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Abstract
In this thesis we modify the well known SIR model, which describes the spread of diseases,
by considering the contact intensity between individuals and their mobility. In a first
step we introduce a model with contact intensity structure and investigate the existence
and uniqueness of solutions with the help of the theorem of Picard-Lindelöf. In the next
model we include a mobility structure in one and two dimensions, which is based on the
location of residence and a mobility radius. In both cases we can prove the existence of a
traveling wave under certain requirements and find a minimal wave speed. Finally, we
combine the contact intensity and the mobility structure in one epidemiological model.

Zusammenfassung
In dieser Arbeit modifizieren wir das bekannte SIR Modell, welches die Verbreitung von
Krankheiten beschreibt, durch die Berücksichtigung der Kontaktintensität zwischen Indi-
viduen und deren Möbilität. Im ersten Schritt führen wir ein Modell mit Kontakintensität
ein und untersuchen das resultierende System auf eindeutige Lösungen, wobei wir den Satz
von Picard-Lindelöf verwenden. Das nächste Modell beinhaltet eine Mobilitätsstruktur im
ein- und zweidimenesionalen Fall, welche auf dem Wohnort und einem Mobilitätsradius
beruht. In beiden Fällen können wir die Existenz einer Wanderwelle unter bestimmten
Voraussetzungen zeigen und eine minimale Wellengeschwindigkeit finden. Abschließend
vereinen wir sowohl die Kontaktintensität als auch die Mobilitätsstruktur in einem
epidemischen Modell.
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1. Introduction

Nowadays, and throughout history, there are a lot of infectious diseases spreading within
animal and human populations. Since often such diseases cause a lot of harm to people,
we not only want to understand the disease from a medical point of view and find some
treatments, but we also aim to find some models to predict the dynamics of the spread.
On one hand mathematical models can help us to give some predictions about what
will happen in future and on the other hand they tell us what measures are useful
to prevent an outbreak. By an infectious disease we understand an illness caused by
a pathogenic microbial agent, i.e., by a bacterial, viral, fungal or parasitic agent, see
also [8, ch. 1, pp. 1-2]. A special case of infectious diseases are communicable diseases,
which means that the disease is transmitted by direct or indirect contact of an infectious
individual to another. Examples of communicable diseases are Ebola, Influenza, SARS,
HIV, Tuberculosis, Hepatitis, Malaria and the new Covid-19. Our goal is to develop
an epidemiological model with contact intensity and mobility structure for the spread
of a communicable disease within a population. Let us start by giving a description
what epidemiology is about: “Epidemiology is the subject that studies the patterns of
health and illness and associated factors at the population level.”, [8, ch. 1, p. 1]. A
common kind of epidemiological models are compartmental models, where the population
is divided into different classes. The SIR model, or also called Kermack-McKendrick
model, is an popular compartment model and we use it as a basis for our model with
contact intensity and mobility structure.

1.1. The SIR model

The SIR model was first invented in 1927 by W.O. Kermack and A.G. McKendrick in
their works [4], [5] and [6]. We follow the approach of [8, pp. 9-16] and [2, pp. 350-356],
but there is a lot of further literature about this topic, e.g., [1] and [3]. In order to state
the SIR model we divide the population into the following three compartments:

• Susceptible: The susceptible individuals of a population are the healthy ones,
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1. Introduction

but they can get infected by contact to an infected individual. The number of
susceptible individuals at time t ∈ R, t ≥ 0, is denoted by S(t).

• Infected: The infected individuals within a population are also assumed to be
infectious and thus, can infect other individuals. The number of infected individuals
is given by I(t) for t ∈ R, t ≥ 0.

• Removed: The removed individuals have already been infected, but are not infec-
tious anymore. This state can either be reached through immunization, death or
quarantine. The number of recovered individuals at time t ∈ R, t ≥ 0, is R(t).

We make the following assumptions:

• The total population N = S(t)+I(t)+R(t) is constant, i.e., dNdt = dS
dt + dI

dt + dR
dt = 0.

This assumption means that there are no births and deaths and that there is no
immigration or emigration. This is reasonable, because we expect the disease to
spread quickly compared to the lifespan of the individuals, thus, we can ignore
demographic effects on the population.

• The sizes of the compartments S(t), I(t) and R(t) are nonnegative for all t ∈ R,
t ≥ 0.

• An individual can only be in one of the three compartments per time.

• The rate at which infected individuals have contact to susceptible individuals per
unit time, that also results in a transmission, is given by βSI with β > 0 constant.

• The rate at which infected individuals are removed from the infected class by
recovering, dying or isolation is given by γI with γ > 0 a disease specific constant.

• As in the description of the removed compartment suggested, we suppose that once
an individual recovered from the disease, they are immune to any further infection.
Therefore, every individual reaching the removed compartment stays there.

The SIR model is given by the following system of ordinary differential equations

dS

dt
= −βSI, S(0) = S0, (1.1.1)

dI

dt
= βSI − γI, I(0) = I0, (1.1.2)

dR

dt
= γI, R(0) = R0. (1.1.3)
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1. Introduction

In order to understand the epidemiological meaning of the term γI, we assume that
there is no inflow into the infected compartment and that there is a certain number of
individuals I0 infected. The differential equation describing the dynamics if a fraction γ
is leaving the infected compartment in unit time is given by

dI

dt
= −γI, I(0) = I0,

with the solution

I(t) = I0e
−γt.

Therefore, the amount of individuals who are still infected t time units after infection is
e−γt. In other words, this is the probability of still being infected at time t. The fraction
of individuals who have left the infected compartment is given by F (t) = 1− e−γt, which
is a probability distribution for t ≥ 0. Thus, f(t) = dF

dt = γe−γt is a probability density
function. The average time spent in the infected compartment is the mean of f(t), i.e.,

∫ ∞
−∞

tγe−γt dt = 1
γ
.

If we know the duration of the infectious period, which is the case for many diseases,
we can calculate γ.

Remark 1.1.1. Note that the system (1.1.1)− (1.1.3) is determined only by the first two
equations, since we assume N to be constant. Thus, for the analysis we can either work
with the whole system or we can neglect the third equation.

1.1.1. Dynamics of the SIR model and the basic reproduction number

We aim to predict the spread of the disease described by the system (1.1.1)− (1.1.3), i.e.,
we want to analyze the dynamics and want to know if or when there is an outbreak. In
mathematical terms an outbreak corresponds to the increase of the size of the infected
compartment. Thus, we observe the changes of the sizes of the compartments by time.
Initially, S0 > 0, I0 > 0 and R0 = 0 holds. The number of susceptible individuals

is large at the beginning, almost the whole population. On the contrary, the size of
the infected compartment is very small for t = 0. Since S(t)′ < 0 for all t ∈ R, t ≥ 0,
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1. Introduction

and S is nonnegative, the number of susceptible individuals decreases monotonically
and lim

t→∞
S(t) = S∞ exists. We will see later on, that in the case of an outbreak, not

all individuals get infected, that is, S∞ > 0. Because (S(t) + I(t))′ < 0, S(t) + I(t) is
nonnegative and S∞ exists, also lim

t→∞
I(t) = I∞ exists. We know that R(t)′ > 0 holds for

all t ≥ 0, R is nonnegative and bounded by N , i.e., the size of the removed compartment
is monotonically increasing until there are no infected individuals left and therefore, we
have existence of lim

t→∞
R(t) = R∞. Since

dI

dt
= βSI − γI = (βS − γ) I

 < 0 ⇐⇒ βS
γ < 1 ⇐⇒ S < γ

β ,
> 0 ⇐⇒ βS

γ > 1 ⇐⇒ S > γ
β ,

holds, the number of infected individuals increases as long as S > γ
β . For S = γ

β , I
attends its maximum and if S < γ

β it decreases. Consequently, if initially there are too
little susceptible individuals, the number of infected individuals never increases and there
is no spread of the disease. In other words whether there is an epidemic or not depends
on the value of βS0

γ ≈
βN
γ . If we normalize the size of the total population, i.e., N = 1,

and the sizes of the compartments, we can simplify this threshold by β
γ . It is called the

basic reproduction number and denoted by R0:

Definition 1.1.1. The basic reproduction number R0 is the number of secondary cases
caused by a single infected individual within a susceptible population.

Figure 1.1.: The plot shows the SIR model with S0 = 0.99, I0 = 0.01, R0 = 0, β = 0.5
and γ = 1

10 . Since R0 = β
γ > 1, the outbreak of the disease is visible. It is

plotted with Python 3.8 and the code can be found in Section A.1.
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1. Introduction

Next we show that S∞ > 0, calculate the maximum of I(t) provided it exists and
determine the value for I∞. In order to prove S∞ > 0, we divide (1.1.1) by (1.1.3) and
obtain

dS

dR
= −β

γ
S.

Solving this equation and bounding R from above by N = 1 yields

S(R(t)) = S0e
−β
γ
R ≥ S0e

−β
γ > 0. (1.1.4)

We conclude that S∞ > 0 and hence, that there are always susceptible individuals left
at the end of an epidemic who escape the disease. Biologically this is reasoned by the
fact that the pathogen can hardly find a new host, if enough individuals were infected
already. We call S∞ the final size of the epidemic. We can find this lower bound as well
by the calculation

(S(t) + I(t))′ = −γI(t)

=⇒ S(t) + I(t)− S(0)− I(0) = −γ
∫ t

0
I(τ) dτ

=⇒
∫ t

0
I(τ) dτ ≤ N

γ
= 1
γ
,

S(t)′

S(t) = −βI(t)

=⇒ ln (S(0))− ln (S(t)) = β

∫ t

0
I(τ) dτ ≤ β

γ

=⇒ S(0)
S(t) ≤ e

β
γ

⇐⇒ S(t) ≥ S(0)e−
β
γ > 0,

which equals the result (1.1.4). For the calculation of the maximum value of I(t), in
case it exists, i.e., for R0 > 1, we look at the SI-plane. Therefore, we divide (1.1.2) by
(1.1.1)
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1. Introduction

dI

dS
= −1 + γ

βS
,

separate the variables and integrate to obtain

I(S(t)) = −S(t) + γ

β
ln(S(t)) + C,

where C is a constant. We substitute the initial conditions S0 and I0 in order to obtain
the value for C, which is

C = S0 + I0 −
γ

β
ln(S0).

