
 

 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

„Data-based and structure-based analysis  

of bile salt export pump inhibition“ 

 

verfasst von / submitted by 

Anna Magdalena Ambros BSc 

 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the 

degree of 

Master of Science (MSc) 

Wien, 2021  

Studienkennzahl lt. Studienblatt / 

degree programme code as it appears on 

the student record sheet: 

UA 066 606 

Studienrichtung  lt. Studienblatt / 

degree programme as it appears on 

the student record sheet: 

 Masterstudium Drug Discovery 
 and Development  

 

Betreut von / Supervisor: Univ.-Prof. Mag. Dr. Gerhard Ecker 



 

 

 

 

 



Acknowledgements 

Throughout the whole time I worked on my master’s thesis, I received a great deal of 

advice, support and guidance. I genuinely enjoyed working in the 

Pharmacoinformatics Research Group, implementing knowledge I obtained during my 

master, and gaining a great deal of expertise and hands-on in silico experience. I 

could not have achieved everything I have if it were not for my family, friends, 

supervisor and research fellows.  

First, I would like to thank Prof. Dr. Gerhard Ecker for his outstanding supervision and 

his scientific and personal guidance. I admire his approach of mentoring students and 

all the time and heart he puts into his research group. I could not have hoped for any 

better supervisor and will always be grateful for his support.  

I would like to thank the whole Pharmacoinformatics Research Group for their advice, 

their support and the good working atmosphere. Due to the current circumstances, I 

did not get the chance to meet everyone in person, however I am thankful for all the 

outstanding scientists and kind humans I got the chance to work with. I would like to 

give my sincere thanks to Dr. Claire Colas, Dr. Melanie Grandits and Karin 

Grillberger BSc for giving me input on scientific issues, answering my questions and 

brightening up the ordinary workday. 

My best and warmest thanks go to my family and friends. I would like to express my 

sincere gratitude to my parents, who were always there for me and encouraged me 

to keep going during difficult times. I would have never come this far without them and 

I will never forget their endless support. I would also like to thank my siblings, my 

grandparents, my former and current fellow students, my best friends and all those, 

who accompanied me on my way.  

Lastly, I would like to thank all the professors, lecturers and organizers of the Drug 

Discovery and Development Master for providing such interesting and diverse 

lectures and training opportunities and for guiding students on their way of becoming 

prospective scientists.  

 

 

 

 

  



 



Table of Contents 
 

1. Introduction ..................................................................................................................... 1 

1.1. ABC transporter family.......................................................................................... 1 

1.2. Enterohepatic circulation of bile acids ................................................................ 3 

1.2.1. Bile acids – structure, synthesis and physiological function ................... 3 

1.2.2. The role of transporters in enterohepatic circulation ................................ 4 

1.3. Bile salt export pump ............................................................................................ 5 

1.4. Drug-induced liver injury ....................................................................................... 6 

2. Aim of the thesis ............................................................................................................ 7 

3. Material and Methods ................................................................................................... 8 

3.1. Data-based approach ........................................................................................... 8 

3.1.1. KNIME Analytics Platform ............................................................................ 8 

3.1.1.1. Data collection............................................................................................ 8 

3.1.1.2. Physicochemical property characterization ........................................... 9 

3.1.1.3. Matched-Molecular-Pairs (MMPs) Workflow ......................................... 9 

3.1.1.4. TGD-, GpiDAPH3- and MACCS-Fingerprint Clustering Workflow ... 10 

3.2. Structure-based approach.................................................................................. 11 

3.2.1. Cryo-EM structure BSEP ............................................................................ 11 

3.2.2. Protein and ligand preparation .................................................................. 12 

3.2.3. Binding site detection .................................................................................. 12 

3.2.3.1. Sequence alignment of P-glycoprotein and BSEP ............................. 12 

3.2.3.2. Binding site calculation ........................................................................... 13 

3.2.4. Structure-based 3D-Pharmacophore creation and screening .............. 13 

3.2.5. Docking studies............................................................................................ 14 

3.2.5.1. Glide Docking ........................................................................................... 14 

3.2.5.2. Induced-Fit Docking (IFD) ...................................................................... 15 

3.2.5.3. Structural Interaction Fingerprint (SIFt) analysis ................................ 15 

4. Results and Discussion .............................................................................................. 16 

4.1. Data-based approach ......................................................................................... 17 

4.1.1. Data collection and physiochemical characterization ............................ 17 

4.1.2. MMP analysis and fingerprint clustering .................................................. 19 

4.2. Structure-based approach.................................................................................. 21 

4.2.1. Binding site detection and sequence alignment ..................................... 21 

4.2.2. Pharmacophore creation and screening .................................................. 23 



4.2.3. Docking studies ............................................................................................ 25 

4.2.3.1. Determining most promising binding pocket ....................................... 25 

4.2.3.2. Separation of inhibitors and non-inhibitors in docking studies ......... 26 

4.2.3.3. Sulfonamide docking studies ................................................................. 27 

4.2.3.4. Taurocholate docking studies ................................................................ 30 

4.2.3.5. Interaction fingerprint clustering ............................................................ 31 

4.2.3.6. Literature in support of proposed binding mode ................................. 34 

5. Conclusion and Outlook ............................................................................................. 36 

6. References ................................................................................................................... 38 

7. Appendix ....................................................................................................................... 42 

7.1. Supplemental material ........................................................................................ 42 

7.1.1. Data-based approach ................................................................................. 42 

7.1.1.1. TGD-based pairs ..................................................................................... 42 

7.1.1.2. GpiDAPH3-based pairs .......................................................................... 43 

7.1.1.3. MACCS-based pairs ............................................................................... 43 

7.1.2. Structure-based approach .......................................................................... 44 

7.1.2.1. Sequence alignment ............................................................................... 44 

7.1.2.2. Residues of calculated binding pockets ............................................... 46 

7.1.2.3. Visualization of binding pockets and e-pharmacophores .................. 47 

7.2. Abstract ................................................................................................................. 51 

7.3. Zusammenfassung .............................................................................................. 52 

7.4. Abbreviations ........................................................................................................ 53 

 



1 
 

1. Introduction 

1.1. ABC transporter family 

The ABC transporters constitute one of the largest protein families, that can be found in 

bacteria, archaea and eukaryotes. They facilitate active transport of substrates upon ATP 

binding in their conserved nucleotide binding domains, which led to the name of ABC (= 

ATP-binding-cassette) transporters. They can act as importers and exporters, however 

in mammalians only export mechanisms are known.1  

There are 48 human ABC transporter genes, that are subdivided into seven families, 

named A to G. Their endogenous role is to export and therefore influence homeostasis 

of hormones, lipids, ions, hormones and other compounds.2 The ABCA family is involved 

in lipid trafficking. Mutations were associated with diseases such as Tangier disease T1 

and familial high-density lipoprotein deficiency. The ABCB subgroup is unique to 

mammals and plays an important role in drug discovery due to the transporters’ role in 

multi-drug resistance (MDR) in cancer. The family contains four full-transporters and 

seven half-transporters.3 Mutations were connected to diseases such as diabetes type 2, 

coeliac disease and several cholestatic liver diseases. The subgroup C is best known for 

its member ABCC7, or rather CFTR, the cystic fibrosis gene. The different members of 

the group transport diverse substrates and have also been implicated in MDR. Diseases 

connected to this family include cystic fibrosis, Dubin-Johnson syndrome and diabetes 

type 2. ABCD members are also known as “adrenoleukodystrophy (ALD) or peroxisomal 

transporters. Mutations in these members cause ALD and Zellweger syndrome. 

Subfamilies E and F only contain the ATP-binding domain, but no transmembrane 

domains, suggesting that these members are not acting as transporters. The ABCG 

genes have been associated with sterol accumulation, disorders and atherosclerosis. 

ABCG2 is also known for its MDR activity.3 

Structurally, the transporters consist of two so-called nucleotide binding domains (NBDs) 

and two transmembrane domains (TMDs). The NBDs are located in the cytoplasm and 

are responsible for ATP binding and hydrolysis. The motif of the NBDs is conserved 

among all ABC transporter types. It consists of a catalytic core site and an α-helical 

domain. The catalytic core site includes the Walker A motif (P-loop) which interacts with 

the phosphate group of ATPs. Additionally, a glutamate residue of the Walker B motif 

acts as a base to activate a water molecule for the nucleophilic attack of the γ-phosphate 

of ATP. The α-helical domain contains the ABC-family signature motif LSGGQ, that is 
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involved in nucleotide binding.1 The D, H and Q loops, which are involved in pi-stacking 

interactions, are also unique to the family.4  

 

Figure 1: Conserved motifs of nucleotide-binding-domain 5 

The TMDs are comprised of membrane-spanning α-helices and are responsible for 

substrate binding and translocation. The sequence of the TMDs is not conserved among 

the subfamilies which explains the diverse substrates and different selectivity of ABC 

transporters.5 Each NBD and TMD are coupled through an α-helix, that is located in the 

cytoplasmic loop of the TMDs. The coupling helix is necessary to facilitate structural 

change in the TMDs upon ATP binding in the NBDs.1 

Several transport mechanisms for the ABC family have been proposed in the past, 

including the switch model, the constant contact model and the reciprocating twin-

channel model. Experimental findings suggest that different ABC transporters use 

different ways of transporting their substrates.6 However, the basic principle of the 

mechanism has been established. The nucleotide binding domains must dimerize for 

efficient ATPase activity. As the NBDs come together, the TMDs are pulled apart by the 

coupling helices. It is believed that the substantial conformational change in the TMDs 

lowers the affinity for the substrate and therefore translocation out of the cell occurs. The 

exact order and different intermediate states of the transport mechanism are still 

unknown for most of the clinically relevant human transporters, especially the ABCB 

subfamily.6  
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Figure 2: Alternating access model; substrate binding might not only be possible from the cytoplasm but also 
the inner leaflet of the lipid bilayer, the three states of inward-open, inward-occluded and outward-open are 
depicted 6 

Overall, ABC transporters play a major role in drug discovery due to their interactions 

with xenobiotics. They affect diverse pharmacological properties, including oral 

bioavailability and hepatobiliary, intestinal and urinal excretion.7 Due to this fact a lot of 

research has been dedicated to this area to gain insight into structural mechanisms of 

protein-ligand interactions with these transporters.  

