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Abstract

Neural networks have been shown to accelerate quantum mechanical dynamics simulations with-
out a loss of accuracy. Even though the speedup is substantial, time scales beyond the realm of
nanoseconds is still outside the reach of simulations. Recent developments in the acceleration of
neural networks might hold the solution to this problem making neural networks predictions even
faster, while promising the same accuracy as their non accelerated counter parts. This work focuses
on the acceleration of such a neural network called SchNet. The main technique investigated in this
work is the so called singular value decomposition, which is a special form of rank reduction. This
technique is used to accelerate the matrix vector product, which is the most common operation in
a neural network. The work analyzes mainly the error introduced and the speed up acchieved by
this technique for different sizes of models and different amounts of reduced ranks. In addition also
other techniques in the form of quantization and pruning were investigated following the trend of
acceleration methods, which preserve the structure of SchNet.
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Zusammenfassung

Neuronal Netze haben in der Vergangenheit gezeigt, dass sie in der Lage sind quantenmechanis-
che Simulationen ohne den Verlust von Genauigkeit zu beschleunigen. Obwohl die Beschleunigung
beträchtlich ist, sind Zeitskalen jenseits des Bereichs von Nanosekunden immer noch unerreichbar.
Jüngste Entwicklungen in der Beschleunigung von neuronalen Netzen könnten die Lösung für dieses
Problem sein, indem sie die Vorhersagen von neuronalen Netzen noch schneller machen, während sie
die gleiche Genauigkeit wie das Original-Netzwerk versprechen. Diese Arbeit konzentriert sich auf
die Beschleunigung eines solchen neuronalen Netzes namens SchNet. Die Haupttechnik, die in dieser
Arbeit untersucht wird, ist die sogenannte Singulärwertzerlegung, die eine spezielle Form der Ran-
greduktion ist. Diese Technik wird verwendet, um das Matrix-Vektor-Produkt zu beschleunigen,
welches die häufigste Operation in einem neuronalen Netz ist. Die Arbeit analysiert hauptsächlich
den Fehler und die Beschleunigung, der durch diese Technik für verschiedene Modellgrößen und
verschiedene Mengen an reduzierten Rängen eingeführt wird. Darüber hinaus wurden auch andere
Techniken in Form von Quantisierung und Pruning untersucht, die dem Trend der Beschleuni-
gungsmethoden folgen und die Struktur von SchNet erhalten.
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1 Introduction

In the last few decades neural networks have become a versatile tool for tackling a plethora of
problems such as image recognition [1], translation of languages [2] or protein folding [3]. Quantum
chemistry also found use for this novel technique [4–7]. The main advantage from using neural
networks arises from the speed with which neural networks are able to produce results with the
same or similar accuracy as quantum mechanical methods. The acceleration of such predictions are
a major advantage for techniques, which require multiple predictions of the same molecule such as
molecular dynamics or Monte Carlo methods [8].
The acceleration a neural network is capable of depends on many factors such as the original
method used or the size of the system in question. This work focuses on neural networks used for
the acceleration of ab initio excited states molecular dynamics. Previous works have shown that
neural networks are able to accelerate such simulations from picosecond up to nanosecond time
scales [7].

This work focuses on SchNet [9], a neural network specifically used for the prediction of molecular
properties such as potential energies, dipole moments, nonadiabatic couplings and many more. The
network can be combined with SHARC (surface hopping including arbitrary couplings) [10], a
molecular dynamics program for excited states, which treats the nuclei of atoms classically while
usually performing a quantum chemical calculation for the electronic contribution of the potential
energy. The combination of these two programs is named SchNarc and it uses the properties
predicted by SchNet instead of the usual costly quantum chemical calculations [11]. However, the
improvements of the prediction speed still leave simulation times longer than a few nanoseconds
beyond our reach. Fortunately there are a few avenues available to make such time scales available.
Promising techniques belong the field of rare event sampling such as forward flux sampling. Here,
the overall concept being, that trajectories are accepted or rejected based on if they reach a certain
area or not. Such methods usually involve a statistical element, which usually makes it necessary
to run a large amount of trajectories in order to obtain meaningful results[12]. Therefore, such
methods would also benefit from acceleration since even longer time scales would become possible.
However the techniques focused on in this work fall under a different category, the acceleration of
neural networks. Recent developments in the area of neural networks focus on this topic leading
to faster predictions with less computational resources. The main reason for this surge in interest
in this field is caused by the need to apply neural networks to smaller systems such as mobile
phones or VR-devices. Since these systems have restrictions for computational power, storage
space and even electrical power neural networks need be adapted in order to make them more
accessible for such devices [13]. Even though this work does not focus on such devices the surge
in different acceleration techniques can be used for other fields such as quantum chemistry as well.
An additional advantage of accelerated neural networks is the access to faster derived properties
such as gradients or Hessians since the underlying networks have less parameters. The reason these
gradients are needed are firstly that forces are calculated as the first derivatives of the energy with
respect to the atomic position and, secondly, nonadiabatic couplings can be approximated by using
the second derivative of the energy with respect to the atomic positions [7].
The way acceleration of a neural network is achieved can vary greatly, ranging from simply deleting
values to creating entire new neural networks, which learn to reproduce the same output from a
bigger neural network. This work will focus mainly on one technique called rank reduction. The
technique chosen for rank reduction is the singular value decomposition, for further details see
Section 2.3.1. Previous works show, that rank reduction can lead to a speedup of a factor of 3 when
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used for image classification [14].
This work will primarily focus on rank reduction but will also explore pruning and quantization.
All these techniques focus on preserving the structure of the network while accelerating the matrix
vector multiplication. The acceleration techniques will be tested on SchNet in order analyze the
speedup achieved and error created by the method.

2 Theoretical background

2.1 Neural Networks

A detailed discussion of neural networks is beyond the scope of this work. However, a few key
aspects are necessary for the understanding of the research conducted in this work.
The basic processing unit within a neural network is a so-called neuron. This neuron collects the
output from other neurons, multiplied by a factor called weight. Also an external value, which is
not dependent on previous neurons, can be added called bias. After collecting all the these values,
a function is applied to the sum called activation function. The output of this activation function
is then passed on to other neurons. We can write this value as:

y = f(b+
∑
i=0

xi · wi) (1)

with xi being the input from the i-th neuron and wi being the corresponding weight. f(x) is the
activation function and b the bias. Finally y is the value, which the neuron passes to other neurons.
The way these neurons are usually arranged is in so-called layers. Neurons within a layer share the
same input and output neurons. Since we have multiple neurons within a layer we can describe
them as a vector and the weights, which are needed in order to go to the next layer as a matrix.
Therefore, we can describe the propagation from one layer to the next as a simple matrix vector
multiplication. Since the bias is also added to every neuron, it can be added in form of a vector
after the multiplication. The resulting formula for an entire layer can therefore be written as:

y = f(xW + b) (2)

with W being the weight matrix and y, x and b being the output, input and bias vector, respectively.
Training a neural network is the process of adjusting the values within the weight matrices and the
bias vectors. The training requires inputs together with already known outputs. Algorithms such
as gradient descent are used as a way to find the optimal values for weights and biases in order to
predict the desired properties from the given inputs [15].