Since we are looking for a maximum, we need I ′ = 0, which is attained for S = γ
β .

After inserting C and S, we get the following maximum for I:

Imax = −γ
β

+ γ

β
ln
(
γ

β

)
+ S0 + I0 −

γ

β
ln(S0).

Taking into account that S(t) decreases, we conclude that in the SI-plane the curve
goes from right to left and thus, I(S(t)) increases for S > γ

β and decreases for S(t) < γ
β .

Note that all solutions move from bottom-right upwards, then downwards on the left
and they stay below the line S + I = 1. We expect the limit of I(t) for t → ∞ to be
zero. In order to prove that, let us assume I∞ 6= 0. Therefore, equation (1.1.3) is strictly
positive for all t ∈ R ∪∞, t ≥ 0, and R∞ =∞. But we already proved that R∞ exists,
which is a contradiction and I∞ = 0. Note that we can conclude I∞ = 0 with the same
arguments as above by summing up (1.1.1) and (1.1.2).

In conclusion, we note that the SIR model is not hard to analyze. Unfortunately, it is
not very realistic, since it assumes the population to be homogeneously mixed and the
individuals to behave alike. In the following chapters we seek to adapt the model and
therefore, exchanging β by taking individual behavior into account.
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1. Introduction

Figure 1.2.: The plot shows the SI-plane of the SIR model with S0 = 0.99, I0 = 0.01,
R0 = 0, β = 0.5 and γ = 1

10 . The dashed lines show the point
(
Imax,

γ
β

)
.

This plot is created with Python 3.8 as well, see Section A.1.
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2. SIR epidemiological model with contact
intensity structure

The purpose of this chapter is to make the classical SIR model more realistic. Since
individuals behave differently in general, one way to obtain a more realistic model is to
include a function, which measures the contact intensity. The idea is that the contact
intensity is high, if the individuals tend to have close physical contact to others, for example
by shaking hands. It is low if the individuals keep distance to others or wear face coverings
and gloves. Instead of total sizes we work with the population densities of the susceptible,
infected and removed individuals denoted by fS(c, t), fI(c, t) and fR(c, t). The densities
depend on a contact intensity c ∈ [0, 1] and time t ∈ R, t ≥ 0, and are nonnegative for all c
and t. The initial conditions are given by fS(c, 0) = fS0(c) > 0, fI(c, 0) = fI0(c) > 0, and
fR(c, 0) = fR0(c) = 0 and we have fS(c, t) + fI(c, t) + fR(c, t) = fN (c) for all t ∈ R, t ≥ 0,
thus, the total population is still constant w.r.t. time. The intensity of the interaction
between the individuals is measured by the kernel K1(c, c̃) and the SIR epidemiological
model with contact intensity structure is given by

∂tfS(c, t) = −fS(c, t)
∫ 1

0
K1(c, c̃)fI(c̃, t) dc̃, (2.0.1)

∂tfI(c, t) = fS(c, t)
∫ 1

0
K1(c, c̃)fI(c̃, t) dc̃− γfI(c, t), (2.0.2)

∂tfR(c, t) = γfI(c, t), (2.0.3)

where γ > 0 is the recovery rate. The kernel K1 should satisfy K1(c, c̃) = 0 if and only
if c = 0, c̃ = 0 or c = c̃ = 0. This assumption takes care of the case when there is no
contact intensity, therefore, no interaction and thus, no infection. The following kernels
satisfy this assumption

• K1(c, c̃) = cc̃,

• K1(c, c̃) = (cc̃)p with p > 0,

8



2. SIR epidemiological model with contact intensity structure

• K1(c, c̃) = min(c, c̃).

As in the SIR model, we see that also the system (2.0.1)− (2.0.3) is determined by the
first two equations. Therefore, we neglect the third equation in the following analysis.

2.1. Discussion of the dynamics

Following the same arguments as in Section 1.1.1, we obtain the dynamics of fS(c, t),
fI(c, t) and fR(c, t). We begin with a very large density of susceptible individuals
and a small density of infected individuals. For an arbitrary fixed c ∈ [0, 1] the limit
lim
t→∞

fS(c, t) = fS∞(c) exists, since fS(c, t) decreases for t ∈ R, t ≥ 0 and fS(c, t) is
nonnegative. Also, lim

t→∞
fI(c, t) exists for a fixed c ∈ [0, 1]. In order to prove this

existence, we look at ∂t (fS(c, t) + fI(c, t)). The derivative is negative, but the functions
themselves are nonnegative. Thus, fS(c, t) + fI(c, t) is decreasing to some limit and
fI(c, t) can not diverge. The limit of fR(c, t) exists by the same argument as in Section
1.1.1. Again, by the same arguments as in Section 1.1.1 we obtain fI∞ = 0.

Remark 2.1.1. The equilibria with fI(c, t) = 0 are called disease free equilibria.

In order to derive a lower bound for fS we divide (2.0.1) by fS(c, t), which yields

∂tfS(c, t)
fS(c, t) = −

∫ 1

0
K1(c, c̃)fI(c̃, t) dc̃.

By integration with respect to t, we obtain

ln (fS(c, t))− ln (fS(c, 0)) = −
∫ 1

0
K1(c, c̃)

∫ t

0
fI(c̃, τ) dτdc̃. (2.1.1)

We use again the equation resulting from adding (2.0.1) and (2.0.2) to get

∂t (fS(c, t) + fI(c, t)) = −γfI(c, t)

=⇒ fS(c, t) + fI(c, t)− fS(c, 0)− fI(c, 0) = −γ
∫ t

0
fI(c, τ) dτ

=⇒
∫ t

0
fI(c, τ) dτ ≤ 1

γ
(fS(c, 0) + fI(c, 0)) ,

where the last inequality holds pointwise for c ∈ [0, 1]. We insert this estimate into
(2.1.1) to obtain a lower bound for the density of susceptible individuals

9



2. SIR epidemiological model with contact intensity structure

ln (fS(c, 0))− ln (fS(c, t)) =
∫ 1

0
K1(c, c̃)

∫ t

0
fI(c̃, τ) dτdc̃

≤ 1
γ

∫ 1

0
K1(c, c̃) (fS(c̃, 0) + fI(c̃, 0)) dc̃

=⇒ fS(c, 0)
fS(c, t) ≤ e

1
γ

∫ 1
0 K1(c,c̃)(fS(c̃,0)+fI(c̃,0)) dc̃

⇐⇒ fS(c, t) ≥ fS(c, 0)e−
1
γ

∫ 1
0 K1(c,c̃)(fS(c̃,0)+fI(c̃,0)) dc̃

= fS(c, 0)e−
1
γ

∫ 1
0 K1(c,c̃)fN (c̃) dc̃

> 0. (2.1.2)

This lower bound for fS is analogous to the bound for S in Section 1.1.1.

2.2. Existence and uniqueness of solutions

We aim to prove the existence and uniqueness of solutions of the system (2.0.1)− (2.0.3).
Therefor we fix an arbitrary c ∈ [0, 1] and recall the theory of ordinary differential
equations, which can be found in, e.g., [10] and [12]. We consider the ordinary differential
equation

du

dt
= f(u(t)), u(0) = u0, (2.2.1)

with u(t) ∈ Rn for t ∈ R and f : Rn → Rn. The following theorem guarantees local
existence and uniqueness of solutions:

Theorem 2.2.1 (Picard-Lindelöf). Let u0 ∈ Rn and let f(u) be Lipschitz continuous
in a neighborhood U of u0 with values in Rn. Then there exists T > 0 and a unique
u ∈ C1 ((−T, T )) solving (2.2.1) for −T < t < T . The existence time T only depends on
U , on supU |f |, and on the Lipschitz constant of f in U .

In the following we sketch the proof of Theorem 2.2.1:

The integral equation of (2.2.1) is given by

u(t) = u0 +
∫ t

0
f(u(s)) ds. (2.2.2)

10



2. SIR epidemiological model with contact intensity structure

For small t, u0(t) = u0 is an approximate solution and if we plug it into the integral
equation we obtain

u1(t) = u0 +
∫ t

0
f(u0(s)) ds.

Iterating this procedure leads to a sequence of approximate solutions

un+1(t) = u0 +
∫ t

0
f(un(s)) ds =: F (un)(t).

We want to apply the Banach fixed point Theorem A.2.1 to F : C ([0, T ] ,Rn) →
C ([0, T ] ,Rn) and therefore, we need to prove that F is a contraction for a locally
Lipschitz continuous f with Lipschitz constant L. Note that C ([0, T ] ,Rn) is a Banach
space equipped with the L∞ ([0, T ]) norm and hence, the Banach fixed point Theorem is
applicable after proving the contraction estimate. For u, v ∈ C ([0, T ] ,Rn) with u 6= v

the estimate

|F (u)(t)− F (v)(t)| =
∣∣∣∣∫ t

0
(f(u(s))− f(v(s))) ds

∣∣∣∣
≤
∫ t

0
|f(u(s))− f(v(s))| ds

≤ L
∫ t

0
|u(s)− v(s)| ds

≤ Lt ‖u− v‖L∞([0,T ])

≤ LT ‖u− v‖L∞([0,T ])

holds, which implies

‖F (u)− F (v)‖L∞([0,T ]) ≤ LT ‖u− v‖L∞([0,T ]) .

