of them attract more
attentions because of their advantages. Partition-based clustering
algorithms are popular due to their simplicity and the relative
efficiency [7], [2]. K-means [7] is a well-know and well-studied
representative for this approach where initially the data is par-
titioned into k non-empty sets and iteratively the data points
are assigned to their nearest cluster. Despite the mentioned ad-
vantages, the clustering algorithms in this group suffer from
some drawbacks. For instance, the number of clusters k should
be specified in the beginning and the results are not deterministic
because of their sensitivity to the initialization. Moreover, they
are not suitable to discover clusters with non-convex shapes. As a
subset of this group, model-based clustering algorithms consider
a specific distribution model to represent the data sets. Among
them, Expectation-Maximization (EM) algorithm interpret the
data as a mixture of Gaussian distributions [5]. On the other
hand, density-based clustering algorithms [6], [3] are appropri-
ately designed to deal with clusters having an arbitrary shape.
Unlike the partition-based algorithms, the algorithms in this ap-
proach are able to deal with noisy data sets. However, in order to
find dense regions we need to specify two parameters represent-
ing the radius and the density of a neighborhood. Additionally,
density-based algorithms are not designed to efficiently deal with
clusters with various densities. Spectral clustering [9] is another
approach which has become popular due to its simple implemen-
tation and its performance in many graph-based clustering. It
can be solved efficiently by any standard linear algebra software.
However, this approach is expensive for the large data sets since
the Computing eigenvectors is the bottleneck.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Another well-known approach is grid-based clustering where
any data set is partitioned using a set of grid-cells and data points
are assigned to the appropriate grid cell. Grid-based methods [1],
[14], [11] quantize the object space into a finite number of cells
(hyper-rectangles) and then perform the required operations on
the quantized space. The main advantage of grid-based methods
is their fast processing time which depends on the number of
cells in the grid. In the other word, no distance computation is
required and the clustering is performed on summaries and not
on the individual objects. Thus, the complexity of grid-based
algorithms is usually O(number of populated grid cells) and not
O(number of objects). Beyond their ability to deal with noisy
data sets, grid-based clustering algorithms are able to identity
clusters irrespective of their shapes. Unlike most of the clustering
algorithm which require an initialization phase, the algorithms
in this category are insensitive to the order of input records and
therefore are deterministic.

Despite the valuable advantages of grid-based clustering algo-
rithms, to the best of our knowledge, all of them are parametric al-
gorithms where a user is required to specify the parameters. How-
ever, most of the time it is not trivial to appropriately set them.
Thus, utilizing the principle of Minimum Description Length
(MDL) we propose a non-parametric Information-TheoreticGrid-
based Clustering algorithm where we regard the clustering task
as a data compression problem so that the best clustering is linked
to the strongest data compression. First, an adaptive grid is con-
structed corresponding to the statistical characteristics of any
data set and non-empty cells are considered as single clusters.
Then, we combine the concept of density and grid-based meth-
ods and employing our compression-based objective function we
start merging clusters with their neighbour grid cells only if it
pays off in terms of the compression cost.

In this paper we propose an information-theoretic clustering
algorithm offering the following contributions:

• Adaptive partitioning: We utilize the statistical charac-
teristics of any data set, e.g. local and global dispersion, in
order to introduce an adaptive partitioning of the data.

• Non-parametric clustering: Employing theMDL-based
objective function, we iteratively merge clusters when it
pays off in terms of the compression cost automatically.
Thus, no parameter needs to be specified.

• Insensitivity to the shape of clusters: ITGC employs
the concept of density-based methods in order to select
the next merging candidate. Thus, it is insensitive to the
shape of clusters whether they are Gaussian, arbitrary or
even having various density regions.

• Scalability: Analogous to other grid-based clustering
algorithm, the complexity of ITGC depends on the number
of cells not on the number of objects which leads to a
scalable algorithm in terms of the number of objects.
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2 INFORMATION-THEORETIC GRID-BASED
CLUSTERING

In order to introduce a grid-based clustering algorithm we need
to address two fundamental questions: (1) how to find a specific
appropriate partitioning (grid) corresponding to any data set; (2)
how to efficiently merge the cells to discover the hidden clusters.
Thus, our proposed algorithm ITGC consists of two main build-
ing blocks: (1) finding a suitable grid corresponding to specific
characteristics of any data set and (2) employingMDL principle to
effectively and efficiently merge the cells without any parameter
to be specified.

2.1 Partitioning the Data
Finding a suitable partitioning with respect to the data is a crucial
task in a grid-based clustering algorithm. Inspired by [8], we
utilize the characteristics of any data set to introduce the best
fitting partition. That is, we are looking for a partition which
leads to high internal homogeneity in the cells and high external
heterogeneity of each cell with respect to its neighbors for every
single cell. Thus, for any cell Cj consisting of nj data points the
statistical indicators are defined as:

X̄ j =

∑nj
i=1 Xi j
nj

and Sj =

√∑nj
i=1(Xi j − X̄ j )2

nj − 1 (1)

Where Xi j is the distance of the i − th data point in Cj to the
center of this cell. Thus, X̄ j is the average distance of data points
to the center of Cj and Sj is the standard deviation of the cell.
These are statistical indicators on the local level (each individual
cell), similar indicators are calculated on the global level (the
entire grid) as:

µ =

∑
j X̄ j

N
and σ =

√∑
j (X̄ j − µ)2
N − 1 (2)

Where µ is the average center - distance of all cells, N is the
total number of cells and σ is the standard deviation of all cells.
Based on these indicators, we defineCVLocal (j) andCVGlobal as
the coefficient of variation (CV) corresponding to any cellCj and
the global variation, respectively. That is,

CVLocal (j) =
Sj

X̄ j
and CVGlobal =

σ

µ
(3)

In another point of view, the above scores show how wide-
spread the data points are indicating the relative dispersion at
the local (cell) and global (grid) levels. Finally the partitioning
cost is defined as:

дridCost =
CVGlobal

avд CVLocal (j)
(4)

Considering the cost corresponding to any grid size k×k , we it-
eratively increase k starting from 1 until it pays off. However, it is
not trivial to justify a terminal for this process without observing
its trend. Initially, the grid cost increases sharply by increasing
k then it slows down quickly and continues linearly. Observing
this common trend, we conduct a simple linear regression on
various costs with respect to various k values. The regression
line is expected to fit more through the higher ks where the costs
have lower deviations. Thus, the optimal partitioning can be set
to the first k where the grid cost deviated from the fitted line
lower than the average.

On the other side, by increasing the size of grid the area of
non-empty cells decreases. Thus, it is reasonable to assume this

trend to continue with even smaller cells, but the descending
trend slows down while decreasing cell sizes. Visualizations of
the collected area reveals a common trend which is reverse to the
previous one. The area starts at a maximum value, decreases very
sharply at lower k and keeps decreasing at a lower gradient. In
order to find the optimum value for k , we analogously fit a linear
regression through the data set rejecting the low k values which
deviate larger than average from the fitted line. The following
steps summarize this procedure.

• Step 1: The grid is divided into k ×k cells where the initial
size for k is 1.

• Step 2: The grid cost as well as the area of non-empty cells
are determined and the values are stored.

• Step 3: We iteratively increase k ranging from 1 to amaxk
and repeat the previous steps

• Step 4: Now the optimum partitioning is determined em-
ploying two different criteria.

2.2 MDL-based Objective Function
Utilizing the Minimum Description Length (MDL) principle [10]
we regard the clustering task as a data compression problem
so that the best clustering is linked to the strongest data com-
pression. Given the appropriate model corresponding to any
attribute, MDL leads to an intuitive clustering result employing
the compression cost as a clustering criterion. The better the
model matches major characteristics of the data, the better the
result is. Following the MDL principle, we encode not only the
data but also the model itself and minimize the overall descrip-
tion length. Simultaneously, we avoid over-fitting since the MDL
tends to a natural trade-off between model complexity and the
goodness-of-fit. That is, for a given cluster Ci the corresponding
compression cost is defined as:

MDL(Ci ) = CodinдCost(Ci )+ParamCost(Ci )+ IDCost(Ci ) (5)

where CodingCost shows the cost of coding the data points
in cluster Ci by means of a coding scheme. The next two terms
illustrate the model complexity where the model itself needs to
be encoded. In this paper we employ the Huffman coding scheme
to encode the data considering an appropriate model. That is,
given the corresponding Probability Distribution Function (PDF)
to any attribute, the coding cost of any object x is determined by
−loд2PDF (x). Any PDF would be applicable and using a specific
model is not a restriction [4] for our algorithm. In this paper,
we consider Gaussian PDF for simplicity. In the following we
elaborate our objective function more concretely.

• Objective Function: The overall MDL-based objective
function is the summation of the all compression costs
with respect to various clusters. That is,

MDL(D) =
∑
Ci ∈C

MDL(Ci ) (6)

where D is the entire data set and C = {C1, ...,Ck } is the
set of all clusters.

• Data Coding Cost: Let X = {X1, ...,Xd } denote the
set of all attributes. For any object x = (x1, ...,xd ) the
corresponding coding cost is the sum of encoding any
attribute value xi . Putting all together, the coding cost
corresponding to cluster Ci is given by:
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CodinдCost(Ci ) = −
∑
X j ∈X

∑
x ∈Ci

log2 PDFj (x) (7)

where PDFj (.) is the Gaussian model with respect to j−th
attribute X j .

• Model Complexity: Without taking the model complex-
ity into account, the best result will be a clustering consist-
ing of singleton clusters. This result is completely useless
in terms of the interpretation. In order to specify the asso-
ciated cluster with any data object, we need to encode the
cluster IDs. Thus, the IDCosts are required to balance the
size of clusters and defined as:

IDCost(Ci ) = |Ci |.loд2
|Ci |
|D| (8)

Following the fundamental results from the information
theory [10], for any attribute X j the parameters corre-
sponding to model employed to encode the data need to
be encoded as well. That is, concerning any Gaussian dis-
tribution PDFj with respect to the attribute X j , the mean
value and the standard deviation need to be encoded, i.e.

ParamCost(Ci ) = 1
2 .(2|X|).loд2 |Ci | (9)

2.3 Algorithm
As mentioned, ITGC consists of two main building blocks. Al-
gorithm 1 summarizes our grid-based algorithm ITGC. First, an
optimal grid is constructed following the steps mentioned in Sec-
tion 2.1, i.e. the procedure FindOptimumGrid(.). Then, we start
merging the cells if it pays off in terms of our objective function
(Section 2.2). Initially every cell is considered as a cluster while
empty cells are ignored. The cluster with the most number of
data points is chosen in the sense that at the end the results are
deterministic. We compute the coding cost with respect to the
selected clusterMDLbef ore and merge this cluster with one of
its neighbors and compute the cost after merging two clusters
MDLaf ter . If the cost after merging is smaller than the cost be-
fore, we merge two clusters and continue the merging process.
Otherwise, the visited cluster is marked. Finally the algorithm
terminates if no unmarked non-empty cell exists.

3 EXPERIMENTS
In this section we assess the performance of ITGC comparing
to other clustering algorithms in terms of Normalized Mutual
Information (NMI) which is a common evaluation measure for
clustering results [13]. NMI numerically evaluates pairwise mu-
tual information between ground truth and resulted clusters
scaling between zero and one.

We conducted several experiments evaluating our algorithm
on synthetic and real-world data sets. In order to investigate
the effectiveness of ITGC we generated various data sets and
compared to the base-line clustering algorithms, i.e. k-means [7]
and DBSCAN [6]. While the insensitivity of ITGC to the shape
of clusters as well as its effectiveness is illustrated by synthetic
experiments, we extended the comparison to the wider range of
well-known clustering algorithms. Our algorithm is implemented
in Java and the source code as well as the data sets are publicly
available 1.

1https://tinyurl.com/y85gglpx

Algorithm 1: Information-theoretic grid-based clustering
ITGC (D)
G = FindOptimumGrid(D);
C = {C1, ...,Ck } // Non-empty cells in G
seeds := non-visited clusters;
while (seeds != empty) do
Ci := the cluster with the most data points in C
Ci is visited
while (MDLbef ore > MDLaf ter ) do
MDLbef ore =MDL(Ci )
Cj := a random non-visited neighbor cell w.r.t Ci
Cm := the cluster after merging Ci and Cj
MDLaf ter =MDL(Cm )
if MDLbef ore > MDLaf ter then
remove Cj and Ci from C .
add Cm to C

end if
end while
seeds := non-visited clusters;

end while
return (C)

NMI=1.0 NMI=0.007 NMI=0.68 

(a) 

NMI=1.0 NMI=0.49 NMI=1.0 

(b) 

NMI=1.0 NMI=0.37 NMI=0.85 

(c) 

NMI=1.0 NMI=0.45 NMI=0.73 

(d) 

NMI=0.98 NMI=0.99 NMI=0.0 

(e) 

Ground Truth ITGC K-means DBSCAN 

Figure 1: Comparison on various synthetic data sets.

3.1 Synthetic Experiments
In order to cover all aspects of ITGC, we investigate the per-
formance of the algorithms considering various synthetic data
sets including arbitrary shaped data sets as well as clusters with
different densities. Then, we continue experiments by comparing
all algorithms in terms of the scalability.

Performance: Most of the time any clustering algorithm is
designed for a specific kind of data sets. For instance, k-means
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Dataset Attr./Objects ITGC k-means DBSCAN EM Spectral C. CLIQUE Single L.

Iris 4/150 0.66 0.53 0.59 0.60 0.6 0.00 0.59
Occupancy Detection 7/20560 0.61 0.56 0.00 0.31 0.00 0.61 -
Breast Cancer 9/286 0.47 0.32 0.41 0.45 0.45 0.39 0.27
User Knowledge 5/403 0.24 0.27 0.01 0.27 0.27 0.00 0.01

Table 1: Comparison on real data sets.
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Figure 2: Scalability of the algorithms by increasing the
number of objects.

appropriately deals with Gaussian shaped data sets and its perfor-
mance dramatically decreases when the clusters have no specific
shape. On the other hand density-based clustering algorithms
are sensitive to different densities w.r.t. various clusters. In order
to evaluate the performance of ITGC concerning various shapes
of clusters, we synthetically generated arbitrary shaped clusters
in a combination with some Gaussian clusters. Figure 1 shows
the effectiveness and the insensitivity of ITGC considering vari-
ous cases. As expected, k-means fails when the clusters are not
Gaussian (Figure 1a,b,c,d). On the other hand, DBSCAN is not
able to discover the clusters with various densities (Figure 1d,e)

Scalability: To evaluate the efficiency in terms of the runtime
complexity we generated 5 dimensional synthetic data sets where
we iteratively increased the number of data objects ranging from
1,000 to 10,000. Figure 2 shows the result of this experiment. As
expected, k-means is the fastest algorithm while DBSCAN is
the worse since its complexity highly depends on the number
of objects. Although ITGC is not able to outperform k-means,
its corresponding execution time is still reasonable and more
efficient than DBSCAN.

3.2 Real Experiments
In this section we extend our experiments to the wider range of
clustering algorithms including EM [5], Single link [12], spectral
clustering [9] and CLIQUE [1] as the well-known representatives
for any clustering approach. We evaluate clustering quality of
ITGC on real-world data sets. We used Iris, Occupancy Detection,
User Knowledge and Breast Cancer data sets from the UCI Reposi-
tory 2. Table 1 shows the characteristics of any data set and the
results of applying various algorithms in terms of NMI. Concern-
ing any data set the best NMI is high lighted and when getting
"Out Of Memory" error we inserted "-" in the table. As Table 1 il-
lustrates ITGC outperforms other algorithms considering the first
3 real-world data sets. Interestingly, in this experiment we out-
perform CLIQUE which is a well-known grid and density-based
clustering algorithm ( the results are similar on the Occupancy

2http://archive.ics.uci.edu/ml/index.php

data set). Although some of the comparison methods perform
slightly better than ITGC on User Knowledge data set, our result
is still comparable and we outperform DBSCAN, CLIQUE and
Single link.

4 CONCLUSION AND FUTUREWORKS
In this paper we propose an information-theoretic clustering
algorithm, ITGC, utilizing the MDL-principle. Firstly, We employ
the statistical characteristics of any data set to appropriately par-
tition the data without any presumptions. Then, an MDL-based
objective function is proposed to iteratively merge the neigh-
bour clusters when it pays of in terms of the compression cost
of the clusters. Our experiments on synthetic and real-world
data sets show the advantages of our proposed algorithm com-
pared to other well-known clustering algorithms. Similar to other
grid-based clustering algorithms, our algorithm may lead to inef-
ficiency when dealing with huge data sets in terms of the dimen-
sionality. Thus, a possible future work would be to investigate the
parallelization approaches in the sense that the required memory
to store the grid information could be distributed. As another
option for the further investigation could be to enhance the parti-
tioning procedure in the sense that it results a sparse grid which
is cheaper in terms of the memory.
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Abstract—The special characteristics of time series data,
such as their high dimensionality and complex dependencies
between variables make the problem of detecting anomalies
in time series very challenging. Anomalies and more precisely
dependency anomalies ensue from the temporal causal depen-
dencies. Furthermore the graphical Granger causal models pro-
vide an appropriate environment to capture all the temporal
dependencies in Gaussian time series. However many production
systems are characterized by a high degree of complex stochastic
processes consisting of heterogeneous time series. Considering
this situation discovery of dependency anomalies would be more
challenging since almost all the current algorithms are dealing
with the homogeneous cases. Granger-Lasso algorithm is a well-
known L1 penalization algorithm which copes with the temporal
causality detection only for Gaussian time series. Inspired by
this algorithm and considering the incremental heterogeneous
time series generated in many different industries, we propose
a modification for Granger-Lasso algorithm in the sense that
it would be applicable for a larger class of heterogeneous
time series. To introduce this algorithm we are motivated by
generalized linear models. Moreover based on the proposed
algorithm for discovery temporal dependencies we introduce its
application in anomaly detection considering time series followed
by distributions from exponential family, e.g. Poisson, binomial
or multinomial distribution. The Granger-Lasso procedure is
solved by using least square cost function with Lasso penalty for
appropriately transformed input time series. The experimental
results illustrate the performance and efficiency of the proposed
algorithm on the synthetic and other datasets. We evaluated the
proposed method on causality testing on different examples.

I. INTRODUCTION

Time series play an incremental role in production
processes in scientific measures e.g. medical or climatological
measurements. Due to their temporal nature, these data can
provide an insight into the complex systems which they
measure in the sense that one can detect production anomalies
at the early stages. Detecting anomalies is a crucial problem
in many fields providing us with a large amount of data from
sensors, logs and so on. There are two types of anomalies in
multivariate time-series data:
1. The anomaly occurring only within individual variables
(univariate anomaly),

2. The anomaly occurring due to changes of temporal
dependencies (dependency anomaly).

The dependency anomaly is much more challenging to
investigate. However it is more common in the reality. Prof-
iting the temporal and autocorrelation property of time series
one can detect the temporal dependencies and consequently
dependency anomalies. Different methods have been devel-
oped to infer temporal causal relationships from time series
data, including dynamic Bayesian Networks [1] and Granger
causality [2].

