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Abstract

The central topic of this thesis concerns the definability of various types of combi-
natorial families of reals. Among these families, we study in detail the definability of
towers and of ultrafilters at the low projective levels. We provide positive definability
results in the constructible universe L and show how they fail in other models such as
forcing extensions of L or Solovay’s model, in which every set of reals is Lebesgue
measurable. Among other things, we show that, although coanalytic bases for P - and
Q-points exist in L, a base for a Ramsey ultrafilter can never be coanalytic. In another
chapter, we prove that after forcing over L with countable support iterations of a large
class of posets, including e.g Sacks forcing, most types of “maximal" families of reals
have ∆1

2 witnesses. This can be used to solve an open problem of Brendle, Fischer and
Khomskii.

In a second part, we study the generalized pseudointersection and tower numbers
p(κ) and t(κ) at uncountable regular cardinals κ and provide results towards a possible
generalization of Malliaris’ and Shelah’s proof that p = t. We also give a natural way
to force p(κ) < b(κ).
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Zusammenfassung

Das zentrale Thema dieser Arbeit betrifft die Definierbarkeit verschiedener Typen kom-
binatorischer Familien reeller Zahlen. Unter diesen Familien untersuchen wir im Detail
die Definierbarkeit von Türmen und Ultrafiltern bezüglich niedrig projektiver Kom-
plexität. Wir liefern positive Definierbarkeitsergebnisse im konstruierbaren Universum
L und zeigen, wie sie in anderen Modellen versagen, z.B. in Forcingerweiterungen von
L oder im Solovay-Modell, in dem jede Menge reeller Zahlen Lebesgue-messbar ist.
Unter anderem zeigen wir, dass, obwohl koanalytische Basen für P - und Q-Punkte
in L existieren, eine Basis für einen Ramsey-Ultrafilter niemals koanalytisch sein
kann. In einem anderen Kapitel beweisen wir, dass nach dem Forcen über L mit
einer abzählbar gestützten Iteration von partiellen Ordnungen einer großen Klasse,
einschließlich z.B. dem Sackforcing, die meisten Typen von “maximalen” Familien
∆1

2-Definitionen haben. Dies kann zur Lösung eines offenen Problems von Brendle,
Fischer und Khomskii verwendet werden.

In einem zweiten Teil untersuchen wir die verallgemeinerten Pseudodurchschnitts-
und Turmzahlen p(κ) und t(κ) auf überabzählbaren regulären Kardinalzahlen κ und
liefern Ergebnisse im Hinblick auf eine mögliche Verallgemeinerung von Malliaris’
und Shelahs Beweis, dass p = t. Wir geben außerdem eine natürliche Weise an,
p(κ) < b(κ) zu forcen.
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CHAPTER 1
Introduction

This thesis can be divided into two thematic parts. The first part and main body of
this thesis consists of Chapters 2-4 and deals with the definability of special families
of reals, prominent in topology, algebra, combinatorics or measure theory, that can
typically only be obtained by use of the Axiom of Choice. The second part, Chapter 5,
studies the pseudointersection and tower numbers in the higher Baire space κκ for κ a
regular uncountable cardinal. The research leading to this thesis resulted in four articles
each corresponding to a section. Two of them, [16], joint with V. Fischer, and [15],
joint with V. Fischer, D.C. Montoya and D.T. Soukup, are accepted and the other two,
[47] and [49], are currently under review.

We will provide first a historical introduction to the subject up until the current
state of the art. For readers that are not familiar with the required prerequisites, we give
a survey over some of the main notions in descriptive set theory and forcing necessary
to make sense of the results.

1.1 Historical overview

The reals are among the most fundamental and most important objects in mathematics.
Coming after the integers and the rationals, they are the first objects of an infinite
nature. The importance of their existence for proving strong theorems, even about just
the finite realm, is indisputable. Since its beginnings, the reals were set theory’s main
object of study. One of the earliest results is Cantor’s Theorem (see [10]) saying that
the set R of all real numbers cannot be put in a one to one correspondence with the
naturals. This did not only have a tremendous amount of implications, but it also lead
to the revolutionary concept of infinite cardinality. Cantor was effectively showing

1



2 Chapter 1. Introduction

that only a few very rudimentary facts about sets inevitably lead to different sizes of
infinity. It was the first time in history that the concept of actual infinity, which surely
has been subject to human thought for millennia, could be dealt with in a completely
formal mathematical setting. The cardinality1 of a set A, which in the infinite case is an
abstraction of the concept of “the number of elements", is usually denoted by |A|. Thus
Cantor was showing that |N| < |R|. An immediate question that can be asked following
this observation is whether, there could be A such that |N| < |A| < |R|. In fact, this
very question became the first on Hilbert’s prominent list of open problem’s [27] from
1900. The assertion that no such A exists was named the Continuum Hypothesis,
abbreviated as CH. The general tendency, at least that of Cantor and of Hilbert2, was to
conjecture that CH is true.

In quest of finding a counterexample to CH or showing that there is none, mathe-
maticians started to look at many natural types of subsets of R. Obviously open sets
cannot satisfy the inequality above but the argument for closed sets is already less
trivial. The Cantor-Bendixson Theorem [33, Theorem 6.4] devises a fine analysis on
closed sets which can be used to settle the question and show that closed sets cannot be
used as such counterexamples. A larger class of sets encompassing that of closed ones
is formed by the Borel sets. These are sets that can be formed successively, starting
from open sets and taking countable unions, intersections and complements. What
about those sets? What about continuous images of Borel sets? These are called
analytic sets. Or their complements? These are the co-analytic sets. Answering these
questions required completely new tools and new insights about the deeper topological
and combinatorial structure of the reals. This layed the foundation of a field called
descriptive set theory, which studies these kinds of sets.

Although descriptive set theory seems, from our description, mainly topological in
nature, it has a strong connection to logic, especially to the notion of definability. In
most generality, a set A is definable from parameters a0, . . . , an−1 if there is a formula
ϕ(x, a0, . . . , an−1) in the language of mathematics, that holds true exactly of those
x which are members of A. It turns out that the Borel, analytic and co-analytic sets,
which were defined in a purely topological manner, each correspond precisely to a
class of logical definability in second-order arithmetic. In this way, they can be viewed
as complexity classes for subsets of reals, similar to the complexity of subsets of the
naturals according to computability theory. For the reader which is unfamiliar with this,

1Formally defined as the smallest ordinal that can be put in bijection to A, at least in contexts where
the Axiom of Choice is assumed.

2cf. “Die Untersuchungen von Cantor [...] machen einen Satz sehr wahrscheinlich, dessen Beweis
jedoch trotz eifrigster Bemühungen bisher noch niemandem gelungen ist” in [27].
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we provide a preliminaries section below in which the main notions of descriptive set
theory are explained.

Another major development in the early 20th century was Zermelo’s formulation
[71] of seven independent “principles" through which set theory, and in fact, mathemat-
ics as a whole, could be treated axiomatically. Other than basing the foundational work
done by Cantor, and e.g. Russell (see [45]), on a few accessible axioms, it made it pos-
sible for Zermelo to formalize his much contested proof of the Well-Ordering Theorem

[70], making it indisputable on the grounds of his assumptions. For this, he formulated
the Axiom of Choice3 which, by itself, corresponded to mathematical practice, making
it a natural assumption4. Later, in [19], Fraenkel proposed the Axiom of Replacement

as an addition to Zermelo’s list, in order to include other mathematical constructions,
most notably those involving transfinite recursion5. Zermelo’s axioms together with
Fraenkel’s Axiom of Replacement are known as Zermelo-Fraenkel-Choice (short ZFC).

The Axiom of Choice is much known for the controversy it created. A common
criticism is that it allows to construct objects without explicitly defining them. Even
more, it may produce counter-intuitive theorems such as the Banach-Tarski Paradox.
For this reason, it is often dealt with particular care and mentioned in every instance it
is used. Ironically though, it is a common experience to see non-logicians mentioning
it at times where it in fact can be avoided and in contrast not being aware of when it
is used in more subtle ways6. Nevertheless, throughout mathematics, the existence
of various kinds of maximal sets can typically only be obtained by an appeal to the
Axiom of Choice or one of its popular forms, such as Zorn’s Lemma. Under certain
circumstances, it is possible though, to explicitly define such objects.

In 1938, Gödel made the first step to a solution of CH by showing that the negation
of CH cannot be proven on basis of ZFC alone (see [22], [23]). For this he defined
what is known as the constructible universe L. It turned out that L is not just useful
for questions surrounding CH but also for many others, especially ones related to
definability. The earliest result in this direction is probably due to Gödel who noted
in [22, p. 67] that in the constructible universe L, there is a ∆1

2-definable well-order
of the reals (see [31, 25] for a modern treatment). Loosely speaking, we can exhibit
a concrete well-order of the continuum when the structure of the reals is not too rich.

3“Axiom der Auswahl". It is worthwhile to note that the standard modern proof of the Well-Ordering
Theorem in addition uses the Axiom of Replacement, which was not included in Zermelo’s original list.

4cf. Bona’s ever repeated joke “The Axiom of Choice is obviously true, the Well-Ordering Principle
obviously false, and who can tell about Zorn’s Lemma?".

5As an example, Fraenkel mentions that the existence of the set {N,P(N),P(P(N)), ...} cannot be
be argued based on Zermelo’s axioms alone.

6For instance, when we use that the countable union of countable sets is countable.
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Using similar ideas, many other special sets of reals, such as Vitali sets, Hamel bases or
mad families, just to name a few, can be constructed in L in a ∆1

2 fashion. In particular,
such sets can be continuous images of coanalytic sets. This has become by now a
standard set theoretic technique that is so general that details can be usually omitted. In
many cases, these results also give an optimal bound for the complexity of such a set.
For example, a Vitali set cannot be Lebesgue measurable and in particular cannot have
a Σ1

1 or Π1
1 definition. In other cases, one can get stronger results by constructing Π1

1

witnesses. This is typically done using a coding technique, originally developped by
Erdős, Kunen and Mauldin in [13], later streamlined by Miller (see [38]) and further
generalized by Vidnyánszky (see [69]). For example, Miller showed that there are Π1

1

Hamel bases and mad families in L.

Recently, another phenomenon has been discovered that leads a path to Π1
1 wit-

nesses. In [65], Törnquist showed in ZFC that the existence of Σ1
2(r) mad families

already implies that of Π1
1(r) ones. This turned out to be a general tendency. For

instance, Brendle, Fischer and Khomskii showed that the same holds true for maximal
independent families (see [8]). We are going to provide similar results.

On the other hand, families of the kind we mentioned usually do not admit analytic
witnesses. Mathias showed in [37], that there are no analytic mad families. Miller
proved the same for maximal independent families and Hamel bases (see [38]). In
contrast, it was shown recently by Horowitz and Shelah ([28], [29]), very surpsisingly,
that Borel maximal eventually different families and maximal cofinitary groups do
exist.

In 1963, Cohen gave the second part of the solution to CH by showing that CH
has no proof using the axioms of ZFC alone. For this he devised a revolutionary new
method that would become a major tool in set theory. His method is called forcing
and it shows how to extend models of ZFC by adding new sets (e.g. new reals) to it
and preserve ZFC. This is similar to when we form a field extension by adding a new
element to it and then adding “anything that there shoud be“. In particular, forcing
can be used to create models which are different and much richer than L. Since the
assumption that V = L is quite restrictive, it is interesting to know in what forcing
extensions of L, definable witnesses for the above mentioned kinds of sets still exist.
By now, various such results exist in the literature, e.g. in [9], [14], [18], [51] or [17].
Typically, witnesses in L are preserved directly in a forcing extension and Shoenfield
absoluteness ensures that they keep the same definitions. Only a few exceptions to this
exist so far, most notably [9], where the authors preserve the definition a mad family,
while its version in L is destroyed. We will provide a similar result in Chapter 4.
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1.2 Preliminaries

1.2.1 Descriptive set theory

Descriptive set theory studies definable subsets of the reals, or more generally, of Polish
spaces. It is usually much more convenient to work with spaces such as Baire space

ωω or Cantor space 2ω instead of R, or any other Polish space, directly. ωω is the
set of functions from naturals to naturals and 2ω is the set of functions from naturals
to {0, 1}. For concrete Polish spaces X , there are usually many effective ways to
associate members of 2ω or ωω with elements of X . In full generality, we have that:

Fact ([33, Theorem 7.9]). Let X be a Polish space. Then there is a continuous

surjection φ : ωω → X . Moreover, there is a closed set C ⊆ ωω and a continuous

bijection ψ : C → X .

In the context of X = R for instance, φ may be a computable function. More
precisely, there is an algorithm which, given an arbitrary long finite initial segment of
x ∈ ωω and n ∈ ω, computes a rational approximation up to the n’th decimal place of
φ(x). Closed subsets of ωω (or of 2ω) are paticularly nice to work with since they have
the following representation theorem:

Fact ([33, Proposition 2.4]). Let T ⊆ ω<ω be a tree, then the set of branches through

T , [T ] = {x ∈ ωω : ∀n ∈ ω(x � n ∈ T )}, is a closed set. For any closed set C ⊆ ωω,

there is a tree T ⊆ ω<ω so that C = [T ].

Definition 1.2.1. Consider the language of second-order arithmetic. It has two sorts of
variables, those for reals, usually using the letters u, v, w, x, y, z, and those for natural
numbers, usually i, j, k, l,m, n. It has the common constant, function and relation
symbols 0, 1,+, ·, < for naturals and an additional evaluation predicate x(n) = m. The
semantics of this logic should be clear. A formula ϕ is this language is called

− arithmetic, if quantifiers are only bound to natural number variables,

− Σ1
1, if it is of the form ∃x0, . . . , xnψ(x0, . . . , xn), where ψ is arithmetic without

parameters,

− Π1
1, if it is of the form ∀x0, . . . , xnψ(x0, . . . , xn), where ψ is arithmetic without

parameters,

− Σ1
n+1, if it is of the form ∃x0, . . . , xnψ(x0, . . . , xn), where ψ is Π1

n,
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− Π1
n+1, if it is of the form ∀x0, . . . , xnψ(x0, . . . , xn), where ψ is Σ1

n.

Moreover, a formula is Σ1
n(r), resp. Π1

n(r) for r ∈ ωω, if it is of the form ϕ(r) for
a Σ1

n, resp. Π1
n formula ϕ. And it is Σ1

n, resp. Π1
n (boldface) if it is Σ1

n(r), resp. Π1
n(r)

for some r ∈ ωω.

For any of the classes Γ of formulas defined above, we say that a set A ⊆ ωω is
Γ, or sometimes, Γ-definable, if there is a formula ϕ(x) ∈ Γ in one free variable x so
that A = {x ∈ ωω : ϕ(x)}. We say that A is ∆1

n, ∆1
n(r) or ∆1

n if A is both Σ1
n, resp.

Σ1
n(r), resp. Σ1

n and Π1
n, resp. Π1

n(r), resp. Π1
n.

This description can be easily adapted to concrete Polish spaces, other than ωω,
such as R, changing the semantics. In this case for instance, we may stipulate that
x(0) = m says that bxc = m and for n > 0, x(n) = m says that the n’th digit in
the (or rather a canonically chosen) decimal expansion of x is m. More generally, if
{On : n ∈ ω} is a basis for X , x(n) = 1 could be understood as saysing x ∈ On and
x(n) 6= 1 as x /∈ On. In the statements below, the specific semantics (i.e. the specific
choice of a basis) for arbitrary Polish spaces is irrelevant.

Fact. Let X be a Polish space and A ⊆ X . Then TFAE:

1. A is analytic, i.e. A = f ′′B for some f : Y → X continuous, Y a Polish space

and B ⊆ Y Borel.

2. A = f ′′C for some f : ωω → X continuous, C ⊆ ωω closed.

3. A = f ′′ωω for some f : ωω → X continuous.

4. A is Σ1
1.

5. A is the projection of a closed set C ⊆ X × ωω.

And in case X = ωω,

6. A = p[T ], for T a tree on ω × ω, where p[T ] is the projection of [T ] to the first

coordinate.

Fact. Let X be a Polish space and A ⊆ X . Then TFAE:

1. A is Borel.

2. A is analytic and coanalytic, i.e. the complement of an analytic set.
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3. A is ∆1
1.

We fix from now on a relatively small, but still strong enough finite fragment of
ZFC which we call ZFC∗. We do not specify it further but let us say that it does not
include the Powerset Axiom so that models of the form H(θ) satisfy it.

Fact (Shoenfield Absoluteness). Let M ⊆ N be transitive models (possibly proper

classes) of ZFC∗ and r ∈M . Then, if ϕ is Σ1
1(r) or Π1

1(r),

M |= ϕ↔ N |= ϕ.

Moreover, if (ω1)N ∈M and ϕ is Σ1
2(r) or Π1

2(r), then

M |= ϕ↔ N |= ϕ.

1.2.2 Forcing

Forcing is a technique that shows how to extend given models of set theory, by adding
specially chosen objects to it. It can be used to show that certain mathematical questions
cannot be settled on the basis of ZFC alone. Simply put and skipping the logical details,
this is done by providing a model of ZFC in which the question has a positive answer
and another one in which it is negative. But let us say that this is a rather superficial
description and does not always correspond to how set theorists think about these
results in practice. Forcing constructions usually reveal something much deeper than
merely saying that something does not have a proof. Forcing can also often be used to
prove results in ZFC, e.g. via Shoenfield absoluteness.

Definition 1.2.2. Let (P,≤) be a partial order with a greatest element 1. Then we call
P a forcing poset or forcing notion.

− The elements of P are often called conditions and denoted with letters p, q, r. 1
is called the trivial condition.

− When p ≤ q, we say that p extends q or sometimes that p is stronger than q.

− A set D ⊆ P is called dense if for every p ∈ P there is q ∈ D such that q ≤ p.

− A set G ⊆ P is called a filter if for any p, q, if p ∈ G and p ≤ q, then q ∈ G, and
if p, q ∈ G, then there is r ∈ G so that r ≤ p, q.

Let (M,∈) |= ZFC∗, P ∈M and G a filter on P.
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− We say that G is P-generic over M if for every dense subset D ∈ M of P,
M ∩G ∩D 6= ∅.

Whenever G is P-generic over M , we can form a model M [G] which corresponds
to the smallest model extending M and containing G. The way M [G] is defined is via
the notion of P-names.

Definition 1.2.3. The class V P of P-names is defined recursively on ranks, stipulating
that every τ ∈ V P consists of elements of the form (p, σ) for p ∈ P and σ ∈ V P. For
example, ∅ is the P-name of lowest rank. Whenever G ⊆ P and τ is a P-name, we
define recursively the evaluation of τ by G as τ [G] := {σ[G] : ∃p ∈ G((p, σ) ∈ τ)}.
For a class M , we define M [G] := {τ [G] : τ ∈ V P ∩M}.

Fact. Let (M,∈) |= ZFC∗ be transitive, P ∈M and let G be P-generic over M . Let Λ

be an arbitrary finite fragment of ZFC. Then there is a finite fragment Σ of ZFC, so that

(M,∈) |= Σ→ (M [G],∈) |= Λ.

Moreover, M [G] is the smallest transitive model satisfying ZFC∗ with G ∈M [G]

and M ⊆M [G]. Also, M and M [G] have the same ordinals.

Fact. Let (M,∈) |= ZFC∗ be transitive. Whenever ϕ(x0, . . . , xn) is a formula in the

language of set theory, there is a formula ψ(y, z, x0, . . . , xn) so that for any forcing

poset P ∈ M , any P-names τ0, . . . , τn ∈ M and p ∈ P, (M,∈) |= ψ(P, p, τ0, . . . , τn)

iff for every G, P-generic over M with p ∈ G,

(M [G],∈) |= ϕ(τ0[G], . . . , τn[G]).

Moreover, for any P-generic filter G over M , (M [G],∈) |= ϕ(τ0[G], . . . , τn[G]))

iff there is p ∈ G such that (M,∈) |= ψ(P, p, τ0, . . . , τn).

Finally, generic filters exist when M is countable.

Fact. Let M,P be as before, p ∈ P and let M be countable. Then there is a P-generic

filter G over M with p ∈ G.

1.3 Structure of the thesis

In Chapter 2, we study the definability of maximal towers and of inextendible linearly
ordered towers (ilt’s), a notion that is more general than that of a maximal tower. We
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show that there is, in the constructible universe, a Π1
1 definable maximal tower that is

indestructible by any proper Suslin poset. Resembling earlier results in the literature,
we prove that the existence of a Σ1

2 ilt implies that the universe is close to L in the sense
that ωL1 = ω1. Moreover, we show that analogous results hold for other combinatorial
families of reals. We prove that there is no ilt in Solovay’s famous model, in which
every set of reals is Lebesgue measurable. And finally we show that the existence of a
Σ1

2 ilt is equivalent to that of a Π1
1 ilt.

The next chapter deals with the definability of ultrafilters and ultrafilter bases on
the naturals. As a main result we show that there is no coanalytic base for a Ramsey
ultrafilter, while in contrast we can construct Π1

1 P-point and Q-point bases in L. This
is interesting since a Ramsey ultrafilter is exactly an ultrafilter that is a P- and Q-point
at the same time. We also show that the existence of a ∆1

n+1 ultrafilter is equivalent to
that of a Π1

n base, for n ∈ ω. Moreover we introduce a Borel version uB of the classical
ultrafilter number u and make some observations.

In Chapter 4, we prove a fairly general result that applies to a large number of
examples of special families of reals. We show that after forcing with a countable
support iteration or a finite product of Sacks or splitting forcing over L, every analytic
hypergraph on a Polish space admits a ∆1

2 maximal independent set. This extends an
earlier result by Schrittesser. As a main application we get the consistency of r = u =

i = ω2 together with the existence of a ∆1
2 ultrafilter, a Π1

1 maximal independent family
and a ∆1

2 Hamel basis. This solves open problems of Brendle, Fischer and Khomskii.
We also show in ZFC that d ≤ icl.

In the last chapter, which corresponds to the second part of the thesis, our goal is to
study the pseudointersection and tower numbers on uncountable regular cardinals. First,
we prove that either p(κ) = t(κ) or there is a (p(κ), λ)-gap of club-supported slaloms
for some λ < p(κ). While the existence of such gaps is unclear, this is a promising
step to lift Malliaris and Shelah’s proof of p = t to uncountable cardinals. We analyze
gaps of slaloms and in particular, show that p(κ) is always regular. This extends results
of Garti. Finally, we present a new model for the inequality p(κ) = κ+ < b(κ) = 2κ.
In contrast to earlier arguments by Shelah and Spasojevic, we achieve this by adding
κ-Cohen reals and then successively diagonalising the club filter which is shown to
preserve a Cohen witness to p(κ) = κ+.





CHAPTER 2
Inextendible linearly ordered

towers

2.1 Introduction

A tower will be, as usual, a set X ⊆ [ω]ω which is well ordered with respect to reverse
almost inclusion, i.e. the relation x ≤ y given by ∃n ∈ ω(y \ n ⊆ x). A tower is
maximal if it has no pseudointersection. In the definition of a linearly ordered tower we
drop the requirement that the order is well-founded. An inextendible linearly ordered
tower is one that has no top-extension, i.e. has no pseudointersection.

The questions that we will ask and answer for towers are inspired to a great extent
by those that appeared in relation to mad families. Recall that two sets x, y ∈ [ω]ω

are called almost disjoint whenever x ∩ y is finite. An almost disjoint family is a
subset of [ω]ω all of whose elements are pairwise almost disjoint. A maximal almost
disjoint family (mad family) is an infinite almost disjoint family that cannot be properly
extended to a larger one. For mad families, the story begins with Mathias’ influential
work [37] in which he showed that mad families cannot be analytic.

In Section 2.2 we will show that neither maximal towers nor ilt’s can be analytic
(Theorem 2.2.2 and Theorem 2.2.5). On the other hand we prove in Section 2.3, as a
main result, that Π1

1 maximal towers do exist in L (Theorem 2.3.2), using the technique
developped by Miller in [38].

Another topic that has been studied extensively for mad families is the existence
of Π1

1 examples in various forcing extensions. For instance it has been shown in [9]
that there is a Π1

1 mad family in a model obtained by adding Hechler reals. In Section
2.4 we will outshadow all these questions for towers by showing that in L there is a Π1

1

11
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maximal tower that is indestructible by any proper Suslin partial order (Theorem 2.4.3).
Section 2.5 deals with the value of ω1 in models where ilt’s can have simple

definitions. As a main result we show that the existence of a Σ1
2(x) ilt implies that

ω1 = ω
L[x]
1 (Theorem 2.5.3). The same has been shown for mad families in [66]. Using

similar ideas we show that this holds analogously for maximal independent families,
Hamel bases and ultrafilters (Theorem 2.5.7, 2.5.9 and 2.5.11). In [9] Brendle and
Khomskii ask whether there is some notion of transcendence over L that is equivalent
to the non-existence of a Π1

1 mad family. The same question can be asked for other
families and our observations contribute to this question by giving a sufficient condition
of this kind.

In Section 2.6 we show that there is no ilt in Solovay’s model (Theorem 2.6.1). For
mad families this was a long standing open question first asked by Mathias in [37] and
solved by Törnquist in [66].

In Section 2.7 we show that the existence of a Σ1
2 ilt is equivalent to that of a Π1

1 ilt
(Theorem 2.7.1). This theorem fits into a series of results stating that we can canonicaly
construct Π1

1 objects from given Σ1
2 ones. For mad families this was shown in [65]. For

maximal independent families see [8] and for maximal eventually different families
see [17].

We will always stress the difference between lightface (Π1
1,Σ

1
1,Σ

1
2) and bold-

face (Π1
1,Σ

1
1,Π

1
2) definitions as well as definitions relative to a fixed real parameter

(Π1
1(x),Σ1

1(x),Σ1
2(x)) to stay as general as possible.

2.2 Towers and Definability

Definition 2.2.1. A tower is a set X ⊆ [ω]ω which is well ordered with respect to
the relation defined by x ≤ y iff y ⊆∗ x. It is called maximal if it cannot be further
extended, i.e. it has no pseudointersection.

Theorem 2.2.2. A tower contains no (uncountable) perfect set, i.e. is thin. In particular

there is no Σ1
1 maximal tower.

Proof. Assume X ⊆ [ω]ω is a tower and P ⊆ X is a perfect set. The set R = {(x, y) :

x, y ∈ P ∧ y ⊆∗ x} is Borel. P is an uncountable Polish space and R is Borel as
a subset of P × P . But R is a well order of P , which contradicts R having the
Baire property by [33, Theorem 8.48]. A maximal tower must be uncountable and an
uncountable analytic set has a perfect subset by the Perfect Set Theorem. Thus there is
no analytic maximal tower.
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Theorem 2.2.3. Every Σ1
2(x) tower is a subset of L[x] and thus of size at most ωL[x]

1 .

Proof. If X is a Σ1
2(x) tower then it contains no perfect set and is thus a subset of L[x]

by the Mansfield-Solovay Theorem [39, Theorem 21.1].

Corollary 2.2.4. The existence of a Σ1
2(x) maximal tower implies that ω1 = ω

L[x]
1 .

All of the proofs above rely mostly on the fact that towers exhibit a well ordered
structure and the maximality is inessential. Thus it is natural to ask for a more general
version of a tower which is not trivially ruled out by an analytic definition. We call a
set X ⊆ [ω]ω an inextendible linearly ordered tower (abbreviated as ilt) if it is linearly
ordered with respect to ⊆∗ and has no pseudointersection. We call Y ⊆ X cofinal in
X if ∀x ∈ X∃y ∈ Y (y ⊆∗ x).

Theorem 2.2.5. There is no Σ1
1 definable inextendible linearly ordered tower.

Proof. Assume X = p[T ] is an ilt where T is a tree on 2× ω.

Claim 2.2.6. There is T ′ ⊆ T so that for every (s, t) ∈ T ′, p[T ′(s,t)] is cofinal in X .

Proof. Let T ′ = {(s, t) : p[T(s,t)] is cofinal in X}. For every (u, v) ∈ T \ T ′, we let
xu,v ∈ X be such that ∀y ∈ p[T(u,v)](xu,v ⊆∗ y). The collection {xu,v : (u, v) ∈ T \T ′}
is countable and therefore there is x ∈ X so that x (∗ xu,v for every (u, v) ∈ T \ T ′.
Now let (s, t) ∈ T ′ be arbitrary and x′ ∈ X such that x′ ⊆∗ x. As p[T(s,t)] is
cofinal in X , there is y ∈ p[T(s,t)] so that y ⊆∗ x′. Say (y, z) ∈ [T(s,t)]. For every
n ∈ ω, (y � n, z � n) ∈ T ′ because else we get a contradiction to y ⊆∗ x. Thus
y ∈ p[T ′(s,t)].

By the claim we can wlog assume that for every (s, t) ∈ T , p[T(s,t)] is cofinal in
X . Now consider T as a forcing notion (which is equivalent to Cohen forcing). The
generic real will be a new element of p[T ] together with a witness. Let ċ be a name
for the generic real. Notice that the statement that p[T ] is linearly ordered by ⊆∗ is
absolute. Thus for every y ∈ X there is a condition (s, t) ∈ T and n ∈ ω so that either

(s, t)  ċ ⊆ y \ n

or
(s, t)  y ⊆ ċ \ n.

The second option is impossible, because p[T(s,t)] is cofinal in X . We can thus find
(s, t), n ∈ ω and Y ⊆ X cofinal in X , so that for every y ∈ Y , (s, t)  ċ ⊆ y \ n. Let
(x, z) ∈ [T(s,t)] be arbitrary. As Y is cofinal in X , there is y ∈ Y so that y (∗ x. But
this clearly contradicts (s, t)  ċ ⊆ y \ n.
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Corollary 2.2.7. Every Σ1
2 inextendible linearly ordered tower has a cofinal subset of

size ω1.

Proof. Assume X is Σ1
2. Then it is the union of ω1 many Borel sets (see e.g. [40]). By

Theorem 2.2.5 each of these Borel sets has a lower bound in X .

Note that the above results can be applied similarly to inextendible linearly ordered
subsets of (ωω,≤∗).

2.3 A Π1
1 definable maximal tower in L

In this section we will show how to construct in L a maximal tower with a Π1
1 definition.

For this we apply the coding technique that has been developed by A. Miller in [38] in
order to show the existence of various nicely definable combinatorial objects in L.

Let O be the set of odd and E the set of even natural numbers.

Lemma 2.3.1. Suppose z ∈ 2ω, y ∈ [ω]ω and 〈xα : α < γ〉 is a tower, where γ < ω1,

so that ∀α < γ(|xα ∩ O| = ω ∧ |xα ∩ E| = ω). Then there is x ∈ [ω]ω so that

∀α < γ(x ⊆∗ xα), |x ∩O| = ω, |x ∩ E| = ω, z ≤T x and |y ∩ ω \ x| = ω.

Proof. It is a standard diagonalization to find x so that ∀α < γ(x ⊆∗ xα), |x∩O| = ω,
|x ∩ E| = ω and |y ∩ ω \ x| = ω. We assume that z is not eventually constant, else
there is nothing to do. Now given x find 〈ni〉i∈ω increasing in x so that ni ∈ O iff
z(i) = 0. Let x′ = {ni : i < ω}. Then x′ works.

Theorem 2.3.2. Assume V = L. Then there is a Π1
1 definable maximal tower.

In the rest of the paper, <L will always stand for the canonical global L well-order.
Whenever r ∈ 2ω, we write Er ⊆ ω2 for the relation defined by

mErn iff r(2m3n) = 0.

If Er is a well-founded and extensional relation then we denote with Mr the unique
transitive ∈-model isomorphic to (ω,Er). Notice that {r ∈ 2ω : Er is well-founded
and extensional} is Π1

1.
If Er is a well-order on ω then ‖r‖ denotes the unique countable ordinal α so that

(ω,Er) is isomorphic to (α,∈). We also say that r codes α. The set of r so that Er is a
well-order is called WO. WO is obviously Π1

1.
For any real x ∈ 2ω we define ωx1 to be the least countable ordinal which has

no recursive code in x, i.e. the least ordinal α so that for any recursive function
r : 2ω → 2ω, r(x) does not code α.
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Proof of Theorem 2.3.2. Let 〈yξ : ξ < ω1〉 enumerate [ω]ω via the canonical well order
of L. We will construct a sequence 〈δ(ξ), zξ, xξ : ξ < ω1〉, where for every ξ < ω1:

− δ(ξ) is a countable ordinal

− zξ ∈ 2ω ∩ Lδ(ξ)+ω

− xξ ∈ [ω]ω ∩ Lδ(ξ)+ω

The sequence is defined by the following requirements for each ξ < ω1:

1. δ(ξ) is the least ordinal δ greater than supν<ξ δ(ν) so that yξ, 〈δ(ν), zν , xν : ν <

ξ〉 ∈ Lδ and Lδ projects to ω1.

2. zξ is the <L least code for the ordinal δ(ξ).

3. 〈xν : ν < ξ〉 is a tower and ∀ν < ξ(|xν ∩O| = ω ∧ |xν ∩ E| = ω).

4. xξ is <L least so that ∀ν < ξ(xξ ⊆∗ xν), |xξ ∩ O| = ω, |xξ ∩ E| = ω, zξ ≤T x
and |yξ ∩ ω \ x| = ω.

Notice that zξ and xξ indeed can be found in Lδ(ξ)+ω given that yξ, 〈xν : ν <

ξ〉 ∈ Lδ(ξ), and that Lδ(ξ) projects to ω. It is then straightforward to check that (1)-(4)
uniquely determine a sequence 〈δ(ξ), zξ, xξ : ξ < ω1〉 for which 〈xξ : ξ < ω1〉 is a
maximal tower.

Claim 2.3.3. {xξ : ξ < ω1} is a Π1
1 subset of 2ω.

Proof. Let Ψ(v) be the formula expressing that for some ξ < ω1, v = 〈δ(ν), zν , xν :

ν ≤ ξ〉. More precisely, Ψ(v) says that v is a sequence 〈ρν , ζν , τν : ν ≤ ξ〉 of some
length ξ + 1, that satisfies the clauses (1)-(4) for every ν ≤ ξ.

The formula Ψ(v) is absolute for transitive models of some finite fragment Th of
ZFC which holds at limit stages of the L hierarchy. Namely we need absoluteness
of the formula ϕ1(ξ, y) expressing that y = yξ, ϕ2(δ,M) expressing that M = Lδ

projects to ω and ϕ3(z, δ) expressing that z is the <L least code for δ.

Moreover we have that 〈δ(ν), zν , xν : ν ≤ ξ〉 ∈ Lδ(ξ)+ω and that

Lδ(ξ)+ω |= Ψ(〈δ(ν), zν , xν : ν ≤ ξ〉)

for every ξ < ω1.
1This means that over Lδ there is a definable surjection to ω. The set of such δ is unbounded in ω1.
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Now let Φ(r, x) be a formula expressing that Er is a well founded and extensional
relation, Mr |= Th and for some v ∈Mr,

Mr |= v is a sequence 〈ρν , ζν , τν : ν ≤ ξ〉 ∧Ψ(v) ∧ τξ = x.

We thus have that x = xξ for some ξ < ω1 iff ∃r ∈ 2ωΦ(r, x). Φ(r, x) can clearly
be taken as a Π1

1 formula.

For any ξ < ω1, the well order δ(ξ) is coded by zξ and zξ ≤T xξ. Thus δ(ξ) + ω <

ω
xξ
1 and there is r ∈ L

ω
xξ
1

so that Mr = Lδ(ξ)+ω. In particular

∃r ∈ L
ω
xξ
1
∩ 2ω(Φ(r, xξ)).

We get that

∃ξ < ω1(x = xξ)↔ ∃r ∈ Lωx1 ∩ 2ω(Φ(r, x)).

The right hand side can be expressed by a Π1
1 formula.

Remark 2.3.4. By Theorem 2.2.3 the Π1
1 tower constructed above is a subset of L. This

implies that its definition will evaluate to the same set in any extension of L. As an
immediate corollary, we obtain that the existence of a Π1

1 definable tower is consistent
with c > ℵ1 (here c denotes the continuum), a question which has been of interest
for many combinatorial objects of the real line. For some more recent results in this
direction regarding maximal independent families and maximal eventually different
families of functions, see [8] and [17] respectively.

Corollary 2.3.5. The existence of a coanalytic tower is consistent with the bounding
number b being arbitrarily large.

Recall that the bounding number is defined as the least size of an unbounded family
in (ωω, <∗). It is a natural lower bound for many other classical cardinal characteristics.

Proof. It is well known that finite support iterations of Hechler forcing for adding a
dominating real preserve all ground model maximal towers to be maximal (see [2] for
more details).
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2.4 Indestructible Towers

Recall that the pseudointersection number p is the least cardinal κ so that any set
F ⊆ [ω]ω with the finite intersection property and |F| < κ has a pseudointersection.
F has the finite intersection property if for any F ′ ∈ [F ]<ω,

⋂
F ′ is infinite. We obtain

the following result.

Theorem 2.4.1. Assume p = c. Let P be a collection of at most c many proper posets

of size c. Then there is a maximal tower indestructible by any P ∈ P .

Proof. Let us call a P name ẋ for a real a nice name whenever it has the form⋃
n∈ω{(p, ň) : p ∈ An} where the An’s are countable antichains in P. Remember

that when P is proper, then for any P name ẋ for a real and any p ∈ P, there is a nice
name ẏ and q ≤ p such that q  ẏ = ẋ. The number of nice P names is |P|ℵ0 .

Let us enumerate all pairs 〈(Pα, pα, ẏα) : α < c〉 where pα ∈ Pα, Pα ∈ P and ẏα is
a nice Pα name such that pα  ẏα ∈ [ω]ω.

We construct a tower 〈xα : α < c〉 recursively. At step α we first choose a
pseudointersection x of 〈xξ : ξ < α〉 (here we use α < p). Next we partition x into
two disjoint infinite subsets x0, x1. Now note that pα Pα (ẏα ⊆∗ x0 ∧ ẏα ⊆∗ x1) is
impossible. Thus we find i ∈ 2 and qα ≤ pα such that qα Pα ẏα 6⊆∗ xi. Let xα = xi.

Now let ẋ be an arbitrary P name for a real for some P ∈ P . We see easily that
the set D = {q ∈ P : ∃α < c(q  ẋ 6⊆∗ xα)} is dense. Namely for any p we find
(Pα, pα, ẏα) where pα ≤ p and pα  ẋ = ẏα. Then we have qα ≤ p with qα ∈ D.

Definition 2.4.2. A forcing notion (P,≤) is Suslin if

1. P ⊆ 2ω is analytic,

2. ≤⊆ 2ω × 2ω is analytic,

3. the incompatibility relation ⊥⊆ 2ω × 2ω is analytic (and in particular Borel).

The next thing we want to show is that (in L) for P the collection of all proper
Suslin posets, we can get an indestructible maximal tower which is coanalytic.

Theorem 2.4.3. (V=L) There is a Π1
1 maximal tower indestructible by any proper

Suslin poset.

Proof. First let us note that there is a recursive map f : Tree×[ω]ω → 2ω, where Tree

is the set of trees on ω × ω, such that f(T, y) ∈WO iff ∀x ∈ p[T ](|x ∩ (ω \ y)| = ω)

(see [40, Theorem 4A.3]). Fix this map f .
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For the construction of our tower we now enumerate via the canonical well order
of L all trees 〈Tα : α < ω1〉 on ω× ω. Now as in the proof of Theorem 2.3.2 we define
a sequence 〈δ(ξ), zξ, xξ : ξ < ω1〉 with

− δ(ξ) is a countable ordinal

− zξ ∈ 2ω ∩ Lδ(ξ)+ω

− xξ ∈ [ω]ω ∩ Lδ(ξ)+ω

and the following properties:

1. 〈xν : ν < ξ〉 is a tower and ∀ν < ξ(|xν ∩O| = ω ∧ |xν ∩ E| = ω).