1.2. Enterohepatic circulation of bile acids 

1.2.1. Bile acids – structure, synthesis and physiological function 

Bile flow is an important pathway for facilitating the elimination of endogenous 

compounds and metabolites, as well as xenobiotics. The major components of bile are 

bile acids (BAs).8 BAs are synthesized from cholesterol via the cytochrome P450 proteins 

in the endoplasmic reticulum of hepatocytes. Subsequently, they are transported into 

peroxisomes and conjugated with taurine or glycine, increasing their hydrophilicity, 

reducing their toxicity and adding their typical amphiphilic character. Primary BAs include 

taurocholic acid (TC), glycocholic acid (GC), taurochenodeoxycholic acid (TCDC) and 

glycochenodeoxycholic acid (GCDC).9  

 

After synthesis, BAs are excreted from the liver into the bile and stored in the gallbladder. 

Upon food ingestion, bile acids are released to the small intestine to act as emulsifier for 

dietary lipids and fat-soluble vitamins.10 In the intestinal lumen several biotransformations 

Figure 3 (from left to right and top to bottom): Main substrates of bile salt export pump 

TC 

TCDC GCDC 

GC 
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mediated by bacteria of the microbiota influence the structural diversity of BAs. 

Conjugated BAs get hydrolyzed, resulting in their unconjugated and amino acid moieties. 

Unconjugated BAs can be further transformed to secondary BAs such as deoxycholic 

acid and lithocholic acid.9 After the release to the small intestine, most of the bile acids 

get reabsorbed and return to the liver.10 Approximately 5 % are not transported back, but 

are eliminated through the feces.11 The exact pathway is described in 1.2.2.  

Apart from their role as fat emulsifier, bile acids also act as signaling molecules via 

interaction with several receptors, including the farnesoid X receptor (FXR), the 

pregnane X receptor (PXR), the vitamin D receptor (VDR) and others. Through these 

pathways they are involved in energy, glucose, lipids and lipoprotein metabolism.10  

1.2.2. The role of transporters in enterohepatic circulation 

The enterohepatic circulation of bile acids heavily depends on transporter proteins. 

Figure 4 shows the transporters involved at each stage of the cycle. The secretion of bile 

acids from the hepatocytes into the gall bladder and bile duct is mediated by the bile salt 

export pump (BSEP) and the multidrug-resistance-associated proteins (MRP). If bile 

accumulation in the liver is excessive, basolateral export systems of the liver mediated 

by MRP or the organic anion transporting polypeptide 2 (OATP2) are used. With the help 

of the apical sodium-dependent bile acid transporter (ASBT), the bile acids get absorbed 

in the distal ileum. Binding to the ileal bile acid-binding protein (IBABP), they travel across 

the enterocyte and get exported into the portal circulation by the organic solute 

transporter alpha and beta (OSTα/β). The uptake into the hepatocyte is mediated by the 

sodium/taurocholate co-transporting polypeptide (NTCP) and the organic anion 

transporting polypeptide 1 (OATP1), where the cycle starts again.9 

 

Figure 4: Depiction of the enterohepatic circulation as described in 1.2.2.9 
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Genetic mutations or inhibition of involved transporters can lead to impaired bile flow and 

the accumulation of bile acids in the liver. Due to their amphiphilic character, BAs can 

become toxic if they persist in tissues with high concentrations. This ultimately leads to 

liver diseases such as necrosis, steatosis and cholestasis, with the latter one accounting 

for most of the cases. As the bile salt export pump serves as primary route of canaliculi 

elimination of bile acids, this transporter has been implicated in severe liver injury upon 

impaired transport capacity.12 

1.3. Bile salt export pump  

The bile salt export pump is encoded by the gene ABCB11, which is located on the 

chromosome 2q24 in humans, and belongs to the ABC transporter superfamily. The 

protein is encoded by 27 exons, following the first untranslated exon, and consists of 

1321 amino acids.13 Expression of the transporter takes place in hepatocytes, with its 

main localization in the canalicular membrane. BSEP expression is regulated by the 

farnesoid X receptor, which forms a heterodimer with the retinoid X receptor. Upon ligand 

binding, the heterodimer binds to an FXR response element in the promoter region of 

BSEP.14   

Structurally, BSEP is a full-length ABC transporter, consisting of two TMDs and two 

NBDs in one polypeptide chain. The resolved cryo-EM structure shows the transporter 

in its inward-facing apo structure. Each TMD consists of 6 transmembrane helices and 

is connected through coupling helices with the NBD to allow structural change upon 

ligand binding. Notably, the Walker B motif shows a degenerated active site, as the 

catalytic residue glutamate is replaced by methionine.15 

 

Figure 5: Cryo-EM structure of BSEP released in April 2020 by Wang et. al with two perpendicular and one 
top view15 

As set out above, the endogenous role of BSEP is to export BAs from hepatocytes into 

the canaliculi. The transporter mainly exports monovalent bile acids, such as taurocholic 
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acid and glycocholic acid, as well as the secondary deoxycholic acid.16 Substrate 

clearance was determined to be in the order of TCDC > GCDC > TC > GC, which is 

favorable due to the higher toxicity of chenodeoxycholate compared to cholate 

derivatives.17 The transporter is highly specific for its substrates, it can however be 

inhibited by several classes of drugs, which has been implicated in the risk of cholestatic 

drug-induced liver injury (DILI). In vitro assays implied that intracellular accumulation of 

BAs is one of the lead drivers of DILI.18 

Apart from BSEP inhibition, several mutations of the transporter are known, which lead 

to severe liver diseases including progressive familial intrahepatic cholestasis (PFIC), 

benign recurrent intrahepatic cholestasis (BRIC), low phospholipid associated 

cholelithiasis (LPAC), Wilson’s disease, and others.19 

1.4. Drug-induced liver injury 

Drug-induced liver injury is the most common cause of acute liver failure in the USA and 

Europe. It is also one of the top adverse-drug reactions (ADRs) responsible for attrition 

of compounds in the drug development process, as well as withdrawals from the 

market.20 Due to the partly poor correlation of hepatic side effects between animals and 

humans, DILI is regularly undetected in preclinical studies, leading to an increased risk 

of serious consequences, including death of patients.21, 22 DILI can be categorized in two 

groups: intrinsic and idiosyncratic DILI. Intrinsic DILI is dose-dependent and to high 

extents predictable by animal studies. Idiosyncratic DILI however shows a late onset of 

symptoms and no clear dose dependency.20 Various mechanisms were described to be 

involved in idiosyncratic DILI, including inhibition of transporters, mitochondrial injury and 

oxidative stress.23 In 2016 the Critical Path Institute’s Predictive Safety Testing 

Consortium (C-Path PSTC) addressed the major role of BSEP inhibition and perturbation 

of bile acid homeostasis in DILI, which led to an industry-wide consensus on the 

importance of assessing BSEP inhibition in the early stages of drug discovery.24 
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2. Aim of the thesis 

Due to the strong correlation between bile salt export pump inhibition and DILI-

associated diseases such as cholestasis, it is of great importance to elucidate structural 

patterns that cause the inhibition of the transporter. Several machine-learning based 

classification models and a few ligand-based pharmacophore approaches have been 

published in the past. However, since the protein structure of human BSEP was only 

released in April 2020, so far, no structure-based investigations have been reported on 

this transporter, except for one homology model-based approach. Therefore, the thesis 

aims to combine data-based and structure-based methods to investigate molecular 

features causing BSEP inhibition, as well as potential binding sites and protein-ligand 

interactions of inhibitors. The goal was to discover new molecular aspects to contribute 

to a better understanding of BSEP inhibition and therefore addressing key issues of DILI.   

In order to achieve this goal, inhibitory data on the transporter must be collected in the 

first step. Different data science approaches can be used to find trends in bioactivity data. 

In this case, descriptor calculation, matched molecular pair analysis and fingerprint 

analysis were implemented, to find structural differences, or physicochemical property 

shifts between inhibitors and non-inhibitors.  

Subsequently, the results of the data-based approach were planned to be investigated 

with molecular docking studies. Since there is only an unbound structure of the 

transporter available, possible binding pockets of the protein must be investigated first. 

Different tools are available to achieve this task. In the next step, structure-based 

pharmacophores were created to determine the most likely binding pocket. Following, 

inhibitors and non-inhibitors were docked to investigate differences in binding and 

possible causes for differences in inhibitory activity. In the end, a binding mode 

hypothesis was established. The hypothesis was reevaluated by docking the substrate 

taurocholate in the proposed binding pocket.  
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3. Material and Methods 

3.1. Data-based approach 

The data-based approach was conducted doing a detailed data analysis of inhibitors and 

non-inhibitors of BSEP. After collecting available bioactivity data, physicochemical 

descriptor calculation, matched molecular pairs analysis and fingerprint clustering were 

performed.  All depicted structures were drawn using Marvin JS by ChemAxon. 

3.1.1. KNIME Analytics Platform 

All data-based approaches were conducted using the KNIME Analytics Platform by the 

University of Konstanz. KNIME is an open-source software based on the Eclipse platform 

that enables accessing and processing data using workflow systems. Workflow systems 

are built up of different types of connected data transformation points, which are referred 

to as nodes. A graphical user interface using drag-and-drop options for nodes enable 

the user to build individual workflows. Different plug-ins are available including CDK, 

Weka, Python programming and Schrödinger. The plug-ins offer applications specifically 

for cheminformatic and drug discovery purposes such as computing quantitative 

structure-activity relationship (QSAR) descriptors, implementing machine learning 

algorithms or visualizing molecular structures.25 

3.1.1.1. Data collection 

Bioactivity data on BSEP was collected from the manually curated bioactivity database 

ChEMBL and the open chemistry database PubChem using the search for the encoding 

gene ABCB11. A KNIME workflow was built to access the desired data. Available data 

on ChEMBL was downloaded through the ChEMBL extractor node using the ID 

CHEMBL6020. Only data containing activity values with the operator “=” were filtered 

and all values were converted to the unit µM. The structural information was available as 

SMILES code. PubChem was accessed via PugRest and the GeneID 8647 was used to 

retrieve compound IDs of bioactivity records and corresponding SMILES codes of the 

molecules.  