Variations of Granger graphical models were proposed to
detect temporal Granger dependencies between variables in
multivariate time series data with Gaussian distribution [3], [4],
[5], [6]. Among them penalized methods often provide better
prediction accuracy simultaneously with providing sparse mod-
els. Particularly when one deals with a numerous number of
time series, sparse models perform more efficient. They often
provide better prediction accuracy since the performance of
the Granger causality methods depend on the length of the
time series as well as the sample size. One of the well-known
algorithms to discover the structure of graphical models based
on the concept of Granger causality is the Granger-Lasso (or
L1 penalty) introduced by Arnold et al. [3].

Granger-Lasso is an efficient and effective algorithm deal-
ing with a large number of time series. Qiu et al. used this
algorithm to the dependency anomaly detection in time series
[7]. One of the major assumptions by Granger-Lasso as well
as by anomaly detection algorithm using this approach is that
all the time series are Gaussian. They assume that the density
model in all of the experiments are linear Gaussian models.
However in principle it could be an arbitrary statistical model
since it is more likely in the realistic cases to have various
time series from different distributions.

In this paper, we deal with this question: How to effi-
ciently detect temporal causalities and consequently anomalies
for heterogeneous multivariate time series. More precisely a
heterogeneous time series consists of various time series from
different distributions. To make it more clear, let’s imagine
an stochastic process consisting of three time series. Figure 1
illustrates such a situation so that we are given a system of
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mixed time series. In this example x1 and x3 are Gaussian
and x2 is a Gamma distributed time series. Edges in this
figure show the intended causal relations among x1, x2 and
x3. Now the issue is how to modify the Granger-Lasso which
is appropriate for numerous Gaussian time series in the sense
that it is applicable for discovery temporal dependencies in
a mixed or heterogeneous cases. Finding such a modification
provides us an effective tool to detect dependency anomalies
as well.

In this paper we mainly address two mentioned issues:
we first introduce an algorithm by means of Granger-Lasso to
discover all the Granger causal relations among heterogeneous
time seies and then applying this algorithm we introduce
another algorithm to detect the dependenecy anomalies in that
case. Inspired by the idea of generalized linear models (GLM)
and also in order to extend the application of the Granger
causality concept to non-Gaussian time series, we propose a
model for finding the causal interactions. And then we extend
the idea of [7] for anomaly detection in multivariate time series
with distributions from exponential family.

The major contributions of our approach are as follows:

• Heterogeneous graphical Granger models: As a
modelling method we utilize graphical Granger mod-
els in the GLM framework so that the model will
be applicable to other than Gaussian time series. By
applying appropriate transformations of the input time
series we introduce a heterogeneous graphical Granger
model which allows additive interactions among time
series with distributions from the exponential family.

• Modified Granger-Lasso: We modify Granger-Lasso
algorithm and more precisely its objective function
so that it could be applicable for not only estimation
of Granger causalities in linear Gaussian models but
also non-linear cases from the exponential family e.g.
Poisson.

• Anomaly detection: Utilizing the modified Granger-
Lasso algorithm for the heterogeneous time series we
detect all dependency anomalies as a natural conse-
quence of the Granger causality detection.

• A symmetric information theoretic score: In order
to efficiently assess the anomalies we introduce an
information-theoretic anomaly score which is sym-
metric. This anomaly score helps us to avoid com-
putationally expensive steps of the anomaly detection
algorithm.

The paper is organized in the way that we proceed with
explaining two first contribution as a base line for the last two
ones. After introducing our model we will describe how to
use this useful tool to detect the heterogeneous anomalies. In
Section V we report some experimental results on two datasets
investigating the performance of causality detection part of the
paper. The evaluation of anomaly detection will remain for the
future works.

2 

1 

3 

Fig. 1. Temporal Feature Causal Network Temporal causal network
illustrated for two Gaussian time series (x1, x3) and a Gamma distributed
one (x2).

II. GRANGER-LASSO: A TEMPORAL CAUSAL DETECTION

ALGORITHM

One of the well-known approaches to detect causalities
among time series is Granger causality. It is based on the
intuition that the cause helps to predict its effects in the future.
More precisely a feature x is said to Granger-cause y, if the
autoregressive model for y in terms of past values of both
x and y is statistically significantly more accurate than that
one based on just the past value if y [2]. Graphical Granger
models extend the notion of Granger causality among two
variables to many variables. There are many methods how
to discover the structure of graphical models based on the
concept of Granger causality [8], [3]. Arnold et al. applied the
lasso penalty and proposed a temporal dependency learning
algorithm only for Gaussian time series [3]. In this section we
recall some preliminaries required to introduce our model.

This section is organized as follows: first of all we review
Granger causality and graphical Granger models and then lasso
estimation to find causalities. Finally we recall GLM so that
we are well-equipped to introduce our model for heterogeneous
time series (time series of various distributions).

A. Granger causality and graphical Granger models

First we recall the definition of Granger causality between
two univariate time series. Let x1:T = {x}Tt=1 and y1:T =
{y}Tt=1 denote time series up to time T . Consider the following
two regression models:

yT = Ay1:T−1 +Bx1:T−1 + εT (1)

yT = Ay1:T−1 + εT (2)

Then x is said to be Granger-causal for y if the model (1)
results in statistically significantly better regression model than
with (2).

Graphical Granger models extend the notion of Granger
causality among two variables to p variables. Let x1, . . . , xp

be p time series and X define the rearrangement of p given
time series at time t into a vector time series, i.e. Xt =
(xt

1, . . . , x
t
p)
′. Thus, we define the Graphical Granger model:

XT = A1XT−1 + ...+AT−1X1 + εT (3)
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where A1, . . . ,AT−1 are p-dimensional vectors and εT

is the vector of errors. One can imagine this model (3) as a
Directed Acyclic Graph (DAG) over the time series. Assume
G = (V,E ⊂ V × V ) be a DAG, when V is the set of time
series X1, . . .XT and E the set of associations among them.
In graphical models E corresponds to the p × p adjacency
matrix achieved by A1, . . . ,AT−1.

Causal relationships among different time series in the
graphical model (3) can be represented by DAGs. xt

j is said to
be Granger-causal for xT

i if the corresponding coefficient, At
j,i

is statistically significant [5]. This corresponds graphically to
the fact that there exists an edge xt

j → xT
i in the graphical

model with T × p nodes.

Lasso-type estimates of DAGs can therefore be used in the
context of graphical Granger models in order to estimate the
effects of time series on each other. In the next section we will
address this estimation.

B. Granger-Lasso causality detection algorithm

Applying an F − test or any other statistical significance
tests is a straight-forward approach for detecting Granger
causalities between two time seires. This approach is time
consuming for more than two time series and sensitive to the
number of observations. Moreover it guarantees only a subopti-
mal solution. Additionally Zou and Feng investigated Granger
causality comapring to the other methods and concluded that
the performance of any approach depends on the length of
the time series as well as the sample size [9]. Therefore we
need sparse models. particularly in case where the sample size
is small. Granger-Lasso is a temporal dependency learning
algorithm introduced by Arnold et al. [3] to achieve the
neighborhood sparsity based on the lasso (L1) penalty.

Consider a graphical model with p time series, observed
over T time points, and let d be the lag. Let XLagged

T,d be the
concatenated vector of all the lagged variables up to time T ,i.e.
{xi

T−t|i = 1, ..., p; t = 1, ..., d}. The graphical Granger model
based on (3) for lag d can be reformulated as p minimization
problems:

γi(ηi) = arg min
γT
i ∈Rp

n∑

T=d+1

(xT
i −XLagged

T,d γT
i )

2+ηiLi(γi) (4)

for a given number of different samples n and ηi > 0 the
regularization parameter. ηi indicates the strength of shrinkage
and variable selection, which, in moderation can improve
both prediction and interpretability. In this study we assume
the regularization parameters given however there are many
heuristics to find an appropriate amount for this parameter.
Generally selecting it well is essential to the performance of
lasso therefore we post pone investigating the influence of
different heuristics to find ηi.

Li(γi) =

p∑

j=1

|γij | (5)

is L1 type penalty function. For each time series xi, γi is a p-
dimensional vector called Lasso coefficients which minimizes
the average squared errors of regressing for xi with respect to
the Lasso penalty. Thus, xj Granger causes xi if and only if
at least one of the corresponding coefficients γi is non-zero.

It is well-known that the L1-penalized least square regres-
sion, as targeted by the Lasso, is a convex problem, making
it possible to attain the global maximum. Profiting of L1

regularized regressions, we are able to discover sparse Granger
causality relations.

Granger-Lasso algorithm works appropriately for Gaussian
time series. However this is more realistic to have a complex
system with many time series from various distributions. Refer
to Figure 1, where three time series are given, one is Gamma
distributed and the two other ones Gaussian, is Granger-Lasso
still applicable?

In the following we investigate the performance of
Granger-Lasso in the heterogeneous case where we are given
many time series of various distributions. Without loss of
generality we only assume time series from exponential family
e.g. Poisson, Gamma and so on. The algorithm proposed in
this paper requires the notion of regression for GLMs in the
sense that we provide a framework to apply Granger-Lasso
on heterogeneous case. In the following sections we recall
GLM and finally introduce our model for causality detection
on heterogeneous time series.

C. Generalized Linear Model

The idea of generalized linear models (GLM) was intro-
duced by Nelder and Wedderburn[10]. It is a natural extension
of linear regression to the cases when the considered regressed
time series are not necessarily Gaussian by allowing the linear
model to be related to the response variable via a link function.
The GLM framework provides a tool for implementing model
prediction using standard software.

Mainly GLM consists of three components: the random
component which belongs to the exponential family of dis-
tributions of with mean value μ = E[y|x], a linear predictor
η = Xβ, and the link function g, a monotone twice differen-
tiable function given by a user. The link function associates
the linear predictor with the mean value via g(μ) = θ.

Table I shows common distributions with canonical link
functions.

III. CAUSALITY DETECTION FOR HETEROGENEOUS TIME

SERIES: THE MODEL

With respect to previous works (e.g. [3]) this question will
arise whether it is possible to discover temporal dependencies
between heterogeneous time series or not. Considering hetero-
geneous time series, in this section we will propose a model in
the Generalized Linear Model (GLM) framework to detect the
temporal causalities. In the following we introduce our model
for heterogeneous time series.

10841092



Link Function Mean Function

Normal Xβ = μ μ = Xβ
Exponential/ Gamma Xβ = μ−1 μ = Xβ−1

Inverse Gaussian Xβ = μ−2 μ = Xβ
−1

2

Poisson/ Countable Xβ = ln(μ)
μ =
exp(Xβ)

Bernoulli/
Categorical/
Multinomial

Xβ = ln μ
1−μ

μ =
exp(Xβ)

1+exp(Xβ)

TABLE I. COMMON LINK FUNCTIONS IN GLM FRAMEWORK.

Let’s assume we have found all the temporal dependencies
between various time series applying Granger-Lasso algorithm.
If we assume xj Granger causes xi, then we will find this
relationship between mean value of both time series xj and
xi. In another point of view Granger-causal relationships will
be preserved even if we apply Granger-Lasso algorithm on
the mean values. Inspired by this fact we introduce a model
in GLM framework. We transform each time series at time
T to its mean value by means of the link function so that we
provide the linear relationships. Consequently a Granger-Lasso
algorithm will be applicable since we are dealing with the
linear regressions. In the following we first propose a graphical
Granger model over the heterogeneous time series and then
we explain how to find the Granger causalities by applying
Granger-Lasso algorithm:

A. Graphical Granger model for heterogeneous time series

Considering the mentioned graphical Granger model 3 we
assume p time series xi, i = 1, . . . , p. Let time lag d be given.
Each time series is generated from a concrete distribution
function in the exponential family, for example with Poisson
or binomial distribution. Profiting of the GLM properties, we
consider the following model in which we suppose that the
mean of each time series depends on its own history up to the
lag d and the past values of concurrent time series:

E[xT
i ] := μi(T |XLagged

T,d ) = g−1
i (XLagged

T,d γT
i ) (6)

more precisely we can write:

E[xT
i ] = g−1

i (

p∑

j=1

d∑

t=1

xT−t
j γt

ij) (7)

where E[xT
i ] is the expected value of xT

i . gi is an invertible
link function corresponding to time series xi for each i =
1, . . . , p. Basically we can have a multivariate link function
i.e. for each i there is a particular form of link function, g =
(g1, . . . , gp).

As mentioned we transform all the time series to their mean
value in the sense that we provide linearity and apply Granger-
Lasso over the constructed graphical model. WT

i denotes the
transformation of xT

i by means of the corresponding link
function:

WT
i := gi(E[xT

i ]) (8)

when E(.) is the arithmetic mean value by time T :

E(xT
i ) :=

1

T

T∑

t=1

xt
i (9)

Now we are well equipped to construct a graphical Granger
model over the transformed time series:

G := (W,H) (10)

where W is the set of temporal nodes WT = (WT
1 , . . . ,WT

p )
and H is the set of edges in the graph corresponding to the
oriented temporal causal connections among the nodes.

B. Granger-Lasso estimation of the graphical model

Via the link function applied on the mean values, a linear
relationship among the time series is established. Now we
apply Granger-Lasso estimators to the constructed graphical
Granger model (10). To estimate the proposed model, we
define p non-overlapping Lasso optimization problems for
i = 1, . . . , p:

γi(ηi) = arg min
γT
i ∈Rp

n∑

T=d+1

(WT
i −XLagged

T,d γT
i )

2 + ηiLi(γi)

(11)

For some r, s between 1, . . . , p the process xr Granger–
causes process xs, denoted by xr → xs, if and only if at least
one of the corresponding coefficients of γsr in (11) for any T
is non-zero.

In contrast to the linear regression, the GLM framework
does not enforce any assumption on the distribution of the
time series nor its errors. Moreover, the GLM using maximum
likelihood estimation in comparison to Lasso has high compu-
tational time and a in general guarantees only a local optimum
(generally non-convex). However it is well-known that Lasso
estimation is a convex and efficient method providing the
possibility to attain the global maximum.

IV. TEMPORAL CAUSAL ANOMALY DETECTION

As already mentioned, detecting temporal anomalies is
much more challenging and complicated, but common in the
real application. Especially for the heterogeneous case when
one can consider time series with various distributions, the
problem is even more complex. But such a scenario seems to
be realistic, since it is more likely that interacting stochastic
processes do not have the same distributions. Based on what
we introduced in the previous sections, we are able to detect
all the temporal dependencies between or within the heteroge-
neous time series.

Before explaining how to use the temporal dependencies
in order to find the anomalies, we formally define the task
of anomaly detection in this section. Then we introduce the
anomaly detection algorithm and consequently an information-
theoretic score.
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One of the anomaly detection approaches is to build a
statistical model that captures the generation process of the
normal (non anomalous) data, then estimate the likelihood of
a new observation based on this model and predict the data
as an anomaly if the likelihood is below some thresholds. The
problem of anomaly detection for multivariate time-series data
can be defined as follows:

Given p time series, x1, . . . , xp , we want to find data
points (indexed by time) that significantly deviate from the
”normal” pattern of the data sequence (normal does not mean
necessarily Gaussian). Without loss of generality, we can
reformulate the problem into the following one: Given two
data sequences X(r) = {xt,(r)

i , i = 1, . . . , p, t = 1, . . . , Tr, }
and X(te) = {xt,(te)

i , i = 1, . . . , p, t = 1, . . . , Tte, }. X(r)

and X(te) is the reference and test set, respectively. We will
compute the anomaly score for X(r) with respect to X(te)

for each variable to determine whether and how much each
variable contributes to the difference between both time series.

A. Heterogeneous temporal causal anomalies

During the previous sections we introduced a useful and
efficient tool to discover all the temporal dependencies with
respect to the heterogeneous cases. Inspired by Qiu et al. [7]
we apply this tool on the mixed time series in the sense that
we capture a statistical model that fits better to the generation
process of the normal data. We suppose that there is no
anomaly in the training dataset therefore we capture the normal
statistical model by means of using the proposed Granger-
Lasso algorithm on X(r). The solutions for the corresponding
optimization problem 11 are the Lasso coefficient which are
used as the null hypothesis for the next step.

In the next step we aim to find data points that significantly
deviate from the normal pattern. The null hypothesis in this
step is that the temporal causal graphs of reference set and test
set are the same. Therefore we apply this hypothesis as another
constraint in the optimization problem so that we preserve all
the temporal dependencies related to the training data:

γ
(te)
i (ηi) = arg min

γ
(te),T
i ∈Rp

n∑

T=d+1

(W
(te),T
i −X(te),Lagged

T,d γ
(te),T
i )2

(12)
+ηiLi(γ

(te)
i ) + ηiLi(γ

(r)
i )

where γ
(r)
i is the Lasso coefficient and corresponds to the

temporal dependencies in the training dataset.

B. Information theoretic anomaly score

After all the temporal dependencies were found, the next
step is finding an anomaly score so that we are able to detect
any anomaly. From the information theoretic perspective, the
most natural difference measure between two distributions is
the Kullback-Leibler (KL) divergence. This is a measure of
to which extent one probability distribution diverges from the

second probability distribution. This measure is not symmetric
and therefore not a distance in the metric sense.

Qiu et al. in [7] used KL divergence as an anomaly score
for a particular time-series (or feature) xi. As the drawback of
KL divergence not to be a distance metric, they had to compute
both scores from training to test and vice versa and then to
find the maximum score between these two scores. Jensen-
Shannon divergence is symmetric and the square root of the
Jensen-Shannon divergence is a metric, therefore can be used
as a distance function. We take this natural alternative since the
symmetry helps to avoid some computations. For a particular
time series xi Jensen-Shannon anomaly score is defined by:

JSD(xi) =
1

2
D(P (r)||M) +

1

2
D(M ||P (te)) (13)

where D(.) is the KL measure and M = 1
2 (P

(r) + P (te)):

D(P (r)||M) =
∑

P (r)(xi|X lagged
t,d)

P (r)(xi|X lagged
t,d)

P (te)(xi|X lagged
t,d)
(14)

in 13 P (r) and P (te) are the underlying probability dis-
tribution function (PDF) in the reference and test datasets,
respectively. We assume that the probabilities are in the expo-
nential family e.g. Gaussian, Poisson or Gamma distribution.
For example, if the underlying distribution is Poisson then
xt

i Poisson(X lagged
t,dβi). To estimate the required parame-

ters we consider the reference dataset for parameters in P (r)

and test dataset for parameters in P (te).

C. Algorithm

In this section we describe more in detail, how to de-
tect temporal causal anomalies. Algorithm 1 shows different
steps of the proposed anomaly detection procedure based on
Granger-Lasso for heterogeneous time series. As mentioned
in our model (Section III) we need to transform each time
series to its mean value in the sense that we will be able to
use the Granger-Lasso type objective function for detecting of
the temporal dependencies. Thus, for each i we first transform
time series xi time to W r

i so that it will be linear. Procedure
2 shows the transformation in more detail. Then we solve
the corresponding Granger-Lasso optimization problem (11)
to find the temporal dependency graph and the corresponding
adjacency matrix respectively in reference dataset.

Function JSD(xi) measures an appropriate anomaly score
for i = 1, . . . , p described in the last section based on the
comparisons of every two observations in reference and test
dataset.

In order to detect the anomalies more precisely we slide a
window over the test data to detect not only if any anomaly
occurs but also more accurately in which time window with the
particular length (WS) it happens. For any specific window
we again transform the time series (Wwindow

i) and solve
the Granger-Lasso optimization problem. Similar to what we
did on the reference dataset we compute the Jensen-Shannon
divergence as an anomaly score. After sliding the window over
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all the time series we are well equipped to find the anomalies.
In order to do this we need to decide if the score of an
observation is an anomaly with respect to a given threshold.