2. δ(ξ) is the least ordinal δ greater than supν<ξ δ(ν) so that

− 〈δ(ν), zν , xν : ν < ξ〉, Tξ ∈ Lδ,

− there are disjoint pseudointersections x0, x1 ∈ Lδ of 〈xν : ν < ξ〉 both
hitting O and E infinitely,

− either (a) there is (x,w) ∈ [Tξ] ∩ Lδ such that x ⊆∗ x0 or (b) f(Tξ, x
0) ∈

WO, ‖f(Tξ, x
0)‖ < δ and there is inLδ an order preserving map (ω,Ef(Tξ,x0))→

‖f(Tξ, x
0)‖,

− and Lδ projects to ω.

3. zξ is the <L least code for the ordinal δ(ξ).

4. xξ is <L least so that xξ ⊆∗ x1 or xξ ⊆∗ x0 depending on whether (a) or (b)
holds true, |xξ ∩O| = ω, |xξ ∩ E| = ω and zξ ≤T xξ.

As in the proof of Theorem 2.3.2 we see that this definition determines a tower
〈xξ : ξ < ω1〉 which is Π1

1.
Now let us note the following for a proper Suslin poset P. Whenever ẋ is a nice P

name for a real and p ∈ P, then the set

{z ∈ [ω]ω : ∃q ≤ p(n ∈ z ↔ q 6 n ∈ ω \ ẋ)}

is analytic (q 6 n ∈ ω \ ẋ iff ∃r ∈ dom ẋ[(r, n) ∈ ẋ ∧ r 6⊥ q]).
Thus for any P, p ∈ P and ẋ a nice name there is α < ω1 so that

p[Tα] = {z ∈ [ω]ω : ∃q ≤ p(n ∈ z ↔ q 6 n ∈ ω \ ẋ)}.

Consider xα and the respective disjoint sets x0 and x1 at stage α of the construction.
There are two options:
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(a) There is (x,w) ∈ [Tα] such that x ⊆∗ x0. In this case we have chosen xα ⊆∗ x1

and there is q ≤ p so that |{n ∈ ω : q 6 n /∈ ẋ} ∩ x1| < ω. In particular
p 6 ẋ ⊆∗ xα.

(b) Or Lδ(α) |= “(ω,Ef(Tξ,x0)) is isomorphic to an ordinal”. This means that L |=
“(ω,Ef(Tξ,x0)) is isomorphic to an ordinal” and this means that for any x ∈
p[Tα], x has infinite intersection with ω \ x0. In this case we chose xα ⊆∗ x0.
Now if q ≤ p and n ∈ ω are arbitrary we can find r ≤ q and m ≥ n such that
r  m ∈ ẋ \ xα. This means again that p 6 ẋ ⊆∗ xα.

Thus we have shown that for any proper Suslin poset P, ẋ an arbitrary P name for a
real and p ∈ P, p 6 ẋ is a pseudointersection of 〈xξ : ξ < ω1〉.

2.5 ω1 and Σ1
2 definitions

Definition 2.5.1. Let F be a filter on ω containing all cofinite sets. Then Mathias
forcing relative to F is the poset M(F) consisting of pairs (s, F ) ∈ [ω]<ω × F such
that max s < minF . The extension relation is defined by (s, F ) ≤ (t, E) iff t ⊆ s,
F ⊆ E and t \ s ⊆ E.

Lemma 2.5.2. Assume that X is a Σ1
2 definable subset of [ω]ω, linearly ordered with

respect to ⊆∗. Then there is a ccc forcing notion Q consisting of reals so that for any

transitive model V ′ ⊇ V Q (with the same ordinals), the reinterpretation of X in V ′ is

not an ilt in V ′.

Proof. As X is Σ1
2, X can be written as a union

⋃
ξ<ω1

Xξ of analytic sets. Namely
whenever X = p[Y ] where Y ⊆ [ω]ω × 2ω is coanalytic then Y can be written
as {(x,w) : f(x,w) ∈ WO} for some fixed continuous function f related to the
definition of Y (see [40] for more details). Then Xξ is defined as {x ∈ [ω]ω : ∃w ∈
2ω(‖f(x,w)‖ = ξ)}.

Moreover we see that in any model W ⊇ V where ωW1 = ωV1 , the reinterpretation
of X is the union of the reinterpretations of the Xξ.

If X has a pseudointersection x in V , then x will stay a pseudointersection of
(the reinterpretation of) X in any extension by absoluteness. The statement ∀y(y /∈
X ∨ x ⊆∗ y) is Π1

2. In this case let Q be the trivial poset.
If X is inextendible in V , then for any ξ < ω1 there is xξ ∈ X so that ∀y ∈

Xξ(xξ ⊆∗ y). As X is linearly ordered with respect to ⊆∗, {xα : α < ω1} generates a
non-principal filter F . Let Q = M(F). Then in V Q there is a real x so that x ⊆∗ xα



20 Chapter 2. Inextendible linearly ordered towers

for every α < ω1. By absoluteness ∀y ∈ Xξ(xξ ⊆∗ y) will still hold true in V Q. In
particular ∀y ∈ Xξ(x ⊆∗ y) will hold true for any ξ < ωV1 .

As Q is ccc we have that ωV Q
1 = ωV1 . This implies that x is actually a pseudointer-

section of X in V Q. Again, this will hold true in any extension.

Theorem 2.5.3. If there is a Σ1
2 ilt, then ω1 = ωL1 . More generally, the existence of a

Σ1
2(x) ilt implies ω1 = ω

L[x]
1 .

Proof. We only prove the first part as the rest follows similarly.

Suppose that X is a Σ1
2 ilt and ωL1 < ω1. Apply Lemma 2.5.2 to (the definition of)

X in L to get the respective poset Q in L. As ωL1 < ω1, V |= |P(ω)∩L| = ω. But this
means there is a Q generic x ∈ V over L. L[x] ⊆ V , thus by Lemma 2.5.2 X has a
pseudointersection in V , contradicting our assumption.

Remark 2.5.4. We think that the proofs of Lemma 2.5.2 and Theorem 2.5.3 show-
case something interesting about Schoenfield absoluteness. Recall that Schoenfield’s
absoluteness theorem says that Σ1

2 formulas are absolute between any inner models
W ⊆ W ′, but it does not say anything about the relationship between ωW1 and ωW ′1 . In
fact in many applications of Σ1

2 absoluteness W and W ′ have the same ω1 (e.g. when
W ′ is a ccc or proper forcing extension of W ). But in this case it can be deduced di-
rectly from analytic absoluteness and the representation of Σ1

2 sets as the same ω1 union
of analytic set in any extension with the same ω1. The reason is that the existential
quantifier ∃α < ω1 stays the same. So the full strength of Schoenfield absoluteness
is only needed in the case where ωW1 is countable in W ′ and this is the case that we
crucially used in the proof of Theorem 2.5.3.

We also want to remark that the proofs of Lemma 2.5.2 and Theorem 2.5.3 are very
general and can be applied to many other maximal combinatorial families. For example
A. Törnquist has shown the following theorem in [66], using a similar argument.

Theorem 2.5.5. If there is a Σ1
2 mad family, then ω1 = ωL1 . More generally, the

existence of a Σ1
2(x) mad family implies ω1 = ω

L[x]
1 .

The argument for maximal independent families is a bit different. Let us recall the
definition of a maximal independent family.

Definition 2.5.6. A set X ⊆ [ω]ω is called independent if for any F ∈ [X]<ω and
G ∈ [X]<ω where F ∩ G = ∅,

⋂
x∈F x ∩

⋂
y∈G(ω \ y) is infinite. An independent

family is called maximal if it is maximal under inclusion.
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The set
⋂
x∈F x ∩

⋂
y∈G(ω \ y) is often denoted σ(F,G). We will also use this

notation below. Note that an independent family X is not maximal iff there is a real
x so that x ∩ σ(F,G) and (ω \ x) ∩ σ(F,G) are infinite for all F,G ∈ [X]<ω where
F ∩G = ∅. Such a real will be called independent over X .

We obtain the following result.

Theorem 2.5.7. If there is a Σ1
2 maximal independent family, then ω1 = ωL1 . More

generally, the existence of a Σ1
2(x) maximal independent family implies ω1 = ω

L[x]
1 .

In [38] Miller basically proved that a Cohen real is independent over any ground
model coded analytic independent family. He did not put his theorem in these words,
so before we go on let us repeat his argument.

Lemma 2.5.8 ([38, Proof of Theorem 10.28]). Let ϕ(x) be a Σ1
1 formula defining an

independent family and let c be a Cohen real over V . Then in V [c], c is independent

over the family defined by ϕ(x).

Proof. Let X denote the set {x ∈ [ω]ω : ϕ(x)} in any model extending V . Note that
in any model X is an independent family by Schoenfield absolutness. Let

K = {x ∈ [ω]ω : ∃F ∈ [X]<ω∃G ∈ [X]<ω(F ∩G = ∅ ∧ |σ(F,G) ∩ x| < ω)}

and

H = {x ∈ [ω]ω : ∃F ∈ [X]<ω∃G ∈ [X]<ω(F ∩G = ∅ ∧ |σ(F,G) ∩ (ω \ x)| < ω)}.

These sets are both analytic. Note that x is independent over X iff x /∈ H ∪K. To
show that any Cohen real c is independent over X , i.e. c /∈ H ∪K it suffices to prove
that H and K are meager. Why? When H ∪K is meager then there is a meager Fσ set
C so that H ∪K ⊆ C and this statement is absolute (∀x(x ∈ H ∪K → x ∈ C)). As
c is Cohen, V [c] |= c /∈ C and thus V [c] |= c /∈ H ∪K which implies that in V [c], c is
independent over X .

So let us prove:

Claim. K and H are meager.

Proof. Suppose e.g. that H is nonmeager. The argument for K will follow similarly.
Because H is analytic it has the Baire property and is thus comeager somewhere. It
is well known and easy to see that any comeager set contains a perfect set of almost
disjoint reals. So let P ⊆ H be a perfect almost disjoint family. For each x ∈ P we
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have Fx and Gx so that σ(Fx, Gx) ⊆∗ x. By the Delta system lemma, there is a set
S ∈ [P ]ω1 and R ∈ [P ]<ω so that

∀x 6= y ∈ S((Fx ∪Gx) ∩ (Fy ∪Gy) = R).

For any x ∈ S we define R0
x = R ∩ Fx and R1

x = R ∩Gx. As S is uncountable there
is an uncountable S ′ ⊆ S so that

∀x, y ∈ S ′(R0
x = R0

y ∧R1
x = R1

y).

But now note that for any x 6= y ∈ S ′, Fx∩Gy = (R∩Fx)∩(R∩Gy) = R0
x∩R1

y =

R0
x ∩R1

x = ∅. By symmetry we also have that Fy ∩Gx = ∅ and this implies that

(Fx ∪ Fy) ∩ (Gx ∪Gy) = ∅.

In particular we can form σ(Fx ∪ Fy, Gx ∪Gy). By choice of Fx, Gx, Fy, Gy we have
that

σ(Fx ∪ Fy, Gx ∪Gy) ⊆∗ x ∩ y =∗ ∅

as P was an almost disjoint family. But this contradicts the independence of X .

Proof of Theorem 2.5.7. Assume X is a Σ1
2 maximal independent family. Then in L,

X is also independent and it can be written as a union
⋃
ξ<ωL1

Xξ of analytic sets Xξ.
Assuming for a contradiction ωL1 < ω1, there is a Cohen real c over L. We have that
ω
L[c]
1 = ωL1 and in L[c], X still corresponds to the union

⋃
ξ<ωL1

Xξ. By the above
lemma c is independent over all the Xξ so in particular c is independent over X . This
statement is Π1

2 and thus absolute between any inner models containing c. In particular
in V , X is not maximal.

Theorem 2.5.9. If there is a Σ1
2 Hamel basis of R, then ω1 = ωL1 . More generally, the

existence of a Σ1
2(x) Hamel basis of R implies ω1 = ω

L[x]
1 .

A Hamel basis of R is a maximal set of linearly independent reals over the rationals
Q. Again it was Miller who first showed that a Cohen real in R is independent over
any ground model coded analytic linearly independent family.

Lemma 2.5.10 ([38, Proof of Theorem 9.25]). Assume A ⊆ R is an analytic set of

reals that are linearly independent over the field of rationals. Assume c ∈ R is a Cohen

real over V . Then in V [c], c is linearly independent over (the reinterpretation of) A.
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Proof. We assume that A 6= ∅, else the argument is trivial. Let x ∈ A ∩ V be arbitrary.
Suppose that U  “ċ is not independent over A” where U ⊆ R is some basic open set.
Say x0, . . . , xk ∈ A ∩ V and q0, . . . , qk ∈ Q are such that

U  ∃xk+1, . . . , xn ∈ A \ V ∃qk+1, . . . , qn ∈ Q(ċ = q0x0 + · · ·+ qnxn)

for some n ∈ ω. Now let c ∈ U be Cohen over V and xk+1, . . . , xn ∈ A \
V, qk+1, . . . qn ∈ Q so that

c = q0x0 + · · ·+ qnxn.

Let s 6= 0 be a small enough rational number so that c+ sx ∈ U . Recall that, as x ∈ V ,
c + sx is also a Cohen real over V . Thus let yk+1, . . . , yn ∈ A \ V, rk+1, . . . , rn ∈ Q
so that

c+ sx = q0x0 + · · ·+ qkxk + rk+1yk+1 + · · ·+ rnyn.

But now we have that

rk+1yk+1 + · · ·+ rnyn − (qk+1xk+1 + · · ·+ qnxn) = sx

and soA is not linearly independent in V [c]. But this is impossible by absoluteness.

Proof of Theorem 2.5.9. Same as the proof of Theorem 2.5.7.

For ultrafilters the proof is not much different. We give a proof in Chapter 3.

Theorem 2.5.11. If there is a Σ1
2 ultrafilter, then ω1 = ωL1 . More generally, the

existence of a Σ1
2(x) ultrafilter implies ω1 = ω

L[x]
1 .

We want to remark the ideas above can also be used to show that under Martin’s
Axiom none of the families above have Σ1

2 witnesses.

Theorem 2.5.12. MA(ω1) implies that there is no Σ1
2 ilt, mad family, maximal indepen-

dent family, Hamel basis or ultrafilter.

Proof. For mad families this was proven in [66]. For ilt’s Theorem 2.2.3 is enough.
For ultrafilters it suffices to note that under MA(ω1) every Σ1

2 set is Lebesgue mea-
surable (see [32]) and an ultrafilter cannot be Lebesgue measurable. The argument
for independent families and Hamel bases is the same. Write X =

⋃
ξ<ω1

Bξ where
the Bξ’s are analytic. Let M be an elementary submodel of size ω1 containing all the
parameters defining the Bξ’s. Then let c ∈ V be Cohen over M and use Lemma 2.5.8
or Lemma 2.5.10 to conclude that c is independent or linearly independent over X .
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2.6 Solovay’s model

In this section we prove the following result.

Theorem 2.6.1. There is no ilt in Solovay’s model.

Let us review some basics about Solovay’s model. A good presentation of Solovay’s
model can be found in [31, Chapter 26]. Assuming κ is an inaccessible cardinal in the
constructible universe L we first form an extension V of L in which ω1 = κ using the
Lévy collapse (see again [31, Chapter 26]). Then we let W ⊆ V consist of all sets
which are hereditarily definable from ordinals and reals as the only parameters. W is
then called Solovay’s model. The only facts that we use about W are listed below and
are well-known.

Suppose a ∈ 2ω ∩W is arbitrary, then

1. for every poset P ∈ H(κ)L[a], there is a P generic filter over L[a] in W ,

2. whenever x ∈ 2ω ∩W , there is a poset P ∈ H(κ)L[a], σ ∈ H(κ)L[a] a P name
and G ∈ W a P generic over L[a] so that x = σ[G].

Suppose X ∈ P(2ω) ∩W . Then there is a ∈ 2ω ∩W and a formula ϕ(x) in the
language of set theory using only a and ordinals as parameters so that

3. for any poset P ∈ H(κ)L[a], σ ∈ H(κ)L[a] a P name and G ∈ W , P generic over
L[a],

σ[G] ∈ X ↔ ∃p ∈ G(p  ϕ(σ)).

Until the end of the section we are occupied with proving Theorem 2.6.1. To prove
Theorem 2.6.1, assume that X ∈ P(2ω)∩W is linearly ordered with respect to⊆∗. We
will show that X cannot be an ilt. Let a ∈ 2ω ∩W and ϕ(x) be as in (3). To simplify
notation we will assume that a ∈ L and thus L[a] = L. From now on let us work in L.

Lemma 2.6.2. Let P ∈ H(κ), p ∈ P and σ a P name so that p  ϕ(σ). Then there is

p0, p1 ≤ p and n ∈ ω so that for any m ≥ n,

∃r ≤ p0(r  m ∈ σ)→ p1  m ∈ σ.

Proof. Consider P × P ∈ H(κ) and σ0 and σ1 the P × P names so that whenever
G0 ×G1 is P× P generic over V then σ0[G0 ×G1] = σ[G0], σ1[G0 ×G1] = σ[G1].
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Note that (p, p)  ϕ(σ0)∧ϕ(σ1), because whenever G0×G1 is P×P generic over
V with (p, p) ∈ G0 ×G1 then G0 and G1 are P generic over V with p ∈ G0, G1. But
then there must be (p0, p1) ≤ (p, p) and n ∈ ω so that either,

(p0, p1)  σ0 \ n ⊆ σ1

or
(p0, p1)  σ1 \ n ⊆ σ0.

Say wlog that (p0, p1)  σ0 \ n ⊆ σ1. Note that whenever ∃r0 ≤ p0(r0  m ∈ σ)

for some m ≥ n then p1  m ∈ σ. Suppose this was not the case. Then there is
r1 ≤ p1 so that r1  m /∈ σ. But then (r0, r1)  ∃m ≥ n(m ∈ σ0 ∧m /∈ σ1) which is
a contradiction to (r0, r1) ≤ (p0, p1).

Still in L, let 〈Pξ, pξ, σξ : ξ < κ〉 enumerate all triples 〈P, p, σ〉, where P ∈ H(κ),
p ∈ P and σ ∈ H(κ) is a P name so that p  ϕ(σ). This is possible as |H(κ)| = κ.

For every ξ < κ we find p0
ξ , p

1
ξ ≤ pξ in Pξ and n ∈ ω so that for every m ≥ n

∃r ≤ p0
ξ(r  m ∈ σξ)→ p1

ξ  m ∈ σξ.

Let xξ = {m ∈ ω : p1
ξ  m ∈ σξ} for every ξ < κ.

Claim. {xξ : ξ < κ} has the finite intersection property.

Proof of Claim. Suppose xξ0 , . . . xξk−1
are such that

⋂
i<k xξi is finite, say

⋂
i<k xξi ⊆

n. Consider the poset Q =
∏

i<k Pξi ∈ H(κ), (p0
ξ0
, . . . , p0

ξk−1
) ∈ Q and for every i < k,

σi the Q name so that whenever (G0, . . . , Gk−1) is Q generic then σi[G0×· · ·×Gk−1] =

σξi [Gi].
We have that (p0

ξ0
, . . . , p0

ξk−1
)  ϕ(σ0)∧ · · · ∧ϕ(σk−1) and thus, as X has the finite

intersection property, there is m ≥ n and (r0, . . . , rk−1) ≤ (p0
ξ0
, . . . , p0

ξk−1
) so that

(r0, . . . , rk−1)  m ∈
⋂
i<k

σi.

But this means that ri  m ∈ σi and thus m ∈ xξi for each individual i. This
contradicts

⋂
i<k xξi ⊆ n as m ≥ n.

Let F be the filter generated by {xξ : ξ < κ}. We have that F ∈ P([ω]ω) and thus
F ∈ H(κ). Moreover we have that M(F) ∈ H(κ). Thus in W there is y ∈ [ω]ω a
M(F) generic real over L.

Claim. For every x ∈ X , y ⊆∗ x. In particular X is not an ilt.
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Proof of Claim. Let x ∈ X be arbitrary. Then we have in L a poset P ∈ H(κ) and a P
name σ so that there is in W a P generic G over V so that x = σ[G]. Moreover there is
p ∈ G so that p  ϕ(σ).

It suffices to show that there is some ξ < κ and q ∈ G so that q  xξ ⊆∗ σ. To
see this we simply show that the set of conditions q ∈ P so that ∃ξ < κ(q  xξ ⊆∗ σ)

is dense below p. To show this fix p′ ≤ p arbitrary. Let ξ be such that 〈P, p′, σ〉 =

〈Pξ, pξ, σξ〉. But then p1
ξ ≤ pξ and p1

ξ  xξ ⊆∗ σξ.

This finishes the proof of Theorem 2.6.1.

2.7 Σ1
2 versus Π1

1

Theorem 2.7.1. The existence of a Σ1
2(x) ilt implies the existence of a Π1

1(x) ilt.

Proof. We are going to prove the statement only for lightface Σ1
2 as everything will

relativize. So let X be a Σ1
2 ilt.

Claim. X ∩ L is cofinal in X (where L is the constructible universe).

Proof. By Theorem 2.5.3 we have that ω1 = ωL1 must be the case. Thus X can be
written as a union

⋃
ξ<ω1

Xξ of analytic sets Xξ which are coded in L (see the proof of
Lemma 2.5.2). Note that X ∩ L is an ilt in L by a downwards absoluteness argument.
This implies that for every ξ < ω1 there is x ∈ L ∩X which is a pseudointersection of
Xξ. The statement “x is a pseudointersection of Xξ” is absolute. Thus X ∩L is indeed
cofinal in X .

As [ω]ω ∩ L is Σ1
2 we may just assume that X ⊆ L. Let ϕ(x,w) be Π1

1 such that
x ∈ X iff ∃wϕ(x,w). Using Π1

1 uniformization we can further assume that x ∈ X iff
∃!wϕ(x,w).

The idea will now be to get a linearly ordered tower that basically consists of x ∈ X
together with their unique witness w. To do this we have to introduce some notation.

− For y ⊆ [ω × ω]ω, we write yn for y’s n’th vertical section.

− For x ∈ [ω]ω, we write x(n) for the n’th element of x.

We now define the new ilt Y which lives on ω × ω. A set y ∈ [ω × ω]ω is in Y iff
the following are satisfied:

1. For every n ≥ 1, yn = y0 \ y0(n) or yn = y0 \ y0(n+ 1).
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2. If w ∈ 2ω is such that w(n) =

0 if yn+1 = y0 \ y0(n+ 1)

1 if yn+1 = y0 \ y0(n+ 2)
then ϕ(y0, w) and

in particular y0 ∈ X .

Claim. Y is Π1
1 ilt.

Proof. (i) Checking whether y ∈ [ω × ω]ω is as described in (1) is ∆1
1. Checking

whether for the function w ∈ 2ω as in (2), ϕ(y0, w) holds is Π1
1.

(ii) Y is linearly ordered by ⊆∗: Let us note first that whenever x (∗ y then
eventually x(n) > y(n). Why is this the case? As x (∗ y (so x 6=∗ y), there is a big
enough n ∈ ω so that ∀m ≥ n(|y ∩ x(m)| > m). But this means that x(m) > y(m)

for all m ≥ n.
Now let’s assume that x 6= y ∈ Y and without loss of generality that x0 (∗ y0.

By the observation above there is an n so that for every m ≥ n, x0(m) > y0(m) and
x0(m) ∈ y0. But this also means that ∀m ≥ n,

xm ⊆ x0 \ x0(m) ⊆ y0 \ y0(m+ 1) ⊆ ym.

In particular xm ⊆ ym for m ≥ n. For k < n we have that xk (∗ yk. Thus all together
we have that x (∗ y.

(iii) Y has no pseudointersection: Suppose z is a pseudointersection of Y . If
there is n ∈ ω so that |zn| = ω, then zn is a pseudointersection of X . Else let
x = {min zn : n ∈ ω ∧ zn 6= ∅}. It is easy to see that x must be infinite (else z
would not be ⊆∗ below any member of Y ). We claim that x is a pseudointersection
of X . Namely let y0 ∈ X be arbitrary where y ∈ Y . As z ⊆∗ y, there is an
n so that ∀m ≥ n(zm 6= ∅ → (m,min zm) ∈ y). This means in particular that
∀m ≥ n(zm 6= ∅ → min zm ∈ y0).





CHAPTER 3
The definability of ultrafilters

3.1 Introduction

In this chapter we will study the definability of ultrafilters and more specifically
ultrafilter bases. Filters will always live on ω and contain all cofinite sets. Thus a filter
is a subset of P(ω) and we can study its definability. It is well known that an ultrafilter
can neither have the Baire property nor be Lebesgue measurable. This already rules
out the existence of analytic ultrafilter generating sets as the generated filter will also
be analytic and thus have the Baire property. But this still leaves open the possibility
of a coanalytic ultrafilter base since a priori the generated set will only be ∆1

2. Recall
that for x, y ∈ [ω]ω we write x ⊆∗ y whenever x \ y is finite. An ultrafilter U is called
a P-point if for any countable F ⊆ U , there is x ∈ U so that ∀y ∈ F(x ⊆∗ y). U is
a Q-point if for any partition 〈an : n ∈ ω〉 of ω into finite sets an, there is x ∈ U so
that ∀n ∈ ω(|x ∩ an| ≤ 1). A Ramsey ultrafilter is an ultrafilter that is both a P- and a
Q-point. A more commonly known and equivalent definition for Ramsey ultrafilters U
is that for any coloring c : [ω]2 → 2, there is x ∈ U so that c is homogeneous on x, i.e.
c � [x]2 is constant. In fact we will show in Section 3.3 that:

Theorem 3.1.1. There is a Π1
1 base for a P-point in the constructible universe L.

Theorem 3.1.2. There is a Π1
1 base for a Q-point in the constructible universe L.

In Section 3.2 we will take another look at Miller’s coding technique which is used
for the above results. In strong contrast we will show in Section 3.4 that:

Theorem 3.1.3. There is no Π1
1 base for a Ramsey ultrafilter.

29
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Notice that any ultrafilter that is Σ1
n or Π1

n is already ∆1
n. Namely suppose that ϕ

defines an ultrafilter, then we have that ϕ(x)↔ ¬ϕ(ω \ x). Moreover any base for an
ultrafilter that is Σ1

n or Π1
n generates a ∆1

n or respectively a ∆1
n+1 ultrafilter.

In Section 3.5 we will compare ∆1
2 ultrafilters to Π1

1 bases. As a main result we
find that:

Theorem 3.1.4. The following are equivalent for any r ∈ 2ω, n ∈ ω.

1. There is a ∆1
n+1(r) ultrafilter.

2. There is a Π1
n(r) ultrafilter base.

In Section 3.6 we study the effects of adding reals to the definability of utrafilters.
In Section 3.7 we introduce a new cardinal invariant that is a Borel version of the
classical ultrafilter number u and make some observations.

3.2 Miller’s coding technique revisited

When we say that z codes the ordinal α, we mean the following. To any real z ∈ 2ω

we associate a relation Ez on ω defined by

Ez(n,m)↔ z(2n3m) = 1.

This relation may be a linear order and if it is a well-order and isomorphic to α we say
that it codes α. Such α is unique and we define ‖z‖ := α. More generally we say that
z codes M if (ω,Ez) is isomorphic to (M,∈). The set of z ∈ 2ω coding an ordinal is
denoted WO. The set WO is tightly connected to coanalytic sets. On one hand side,
WO is itself Π1

1 and on the other, for any Π1
1 set X ⊆ 2ω, there is a continuous function

f : 2ω → 2ω so that X = f−1(WO).

There is a very canonical way of defining in L various combinatorial subsets X
of reals in a ∆1

2 fashion. Typically the elements are found recursively by making
adequate choices which are absolute between models of the form Lα (e.g. taking
the <L least candidate which has some simple property holding with respect to the
previously chosen reals).

Then x ∈ X can be written as

∃M︸︷︷︸
∃

[M is well-founded︸ ︷︷ ︸
∀

, x ∈M︸ ︷︷ ︸
∆1

1

and M |= V = L ∧ ϕ(x)︸ ︷︷ ︸
∆1

1

] (3.1)



3.2. Miller’s coding technique revisited 31

or as

∀M |= V = L, x ∈M︸ ︷︷ ︸
∀+∆1

1

[M is not well-founded︸ ︷︷ ︸
∃

or M |= ϕ(x)︸ ︷︷ ︸
∆1

1

]. (3.2)

Quantifying over models is shorthand for quantifying over codes in 2ω of countable
models satisfying some basic set theoretic axioms. Thus e.g. (3.1) can be recast as
“∃z ∈ 2ω((ω,Ez) is well-founded, x ∈ (ω,Ez) and (ω,Ez) |= V = L∧ϕ(x))”, where
x ∈ (ω,Ez) means that x ∈ M for M the Mostowski collapse of (ω,Ez). It is not
difficult to see that this can be expressed in a ∆1

1 way.

As such, finding a ∆1
2 ultrafilter base in L is very simple. The major improvement

in Miller’s technique is to get rid of the first existential quantifier in (3.1). This is done
by letting x already encode a relevant well-founded model M in a Borel or even in a
recursive way. Then if C is the Borel coding relation used, the definition usually looks
as follows:

x ∈ Y︸ ︷︷ ︸
∀

and ∀z ∈ 2ω︸ ︷︷ ︸
∀

[¬C(x, z)︸ ︷︷ ︸
∆1

1

or (ω,Ez) |= V = L ∧ ϕ(x)︸ ︷︷ ︸
∆1

1

], (3.3)

for some known coanalytic Y .

Lemma 3.2.1. There is a lightface Borel set C ⊆ (2ω)3 so that whenever z codes

α < ω1 and r, y ∈ 2ω then (z, r, y) ∈ C iff y codes Lα[r].

Proof. The claim is easy to verify by noting that an adequate Ey can be constructed by
recursion on α. Thus (z, r, y) ∈ C can be defined by formulas of the form “∃/∀〈Ek :

k ∈ ω〉 a sequence indexed via the order coded by z satisfying certain recursive
assumptions, Ey is the union of all Ek”. This definition is uniform on z and r.

Lemma 3.2.2. There is a recursive function (·)+ω : 2ω → 2ω so that whenever z codes

α, then (z)+ω codes α + ω.

Proof. Let (z)+ω = y such that y(2n3m) = 1 iff


n even ∧m even ∧ z(2

n
2 3

m
2 ) = 1

n even ∧m odd

n odd ∧m odd ∧ n < m.
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3.3 Π1
1 bases for P- and Q-points

In Chapter 2 we constructed, using Miller’s technique, a coanalytic tower (i.e. a set
X ⊆ [ω]ω well-ordered wrt ∗ ⊇ and with no pseudointersection). A crucial property
of the tower was that all its elements were split by the set of even natural numbers. In
particular this meant that the tower could not generate an ultrafilter. We will construct
in L a tower generating an ultrafilter and thus generating a P-point.

Before we start to construct the Π1
1 P-point base, we need some ingredients.

Definition 3.3.1. We callW+ the set of x ∈ [ω]ω containing arbitrary long arithmetic
progressions, i.e. ∀k ∈ ω∃a, b ∈ ω({a · l + b : l < k} ⊆ x).

The following fact follows from Van der Waerden’s Theorem which is well known.

Fact. The setW = P(ω)\W+ is a proper ideal on ω. It is called the Van der Waerden

ideal.

Proof of Theorem 3.1.1. Let (yα)α<ω1 enumerate [ω]ω via the global L well-order <L.
The statement “y is the α’th element according to <L” is absolute between Lβ’s with
y ∈ Lβ and α ∈ Lβ. Let O : 2ω → 2ω be the following lightface Borel function: If
x ⊆ ω we want to define a unique sequence (in)n∈ω of subsets of ω so that max in <

min in+1 and in+1 is the next maximal arithmetic progression in x of length ≥ 3 above
max in (note that any pair of natural numbers forms an arithmetic progression). Now if
this sequence can be defined up to ω (in particular every in is finite), then we define
O(x)(n) = 1 iff in has even length. Else we let O(x)(n) = 0.

We construct a sequence (xξ, δξ)ξ<ω1 where xξ ∈ [ω]ω, δξ < ω1 as follows.

Given (xξ, δξ)ξ<α we let δα be the least limit ordinal such that supξ<α δξ < δα,
yα ∈ Lδα and δα projects to ω, i.e. Lδα+ω |= δα is countable. It is not difficult to see
that the set of ordinals projecting to ω is unbounded in ω1. xα = x is chosen least in
the <L well-order so that

(a) x ⊆∗ xξ for every ξ < α,

(b) x ∈ W+

(c) x ⊆ yα or x ⊆ ω \ yα.

(d) O(x) codes δα.

Note that any sequence (xξ)ξ<ω1 defined as above is a tower generating an ultrafilter.
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Claim 3.3.2. xα can be found in Lδα+ω.

Proof. Note that the definition of (xξ)ξ<α is absolute between Lβ’s. In particular
(xξ)ξ<α can be defined over Lδα . As δα projects to ω, there is an enumeration (xn)n∈ω

of {xξ : ξ < α} in Lδα+ω. Given yα we have that, as W is an ideal, that for every
ξ < α, yα ∩ xξ ∈ W+ or ω \ yα ∩ xξ ∈ W+. Assume wlog that for cofinally many
xξ, yα ∩ xξ ∈ W+ is the case. This implies that for all xξ this is the case as (xξ)ξ<α

forms a tower. Again as δα projects to ω, there is a real z ∈ Lδα+ω ∩ 2ω coding δα.
Now we define a sequence (in)n∈ω of finite subsets of ω so that max in < min in+1,
in ⊆ yα ∩

⋂
k≤n x

k, in consists of an arithmetic progression so that its length is ≥ n

and it is even iff z(n) = 1. Moreover min in is chosen large enough so that in−1 ∪ in
cannot form an arithmetic progression. x :=

⋃
n∈ω in can be defined in Lδα+ω and

satisfies (a)-(d). Thus in particular the <L-least such x exists in Lδα+ω.

Remark 3.3.3. There is a formula ϕ(x) in the language of set theory so that ϕ(x)

iff ∃ξ(x = xξ) and Lβ |= ϕ(x) for some β implies that ϕ(x) is true. Moreover
Lδξ+ω |= ϕ(xξ) for every ξ.

Proof. ϕ(x) expresses that there is an ordinal α and a sequence (xξ, δξ)ξ≤α according
to the recursive definitions given above so that x = xα.

Now we can check that the set X = {xξ : ξ ∈ ω1} is Π1
1. Let C and (·)+ω be as in

Lemma 3.2.1 and Lemma 3.2.2. Then x ∈ X iff

O(x) ∈WO and ∀z[¬C(O(x)+ω, 0, z) or (ω,Ez) |= ϕ(x)].

Definition 3.3.4. The ideal Fin2 on ω × ω consists of x ∈ P(ω × ω) so that ∀∞n ∈
ω∀∞m ∈ ω(〈n,m〉 /∈ x)

Proof of Theorem 3.1.2. The ultrafilter that we construct will live on ω × ω. Let
O : (Fin2)+ → 2ω be the following Borel function. Given x ∈ (Fin2)+ let x0, x1 be
the first two infinite vertical sections of x. We denote with x0(n) or x1(n) the n’th
element of x0 or x1. Then

O(x)(n) =

0 if x0(n) ≥ x1(n)

1 if x1(n) > x0(n).

As in the proof of Theorem 3.1.1 we let (yα)α<ω1 enumerate [ω×ω]ω and (Pα)α<ω1

enumerate all partitions of ω × ω into finite sets via the well-ordering <L.
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Similarly to the proof of Theorem 3.1.1 we construct a sequence (xξ, δξ)ξ<ω1 where
xξ ∈ (Fin2)+, intersections of finitely many elements in {xξ : ξ < ω1} are in (Fin2)+

and δξ < ω1 as follows.

Given (xξ, δξ)ξ<α we let δα be the least limit ordinal such that supξ<α δξ < δα,
yα, Pα ∈ Lδα and δα projects to ω, i.e. Lδα+ω |= δα is countable. xα = x is then
chosen least in the <L well-order so that

(a) {x} ∪ {xξ : ξ < α} has all finite intersections in (Fin2)+,

(b) x ∈ (Fin2)+,

(c) x ⊆ yα or x ⊆ ω \ yα,

(d) for every a ∈ Pα, |a ∩ x| ≤ 1,

(e) O(x) codes δα.

Again we show that such an xα exists and can be found in Lδα+ω.

Claim 3.3.5. xα can be found in Lδα+ω.

Proof. We have that if (xξ)ξ<α exists then it must be definable over Lδα . As δα projects
to ω there is in Lδα+ω an enumeration (xn)n∈ω of all finite intersections of elements in
{xξ : ξ < α}. We are given yα ∈ Lδα . It is not hard to see that either yα or (ω×ω)\yα
is in (Fin2)+ and has (Fin2)+ intersection with all xn. Without loss of generality we
assume yα has this property. Let Pα = {ai : i ∈ ω} and z ∈ 2ω ∩ Lδα+ω code δα.
Further let k0 < k1 be first so that the k0’th and k1’th vertical section of yα is infinite.
Let (pj)j∈ω enumerate ω × ω in a way that every pair (n,m) appears infinitely often.
Given (pj)j∈ω we define recursively a sequence 〈m0

i ,m
1
i 〉i∈ω and auxiliarily (ni)i∈ω as

follows:

− for every i, 〈m0
i ,m

1
i 〉 ∈ yα, 〈m0

i ,m
1
i 〉 /∈

⋃
j<i anj and 〈m0

i ,m
1
i 〉 ∈ ani ,

− if i = 3j for j ∈ ω, then 〈m0
i ,m

1
i 〉 is in the pj(0)’th infinite vertical section of

yα ∩ xpj(1) greater than k1,

− if i = 1 mod 3 then m0
i = k0 and m0

i+1 = k1 and m1
i ≥ m1

i+1 or m1
i+1 > m1

i

depending on whether z(i) = 0 or z(i) = 1.

Now the set {〈m0
i ,m

1
i 〉 : i ∈ ω} ∈ Lδα+ω satisfies (a)-(e) as can be seen from the

construction. In particular Lδα+ω contains the <L-least such set.
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The set {xξ : ξ < ω1} is now a base for a Q-Point and as in the proof of Theo-
rem 3.1.1 it is Π1

1.

3.4 There are no Π1
1 Ramsey ultrafilter bases

Definition 3.4.1. Let F be a filter. Then the forcing M(F) consists of pairs (a, F ) ∈
[ω]<ω × F such that max a < minF . A condition (b, E) extends (a, F ) if b is an
end-extension of a, E ⊆ F and b \ a ⊆ F .

M(F) is the natural forcing to add a pseudointersection of F .

Definition 3.4.2. Let F be a filter. Then we define the game G(F) as follows:

Player I F0 ∈ F F1 ∈ F . . .
Player II a0 ∈ [F0]<ω \ {∅} a1 ∈ [F1]<ω \ {∅} . . .

Player II wins iff
⋃
n∈ω an ∈ F .

Lemma 3.4.3. Let F be a filter on ω. Then TFAE:

(i) For any countable model M , F ∈ M , of enough set theory, there is x ∈ F ,

M(F) generic over M .