Next, duplicates were filtered out and the dataset was standardized using the 

standardizer metanode by Jennifer Hemmerich.26 Mixtures of molecules and molecules 

including nonorganic atoms were filtered out. Only entries containing IC50 values were 

kept. For molecules with several measured activity values, the higher IC50 value was 

retained. For the data-based approach the stereochemistry was removed and the 

isomers with higher IC50 values were kept. Binary classification was added to the data 
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set using a threshold of 10 µM.  Furthermore, the activity data set was combined with an 

in-house binary classification data set, where the threshold for activity was also set to 

10 µM. For the structure-based approach the original stereochemistry of the data set was 

included. 

3.1.1.2. Physicochemical property characterization 

Descriptor calculation is a powerful method to characterize different properties of small 

molecules and is regularly used in drug discovery for purposes of classification and 

regression models. Descriptors are based on different mathematical calculations, 

starting from simple counts, e.g. number of oxygen atoms, to complex, rather 

uninterpretable descriptors employing e.g. quantum chemistry.27 

The following descriptors were calculated in KNIME with the RDKit Descriptor 

Calculation node28 for the analysis of the data set:  

- SlogP: partition coefficient of solubility in octanol:water ; measure for lipophilicity 

- AMW: molecular weight [g/mol] 

- SMR: molar refractivity 

- TPSA: topological polar surface area 

- NumRotBonds: number of rotatable bonds 

- NumHBA: number of hydrogen bond acceptors 

- NumHBA: number of hydrogen bond donors 

3.1.1.3. Matched-Molecular-Pairs (MMPs) Workflow 

Matched-Molecular-Pairs are based on the concept of structure-activity-relationship 

(SAR). SAR links changes in the ligand structure to changes in biological activity on the 

target protein. The systematic approach of quantitively linking these changes to adding 

or removing a certain functional group is the idea of MMPs. The matched pairs can be 

described as “molecules that differ only by a particular, well-defined, structural 

transformation”.29 Overall, MMP analysis has become a useful tool in drug discovery, 

especially for the field of medicinal chemistry.30 
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Figure 6: Matched-Molecular-Pairs workflow built in KNIME 

The Matched-Molecular-Pairs workflow was built around the available Matched-

Molecular-Pairs node by the Chemical Computing Group. The workflow allows to read in 

bioactivity data in csv format containing structural information in SMILES code, which is 

transformed to SDF and passed on to the Matched-Molecular-Pairs node. Different 

thresholds can be set to obtain pairs, Figure 7 shows the chosen settings for the analysis.  

 

Figure 7: Possible threshold settings for the MMP node with entered values for the conducted analysis 

Subsequently, the workflow provides a detailed analysis of the retrieved MMPs. It is 

possible to use a data set based on concrete activity values, but also data sets containing 

only binary classification. The workflow visualizes the quantity and distribution of 

changes in activity. Individual thresholds can be set to filter interesting pairs based on 

frequency and predefined minimum activity difference. End results can be saved as csv 

file containing SMILES code of the matched pairs, structural difference in SMILES code, 

activity difference and activity values of both molecules.  

3.1.1.4. TGD-, GpiDAPH3- and MACCS-Fingerprint Clustering Workflow 

Another powerful method for identifying structurally related compounds is clustering 

based on 2D molecular fingerprints. Binary fingerprints describe the presence or 

absence of a certain property in the molecule. Properties can reach from simple atoms 
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to functional groups, as well as pharmacophoric patterns and other features. The 

calculated fingerprints are used to determine similarity between molecules and therefore, 

homogenous molecule clusters can be created.31 

A fingerprint clustering workflow was built to further analyze the bioactivity data. Three 

different fingerprint methods were used:  

- TGD (Typed-graph distances, 2-point 2D pharmacophore)  

- GpiDAPH3 (Graph-P-Donor-Acceptor-Polar-Hydrophobe-Triangle, 3-point 2D 

pharmacophore)31 

- MACCS (Molecular ACCess System, structure based)32 

 

Figure 8: fingerprint clustering workflow in KNIME; purple box displaying TGD-clustering, blue box displaying 
GpiDAPH3-clustering, orange box displaying MACCS-clustering 

The workflow creates clusters based on the three aforementioned methods, which are 

filtered by predefined minimum cluster size. A minimum cluster size of 5 containing 

molecules was chosen. Following, physicochemical descriptors were calculated. In the 

next step pairs of interest were manually chosen and saved.  

3.2. Structure-based approach 

Structure-based investigations included binding site detection of the available apo 

structure of BSEP and Glide docking, as well as induced-fit docking of inhibitors and the 

natural substrate taurocholate.  

3.2.1. Cryo-EM structure BSEP  

The structure of the human BSEP was extracted from the protein data bank using the 

PDB code 6LR0. The apo-form of the inward-open transporter was solved at a resolution 

of 3.5 Å using cryogenic electron microscopy. The structure was obtained by Wang et al. 
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by overexpressing ABCB11 in HEK293 cells to obtain the recombinant protein. ATPase 

assays were conducted ensuring that the protein samples were in a relevant 

physiological state. The extension of the N-terminus could not be resolved and therefore 

residues Ser32-Val43 are missing in the reported structure. However, the scientists 

constructed a truncated version which showed no significant difference in bioassays and 

therefore these residues do not seem to be essential in substrate binding or 

translocation.15 

3.2.2. Protein and ligand preparation 

Certain preparation steps for proteins and ligands need to be conducted prior to docking 

studies. Preparation of proteins include adding hydrogen bonds, optimizing hydrogen 

bonds and removing atomic clashes. For ligands 3D structures need to be computed and 

possible tautomers and ionization states need to be considered. These preparations are 

necessary to obtain comprehensive and significant docking results.33 

In MOE, the protein was prepared using the protonate 3D and the structure preparation 

panel with default settings. Protein preparation in Maestro was conducted using the 

Protein Preparation Wizard by Schrödinger. Default settings were used to preprocess 

the protein, minimize the structure and optimize hydrogen bonds. The standard settings 

were used except for the pH range, which was set to 7.0 ± 0.5.  

Ligand preparation was done using LigPrep by Schrödinger. Chiralities were defined 

from the 3D structure and the pH range was changed to 7.0 ± 0.5. All other settings were 

left as default.  

3.2.3. Binding site detection 

The investigation of possible binding pockets was done by analyzing a related co-

crystallized transporter and by binding site calculations using different algorithms.  

3.2.3.1. Sequence alignment of P-glycoprotein and BSEP  

The closest related transporter of BSEP is P-glycoprotein (P-gp) with a sequence identity 

of approximately 49 %. A co-crystallized structure of P-gp with the inhibitor tariquidar is 

available on the protein data bank (PDB code: 7A6E).  

The sequences were aligned by the Clustal Omega program offered by Uniprot. The 

UniProt identifiers P08183 (P-gp) and O95342 (BSEP) were used. The binding pocket 

of P-gp in complex with MRK16 Fab and tariquidar was analyzed in LigandScout and 

relevant residues were translated to the corresponding residues in the BSEP structure.  
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3.2.3.2. Binding site calculation 

Binding site calculation was done using different algorithms. The two main programs 

used were SiteFinder in MOE by the Chemical Computing Group and SiteMap in Maestro 

by Schrödinger.  

SiteFinder is a geometry based binding site detection algorithm, where no energy 

calculations are considered. Alpha spheres are calculated by populating receptor 

cavities with 3D points, that are triangulated, which results in simplexes. The results are 

filtered by criteria of accessibility and solvent exposition. Filtered alpha spheres are 

clustered and ranked by the number of hydrophobic contacts with the receptor atoms. 

Every pocket must contain at least one hydrophobic ranked alpha sphere.34  

SiteMap on the other hand is an energy-based cavity finding algorithm. The binding site 

detection occurs in three steps. The detection of cavities takes place first, where a 1 Å 

grid of site points is defined over the whole protein. Site points that collide with receptor 

atoms, do not show sufficient enclosure, or are too far away from the protein are filtered 

out. Site points are merged by a predefined threshold distance, which by default is 6.5 

Å. During the second step the found cavities are characterized as hydrophobic or 

hydrophilic using Van der Waals and electric field grids. The last step considers different 

scores to evaluate the characterized sites, including the SiteScore, the DScore, number 

of site points, exposure/enclosure, contact and site volume. Additionally, 

hydrophobic/hydrophilic character and donor/acceptor properties can be visualized in the 

binding site.34 

The default settings of the described algorithms were used to investigate potential 

binding pockets in BSEP.  

In addition to SiteFinder and SiteMap, additional cavity detecting tools were used to 

detect further pockets and to support the previous found pockets. Other programs used 

include LigandScout, DoGSiteScorer and P2RANK. 

3.2.4. Structure-based 3D-Pharmacophore creation and screening 

IUPAC defines pharmacophores as “an ensemble of steric and electronic features that 

is necessary to ensure the optimal supramolecular interactions with a specific biological 

target and to trigger (or block) its biological response”. Pharmacophore modelling can 

either be done by considering only structural features of known ligands or by using the 

structural information of the protein in structure-based pharmacophore designs.35 
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Structure-based pharmacophores can be obtained by analyzing ligand-protein 

complexes or by investigating residue features in possible binding sites.35 Since the 

BSEP structure is only available in its apo form, structure-based pharmacophores were 

created using e-pharmacophore models by Phase. Phase calculates pharmacophore 

sites which are characterized by type, location, and if applicable, direction. Six different 

pharmacophoric features are described: hydrogen bond acceptor (A), hydrogen bond 

donor (D), hydrophobic (H), negative ionizable (N), positive ionizable (P) and aromatic 

ring (R).36 

Structure-based e-pharmacophores were built using the properties of residues 

surrounding the receptor cavity in 3 Å distance. In case of a non co-crystallized protein, 

e-pharmacophores are built by docking fragments to the receptor using Glide XP. 