Hence, for small T the term LT is less than one and F is a contraction. By the Banach
fixed point Theorem, F has exactly one fixed point and thus, there locally exists exactly
one solution for the initial value Problem (2.2.1). For a global result, we refer to [10, p.
4].

11



2. SIR epidemiological model with contact intensity structure

In our case, we first show that the right hand side of (2.0.1) − (2.0.2) is Lipschitz
continuous w.r.t. t ∈ R, t ≥ 0, for arbitrary fixed c ∈ [0, 1]

∣∣∣∣fS(c, t)
∫ 1

0
K1(c, c̃)fI(c̃, t) dc̃− gS(c, t)

∫ 1

0
K1(c, c̃)gI(c̃, t) dc̃

∣∣∣∣
≤
∫ 1

0
K1(c, c̃) |fS(c, t)fI(c̃, t)− gS(c, t)gI(c̃, t)| dc̃

=
∫ 1

0
K1(c, c̃) |(fS(c, t)− gS(c, t)) fI(c̃, t) + gS(c, t) (fI(c̃, t)− gI(c̃, t))| dc̃

≤f̃ max
c∈[0,1]

∫ 1

0
K1(c, c̃) dc̃

(
‖fS(t)− gS(t)‖L∞([0,1]) + ‖fI(t)− gI(t)‖L∞([0,1])

)
and ∣∣∣∣fS(c, t)

∫ 1

0
K1(c, c̃)fI(c̃, t) dc̃− γfI(c, t)− gS(c, t)

∫ 1

0
K1(c, c̃)gI(c̃, t) + γgI(c, t) dc̃

∣∣∣∣
≤
∫ 1

0
K1(c, c̃) |fS(c, t)fI(c̃, t)− gS(c, t)gI(c̃, t)| dc̃+ γ |fI(c, t)− gI(c, t)|

=
∫ 1

0
K1(c, c̃) |(fS(c, t)− gS(c, t)) fI(c̃, t) + gS(c, t) (fI(c̃, t)− gI(c̃, t))| dc̃

+ γ |fI(c, t)− gI(c, t)|

≤f̃ max
c∈[0,1]

∫ 1

0
K1(c, c̃) dc̃ ‖fS(t)− gS(t)‖L∞([0,1])

+
(
f̃ max
c∈[0,1]

∫ 1

0
K1(c, c̃) dc̃+ γ

)
‖fI(t)− gI(t)‖L∞([0,1]) .

For the last inequalities we use the estimate

∂t (fS + fI) = −γfI < 0

=⇒ fS + fI ≤ fS0 + fI0 = f̃ .

Now we follow the sketch of the proof and show that F = (FS , FI) with

fS(c, t) = fS0(c)−
∫ t

0
fS(c, τ)

∫ 1

0
K1(c, c̃)fI(c̃, τ) dc̃dτ = FS(fS , fI)(c, t),

fI(c, t) = fI0(c) +
∫ t

0

(
fS(c, τ)

∫ 1

0
K1(c, c̃)fI(c̃, τ) dc̃− γfI(c, τ)

)
dτ = FI(fS , fI)(c, t)

12



2. SIR epidemiological model with contact intensity structure

is a contraction on the Banach space C ([0, 1]× [0, T ],Rn) with the L∞ ([0, 1]× [0, T ])
norm. We proceed by proving it for FS and FI separately

|FS(fS , fI)(c, t)− FS(gS , gI)(c, t)|

≤
∫ t

0

∫ 1

0
K1(c, c̃) |fS(c, τ)fI(c̃, τ)− gS(c, τ)gI(c̃, τ)| dc̃dτ

≤f̃T max
c∈[0,1]

∫ 1

0
K1(c, c̃) dc̃

(
‖fS − gS‖L∞([0,1]×[0,T ]) + ‖fI − gI‖L∞([0,1]×[0,T ])

)
and

|FI(fS , fI)(c, t)− FI(gS , gI)(c, t)|

≤
∫ t

0

(∫ 1

0
K1(c, c̃) |fS(c, τ)fI(c̃, τ)− gS(c, τ)gI(c̃, τ)| dc̃+ γ |fI(c, τ)− gI(c, τ)|

)
dτ

≤f̃T max
c∈[0,1]

∫ 1

0
K1(c, c̃) dc̃ ‖fS − gS‖L∞([0,1]×[0,T ])

+
(
f̃T max

c∈[0,1]

∫ 1

0
K1(c, c̃) dc̃+ γT

)
‖fI − gI‖L∞([0,1]×[0,T ]) .

Thus, for small T , we obtain a contraction and again by the Banach fixed point
Theorem we conclude that (2.0.1)− (2.0.2) has locally exactly one solution pointwise for
c ∈ [0, 1].

13



3. SIR epidemiological model with mobility
structure in one dimension

Another way to make the SIR model more realistic is to include a mobility structure. That
is, the individuals have a location of residence and an area around this location, where
they usually move. If an individual has a large mobility radius, for example because their
home is far away from their working place, they meet more other individuals than the
ones with small mobility radius. Since there is a space variable included, it is obvious to
investigate the existence of a infection wave which travels through space. This approach
can also be found in, e.g., [7] and [3, pp. 418-424]. We again work with population densities
rather than total sizes. Let fS(x, r, t), fI(x, r, t) and fR(x, r, t) denote the densities of
the susceptible, infected and removed individuals depending on the location of residence
x ∈ R, a mobility radius r ∈ R, r ≥ 0, and time t ∈ R, t ≥ 0. Analogous to Chapter 2
we have the initial conditions fS(x, r, 0) = fS0(x, r) > 0, fI(x, r, 0) = fI0(x, r) > 0, and
fR(x, r, 0) = fR0(x, r) = 0 and fS(x, r, t) + fI(x, r, t) + fR(x, r, t) = fN (x, r) holds for all
t ∈ R, t ≥ 0. In this case we measure the contact between the individuals due to mobility
by the kernel K2(x, x̃, r, r̃) and obtain the model

∂tfS(x, r, t) = −fS(x, r, t)
∫ rmax

0

∫
R
K2(x, x̃, r, r̃)fI(x̃, r̃, t) dx̃dr̃, (3.0.1)

∂tfI(x, r, t) = fS(x, r, t)
∫ rmax

0

∫
R
K2(x, x̃, r, r̃)fI(x̃, r̃, t) dx̃dr̃ − γfI(x, r, t), (3.0.2)

∂tfR(x, r, t) = γfI(x, r, t), (3.0.3)

where γ > 0 denotes the recovery rate and rmax ∈ [0,∞]. The mobility radius
r is restricted to [0, rmax] to impose restrictions on the mobility of individuals with
rmax denoting the maximal allowed radius. For example setting rmax = 0 corresponds
to an absolute curfew. The kernel K2 should satisfy K2(x, x̃, r, r̃) = 0 if and only if
|x − x̃| > r + r̃ ⇐⇒ 1 − |x−x̃|r+r̃ < 0, where |.| denotes the absolute value in R. This
assumption is satisfied for example by

14



3. SIR epidemiological model with mobility structure in one dimension

K2(x, x̃, r, r̃) = k

( |x− x̃|
r + r̃

)
=


(
1− |x−x̃|r+r̃

)
+

if r, r̃ > 0 and x 6= x̃,

1 if r, r̃ = 0 and x = x̃,
0 if r, r̃ = 0 and x 6= x̃.

Remark 3.0.1. Analogously to Chapter 2, we obtain the same dynamics, existence of
solutions and uniqueness results for the system (3.0.1)− (3.0.3).

3.1. Traveling wave

As already mentioned above, we are interested in the existence of a traveling wave
connecting the two disease free equilibria of (3.0.1)− (3.0.2), i.e., the equilibria fI0(c) = 0
and fI∞(c) = 0. Note that there is no information lost if we neglect the last equation.
Before we state the definition of a traveling wave, we simplify the equations by assuming
that the mobility radius r is equal for all individuals and K2 (x, x̃, r) = k

(
|x−x̃|

2r

)
=

k
(
|x−x̃|
R

)
. Thus, the simplified version is given by

∂tfS(x, t) = −fS(x, t)
∫
R
k

( |x− x̃|
R

)
fI(x̃, t) dx̃, (3.1.1)

∂tfI(x, t) = fS(x, t)
∫
R
k

( |x− x̃|
R

)
fI(x̃, t) dx̃− γfI(x, t). (3.1.2)

Definition 3.1.1. A traveling wave is a solution of the form fS = fS(x − ct) = fS(ξ)
and fI = fI(x− ct) = fI(ξ), where c is the speed of the wave.

Remark 3.1.1. Note that the speed c is a positive number and later we calculate the
minimal possible wave speed.

The spread of the disease is described by the wave traveling through space. The
wave and time have opposite directions, that is, if time goes forward the wave travels
backwards and vice versa. W.l.o.g. we suppose that the wave travels from left to right,
i.e., for ξ →∞ the solutions fS(ξ) and fI(ξ) converge to the initial conditions.

3.1.1. Diffusion approximation

In order to find a traveling wave, we do a diffusion approximation in the one dimensional
space variable. We start with nondimensionalizing the system (3.1.1)− (3.1.2), then we
do a rescaling and finally, we use Taylor expansion to obtain a diffusion approximation.
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3. SIR epidemiological model with mobility structure in one dimension

Nondimensionalization

We choose the following units

[fS ] = [fI ] = m−1,

[x] = [x̃] = m,

[t] = s,

and want to find the units for k and γ in such a way that the equations (3.1.1)− (3.1.2)
still hold. Therefor we write the equations in form of units. From equation (3.1.1), we
obtain

[fS ]
[t] = − [fS ] [k] [fI ] [x̃]

⇐⇒ 1
m s = m−1 [k] m−1m

=⇒ [k] = s−1.