(ii) I has no winning strategy in G(F).

Proof. (i) implies (ii): Suppose σ is a winning strategy for I in G(F) and let σ,F ∈M .
Wlog we assume that σ(〈〉) = ω. Thus Player II is allowed to play any a0 as his first
move and then σ carries on as if a0 had not been played. In particular this means that
any initial play a0 of II is a legal move, i.e. 〈a0〉 ∈ dom(σ). Consider the dense sets
Dn := {(s, F ) : F ⊆

⋂
{σ(〈s0, . . . , sn−1〉) : 〈s0, . . . , sn−1〉 ∈ dom(σ),

⋃
i<k si =

s}} for n ∈ ω. Dn ∈ M for every n ∈ ω. By (i) there is x ∈ F , M(F) generic over
M . This means that for every n ∈ ω there is s an initial segement of x and F ∈ F
so that (s, F ) ∈ Dn and x \ s ⊆ F . Now using this construct a sequence 〈si〉i∈ω and
〈Fi〉i∈ω recursively so that:

1.
⋃
i<n si is an initial segment of x for every n ∈ ω,

2. max si < min si+1 for every i ∈ ω,

3. x \
⋃
i<n si ⊆ Fn for every n ∈ ω,
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4. (
⋃
i<n si, Fn) ∈ Dn.

We find recursively that 〈si〉i<n ∈ dom(σ), i.e. 〈si〉i<n is a legal move. But⋃
i∈ω si = x ∈ F contradicting σ being a winning strategy for I.

(ii) implies (i): Let M 3 F be countable and 〈Dn〉n∈ω enumerate all dense subsets
of M(F) in M . We describe a strategy for Player I: I starts by playing some F0 so that
there is (t0, F0) ∈ D0. Then Player II will play a0 ⊆ F0, i.e. (t0 ∪ a0, F0) ≤ (t0, F0).
Now I plays F1 so that there is (t0∪a0∪t1, F1) ∈ D1, (t0∪a0∪t1, F1) ≤ (t0∪a0, F0)...

By assumption there is a winning run 〈ai〉i∈ω for II according to this strategy. This
means that

⋃
ai ∈ F and moreover x =

⋃
ai ∪

⋃
ti ∈ F where ti are as described.

But x is now M(F) generic over M .

It is a well known theorem that for ultrafilters U , I not having a winning strategy
in G(U) is equivalent to U being a P-point. For sake of completeness we prove
a more general (in light of Lemma 3.4.3) version of this below. Recall that p is
the pseudointersection number, i.e. the least size of a set B ⊆ [ω]ω with the finite
intersection property and no pseudointersection, a set x ∈ [ω]ω such that x ⊆∗ y for all
y ∈ B. The bounding number b is the least size of a family B ⊆ ωω such that there is no
f ∈ ωω eventually dominating every member of B. It is well known that ℵ1 ≤ p ≤ b.
An ultrafilter U is called a Pκ point if for any B ∈ [U ]<κ there is a pseudointersection
x ∈ U of B. In particular a P -point is the same as a Pℵ1-point.

Lemma 3.4.4. Assume κ ≤ p and U is an ultrafilter. Then TFAE:

(i) U is a Pκ-point.

(ii) For every M a model of enough set theory with |M | < κ and U ∈ M , there is

x ∈ U which is M(U) generic over M .

Proof. (ii) implies (i) is trivial.
(i) implies (ii): Let |M | < κ ≤ p. Then as U is a Pκ-point, there is U ∈ U so that

U ⊆∗ V for every V ∈M ∩U . Define for every D ∈M , which is a dense open subset
of M(U) and every V ∈M ∩ U a function fD,V : ω → ω so that for n ∈ ω:

∀a ⊆ n∃b ⊆ [n, fD,V (n))∃V ′ ∈M∩U((a∪b, V ′) ≤ (a, V )∧(a∪b, V ′) ∈ D∧U\fD,V (n) ⊆ V ′).

The set of functions fD,V is smaller than κ ≤ p ≤ b. Thus there is one f ∈ ωω

dominating all of them. Let i0 = 0, in+1 = f(in). We write In = [in, in+1). As U is an
ultrafilter, either U0 =

⋃
n∈ω I2n ∩ U or U1 =

⋃
n∈ω I2n+1 ∩ U is in U . Assume wlog

that U0 ∈ U .
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We define a σ-centered partial order P as follows. P consists of pairs (s, F ) where

1. s : n→ [ω]<ω for some n ∈ ω,

2. s(i) ⊆ Ii for every i < n,

3. s(i) = U ∩ Ii when i is even,

4. F ∈ U ∩M .

A condition (t, F ) extends (s, E) iff t ⊇ s, F ⊆ E and (t(i) ⊆ E) whenever
i ∈ dom t \ dom s is odd. For any D ∈M which is dense in M(U) we define a subset
of P, D̃ as follows:

D̃ = {(t, F ) : (
⋃

i∈dom t

t(i), F ) ∈ D}.

We claim that D̃ is dense in P. Let (s, E) ∈ P be arbitrary. Then as fD,E <∗ f

there is n ∈ ω so that [i2n+1, fD,E(i2n+1)) ⊆ [i2n+1, i2n+2) and 2n+ 1 ≥ dom s. Now
extend s to s0 so that dom s0 = 2n+ 1 and s0(i) = ∅ for i ∈ 2n+ 1 \ dom s odd and
s0(i) = U ∩ Ii for i even. By definition of fD,E there is b ⊆ I2n+1 so that ∃F ⊆ E

with (a∪ b, F ) ∈ D where a =
⋃
i<2n+1 s0(i), (a∪ b, F ) ≤ (a,E) and U \ i2n+2 ⊆ F .

Let t = s0 ∪ {(2n+ 1, b)}. Then (t, F ) ≤ (s, E) in P and (t, F ) ∈ D̃.
Now as κ ≤ p and by Bell’s theorem (see [6]) there is a P generic real g : ω → [ω]<ω

over M . But then x :=
⋃
i∈ω g(i) ∈ U as U0 ⊆ x and x is M(U) generic over M .

Corollary 3.4.5. Suppose U is a P-point, M countable and U ∈ M . Then there is
x ∈ U , M(U) generic over M .

Lemma 3.4.6 (see [24, Chapter 24]). Assume U ∈M is a Ramsey ultrafilter and x is

M(U) generic over M . Then every y ⊆∗ x is M(U) generic over M .

Proof of Theorem 3.1.3. Suppose U is a Ramsey ultrafilter with a coanalytic base
X ⊆ [ω]ω. As X is coanalytic, there is a continuous function f : 2ω → 2ω so that

x ∈ X ↔ f(x) ∈WO .

Let M be a countable model elementary in some H(θ) where θ is large enough and
U , f ∈ M . As U is a P-point and by Corollary 3.4.5, there is x ∈ U that is M(U)

generic over M . Moreover as U is Ramsey and by Lemma 3.4.6, any y ⊆∗ x is also
generic over M . Let α = M ∩ ω1 and let y ∈ X be arbitrary such that y ⊆∗ x.
Let β = ‖f(y)‖, then β ∈ M [y]. Thus β < α = M [y] ∩ ω1. As y was arbitrary,
we have shown that the set X ′ = {y : f(y) ∈ WO ∧ ‖f(y)‖ ≤ α} ⊆ X contains
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{y ⊆∗ x : y ∈ X}. This means that X ′ also generates U . But X ′ is Borel and cannot
generate an ultrafilter.

3.5 ∆1
2 versus Π1

1

Using a result of Shelah we can show the following.

Theorem 3.5.1. It is consistent that every P-point is ∆1
2 and has no Π1

1 base.

Proof. This follows immediately by [56, Theorem XVIII.4.1] and the subsequent
remark, which states that starting from L we can choose any Ramsey ultrafilter U and
pass to an extension in which U generates the unique P-point up to permutation of ω.
Moreover this ultrafilter will stay Ramsey.

Thus let U be any (definition of a) ∆1
2 Ramsey ultrafilter in L. Now apply Shelah’s

theorem to this ultrafilter and pass to an extension V of L in which UL generates the
unique P-point and is Ramsey. In V , UV will still have the finite intersection property
and UL ⊆ UV by Shoenfield-absolutness. Thus in V , UV generates the same ultrafilter
as UL. As UV is ∆1

2 the ultrafilter it generates will be ∆1
2 as well. We know that in

V there is for every P-point V a permutation f of ω so that V ∈ V ↔ f(V ) ∈ U . In
particular V has a ∆1

2(f) definition. On the other hand, every P-point is a Ramsey
ultrafilter so none of them can have a Π1

1 base by Theorem 3.1.3.

Proof of Theorem 3.1.4. To simplify notation we assume that r = 0. Let U be a ∆1
n+1

ultrafilter. Let us introduce the following notation. For y ∈ [ω × ω]ω, we let yn be y’s
n’th vertical section. We let z(y) = {n ∈ ω : yn 6= ∅}. When z(y) is infinite then we
denote with yn, the n’th nonempty vertical section of y.

The Fubini product of U , U ⊗ U , consists of all y ∈ [ω × ω]ω so that

{n ∈ ω : yn ∈ U} ∈ U .

U ⊗U is again an ultrafilter. We will show that it has a Π1
n base. Let ϕ(x,w) be Π1

1

so that

x ∈ U ↔ ∃w ∈ 2ω(ϕ(x,w)).

Let r : ω × 2ω → 2ω be a recursive function such that for any sequence 〈wn〉n∈ω
there is w ∈ 2ω, which is not eventually constant, so that r(n,w) = wn for every
n ∈ ω.
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Let O : [ω × ω]ω → 2ω be the function defined by

O(y)(n) =


0 if |z(y)| < ω

0 if min yn ≥ min yn+1

1 if min yn < min yn+1.

O is obviously lightface Borel. Let us define X ⊆ [ω × ω]ω as follows:

y ∈ X ↔ |z(y)| = ω∧ϕ(z(y), r(0, O(y)))∧∀n ∈ ω∃s ∈ [ω]<ω[ϕ(s∪yn, r(n+1, O(y)))].

X is obviously Π1
n. Moreover X ⊆ U ⊗ U . To see this let us decode what y ∈ X

means. The first clause in the definition of X says that y has infinitely many nonempty
vertical sections. The next clause ensures that z(y) ∈ U as witnessed by r(0, O(y)),
the 0’th real coded by O(y). The last clause ensures that for every nonempty vertical
section yn of y, s ∪ yn is in U for some finite s as witnessed by r(n + 1, O(y)),
the n + 1’th real coded by O(y). In particular yn ∈ U . Thus we indeed have that
y ∈ X → y ∈ U ⊗ U .

Moreover we have that X is a base for U ⊗ U . To see this fix u ∈ U ⊗ U and we
show that there is y ∈ X so that y ⊆ u. First let y0 =

⋃
{{n} × un : n ∈ ω, un ∈ U},

i.e. we remove from u the vertical sections that are not in U . Then we let w0 be
such that ϕ(z(y0), w0) holds true. Further we let wn+1 be such that ϕ(yn0 , wn+1) holds
true. Let w ∈ 2ω be a single real coding the sequence 〈wn〉n∈ω via r, i.e. r(n,w) =

wn for every n ∈ ω. Find a sequence 〈mn〉n∈ω so that mn ∈ yn0 for every n and
w(n) = 1 iff mn+1 > mn. Such a sequence can be constructed recursively. Whenever
w(n) = 1 we can simply find mn+1 ∈ yn+1

0 large enough such that mn+1 > mn and
if additionally w(n + 1), . . . , w(n + k) is a maximal block of 0s in w then we let
mn+1 = · · · = mn+k+1 ∈ yn+1 ∩ · · · ∩ yn+k+1. Finally given the sequence 〈mn〉n∈ω
let y =

⋃
{{z(y0)(n)} × (yn0 \mn) : n ∈ ω}, where z(y0)(n) is the n’th element of

z(y0). We see that y ⊆ y0 ⊆ u, that z(y) = z(y0), that yn =∗ yn0 for every n and that
O(y) = w. In particular y ∈ X by definition of X .

3.6 Adding reals

Let A ⊆ V . A set X ∈ V is called OD(A) if it is definable over V from ordinals and
elements of A as parameters. Recall that a poset P is weakly homogeneous if for any
p, q ∈ P, there is an automorphism π : P→ P so that π(p) is compatible to q. In this
section we will denote with PA the collection of weakly homogeneous OD(A) posets.
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Theorem 3.6.1. Let c be a Cohen real over V , P ∈ (PV )V [c] and G a P-generic filter

over V [c]. Then in V [c][G], c is splitting over any set of reals with the finite intersection

property that is OD(V ).

Proof. Let X ∈ V [c][G] be an OD(V ) set of reals with the finite intersection property,
say V [c][G] |= “Ẋ = {x ∈ [ω]ω : ϕ(x, a, ᾱ)}” where a ∈ V and ᾱ is a finite sequence
of ordinals. Wlog we may assume that X is a filter, since the filter generated by X is
also OD(V ). Suppose c does not split X . This means exactly that c ∈ X or ω \ c ∈ X .
Thus there is s ⊆ c, deciding the formula and parameters defining P, and ṗ with
ṗ[c] ∈ G, (s, ṗ)  “ϕ defines a filter” so that either

(s, ṗ)  ċ ∈ Ẋ

or

(s, ṗ)  ω \ ċ ∈ Ẋ.

But now notice that c′ = s ∪ {(n, 1 − m) : (n,m) ∈ c, n ≥ |s|} is also Cohen
over V with s ⊆ c′ (we identify c as a subset of ω with its characteristic function).
Moreover V [c] = V [c′] and thus Ṗ[c] = Ṗ[c′]. Let p0 := ṗ[c] and p1 := ṗ[c′]. Working
in V [c] we find that p0, p1 ∈ P, so there is an automorphism π of P so that π(p1) is
compatible to p0. Let H be P-generic over V [c] containing p0 and π(p1). In either
of the above cases, V [c][H] |= ϕ(c, a, ᾱ) ∧ ϕ(c′, a, ᾱ). This is a contradiction to
(s, ṗ)  “ϕ defines a filter”.

Theorem 3.6.2. Let r be a random real over V , P ∈ (PV )V [r] and G a P-generic filter

over V [r]. Then in V [r][G], r is splitting over any set of reals with the finite intersection

property that is OD(V ).

Proof. Let us assume that P is simply the trivial forcing, since this part of the argument
is essentially the same as in the last proof. As before we fix X ∈ V [r] an OD(V ) set
with the finite intersection property and we assume that it is already a filter.

First note that any finite modification of r is still a random real. Moreover, as
complementation is a measure preserving homeomorphism of 2ω, the complement of a
random real is still random. Thus any r′ =∗ ω \ r is still random.

Now similarly as in the proof for Cohen forcing we find that there is Borel set B of
positive measure coded in V so that r ∈ B and

B  ṙ ∈ X
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or
B  ω \ ṙ ∈ X.

Recall that for any Borel set A of positive measure, its E0 closure Ã = {x ∈ 2ω :

∃y ∈ A(x =∗ y)} has full measure. To see this Let ε > 0 be arbitrarily small. Apply
Lebesgue’s density theorem to find a basic open set [s] ⊆ 2ω so that µ(A∩[s])

µ([s])
> 1− ε.

Follow from this that µ(Ã) > 1− ε.
Now let C := {ω \ x : x ∈ B̃}. C is coded in V and has full measure. Thus we

have that r ∈ B ∩ C. By definition of C, there is r′ ∈ B so that r′ =∗ ω \ r. Moreover
r′ is also a random real over V by our first remark. r, r′ ∈ X and ω \ r, ω \ r′ ∈ X are
both contradictions to X having the finite intersection property.

Recall that Silver forcing consists of partial functions p : ω → 2 so that ω \ dom(p)

is infinite.

Theorem 3.6.3. Let s be a Silver real over V , P ∈ (PV )V [s] and G a P-generic filter

over V [s]. Then, in V [s], there is a real splitting over any set of reals that is OD(V ) in

V [s][G].

Proof. Again we only consider the case when P is trivial. Let X ∈ V [s] be an OD(V )

filter. Let Ss = {n ∈ ω : |{m < n : s(m) = 1}| is even}. As before assume p ⊆ s is
such that either

p  Sṡ ∈ X

or
p  ω \ Sṡ ∈ X.

Let n = min(ω \ dom(p)) and note that s′ defined by s′(i) = s(i) for all i 6= n

and s′(n) = 1 − s(n) is also Silver and p ⊆ s′. But Ss′ =∗ ω \ Ss. We get the same
contradiction as in the last two proofs.

Corollary 3.6.4. Let r ∈ 2ω and assume that there is a Cohen, a random or a Silver real
over L[r]. Then there is no ∆1

2(r) ultrafilter.
In particular, the existence of a ∆1

2(r) ultrafilter implies that ω1 = ω
L[r]
1 .

Proof. Suppose that ϕ is a Σ1
2(r) definition for an ultrafilter and that c is a Cohen,

random or Silver real over L[r]. In L[r][c], the set defined by ϕ will have the finite
intersection property by downwards absoluteness. Thus by Theorem 3.6.1, 3.6.2 or
3.6.3 respectively, L[r][c] |= ∃x ∈ [ω]ω∀y ∈ [ω]ω(¬ϕ(y)∨ (|x∩y| = ω∧|x∩ω \y| =
ω)). This is a Σ1

3(x, c) statement, so by upwards Shoenfield absoluteness it holds true
in V ⊇ L[x][c]. Thus ϕ cannot define an ultrafilter in V .
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The second part follows, since whenever ωL[r]
1 < ω1, there is a Cohen real in V

over L[r].

Another way of seeing the above for Cohen or random forcing is to use the classical
result of Judah and Shelah (see [30]), saying that the existence of a Cohen or random
real over L[r] is equivalent to every ∆1

2(r) set having the Baire property or being
Lebesgue measurable respectively.

Corollary 3.6.5. There is no OD(R) ultrafilter, in particular no projective one, after
adding ω1 many Cohen reals in a finite support iteration, random reals using a product
of Lebesgue measure or Silver reals in a countable support iteration.

Proof. Let 〈cα : α < ω1〉 be Cohen reals added via a finite support iteration over
a ground model V and suppose that in V [〈cα : α < ω1〉] there is an ultrafilter U
definable from a real a and ordinals. It is well known that there is ξ < ω1 so that
a ∈ V [〈cα : α ∈ ω1 \ {ξ}〉]. But then, by Theorem 3.6.1, cξ is splitting over U , since
V [〈cα : α < ω1〉] = V [〈cα : α ∈ ω1 \ {ξ}〉][cξ].

The argument for random reals is essentially the same.

Let 〈Pα, Q̇α : α ≤ ω1〉 be the ω1-length countable support iteration of Silver
forcing. Any real a appears in V Pξ for some ξ < ω1. But now note that Pω1 is OD(V )

and weakly homogeneous. Moreover, Pω1
∼= Pξ ∗ Ṗω1 . Thus applying Theorem 3.6.3,

we find that there is no ultrafilter definable from parameters in V Pξ over V Pω1 . In
particular there is no OD({a}) ultrafilter in V Pω1 .

3.7 The Borel ultrafilter number

The ultrafilter number u is the least size of a base for an ultrafilter. As with mad families
(see [41]) and maximal independent families (see [8]) it makes sense to introduce a
Borel version of the ultrafilter number that is closely related to the definability of
ultrafilters.

Definition 3.7.1. The Borel ultrafilter number is defined as

uB := min{|B| : B ⊆∆1
1,
⋃
B is an ultrafilter}.

Note that ℵ1 ≤ uB, as a countable union of Borel sets is Borel.

Remark 3.7.2. Let u′B = min{|B| : B ⊆ ∆1
1,
⋃
B is an ultrafilter base} and u′′B =

min{|B| : B ⊆∆1
1,
⋃
B generates an ultrafilter}. Then u′′B = u′B = uB.
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Proof. Obviously, u′′B ≤ u′B ≤ uB. Remember that whenever B is Borel, then the
filter FB that it generates is analytic. Thus u′′B is uncountable as well. Now let B be a
collection of Borel sets, whose union generates an ultrafilter. We may assume that B is
closed under finite unions. For every B ∈ B, let FB be the filter generated by B. Since
FB is analytic, we can write it as an ω1-union FB =

⋃
α<ω1

Fα
B of Borel sets. Now

consider {Fα
B : B ∈ B, α < ω1}. It has the same size as B and is a witness for uB .

Any coanalytic set is an ω1-union of Borel sets. Thus the existence of a coanalytic
ultrafilter base implies that uB = ℵ1.

Theorem 3.7.3. cov(M), cov(N ), b ≤ uB ≤ u.

Proof. Let B be a collection of < cov(M) many Borel sets and assume that
⋃
B has

the finite intersection property. LetM 4 H(θ) for some large θ, so that |M | < cov(M)

and B ⊆ M . Then there is a Cohen real c over M . But then in M [c], c is splitting
over every B ∈ B. Moreover in V it is true that c is splitting over B, by Σ1-upwards-
absoluteness. Thus c is splitting over

⋃
B which cannot be an ultrafilter. The argument

for random forcing is exactly the same.
For b ≤ uB, note that any Borel filter is meager. By a classical result of Talagrand

(see [64]), meager filters F are exactly those for which there is f ∈ ωω so that
∀x ∈ F∀∞n ∈ ω(x ∩ [n, f(n)) 6= ∅). For B a collection of Borel filters, we let fB be
such a function for every B ∈ B. If B has size smaller than b, then there is a single
function f ∈ ωω so that fB <∗ f for each B ∈ B. Now note that x0 ∪ x1 = ω, where
x0 :=

⋃
n∈ω[f 2n(0), f 2n+1(0)) and x1 :=

⋃
n∈ω[f 2n+1(0), f 2n+2(0)). But neither x0

nor x1 can be in
⋃
B.

Question 3.7.1. Is it consistent that uB < u? Is it consistent that there is a Π1
1 ultrafilter

base while ℵ1 < u?

We will give a positive answer in the next chapter.





CHAPTER 4
Hypergraphs and definability in

tree forcing extensions

4.1 Introduction

The starting observation for this chapter is that almost all examples of maximal families
that we considered in the introduction can be treated in the same framework, as maximal

independent sets in hypergraphs.

Definition 4.1.1. A hypergraphE on a setX is a collection of finite non-empty subsets
of X , i.e. E ⊆ [X]<ω \ {∅}. Whenever Y ⊆ X , we say that Y is E-independent if
[Y ]<ω ∩ E = ∅. Moreover, we say that Y is maximal E-independent if Y is maximal
under inclusion as an E-independent subset of X .

Whenever X is a topological space, [X]<ω is the disjoint sum of the spaces [X]n

for n ∈ ω. Here, as usual, [X]n is endowed with the natural quotient topology induced
by the equivalence relation (x0, . . . , xn−1) ∼ (y0, . . . , yn−1) iff {x0, . . . , xn−1} =

{y0, . . . , yn−1} on the space of injective n-tuples on X . Whenever X is Polish, [X]<ω

is Polish as well and we can study its definable subsets. In particular, we can study
definable hypergraphs on Polish spaces.

The main result of this paper is the following theorem.

Theorem 4.1.2. After forcing with the ω2-length csi of Sacks or splitting forcing over

L, every analytic hypergraph on a Polish space has a ∆1
2 maximal independent set.

This extends a result by Schrittesser [50], who proved the above for Sacks forcing,
which we denote by S, and ordinary 2-dimensional graphs (see also [51]). We will also
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prove the case of finite products but our main focus will be on the countable support
iteration. Splitting forcing SP (Definition 4.4.1) is a less-known forcing notion that was
originally introduced by Shelah in [55] and has been studied in more detail recently
([61], [62], [25] and [35]). Although it is very natural and gives a minimal way to add
a splitting real (see more below), it has not been exploited a lot and to our knowledge,
there is no major set theoretic text treating it in more detail.

Our three guiding examples for Theorem 4.1.2 will be ultrafilters, maximal inde-

pendent families and Hamel bases.

Recall that an ultrafilter on ω is a maximal subset U of P(ω) with the strong

finite intersection property, i.e. the property that for any A ∈ [U ]<ω, |
⋂
A| = ω.

Thus, letting Eu := {A ∈ [P(ω)]<ω : |
⋂
A| < ω}, an ultrafilter is a maximal Eu-

independent set. In the last chapter, we studied the projective definability of ultrafilters
and introduced the cardinal invariant uB, which is the smallest size of a collection of
Borel subsets of P(ω) whose union is an ultrafilter. If there is a Σ1

2 ultrafilter, then
uB = ω1, since every Σ1

2 set is the union of ω1 many Borel sets. Recall that the classical
ultrafilter number u is the smallest size of an ultrafilter base. We showed in the last
chapter, that uB ≤ u and asked whether it is consistent that uB < u or even whether
a ∆1

2 ultrafilter can exist while ω1 < u. The difficulty is that we have to preserve a
definition for an ultrafilter, while its interpretation in L must be destroyed. This has
been achieved before for mad families (see [9]).

An independent family is a subset I of P(ω) so that for any disjoint A0,A1 ∈
[I]<ω, |

⋂
x∈A0

x ∩
⋂
x∈A1

ω \ x| = ω. It is called maximal independent family if it
is additionally maximal under inclusion. Thus, letting Ei = {A0∪̇A1 ∈ [P(ω)]<ω :

|
⋂
x∈A0

x ∩
⋂
x∈A1

ω \ x| < ω}, a maximal independent family is a maximal Ei-
independent set. The definability of maximal independent families was studied by
Miller in [38], who showed that they cannot be analytic, and recently by Brendle,
Fischer and Khomskii in [8], where they introduced the invariant iB , the least size of a
collection of Borel sets whose union is a maximal independent family. The classical
independence number i is simply the smallest size of a maximal independent family. In
[8], it was asked whether iB < i is consistent and whether there can be a Π1

1 maximal
independent family while ω1 < i. Here, Π1

1 can be changed to ∆1
2, as shown in [8]. The

difficulty in the problem is similar to that before.

A Hamel basis is a vector-space basis of R over the field of rationals Q. Thus,
letting Eh := {A ∈ [R]<ω : A is linearly dependent over Q}, a Hamel basis is a
maximal Eh-independent set. A Hamel basis must be as large as the continuum itself.
This is reflected in the fact that, when adding a real, every ground-model Hamel basis
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is destroyed. But still it makes sense to ask how many Borel sets are needed to get one.
Miller, also in [38], showed that a Hamel basis can never be analytic. As before, we
may ask whether there can be a ∆1

2 Hamel basis while CH fails. Again, destroying
ground-model Hamel bases, seems to pose a major obstruction.

The most natural way to increase u and i is by iteratively adding splitting reals.
Recall that for x, y ∈ P(ω), we say that x splits y iff |x∩y| = ω and |y\x| = ω. A real
x is called splitting over V iff for every y ∈ P(ω)∩ V , x splits y. The classical forcing
notions adding splitting reals are Cohen, Random and Silver forcing and forcings that
add so called dominating reals. It was showed in Chapter 3, that all of these forcing
notions fail in preserving definitions for ultrafilters and the same argument can be
applied to independent families. For this reason, we are going to use the forcing notion
SP that we mentioned above. As an immediate corollary of Theorem 4.1.2, we get the
following.

Theorem 4.1.3. It is consistent that r = u = i = ω2 while there is a ∆1
2 ultrafilter,

a Π1
1 maximal independent family and a ∆1

2 Hamel basis. In particular, we get the

consistency of iB, uB < r, i, u.

Here, r is the reaping number, the least size of a set S ⊆ P(ω) so that there is no
splitting real over S. This solves Question 3.7.1 and the above mentioned question
from [8]. Moreover, Theorem 4.1.2 gives a “black-box" way to get many results, saying
that certain definable families exists in the Sacks model.

In [8], another cardinal invariant icl is introduced, which is the smallest size of
a collection of closed sets, whose union is a maximal independent family. Here,
it is irrelevant whether we consider them as closed subsets of [ω]ω or P(ω), since
every closed subset of [ω]ω with the strong finite intersection property is σ-compact
(see Lemma 4.5.15). In the model of Theorem 4.1.3, we have that icl = iB, further
answering the questions of Brendle, Fischer and Khomskii. On the other hand we show
that d ≤ icl, mirroring Shelah’s result that d ≤ i (see [68]). Here, d is the dominating
number, the least size of a dominating family in (ωω, <∗).

Theorem 4.1.4. (ZFC) d ≤ icl.

The paper is organized as follows. In Section 4.2, we will consider basic results
concerning iterations of tree forcings. This section is interesting in its own right and
can be read independently from the rest. More specifically, we prove a version of
continuous reading of names for countable support iterations that is widely applica-
ble (Lemma 4.2.2). In Section 4.3, we prove our main combinatorial lemma (Main
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Lemma 4.3.4 and 4.3.14) which is at the heart of Theorem 4.1.2. As for Section 4.2,
Section 4.3 can be read independently of the rest, since our result is purely descriptive
set theoretical. In Section 4.4, we introduce splitting and Sacks forcing and place it
in bigger class of forcings to which we can apply the main lemma. This combines
the results from Section 4.2 and 4.3. In Section 4.5, we bring everything together and
prove Theorem 4.1.2, 4.1.3 and 4.1.4. We end with concluding remarks concerning the
further outlook of our technique and pose some questions.

4.2 Tree forcing

Let A be a fixed countable set, usually ω or 2.

(a) A tree T on A is a subset of A<ω so that for every t ∈ T and n < |t|, t � n ∈ T .

(b) T is perfect if for every t ∈ T there are s0, s1 ∈ T so that s0, s1 ⊇ t and s0 ⊥ s1.

(c) A node t ∈ T is called a splitting node, if there are i 6= j ∈ A so that t_i, t_j ∈
T . The set of splitting nodes in T is denoted split(T ).

(d) For any t ∈ T we define the restriction of T to t as Tt = {s ∈ T : s 6⊥ t}.

(e) The set of branches through T is denoted by [T ] = {x ∈ Aω : ∀n ∈ ω(x � n ∈
T )}.

(f) Aω carries a natural Polish topology generated by the clopen sets [t] = {x ∈ Aω :

t ⊆ x} for t ∈ A<ω. Then [T ] is closed in Aω.

(g) Whenever X ⊆ Aω is closed, there is a continuous retract ϕ : Aω → X , i.e.
ϕ′′Aω = X and ϕ � X is the identity.

(h) A tree forcing is a collection P of perfect trees ordered by inclusion.

(i) By convention, all tree forcings are closed under restrictions, i.e. if T ∈ P and
t ∈ T , then Tt ∈ P, and the trivial condition is A<ω.

(j) The set T of perfect subtrees of A<ω is a Gδ subset of P(A<ω) and thus carries a
natural Polish topology. It is not hard to see that it is homeomorphic to ωω, when
|A| ≥ 2.

(k) Let 〈Ti : i < α〉 be a sequence of trees where α is an arbitrary ordinal. Then we
write

⊗
i<α Ti for the set of finite partial sequences s̄ where dom s̄ ∈ [α]<ω and

for every i ∈ dom s̄, s(i) ∈ Ti.
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(l) (Aω)α carries a topology generated by the sets [s̄] = {x̄ ∈ (Aω)α : ∀i ∈
dom s̄(x(i) ∈ [s(i)])} for s̄ ∈

⊗
i<αA

<ω.

(m) Whenever X ⊆ (Aω)α and C ⊆ α, we define the projection of X to C as
X � C = {x̄ � C : x̄ ∈ X}.

Fact. Let P be a tree forcing and G a P-generic filter over V . Then P adds a real

xG :=
⋃
{s ∈ A<ω : ∀T ∈ G(s ∈ T )} ∈ Aω.

Definition 4.2.1. We say that (P,≤) is Axiom A if there is a decreasing sequence of
partial orders 〈≤n: n ∈ ω〉 refining ≤ on P so that

1. for any n ∈ ω and T, S ∈ P, if S ≤n T , then S ∩ A<n = T ∩ A<n,

2. for any fusion sequence, i.e. a sequence 〈pn : n ∈ ω〉 where pn+1 ≤n pn for
every n, p =

⋂
n∈ω pn ∈ P and p ≤n pn for every n,

3. and for any maximal antichain D ⊆ P, p ∈ P, n ∈ ω, there is q ≤n p so that
{r ∈ D : r 6⊥ q} is countable.

Moreover we say that (P,≤) is Axiom A with continuous reading of names (crn) if
there is such a sequence of partial orders so that additionally,

4. for every p ∈ P, n ∈ ω and ẏ a P-name for an element of a Polish space1 X ,
there is q ≤n p and a continuous function f : [q]→ X so that

q  ẏ[G] = f(xG).

Although (1) is typically not part of the definition of Axiom A, we include it for
technical reasons. The only classical example that we are aware of, in which it is not
clear whether (1) can be realized, is Mathias forcing.

Let 〈Pβ, Q̇β : β < α〉 be a countable support iteration of tree forcings that are
Axiom A with crn, where for each β < α,

Pβ “〈≤̇β,n : n ∈ ω〉 witnesses that Q̇β is Axiom A with crn”.

(n) For each n ∈ ω, a ⊆ α, we define ≤n,a on Pα, where

q̄ ≤n,a p̄↔
(
q̄ ≤ p̄ ∧ ∀β ∈ a(q̄ � β Pβ q(β)≤̇β,np(β))

)
.

1In the generic extension V [G] we reinterpretX as the completion of (X)V . Similarly, we reinterpret
spaces (Aω)α, continuous functions, open and closed sets on these spaces. This should be standard.
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(o) The support of p̄ ∈ Pα is the set supp(p̄) = {β < α : p̄  ṗ(β) 6= 1}.

Recall that a condition q is called a master condition over a model M if for any
maximal antichain D ∈ M , {p ∈ D : q 6⊥ p} ⊆ M . Equivalently, it means that for
every generic filter G over V containing q, G is generic over M as well. Throughout
this paper, when we say that M is elementary, we mean that it is elementary in a large
enough model of the form H(θ). Sometimes, we will say that M is a model of set

theory or just that M is a model. In most generality, this just mean that (M,∈) satisfies
a strong enough fragment of ZFC. But this is a way to general notion for our purposes.
For instance, such M may not even be correct about what ω is. Thus, let us clarify
that in all our instances this will mean, that M is either elementary or a ccc forcing
extensions of an elementary model. In particular, some basic absoluteness (e.g. for
Σ1

1 or Π1
1 formulas) holds true between M and V , M is transitive below ω1 and ω1 is

computed correctly.

Fact (Fusion Lemma, see e.g. [3, Lemma 1.2, 2.3]). If 〈an : n ∈ ω〉 is ⊆-increasing,

〈p̄n : n ∈ ω〉 is such that ∀n ∈ ω(p̄n+1 ≤n,an p̄n) and
⋃
n∈ω supp(p̄n) ⊆

⋃
n∈ω an ⊆ α,

then there is a condition p̄ ∈ Pα so that for every n ∈ ω, p̄ ≤n,an p̄n; in fact, for every

β < α, p̄ � β  ṗ(β) =
⋂
n∈ω ṗn(β).

Moreover, let M be a countable elementary model, p̄ ∈M ∩Pα, n ∈ ω, a ⊆M ∩α
finite and 〈αi : i ∈ ω〉 a cofinal increasing sequence in M ∩α. Then there is q̄ ≤n,a p̄ a

master condition overM so that for every name ẏ ∈M for an element of ωω and j ∈ ω,

there is i ∈ ω so that below q̄, the value of ẏ � j only depends on the Pαi-generic.

(p) For G a Pα-generic, we write x̄G for the generic element of
∏

β<αA
ω added by

Pα.

Let us from now on assume that for each β < α and n ∈ ω, Qβ and ≤β,n are fixed
analytic subsets subsets of T and T 2 respectively, coded in V . Although the theory
that we develop below can be extended to a large extend to non-definable iterands, we
will only focus on this case, since we need stronger results later on.

Lemma 4.2.2. For any p̄ ∈ Pα, M a countable elementary model so that Pα, p̄ ∈M
and n ∈ ω, a ⊆M ∩α finite, there is q̄ ≤n,a p̄ a master condition over M and a closed

set [q̄] ⊆ (Aω)α so that

1. q̄  x̄G ∈ [q̄],

for every β < α,
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2. q̄  q̇(β) = {s ∈ A<ω : ∃z̄ ∈ [q̄](z̄ � β = x̄G � β ∧ s ⊆ z(β))},

3. the map sending x̄ ∈ [q̄] � β to {s ∈ A<ω : ∃z̄ ∈ [q̄](z̄ � β = x̄ ∧ s ⊆ z(β))} is

continuous and maps to Qβ ,

and for every name ẏ ∈M for an element of a Polish space X ,

4. there is a continuous function f : [q̄]→ X so that q̄  ẏ = f(x̄G).

(q) We call such q̄ as in Lemma 4.2.2 a good master condition over M .

Before we prove Lemma 4.2.2, let us draw some consequences from the definition of a
good master condition.

Lemma 4.2.3. Let q̄ ∈ Pα be a good master condition over a model M and ẏ ∈M a

name for an element of a Polish space X .

(i) Then [q̄] is unique, in fact it is the closure of {x̄G : G 3 q̄ is generic over V }.

(ii) The continuous map f : [q̄]→ X given by (4) is unique and

(iii) whenever Y ∈M is an analytic subset of X and q̄  ẏ ∈ Y , then f ′′[q̄] ⊆ Y .

Moreover, there is a countable set C ⊆ α, not depending on ẏ, so that

(iv) [q̄] � C is a closed subset of the Polish space (Aω)C and [q̄] = ([q̄] � C) ×
(Aω)α\C ,

(v) for every β ∈ C, there is a continuous function g : [q̄] � (C ∩ β)→ Qβ , so that

for every x̄ ∈ [q̄],

g(x̄ � (C ∩ β)) = {s ∈ A<ω : ∃z̄ ∈ [q̄](z̄ � β = x̄ � β ∧ s ⊆ z(β))},

(vi) there is a continuous function f : [q̄] � C → X , so that

q̄  ẏ = f(x̄G � C).

Proof. Let us write, for every β < α and x̄ ∈ [q̄] � β,

Tx̄ := {s ∈ A<ω : ∃z̄ ∈ [q̄](z̄ � β = x̄ ∧ s ⊆ z(β))}.

For (i), let s̄ ∈
⊗

i<αA
<ω be arbitrary so that [s̄] ∩ [q̄] is non-empty. We claim that

there is a generic G over V containing q̄ so that x̄G ∈ [s̄]. This is shown by induction
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on max(dom(s̄)). For s̄ = ∅ the claim is obvious. Now assume max(dom(s̄)) = β,
for β < α. Then, by (3), O := {x̄ ∈ [q̄] : s(β) ∈ Tx̄�β} is open and it is non-empty
since [s̄] ∩ [q̄] 6= ∅. Applying the inductive hypothesis, there is a generic G 3 q̄ so that
x̄G ∈ O. In V [G � β] we have, by (2), that Tx̄G�β = q̇(β)[G]. Moreover, since x̄G ∈ O,
we have that s(β) ∈ q̇(β)[G]. Then it is easy to force over V [G � β], to get a full Pα
generic H ⊇ G � β containing q̄ so that x̄H � β = x̄G � β and s(β) ⊆ x̄H(β). By (1),
for every generic G over V containing q̄, x̄G ∈ [q̄]. Thus we have shown that the set of
such x̄G is dense in [q̄]. Uniqueness follows from [q̄] being closed.

Now (ii) follows easily since any two continuous functions given by (4) have to
agree on a dense set.

