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Abstract

The aim of this thesis is in the broadest sense the visualisation of a Kerr black hole. In
particular, we consider an analytic extension of the Kerr metric which allows for two
asymptotically flat regions of spacetime, one with positive radial coordinate (where the
central is attractive) and one with negative radial coordinate (where the central object acts
repellent). Based on this fact, we want to answer the question how a stationary observer
very far away from the black hole in the negative region perceives a stationary light source at
positive radii. To this end, we study null geodesics connecting the source with the observer.
Such geodesics belong to the subclass of so-called “vortical geodesics”, characterised by the
negativity of Carter’s constant. We first discuss some general features of these vortical null
geodesics (both known and new results), before we go on and analytically and numerically
solve the geodesic equations of motion in Kerr spacetime. After that, to get a feeling
of these geodesics, we take a closer look at some example geodesics (i.e. trajectories
which photons take from the source to the observer) and their appearance in Kerr-Schild
coordinates (which serve as pseudo-Cartesian coordinates). Finally, we create visualisations
of what the observer we are considering would see when looking at the central object. To
make the analysis of distorting effects easier, we consider two simple model light sources
located at positive radial infinity. Within the context of this analysis we also created two
short animations which can be found at https://www.quantagon.at/masters-thesis/.
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Kurzfassung

Das Ziel dieser Arbeit ist im weitesten Sinne die Visualisierung eines schwarzen Lochs
in der Kerr-Raumzeit. Insbesondere betrachten wir hierzu eine analytische Erweiterung
der Kerr-Metrik welche zwei asymptotisch flache Regionen der Raumzeit zulässt, eine mit
positiver radialer Koordinate (in welcher das zentrale Objekt anziehend wirkt) und eine mit
negativer radialer Koordinate (in welcher das zentrale Objekt abstoßend wirkt). Auf dieser
Tatsache aufbauend wollen wir die Frage beantworten, wie ein stationärer Beobachter,
welcher sich weit entfernt vom schwarzen Loch in der Region mit negativem Radius
befindet, eine Lichtquelle mit positivem Radius wahrnehmen würde. Dazu untersuchen
wir Null-Geodäten, welche den Beobachter und die Lichtquelle verbinden. Diese Geodäten
gehören zu der Unterklasse der sogenannten „strudelartigen Geodäten“, welche durch
die Negativität der Carter-Konstante charakterisiert sind. Zuerst diskutieren wir einige
generelle Eigenschaften dieser „strudelartigen Geodäten“(sowohl bekannte, als auch neue
Resultate), bevor wir die Geodäten-(Bewegungs-)Gleichungen der Kerr-Raumzeit sowohl
analytisch als auch numerisch lösen. Um ein Gefühl für diese Geodäten zu bekommen,
betrachten wir einige exemplarische Geodäten (also die Bahnen der Photonen von der
Quelle zum Beobachter) und deren Erscheinung in Kerr-Schild Koordinaten (welche uns als
pseudo-kartesische Koordinaten dienen). Abschließend visualisieren wir, was der Beobachter
in unserem Fall sieht, wenn er/sie direkt zum zentralen Objekt blickt. Um die Verzerrungs-
Effekte einfacher analysieren zu können, betrachten wir zwei simple Modell-Lichtquellen
bei positiver radialer Unendlichkeit. Im Rahmen dieser Analyse haben wir auch zwei kurze
Animationen erstellt, welche unter https://www.quantagon.at/masters-thesis/ gefunden
werden können.
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1. Introduction

After Albert Einstein published the Theory of General Relativity and thus the famous
field equations in 1916 [12], many people tried to solve them exactly. The first one to
successfully do so was Karl Schwarzschild [33]. His solution describes the gravitational
field of a non-rotating, non-charged point particle. In the standard form the metric looks
as follows:

g = gµνdx
µdxν

= −(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2(θ)dϕ2 . (1.1)

The units here are chosen such that G = c = 1. These so-called geometric units will be
used throughout this thesis.
The Schwarzschild metric is very well studied and gives a lot of insights into general
relativity. There is a strong uniqueness theorem for the Schwarzschild metric [3] which
reads: In a vacuum region, away from the set {r = 2m}, any spherically symmetric metric
can locally be written in the Schwarzschild form, for some mass parameter m. The theorem
is named after George David Birkhoff, although it was already formulated by Jørg Tofte
Jebsen two years prior.
One big drawback to this solution is the lack of rotation and electric charge. Angular
momentum is nowadays still not very well understood when clouds of interstellar matter
(ISM) collapse to form stars because the cloud has a much higher angular momentum than
the resulting star. Therefore the angular momentum needs to be transported away from
the star. One possible solution for this transport is the coupling of the collapsing ISM with
its surroundings via a magnetic field for which electric charge is needed. Consequently,
the infalling matter and thus the resulting star has to be electrically charged. At the end
of the stars life, when collapsing again to form a black hole, it cannot simply get rid of
its angular momentum and electric charge. That is why we definitely want those two
quantities in our theory about black holes.
Solutions to Einsteins field equations containing electric charge were found pretty quickly
by the work of various people between 1916 and 1921; two of them were Hans Reissner
[30] and Gunnar Nordström [26]. The metric

g = −(1− 2m

r
+
Q2

r2
)dt2 + (1− 2m

r
+
Q2

r2
)−1dr2 + r2dθ2 + r2 sin2(θ)dϕ2 (1.2)

is thus named Reissner-Nordström-metric and it describes a charged (electric charge is
encoded in Q), non-rotating, spherically symmetric body [25].
It took a lot longer to find the solution of Einsteins field equations for a rotating body.
Almost 50 years after Einstein’s publication, Roy Kerr found the exact solution to the
field equations for a rotating body in 1963 [21]. Unfortunately, there is no general Birkhoff
uniqueness theorem for Kerr spacetime. Therefore, the spacetime in the vacuum region
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1. Introduction

outside a generic rotating object such as a star is not described by Kerr geometry. There
are, however, uniqueness theorems for Kerr spacetime to describe the exact solution
corresponding to stationary rotating black holes.
As for the history of black hole visualisations in Schwarzschild and Kerr spacetime (and
therefore the study of null geodesics in these curved spacetimes), this field of research
was starting to spread in the community in the 1970’s with works by Bardeen [2] who
calculated the shadow boundary for an observer in the exterior region of a Kerr black
hole, Cunningham & Bardeen [11] who were considering observational features of a star
(point source) orbiting around a Kerr black hole as seen by an observer in the exterior of
the black hole, and Luminet [22] who first simulated the appearance of a thin accretion
disk around a Schwarzschild black hole. Also in this era, ground work in the study of
global behaviour of null geodesics in the extended Kerr spacetime was done by Helliwell &
Mallinckrodt [18].
As computational power was increasing, many more people added to the previous works in
different ways in the 1980’s and 1990’s. For the Schwarzschild solution two such additions
were done by Fukue & Yokoyama [13] who added colour to the accretion disk, and by
Marck [23] who solved the geodesic equations in Kerr-Schild coordinates. In the Kerr case
one noticeable paper is by Viergutz [35] who extended the visualisation of a thin accretion
disk done by [22] to the Kerr spacetime.
Nowadays, the field of black hole visualisations is more present than ever, owing this increase
in popularity to advances in computational resources and in observational astronomy –
the first photo of a black hole was taken using the Event Horizon Telescope in 2019 [34]
which can be used to check numerical simulations. Some theoretical works include papers
by Riazuelo [31] [32] in which a ray tracing code for both the Schwarzschild and the Kerr
spacetime are presented, and a series of papers by Gralla & Lupsasca [17] [16] whose results
involve analytic solutions to the geodesic equations of motion for null geodesics. And
lastly, a team around Oliver in collaboration with Kip Thorne [19] created visualisations
of the exterior region of a Kerr black hole with unprecedented resolution which was used
in the Hollywood film “Interstellar”.
It should be clear that this list of references is a non-exhaustive selection of what has been
done in black hole visualisations and is by no means complete. The mentioned works are
nothing but a small sample of what has been done so far.
As one can see, a lot of research has been conducted on the visualisation of the appearance
of both stationary and rotating black holes in the exterior region, i.e. for an observer
outside the event horizon. We will see in the subsequent chapter 2 that Kerr spacetime
allows for two asymptotically flat regions, one for r → +∞ (exterior) and one for r → −∞,
both being connected through the interior of the black hole. The region with r < 0 does
not allow for horizons and thus represents a naked singularity. Furthermore, it lies beneath
the Cauchy horizon, which is thought to be unstable. That is why this region is by most
researchers deemed to be unphysical. Nonetheless, in this work we will assume that the
region is indeed a physical part of the spacetime geometry of a rotating black hole. Based
on this assumption, we will strive to answer the question: How would an observer far
away in the negative-r-region perceive the central object (in the region r < 0 it is not a
black hole anymore as there are no horizons shielding the curvature singularity, yet in the
following we will refer to the central object as the black hole) when the light is emitted at
a source at positive radii, therefore crossing over from r > 0 to r < 0? In previous works
only visualisations for observers close to the black hole in the region with negative radius
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were done (e.g. [32]), but not for an observer in the asymptotically flat region at r → −∞.
Therefore, the aim of this thesis is to extend the works by [18], [17], and [32] in this regard.
In order to fully understand the question we want to answer and the implications thereof, we
will start with some basics of Kerr spacetime in chapter 2, introducing not only the metric
tensor but also some features arising from it, such as the horizons, the ring singularity, etc.
As the task of visualising the appearance of the black hole involves photons, which follow
null geodesics, we will give an overview of the geodesic equations of motion in Kerr
spacetime in chapter 3. It is also there that we analyse some of the geodesic equations,
presenting both well known as well as new features arising from them, and thus setting
the stage for subsequent chapters.
Chapter 4 serves the purpose of presenting two different ways of solving the geodesic
equations. We will follow a recent approach by [17] in finding analytic solutions to the
equations of motion for null geodesics, modifying it to suit our case and correcting some
equations. Furthermore, we will shortly discuss a method of how to solve these equations
numerically before we conclude the chapter by comparing both solutions.
To gain insight into the behaviour of the null geodesics connecting the source and the
observer, we will present some visualisations of individual photon trajectories in chapter 5.
Finally, we will (partly) answer the main question concerning the appearance of the black
hole for an observer very far away in the negative-r-region in chapter 6 before summarising
our findings and giving an outlook regarding future work in chapter 7.
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2. Basics of Kerr spacetime

This section serves the purpose to give an introduction to Kerr spacetime to the reader
who may not be completely familiar with it or just wants to refresh their memory. Some
knowledge of the Schwarzschild solution to the Einstein field equations is assumed. The
aim being the acquisition of a basic qualitative understanding of some of the fundamental
features of the spacetime without involving too much technicalities, not every statement is
backed up by a rigorous proof. Those can be found in the references given in the text.
Summarising, this section contains the definition of the metric tensor of Kerr spacetime
and its forms in various coordinate systems, as well as the interpretation of the appearing
parameters a and m. Thereafter, some of the intriguing features of Kerr spacetime
are outlined, including the horizons, the ring singularity, the ergosphere, as well as the
causality violating region (Carter’s time machine). For a deeper understanding of the
global properties of Kerr spacetime, the projection diagram is useful.