To compute the unit of γ, we plug in the corresponding units in equation (3.1.2) and
get

[fI ]
[t] = [fS ] [k] [fI ] [x̃]− [γ] [fI ]

⇐⇒ 1
m s = m−1 s−1m−1m− [γ] m

=⇒ [γ] = s−1.

Since we aim to state the system (3.1.1)− (3.1.2) in dimensionless form, we need the
space and time variable, as well as the densities, to be dimensionless. Hence, we do a
scaling with appropriate references for length and time. We choose R, coming from the
kernel k, as reference length. For the reference time, we pick the disease specific constant
1
γ and thus, obtain

• Reference length: R with [R] = m,

• Reference time: T = 1
γ with [T] = s,

16



3. SIR epidemiological model with mobility structure in one dimension

and scale as follows

x = Rxs,

x̃ = Rx̃s,

t = Tts,

k

( |x− x̃|
R

)
= 1

T
ks (|xs − x̃s|) ,

fS(x, t) = 1
R
fSs(xs, ts),

fI(x, t) = 1
R
fIs(xs, ts),

where xs, x̃s, ts, ks, fSs and fIs denote the dimensionless versions. In order to derive the
dimensionless equations, we substitute the scaled quantities in equations (3.1.1)− (3.1.2):

1
TR

∂tsfSs(xs, ts) =− 1
R
fSs(xs, ts)R

∫
R

1
T
ks (|xs − x̃s|)

1
R
fIs(x̃s, ts) dx̃s,

1
TR

∂tsfIs(xs, ts) = 1
R
fSs(xs, ts)R

∫
R

1
T
ks (|xs − x̃s|)

1
R
fIs(x̃s, ts) dx̃s

− 1
TR

fIs(xs, ts).

In order to increase readability we skip the subscript and obtain the following dimen-
sionless equations with dimensionless functions and variables

∂tfS(x, t) = −fS(x, t)
∫
R2
k (|x− x̃|) fI(x̃, t) dx̃, (3.1.3)

∂tfI(x, t) = fS(x, t)
∫
R2
k (|x− x̃|) fI(x̃, t) dx̃− fI(x, t). (3.1.4)

Rescaling and Taylor expansion

For the spatial spread of diseases it is more suitable to have larger scales for the space
variable. Consequently, we do a rescaling of the dimensionless space variable by ε in such
a way that the result is still dimensionless
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3. SIR epidemiological model with mobility structure in one dimension

x 7→ x

ε
,

x̃ 7→ x̃

ε
,

where 0 < ε� 1 is dimensionless. With this rescaling equations (3.1.3)− (3.1.4) are
transformed into

∂tfS(x, t) = −fS(x, t)1
ε

∫
R
k

( |x− x̃|
ε

)
fI(x̃, t) dx̃, (3.1.5)

∂tfI(x, t) = fS(x, t)1
ε

∫
R
k

( |x− x̃|
ε

)
fI(x̃, t) dx̃− fI(x, t). (3.1.6)

Remark 3.1.2. As a consequence of the spatial rescaling, the densities also get rescaled.
For the sake of brevity, however, we will denote the rescaled densities again by fS(x, t)
and fI(x, t). Furthermore, without the simplification of r being equal for all individuals,
this rescale would not lead to the desired form of the equations, since ε would vanish
inside k.

Next we calculate the integral

1
ε

∫
R
k

( |x− x̃|
ε

)
fI(x̃, t) dx̃ =

∣∣∣∣∣ x̃ = x+ εz

dx̃ = ε dz

∣∣∣∣∣
= ε

ε

∫
|z|<1

k (|z|) fI(x+ εz, t) dz.

Finally, we can use Taylor expansion to approximate fI(x+ εz, t):

∫
|z|<1

k (|z|) fI(x+ εz, t) dz

=
∫
|z|<1

k (|z|)
(
fI(x, t) + εz∂xfI(x, t) + ε2

2 z
2∂2
xf(x, t)

)
dz +O(ε3).

This approximation holds formally for ε→ 0. We calculate the first and third integral,
because the second one vanishes, as k (|z|) is an even function by assumption and z is
odd. This results in
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3. SIR epidemiological model with mobility structure in one dimension

fI(x, t)
∫
|z|<1

k (|z|) dz = 2fI(x, t)
∫ 1

0
(1− |z|)+ dz =: βfI(x, t),

ε∂xfI(x, t)
∫
|z|<1

zk (|z|) dz = 0,

ε2

2 ∂
2
xfI(x, t)

∫
|z|<1

z2k (|z|) dz = ε2∂2
xfI(x, t)

∫ 1

0
z2 (1− |z|)+ dz

= ε2

6 ∂
2
xfI(x, t) =: ε2D∂2

xfI(x, t).

Altogether, we obtain the diffusion approximation of the system (3.1.5)− (3.1.6)

∂tfS(x, t) = −fS(x, t)
(
βfI(x, t) + ε2D∂2

xfI(x, t)
)
, (3.1.7)

∂tfI(x, t) = fS(x, t)
(
βfI(x, t) + ε2D∂2

xfI(x, t)
)
− fI(x, t). (3.1.8)

Remark 3.1.3. Note that for ε → 0 the system (3.1.7) − (3.1.8) is similar to the SIR
model, merely additionally depending on a spatial variable.

3.1.2. Existence of a traveling wave

In order to show the existence of a traveling wave, we substitute Definition 3.1.1 in the
system (3.1.7)− (3.1.8), which yields

−cf ′S(ξ) = −fS(ξ)
(
βfI(ξ) + ε2Df ′′I (ξ)

)
, (3.1.9)

−cf ′I(ξ) = fS(ξ)
(
βfI(ξ) + ε2Df ′′I (ξ)

)
− fI(ξ), (3.1.10)

where f ′S and f ′I denote the derivatives with respect to ξ. A traveling wave exists, if
the above system has a solution.

We follow the approach of [3, pp. 418-428] and recast (3.1.9)− (3.1.10) as first order
system. First we divide (3.1.9) by fS(ξ) and integrate it, then we integrate the equation
resulting from adding (3.1.9) and (3.1.10) w.r.t. ξ
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3. SIR epidemiological model with mobility structure in one dimension

c

∫ ξ

ξ0

f ′S(z)
fS(z) dz =

∫ ξ

ξ0

(
βfI(z) + ε2Df ′′I (z)

)
dz

⇐⇒ c ln
(
fS(ξ)
fS(ξ0)

)
= β

∫ ξ

ξ0
fI(z) dz + ε2Df ′I(ξ)− ε2Df ′I(ξ0), (3.1.11)

c

∫ ξ

ξ0

(
f ′I(z) + f ′S(z)

)
dz =

∫ ξ

ξ0
fI(z) dz

⇐⇒ c (fI(ξ)− fI(ξ0) + fS(ξ)− fS(ξ0)) =
∫ ξ

ξ0
fI(z) dz. (3.1.12)

Substitution of the integral in equation (3.1.11) by (3.1.12) yields

ε2Df ′I(ξ) = ε2Df ′I(ξ0) + c ln
(
fS(ξ)
fS(ξ0)

)
− cβ (fI(ξ)− fI(ξ0) + fS(ξ)− fS(ξ0)) . (3.1.13)

Next we insert (3.1.13) in (3.1.10), which gives

c

ε2Df ′I(ξ0) + c ln
(
fS(ξ)
fS(ξ0)

)
− cβ (fI(ξ)− fI(ξ0) + fS(ξ)− fS(ξ0))

ε2D

 = −cf ′S(ξ) + fI(ξ)

⇐⇒ f ′S(ξ) =fI(ξ)
c
− f ′I(ξ0)− c

ε2D
ln
(
fS(ξ)
fS(ξ0)

)
+ cβ

ε2D
(fI(ξ)− fI(ξ0) + fS(ξ)− fS(ξ0)) . (3.1.14)

If we assume that there is a traveling wave, we expect that at position x ∈ R there
are no infected individuals before the wave arrives, i.e., for t→ −∞ we have fI(∞) = 0.
The density of susceptible individuals at position x before the wave arrives is given by
the initial condition fS(∞) = fN (∞), that is, the whole population is susceptible. Also,
we assume the wave starting smoothly, i.e., f ′I(∞) = 0. If we set ξ0 =∞, (3.1.14) and
(3.1.13) change to

20



3. SIR epidemiological model with mobility structure in one dimension

f ′S(ξ) = fI(ξ)
c
− c

ε2D
ln
(
fS(ξ)
fS(∞)

)
+ cβ

ε2D
(fI(ξ) + fS(ξ)− fS(∞)) , (3.1.15)

f ′I(ξ) = c

ε2D
ln
(
fS(ξ)
fS(∞)

)
− cβ

ε2D
(fI(ξ) + fS(ξ)− fS(∞)) . (3.1.16)

This system can be simplified by introducing new functions X(ξ) = fS(ξ)
fS(∞) and Y (ξ) =

fI(ξ)
fS(∞) . They take values between 0 and 1, since they are normalized by the total
population density. Therefore, equations (3.1.15) and (3.1.16) become

fS(∞)X ′(ξ) =fS(∞)Y (ξ)
c

− c

ε2D
ln (X(ξ))

+ cβ

ε2D
(fS(∞)Y (ξ) + fS(∞)X(ξ)− fS(∞))

⇐⇒ ε2DfS(∞)
c

X ′(ξ) =− ln(X(ξ)) + βfS(∞)X(ξ)− βfS(∞)

+
(
βfS(∞) + ε2DfS(∞)

c2

)
Y (ξ), (3.1.17)

fS(∞)Y ′(ξ) = c

ε2D
ln (X(ξ))− cβ

ε2D
(fS(∞)Y (ξ) + fS(∞)X(ξ)− fS(∞))

⇐⇒ ε2DfS(∞)
c

Y ′(ξ) = ln (X(ξ))− βfS(∞)X(ξ) + βfS(∞)− βfS(∞)Y (ξ). (3.1.18)

Once the wave passed a particular position the density of infected individuals should
be zero and the density of susceptible individuals should have reached some steady level.
Recall that we already showed with inequality (2.1.2) that at the end of the spread of
the disease there are still some susceptible individuals left, that is, the density after the
spread is not zero. The end of the wave is determined by t→∞ and thus, Y (−∞) = 0
and X ′(−∞) = 0. Insertion in (3.1.17) yields

ln(X(−∞)) = βfS(∞)X(−∞)− βfS(∞)

⇐⇒ X(−∞) = eβfS(∞)(X(−∞)−1), (3.1.19)

which has for βfS(∞) ≤ 1 only one solution given by X(−∞) = 1. Hence, there is no
spread of the disease, that is, there is no epidemic. Thus, for an epidemic to occur it is
necessary that
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3. SIR epidemiological model with mobility structure in one dimension

βfS(∞) > 1 ⇐⇒ fS(∞) > 1
β

(3.1.20)

holds and 3.1.19 has a solution with X(−∞) < 1. The inequality (3.1.20) gives a
threshold for the initial density of susceptible, i.e., if initially there are too little susceptible
individuals there will not be a traveling wave.