For (iii), let us consider the analytic space Z = {0} ×X ∪ {1} × Y , which is the
disjoint union of the spacesX and Y . Then there is a continuous surjection F : ωω → Z

and by elementarity we can assume it is inM . Let us find inM a name ż for an element
of ωω so that in V [G], if ẏ[G] ∈ Y , then F (ż[G]) = (1, ẏ[G]), and if ẏ[G] /∈ Y , then
F (ż[G]) = (0, ẏ[G]). By (4), there is a continuous function g : [q̄] → ωω so that
q̄  ż = g(x̄G). Since q̄  ẏ ∈ Y , we have that for any generic G containing q̄,
F (g(x̄G)) = (1, f(x̄G)). By density, for every x̄ ∈ [q̄], F (g(x̄)) = (1, f(x̄)) and in
particular f(x̄) ∈ Y .

Now let us say that the support of a function g : [q̄]→ X is the smallest set Cg ⊆ α

so that the value of g(x̄) only depends on x̄ � Cg. The results of [7] imply that if g is
continuous, then g has countable support. Note that for all β /∈ supp(q̄), the map in
(3) is constant on the set of generics and by continuity it is constant everywhere. Thus
it has empty support. Let C be the union of supp(q̄) with all the countable supports
given by instances of (3) and (4). Then C is a countable set. For (iv), (v) and (vi),
note that [q̄] � C = {ȳ ∈ (Aω)C : ȳ_(x̄ � α \ C) ∈ [q̄]} for x̄ ∈ [q̄] arbitrary, and
recall that in a product, sections of closed sets are closed and continuous functions are
coordinate-wise continuous.

Proof of Lemma 4.2.2. Let us fix for each β < α a continuous surjection Fβ : ωω →
Qβ . The proof is by induction on α. If α = β+1, then Pα = Pβ ∗Q̇β . Let q̄0 ≤n,a p̄ � β
be a master condition over M and H 3 q̄0 a Pβ generic over V . Then, applying a
standard fusion argument using Axiom A with continuous reading of names in V [H]

to Qβ, we find q(β) ≤β,n p(β) a master condition over M [H] (note that H is also M
generic since q̄0 is a master condition over M ) so that for each name ẏ ∈ M [H] for
an element of a Polish space X there is a continuous function f : [q(β)]→ X so that
q(β)  ẏ = f(ẋG). Thus we find in V , a Pβ-name q̇(β) so that q̄0 forces that it is such a
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condition. Let M+ 3M be a countable elementary model containing q̇(β) and q̄0, and
let q̄1/2 ≤n,a q̄0 be a master condition over M+. Again let M++ 3M+ be a countable
elementary model containing q̄1/2. By the induction hypothesis we find q̄1 ≤n,a q̄1/2

a good master condition over M++. Finally, let q̄ = q̄_1 q̇(β). Then q̄ ≤n,a p̄ and
q̄ is a master condition over M . Since q̇(β) ∈ M+ ⊆ M++, there is a continuous
function f : [q̄1] → ωω, so that q̄1 β Fβ(f(x̄H)) = q̇(β). Here note that Fβ is in M
by elementarity and we indeed find a name ż in M+ so that q̄0  Fβ(ż) = q̇(β). Let
[q̄] = {x̄ ∈ (Aω)α : x̄ � β ∈ [q̄1] ∧ x(β) ∈ [Fβ(f(x̄ � β))]}. Then [q̄] is closed and (1),
(2), (3) hold true. To see that [q̄] is closed, note that the graph of a continuous function
is always closed, when the codomain is a Hausdorff space. For (4), let ẏ ∈ M be a
Pα-name for an element of a Polish space X . If H 3 q̄1 is V -generic, then there is
a continuous function g : [q(β)] → X in V [H] so that V [H] |= q(β)  g(ẋG) = ẏ,
where we view ẏ as a Qβ-name in M [H]. Moreover there is a continuous retract
ϕ : Aω → [q(β)] in V [H]. Since M+ was chosen elementary enough, we find names ġ
and ϕ̇ for g and ϕ in M+. The function g ◦ ϕ is an element of the space2 C(Aω, X),
but this is not a Polish space when A is infinite, i.e. when Aω is not compact. It is
though, always a coanalytic space (consult e.g. [33, 12, 2.6] to see how C(Aω, X) is a
coanalytic subspace of a suitable Polish space). Thus there is an increasing sequence
〈Yξ : ξ < ω1〉 of analytic subspaces such that

⋃
ξ<ω1

Yξ = C(Aω, X) and the same
equality holds in any ω1-preserving extension. Since q̄1/2 is a master condition over
M+, we have that q̄1/2  ġ ◦ ϕ̇ ∈ Yξ, where ξ = M+ ∩ ω1. Since q̄1 is a good
master condition over M++ and Yξ ∈ M++, by Lemma 4.2.3, there is a continuous
function g′ ∈ V , g′ : [q̄1]→ Yξ, so that q̄1  g′(x̄H) = ġ ◦ ϕ̇. Altogether we have that
q̄  ẏ = g′(x̄G � β)(xG(β)).

For α limit, let 〈αi : i ∈ ω〉 be a strictly increasing sequence cofinal in M ∩ α
and let q̄0 ≤n,a p̄ be a master condition over M so that for every name ẏ ∈ M for an
element of ωω, j ∈ ω, the value of ẏ � j only depends on the generic restricted to Pαi
for some i ∈ ω. Let us fix a “big" countable elementary model N , with q̄0,M ∈ N .
Let 〈ai : i ∈ ω〉 be an increasing sequence of finite subsets of N ∩ α so that a0 = a

and
⋃
i∈ω ai = N ∩ α. Now inductively define sequences 〈Mi : i ∈ ω〉, 〈r̄i : i ∈ ω〉,

initial segments lying in N , so that for every i ∈ ω,

- M0 = M , r̄0 = q̄0 � α0,

- Mi+1 3 q̄0 is a countable model,
2The topology is such that for any continuous h mapping to C(Aω, X), (x, y) 7→ h(x)(y) is

continuous.
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- Mi, r̄i, ai ∈Mi+1

- r̄i is a good Pαi master condition over Mi,

- ri+1 ≤n+i,ai∩αi r
_
i q̄0 � [αi, αi+1).

Define for each i ∈ ω, q̄i = r̄_i q̄0 � [αi, α). Then 〈q̄i : i ∈ ω〉 is a fusion
sequence in Pα and we can find a condition q̄ ≤n,a q̄0 ≤n,a p̄, where for each β < α,
q̄ � β  q̇(β) =

⋂
i∈ω q̇i(β). Finally let [q̄] :=

⋂
i∈ω([r̄i] × (Aω)[αi,α)). Then (1) is

easy to check. For (4), we can assume without loss of generality that ẏ is a name for
an element of ωω since for any Polish space X , there is a continuous surjection from
ωω to X . Now let (ij)j∈ω be increasing so that ẏ � j is determined on Pαij for every
j ∈ ω. Since r̄ij is a good master condition over M , there is a continuous function
fj : [r̄ij ]→ ωj so that r̄ij  ẏ � j = fj(x̄Gαij

) for every j ∈ ω. It is easy to put these
functions together to a continuous function f : [q̄]→ 2ω, so that f(x̄) � j = fj(x̄ � αij).
Then we obviously have that q̄  ẏ = f(x̄G).

Now let us fix for each i ∈ ω, Ci ⊆ αi a countable set as given by Lemma 4.2.3
applied to r̄i, Mi, which by elementarity exists in N . Let C =

⋃
i∈ω Ci. Then

[q̄] = [q̄] � C × (Aω)α\C and [q̄] � C is closed. For every β ∈ α \ C, the map given in
(3) is constant and maps to Qβ, as A<ω is the trivial condition. Thus we may restrict
our attention to β ∈ C. Let us write Xi = ([r̄i]× (Aω)[αi,α)) � C for every i ∈ ω and
note that

⋂
i∈ωXi = [q̄] � C. For every β ∈ C, x̄ ∈ [q̄] � (C ∩ β) and i ∈ ω, we write

Tx̄ := {s ∈ A<ω : ∃z̄ ∈ [q̄] � C(z̄ � β = x̄ ∧ s ⊆ z(β))}

and

T ix̄ = {s ∈ A<ω : ∃z̄ ∈ Xi(z̄ � β = x̄ ∧ s ⊆ z(β))}.

Claim 4.2.4. For every i ∈ ω, where β ∈ ai, T i+1
x̄ ≤β,i T ix̄. In particular,

⋂
i∈ω T

i
x̄ ∈

Qβ .

Proof. If αi+1 ≤ β, then T i+1
x̄ = T ix̄ = A<ω. Else consider a Pαi+2

-name for
(T i+1

ȳ , T iȳ) ∈ T 2, where ȳ = x̄G � (C ∩ β). Such a name exists in Mi+2 and
β ∈ ai ⊆ Mi+2. Thus ≤β,i∈ Mi+2 and by Lemma 4.2.3, we have that for every
ȳ ∈ [r̄i+2] � (C ∩ β), (T i+1

ȳ , T iȳ) ∈≤β,i, thus also for ȳ = x̄. The rest follows from the
fact that the statement, that for any fusion sequence in Qβ , its intersection is in Qβ , is
Π1

2 and thus absolute.

Claim 4.2.5. Tx̄ =
⋂
i∈ω T

i
x̄.



4.3. The Main Lemma 55

Proof. Let s̄ ∈
⊗

i∈C A
<ω and j ∈ ω be so that dom(s̄) ⊆ aj , maxi∈dom(s̄) |si| ≤ j

and [s̄] ∩ Xj 6= ∅. Then we have that for every i ∈ ω, [s̄] ∩ Xi 6= ∅. This is
shown by induction on max(dom(s̄)). If max(dom(s̄)) = minC \ ξ, then the set
O = {ȳ ∈ Xj � ξ : ȳ ∈ [s̄ � ξ], s(ξ) ∈ T jȳ } is open non-empty by continuity of the
map in (3) for r̄j . Applying the inductive hypothesis to O, we get for every i ≥ j, some
z̄i ∈ O ∩ (Xi � ξ). Since T iz̄i ≤ξ,j T

j
z̄i and |s(ξ)| ≤ j, we have that s(ξ) ∈ T iz̄i and we

can extend z̄i to z̄ ∈ Xi ∩ [s̄]. For i ≤ j, there is nothing to show since then Xj ⊆ Xi.

That Tx̄ ⊆
⋂
i∈ω T

i
x̄ is clear. Thus let s ∈

⋂
i∈ω T

i
x̄, say |s| = j. The claim is

proven by constructing recursively a sequence 〈s̄i : i ≥ j〉 so that for every i ∈ ω,
dom(s̄i) = ai ∩C, ∀ξ ∈ ai ∩C(|si(ξ)| = i), si(β) ⊇ s, x̄ ∈ [s̄ � β] and [s̄i] ∩Xi 6= ∅.
Starting with s̄0 = {(β, s)}, this sequence is easy to construct via the statement that
we just proved. Then

⋂
i≥j[s̄i] is a singleton {z̄} so that z̄ � β = x̄, z(β) ⊇ s and

z̄ ∈ [q̄] � C.

Now (2) follows easily. For the continuity of x̄ 7→ Tx̄, let t ∈ A<ω be arbitrary and
j large enough so that |t| ≤ j and β ∈ aj . Then {x̄ ∈ [q̄] � β : t /∈ Tx̄} = {x̄ ∈ [q̄] �

β : t /∈ T jx̄} and {x̄ ∈ [q̄] � β : t ∈ Tx̄} = {x̄ ∈ [q̄] � β : t ∈ T jx̄} which are both open.
Thus we have shown (3).

Lemma 4.2.6. Let C ⊆ α be countable and X ⊆ (Aω)C be a closed set so that for

every β ∈ C and x̄ ∈ X � β,

{s ∈ A<ω : ∃z̄ ∈ X(z̄ � β = x̄ ∧ s ⊆ z(β))} ∈ Qβ.

Let M 3 X be countable elementary. Then there is a good master condition r̄ over M

so that [r̄] � C ⊆ X .

Proof. It is easy to construct q̄ ∈ M recursively so that q̄  x̄G � C ∈ X . By
Lemma 4.2.2, we can extend q̄ to a good master condition r̄ over M . The unique
continuous function f : [r̄]→ (Aω)C so that for generic G, f(x̄G) = x̄G � C, is so that
f(x̄) = x̄ � C for every x̄ ∈ [r̄]. Since f maps to X , [r̄] � C ⊆ X .

4.3 The Main Lemma

4.3.1 Mutual Cohen Genericity

Let X be a Polish space and M a model of set theory with X ∈M . Recall that x ∈ X
is Cohen generic in X over M if for any open dense O ⊆ X , such that O ∈M , x ∈ O.
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Let x0, . . . , xn−1 ∈ X . Then we say that x0, . . . xn−1 are mutually Cohen generic

(mCg) in X over M if (y0, . . . , yK−1) is Cohen generic in XK over M , where 〈yi : i <

K〉 is some, equivalently any, enumeration of {x0, . . . , xn−1}. In particular, we allow
for repetition in the definition of mutual genericity.

Definition 4.3.1. Let 〈Xl : l < k〉 ∈ M be Polish spaces. Then we say that
x̄0, . . . , x̄n−1 ∈

∏
l<kXl are mutually Cohen generic (mCg) with respect to the product∏

l<kXl over M , if

(y0
0, . . . , y

K0
0 , . . . , y0

k−1, . . . , y
Kk−1

k−1 ) ∈
∏
l<k

XKl
l is Cohen generic in

∏
l<k

XKl
l over M,

where 〈yil : i < Kl〉 is some, equivalently any, enumeration of {xi(l) : i < n} for each
l < k.

Definition 4.3.2. Let X be a Polish space with a fixed countable basis B. Then we
define the forcing poset C(2ω, X) consisting of functions h : 2≤n → B \ {∅} for some
n ∈ ω such that ∀σ ⊆ τ ∈ 2≤n(h(σ) ⊇ h(τ)). The poset is ordered by function
extension.

The poset C(2ω, X) adds generically a continuous function χ : 2ω → X , given by
χ(x) = y where

⋂
n∈ω h(x � n) = {y} and h =

⋃
G for G the generic filter. This

forcing will be useful in this section several times. Note for instance that if G is generic
over M , then for any x ∈ 2ω, χ(x) is Cohen generic in X over M , and moreover,
for any x0, . . . , xn−1 ∈ 2ω, χ(x0), . . . , χ(xn−1) are mutually Cohen generic in X over
M . Sometimes we will use C(2ω, X) to force a continuous function from a space
homeomorphic to 2ω, such as (2ω)α for α < ω1.

Lemma 4.3.3. Let M be a model of set theory, K,n ∈ ω, Xj ∈ M a Polish space

for every j < n and G a
∏

j<nC(2ω, Xj)-generic over M yielding χj : 2ω → Xj

for every j < n. Then, whenever x̄ is Cohen generic in (2ω)K over M [G] and

u0, . . . , un−1 ∈ 2ω ∩M [x̄] are pairwise distinct,

x̄_〈χj(ui) : i < n, j < n〉

is Cohen generic in

(2ω)K ×
∏
i<n

Xi

over M .
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Proof. Since x̄ is generic over M it suffices to show that 〈χj(ui) : i < n, j〉 is generic
over M [x̄]. Let Ȯ ∈M be a (2<ω)K-name for a dense open subset of

∏
j<n(Xj)

n and
u̇i a (2<ω)K-name for ui, i < n, pairwise distinct. Then consider the set

D := {(h̄, s̄) ∈
∏
i<n

C(2ω, Xi)× (2<ω)K : ∃t0, . . . , tn−1 ∈ 2<ω

(∀i < n(s̄  ti ⊆ u̇i) ∧ s̄ 
∏
i,j<n

hj(ti) ⊆ Ȯ)}.

We claim that this set is dense in
∏

i<nC(2ω, Xi) × (2<ω)K which finishes the
proof. Namely let (h̄, s̄) be arbitrary, wlog domhj = 2≤n0 for every j < n. Then we
can extend s̄ to s̄′ so that there are incompatible ti, with |ti| ≥ n0, so that s̄′  ti ⊆ u̇i

and there are Ui,j ⊆ hj(ti � n0) basic open subsets of Xj in M for every i < n and
j < n, so that s̄′ 

∏
i,j<n Ui,j ⊆ Ȯ. Then we can extend h̄ to h̄′ so that h′j(ti) = Ui,j

for every i, j < n. We see that (h̄′, s̄′) ∈ D.

4.3.2 Finite products

This subsection can be skipped entirely if one is only interested in the results for the
countable support iteration. Nevertheless, the following lemma is interesting in its own
right and can be seen as a preparation for Main Lemma 4.3.14.

Main Lemma 4.3.4. Let k ∈ ω and E ⊆ [(2ω)k]<ω \ {∅} an analytic hypergraph on
(2ω)k. Then there is a countable model M so that either

1. for any x̄0, . . . , x̄n−1 ∈ (2ω)k that are mCg wrt
∏

l<k 2ω over M ,

{x̄0, . . . , x̄n−1} is E-independent

or for some N ∈ ω,

2. there are φ0, . . . , φN−1 : (2ω)k → (2ω)k continuous, s̄ ∈
⊗

l<k 2<ω so that for
any x̄0, . . . , x̄n−1 ∈ (2ω)k ∩ [s̄], that are mCg wrt

∏
l<k 2ω over M ,

{φj(x̄i) : j < N, i < n} is E-independent but {x̄0} ∪ {φj(x̄0) : j < N} ∈ E.

Remark 4.3.5. Note that N = 0 is possible in the second option. For example whenever
[(2ω)k]1 ⊆ E, then ∅ is the only E-independent set. In this case the last line simplifies
to “{x̄0} ∈ E".
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Proof. Let κ = i2k−1(ℵ0)+. Recall that by Erdős-Rado (see [31, Thm 9.6]), for any
c : [κ]2k → H(ω), there is B ∈ [κ]ℵ1 which is monochromatic for c, i.e. c � [B]2k is
constant. Let Q be the forcing adding κ many Cohen reals

〈z(l,α) : α < κ〉 in 2ω for each l < k

with finite conditions, i.e. Q =
∏<ω

κ (2<ω)k. We will use the notational convention that
elements of [κ]d, for d ∈ ω, are sequences ᾱ = (α0, . . . , αd−1) ordered increasingly.
For any ᾱ ∈ [κ]k we define z̄ᾱ := (z(0,α0), . . . , z(k−1,αk−1)) ∈ (2ω)k.

Let Ȧ be a Q-name for a maximal E-independent subset of {z̄ᾱ : ᾱ ∈ [κ]k},
reinterpreting E in the extension by Q. For any ᾱ ∈ [κ]k, we fix pᾱ ∈ Q so that either

pᾱ = 1 ∧ pᾱ  z̄ᾱ ∈ Ȧ (1)

or

pᾱ  z̄ᾱ 6∈ Ȧ. (2)

In case (2) we additionally fix Nᾱ < ω and (β̄i)i<Nᾱ = (β̄i(ᾱ))i<Nᾱ , and we assume
that

pᾱ  {z̄β̄i : i < Nᾱ} ⊆ Ȧ ∧ {z̄ᾱ} ∪ {z̄β̄i : i < Nᾱ} ∈ E.

We also define Hl(ᾱ) = {βil : i < Nᾱ} ∪ {αl} ∈ [κ]<ω for each l < k.

Now for ᾱ ∈ [κ]2k we collect the following information:

(i) whether pᾱ�k = pα0,...,αk−1
 z̄ᾱ�k ∈ Ȧ or not,

(ii) s̄ = (pᾱ�k(0, α0), . . . , pᾱ�k(k − 1, αk−1)) ∈ (2<ω)k,

(iii) the relative position of the pγ̄ for γ̄ ∈ Γ :=
∏

l<k{α2l, α2l+1} to each other.
More precisely consider

⋃
γ̄∈Γ dom pγ̄ = {0}× d0 ∪ · · · ∪ {k− 1}× dk−1 where

d0, . . . , dk−1 ⊆ κ. Let Ml = |dl| for l < k and for each γ̄ = (αj0 , . . . , αjk−1
)

collect rj̄ with dom rj̄ ⊆ {0} ×M0 ∪ · · · ∪ {k − 1} ×Mk−1 and rj̄(l,m) =

pγ̄(l, βm) whenever βm is the m’th element of dl.

In case pᾱ�k  z̄ᾱ�k /∈ Ȧ we additionally remember

(iv) N = Nᾱ�k,

(v) Nl = |Hl(ᾱ � k)|, for each l < k,

(vi) b̄i ∈
∏

l<kNl so that βil is the bil’th element of Hl(ᾱ � k), for each i < N ,
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(vii) ā ∈
∏

l<kNl so that αl is the al’th member of Hl(ᾱ � k),

(viii) the partial function r with domain a subset of
⋃
l<k{l} ×Nl, so that r(l,m) =

t ∈ 2<ω iff pᾱ�k(l, β) = t where β is the m’th element of Hl(ᾱ � k).

And finally we also remember

(ix) for each pair γ̄, δ̄ ∈
∏

l<k{α2l, α2l+1}, where γ̄ = (αjl)l<k and δ̄ = (αj′l)l<k,
finite partial injections el,j̄,j̄′ : Nl → Nl so that el,j̄,j̄′(m) = m′ iff the m’th
element of Hl(γ̄) equals the m′’th element of Hl(δ̄).

This information is finite and defines a coloring c : [κ]2k → H(ω). Let B ∈ [κ]ω1

be monochromatic for c. Let M 4 H(θ) be countable for θ large enough so that
κ, c, B, 〈pᾱ : ᾱ ∈ [κ]k〉, E, Ȧ ∈M .

Claim 4.3.6. If for every ᾱ ∈ [B]k, pᾱ  z̄ᾱ ∈ Ȧ, then (1) of the main lemma holds

true.

Proof. Let x̄0, . . . , x̄n−1 be arbitrary mCg over M . Say {xi(l) : i < n} is enumerated
by 〈yil : i < Kl〉 for every l < k. Now find

α0
0 < · · · < αK0−1

0 < · · · < α0
k−1 < · · · < α

Kk−1−1
k−1

in M ∩B. Then there is a Q-generic G over M so that for any j̄ ∈
∏

l<kKl,

z̄β̄[G] = (yj00 , . . . , y
jk−1

k−1 ),

where β̄ = (αj00 , . . . , α
jk−1

k−1 ). In particular, for each i < n, there is β̄i ∈ [B ∩M ]k so
that z̄β̄i [G] = x̄i. Since pβ̄i = 1 ∈ G for every β̄i we have that

M [G] |= x̄i ∈ Ȧ[G]

for every i < n and in particular

M [G] |= {x̄i : i < n} is E-independent.

By absoluteness {x̄i : i < n} is indeed E-independent.

Assume from now on that pᾱ  z̄ᾱ /∈ Ȧ for every ᾱ ∈ [B]k. Then we may fix s̄,
N , (Nl)l<k, b̄i for i < N , ā, r and el,j̄,j̄′ for all l < k and j̄, j̄′ ∈

∏
l′<k{2l′, 2l′ + 1}

corresponding to the coloring on [B]2k.
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Claim 4.3.7. For any ᾱ ∈ [B]2k and γ̄, δ̄ ∈
∏

l<k{α2l, α2l+1},

pγ̄ � (dom pγ̄ ∩ dom pδ̄) = pδ̄ � (dom pγ̄ ∩ dom pδ̄).

Proof. Suppose not. By homogeneity we find a counterexample ᾱ, γ̄, δ̄ where B ∩
(α2l′ , α2l′+1) is non-empty for every l′ < k. So let (l, β) ∈ dom pγ̄ ∩ dom pδ̄ such that
pγ̄(l, β) = u 6= v = pδ̄(l, β). Let ρ̄ ∈ [B]k be such that for every l′ < k,

ρl′ ∈ (γl′ , δl′) if γl′ < δl′

ρl′ ∈ (δl′ , γl′) if δl′ < γl′

ρl′ = γl′ if γl′ = δl′ .

Now note that ρ̄’s relative position to γ̄ is the same as that of δ̄ to γ̄. More precisely,
let j̄, j̄′ ∈

∏
l′<k{2l′, 2l′ + 1} so that γ̄ = (αj0 , . . . , αjk−1

), δ̄ = (αj′0 , . . . , αj′k−1
). Then

there is β̄ ∈ [B]2k so that γ̄ = (βj0 , . . . , βjk−1
) and ρ̄ = (βj′0 , . . . , βj′k−1

). Thus by
homogeneity of [B]2k via c, pρ̄(l, β) = v. Similarly δ̄ is in the same position relative to
ρ̄ as to γ̄. Thus also pρ̄(l, β) = u and we find that v = u – we get a contradiction.

Claim 4.3.8. For any l < k and j̄, j̄′ ∈
∏

l′<k{2l′, 2l′ + 1}, el,j̄,j̄′(m) = m for every

m ∈ dom el,j̄,j̄′ .

Proof. Let α0 < · · · < α2k ∈ B so that (α2l′ , α2l′+1) ∩ B 6= ∅ for every l′ < k.
Consider γ̄ = (αjl′ )l′<k, δ̄ = (αj′

l′
)l′<k and again we find ρ̄ ∈ [B]k so that ρl′ is

between (possibly equal to) αjl′ and αj′
l′
. If el,j̄,j̄′(m) = m′, then if β is the m’th

element of Hl(γ̄), then β is m′’th element of Hl(δ̄) aswell as of Hl(ρ̄). But also β is
the m’th element of Hl(ρ̄), thus m = m′.

Note that by the above claim el,j̄,j̄′ = (el,j̄′,j̄)
−1 = el,j̄′,j̄ and the essential informa-

tion given by el,j̄,j̄′ is it’s domain.
Next let us introduce some notation. Let L be an arbitrary linear order. For any

g ∈ {−1, 0, 1}k we naturally define a relation R̃g on Lk as follows:

ν̄R̃gµ̄↔ ∀l < k


νl < µl if g(l) = −1

νl = µl if g(l) = 0

νl > µl if g(l) = 1.

Further we write ν̄Rgµ̄ iff ν̄R̃gµ̄ or µ̄R̃gν̄. Enumerate {Rg : g ∈ {−1, 0, 1}k} without
repetition as 〈Ri : i < K〉 (it is easy to see that K = 3k+1

2
). Note that for any ν̄, µ̄ there

is a unique i < K so that ν̄Riµ̄. Now for each l < k and i < K, we let

Il,i := dom el,j̄,j̄′ ⊆ Nl,
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where j̄Rij̄
′. By homogeneity of [B]2k and the observation that el,j̄,j̄′ = el,j̄′,j̄ , we see

that Il,i does not depend on the particular choice of j̄, j̄′, such that j̄Rij̄
′.

We consider the <lex order on 2ω. For each l < k and m < Nl, we define a relation
El,m on (2ω)k as follows:

x̄El,mȳ ↔ m ∈ Il,i where i is such that x̄Riȳ.

Claim 4.3.9. El,m is an equivalence relation.

Proof. The reflexivity and symmetry of El,m is obvious. Assume that x̄0El,mx̄1 and
x̄1El,mx̄2, and say x̄0Ri0x̄1, x̄1Ri1x̄2 and x̄0Ri2x̄2. Find γ̄0, γ̄1, γ̄2 ∈ [B]k so that

{γi0 : i < 3} < · · · < {γik−1 : i < 3}

and
γ̄0Ri0 γ̄

1, γ̄1Ri1 γ̄
2, γ̄0Ri2 γ̄

2.

If β is the m’th element of Hl(γ̄
0), then β is also the m’th element of Hl(γ̄

1), since
we can find an appropriate ᾱ ∈ [B]2k and j̄, j̄′ so that γ̄0 = (αjl)l<k and γ̄1 = (αj′l)l<k,
j̄Ri0 j̄

′ and we have that m ∈ Il,i0 . Similarly β is the m’th element of Hl(γ̄
2).

But now we find again ᾱ ∈ [B]2k and j̄, j̄′ so that γ̄0 = (αjl)l<k and γ̄2 = (αj′l)l<k.
Thus m ∈ Il,i2 , as el,j̄,j̄′(m) = m and x̄0El,mx̄2.

Claim 4.3.10. El,m is smooth as witnessed by a continuous function, i.e. there is a

continuous map ϕl,m : (2ω)k → 2ω so that x̄El,mȳ iff ϕl,m(x̄) = ϕl,m(ȳ).

Proof. We will check the following:

(a) For every open O ⊆ (2ω)k, the El,m saturation of O is Borel,

(b) every El,m equivalence class is Gδ.

By a theorem of Srivastava ([63, Thm 4.1.]), (a) and (b) imply that El,m is smooth,
i.e. we can find ϕl,m Borel.

(a) The El,m saturation of O is the set {x̄ : ∃ȳ ∈ O(x̄El,mȳ)}. It suffices to check
for each g ∈ {−1, 0, 1}k that the set X = {x̄ : ∃ȳ ∈ O(x̄R̃gȳ)} is Borel. Let
S = {σ̄ ∈ (2<ω)k : [σ0]× · · · × [σk−1] ⊆ O}. Consider

ϕ(x̄) :↔ ∃σ̄ ∈ S∀l′ < k


xl′ <lex σl′

_0ω if g(l′) = −1

xl′ ∈ [σl′ ] if g(l′) = 0

σl′
_1ω <lex xl′ if g(l′) = 1

.
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If ϕ(x̄) holds true then let σ̄ witness this. We then see that there is ȳ ∈ [σ0] ×
· · · × [σk−1] with x̄R̃gȳ. On the other hand, if ȳ ∈ O is such that x̄Rgȳ, then we
find σ̄ ∈ S defining a neighborhood of ȳ witnessing ϕ(x̄). Thus X is defined by
ϕ and is thus Borel.

(b) Since finite unions of Gδ’s are Gδ it suffices to check that {x̄ : x̄R̃gȳ} is Gδ for
every ȳ and g ∈ {−1, 0, 1}k. But this is obvious from the definition.

Now note that given ϕl,m Borel, we can find perfect X0, . . . Xk−1 ⊆ 2ω so that ϕl,m
is continuous on X0 × · · · × Xk−1 (ϕl,m is continuous on a dense Gδ). But there is
a <lex preserving homeomorphism from Xl to 2ω for each l < k so we may simply
assume Xl = 2ω.

Fix such ϕl,m for every l < k, m < Nl, so that ϕl,al(x̄) = xl (note that x̄El,al ȳ iff
xl = yl). Now let M0 4 H(θ) countable for θ large, containing all relevant information
and ϕl,m ∈ M0 for every l < k, m < Nl. Let χl,m : 2ω → [r(l,m)] for l < k and
m 6= al be generic continuous functions over M0, i.e. the sequence (χl,m)l<k,m∈Nl\{al}

is
∏

l<k,m∈Nl\{al}C(2ω, [r(l,m)]) generic over M0. Let us denote with M the generic
extension of M0. Also let χl,m for m = al be the identity and ψl,m = χl,m ◦ ϕl,m for
all l,m. Finally we set

φi(x̄) = (ψl,bil(x̄))l<k

for each i < N .

Claim 4.3.11. (2) of the main lemma holds true with M , s̄ and φi, i < N , that we just

defined.

Proof. Let x̄0. . . . , x̄n−1 ∈ [s̄] be mCg wrt
∏

l<k 2ω over M . Let us write {x̄i(l) : i <

n} = {yil : i < Kl} for every l < k, where y0
l <lex · · · <lex y

Kl−1
l . Now find

α0
0 < · · · < αK0−1

0 < · · · < α0
k−1 < · · · < α

Kk−1−1
k−1

in B ∩ M . For every j̄ ∈
∏

l<kKl, define ȳj̄ := (y
j(0)
0 , . . . , y

j(k−1)
k−1 ) and ᾱj̄ :=

(α
j(0)
0 , . . . , α

j(k−1)
k−1 ). Then, for each i < n, we have j̄i ∈

∏
l<kKl so that x̄i = ȳj̄i . For

each i < n define the function gi :
⋃
l<k{l} ×Hl(ᾱj̄i)→ 2ω, setting

gi(l, β) = ψl,m(x̄i),

whenever β is the m’th element of Hl(ᾱj̄i).
Now we have that the gi agree on their common domain. Namely let i0, i1 < n and

(l, β) ∈ dom gi0∩dom gi1 . Then if we set i to be so that x̄i0Rix̄i1 , we have thatm ∈ Il,i,
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where β is the m’th element of Hl(ᾱj̄i0 ) and of Hl(ᾱj̄i1 ). In particular x̄i0El,mx̄i1 and
ϕl,m(x̄i0) = ϕl,m(x̄i1) and thus

gi0(l, β) = ψl,m(x̄i0) = χl,m(ϕl,m(x̄i0)) = χl,m(ϕl,m(x̄i1)) = ψl,m(x̄i0) = gi1(l, β).

Let g :=
⋃
i<n gi. Then we see by Lemma 4.3.3, that g is Cohen generic in∏

(l,β)∈dom g 2ω over M . Namely consider K =
∑

l<kKl and (y0
0, . . . , y

Kk−1−1
k−1 ) as a

(2<ω)K-generic over M . Then, if 〈ui : i < n′〉 enumerates {ϕl,m(x̄i) : i < n, l <

k,m < Nl}, we have that every value of g is contained in {χl,m(ui) : i < n′, l <

k,m < Nl}. Also note that by construction for every i < n, pᾱj̄i � dom g is in the
generic filter defined by g. Since {pᾱj̄i : i < n} is centered we can extend the generic
filter of g to a Q-generic G over M so that pᾱji ∈ G for every i < n.

Now we have that

z̄ᾱj̄i [G] = x̄i and z̄β̄j(ᾱj̄i )[G] = φj(x̄i)

for every i < n and j < N . Thus we get that

M [G] |=
⋃
i<n

{φj(x̄i) : j < N} ⊆ Ȧ[G] ∧ {x̄0} ∪ {φj(x̄0) : j < N} ∈ E.

Again, by absoluteness, we get the required result.

4.3.3 Infinite products

Definition 4.3.12. Let 〈Xi : i < α〉 ∈ M be Polish spaces indexed by a countable
ordinal α. Then we say that x̄0, . . . , x̄n−1 ∈

∏
i<αXi are mutually Cohen generic

(mCg) with respect to the product
∏

i<αXi over M if there are ξ0 = 0 < · · · < ξk = α

for some k ∈ ω so that

x̄0, . . . , x̄n−1 are mutually Cohen generic with respect to
∏
l<k

Yl over M,

where Yl =
∏

i∈[ξl,ξl+1) Xi for every l < k.

Note that whenever x̄0, . . . , x̄n−1 are mCg over M with respect to
∏

i<αXi and
β ≤ α, then x̄0 � β, . . . , x̄n−1 � β are mCg over M with respect to

∏
i<βXi.

Definition 4.3.13. We say that x̄0, . . . , x̄n−1 ∈
∏

i<αXi are strongly mCg over M
with respect to

∏
i<αXi if they are mCg over M with respect to

∏
i<αXi and for any

i, j < n, if ξ = min{β < α : xi(β) 6= xj(β)}, then xi(β) 6= xj(β) for all β ≥ ξ.
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Main Lemma 4.3.14. Let α < ω1 and E ⊆ [(2ω)α]<ω \ {∅} be an analytic hypergraph.
Then there is a countable model M , α + 1 ⊆M , so that either

1. for any x̄0, . . . , x̄n−1 ∈ (2ω)α that are strongly mCg with respect to
∏

i<α 2ω over
M ,

{x̄0, . . . , x̄n−1} is E-independent

or for some N ∈ ω,

2. there are φ0, . . . , φN−1 : (2ω)α → (2ω)α continuous, s̄ ∈
⊗

i<α 2<ω so that for
any x̄0, . . . , x̄n−1 ∈ (2ω)α ∩ [s̄] that are strongly mCg over M ,

{φj(x̄i) : j < N, i < n} is E-independent but {x̄0} ∪ {φj(x̄0) : j < N} ∈ E.

Proof. We are going to show something slightly stronger. Let R be an analytic hyper-
graph on (2ω)α × ω, M a countable model with R ∈M,α + 1 ⊆M and k ∈ ω. Then
consider the following two statements.

(1)R,M,k: For any pairwise distinct x̄0, . . . , x̄n−1 that are strongly mCg with re-
spect to

∏
i<α 2ω over M , and any k0, . . . , kn−1 < k,

{x̄0
_k0, . . . , x̄n−1

_kn−1} is R-independent.

(2)R,M,k: There is N ∈ ω, there are φ0, . . . , φN−1 : (2ω)α → (2ω)α continuous,
such that for every x̄ ∈ (2ω)α and j0 < j1 < N , φj0(x̄) 6= φj1(x̄) and φj0(x̄) 6= x̄,
there are k0, . . . , kN−1 ≤ k and s̄ ∈

⊗
i<α 2<ω, so that for any pairwise distinct

x̄0, . . . , x̄n−1 ∈ (2ω)α ∩ [s̄] that are strongly mCg with respect to
∏

i<α 2ω over
M ,

{φj(x̄i)_kj : j < N, i < n} is R-independent, but

{x̄0
_k} ∪ {φj(x̄0)_kj : j < N} ∈ R.

In fact, if k > 0,

{x̄i_(k − 1) : i < n} ∪ {φj(x̄i)_kj : j < N, i < n} is R-independent.

We are going to show that whenever (1)R,M,k is satisfied, then either (1)R,M,k+1 or
there is a countable model M+ ⊇ M so that (2)R,M+,k. From this we easily follow
the statement of the main lemma. Namely, whenever E is a hypergraph on (2ω)α,
consider the hypergraph R on (2ω)α × ω where {x̄0

_k0, . . . , x̄n−1
_kn−1} ∈ R iff
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{x̄0, . . . , x̄n−1} ∈ R. Then, if M is an arbitrary countable elementary model with
R,α ∈M and if k = 0, (1)R,M,k holds vacuously true. Applying the claim we find M+

so that either (1)R,M,1 or (2)R,M+,0. The two options easily translate to the conclusion
of the main lemma.

Let us first consider the successor step. Assume that α = β + 1, R is an analytic
hypergraph on (2ω)α × ω and M a countable model with R ∈M,α + 1 ⊆M so that
(1)R,M,k holds true for some given k ∈ ω. Let Q be the forcing adding mutual Cohen
reals 〈z0,i,j, z1,i,j : i, j ∈ ω〉 in 2ω. Then we define the hypergraph R̃ on (2ω)β × ω
where {ȳ0

_m0, . . . , ȳn−1
_mn−1} ∈ R̃ ∩ [(2ω)β × ω]n iff there is p ∈ Q and there are

Ki ∈ ω, ki,0, . . . , ki,Ki−1 < k for every i < n, so that

p Q
⋃
i<n

{ȳi_ż0,i,j
_ki,j : j < Ki} ∪ {ȳi_ż1,i,j

_k : j < mi} ∈ R.

Then R̃ is analytic (see e.g. [33, 29.22]).

Claim 4.3.15. (1)R̃,M,1 is satisfied.

Proof. Suppose ȳ0, . . . , ȳn−1 are pairwise distinct and strongly mCg over M , but
{ȳ0

_0, . . . , ȳn−1
_0} ∈ R̃ as witnessed by p ∈ Q, 〈Ki : i < n〉 and 〈ki,j : i < n, j <

Ki〉, each ki,j < k. More precisely,

p Q
⋃
i<n

{ȳi_ż0,i,j
_ki,j : j < Ki} ∈ R. (∗0)

By absoluteness, (∗0) is satisfied in M [ȳ0, . . . , ȳn−1]. Thus, let 〈z0,i,j, z1,i,j : i, j ∈
ω〉 be generic over M [ȳ0, . . . , ȳn−1] with p in the associated generic filter. Then
〈ȳi_z(0,i,j) : i < n, j < Ki〉 are pairwise distinct and strongly mCg over M , but⋃

i<n

{ȳi_z0,i,j
_ki,j : j < Ki} ∈ R.