2.1. The metric

As for any solution to the Einstein Equations, the metric tensor can take many various
forms depending on the coordinate system used. Thus, in order to be able to study different
aspects of Kerr spacetime, we need to introduce different coordinate systems. According
to which problem we are facing, we can then choose the most suitable coordinates.

2.1.1. Boyer-Lindquist coordinates

One of the most commonly used coordinate systems of Kerr spacetime are the so-called
Boyer-Lindquist coordinates (t, r, θ, φ) [4], in which the metric tensor takes the form

g = −∆

Σ
(dt− a sin2(θ) dφ)2 +

sin2(θ)

Σ

(︁
(r2 + a2) dφ− a dt)

)︁2
+

Σ

∆
dr2 +Σdθ2 (2.1)

= −
(︃
1− 2mr

Σ

)︃
dt2 − 4mar sin2 θ

Σ
dtdφ+

(r2 + a2)2 − a2∆sin2 θ

Σ
sin2 θ dφ2

+
Σ

∆
dr2 +Σdθ2 (2.2)

with
Σ = r2 + a2 cos2(θ) , ∆ = r2 + a2 − 2mr . (2.3)

These coordinates are similar to spherical coordinates in the sense that the domain of
definition of the polar coordinate is 0 < θ < π/2 while the azimuthal coordinate is 2π-
periodic. The real parameters a and m are to be interpreted as the parameter regarding
the black hole’s rotation and mass, respectively. The basic reasoning of this interpretation
and the respective ranges of a and m will be outlined in section 2.2. The characteristic of
Boyer-Lindquist coordinates to be similar to spherical coordinates is further supported

5



2. Basics of Kerr spacetime

by the fact that in the limit a → 0 and m → 0 one recovers flat spacetime in spherical
coordinates. It is the two roots Σ = 0 and ∆ = 0 which give rise to some of the most
important features of the spacetime, namely the ring singularity and the horizons. These
will be discussed in sections 2.3.2 and 2.3.1, respectively. From the form of the metric it
can easily be deduced that the spacetime admits the two Killing vectors ∂t and ∂φ. This
is the case as all metric components are independent of both t and φ, meaning the metric
is stationary and axially symmetric. Furthermore, the spacetime admits two distinct
asymptotically flat regions, one for r > 0 and one for r < 0, i.e. the metric approaches a
flat spacetime metric in the limit r → ±∞. The coordinate singularity at ∆ = 0 only exists
for positive r, since for negative r this function is strictly positive. As will be discussed
in subsection 2.3.1, this lack of the singularity for r < 0 renders this asymptotic region
generally unphysical. It is noteworthy that this region can also be described by leaving r
positive but flipping the sign of the mass m. Hence, the black hole must be repellent for
r < 0.

2.1.2. Eddington-Finkelstein-like coordinates

In order to avoid the coordinate singularity at ∆ = 0, thus regularizing the metric across
the horizons, one can transform to new coordinates (u, r, θ, ψ) using

u = t− νrr
∗ (2.4)

ψ = φ− νrr
# (2.5)

where νr = ±1 was introduced and where we defined

r∗ =

∫︂
r2 + a2

∆
dr , (2.6)

r# =

∫︂
a

∆
dr . (2.7)

These coordinates are based on the principal null congruences of the Kerr spacetime (i.e.
in-/outgoing null geodesics with certain constants of motion), the case νr = −1 describing
the ingoing congruence, while νr = +1 describes the outgoing congruence (cf. [29]). We
will later associate the sign νr with the sign of the radial geodesic equation of motion
(cf. section 3.1). The coordinates are tailored so that for these special in-/outgoing null
geodesics (the null congruences), the corresponding coordinates ψ, u, as well as θ, are
constant along the geodesic. We will encounter this fact later on in the subsections 3.2.2
and 5.1.3. In the former subsection we show that indeed the coordinates ψ, u, and θ stay
constant for all times.
The resulting metric takes the form

g =−
(︃
1− 2mr

Σ

)︃
du2 − 2νr dr du+Σdθ2

+ 2νra sin
2 θ dψ dr +

(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θ dψ2

− 4amr sin2 θ

Σ
dψ du . (2.8)

6



2.1. The metric

Note that now no metric component contains ∆ in the denominator, revealing the regular
behaviour at ∆ = 0, independent of the sign νr. Choosing νr = −1 leads to the so-
called Eddington-Finkelstein-like coordinates initially discovered by Kerr [21]. The name
stems from the fact that in the stationary limit a → 0, one recovers the Eddington-
Finkelstein extension of the Schwarzschild metric [36]. Similar to the case of Boyer-Lindquist
coordinates, we can deduce the existence of two Killing vectors in these coordinates, namely
∂u and ∂ψ.

2.1.3. Kerr-Schild coordinates

Another way to get rid of the coordinate singularity at ∆ = 0 is by considering the so-called
Kerr-Schild coordinates (t̃, x, y, z), which cast the metric into the form

g = η +
2mr3

r4 + a2z2

(︃
dt̃+

r(x dx+ y dy)

a2 + r2
+
a(y dx− x dy)

a2 + r2
+
z

r
dz

)︃2

(2.9)

= η +H ℓ2 , (2.10)

where we have the Minkowski metric η = −dt̃
2
+ dx2 + dy2 + dz2 and we defined

H :=
2mr3

r4 + a2z2
, (2.11)

ℓ ≡ ℓµ dx
µ := dt̃+

r(x dx+ y dy)

a2 + r2
+
a(y dx− x dy)

a2 + r2
+
z

r
dz . (2.12)

The transformation connecting (2.1) and (2.9) is given by [29]

x+ iy = (r + ia) ei(φ+r
#) sin(θ) , (2.13)

z = r cos(θ) , (2.14)
t̃ = t+ r∗ − r , (2.15)

where r# and r∗ are given in (2.7) and (2.6), and i is the imaginary unit defined by
i =

√
−1. The Boyer-Lindquist radius r is determined by the solution of

x2 + y2 + z2 = r2 + a2
(︃
1− z2

r2

)︃
. (2.16)

One striking feature of this coordinate system is the underlying Minkowski metric. Note
that ℓ is a null vector with respect to both the Kerr metric and the Minkowski metric.
Furthermore, this form of the metric is also regular at ∆ = 0 but still singular at Σ = 0.
The Killing vectors in these coordinates are ∂t̃ and x ∂y − y ∂x, which are easily obtained
by transforming the two Killing vectors found in the Boyer-Lindquist coordinates [36]. In
this form of the Kerr metric the asymptotic flatness of the spacetime in the limit r → ±∞
is evident. This can be verified by noting that H ∝ r−1 for |r| ≫ 1 while ℓ → dt̃ in the
same limit, thus resulting in gµν → ηµν .
The Kerr-Schild coordinates are especially useful for visualization purposes due to its
underlying flat spacetime metric, enabling the usage of (x, y, z) as pseudo-Cartesian
coordinates. In what follows we will drop the tilde in the coordinate time and hence
write the Kerr-Schild coordinates as (t, x, y, z). It will be clear from the context whether t
corresponds to the coordinate time in Boyer-Lindquist or Kerr-Schild coordinates.

7



2. Basics of Kerr spacetime

2.1.4. Toroidal coordinates

As we will display in section 2.3.2, the non-removable curvature singularity of Kerr
spacetime can be depicted to be a circular string lying in the x-y-plane in Kerr-Schild
coordinates. In order to study the spacetime geometry near this singular ring, the authors of
[8] introduced toroidal coordinates (t, r̂, ψ̂, φ̂), whose construction we will briefly reproduce.
The disk bounded by the ring singularity

D := R× {x2 + y2 < a2, z = 0} ⊂ R× R3 (2.17)

serves as the starting point of the construction of toroidal coordinates. By solving (2.16)
for r and expand for small values of z, one arrives at

r = ±

⎧⎨⎩
a|z|√
a2−ρ2

− aρ2|z|z2
2(a2−ρ2)5/2 +O

(︁
z4
)︁
, ρ < a√︁

ρ2 − a2 + ρ2z2

2(ρ2−a2)3/2 +O
(︁
z3
)︁
, ρ > a

(2.18)

where ρ2 := x2 + y2 was defined. Independent of the sign of r in (2.18), there is no
smoothness problem when crossing the equatorial plane from z > 0 to z < 0 in the case
ρ > a, corresponding to the region outside the disk (2.17). However, for a smooth extension
through the equatorial plane inside the disk (ρ < a), one needs to choose the opposite sign
for r in the region z < 0 to the one chosen for z > 0. Thus, if an observer goes through the
disk once from z > 0 to z < 0, they go from one asymptotically flat region with r > 0 to
the other with r < 0. Then they might go around the ring further and cross the equatorial
plane from z < 0 to z > 0 outside the disk, staying in the region r < 0, i.e. staying in the
same asymptotically flat region. If they then go around even further and crosses it again
from z > 0 to z < 0 inside the disk, they come back to the starting region r > 0. This
feature can be taken care of by introducing a 4π-periodic function which corresponds to a
natural angular coordinate ψ̂ around the ring. Then the region ψ̂ ∈ (−π, π) corresponds
to positive values of r while ψ̂ ∈ (π, 3π) corresponds to negative values of r.
To get from Kerr-Schild coordinates to toroidal coordinates, one makes use of the trans-
formation of the spatial coordinates to toroidal coordinates (t, r̂, ψ̂, φ̂):

x = [a+ r̂ cos(ψ̂)] cos(φ̂) , (2.19)

y = [a+ r̂ cos(ψ̂)] sin(φ̂) , (2.20)

z = r̂ sin(ψ̂) . (2.21)

A qualitative plot of these toroidal coordinates can be found in Fig. 2.1. It is straightforward
to see that these coordinates only make sense if we restrict r̂ < a. These coordinates,
although they may be useless for studying global properties of the spacetime due to this
restriction, can be very helpful for studying the singular ring and the transition between
the two asymptotically flat regions of the spacetime. The complete form of the metric
in toroidal coordinates is rather lengthy and complicated and does not give any further
insights which would be helpful in the understanding of the following discussion. For that
reason the explicit metric tensor is not stated here.
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Figure 2.1.: Toroidal coordinates with major radius a and minor radius of the torus r̂.
The coordinate φ̂ is 2π-periodic while ψ̂ is 4π-periodic. This figure is taken
from [8] Fig. III.1. Due to different notational conventions we identify ψ ≡ ψ̂
and φ ≡ φ̂ in the figure.