2.2 SchNet

SchNet[9] is a neural network used for the prediction of molecular properties such as potential
energies, spin orbit couplings or dipole moments. It is also able to compute first and second
derivatives with respect to the atomic coordinates, which make it possible to calculate forces or
approximate nonadiabatic couplings [7]. It is programmed in python, built upon Pytorch1 a python
library used for the construction of neural networks. The program is available open source on

1https://Pytorch.org/[last access: 27.11.2020]
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Github2. A schematic overview of how SchNet is structured can be seen in Figure 1. The several
subunits will be explained in the following subsections. The overall concept is to use only the
atomic numbers of each atom and its coordinates as input for the neural network usually referred
to as descriptors. Using the descriptors, the neural network finds its own set of descriptors called
features. These features are then used for the prediction of properties such as potential energies,
dipole moments, nonadiabatic couplings or spin orbit couplings. Throughout this chapter the inner
workings of SchNet will be illustrated with the CO2 molecule as an example.

Figure 1: SchNet can be divided into two subnetworks, the representation and the prediction
network. The representation network consist of the embedding and multiple interaction blocks.
The interaction blocks themselves consist of multiple atomwise layers and a filter layer.

2https://github.com/atomistic-machine-learning/SchNetpack[last access: 19.03.2021]
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2.2.1 Representation network

The representation network is used as a tool to find a set of features, which are used as inputs for
a second neural network. This second neural network then predicts the properties of the molecule
we are interested in. The features are produced by adding multiple layers of interaction blocks (see
Section 2.2.4) to an initial set of features. These features are a vector of a certain length for each
individual atom. A more detailed description will follow in section 2.2.2. Written as an equation,
we can formulate the representation network as:

xN = x0 +

Ninteractions∑
l=0

vl(xl) (3)

With xl = xl−1 + vl−1(xl−1) and x0 being the starting features. The dimension of these feature
vectors is a parameter, which can be changed by the user and has a default value of 256. The
dimension of the features is the largest factor when it comes to computational costs since it alone
determines the size of almost every matrix within the network. vl(xl) is the contribution from the
l-th interaction block, which is dependent on the feature set generated by the former interaction
block. Finally, xN is the output of the representation network. The number of interaction layers
Ninteractions can be userdefined and by default, six interaction blocks are used, which is also the
given as input to SchNet. Since the sum starts to count at zero in the formular given above the
mathematically correct number for Ninteractions would be five, since the sum starts to count at zero,
but six needs to be entered as the parameter for the code.

2.2.2 Embedding

The embedding is the very first section of SchNet. It is used to assign the feature vectors x0 to each
atom, which are the starting features mentioned in Section 2.2.1. For each atom passed through this
section a set of features is generated. Each feature vector starts out as a set of random numbers for
every atom type at the beginning of the training. With every training cycle SchNet will adapt these
vectors as it sees fit in order to generate an optimized representation of the compounds contained
in the training set. These features are then stored in a matrix. Accessing the features for a certain
atom can be done by simply taking the row vector corresponding to the atomic number. Since the
first row in the matrix corresponds to the atom with the atomic number of zero this line will always
be a row of zeros. Therefore for the given example the 7th row would be taken once for the carbon
atom and the 9th row twice for the two oxygens generating a 3 × 256 matrix if the length of the
feature vectors is 256. Each of these vectors will be treated separately by the neural network.

2.2.3 Atomwise layer

The atomwise layer is the next and most common layer of SchNet. It is applied to every atom of
the molecule always using the same weights and biases. The layer can be seen as a normal fully
connected layer and can therefore be written as :

xi
k+1 = factivation(Wkx

i
k + bk) (4)

With xi
k being the feature of the atom i at the layer k with the corresponding weights Wk and

bias bk. xi
k+1 is therefore the feature, which will be fed into the next layer. Please note, that each

atomwise layer is within an interaction block, which would make it necessary to add the subscript
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l. For sake of readability this subscript was neglected. The activation function is in our case the so-
called softplus function shifted by a constant factor of ln(2)(factivation(x) = ln(1+ex)− ln(2)). This
function is applied only after certain layers, which will be indicated by factivation [16]. Continuing
the example, the calculation performed by an atomwise layer is:

xi
k+1(256) = factivation(Wk(256× 256)xi

k(256) + bk(256)) (5)

with the dimensions of the individual variables written in brackets. It is important to note that
an activation function acts on each element in the feature vector individually, which means the
activation function is applied 256 times per atom. Since CO2 has 3 atoms the layer needs to be
applied three times in order to go to the next layer.

2.2.4 Interaction block

The interaction blocks can be seen as a way to describe how a certain atom interacts with their
surrounding neighbours. We define neighbours as atoms, which are within a certain radius called
the cut-off radius. However, the systems we are investigating in this work are rather small, which
is why this cut-off is usually chosen in a way, that all atoms of the molecule are within this radius.
The interaction blocks take the features from the last layer xl as an input and add their output
values vl onto them. Interaction blocks consist of three atom-wise layers with a so-called generated
filter layer between the first and the second atom-wise layer. The second layer also has an activation
function applied to its output. In the following formula the dimensions of the corresponding weight
matrices are given in brackets. The atom wise layer marked with a star is the only layer within
the network, which does not have a bias, because it is mainly used for shuffling the features before
applying the filter layer.

vl(nfeatures) =Latom wise(nfeatures × nfeatures)×
factivation(Latom wise(nfeatures × nfeatures))× Lfilter×
Latom wise(nfeatures × nfeatures)

∗ × xl(nfeatures)

(6)

L represents the different layers with their name being indicated as a subscript.
With taking the standard value for Ninteractions this block would be executed 6 times generating

the vector vl(256) for a network with 256 features.

2.2.5 Filter layer

The filterlayer is the heart of SchNet. A filter is a tool usually used for discrete signals such as
pixels or digital audio data, which are placed along a grid in convolutional networks [17]. However
using this kind of filter on atomic positions would make it necessary to impose such a grid onto
them. While there are techniques to accomplish such a goal, SchNet takes a different approach.
The solution is to use a small, specially designed neural network to create a continuous filter on its
own. The input the filter layer requires is the distance between the atom it currently investigates
and each atom within a certain radius also called cutoff radius. Atoms outside this radius will not
be take into consideration, which ensures the method can scale better with system size. The filter
layer will analyze each atom eventually calculating the distance between each atom discarding the
ones with a distance higher than the cutoff radius and applying the process described below for
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the rest of them. The filter layer also requires the features from the last interaction block. The
obtained distances are first expanded in a basis of Gaussians. These Gaussians take the shape of:

g(dij) = e−γ||µh−dij ||22 (7)

with µh being the different centers of the Gaussians and dij being the distance between the atoms i
and j. γ is calculated in the following way: γ = −0.5/(||µ0−µ1||22). The centers of these Gaussians
are equidistantly placed between 0 and the cut-off radius.
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Figure 2: Examplary Gaussian functions, which are used in the expansion of the distances.