This poses a contradiction to (1)R,M,k.

Claim 4.3.16. If (1)R̃,M,m is satisfied for every m ∈ ω, then also (1)R,M,k+1.

Proof. Let x̄0, . . . , x̄n−1 ∈ (2ω)α be pairwise distinct, strongly mCg over M and let
k0, . . . , kn−1 ≤ k. Then we may write {x̄0

_k0, . . . , x̄n−1
_kn−1} as⋃

i<n′

{ȳi_z0,i,j
_ki,j : j < Ki} ∪ {ȳi_z1,i,j

_k : j < mi}, (∗1)

for some pairwise distinct ȳ0, . . . , ȳn′−1, 〈Ki : i < n′〉, 〈ki,j : i < n′, j < Ki〉,
〈mi : i < n′〉 and 〈z0,i,j : i, j ∈ ω〉, 〈z1,i,j : i, j ∈ ω〉 mutually Cohen generic in 2ω
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over M [ȳ0, . . . , ȳn′−1]. Letting m = maxi<n′mi + 1, we follow the R-independence
of the set in (∗1) from (1)R̃,M,m.

Claim 4.3.17. If there is m ∈ ω so that (1)R̃,M,m fails, then there is a countable model

M+ ⊇M so that (2)R,M+,k.

Proof. Let m ≥ 1 be least so that (2)R̃,M0,m
for some countable model M0 ⊇M . We

know that such m exists, since from (1)R̃,M,1 we follow that either (1)R̃,M,2 or (2)R̃,M0,1

for some M0, then, if (1)R̃,M,2, either (1)R̃,M,3 or (2)R̃,M0,2
for some M0, and so on. Let

φ0, . . . , φN−1, m0, . . . ,mN−1 ≤ m and s̄ ∈
⊗

i<β(2<ω) witness (2)R̃,M0,m
. Let M1 be

a countable elementary model such that φ0, . . . , φN−1,M0 ∈M1. Then we have that
for any ȳ that is Cohen generic in (2ω)β ∩ [s̄] over M1, in particular over M0, that

{ȳ_m} ∪ {φj(ȳ)_mj : j < N} ∈ R̃,

i.e. there is p ∈ Q, there are Ki ∈ ω, ki,0, . . . , ki,Ki−1 < k for every i ≤ N , so that

p Q
⋃
i<N

{φi(ȳ)_ż0,i,j
_ki,j : j < Ki} ∪ {φi(ȳ)_ż1,i,j

_k : j < mi}

∪ {ȳ_ż0,N,j
_kN,j : j < KN} ∪ {ȳ_ż1,N,j

_k : j < m} ∈ R. (∗2)

By extending s̄, we can assume wlog that p, 〈Ki : i ≤ N〉, 〈ki,j : i ≤ N, j < Ki〉
are the same for each ȳ ∈ [s̄] generic over M1, since (∗2) can be forced over M1. Also,
from the fact that φj is continuous for every j < N , that φj(ȳ) 6= ȳ for every j < N ,
and that φj0(ȳ) 6= φj1(ȳ) for every j0 < j1 < N , we can assume wlog that for any
ȳ0, ȳ1 ∈ [s̄] and j0 < j1 < N ,

φj0(ȳ0) 6= ȳ1 and φj0(ȳ0) 6= φj1(ȳ1). (∗3)

Let us force in a finite support product over M1 continuous functions χ0,i,j : (2ω)β →
[p(0, i, j)] and χ1,i,j : (2ω)β → [p(1, i, j)] for i, j ∈ ω and writeM+ = M1[〈χ0,i,j, χ1,i,j :

i, j ∈ ω〉]. For every i < N and j < Ki and x̄ ∈ (2ω)α, define

φ0,i,j(x̄) := φi(x̄ � β)_χ0,i,j(φi(x̄ � β)) and k0,i,j = ki,j.

For every i < N and j < mi and x̄ ∈ (2ω)α, define

φ1,i,j(x̄) := φi(x̄ � β)_χ1,i,j(φi(x̄ � β)) and k1,i,j = k.

For every j < KN and x̄ ∈ (2ω)α, define

φ0,N,j(x̄) := x̄ � β_χ0,N,j(x̄ � β) and k0,N,j = kN,j.
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At last, define for every j < m− 1 and x̄ ∈ (2ω)α,

φ1,N,j(x̄) := x̄ � β_χ1,N,j(x̄ � β) and k1,N,j = k.

Let t̄ ∈
⊗

i<α 2<α be s̄ with p(1, N,m− 1) added in coordinate β. Now we have
that for any x̄ ∈ [t̄] that is Cohen generic in (2ω)α over M+,

{x̄_k} ∪ {φ0,i,j(x̄)_k0,i,j : i ≤ N, j < KN} ∪ {φ1,i,j(x̄)_k1,i,j : i < N, j < mi}

∪ {φ1,N,j(x̄)_k1,N,j : j < m− 1} ∈ R.

This follows from (∗)2 and applying Lemma 4.3.3 to see that the χ0,i,j(φi(x̄ � β)),
χ1,i,j(φi(x̄ � β)), χ0,N,j(x̄ � β), χ1,N,j(x̄ � β) and x(β) are mutually Cohen generic
overM1[x̄ � β]. Moreover they correspond to the reals z0,i,j , z1,i,j added by a Q-generic
over M1[x̄ � β], containing p in its generic filter. Also, remember that (∗)2 is absolute
between models containing the relevant parameters, which M1[ȳ] is, with ȳ = x̄ � β.

On the other hand, whenever x̄0, . . . , x̄n−1 ∈ (2ω)α ∩ [t̄] are pairwise distinct and
strongly mCg over M+, letting ȳ0, . . . , ȳn′−1 enumerate {x̄i � β : i < n}, we have that

{ȳi_(m− 1) : i < n′} ∪ {φj(ȳi)_mj : i < n′, j < N} is R̃-independent. (∗4)

According to the definition of R̃, (∗4) is saying e.g. that whenever A ∪B ⊆ (2ω)α is
an arbitrary set of strongly mCg reals over M1, where A � β,B � β ⊆ {ȳi, φj(ȳi) : i <

n′, j < N} and in B, ȳi is extended at most m− 1 many times and φj(ȳi) at most mj

many times for every i < n′, j < N , and, assuming for now that k > 0, if f : A→ k,
then

{x̄_f(x̄) : x̄ ∈ A} ∪ (B × {k}) is R-independent.

As an example for such sets A and B we have,

A = {φ0,i,j(x̄l) : l < n, i ≤ N, j < Ki} ∪ {x̄l : l < n′}, and

B = {φ1,i,j(x̄l) : l < n, i < N, j < mi} ∪ {φ1,N,j(x̄l) : l < n′, j < m− 1}.

Again, to see this we apply Lemma 4.3.3 to show that the relevant reals are mutually
generic over the model M1[ȳ0, . . . , ȳn′−1]. Also, remember from the definition of
φ1,i,j for i < N and j < mi that, if φi(x̄l0 � β) = φi(x̄l1 � β), then also φ1,i,j(x̄l0) =

φ1,i,j(x̄l1), for all l0, l1 < n. Equally, if x̄l0 � β = x̄l1 � β, then φ1,N,j(x̄l0) = φ1,N,j(x̄l1)

for every j < m − 1. Use (∗3) to note that {ȳi : i < n′}, {φ0(ȳi) : i < n′}, . . . ,
{φN−1(ȳi) : i < n′} are pairwise disjoint. From this we can follow that indeed, each ȳi
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is extended at most m− 1 many times in B and φj(ȳi) at most mi many times. In total,
we get that

{φ0,i,j(x̄l)
_k0,i,j : l < n, i ≤ N, j < Ki} ∪ {x̄l_(k − 1) : l < n′}∪

{φ1,i,j(x̄l)
_k : l < n, i < N, j < mi} ∪ {φ1,N,j(x̄l)

_k : l < n′, j < m− 1}

is R-independent.

It is now easy to check that we have the witnesses required in the statement of
(2)R,M+,k. For example, φ0,i,j(x̄) 6= x̄ when i < N , follows from φi(x̄) 6= x̄. For
the values φ0,N,j(x̄) we simply have that χ0,N,j(x̄ � β) 6= x(β), as the two values are
mutually generic. Everything else is similar and consists only of a few case distinctions.
Also, the continuity of the functions is clear.

If k = 0, then we can simply forget the set A above, since Ki must be 0 for every
i ≤ N . In this case we just get that

{φ1,i,j(x̄l)
_k : l < n, i < N, j < mi} ∪ {φ1,N,j(x̄l)

_k : l < n′, j < m− 1}

is R-independent,

which then yields (2)R,M+,k.

This finishes the successor step. Now assume that α is a limit ordinal. We fix some
arbitrary tree T ⊆ ω<ω such that for every t ∈ T , |{n ∈ ω : t_n ∈ T}| = ω and
for any branches x 6= y ∈ [T ], if d = min{i ∈ ω : x(i) 6= y(i)} then x(j) 6= x(j)

for every j ≥ d. We will use T only for national purposes. For every sequence ξ0 <

· · · < ξk′ = α, we let Qξ0,...,ξk′
=
(∏

l<k′(
⊗

i∈[ξl,ξl+1) 2<ω)<ω
)
× (
⊗

i∈[ξ0,α) 2<ω)<ω.
Qξ0,...,ξk′

adds, in the natural way, reals 〈z̄0
l,i : l < k′, i ∈ ω〉 and 〈z̄0

i : i ∈ ω〉, where
z̄0
l,i ∈ (2ω)[ξl,ξl+1) and z̄1

i ∈ (2ω)[ξ0,α) for every l < k′, i ∈ ω. Whenever t ∈ T ∩ ωk′ ,
we write z̄0

t = z̄0
0,t(0)

_ . . ._z̄0
k′−1,t(k′−1).Note that for generic 〈z̄0

l,i : i ∈ ω, l < k′〉, the
reals 〈z̄0

t : t ∈ T ∩ ωk′〉 are strongly mCg with respect to
∏

i∈[ξ0,α) 2ω.
Now, let us define for each ξ < α an analytic hypergraph Rξ on (2ω)ξ × 2 so that

{ȳ0
i
_0 : i < n0} ∪ {ȳ1

i
_1 : i < n1} ∈ Rξ ∩ [(2ω)ξ × 2]n0+n1 , where |{ȳ0

i
_0 : i <

n0}| = n0 and |{ȳ1
i
_1 : i < n1}| = n1, iff there are ξ0 = ξ < · · · < ξk′ = α, (p, q) ∈

Qξ0,...,ξk′
, Ki ∈ ω, ki,0, . . . , ki,Ki−1 < k and distinct ti,0, . . . , ti,Ki−1 ∈ T ∩ωk

′ for every
i < n0, so that ti0,j0(0) 6= ti1,j1(0) for all i0 < i1 < n0 and j0 < Ki0 , j1 < Ki1 , and

(p, q) Qξ̄

⋃
i<n0

{ȳ0
i
_z̄0

ti,j
_ki,j : j < Ki} ∪ {ȳ1

i
_z̄1

i
_k : i < n1} ∈ R.

Note that each Rξ can be defined within M . It should be clear, similar to the proof
of Claim 4.3.15, that from (1)R,M,k, we can show the following.
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Claim 4.3.18. For every ξ < α, (1)Rξ,M,1.

Claim 4.3.19. Assume that for every ξ < α, (1)Rξ,M,2. Then also (1)R,M,k+1.

Proof. Let x̄0
0, . . . , x̄

0
n0−1, x̄

1
0, . . . , x̄

1
n1−1 be pairwise distinct and strongly mCg over M

and k0, . . . , kn0−1 < k. Then there is ξ < α large enough so that x̄0
0 � ξ, . . . , x̄

0
n0−1 �

ξ, x̄1
0 � ξ, . . . , x̄

1
n1−1 � ξ are pairwise distinct and in particular, x̄0

0 � [ξ, α), . . . , x̄0
n0−1 �

[ξ, α), x̄1
0 � [ξ, α), . . . , x̄1

n1−1 � [ξ, α) are pairwise different in every coordinate. Let
ξ0 = ξ, ξ1 = α, Ki = 1 for every i < n0 and t0,0, . . . , tn0−1,0 ∈ T ∩ ω1 pairwise
distinct. Also, write k0,0 = k0, ..., kn0−1,0 = kn0−1. Then, from (1)Rξ,M,2, we have that

1 ξ0,ξ1 {(x̄0
i � ξ)

_z̄0
ti,0

_ki,0 : i < n0}∪{(x̄1
i � ξ)

_z̄1
i
_k : i < n1} is R-independent.

By absoluteness, this holds true in M [〈x̄0
i � ξ, x̄

1
j � ξ : i < n0, j < n1〉] and we find

that
{x̄0

i
_ki : i < n0} ∪ {x̄1

i
_k} is R-independent,

as required.

Claim 4.3.20. If there is ξ < α so that (1)Rξ,M,2 fails, then there is a countable model

M+ ⊇M so that (2)R,M+,k.

Proof. If (1)Rξ,M,2 fails, then there is a countable model M0 ⊇ M so that (2)Rξ,M,1

holds true as witnessed by s̄ ∈
⊗

i<ξ 2<ω, φ0
0, . . . , φ

0
N0−1, φ

1
0, . . . , φ

1
N1−1 : (2ω)ξ →

(2ω)ξ such that for any pairwise distinct ȳ0, . . . , ȳn−1 ∈ (2ω)ξ ∩ [s̄] that are strongly
mCg over M0,

{ȳi_0 : i < n} ∪ {φ0
j(ȳi)

_0 : i < n, j < N0} ∪ {φ1
j(ȳi)

_1 : i < n, j < N1} (∗5)

is Rξ-independent, but

{ȳ0
_1} ∪ {φ0

j(ȳ0)_0 : j < N0} ∪ {φ1
j(ȳ0)_1 : j < N1} ∈ Rξ. (∗6)

As before, we may pick M1 3 M0 elementary containing all relevant information,
assume that (∗6) is witnessed by fixed ξ0 = ξ < · · · < ξk′ = α, (p, q) ∈ Qξ0,...,ξk′

,
K0, . . . , KN0−1, ki,0, . . . , ki,Ki−1 and ti,0, . . . , ti,Ki−1 ∈ T ∩ ωk

′ for every i < N0, so
that for every generic ȳ0 ∈ (2ω)ξ ∩ [s̄] over M1,

(p, q) Qξ̄ {ȳ0
_z̄1

N1

_k} ∪
⋃
i<N0

{φ0
i (ȳ0)_z̄0

ti,j
_ki,j : j < Ki}∪

{φ1
j(ȳ0)_z̄1

j
_k : j < N1} ∈ R. (∗7)
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As before, we may also assume that ȳ0 6= φj0i0 (ȳ0) 6= φj1i1 (ȳ1) for every ȳ0, ȳ1 ∈ [s̄]

and (j0, i1) 6= (j1, i1). We let s̄′ = s̄_q(N1). Now we force continuous functions
χ0
l,i : (2ω)ξ → (2ω)[ξl,ξl+1) ∩ [p(l, i)] and χ1

i : (2ω)ξ → (2ω)[ξ,α) ∩ [q(i)] over M1 for
every i ∈ ω, l < k′ and we let M+ = M1[〈χ0

l,i, χ
1
i : i ∈ ω, l < k′〉]. Finally we let

φ0,i,j(x̄) := φ0
i (x̄ � ξ)

_χ0,ti,j(0)(φ
0
i (x̄ � ξ))

_ . . ._χk′−1,ti,j(k′−1)(φ
0
i (x̄ � ξ))

for every i < N0 and j < Ki, x̄ ∈ (2ω)α, and

φ1,i(x̄) := φ1
i (x̄ � ξ)

_χ1,i(φ
1
i (x̄ � ξ))

for every i < N1, x̄ ∈ (2ω)α.
We get from (∗7), and, as usual, applying Lemma 4.3.3, that for any x̄ ∈ (2ω)α∩ [s̄′]

which is generic over M+,

{x̄_k} ∪
⋃
i<N0

{φ0,i,j(x̄)_ki,j : j < Ki} ∪ {φ1,i(x̄)_k : i < N1} ∈ R.

On the other hand, whenever x̄0, . . . , x̄n′−1 ∈ (2ω)α ∩ [s̄′] are strongly mCg over
M+, and letting ȳ0, . . . , ȳn−1 enumerate {x̄i � ξ : i < n′}, knowing that the set in (∗5)

is Rξ-independent, we get that

{x̄l_(k − 1) : l < n′} ∪
⋃
i<N0

{φ0,i,j(x̄l)
_ki,j : j < Ki, l < n′}∪

{φ1,i(x̄l)
_k : i < N1, l < n′} is R-independent,

in case k > 0. To see this, we let η0 < · · · < ηk′′ be a partition refining ξ0 <

. . . , ξk′ witnessing the mCg of x̄0 � [ξ, α), . . . , x̄n′−1 � [ξ, α) and we find appropriate
u0,0, . . . , u0,L0−1, . . . , un−1,0, . . . , un−1,Ln−1−1 ∈ T ∩ ωk

′′ and vi,j ∈ T ∩ ωk
′′ for i <

N0, j < Ki to interpret the above set in the form

{ȳl_z̄0
ul,i

_(k−1) : l < n, i < Li}∪
⋃
i<N0

{φ0
i (ȳl)

_z̄0
vi,j

_ki,j : i < N0, j < Ki, l < n}

∪ {φ1
i (ȳl)

_z̄1
i
_k : i < N1, l < n},

for Qη0,...,ηk′′−1
-generic 〈z̄0

l,i, z̄
1
i : l < k′′, i ∈ ω〉 over M1[ȳ0, . . . , ȳn−1]. We leave the

details to the reader. In case k = 0, all Ki are 0 and we get that

{φ1,i(x̄l)
_k : i < N1, l < n′} is R-independent.

Everything that remains, namely showing e.g. that x̄ 6= φ1,i(x̄) is clear.
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As a final note, let us observe that the case α = 0 is trivial, since (2ω)α has only
one element.

Remark 4.3.21. If we replace “strong mCg" with “‘mCg" in the above Lemma, then
it already becomes false for α = ω. Namely consider the equivalence relation E on
(2ω)ω, where x̄Eȳ if they eventually agree, i.e. if ∃n ∈ ω∀m ≥ n(x(n) = y(n)).
Then we can never be in case (1) since we can always find two distinct x̄ and ȳ

that are mCg and x̄Eȳ. On the other hand, in case (2) we get a continuous selector
φ0 for E (note that N = 0 is not possible). More precisely we have that for any
x̄, ȳ that are mCg, x̄Eφ0(x̄) and φ0(x̄) = φ0(ȳ) iff x̄Eȳ. But for arbitrary mCg x̄
and ȳ so that x̄¬Eȳ, we easily find a sequence 〈x̄n : n ∈ ω〉 so that x̄ and x̄n are
mCg and x̄Ex̄n, but x̄n � n = ȳ � n for all n. In particular limn∈ω x̄n = ȳ. Then
φ0(ȳ) = limn∈ω φ0(x̄n) = limn∈ω φ0(x̄) = φ0(x̄).

Remark 4.3.22. The proofs of Main Lemma 4.3.4 and 4.3.14 can be generalized to E
that is ω-universally Baire. For this, additional details are required, for example related
to the complexity of the forcing relation in Cohen forcing.

Definition 4.3.23. For x̄0, . . . , x̄n−1 ∈
∏

i<αXi, we define

∆(x̄0, . . . , ȳn−1) := {∆x̄i,x̄j : i 6= j < n} ∪ {0, α},

where ∆x̄i,x̄j := min{ξ < α : xi(ξ) 6= xj(ξ)} if this exists and ∆x̄i,x̄j = α if x̄i = x̄j .

Remark 4.3.24. Whenever x̄0, . . . , x̄n−1 are strongly mCg, then they are mCg as wit-
nessed by the partition ξ0 < · · · < ξk, where {ξ0, . . . , ξk} = ∆(x̄0, . . . , x̄n−1).

4.4 Sacks and splitting forcing

4.4.1 Splitting Forcing

Definition 4.4.1. We say that S ⊆ 2<ω is fat if there is m ∈ ω so that for all n ≥ m,
there are s, t ∈ S so that s(n) = 0 and t(n) = 1. A tree T on 2 is called splitting tree

if for every s ∈ T , Ts is fat. We call splitting forcing the tree forcing SP consisting of
splitting trees.

Note that for T ∈ SP and s ∈ T , Ts is again a splitting tree. Recall that x ∈ 2ω

is called splitting over V , if for every y ∈ 2ω ∩ V , {n ∈ ω : y(n) = x(n) = 1} and
{n ∈ ω : x(n) = 1 ∧ y(n) = 0} are infinite. The following is easy to see.
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Fact. Let G be SP-generic over V . Then xG, the generic real added by SP, is splitting

over V .

Whenever S is fat let us write m(S) for the minimal m ∈ ω witnessing this.

Definition 4.4.2. Let S, T be splitting trees and n ∈ ω. Then we write S ≤n T iff
S ≤ T , split≤n(S) = split≤n(T ) and ∀s ∈ split≤n(S)(m(Ss) = m(Ts)).

Proposition 4.4.3. The sequence 〈≤n: n ∈ ω〉 witnesses that SP has Axiom A with

continuous reading of names.

Proof. It is clear that ≤n is a partial order refining ≤ and that ≤n+1⊆≤n for every
n ∈ ω. Let 〈Tn : n ∈ ω〉 be a fusion sequence in SP, i.e. for every n, Tn+1 ≤n Tn.
Then we claim that T :=

⋂
n∈ω Tn is a splitting tree. More precisely, for s ∈ T , we

claim that m := m((T|s|)s) witnesses that Ts is fat. To see this, let n ≥ m be arbitrary
and note that n ≥ m ≥ |s| must be the case. Then, since split≤n+1(Tn+1) ⊆ T

we have that s ∈ split≤n+1(Tn+1) and m((Tn+1)s) = m. So find t0, t1 ∈ Tn+1 so
that t0(n) = 0, t1(n) = 1 and |t0| = |t1| = n + 1. But then t0, t1 ∈ T , because
t0, t1 ∈ split≤n+1(Tn+1) ⊆ T .

Now let D ⊆ SP be open dense, T ∈ SP and n ∈ ω. We will show that there is
S ≤n T so that for every x ∈ [S], there is t ⊆ x, with St ∈ D. This implies condition
(3) in Definition 4.2.1.

Claim 4.4.4. Let S be a splitting tree. Then there is A ⊆ S an antichain (seen

as a subset of 2<ω) so that for every k ∈ ω, j ∈ 2, if ∃s ∈ S(s(k) = j), then

∃t ∈ A(t(k) = j).

Proof. Start with {si : i ∈ ω} ⊆ S an arbitrary infinite antichain and let mi := m(Ssi)

for every i ∈ ω. Then find for each i ∈ ω, a finite set Hi ⊆ Ssi so that for all
k ∈ [mi,mi+1), there are t0, t1 ∈ Hi, so that t0(k) = 0 and t1(k) = 1. Moreover
let H ⊆ S be finite so that for all k ∈ [0,m0) and j ∈ 2, if ∃s ∈ S(s(k) = j),
then ∃t ∈ H(t(k) = j). Then define Fi = Hi ∪ (H ∩ Ssi) for each i ∈ ω and let
F−1 := H \

⋃
i∈ω Fi. Since Fi is finite for every i ∈ ω, it is easy to extend each of

its elements to get a set F ′i that is an additionally an antichain in Ssi . Also extend the
elements of F−1 to get an antichain F ′−1 in S. It is easy to see that A :=

⋃
i∈[−1,ω) F

′
i

works.

Now enumerate splitn(T ) as 〈σi : i < N〉, N := 2n. For each i < N , let
Ai ⊆ Tσi be an antichain as in the claim applied to S = Tσi . For every i < N and



4.4. Sacks and splitting forcing 73

t ∈ Ai, let St ∈ D be so that St ≤ Tt. For every i < N pick ti ∈ Ai arbitrarily and
Fi ⊆ Ai a finite set so that for every k ∈ [0,m(Sti)) and j ∈ 2, if ∃s ∈ Ai(s(k) = j),
then ∃t ∈ Fi(t(k) = j). Then we see that S :=

⋃
i<N(

⋃
t∈Fi S

t ∪ Sti) works. We
constructed S so that S ≤n T . Moreover, whenever x ∈ [S], then there is i < N be so
that σi ⊆ x. Then x ∈ [

⋃
t∈Fi St ∪ Sti ] and since Fi is finite, there is t ∈ Fi ∪ {ti} so

that t ⊆ x. But then St ≤ St ∈ D.
Finally, in order to show the continuous reading of names, let ẏ be a name for

an element of ωω, n ∈ ω and T ∈ SP. It suffices to consider such names, since for
every Polish space X , there is a continuous surjection F : ωω → X . Then we have
that for each i ∈ ω, Di := {S ∈ SP : ∃s ∈ ωi(S  ẏ � i = s)} is dense open.
Let 〈Ti : i ∈ ω〉 be so that T0 ≤n T , Ti+1 ≤n+i Ti and for every x ∈ [Ti], there
is t ⊆ x so that (Ti)t ∈ Di. Then S =

⋂
i∈ω Ti ≤n T . For every x ∈ [S], define

f(x) =
⋃
{s ∈ ω<ω : ∃t ⊆ x(St  s ⊆ ẏ)}. Then f : [S] → ωω is continuous and

S  ẏ = f(xG).

Corollary 4.4.5. SP is proper and ωω-bounding.

4.4.2 Weighted tree forcing

Definition 4.4.6. Let T be a perfect tree. A weight on T is a map ρ : T × T → [T ]<ω

so that ρ(s, t) ⊆ Ts \ Tt for all s, t ∈ T . Whenever ρ0, ρ1 are weights on T we write
ρ0 ⊆ ρ1 to say that for all s, t ∈ T , ρ0(s, t) ⊆ ρ1(s, t).

Note that if t ⊆ s then ρ(s, t) = ∅ must be the case.

Definition 4.4.7. Let T be a perfect tree, ρ a weight on T and S a tree. Then we write
S ≤ρ T if S ⊆ T and there is a dense set of s0 ∈ S with an injective sequence (sn)n∈ω

in Ss0 such that ∀n ∈ ω(ρ(sn, sn+1) ⊆ S).

Remark 4.4.8. Whenever ρ0 ⊆ ρ1, we have that S ≤ρ1 T implies S ≤ρ0 T .

Definition 4.4.9. Let P be a tree forcing. Then we say that P is weighted if for any
T ∈ P there is a weight ρ on T so that for any tree S, if S ≤ρ T then S ∈ P.

Lemma 4.4.10. SP is weighted.

Proof. Let T ∈ SP. For any s, t ∈ T let ρ(s, t) ⊆ Ts \Tt be finite so that for any k ∈ ω
and i ∈ 2, if there is r ∈ Ts so that r(k) = i and there is no such r ∈ Tt, then there is
such r in ρ(s, t). This is possible since Tt is fat. Let us show that ρ works. Assume
that S ≤ρ T and let s ∈ S be arbitrary. Then there is s0 ⊇ s in S with a sequence
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(sn)n∈ω as in the definition of ≤ρ. Let k ≥ m(Ts0) and i ∈ 2 and suppose there is no
r ∈ Ss0 with r(k) = i. In particular this means that no such r is in ρ(sn, sn+1) for any
n ∈ ω, since ρ(sn, sn+1) ⊆ Ss0 . But then, using the definition of ρ and m(Ts0), we see
inductively that for each n ∈ ω such r must be found in Tsn . Letting n large enough so
that k < |sn|, sn(k) = i must be the case. But sn ∈ Ss0 , which is a contradiction.

Definition 4.4.11. Sacks forcing is the tree forcing S consisting of all perfect subtrees
of 2<ω. It is well-known that it is Axiom A with continuous reading of names.

Lemma 4.4.12. S is weighted.

Proof. Let T ∈ S. For s, t ∈ T , we let ρ(s, t) contain all r_i ∈ Ts \ Tt such that
r_(1− i) ∈ T and where |r| is minimal with this property.

Recall that for finite trees T0, T1 we say that T1 is an end-extension of T0, written
as T0 @ T1, if T0 ( T1 and for every t ∈ T1 \ T0 there is a terminal node σ ∈ term(T0)

so that σ ⊆ t. A node σ ∈ T0 is called terminal if it has no proper extension in T0.

Definition 4.4.13. Let T be a perfect tree, ρ a weight on T and T0, T1 finite subtrees
of T . Then we write T0 Cρ T1 iff T0 @ T1 and

∀σ ∈ term(T0)∃N ≥ 2∃〈si〉i<N ∈ ((T1)σ)N injective(
s0 = σ ∧ sN−1 ∈ term(T1) ∧ ∀i < N(ρ(si, si+1) ⊆ T1)

)
. (∗0)

Lemma 4.4.14. Let T be a perfect tree, ρ a weight on T and 〈Tn : n ∈ ω〉 be a sequence

of finite subtrees of T so that Tn Cρ Tn+1 for every n ∈ ω. Then
⋃
n∈ω Tn ≤ρ T .

Proof. Let S :=
⋃
n∈ω Tn. To see that S ≤ρ T note that

⋃
n∈ω term(Tn) is dense in S,

in a very strong sense. Let σ ∈ term(Tn) for some n ∈ ω, then let s0, . . . , sN0−1 be as
in (∗0) for Tn, Tn+1. Since sN0−1 ∈ term(Tn+1) we again find sN0−1, . . . , sN1−1 as in
(∗0) for Tn+1, Tn+2. Continuing like this, we find a sequence 〈si : i ∈ ω〉 in S starting
with s0 = σ so that ρ(si, si+1) ⊆ S for all i ∈ ω, as required.

Lemma 4.4.15. Let T be a perfect tree, ρ a weight on T and T0 a finite subtree of T .

Moreover, let k ∈ ω and D ⊆ (T )k be dense open. Then there is T1 Bρ T0 so that

∀{σ0, . . . , σk−1} ∈ [term(T0)]k∀σ′0, . . . , σ′k−1 ∈ term(T1)(
∀l < k(σl ⊆ σ′l)→ (σ′0, . . . , σ

′
k−1) ∈ D

)
. (∗1)
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Proof. First let us enumerate term(T0) by σ0, . . . , σK−1. We put sl0 = σl for each
l < K. Next find for each l < K, sl1 ∈ T, sl0 ( sl1 above a splitting node in Tsl0 .
Moreover we find sl2 ∈ Tsl0 so that sl2 ⊥ sl1 and sl2 is longer than any node appearing
in ρ(sl0, s

l
1). This is possible since we chose sl1 to be above a splitting node in Tsl0 .

For each l < K we let T̃ l2 be the tree generated by (i.e. the downwards closure of)
{sl1, sl2} ∪ ρ(sl0, s

l
1) ∪ ρ(sl1, s

l
2). Note that sl2 ∈ term(T̃ l2) as ρ(sl1, s

l
2) ⊥ sl2.

Let us enumerate by (fj)2≤j<N all functions f : K → {1, 2} starting with f2 the
constant function mapping to 1. We are going to construct recursively a sequence
〈T̃ lj : 2 ≤ j ≤ N〉 where T̃ lj v T̃ lj+1, and 〈slj : 2 ≤ j ≤ N〉 without repetitions, for
each l < K such that at any step j < N :

1. for every l < K, slj ∈ term(T̃ lj) and

sl2 ⊆ slj if fj(l) = 1

sl1 ⊆ slj if fj(l) = 2.

2. for any {li : i < k} ∈ [K]k and (ti)i<k where ti ∈ term(T̃ lij+1) and

s
li
1 ⊆ ti if fj(li) = 1

sli1 ⊥ ti if fj(li) = 2

for every i < k, (t0, . . . , tk−1) ∈ D

3. for every l < K, ρ(slj, s
l
j+1) ⊆ T̃ lj+1.

Note that (1) holds true at the initial step j = 2 since f2(l) = 1, sl2 ⊆ sl2 and
sl2 ∈ term(T̃ l2) for each l < K. Given T̃ lj and slj for each l with (1) holding true we
proceed as follows. Let {tli : i < Nl} enumerate {t : t ∈ term(T̃ lj) ∧ sl1 ⊆ t if fj(l) =

1 ∧ sl1 ⊥ t if fj(l) = 2} for each l < K. Now it is simple to find rli ∈ T , tli ⊆ rli for
each i < Nl, l < K so that [{rli : i < Nl, l < K}]k ⊆ D.

Let Rl be the tree generated by T̃ lj and {rli : i < Nl} for each l < K. It is easy to
see that T̃ lj v Rl since we only extended elements from term(T̃ lj) (namely the tli’s).
Note that it is still the case that slj ∈ term(Rl) since slj ⊥ tli for all i < Nl. Next we
choose slj+1 extending an element of term(Rl), distinct from all previous choices and
so that sl2 ⊆ slj if fj+1(l) = 1 and sl1 ⊆ slj if fj+1(l) = 2.

Taking T̃ lj+1 to be the tree generated by Rl ∪ {slj+1} ∪ ρ(slj, s
l
j+1) gives the next

step of the construction. Again Rl v T̃ lj+1, as we only extended terminal nodes of
Rl. Then (3) obviously holds true and slj+1 ∈ term(T̃ lj+1) since ρ(slj, s

l
j+1) ⊥ slj+1. It

follows from the construction that (2) holds true for each T̃ lj+1 replaced by Rl. Since
Rl v T̃ lj+1 we easily see that (2) is satisfied.

Finally we put T1 =
⋃
l<K T̃

l
N . It is clear that (∗0) is true, in particular that T0CρT1.

For (∗1) let {li : i < k} ∈ [K]k be arbitrary and assume that ti ∈ term(T̃ liN) for each



76 Chapter 4. Hypergraphs and definability in tree forcing extensions

i < k. Let f : K → {1, 2} be so that for each i < k if sli1 ⊆ ti then f(li) = 1, and if
sli1 ⊥ ti then f(li) = 2. Then there is j ∈ [2, N) so that fj = f . Clause (2) ensured that
for initial segments t′i ⊆ ti where t′i ∈ term(T̃ lij+1), (t′0, . . . , t

′
k−1) ∈ D. In particular

(t0, . . . , tk−1) ∈ D which proves (∗1).

Proposition 4.4.16. Let M be a countable model of set theory, Rl ∈M a perfect tree

and ρl a weight on Rl for every l < k ∈ ω. Then there is Sl ≤ρl Rl for every l < k so

that any x̄0, . . . , x̄n−1 ∈
∏

l<k[Sl] are mutually Cohen generic with respect to
∏

l<k[Rl]

over M .

Proof. Let T := {∅} ∪ {〈l〉_s : s ∈ Rl, l < k} be the disjoint sum of the trees Rl for
l < k. Also let ρ be a weight on T extending arbitrarily the weights ρl defined on the
copy of Rl in T . As M is countable, let (Dn, kn)n∈ω enumerate all pairs (D,m) ∈M ,
such that D is a dense open subset of Tm and m ∈ ω \ {0}, infinitely often. Let us find
a sequence (Tn)n∈ω of finite subtrees of T , such that for each n ∈ ω, Tn Cρ Tn+1 and

∀{σ0, . . . , σkn−1} ∈ [term(Tn)]kn∀σ′0, . . . , σ′kn−1 ∈ term(Tn+1)

[∀l < k(σl ⊆ σ′l)→ (σ′0, . . . , σ
′
kn−1) ∈ Dn]. (∗1)

We start with T0 = k<2 = {∅} ∪ {〈l〉 : l < k} and then apply Lemma 4.4.15
recursively. Let S :=

⋃
n∈ω Tn. Then we have that S ≤ρ T .

Claim 4.4.17. For any m ∈ ω and distinct x0, . . . , xm−1 ∈ [S], (x0, . . . , xm−1) is

Tm-generic over M .

Proof. Let D ⊆ Tm be open dense with D ∈ M . Then there is a large enough
n ∈ ω with (Dn, kn) = (D,m) and σ0, . . . , σm−1 ∈ term(Tn) distinct such that
σ0 ⊆ x0, . . . , σm−1 ⊆ xm−1. Then there are unique σ′0, . . . , σ

′
m−1 ∈ term(Tn+1) such

that σ′0 ⊆ x0, . . . , σ
′
m−1 ⊆ xm−1. By (∗1), (σ′0, . . . , σ

′
m−1) ∈ D.

Finally let Sl = {s : 〈l〉_s ∈ S} and note that Sl ≤ρl Rl for every l < k. The
above claim clearly implies the statement of the proposition.

Remark 4.4.18. Proposition 4.4.16 implies directly the main result of [62]. A modifica-
tion of the above construction for splitting forcing can be used to show that for T ∈M ,
we can in fact find a master condition S ≤ T so that for any distinct x0, . . . , xn−1 ∈ [S],
(x0, . . . , xn−1) is SPn-generic over M . In that case (S, . . . , S) ∈ SPn is a SPn-master
condition over M . We won’t provide a proof of this since our only application is
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Corollary 4.4.21 below, which seems to be implicit in [62]. The analogous statement
for Sacks forcing is a standard fusion argument.

Corollary 4.4.19. Let P be a weighted tree forcing and let G be P-generic over V . Then
G = {S ∈ P ∩ V : xG ∈ [S]}. Thus we may write V [xG] instead of V [G].

Proof. Obviously G ⊆ H := {S ∈ P ∩ V : xG ∈ [S]}. Suppose that S ∈ H \ G
and T ∈ G is such that T  S ∈ Ḣ \ Ġ. Let M 4 H(θ) be so that T, S,P ∈ M ,
for θ large enough. By Proposition 4.4.16, there is T ′ ≤ T so that any x ∈ [T ′] is
Cohen generic in [T ] over M . If there is some x ∈ [T ′] ∩ [S], then there is t ⊆ x so
that M |= t T ċ ∈ [S], where ċ is a name for the generic branch added by T . But
then (T ′)t ⊆ S contradicting that (T ′)t  S /∈ G. Thus [T ′] ∩ [S] = ∅, implying that
T ′  S /∈ H . Again this is a contradiction.

Corollary 4.4.20. Let P be a weighted tree forcing with continuous reading of names.
Then P adds a minimal real in the sense that, for any P-generic G, if y ∈ 2ω∩V [G]\V ,
then there is a Borel map f : 2ω → Aω in V so that xG = f(y).

Proof. Using the continuous reading of names let T ∈ G be so that there is a continuous
map g : [T ] → 2ω with T  ẏ = g(xG). Moreover let M 4 H(θ) be countable for
large enough θ with g, T ∈M . Now let S ≤ T be so that any x0, x1 ∈ [S] are mCg in
[T ] over M .

Suppose that there are x0 6= x1 ∈ [S], with g(x0) = g(x1). Then there must be
s ⊆ x0 and t ⊆ x1, so that M |= (s, t) T 2 g(ċ0) = g(ċ1), where ċ0, ċ1 are names for
the generic branches added by T 2. But then note that for any x ∈ St, since x and x0

are mCg and s ⊆ x0, t ⊆ x, we have that g(x) = g(x0). In particular g is constant on
St and St  g(xG) = g(x̌0) ∈ V .

On the other hand, if g is injective on [S], it is easy to extend g−1 to a Borel function
f : Aω → 2ω.

Corollary 4.4.21. V SP is a minimal extension of V , i.e. whenever W is a model of
ZFC so that V ⊆ W ⊆ V SP, then W = V or W = V SP.