2.2. Interpretation and range of a and m

Taking the limit m → 0 in the Kerr metric tensor in different coordinate systems (2.1),
(2.8) or (2.10) always results in a locally flat spacetime metric [36], although it is maybe
not immediately obvious in all three cases. It can best be seen by taking this limit in
(2.10) since H → 0 while l does not depend on m at all, thus leaving us with the standard
form of the Minkowski metric gµν → ηµν for m → 0. Because the Minkowski metric
describes flat spacetime, we interpret this limit as the case of vanishing mass, leading to
the interpretation that m corresponds to the active gravitational mass of the spacetime.
Interestingly, taking the same limit in the Boyer-Lindquist form of the metric (2.1) reveals
that the resulting spacetime is topologically non-trivial. In particular, one retains the two
asymptotic regions glued together through the disk framed by the ring singularity (which
is still a curvature singularity!) [14].
The parameter a can be given meaning by considering the limit a → 0 in either one of
the forms of the metric (2.1), (2.8) or (2.9). The result will always be the Schwarzschild
metric which describes the spacetime geometry of a stationary (non-rotating) central
object of mass m. This can most easily be seen by taking said limit in (2.8), resulting in
the Eddington-Finkelstein extension of the Schwarzschild metric and actually giving the
corresponding set of coordinates of Kerr spacetime in subsection 2.1.2 its name. Therefore,
we will interpret a as the parameter related to rotation.
Although in principle the Kerr metric is a solution to Einstein’s field equations for any
real parameters a and m, we are really interested only in a certain range of a and m.
To begin with, we will require m > 0 and a ̸= 0 since the cases of m = 0 and a = 0
correspond to the Minkowski metric and the Schwarzschild metric, respectively, and have
been studied in more detail on their own [25]. Additionally, the overall sign of a does not
change the physical properties of the spacetime. To see this, notice that in Boyer-Lindquist
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2. Basics of Kerr spacetime

coordinates the metric is invariant under (−a, φ) → (a,−φ). Hence, we only change
the direction of rotation which does not produce different physics. One just needs to
be consistent with the choice of the “direction of rotation”. By inspecting the roots of
∆ = 0 ⇐⇒ r = r± = m ±

√
m2 − a2, one can define an upper bound of a. We will see

in section 2.3.1 that these two zeros correspond to the event horizon and the Cauchy
horizon. For |a| > m, the argument of the square-root is negative and we do not have a
real solution, thus there exists no horizon and we have a naked singularity. Since naked
singularities are deemed to be unphysical, we can finally specify that the region of interest
is 0 < |a| ≤ m. In some cases we need to treat the case |a| = m individually because there
is a double root for ∆ = r2 − 2mr = 0 ⇐⇒ r = r+ = r− = m.
Although we keep a and m in all formulae in the current work, we will, unless specified
otherwise, set m = 1 and vary a in the region 0 < a/m ≤ 1 in all numerical calculations
and visualisations. It should be clear that any effects due to rotation are stronger the
closer the rotation parameter a is to the critical value 1. One recovers the case m ̸= 1 by
simple rescaling of a. Therefore, we will actually measure distances and time in terms of
the black hole mass m in any of the following plots (e.g. r/m, t/m, x/m, u/m, etc.).

2.3. Features of Kerr spacetime

A good starting point to analysing features of a spacetime are singularities occurring in
the metric tensor. To differentiate whether some singular set appearing in the metric
components is only a coordinate singularity which can be avoided by choosing different
coordinates, or a proper curvature singularity which one cannot extend through, it is useful
to consider scalar invariants of the spacetime. One such invariant is the Kretschmann
scalar K := RαβγδR

αβγδ where Rαβγδ denotes the Riemann curvature tensor. Thus this
quantity can be interpreted as a measure of curvature. In the well studied Schwarzschild
geometry, one uses this Kretschmann scalar (cf. [25] p.822 eq. (31.7))

K =
48m2

r6

which clearly diverges as the set {r = 0} is approached. Therefore this set is interpreted
as a curvature singularity, whereas the event horizon at r = 2m is only regarded as a
coordinate singularity which can be extended through by using e.g. Eddington-Finkelstein
coordinates [25].
A similar approach concerning the analysis of metric singularities can be taken in the case
of Kerr spacetime. The discussion of this analysis is the topic of this section, which will
reveal the nature of the ring singularity, the two distinct horizons as well as the so-called
ergoregion.

2.3.1. Horizons

As already mentioned in subsection 2.1.1, there is a coordinate singularity in the Boyer-
Lindquist form of the Kerr-metric (2.1) at ∆ = r2 + a2 − 2mr = 0 which corresponds to
the set {r = r±} with

r± = m±
√︁
m2 − a2 . (2.22)
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Therefore, ∆ is often written as ∆ = (r − r+)(r − r−). To determine if this is a curvature
singularity, one can, as in the Schwarzschild case, compute the Kretschmann scalar [9][29]

K := RαβγδR
αβγδ

= 48m2(r2 − a2 cos2(θ))

[︁
(r2 + a2 cos2(θ))2 − 16a2r2 cos2(θ)

]︁
(r2 + a2 cos2(θ))6

(2.23)

=
48m2

r̂3

(2a cos(ψ̂) + r̂)
(︂
8a2 cos(2ψ̂)− 4a2 + 4ar̂ cos(ψ̂) + r̂2

)︂
(︂
4a2 + 4ar̂ cos(ψ̂) + r̂2

)︂3 , (2.24)

where the Boyer-Lindquist form of the metric was used in the second equality and the
toroidal coordinates were used in the third equality. It can easily be seen that this quantity
remains bounded for r = r±. We conclude that the singularity at ∆ = 0 corresponds to
a coordinate singularity only. Indeed by transforming to e.g. Kerr-Schild or Eddington-
Finkelstein-like coordinates, this singularity vanishes. For a = 0 we find that r+ = 2m
coincides with the event horizon in the Schwarzschild case. Therefore we call r+ the
outer horizon of the black hole or the event horizon, r− is called the inner horizon or
Cauchy horizon. A thorough discussion of the horizons including the general geometric
theory behind event and Cauchy horizons can be found in either [6] or [9]. As these
analyses require additional technical preliminaries while not assisting the basic physical
understanding, it is not of use to reproduce them here.
For a critically rotating black hole with a = m, the two horizons coincide at the double
root r± = m (for some calculations one needs to treat this case separately). Furthermore,
∆ = r2 + a2 − 2mr = 0 does not have any real solutions for r < 0, and consequently,
horizons only exist for r > 0. Thus in the region with r < 0 one finds a naked singularity.
It is this fact that only the region with positive r is accepted to be physical. A further
factor for the unphysical nature of the region with r < 0 is that it lies under the Cauchy
horizon in the sense that one can transfer from one asymptotically flat region to the other
by crossing the disk bounded by the ring singularity. In subsection 2.3.2 it will be shown
more thoroughly that this singularity is indeed located below the Cauchy horizon r−.
A pictorial representation of the black hole horizons can be seen in Fig. 2.2.

2.3.2. Ring singularity

It is not so easy to show that the singularity of the Boyer-Lindquist form of the Kerr
metric (2.1) corresponding to the set {Σ = 0 ⇐⇒ r = 0 , θ = π/2} is actually a proper
curvature singularity and not just a coordinate singularity which could be removed by a
more suitable choice of coordinates. This stems from the fact that, although (2.23) being
unbound at set r = 0 , θ = π/2, one can find curves reaching the singularity where (2.23)
stays bounded. For example, consider any curve on which r2 = a2 cos2(θ), resulting in
K ≡ 0. An elegant solution to this problem was found by [8] using toroidal coordinates.
Following the definition of toroidal coordinates, the defining equation of the singularity
becomes r̂ = 0 for arbitrary φ̂ and ψ̂. The main idea of the proof is to combine the
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Kretschmann scalar (2.23) with another scalar invariant, namely

P := ϵαβµνR
µν
γδR

αβγδ

= −192 am2r cos(θ)

(︁
r2 − 3a2 cos2(θ)

)︁ (︁
3r2 − a2 cos2(θ)

)︁
(r2 + a2 cos2(θ))6

(2.25)

= −192 am2 sin(ψ̂)

r̂3
4a2 + 3r̂2 + 12ar̂ cos(ψ̂) + 8a2 cos(2ψ̂)(︂

4a2 + 4ar̂ cos(ψ̂) + r̂2
)︂3 , (2.26)

where again in the second and third line Boyer-Lindquist coordinates and toroidal co-
ordinates are used, respectively. This invariant also has the property of growing without
bound on almost every curve approaching the set r = 0 , θ = π/2 (or equivalently the set
r̂ = 0 in toroidal coordinates). An exception is e.g. a curve lying entirely in the equatorial
plane with θ ≡ π/2, on which P is identically zero. The final trick is to combine those
two quantities in toroidal coordinates and expand around r̂ = 0. This again results in
a curvature invariant as combinations of scalars are still scalars. The final formula in
toroidal coordinates is

K2 + P 2 =
18m4

a6r̂6
[5− 3 cos(6ψ̂)] +

54m4

a7r̂5
[−5 cos(ψ̂) + 3 cos(7ψ̂)] +O(r̂−4) . (2.27)

The first term always diverges for r̂ → 0 because the second factor of this term would only
vanish if cos(6ψ̂) = 5/3, which has no real solutions. Therefore we can see that K2 + P 2

diverges on any curves hitting the ring singularity. This proves that the singularity at
{Σ = 0 ⇐⇒ r = 0 , θ = π/2} in Boyer-Lindquist-coordinates actually corresponds to a
real curvature singularity.
As already mentioned in subsection 2.1.4, the ring singularity not only serves as the starting
point of the definition of toroidal coordinates but also spans the disk which acts as the
“portal” between the two asymptotically flat regions in Kerr spacetime, i.e. by crossing
this disk the radial component changes its sign. On this disk we thus have r = 0, and
the polar angle θ defines the distance to the centre of this disk in Kerr-Schild coordinates
(x, y, z). By this we mean that on the one hand the case θ = 0 corresponds to the point
(0, 0, 0), while on the other hand θ = π/2 defines the ring singularity itself which satisfies
x2 + y2 = 0 and z = 0.