Figure 2 shows a few of those functions and how they overlap with each other. Since the values
of the Gaussians stay the same for the entire network for a given molecular geometry, the values are
calculated once at the beginning of the pass through the network and then stored and used for every
filter layer. The resulting vectors have only a few entries with values close to 1, if the corresponding
Gaussians are centered around a given bond distance, while the values grow smaller and eventually
reach 0 further away from the bond distance. Consider the example of CO2 with a bond distance
of 1.16 Å between carbon and oxygen atoms with 50 Gaussians placed between 0 and 5 Å : The
Gaussians centered at 1.1 and 1.2 Å show values of 0.83 and 0.92, respectively, while the values for
the Gaussians centered 0.5 Å further away have already decreased to 10−7. After the expansion
of one distance, two fully connected layers are applied to this vector. Since the number of features
and Gaussians are rarely the same, the first dense layer is a rectangular matrix that changes the
size of the vector to the length of the features. After applying an activation function, the second
layer is added as a normal square matrix. In a last step, we multiply the vector generated by the
filter layers output elementwise with the features of the atom from the last interaction block. After
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performing the procedure for every distance for one center atom these vectors are summed up to
get one vector. The new vector generated this way can be passed forward to the next layer in the
network. The filter layer can be written as[18]:

xl+1
i =

Nneighbours∑
j=0

xli · Ldense layer(nfeatures × nfeatures)×

factivation(Ldense layer(nfeatures × nGaussians))

×Gexpansion(dij)(nGaussians)

(8)

With Gexpansion being the Gaussian expansion and Ldense layer being the dense layers. nGaussians

corresponds to the number of Gaussians used for the system. The default number is 50.

2.2.6 Prediction network

After applying all aforementioned representation layers, we are left with a set of features that we
can use in order to predict the properties we are interested in. The prediction is done by the so-
called prediction network. This network is a feed-forward neural network. It consist of rectangular
matrices, which reduce the amount of features by a factor of 2 in each step eventually reaching
the number of output neurons, which is equal to the number of values the network is supposed
to predict. The reduction of neurons through the network can also be changed, if the default
architecture is not beneficial for the number of values that should be predicted. Between the layers,
except for the last layer, there is an activation function. At the end of the prediction network the
desired values can be obtained by summing over the contributions of all atoms. A set of properties
can therefore be obtained in the following way.

Property =

NAtom∑
i=0

prediction layer 4(Nproperties × 16)

· factivation(Lprediction layer 3(16× 32))

· factivation(Lprediction layer 2(32× 64))

· factivation(Lprediction layer 1(64× 128))

· factivation(Lprediction layer 0(128× 256))

· (x0 +

Ninteractions∑
n=0

vn)

(9)

In this example we start with 256 features and continue to reduce the number of neurons in
each prediction layer by a factor of 2. The default number of layers is just 3 however we decided
for a larger number in order to see the structure of the prediction network more clearly.

2.3 Acceleration of NNs

The acceleration of neural networks has gained a lot of interest in the last few years. The main
reason is the need to transfer neural networks to mobile devices such as smart devices, which have
to work with limited resources for computational power or energy. Since the size of these networks
have increased to several millions sometimes even billions of parameters in past years it is crucial
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to find ways to reduce their storage and computational costs [13]. While this work does not focus
on such applications, for the latter might still be beneficial for the acceleration of SchNet.

2.3.1 Rank reduction

The rank of a matrix can be defined as the maximum numbers of linearly independent rows
or columns within a matrix. A matrix is called full rank if it only has linearly independent
rows/columns. Note that a rectangular matrix A ∈ Rn×m can only have a rank of min(m,n).
Matrices with lower ranks can be decomposed into a form, which makes it possible to make the
matrix vector multiplication more efficient, than using the original matrix.

The singular value decomposition is the main technique used in this work to accelerate SchNet
and also the most basic form of rank reduction. The technique will be explained in order to
understand how and under what circumstances an acceleration with this method is achievable.

The theorem of the singular value decomposition (SVD) is as follows3: For a given matrix
A ∈ Rn×m there exist two orthonormal matrices U ∈ Rm×m and V ∈ Rn×n and a diagonal matrix
Σ such that UΣV T = A. Σ stores the so-called singular values from the highest to the lowest along
its diagonal. The number of these positive values is equivalent to the rank of the matrix A. If the
rank is smaller than the dimension of the diagonal matrix the values, which follow the last singular
value, are zero [19]. A different way of writing the SVD is:

A =

rank∑
k=1

σkuk × vTk (10)

with σkbeing the k-th singular value and vk × uk being the outer product of the k-th vector
in the corresponding matrices V and U . One can now reduce the rank of matrix A by setting
singular values to 0. The error introduced this way in the Frobenius norm, which is ||A||F =√∑m

i=0

∑n
j=0 a

2
ij for A ∈ Rn×m, can be bound by E =

√∑rank
k=t+1 σ

2
k if we want to reduce the

rank of A by rank− t with t being a natural number smaller than the rank of the matrix[20]. The
operations needed to compute the SVD usually scale with mn2 [21]. Figure 3 shows how a reduction
in rank can be used for the acceleration of a matrix vector product. The left part of the figure shows
the normal propagation through the network. In order to propagate the value from one neuron to
the next layer one needs to perform one multiplication for every neuron in the next layer as long, as
both layers are fully connected with each other. Assuming that the green layer has n neurons and
every layer is connected to every neuron in the blue layer, which has m neurons the total amount
of operations scales with O(n ·m). In comparison when using a reduced rank structure there is a
first propagation to a layer with r neurons equivalent to the rank of the matrix. This process takes
for one neuron only r calculations resulting in only m · r operations. In a second step the values
from the orange layer are propagated to the green layer using r · n operations. Therefore in total
the amount of calculations scales with O((m+n) · r). The number of additions performed for both
layers scales similarly. For the normal case the operations scale again with O(n ·m) since for all n
entries in the green layer m additions need to be performed. For the other layer again only m · r
additions need to be performed for the first matrix vector multiplication and only r ·n additions for
the second one ending up with the same scaling O((m+n) ·r) as for the multiplications. Comparing
the scaling of both layers show that a rank reduced layer can lead to a reduction in operations if

3We will only consider the case of a real matrix here since weight matrices for SchNet only have real values.
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Figure 3: Schematic structure of a normal layer (left) versus a layer that uses a rank reduced
structure for a n×m weight matrix (right).

r < n
2 . An acceleration can therefore only be accomplished if the rank of the matrix is lower, than

half of its full rank.
As stated, SVD is only applicable to matrices. However for other neural networks this method

is not sufficient, since their inputs might not be the shape of a vector but a matrix or even higher
dimensional constructs. Therefore more complex rank reduction methods such as Tucker or tensor
train decomposition are needed for such neural networks, since SVD is not applicable for tensors
in general. However SchNet uses only vectors, which means that its weights are in the shape of
matrices, which makes it possible to apply the SVD. As mentioned in Section 1 rank reduction can
lead to a speedup of a factor of 3 when used for image classification [14].