Proof. Let G be an SP-generic filter over V . By Corollary 4.4.19, it suffices to show
that if 〈αξ : ξ < δ〉 ∈ W \ V is an increasing sequence of ordinals, then xG ∈ W
(see also [31, Theorem 13.28]). So let 〈α̇ξ : ξ < δ〉 be a name for such a sequence
of ordinals and T ∈ SP be such that T  〈α̇ξ : ξ < δ〉 /∈ V . Note that this is in
fact equivalent to saying that (T, T ) SP2 〈α̇ξ[ẋ0] : ξ < δ〉 6= 〈α̇ξ[ẋ1] : ξ < δ〉,
where ẋ0, ẋ1 are names for the generic reals added by SP2. Let M be a countable
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elementary model so that T, 〈α̇ξ : ξ < δ〉 ∈ M and let T ′ ≤ T be a master condition
over M as in Remark 4.4.18. Then also T ′  〈α̇ξ : ξ ∈ δ ∩ M〉 /∈ V . Namely,
suppose towards a contradiction that there are x0, x1 ∈ [T ′] generic over V so that
〈α̇ξ[x0] : ξ ∈ δ ∩M〉 = 〈α̇ξ[x1] : ξ ∈ δ ∩M〉, then (x0, x1) is SP2-generic over M
and M [x0][x1] |= 〈α̇ξ[x0] : ξ < δ〉 = 〈α̇ξ[x1] : ξ < δ〉 which yields a contradiction
to the sufficient elementarity of M . Since T ′  〈α̇ξ : ξ ∈ δ ∩M〉 ⊆ M we can view
〈α̇ξ : ξ ∈ δ ∩M〉 as a name for a real, for M is countable. Back in W , we can define
〈αξ : ξ ∈ δ ∩M〉 since M ∈ V ⊆ W . But then, applying Corollary 4.4.20, we find
that xG ∈ W .

4.4.3 The countable support iteration

Recall that for any perfect subtree T of 2<ω, split(T ) is order-isomorphic to 2<ω in a
canonical way, via a map ηT : split(T )→ 2<ω. This map induces a homeomorphism
η̃T : [T ] → 2ω and note that the value of η̃T (x) depends continuously on T and x.
Whenever ρ is a weight on T , ηT also induces a weight ρ̃ on 2<ω, so that whenever
S ≤ρ̃ 2<ω, then η−1

T (S) generates a tree S ′ with S ′ ≤ρ T .
Let 〈Pβ, Q̇β : β < λ〉 be a countable support iteration where for each β < λ,

Pβ Q̇β = P, for some P ∈ {SP,S}. We fix in this section a Pλ name ẏ for an element
of a Polish space X , p̄ ∈ Pλ a good master condition over a countable model M0,
where ẏ, X ∈ M0, and let C ⊆ λ be a countable set as in Lemma 4.2.3. For every
β ∈ C and ȳ ∈ [p̄] � (C ∩ β), let us write

Tȳ = {s ∈ 2<ω : ∃x̄ ∈ [p̄] [x̄ � (C ∩ β) = ȳ ∧ s ⊆ x(β)]}.

According to Lemma 4.2.3, the map ȳ 7→ Tȳ is a continuous function from [p̄] � (C∩β)

to T . Let α := otp(C) < ω1 as witnessed by an order-isomorphism ι : α→ C. Then
we define the homeomorphism Φ: [p̄] � C → (2ω)α so that for every ȳ ∈ [p̄] � C and
every δ < α,

Φ(ȳ) � (δ + 1) = Φ(ȳ) � δ_η̃Tȳ�ι(δ)(y(ι(δ))).

Note that for P ∈ {SP,S}, the map sending T ∈ P to the weight ρT defined in
Lemma 4.4.10 or Lemma 4.4.12 is a Borel function from P to the Polish space of
partial functions from (2<ω)2 to [2<ω]<ω. Thus for β ∈ C and x̄ ∈ [p̄] � (C∩β), letting
ρx̄ := ρTx̄ , we get that x̄ 7→ ρx̄ is a Borel function on [p̄] � (C ∩ β). For each δ < α

and ȳ ∈ (2ω)δ, we may then define ρ̃ȳ a weight on 2<ω, induced by ρx̄ and ηTx̄ , where
x̄ = Φ−1(ȳ_z̄) � β for arbitrary, equivalently for every, z̄ ∈ (2ω)α\δ. The map sending
ȳ ∈ (2ω)δ to ρ̃ȳ is then Borel as well.
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Lemma 4.4.22. Let M1 be a countable elementary model with M0, p̄,Pλ ∈M1 and let

s̄ ∈
⊗

i<α 2<ω. Then there is q̄ ≤ p̄, a good master condition over M0, so that

∀x̄0, . . . , x̄n−1 ∈ [q̄]
(
Φ(x̄0 � C), . . . ,Φ(x̄n−1 � C) ∈ (2ω)α ∩ [s̄]

are strongly mCg wrt
∏
i<α

2ω over M1

)
.

Moreover [q̄] � C is a closed subset of [p̄] � C and [q̄] = ([q̄] � C) × (2ω)λ\C (cf.

Lemma 4.2.3).

Proof. We can assume without loss of generality that s̄ = ∅, i.e. [s̄] = (2ω)α. It will be
obvious that this assumption is inessential. Next, let us introduce some notation. For
any δ ≤ α and ȳ0, . . . , ȳn−1 ∈ (2ω)δ, recall that we defined

∆(ȳ0, . . . , ȳn−1) := {∆ȳi,ȳj : i 6= j < n} ∪ {0, δ}.

Let us write

tp(ȳ0, . . . , ȳn−1) := (〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i < n〉),

where {ξ0 < · · · < ξk} = ∆(ȳ0, . . . , ȳn−1), Kl = |{ȳi � [ξl, ξl+1) : i < n}| for every
l < k and 〈Ui : i < n〉 are the clopen subsets of (2ω)δ of the form Ui = [s̄i] for
s̄i ∈

⊗
ξ<δ 2<ω with s̄i minimal in the order of

⊗
ξ<δ 2<ω so that

ȳi ∈ [s̄i] and ∀j < n(ȳj 6= ȳi → ȳj /∈ [s̄i]),

for every i < n.
Note that for any δ0 ≤ δ, if

tp(ȳ0 � δ0, . . . , ȳn−1 � δ0) := (〈ηl : l ≤ k′〉, 〈Ml : l < k′〉, 〈Vi : i < n〉),

then Vi = Ui � δ0 for every i < n. Moreover, for any ȳ′0, . . . , ȳ
′
n−1 ∈ (2ω)δ with

tp(ȳ′0, . . . , ȳ
′
n−1) = (〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i < n〉),

we have that

tp(ȳ′0 � δ0, . . . , ȳ
′
n−1 � δ0) = (〈ηl : l ≤ k′〉, 〈Ml : l < k′〉, 〈Vi : i < n〉).

Any ȳ0, . . . , ȳn−1, with tp(ȳ0, . . . , ȳn−1) := (〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i <

n〉), that are mutually Cohen generic with respect to
∏

i<δ 2ω over M1 as witnessed
by ξ0 < · · · < ξk, induce a

∏
l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl-generic and vice-versa. Thus
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whenever τ is a
∏

l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl-name, we may write τ [ȳ0, . . . , ȳn−1] for the
evaluation of τ via the induced generic. It will not matter in what particular way we
define the

∏
l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl-generic from given ȳ0, . . . , ȳn−1. We may stipulate
for instance, that the generic induced by ȳ0, . . . , ȳn−1 is 〈z̄l,j : l < k, j < Kl〉, where
for each fixed l < k, 〈z̄l,j : l < k, j < Kl〉 enumerates {ȳi � [ξl, ξl+1) : i < n} in
lexicographic order.

Let us get to the bulk of the proof. We will define a finite support iteration
〈Rδ, Ṡδ : δ ≤ α〉 in M1, together with, for each δ ≤ α, an Rδ-name Ẋδ for a closed
subspace of (2ω)δ, where Rδ1 Ẋδ0 = Ẋδ1 � δ0 for every δ0 < δ1 ≤ α. This
uniquely determines the limit steps of the construction. Additionally we will make
the following inductive assumptions (1)δ and (2)δ for all δ ≤ α and any Rδ-generic G.
Let ȳ0, . . . , ȳn−1 ∈ Ẋδ[G] be arbitrary and tp(ȳ0, . . . , ȳn−1) = (〈ξl : l ≤ k〉, 〈Kl : l <

k〉, 〈Ui : i < n〉). Then

(1)δ ȳ0, . . . , ȳn−1 are strongly mCg over M1 with respect to
∏

i<δ 2ω,

(2)δ and for any
∏

l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl-name Ḋ ∈M1 for an open dense subset of
a countable poset Q ∈M1,⋂{

Ḋ[ȳ′0, . . . , ȳ
′
n−1] : ȳ′0, . . . , ȳ

′
n−1 ∈ Xδ,

tp(ȳ′0, . . . , ȳ
′
n−1) = (〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i < n〉)

}
is open dense in Q.

Having defined Rδ and Ẋδ, for δ < α, we proceed as follows. Fix for now G

an Rδ-generic over M1 and Xδ := Ẋδ[G]. Then we define a forcing Sδ ∈ M1[G]

which generically adds a continuous map F : Xδ → T , so that for each ȳ ∈ Xδ,
Sȳ := F (ȳ) ≤ρ̃ȳ 2<ω. In M1[G][F ], we then define Xδ+1 ⊆ (2ω)δ+1 to be {ȳ_z : ȳ ∈
Xδ, z ∈ [Sȳ]}. The definition of Sδ is as follows.

Work in M1[G]. Since the map ȳ ∈ (2ω)δ 7→ ρ̃ȳ is Borel and an element of M1

and by (1)δ any ȳ ∈ Xδ is Cohen generic over M1, it is continuous on Xδ. Since Xδ

is compact we find a single weight ρ̃ on 2<ω, so that ρ̃ȳ ⊆ ρ̃ for every ȳ ∈ Xδ. Let
{Os : s ∈ 2<ω} be a basis of Xδ so that Os ⊆ Ot for t ⊆ s and Os ∩Ot = ∅ for s ⊥ t.
This is possible since Xδ is homeomorphic to 2ω. Let FT be the set of finite subtrees
of 2<ω. Then Sδ consists of functions h : 2≤n → FT , for some n ∈ ω, so that for every
s ⊆ t ∈ 2≤n, (h(s)Eρ̃ h(t)). The extension relation is defined by function extension.
Note that Sδ is indeed a forcing poset with trivial condition ∅.
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Given H , an Sδ-generic over M1[G], we let F : Xδ → T be defined as

F (ȳ) :=
⋃

s∈2<ω ,ȳ∈Os
h∈H

h(s).

Claim 4.4.23. For every ȳ ∈ Xδ, F (ȳ) = Sȳ ≤ρ̃ 2<ω, in particular Sȳ ≤ρ̃ȳ 2<ω. For

any ȳ0, ȳ1 ∈ Xδ, [Sȳ0 ] ∩ [Sȳ1 ] 6= ∅. Any z0, . . . , zn−1 ∈
⋃
ȳ∈Xδ [Sȳ] are mutually Cohen

generic in 2ω over M1[G]. And for any countable poset Q ∈ M1, any m ∈ ω and

any dense open E ⊆ (2<ω)n × Q in M1[G], there is r ∈ Q and m0 ≥ m so that

for any z0, . . . , zn−1 ∈
⋃
ȳ∈Xδ [Sȳ] where z0 � m, . . . , zn−1 � m are pairwise distinct,

((z0 � m0, . . . , zn−1 � m0), r) ∈ E.

Proof. We will make a genericity argument over M1[G]. Let h ∈ Sδ be arbitrary. Then
it is easy to find h′ ≤ h, say with dom(h′) = 2≤a0 , so that for every s ∈ 2a0 and every
t ∈ term(h(s)), |t| ≥ m. For the first claim, it suffices through Lemma 4.4.14 to find
h′′ ≤ h′, say with dom(h′′) = 2≤a1 , a0 < a1, so that for every s ∈ 2a0 and t ∈ 2a1 , with
s ⊆ t, h′′(s)Cρ̃h′′(t). Finding h′′ so that additionally term(h′′(t0))∩term(h′′(t1)) = ∅
for every t0 6= t1 ∈ 2a1 proves the second claim. For the last two claims, given a
fixed dense open subset E ⊆ (2<ω)n × Q in M1[G], it suffices to find r ∈ Q and
to ensure that for any pairwise distinct s0, . . . , sn−1 ∈

⋃
s∈2a0 term(h′′(s)) and t0 ⊇

s0, . . . , tn−1 ⊇ sn−1 with t0, . . . , tn−1 ∈
⋃
t∈2a1 term(h′′(t)), ((t0, . . . , tn−1), r) ∈ E.

Then we may put m0 = max{|t| : t ∈
⋃
s∈2a1 term(h′′(s))}. We may also assume

wlog that Q = 2<ω.

To find such h′′ we apply Lemma 4.4.15 as in the proof of Proposition 4.4.16.
More precisely, for every s ∈ 2a0 , we find T 0

s , T
1
s Bρ̃ h

′(s), and we find T ⊆ 2<ω

finite, so that for any pairwise distinct s0, . . . , sn−1 ∈
⋃
s∈2a0 term(h′(s)), any t0 ⊇

s0, . . . , tn−1 ⊇ sn−1 with t0, . . . , tn−1 ∈
⋃
s∈2a0 ,i∈2 term(T is) and any σ ∈ term(T ),

((t0, . . . , tn−1), σ) ∈ E and term(T is) ∩ term(T jt ) = ∅ for every i, j ∈ 2, s, t ∈ 2a0 .
Then simply define h′′ ≤ h′ with dom(h′′) = 2a0+1, where h′′(s_i) = T is for s ∈ 2a0 ,
i ∈ 2.

The function F is obviously continuous and Xδ+1 is a closed subset of (2ω)δ+1,
with Xδ+1 � δ0 = (Xδ+1 � δ) � δ0 = Xδ � δ0 = Xδ0 for every δ0 < δ + 1.

Proof of (1)δ+1, (2)δ+1. LetG be Rδ+1 generic overM1 and ȳ0, . . . , ȳn−1 ∈ Ẋδ+1[G] =

Xδ+1 be arbitrary. By the inductive assumption we have that ȳ0 � δ, . . . , ȳn−1 � δ

are strongly mCg over M1 with respect to
∏

i<δ 2ω. By the above claim, whenever
ȳi � δ 6= ȳj � δ, then ȳi(δ) 6= ȳj(δ). Thus, for (1)δ+1, we only need to show that
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ȳ0, . . . , ȳn−1 are mCg. Let tp(ȳ0, . . . , ȳn−1) = (〈ξl : l < k〉, 〈Kl : l < k〉, 〈Ui : i <

n〉), tp(ȳ0 � δ, . . . , ȳn−1 � δ) = (〈ηl : l ≤ k′〉, 〈Ml : l < k〉, 〈Ui � δ : i < n〉)
and n′ = |{yi(δ) : i < n}| = Kk−1. Then we may view a dense open subset of∏

l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl as a
∏

l<k′(
⊗

ξ∈[ηl,ηl+1) 2<ω)Ml-name for a dense open subset
of (2<ω)n

′ . To this end, let Ḋ ∈M1 be a
∏

l<k′(
⊗

ξ∈[ηl,ηl+1) 2<ω)Ml name for a dense
open subset of (2<ω)n

′ . Then we have, by (2)δ, that

D̃ =
⋂{

Ḋ[ȳ′0, . . . , ȳ
′
n−1] : ȳ′0, . . . , ȳ

′
n−1 ∈ Xδ,

tp(ȳ′0, . . . , ȳ
′
n−1) = (〈ηl : l ≤ k′〉, 〈Ml : l < k′〉, 〈Ui � δ : i < n〉)

}
is a dense open subset of (2<ω)n

′ and D̃ ∈M1[G � δ]. By the above claim, y0(δ), . . . , yn−1(δ)

are mCg over M1[G � δ] in 2ω. Altogether, this shows that ȳ0, . . . , ȳn−1 are mCg over
M1 with respect to

∏
i<δ+1 2ω.

For (2)δ+1, let Ḋ ∈M1 now be a
∏

l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl-name for a dense open
subset of Q. Consider a name Ė in M1 for the dense open subset of (2<ω)n

′×Q, where
for any ȳ′0, . . . , ȳ

′
n−1 ∈ Xδ, with tp(ȳ′0, . . . , ȳ

′
n−1) = (〈ηl : l ≤ k′〉, 〈Ml : l < k〉, 〈Ui �

δ : i < n〉),

Ė[ȳ′0, . . . , ȳ
′
n−1] = {(t̄, r) : M1[ȳ′0, . . . , ȳ

′
n−1] |=

t̄  r ∈ Ḋ[ȳ′0, . . . , ȳ
′
n−1][ż0, . . . , żn′−1]},

where (ż0, . . . , żn′−1) is a name for the (2<ω)n
′-generic. By (2)δ, we have that

Ẽ =
⋂{

Ė[ȳ′0, . . . , ȳ
′
n−1] : ȳ′0, . . . , ȳ

′
n−1 ∈ Xδ,

tp(ȳ′0, . . . , ȳ
′
n−1) = (〈ηl : l ≤ k′〉, 〈Ml : l < k〉, 〈Ui � δ : i < n〉)

}
is a dense open subset of (2<ω)n

′ ×Q and Ẽ ∈M1[G � δ]. Let m ∈ ω be large enough
so that for any i, j < n, if Ui 6= Uj , then ∀ȳ′i ∈ Ui ∩ Xδ+1, ȳ

′
j ∈ Uj ∩ Xδ+1(y′i(δ) �

m 6= y′j(δ) � m). To see that such m exists, note that if Ui 6= Uj , then Ui ∩ Xδ+1

and Uj ∩ Xδ+1 are disjoint compact subsets of Xδ+1. By the claim, there is r ∈ Q
and m0 ≥ m so that for any z0, . . . , zn′−1 ∈

⋃
ȳ∈Xδ [Sȳ], if z0 � m, . . . , zn′−1 � m are

pairwise different, then ((z0 � m0, . . . , zn′−1 � m0), r) ∈ Ẽ. Altogether we find that

r ∈
⋂{

Ḋ[ȳ′0, . . . , ȳ
′
n−1] : ȳ′0, . . . , ȳ

′
n−1 ∈ Xδ+1,

tp(ȳ′0, . . . , ȳ
′
n−1) = (〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i < n〉)

}
.

Of course the same argument can be carried out below any condition in Q, showing
that this set is dense. That it is open is also clear since it is the intersection of open
subsets of a partial order.
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Now let δ ≤ α be a limit ordinal.

Proof of (1)δ and (2)δ. Let G be Rδ-generic over M1, ȳ0, . . . , ȳn−1 ∈ Ẋδ[G] = Xδ,
this time wlog pairwise distinct, and tp(ȳ0, . . . , ȳn−1) = (〈ξl : l ≤ k〉, 〈Kl : l <

k〉, 〈Ui : i < n〉). We will make a genericity argument over M1 to show (1)δ and
(2)δ. To this end, let D0 ⊆

∏
l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl be dense open, D0 ∈ M1, and
let Ḋ1 ∈M1 be a

∏
l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl-name for a dense open subset of Q. Then
consider the dense open subset D2 ⊆

∏
l<k(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl ×Q in M1, where

D2 = {(r0, r1) : r0 ∈ D0 ∧ r0  r1 ∈ Ḋ1}.

Also let h̄0 ∈ G be an arbitrary condition so that

h̄0  ∀i < n(Ui ∩ Ẋδ 6= ∅).

Then there is δ0 < δ so that supp(h̄0), ξk−1 + 1 ⊆ δ0. We may equally well view D2

as a
∏

l<k−1(
⊗

ξ∈[ξl,ξl+1) 2<ω)Kl × (
⊗

ξ∈[ξk−1,δ0) 2<ω)Kk−1-name Ė ∈ M1 for a dense
open subset

E ⊆ (
⊗

ξ∈[δ0,ξk)

2<ω)Kk−1 ×Q = (
⊗

ξ∈[δ0,δ)

2<ω)n ×Q.

We follow again from (2)δ0 , that the set Ẽ ∈M1[G ∩ Rδ0 ], where

Ẽ =
⋂{

Ė[ȳ′0, . . . , ȳ
′
n−1] : ȳ′0, . . . , ȳ

′
n−1 ∈ Xδ0 ,

tp(ȳ′0, . . . , ȳ
′
n−1) = (〈ξ0 < · · · < ξk−1 < δ0〉, 〈Kl : l < k〉, 〈Ui � δ0 : i < n〉)

}
,

is dense open. Let ((t̄0, . . . , t̄n−1), r) ∈ Ẽ be arbitrary and h̄1 ∈ G ∩ Rδ0 , h̄1 ≤ h̄0, so
that h̄1  ((t̄0, . . . , t̄n−1), r) ∈ Ẽ.

Let us show by induction on ξ ∈ [δ0, δ), ξ > sup
(⋃

i<n dom(t̄i)
)
, that there is a

condition h̄2 ∈ Rξ, h̄2 ≤ h̄1, so that

h̄2  ∀ȳ′0, . . . , ȳ′n−1 ∈ Ẋδ

(
tp(ȳ′0, . . . , ȳ

′
n−1) = (〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i < n〉)

→ ȳ′0 ∈ [t̄0] ∧ · · · ∧ ȳ′n−1 ∈ [t̄n−1]
)

and in particular, if h̄2 ∈ G, then for all ȳ′0, . . . , ȳ
′
n−1 ∈ Xδ with tp(ȳ′0, . . . , ȳ

′
n−1) =

(〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i < n〉), the generic corresponding to ȳ′0, . . . , ȳ
′
n−1

hits D0, and r ∈ Ḋ1[ȳ′0, . . . , ȳ
′
n−1]. Since h̄0 ∈ G was arbitrary, genericity finishes the

argument.
The limit step of the induction follows directly from the earlier steps since if

dom(t̄i) ⊆ ξ, with ξ limit, then there is η < ξ so that dom(t̄i) ⊆ η. So let us consider
step ξ + 1. Then there is, by the inductive assumption, h̄′2 ∈ Rξ, h̄′2 ≤ h̄1, so that
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h̄′2  ∀ȳ′0, . . . , ȳ′n−1 ∈ Ẋδ

(
tp(ȳ′0, . . . , ȳ

′
n−1) = (〈ξl : l ≤ k〉, 〈Kl : l < k〉, 〈Ui : i < n〉)

→ (ȳ′0 ∈ [t̄0 � ξ] ∧ · · · ∧ ȳ′n−1 ∈ [t̄n−1 � ξ]
)
.

Now extend h̄′2 to h̄′′2 in Rξ, so that there is m ∈ ω such that for every s ∈ 2m and
every i < n, either h̄′′2  Ȯs ⊆ Ui � ξ or h̄′′2  Ȯs∩(Ui � ξ) = ∅, where 〈Ȯs : s ∈ 2<ω〉
is a name for the base of Ẋξ used to define Ṡξ. The reason why this is possible, is that
in any extension by Rξ and for every i < n, by compactness of Xξ ∩ (Ui � ξ), there is
a finite set a ⊆ 2<ω so that Xξ ∩ (Ui � ξ) =

⋃
s∈aOs. Let us define h : 2≤m → FT ,

where

h(s) =

∅ if ∀i < n(h̄′′2  Ȯs ∩ Ui � ξ = ∅)

{t ∈ 2<ω : t ⊆ ti(ξ)} if h̄′′2  Ȯs ⊆ Ui � ξ and i < n.

Note that h is well-defined as (Ui � ξ) ∩ (Uj � ξ) = ∅ for every i 6= j < n. Since
∅Eρ T and T Eρ T for any weight ρ and any finite tree T , we have that h̄′′2  h ∈ Ṡξ
and h̄2 = h̄′′2

_h ∈ Rξ+1 is as required.

This finishes the definition of Rα and Ẋα. Finally let G be Rα-generic over M1 and
Xα = Ẋα[G]. Now let us define q̄ ≤ p̄ recursively so that for every δ ≤ α,

∀x̄ ∈ [q̄](Φ(x̄ � C) � δ ∈ Xα � δ).

If β /∈ C we let q̇(β) be a name for the trivial condition 2<ω, say e.g. q̇(β) = ṗ(β).
If β ∈ C, say β = ι(δ), we define q̇(β) to be a name for the tree generated by

η−1
Tx̄G�(C∩β)

(Sȳ),

where x̄G is the generic sequence added by Pλ and ȳ = Φ(x̄G � C) � δ. This ensures
that q̄ � β  q̇(β) ∈ Qβ ∧ q̇(β) ≤ ṗ(β). Inductively we see that q̄ � β_p̄ � (λ \ β) 

Φ(x̄G � C) � δ ∈ Xα � δ. Having defined q̄, it is also easy to check that it is a good
master condition over M0, with [q̄] = Φ−1(Xα) × (2ω)λ\C . Since for every x̄ ∈ [q̄],
Φ(x̄ � C) ∈ Xα and by (1)α, q̄ is as required.

Proposition 4.4.24. Let E ⊆ [X]<ω \ {∅} be an analytic hypergraph on X , say E is

the projection of a closed set F ⊆ [X]<ω × ωω, and let f : [p̄] � C → X be continuous

so that p̄  ẏ = f(x̄G � C) (cf. Lemma 4.2.3). Then there is a good master condition

q̄ ≤ p̄, with [q̄] � C a closed subset of [p̄] � C and [q̄] = ([q̄] � C)× (2ω)λ\C , a compact

E-independent set Y ⊆ X , N ∈ ω and continuous functions φ : [q̄] � C → [Y ]<N ,

w : [q̄] � C → ωω, so that
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(i) either f ′′([q̄] � C) ⊆ Y , thus q̄  ẏ ∈ Y ,

(ii) or ∀x̄ ∈ [q̄] � C((φ(x̄) ∪ {f(x̄)}, w(x̄)) ∈ F ), thus q̄  {ẏ} ∪ Y is not

E-independent.

Proof. On (2ω)α let us define the analytic hypergraph Ẽ, where

{ȳ0, . . . , ȳn−1} ∈ Ẽ ↔ {f(Φ−1(ȳ0), . . . , f(Φ−1(ȳn−1))} ∈ E.

By Main Lemma 4.3.14, there is a countable model M and s̄ ∈
⊗

i<α 2<ω so that either

1. for any ȳ0, . . . , ȳn−1 ∈ (2ω)α ∩ [s̄] that are strongly mCg wrt
∏

i<α 2ω over M ,
{ȳ0, . . . , ȳn−1} is E-independent,

or for some N ∈ ω,

2. there are φ0, . . . , φN−1 : (2ω)α → (2ω)α continuous so that for any ȳ0, . . . , ȳn−1 ∈
(2ω)α ∩ [s̄] that are strongly mCg over M , {φj(ȳi) : j < N, i < n} is E-
independent but {ȳ0} ∪ {φj(ȳ0) : j < N} ∈ E.

Let M1 be a countable elementary model with M0,M, p̄,Pλ ∈ M1 and apply
Lemma 4.4.22 to get the condition q̄ ≤ p̄. In case (1), let Y := f ′′([q̄] � C). Then
(i) is satisfied. To see that Y is E-independent let x̄0, . . . , x̄n−1 ∈ [q̄] be arbitrary and
suppose that {f(x̄0 � C), . . . , f(x̄n−1 � C)} ∈ E. By definition of Ẽ this implies
that {Φ(x̄0 � C), . . . ,Φ(x̄n−1 � C)} ∈ Ẽ but this is a contradiction to (1) and the
conclusion of Lemma 4.4.22. In case (2), by elementarity, the φj are in M1 and there is
a continuous function w̃ ∈ M1, with domain some dense Gδ subset of (2ω)α, so that
s̄  ({f(z̄), φj(z̄) : j < N}, w̃(z̄)) ∈ F , where z̄ is a name for the Cohen generic. Let
φ(x̄) = {f(Φ−1(φj(Φ(x̄)))) : j < N}, w(x̄) = w̃(Φ(x̄)) for x̄ ∈ [q̄] � C and Y :=⋃
x̄∈[q̄]�C φ(x̄). Since Φ(x̄) is generic over M1, we indeed have that (φ(x̄), w(x̄)) ∈ F

for every x̄ ∈ [q̄] � C. Seeing that Y is E-independent is as before.

4.5 Main results and applications

4.5.1 Definable maximal independent sets

Theorem 4.5.1. (V=L) Let P be a countable support iteration of Sacks or splitting

forcing of arbitrary length. Let X be a Polish space and E ⊆ [X]<ω \ {∅} be an

analytic hypergraph. Then there is a ∆1
2 maximal E-independent set in V P. If X = 2ω,

r ∈ 2ω and E is Σ1
1(r), then we can find a ∆1

2(r) such set.
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Proof. We will only prove the second part since the first one follows easily from the
fact that there is a Borel isomorphism from 2ω to any uncountable Polish space X . If
X is countable, then the statement is trivial. Also, let us only consider splitting forcing.
The proof for Sacks forcing is the same.

First let us us mention some well-known facts and introduce some notation. Recall
that a set Y ⊆ 2ω is Σ1

2(x)-definable if and only if it is Σ1(x)-definable over H(ω1)

(see e.g. [31, Lemma 25.25]). Also recall that there is a Σ1
1 set A ⊆ 2ω × 2ω that is

universal for analytic sets, i.e. for every analytic B ⊆ 2ω, there is some x ∈ 2ω so that
B = Ax, where Ax = {y ∈ 2ω : (x, y) ∈ A}. In the same way, there is a universal Π0

1

set F ⊆ 2ω × [2ω]<ω × ωω ([33, 22.3, 26.1]). For any x ∈ 2ω, let Ex be the analytic
hypergraph on 2ω consisting of a ∈ [2ω]<ω \ {∅} so that there is b ∈ [Ax]

<ω with
a ∪ b ∈ E. Then there is y ∈ 2ω so that Ex is the projection of Fy. Moreover, it is
standard to note, from the way A and F are defined, that for every x, y = e(x, r) for
some fixed recursive function e. Whenever α < ω1 and Z ⊆ (2ω)α is closed, it can be
coded naturally by the set S ⊆

⊗
i<α 2<ω, where

S = {(x̄ � a) � n : x̄ ∈ Z, a ∈ [α]<ω, n ∈ ω}

and we write Z = ZS . Similarly, any continuous function f : Z → ωω can be coded by
a function ζ : S → ω<ω, where

f(x̄) =
⋃

s̄∈S,x̄∈[s̄]

ζ(s̄)

and we write f = fζ . For any β < α and x̄ ∈ Z � β, let us write Tx̄,Z = {s ∈ 2<ω :

∃z̄ ∈ Z(z̄ � δ = x̄ ∧ s ⊆ z(δ))}. The set Ψ0 of pairs (α, S), where S codes a closed
set Z ⊆ (2ω)α so that for every β < α and x̄ ∈ Z � β, Tx̄,Z ∈ SP is then ∆1 over
H(ω1). This follows since the set of such S is Π1

1, seen as a subset of P(
⊗

i<α 2<ω),
uniformly on α. Similarly, the set Ψ1 of triples (α, S, ζ), where (α, S) ∈ Ψ0 and ζ
codes a continuous function f : ZS → ωω, is ∆1.

Now let 〈αξ, Sξ, ζξ : ξ < ω1〉 be a ∆1-definable enumeration of all triples (α, S, ζ) ∈
Ψ1. This is possible since we assume V = L (cf. [31, Theorem 25.26]). Let us recur-
sively construct a sequence 〈xξ, yξ, Tξ, η̄ξ, θξ : ξ < ω1〉, where for each ξ < ω1,

1.
⋃
ξ′<ξ Axξ′ = Ayξ and Ayξ ∪ Axξ is E-independent,

2. η̄ξ = 〈ηξ,j : j < N〉 for some N ∈ ω,

3. Tξ ⊆ Sξ, (αξ, Tξ, ηξ,j) ∈ Ψ1 for every j < N and (αξ, Tξ, θξ) ∈ Ψ1,
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4. either ∀x̄ ∈ ZTξ(fζξ(x̄) ∈ Axξ) or ∀x̄ ∈ ZTξ
(
∀n < N(fηξ,n(x̄) ∈ Axξ) ∧

({fηξ,n(x̄), fζξ(x̄) : n < N}, fθξ(x̄)) ∈ Fe(yξ,r)
)
,

and (xξ, yξ, Tξ, η̄ξ, θξ) is<L-least such that (1)-(4), where<L is the ∆1-good global
well-order of L. That <L is ∆1-good means that for every z ∈ L, the set {z′ : z′ <L z}
is ∆1(z) uniformly on the parameter z. In particular, quantifying over this set does
not increase the complexity of a Σn-formula. Note that (1)-(4) are all ∆1(r) in the
given variables. E.g. the second part of (1) is uniformly Π1

1(r) in the variables xξ, yξ,
similarly for (4).

Claim 4.5.2. For every ξ < ω1, (xξ, yξ, Tξ, η̄ξ, θξ) exists.

Proof. Assume we succeeded in constructing the sequence up to ξ. Then there is
yξ so that

⋃
ξ′<ξ Axξ′ = Ayξ . By Lemma 4.2.6, there is a good master condition

r̄ ∈ Pαξ so that [r̄] ⊆ ZSξ , where Pαξ is the αξ-long csi of splitting forcing. Then
fζξ corresponds to a Pαξ-name ẏ so that r̄  ẏ = fζξ(x̄G). Let M0 be a countable
elementary model with ẏ,Pαξ , r̄ ∈ M0 and p̄ ≤ r̄ a good master condition over M0.
Applying Proposition 4.4.24 to Eyξ , we get q̄ ≤ p̄ and Tξ ⊆ Sξ with [q̄] = ZTξ , xξ ∈ 2ω,
N ∈ ω and continuous functions fηξ,j , fθξ , for j < N , as required.

Let Y =
⋃
ξ<ω1

Axξ . Then Y is Σ1(r)-definable over H(ω1), namely x ∈ Y iff
there is a sequence 〈xξ, yξ, Tξ, η̄ξ, θξ : ξ ≤ α < ω1〉 so that for every ξ ≤ α, (1)-(4), for
every (x, y, T, η̄, θ) <L (xξ, yξ, Tξ, η̄ξ, θξ), not (1)-(4), and x ∈ Axα .

Claim 4.5.3. In V P, the reinterpretation of Y is maximal E-independent.

Proof. Let p̄ ∈ P and ẏ ∈ M0 be a P-name for an element of 2ω, M0 3 P, p̄ a
countable elementary model. Then let q̄ ≤ p̄ be a good master condition over M0 and
C countable, f : [q̄] � C → 2ω continuous according to Lemma 4.2.3. Now (2ω)C is
canonically homeomorphic to (2ω)α, α = otp(C), via the map Φ: (2ω)C → (2ω)α.
Then we find some ξ < ω1 so that αξ = α, Φ′′([q̄] � C) = ZSξ and fζξ ◦ Φ = f .
On the other hand, Φ−1(ZTξ) is a subset of [q̄] � C conforming to the assumptions of
Lemma 4.2.6. Thus we get r̄ ≤ q̄ so that [r̄] � C ⊆ Φ−1(ZTξ). According to (4), either
r̄  ẏ ∈ Axξ or r̄  {ẏ} ∪ Axξ ∪ Ayξ is not E-independent. Thus we can not have that
p̄  ẏ /∈ Y ∧ {ẏ} ∪ Y is E-independent. This finishes the proof of the claim, as p̄ and
ẏ were arbitrary.

To see that Y is ∆1
2(r) in V P it suffices to observe that any Σ1

2(r) set that is maximal
E-independent is already Π1

2(r).
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A priori, Theorem 4.5.1 only works for hypergraphs that are defined in the ground
model. But note that there is a universal analytic hypergraph on 2ω × 2ω, whereby we
can follow the more general statement of Theorem 4.1.2.

Theorem 4.5.4. After forcing with the ω2-length countable support iteration of SP
over L, there is a ∆1

2 ultrafilter, a Π1
1 maximal independent family and a ∆1

2 Hamel

basis, and in particular, iB = icl = uB = ω1 < r = i = u = ω2.

Proof. Apply Theorem 4.5.1 to Eu, Ei and Eh from the introduction. To see that
icl = ω1 note that every analytic set is the union of d many compact sets and that
d = ω1, since SP is ωω-bounding.

Theorem 4.5.5. (V=L) Let P be either Sacks or splitting forcing and k ∈ ω. Let X be

a Polish space and E ⊆ [X]<ω \ {∅} be an analytic hypergraph. Then there is a ∆1
2

maximal E-independent set in V Pk .

Proof. This is similar to the proof of Theorem 4.5.1, using Main Lemma 4.3.4 and
Proposition 4.4.16 to get an analogue of Proposition 4.4.24.

4.5.2 P-points

An interesting corollary of the construction in the proof of Theorem 4.5.1 is the
following.

Theorem 4.5.6. There is a ∆1
2 P-point after forcing with the countable support iteration

of S or SP over L.

This is well-known for Sacks forcing, which preserves all ground model P-points,
in the sense that they generate a P-point in the extension again. The key observation is
the following.

Lemma 4.5.7. Let A ⊆ P(ω) be a σ-compact filter. Then there is a compact set

K ⊆ P(ω) so that A ∪K generates a filter and for every C ∈ [A]ω, there is x ∈ K a

pseudointersection of C.

Proof. Let us write A =
⋃
n∈ωKn, each Kn compact. We claim that there is an

increasing sequence 〈in : n ∈ ω〉 so that for every n ∈ ω and any x0, . . . , xn2−1 ∈⋃
m≤nKm,

⋂
m<n2 xm ∩ [in, in+1) 6= ∅. To see this note that Cn := {

⋂
F : F ∈

[
⋃
m≤nKm]≤n

2} ⊆ [ω]ω is compact for every n ∈ ω. Then it follows that for each i ∈ ω
there is i+ so that for every x ∈ Cn, x∩[i, i+) 6= ∅, since {{x ∈ P(ω) : j ∈ x} : j ≥ i}
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must have a finite subcover of Cn. Now let K be the set of x ∈ P(ω) of the form⋃
n∈ω
⋂
Fn ∩ [in, in+1), where for each n, Fn ∈ [

⋃
m≤nKm]≤n. It is not hard to check

that K is as required.

Proof of Theorem 4.5.6. Instead of constructing a sequence of analytic sets as in the
proof of Theorem 4.5.1, we construct a sequence of compact sets 〈Kxξ : ξ < ω1〉 using
a universal closed subset K ⊆ 2ω ×P(ω). At every second step ξ we find the <L-least
xξ so that Kxξ is as in the above lemma applied to A =

⋃
ξ′<ξKxξ′

. Here note that the
filter generated by a Kσ set is itself Kσ. In the other steps we proceed as usual with
regards to the hypergraph Eu. According to Proposition 4.4.24, the relevant set can be
found compact and the construction can continue. In the end, we have ensured that
the resulting ultrafilter is a P-point and it will keep this property by an absoluteness
argument.

If we drop the definability requirement in Theorem 4.5.6, a similar construction
shows that there is a P-point if we force over a model CH. This is interesting, since
it has been shown in [12] that there is no P-point after iterating with Silver forcing,
which is another tree forcing adding splitting reals.

4.5.3 Separating families and Borel chromatic numbers

The following is another interesting application of mutual genericity.

Definition 4.5.8. Let X be any set and B ⊆ P(X). Then we say that B is (ℵ1, 2)-
separating if for any countable A ⊆ X and x ∈ X \ A, there is B ∈ B so that x ∈ B
and A ∩B = ∅.