2.3.3. Ergosphere

Besides the sets where the metric “blows up”, there is another very interesting region in
the Kerr-spacetime. This peculiar region is called ergosphere and it has the property that
there cannot exist any stationary observer within that region. For finding this special
region consider a stationary observer whose worldline in Boyer-Lindquist coordinates has
the form

t→ γ(t) = (t, r = r0, θ = θ0, φ = φ0) , (2.28)

where quantities with subscript 0 are constant, and with the tangent vector therefore being

γ̇ =
dγ(t)

dt
= (1, 0, 0, 0) = ∂t .
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The worldline of every physical observer must always be timelike, so we require

g(γ̇, γ̇) = g(∂t, ∂t) = gtt < 0 ⇐⇒ −
(︃
1− 2mr

Σ

)︃
< 0 .

Therefore, in the region where this inequality is violated, the Killing vector ∂t responsible
for time translations in Boyer-Lindquist coordinates becomes spacelike. This violation
happens for

r2 − 2mr + a2 cos2(θ) < 0 ,

defining boundaries of a specific region in spacetime, which are given by

r̊± = m±
√︁
m2 − a2 cos2(θ) . (2.29)

Consequently, in the region r̊− < r < r̊+ an observer cannot “stand still” in the sense
that they follow the worldline of a stationary observer. Every object within that region
gets dragged with the rotation of the black hole. It is of interest that the outer boundary
of the ergosphere r̊+ is bigger than the outer horizon r+, which means that there exists
a region which one can physically enter, be dragged with the rotation of the black hole,
and yet still escape to infinity. This intermediate region is known as the ergoregion and
that it must exist can easily be deduced by comparing the defining equations of the
horizons (2.22) and of the ergosphere (2.29) using the fact that cos(θ) < 1 in the domain of
definition of the azimuthal coordinate 0 < θ < π. By doing so one can verify the ordering
r̊− ≤ r− ≤ r+ ≤ r̊+. The first and the last equality is satisfied on the axis of symmetry
θ = 0 and in the Schwarzschild limit a = 0. Furthermore, the inner boundary surface at r̊
intersects the ring singularity at r = 0 in the equatorial plane θ = π/2. A visualisation of
the boundaries where these features are clearly visible can be found in Fig. 2.2.
The ergoregion (r+ < r < r̊+) is of special interesting due to the so-called Penrose-process
[28], with which one can in principle extract rotational energy from a black hole.

2.3.4. Causality violating region/Carter’s time machine

The last feature resulting directly from the metric tensor is the so-called Carter’s time
machine region. It is defined as the part of spacetime where the Killing vector ∂φ (in
Boyer-Lindquist coordinates) becomes timelike, i.e. the region where

0 > g(∂φ, ∂φ) = gφφ

=
(r2 + a2)2 − (r2 − 2mr + a2)a2 sin2 θ

r2 + a2 sin2 θ
sin2 θ

=
a4 + a2 cos(2θ)(r2 − 2mr + a2) + a2r(2m+ 3r) + 2r4

a2 cos(2θ) + a2 + 2r2
sin2 θ . (2.30)

Upon closer analysis (see e.g. [9]) one can show that for a positive mass parameter m > 0
this corresponds to the set

V = {r < 0 , cos(2θ) < −a
4 + 2a2mr + 3a2r2 + 2r4

a2(r2 − 2mr + a2)
, Σ ̸= 0 , sin θ ̸= 0} , (2.31)

which can be shown to be a non-empty set. Furthermore, it is not complicated to see that
any two points inside V can be connected by a future-directed causal curve. A short proof

13



2. Basics of Kerr spacetime

of this statement can be found in [9]. A direct consequence of this is that any two points
below the inner horizon at r = r− can be connected via a future-directed causal curve,
making it possible to “travel through time”, hence the name Carter’s time machine.
The assumption for deriving the set V was that m > 0. As already discussed before in
section 2.1.1, one can describe the asymptotically flat region for r < 0 equivalently by
leaving r > 0 and considering m < 0. Thus, if we assume m < 0 the causality violating
region would be present for r > 0.

Figure 2.2.: Visualization of the horizons (blue), the ergosphere (orange) and the ring
singularity (red). The two blue surfaces correspond to the horizons, the inner
one being the Cauchy horizon at r = r− while the outer one is the event horizon
at r = r+. The outermost/innermost sphere in orange corresponds to the
inner and outer boundary of the ergosphere at r = r̊− and r = r̊+, respectively.
The red ring in the middle depicts the set of unbound curvature, the so-called
ring singularity. The ergoregion with r+ < r < r̊+ is clearly visible. This plot
is made using Kerr-Schild coordinates with parameter a/m = 0.99.

Figure 2.3.: Boundary of the causality violating region in Kerr-Schild coordinates. Inside
the illustrated region one finds that gφφ < 0, and consequently there exist
closed timelike curves. This fact can be used to “travel through time”, i.e.
connect any two spacetime points with r < r− via a future-directed causal
curve. The ring singularity is depicted in red. These plots were made with
black hole parameter a = 0.99.
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2.4. Projection diagrams

This short section is meant to give the reader (familiar with conformal Carter-Penrose-
diagrams) a feeling for the global structure of Kerr spacetime. Therefore, this section
will be kept mathematically rather simple – for the precise mathematical definitions and
implications, the interested reader is referred to [7] (on which this section is based on).
The basic idea behind projection diagrams is to investigate the causal structure of a
spacetime. For this purpose, the spacetime is projected onto (1+1)-dimensional Minkowski
spacetime. To do this one defines a projection diagram as follows:

Let (M, g) be a smooth spacetime, and let R1,n denote the (n+ 1)-dimensional Minkowski
spacetime. A projection diagram is a pair (π,U), where U ⊂ M is an open, non-empty set
and where π : M → W is a continuous map, differentiable on an open dense set, from M
onto π(M) =: W ⊂ R1,1, such that π is a smooth submersion on U . Furthermore it needs
to hold that:

1. for every smooth timelike curve σ ⊂ π(U) there exists a smooth timelike curve γ in
(U , g) such that σ = π ◦ γ;

2. the image π ◦ γ of every smooth timelike curve γ ⊂ U is a timelike cuve in R1,1.

Condition 1 in the definition ensures that it is possible to investigate the causal structure
of the original spacetime M by examining the causal structure of the projection diagram
π(U). This together with the second condition is tailored such that causality relations on
π(U) resemble the causality relations on M as closely as possible.
Additionally, we need to keep in mind that these conditions force us to invoke stable
causality of U , i.e. the existence of a time function on U . For that reason we need to
exclude causality violating regions from the projection diagrams – hence, in the case of
Kerr spacetime we need to exclude Carter’s time machine (discussed in previous section)
from the projection diagram. In order to avoid possible problems, one “cuts out” a region
of maximal size from the spacetime corresponding to this causality violating region. What
is meant by this is the following: we require that gφφ > 0 everywhere in M. By noting
that both the denominator in (2.30) as well as sin2 θ are non-negative, this inequality
reduces to a4 + a2 cos(2θ)(r2 − 2mr + a2) + a2r(2m+ 3r) + 2r4 > 0. Assuming r < 0, the
left-hand side of this inequality is minimal in the case where cos(2θ) = −1 ⇐⇒ θ = π/2.
By choosing this value, we ensure to not miss any part of the causality violating region.
Simplifying this inequality with θ = π/2 we arrive at

r(a2(2m+ r) + r3) > 0 ,

which defines the boundaries of the region we need to exclude from the whole Kerr
spacetime in order to create the projection diagram. The upper boundary is simply r̂+ = 0
(corresponding to the disk bounded by the ring singularity), whereas the lower boundary
is defined by

r̂− =

3

√︂√︁
3(a6 + 27a4m2)− 9a2m

32/3
− a2

3
√
3 3

√︂√︁
3(a6 + 27a4m2)− 9a2m

.
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2. Basics of Kerr spacetime

Summarising, to preserve stable causality throughout Kerr spacetime (the spacetime we
want to project onto (1 + 1)-dimensional Minkowski spacetime), we need to exclude the
region r̂− < r < r̂+ = 0 from the projection.

Figure 2.4.: The boundary of the causality violating region at r < 0 (orange) and the
extended region which is excluded from the projection diagram (bounded by
the yellow surfaces). The ring singularity is depicted in red. This plot is made
using Kerr-Schild coordinates with parameter a = 0.99.

By exclusion of the region r̂− < r < r̂+, one can apply the definition of the projection
diagram and get a representation of Kerr spacetime as a (1 + 1)-dimensional Minkowski
spacetime which reflects the causal structure as close as possible. The resulting projection
diagrams can be found in Fig. 2.5 and Fig. 2.6.
In the slowly rotating Kerr spacetime (0 < a/m < 1), one has two distinct roots of ∆ and
hence two different horizons. Because these horizons are null surfaces, they will divide
the resulting projection diagram in three distinct regions: (I) one outside the outer/event
horizon r > r+, (II) one between the horizons r− < r < r+, and (III) one below the
inner/Cauchy horizon r < r−. For regions (I) and (III) there always exist a “mirror world”
which is a copy of the corresponding region. These three regions can be seen in Fig. 2.5a.
In (I) one can find spatial infinity r = +∞ as well as (future and past) timelike infinity.
Going towards the future direction in this region (up), one necessarily reaches either future
timelike infinity, spatial infinity at r = +∞, or the outer/event horizon which one needs to
cross to get to (II). Being an intermediate region not containing any infinities, (II) can (in
the future direction) only be left via the inner/Cauchy horizon to finally reach (III), i.e. it
is a black hole region. Region (III) of the projection diagram is more complicated because
in addition to spatial infinity at r = −∞ and (future and past) timelike infinity, it also
contains the causality violating region which is to be excluded from the projection diagram
(indicated in grey with boundaries at r̂±). In this region one again has three different
possible paths: either go to future timelike infinity, go to spatial infinity at r = −∞,
or again cross the inner horizon to get to another region between the horizons which is
similar to (II) except it can in the future direction only be left via the outer horizon, thus
corresponding to a white hole region. Note that since worldlines of physical observers
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can only go upwards in the diagram and the horizons are null hypersurfaces, such an
observer can never reach the same region twice once they leave it. To be able to continue
a path which repeatedly crosses the horizons, one needs to extend the projection diagram
of Fig. 2.5a by infinitely many copies of regions (I), (II), and (III). Furthermore, it needs
to be mentioned that it is possible to connect a point in spacetime with r > 0 to a point
with r < r̂− via a curve along which causality is not problematic (i.e. a curve which does
not traverse the causality violating region). This should be clear from Fig. 2.3 as it is
possible to cross the disk without crossing the causality violating region in orange. Only by
excluding the extended region r̂− < r < r̂+ from the projection diagram (region bounded
by yellow surfaces in Fig. 2.4) this is no longer possible.
Fig. 2.5b shows the projection diagram of the critically spinning Kerr spacetime with
a/m = 1, in which case ∆ has one real double root at r+ = r− = m. Consequently, (II)
vanishes completely and one is left with (I) and (III).
Lastly, Fig. 2.6 shows the projection diagram of Kerr spacetime with a/m > 1. For this
parameter range ∆ has no real roots, resulting in a naked singularity also in the region
r > 0. This absence of horizons results in the merger of (I) and (III) which includes both
spatial infinities at r = ±∞, the future and past timelike infinities, as well as the causality
violating region.
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(a) (b)

Figure 2.5.: Projection diagrams for (a) the slowly spinning Kerr case 0 < a/m < 1 with
two zeros of ∆, and (b) the extreme Kerr case a/m = 1 with a double root of
∆ at r = r+ = r−. The figure is taken from [7].