2.3.2 Pruning

Pruning is a very common approach when it comes to reducing the parameters in a neural network.
The concept is to remove weights from the network. Pruning can be performed with a lot of different
strategies in mind and even randomly deleting weights is an approach, which has been tried in the
past. One idea for this technique is the so-called magnitude-based pruning. This magnitude is a
constant value that is used as a threshold for deleting weights with lower absolute values. Another
way is to delete a certain percentage of weights with the lowest magnitudes. These tactics can
either be used on a global scale or just be applied layer by layer. Other techniques are more focused
on the training of the neural network. One can put a penalty on large weights in the loss function
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and prune the smallest values for a fast and sometimes effective approach to the problem. Another
approach is to use first or second order derivatives to determine, if a change for a certain weight
shows significant contribution to the error. Values that show a small change can be deleted leaving
only weights that contribute to the predictions [22]. Theoretical accelerations by a factor of 2-3 per
weight matrices have been shown in the past to be possible [23].

2.3.3 Quantization

Quantization is a very straightforward approach to reducing the size of neural networks. It aims to
reduce the number of bits of the weights and biases used in the neural network. Common storage
formats (before quantization) are 32-bit, which is the normal floating point format, or 16-bit, which
can be either half precision floating point or 16-bit integer format [22]. The main difference between
integer and floating point numbers is how they are stored within the computer system. The smallest
storage unit in a computer is the so-called bit, which can either be a 1 or a 0. Using multiple of
these bits results in 2p different combinations with p being the number of bits used. When storing
an integer every bit but one is used in order to represent a unique number. The last bit is used
to store the sign of the number defining if the number is positive or negative. The total amount
of numbers, that a certain integer format can therefore store is 2p−1. Floating point numbers take
a different approach. They use a certain amount of bits to represent an integer value but use the
remaining bits to represent a second integer, which is then used as an exponent with the basis of
2, which is then multiplied with the first integer value. Again a single bit is used for the storage of
the sign. Floating point numbers can therefore be written as m · 2e with m and e being integers
represented by a number of bits [24]. The number of bits for each of these variables have been
standardized for certain amounts of bits such as 64 or 32 bits [25]. Currently there is no standard
for lower floating point formats than half precision or 16 bit floating point formats [26]. Therefore,
lower bit formats are integer formats such as eight, four or two bit [22].
The general idea of quantization is to find a range, in which most of the values, which are used
for weights and biases or are the outcome of a layer lie in. With this information one can then
use a constant factor to multiply the values with after applying the layer to it and transform the
integer values back to floating point values. This approach can be applied to the entire network at
once, which is then called fixed point since the factor is fixed for the entire system. On the other
hand one can use dynamic fixed point to adjust these constant values for example for every weight
matrix, bias, results from activation functions and other values from or created by a single layer
[26]. It is also possible to fuse certain layers with their activation function together needing less
scaling factors [27]. Accelerations in this field are dependant on type of storage chosen. However
since this work will focus on an 8-bit quantization it has been shown, that networks can double
their prediction speed [28].

3 Development of a SVD layer

This section will focus on the implementation of a so-called SVD layer, which is the tool used in
for the reduction of operations in SchNet. The layer was built with the basic layer provided by
SchNet. This layer is called the Dense layer. It acts as a fully connected layer and is used usually
in the network for the atomwise layers and also in the filter layer. The Dense layers always have the
parameters n in and n out. These parameters correspond to input and output neurons of the layer.
Additionally a parameter called activation exists, which corresponds to the activation function used
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after the layer is applied. The default parameter for activation is None, which corresponds to not
having an activation function. If an activation function is required, it needs to be imported in order
to be available. Another parameter is used for a possible bias for the Dense layer. Again the default
parameter is None, which would correspond to the layer not having a bias.
The SVD layer developed in this work is created in a way to emulate the same behaviour as a Dense
layer, while reducing the amount of operations. The approach chosen for this task was to substitute
the Dense layer by two smaller ones. Since the layer still needs to propagate the same information
from one layer to the next the parameters n in and n out need to also exist for the SVD layer and
need to stay consistent with the Dense layer it aims to substitute. Additionally a parameter n rank
is used in order to determine the rank of the weight matrix. The parameters activation and bias
also need to be used by the SVD layer. The layer is constructed by using the two Dense layers to
represent the matrices U and V mentioned in Section 2.3.1. Since the propagation from one layer
to the next can be seen as a matrix vector multiplication it is possible to do such a substitution.
Therefore the first layer corresponds to the matrix V . This Dense layer has the same n in as the
original Dense layer but its n out is equal to the parameter n rank. It also does not have a bias
or an activation function since it is simply used as a tool for the first matrix vector multiplication.
The second Dense layer corresponds to the matrix U . This Dense layer has the allowed rank as n in
and the n out is the same as for the original Dense layer. This layer also has an activation function
and/or a bias based on the original Dense layer.
The SVD layer has two different tasks to fulfill. On the one hand, it should be able to decompose
already existing layers and transferring them into their rank reduced form. On the other hand it
should also be possible to create SVD layers without any previous weights. Since for the first case
a weight matrix is required it can simply be checked, if a matrix is given to the SVD layer. After
performing the singular value decomposition for the weight matrix the given amount of singular
values are deleted from the matrix Σ together with the corresponding vectors in V and U . In
order to include the singular values, the matrix Σ is multiplied with U . Making this multiplication
includes Sigma in the layer without contributing to the number of operations needed while using
the network for predictions.
The SVD layers were directly inserted into SchNet, substituting the Dense layers. The rank of the
weight matrix was set to a percentage of the full rank in order to make trainings with different
amounts of features possible, while maintaining the relative rank.

4 Results and Discussion

In the following section, the different acceleration techniques will be analyzed when applied on
SchNet. There are two important quantities, which will be focused on in order to evaluate the
success of the methods.
The first one is the speedup. It is usually measured as a factor since the actual prediction speed is
highly dependent on the system the calculation is performed on. However, the data that is shown in
the following sections will be measured in seconds since they are all calculated on the same machine
(CPU: 2x Intel Xeon E5-2650 v3, 20 cores).
The second property is the error introduced by the method at hand. Generally speaking, the ideal
method would not introduce any kind of additional error. However, since an accelerated network
has less information than a normal one, it might not be realistic to search for such a method. The
error will be shown in kcal/mol since 1 kcal/mol is the maximum error of the system we want to
achieve.
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4.1 Singular value decomposition

The following section will focus on the results obtained by the singular values decomposition. The
first section will focus on the analysis of already trained networks and their behaviour. A second
section will investigate how trainings that only allow a certain rank affect the accuracy of SchNet.