Speed of the traveling wave

The next question is, if there is some minimal speed of the traveling wave in case it exists,
i.e., (3.1.20) holds. Therefore, we have a look at the phase plane for X and Y under the
assumption of (3.1.20). The system (3.1.17) − (3.1.18) has two disease free equilibria
(X(−∞), 0) and (1, 0). We rewrite equations (3.1.17) and (3.1.18) by

X ′(ξ) = − c

ε2DfS(∞) ln(X(ξ)) + cβ

ε2D
X(ξ)− cβ

ε2D
+
(

cβ

ε2D
+ 1

c

)
Y (ξ) =: u, (3.1.21)

Y ′(ξ) = c

ε2DfS(∞) ln (X(ξ))− cβ

ε2D
X(ξ) + cβ

ε2D
− cβ

ε2D
Y (ξ) =: v. (3.1.22)

Our goal is to linearize system (3.1.21)− (3.1.22) at the equilibrium points. We start
with the equilibrium (1, 0) and linearize by X(ξ) = 1 + µ and Y (ξ) = 0 + ν. Therefore,
we calculate the Jacobian matrix evaluated at the equilibrium

Ju,v(1, 0) =
(

du
dX (1, 0) du

dY (1, 0)
dv
dX (1, 0) dv

dY (1, 0)

)
=

 cβ
ε2D −

c
ε2DfS(∞)

cβ
ε2D + 1

c
c

ε2DfS(∞) −
cβ
ε2D − cβ

ε2D

 .

Thus, the linearization is given by

µ′ =
(

cβ

ε2D
− c

ε2DfS(∞)

)
µ+

(
cβ

ε2D
+ 1

c

)
ν, (3.1.23)

ν ′ =
(

c

ε2DfS(∞) −
cβ

ε2D

)
µ− cβ

ε2D
ν. (3.1.24)

Now we can proceed in two different ways. Either we calculate the eigenvalues of the
Jacobian by solving det (Ju,v(1, 0)− λI) = 0, where I denotes the identity matrix. Or
we solve the system (3.1.23)− (3.1.24) by using the ansatz µ = meλξ and ν = neλξ with
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m,n 6= 0. Following the first approach, we get

det (Ju,v(1, 0)− λI) = det

 cβ
ε2D −

c
ε2DfS(∞) − λ

cβ
ε2D + 1

c
c

ε2DfS(∞) −
cβ
ε2D − cβ

ε2D − λ


=
(

cβ

ε2D
− c

ε2DfS(∞) − λ
)(
− cβ

ε2D
− λ

)
−
(

cβ

ε2D
+ 1

c

)(
c

ε2DfS(∞) −
cβ

ε2D

)
= 0

⇐⇒ λ2 + c

ε2DfS(∞)λ+ 1
ε2DfS(∞) (βfS(∞)− 1) = 0

=⇒ λ1,2 = −c±
√
c2 − 4ε2DfS(∞) (βfS(∞)− 1)

2ε2DfS(∞) .

Since we already know that βfS(∞) > 1 holds and we do not want oscillations to
occur, we need the term in the square root to be positive. This is only the case if

c ≥ cmin = 2ε
√
DfS(∞) (βfS(∞)− 1) (3.1.25)

holds. If c ≥ cmin, both eigenvalues are negative, the equilibrium (1, 0) is asymptotically
stable and (3.1.25) gives the minimal wave speed. An analogous minimal wave speed is
found in [7, eq. (3.6)]. Note that by the stable manifold Theorem A.2.2, the properties
of the dynamics near hyperbolic equilibria are shared by the nonlinear problem and its
linearization. Hence, (3.1.25) also gives us a condition for the existence of a traveling
wave of the original system.

In order to linearize the system (3.1.21)− (3.1.22) at the equilibrium (X(−∞), 0) by
X(ξ) = X(−∞) + µ and Y (ξ) = 0 + ν we compute the Jacobian as above by

Ju,v(X(−∞), 0) =

 cβ
ε2D −

c
ε2DfS(∞)X(−∞)

cβ
ε2D + 1

c
c

ε2DfS(∞)X(−∞) −
cβ
ε2D − cβ

ε2D

 .

Therefore, the linearization at this equilibrium is
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µ′ =
(

cβ

ε2D
− c

ε2DfS(∞)X(−∞)

)
µ+

(
cβ

ε2D
+ 1

c

)
ν,

ν ′ =
(

c

ε2DfS(∞)X(−∞) −
cβ

ε2D

)
µ− cβ

ε2D
ν.

Solving det (Ju,v(X(−∞), 0)− λI) = 0 yields

λ1,2 = −c±
√
c2 − 4ε2DfS(∞)X(−∞) (βfS(∞)X(−∞)− 1)

2ε2DfS(∞)X(−∞) .

Note that βfS(∞)X(−∞) < 1, so that the term in the square root is always positive
and we obtain a negative and a positive eigenvalue. Therefore, the equilibrium (X(−∞), 0)
is a saddle point. The eigenvectors of the saddle point are determined by

Ju,v(X(−∞), 0)
(
µ

ν

)
= λ1,2

(
µ

ν

)

⇐⇒ Ju,v(X(−∞), 0)
(
µ

ν

)
− λ1,2

(
µ

ν

)
= 0.

From the first line, we obtain two equations, which correspond to the lines intersecting
the saddle point,

(
cβ

ε2D
− c

ε2DfS(∞)X(−∞) − λ1,2

)
µ+

(
cβ

ε2D
+ 1

c

)
ν = 0. (3.1.26)

The equation with λ1 corresponds to the line which leaves the saddle point. The
other converges to the saddle point. Thus, there is one trajectory from the equilibrium
(X(−∞), 0) entering the first quadrant with increasing X(ξ). We are left to show that
this trajectory ends up at the second equilibrium (1, 0), i.e., that there is a heteroclinic
orbit connecting the two disease free equilibria. In order to do so, we will use the
Poincare-Bendixson Theorem, [3, p. 137],

Theorem 3.1.1 (Poincare-Bendixson). If there is a bounded region D in the (x, y)-plane
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3. SIR epidemiological model with mobility structure in one dimension

such that any solution of the system

ẋ = f(x, y),

ẏ = g(x, y),

that starts in D remains in D, then D contains either a stable steady state or a limit
cycle.

Therefore, we need to find a bounded region, such that any solution starting inside this
region will stay there. At Y = 0 we have Y ′ > 0 and X ′ < 0, hence, there is no trajectory
leaving the first quadrant crossing Y = 0. At X = X(−∞), X ′ > 0 and Y ′ < 0, thus, no
trajectory can cross the line X = X(−∞) from right to left. Next we consider the line

(1
2 − βfS(∞)

)
(X − 1) =

(
βfS(∞) + ε2DfS(∞)

c2

)
Y . (3.1.27)

This equation is obtained in the same way as (3.1.26), but we linearize at the other
equilibria, i.e., replacing X(−∞) by 1 and assuming that c is minimal:

c

ε2DfS(∞)

1− βfS(∞)− 1
2 ±

1
2

√
1− 4ε2DfS(∞) (βfS(∞)− 1)

c2

µ
= c

ε2DfS(∞)

(
βfS(∞) + ε2DfS(∞)

c2

)
ν

c minimal=⇒
µ=X−1, ν=Y

(1
2 − βfS(∞)

)
(X − 1) =

(
βfS(∞) + ε2DfS(∞)

c2

)
Y .

On the line given by (3.1.27), we can estimate X ′ and Y ′ in (3.1.17) and (3.1.18) by
using lnX ≤ X − 1 for X > 0. A proof of this inequality is done in Section A.2. This
yields the estimation
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3. SIR epidemiological model with mobility structure in one dimension

ε2DfS(∞)
c

X ′ ≥ −(X − 1) + βfS(∞) (X − 1) +
(1

2 − βfS(∞)
)

(X − 1)

= −1
2(X − 1),

ε2DfS(∞)
c

Y ′ ≤ (X − 1)− βfS(∞) (X − 1)− βfS(∞)

(
1
2 − βfS(∞)

)
(X − 1)(

βfS(∞) + ε2DfS(∞)
c2

)

=

(
1
2βfS(∞) + ε2DfS(∞)

c2 − ε2Dβf2
S(∞)

c2

)
(X − 1)(

βfS(∞) + ε2DfS(∞)
c2

) ,

and therefore,

dY

dX
≤

2ε2DfS(∞)
c2 (βfS(∞)− 1)− βfS(∞)(

βfS(∞) + ε2DfS(∞)
c2

) c minimal=
1
2 − βfS(∞)(

βfS(∞) + ε2DfS(∞)
c2

) .
Since βfS(∞) > 1, dYdX ≤ 0 holds and there can not be a trajectory crossing the line

(3.1.27) from below to above. The bounded region, which we need to apply the Poincare-
Bendixson Theorem, is given by Y = 0, X = X(−∞) and (3.1.27). There can not be a
solution, which starts inside this triangle and ends outside of it. Thus, the trajectory
leaving (X(−∞), 0) must go either to a limit cycle or the other equilibrium. We can
exclude that there exists a limit cycle, because there is no other equilibrium inside the
bounded region, which would be necessary. Therefore, we are left with the only other pos-
sibility: The unique trajectory starting in (X(−∞), 0) ends at (1, 0) is a heteroclinic orbit.