Figure 2.6.: Projection diagram of Kerr spacetime for a/m > 1. Only one distinct region
is present due to ∆ having no real roots for overcritical rotation. The figure is
taken from [7].
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In general relativity, a geodesic is the shortest connection between two points in spacetime,
generalizing the meaning of a straight line to curved manifolds. Every test particle, i.e. an
object with negligible mass, only experiencing gravitation and no other external forces
acting on it, must follow a geodesic curve. This geodesic is described by a set of equations
of motion, which are given by

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 ,

regardless of the spacetime the particle moves in. Here s denotes some affine parameter
along the geodesic and Γµαβ are the Christoffel symbols. This is a set of coupled second
order differential equations. To reduce this to a system of first order differential equations
and solve it by integration, it is necessary to find preserved quantities along the geodesic,
called constants of motion (sometimes also called first-integrals).
In Schwarzschild geometry, this is rather straight forward, whereas in Kerr spacetime this
is conceptually more intricate. The first one to successfully formulate the equations of
motion as a system of first order equations was Brandon Carter in 1968 [5]. Building
upon this, many properties of geodesics were found, e.g. [17] or [18]. This section aims at
deriving the equations of motion of a test particle, thus preparing the reader conceptually
for what will follow in the rest of this thesis. For historical reasons, we will follow the
derivation by [5] using Eddington-Finkelstein-like coordinates (2.4) and (2.5) with νr = −1,
although it would probably make more sense pedagogically to follow e.g. [6] and derive
them in Boyer-Lindquist coordinates. The reason is that we want to solve the geodesic
equations in the general Eddington-Finkelstein-like coordinates (where the value of νr is not
specified yet). Therefore, we will state the equations of motion in three different coordinate
systems: Eddington-Finkelstein-like coordinates with νr = −1, Eddington-Finkelstein-like
coordinates with general νr, and Boyer-Lindquist coordinates. In the case of global vortical
null geodesics, both well known and some new found features are described and analysed.

3.1. Geodesic equations of motion

As already stated, Brandon Carter was the first one being able to state the equations of
motion for a test particle in Kerr spacetime as a system of first order differential equations
[5], thus allowing to solve them by integration. In his paper, Carter did not use the
generic Kerr metric, but rather the more general Kerr-Newman metric, where the black
hole as well as the test particle have an electric charge. This does not hinder us to use
these equations since the Kerr case is recovered by taking the limit of vanishing charges.
For what follows, we will already take this limit wherever possible to keep the formulas
simple. When considering vanishing charges, the metric tensor Carter used was cast in
Eddington-Finkelstein-like coordinates (2.8) with νr = −1.
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One can calculate the equations of motion by considering the Lagrangian

L =
1

2
gαβẋ

αẋβ , (3.1)

where the dot represents differentiation with respect to some affine parameter s along the
geodesic. To get parametrisation by proper time τ̃ , consider the relation of s to τ̃

τ̃ = µs . (3.2)

Equivalently, one can require the normalisation condition

gαβẋ
αẋβ = −µ2 . (3.3)

The parameter µ is interpreted as the mass of the test particle, for timelike geodesics
this takes the value µ2 = +1 while for null geodesics this takes the value µ2 = 0 (note
that a spacelike geodesic must have imaginary mass µ = i). µ will serve as one constant
of motion. By switching to the Hamiltonian formalism and introducing the momenta
pα = gαβẋ

β , Carter calculates pu, pψ, pr, and pθ. It is clear from the start that pu and pψ
correspond to two additional constants of motion since ∂u and ∂ψ are Killing vectors in
Eddington-Finkelstein-like coordinates. Thus we have the two constants

pu = −E , (3.4)
pψ = L , (3.5)

where E corresponds to the constant concerning the conservation of energy and L corres-
ponds to conservation of angular momentum in the azimuthal direction ψ.
Hereafter, one additional constant of motion is needed which Carter finds by using the
separability of the Hamilton-Jacobi equation. This constant K is known as Carter’s
constant and is defined by

K = p2θ +

(︃
aE sin θ − L

sin θ

)︃2

+ a2µ2 cos2 θ , (3.6)

where pθ denotes the angular momentum in polar direction. With this he was able to state
the Jacobi action and by differentiating with respect to the constants of motion K, µ, E,
and L he derived the integral version of the equations of motion in Eddington-Finkelstein
coordinates (with νr = −1)∫︂ θo

θs

dθ√︁
Θ(θ)

=

∫︂ ro

rs

dr√︁
R(r)

, (3.7)

s =

∫︂ θo

θs

a2 cos2 θ dθ√︁
Θ(θ)

+

∫︂ ro

rs

r2 dr√︁
R(r)

, (3.8)

ψ =

∫︂ θo

θs

−(aE − L
sin2 θ

) dθ√︁
Θ(θ)

+

∫︂ ro

rs

a

∆

(︄
1 +

P (r)√︁
R(r)

)︄
dr , (3.9)

u =

∫︂ θo

θs

−a(aE sin2 θ − L) dθ√︁
Θ(θ)

+

∫︂ ro

rs

r2 + a2

∆

(︄
1 +

P (r)√︁
R(r)

)︄
dr , (3.10)
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where ∆ is defined as in (2.3) and where he defined the quantities

Q = K − (L− aE)2 , (3.11)

Θ(θ) = Q− cos2 θ

[︃
a2(µ2 − E2) +

L2

sin2 θ

]︃
, (3.12)

P (r) = E(r2 + a2)− La , (3.13)

R(r) = P (r)2 −∆(µ2r2 +K) . (3.14)

Note that Carter made a sign mistake in his calculation: he flipped the sign of P in
his paper from equation (60) onwards – each term containing P should change its sign.
Corrected versions of the equations (in Boyer-Lindquist coordinates) can also be found in
e.g. [6] or [27].
The quantity Q is simply another constant of motion which can serve as a replacement for
K since it is composed of the other constants and thus is also constant along a geodesic.
Q is also called Carter’s constant and in this thesis we will refer to Q when mentioning
Carter’s constant. Θ(θ) and R(r) are called the polar and radial potential, respectively.
Furthermore, in (3.7)-(3.10) the signs of

√︁
Θ(θ) and

√︁
R(r) may be chosen independently

but consistently. For keeping track of this sign, we will encode it in a prefactor, i.e.√︁
Θ(θ) = νθ

√︁
Θ(θ) and

√︁
R(r) = νr

√︁
R(r). In the integral form (3.7) the polar motion

in θ is clearly coupled to the radial motion in r. For a “cleaner” version of the equations of
motion, one can express them as a coupled system of first-order differential equations

Σ ṙ = νr
√︁
R(r) , (3.15)

Σ θ̇ = νθ
√︁
Θ(θ) , (3.16)

Σ ψ̇ = −
(︃
aE − L

sin2 θ

)︃
+
a

∆
(νr
√︁
R(r) + P (r)) , (3.17)

Σ u̇ = −a(aE sin2 θ − L) +
r2 + a2

∆
(νr
√︁
R(r) + P (r)) , (3.18)

where the dot denotes again the differentiation with respect to an affine parameter s. The
sign of the square roots νr and νθ also dictates the starting direction of the geodesic –
e.g. for νr = +1 the geodesics radial coordinate initially increases with increasing affine
parameter s along the geodesic. We therefore call this case initially outgoing. The case
νr = −1 is called initially ingoing. νθ = ±1 corresponds to the polar angle initially
increasing/decreasing. These equations are still coupled because Σ on the left-hand side is
defined as in (2.3) and therefore dependent on both r and θ.
It can sometimes be helpful to cast the equations of motion in Boyer-Lindquist coordinates,
in which they take the form [6]

Σ ṙ = νr
√︁
R(r) , (3.19)

Σ θ̇ = νθ
√︁
Θ(θ) , (3.20)

Σ φ̇ =
a

∆
(2mrE − aL) +

L

sin2 θ
, (3.21)

Σ ṫ =
r2 + a2

∆
((r2 + a2)E − aL) + a(L− aE sin2 θ) . (3.22)
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3. Geodesics in Kerr spacetime

3.1.1. Equations of motion for null geodesics and Mino time

The main goal of this thesis is, in the most general notion, concerned with simulating the
optical appearance of Kerr black holes. Accordingly, we are interested in null geodesics,
i.e. geodesics with constant of motion µ = 0 describing the motion of photons. In this
case only

λ =
L

E
, (3.23)

η =
Q

E2
(3.24)

are independent, meaning that only the sign of E is important. In any numerical calcu-
lations, unless specified otherwise, we will set E = 1. This restriction to positive energy
E > 0 is on the one hand possible because of remark 4.1.2 in [27] and the fact that we
want to investigate geodesics which reach the region where ∂t is timelike. Accordingly, the
energy does not vanish, i.e. E ̸= 0. On the other hand, we can reparametrise the geodesic
such that the energy is normalised E = 1 and thus λ is the azimuthal angular momentum
of the geodesic.
In addition to these new constants we take advantage of another parameter along the
geodesic which makes it easier to solve the equations of motion for null geodesics numeric-
ally as well as analytically. Such a new parameter τ along the geodesic was first introduced
by Mino and is consequently called “Mino time” [24]. It is defined via

dτ =
E

Σ
ds . (3.25)

By dividing both sides in the equations of motion in Boyer-Lindquist coordinates (3.19)-
(3.22) by E and using the reparametrisation (3.25) as well as the newly defined constants
(3.23) and (3.24) one arrives at

dr

dτ
= νr

√︁
R(r) , (3.26)

dθ

dτ
= νθ

√︁
Θ(θ) , (3.27)

dφ

dτ
=

a

∆
(2mr − aλ) +

λ

sin2 θ
, (3.28)

dt

dτ
=
r2 + a2

∆
(r2 + a2 − aλ) + a(λ− a sin2 θ) , (3.29)

with the new radial and angular potentials

R(r) = (r2 + a2 − aλ)2 −∆(η + (λ− a)2) , (3.30)