Algorithm 1: Heterogeneous Anomaly Detection
input : Xi, i = 1, ..., p; Reference Data :=

Xi
r; Test Data := Xi

te; Window Size :=
WS

output: list of temporal anomalies
foreach xi do

// Learn Lasso-Granger graph for reference data
W r

i = Transform(xr
i);

βi
r = LassoGranger(X lagged

t,d,W
r
i, λ);

// Compute anomaly scores for each window
JSD(xi, βi

r);
// Slide a window with size WS over the test data
foreach window do

Wwindow
i = Transform(xi

window);
βi

window = LassoGranger(Xwindowlagged

,Wwindow
i , λ);

//Compute anomaly scores for each window
JSD(xwindow

i );
end

end

Procedure 2: Transformation
Transform (T ime Series xi)
foreach t do

//gi is the link function corresponding to xi e.g. gi
is log for Poisson

Wi
t = gi(E(xi

t)) ;
end

V. EXPERIMENTAL RESULTS

The main contribution of this paper is the causality and
anomaly detection dealing with heterogeneous time series i.e.
many time series with various distributions from the expo-
nential family. This section consists of experimenal results to
assess the performance of the first part of the contribution,
causality detection. First we explain about the data generation
process and the evaluation measures. Then we report the
results of applying our algorithm on two datasets. The first
dataset is generated artificially by means of introduced data
generation process and the second one is the dataset used by
Kim et al. in their paper [11]. Then we compare the results of
the proposed causality detection algorithm comparing to the
algorithm introduced by Kim et al..

A. Synthetic data generation

In this section we clarify how we generated the synthetic
data since it is not straightforward to generate an appropriate
dataset so that it fulfils all the constraints. In this paper
we assume that we are dealing with the time series whose

means depend on the past values of all time series through
the link function corresponding to each distribution as we
mentioned before (Table I). We define this kind of dependency
between the mean values and the linear combinations via some
equations. These equations are consistent to the distributions.

To generate the equations we proceed from the end of
the algorithm to the beginning. The output of Granger-Lasso
algorithm over heterogeneous time series is an adjacency
matrix illustrating the causal relationships between different
time series. The graph corresponding to this adjacency matrix
is called feature causal graph. Therefore we start with a
random adjacency matrix associated to the random feature
causal graph. Then we randomly assign directed edges between
the nodes showing whether any Granger-causal relations be-
tween two specific nodes (time series) exists or not. Figure
1 demonstrates the random graphical model over three time
series as an example.

Having formed the feature causal graph, we then gen-
erated a graphical Granger model and the associated graph
in the temporal variable space that is consistent with it. To
accomplish this step we only need to choose a random lag
for any established edge between two time series in feature
causal graph. We selected the lag associated to each edge
according to a uniform distribution within a prescribed range.
For instance randomly choosing lag k for the edge xi → xj

in the feature graph means that there is an edge xT−k
i → xT

j

in graphical Granger graph. Finally we randomly assign each
edge a weight, sampled from a specified range.

Now we have the equations and we need to generate the
observation for each time series. After initialization we used
the procedure 3 to iteratively generate the observations.

Procedure 3: Data Generation Process
Data Generator (meanvalueequations)
Series := data matrix consisting of all the observations

for all the time series;
Initialize the first observations randomly;
foreach t do

Compute the mean value for each time series based
on the given equations;

foreach time series xi do
Series(i, t) = t ∗ μ(i, t)− (t− 1) ∗ μ(i, t− 1);

end
end
return (Series)

B. Evaluation measures

As described the output of the proposed algorithm is feature
causal graph illustrating all the Granger causal relations. We
now describe how to quantify the similarity between the target
causal graph used to generate the synthetic data (ground truth)
and the output causal graph. In this paper the metrics of
Precision, Recall and F1−measure, commonly used in the
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Fig. 2. Synthetic data result a) Adjacency matrix for the feature causal
graph of the ground truth b) Achieved adjacency matrix corresponding to the
feature causal graph applying our algorithm.

machine learning and information retrieval literature, are used
to the problem of predicting the 0,1-label in the adjacency
matrix representation of the graph.

Since the output graph is a directed one showing the causal
relation in both directions, therefore we distinguish between
two entries in the adjacency matrix A, A[i, j] and A[j, i]. For
instance predicting a bi-directional edge between xi and xj ,
when there is actually a directed edge from xi → xj , would
entail one correct prediction and one prediction error.

Let A∗ and Â denote the true adjacency matrix and the
output adjacency matrix respectively. Also based on our model
defined in Section III we consider W ×W as the set of time
series pairs. Now we define the evaluation measure:

Precision =
|{(i, j) ∈W ×W : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈W ×W : Â[i, j] = 1}|

Recall =
|{(i, j) ∈W ×W : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈W ×W : A∗[i, j] = 1}|

F1−measure =
2 ∗ Precision ∗Recall

Precision+Recall

There is clearly a trade-off between precision and recall as
the goal of prediction, and the F1−measure tries to balance
the overall quality of prediction [3].

C. First synthetic dataset

The synthetic dataset consists of three time series. x1 and
x3 are Gaussian time series and x2 has a Gamma distribution.
We generated 3000 observations for each time series whose
means depend on the past values through the corresponding
link function of each distribution as we mentioned before. The
following equations show how mean values depend on various
time series.

μ1(T |XLagged
T,d ) = 1 + 0.25 ∗ xT−1

2 ,

μ2(T |XLagged
T,d ) =

1

(1 + 0.125 ∗ xT−1
2 )

,

μ3(T |XLagged
T,d ) = 1 + 0.25 ∗ xT−1

3 + 0.25 ∗ xT−1
1 .

We assumed x1 and x3 are Gaussian time series, therefore
there is a linear relation between the mean value and the linear
combination of the lagged values. But considering Gamma dis-
tribution for x2 enforces us to apply a suitable link function to
link the mean value and the linear combinations. In this case as
mentioned in Table I we select the inverse link function. In the
following we apply the Procedure 3 to generate observations.
Figure 1 is a demonstration of the current synthetic dataset.

D. Results for the first synthetic dataset

Figure 2 illustrates the result of proposed algorithm on
the synthetic dataset. The left adjacency matrix Figure 2a is
the ground truth and the right one (Figure 2b) is the output.
As it is obviously illustrated our algorithm finds completely
all the Granger causal relations between heterogeneous time
series of mixed Gamma and Gaussian distributions. As we
expected profiting GLM properties, Granger-Lasso algorithm
is applicable for the heterogeneous case. Precision, recall and
F1 − measure, all equal 1. Considering other advantages
of Granger-Lasso e.g. time complexity and finding global
optimum, our proposed algorithm efficiently works on the
synthetic data.

E. Second dataset

To be able to assess all aspects of our algorithm we
compare the proposed algorithm to the algorithm introduced
by Kim et al.. Authors in [11] introduced a general statistical
framework for assessing Granger causality in general and even
for heterogeneous cases. In the following we call this algorithm
as GSF-Granger.

Kim et al. generated a synthetic dataset to evaluate their
framework which consists of three heterogeneous time series.
We applied our algorithm on this dataset so that we can
compare our results to them. The dataset consists of three time
series. x1 and x3 are Gamma distributed time series and x2

has a Poisson distribution. The following equations show how
mean values depend on various time series.

μ1(T |XLagged
T,d ) =

1

1 + 0.5 ∗ xT−1
1 + xT−1

2 + 0.5 ∗ xT−2
3

,

μ2(T |XLagged
T,d ) = exp(1 + xT−1

1 ),

μ3(T |XLagged
T,d ) =

1

2 + 0.5 ∗ xT−1
3

.

x1 and x3 are Gamma distributed time series, therefore
there is an inverse relation between the mean value and
the linear combination of the lagged values. But considering
Poisson distribution for x2 a suitable link function (logarithm)
is selected to link the mean value and the linear combinations.
Analogously we applied Procedure 3 to generate the observa-
tions. Figure 3a is a demonstration of the feature causal graph
related to the current synthetic dataset.
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F. Results for the second dataset

Figure 3 illustrates the result of proposed algorithm for
the synthetic dataset in comparison to GSF-Granger. The left
adjacency matrix Figure 3b is the result of GSF-Granger which
is compatible with the ground truth. The right one (Figure 3c)
is the output of our algorithm.

The proposed algorithm was successful to find four rela-
tions among all five Granger causal relations. Precision = 1
shows that all the causal relations in the output feature causal
graph are correctly established. Recall = 0.8 indicates that not
all of the relations are found and Our algorithm was not able
to find the Granger causal relation between x2 and x1 in both
direction. GSF-Granger found all the Granger causalities as
it is reported in the original paper. However referring to the
F1 − measure our algorithm still works efficient. Anyhow
F1−measure = 0.89 which indicates the overall quality of
the prediction is reasonable.

VI. CONSISTENCY OF LASSO

Recall that an estimator (the method providing the es-
timator) is prediction error consistent if the estimator con-
verges to the optimal solution w.r.t. the increasing size of the
data set. Chatterjee [12] proved the mean squared prediction
consistency of a general estimator using Lasso under some
assumptions:

• the observations are independent of the other obser-
vations

• are upper bounded

• have Gaussian errors with expectation zero and finite
variances.

Authors in [13] generalized the mean squared prediction
consistency to the case when the errors do not have to be
normal errors with expectation zero but still with bounded
finite variances. This allows using Lasso regression for large
number of non-Gaussian variables. In this case Lasso is under
some conditions still a consistent estimator.

In order to fulfil this constraint we standardized the time
series by shifting each observation by means of the overall
mean value so that at the end we have mean value zero
and finite variances. It implies the errors will have bounded
variance. In practice it is hard to guarantee that errors will
have mean zero, but applying the mentioned transformation
at least we make sure that the errors have bounded variance.
Especially for the heterogeneous cases when we are dealing
with time series from the exponential family e.g. Poisson, there
is no guarantee to fulfil the constraint on the mean value.

For the future work we would try to investigate the
consistency of Lasso in more theoretic manner so that we
can guarantee applying Lasso on the proposed model for
heterogeneous time series would be consistent.

VII. RELATED WORK

Anomaly detection refers to the problem of finding anoma-
lies in data. There are other synonyms of anomaly, such
as outliers, contaminants, exceptions, etc. Anomaly detection
algorithms find a direct application in many areas, such as
insurance or health care, fraud detection for credit cards, fault
detection, cyber-security or others. Most of the recent literature
is written under the term outlier detection [14], [15]. Recent
approaches to anomaly detection in time series range from
point anomaly detection algorithms to change-point detection
algorithms.

For example, Twitter’ds approach in [16] enjoys a high
precision and recall and is fast, however it is specific to the
use-case of Twitter. Some open-source point anomaly detection
techniques are for example packages ”‘extremevalues”’ [17],
or package for outliers from [18].

To detect temporal anomalies, Rogge-Solti in [19] used
probabilistic inference and proposed a Bayesian model that
can be inferred from the Petri net representation of a business
process. A concrete anomaly detection algorithm is usually
applicable to only a specific use-case. Chandola et al. in [20]
provided an overview of the state-of-art anomaly detection
methods sorted by categories of use, concluding that only
a set of anomaly models are most appropriate for a given
anomaly category of interest. Laptev et al. in [21] created
a collection of anomaly detection and forecasting models
for time series called EGADS (Extensible Generic Anomaly
Detection System). It is stand-alone platform that can be used
as a library in larger systems. The system has a hierarchical
architecture and working modules. As a subcategory, the
system also considers non-normal time series. The basic idea
of the applied algorithm is to find low density regions of the
deviation metric distribution, for which the algorithm such as
Local Outlier Factor (LOF) [22] is applied.

Qiu et al. in [7] proposed Granger graphical models as an
effective and scalable approach for anomaly detection whose
results can be readily interpreted. Specifically, they focused
on Granger graphical models as a family of graphical models
that exploit the temporal dependencies between variables by
applying L1-regularized learning to Granger causality. The
concept of using penalized auto-regression to detect the tem-
poral Granger causality was introduced by Arnold et al. [3].
Granger-Lasso is an efficient and effective algorithm dealing
with a large number of time series.

Authors in [11] introduced a general statistical framework
for assessing Granger causality in general and even for het-
erogeneous cases. In their paper, the Granger causality from
a time series x2 to a time series x1 is assessed based on the
relative reduction of the likelihood of x1 by the exclusion of x2

compared to the likelihood obtained using all the time series.

VIII. CONCLUSION AND FUTURE WORK

In this paper we proposed a modification of well-known
Granger-Lasso algorithm so that it is applicable for the hetero-
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Fig. 3. Comparing our algorithm to GSF-Granger. (a) Feature Causal Graph (Ground truth). (b) Adjacency matrix applying GSF-Granger (c) Adjacency
matrix applying the proposed algorithm.

geneous time series. In order to provide the required conditions
to apply Granger-Lasso for such a complex system we utilized
the GLM advantages. We generated our graphical Granger
model over the transformed time series in the GLM framework
considering this fact that all the Granger causal relationships
between the original time series will be preserved if we apply
the Granger-Lasso on the transformed time series. In this case
we can deliver one of the Lasso consistency constraint that is
linearity.

Finally we proposed an application of the new algorithm
in anomaly detection where we were interested to find depen-
dency anomalies in heterogeneous time series by means of
Granger-Lasso algorithm. We also introduced Jensen-Shannon
divergence as an information theoretic anomaly score which
is symmetric and saves time complexity by avoiding extra
computations.

At the end we investigated the consistency of Lasso
algorithm under different conditions. As mentioned Lasso
algorithm is consistent under the assumptions which are in
practice hard to guarantee particularly for non-Gaussian time
series.

Due to time limitation we have done no experimental result
on the real datasets so far. For the future we will evaluate
the proposed causality detection algorithm on different real
datasets where we are able to interpret the results meaningfully.
We are also interested to assess the application of temporal
causal detection algorithm in discovery heterogeneous anoma-
lies. To cope with the consistency problem we will try different
variations of Lasso which they are more appropriate to apply
on the non-Gaussian time series.
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CHAPTER 10
Paper F & Paper G:

Anomaly Detection in
Heterogeneous Time Series by

Causality Mining
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an extended journal version of Paper F.
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writing the paper; Implementation; Conducting experiments.
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we proposed a graphical Granger model (HGGM) to
discover temporal dependencies among time series from

different distributions, i.e. heterogeneous data sets. Hereby,
we incorporate HGGM in order to introduce a general
anomaly detection framework applicable for heteroge-
neous complex data sets. The proposed framework and

the algorithm are describe in Section 6. We conducted
various new extensive experiments concerning different
aspects of our algorithm in Section 6.4. Following re-

sults of the experiments, our proposed algorithm (AD-
HGGM) outperforms other state-of-the-arts in this re-
spect.
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Abstract Detecting anomalies among time series have
recently attracted attention of the data mining commu-

nity. Among various types of anomalies, dependency
anomalies, resulted by changes of temporal dependen-
cies, are more challenging to detect due to complex tem-

poral structures and causal interactions. Among vari-
ous causal notions graphical Granger causality is well-
known due to its intuitive interpretation and compu-

tational simplicity. Most of the current graphical ap-
proaches are designed for homogeneous data sets i.e.
the interacting processes are assumed to have the same
probability distribution. Since many applications gen-

erate time series of heterogeneous nature, the ques-
tion arises how to leverage graphical Granger models
to detect temporal causal dependencies among them.

Profiting from the generalized linear models, we in-
troduce an efficient Heterogeneous Graphical Granger
Model (HGGM) for detecting causal relations among
time series having a distribution from the exponential

family which includes a wider common distributions
e.g. Poisson, gamma. To guarantee the consistency of
the algorithm, adaptive Lasso as a variable selection

method is employed. Incorporating the introduced al-
gorithm (HGGM), we propose a general anomaly de-
tection framework (AD–HGGM) to specify dependency

anomalies in heterogeneous data sets. Moreover, we in-
troduce a symmetric information-theoretic anomaly score
to measure anomalous deviations. Extensive experiments
on synthetic and real data confirm the effectiveness and

efficiency of HGGM as well as AD–HGGM.

Keywords Time Series · Anomaly detection · Granger
causality · Heterogeneous data sets
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Fig. 1 Meteorological stations and three major weather sys-
tems influencing Austria.

1 Introduction

Recently there is a significant interest in anomaly de-
tection among time series in data mining community.
Classifying multivariate time series data, there are two

types of anomalies:

– univariate anomaly: anomalies occur only within in-
dividual time series,

– dependency anomaly: anomalies occur due to changes

of temporal dependencies among various time series.

As expected, the second type of anomalies, depen-
dency anomalies, are more challenging to detect due to
complex temporal structures and interactions among

time series. In this regard, usually, discovery of causal
relations among different processes leads to characterize
the evolution in time of regular observations. The reg-

ular pattern can be used to detect the deviated obser-
vations or outliers in anomaly detection [19]. A number
of methods has been developed to infer causal relations

from time series data by Granger causality [10] which
is a popular method due to its computational simplic-
ity. The presumption of this approach is that a cause
helps to predict its effects in the future. Most of the

existing methods in this area assume additive causal
interactions among time series following a specific data
type or a certain distribution. The well-know causal-

ity notion, Additive Noise Models (ANMs), have been
proposed for either continuous [22] or discrete [18] time
series. Moreover, most of the probabilistic approaches
are designed for homogeneous data sets [6], [5]. How-

ever, in reality the interacting processes do not have to
be homogeneous (having the same distribution). Such
situations can occur, for example, in climatology when

various measurements are provided for different me-
teorological stations. Figure 1 shows 10 weather sta-
tions and three major weather systems in Austria. The

monthly amount of precipitation as well as the num-
ber of sunny days have been measured for every sta-

tion, each of which with a non-Gaussian distribution.

One can be interested in investigating how the num-
ber of sunny days in a station, influenced by one of the
weather systems, can impact the amount of precipita-

tion in the other locations.

Applying existing algorithms on such data sets can
result an inaccurate Granger causal model since they
have been designed for specific homogeneous data types.
Moreover, the small set of algorithms, which are sup-

posed to cope with the heterogeneity, mostly employ an
exhaustive pairwise testing. This leads to inefficiency
in a causal network discovery specially when the num-

ber of interacting processes is increasing. In between,
graphical Granger models are popular due to their effi-
ciency and effectiveness. They employ a penalized Vec-

tor Autoregression (VAR) to the Granger concept [1],
[3], [9], [23]. However, to the best of our knowledge, so
far they have been designed only for homogeneous data
sets. Thus, in this paper we introduce a penalized VAR-

based algorithm to detect the Heterogeneous Graphical
Granger Model (HGGM) by employing generalized lin-
ear models (GLMs) [4]. Similar to the other graphical

models, we assume that the interactions among the in-
volved processes are additive. In order to ensure the
convergence of HGGM to the true causal graph (i.e.
consistency), we employ the well-know penalization ap-

proach, adaptive Lasso, with oracle properties [26].

Moreover, detected temporal causal graphs can be
used to specify dependency anomalies in early stages.
That is, employing our graphical Granger approach (HGGM),

we propose a general framework (AD–HGGM) to detect
anomalies among time series in heterogeneous data sets.
AD–HGGM consists of three main building blocks:

– Discovery of causal dependencies,
– Measuring the level of anomalies,

– Efficiently specifying anomalies.