(ℵ1, 2)-separating families appear in [26], where it was shown e.g. that if |X| =
2ℵ0 = ℵ2, then there is an (ℵ1, 2)-separating family B ⊆ P(X) of size ℵ1 (see also [34,
3.1]). We show that in the Sacks or splitting extensions, if X is a Polish space, B can
consist of compact sets alone.

Theorem 4.5.9. After forcing with the countable support iteration of Sacks or splitting

forcing over a model of CH, for any Polish space X there is B ⊆ K(X), |B| = ℵ1, an

(ℵ1, 2) separating family.

Here, K(X) denotes the collection of compact subsets of X .

Proof. Let Pλ = 〈Pβ, Q̇β : β < λ〉 be the λ-length countable support iteration
of Sacks or splitting forcing for some λ. Let ẋ and 〈ẏi : i ∈ ω〉 be P-names for
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distinct elements of X and p̄0 ∈ Pλ. Then, according to Section 4.4.3, there is a
good master condition p̄ ≤ p̄0, C ⊆ λ countable, Φ: [p̄] � C → (2ω)α the canonical
homeomorphism, ι : α→ C an order isomorphism, f, gi : (2ω)α → X continuous so
that p̄  ẋ = f(Φ(x̄G � C)) ∧ ẏi = gi(Φ(x̄G � C)) for every i ∈ ω, and a countable
elementary model M1 containing all these objects. According to Lemma 4.4.22, there
is q̄ ≤ p̄ a good master condition so that for any ȳ0, ȳ1 ∈ [q̄] � C, Φ(ȳ0),Φ(ȳ1) are
strongly mCg over M1.

Claim 4.5.10. There is r̄ ≤ q̄, a good master condition so that for any ȳ0, ȳ1 ∈ [r̄] � C

and i ∈ ω, f(Φ(ȳ0)) 6= gi(Φ(ȳ1)).

Proof. Suppose that there are ȳ0, ȳ1 ∈ [q̄] � C so that f(x̄0) = gi(x̄1) for some i ∈ ω,
where x̄0 = Φ(ȳ0) and x̄1 = Φ(ȳ1). If not we are simply done. Then note that ȳ0 6= ȳ1,
by Lemma 4.2.3 (iii) and since q̄  ẋ 6= ẏj . In particular, x̄0 6= x̄1, so let ξ0 = ∆x̄0,x̄1 .
Then x̄0 is

⊗
i<α 2<ω-generic over M1 and x̄1 � [ξ0, α) is

⊗
i∈[ξ,α) 2<ω-generic over

M1[x̄0]. In particular, there is s̄0 ∈
⊗

i∈[ξ,α) 2<ω, x̄1 � [ξ0, α) ∈ [s̄0], forcing over
M1[x̄0] that fi(x̄0) = gj(x̄1). By the continuity of gj , we find that gj is constant on
{x̄0 � ξ_z̄ : z̄ ∈ [s̄0] � [ξ, α)}. Again, there is t0 ∈

⊗
i<ξ0

2<ω, x̄0 � ξ0 ∈ [t̄0], forcing
this over M1. Let O0 ⊆ [q̄] � C be an open non-empty set so that Φ(ȳ) ∈ [t0 ∪ s0] for
every ȳ ∈ O0. In particular, varying over ȳ ∈ O0, f(Φ(ȳ)) only depends on Φ(ȳ) � ξ0.

Suppose there are still ȳ0, ȳ1 ∈ O0 so that f(x̄0) = gi(x̄1) for some i ∈ ω, where
again x̄0 = Φ(ȳ0) and x̄1 = Φ(ȳ1). Then, we must have that x̄0 � ξ0 6= x̄1 � ξ0. Else, by
a similar argument as before, using that f(x̄0) only depends on x̄0 � ξ0 = x̄1 � ξ0, there
is U ⊆ O0 so that for any ȳ ∈ U , f(Φ(ȳ)) = gi(Φ(ȳ)). This is impossible since we can
find r̄ ≤ q̄ so that r̄  x̄G � C ∈ U , and then r̄  ẋ = ẏi. Thus let ξ1 = ∆ȳ0,ȳ1 < ξ0.
As before, we find an open set O1 ⊆ O0, so that varying over ȳ ∈ O1, f(Φ(ȳ)) only
depends on Φ(ȳ) � ξ1.

Continuing in that fashion, we must be done after finitely many steps. In particular
we have found a non-empty open set On ⊆ [q̄] � C so that for any i ∈ ω and ȳ ∈ On,
f(Φ(ȳ)) 6= gi(Φ(ȳ)). Now it suffices to let r̄ ≤ q̄ be so that r̄  x̄G � C ∈ On.

If r̄ ≤ q̄ is as in the claim, then we have that r̄  ẋ ∈ B ∧ ẏi /∈ B, where
B = (f ◦ Φ)′′([r̄] � C). By genericity we have shown that in V P, every countable set
and a point can be separated by a ground model coded compact set, of which there are
ℵ1 many.
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Definition 4.5.11. Let G ⊆ [X]2 be a graph on a set X . Then G is called locally
countable, if the vertex degree of every x ∈ X , i.e. |{y ∈ X : {x, y} ∈ G}|, is at most
countable.

Definition 4.5.12. Let G be a graph on a Polish space X . Then the Borel chromatic
number of G, χB(G), is the least size of a partition of X into Borel G-independent
sets.

Corollary 4.5.13. After forcing with the countable support iteration of Sacks or split-
ting forcing over a model of CH, χB(G) ≤ ℵ1 for every analytic locally countable
graph G on a Polish space X .

Proof. Let {Bα : α < ω1} be the compact sets given by Theorem 4.5.9. For every
α < ω1, Aα = {x ∈ Bα : ∀y ∈ Bα({x, y} /∈ G)} is G-independent. Each Aα is
coanalytic and thus can be written as the ℵ1-union of G-independent Borel sets Aiα, for
i < ω1. Enumerate {Aiα : α, i < ω1} as 〈A′α : α < ω1〉 and put A′′α = A′α \

⋃
ξ<αA

′
ξ.

Then each A′′α is Borel and G-independent and it suffices to show that
⋃
α<ω1

Aα = X .
To see this, let x ∈ X be arbitrary and A = {y ∈ X : {x, y} ∈ G}. Since A is
countable and x ∈ X \ A, there is α < ω1 so that x ∈ Bα and Bα ∩ A = ∅. But then
x ∈ Aα.

Using similar ideas as in the proof of Theorem 4.5.1, we easily find the following.

Corollary 4.5.14. After forcing with the countable support iteration of Sacks or split-
ting forcing over L, every analytic locally countable graph G on a Polish space X
admits a Σ1

2-definable coloring witnessing χB(G) ≤ ℵ1.

4.5.4 d ≤ icl

Lastly, we are going to prove Theorem 4.1.4.

Lemma 4.5.15. Let X ⊆ [ω]ω be closed so that ∀x, y ∈ X(|x ∩ y| = ω). Then X is

σ-compact.

Proof. If not, then by Hurewicz’s Theorem (see [33, 7.10]), there is a superperfect
tree T ⊆ ω<ω so that [T ] ⊆ X , identifying elements of [ω]ω with their increasing
enumeration, as usual. But then it is easy to recursively construct increasing sequences
〈sn : n ∈ ω〉, 〈tn : n ∈ ω〉 in T so that s0 = t0 = stem(T ), for every n ∈ ω,
tn and sn are infinite-splitting nodes in T and s2n+1(|s2n|) > t2n+1(|t2n+1| − 1),
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t2n+2(|t2n|) > s2n+1(|s2n+1| − 1). Then, letting x =
⋃
n∈ω sn and y =

⋃
n∈ω tn,

x ∩ y ⊆ |s0|, viewing x, y as elements of [ω]ω. This contradicts that x, y ∈ X .

The proof of Theorem 4.1.4 is a modification of Shelah’s proof that d ≤ i.

Proof of Theorem 4.1.4. Let 〈Cα : α < κ〉 be compact independent families so that
I =

⋃
α<κCα is maximal independent and κ < d and assume without loss of generality

that {Cα : α < κ} is closed under finite unions. Here, we will identify elements of
[ω]ω with their characteristic function in 2ω at several places and it should always be
clear from context which representation we consider at the moment.

Claim 4.5.16. There are 〈xn : n ∈ ω〉 pairwise distinct in I so that {xn : n ∈ ω}∩Cα
is finite for every α < κ.

Proof. The closure of I is not independent. Thus there is x ∈ Ī \ I. Now we pick
〈xn : n ∈ ω〉 ⊆ I converging to x. Since Cα is closed, whenever for infinitely many n,
xn ∈ Cα, then also x ∈ Cα which is impossible.

Fix a sequence 〈xn : n ∈ ω〉 as above. And let aα = {n ∈ ω : xn ∈ Cα} ∈ [ω]<ω.
We will say that x is a Boolean combination of a set X ⊆ [ω]ω, if there are finite
disjoint Y, Z ⊆ X so that x = (

⋂
y∈Y y) ∩ (

⋂
z∈Z ω \ z).

Claim 4.5.17. For any α < κ there is fα : ω → ω so that for any K ∈ [Cα \ {xn :

n ∈ aα}]<ω, for all but finitely many k ∈ ω and any Boolean combination x of

K ∪ {x0, . . . , xk}, x ∩ [k, fα(k)) 6= ∅.

Proof. We define fα(k) as follows. For every l ≤ k, we define a collection of basic
open subsets of (2ω)l, O0,l := {[s̄] : s̄ ∈ (2<ω)l ∧ ∀i < l(|si| > k) ∧ (∃i < l, n ∈
aα(si ⊆ xn) ∨ ∃i < j < l(si 6⊥ sj))}. Further we call any [s̄] /∈ O0,l good if for
any F,G ⊆ l with F ∩ G = ∅ and for any Boolean combination x of {x0, . . . xk},
there is k′ > k so that for every i ∈ F , si(k′) = 1, for every i ∈ G, si(k′) = 0 and
x(k′) = 1. Let O1,l be the collection of all good [s̄]. We see that

⋃
l≤k(O0,l ∪ O1,l) is

an open cover of Cα ∪ (Cα)2 ∪ · · · ∪ (Cα)k. Thus it has a finite subcover O′. Now let
fα(k) := max{|t| : ∃[s̄] ∈ O′∃i < k(t = si)}.

Now we want to show that fα is as required. Let (y0, . . . , yl−1) ∈ (Cα \ {xn : n ∈
aα})l be arbitrary, y0, . . . , yl−1 pairwise distinct and k ≥ l so that yi � k 6= xn � k for
all i < l, n ∈ aα and yi � k 6= yj � k for all i < j < l. In the definition of fα(k), we
have the finite cover O′ of (Cα)l and thus (y0, . . . , yl−1) ∈ [s̄] for some [s̄] ∈ O′. We
see that [s̄] ∈ O0,l is impossible as we chose k large enough so that for no i < l, n ∈ aα,
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si ⊆ xn and for every i < j < l, si ⊥ sj . Thus [s̄] ∈ O1,l. But then, by the definition
of O1,l, fα(k) is as required.

As κ < d we find f ∈ ωω so that f is unbounded over {fα : α < κ}. Let
x0
n := xn and x1

n := ω \ xn for every n ∈ ω. For any g ∈ 2ω and n ∈ ω we define
yn,g :=

⋂
m≤n x

g(m)
m . Further define yg =

⋃
n∈ω yn,g ∩ f(n). Note yn,g ⊆ ym,g for

m ≤ n and that yg ⊆∗ yn,g for all n ∈ ω.

Claim 4.5.18. For any g ∈ 2ω, yg has infinite intersection with any Boolean combina-

tion of
⋃
α<κCα \ {xn : n ∈ ω}.

Proof. Let {y0, . . . , yl−1} ∈ [Cα \ {xn : n ∈ aα}]l for some l ∈ ω, α < κ be arbitrary.
Here, recall that {Cα : α < κ} is closed under finite unions. We have that there is some
k0 ∈ ω so that for every k ≥ k0, any Boolean combination y of {y0, . . . , yl−1} and x
of {xn : n ≤ k}, x ∩ y ∩ [k, fα(k)) 6= ∅. Let y be an arbitrary Boolean combination of
{y0, . . . , yl−1} and m ∈ ω. Then there is k > m, k0 so that f(k) > fα(k). But then we
have that yk,g is a Boolean combination of {x0, . . . , xk} and thus yk,g∩y∩[k, f(k)) 6= ∅.
In particular, this shows that y ∩ yg 6⊆ m and unfixing m, |y ∩ yg| = ω.

Now let Q0, Q1 be disjoint countable dense subsets of 2ω. We see that |yg∩yh| < ω

for h 6= g ∈ 2ω. Thus the family {yg : g ∈ Q0 ∪Q1} is countable almost disjoint and
we can find y′g =∗ yg, for every g ∈ Q0 ∪Q1, so that {y′g : g ∈ Q0 ∪Q1} is pairwise
disjoint. Let y =

⋃
g∈Q0

y′g. We claim that any Boolean combination x of sets in I has
infinite intersection with y and ω \ y. To see this, assume without loss of generality
that x is of the form x̃ ∩ xg(0)

0 ∩ · · · ∩ xg(k)
k , where x̃ is a Boolean combination of sets

in I \ {xn : n ∈ ω} and g ∈ 2ω. As Q0 is dense there is some h ∈ Q0 such that
h � (k+ 1) = g � (k+ 1). Thus we have that y′h ⊆∗ x

g(0)
0 ∩· · ·∩xg(k)

k but also y′h∩ x̃ is
infinite by the claim above. In particular we have that y∩x is infinite. The complement
of y is handled by replacing Q0 with Q1. We now have a contradiction to I being
maximal.

4.6 Concluding remarks

Our focus in this paper was on Sacks and splitting forcing but it is clear that the
method presented is more general. We mostly used that our forcing has Axiom A with
continuous reading of names and that it is a weighted tree forcing (Definition 4.4.9),
both in a definable way. For instance, the more general versions of splitting forcing
given by Shelah in [55] fall into this class. It would be interesting to know for what
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other tree forcings Theorem 4.5.1 holds true. In [51], the authors showed that after
adding a single Miller real over L, every (2-dimensional) graph on a Polish space has
a ∆1

2 maximal independent set. It is very plausible that this can be extended to the
countable support iteration. For instance, the following was shown by Spinas in [60].

Fact. Let M be a countable model, then there is a superperfect tree T so that for any

x 6= y ∈ [T ]2, (x, y) is M2 generic over M , where M denotes Miller forcing.

On the other hand, M3 always adds a Cohen real. When trying to generalize results
about Cohen genericity to Miller forcing one has to be careful though since many nice
properties no longer hold true. Let us ask the following question.

Question 4.6.1. Does Theorem 4.5.1 hold true for Miller forcing?

A positive result would yield a model in which iB < icl, as per d ≤ icl. No result of
this kind has been obtained so far.

Forcings adding dominating reals and preserving ω1 destroy ∆1
2 definitions for

ultrafilters and the associated hypergraph Eu is Fσ. On the other hand, it was shown
by Brendle and Khomskii in [9] that in the Hechler model over L (via a finite support
iteration) there is a Π1

1 mad family. Recently, Schrittesser and Törnquist showed that
the same holds after adding a single Laver real (see [52]). The hypergraph associated
to almost disjoint families is Gδ. Thus we may ask, very optimistically:

Question 4.6.2. Does Theorem 4.5.1 hold true for Laver and Hechler forcing and Gδ

hypergraphs?



CHAPTER 5
Towers and gaps at uncountable

cardinals

5.1 Introduction

The classical pseudointersection and tower numbers (p and t respectively) play a
significant role in the study of cardinal characteristics of the continuum and special
subsets of the reals. In this chapter we take the usual convention that a tower is already
implied to be maximal, i.e. not to admit a pseudointersection.

It was unknown for a long time whether these two cardinals coincide. Rothberger
proved in [43] and [44] that p ≤ t and also that if p = ℵ1 then t = ℵ1 as well. The
consistency of p < t seemed plausible to many set theorists working in the area, hence,
the groundbreaking result of Malliaris and Shelah [36] came with considerable surprise:
the cardinals p and t are provably equal.

Meanwhile, recent years have seen an increased interest in the study of the combi-
natorics of the generalized Baire spaces κκ, when κ is an uncountable regular cardinal.
This fruitful new area of research provided extensions of classical results from the
κ = ω case often requiring the development of completely new machinery to do so.
Striking new inequalities were proved as well between cardinal invariants of κκ which
are known to fail in the classical setting. Thus a natural question becomes: Does
Malliaris and Shelah’s result mentioned above lift to the uncountable?

The goal of this chapter is to study the higher analogues of the tower and pseudoin-
tersection numbers. We start with some basic definitions.

Definition 5.1.1. Let κ be a regular uncountable cardinal.

95
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1. Let F be a family of subsets of κ. We say that F has the strong intersection

property (in short, SIP) if for any subfamily F ′ ⊆ F of size < κ, the intersection⋂
F ′ has size κ.

2. We say that A ⊆ κ is a pseudointersection of F if A ⊆∗ F for all F ∈ F .1

3. A tower T is a ⊆∗-reverse-well-ordered family of subsets of κ with the SIP that
has no pseudointersection of size κ.

In the countable case, any ⊆∗-well-ordered family of infinite sets has the SIP.
However, for uncountable κ, the SIP requirement is necessary as there are countable
⊆∗-decreasing families of subsets of κ with no pseudointersection of size κ.2

Definition 5.1.2 (The pseudointersection and tower number).

1. The pseudointersection number for κ, denoted by p(κ), is defined as the minimal
size of a family F ⊂ [κ]κ which has the SIP but no pseudointersection of size κ.

2. The tower number for κ, denoted by t(κ), is defined as the minimal size of a
tower T ⊂ [κ]κ of subsets of κ.

3. pcl(κ) is the minimal size of a family F of club subsets of κ with no pseudointer-
section of size κ.

4. tcl(κ) the minimal size of a tower T of club subsets of κ.

Note that in the definition of pcl(κ) and tcl(κ), there is no need to assume the SIP
as any family of clubs has the strong intersection property.

The study of the above cardinal invariants was initiated by Garti [21] and one of
the results which motivated the work on this project is the following:

Theorem 5.1.3. [21] Let κ be an uncountable cardinal such that κ<κ = κ.

1. If p(κ) = κ+, then t(κ) = κ+.

2. If cf(2κ) ∈ {κ+, κ++}, then p(κ) = t(κ).

3. cf(p(κ)) 6= κ.

1As usual, A ⊆∗ F means that A \ F has size < κ.
2E.g., consider a partition of κ into sets {Xn : n < ω} and look at T = {

⋃
m≥nXm : n ∈ ω}.
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Related consistency results also appear in the very recent paper of Ben-Neria and
Garti [5].

In Section 5.2 we introduce a natural higher analogue of the notion of a gap which
gives an interesting analogue of a theorem of Malliaris-Shelah, which is central to the
proof of p = t. More precisely, we work with club-supported gaps of slaloms3 (see
Definition 5.2.4) and prove:

Theorem 5.1.4. Let κ be a regular cardinal such that κ<κ = κ. Either p(κ) = t(κ) or

there is a λ < p(κ) and club-supported (p(κ), λ)-gap of slaloms.

In Section 5.3, we study the possible sizes of gaps of slaloms which leads in
particular to the following result (see Corollary 5.3.2):

Theorem 5.1.5. For any uncountable, regular κ, p(κ) is regular.

Additionally, we consider a higher analogue of Martin’s Axiom (see Defini-
tion 5.3.8) and its effect on certain club-supported gaps of slaloms (see Theorem 5.3.9).

In Section 5.4, we look at the relation between p(κ) and its restriction to the club
filter, pcl(κ), which has been shown to be equal to b(κ).

Theorem 5.1.6. (GCH) For any regular uncountable κ < λ, where κ = κ<κ, there is

a κ-closed, κ+-cc forcing extension in which p(κ) = κ+ < pcl(κ) = λ = 2κ.

Moreover, we extend the above result to a certain class of κ-complete filters on κ
(see Theorem 5.4.8). The consistency of p(κ) < b(κ)(= pcl(κ)) is originally due to
Shelah and Spasojević [59], however our techniques significantly differ from theirs: We
add κ-Cohen reals and then successively diagonalise the club-filter while preserving a
Cohen witness to p(κ) = κ+.

5.1.1 Notation, terminology and preliminaries

For a function f ∈ κκ, we say that C ⊂ κ is f -closed if for any ξ ∈ C and ζ < ξ,
f(ζ) < ξ. Note that for any f , there are f -closed clubs (since κ is regular). For a club
C ⊆ κ, we let sC denote the function

sC(ζ) = minC \ (ζ + 1).

In forcing arguments, smaller conditions are stronger.
3Note that there are no real gaps of function in κκ. Indeed, there is no infinite <∗-decreasing

sequence of functions in κκ when κ ≥ cf(κ) > ω.
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One of the main tools in the study of p is Bell’s theorem: for any σ-centered poset
P and for any collection D of < p-many dense subsets of P, there is a filter G ⊂ P
that meets each element of D. A higher analogue of Bell’s theorem has been given by
Schilhan in [46].

Definition 5.1.7.

− A subset C ⊆ P is called κ-linked, if given D ∈ [C]<κ, there is a condition q ∈ P
such that q ≤ p for every p ∈ D.

− A poset P is κ-centered if there exists a sequence {Cγ : γ < κ} of κ-linked
subsets of P so that P =

⋃
γ<κCγ .

− Assume P is < κ-closed and κ-centered, say P =
⋃
γ<κCγ where all Cγ are

κ-linked. Say that P is κ-centered with canonical lower bounds if there is a
function f = fP : κ<κ → κ such that whenever λ < κ and (pα : α < λ) is a
decreasing sequence with pα ∈ Cγα , then there is p ∈ Cγ with p ≤ pα for all
α < λ and γ = f(γα : α < λ).

For convenience of the reader, we state the higher analogue of Bells theorem
mentioned above, as it appears an important tool in the analysis of p(κ) and t(κ). First,
note that if P is κ-centered with lower canonical bounds, then P is κ-specially centered,
where:

Definition 5.1.8. [48, Definition 4.2] A poset P is said to be κ-specially centered if
P =

⋃
i<κCi where each Ci is κ-linked and whenever s ∈ <κκ\{∅}, and

P ⊆ S(s, {Ci}i∈κ) = {〈pα : α < lth s〉 : ∀α(pα ∈ Cs(α))}

is of cardinality strictly smaller than κ, then there is p ∈ P which is a common lower
bound of all elements of sequences in P .

Theorem 5.1.9. [48, Theorem 4.3.3] Let κ<κ = κ. Assume P is κ-specially centered.

Then for any collection D of < p(κ)-many dense subsets of P, there is a filter G ⊂ P
that meets each element of D.

5.2 On p(κ), t(κ) and gaps

In their seminal work, Malliaris and Shelah [36] proved that the classical cardinal
invariants p and t coincide, answering a longstanding open problem. By now, various
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interpretations of their proof surfaced (see [42, 20, 11, 46, 67]) and we shall outline an
argument for p = t to motivate our results presented here.

First, we need two notions of gaps. Let ȳ = (yα : α < λ), x̄ = (xβ : β < κ)

be sequences from ωω. We say that (ȳ, x̄) is a pre-gap if for every γ < α < λ and
δ < β < κ,

yγ <
∗ yα <

∗ xβ <
∗ xδ.

Definition 5.2.1. [36, Definition 14.11] We call (ȳ, x̄) a (λ, κ)-peculiar gap if it is a
pre-gap and for any z ∈ ωω:

1. if for all α < λ, yα ≤∗ z then there is β < κ such that xβ ≤∗ z,

2. if for all β < κ, z ≤∗ xβ then there is α < λ such that z ≤∗ yα.

We give a short outline of the proof of p = t. We shall inductively aim to build a
tower from a witness to p using the following notion.

Definition 5.2.2. Let A be a family of subsets of ω with the SIP and let B be an
⊆∗-decreasing sequence of subsets of ω, such that every element of B has infinite
intersection with all A ∈ A (write B ‖ A). We say that B is a pseudoparallel of A if
there is a pseudointersection of B that has infinite intersection with all elements of A.

Lemma 5.2.3.

1. (Malliaris, Shelah [36]) If A = {Aα : α < κ} is not a pseudoparallel of

B = {Bβ : β < p} for κ < p, then there exists either a tower of length p or a

(p, κ)-peculiar gap.

2. (Shelah [57]) If there is a (p, κ)-peculiar gap, then there is a tower of length p.

Let (Aα)α<p be a family of subsets of ω witnessing p that is additionally closed
under finite intersections. Define a sequence of sets Bα as follows. Let B0 = A0 and
suppose we have constructed Bβ = {Bα : α < β} for some β < p such that Bβ ‖ A.
If β is a successor ordinal η + 1 put Bβ = Bη ∩ Aβ. Then Bβ+1 ‖ A. If β is a limit
ordinal and Bβ is a pseudoparallel of A, take B be a witness for this property and put
Bβ = B ∩ Aβ. Then, we have the following cases: either it is possible to carry the
construction along p-many steps, in which case the family {Bα : α < p} is a tower of
length p; or there is some ordinal β < p (which we can assume is regular) such that the
family Bβ = {Bα : α < β} is not a pseudoparallel of A. Then, by Lemma 5.2.3, there
is a tower of size p, which finishes the proof.
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The following results are motivated by the question whether p(κ) = t(κ) holds for
an uncountable cardinal κ. Theorem 5.2.6 below is a generalized version of Lemma
5.2.3 (1) for uncountable cardinals.

Definition 5.2.4 (Slaloms).

1. Suppose that D ⊂ [κ]κ is a < κ-closed filter. A D-supported slalom is a map
u : X → [κ]<κ \ {∅} so that X ∈ D. We also say that u is an X-based slalom.

2. If u is a D-supported slalom, then let set(u) =
⋃
ξ∈dom(u) u(ξ).

3. Whenever u, v are D-supported slaloms and for all but < κ many ξ ∈ domu ∩
dom v, u(ξ) ⊆ v(ξ), we write u ⊆∗ v.

Definition 5.2.5. (Gaps of D-supported slaloms) A D-supported (µ, λ)-gap of slaloms

is a pair of two sequences (uγ)γ<µ and (vα)α<λ of D-supported slaloms so that

1. for any γ < γ′ < µ and α < α′ < λ,

uγ ⊆∗ uγ′ ⊆∗ vα′ ⊆∗ vα,

2. there is no D-supported slalom w so that for all γ < µ and α < λ,

uγ ⊆∗ w ⊆∗ vα.

With this, we are ready to state our main theorem.

Theorem 5.2.6. Let κ be a regular cardinal such that κ<κ = κ. Either p(κ) = t(κ) or

there is a λ < p(κ) and club-supported (p(κ), λ)-gap of slaloms.

Proof. Suppose that (Aα)α<p(κ) is a family with the SIP but no pseudointersection.
Let Eγ denote a pseudointersection for (Aα)α≤γ for γ < p(κ). Further, suppose that
p(κ) < t(κ).

Claim. There is a club X ⊂ κ so that for all γ < p(κ) and almost all ξ ∈ κ,

Eγ ∩ [ξ, sX(ξ)) 6= ∅.

Proof. For each γ, let Xγ be the set of accumulation points of Eγ . Then Xγ is a club
in κ and for all ξ ∈ κ, Eγ ∩ [ξ, sXγ (ξ)) 6= ∅. Since p(κ) < t(κ) ≤ tcl(κ) = pcl(κ)

(see Observation 5.4.2), we can find a single club X that is a pseudointersection of
(Xγ)γ<p(κ).
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Let us try and build sequences {Bα}α<p(κ), {Yα}α<p(κ) so that for each β < p(κ),

1. Yβ is a club,

2. Bβ ⊂∗ Bα and Yβ ⊂∗ Yα for all α < β,

3. Bβ ⊂∗ Aβ , and

4. for all γ < p(κ) such that β ≤ γ,⋃
ξ∈Yβ

Eγ ∩ [ξ, sX(ξ)) ⊂∗ Bβ.

We could not succeed in constructing such a sequence of length p(κ), as otherwise
{Bα}α<p(κ) would be a tower of length p(κ) < t(κ) without pseudointersection. First,
note that the SIP is still preserved at any intermediate stage.

Claim. The sequence {Bα}α<λ has the SIP.

Proof. Suppose that I ∈ [λ]<κ. Then Y =
⋂
ρ∈I Yρ is a club and for any γ ∈

p(κ) \ sup I , the set
⋃
ξ∈Y Eγ ∩ [ξ, sX(ξ)) has size κ and is a pseudointersection

to {Bρ}ρ∈I .

Moreover, we can only fail at some limit step β < p(κ) along the construction.
Indeed, if β < p(κ) and both Bβ and Yβ have been already constructed we can put
Bβ+1 = Bβ ∩ Aβ+1 and Yβ+1 = Yβ .

Fix this β where the induction must fail and lets try to approximate Bβ and see
what goes wrong. First, take some pseudointersection club Z to the sequence {Yα}α<β .

Lemma 5.2.7. There is a ⊆∗-increasing sequence of slaloms

{uρ}β≤ρ<p(κ) ⊆
∏
ξ∈Z

P([ξ, sX(ξ)))

so that domuρ = Zρ is a club such that for all ρ and all α < β⋃
ξ∈Zρ

Eρ ∩ [ξ, sX(ξ)) ⊆∗ set(uρ) ⊆∗ Bα ∩ Aβ.

The intuition is that each slalom uγ gives an approximation forBβ by set(uγ) which
satisfies condition (4) with this fixed γ.
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Proof. The sequence is constructed inductively. Suppose we have defined {Zρ}β≤ρ<γ
and {uρ}β≤ρ<γ for some γ ∈ p(κ) \ β. We will try to force to find the next slalom uγ .

Let Z−γ be a club, which is a pseudointersection of {Zρ}β≤ρ<γ and consider the
poset Pγ consisting of all triples (ν,Y , n) such that

1. dom(ν) ∈ [Z−γ ]<κ is closed and n ∈ κ,

2. ∀ξ ∈ dom(ν)

Eγ ∩ [ξ, sX(ξ)) ⊆ ν(ξ) ⊆ Aβ ∩ [ξ, sX(ξ)),

3. Y = Y0 ∪ Y1 ∈ [γ]<κ where Y0 ⊆ [β, γ) and Y1 ⊆ β, and

4. if ξ ∈ Z−γ \ n then ⋃
ρ∈Y0

uρ(ξ) ⊆
⋂
ρ∈Y1

Bρ ∩ Aβ ∩ [ξ, sX(ξ)) (5.1)

and
Eγ ∩ [ξ, sX(ξ)) ⊆

⋂
ρ∈Y1

Bρ ∩ Aβ ∩ [ξ, sX(ξ)). (5.2)

The extension relation is defined as follows: (µ,X ,m) ≤ (ν,Y , n) iff µ ⊇ ν,
X ⊇ Y , m ≥ n and for all ξ ∈ dom(µ) \ dom(ν):

ξ > n and
⋃
ρ∈Y0

uρ(ξ) ⊆ µ(ξ) ⊆
⋂
ρ∈Y1

Bρ.

Observation 5.2.8. For any pair (ν,Y) which satisfies condition (1)-(3) above and
almost all n ∈ κ, (ν,Y , n) ∈ Pγ .

Proof. Using the facts that |Y0| < κ, |Y1| < κ and uρ(ξ) ⊆ [ξ, sX(ξ)) we can find
n(Y0,Y1) ∈ κ such that for each ξ ∈ Z−γ \ n(Y0,Y1),⋃

ρ∈Y0

uρ(ξ) ⊆
⋂
ρ∈Y1

Bρ ∩ Aβ ∩ [ξ, sX(ξ)).

Moreover, by the hypothesis on {Bα}α<β for each ρ ∈ Y1,
⋃
ξ∈Yρ Eγ ∩ [ξ, sX(ξ)) ⊆∗

Bρ. However Z−γ ⊆∗ Yρ for each ρ ∈ Y1 and Eγ ⊆∗ Aβ . Thus we can find m(Y1) ∈ κ
such that for each ξ ∈ Z−γ \m(Y1) we have

Eγ ∩ [ξ, sX(ξ)) ⊆
⋂
ρ∈Y1

Bρ ∩ Aβ ∩ [ξ, sX(ξ)).

Now, any n > max{η,m(Y1), n(Y0,Y1),max dom(ν)} works.
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Claim. The poset Pγ is κ-specially centered.

Proof. Indeed, by κ<κ = κ, κ-centerdness holds if < κ-many conditions with the same
first coordinate are compatible. In the latter case, we can apply the above observation
to see that such conditions do have common lower bounds.

Claim. The poset Pγ is < κ-closed with canonical lower bounds.

Proof. If {pi}i<j is a decreasing sequence of conditions, where j < κ and pi =

(νi,Yi, ni) then let ν− =
⋃
i<j νi,Y =

⋃
i<j Yi and n = supi<j ni. Now extend ν− to

ν by defining

ν(ξ) =
(
Eγ ∩ [ξ, sX(ξ))

)
∪
⋃
ρ∈Y0

uρ(ξ).

This triple (ν,Y , n) is in Pγ and defines the canonical lower bound.

For each ρ ∈ γ the set Dρ = {(ν,Y , n) ∈ Pγ : ρ ∈ Y} is dense. Indeed, given
ρ and (ν,Y , n) ∈ Pγ we can find a large enough n∗ above n so that (ν,Y ∪ {ρ}, n∗)
extends (ν,Y , n). Furthermore:

Claim. For each η ∈ κ the set Dη = {(ν,Y , n) ∈ Pγ : ∃ζ > η(ζ ∈ dom(ν))} is

dense in Pγ .

Proof. For any ζ > max(η, n), we can define µ ⊃ ν on the set dom ν ∪ {ζ} by

µ(ζ) =
(
Eγ ∩ [ζ, sX(ζ))

)
∪
⋃
ρ∈Y0

uρ(ζ).

Then (µ,Y , n) belongs to Dη and extends (ν,Y , n).

By the generalized Bell’s theorem, there is a filter G ⊆ Pγ intersecting all the above
dense sets. Thus, we can finally define

uγ =
⋃
{ν : ∃Y∃n such that (ν,Y , n) ∈ G}.

Observe that Zγ = domuγ is a club subset of Z−γ and hence a pseudointersection of
all the other Zβ for β < γ.

Note how set(uγ) is a reasonable candidate for Bβ (with Zγ playing the role of Yβ):

Observation 5.2.9. set(uγ) is almost contained in Aβ and all Bα for α < β, and also
satisfies condition (4) for a particular γ.
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Finally, let us take a pseudointersection club for (Zγ)β≤γ<p(κ) which we shall call
Z again to ease notation. Now, we define

vα(ξ) = Bα ∩ Aβ ∩ [ξ, sX(ξ))

for α < β and ξ ∈ Z. In turn, for all γ < γ′, α < α′ and almost all ξ ∈ Z,

uγ(ξ) ⊂ uγ′(ξ) ⊂ vα′(ξ) ⊂ vα(ξ).

Finally, if there is a club Yβ ⊂ Z and w(ξ) ⊂ [ξ, sX(ξ)) for ξ ∈ Yβ so that for all
γ, α and almost all ξ ∈ Yβ ,

uγ(ξ) ⊂ w(ξ) ⊂ vα(ξ),

then Bβ = set(w) would extend {Bα}α<β . Since this is impossible (the construction of
the B-sets failed at step β), we must have produced a (p(κ), β)-gap of club-supported
slaloms.

5.3 On the sizes of gaps of slaloms

Naturally, Theorem 5.2.6 prompts us to study the existence of (λ1, λ2)-peculiar gaps
more closely. In fact, to prove p(κ) = t(κ), it would suffice to show that there are no
D-supported (p(κ), λ)-gaps of slaloms supported for some filter D.

Proposition 5.3.1 together with Theorem 5.2.6 show that p(κ) is regular. The results
in this section show that in a certain sense there are no club-supported gaps of slaloms
which are small on both sides. However, in Proposition 5.3.4 we show that there are
short decreasing sequences of slaloms with no lower bound. Finally, in Theorem 5.3.10,
we see how generalized forms of MA affect the existence of gaps.

Proposition 5.3.1. Suppose κ = κ<κ ≤ λ1, λ2 are regular cardinals and that there is

a club-supported (λ1, λ2)-gap of slaloms. Then p(κ) ≤ max{λ1, λ2}.

Proof. Let (uα : α < λ1) and (vβ : β < λ2) be a club-supported (λ1, λ2)-gap
of slaloms and assume max{λ1, λ2} < p(κ). We can assume all the slaloms are
defined on a common club C (by taking a pseudointersection for all the domains; see
Observation 5.4.2). We shall find a single w that fills the gap on a club set using the
generalized version of Bell’s theorem (see Theorem 5.1.9).

We define a κ-specially centered poset Q as follows. Conditions in Q are triples
q = (sq, σq1, σ

q
2) where
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1. sq is a partial slalom defined on some closed, bounded subset of C,

2. σqi ∈ [λi]
<κ for i = 1, 2, and

3. for any α ∈ σq1, β ∈ σ
q
2 and η > max dom s, uα(η) ⊆ vβ(η).

The order on Q is defined as follows: We say p ≤ q if and only if sp w sq, σpi ⊇ σqi
and for all η ∈ dom(sp) \ dom(sq),⋃

α∈σq1

uα(η) ⊆ sp(η) ⊆
⋂
α∈σq2

vβ(η).

Claim. Q is a κ-closed, κ-specially centered forcing notion of size λ2.

Proof. For a fixed closed and bounded s ⊂ C, any subset of Qs = {q ∈ Q : sq = s}
has a canonical lower bound. So the partition

Q =
⋃
{Qs : s ∈ [C]<κ, s club}

witnesses the claim.

Claim. For each η < κ, α < λ1 and β < λ2 the following sets are dense in Q:

1. Dη = {q ∈ Q : η < max dom sq}, and

2. Eα,β = {q ∈ Q : α ∈ σq1, β ∈ σ
q
2}.

Proof. Fix q ∈ Q, η < κ and α < λ1, β < λ2. Let q′ = (s′, σq1 ∪ {α}, σ
q
2 ∪ {β}) so

that dom s′ = dom s ∪ {µ} and for any α′ ∈ σq1 ∪ {α} and β′ ∈ σq2 ∪ {β}, if η > µ

then uα′(η) ⊆ vβ′(η). Moreover, pick µ to be above η and define s′(µ) =
⋃
α∈σq1

uα(µ).
Then q′ is a condition extending q and q′ ∈ Dη ∩ Eα,β , as desired.

By Theorem 5.1.9, we can take a filter G ⊆ Q which intersects all the dense sets
{Dη}η<κ ∪ {Eα,β}(α,β)∈λ1×λ2 . Then D =

⋃
{dom sq : q ∈ G} is a club and

w =
⋃
{sq : q ∈ G}

is a slalom with domain D. Fix any (α, β) ∈ (λ1, λ2) and pick q ∈ Eα,β ∩G. Then for
any η > max dom sq, we have uα(η) ⊆∗ w(η) ⊆∗ vβ(η) and so

uα ⊆∗ w ⊆∗ vβ,

which finishes the proof.
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Corollary 5.3.2. p(κ) is regular.

Proof. This follows immediately from Theorem 5.2.6 and Proposition 5.3.1. Indeed,
if p(κ) = t(κ) then we are done since the latter is regular. Otherwise, there is a
(p(κ), λ1)-gap of slaloms with λ1 < p(κ). If p(κ) is singular of cofinality λ0 then we
can shrink the left-hand side of the original (p(κ), λ1)-gap and get a (λ0, λ1)-gap of
slaloms. This however, contradicts Proposition 5.3.1.

Yet another bound on the sizes of gaps is the following.