Summarizing our observation yields the following conclusions:

• There can not be a traveling wave, i.e., no spread of the disease, if the density of
susceptible individuals is too low. This condition is captured in equation (3.1.20).

• There is no wave with speed less than cmin, defined in (3.1.25). But there can be a
wave with higher speed. This does not change the fact that there is a trajectory
from (X(−∞), 0) to (1, 0), only the shape of it changes.
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4. SIR epidemiological model with mobility
structure in two dimensions

Since individuals do not move only in one dimension, but in a two dimensional space,
we set x ∈ R2. Analogous to (3.0.1)− (3.0.3), we obtain the following SIR model with
mobility structure in two dimensions

∂tfS(x, r, t) = −fS(x, r, t)
∫ rmax

0

∫
R2
K2(x, x̃, r, r̃)fI(x̃, r̃, t) dx̃dr̃, (4.0.1)

∂tfI(x, r, t) = fS(x, r, t)
∫ rmax

0

∫
R2
K2(x, x̃, r, r̃)fI(x̃, r̃, t) dx̃dr̃ − γfI(x, r, t), (4.0.2)

∂tfR(x, r, t) = γfI(x, r, t). (4.0.3)

The initial conditions and assumptions on r made in Chapter 3 still hold. The mobility
kernel in two dimensions should, again analogously to Chapter 3, satisfy K2(x, x̃, r, r̃) = 0
if and only if Br(x) ∩ Br̃(x̃) = ∅ ⇐⇒ |x − x̃| > r + r̃ ⇐⇒ 1 − |x−x̃|r+r̃ < 0, where |.|
denotes the euclidean norm in R2. As in Chapter 3 already suggested, this assumption is
satisfied for example by the function

K2(x, x̃, r, r̃) = k

( |x− x̃|
r + r̃

)
=


(
1− |x−x̃|r+r̃

)
+

if r, r̃ > 0 and x 6= x̃,

1 if r, r̃ = 0 and x = x̃,
0 if r, r̃ = 0 and x 6= x̃.

4.1. Traveling wave

In two dimensions we need to choose a direction of the traveling wave, cf. Definition
3.1.1. Since the kernel K2 is rotation invariant, we can choose any direction in R2, w.l.o.g.
we choose x1 and thus, we get
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4. SIR epidemiological model with mobility structure in two dimensions

fS = fS(x1 − ct) = fS(ξ) and fI = fI(x1 − ct) = fI(ξ). (4.1.1)

Assuming, like in the one dimensional case, that the mobility radius r is equal for all
individuals and consequently, K2(x, x̃, r, r̃) = k

(
|x−x̃|

2r

)
= k

(
|x−x̃|
R

)
. Hence, equations

(4.0.1)− (4.0.2) simplify to

∂tfS(x, t) = −fS(x, t)
∫
R2
k

( |x− x̃|
R

)
fI(x̃, t) dx̃, (4.1.2)

∂tfI(x, t) = fS(x, t)
∫
R2
k

( |x− x̃|
R

)
fI(x̃, t) dx̃− γfI(x, t). (4.1.3)

The diffusion approximation works with a two dimensional space variable as well. We
just need to make some adaptions.

The units for the densities fS and fI , as well as for the space variables x = (x1, x2)
and x̃ = (x̃1, x̃2), in the nondimensionalization process change to

[fS ] = [fI ] = m−2,

[x1] = [x2] = [x̃1] = [x̃2] = m.

Thus, the dimensionless equations of (4.1.2)− (4.1.3) with dimensionless functions and
variables are

∂tfS(x, t) = −fS(x, t)
∫
R2
k (|x− x̃|) fI(x̃, t) dx̃,

∂tfI(x, t) = fS(x, t)
∫
R2
k (|x− x̃|) fI(x̃, t) dx̃− fI(x, t).

The rescaling

x 7→ x

ε
,

x̃ 7→ x̃

ε
,
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4. SIR epidemiological model with mobility structure in two dimensions

with 0 < ε� 1 dimensionless, yields

∂tfS(x, t) = −fS(x, t) 1
ε2

∫
R2
k

( |x− x̃|
ε

)
fI(x̃, t) dx̃, (4.1.4)

∂tfI(x, t) = fS(x, t) 1
ε2

∫
R2
k

( |x− x̃|
ε

)
fI(x̃, t) dx̃− fI(x, t). (4.1.5)

Calculating the integral justifies the application of the Taylor expansion

1
ε2

∫
R2
k

( |x− x̃|
ε

)
fI(x̃, t) dx̃ =

∣∣∣∣∣ x̃ = x+ εz

dx̃ = ε2 dz

∣∣∣∣∣
=ε2

ε2

∫
|z|<1

k (|z|) fI(x+ εz, t) dz

=
∫
|z|<1

k (|z|) (fI(x, t) + εz · ∇xfI(x, t)

+ε2

2 z
>∇2

xf(x, t)z
)
dz +O(ε3),

where · denotes the inner product, ∇x denotes the gradient w.r.t. x and ∇2
x is the

Hessian w.r.t. x. We calculate the three integrals, starting with the first one

fI(x, t)
∫
|z|<1

k (|z|) dz =
∣∣∣∣∣ z = (r cos(ϕ), r sin(ϕ))

dz = rdrdϕ

∣∣∣∣∣
= fI(x, t)

∫ 2π

0

∫ 1

0
(1− r) r drdϕ = π

3 fI(x, t) =: βfI(x, t),

where we used the transformation to polar coordinates. The second integral vanishes,
because k (|z|) is an even function by assumption and z is odd, that is

ε∇xfI(x, t) ·
∫
|z|<1

zk (|z|) dz = 0.

For the calculation of the last integral we set z = (z1, z2) and use again polar coordi-
nates:
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4. SIR epidemiological model with mobility structure in two dimensions

ε2

2

∫
|z|<1

z>∇2
xfI(x, t)zk (|z|) dz

=ε2

2

2∑
i,j=1

∂2fI(x, t)
∂xi∂xj

∫
|z|<1

zizjk (|z|) dz

=ε2

2

(
∂2fI(x, t)
∂x2

1

∫
|z|<1

z2
1k (|z|) dz + 2∂

2fI(x, t)
∂x1∂x2

∫
|z|<1

z1z2k (|z|) dz

+∂2fI(x, t)
∂x2

2

∫
|z|<1

z2
2k (|z|) dz

)

=
∣∣∣∣∣ z = (r cos(ϕ), r sin(ϕ))

dz = rdrdϕ

∣∣∣∣∣
=ε2

2 ∆xfI(x, t)
∫ 2π

0

∫ 1

0
(1− r) r3 drdϕ

=ε2π

(1
4 −

1
5

)
∆xfI(x, t) =: ε2D∆xfI(x, t).

Altogether, we obtain the diffusion approximation of the system (4.1.4)− (4.1.5)

∂tfS(x, t) = −fS(x, t)
(
βfI(x, t) + ε2D∆xfI(x, t)

)
,

∂tfI(x, t) = fS(x, t)
(
βfI(x, t) + ε2D∆xfI(x, t)

)
− fI(x, t).

Inserting (4.1.1) in the above equations yields

−cf ′S(ξ) = −fS(ξ)
(
βfI(ξ) + ε2Df ′′I (ξ)

)
, (4.1.6)

−cf ′I(ξ) = fS(ξ)
(
βfI(ξ) + ε2Df ′′I (ξ)

)
− fI(ξ), (4.1.7)

where f ′S and f ′I denote the derivatives w.r.t. ξ. Since the system (4.1.6)− (4.1.7) is
exactly the same as (3.1.9)− (3.1.10), we obtain the same results as in Section 3.1.2.
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5. SIR epidemiological model with contact
intensity and mobility structure in two
dimensions

Finally, we combine the two improvements of the Chapters 2 and 4 to obtain a SIR model
with kernels that measure the interaction of the individuals in two ways. It measures if
contact is possible due to the position and mobility of the individuals and if the contact is
intense or distanced. Hence, we obtain a SIR model with contact intensity and mobility
structure in two dimensions

∂tfS(x, r, c, t) =− fS(x, r, c, t)
∫ 1

0

∫ rmax

0

∫
R2
K1(c, c̃)K2(x, x̃, r, r̃)fI(x̃, r̃, c̃, t) dx̃dr̃dc̃,

(5.0.1)

∂tfI(x, r, c, t) =fS(x, r, c, t)
∫ 1

0

∫ rmax

0

∫
R2
K1(c, c̃)K2(x, x̃, r, r̃)fI(x̃, r̃, c̃, t) dx̃dr̃dc̃

− γfI(x, r, c, t), (5.0.2)

∂tfR(x, r, c, t) =γfI(x, r, c, t). (5.0.3)

The initial conditions are fS(x, r, c, 0) = fS0(x, r, c) > 0, fI(x, r, c, 0) = fI0(x, r, c) >
0 and fR(x, r, c, 0) = fR0(x, r, c) = 0 and fS(x, r, c, t) + fI(x, r, c, t) + fR(x, r, c, t) =
fN (x, r, c) holds for all t ∈ R, t ≥ 0. The assumptions of the kernels K1(c, c̃) and
K2(x, x̃, r, r̃) and r are the same as in the previous chapters.