In order to measure the level of anomalies, we em-
ploy Jensen-Shannon Divergence (JSD) as a symmetric
anomaly score. The paper brings the following contri-
butions:

– Heterogeneity: Applying the GLM methodology,

we introduce a heterogeneous graphical Granger model
to discover the causal interactions among a wide
variety of heterogeneous time series from the ex-

ponential family (HGGM [4]). Moreover, employing
HGGM to detect dependency anomalies leads to an
effective approach (AD–HGGM) for heterogeneous
cases ;

– Consistency: Assessing the causal relations via adap-
tive Lasso ensures consistency of HGGM;
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– Scalability: Unlike other existing algorithms, HGGM
avoids an exhaustive pairwise causality testing by
penalized estimation of VAR models. Due to the
computational simplicity of HGGM, it is convenient

to be used in practice. Moreover, its reasonable run-
time complexity makes the algorithm scalable for
the large data sets consisting of long time series.

As a consequence, AD–HGGM (designed based on
HGGM) is also reasonably efficient in terms of run-
time complexity and comparing to others;

– Effectiveness: Following results of the extensive
experiments on synthetic and real data sets, HGGM
is an effective algorithm even by detecting sparse

causal graphs. Moreover, our experiments concern-
ing the effectiveness of AD–HGGM confirms advan-
tages of employing HGGM to detect anomalies in

heterogeneous data sets.

– Efficiency: Due to our proposed symmetric anomaly
score based on Jensen-Shannon Divergence, AD–

HGGM avoids inessential computations which leads
to an efficient algorithm compared to others.

In the following we specify the problem and the the-

oretical background and propose our HGGM model.
Section 2 presents the related work. In Section 3, we
introduce the problem and our proposed framework to

deal with heterogeneous data. In Section 4 we intro-
duce our integrative algorithm HGGM and the theo-
retical considerations of it. Extensive experiments on

synthetic and real data are demonstrated in Section
5. In Section 6, we incorporate HGGM and introduce
an effective anomaly detection algorithm (AD–HGGM)
appropriate for dependency anomaly detection among

heterogeneous time series. Our conclusion is in Section
7.

2 Related Work

Anomaly detection, referring to the problem of finding
anomalies in data, attracted much attention in vari-

ous applications in many areas, such as health care,
fraud detection for credit cards, cyber-security an so
on. Recent approaches to anomaly detection in time se-

ries range from point anomaly detection algorithms to
change-point detection algorithms [25], [13].

Authors in [20] used probabilistic inference and pro-
posed a Bayesian model that can be inferred from the
Petri net representation of a business process to detect
temporal anomalies. Chandola et al. in [8] provided an

overview of the state-of-art anomaly detection methods

sorted by categories of use. Laptev et al. in [12] created

a collection of anomaly detection and forecasting mod-
els for time series in which the basic idea is to find low
density regions of the deviation metric distribution.

On the other side, Qiu et al. employed graphical

Granger models as an effective and scalable approach
for anomaly detection which their results can be read-
ily interpreted [19]. They focused on Granger causal-

ity to exploit temporal dependencies among time se-
ries applying L1-regularization. Granger causality [10]
is well-known due to its simplicity and computational
efficiency. It states that a cause efficiently improves the

predictability of its effect. There are various approaches
depending on how to assess the predictability. Proba-
bilistic approaches interpret it as the improvement in

the likelihood (i.e. probability). However, several meth-
ods in this group are distinguished based on the way
how they employ probability. Information-theoretic meth-
ods detect the causal direction by introducing some in-

dicators. Among them, compression-based algorithms
apply the Kolmogorov complexity and define a causal
indicator by mean of the Minimum Description Length

(MDL) [6], [5], [7]. Essentially, these algorithms are de-
signed to infer the pairwise causal relations. Therefore,
employing them for discovery of causal networks leads

to inefficiency, especially when the number of processes
increases. Moreover, to the best of our knowledge, al-
most all the algorithms in this category deal with ho-
mogeneous data sets except Crack [14], the most re-

cent compression-based algorithm to deal with multi-
variate and heterogeneous processes. Beside the pair-
wise testing and its drawbacks, this algorithms lacks

the accurate causal relations since there is no lag pa-
rameter considered in this approach. Transfer entropy,
shortly TEN, is another approach among information-

theoretic methods which is based on Shannon’s En-
tropy [21]. In this approach it is more likely that the
causal direction with the lower entropy corresponds to
the true causal relation. Given a lag variable, TEN can

detect both linear and non-linear causal relations. How-
ever, due to pairwise testing and its dependency on the
lag variable, the computational complexity of this al-

gorithm is exponential in the lag parameter. Moreover,
similar to compression-based methods, TEN is not de-
signed to deal with bidirectional causalities. As another
method in this category, the authors in [11] employ

the log-likelihood ratio to detect any causal relations
among processes. They propose a statistical framework
(SFGC) for mixed type data and assessing the causal re-

lations between multiple time series is accomplished by
the false discovery rate (FDR). The statistical power of
the FDR based methods rapidly decreases with increas-

ing number of hypotheses and these methods are com-
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putationally intensive. As a consequence, the statistical
efficiency of SFGC decreases for the increasing num-
ber of investigated time series. Another approach to as-
sess the predictability is the graphical Granger method

where a penalized VAR model is supposed to be esti-
mated [1], [23]. Graphical Granger method is popular
for its simplicity and efficiency since employing a penal-

ized VAR model we avoid the pairwise testing. However
most of the algorithms in this category are designed for
Gaussian processes. Utilizing the advantages of this ap-

proach we introduced a graphical Granger algorithm for
heterogeneous processes.

3 Theory

3.1 Granger Causality

Granger causality is a well-studied causality notion in-

troduced by Granger in the field of econometric [10].
Granger causal inference captures the temporal depen-
dencies among time series providing useful informa-
tion although it is not meant to be equivalent to the

true causality. In a bivariate case, let x1:n = {xt|t =
1, . . . , n} and y1:n = {yt|t = 1, . . . , n} denote two non-
stationary time series up to time n. Moreover, let Model

1 represent autoregressive (AR) model corresponding
to time series y and Model 2 show the augmented AR
model taking past observations of x into consideration.

yT = α1y
1 + · · ·+ αT−1y

T−1 + εT (1)

yT = α1y
1+· · ·+αT−1y

T−1+γ1x
1+· · ·+γT−1x

T−1+εT

(2)

Granger causality states that x Granger–causes y if
the AR Model 2 significantly improves the predictabil-

ity of y comparing to the Model 1. The concept of
Granger causality can be extended to more than two
time series. Let x1:n1 , . . . , x1:np denote p time series up

to time n and XT be the concatenated vector of all
time series at time T , i.e. XT = (xT1 , ..., x

T
p ). Thus, the

VAR model w.r.t. XT is given by:

XT = A1X
1 + · · ·+AT−1X

T−1 + εT (3)

where At is a matrix of the regression coefficients at
time t = 1, . . . , T − 1 and εt is an additive white noise.
Thus, xj Granger–causes xi if at least one of the (i, j)th

elements in the coefficient matricesA1, . . . , AT−1 is non-
zero.

3.2 Causal Inference by Penalization

In order to detect the causal relations between several
time series, estimating coefficients of the VAR model
introduced in the last section is essential. This problem

can be ill-posed. Therefore, penalizing VAR models of
order d (a time window) by means of a penalty func-
tion provides an efficient and sparse solution while the

convergence to the true causal graph is ensured (e.g.
[1], [23]). This approach is referred to as variable selec-
tion as well since only features with strong dependen-

cies can survive. Thus, for time series xi, i = 1, ..., p,
we consider the VAR model including all p time series
and slide the window of size d over time series and get
the corresponding VAR model. The fact is, best regres-

sors with the least squared error for every specific time
series will have non-zero coefficients in corresponding
VAR model only for the dependent time series. More

precisely, Let XLag
T,d = {xiT−t|i = 1, ..., p; t = 1, ..., d}

denote the concatenated vector of all the lagged vari-
ables up to time T for a given time window of length

d. In this paper, we consider the same lag d for each
time series for simplicity. Therefore, the penalized least
square estimation of coefficients, i.e. the variable selec-
tion problem for the time series xi is given by:

β̂i = arg min
βi

n∑

T=d+1

(xTi −XLag
T,d βi)

2
+ λR(βi) (4)

where λ is the regularization parameter and R(.) is the
penalty function. β̂i = (β1, ..., βp) is the concatenated

vector of regression coefficients β1, ..., βp w.r.t. to time
series x1, ..., xp. Considering the definition of Granger
causality, xj Granger–causes xi when at least one of the

coefficients in βj is non-zero.

3.3 Adaptive Lasso

One of the well-known penalization approaches as well
as variable selection methods is Lasso [24]. The Lasso
penalty function considered in Equation 4 is the L1

norm of the coefficients, i.e. R(βi) = ||βi||1. Despite the
efficiency of Lasso, consistency 1 of this approach is not
guaranteed. Here, we incorporate adaptive Lasso [26],

modified Lasso penalty function, as the variable selec-
tion method in our model due to its consistency as
well as its oracle properties. In adaptive Lasso, adap-

tive weights are assigned to penalize the L1 norm of

1 I.e. the resulting sequence of estimates does not have to
converge in probability to the optimal solution for variable
selection under certain conditions (Section 2 in [26]).
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coefficients. Thus, the penalty function is given by:

R(βi) :=

p∑

j=1

wj |βj | where wj =
1

|β̂(mle)
j |ω

(5)

where wj is the weight vector for some ω > 0 and β̂
(mle)
j

is the maximum likelihood estimate of the parameters.

The consistency of adaptive Lasso is proven under some
mild regularity conditions in the following theorem [26]:

Theorem 1 Let A = {i : β̂i 6= 0} be the set of all non-
zero coefficient estimates. Suppose that λ/

√
n→ 0 and

λn
(ω−1)

2 → ∞ then under some mild regularity condi-
tions adaptive Lasso must be consistent for the variable

selection.

3.4 Heterogeneous Granger Causality

Most Granger causal inference approaches consider cer-
tain Gaussian assumptions for the interacting time se-
ries. However, in the reality this assumption leads to an

inaccurate causal model since there are many processes
which do not follow a Gaussian distribution. Moreover,
mostly the VAR penalization approaches are consistent
under additional specific conditions on Gaussian time

series, see e.g. [1]. Incorporating GLM frameworks, we
introduce a general integrative model to infer causal
relations among a large number of time series from var-

ious distributions.
GLM was first introduced by Nelder et al. in [17]

and it is a natural extension of linear regression. In this

case the regressed variables do not have to necessarily
follow a Gaussian distributions but they (time series)
can have any distribution from the exponential family.
Thus, the relation among the response variable and the

covariates in a regression is defined by a link function
g, a monotone twice differentiable function depending
on concrete distribution functions from the exponential

family, and do not have to be linear any more.
In our model, we assume the mean value of each

time series at time T depends on its own history and
the past values of the concurrent time series such that:

E(xTi ) = g−1
i (XLag

T,d .βi). (6)

Thus, our general objective function is defined as:

β̂i = arg min
βi

n∑

T=d+1

[
− xTi (XLag

T,d .βi) + g−1
i (XLag

T,d .βi)
]

+λ.

p∑

j=1

wj |βj |. (7)

When xi follows binomial and Poisson distribution,

respectively, the concrete form of our proposed objec-
tive function (7) is defined as:

β̂i = arg min
βi

n∑

T=d+1

[
−xTi (XLag

T,d .βi)+log(1+e(X
Lag
T,d .βi))

]

+λ.

p∑

j=1

wj |βj |, (8)

β̂i = arg min
βi

n∑

T=d+1

[
− xTi (XLag

T,d .βi) + exp(XLag
T,d .βi)

]

+λ.

p∑

j=1

wj |βj |. (9)

4 HGGM Algorithm

Algorithm 1 summarizes the proposed method, HGGM.
In the beginning, the overall lagged matrix XLag is con-

structed by sliding a window of size d over each time
series. Then, we need to optimize the introduced ob-
jective function by solving the optimization problem

(Equation 7) for each time series. This can be done
by calling the procedure GLM − penalize() [15] where
it employs Fisher scoring algorithm estimating the re-
gression coefficients. Incorporating the cross-validation

to find the best regularization parameter, we set the
maximum λ as an input of GLM − penalize().

Essentially, in a GLM framework, one needs to know
the distribution of the time series xi in advance to ap-

ply an appropriate link function g w.r.t xis. However, in
the reality, it is not straightforward to guess the correct
distribution. Thus, we utilize a statistical fitting proce-

dure to find the most accurate distribution for every
time series. That is, we incorporate Akaike Information
Criterion (AIC) and assign the distribution from the ex-

ponential family with the least AIC to every time series.
Finally, based on the definition of Granger causality we
get pairwise Granger-causal relations among p time se-
ries out of which we construct the adjacency matrix

corresponding to the final causal graph.

Consistency: Considering adaptive Lasso for vari-
able selection, the consistency of this approach has been

proven under some mild regularity conditions (Section
3). Thus, incorporating the adaptive Lasso for GLMs
leads to the following statement about the consistency

of HGGM.
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Algorithm 1 Causal Detection by HGGM

HGGM (xi, gi, i = 1, . . . , p; d;λmax)
Adj := adjacency matrix of the output graph
Xlag := lagged matrix of all temporal variables
// find Granger causalities for each feature
for all xi do

// solve the penalized optimization problem considering
lagged variables
βi = GLM − penalize(XLag , xi, gi, λmax, d); // βi := co-
efficients w.r.t xi
for all βi

j sub-vectors of βi do
Adj(j, i) = 0 //discover Granger-causalities
if (∃t, 1 < t < d such that βi

j(t) > 0) then

Adj(j, i) = 1
end if

end for

end for
return (Adj)

Corollary 1 Assume G be a true Granger causal graph
corresponding to p time series, each of length n. Let

the regularization parameter λ fullfils the conditions of
Theorem 1. Then taking p time series as input, HGGM
outputs a causal graph which converges to the true graph

G with probability approaching 1 as n→∞.

Proof When n → ∞ the conditions of Theorem 1 are

fulfilled. Therefore it follows that the procedure GLM–
penalize(.) in Algorithm 1 converges to the true Granger
causal graph. Thus, HGGM is consistent as well.

Computational Complexity: In order to inves-
tigate causal relationships for every time series xi, i =
1, . . . , p, we need to fit and find the most accurate VAR

model following the proposed objective function (7).
that is, we have p regression models each of which con-
sisting of d lagged variables corresponding to x1, . . . , xp
at any time. As mentioned in HGGM we employ Fisher
scoring approach to estimate the parameters of VAR
models and hence, the number of computations required
to solve a VAR of order d is O(d2). Thus, the compu-

tational complexity of HGGM is in order of O(np2d2).

5 Experimental Results

Here, we investigate efficiency and effectiveness of HGGM
comparing to other Granger causal inference algorithms.

As an evaluation measure we employ F-measure which
takes both precision and recall into account. Although
there are many approaches designed for Granger causal

inference, only few of them are applicable for heteroge-
neous data sets where a mix of time series of various
distributions are given. Therefore, we focus on three

algorithms which are applicable to mixed time series,
i.e. transfer entropy, shortly TEN [21], Crack [14] and

0 

0.2 

0.4 

0.6 

0.8 

1 

HGGM 

Crack 

TEN 

SFGC 

Ga - B Ga - G G - B P - B Ga - P P - G 

F
-m

ea
su

re
 

Fig. 2 Comparing performance of HGGM to others in

various heterogeneous data sets. Ga: Gamma, G: Gaussian,
B: Bernoulli, P: Poisson.

SFGC [11] and compare our algorithm to them in var-

ious aspects.
Conducting extensive experiments on synthetic and

real–world data sets, we investigate the effectiveness
and efficiency of HGGM comparing to other algorithms.

HGGM is implemented in MATLAB and the source
code and data sets are publicly available at: https:

//bit.ly/2FkUB3Q. We use the publicly available im-

plementations and recommended parameter settings for
other comparison methods.

5.1 Synthetic Heterogeneous Data Sets

In the beginning, the effectiveness of HGGM is inves-
tigated in comparison to other algorithms in terms of

F-measure. That is achieved by conducting various ex-
periments each of which concerning a unique charac-
teristic. In the following, we focus on the scalability of

HGGM varying the number of interacting time series
and the length of them. We report the average perfor-
mance of 50 iterations performed on different data sets

with the given characteristics in every synthetic exper-
iment. Unless otherwise mentioned, we generated time
series are of length 1,000 (except for the experiment
on increasing the length). In order to be fair in every

experiment, we run the algorithm for various lags and
take the average F-measure as the final result for the
algorithms which require a user to specify the lag vari-

able.

Effectiveness: HGGM is designed to deal with
Gaussian as well as non- Gaussian time series having

a distribution from the exponential family. In this ex-
periment we generated time series with various combi-
nations of Gaussian and non-Gaussian distributions in

order to assess HGGM in various cases. Figure 2 shows
that HGGM outperforms other algorithms in various
combinations of Gaussian – non-Gaussian distributions

and discrete – continuous time series. It confirms ef-
fectiveness of the GLM-based objective function cop-
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Fig. 3 Investigating the performance of HGGM comparing to others in various aspects.
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Fig. 4 Investigating computational efficiency of HGGM comparing to others in terms of runtime in seconds.

ping with heterogeneity of time series in comparison to
others. We focus on synthetic data sets for the rest of
the experiments where a mixture of Poisson – Gaussian
time series are generated as a representative for hetero-

geneous data sets.

Dependency: We refer to the coefficients in VAR

model as dependency among interacting time series. In
this experiment, the performance of HGGM in com-
pared to others when the dependency is increasing rang-

ing from 0.1 to 1. Figure 3 a illustrates how various
algorithms perform in this experiment. When increas-
ing dependency, as expected, HGGM and SFGC have
an ascending trend while the effectiveness of Crack and

TEN is decreasing surprisingly. Although the perfor-
mance of HGGM is less than SFGC and TEN in a very
early stage, it outperforms other algorithm for the de-

pendencies higher than 0.3 with a wide margin.

Increasing the Number of Time Series: Does

the number of involved time series in a causal graph
influences the performance of algorithms? Investigat-
ing this question, we increase the number of time se-
ries (features) iteratively in order to compare the per-

formance of the algorithms when many time series are
involved i.e. corresponding causal graphs are more com-
plex. Figure 3 b confirms a descending trend in terms

of F-measure for every algorithm while HGGM is still
more efficient than others in any case. There is a big

gap among the performance of two algorithms, Crack

and TEN, comparing to HGGM in this figure. As a
justification, these algorithms are not designed to deal
with bidirectional causalities. Thus, by increasing the

number of time series, it affects the performance more
and more.

Causal Relations: How does the sparsity of true
causal graph affects the performance of various algo-
rithms? In this experiment, we address this question
varying the number of causal relations among 5 mixed

time series from Poisson – Gaussian combination. As
expected, the effectiveness is in a direct relation with
the density of the true causal graph. That is, the per-

formance of algorithms is increasing when the density
is increasing too. However, Figure 3 c illustrates the
superiority of our algorithm in terms of performance
comparing to others even for sparse graphs.