Proposition 5.3.3. Suppose that κ is a regular, uncountable cardinal. If λ < b(κ) then

there is no club-supported (κ, λ)-gap of slaloms on κ.

Proof. Let λ < b(κ). Suppose that ū = (uα : α < κ) and v̄ = (vξ : ξ < λ)

are sequences of club-supported slaloms on κ, ū is increasing, v̄ is decreasing and
uα ⊆∗ vξ for all α < κ, ξ < λ.

Let Cα = domuα. For any club C which is a subset of the diagonal intersection
∆α<κCα, we can define a slalom wC on C by

wC(β) =
⋃
α<β

uα(β).

It is clear that uα ⊆∗ wC for any α < κ.
Given a fixed ξ < λ, there is a club Dξ so that β ∈ Dξ and α < β implies that

uα(β) ⊆ vξ(β). The family {Dξ : ξ < λ} must have a pseudointersection D since
λ < b(κ) = pcl(κ).

Finally, let w = wC where C = D ∩ ∆α<κCα. Now, for any α < κ and ξ < λ,
uα ⊆∗ w ⊆∗ vξ and so ū, v̄ is not a gap.

In particular, we proved that any κ-sequence of club-supported slaloms on κ has
an upper bound. There is an interesting asymmetry here, as there are short decreasing
sequences of slaloms without lower bounds.

Proposition 5.3.4. Suppose that κ = κ<κ is a regular, uncountable cardinal.

1. There is a ⊆∗-decreasing, κ-sequence of club-supported slaloms on κ that has

no lower bound supported on a stationary set.

2. Suppose λ is regular such that κ ≤ λ ≤ 2κ. Then, there is a κ-specially centered

poset P which introduces a decreasing λ-sequence of club-supported slaloms on

κ with no lower bound supported on a club.
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Proof. (1) We define the decreasing sequence of slaloms v̄ = (vβ : β < κ) with the
following properties

1. vα : κ→ [κ]<κ \ {∅},

2. for any α < β < κ and η > β, vα(η) ⊇ vβ(η),

3. for any limit β ∈ κ,
⋂
α<β vα(β) = ∅.

The construction is done in κ steps: at step β, we define vα(β) for α < β and vβ � β+1.
If β is a limit ordinal, then we make sure that the sequence of sets {vα(β) : α < β}
is strictly decreasing with empty intersection. We can pick vβ � β + 1 arbitrarily, for
example, vβ(η) = {0} for all η ≤ β.

If β = α + 1 then again we make sure that {vα′(β) : α′ ≤ α} is strictly decreasing
and we can pick vβ(η) = {0} for all η ≤ β.

Finally, given such a sequence v̄, assume that w : S → [κ]<κ \ {∅} and w ⊆∗ vα
for all α < κ. If S is stationary then we can find a limit β ∈ S so that α < β implies
that w(β) ⊆ vα(β). In turn,

⋂
α<β vα(β) 6= ∅ and this contradiction finishes the proof.

(2) Define P to be the set of conditions of the form p = (spα)α∈σp so that σp ∈ [λ]<κ

and there is some µp < κ such that spα : µp → [κ]<κ \ ∅.
Extension in P works as follows: p ≤ q if

1. σp ⊇ σq,

2. for any α ∈ σq, spα ⊇ sqα, and

3. for any α < β ∈ σq and η ∈ µp \ µq,

spβ(η) ⊆ spα(η).

First, we show that the poset P is κ-specially centered. Without loss of generality
assume λ = 2κ. Let B be a base for 2κ consisting of basic open sets of the form
[t] = {x ∈ 2κ : t ⊆ x} where t ∈ <κ2. Thus |B| = κ. Let T be the set of all
non-empty subfamilies Ū of B consisting of pairwise disjoint non-empty basic open
sets such that |Ū | < κ. Thus |T | = κ.

Now, for each Ū = {Ui}i∈I ∈ T and each ȳ = {yi}i∈I ∈ I
(<κ

([κ]<κ)
)

let

C(Ū , ȳ) = {p ∈ P : σp ⊆
⋃
i∈I

Ui,∀i ∈ I(σp∩Ui 6= ∅) and if α ∈ σp∩Ui then spα = yi}.

Then the family
{C(Ū , ȳ) : Ū ∈ T , ȳ ∈ |Ū |

(<κ
([κ]<κ)

)
}
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is a partition of P witnessing that P is κ-specially centered.

The following should be straightforward to check:

(a) Dη = {p ∈ P : η ≤ µp} is dense in P;

(b) Eα = {p ∈ P : α ∈ σp} is dense in P.

So, we can take a generic filter G ⊂ P and define

vα =
⋃
{spα : p ∈ G}.

Observe that if α < β < λ and α, β ∈ σp for some p ∈ G then for any η ≥ µp,
vβ(η) ⊆ vα(η). Thus (vα)α<λ is a decreasing sequence of slaloms.

Now, suppose ẇ is a P-name for a slalom defined on a club and for all α < λ,
p ẇ ⊆∗ vα. Take an elementary submodelM ≺ H(θ) of size κ0 < κ with all relevant
parameters in M . Also, assume that M<κ0 ⊂M .

Construct a decreasing sequence of conditions (pξ)ξ<κ0 in M , so that

1. for any ζ < M ∩ κ, there is ξ(ζ) < κ0 and δζ ∈M ∩ κ \ ζ such that µpξ(ζ) ≥ ζ

and pξ(ζ) δζ ∈ dom ẇ.

2. There is a sequence {ηn}n∈ω ⊆M∩κ such that for some subsequence of indexes
{ξn}n∈ω we have that pξn  ẇ(η) ⊆ v̇n(η) for each η ≥ ηn.

Let δ = M ∩ κ. Thus we arranged that supξ<κ0
µpξ = δ and any lower bound q for the

sequence (pξ)ξ<κ0 will force that δ ∈ dom ẇ and ẇ(δ) ⊂
⋂
n∈ω vn(δ). However, we

can find a lower bound q such that q
⋂
n<ω vn(δ) = ∅. This contradiction finishes the

proof.

We now define another kind of gap notion for slaloms:

Definition 5.3.5. Let (uα : α < λ) and (vβ : β < µ) be two sequences of slaloms
based on the same club set C ⊆ κ. We say that {(uα : α < λ), (vβ : β < µ)} is a
(λ, µ)-tight gap of slaloms if the following hold:

1. For all α < α′ < λ, β < β′ < µ and almost all ξ in C,

uα(ξ) ⊂ uα′(ξ) ⊂ vβ′(ξ) ⊂ vβ(ξ).

2. If w is a C-supported slalom such that ∀β < µ(w ⊆∗ vβ), then there is α < λ

such that w ⊆∗ uα.
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3. If w is a C-supported slalom such that ∀α < λ(uα ⊆∗ w), then there is β < µ

such that vβ ⊆∗ w.

Question 5.3.1. Clearly, if {(uα : α < λ), (vβ : β < µ)} is a (µ, λ)-tight gap of
slaloms, then it is a gap. Do these notions coincide?

For the following result, we will use a higher analogue of Martin’s axiom relativized
to a certain class of posets. In order to do this, we will use the following definitions
and results of Shelah (see Section 2.2 in [4]).

Definition 5.3.6. Let κ be an uncountable cardinal and Q be a forcing notion. We say
that Q is stationary κ+-Knaster if for every {pi : i < κ+} ⊆ Q there exists a club
E ⊆ κ+ and a regressive function f on E ∩ Sκ+

κ such that for any i, j ∈ E ∩ Sκ+

κ , if
f(i) = f(j) then pi and pj are compatible.

Note that if a poset is stationary κ+-Knaster then it is κ+-cc.

Definition 5.3.7. Let κ be an uncountable cardinal. A forcing notion Q satisfies the
(∗κ)-property, and we say it is κ-good-Knaster, if the following conditions hold:

1. Q is stationary κ+-Knaster.

2. Any countable decreasing sequence of conditions in Q has a greatest lower
bound.

3. Any two compatible conditions in Q have a greatest lower bound.

4. Q is < κ-closed.4

Finally, we can define our forcing axiom.

Definition 5.3.8. Let κ be an uncountable cardinal. We say that MA(κ-good-Knaster)
holds if and only if for every κ-good-Knaster poset Q and every collection D of dense
sets of Q of size < 2κ there is a filter on Q intersecting all the sets in D.

In the following, we will exploit the consistency of MA(κ-good-Knaster) stated
below.

Theorem 5.3.9. Assume GCH. Let κ be a regular cardinal such that κ<κ = κ and

λ > κ such that λ<κ = λ. Then, there is a cardinal preserving generic extension in

which 2κ = λ and MA(κ-good-Knaster) holds.
4In the original definition of Shelah, the requirement is somewhat weaker, i.e. that Q is κ-strategically

closed.
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The proof is presented in the Appendix. We now prove that MA(κ-good-Knaster)
implies the non-existence of certain kinds of tight gaps of slaloms.

Theorem 5.3.10. Suppose that λ is a cardinal so that cf(λ) > κ+, λ<κ = λ and that

MA(κ-good-Knaster) holds. Then there is no tight (λ, κ+)-gap of slaloms based on a

fixed club set C ⊆ κ.

Proof. Suppose towards a contradiction that there is a (λ, κ+)-tight gap of slaloms
{(uα : α < λ), (vβ : β < κ+)} based on (without loss of generality) κ and define the
following forcing notion Q. Conditions in Q are pairs p = (s̄, σ) where:

− σ ⊆ κ+ and |σ|< κ.

− s̄ = (si)i∈σ is a sequence of partial slaloms with common domain, a fixed ordinal
ηp < κ.

− If i ∈ σ, ξ ∈ ηp, then si(ξ) ⊆ vi(ξ).

− If i∗ = sup(σ), then i∗ > |σ|.

A condition q = (t̄, τ) is said to extend the condition p = (s̄, σ) if:

− τ ⊇ σ.

− For all i ∈ σ, ti w si.

− For all i < i′ ∈ σ and ξ ∈ ηq \ ηp, ti(ξ) ⊂ ti′(ξ).

− For all j ∈ τ \ σ and i ∈ σ such that j < i, there is ξ ∈ ηq \ ηp such that
vi(ξ) ⊂ tj(ξ).

We want to use our assumption of MA(κ-good-Knaster) for this poset and some
(to be defined) collection of dense sets.

Claim. Q is stationary κ+-Knaster and < κ-closed.

Proof. Suppose X = {pα : α < κ+} is a sequence of conditions in Q. We want to
show that there is a club E ⊆ κ+ and a regressive function f : E ∩ Sκ+

κ → X such
that, if f(i) = f(j) then pi and pj are compatible.

First, we use the pigeonhole principle and the ∆-system lemma in order to assume,
without loss of generality that for all γ < κ+ the following hold:

− ηp = η < κ.
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− |σγ|= λ∗ < κ.

− σγ ∩ σγ′ = ε.

− If σγ = {iγ,l : l < λ∗} (increasingly ordered), then sγl = s∗γ for all l < λ∗. Here
and throughout the proof sγl denotes siγ,l .

− The sequence iγ,l is strictly increasing in the first coordinate, for l /∈ ε.

Given γ < γ′ < κ+, we now claim that pγ = (σγ, s̄γ) and pγ′ = (σγ′ , s̄γ′) are
compatible. If true, we can then define E = κ+ and f : Sκ

+

κ → κ+ to be the constant
function with value 0 and we get the stationary κ+-Knaster condition.

To prove the claim, choose an ordinal ζ ≥ η such that, for each ξ ≥ ζ:

{viρ,l(ξ) : ρ ∈ {γ, γ′} ∧ l < λ∗}

is ⊂-decreasing (this is possible because the iγ,l are increasing and the way the v’s are
arranged).

Moreover, we can choose ζ so that for all ξ ≥ ζ , |viγ′,λ∗ (ξ)|+λ
∗ > |viγ,λ∗ (ξ)|.

Define a condition q = (t̄, τ) as follows: τ = σγ ∪ σγ′ and t̄ = (tj)j∈τ . Put
ζ = dom(ti) for all i and recall the enumeration of σγ and σγ′ we have fixed above.

We consider the following cases:

− If j ∈ ε, i.e j = iγ,l for l < |ε|, then define partial slalom tj as follows:

tj(ξ) =

{
sγj (ξ) if ξ < η

vj(ξ) if η ≤ ξ < ζ

− If j = iγ,l, for |ε|≤ l < λ∗, then define partial slalom tj as follows:

tj(ξ) =

{
sγj (ξ) if ξ < η

viγ′,l′ (ξ) if η ≤ ξ < ζ and l′ < l is the supremum so that viγ′,l′ ⊆
∗ vj

− If j = iγ′,l, for |ε|≤ l < λ∗, define analogously as in the item above, i.e.

tj(ξ) =


sγ
′

j (ξ) if ξ < η

viγ,l′ (ξ) if η ≤ ξ < ζ and l′ < l is the supremum so that viγ,l′ ⊆
∗ vj

vj(ξ) if η ≤ ξ < ζ and {l′ < l : viγ,l′ ⊆
∗ vj} = ∅
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Then q ≤ pγ and q ≤ pγ′ .

It remains to prove that the poset Q has properties (2), (3) and (4) from Definition
5.3.7. Let {pα}α<γ be a <-decreasing sequence of conditions in Q, where pα =

(s̄α, σα). Then there is a canonical lower bound p = (s̄, σ) where σ =
⋃
α<γ σα (which

is still a set of size < κ+) and s̄ is defined as follows: s̄ is a sequence of partial slaloms
(si)i∈σ with domain η = supα<γ ηα < κ such that si(ξ) =

⋃
α<γ s

α
i (ξ) when sαi (ξ) is

defined (i.e. when i ∈ σα). This implies that properties (2) and (4) hold. Property
(3) hods, as if p = (s̄, σ) and q = (t̄, τ) are compatible, then a canonical lower bound
r = (ū, ν) has the form ν = σ∪τ , while the third and fourth conditions in the definition
of our poset determine how r must be defined.

Since by hypothesis MA(κ-good-Knaster) holds, there is a generic G ⊆ Q inter-
secting the following dense sets. Let i ∈ κ+ and η < κ.

Di,η = {p ∈ Q : σp * i ∧ ∀q ∈ Q (q ≤ p→ σq ⊆ i) ∧ ηp ≥ η}

The generic G adds first of all an unbounded subset of κ+ given by ΣG =
⋃
{σp : p ∈

G}. Also, it generically adds κ+-many slaloms {wiG : i ∈ ΣG}, where wiG =
⋃
{spi :

p ∈ G and (s̄p)i = spi }. These slaloms satisfy that for all i < j ∈ ΣG and for almost
all ξ ∈ κ wiG(ξ) ⊂ wjG(ξ).

Moreover, we have that for all i < j ∈ ΣG and for almost all ξ ∈ κ

wiG(ξ) ⊂ wjG(ξ) ⊂ vj(ξ) ⊂ vi(ξ).

Now, using the hypothesis that {(uα : α < λ), (vβ : β < κ+)} is a (λ, κ+)-tight
gap of slaloms, given i ∈ ΣG, we can find α(i) < λ such that, for almost all ξ ∈ κ
wiG(ξ) ⊂ uα(i)(ξ).

Let α? = sup{α(i) : i ∈ ΣG}. Then for each i ∈ ΣG we can find ηi < κ such that
for all ξ > ηi:

wiG(ξ) ⊂ uα?(ξ) ⊂ vi(ξ)

Again, using the pigeonhole principle, we can assume without loss of generality that
ηi = η∗. Then we can pick a condition p = (σ, s̄) ∈ G so that j ∈ σ where j ∈ ΣG and
|j ∩ ΣG|≥ κ and ηp > η∗.

Since |σ|< κ, we can choose i ∈ ΣG ∩ (j \ σ) and q = (τ, t̄) ≤ p for which
i ∈ τ . Then, by the definition of the forcing Q, there is ηp ≤ ζ < ηq such that
vj(ζ) ⊂ ti(ζ) = wiG(ζ). But then we get vj(ζ) ⊂ wiG(ζ) ⊂ uα?(ζ) ⊂ vj(ζ) which is a
contradiction.
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5.4 On p(κ) and pcl(κ)

The definitions of p(κ) and t(κ) invoke all κ-complete filters (resp. towers) on κ,
without giving any additional structural information. Thus it makes sense to first
consider smaller classes of filters that may be better understood. One natural way of
classifying κ-complete filters is to consider larger filters in which they simultaneously
embed. This leads to the following definition:

Definition 5.4.1. Let F be a κ-complete filter on κ. Then

pF(κ) := min{|B| : B ⊆ F ∧ B has no pseudointersection}

and
tF(κ) := min{|T | : T ⊆ F ∧ T is a tower}

whenever these are defined.

Note that pF(κ) is defined exactly when F has no pseudointersection. One of
the most interesting examples is pcl(κ) = pC(κ) where C is the club filter on κ. Our
goal in this section is to study the relationship of p(κ) to pcl(κ). We start with some
straightforward observations.

Observation 5.4.2. Let F be a κ-complete filter on κ such that pF(κ) is defined, then

1. κ+ ≤ p(κ) ≤ pF(κ),

2. whenever tF is defined, pF(κ) ≤ tF(κ) ≤ t(κ),

3. pcl(κ) = tcl(κ) = b(κ).

Proof. (1) and (2) follow immediately from the definitions. (3) has been shown in [48].
Let us recall the argument. First note that pcl(κ) as well as tcl(κ) are defined. To see
that they are equal, let λ = pcl(κ) and suppose that (Cα : α < λ) is a family of clubs
in κ with no pseudointersection of size κ. Build a sequence (Dα : α < λ) of clubs
so that Dβ is club and a pseudointersection of Eβ = {Dα : α < β} ∪ {Cα : α ≤ β}
(note the closure of a pseudointersection is still a pseudointersection). This is possible,
since Eβ is a family of clubs of size < pcl(κ). Now (Dα : α < λ) is a witness for
tcl(κ) = λ. To see that pcl(κ) = b(κ) consider the map that sends a function f ∈ κκ to
Cf = {α < κ : f ′′α ⊆ α} and the map sending a club C to sC .

The consistency of p(κ) < b(κ) was first shown in [59]. The argument for showing
that p(κ) stays small in the generic extension, relies on the following theorem which is
the main result of the mentioned paper.
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Theorem 5.4.3. If κ ≤ µ < t(κ) then 2µ = 2κ.

This theorem mirrors the situation at ω. In order to keep p(κ) smaller than µ one
only needs to ensure that 2µ will be strictly larger than 2κ in the generic extension.
Using counting of names it can be seen that this will usually not be a problem (starting
with an appropriate ground model). Thus starting from GCH, having regular targets
µ < λ for p(κ) and b(κ), we first use Cohen forcing to ensure that 2µ = λ+ and then
we increase b(κ) to λ with Hechler forcing and simultaneously diagonalize κ-complete
filters of size < µ. In this extension 2µ > 2κ and we have ensured that p(κ) does not
blow up.

We will present a more natural approach that amounts to showing that certain
witnesses for p(κ) can be preserved while increasing b(κ). This approach leaves more
freedom for cardinal arithmetic. On the other hand, up until now, we only know how to
apply it for a construction resulting in a model with p(κ) = κ+.

Let us introduce the forcing used to increase b(κ) (i.e. pcl(κ)) or pF(κ) more
generally for certain classes of F . This poset has been used greatly in the past.

Definition 5.4.4. Let F be a base for a κ-complete filter on κ. The forcing M(F)

consists of conditions (a, F ) where a ∈ [κ]<κ and F ∈ F . The order is defined by
(b, E) ≤ (a, F ) iff E ⊆ F and b \ a ⊆ F .

Fact. M(F) is κ-closed and κ+-cc (in fact κ-centered with cannonical lower bounds).

In what follows, C will always refer to the collection of clubs from a specific model,
which should always be clear from context.

Our approach, that we announced earlier, will consist of showing that a < κ support
iteration of M(C) will not add a pseudointersection to a previously added collection of
(more than κ many) Cohen reals. As a warm up and an introduction to the argument
we will first show that this is the case when forcing with M(C) once.

Theorem 5.4.5. Let κ be uncountable regular and κ<κ = κ. Suppose 〈yα : α < κ+〉 is

a sequence of Cohen reals added over V and that c is a M(C) generic over V [ȳ]. Then

in V [ȳ][c], the filter generated by {yα : α < κ+} has no pseudointersection.

We write Cκ+ for the < κ-support product of κ+ many copies of 2<κ, the forcing
for adding a κ-Cohen real. Let us first check the following:

Lemma 5.4.6. Whenever 〈yα : α < κ+〉 is a Cκ+ generic sequence, then {yα : α ∈
κ+} has the SIP in any further extension by κ-closed forcing.
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Proof. Let Γ ∈ [κ+]<κ be in any extension of V Cκ by a κ-closed forcing notion. Then
Γ ∈ V . By genericity over V we may show that

⋂
α∈Γ yα is unbounded in κ. More

precisely, let p ∈ Cκ+ and ε ∈ κ be arbitrary. Let δ > supi∈dom p(lth p(i)) and extend
p to q such that q(i)(δ) = 1 for every i ∈ Γ.

Proof of Theorem 5.4.5. In V [ȳ] assume ẋ is a M(C) name for an element of [κ]κ.
Consider the set

X = {(a, α) : a ∈ [κ]<κ, α < κ, ∃C ∈ C((a, C)  α ∈ ẋ)}.

Then X ∈ V [〈yα : α < δ〉] for some δ < κ+. We want to show that ẋ[c] 6⊆∗ yδ. First
recall that yδ is in fact Cohen over V [〈yα : δ 6= α < κ+〉]. Thus for the proof we may
simply assume that X ∈ V and show that ẋ[c] 6⊆∗ y where y is Cohen over V and c is
M(C) generic over V [y].

Suppose in V [y] that (a, C) is an arbitrary condition in M(C). We have that a ∈ V
and there is some name Ċ ∈ V so that “Ċ is club” in Cohen forcing and Ċ[y] = C.

Now suppose that s ∈ 2<κ is an arbitrary condition in Cohen forcing. Now let us
define two decreasing sequences {p0

i : i < κ} and {p1
i : i < κ} in Cohen forcing such

that the following holds:

− p0
0 = p1

0 = s,

− if
⋃
i<κ p

0
i = f0 and

⋃
i<κ p

1
i = f1 then f−1

0 ({1}) ∩ f−1
1 ({1}) = s−1({1}),

− the sets C̃0 = {α : ∃i(p0
i  α ∈ Ċ)} and C̃1 = {α : ∃i(p1

i  α ∈ Ċ)} are clubs.

The sequences p̄0 and p̄1 are simply interpreting sequences for Ċ below s. But we
additionally ensure that the sets defined by

⋃
i<κ p

0
i and

⋃
i<κ p

1
i are disjoint up to their

common initial part s. Call these sets y0 ⊆ κ and y1 ⊆ κ

Let C̃ = C̃0 ∩ C̃1. Recall that C̃ will still be club in V [y]. Thus there is b ∈ [C̃]<κ

and α > sup dom(s) so that min b > a and (a ∪ b, α) ∈ X . As
⋃
i<κ p

0
i and

⋃
i<κ p

1
i

define disjoint sets there is at least one j ∈ 2 so that α is not in yj . Say wlog j = 0.
Now we can extend s to some t = p0

i for some i such that p0
i  b ⊆ Ċ, α ∈ dom(t)

and t(α) = 0.
Thus by genericity we shown that back in V [y] we can extend (a, C) to (a∪b, C ′) so

that (a∪b, C ′)  α ∈ ẋ but α /∈ y. Now by genericity of cwe know that ẋ[c] 6⊆∗ y.

Now we are going to consider the more general case of iterating M(C) many times
with < κ-support. For an ordinal i we will write M(C)i for the i-length < κ-support
iteration of M(C).
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Theorem 5.4.7. (GCH) For any regular uncountable κ < λ, where κ = κ<κ, there is

a κ-closed, κ+-cc forcing extension in which p(κ) = κ+ < pcl(κ) = λ = 2κ.

Proof. We are going to first add κ+ many (κ-)Cohen reals 〈yα : α < κ+〉 and then
iteratively diagonalize the club filter for λ many steps. Thus the poset that we are using
is P = Cκ+ ∗ Ṁ(C)λ, where Ṁ(C)λ is a Cκ+ name for the < κ-support iteration of
M(C) of length λ. This forcing notion is κ-closed, has the κ+-cc and forces 2κ = λ

by a counting argument. Also it is clear that V P |= pcl(κ) = λ. Thus we are left with
showing that V P |= p(κ) = κ+.

Let us make some remarks on the notation that we will use.

− We will assume that conditions in M(C)λ always have the form (ā, q), where

– ā = 〈ai : i ∈ I〉, I ∈ [λ]<κ, ai ∈ [κ]<κ,

– q is a function with dom q = I and q(i) is a M(C)i name for a club for
every i ∈ I .

A pair (ā, q) as above is naturally interpreted as the condition 〈ǎi, q(i)〉i∈I .

− Similarly we will assume that conditions in Cκ+ ∗ Ṁ(C)λ have the form (p, ā, q̇),
where

– p ∈ Cκ+

– ā ∈ V ,

– q̇ is a Cκ+ name for an object as above.

It is easy to see, using κ-closure, that conditions of this form are dense in P.

− A nice M(C)λ-name ẋ for an element of P (κ) has the form⋃
α<κ

Aα × {α̌}

where Aα is an antichain in M(C)λ (thus has size ≤ κ) and for every (ā, q) ∈ Aα
and i ∈ dom q, q(i) is a nice M(C)i-name. Thus we define nice M(C)i-names
for subsets of κ inductively on i ∈ λ.

− It is well known that for any M(C)λ-name ẏ for a subset of κ, there is a nice
name ẋ so that  ẏ = ẋ.
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− By induction on nice names we see that, | trcl(ẋ)| ≤ κ. Namely, assume this
is known for nice M(C)i-names for every i < j. Let ẋ be a nice M(C)j-name.
Then ẋ =

⋃
α<κAα × {α̌} where each Aα is a set of M(C)j conditions of size

at most κ. For each condition (ā, p) ∈ Aα, | dom p| < κ. For each i ∈ dom(p),
p(i) is a nice M(C)i-name which, by assumption, has transitive closure of size at
most κ.

Claim. {yα : α ∈ κ+} has no pseudointersection after forcing with M(C)λ.

Proof. In V Cκ+ = V [ȳ], let ẋ be a nice M(C)λ name for an element of [κ]κ. Then there
is γ < κ+, such that ẋ ∈ V [〈yα : α ∈ κ, α 6= γ〉]. We will show that ẋ can not be
almost contained in yγ . Without loss of generality we may assume that ẋ ∈ V and that
we are adding a single Cohen real y = yγ over V (by putting V [〈yα : α ∈ κ, α 6= γ〉]
as the new ground model) and then we are forcing with M(C)λ in V [y].

Now suppose that (p, ā, q̇)  ẋ \ ε ⊆ ẏ, where (p, ā, q̇) ∈ C ∗ Ṁ(C)λ and ε ∈ κ.
Let y be C generic over V with p in the generic filter. Define y′ ∈ 2κ so that y′(i) =

p(i) = y(i) for i ∈ dom p and y′(i) = 1− y(i) for i ∈ κ \ dom p. It is well known that
y′ is also generic over V with p in it’s generic filter. Moreover V [y] = V [y′] =: W .
But note that q := q̇[y] 6= q̇[y′] =: q′ is very much possible. Still in W , (ā, q) and
(ā, q′) are compatible. Namely we may define r : dom q → W by putting r(i) a M(C)i
name for q(i) ∩ q′(i). By induction we see that for any i ∈ dom q,

(ā � i, r � i) ≤ (ā � i, q � i), (ā � i, q′ � i)

and that
r � i  q(i), q′(i) are clubs.

Thus indeed r(i) is a M(C)i name for a club, so (ā, r) is a condition and (ā, r) ≤
(ā, q), (ā, q′). Now let (b̄, s) ≤ (ā, r) and δ ∈ κ \ ε so that

(b̄, s)  δ ∈ ẋ.

Since y ∩ y′ ⊆ ε, δ /∈ y or δ /∈ y′. Say δ /∈ y. Then whenever G is M(C)λ generic
over W with (b̄, s) ∈ G, W [G] |= ẋ[G] \ ε 6⊆ y. At the same time, (p, ā, q̇) is in the
corresponding C ∗M(C)λ generic over V . This gives a contradiction. Similarly when
δ /∈ y′.

Analyzing the proof of the above result, we see that this result can be extended to a
more general class of filters.
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Theorem 5.4.8. (GCH) For any regular uncountable κ < λ, where κ = κ<κ, there is

a κ-closed, κ+-cc forcing extension in which p(κ) = κ+ < pF(κ) = λ = 2κ for any

κ-complete filter F on κ that is ordinal definable over H(κ+).

We say that F is ordinal definable over H(κ+) if there is a formula ϕ in the
language of set theory and finitely many ordinals α0 < · · · < αn−1 < κ+ so that

x ∈ F ↔ H(κ+) |= ϕ(x, ᾱ).

For example, C is ordinal definable over H(κ+).

Proof. Let 〈ϕξ(x, ᾱξ) : ξ ∈ κ+〉 enumerate all formulas in one free variable x and
parameters ᾱ = (α0, . . . , αk) ∈ (κ+)<ω in the language {∈}.

As before we first add κ+ many Cohen reals using Cκ+ . Then in V Cκ+ we define
an iteration 〈Pi, Q̇i : i < λ〉 with Qi =

∏
ξ<κ+ M(Fξ) where

Fξ = {x ∈ [κ]κ : H(κ+)V
Pi |= ϕξ(x, ᾱξ)}

if this defines a κ-complete filter (in V Pi) or

Fξ = {κ}

else.
Again we consider conditions in Pλ, as pairs (ā, q) where dom a ∈ [κ+ · λ]<κ,

aκ+·i+ξ ∈ [κ]<κ and q is a function with domain dom a so that q(κ+ · i + ξ) is a Pi
name for an element of Fξ. Similarly we define the notion of nice names.

It is crucial to note that Pλ only depends on the model V Cκ+ and not on the
particular set of generic Cohen reals. Then using the same argument as before we see
that p(κ) = κ+ in V Cκ+∗Ṗλ .

Now suppose F is ordinal definable over H(κ+) in V Cκ+∗Ṗλ and pF(κ) is defined.
Say F is defined by ϕξ. Let B ⊆ F with |B| < λ. Then there is i < λ so that
B ⊆ V Cκ+∗Ṗi . Moreover we find j ≥ i so that (H(κ+)j,∈) 4 (H(κ+)λ,∈), where
H(κ+)j = {x ∈ H(κ+) : x ∈ V Cκ+∗Ṗj}. To see this just note that |H(κ+)i| < λ for
every i < λ. Thus we can find the < λ many required Skolem-witnesses over H(κ+)i

in H(κ+)S(i) for some S(i) < λ. Applying S recursively κ+ many times, by taking
suprema at limits, yields the desired situation (since no new elements of H(κ+) are
introduced in limits of cofinality κ+). In V Cκ+∗Ṗj , Fξ is a κ-complete filter on κ with
B ⊆ Fξ and Qj adds a pseudointersection to B.

Theorem 5.4.9. (p(κ) = 2κ) Let P be a collection of κ+-cc forcing notions, each of

size ≤ 2κ and |P| ≤ 2κ. Then there is a tower which is indestructible by any P ∈ P .
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Lemma 5.4.10. Let p(κ) = λ. There is a map ϕ : 2<λ → [κ]κ so that for each f ∈ 2λ,

〈ϕ(f � α) : α < λ〉 is a tower and ϕ(s_0) ∩ ϕ(s_1) = ∅ for every s ∈ 2<λ.

Proof. See the proof of Theorem 7 in [59].

Proof of Theorem 5.4.9. Let ϕ be as in Lemma 5.4.10 and λ = 2κ. Recall that if P is
κ+-cc then we can assume that all P names for elements of [κ]κ are of size at most
κ. Enumerate all triples 〈Pα, pα, ẋα : α < λ〉 where Pα ∈ P , pα ∈ Pα and ẋα is a Pα
name for an element of [κ]κ. We recursively define f ∈ 2λ as follows:

Given sα ∈ 2α, let y0 = ϕ(s_α 0) and y1 = ϕ(s_α 1). As y0 ∩ y1 = ∅ we have that
pα  ẋα ⊆∗ y0 ∧ ẋα ⊆∗ y1 is impossible. Thus for some i ∈ 2 we have that there
is qα ≤ pα so that qα  ẋα 6⊆∗ yi. Let sα+1 = s_α i. At limits we let sα =

⋃
ξ<α sξ.

Finally f :=
⋃
α<λ sα.

The tower defined by f is as required. Namely given P ∈ P , p ∈ P and ẋ a P-name
for an unbounded subset of κ, say (P, p, ẋ) = (Pα, pα, ẋα), we have that qα ≤ pα forces
that ẋ is not almost contained in ϕ(sα).

5.5 Appendix

5.5.1 Consistency of MA(κ-good-Knaster)

Finally, we present the proof of the generalized Martin’s Axiom for posets with
property (∗κ) that we applied in Section 5.3. The proof is based on the following
iteration theorem but otherwise resembles the classical proof of Martin’s Axiom.

Theorem 5.5.1. (Shelah, 1976; see [58]). Let κ be an uncountable cardinal and

(Pα, Q̇α : α < δ) be a < κ-support iteration such that for every α < δ:

Pα Q̇α satisfies property (∗κ)

Then Pδ is stationary κ+-Knaster.

Proof of Theorem 5.3.9. We define a < κ-support iteration (Pα, Q̇α : α < λ) such that
for all α < λ:

−  Q̇α is has the property (∗κ).

−  |Q̇α|< λ.
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Since by Theorem 5.5.1 the poset P = Pλ is stationary κ+-Knaster and it is < κ-
closed, P preserves cardinals. Also, since λ is regular and λκ = λ, we have |Pα|≤ λ.

Define Q̇α by induction on α < λ as follows. Fix a bookkeeping function π : λ→
λ× λ such that π(α) = (β, γ) implies β ≤ α. If we have defined Q̇β for all β < α and
π(α) = (β, γ), we can look at the γ-th Pβ-name Q̇ in V Pβ for a poset of size < λ with
the property (∗κ). Define Qα = Q̇.

First, we will show that that V P |= MAκ(κ-good-Knaster<λ) ∧ 2κ = λ, where
MA(κ-good-Knaster<λ) is the restriction of MA(κ-good-Knaster) to posets of cardi-
nality stricly smaller than λ.

Let Ṙ be a P-name for a poset with property (∗κ) such that P |Ṙ|< λ and let Ḋ
be a P-name for family of < λ-many dense subsets of R. Then, using the κ+-cc, we
can find β < λ such that both Ṙ and Ḋ belong to V Pβ . We can choose then, γ < λ

so that R is the γ-th name in V Pβ for a poset with property (∗κ). Hence, in the model
V Pπ(β,γ)+1 , the generic for R intersects all dense sets in D.

The argument above is enough to obtain the full MA(κ-good-Knaser) in V P:

Claim. If R is κ-good-Knaster poset in V P and D is a collection of < λ-many dense

sets in R, then there is R′ ⊆ R of cardinality < λ which is also κ-good-Knaster such

that the sets in D are dense in R′.

Proof. Given a dense set D ∈ D, there exists a maximal antichain AD ⊆ D and using
the stationary κ+-Knaster condition, this antichain has size at most κ. Consider then,
the poset S generated by the set of antichains {AD : D ∈ D} and has size< λ (because
λ<κ = λ). Now, consider the closure of S under properties (2), (3) and (4) in Definition
5.3.7 and notice that this process does not increase its size. Call the resulting poset R′

and note that it has the desired size and it is an element of the class κ-good-Knaster.
Finally, if H ⊆ R′ is a generic intersecting all the dense sets in D, we can extend it to a
filter G ⊇ H , G ⊆ R meeting all sets in D.

There have been other attempts to get higher analogues of Martin’s axiom at κ = ℵ1.
Specifically, let us mention one due to Baumgartner (see also [54, 53]):

Definition 5.5.2 (Baumgartner’s axiom [1]). Let P be a partial order satisfying the
following conditions:

− P is countably closed.

− P is well-met.
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− P is ℵ1-linked.

Then if κ < 2ℵ1 and {Dα : α < κ} is a collection of dense sets of P, then there exists a
generic filter G ⊆ P intersecting all sets Dα.

Baumgartner also proved that the former axiom is consistent with 2ℵ0 = ℵ1 and
2ℵ1 = κ, where κ ≥ ℵ1 is regular.
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[59] Saharon Shelah and Zoran Spasojević. Cardinal invariants pκ and tκ. Publications

de l’Institut Mathematique (Beograd), 72(86):1–9, 2002.

[60] Otmar Spinas. Ramsey and freeness properties of Polish planes. Proceedings of

the London Mathematical Society, 82(1):31–63, 2001.

[61] Otmar Spinas. Analytic countably splitting families. The Journal of Symbolic

Logic, 69(1):101–117, 2004.

[62] Otmar Spinas. Splitting squares. Israel Journal of Mathematics, 162(1):57–73,
December 2007.

[63] S. M. Srivastava. Selection theorems for Gδ-valued multifunctions. Transactions

of the American Mathematical Society, 254:283–293, 1979.

[64] Michel Talagrand. Compacts de fonctions mesurables et filtres non mesurables.
Studia Mathematica, 67(1):13–43, 1980.

[65] Asger Törnquist. Σ1
2 and Π1

1 mad families. J. Symbolic Logic, 78(4):1181–1182,
12 2013.



128 BIBLIOGRAPHY

[66] Asger Törnquist. Definability and almost disjoint families. Advances in Mathe-

matics, 330:61–73, May 2018.

[67] Douglas Ulrich. A streamlined proof of p = t. arXiv:1810.09426, 2018.

[68] Jerry E. Vaughan. Small uncountable cardinals and topology. In Open problems

in topology, pages 195–218. North-Holland, Amsterdam, 1990. With an appendix
by S. Shelah.

[69] Zoltán Vidnyánszky. Transfinite inductions producing coanalytic sets. Funda-

menta Mathematicae, 224(2):155–174, 2014.

[70] E. Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematis-

che Annalen, 65:107–128, 1908.

[71] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I. Mathema-

tische Annalen, 65:261–281, 1908.


	Abstract
	Zusammenfassung
	Contents
	Introduction
	Historical overview
	Preliminaries
	Descriptive set theory
	Forcing

	Structure of the thesis

	Inextendible linearly ordered towers
	Introduction
	Towers and Definability
	A 11 definable maximal tower in L
	Indestructible Towers
	1 and 12 definitions
	Solovay's model
	12 versus 11

	The definability of ultrafilters
	Introduction
	Miller's coding technique revisited
	11 bases for P- and Q-points
	There are no 11 Ramsey ultrafilter bases
	12 versus 11
	Adding reals
	The Borel ultrafilter number

	Hypergraphs and definability in tree forcing extensions
	Introduction
	Tree forcing
	The Main Lemma
	Mutual Cohen Genericity
	Finite products
	Infinite products

	Sacks and splitting forcing
	Splitting Forcing
	Weighted tree forcing
	The countable support iteration

	Main results and applications
	Definable maximal independent sets
	P-points
	Separating families and Borel chromatic numbers
	d icl

	Concluding remarks

	Towers and gaps at uncountable cardinals
	Introduction
	Notation, terminology and preliminaries

	On p(),t() and gaps
	On the sizes of gaps of slaloms
	On p() and p`39`42`"613A``45`47`"603Acl()
	Appendix
	Consistency of MA(-good-Knaster)


	Bibliography