4.1.1 Rank reduction on trained networks

In order to evaluate the error, which is introduced by the SVD, first the decomposition was per-
formed on every weight matrix within SchNet. The implementation from the numpy4 package was
chosen for performing the SVD. Note that the scipy5 package could also be employed for this task,
where the underlying routines are the same.

A first training set used, consists of 6585 data points of diiodomethane, which were generated by
CASPT2/ano-rcc-vdzp calculations with an activate space of (12,8). The properties this network
is trained on are energies, forces and spin orbit couplings. These quantities stem from five singlet
and four triplet states. The sums of errors for each property are weighted equally throughout the
training process. This data set was split in 6200 data points for the training set and 300 for the
validation set leaving 285 points left for the test set. Additionally a cutoff of 6 Åwas chosen. For
the prediction network, five layers were chosen. The trainings were performed on GPUs for faster
training times. The loss function was specialised on training with phase dependant properties such
as spin-orbit couplings. The batch size for the training was 20.

Additionally the analysis was performed for a second test system, CH2NH+
2 . The quantum

chemical data was obtained by SA-CASSCF calculations with an active space of (6,4) and MRCI-
SD both with a basis set of aug-cc-pVDZ. The neural network parameters for this system were
the same with the exception of the training set, which consisted out of 3800 data points, 200 data
points for the validation set and 200 as a test set. Additionally this system was only trained on
energies and forces. The prediction times were done with all the data points combined. The results
can be seen in figure 8. The trends, which were observed for the diiodomethane molecule, hold true
for this test system as well.

Figure 4 shows the singular values of every weight matrix within the network and how they
increase. As can be seen they share very similar values for the different types of weight matri-
ces. The ones with the highest possible rank shown in black correspond to the atomwise/dense
layers within the representation network. They start with the lowest values in the range of 10−2

to 10−3depending on the size of the network. The overlap of the different singular values show,
how similar the different weight matrices behave with respect to the rank. All of these values
have a linear increase until approximately the highest five percent of the singular values, where
they increase very fast. The lines starting from 50%,25%,12.5% of the rank of the atomwise layers
correspond to the layers in the prediction network shown in orange. The increase for these values
is steeper than for the square matrices. Since two different prediction networks are used for the
prediction of energies and spin orbit couplings two matrices with the same exist in the network an
can therefore be seen in the figure. A last group of lines shown in purple represent matrices with a

4https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html [last accessed: 24.03.2021]
5https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html [last accessed: 24.03.2021]
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Figure 4: Singular values of each weight matrix within a 256 feature neural network trained with the
diiodomethane data. Each line represents the singular values of one matrix and how they increase.
The x value corresponds to the place within the diagonal of the Matrix Σ. The y value represents
the numerical value for the singular value. The homogeneous behaviour for most of the matrices
lets them mostly overlap. Since the rank of all weight matrices is not the same different lines start
at different numbers.

rank of 50. These matrices are the first dense layer from the filter network. Since one dimension
for these matrices is restricted by the number of Gaussians for every network the maximum rank
for these types is the same. The increase for these matrices is even steeper.

Figure 5 shows the analysis of the singular values for a network trained on the methylenim-
monium cation data. The behaviour of the individual matrices is very similar to the ones of the
diiodomethane network shown in figure Figure 4. Since this network was only trained for energies
only a single set of matrices exist in the prediction network .
Generally speaking it can be said the more singular values with low values exist the easier it will
be to achieve a speedup with a small error. If a matrix would show a rank lower than its full rank
the singular values would be zero. Since non of the matrices show such values it can be concluded,
that all weight matrices are full rank. It can therefore be concluded, that an acceleration with
no increase in error, without any modifications after the rank reduction, is impossible. However
a speedup could still be possible with an acceptable error. Since the square matrices show the
slowest increase in singular values in a first analysis, only these matrices were decomposed and
approximated. Since only matrices within the representation network are square they were chosen
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Figure 5: Singular values of each weight matrix within a 256 feature neural network trained with
the methylenimmonium cation data. Each line represents the singular values of one matrix and
how they increase. The x value corresponds to the place within the diagonal of the Matrix Σ. The
y value represents the numerical value for the singular value. The homogeneous behaviour for most
of the matrices lets them mostly overlap. Since the rank of all weight matrices is not the same
different lines start at different numbers.

for a first investigation. By deleting singular values as described in chapter 2.3.1 and reconstructing
the original matrices with a lower rank the effect the of the SVD can be seen.

Figure 6 shows the error in the prediction of energies plotted against the number of deleted
singular values for networks trained with the data from diiodomethane. In total four different
networks were trained with 128, 256, 512 and 1024 features. In order to make the errors across
multiple network sizes comparable, the number of singular values were adjusted to generate curves of
the same length. In other words, for each eight singular values deleted in the 1024 feature network,
four were deleted in the 512 feature network, two in the 256 and only a single one in the 128 feature
network. The error shown in this plot only considers the change compared to the full rank network
and not to the reference values, which the network should predict. However, since the error from
the network itself is under 1 kcal/mol the overall behaviour especially in the area with less than
50% of the full rank. As can be seen in this plot the error increases exponentially. Therefore the
minimum error, we would introduce into our predictions in order to obtain a theoretical speed up
would be about 5 kcal/mol, which is five times the error the neural network as a whole should be
able to achieve.
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Figure 6: Increasing error for the energy against the amount of deleted singular values for the
networks trained with the data from diiodomethane. In order to make the curves comparable for
one singular value in the 128 feature network two, four or eight singular values were deleted in the
256, 512 and 1024 feature network respectively.

4.1.2 Rank restricted training

In order to give SchNet the possibility to react to the reduction of the rank, the SVD layer was
implemented. The concept of this layer was to substitute the original atomwise layer with two
dense layers see Section 3. The shape of these layers can be seen as the matrices V and U from
Section 2.3.1 with Σ being multiplied with either of them. Using such SVD layers, trainings were
performed with these layers substituting the normally used atomwise layers. In order to observe
how the technique reacts to increasing network sizes.

Figure 7 shows a bar chart for the prediction times using this altered version of SchNet. It shows
the prediction time for the unaltered version of SchNet in purple and the rank reduced version in
orange. For the predictions the training set of diiodomethane was used with its 6585 data points
as a data set to be predicted by the trained network. The rank of the rank restricted network
was restricted to 33 % of the full rank of the weight matrices. The trainings were performed for
a 256, 512 and 1024 feature network. It can be seen, that smaller networks show a small decrease
in prediction time. However, this speedup gets smaller for the 512 feature network and the 1024
network shows a slight increase in calculation time.