Remark 5.0.1. The dynamics, existence of solutions and uniqueness results of Chapter 2
remain valid for the system (5.0.1)− (5.0.3).

The goal is to rewrite the system (5.0.1)− (5.0.2) in the form of (3.1.9)− (3.1.10) and
(4.1.6) − (4.1.7). Therefore, we follow the procedure of Subsection 3.1.1, keeping the
changes already made in Section 4.1. The first step is again to simplify the model by the
assumption that r is equal for all individuals, which yields
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5. SIR epidemiological model with contact intensity and mobility structure in two dimensions

∂tfS(x, c, t) = −fS(x, c, t)
∫ 1

0

∫
R2
K1(c, c̃)k

( |x− x̃|
R

)
fI(x̃, c̃, t) dx̃dc̃, (5.0.4)

∂tfI(x, c, t) = fS(x, c, t)
∫ 1

0

∫
R2
K1(c, c̃)k

( |x− x̃|
R

)
fI(x̃, c̃, t) dx̃dc̃− γfI(x, c, t).

(5.0.5)

For the nondimensionalization, the only thing we need to discuss in addition is the
contact intensity and the corresponding kernel. Since there is no physical unit for contact
intensity, it seems natural that it is dimensionless. Also, [k] = s−1 and [γ] = s−1 remain
valid. We keep the same references for length and time as in Subsection 3.1.1

1. Reference length: R with [R] = m,

2. Reference time: T = 1
γ with [T] = s,

and scale by

x = Rxs,

x̃ = Rx̃s,

c = cs,

c̃ = c̃s,

t = Tts,

K1(c, c̃) = K1s(cs, c̃s),

k

( |x− x̃|
R

)
= 1

T
ks (|xs − x̃s|) ,

fS(x, c, t) = 1
R2 fSs(xs, cs, ts),

fI(x, c, t) = 1
R2 fIs(xs, cs, ts),

where the index s denotes the dimensionless variables and functions. Substituting this
scaling in (5.0.4)− (5.0.5) gives
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5. SIR epidemiological model with contact intensity and mobility structure in two dimensions

1
TR2∂tsfSs(xs, cs, ts) =− 1

R2 fSs(xs, cs, ts)

R2
∫ 1

0

∫
R2
K1,s(cs, c̃s)

1
T
ks (|xs − x̃s|)

1
R2 fIs(x̃s, c̃s, ts) dx̃sdc̃s,

1
TR2∂tsfSs(xs, cs, ts) = 1

R2 fSs(xs, cs, ts)

R2
∫ 1

0

∫
R2
K1,s(cs, c̃s)

1
T
ks (|xs − x̃s|)

1
R2 fIs(x̃s, c̃s, ts) dx̃sdc̃s

− 1
TR2 fIs(xs, cs, ts).

We drop the index s for easier notation and obtain

∂tfS(x, c, t) = −fS(x, c, t)
∫ 1

0
K1(c, c̃)

∫
R2
k (|x− x̃|) fI(x̃, c̃, t) dx̃dc̃,

∂tfI(x, c, t) = fS(x, c, t)
∫ 1

0
K1(c, c̃)

∫
R2
k (|x− x̃|) fI(x̃, c̃, t) dx̃dc̃− γfI(x, c, t).

Rescaling the space variable x ∈ R2 like in Subsection 3.1.1 yields

∂tfS(x, c, t) = −fS(x, c, t) 1
ε2

∫ 1

0
K1(c, c̃)

∫
R2
k

( |x− x̃|
ε

)
fI(x̃, c̃, t) dx̃dc̃,

∂tfI(x, c, t) = fS(x, c, t) 1
ε2

∫ 1

0
K1(c, c̃)

∫
R2
k

( |x− x̃|
ε

)
fI(x̃, c̃, t) dx̃dc̃− fI(x, c, t).

We can calculate the inner integral in the same way as in Section 4.1. Altogether, the
system (5.0.1)− (5.0.2) transforms into

∂tfS(x, c, t) = −fS(x, c, t)
∫ 1

0
K1(c, c̃)

(
βfI(x, c, t) + ε2D∆xfI(x, t)

)
dc̃,

∂tfS(x, c, t) = fS(x, c, t)
∫ 1

0
K1(c, c̃)

(
βfI(x, c, t) + ε2D∆xfI(x, t)

)
dc̃− fI(x, c, t).

Remark 5.0.2. For ε→ 0 the above system is, as analogously in Remark 3.1.3, similar to
the SIR model, additionally depending on a spatial variable and the contact intensity
with the corresponding kernel K1.

Plugging in the Definition (4.1.1), we obtain the system
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5. SIR epidemiological model with contact intensity and mobility structure in two dimensions

−cf ′S(ξ, c) = −fS(ξ, c)
∫ 1

0
K1(c, c̃)

(
βfI(ξ, c̃) + ε2Df ′′I (ξ, c̃)

)
dc̃,

−cf ′I(ξ, c) = fS(ξ, c)
∫ 1

0
K1(c, c̃)

(
βfI(ξ, c̃) + ε2Df ′′I (ξ, c̃)

)
dc̃− fI(ξ, c).

Unfortunately, we can not proceed as in the previous chapters to obtain existence
results of a traveling wave, since the above system is too complicated for an analysis.
Although, the SIR model with contact intensity and mobility structure in two dimensions
is more realistic than the models presented in Chapters 2, 3 and 4, we can not use it for
the mathematical discussion of the existence of a traveling wave. This problem is often
noticed in mathematical modeling. Either the model is very realistic, but can hardly be
mathematically investigated or it is very simple in comparison to reality, but can easily
be analyzed.
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A. Appendix

A.1. Python code

The following python codes create the plots of Figures 1.1 and 1.2, for the documentations
see [11] and [9].

#F i r s t we import a l l the needed packages .
import numpy as np
from sc ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t

#We se t i n t i a l c ond i t i on s f o r the normal ized s i z e s o f the
#compartments , d e f i n e the parameters and generate hunderd
#time s t ep s .
S0=0.99
I0 =0.01
R0=0
beta=0.5
gamma=(1./10)
t=np . l i n s p a c e (0 , 100 , 100)

#The funct ion , de f ined in the f o l l ow i g , d e s c r i b e s the SIR model .
de f de r i v ( a , t , beta , gamma) :

S , I , R =a
dSdt=−beta ∗S∗ I
dIdt=beta ∗S∗I−gamma∗ I
dRdt=gamma∗ I
re turn dSdt , dIdt , dRdt

a0= S0 , I0 , R0
S , I , R =ode int ( der iv , a0 , t , a rgs=(beta , gamma ) ) .T
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#Fina l ly , we p lo t the graph with s e v e r a l s teps , in order to
#have a n i c e appreance .
f i g , ax =p l t . subp lo t s ( )

#We de l e t e the top and r i gh t part o f the by de f au l t c r ea ted
#box around the plot , but we keep the bottem and the l e f t part .
#Therefore , we obta in a coord inate system .
ax . sp i n e s [ ’ top ’ ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ’ r i ght ’ ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ’ bottom ’ ] . s e t_v i s i b l e (True )
ax . sp i n e s [ ’ l e f t ’ ] . s e t_v i s i b l e (True )

#Addi t iona l ly , we want the ax i s to s t a r t in zero , d e f i n e t h e i r
#length and p lo t some black arrows at the end o f the ax i s .
ax . sp i n e s [ ’ l e f t ’ ] . s e t_pos i t i on ( ( ’ data ’ , 0 ) )
ax . sp i n e s [ ’ bottom ’ ] . s e t_pos i t i on ( ( ’ data ’ , 0 ) )
ax . sp i n e s [ ’ l e f t ’ ] . set_bounds (0 , 1 . 05 )
ax . sp i n e s [ ’ bottom ’ ] . set_bounds (0 , 105)
ax . p l o t (1 , 0 , ’>k ’ , t rans form=ax . get_yaxis_transform ( ) ,

c l ip_on=False )
ax . p l o t (0 , 1 , ’^k ’ , t rans form=ax . get_xaxis_transform ( ) ,

c l ip_on=False )

#The f o l l ow i ng p l o t s the graphs o f the three compartments and
#l a b e l s the ax i s .
p l t . p l o t ( t , S , ’b ’ , alpha =0.5 , l a b e l =’ Suscept ib l e ’ )
p l t . p l o t ( t , I , ’ r ’ , a lpha =0.5 , l a b e l =’ In f e c t ed ’ )
p l t . p l o t ( t , R, ’ g ’ , alpha =0.5 , l a b e l =’Recovered ’ )
p l t . x l ab e l ( ’ Time in days ’ )
p l t . y l ab e l ( ’ Normalized s i z e s o f the compartments ’ )
p l t . l egend ( )
p l t . show ( )

import numpy as np
from sc ipy . i n t e g r a t e import ode int
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import matp lo t l i b . pyplot as p l t
import math

S0=0.99
I0 =0.01
R0=0
beta=0.5
gamma=(1./10)
t=np . l i n s p a c e (0 , 100 , 100)

de f de r i v ( a , t , beta , gamma) :
S , I , R =a
dSdt=−beta ∗S∗ I
dIdt=beta ∗S∗I−gamma∗ I
dRdt=gamma∗ I
re turn dSdt , dIdt , dRdt

a0= S0 , I0 , R0
S , I , R =ode int ( der iv , a0 , t , a rgs=(beta , gamma ) ) .T

#Ca l cu l a t i on o f the Maximum of I ( t ) .
Imax=−gamma/beta+gamma/beta ∗math . l og (gamma/beta)+S0+I0