Θ(θ) = η + a2 cos2 θ − λ2
cos2 θ

sin2 θ
, (3.31)

where we already used µ = 0 so that (3.26)-(3.29) are the equations of motion for a null
geodesic in Boyer-Lindquist coordinates. It is obvious that these equations are problematic
at the horizons since the Boyer-Lindquist coordinates become singular there. In order to
study geodesics crossing the horizons, it is necessary to transform to another coordinate
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3.1. Geodesic equations of motion

system. For that task we will choose general Eddington-Finkelstein-like coordinates, defined
in subsection 2.1.2. These coordinates are more general than the ones used by Carter in
the sense that νr = ±1 can obtain both values, whereas Carter used these coordinates
with νr = −1. In these coordinates the equations of motion take the form

dr

dτ
= νr

√︁
R(r) , (3.32)

dθ

dτ
= νθ

√︁
Θ(θ) , (3.33)

dψ

dτ
=

a

∆
(2mr − aλ−

√︁
R(r)) +

λ

sin2 θ
, (3.34)

du

dτ
=
r2 + a2

∆
(r2 + a2 − aλ−

√︁
R(r)) + a(λ− a sin2 θ) . (3.35)

The extra term
√︁
R(r) counteracts the divergent part at the horizons. This is most easily

shown to hold for null geodesics. To this end, we expand the square root of the radial
potential for small values of ∆, giving√︁

R(r) ≈
√︁

(r2 + a2 − aλ)2 +
∆(η + (λ− a)2)

2
√︁

(r2 + a2 − aλ)2
+O

(︁
(∆2)

)︁
. (3.36)

Vortical null geodesics are further restricted by |λ| < a [17], ensuring r2 + a2 − aλ ≥ 0 for
all values of r and a. With this, (3.36) becomes

√︁
R(r) ≈ r2 + a2 − aλ) +

∆(η + (λ− a)2)

2(r2 + a2 − aλ)
+O

(︁
(∆2)

)︁
. (3.37)

Inserting this approximation into (3.34) leads to

dψ

dτ
≈ a

∆

(︃
2mr − r2 − a2 − ∆(η + (λ− a)2)

2(r2 + a2 − aλ)

)︃
+

λ

sin2 θ
+O (∆) . (3.38)

After the insertion of ∆ = r2 + a2 − 2mr we arrive at

dψ

dτ
≈ a

(︃
−1− η + (λ− a)2

2(r2 + a2 − aλ)

)︃
+

λ

sin2 θ
+O (∆) , (3.39)

which is clearly bounded for ∆ → 0. A similar calculation shows that also (3.35) stays
bounded at the horizon.
Equations (3.32)-(3.35) also unveil the reason for the factor νr in the coordinate trans-
formation from Boyer-Lindquist to Eddington-Finkelstein-like coordinates. Without this
additional factor in the transformation, there would be a factor of νr in front of

√︁
R(r) in

the equations of motion (3.34) and (3.35) which would cause that they are still divergent
in the case of νr = −1 since in this case another divergent part would be added. When
including νr in the transformation, the sign cancels out and we always subtract the di-
vergent part. In this sense we need to treat ingoing and outgoing geodesics differently by
choosing coordinates adapted to the initial radial direction, i.e. if the geodesic is initially
ingoing or outgoing (cf. [29] section 5.3.6).
The form (3.32)-(3.35) of the equations of motion is especially useful because of two
facts. Firstly, with it we can solve for (r(τ), θ(τ), ψ(τ), u(τ)) numerically rather easily.
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3. Geodesics in Kerr spacetime

Secondly, as was similarly done by Gralla [17] (using Boyer-Lindquist coordinates), it
enables us to find explicit antiderivatives of these integrals by using elliptic integrals and
elliptic functions. In comparison to the solutions found by Gralla, solutions obtained using
(3.32)-(3.35) will be viable globally, meaning that the geodesics can cross horizons in both
directions without problems. A discussion of both the analytic and numeric solutions to
these equations can be found in chapter 4.

3.2. Global vortical null geodesics

There is an interesting subclass of geodesics called vortical geodesics, characterised by the
condition Q < 0 or equivalently η < 0. One can discuss these special geodesics in a very
general case, but because we are only concerned with null geodesics, this section is devoted
solely to vortical null geodesics and some of their features. For the main part this will
include an analysis of the radial and angular potentials (3.30) and (3.31). A discussion of
vortical timelike geodesics can be found in [27].

3.2.1. Radial motion

Let us begin by analysing the radial motion of null geodesics, determined by equation
(3.26). When we insert (2.3) and (3.30) into (3.26) it becomes

dr

dτ
= νr

√︁
(r2 + a2 − aλ)2 − (r2 + a2 − 2mr)(η + (λ− a)2) . (3.40)

It should be clear that the radial motion is restricted to the case where the radicand in
(3.40) is non-negative. Otherwise the solution for the radial motion would become complex,
which is to avoid for physically acceptable geodesics.

r-λ-plots

For a further analysis of this term let us fix the black hole mass m = 1 and inspect different
cases of the rotation parameter 0 < a < 1. This leaves us with three undefined quantities
in the radicand, the radius r and the two constants of motion λ and η. A first qualitative
analysis of how the case of vortical null geodesic differs from the general case is possible
by distinguishing three different cases: η < 0, η = 0 and η > 0. For the purpose of
visualisation, we will consider η ∈ {0,±0.1}. This fixing of η allows us to parametrically
plot the radicand R(r) in the r-λ-plane, visualising not the exact value of it but rather its
sign, i.e. the forbidden (negative radicand) and allowed (positive radicand) regions.
The simplest and most well known instance is the Schwarzschild case with a = 0, so let
us start with this. Fig. 3.1 represents the r-λ-plot of the three cases for η as described.
The grey areas are the forbidden regions while the white areas are the physically allowed
ones, separated by the boundary at which R(r), and consequently also the radial velocity
dr/dτ , vanishes. The dashed line corresponds to the radial location of the Schwarzschild
horizon. Recall that in the Schwarzschild case we only have one horizon r = r+ = 2m
while the inner horizon vanishes at the singularity r = r− = 0. All geodesics must be
contained completely in the allowed area. Since λ is a constant of the motion, any geodesic
can move only along a horizontal path in these plots by changing its radial coordinate.
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3.2. Global vortical null geodesics

Whether this path is left- or right-moving depends on the sign νr: negative νr corresponds
to a left-moving, positive νr corresponds to a right-moving geodesic. Regardless of the
initial radial direction, whenever the geodesic hits the boundary of one of the forbidden
areas (grey), since it cannot penetrate through, it must be reflected. This reflection is
accompanied by a flip of the sign of νr.
Therefore, as can be seen in Fig. 3.1, in the Schwarzschild case any initially ingoing geodesic
starting at r > 3m will eventually hit a forbidden region and consequently be reflected at
some point in time to end up at r → +∞, regardless of the sign of η and also for all λ.
There are three cases one needs to distinguish. The first one being the one for large angular
momenta. Notice that since the plots in Fig. 3.1 are symmetric about the abscissa we can
define this by requiring |λ| > λc, where λc is defined by the extremal points of the curve
with vanishing radial potential outside the horizon, i.e. the minimum and maximum of the
curve bounding the grey area, given by the two equations R(r) = 0 and dR(r)/dr = 0. One
can calculate that these conditions are satisfied at r = 3m for λc = ±

√︁
27m2 − η. This

case of large angular momentum corresponds to geodesics which are reflected in the black
hole exterior region, i.e. before they cross the event horizon. It is these null geodesics which
ultimately determine what an observer outside of the black hole would be able to perceive,
i.e. these geodesics correspond to photons which start their journey at some source outside
the black hole with rs > 3m and finally, either by being deflected or directly, reach the
observers eye/photon detector, also outside the horizon. If the source of these geodesics is
in the range 0 < r < 3m the geodesic is bound and crosses the event horizon indefinitely.
Another case which has to be discussed is the one for small angular momenta |λ| < λc.
Initially ingoing geodesics in this angular momentum range will cross the Schwarzschild
horizon at r = 2m and will get reflected at r = 0. Because it is impossible for the geodesic
to cross the horizon a second time in the opposing direction, this outwards motion needs
to lead into a different region of spacetime where the central object now acts not as a
black hole but rather as a white hole. For an observer outside the horizon in the original
region of spacetime, these photons would be lost and would thus correspond to the black
holes shadow, illuminated by geodesics with |λ| > λc. The smallest amount of geodesics
belongs to the third case where |λ| = λc. At r = 3m these become trapped and form the
so-called photosphere. Initially ingoing trajectories are neither reflected, nor let through
to cross the horizon but rather stay at r = 3m indefinitely; similar for initially outgoing
ones. Note that regardless of the value of η this photon sphere is located at r = 3m. For
an observer outside of the horizon, this would be the exact boundary of the black hole
shadow (unless there is a light source present at 2m < rs < 3m).
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3. Geodesics in Kerr spacetime

(a) η > 0 (b) η = 0 (c) η < 0

Figure 3.1.: r-λ-plot of null geodesics in the Schwarzschild case a = 0. The dotted line is
the Schwarzschild horizon at r = 2m.