Scalability: We investigate algorithms in terms of
scalability conducting two various experiments. First,

the number of interacting time series is increasing iter-
atively where the length is set to 1,000 i.e. n = 1, 000.
In the other experiment, we, every time, generate four

time series while the length of them n is ranging from
1,000 to 10,000. The superiority of HGGM is shown in
Figure 4 a for the first experiment when the number
of time series (features) is bigger than 6 comparing to

Crack and TEN and bigger than 9 comparing to SFGC.
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Ground Truth HGGM, Fmeasure = 0.86 TEN and Crack, Fmeasure = 0.5 SFGC, Fmeasure = 0.5 

Fig. 5 Comparing HGGM to others on German weather data set.

As shown in Figure 4 b, focusing on the result of the

second experiment, increasing the length of time series,
HGGM is the fastest algorithm almost always for the
time series longer than 2,000. Thus, the efficiency of the
proposed algorithm (HGGM) is confirmed considering

both experiments.

5.2 Real-world Applications

We conducted the experiments on publicly available
real data sets considering two cases, whether a ground

truth is given or not. In order to be fair in the real ex-
periments we set d = 15 for all the algorithms which
require a lag variable.

Weather in Germany: The first data set DWD 2

is a climatological data consisting of 6 measurements,
temperature, sunshine hours, altitude, precipitation, lon-
gitude and latitude for 394 weather stations all over

Germany. The altitude measurement is already pro-
vided in a discrete time series while all other measure-
ments are continuous. Applying the statistical fitting

procedure (Section 4), we assign Gaussian distribution
for all continuous time series and the Poisson distri-
bution for the altitude. The ground truth is available
in [16] which is provided by pairwise causal relations.

In order to be fair by evaluating the results of the al-
gorithms, we do not consider the causal interactions
where no information is provided. Figure 5 shows the

performance of HGGM comparing to other algorithms
in terms of F − measure. HGGM ably finds all the
existing causal relations. However, it detects causal re-

lations where sunshine and temperature cause altitude.

Marks: The next two data sets together with the
corresponding ground truth are publicly available 3.
Marks data set concerns the examination marks of 88

2 http://www.dwd.de/DE/Home/home_node.html
3 Http://www.bnlearn.com/documentation

students on five different topics. The given true causal
graph reveals any impacts the grades of a topic could

have on the other topics. We assign Poisson distribu-
tion to any topic. In this experiment HGGM (F −
measure = 0.74) was able to outperform TEN (0.55),

Crack (0.6) and SFGC (0.71).

Gaussian: The Gaussian data set is a simulated
data showing the causal interactions among 7 Gaus-
sian time series. The time series are of the length 5,000.

HGGM (F −measure = 0.4) performs more accurately
comparing to other algorithms, TEN (0), Crack (0.14)
and SFGC (0.14), although non of the algorithms was

able to capture all the causal relations in the ground
truth.

Austrian climatological data set: As a real world
application we investigate causal spatio-temporal inter-

actions among climatological phenomena for 10 sites
uniformly distributed in Austria (Fig. 1).

For any site we used the monthly measurements of
precipitation and of the number of sunny days for 26
months. Employing the statistical fitting, we consider

a Gamma distribution for the precipitation and a Pois-
son distribution for the number of sunny days. Figure
6-7 show the complete Granger causal graphs running

various algorithms. However, we focus on the station
Feuerkogel to better interpret the results. Moreover,
the real meteorological data set is publicly available 4.
Essentially, Austrian weather is influenced by three cli-

matic systems while any system has its own characteris-
tics. Concerning the interpretation of results for the se-
lected station, we concentrate on the Atlantic maritime

climate from the north-west which is characterized by
low-pressure fronts, mild air from the Gulf Stream, and
precipitation [2]. The northern slopes of the Alps, the

Northern Alpine Foreland, and the Danube valley are
influenced by the Atlantic weather system.

4 Https://www.zamg.ac.at
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Fig. 6 Experiment on the Austrian data. Result of HGGM
algorithm.

Fig. 7 Experiment on the Austrian data. Result of Crack
algorithm.

The next weather system is continental climate which
is mostly characterized by low pressure fronts with pre-

cipitation in summer and high pressure systems with
cold and dry air in winter. Mainly eastern Austria (Retz,
Wien, Eisenstadt) is affected by the continental weather
system. The last weather system is Mediterranean from

the south with few clouds and increasing the number of
sunny days. This weather system influences the south-
ern slopes of the Alps i.e. Lienz, St.Andere, Kleinzicken.

Fig. 9 shows the causal graph discovered by HGGM,
TEN and Crack. SFGC was not able to detect any
causal relation therefore we exclude its result. Consider-

ing the impact of the Atlantic weather system, one ex-
pects the influence on the neighbour sites of Feuerkogel

Fig. 8 Experiment on the Austrian data. Result of TEN
algorithm.

and the sites in eastern Austria. The sites in south-
ern slope cannot be influenced by this system since
the Alps are located in between. Comparing HGGM to

other algorithms, HGGM is successful to detect more
influenced sites by finding the correct causal direction
among Linz, Salzburg, Retz, Wien and Eisenstadt. How-

ever it detects an interaction between Feuerkogel and
Lienz which is not likely due to the large mountain area
between the sites. Regarding Crack, although the only

causal relation discovered by this algorithm sounds rea-
sonable, there are other stations, e.g. Linz and Salzburg,
where it is plausible to consider a causal interaction
among them. On the other hand, TEN discovers a dense

causal graph among all 20 time series and Feuerkogel
which is hard to interpret. Moreover considering the
Atlantic weather system, there is no interpretation for

the causal direction from Retz to Feuerkogel detected
by TEN since its direction is exactly in the opposite.

6 Anomaly Detection of Heterogeneous Time

series

As mentioned, discovery of causal relations among dif-
ferent processes leads to specify any evolution in time

of regular instances. The regular pattern can be used
to detect the deviated observations in anomaly detec-
tion. Among various types of anomalies (e.g. uni-variate
anomalies etc.) we focus on dependency anomalies where

an anomaly occurs due to changes of temporal depen-
dencies. Detecting dependency anomalies is more chal-
lenging and complicated, but common in the real appli-

cation. Given a heterogeneous data set, this task gets
even more complex although such a scenario seems to
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HGGM Crack TEN 

Fig. 9 Experiment on the Austrian climatological data. blue circles: amount of precipitation and orange circles: number
of sunny days.

be realistic. In this section we introduce our anomaly
detection algorithm designed for heterogeneous cases

based on what we introduced in the previous sections.
Firstly, we investigate all the temporal dependencies
between or within the heterogeneous time series. Then,
we utilize this useful information in order to detect de-

pendency anomalies in a general case.

Before explaining how to use the temporal depen-
dencies in order to find the anomalies, we formally de-
fine the task of anomaly detection in the following.

Then, we introduce our anomaly detection framework
designed for heterogeneous data sets.

6.1 Detecting Anomalies in Time Series

One of the approaches to detect anomalies in time se-
ries is to find the most accurate statistical model that
captures the generation process of the normal (non-

anomalous) data, then, investigate any deviation from
this normal pattern. That is, we estimate the likelihood
of a new observation based on the captured model and
specify the data as an anomaly if the likelihood is be-

low some thresholds. More precisely, for a time series
x1:n, let x(tr) = {xt|t = 1, . . . , Ttr} and x(te) = {xt|t =
Ttr, . . . , n} denote the training data and test data, re-

spectively. We assume the training data to be non-
anomalous and we name the model corresponding to the
training data the normal pattern. In the next step, we

investigate the test data observations and specify any
significant deviations to the normal pattern as anoma-
lies. To the best of our knowledge, Qiu et al. employed
Granger graphical models to detect dependency anoma-

lies (AD-GGM) among time series for the first time [19].
However, their approach is restricted to only Gaussian
time series where some specific assumptions about the

distribution of time series is considered. Although our
approach is inspired by [19], we incorporate our pro-

posed Granger graphical model for heterogeneous time
series (HGGM) and introduce a new anomaly detection
algorithm (AD–HGGM) for mixed time series.

6.2 Heterogeneous Anomaly Detection Framework

As mentioned, we aim at detecting dependency anoma-
lies in this paper where an anomaly occurs due to changes
of temporal dependencies. That is, given p time series
x1, . . . xp of length n, we, firstly, investigate the test

data observations utilizing the temporal causal rela-
tions among time series while no assumption about the
distribution of time series is considered. Analogous to

the previous section, let X(tr) = {xti|i = 1, . . . , p &
t = 1, . . . , Ttr} and X(te) = {xti|i = 1, . . . , p & t =
Ttr, . . . , n} denote the training data and the test data

for p time series. Therefore, we compare the normal
pattern captured from X(tr) to the pattern captured
from X(te). Our proposed assumption-free anomaly de-
tection framework for heterogeneous time series consists

of three main building blocks:

– detecting the temporal causal relations,

– identifying an appropriate anomaly score,
– introducing an efficient approach to specify anoma-

lies.

In the following we describe every block in detail.

– Temporal Dependencies: Most existing algorithms
for Granger causal inference are based on statistical

significance tests which is computationally expen-
sive and sensitive to the number of observations. In
this paper, also inspired by GGM algorithm, we em-

ploy our proposed Granger graphical model (HGGM)
to learn temporal dependencies based on penalized
regression. That is, we determine the temporal re-

lations among a time series xi and others by the
regularized regression introduced in Equation 7.
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Extensive experiments in Section 5 already confirmed
effectiveness and efficiency of HGGM. Moreover, our
approach is general compared to GGM in the sense
that it is applicable for heterogeneous data sets.

In a normal case, when no anomalies occur, the
temporal causal graph is the same for training and
test data. This is the null hypothesis in dependency

anomalies. That is, when learning the temporal de-
pendencies in test data, we consider the null hypoth-
esis, i.e. temporal dependencies in training data, as

another constraint. More precisely, let β̂
(tr)
i be the

coefficient vector solving the optimization problem
defined in Equation 7 for training data X(tr). Anal-
ogously, let β

(te)
i denote the coefficient vector w.r.t.

test dataX(te). Thus, when finding β
(te)
i we incorpo-

rate the null hypothesis in the sense that the values

of β
(te)
i should be zero (or nonzero) when the corre-

sponding values of β
(te)
i are zero (or nonzero). This

leads to the following regularized regression the test
data:

β̂
(te)
i = arg min

β
(te)
i

n∑

T=Ttr+d+1

[
− x(te),Ti (X

(te),Lag
T,d .β

(te)
i )

+g−1
i (X

(te),Lag
T,d .β

(te)
i )

]
+ λ.

p∑

j=1

wj |β(te)
j − β̂(tr)

j |.

(10)

Since β̂
(tr)
j is a constant in Equation 10, therefore

the estimation of β̂
(te)
i is also consistent followed

by Corollary 1. In the next step we aim at finding
data points that significantly deviate from the nor-
mal pattern.

– Information-theoretic Score: When all the tem-
poral dependencies are detected, the next step is
to specify anomalies comparing the captured model

w.r.t. training and test data. That is, we employ an
anomaly score to measure any difference between
two distributions. From the information-theoretic

perspective, the most natural difference measure be-
tween every two distributions is the Kullback-Leibler
(KL) divergence. This is a distance function of to

which extent one probability distribution diverges
from the second one. However, KL-divergence is not
symmetric and hence not a distance metric. There-
fore, we consider Jensen-Shannon (JS) divergence as

an anomaly score in our framework. JS-divergence
is symmetric, its square root is a metric and can
be used as a distance function. These properties of

JS-divergence help to save some computations.

Altogether, for a particular time series xi Jensen-
Shannon anomaly score (JSD) is defined by:

JSD(xi) =
1

2
D(P (tr)||M) +

1

2
D(M ||P (te)) (11)

where P (tr) and P (te) are the underlying probabil-
ity distribution function (PDF) in the reference and

test data sets, respectively while it depends on the
distribution of the time series xi. Applying GLMs
allow us to consider all the probabilities from the

exponential family, e.g. Poisson, Gamma. As an ex-
ample, if the underlying distribution is Poisson, the
conditional probabilities used in JSD are computed
considering xi|XLag

T,d ∼ Pois(XLag
T,d .β̂i) where β̂i is

the coefficient vector achieved by Equation 7. More-
over, D(.) denotes the KL measure and is defined as
follows:

D(P (tr)||M) =
∑

P (tr)(xi|XLag
T,d )

P (tr)(xi|XLag
T,d )

P (te)(xi|XLag
T,d )

(12)

where M = 1
2 (P (tr) + P (te)).

– Anomaly Detection: So far we have elaborated
how to specify temporal dependencies in a hetero-

geneous data to capture the model associated to the
data. Moreover, we introduced an anomaly score to
measure the deviation of a model to a normal pat-
tern. Now, the question is how to mark anomalies.

In order to specify dependency anomalies we need a
threshold defined based on the non-anomalous part
of the data, i.e. training data. One could consider

the entire training data to capture an anomaly thresh-
old. However, inspired by AD-GGM algorithm [19],
we slide a window over training data and find an

anomaly threshold w.r.t. every time window in or-
der to give more insights about the exact position of
the anomaly. That is, for every window we compute
the anomaly score introduced in the previous section

and approximate the distribution of the anomaly
scores for a non-anomalous data. Employing a sig-
nificance level α, the α−quantile of this distribution

is considered as threshold cutoff (refer to Section B
in [19]).

6.3 Algorithm

Algorithm 2 summarizes different steps of the proposed
anomaly detection procedure based on HGGM algo-

rithm for heterogeneous data sets (AD–HGGM). As al-
ready explained, we aim at finding a normal temporal
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pattern based on the training data. Then, we slide a
window over the test data and specify anomalous win-
dows comparing the corresponding anomaly score for
the window to an anomaly threshold.

Before starting the algorithm, we need to specify an
anomaly threshold w.r.t. the non-anomalous data, i.e.
training data, for every time series xi, i = 1, . . . , p. Pro-

cedure AnomalyThreshold(.), summarized in Algorithm
3, shows different steps of this process. β(tr) denotes
the coefficient vector of the corresponding VAR model

for the entire training data when learning the tempo-
ral causal dependencies by HGGM. Then, we slide a
window over the training data and learn the temporal
dependencies for every window. Finally, we calculate

the JSD(.) for every window and find α − quantile of
the most fitting distribution w.r.t. anomaly scores.

Now, having an anomaly threshold w.r.t. every time

series, we proceed with the same procedure (as explained
in Algorithm 3) for the test data. In order to detect the
anomalies more precisely, we slide a window over the
test data to discover not only if any anomaly occurs

but also more accurately in which time window it hap-
pens. That is, We slide a window w of size WS over the
test data and learn the temporal dependencies (Equa-

tion 10). Then, we compare the corresponding anomaly
score (JSDw

i ) to the threshold w.r.t. time series xi, i.e.
thri. If the anomaly score is higher than the threshold

we mark the window as an anomalous window.

6.4 Experiments

In this section we conduct various experiments assessing
the performance of our proposed heterogeneous anomaly
detection algorithm (AD–HGGM) in terms of F-measure.
In every experiment, we compare our results to AD-

GGM [19] in order to investigate the impact of applying
a homogeneous algorithm with specific assumptions on
a heterogeneous data.

Our expectation is that AD–HGGM should perform
better on heterogeneous data sets and especially non-
Gaussian time series due to the employed general Granger

graphical model (HGGM). Moreover, the introduced
anomaly score (JSD) relaxes Gaussian assumptions about
the time series when computing the anomaly scores for
every time window. First, we elaborate the data gen-

eration process. Then, the performance of AD–HGGM
is assessed on various homogeneous and heterogeneous
synthetic data sets. Afterwards, we will conduct differ-

ent experiments to see how the performance changes
when changing the length of time series, strength of
causal relations (dependency), number of dependencies

and number of anomalous time series. Both, AD–HGGM
and AD-GGM, are implemented in MATLAB and for

Algorithm 2 Heterogeneous Anomaly Detection

AD–HGGM(x1, . . . , xp;WS;α;λmax)

// x1, . . . , xp := time series with a distribution from the
exponential family
// WS := window size
// α := significance level
// λmax := maximum λ

X(tr) = {xti|i = 1, . . . , p & t = 1, . . . , Ttr} // training data
X(te) = {xti|i = 1, . . . , p & t = Ttr, . . . , n} // test data

// find the anomaly threshold for every time series
thr = AnomalyThrshold(X(tr),WS, α);

for all xi do

// Learn temporal causal graph for xi
βi

(tr) = HGGM(X(tr), λmax);

// Slide a window w with size WS over the test data
for all w do
βi

(te),w = HGGM(X(te),w, λmax);

JSDw
i = JSD(x(w)

i , βi
(tr), βi

(te),w)
if JSDw

i > thri then

mark w as an anomalous window;
end if

end for

end for

Algorithm 3 Anomaly Thresholds

AnomalyThreshold(X(tr), WS, α)
// find anomaly threshold for every time series
thr := a vector of anomaly thresholds w.r.t. time series

// Learn normal temporal causal graph
β(tr) = HGGM(X(tr), λmax);
for all xi do

// Slide a window w with size WS over the training data
for all w do

βi
(tr),w = HGGM(X(tr),w, λmax);

JSD(x(w)
i , βi

(tr), βi
(tr),w)

end for
//fit a distribution to anomaly scores then consider α−
quantile of it.
thri = fitDistribution(JSD(xi), α);

end for

return thr

AD-GGM we use the publicly available implementa-
tions and recommended parameter settings. The source

code and data sets are publicly available in the follow-
ing repository: https://tinyurl.com/tnxw7fc

– Synthetic Data Generation: In order to inves-

tigate dependency anomalies in time series, we gen-
erate the corresponding training and test data from
different dependency structures, i.e. with different

VAR models. Figure 10 shows an example when
two dependency structures along with two random
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Training Data Model-C1 Test Data Model-C2 

Fig. 10 Dependency structure of generated data.

coefficient matrices, C1 and C2, are used to gener-

ate a synthetic data set. Given 3 random time se-
ries X2, X3 and X4, we generate training and test
data w.r.t. X1 considering a random lag variable

and two coefficient matrices C1 and C2. X2, . . . , X4

could have any distribution from the exponential
family. In this example, all the time series consist of

300 observations. The first 200 values of X1 (train-
ing data) are then generated with C1 and the last
100 (test data) are generated with C2. Therefore,
an anomaly occurs at time 201 meaning that all

the anomaly scores for the last 100 values should
ideally be above the anomaly score threshold calcu-
lated from the training data.

– Accuracy: AD–HGGM is designed to deal with ho-
mogeneous and heterogeneous data sets consisting
of time series with a distribution from the expo-

nential family. Analogous to the previous experi-
ments on HGGM algorithm (Section 5), we focus
on 4 distributions: Gaussian, Poisson, Bernoulli and

Gamma. We start by trying out all different homo-
geneous data sets, generated as explained in the pre-
vious section, with 4 features and the dependency

structure shows in Figure 10. Both algorithms were
run on multiple data sets and we took the aver-
age F-measure for all of them. As explicitly evident
from Figure 11, AD–HGGM outperforms AD-GGM

in all of the homogeneous cases with a wide margin.
These results, specially results on Gaussian data set,
confirm the effectiveness of adaptive Lasso (whose

consistency is proven) compared to Lasso approach.
Moreover, employing GLM framework instead of as-
suming a default Gaussian distribution, pays off in
various non-Gaussian data sets, as it is observed in

Figure 11.
Next, we consider more realistic data sets where a
mixture of time series from various distributions is

given. We tried out data sets with the following com-
binations of distributions: Binomial-Gamma, Binomial-
Poisson, Gamma-Poisson, Poisson-Gaussian, Gaussian-

Gamma, Gaussian-Binomial. As expected (also con-
firmed by the experiments, Figure 11), AD-GGM

is not able to deal with the heterogeneity of data

sets leading to poor results compared to homoge-
neous cases. Not only homogeneity, but also non-
Gaussianity of a data set negatively influences the

performance of AD-GGM, as, for instance, it re-
sults worse on ”Bernoulli-Poisson” in comparison
to ”Gaussian-Gamma” or ”Gaussian-Bernoulli” (see
Figure 11). On the other side, AD–HGGM effec-

tively handles the heterogeneity of data sets, regard-
less of the distribution of time series, due to our gen-
eral assumption-free framework utilizing GMLs.