Table 1 shows the errors and the time the predictions need. Two additional times are listed.
The first one is the so-called user time, which is the time a user would need to wait in order to get
the results. The second time included the so-called CPU time, which is the time required by the
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Figure 7: This bar plot shows the prediction time trained with the diiodomethane dataset of SchNet
with the feature sizes given below them. The purple bars represent the original network, while the
orange bars show the prediction times from the rank reduced network.

CPU to calculate the results. Since the predictions were done on a multi-core machine, the CPU
time is much larger than the user time. Generally both of these times are important to look at since
the CPU time gives insight on the time used for calculations and how much is needed for writing
files or loading data.

It can actually be seen, that the rank reduced network used up more CPU time, than the normal
version of SchNet for the 256 and 1024 feature network. The increase however is rather small for
both cases with about 5 % for the 256 feature network and even less for the 1024 feature network.
Also the difference for the 512 feature network is below 5%. When comparing the error between
a normal network and the one with the substituted layers the differences show not a clear picture.
While the error does increase for the smaller networks the error for the 1024 feature network shows
no significant change. This behaviour might not be intuitive at first but a possible explanation to
could be that the optimisation algorithm has a much harder time finding minima since there are
much more variables to consider. Since the error is higher than for the 256 feature network there is
no incentive to use a bigger network especially since the computational cost increases significantly.
Therefore further investigations were performed for the 256 feature network only since the increase
in size did not lower the error.

Figure 8 shows the prediction times for the methylenimmonium cation dataset. The rank for
the rank restricted networks has been limited to 20 %. As can be seen the prediction times over all
are much smaller. There are two reasons for the decrease. The first being, that the dataset consists
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feature size real time [s] CPU time [s] error [kcal/mol]
1024 149.909 2486.479 0.83325725
1024 SVD 151.644 2501.534 0.82798625
512 85.605 1201.656 0.794917
512 SVD 80.913 1102.897 1.0237035
256 68.587 628.206 0.593
256 SVD 58.95 660.754 0.7852535

Table 1: The calculation times and the errors of in kcal/mol of diiodomethane networks with
different system sizes. The SVD represents the networks with only a third of the full rank. Real
time refers to the time a user would wait for the predictions while CPU time represents accumulated
core time from the CPU.
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Figure 8: Prediction time for networks trained with the methylenimmonium cation dataset of
SchNet with the feature sizes given below them. The purple bars represent the original network,
while the orange bars show the prediction times from the rank reduced network.

of more than 2000 datapoints less and the second one is, that it was only trained for energies and
not also for spin orbit couplings. The acceleration gained by SVD layers in this network is much
higher than for the diiodomethane networks. A reason is probably that the percentage of rank
reduced networks is much higher since there are less layers in the prediction network, because only
one property is predicted instead of two. As mentioned before, the rank reduction is more limiting,
than the previous one. However we can observe the same trend as before with larger networks
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showing smaller accelerations than smaller ones.

feature size real time [s] CPU time [s] error [kcal/mol]
1024 SVD 47.18 636.218 0,45725925
1024 48.456 752.397 0,595623
512 SVD 36.314 345.562 0,3349595
512 39.557 378.922 0,434104
256 SVD 24.843 221.931 0,5563415
256 35.849 219.993 0,319774

Table 2: The calculation times and errors in kcal/mol of methylenimmonium cation networks with
different system sizes. The SVD represents the networks with only a fifth of the full rank. Real time
refers to the time a user would wait for the predictions while CPU time represents accumulated
core time from the CPU.

Table 2 shows in addition to the wall prediction time also the CPU time and the error given in
kcal/mol. It can be seen, that the CPU times are getting smaller by a significant amount for the
larger networks, while reaching similar values for the smallest one. It can therefore be concluded
that the reduced rank does reduce the calculation time. However, other operations seem to take
more time for larger networks making the acceleration of the matrix vector multiplication less im-
pactful. When comparing the error between the original and the rank reduced networks we can
actually see that the error decreases for the larger networks, while it increases for the smallest one.
Comparing the two different datasets and their respective networks it can be concluded that accel-
eration is possible. However, the speed up was negligible for rank reductions, which should have
theoretically been able to accelerate the network. Since the 256 feature network showed an error
below 1 kcal/mol the investigations focused on this feature size.

In order to increase the speedup further, not only the square matrices but also the matrices in
the prediction network were included in the rank reduction. With this change every weight matrix
within SchNet will be rank reduced with the exception of the first dense layer within the filter
layer. This layer has is responsible for the transformation of the vector gained from the Gaussians
expansion into the shape of the features used in the network. This process might be more sensitive
to changes than the rest of the network. Additionally, that since the layer has the shape of 256×50
it can only have a rank of 50. A reduction to under 25 would be necessary in order to achieve a
speedup. The potential of a speedup is therefore very limited and the rank reduction would most
likely introduce a high error. Given these reasons, this layer was left untouched for the rest of the
investigation. In a next step, multiple different rank restrictions were tried in order to evaluate how
the error behaves.

Figure 9 shows the error plotted against the percentage of rank allowed for a weight matrix. At
first an increase for the error can be seen for up to over 1 kcal/mol at 20%. However this error
decreases again for the following 2 rank restrictions before finally increasing up to more than 2
kcal/mol at 10 % of the rank. The last increase is most likely caused by the network not having
enough parameters to produce accurate results. Lower ranks were not investigated since the error
would only increase even further. The local increase at 20 % however is a strange phenomena and
harder to explain. A first explanation could be, that the weight initialisation had a bad seed, which
resulted in a local minimum, that the optimization algorithm was not able to escape from. However
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Figure 9: Prediction errors of networks with different amount of maximum rank given in percentages
of the full rank. The different data points were plotted additionally in order to make then more
visible. The uncertainty shows the fluctuation of the error within the last 1000 training steps.

also 25 % showed a larger error than both 17 and 14%. Last but not least it needs to be stated,
that while some of these errors are smaller, none of these errors are close to the error of the original
network. Therefore, the accuracy will always decrease when the prediction speed increases. While
performing the trainings it was observed that networks with a rank restriction of lower than 20 %
took a significantly longer time to converge and the networks with lower ranks of 25 and 20 % had
trouble converging. The black bar shows the area in which the error fluctuated in for approximately
the last 1000 training steps before the training was stopped. It can be seen, that this uncertainty is
the largest for networks with 25, 20 and 10 % rank restriction. The large uncertainty for 10% can
be explained by the network not being able to describe the chemical system accurately anymore.
Figure 10 shows the prediction times with the same rank restrictions as for the error plot. Pre-
dictions up until this point have been performed on the aforementioned CPU but the data for it
was stored on a centralised file system (from now on referred to as global file system). In order
to evaluate the contribution of the data transfer to the calculation time the data was transferred
to the local storage of the machine and the results can also be seen in the figure. Comparing the
two timings on a first look the local storage does decrease the prediction times. However, already
the second data point at 33 % of the full rank shows a different behaviour for the two file systems.
While the time decreases for the global file system the prediction time for the local file system
increases by 10 seconds. For the local case the time decreases steadily up until to 17 %. After that
the time stagnates at 42 seconds. For the global case the behaviour is more erratic. While the
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Figure 10: Prediction time of networks with different amount of maximum rank given in percentages
of the full rank. The black bars labeled as global correspond to the prediction time, when data was
stored on a centralised file system. The red bars show the prediction time if the same data for the
same networks is stored locally instead.