Moving on to the more interesting case of the Kerr metric with non-vanishing rotation
a/m ̸= 0, new features start to appear in the r-λ-plot. An example can be found in Fig. 3.2
where we chose mass m = 1 and rotation a/m = 0.9 for the black hole. Firstly, note
that these plots are not symmetric about the abscissa any more and furthermore both
horizons at r = r− ≈ 0.56m and at r = r+ ≈ 1.44m are visible. By approaching critical
rotation this skewing effect gets enhanced and the horizons merge together at r = m. In
the cases where η ≥ 0, the qualitative behaviour is similar to the Schwarzschild case in
the sense that there are geodesics which cross both horizons and are reflected outwards
into a different region of spacetime. Such a path can be easily drawn in the projection
diagram Fig. 2.5a of section 2.4 which visualises the global properties of the spacetime.
This would correspond to a geodesic starting in (I), crossing (II) and going into (III),
and then being reflected and going to a copy of (II) and out to a copy of (I) again. A
qualitative visualisation of how such a geodesic would look like in a projection diagram can
be found in Fig. 3.3 (orange line). Then there are also geodesics forming the illumination
pattern that reveals the black hole shadow to an observer outside the horizons, being the
counterpart to the large angular momentum case from above. This corresponds to the
blue line in Fig. 3.3. Furthermore, there also exist geodesics which are bound by either
having large angular momentum and oscillating in the vicinity of the black hole forever, or
by having critical angular momentum λ = λc and thus having constant radius r like in the
third case above, although now there are two distinct critical angular momenta, one larger
and one smaller zero λc− < 0 < λc+. These angular momenta correspond to prograde
and retrograde orbits (orbits in the sense of rotation of the black hole and opposite to
it, respectively). A more thorough discussion of such geodesics can be found in [27]. In
Fig. 3.3 one finds a qualitative drawing of a geodesic with constant radial coordinate r in
purple.
However, the plot shows different aspects when considering vortical null geodesics with
η < 0, depicted in Fig. 3.2c. In this case, there is a gap opening up at r < 0 which a
horizontal path can pass and actually reach arbitrary negative radial values. The fact
that geodesics can only move on horizontal lines in these graphs and only reach turning
points in the radial motion once they hit a forbidden region ensures that geodesics which
pass through this small new gap at r < 0 will go all the way to the asymptotically flat
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spacetime at |r| → ∞. In the projection diagram Fig. 2.5a this would correspond to a path
starting in (I), crossing the outer horizon to get into (II), and finally end up at spatial
infinity in (III). Such a geodesic is depicted in Fig. 3.3 in green. It is interesting to note
that although the black hole acts repellent in the region with negative radial component,
there are geodesics which come from positive radii, cross both horizons and dip through to
negative radii, before getting reflected outwards again (an example would be a trajectory
with λ = 0 in Fig. 3.2c). Concluding, one can define two different sets of boundaries by
solving the equations R(r) = 0 and dR(r)/dr = 0, which for η < 0 has four different
solutions. One corresponds to the black hole shadow outside the event horizon (r > r+)
while the other one corresponds to the small gap opening up at r < 0. Consequently, these
boundaries separate regions in the λ-direction where the radial potential R(r) has zero,
two or four real roots. By not fixing η in the beginning, one can calculate these boundaries
in the λ-η-parameter-space, an approach which we will take in the rest of this subsection,
although in a slightly modified way.

(a) η > 0 (b) η = 0 (c) η < 0

Figure 3.2.: r-λ-plot of null geodesics in the fast rotating case a/m = 0.9. The dotted
lines correspond to the inner and outer horizon at r− and r+, respectively.
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Figure 3.3.: Four qualitative examples of geodesics in the projection diagram of Kerr
spacetime. All geodesics (except for the purple one) start at r = +∞. The
orange one crosses both horizons before getting reflected outwards again, this
time in a different part of spacetime. The blue trajectory describes ingoing
geodesics which are reflected outwards again at some point outside the event
horizon, thus forming part of the black hole’s shadow for an observer in the
exterior region. The purple trajectory stays at constant radius for all times.
The green geodesic starts at r = +∞ and ends up at r = −∞, thus crossing
both potential gaps in Fig. 3.2c. The underlying plot is taken from [7].

Impact parameters

Before we analyse these boundaries in the parameter space any further, it is necessary
to reconsider what insights we want to gain from it. The focus should lie on enabling
the visualisation of the appearance of the black hole as seen by an observer far away
from the black hole (i.e. |r| → ∞) as this is the main goal of this thesis. Therefore, an
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analysis of the boundaries of the turning points in the radial direction is not immediately
helpful in the rather abstract λ-η-parameter-space. Nevertheless, some authors who were
not mainly concerned with visualisation took this approach, e.g. [17]. [35] did also the
most part of the analysis in the λ-η-parameter-space and only at the end connected these
constants of motion to a local reference frame to obtain a visualisation of the black hole
exterior. There is, however, a quite elegant way to convert the parameters λ and η to a
more suitable form for our task. This involves the definition of impact parameters, as was
done by e.g. Bardeen [2] where one can also find a detailed derivation. He first calculated
how an observer would measure the momenta of a geodesic locally using Boyer-Lindquist
coordinates. Based on this and the assumption that an observer far away from the black
hole measures the direction of photons which reach them relative to the centre of symmetry
of the spacetime (i.e. the line of sight of the observer is to the centre of the spacetime),
Bardeen related the constants of motion λ and η to the impact parameters using

α =
λ

sin θo
, (3.41)

β = νθ

√︄
η + a2 cos2 θo − λ2

cos2 θo

sin2 θo
. (3.42)

These impact parameters given here differ from those in [2] only by the overall sign in
equation (3.41). This is due to the fact that they considered an observer at positive
radii whereas we want the observer to be located far away from the black hole in the
negative-r-region (for a more detailed description of the spacetime location of the observer
we are considering, see the beginning of chapter 5). Because these impact parameters are
normalized by the radial position of the observer (for details see [2]), this change from
ro > 0 to ro < 0 gives an additional minus sign in both equations. Additionally, as we
want to integrate “into the past” (and thus receive the photons at ro = −∞), we further
need to flip the sign of νθ (corresponding to the sign of pθ = gθθ dθ/dτ , which changes sign
for τ → −τ).
For an observer substantially far away from the black hole, these impact parameters create
a coordinate grid on a small part of the sky centred around the black hole. The impact
parameters α and β therefore serve as a field of view for the observer when looking directly
at the black hole, thus helping in visualising how such an observer would perceive the black
hole. In this case α describes the displacement perpendicular to the axis of symmetry
while β represents the displacement parallel to the axis of symmetry. A qualitative plot of
how such a visualisation could look like for r > 0 is given in Fig. 3.4.
However, the price one has to pay by introducing these new parameters is that the location
of the observer in the polar direction θo needs to be specified, hence the analysis of the
radial potential is observer-dependent. The impact parameters (3.41) and (3.42) are
problematic only at sin θo = 0, which corresponds to an observer located in the axis of
symmetry. This problem is solved by the fact that any geodesic going through the axis of
symmetry (at which sin θ = 0), and therefore especially those reaching an observer located
in the axis of symmetry (for which sin θo = 0) must necessarily have vanishing angular
momentum λ = 0 (see e.g. [27]). We will again encounter this peculiarity in subsection
3.2.2. The statement sin θo = 0 ⇔ λ = 0 also becomes apparent when considering the
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inverses of (3.41) and (3.42):

λ = α sin θo , (3.43)

η = β2 + (α2 − a2) cos2 θo . (3.44)

Figure 3.4.: Visualisation of the impact parameters on the celestial sphere of an observer far
away from the black hole (|r| ≫ 0). α serves as the displacement perpendicular
to the symmetry axis, β as the displacement parallel to the symmetry axis.
The black hole rotation is from left to right. The figure is taken from [2].

Throats

Having found a parameter space which serves our goal of visualising the appearance of the
black hole, we are now ready to analyse the radial motion further. We can express (3.30)
in terms of α and β by using (3.43) and (3.44) to get

R(r) = (r2+a2−aα sin θo)
2− (r2−2mr+a2)

(︁
β2 + (α2 − a2) cos2 θo + (α sin θo − a)2

)︁
.

Consequently, the conditions R(r) = 0 and dR(r)/dr = 0 define curves in the α-β-plane
which separate parameter-regions in which R(r) has zero, two, or four real roots. These
curves are the boundaries of the openings of the radial potential inside and outside the
horizon, as they are shown in Fig. 3.2c. A representative selection of three different cases
for the parameter a can be seen in Fig. 3.5.
The non-rotating Schwarzschild case is depicted in Fig. 3.5a, where one can see that only
one such opening gap is present, namely the one outside the horizon (cf. 3.1c). Since the
Schwarzschild solution is spherically symmetric, this boundary is also symmetric. More
specifically, the boundary is independent of the observational polar angle θo and as already
mentioned, it corresponds to the shadow of the black hole as seen by an observer outside
the black hole.
However, considering a rotating black hole (a ̸= 0), parts of the symmetry are lost and
another curve appears, corresponding to the inner gap forming at r < 0. This loss of
symmetry corresponds to the spacetime not being symmetric in the polar direction. Two
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such cases can be found in Fig. 3.5b and Fig. 3.5c. By departing from a = 0, the innermost
curve appears at the origin (α = 0, β = 0). Approaching the critical rotation a/m = 1,
this inner curve grows and gets shifted to the right. Simultaneously, the outer boundary
shifts to the left and gets flattened on the right side. Discussed by many authors in the
past, this outer curve outlines the shadow of a rotating black hole as seen by an exterior
observer (see e.g. [2] for the Kerr case or [22] for the Schwarzschild case). The two curves
are known as inner/outer throat, respectively. Throughout this thesis, whenever we say “a
geodesic inside the inner/outer throat” we more precisely mean “a geodesic with impact
parameters inside the inner/outer throat”.
As already mentioned, a very useful point of view of these throats is that they separate
three regions. Outside the outer throat the polynomial R(r) has four distinct real roots.
In the region between the inner and the outer throat, two real and two complex roots are
admitted by R(r) (a pair of complex conjugates), and inside the inner throat the radial
potential only has complex roots (two pairs of complex conjugates). From this, one can
deduce that inside the inner throat, there are no turning points in the radial coordinate as
they appear exactly at the real roots of R(r) – once the geodesic’s initial direction is fixed
by νr in (3.40), it keeps its direction forever, i.e. an initially ingoing/outgoing geodesic will
stay ingoing/outgoing. In turn, this deduction also tells us that no geodesic with impact
parameters outside the inner throat can travel from r = +∞ to r = −∞ or vice versa
since at some point it must hit a radial potential barrier and get reflected (cf. the large
angular momentum case in 3.2c). For light coming from a source at r > 0 this reflection
happens at either r > r+ > 0 or at finite r < 0. Thus, only null geodesics having impact
parameters within the inner throat can connect a light source at positive radius and an
observer very far away from the black hole in the negative-r-region (ro → −∞).

(a) a = 0 (b) a = 0.5 (c) a = 0.9

Figure 3.5.: Inner and outer throat for different rotational parameters in the α-β-parameter-
plane. The observers polar angle is θo = π/4.