In the next experiments, we focus on different as-
pects of data that can potentially be impactful, e.g.

the length of the time series or number of anoma-
lous features. The data sets are generated with the
same procedure as before. However, we modified the
length of time series or the strength of dependen-

cies in some of the experiments. But generally there
were two coefficient matrices defined that simulate
the temporal anomaly changes. In order to be con-

sistent in the following experiments, the distribution
of the data sets is the combination of Bernoulli and
Gamma, since both algorithms seem to be well com-
parable in performance on this combination (AD-

GGM results the best on this data in previous ex-
periment, see Figure 11). Further details about the
data sets will be discussed in each subsection.

– Dependency: We refer to the coefficients in a vec-
tor autoregressive model as dependencies. Moreover,

coefficients in a VAR model show the strength of
temporal causal relations in that model. In this ex-
periment, we aim at assessing the algorithms in the
sense that different temporal dependencies with var-

ious strength are given. Therefore, we evaluate AD–
HGGM compared to AD-GGm ranging the depen-
dency between 0.2 to 1.0. In this case, a more sta-

ble trend shows the performance and the ability
of the algorithm to deal with even weak tempo-
ral dependencies. The experiment is conducted on 4

time series with the length 300 from mixed distribu-
tion data sets, with only the first feature exhibiting
anomalous behavior. As expected, Figure 12a illus-
trates the stability of AD–HGGM compared to AD-

GGM even for weak causal relations.

– Number of anomalous features: Is the algo-

rithm able to detect the anomalies equally well as
only looking for one anomaly, if there are more than
one anomalous time series? To assess the algorithm
in this respect, we continuously increase the number

of features as well as the number of anomalous fea-
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Fig. 11 Accuracy investigation on synthetic homogeneous and heterogeneous data sets. Ga: Gamma, G: Gaussian, B:
Bernoulli, P: Poisson.

tures ranging from 2 to 10 in 2 increments. Figure
12b shows the result of AD–HGGM compared to
AD-GGM in this experiment. As it is evident, num-

ber of anomalous features has no impact on the per-
formance of AD–HGGM confirming the efficiency of
our proposed algorithm even in more complex data
sets where many anomalous features are interacting.

– Number of dependencies: Does the sparseness
of a temporal causal graph play any roles when de-

tecting the dependency anomalies? In this experi-
ment, we address the above question while increas-
ing the number of causal relations ranging from 1
to 5. Here, the generated data sets consist of a mix-

ture of 6 Bernoulli-Gamma distributed features of
the length 300 with a random dependency structure.
Regardless of sparseness of the causal graphs, AD–

HGGM outperforms AD-GGM almost always show-
ing a stable trend (see Figure 12c). Thus, sparsity
does not play any roles when applying our proposed

algorithm. This result confirms the effectiveness of
AD–HGGM applying to the data sets with sparse
as well as complex dependency structures.

– Feature length: In this experiment, we evaluate
the algorithms when they deal with different lengths
of time series ranging from 200 to 2000. The depen-

dency structure outlined before is the same (a mix-
ture of 4 time series from Bernoulli-Gamma com-
bination of distribution), except the fact that the

length of training and test data changes with the
length of the time series. Analogous to the previ-
ous experiments, where the training data was 200
and test data 100 time points long, we choose to

use 60% of the data for training and the rest as test
data, on which the algorithm performance is evalu-
ated. As evident in Figure 12d, the performance of

AD–HGGM is robust against changing the length

of time series. This result confirms the effectiveness
of proposed algorithm regardless of the length of
the provided data. In contrast, AD-GGM does not

show any meaningful trend which is difficult to in-
terpret although the authors claim that with more
data AD-GGM is more effective.

7 Conclusions and future work

In this paper we introduced HGGM, a graphical Granger
model for discovery of causal relations among a number
of heterogeneous processes. Profiting of a GLM frame-

work our approach is general for time series having dis-
tributions from exponential family. Moreover to ensure
the consistency of HGGM we employ adaptive Lasso

with a proven consistency. We investigated the perfor-
mance of HGGM in terms of effectiveness and efficiency
comparing to state-of-the-art methods. Extensive ex-
periments on synthetic and real data sets demonstrates

the advantages of HGGM. As one of the interesting ap-
plications of HGGM, we utilized it to detect anomalies
among heterogeneous time series. Thus, we introduced

a general anomaly detection framework to discover de-
pendency anomalies among time series in heterogeneous
data sets (AD–HGGM).
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CHAPTER 11
Paper H & Paper I:

Information–theoretic Granger
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Abstract Granger causality for time series states that
a cause improves the predictability of its effect. That

is, given two time series x and y, we are interested in
detecting the causal relations among them considering
the previous observations of both time series. Although,

most of the algorithms are designed for causal infer-
ence among homogeneous processes where only time se-
ries from a specific distribution (mostly Gaussian) are
given, many applications generate a mixture of vari-

ous time series from different distributions. We utilize
Generalized Linear Models (GLM) to propose a general
information–theoretic framework for causal inference

on heterogeneous data sets. We regard the challenge of
causality detection as a data compression problem em-
ploying the Minimum Description Length (MDL) prin-

ciple. By balancing the goodness–of–fit and the model
complexity we automatically find the causal relations.
Extensive experiments on synthetic and real–world data
sets confirm the advantages of our algorithm ITGH
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1 Declarations

– Availability of data and material: We conduct
various experiments on publicly available homoge-

neous and heterogeneous real–world data sets where
a valid ground truth is provided. Table 3 summa-
rizes the characteristics of the data sets. Moreover,
a climatological data set without a provided ground

truth is investigated which is publicly available in
[11]. For convenience, here we gathered all the data
sets: https://tinyurl.com/yar5yuoq.

– Code availability: ITGH is implemented in MAT-
LAB and the source code is publicly available at:

https://tinyurl.com/yar5yuoq

2 Introduction

Discovery of causal networks from observational data,

where no certain information about their distribution
is provided, is a fundamental problem with many ap-
plications in science. The regular patterns, found by
investigating the corresponding causal graph, can be

used to detect the deviated observations or outliers [17].
Among several notions of causality, Granger causality
[9] is a popular method for causal inference in time se-

ries due to its computational simplicity. It states that
a cause improves the predictability of its effect in the
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future. That is, given two time series x and y, consid-
ering the previous observations of y together with x
improves the predictability of x if y causes x. There are
various algorithms in this area depending on how we

measure the predictability. Usually, any improvement
in the predictability is measured in terms of variance of
the prediction errors (known as Granger test, shortly

GT).

In this paper we establish our method based on an
information–theoretic measurement of the predictabil-

ity. That is, we regard the challenge of causal inference
as a data compression problem. In other words, em-
ploying the Minimum Description Length (MDL) prin-

ciple, y causes x if considering the past of y together
with x decreases the number of bits required to en-
code x. More deviation in the compression cost reveals

stronger causal dependency among two time series. Un-
like the other information–theoretic approaches (e.g.
entropy–based algorithms [20]), we incorporate com-
plexity of the models with the MDL–principle. Thus,

it leads to a natural trade–off among model complexity
and goodness–of–fit while avoiding over–fitting.

Although Granger causality is well–studied, most
of the algorithms are designed for homogeneous data
sets where time series from a specific distribution are

provided. Recently, Budhathoki et al. proposed a MDL–
based algorithm designed for causal inference on binary
time series [7]. Additive Noise Models (ANMs) have
been proposed for either continuous [16] or discrete [15]

time series. Graphical Granger approaches, which are
popular due to their efficiency, mostly consider additive
causal relations with a certain Gaussian assumption,

e.g. TCML [1] or [2].

Despite the efficiency of homogeneous algorithms,
many applications generate heterogeneous data, i.e. a

mixture of various time series from different distribu-
tions. In climatology, for instance, the measurement of
number of wet days does not necessarily follow the same

distribution as the amount of precipitation. Moreover,
transforming a time series to another time series with a
specific distribution leads to inaccuracy. On the other

side, applying an algorithm designed for homogeneous
data sets on heterogeneous data does not guarantee a
high performance. To elaborate, we generated a hetero-
geneous data set consisting of 4 Poisson (blue circles

in Figure 1) and a Gamma (orange circle) distributed
time series and applied one of the representatives for
any category designed for Granger causal inference on

homogeneous data sets. As it is explicitly clear in Fig-
ure 1, none of the well–known algorithms perform effi-
ciently on this data set in terms of F–measure. GT, for
instance assumes a Gaussian distribution and hence a

linear relation among time series which obviously leads

Ground Truth & ITGH 

F-measure=1.00 

CUTE 

F-measure = 0.30 

GT  

F-measure = 0.00 

TCML 

F-measure = 0.57 

Fig. 1 Synthetic heterogeneous example. Results of ap-
plying existing Granger causal inference algorithms designed
for homogeneous data sets on heterogeneous data. Red edges
show the wrongly detected causal relations and black edges
show the correct causal directions.

to inefficiency. On the other hand, CUTE needs to bi-
narise time series as it is designed for event sequences

where Bernoulli distributed time series are assumed. It
is already well–understood that discretization and spe-
cially binarising the data decreases the accuracy since

the distribution of the time series is not any more the
same.

Thus, integrating processes of various distributions

without any transformation or certain assumptions sounds
crucial. In this paper, we utilize Generalized Linear
Models (GLMs) to extend the notion of Granger causal-
ity and introduce an integrative information–theoretic

framework for causal inference on heterogeneous data
regardless of the distributions. GLMs allow us to gen-
eralize simple autoregressive models to the case where

several processes of different distributions from the ex-
ponential family are non–linearly related. Moreover, un-
like many other algorithms, we aim at detecting causal
networks. To the best of our knowledge, almost all of

the existing algorithms are designed based on a pairwise
testing approach. This approach is inefficient in causal
network discovery when dealing with large causal net-

works. To avoid this issue, we propose our MDL–based
greedy algorithm (ITGH) to detect heterogeneous Granger
causal relations in a GLM framework. Our approach

consists of the following contributions:

– Effectiveness: We introduce a MDL–based indica-
tor for detecting Granger causal relations. Unlike

other information–theoretic approaches, we ensure
the effectiveness of our MDL–based algorithm by
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balancing goodness–of–fit and model complexity;

– Heterogeneity: Applying the GLM methodology,
we propose our heterogeneous MDL–based algorithm

to discover the causal interactions among a wide va-
riety of time series from the exponential family;

– Scalability: Due to the greedy approach, we might
not find the overall optimal solution, but it makes
ITGH scalable and convenient to be used in prac-

tice. Moreover, our extensive experiments on syn-
thetic and real data sets confirm the efficiency of
the proposed algorithm compared to others;

– Comprehensiveness: Our approach is compre-
hensive in the sense that we avoid any assumptions
about the distribution of data by applying an infor-

mation –theoretic approach.

The paper is organized as follows: First, we present the
related work in Section 3. In Section 4, we elaborate the

theoretical aspects of ITGH together with the required
background. In Section 5, we introduce our greedy algo-
rithm ITGH. Extensive experiments on synthetic and
real-world data sets are demonstrated in Section 6.

3 Related Work

Granger causality is a well–known causal notion among

time series due to its simplicity, robustness and com-
putational efficiency [9]. It states that a cause (y) effi-
ciently improves the predictability of its effect (x).

There are various approaches to infer the causality
depending on how to measure the predictability. Typ-
ically, any improvement in the predictability is mea-

sured in terms of variance of the error by a hypothesis
testing approach [12,18]. Moreover, graphical Granger
methods are designed based on a penalized estimation

of vector autoregressive (VAR) models [1,22]. The in-
tention in this approach is that, if y causes x it has
non-zero coefficient in the VAR model corresponding
to x. First, Arnold et al. [1] proposed a Lasso penal-

ized estimation for VAR models (TCML) to obtain a
sparse and robust estimator and hence the causal rela-
tions. As an extension, Bahadori and Liu [3] proposed

a semi–parametric algorithm for non–Gaussian time se-
ries based on the copula approach to retain the scala-
bility of linear VAR. Recently, authors in [5] employed

adaptive Lasso to generalize this approach to the het-
erogeneous cases (HGGM).

As another category, probabilistic approaches inter-
pret the predictability as the improvement in the like-

lihood. Several methods in this group are distinguished

based on the way how they incorporate the probabil-
ity. Among them, Kim and Brown [10] introduced a
probabilistic framework (SFGC) for Granger causal in-

ference on heterogeneous data sets by a pairwise test-
ing of the maximum likelihood ratio. In this framework
assessing causal relations between multiple time series
is accomplished by the false discovery rate (FDR). The

statistical power of the FDR based methods rapidly de-
creases with increasing the number of hypotheses and
these methods are computationally expensive.

As another approach, information–theoretic meth-
ods detect the causal direction by introducing a causal
indicator. Among them, transfer entropy, shortly TEN,

is designed based on Shannon’s entropy [20]. In this ap-
proach, it is more likely that the causal direction with
the lower entropy corresponds to the true causal rela-

tion. Given a lag variable, TEN detects both linear and
non–linear causal relations. However, due to pairwise
testing and its dependency on the lag variable, the com-
putational complexity of this algorithm is exponential

in the lag parameter. On the other hand, compression–
based algorithms apply the Kolmogorov complexity and
define a causal indicator based on the MDL–principle.

Unlike the entropy–based approach, we incorporate the
complexity of the models in the MDL–principle, as well.
Thus, it leads to a natural trade–off among model com-
plexity and goodness–of–fit while avoiding over–fitting.

Then, MDL–based approach is more efficient compared
to the entropy–based approach. Recently, Budhathoki
et al. [7] proposed a MDL–based algorithm (CUTE)

to infer the Granger causality among event sequences.
However, this algorithm is designed only for homoge-
neous data sets and deals with binary time series. More-

over, CUTE detects the causal relations in an exhaus-
tive pairwise manner which ends with inaccurate net-
works while detecting Granger causal graphs. To the
best of our knowledge, ITGH is the only algorithm in

this approach which is designed for discrete and contin-
uous time series and supports the heterogeneity of data
sets.

Several other approaches have been proposed for
identification of Granger causality in non–linear sys-
tems e.g. kernelized regression [13], generalized linear

autoregressive models [23], [11]. However these methods
are not efficient in high dimensions and do not support
the heterogeneity.

4 Theory

How to detect the Granger causal direction among any

two time series? How to extend this concept to a general
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Symbol Description

I(t) all the information accumulated since time t
I¬y(t) all the information apart from

the specified time series y up to time t
xi
t time series xi at time t

Xt concatenated vector of x1, ..., xp at time t
n length of time series
d lag variable
gi link function w.r.t. xi
DL description length
Ci set of all causal time series w.r.t. xi
MCi

prediction model w.r.t. xi
ei
t estimation error (x̂ti − xit)

Table 1 Common symbols used in the paper.

heterogeneous case? Could an information–theoretic ap-
proach lead to causal inference? These are fundamental
questions we address in this section while providing the

required background, simultaneously. Table 1 summa-
rizes the notations used commonly in this paper.

4.1 Granger Causality

Granger causality, introduced by Granger in the area of
economics [9], is a well–known notion for causal infer-

ence among time series. Granger causality captures the
temporal causal relations among time series although it
is not meant to be always equivalent to the true causal-

ity since the question of ”true causality” is deeply philo-
sophical. This notion of causality is defined based on
two principles [8]:

– The cause happens prior to its effect;
– The cause has unique information about the future

values of its effect.

The first assumption is intuitively acceptable since

the past influences the future, not other way around. On
the other hand, the second assumption sounds plausible
as well in the sense that without considering the cause

no information about the effect is available. Now, let
x = {xt|t = 1, . . . , n} and y = {yt|t = 1, . . . , n} denote
two stationary time series x and y up to time n, respec-
tively. Moreover, let I(t) be all the information accumu-

lated since time t and I¬y(t) denote all the information
apart from the specified time series y up to time t. Now
considering two above assumptions, Granger proposed

the following definition for a causal effect [9]:

Definition 1 Granger Causality: Given two time

series x and y, y Granger–causes x if including previous
values of y along with x improves the predictability of

x, i.e.

P(xt|I¬y(t− 1)) < P(xt|I(t− 1))

where P denotes the predictability.

In another point of view, let Model 1 denote the
autoregressive (AR) model of order d (the lag) corre-
sponding to time series x and Model 2 denote the vec-

tor autoregressive (VAR) model w.r.t. x including the
lagged observations of x and y.

xt = γt−d · xt−d + ...+ γt−1 · xt−1 + εt (Model 1)

xt = αt−d · xt−d + ...+ αt−1 · xt−1

+βt−d · yt−d + ...+ βt−1 · yt−1 + εt
(Model 2)

Thus, y Granger–causes x if the second model im-
proves the predictability of x.

The concept of Granger causality is extendable to

more than two time series. Let x1, x2, ..., xp be p time
series where ∀i ∈ {1, ..., p}, xi = {xti|t = 1, ..., n}. The
VAR model of order d w.r.t. all the time series is defined
as Model 3 in the following:

Xt = Xt−d ·Bt−d + ...+Xt−1 ·Bt−1 + εt (Model 3)

where Xt = (x1
t, ..., xp

t) is the concatenated vector of
all time series at time point t. In this model Bt is a

p × p matrix of the regression coefficients where the i-
th row corresponds to the coefficients w.r.t. xi at time t.
Essentially, the matrix formulation is an abstract form
to illustrate the temporal dependencies among all the

time series.

Basic definition of the Granger causality has certain
assumptions about the distribution of time series. More
precisely, the processes are assumed to be Gaussian dis-
tributed time series in Model 1,2 and 3 and hence a

linear model is considered overall. Moreover, in a lin-
ear model the error term (εt) is an additive Gaussian
white noise with mean 0 and variance 1. However, these

assumptions are not necessarily true in most of the ap-
plications. Thus, it is crucial to generalize the linear
models to the non–linear cases in the sense that we in-

clude time series from various distributions and avoid
any information loss resulted by a simple conversion.
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4.2 General Causal Framework

As already discussed (Section 2), avoiding the hetero-

geneity of the data as well as assuming a specific (mostly
Gaussian) distribution leads to inaccuracy. In this re-
gard, illustrated results in Figure 1 are proper examples
to elaborate the issue. Therefore, in order to avoid any

information loss, we extend the Granger causality to a
general GLM framework where a wide variety of distri-
butions are included and no transformation is required.

GLM, introduced by Nelder and Baker in [14], is a
natural extension of the linear regression to the case
where the time series can have any distribution from

the exponential family. Therefore, the response vari-
able is not a simple linear combination of covariates
but its mean value is related to the covariates by a link

function. Corresponding to every distribution, there is
an appropriate canonical link function (e.g. g = log(.)
for Poisson and g = 1

(.) for Gamma distribution) [14].