Common features that maximize the binding energy are chosen. Excluded volumes are 

added for the regions that are occupied by receptor atoms.37 The standard settings were 

used, calculating 7 pharmacophoric features.  

The e-pharmacophores were used to evaluate the calculated binding sites doing a 

pharmacophore screening of inhibitors and non-inhibitors. The screening was conducted 

using phase ligand screening.38 Compounds were set to must match at least 5 out of 7 

features to be identified as hits.  

3.2.5. Docking studies 

Since the 1980s molecular docking has gained great importance in the drug discovery 

area. Docking studies can predict ligand conformation and ligand-protein interactions 

within a target binding site. Energy calculations provide docking scores that rank different 

ligands in the order of the stability of the proposed ligand-receptor complexes.39 

Interactions between ligand and target receptor can be divided into five major molecular 

forces, including covalent bonding, Van der Waals interactions, hydrophobic interactions, 

hydrogen bonding and ionic interactions.40 

Docking studies can either be performed as rigid docking, semi-flexible docking or 

flexible docking. During rigid docking the structures of both protein and ligand cannot 

change, semi-flexible docking allows changes in ligand conformation and flexible 

docking treats ligands as well as proteins as flexible structures. The computational effort 

and cost increases with the flexibility.40 

3.2.5.1. Glide Docking 

Glide stands for grid-based ligand docking with energetics and is a rigid docking 

algorithm. It was designed to perform as close to exhaustive search algorithms as 
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possible while retaining sufficient computational speed. In the preprocessing step a 

receptor grid is generated, representing shape and properties of the protein for more 

accurate scoring of ligand poses. Following, initial ligand conformations are produced by 

searching for local minima of the ligand torsion-angle space in an exhaustive manner. 

After this preprocessing step, the most promising poses of each ligand are minimized 

using an OPLS-AA force field. Finally, the three to six most promising poses of each 

ligand are subjected to a Monte Carlo procedure to examine nearby torsional minima. 

For scoring the ligands a combination of the GlideScore, which describes the ligand-

receptor molecular mechanics interaction energy, and the ligand strain energy are 

used.41 

The grid generation was done calculating the centroid of specified residues. The residues 

were manually entered, considering all residues within 3 Å of the calculated binding sites 

by SiteFinder and SiteMap. Prepared ligands were docked using default settings.  

3.2.5.2. Induced-Fit Docking (IFD)  

Induced-Fit Docking is a flexible docking algorithm, where movement of the receptor 

upon ligand binding is made possible. This can have a significant impact on the 

calculated energy of a ligand-protein complex. Schrödinger developed a technology that 

“accounts for receptor flexibility in ligand‐receptor docking by iteratively combining rigid 

receptor docking (using Glide) with protein structure prediction and refinement (using 

Prime).”42 This methodology allows small backbone shifts as well as significant side 

chain conformation changes.42 The procedure itself is comprised of four essential steps, 

starting with an initial Glide docking into a rigid receptor. Secondly, sampling of the 

protein for each ligand pose is conducted using the refinement module of prime. Only 

residues with at least one atom in 5 Å distance of the ligand poses are sampled. This 

refinement results in low energy induced-fit structures. In the third step, ligands are 

redocked. Lastly the poses are scored by means of docking energy and receptor strain 

and solvation terms.43 

For the IFD run the standard protocol was used, yielding up to 20 poses for each ligand. 

Prepared inhibitors and the substrate taurocholate were docked using default settings.  

All energy values mentioned in this thesis are reported in kcal/mol.  

3.2.5.3. Structural Interaction Fingerprint (SIFt) analysis 

Structural interaction fingerprints translate 3D interactions of a receptor-ligand complex 

to binary digits. As it is almost impossible to investigate every ligand pose in the times of 

high-throughput virtual screening, SIFt provides an algorithm for filtering, clustering and 
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analyzing docking poses more sufficiently.44 The following protein-ligand interactions can 

be computed in Maestro.  

- Any Contact 

- Backbone Interaction 

- Sidechain Interaction 

- Polar Residues (including Arg, Asp, Glu, His, Asn, Gln, Lys, Ser, Thr) 

- Hydrophobic residues (including Phe, Leu, Ile, Tyr, Trp, Val, Met, Pro, Cys, Ala)  

- Hydrogen Bond Acceptor 

- Hydrogen Bond Donor 

- Aromatic Residue (including Phe, Tyr, Trp) 

- Charged Residue (including Arg, Asp, Glu, Lys)45 

After calculating chosen fingerprints, it is possible to cluster ligands based on their SIFts.  
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4. Results and Discussion 

4.1. Data-based approach  

4.1.1. Data collection and physiochemical characterization  

After filtering and merging the collected data as described in 3.1.1.1, a data set 

containing 1513 molecules was obtained, consisting of 298 inhibitors and 1215 non-

inhibitors. 367 molecules contain concrete activity information (IC50), the rest of the 

compounds contain only binary classification information. This can be explained by data 

of publications, where IC50 values are published as “higher” or “lower” instead of a 

concrete value. An example would be a paper by Morgan et. al, where the highest 

concentration measured was 133 µM. If there was no measurable BSEP inhibition upon 

this concentration, the compound was classified as inactive.46 Analysis of different 

properties of inhibitors (red) and non-inhbitiors (green) with known IC50 value were 

conducted, plotting the pIC50 values against SlogP, SMR, AMW and TPSA. Descriptors 

were calculated using the RDKit Descriptor Calculation node, pIC50 values were 

calculated using the following equation.  

𝑝𝐼𝐶50 =  − 𝑙𝑜𝑔(𝐼𝐶50 [µ𝑀] ∗ 10−6)                                       Equation 1 

Figure 9 (from left to right and top to bottom): pIC50 values as function of SlogP, SMR, AMW and TPSA 
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The figures show the most significant trend for SlogP. A steep ascent of pIC50 values 

can be observed when going to more lipophilic molecules. A similar trend can be 

observed for the molecular weight (AMW) and the molar refractivity (SMR). However, in 

these plots the trend is not as clear as for SlogP. For TPSA, no real activity trend can be 

observed depending on this descriptor. Nevertheless, these plots need to be interpreted 

with caution, since only a small number of compounds show concrete IC50 values and 

could therefore be included. 

Table 1: Mean values and standard deviations of calculated descriptor values of non-inhibitors and 
inhibitors 

Descriptor Non-inhibitors Inhibitors 

SlogP 2.3 ± 2.1 4.1 ± 1.6 

AMW [g/mol] 344.3 ± 129.8  470.1 ± 111.1 

SMR 91.3 ± 33.5 126.0 ± 28.1 

TPSA 82.9 ± 50.2 90.9 ± 35.0  

NumRotatableBonds 

(NRotB) 
4.8 ± 3.5 6.8 ± 3.3 

NumHBA 4.9 ± 2.8 6.1 ± 2.4 

NumHBD 2.0 ± 1.8 1.6 ± 1.2  

 

The mean descriptor values support the information obtained from the activity plots. The 

SlogP is shifted from 2 to 4 between non-inhibitors and inhibitors. Additionally, inhibitors 

have a higher molecular weight, by approximately 120 g/mol on average. Since SlogP 

and AMW are correlated with each other these supporting trends are not surprising. 

Additionally, considering that BSEP is a membrane-spanning transporter, it seems 

logical that more lipophilic molecules reach the transporter’s binding pocket more easily 

and therefore have a higher potential of inhibiting it. Another observation already made 

in the activity plots is the substantially higher SMR of inhibitors. Since molar refractivity 

is dependent on the polarizability of a molecule, this could mean that electronegative 

moieties, such as halogens, on the molecules might be beneficial for BSEP inhibition. 

However, global descriptors such as SMR are quite difficult to interpret structurally. TPSA 

does not show a significant difference between inhibitors and non-inhibitors. Hydrogen-

bond acceptors and donors also seem to be in the same range for both classes. 

However, it seems unexpected that inhibitors show quite a high mean value for HBAs 

since higher lipophilicity was strongly correlated with higher inhibitory activity. SlogP and 

hydrogen bonding are not mutually exclusive, but they are interesting partners. Structure-

based approaches might give some further insight into this matter. Inhibitors contain 2 

more rotatable bonds on average, which could mean that higher flexibility is important 

for BSEP inhibition.  
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4.1.2. MMP analysis and fingerprint clustering 

For the activity data (367 compounds) the MMP workflow detected 42 MMPs, but no 

significant activity change trends within the pairs. Using binary classification as activity 

change parameter (1513 compounds), 406 MMPs were detected, however again no 

relevant activity changes with a valid number of examples were found.  

Since no significant trends could be detected using the approach of MMPs, the data set 

was further investigated using different approaches of fingerprint clustering. The 

pharmacophore clustering yielded 17 (TGD) and 5 (GpiDAPH3) clusters, whereas 15 

clusters were obtained by using MACCS fingerprints. After manually inspecting the 

clusters for significant activity changes 5 (TGD), 2 (GpiDAPH3) and 2 (MACCS) clusters 

were filtered and for each cluster the most and least active molecule were plotted, and 

descriptor changes were investigated to find further trends. An example can be seen in 

Figure 10, all investigated pairs are attached in the Appendix under section 7.1.1.  

Table 2: Descriptor values of 2 found pairs by TGD-based clustering 

Mol. IC50 [µM] SlogP AMW [g/mol] SMR TPSA NRotB HBA HBD 

1 49.8 4.4 336.2 86.1 62.5 3 3 2 

2 18.5 4.8 369.7 86.1 62.5 3 3 2 

 

 

 

 

 

Figure 10: Example of matched pair found by TGD-based clustering 

For all compared pairs found by the three algorithms the most significant trends were 

observed for SlogP and AMW.  