decrease is the same as for the local case, a sharp increase can be seen for the 2 lowest percentages.
The initial increase for the local file system might be caused by almost doubling of the matrix

vector multiplications caused by the substitution of normal layers by the SVD layers. As described
in Section 2.3.1, the number of operations decreases. However the initialisation of a matrix vector
multiplication also costs time. It is possible that the time needed for the initialisation for two
instead of one matrix vector multiplication outweighs the benefits of the reduced floating point
operations. For lower rank percentages, this disadvantage seems to get outweighed by the lower
operations eventually leading to a speedup. The stagnation of the acceleration can also be explained
by this bottleneck, since at a certain number of floating point operations the calculations are done
as soon as the data is ready to be calculated. Instead the main factor is the loading of data and
the initialisation of the calculations. The global prediction times have an additional factor, which
contributes to the computational speed, which is the speed at which data can be accessed. Since a
rank reduced matrix has less parameters than a normal one the continuous decrease in prediction
time could be attributed to the smaller amount of data having to be transferred. This problem
does also exist in the local case however the time needed is much smaller and might simply play a
minor role.

Table 3 and 4 shows again not only the real time but also the CPU times. The behaviour of the
CPU time supports the hypothesis of the initialisation being a time relevant step. It is important
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rank size [%] real time [s] CPU time [s] error [kcal/mol]
full 68.587 628.206 0.593
33* 58.95 660.754 0.7852535
25 55.471 682.301 0.99088525
20 56.293 623.413 1.1534705
17 50.672 616.746 0.9142675
14 60.802 603.957 0.9182835
10 69.564 595.72 2.12904475

Table 3: The calculation times are shown here together with the error in kcal/mol. The rank size is
given in percentage. Real time refers to the time a user would wait for the predictions while CPU
time represents accumulated core time from the CPU. The 33 % network is the same as in Table
1, which means is does not have a rank reduction in the prediction net.

rank size [%] real time [s] CPU time [s] error [kcal/mol]
full 40.977 554.977 0.593
33* 53.09 613.403 0.7852535
25 44.293 576.6 0.99088525
20 44.443 570.25 1.1534705
17 42.053 539.685 0.9142675
14 42.572 540.836 0.9182835
10 42.812 543.614 2.12904475

Table 4: The calculation times are shown here together with the error in kcal/mol. The calculation
times are shown in this table for the calculations with data stored on the local hard drive. The
rank size is given in percentage. Real time refers to the time a user would wait for the predictions
while CPU time represents accumulated core time from the CPU. The 33 % network is the same
as in Table 1, which means is does not have a rank reduction in the prediction net.

to note, that the 33 % network given in the tables does not have reduced matrices in the prediction
network, which could be the reason why it has a slightly lower CPU time, than the next lower
network, which does have rank reduced matrices. After these two data points a steady decrease
can be seen with the same stagnation as for the real time in the case of the local file system. The
global file system Here a very small decrease can still be observed even for the lowest rank networks.
quantity predictions for 256 features networks with different amount of ranks allowed.

The size of the matrices used in SchNet are from a computational stand point rather small. The
small size is of course a big advantage when it comes to computational costs. However the small
size also means, that initialisation steps for matrix vector multiplications are relatively seen rather
expensive and might lead to an actual increase in calculation time as can be seen in figure 10. It
is also important to note, that while under certain circumstances accelerations are possible these
networks do show an increase in error.
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4.2 Other acceleration techniques

4.2.1 Pruning applied to SchNet

Pruning was performed with the tools provided by Pytorch. The package provides different methods
for pruning networks. They can be divided into structured and unstructured methods. Structured
methods focus on imposing or finding a structure of important weights. Using these structures,
matrix vector multiplications can be manipulated taking only the non-zero elements into account
[22]. This work focuses on the unstructured methods, since no artificial structure is imposed
onto SchNet. The search for such structures would have lead to further investigations, which
are beyond the scope of this work. The two Pytorch routines of which to choose from are either
”random unstructured” or ”L1 unstructured”. The first one chooses weights randomly and deletes
them, while the second one focuses on the smallest error in the L1 norm, which means it simply
deletes the values closest to zero. For both of these functions, a parameter can be chosen, which
either deletes a certain amount of weights or a certain percentage of them.
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Figure 11: The error of the pruned networks for different percentages using the built in functions
provided by Pytorch. The purple line corresponds to the error produced by random pruning. The
blue line corresponds to the error introduced by deleting the lowest absolute values.

Both functions were applied to the network. Figure 11 shows the error caused by the deletion of
values from 10 up to 90 %. A first look shows quickly , that the error for random deletion is higher
than the error for the deletion of smallest values. It can also be seen that the error introduced
by this technique is higher than the desired chemical accuracy even if only 10 % of the weights
are pruned. It is also apparent, that there is a threshold for the introduced error at 15 kcal/mol.
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removed weights[%] error L 1 [kcal/mol] error random [kcal/mol]
10 1.46577725 12.11959775
20 4.655297 15.15293275
30 6.09961375 14.99806575
40 10.888631 15.06683975
50 12.89104625 15.1474735
60 14.61955775 15.0904965
70 15.0643925 15.11352575
80 15.08779825 15.1178555
90 15.092379 15.11151775

Table 5: The errors caused by pruning for different percentages of weights are shown in this table.
Error L 1 corresponds to the error produced by pruning using the L 1 norm. Error random therefore
is the error corresponding to the pruning of random values.

This error is reached with random deletion rather quickly at already 20 %, while the deletion of
the lowest values only reach this error after deleting 60 to 70 % of all values. When analysing
the acceleration caused by pruning no speedup is found. The cause is most likely the same as has
been experienced for the singular value decomposition, which is that loading data and initialising
calculations take up most of the computational time.