Table 2 summarizes well–known distributions from ex-
ponential family providing the appropriate canonical
link function corresponding to each distribution. Thus,
we generalize the models introduced in Section 4.1 as

follows (Model 1 → Model 4 and Model 2 → Model 5):

E(xt|x) = g(γt−d ·xt−d+ ...+γt−1 ·xt−1)+εt (Model 4)

E(xt|x, y) = g(αt−d · xt−d + ...+ αt−1 · xt−1

+βt−d · yt−d + ...+ βt−1 · yt−1) + εt

(Model 5)

where g is the appropriate link function w.r.t. the dis-

tribution of time series x. GLM relaxes the Gaussian-
ity assumptions about the involved time series and the
error term. Therefore, εt does not necessarily follow a

standard Gaussian distribution and it can have any dis-
tribution from the exponential family leading to more
accurate models. In the following we denote Model 4

and Model 5 as Mx and Mxy, respectively. Thus, we
extend the concept of Granger causality to heteroge-
neous cases by utilizing the advantages of a GLM frame-
work. That is, the time series y Granger–causes x if

Mxy results in an improvement in the predictability of
x compared to Mx. Next, we propose an information–
theoretic approach to measure the improvement in the

predictability.

Distribution Link function

Gaussian µ = X.β

Exponential/Gamma µ = 1
X.β

Inverse Gaussian µ = 1
X.β2

Poisson/Countable µ = exp(X.β)

Bernoulli/Bi(Multi)nomial µ = exp(X.β)
1+exp(X.β)

Table 2 Common link functions for various distributions
where X is the covariates matrix, µ is the mean and β is
the coefficient matrix.

4.3 Information–theoretic measuring of Causal

Dependencies

How to measure the predictability? How to employ in-
formation theory to infer causal relations? In this paper,

we regard measuring the predictability to a compres-
sion problem. That is, we employ the description length
of time series in the sense that the more predictable a

time series is the less number of bits is required to com-
press and describe it. We focus on MDL [4] and intro-
duce an information–theoretic indicator which reveals

the causal dependencies among time series. In the fol-
lowing we introduce MDL–principle and elaborate how
we utilize it for causal inference.

4.3.1 MDL–Principle

Essentially, MDL [4] is a well–known model selection

approach to evaluate various models and find the most
accurate one considering the minimum description length
criteria. MDL–principle regards the model selection chal-

lenge to a data compression problem in the sense that
more accurate models lead to less compression cost. Let
M denote a set of various candidate models represent-

ing your data. Following the two–part MDL [4], the best
fitting model M ∈M is the one which minimizes

DL(D,M) = DL(D|M) +DL(M) (6)

where DL(D|M) concerns the description length of

the data set D encoded by means of the model M and
DL(M) represents the model complexity, i.e. cost of
encoding the model itself. In MDL–principle, we incor-
porate the model complexity to avoid any over–fitting

caused by complicated models. Therefore, we encode
not only the data but also the model used in the cod-
ing process.

We consider DL(D,M) as a model selection indica-
tor. That is, employing a coding scheme, the number
of bits required to encode the data indicates the accu-

racy of the model used in the coding process. Accord-
ing to the Shannon coding theorem [21], the ideal code
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Fig. 2 Various fitted PDFs for a synthetic time series x gen-
erated by a Gaussian(2, 1) model.

length is related to the likelihood and is bounded by
the entropy. More precisely, for an outcome a the num-

ber of bits required for coding is defined by log2
1

P (a) ,

where P (.) shows the probability of a with the assump-
tion that limP (a)→0+ P (a) log2(P (a)) = 0. This coding
scheme is also known as log loss. As a consequence, we

assign shorter bit strings to the outcomes with higher
probability and longer bit strings to outcomes with lower
probability.

To elaborate the concept, we generate a continu-
ous time series following Gaussian distribution, i.e. x ∼
Gaussian(2, 1) distribution. Figure 2 shows the prob-

ability density function (PDF) w.r.t. the true model
(G1 := Gaussian(2, 1), the blue line) and two other
PDFs corresponding to models with the lower accu-
racy, i.e. G2 := Gaussian(2, 2) (the red line) and G3 :=

Gaussian(0, 1) (the orange line). Applying the Shan-
non’s theorem, we compute the compression cost of the
outcome a = 2 w.r.t. three models as follows:

− log2 PDFG1(2) = − log2(0.4) = 1.32

− log2 PDFG2
(2) = − log2(0.2) = 2.32

− log2 PDFG3(2) = − log2(0.05) = 4.32

Thus, the compression cost is in an inverse relation-
ship with the likelihood of an outcome. The better the
model fits the data (G2 in our example), the more likely

the observations are and hence the lower the compres-
sion cost is. Moreover, PDF is a relative likelihood for
every outcome and it is not necessarily less than or

equal to 1. Thus, in order to avoid negative number
of bits caused by PDF (.) > 1, we consider a resolu-
tion parameter γ in the sense that the coding cost is
− log2 PDF (a) · γ. The parameter γ is a constant real

number ensuring that the coding cost is always positive.
Therefore, specifying γ is straightforward and needs to
be set in the way that ∀a ∈ D, PDF (a).γ ≤ 1. Then,

by setting γ ≥ max∀a∈D PDF (a) we make sure that
the coding cost is always positive.

4.3.2 Causal Inference by MDL

Granger, in the original paper, measures the predictabil-
ity in terms of the variance of the error in regression
[9]. That is, for two time series x and y if σ2(x|I) <

σ2(x|I¬y) then y Granger–causes x. Here, we regard
measuring the predictability to a compression problem.

Back to Section 4.2, let P (xt|xt−d, ..., xt−1) denote

the predictive model w.r.t. Model 4 showing the prob-
ability of an outcome xt, t = 1, ..., n w.r.t. the past ob-
servations of x up to time t − 1. We assume that P

belongs to a class of prediction strategies, i.e. P ∈ P.
Thus, following MDL–principle, the coding cost of time
series x assuming Model 4 is defined as:

DL(x|Mx) =
n∑

t=d

− logP (xt|xt−d, ..., xt−1) (7)

Moreover, let P (xt|xt−d, ..., xt−1, yt−d, ..., yt−1) de-
note the predictive model w.r.t. Model 5 outputting the

probability of an outcome xt assuming the past obser-
vations of x and y. Analogously, the coding cost of time
series x assuming Model 5 is defined as:

DL(x|Mxy) =
n∑

t=d

− logP (xt|xt−d, ..., xt−1, yt−d, ..., yt−1)

(8)

Referring to the generalized definition of Granger

causality (Section 4.2), time series y causes x when us-
ing Mxy instead of Mx improves the predictability of x.
That is, if y causes x, including y leads to higher proba-
bility for the observations in x, i.e. P (xt|xt−d, ..., xt−1) <

P (xt|xt−d, ..., xt−1, yt−d, ..., yt−1). Since higher proba-
bilities (more accurate models) result the smaller num-
ber of required bits for encoding the data (Section 4.3.1),

therefore DL(x|Mxy) < DL(x|Mx).
The next part of MDL incorporates the model com-

plexity. Then, we need to not only encode the data but

also the model parameters used for coding in order to
avoid complex models. That is, a proper model is the
one which improves the predictability and at the same
time it is not too complex. Thus, we say, Mxy fits the

characteristics of the data more appropriately only if it
is beneficial both aspects, predictability and model cost,
i.e. DL(x|Mxy)+DL(Mxy) < DL(x|Mx)+DL(Mx). In

the next section we introduce the model complexity in
more detail. But for now, we consider the coefficients as
well as the link function used in a model as model pa-
rameters which need to be coded. Altogether, assessing

the predictability with data compression and employing



Information–theoretic Granger Causal Inference on Heterogeneous Data: problem specification and algorithm 7

Fig. 3 Predictive coding scheme.

MDL to find the costs, we come up with the following
definition for Granger causality:

Definition 2 MDL–based Granger Causality: Given
two time series x and y, y Granger–causes x if the de-
scription length of x assuming Mxy is smaller than the
one assuming Mx, i.e. DL(x,Mxy) < DL(x,Mx).

Next, we elaborate our heterogeneous MDL–based
framework for Granger causal inference as well as the
proposed objective.

4.4 Heterogeneous MDL–based Granger Causal
Framework

Given p time series x1, ..., xp, the generalized VAR model
of order d w.r.t. xi is defined as:

xi
t = gi(X t · βi) (9)

where X t is a concatenated vector of lagged observa-
tions Xt−d, ..., Xt−1 corresponding to all p time series
when d is the lag. βi is the regression coefficient vec-

tor consisting of p × d coefficients. Now we extend the
MDL–based definition of Granger causality (Definition
2) to a general form including p time series x1, ..., xp.

Definition 3 Multivariate MDL–based Granger
Causality: Let Ci denote the set of all causal time se-
ries corresponding to xi together with xi itself where

|Ci| ≤ p for i = 1, ..., n. Then, MCi is a generalized VAR
model (9) w.r.t. xi including the lagged observations of
time series in Ci. Moreover, Let MCi∪xj

represent the

generalized VAR model w.r.t. xi including all causal
time series together with xj . Then, xj Granger–causes
xi if DL(xi,MCi∪xj

) < DL(xi,MCi).

In the following we clarify how to encode a time se-
ries and compute the corresponding description length
(DL(.)). In this paper, we utilize the predictive coding
scheme to encode time series. Moreover, a detailed ob-

jective function is defined in Section 4.4.3.

4.4.1 Predictive Coding Scheme

One of the well–known approaches to encode time series

is the predictive coding scheme where the prediction
error w.r.t. a time series together with the parameters
of the corresponding predictive model are encoded and
transmitted. Figure 3 illustrates three major compo-

nents of this scheme for any time series xi, i = 1, ..., p,
i.e. a prediction model, the error term and an encoder.
As a prediction model for time series xi, we consider

the generalized VAR model as introduced in Defini-
tion 3. Let x̂i

t be the predicted value of xi at time
t. Then, the prediction error ei

t is the difference be-

tween the observed value xi
t and the estimated value

x̂i
t, i.e. ei

t = xi
t−x̂it. Finally the prediction error needs

to be encoded by a an encoder and transmitted to the
receiver along with parameters of the prediction model.

4.4.2 Fit the Distribution

In MDL–principle the true prediction strategy is as-

sumed to be given in advance. Moreover, the link func-
tion in a GLM model depends on the distribution of the
response variable. On the other side, only observational

data is provided in practice where the true distribu-
tions for the time series are not known. Moreover, any
certain assumptions about the distribution of the data
leads to inaccuracy and information loss as we already

mentioned it in Section 2 (see Figure 1). In this paper,
we follow the MDL–principle discussed in Section 4.3.1
to find the most fitting predictive model for the data.

That is, we utilize an information–theoretic score (com-
pression cost) to find the appropriate distribution for a
time series. We assume a set of candidate prediction

strategies from the exponential family. Considering ev-
ery candidate, we estimate the parameters for the gen-
eralized AR model (Mx) employing an estimator (e.g.
maximum likelihood). Then, we compute the compres-

sion cost of the time series for the estimated models. As
discussed in Section 4.3, the more a model fits the data,
the smaller the description length is. Finally, we select

the distribution with the lowest description length as
the fitted model.
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More precisely, let P = {P1, ..., Pm} denote the set
of the candidate prediction strategies (probability dis-
tributions) from the exponential family e.g. Gaussian,
Poisson or Gamma. Thus, the optimal predictive model

P ∈ P w.r.t. x is defined as:

P = min
∀Pi∈P

Pi(x,Mx) (10)

4.4.3 Objective Function

Considering the predictive coding scheme, the predic-
tion error needs to be encoded. In order to correctly
decode the data, the model as well is required to be

coded and transferred. We first focus on the error cod-
ing costs then on the model complexity and finally we
introduce our integrative objective function for hetero-
geneous time series.

– Data Compression: Following the properties of a
GLM framework, the prediction errors can have any
distribution from the exponential family [14]. Since

the true distribution for the error term is also un-
known, we employ our proposed fitting procedure,
discussed in the previous section, to find the most

accurate distribution w.r.t. the error term. Thus,
the coding cost of the prediction error ei w.r.t. xi is
defined as:

DL(xi|MCi) = DL(ei) =
n∑

t=1

− logPDFe(ei
t|eit−1, ..., eit−d)

(11)

where PDFe(.) is the most accurate model w.r.t. ei
and n is the length of time series xi.

– Model Complexity: As mentioned, MCi (Section
4.4) denotes the prediction model corresponding to
time series xi where Ci consists of the causal time

series w.r.t. xi. Essentially, the parameters in this
model are the regression coefficients or βi (a vector
of length p × d) plus gi, the appropriate link func-
tion considering the distribution of xi. Following a

central result from the theory of MDL [19], the pa-
rameter costs to model n observations of xi w.r.t.
the prediction model Mi is approximated by:

DL(MCi) =
mi

2
log n (12)

where mi denote the number of parameters in MCi ,
i.e. mi = p × d + 1. The model costs depend log-
arithmically on the length of time series xi. The

intention behind this formulation is that for shorter
time series the parameters do not need to be coded
with very high precision. However, we consider time
series with the same length in this paper.

Altogether, for a data set D consisting of time se-
ries x1, ..., xp our MDL–based objective function is
defined as:

DL(D,M) =

p∑

i=1

DL(xi|MCi) +DL(MCi) (13)

where M = {MCi |i = 1, ..., p}.

5 ITGH Algorithm

Most of the algorithms are designed to detect either
x causes y or vice versa by a pairwise testing. Usu-
ally a causal indicator is defined and needs to be tested

for any possible pair of time series. However, this ap-
proach leads to inefficiency by increasing the number
of processes when detecting a Granger causal network.

To cope with this issues, we propose ITGH (Algorithm
1) consisting of two main building blocks: (1) fitting
a distribution to the time series in observational data
without any assumption and (2) detecting the Granger

causal network in a greedy way.

Algorithm 1 Granger Causal Network Detection by

ITGH
1: ITGH (X = [x1, ..., xp])
2: adj = [0] // Output, a p× p adjacency matrix
3: fitDistribution(X); // explained in Section 4.4.2
4: for all xi in X do

5: Si:= Sorted time series according to their dependencies
w.r.t. xi

6: Ci = {xi} // The set of all causal time series w.r.t. xi
7: DLI = 0 // The cost including the candidate time

series
8: DLE = 0 // The cost excluding the candidate
9: while DLI ≤ DLE do

10: xj := The candidate, the first time series in Si
11: DLI = DL(xi,MCi∪xj )
12: DLE = DL(xi,MCi

)
13: if DLI ≤ DLE then

14: adj(i, j) = 1 // xj causes xi
15: remove xj from Si
16: Ci = Ci ∪ xj
17: end if

18: end while
19: end for

20: return (adj)

We consider the fitting procedure (fitDistribution(.)
in Algorithm 1) as a preprocessing phase. That is, once
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we find the most accurate fitted distribution w.r.t. ev-
ery time series as explained in Section 4.4.2. Then, we
use this information as an assumption in our greedy
algorithm. To be fair, we also input the fitted distribu-

tions to other algorithms we compare to. Unlike other
compression–based causal inference algorithms (e.g. CUTE
[7]), we avoid the drawbacks of an exhaustive pairwise

testing by introducing a fast greedy algorithm. That is,
corresponding to any time series xi, we sort x1, ..., xp
based on their dependencies in a regression model w.r.t.

xi. In fact (also inspired by [1]), the time series with
the higher dependency w.r.t. xi has the higher coeffi-
cients in the corresponding regression model. Thus, for
any xi, i = 1, ..., n we iteratively include the time series

with the higher dependency w.r.t. xi in the regression
model until this procedure improves the compression
cost of xi. Essentially, for a candidate xj we compute

the description length of xi (see Definition 3) consider-
ing two models MCi and MCi∪xj

. If including xj pays
off in terms of the compression cost, we keep including

the next time series. Otherwise, the procedure termi-
nates when no further causes exist for xi. The output
of this algorithm is an adjacency matrix for the Granger
causal network.

5.1 Computational Complexity

Referring to Algorithm 1, the procedure goes through

all the time series x1, ..., xp and performs the same pro-
cedure for any time series (line 4). Moreover, the algo-
rithm ITGH is deterministic in the sense that investi-

gating the causal relations for time series x1, ..., xp in
any random order leads to the same Granger causal
graph. Hence, we focus on complexity analysis of a ran-

dom time series xi (line 5–18) and at the end we intro-
duce the general complexity of ITGH.

When detecting the causal relations for the time se-
ries xi we need to sort all the other time series x1, ..., xp
once in the beginning (line 5). The complexity of a
fast sorting algorithm is O(p log(p)). However, the main
part of ITGH, in terms of the runtime complexity, is

investigating causal relations for a time series. That
is, following the greedy algorithm (line 9–18), for a
time series xi at most p compression–based Granger
tests should be considered. Moreover, in order to reveal

whether or not there is a causal relation we need to fit
two GLM models (line 11 and 12).

There are various methods concerning how to fit

a GLM model, i.e. iteratively reweighted least squares
(IRLS), maximum likelihood with a Newton approach
or Bayesian methods. It is up to the user which method

to be employed for fitting a GLM model. Focusing on
IRLS, fitting procedure has a complexity of O(nc2)

where c is d × |Ci ∪ xj | in line 11 or d × |Ci| in line

12, i.e. c ≤ d × p. Thus, in the worst case the runtime
complexity of lines 5 to 18 in Algorithm 1 is of order
O(p log(p)) + O(pc2n). It can also happen that there

is no causal relations w.r.t. xi. In this case the greedy
algorithm is of the order O(c2n) and terminates after
one iteration.

Altogether, the runtime complexity of ITGH (in-

cluding line 4) in the best case is O(p2 log(p))+O(pc2n)
and in the worst case is O(p2 log(p)) +O(p2c2n). How-
ever, mostly in reality p� n which means the runtime
complexity of ITGH is highly depending on n leading

to a complexity of order O(c2n).

6 Experiments

In order to assess the performance of ITGH we compare
our algorithm to state–of–the–art algorithms in terms

of F–measure conducting experiments on synthetic and
real–world data sets. Although there are many algo-
rithms to infer the causality among time series, only

few of them are applicable to heterogeneous data sets
and also fewer deal with Granger causality. Therefore,
we compare ITGH to SFGC [10], TEN [20] and HGGM
[5] which are designed to deal with heterogeneous data

sets. Moreover, we compare our algorithm to TCML [1],
CUTE [7] and the basic Granger test (GT) [9] to inves-
tigate the effect of assuming a specific (mostly Gaus-

sian) distribution for non–Gaussian processes or trans-
forming time series. ITGH is implemented in MATLAB
and for the other comparison methods we used their

publicly available implementations and recommended
parameter settings. The source code and data sets are
publicly available at: https://tinyurl.com/yar5yuoq.

6.1 Evaluation Strategy

We utilize F −measure to evaluate the similarity be-
tween the target causal graph (ground truth) and the
output causal graph. Moreover, we distinguish between
two entries in the adjacency matrix A, A[i, j] and A[j, i].