Clustering the data revealed prominent structural groups in the data set, including 

sulfonamides, piperazines, carboxylic acids and steroid based scaffolds. The groups 

were extracted using SMILES codes. For steroids there was an issue using SMARTS, 

due to the difference in double bonds in the core structures. Therefore, a similarity search 

using the SMILES of chenodeoxycholic acid was used to get an estimated number of 

related molecules in the data set. One structure can belong to several classes. 

1 2 
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Table 3: Structural moieties with high abundance in the data set with active/inactive ratio  

Class SMARTS Hits Active/inactive [%] 

Sulfonamides [#6]S([#7])(=O)=O 144 32/68 

Carboxylic 

acids 
[CX3](=O)[OX1H0-,OX2H1] 346 15/85 

Piperazine 
[#6]-1-[#6]-[#7]-[#6]-[#6]-

[#7]-1 
131 40/60 

Steroid-based - ~ 249 12/88 

 

The high abundance of these classes makes sense, since they are structurally related 

to the natural substrates, except for the piperazine moiety. Interestingly, steroid-based 

scaffolds were found to be mostly inactive, although they contain the structural motif of 

the natural substrates. However, since this class could only be filtered using similarity 

search, which is not completely accurate, this trend needs to be interpreted with caution. 

Sulfonamides and piperazines show the highest actives ratios, which could mean that a 

positive ionizable group can be beneficial for binding. Since the structural classes were 

extracted manually, it is not known whether there are other features with high 

abundance, that were not found using the fingerprint clustering.  

Considering all the results, it can be said that lipophilicity and molecular weight show a 

distinct trend in the data set. This observation is also supported by several literature 

sources, where these descriptors were already found to be important for BSEP 

inhibition.47,48,49 Pedersen et. al also stated that strong inhibitors were correlated with 

higher flexibility in their models, which supports the observed higher number of rotatable 

bonds. Additionally, a positive correlation with the abundance of halogen atoms was 

observed. This could possibly be interpreted as a backup for the higher molar refractivity; 

however, halogen atoms also lead to an increase of lipophilicity and molecular weight. 

Interestingly, the publication states that hydrogen bond acceptors were negatively 

correlated with BSEP inhibition.48 These findings somewhat contradict the observed 

trend in Table 1 However other papers suggested hydrogen acceptor properties to be 

important based on created ligand-based pharmacophores.47 The observed importance 

and trends of molecular descriptors, certainly depend on the size and heterogeneity of 

the data set, as well as the workflow for identifying important descriptors. Nevertheless, 

the observed molecular trends for BSEP inhibition presented in this thesis support 

previous findings from literature.  

The approach of using matched molecular pair analysis did not work out in this case. 

The question is, if there is simply not enough concrete bioactivity data for this transporter 

available at this point, or if the inhibitory activity of compounds cannot be led back to one 
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concrete structural change. Most likely, it is a combination of both. Especially for 

heterogeneous data sets and/or for large flexible proteins, the MMP approach might not 

be feasible. However, the presented MMP workflow can be used for a prescreening of a 

dataset, giving first insights into possible trends or even yielding concrete QSAR 

information. The fingerprint clustering method aided in elucidating prominent structural 

features in the data set, which will be implemented in the structure-based approach.  

4.2. Structure-based approach  

For structure-based purposes the stereoisomers were reincluded, resulting in a dataset 

of 1832 compounds, with 357 inhibitors and 1475 non-inhibitors.  

4.2.1. Binding site detection and sequence alignment 

The sequence alignment of P-glycoprotein and BSEP showed a sequence identity of 

49.2% and 433 similar positions (whole sequence alignment Appendix Figure 28). 

 

Figure 11: Part of sequence alignment of P-gp and BSEP; * indicating same residue, : indicating related 

residue, . indicating non-related residue 

Following, the binding pockets of the two bound tariquidar molecules in P-gp were 

visualized in LigandScout. Important residues for binding were extracted (Appendix 

Figure 29, Figure 30) and translated to BSEP using the results of the alignment.  

Table 4: Translated residues of P-gp to BSEP relevant for inhibitor binding 

P-gp BSEP 

Met69 Leu80 

Phe72 Phe83 

Trp232 Ile259 

Leu236 Val263 

Ile306 Ile333 

Tyr307 Phe334 

Tyr310 Tyr338 

Phe336 Leu364 

Phe728 Tyr772 

Phe732 Phe776 

Glu875 Gln918 

Met876 Thr919 

Phe978 Ile1021 

Phe983 Leu1026 

Phe994 Tyr1038 
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Subsequently, the binding site detection results calculated by SiteFinder and SiteMap 

were compared to the determined amino acids. SiteFinder calculated 70 pockets, which 

are ranked by hydrophobic residue interactions. The first three pockets obtained 

contained similar residues (Appendix Table 20) to the observed interacting residues in 

MDR1 and were therefore chosen for closer investigation. Using default settings, 

SiteMap detected 5 binding pockets, of which two pockets were located in the NBD and 

therefore not considered as ligand binding sites. The following sites were investigated in 

more detail. 

Table 5: Three top ranked pockets calculated by SiteFinder 

Pocket Size PLB Hyd Side 

MOE1 212 5.57 71 142 

MOE2 126 4.20 39 84 

MOE3 78 1.70 18 48 

 

 

Table 6: Calculated pockets by SiteMap located in the TMD 

Pocket Size SiteScore Dscore Expos./Enclos. Phobic/Philic Don/Acc 

Maestro1 400 1.132 0.962 0.281/0.896 0.188/1.582 0.750 

Maestro2 147 1.022 0.962 0.533/0.731 0.209/1.279 0.847 

Maestro4 135 1.118 1.180 0.604/0.773 1.171/0.688 1.225 

Figure 12: Surfaces of binding pockets detected by SiteFinder; f.l.t.r.: MOE1, MOE2 and MOE3 
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Looking at the location of MOE1 and Maestro2 and of MOE2 and Maestro1, it can be 

observed that these pockets are located in the same area and show similar residues 

(Appendix Table 20). However, they show differences in size. MOE3 and Maestro4 are 

both located in the center of the transporter, but they also differ in size and interacting 

residues.  

4.2.2. Pharmacophore creation and screening 

E-pharmacophores were created for all six binding sites. The following patterns were 

obtained. Visualizations of all pharmacophore hypotheses are included in the Appendix 

(Figure 31 – Figure 35).  

Table 7: e-Pharmacophores of calculated binding pockets 

Pocket A D H N R P 

MOE1 1 1 1 1 3 - 

MOE2 2 4 - - 1 - 

MOE3 1 2 - 1 3 - 

Maestro1 1 4 - - 1 - 

Maestro2 1 4 - 1 1 - 

Maestro4 2 2 - - 3 - 

 

Figure 13: Binding pockets calculated by SiteMap in Maestro, f.l.t.r.: Maestro1, Maestro2 and Maestro4  



24 
 

 

Figure 14: Pharmacophore of Maestro4 with surrounding transporter helices (left) and only with excluded 
volumes (right); blue vector = HBD; red vector = HBA; orange ring = aromatic; blue spheres = exclusion 
volumes 

The pharmacophores of MOE2, Maestro1 and Maestro2 reflect their hydrophilic 

character, which could already be observed in Table 5 and Table 6. Every pocket shows 

at least one hydrogen bond acceptor and one hydrogen bond donor property. On the 

one side, this is not surprising, since backbones of proteins are made up of amide bonds, 

that can easily interact in hydrogen bonding. However, the e-pharmacophores do not 

include all possible pharmacophores, but rather important features for ligand binding, 

which makes this trend quite unexpected, considering the fact that higher lipophilicity 

results in higher inhibitory activity. Interestingly, no pocket contains positive ionizable 

features and only one pocket contains a hydrophobic feature.  

Considering the structure of bile acids, one would expect more hydrophobic/aromatic 

features on one side of the pocket and hydrophilic features on the other side, provided 

that one of the found cavities is the orthosteric binding site. This spatial arrangement is 

mostly given in Maestro4 and MOE1. 

In the next step, the pharmacophore screening was conducted, and the results were 

analyzed. 

Table 8: Results from pharmacophore screening of six proposed binding pockets 

Pocket Hits [%] 
Active/inactive 

[%] 

Found actives 

[%] 

Prominent 

groups 

MOE1 50 25/75 64 Piperazines 

MOE2 25 19/81 24 Steroids 

MOE3 31 28/72 44 Sulfonamides 

Maestro1 29 13/87 19 Steroids 

Maestro2 13 11/89 7 Steroids 

Maestro4 53 28/72 76 
Sulfonamides, 

carboxylic acids 
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Table 8 shows that separation of actives and inactives was not possible with the created 

e-pharmacophores. Interestingly, the more hydrophilic pockets (MOE2, Maestro1, 

Maestro2) found more molecules with a steroid core structure, whereas the other pockets 

found more sulfonamides, carboxylic acids and piperazines and no or only a few steroids. 

This can be explained by the molecular structure of the steroid based molecules in the 

data set, which contain several hydroxyl or carbonyl moieties. However, most of these 

structures are not active, explaining the low number of active hits for these three 

pharmacophores.  

MOE1, MOE3 and Maestro4 show the highest number of found actives and the best 

active/inactive ratios. Nevertheless, they still show a high rate of inactives, making the 

pharmacophores not specific enough for filtering inhibitors.  

For further input on the most likely binding site, the six pockets were further investigated 

in docking studies.  

4.2.3. Docking studies 

4.2.3.1. Determining most promising binding pocket 

To reevaluate the hit rate of the structure-based pharmacophores, all active molecules 

were docked to all six binding pockets using rigid docking (Glide). Following, the number 

of molecules with a docking score lower than or equal to -5.0 were determined to 

compare the results. 