4.2.2 Quantization applied to SchNet

For quantization, also the tools provided by Pytorch were used. However these tools are only
applicable to structures already provided by Pytorch. Therefore custom structures such as newly
created layers can not be used by those tools. As an example, take the most basic layer in SchNet
called Dense layer. This layer is modeled after the linear dense layer torch.nn.Linear provided
by Pytorch. The function of these two layers is very similar. The Dense layer provided by SchNet
comes with the additional option of adding an activation function, while for the Pytorch case an
additional layer would be required. However since the Dense layer is not known by Pytorch the
functions provided by it can not be applied.
Currently the only workaround, which was tested, is to transform the Dense layer, which doesn’t
have any activation functions, into Linear layers. This change is only possible for 3 out of the 5
Dense layers included in the interaction blocks and only for the very last layer in the prediction
network. The reason why this treatment is not possible to apply to the Dense layers with an acti-
vation function is a slight change in the softplus function used in SchNet. The activation function
used in SchNet is not exactly the softplus function (factivation(x) = ln(1 + ex)) but it is shifted by
a constant value of ln(2). While the non-shifted softplus function is implemented, the shifted one
is making it again necessary to create a custom layer. The reason this is again not beneficial since
Pytorch would provide the option to merge layers as briefly mentioned in Section 2.3.3. Pytorch
right now does not provide the tools to merge the softplus function with a linear layer. However
since the shifted softplus function is not implemented on its own makes it less likely, that it will be
possible in the future, while the non shifted version might be available in the future.
Pytorch usually stores models in so-called model files, which contain all the information necessary
such as architecture and values of weights and biases for using the model. However Pytorch does
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not support this option for quantized models. The only way to store such a model is in a so-called
state dict file, which consists only of the values for weights, biases and other values, which might
be necessary for the network. Since the architecture is missing one needs to initialise it right before
the calculations, including the quantization steps, with the exception of a calibration step, since
these values can be stored. This extra step might cause quite a significant overhead for the usage
of such a network.
Given the above mentioned problems and the time needed for the implementation of making quan-
tization work for SchNet this approach was not pursued any further.

4.2.3 General remarks on the Acceleration of SchNet

In the previous chapters, reasons were discussed on why SchNet does not respond as expected to
certain acceleration techniques. It can be concluded that SchNet in its current form is very com-
pact and therefore hard to further optimize. The main advantage reason is that SchNet uses rather
small matrices from a computational point of view. This property leads to short calculation times
for operations such as the matrix vector product. Therefore, acceleration techniques which focus
on accelerating these operations have only a small potential. It is also important to state, that
while accelerations have been found for certain systems under certain circumstances a decrease in
accuracy has also been found. Therefore, it always needs to be evaluated, if a certain factor of
acceleration is worth the additional error introduced into the system. The SVD shows the most
potential for acceleration with the aforementioned problems of system dependencies and additional
errors. The rest of the section will focus on other problems encountered while applying different
acceleration techniques.
A first problem is related to the architecture of SchNet. It consists of two neural networks, the
representation and the prediction network, which themselves consist of multiple subunits. This
rather complex design leads to problems for some functions to access the layers, which store pa-
rameters such as weights of the network itself. It might seem like a small problem but again tools
provided by Pytorch suffer from this problem making certain task much more demanding from an
implementation standpoint.
Another problem stems from the input, which SchNet requires. The input is not a single matrix or
tensor but a dictionary of different matrices such as the coordinates of atoms, the types of atoms
and a mask, which determines, which atoms are considered neighbours and which are not. This
property becomes a problem, when trying to use libraries outside of Pytroch such as the distiller
package [29].This library would be able to perform multiple acceleration methods on its own but is
not able to since the network requires a test set in the form of a single matrix or tensor.
As discussed before, the main origin of the unsuccessful acceleration attempts are caused by the
small size of the matrices used in SchNet. With this information in mind the question arises if it is
not possible to accelerate SchNet or if there are techniques, which might still be a possible solution
to this task. SchNet uses the representation network in order to create a set of features, which is
then used by the prediction network to predict properties. While the careful construction of the
first network produces feature sets that are able to predict properties precisely, the computational
costs for this network is rather high. Therefore, an acceleration might be possible by reducing this
network to a much smaller size. This technique is called knowledge distillation. In general, this
technique requires a so-called teacher network and a student network. As the name suggests the
teacher network “teaches” the student network to produce the same output. Since the student
network consists of less parameter than the teacher network eventually the student network should
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be able to reproduce the results from the teacher network with much less computational costs [22].
When applied to SchNet the case is clear: The representation network would act as the teacher
network and a smaller network would substitute it in SchNet after it is trained by the former. While
such an approach would most likely lead to an acceleration of the network, the bigger question lies
in the if and how the accuracy of the SchNet as a whole would be changed. It remains to be seen
if this structural change performs better than the techniques used in this work.

5 Conclusion and Outlook

This work focused on the acceleration of SchNet a neural network used for the prediction of quan-
tities such as potential energies, forces, dipole moments and many more. The main technique used
for acceleration was singular value decomposition. This method focuses on the reduction of the
rank of matrices. The technique promises an acceleration, if the rank is below half of the dimension
of the matrix. The acceleration is achieved by substituting the original matrix by two smaller ones.
A matrix vector multiplication is then performed by multiplying the vector with both of those ma-
trices. Other techniques investigated were pruning, which focuses on the deletion of weights, and
quantization, which aims to store values such as weights and biases in formats, which consume less
storage. The acceleration of SchNet proofed to be of minimal success. The main reason for this is
the fact, that SchNet operates with rather small matrices. When accelerating such small matrices
the amount of operations, which can be reduced, is rather small. Also additional computation
time is required since one matrix vector multiplication is substituted by two, which introduces an
additional initialisation step. The additional time the second initialisation needs in combination
with the small potential of operation reduction lead an increase in calculation time rather than a
decrease. Other acceleration techniques investigated in this work suffered from similar problems
with the addition of difficulties in implementation. It can therefore be concluded, that SchNet in
its current structure is already highly optimized and therefore difficult to accelerate.
Acceleration techniques used in this work focused on the conservation of the structure of SchNet,
which leads to techniques only using numerical approaches. However limiting oneself to this ap-
proach excludes the possibility of optimizing the structure of SchNet itself. In this work this
limitation was chosen deliberately however future work should drop this constraint and focus on
more drastic changes of the network.
A first promising candidate is the so-called knowledge distillation. This approach focuses on a neu-
ral network to learn the output of another neural network . The main target of this approach for
SchNet could be the learning of the representation network with a smaller network than the original
representation network. The resulting network would then be used for the prediction network and
bypass the majority of operations of SchNet located in the representation network.
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González, and Philipp Marquetand. Machine learning enables long time scale molecular pho-
todynamics simulations. Chemical Science, 10:8100–8107, 2019.

[8] Pavlo O. Dral. Quantum chemistry in the age of machine learning. The Journal of Physical
Chemistry Letters, 11(6):2336–2347, 2020.
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approach. WIREs Computational Molecular Science, 8(6):e1370, 2018.

[11] Julia Westermayr, Michael Gastegger, and Philipp Marquetand. Combining SchNet and
SHARC: The SchNarc machine learning approach for excited-state dynamics. The Journal
of Physical Chemistry Letters, 11(10):3828–3834, 2020.

[12] Mauro Ferrario, Giovanni Ciccotti, and Kurt Binder. Computer Simulations in Condensed
Matter Systems: From Materials to Chemical Biology, volume 1. january 2006.

[13] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and accel-
eration for deep neural networks. CoRR, abs/1710.09282, 2017.

[14] Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan Ee. Convolutional neural networks with
low-rank regularization. november 2015.
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