−gamma/beta ∗math . l og ( S0 )

f i g , ax =p l t . subp lo t s ( )
ax . sp i n e s [ ’ top ’ ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ’ r i ght ’ ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ’ bottom ’ ] . s e t_v i s i b l e (True )
ax . sp i n e s [ ’ l e f t ’ ] . s e t_v i s i b l e (True )
ax . sp i n e s [ ’ l e f t ’ ] . s e t_pos i t i on ( ( ’ data ’ , 0 ) )
ax . sp i n e s [ ’ bottom ’ ] . s e t_pos i t i on ( ( ’ data ’ , 0 ) )
ax . sp i n e s [ ’ l e f t ’ ] . set_bounds (0 , 1 . 05 )
ax . sp i n e s [ ’ bottom ’ ] . set_bounds (0 , 1 . 05 )
ax . p l o t (1 , 0 , ’>k ’ , t rans form=ax . get_yaxis_transform ( ) ,

c l ip_on=False )
ax . p l o t (0 , 1 , ’^k ’ , t rans form=ax . get_xaxis_transform ( ) ,
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cl ip_on=False )

#We p lo t the dashed l i n e s , the l ab e l ed graph o f S+I and the
#SI−plane with l ab e l ed ax i s .
p l t . p l o t ( [ 0 , gamma/beta ] , [ Imax , Imax ] , ’ k ’ , alpha =0.5 ,

l i n e s t y l e =’−−’)
p l t . p l o t ( [ gamma/beta , gamma/beta ] , [ 0 , Imax ] , ’ k ’ , alpha =0.5 ,

l i n e s t y l e =’−−’)
p l t . p l o t ( [ 1 , 0 ] , ’ k ’ , alpha =0.5)
p l t . t ex t ( 0 . 5 5 , 0 . 5 , ’S+I =1 ’ , ha=’ center ’ , va=’bottom ’ ,

trans form=ax . transData )
p l t . p l o t (S , I , ’ − ’ , alpha =0.5)
p l t . x l ab e l ( ’ S ( t ) ’ )
p l t . y l ab e l ( ’ I (S ( t ) ) ’ )
p l t . show ( )

A.2. Basic definitions and statements

In the following we state basic analysis definitions and the Banach fixed point Theorem,
which can be found in [13, pp. 1-2, pp. 181-182]. We assume throughout the appendix
that K = R or K = C.

Definition A.2.1. Let X be a K-vector space. A map ‖.‖ : X → [0,∞) is called norm,
if

(i) ‖x‖ = 0 =⇒ x = 0,

(ii) ‖λx‖ = |λ|‖x| ∀λ ∈ K, x ∈ X,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X

holds. Then (X, ‖.‖) is called a normed vector space.

Definition A.2.2. Let X be a K-vector space. A map d(., .) : X ×X → [0,∞) is called
metric, if

(i) d(x, y) ≥ 0 ∀x, y ∈ X,

(ii) d(x, y) = 0 ⇐⇒ x = y ∈ X,
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(iii) d(x, y) = d(y, x) ∀x, y ∈ X,

(iv) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X

holds. Then (X, d) is called a metric space.

Remark A.2.1. We can easily equip the normed vector space (X, ‖.‖) with a metric by
d(x, y) = ‖x− y‖ ∀x, y ∈ X.

Definition A.2.3. A sequence (xn) ∈ X, n ∈ N, where X is a normed vector space, is
called a Cauchy sequence, if the following is true:

∀ε > 0 ∃N ∈ N ∀n,m ≥ N such that ‖xn − xm‖ < ε.

Definition A.2.4. A sequence (xn) converges to x ∈ X, if

∀ε > 0 ∃N ∈ N ∀n ≥ N such that ‖xn − x‖ < ε

holds.

Definition A.2.5. A metric space, where every Cauchy sequence is convergent, is called
complete. A complete normed vector space is called Banach space.

Theorem A.2.1 (Banach fixed point Theorem). Let (X, d) be a complete metric space
and let F : X → X be a contraction, i.e., there exists a number q < 1 such that

d(F (x), F (y)) ≤ qd(x, y) for all x, y ∈ X.

Then F has exactly one fixed point F (ξ) = ξ. Furthermore, if x0 ∈ X is arbitrary, then
the sequence

xn+1 = F (xn), n ≥ 0

converges to the uniquely determined fixed point ξ and the following holds:

d(xn, ξ) ≤
qn

1− q d(x1, x0).

The next definition can be found in [12, p. 27].
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Definition A.2.6. A function f is called locally Lipschitz continuous, if there exists a
finite constant L > 0, called Lipschitz constant, such that

|f(x)− f(y)| ≤ L|x− y|

holds for every compact subset of the domain of f .

Next we recall some definitions and properties of dynamical systems from [10]. We
consider the initial value problem (2.2.1).

Definition A.2.7. LetM be a metric space (the state space or phase space) and let
the set of times T be either R, [0,∞), Z, or N0. A deterministic dynamical system is a
map T ×M→M, (t, u0) 7→ St(u0), satisfying

(1) ∀u0 ∈M: S0(u0) = u0,

(2) ∀u0 ∈M, s, t ∈ T : Ss+t(u0) = Ss(St(u0)),

(3) ∀t ∈ T : u0 7→ St(u0) is continuous.

In the cases T = [0,∞) and T = N0, St is called a forward dynamical system; for T = Z
or T = N0 it is called a discrete dynamical system; and for T = R or T = [0,∞) it
is called a continuous dynamical system. For fixed u0 ∈ M, the set {St(u0): t ∈ T } is
called the trajectory through u0. The collection of all trajectories is called the phase
portrait of the dynamical system.

Definition A.2.8. Let St, t ∈ T , be a dynamical system on (M, d). Every u ∈ M
satisfying St(u) = u for all t ∈ T is called stationary point or steady state or equilibrium.
An equilibrium is called stable, if

∀ε > 0 ∃δ > 0 : d(u0, u) < δ =⇒ d(St(u0), u) < ε ∀t > 0.

If u is not stable, it is called unstable.
A stable equilibrium u is called (locally) asymptotically stable, if

∃δ > 0 : d(u0, u) < δ =⇒ lim
t→∞

St(u0) = u.

An asymptotically stable equilibrium u is called globally asymptotically stable, if

∀u0 ∈M : lim
t→∞

St(u0) = u.
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Remark A.2.2. The equilibria of an ordinary differential equation of the form (2.2.1) are
the zeros of f , i.e., f(u) = 0. Steady states of the recursion uk+1 = f(uk) are the fixed
points of f , i.e., u = f(u).

Definition A.2.9. Let n ≥ 1 and let u be an equilibrium of (2.2.1). Then u is called
hyperbolic, if Re(λ) 6= 0 for all eigenvalues λ of the Jacobian of f(u).

Remark A.2.3. For hyperbolic equilibria the Jacobian can be block diagonalized, i.e.,

Jf (u) = RΛR−1, with Λ
(

Λ− 0
0 Λ+

)
and R = (R−, R+), (A.2.1)

where Λ− ∈ Rk×k, 0 ≤ k ≤ n, has only eigenvalues with negative real parts and
Λ+ ∈ R(n−k)×(n−k) has only eigenvalues with positive real parts. The columns of
R− ∈ Rn×k are generalized eigenvectors corresponding to the eigenvalues with negative
real parts, and the columns of R+ ∈ Rn×(n−k) are generalized eigenvectors corresponding
to the eigenvalues with positive real parts.

Theorem A.2.2 (Stable manifold Theorem). Let u ∈ Rn be an hyperbolic equilibrium
of the dynamical system St generated by (2.2.1). Then there is a neighborhood U ⊂ Rn

of u, such that

Ms [u] := {u0 ∈ U : St(u0) ∈ U, t ≥ 0}

is a k-dimensional (referring to the diagonalization (A.2.1)) manifold in Rn, called the
stable manifold of u. For all u0 ∈Ms [u],

|St(u0)− u0| ≤ ceλ−t, t ≥ 0,

where c ≥ 0 and λ− < 0 is the constant λ for the matrix Λ− from [10, Lemma 2]. The
tangent space ofMs [u] at u is spanned by the columns of R− from (A.2.1), i.e., by the
eigenvectors corresponding to eigenvalues of Jf (u) with negative real parts.
Analogously, the set

Mu [u] := {u0 ∈ U : St(u0) ∈ U, t ≤ 0}

is a (n − k)-dimensional manifold in Rn, called the unstable manifold of u. For all
u0 ∈Mu [u],

|St(u0)− u0| ≤ ceλ+t, t ≤ 0,

41



A. Appendix

where c ≥ 0 and −λ+ < 0 is the constant λ for the matrix −Λ+. The tangent space of
Mu [u] at u is spanned by the columns of R+.

Definition A.2.10. A limit cycle of (2.2.1) is a periodic solution u∞(t) with the addi-
tional property that there exists at least one other solution u(t), t ≥ 0, and τ ∈ R such
that

lim
t→∞

(u(t)− u∞(τ + t)) = 0.

Definition A.2.11. A trajectory {St(u0) : t ∈ R} of a continuous dynamical system is
called heteroclinic orbit, if the limits

u± = lim
t→±∞

St(u0)

exists and u− 6= u+. It is called a homoclinic orbit, if u− = u+.

In the following we prove the statement ln (X) ≤ X − 1 for X > 0, used in Section
3.1.2:
Let f(X) = ln (X) − X + 1. The derivative is given by f ′(X) = 1

x − 1, which is
positive for 0 < X < 1 and negative for X > 1. Thus, f(X) has a maximum at
X = 1, f(1) = ln(1) − 1 + 1 = 0. Consequently, for X > 0, we obtain f(X) ≤ 0 =⇒
ln(X)−X + 1 ≤ 0 =⇒ ln(X) ≤ X − 1.
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