Table 9: Docking results of active inhibitors to all six potential binding pockets 

Pocket 
Docked actives (all) 

[%] 
Docked actives (score <= -5.0) [%] 

MOE1 94 4 

MOE2 79 19 

MOE3 52 18 

Maestro1 96 20 

Maestro2 83 3 

Maestro4 96 86 

 

Interestingly, the percentage of docked molecules is significantly higher than the number 

of hits in the pharmacophore screening. This can be explained by the more restrictive 

filtering in pharmacophore screening, where compounds must match at least 5 out of 7 

features to be identified as hits. In docking studies on the other hand, the ligand must 

only fit into the binding pocket and result in a negative binding free energy. Although all 

pockets show somewhat similar results in terms of the number of docked actives, looking 
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at molecules with a score lower than or equal to -5.0, Maestro4 greatly outperformed all 

other pockets. Consequently, Maestro4 was chosen for further docking studies.  

4.2.3.2. Separation of inhibitors and non-inhibitors in docking studies 

To support the binding site hypothesis of Maestro4 and to identify important structural 

aspects for BSEP inhibition, all molecules were docked to Maestro4.  

Table 10: Docking results of all inhibitors and non-inhibitors in Maestro4 

 
Docked molecules (all) 

(%) 

Docked molecules (score <= 5.0) 

(%) 

Inhibitors 96 86 

Non-inhibitors 92 78 

 

Although inhibitors show better results, there is rarely a distinction between the two 

classes. These results raise the question whether Maestro4 truly is a binding pocket of 

BSEP inhibitors or whether it is just a promiscuous binding pocket where diverse 

compounds can be docked obtaining high docking scores.  

One reason for the insufficient separation might be that compounds of the so-called 

middle class blur the line between inhibitors and non-inhibitors. It can be expected that 

an inhibitor with an IC50 value of 9.0 µM and a non-inhibitor with an IC50 value of 20.0 

µM do not show significant differences in docking studies. To address this issue, one 

can exclude activity values that show weak activity to improve separation between true 

inhibitors and non-inhibitors.  This approach was tried using only inhibitors with activity 

values smaller or equal to 7.0 µM and non-inhibitors with values equal or higher than 

700.0 µM. 69 molecules were included, out of which 29 were inhibitors and 40 non-

inhibitors.  

Table 11: Docking results of data set without middle class in Maestro4 

 
Docked molecules (all) 

(%) 

Docked molecules (score <= 5.0) 

(%) 

Inhibitors 91 35 

Non-inhibitors 95 46 

 

The results show that excluding the middle class shifts higher docking scores even more 

towards non-inhibitors than inhibitors. However, in docking studies not only scores must 

be analyzed in detail, also docking poses, together with literature searches, give 

significant information on the likeliness of a certain binding mode. The structurally diverse 

sets made it difficult to evaluate and compare different binding modes, which is why the 

approach was switched to analyzing one specific subgroup of the data set. Due to the 
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structural relation of the sulfonyl group and the sulfonamide moiety and the high 

abundance of sulfonamides in the pharmacophore screening, this subset was chosen 

for further investigations of the binding mode.  

4.2.3.3. Sulfonamide docking studies 

44 sulfonamide containing inhibitors were extracted from the data set using SMARTS 

code as stated in 3.1.1.4.  

 

Figure 15: Structural depiction of SMARTS pattern used to filter data set; R1 = R2 = R3 = H, CR3 

Since hydrogen bond acceptors have been implicated in increased inhibitory activity, and 

the natural substrates contain a hydrophilic head group, it was postulated that the 

sulfonamide group most likely interacts with the protein through hydrogen bonding. 

Consequently, the binding site was rechecked for potential hydrogen binding spots.  

 

 

Figure 16: Beneficial ligand features in binding pocket Maestro4 ; HBD in blue, HBA in red, 

hydrophobic/aromatic in yellow 
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Looking at the surface, it becomes apparent, that there is one major spot for hydrogen 

bonding, including residues Asn17 (HBA), Asp18 (HBA), Lys30 (HBD) and Asn375 

(HBD). For a more detailed analysis of possible binding modes, induced-fit docking for 

all sulfonamide inhibitors was conducted. 844 poses were obtained using the standard 

protocol. SIFts were calculated based on hydrogen bond acceptors and donors.  

 

Figure 18: Structural interaction fingerprints calculated based on hydrogen bond acceptor properties of 
receptor with sulfonamide moiety containing inhibitors 

Asn17 Asp18 

Figure 17: Beneficial ligand features in binding pocket Maestro4 ; HBD in blue, HBA in red, hydrophobic/aromatic in 
yellow; (right) with residues 
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Figure 19: Structural interaction fingerprints calculated based on hydrogen bond donor properties of receptor 
with sulfonamide moiety containing inhibitors 

The hydrogen bond acceptor plot shows a high abundance of ligand poses interacting 

with residues Asn17 and Asp18. For hydrogen bond donor properties, Lys30 shows the 

highest interaction frequency with inhibitors. Since sulfonamides contain hydrogen bond 

acceptor features (sulfonyl oxygens) next to hydrogen bond donor features (H-

substituted nitrogen) in case of primary and secondary sulfonamides, it would make 

sense that the molecules bind in a hydrogen bond acceptor and donor rich area. The 

observed important residues in Figure 18 and Figure 19 span a sub pocket with a 

favorable environment for hydrophilic groups such as sulfonamides.  

 

Figure 20: Hydrophilic subpocket spanned by Asn17, Asp18, Lys30 and Asn375 

Gly19 

Lys30 

Asn375 
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These findings suggest that the sulfonamide group interacts in this hydrophilic sub 

pocket, with the rest of the molecule extending into the hydrophobic/aromatic cavity of 

the calculated pocket. This binding mode could indeed be observed for several poses of 

inhibitors.  

To support the proposed binding mode, the natural substrate taurocholate was docked 

to Maestro4 using IFD. 

4.2.3.4. Taurocholate docking studies 

The highest ranked pose of TC shows the same hydrogen bonding pattern as observed 

in the sulfonamide docking study. The deprotonated oxygen of the sulfonic acid interacts 

with Lys30 via HB and forms a salt bridge to the nitrogen of Lys30. The amido nitrogen 

of TC acts as hydrogen bond donor of Asn17. The steroid core of the molecule is 

enclosed by the hydrophobic residues of the pocket, including Phe20, Leu332, Ile333, 

Cys336, Tyr337, Val366, Ile367, Ala370 and Leu371.  

Figure 21: 2 inhibitors bound to Maestro4 showing interactions between the sulfonamide moiety and Lys30 
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Figure 22: Docking pose of natural substrate taurocholate in binding pocket Maestro4; HBD residues shown 
in dark blue, HBA residues shown in red, polar residues shown in light blue, neutral residues shown in white, 
hydrophobic residues shown in green  

4.2.3.5. Interaction fingerprint clustering 

Interaction fingerprints were used to filter and cluster poses, for a better overview on 

different binding modes. Since Lys30 appears to be the most important residue for 

hydrogen bonding interactions, the poses were filtered for hydrogen bonding with Lys30 

using SIFt.  

Table 12: Mean values of scores of poses dependent on interaction with Lys30 

SIFt Lys30 Poses IFD Score  Prime Energy  Glide Emodel 

yes 360 -1828.0 ± 5.2 -36407.4 ± 96.4 -76.3 ± 9.5 

no 337 -1829.2 ± 5.5 -36396.8 ± 105.1 -75.3 ± 9.5 

 

As apparent in Table 12, 360 poses show hydrogen bonding with Lys30, whereas 337 

do not show interactions with this residue. For both clusters, the scoring values are 

similar. However, 16 out of 18 proposed poses of TC show hydrogen bonding with Lys30. 

Therefore, it was decided to move forward with this cluster.  

The poses were further clustered using SIFTs based on backbone and sidechain 

interactions. 23 clusters were obtained. Only clusters with at least 20 poses were 

analyzed in more detail.  
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Table 13: Mean scores of poses from different clusters grouped by backbone and sidechain interactions 

Cluster Poses IFD Score  Prime Energy  Glide Emodel 

2 53 -1825.2 ± 2.0 -36337.7 ± 236.8 -75.0 ± 6.7 

5 29 -1825.8 ± 3.2 -36366.6 ± 60.3 -73.1 ± 5.0 

6 43 -1827.7 ± 6.5 -36394.7 ± 125.2 -78.7 ± 7.8 

18 22 -1828.6 ± 5.1 -36424.1 ± 95.9 -71.8 ± 10.6 

19 145 -1828.9 ± 5.0 -36423.5 ± 91.7 -76.9 ± 10.2 

 

Overall, clusters 6, 18 and 19 show the highest scores. Group 6 contains 14 inhibitors 

and no pose of TC. Cluster 18 contains only 10 inhibitors and no pose of the natural 

substrate as well. Number 19 includes 36 inhibitors and 14 poses of TC. Therefore, this 

cluster summarizes the most shared features among all inhibitors and the substrate TC 

and will be used for further structural investigations. It was tried to reduce the cluster 

size, however this was not possible. Nevertheless, the poses were analyzed looking into 

the interaction profile of the sulfonamide group. The poses were categorized into the 

following groups:  

- Sulfonyl oxygen forms HB with Lys30 (3 stars)  

- Sulfonyl oxygen forms HB with other residue (1 star) 

- Sulfonyl oxygen does not interact through HB (no star) 

Ranking of the poses with first priority IFD score and second priority Glide Emodel score, 

resulted in the following order (complete figure Appendix, Figure 36):  

 

Figure 23: Ranking of poses in cluster 19 according to 1) IFD score and 2) glide emodel score 

It can be observed that interaction of the sulfonyl oxygen with Lys30 is abundant among 

the top ranked poses. However, not for every inhibitor this pose is top ranked or actually 
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exists. This is true specifically in cases, where another hydrogen bond acceptor is 

available terminally of the molecule or the sulfonamide moiety is sterically hindered in 

interacting with Lys30.  