Let A∗ and Â denote the true and the output adjacency
matrix respectively. Thus, the evaluation measures for
time series x1, ..., xp are defined as:

Precision =
|{(i, j) ∈ P : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈ P : Â[i, j] = 1}|

Recall =
|{(i, j) ∈ P : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈ P : A∗[i, j] = 1}|

F −measure =
2 ∗ Precision ∗Recall
Precision+Recall

.
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Fig. 4 Accuracy on homogeneous and heterogeneous synthetic data sets. P: Poisson, Ga: Gamma, G: Gaussian, B: Bernoulli

6.2 Synthetic Experiments

To investigate the efficiency and the effectiveness of
ITGH compared to other algorithms, we generated vari-
ous synthetic data sets. In the first series of experiments

we aim at assessing the algorithms in terms of their ef-
fectiveness considering various homogeneous and het-
erogeneous data sets. Then, the scalability of ITGH is

addressed in this section. In any synthetic experiment,
we report the average performance of 50 iterations per-
formed on different data sets with the given charac-

teristics. The length of generated time series is always
1,000 except it is explicitly mentioned. Unless otherwise
stated, we assume a random dependency level (strength
of causal relations) among time series while generating

them. In all the synthetic experiments we input the lag
parameter as well as the true distributions used to gen-
erate the data to all the algorithms.

1. Synthetic Data Generator: In this section we

clarify how we generated the synthetic data since
it is not straight–forward to generate an appropri-
ate data set. Following the principle of GLMs, we

deal with the time series whose means depend on
the past values of all time series through a concrete
link function. This kind of dependency between the
mean values and the other covariates are defined via

a generalized VAR model.
To generate random generalized VAR models, we
consider a bottom up approach. That is, we start

with a random adjacency matrix associated to a ran-
dom causal graph. Then we assign directed edges be-
tween the nodes showing whether or not a Granger

causal relations between two specific nodes (time
series) exists. The ground truth in Figure 1 demon-

strates a random graphical model over 5 time series

as an example.
Having formed the causal graph, we generate the
coefficient matrix showing the dependencies among

time series. Unless otherwise stated, we assume a
random dependency level in every experiment. More-
over, We consider the lag d associated to each time
series and corresponding to every time series we gen-

erate a random VAR model of order d assuming the
coefficient matrix. The result is a generalized VAR
model where outputs the mean values w.r.t. time

series xi, i = 1, ..., p at any time point t. Thus, we
randomly generate observations while taking the de-
sired distribution for xi into account.

2. Accuracy: In this experiment we generated vari-
ous homogeneous and heterogeneous data sets from
different distributions. Two discrete (Poisson and

Bernoulli) and two continuous (Gamma and Gaus-
sian) distributions were selected to cover some of
possible combinations of distributions. Regarding

any combination we generated 50 data sets each of
which consists of four time series of length 1,000
with three causal relations where in mixed data sets
the heterogeneity factor is 70%–30% (e.g. in Figure

4, 3 Poisson and 1 Gaussian time series).
As it is observable in Figure 4, regardless of the
homogeneity or heterogeneity of the data or even

the distribution of the time series, ITGH outper-
forms other algorithms by a wide margin. Interest-
ingly, we outperform TCML on Gaussian data sets

although it is designed specifically for Gaussian time
series and it performs better than other algorithms
on such homogeneous data sets. This confirms the
advantages of an MDL approach applied in a GLM

framework to generalize the linear regressions. Fo-
cusing on the GT algorithm designed for single–type
data sets, it is observable that GT is more efficient

on homogeneous Gamma and Bernoulli data sets
rather than on the mixture of them. The same be-
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Fig. 5 Various experiments on synthetic data sets concerning the effectiveness.

haviour is also visible considering other combina-
tions (e.g. Poisson–Gaussian).
On the other side, we outperform CUTE on the

Bernoulli data set due to the inefficiency of pair-
wise testing compared to our proposed greedy ap-
proach. Although CUTE seems to be efficient on

some heterogeneous data sets compared to the ho-
mogeneous ones (e.g. Gaussian–Gamma vs. Gamma
and Gaussian), but this result does not sound re-
liable. Since the algorithm deals with only binary

data, it is highly likely that binarising time series
destroys the distribution of the data leading to some
random binary time series. In the following we fo-

cus on a mixture of time series having Poisson and
Gamma distribution as a representative for hetero-
geneous data sets.

3. Effectiveness: This experiment specifically inves-
tigates the effectiveness of the greedy approach in
ITGH in terms of F–measure when the number of

time series is increasing. Here we generate heteroge-
neous data sets where in any case 70% of the time
series are Poisson and 30% are Gamma distributed

and the number of causal relations is equal to 0.67%
of the number of time series.
It is already expected that the performance of an

exhaustive pairwise testing approach is decreasing
when dealing with larger graphs. Figure 5a confirms
our expectation and illustrates the constantly de-
scending performance of HGGM, TEN and CUTE.

As excepted, GT and SFGC are quite stable. How-
ever, GT is the worst algorithm in this experiment
resulting in a maximum F–measure of 0.14. More-

over, this experiment shows the advantages of ITGH
and SFGC compared to other algorithms regardless
of the number of time series, although in the begin-
ning their performance is affected by growing the

causal graph.

4. Dependency: We refer to the coefficients of VAR

models as the dependency which essentially show
the strength of causal relations. In this experiment
we investigate the performance of the algorithms

concerning various dependencies ranging from 0.1
to 1. Analogously, we focus on data sets where a
mixture of 3 Poisson and 1 Gamma time series are
generated.

In Figure 5b any ascending or descending trend shows
the inefficiency while a constant trend confirms the
ability of an algorithm to deal with strong and weak

causal relations. ITGH generally outperforms other
competitors in terms of F–measure and unlike other
algorithms, varying the dependency does not in-

fluence the performance of our algorithm signifi-
cantly. Ignoring the starting point, the stable trend
of ITGH confirms the efficiency of our algorithm
even for lower dependency levels. Unexpectedly, the

performance of TCML, SFGC and TEN is slightly
descending in this experiment.



12 Sahar Behzadi et al.

(b) (a) (c) 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

3 5 7 9 11 13 15 17 19 21 

R
u

n
ti

m
e
 i

n
 s

ec
o

n
d

s 

# Time Series 

ITGH HGGM TEN SFGC TCML CUTE GT 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

1 2 3 4 5 6 7 8 9 10 

R
u

n
ti

m
e 

in
 s

ec
o

n
d

s 

Length/1000 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

2 4 6 8 10 12 14 16 18 20 

R
u

n
ti

m
e 

in
 s

ec
o

n
d

s 

Lag 

Fig. 6 Investigating the scalability in various experiments.

5. Lag Experiment: This experiment is particularly
interesting for the real–world data sets where no
information about the lag variable is given in ad-

vance. In our experiments all the algorithms except
CUTE require the user to input the lag variable d.
Figure 5c and d illustrate the result of conducting

two experiments when random heterogeneous data
sets consisting of two Poisson and one Gamma dis-
tributed time series of length 500 are generated. In

the first experiment, the intention is to investigate
how various algorithms behave when applied to var-
ious data sets generated with various lag variables
ranging from 2 to 20.

Essentially, an algorithm should perform efficiently
regardless of the lag variable corresponding to the
data. Therefore, stability of an algorithm seems to

be crucial in this experiment. As it is evident in
Figure 5c ITGH and HGGM are the most stable
algorithms in this competition while the others are
either increasing (SFGC, TCML and TEN) or have

no trend (GT). Next, we aim at investigating the
impact of choosing a lag variable different than the
true lag.

Thus, in the next experiment we generate synthetic
data sets setting the lag parameter as 10. Then,
we apply various algorithms while increasing the

lag from 2 to 20 so that one can observe the re-
sult of choosing higher and lower amounts of this
parameter. Referring to Figure 5d, almost all the
algorithms result in a same trend when the perfor-

mance is increasing with a big jump after the true
lag is reached. Moreover, the performance is almost
always stable for a lag variable higher than the true

lag.

1http://www.b30-oberschwaben.de/html/tabelle.html
2https://www.bafu.admin.ch/bafu/de/home/themen
3https://www.uwo.ca/stats
4https://webdav.tuebingen.mpg.de/cause-effect/

6. Scalability: We conducted three experiments to
assess the scalability of ITGH compared to others.
In every case we keep the heterogeneity of data sets

as already explained (70% Poisson–30% Gamma)
where the number of causal relations in every data
set is equal to 0.67% of the number of time series.

During the first experiment we vary the length of
time series ranging from 1,000 to 10,000 when the
number of time series is set to five.
As Figure 6a depicts, ITGH is the second fastest

algorithm in this experiment and outperforms all
other algorithms designed for heterogeneous data
sets, i.e. HGGM, TEN and SFGC. Together with

TCML, our algorithm shows a perfect stable trend
when increasing the length of time series.
In the other experiment we iteratively increase the

number of time series. As expected, all the algo-
rithms have an increasing trend (Figure 6b). How-
ever, we outperform other heterogeneous algorithms
in this experiment as well. Finally, the behaviour of

the algorithms is investigated when the lag is in-
creasing (same data sets as the experiment in Fig-
ure 5d). Except HGGM, all other algorithms are

almost stable in this experiment (Figure 6c). Al-
though ITGH seems to be relatively time–consuming
compared to others, its runtime is less than 1.5 sec-
onds and still reasonable.

6.3 Real Applications with Ground Truth

We conduct various experiments on publicly available
homogeneous and heterogeneous real–world data sets
where a valid ground truth is provided. Table 3 sum-

marizes the characteristics of the data sets when the
column Fitted distribution shows the best fitted distri-
bution for time series by the procedure fitDistribution(.)

5http://archive.ics.uci.edu/ml/datasets/Abalone
6Causal Inference on Event Sequences [7]
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Data set Fitted distributions Length ITGH SFGC HGGM TEN TCML CUTE GT

Traffic 1 1 Poisson,1 Bernoulli 254 1.00 0.67 1.00 0.00 0.00 1.00 0.00
Ozone concentration 2 2 Gaussian 365 1.00 0.50 0.67 0.00 0.40 0.00 0.67

Speed 4 2 Gamma 202 1.00 0.00 1.00 0.00 0.00 1.00 0.00
Temperature 3 2 Gaussian 168 1.00 0.00 0.00 1.00 0.40 1.00 0.67

Mooij 4 2 Gaussian 16382 1.00 0.67 0.67 0.00 0.00 1.00 0.67
* Moffat 4 2 Gamma, 1 Gaussian 721 1.00 0.33 0.67 0.50 0.45 0.00 0.67

* Abalone 5 1 Poisson, 3 Gaussian 4177 1.00 0.56 0.00 1.00 0.00 1.00 0.67
* Energy Distributor 4 1 Poisson, 2 Gaussian 9504 0.89 0.00 0.55 0.30 0.56 0.67 0.67
Neural Spike Train 6 4 Bernoulli 1000 0.62 0.47 0.00 0.57 0.20 0.76 0.50

Table 3 Comparison on real–world data sets including a ground truth in terms of F–measure.

Ground Truth 

HGGM 

F-measure  = 0.00 

ITGH 

F-measure = 0.62 

TCML 

F-measure  = 0.20 

TEN 

F-measure  = 0.57 

CUTE 

F-measure  = 0.76 

SFGC 

F-measure = 0.22 

GT 

F-measure  = 0.50 

Fig. 7 Results on neural spike training data set. Black arrows show the correct Granger causal relations and the red arrows
show the incorrect causal directions.

(see Section 5). We input the same fitted distribution to
every algorithm. To be fair in real–world experiments,
we investigate the performance of the algorithms con-

sidering various lags ranging from 1 to 20 and finally
we report the best result for any algorithm in Table 3
in terms of F–measure.

The first data set, Traffic, consists of two time series
of length 254, number of cars per day at different count-
ing stations (a count Poisson distributed time series)

and the type of days which can be either Sunday plus
holidays or working days (a Boolean time series with
the Bernoulli distribution). ITGH, HGGM and CUTE,

correctly find the causal relation where the type of days
influences the number of cars in stations. As expected,
whether a day is a holiday or a working day impacts

the traffic on the street.

The data set, Ozone concentration, comprises two
continuous Gaussian time series of length 365 where the

first measurement shows the daily mean values of Ozone
(microgram/cubic meter) and the second one shows the
temperature (Celsius) of the year 2009 in Switzerland.

Referring to Table 3, ITGH is the only algorithm which
is able to correctly infer that changes in the Ozone con-

centration cause changes in temperature, not other way
around.

The next data set, Speed consists of two continuous
Gamma time series. While recording Speed, a ball track
has been used equipped with two pairs of light barriers.
The first pair measures the initial speed and the second

pair the speed of a ball at some later positions of the
track. ITGH, HGGM and CUTE are able to detect the
correct intuitive causal direction where the initial speed

of a ball causes the later speed of the ball.

The next two data sets, Temperature and Mooij, in-
vestigate causal relations among measured indoor and

outdoor temperatures while Mooij has a higher reso-
lution (measured every 5 minutes). The Temperature
data set consists of two Gaussian time series of the

length 168 while Gaussian time series of length 16382
are provided in Mooij data set. Again, in this experi-
ment MDL–based algorithms, ITGH and CUTE, cor-
rectly infer that the temperature outdoor causes the

temperature inside as it is intuitively clear.

For the next three data sets, marked with *, the

ground truth is given partially and the information about
some interactions is missing in the causal graphs. There-
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(a) (b) 

Fig. 8 a) Map of CO2 concentration, b) Annual average temperature of various states

fore, corresponding to any data set we report the aver-
age F–measure w.r.t. the causal pairs where the true in-
formation is given. Moffat consists of two Gamma time

series (PPFD, a measure of light intensity in terms of
photons and PPFDdir, a measure of direct solar light
intensity in terms of photons that are available for pho-
tosynthesis) and a Gaussian time series (NEP, a mea-

sure of the carbon flux). In this experiment, ITGH is
the only algorithm that correctly finds the true causal
directions where PPFDdir and PPFD cause NEP.

Abalone concerns predicting the age of abalones (large,
edible sea snails) based on the physical measurements.

We consider 4 measurements, sex (Poisson), length (Gaus-
sian), diameter (Gaussian), height (Gaussian). Obvi-
ously, sex influences the other measurements (also con-

firmed by [6]). As it is explicitly clear from Table 3,
ITGH, TEN and CUTE, three information–theoretic–
based algorithms, outperform other algorithms on this
data set since they find three correct causal directions

from sex to the other measurements.

The next data set, Energy Distributor, comprises

three measurements: hour of the day (Poisson), tem-
perature in degree Celsius (Gaussian) and the total
electricity consumption in a region of Turkey (Gaus-

sian). While outperforming other competitors, ITGH
correctly infers the causal direction from the hour of
the day to the temperature and the electricity consump-
tion confirmed by the common sense that temperature

and energy consumption depend on the hour of the
day. Moreover, ITGH discovers the intuitive relation
among temperature and energy consumption such that

temperature affects the use of electricity of humans,
while energy consumptions does not directly influence
temperature in a region. However, ITGH finds another

causal relation where energy consumption causes the
hour of the day which is not plausible.

The neural spike train data set consists of records
from an experiment carried out on a monkey. There are
two types of influences in neural spike trains, excitatory
(neurons fire more) and inhibitory (neurons fire less).

The data set is investigated in [7] where the authors bi-
narised the data resulting in 4 Bernoulli time series of
the length 1,000. However, the original data, provided

in [18], is not publicly available they obtained the data
simulator where spike trains are generated using point
process generalised linear models (GLM). Figure 7 illus-

trates the ground truth as well as resulted causal graph
applying all the algorithms. ITGH (F–measure= 0.62)
outperforms all other algorithms in this experiment ex-
cept CUTE which performs better than ITGH on this

data set with F–measure= 0.76. However, CUTE is not
designed to deal with feedback loops while ITGH cor-
rectly finds the bidirectional causal relations between

X1 and X4, as well as X1 and X2.

6.4 Application to Climatology

Nowadays, global warming and climate changes are the
news headlines all over the world. But, what causes
the climate changes? In this experiment, we investigate
causal relations between the climate observations and

various natural and artificial forcing factors when no
ground truth is provided. The data set, provided in [11],
is publicly available. We consider the monthly measure-

ments of 11 factors over 13 years (from 1990 to 2002) in
two states in the US, i.e. Montana and Louisiana: tem-
perature (TMP), precipitation (PRE), vapor (VAP),

cloud cover (CLD), wet days (WET), frost days (FRS),
green house gases including Methane (CH4), Carbon
Dioxide (CO2), Hydrogen (H2) and carbon monoxide
(CO) and solar radiation including global extraterres-

trial (GLO).
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(b) 

(a) 

Fig. 9 Application to Climatology. a) resulted causal graphs for temperature in Louisiana state, b) resulted causal graphs
for temperature in Montana state.

After fitting the distribution for any time series,
we apply ITGH and other heterogeneous methods in-
putting the most appropriate distribution. The data
providers suggested a maximum lag of 4 [11]. However,

no exact information about the lag is given. Therefore,
we select a random lag when it is smaller than 4. That
is, the lag is set to 3 for the first experiment (Louisiana)

and 2 for the second experiment (Montana). Since the
temperature is the most concerning factor in global
warming and also for a better visualization, we focus
on the factors which influence the temperature. Green

house gases, specially CO2, as well as solar radiation are
the most important factors in global warming. Thus,
in Figure 8a we provide a map of CO2 concentration

as one of the main causes in climate changes7. More-
over, depending on where a state is located, cold or
warm region, various climate measurements influence

the temperature. Figure 8b summarizes the annual av-
erage temperature of various states8.

According to Figure 8, Louisiana (marked by star)
is located in the warm region of the US where the

CO2 concentration is also high. As Figure 9a shows,
ITGH correctly detects CO2 and the solar radiation
as causal factors for temperature (confirmed by [11]).

Moreover, influencing the temperature by VAP is also
interpretable since Louisiana is located in the warm
subtropical region. On the other side, the result of SFGC
does not sound plausible since it finds a causal relation

among all the factors and the temperature, even the
frost days per month. HGGM seems more efficient com-

7https://news.uns.purdue.edu/images/+2008/

gurneyvulcan1.jpg
8https://www.currentresults.com/Weather/US/

average-annual-state-temperatures.php

pared to SFGC, However, it does not find any effects
caused by one of the most effective factors, i.e. CO2.

Unlike Louisiana, Montana (marked by circle in Fig-
ure 8) is located in the cold region. Therefore, the de-

tected causal direction from the frost days and vapor to
the temperature in Figure 9b is reasonable (also con-
firmed by [11]). However, HGGM is not able to find
the relation among the frost days and the temperature.

According to Figure 8a the CO2 concentration in this
state is not high. Therefore, CO2 does not influence
the temperature in Montana dramatically. ITGH cor-

rectly does not consider a causal relation among CO2
and temperature while SFGC does. On the other side,
HGGM is not able to find the effect of frost days, al-

though it correctly recognizes the relation between CO2
and the temperature.

7 Conclusions and future work

In this paper we proposed ITGH, an information–theoretic
algorithm for discovery of causal relations in a hetero-

geneous data set. We regard causality detection as a
data compression problem where any improvement in
the predictability is measured in terms of compression

cost. Following the MDL–principle, we introduced an
integrative objective function applicable for heteroge-
neous data sets. Profiting of a GLM framework our ap-
proach is generalized for time series having distributions

from the exponential family. Our greedy approach (in-
stead of an exhaustive pairwise causality test) leads to
an effective and efficient algorithm without any assump-

tion about the distribution of the data. To the best of
our knowledge, there is no other MDL–based algorithm
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designed for Granger causal inference on heterogeneous
data sets. One of the avenues for future work is to em-
ploy our MDL–based approach to efficiently detect the
anomalies in heterogeneous data sets.
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