 

Figure 24: Example of different binding mode for inhibitor containing several hydrogen bond acceptor 
features 

This could also explain the inactivity of some promising looking non-inhibitors.  

Apart from the hydrophilic part of the pocket, there seem to be several modes for 

occupying the hydrophobic/aromatic cavity, which explains the numerous numbers of 

poses. In the poses of cluster 19, hydrophobic and aromatic parts of the molecule are 

primary interacting with residues such as Ile245, Val248, Ile367 and Ala370. However, 

looking at the poses in cluster 6, a different mode is observed for inhibitors containing 

aromatic features. In this case, the aromatic rings interact with residues such as Phe20, 

Phe334, Trp330 and Tyr337. It seems logical, that aromatic substructures interact with 

the aromatic part of the cavity, whereas hydrophobic parts, e.g. the steroid core of TC, 

rather interact with apolar residues. Figure 25 and Figure 26 show the two different 

modes for one inhibitor.  
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Figure 25: left: top ranked pose of structure 2 in cluster 19 showing hydrogen bonding to Asp18 and Lys30 and 
aromatic hydrogen bonding with Tyr337; right: top ranked pose of structure 2 in cluster 6 showing hydrogen bonding 
to Lys30 and Asp18 and pi-stacking with Trp330 

 

 

 

 

 

 

 

 

However, it was found that these two modes are observed for quite similar molecules, or 

identical molecules with different ionized states, which makes the clustering quite biased. 

In order to support the proposed binding mode, docking a more structurally diverse set 

with concrete bioactivity values would be important.  

4.2.3.6. Literature in support of proposed binding mode 

Uniprot collects different mutations of the transporter reported in literature. Several 

mutations are described, that are known to decrease transport capacity of taurocholate. 

However, in most cases these mutations cause a decrease in protein expression, hinders 

apical membrane localization or leads to a misfolding of the transporter, thus giving no 

information on the binding area of the substrates. Two relevant mutations were observed 

Figure 26: Ligand interaction diagrams of structure 2 in cluster 19 (left) and cluster 2 (right); HBD residues shown in 
dark blue, HBA residues shown in red, polar residues shown in light blue, neutral residues shown in white, hydrophobic 
residues show in green  
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for residues 336 and 337 in progressive familial intrahepatic cholestasis 2, however it is 

not clear whether they are involved in taurocholate binding.50,51  

No structure-based analysis of the bile salt export pump was done since the structure 

was released. However, one structural analysis was performed on a homology model of 

BSEP by Jain et. al. The approach focused on structure-based classification of inhibitors 

and non-inhibitors. The docking results presented in the work show the same area of the 

binding site, however, interacting residues differ. The authors state that Phe334, Leu364, 

Tyr772 and Phe776 might be important for inhibitory activity. However, since no 

substrate was docked, it is difficult to compare the results with each other.52 No other 

docking studies on the BSEP transporter are known of.  

Comparing the binding pockets of the closest related transporter MDR1, it can be 

observed that in the case of tariquidar (PDB: 7A6E), zosuquidar (PDB: 7A6F) and 

elacridar (7A6C), two inhibitors are bound at the same time. Since these structures can 

be compared to the sulfonamides and taurocholate concerning size, it might be possible 

that not one but two inhibitor molecules at once inhibit the transporter. However, 

addressing this question in basic docking studies might be a difficult task. Additionally, it 

must be kept in mind, that P-glycoprotein is known for its diverse substrates and 

inhibitors53 indicating a large, promiscuous binding site, whereas BSEP is known to be 

more selective towards interacting ligands.54  
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5. Conclusion and Outlook 

In summary, the work presented in this master thesis shows insights into properties 

correlated with BSEP inhibition and gives a suggestion for an orthosteric binding site and 

ligand-protein interactions with the transporter.  

The data-based approach demonstrated the importance of lipophilicity and molecular 

weight, which is supported by several literature sources.47,48,49 Additional features, that 

were found to be important, were molar refractivity, rotatable bonds and hydrogen bond 

acceptors. No concrete matched molecular pairs were found in the data set. Fingerprint 

clustering resulted in the finding of abundant functional groups in the data set, including 

sulfonamides, carboxylic acids, piperazines and steroid-based molecules.  

The structure-based approach resulted in a possible binding site of the substrate 

taurocholate and a subset of inhibitors. Overall, six binding pockets were analyzed in 

more detail, using structure-based pharmacophores and docking studies. The proposed 

binding site is located in the center of the transporter and has a size of 135 amino acids. 

The pocket can be categorized into a hydrophilic cavity and a hydrophobic/aromatic part. 

When thinking of the natural substrates, this character reflects the amphiphilic structures 

of bile acids such as taurocholate. Upon induced-fit docking studies of taurocholate and 

a subset of inhibitors, containing a sulfonamide moiety, it was found that one specific 

interaction is conserved among nearly all inhibitors and the substrate, being a hydrogen 

bond with residue Lys30. It was further observed that, depending on the nature of the 

rest of the molecule, different binding modes are possible. Hydrophobic core structures, 

such as steroids, tended to interact with hydrophobic residues such as Ile245, Val248, 

Ile367, Ala370 and Leu371. Aromatic rings rather showed interactions with residues 

Phe20, Phe334, Trp330 and Tyr337. However, this trend was only observed for a small 

portion of inhibitors and needs to be further investigated.   

The results presented in this thesis could be used as starting point for further structural 

investigations. Since it is known that several carboxylic acid derived structures inhibit the 

transporter, it would be interesting to see whether this moiety also interacts with Lys30 

in docking studies. Together with that, the natural substrate glycocholate could be 

docked, which also contains a carboxylic acid moiety.  

Furthermore, structure-based pharmacophores could be created of the proposed binding 

mode to gather further insight on the plausibility of the binding pocket. For a higher 

reliability on the proposed results, the missing residues of the transporter should be 

modelled, to avoid overlooking any steric clashes that might occur.  
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In general, more concrete bioactivity data on the transporter would be beneficial for 

further QSAR or structural analyses. Especially a congeneric series of compounds could 

help elucidate important structural features for inhibitory activity. For the purposes of 

validating the proposed binding mode, mutation studies specifically altering the involved 

residues would be of great benefit. Lastly, it must be said that only high resolution co-

crystallized structures can provide the desired information on the location and 

interactions of ligands with a high certainty. Nevertheless, since elucidating the 

structures of membrane-bound proteins has been quite difficult to this day, homology 

modeling and working on apo structures are valuable tools for addressing structure-

based issues.  

Overall, the thesis provides a systematic workflow on how to combine data science and 

structure-based approaches for mapping structural differences with changes in activity, 

not only from a ligand’s point of view but also considering the structure of the protein. In 

this case, the approach did not work out as planned, however the described workflow 

can be used for any target protein and data set.  
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7. Appendix 

7.1. Supplemental material  

7.1.1. Data-based approach  

7.1.1.1. TGD-based pairs 

Table 14: Descriptor values of found pairs by TGD-based fingerprint clustering 

Molecule 
IC50 

[µM] 
SlogP 

AMW 

[g/mol] 
SMR TPSA NRotB HBA HBD 

3 > 133.0 4.0 279.4 87.5 12.5 3 2 0 

4 27.5 5.2 315.9 92.3 3.2 3 2 0 

5 > 133.0 3.7 241.3 72.6 49.3 3 2 2 

6 27.2 4.7 296.2 77.9 49.3 3 2 2 

7 > 133.0 1.6 376.5 100.2 95.9 9 5 2 

8 47.1 2.4 466.6 123.2 95.9 9 7 2 

9 >133.0 1.9 392.5 99.9 94.8 2 5 3 

10 23.7 2.2 408.9 104.7 94.8 2 5 3 

 

Table 15: Structures of found pairs by TGD-based fingerprint clustering 

Pair   

3 → 4 

  

5 → 6 

  

7 → 8 

  

9 → 10 

  

 



43 
 

7.1.1.2. GpiDAPH3-based pairs 

Table 16: Descriptor values of found pairs by GpiDAPH3-based fingerprint clustering 

Mol. IC50 [µM] SlogP AMW [g/mol] SMR TPSA NRotB HBA HBD 

11 > 1000.0 2.7 356.3 95.2 129.7 5 6 3 

12 129.7 3.7 364.7 395.3 117.7 4 5 2 

13 > 133.0 2.4 434.5 108.6 93.1 2 6 2 

14 < 10.0 3.9 455.0 112.3 72.8 2 5 1 

 

Table 17: Structures of found pairs by GpiDAPH3-based fingerprint clustering 

Pair   

11 → 12 

 

 

13 → 14 

  
 

7.1.1.3. MACCS-based pairs 

Table 18: Descriptor values of found pairs by MACCS-based fingerprint clustering 

Molecule 
IC50 

[µM] 
SlogP 

AMW 

[g/mol] 
SMR TPSA NRotB HBA HBD 

15 > 133.0 1.6 337.4 81.7 99.6 2 6 2 

16 7.6 2.3 371.8 86.7 99.6 2 6 2 

17 > 133.0 1.9 392.5 99.9 94.8 2 5 3 

18 16.4 2.8 376.5 98.5 74.6 2 4 2 
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Table 19: Structures of found pairs by MACCS-based fingerprint clustering 

Molecule   

15 → 16 

  

17 → 18 

  
 

 

7.1.2. Structure-based approach 

7.1.2.1. Sequence alignment  

 

Figure 27: Sequence alignment of P-gp and BSEP using Clustal O(1.2.4) multiple sequence alignment, * 
indicating same residue, : indicating related residue, . indicating non-related residue 
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Figure 28: Sequence alignment of P-gp and BSEP using Clustal O(1.2.4) multiple sequence alignment, * 
indicating same residue, : indicating related residue, . indicating non-related residue  

 

 

Figure 29: Binding site 1 of tariquidar in P-gp with interacting residues, pi-stacking as purple circle, 
hydrophobic interactions in yellow, positive ionizable in blue 



46 
 

 

Figure 30: Binding site 2 of tariquidar in P-gp with interacting residues, pi-stacking as purple circle, 
hydrophobic interactions in yellow, positive ionizable in blue 

 

7.1.2.2. Residues of calculated binding pockets 

Table 20: Residues surrounding binding pockets calculated by SiteFinder (MOE) and SiteMap (Maestro) 

Pocket Pocket surrounding residues (3Å) 

MOE1 

Glu21, Lys24, Ser25, Tyr26, Asn27, Asn28, Asp29, Lys30, 
Lys31, His72, Gln76, Ala167, Ala168, Ile171, Gln172, Arg175, 
Asn207, Asn210, Asp211, Ala214, Asp,215 Gln216, Leu219, 
Gln222, Arg223, Ser226, Val368, Leu371, Asn372, Asn375, 
Pro378, Gln918, Leu922, Phe925, Ala926, Asp929, Lys930, 
Leu933, Leu967, Pro970, Phe971, Thr973, Ala974, Lys977, 
Tyr981, Phe985, Gln989 

MOE2 

Leu7, Arg8, Lys11, Lys12, Phe13, Glu15, Glu16, Asp18, Gly19, 
Phe20, Tyr26, Trp330, Asn765, Gly766, Val768, Thr769, 
Gln813, Gln816, Phe820, Gly870, Gly873, Ser874, Gln875, 
Gly877, Met878, Asn881, Ser882, Asn885, Leu1026, Thr1029, 
Ala1030, Arg1033, Tyr1037, Ser1040, Tyr1041 

MOE3 
Glu15, Asp18, Ser25, Tyr26, Asn27, Asn28, Asp29, Lys30, 
Phe910, Leu911, Ala912, Ser914, Gly915, Ala916, Gln918, 
Ala988, Ile991, Met992, Val1025, Thr1029, Gly1032, Arg1033 

Maestro1 

Arg8, Lys11, Lys12, Phe13, Glu15, Glu16, Asp18, Phe20, Tyr26 
- Lys30, Trp330, Leu371, Asn375, Asn765, Thr769, Gln813, 
Gln816, Phe820, Gly870, Ser874, Gly877, Met878, Asn881, 
Ser882, Asn885, Leu911, Ala912, Ser914, Gly915, Thr919, 
Ala988, Ille991, Met992, Thr1029, Ala1030, Gly1032, Arg1033, 
Ser1036-Tyr1041 

Maestro2 

Asn27-Lys31, Val164, Ala167, Ala168, Ile171, Gln172, Arg175, 
Asn199, Phe202, Ser203, Asp204, Asn207, Lys208, Asn210, 
Asp211, Ala214, Asp215, Gln216, Leu219, Gln222, Arg223, 
Asn375, Pro378, Cys379, Ala382, Gln918, Leu922, Phe925, 
Ala926, Asp929, Lys930, Leu933, Glu934, Val936, Gly937, 
Gln938, Pro970, Thr973, Ala974, Lys977, Tyr981, Phe985, 
Gln989 

Maestro4 

Ile6, Ser9, Ile10, Gly14, Glu15, Asn17-Phe20, Asn27, Ile245, 
Ile246, Val248, Ser249, Ile252, Ala256, Ile259, Ser264, Met322, 
Val329, Ile333, Cys336, Tyr337, Val366, Ile367, Ala370, 
Leu371, Gly374, Asn375, Arg1033 
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7.1.2.3.  Visualization of binding pockets and e-pharmacophores 

 

Figure 31: Pharmacophore of MOE1 with surrounding transporter helices (left) and only with excluded 
volumes (right); blue vector = HBD; red vector = HBA; orange ring = aromatic; blue spheres = exclusion 
volumes 

 

Figure 32: Pharmacophore of MOE2 with surrounding transporter helices (left) and only with excluded 
volumes (right); blue vector = HBD; red vector = HBA; orange ring = aromatic; blue spheres = exclusion 
volumes 
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Figure 34: Pharmacophore of Maestro1 with surrounding transporter helices (left) and only with excluded 
volumes (right); blue vector = HBD; red vector = HBA; orange ring = aromatic; blue spheres = exclusion 
volumes 

 

Figure 35: Pharmacophore of Maestro2 with surrounding transporter helices (left) and only with 
excludedvolumes (right); blue vector = HBD; red vector = HBA; orange ring = aromatic; 

 blue spheres = exclusion volumes 

Figure 33: Pharmacophore of MOE3 with surrounding transporter helices (left) and only with excluded 
volumes (right); blue vector = HBD; red vector = HBA; orange ring = aromatic; blue spheres = exclusion 
volumes 
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7.1.2.4. Cluster19 ranking according to IFD Score and Emodel Score

Figure 36: Ranking of molecules in cluster 19 according to 1) IFD score and 2) Glide emodel score  
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Figure 37: Ranking of molecules in cluster 19 according to 1) IFD score and 2) Glide emodel score 
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7.2. Abstract 

This master thesis focusses on a data-based and structure-based approach for the better 

understanding of the inhibition of the human bile salt export pump. The DILI-associated 

ABC transporter plays an important role in drug discovery and development since 

numerous drugs are discontinued in late clinical trials or withdrawn from market due to 

liver toxicity. Therefore, insights into molecular patterns causing inhibition and 

consequently impaired transport activity of BSEP would be of great benefit.  

Data-based experiments such as molecular descriptor calculations and clustering 

methods were implemented in the attempt of finding structural features differentiating 

inhibitors and non-inhibitors. The data analysis showed a correlation between higher 

lipophilicity and higher molecular weights and increased inhibitory activity. These trends 

support previous literature findings. Additional descriptors, that were implicated in 

elevated inhibitory potential include higher molar refractivity values, higher flexibility and 

hydrogen-bond accepting properties. 

Due to the release of the apo structure of the transporter in April 2020, structure-based 

investigations such as binding pocket detection and identification of important ligand 

features and ligand-protein interactions could be conducted. This thesis presents a 

possible orthosteric binding pocket with promising poses of the natural substrate 

taurocholate and a subgroup of inhibitors containing a sulfonamide moiety. Residues 

involved in protein-ligand interactions include the hydrogen bond donor Lys30, the 

hydrophobic residues Ile245, Val248, Ile367, Ala370 and Leu371, as well as aromatic 

residues such as Phe20, Phe334, Trp330 and Tyr337.  

Further in silico investigations and in vitro assays are necessary to support the proposed 

binding hypothesis. 
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7.3. Zusammenfassung 

Diese Masterarbeit beschätftigt sich mit der Analyse der Inhibierung des humanen 

Gallensäure-Exporters, kurz bezeichnet BSEP (bile salt export pump). Dieser ABC-

Transporter wurde in der Vergangenheit mit schweren arzneimittelinduzierten 

Leberschäden assoziiert, die oftmals erst in fortgeschrittenen klinischen Studien oder 

nach Markteinführung erkannt werden. Erkenntnisse über die molekularen 

Zusammenhänge, die zu einer Inhibierung des Transporters und damit zu einer 

beeinträchtigten Transportaktivität führen, wären äußerst wertvoll für die 

Arzneistoffforschung.  

Datenbasierte Experimente, wie molekulare Deskriptorberechnungen und 

Clusteringmethoden, wurden implementiert, um strukturelle Unterschiede zwischen 

Inhibitoren und Nicht-Inhibitoren auszumachen. Die Datenanalyse zeigte eine 

signifikante Korrelation zwischen höherer Lipophilie und höherem Molekulargewicht und 

erhöhter Inhibierungsaktivität. Diese Trends unterstreichen bereits gefundene Resultate 

in Literaturquellen. Zusätzliche Deskriptoren, die mit Inhibierung des Transporters in 

Zusammenhang gebracht wurden, inkludieren höheres molares Brechungsvermögen, 

höhere Flexibilität und Wasserstoffbrückenakzeptoren.  

Die im April 2020 veröffentlichte Apostruktur wurde zur Detektion möglicher 

Bindungstaschen und in weiterer Folge zur Analyse wichtiger Ligand-Protein-

Interaktionen herangezogen. In dieser Arbeit wird eine mögliche orthosterische 

Bindungstasche vorgestellt, die vielversprechende Posen mit dem natürlichen Substrat 

Taurocholsäure und einer Gruppe von Inhibitoren, die eine Sulfonamid-Einheit 

aufweisen. Aminosäuren, die Wechselwirkungen mit dem Liganden zeigen, inkludieren 

den Wasserstoffbrückenakzeptor Lys30, hydrophobe Reste wie Ile245, Val248, Ile367, 

Ala370 und Leu371, sowie die aromatischen Reste Phe20, Phe334, Trp330 und Tyr337. 

Um die  vorliegende Hypothese zu validieren, müssen weitere in silico sowie in vitro 

Untersuchungen durchgeführt werden.  
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7.4. Abbreviations 

ABC … ATP-binding-cassette  

AMW … molecular weight 

ATP … adenosine triphosphate 

BA … bile acid 

BSEP … bile salt export pump 

Cryo-EM ... Cryogenic electron microscopy 

DILI … drug-induced liver injury 

GC … glycocholic acid 

GCDC ... glycochenodeoxycholic acid  

Glide … grid-based ligand docking with energetics 

GpiDAPH3 … graph-p-donor-acceptor-polar-hydrophobe-triangle 

HB … hydrogen bonding, hydrogen bonds 

HBA ... hydrogen bond acceptor  

HBD ... hydrogen bond donor 

IC50 … half maximal inhibitory concentration 

IFD … induced-fit docking  

KNIME … Konstanz information miner  

MACCS … molecular access system 

MDR … multi-drug resistance 

MMP ... matched molecular pair 

Mol. … Molecule 

NBD … nucleotide-binding domain  

P-gp ... P-glycoprotein 

SAR ... structure-activity-relationship 

SIFt ... structural interaction fingerprint 

SMR … molar refractivity 

TC … taurocholic acid 

TCDC … taurochenodeoxycholic acid 

TGD … typed-graph distances 

TMD … transmembrane domain  

TPSA ... topological polar surface area  