Because the outer throat resembles the boundary of a black hole’s shadow as seen by an
observer outside the horizon, it is astrophysically important to study it in detail in order to
predict the appearance of such a black hole for an observer r > r+. For this reason, many
papers in the past were concerned mainly with this outer throat and thus the simulation
of a photograph of a black hole (cf. references given in section 1). Our goal will be to
study geodesics starting at some source at positive radius and reaching the observer in the
limit ro → −∞, therefore we will analyse the inner throat more thoroughly. In contrast
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3. Geodesics in Kerr spacetime

to Fig. 3.5, we will do so by considering fixed rotation a/m while varying the observers
polar angle θo. By visually studying the behaviour of the inner throat in Fig. 3.6, one can
see that if θo = 0, i.e. if the observer is located in the axis of symmetry, the inner throat
will be a symmetric circle centred around the origin (α = 0, β = 0). As the observer
approaches the equatorial plane at θ = π/2, the inner throat shrinks, becomes egg-shaped
and shifts to the right until it vanishes at (α = a/m, β = 0). Hence, there are no geodesics
which start at r > 0 and reach an observer at r < 0 (with |r| ≫ 1) located in the equatorial
plane, a feature which will be explained in more detail in the next subsection 3.2.2.
The inner throat will serve us as the field of view for our observer since we want to consider
a light source at positive radii and the observer in the limit ro → −∞.

-1.0 -0.5 0.5 1.0

-0.5

0.5

θ0=0

θ0=
π

12

θ0=
π

6

θ0=
π

4

θ0=
π

3

θ0=
5π

12

Figure 3.6.: The inner throat for different poloidal locations of the observer θo, fixed
rotational parameter a/m = 0.99, and mass m = 1. θo = 0 corresponds to
the observer located in the axis of symmetry while θo = π/2 means they are
located in the equatorial plane.

A qualitative fact which will become apparent in later sections is that geodesics which
are inside the inner throat but very close to its boundary stay a rather long time in the
vicinity of the black hole compared with geodesics in the middle of the inner throat. This
is due to the fact that these geodesics nearly hit a forbidden region (cf. Fig. 3.2c) when
passing the radial potential gap at r < 0. As at the boundary of the forbidden region the
right hand side of (3.40) vanishes and it is smooth in the allowed region, it follows that
dr/dτ becomes small for geodesics near the throat boundary. Since this corresponds to the
radial velocity of the null geodesic, the radial motion almost comes to a standstill barely
below r = 0 at the point where it is just let through the throat (as opposed to getting
reflected).

3.2.2. Polar motion

The polar motion of a geodesic in Kerr spacetime is governed by (3.33), which, upon
inserting (3.31), becomes

dθ

dτ
= νθ

√︃
η + a2 cos2 θ − λ2

cos2 θ

sin2 θ
. (3.45)

One of the most striking behavioural aspects of vortical null geodesics is concerned with
this polar motion, namely the boundedness of motion to one hemisphere, i.e. the geodesic
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3.2. Global vortical null geodesics

is trapped either in the northern hemisphere 0 ≤ θ < π/2 or in the southern hemisphere
π/2 < θ ≤ π, where θ is its polar angle (in both Boyer-Lindquist as well as in Eddington-
Finkelstein-like coordinates). A quick explanation to this is given by noting that in
the equatorial plane (at θ = π/2) the angular potential (3.31) becomes Θ(θ) = η and
consequently (3.45) is simplified to dθ/dτ = νθ

√
η. The defining characteristic of vortical

geodesics is Q < 0 or equivalently η < 0, and thus the polar trajectory of a vortical null
geodesic would become complex as it crosses the equatorial plane. From the formula for
the angular potential in the equatorial plane it is also clear that the only geodesics which
are completely contained in the equatorial plane must have Q = 0, since then dθ/dτ ≡ 0
for all times τ . It is this restriction of motion to one hemisphere that the subclass of
vortical geodesics gets its name from (the trajectories of such geodesics look a bit like a
vortex when going radially inwards).

Turning points in the polar motion

Since the motion is confined to one hemisphere but the radicand in (3.45) is in general
non-zero, the geodesic must show oscillatory behaviour with turning points at the roots
of Θ(θ) (similar argument as in the radial case). To calculate the roots of this angular
potential (given by (3.31)) it is useful to substitute u = cos2 θ (as was done by e.g. [17]
and [35]). With this substitution, one can calculate the roots of the new polynomial

Θ(u) = η + a2 u− λ
u

1− u
, (3.46)

and after resubstitution for u one finds the four roots of Θ(θ) to be

θi = arccos(±√
u±) (3.47)

with i = 1, 2, 3, 4, and where we defined

u± =
a2 − η − λ2

2a2
±

√︄(︃
a2 − η − λ2

2a2

)︃2

+
η

a2
. (3.48)

A deeper analysis of this in λ-η-space can be found in [17]. The authors of this paper
found, among other things, that vortical geodesics oscillate between

θ± = arccos(h
√
u∓) , (3.49)

where h = sign(cos θ) determines the hemisphere the geodesic is bound to. We want to
use this result to further analyse vortical geodesics inside the inner throat in the impact
parameter space spanned by α and β. We use (3.43) and (3.44) to get an equation for
u±(α, β), resulting in

u± =
1

4

(︄
3− 2(α2 + β2)

a2
+ cos(2θo)

± 4

√︃
β2 + cos2 θo(α2 − a2)

a2
+

(a2(cos(2θo) + 3)− 2(α2 + β2))2

16a4

)︄
. (3.50)

This, together with (3.49), defines the polar turning points θ±(α, β) in dependence of the
impact parameters.
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3. Geodesics in Kerr spacetime

Geodesics with constant polar angle/Principal null congruences

By solving the equation u+ = u− we get points in the impact-parameter-plane where
geodesics have constant polar angle θ = θ+ = θ−. This gives us four solutions for α in
dependence of β

α = ±
√︁

(iβ ± a sin θo)2 , (3.51)

where i is again the imaginary unit defined by i =
√
−1. Similarly, we can calculate four

solutions for β in dependence of α

β = ±
√︁

−(α± a sin θo)2 . (3.52)

From (3.52) it is easy to see that β is only real when both sides vanish, thus the only two
points in the α-β-space with constant polar angle θ along the whole trajectory are at

(α = ±a sin θo, β = 0) . (3.53)

In λ-η-space these two points correspond to λ = ±a sin2 θo and η = −a2 cos4 θo.
Notice that for an observer in the axis of symmetry (θo = 0) these two points coincide
(because sin(0) = 0). To determine if an observer with position at ro = −∞ can see photons
with constant polar angle coming from positive radii, it remains to determine if these points
lie inside the inner throat. For this, we can simply take the parametric solution for the inner
throat boundary (αbnd.(a, θo, r,m), βbnd.(a, θo, r,m)) from the previous section (due to this
solution being very lengthy we do not give an explicit formula for this parametric solution
but it is easily calculated by requiring R(r) = dR(r)/dr = 0) and compute if/where
this parametric curve coincides with the points of constant θ at (α = ±a sin θo, β = 0).
Therefore, the final result will be a pair (a(θo, r,m), θo(a, r,m)) defining the points for in
the impact-parameter-space for which this happens. Performing this calculation results in
eight solutions for the rightmost point of constant θ at (α = a sin θo, β = 0)

(a, θo) =

(︃
±
√︁
r(2m− r),± arccos

(︃
±
√︃

r

r − 2m

)︃)︃
, (3.54)

whereas for the leftmost point of constant θ at (α = −a sin θo, β = 0) we get

(a, θo) =

(︄
±
√︃
r2(3m− 2r)

m
,± arccos

(︄
±
√︃

3m

3m− 2r

)︄)︄
. (3.55)

Let us first analyse the first of these equations. There are two ways of seeing that (3.54)
never gives real valued solutions for a and θo, regardless of the values of m and r, i.e. that
there are no values for m and r such that this rightmost point in impact-parameter-space
coincides with the inner throat boundary. Such geodesics would be bound geodesics with
constant radial and polar component.
The first approach is a case distinction for different r in (3.54). Negative radii r < 0
will always result in complex rotation a since in this case r(2m − r) < 0 (we assume
m > 0). The case of vanishing radius r = 0 recovers an equatorial geodesic in Schwarzschild
spacetime where a = 0 and θo = π/2. Since there is no inner throat in the Schwarzschild
limit, this solution is not what we desire. Positive radii r > 0 lead to complex angle θo.
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To see this, note that for 0 < r < 2m the argument of arccosine will be complex because
of r − 2m < 0. For r > 2m the argument will be real but greater 1. Since the inverse of
cosine is only defined between -1 and 1 for real arguments, this produces a complex angle
too. And lastly, the special case r = 2m results in either a complex polar angle because
(a) the argument of arccosine is imaginary (for r ↗ 2m) or (b) the argument of arccosine
is real but diverges, especially meaning that it is larger 1 (for r ↘ 2m).
The second (and arguably easier) possibility to prove that (3.54) does not produce real
valued solution is to calculate a(θo) by first expressing r in terms of θo using the second
equation of (3.54) and then substituting this in the first equation, resulting in

acrit, left(θo) = ±2im
| cot θo|
sin θo

. (3.56)

Regardless of where the observer is located in the polar direction, there is no real rotational
parameter a(θo) (other than the Schwarzschild case a = 0 in the equatorial plane θo = π/2
which needs to be excluded) such that the impact parameters (α = +a sin θo, β = 0)
coincide with the inner throat boundary. We will not calculate θo(a) in this case since this
would not give additional insights.
The question now is, if the point (α = +a sin θo, β = 0) lies inside or outside the inner
throat. For the values a/m = 0.99 and θo = 0 as in Fig. 3.6 the point of constant θ is at
(α = 0, β = 0) and thus lies definitely inside the inner throat. As this rightmost point of
constant polar angle can never cross over to the outside of the inner throat, we conclude
that it always lies inside. Therefore, every observer at ro = −∞ with polar angle θo can
see a geodesic with constant polar angle connecting the observer and some point in the
region r > 0 at the impact parameters (α = +a sin θo, β = 0).
As a geodesic with (α = +a sin θo, β = 0) corresponds to the principal null congruence on
which the transformation to Eddington-Finkelstein-like coordinates is based on (cf. [29]),
we claim that along this geodesic also ψ and u should remain constant. We prove this by
showing that the equations of motion (3.34) for ψ and (3.35) for u are identically zero in
this case. Let us begin by evaluating the constants of motion (3.43) and (3.44) at these
impact parameters, leading to

λ = a sin2 θo , (3.57)

η = −a2 cos4 θo , (3.58)

with which the radial potential (3.30) becomes

R(r) = (r2 + a2 − a2 sin2 θo)
2 −∆

(︁
−a2 cos4 θo + (a sin2 θo − a)2

)︁
= (r2 + a2 cos2 θo)

2 . (3.59)

For vortical geodesics we have r2 + a2 cos2 θo > 0 which simplifies the radial equation
(3.32) to

dr

dτ
= νr(r

2 + a2 cos2 θo) . (3.60)
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Furthermore, we get for the azimuthal equation (3.34)

dψ

dτ
=

a

∆

(︂
2mr − aλ−

√︁
R(r)

)︂
+

λ

sin2 θo

=
a

∆

(︁
2mr − a2 sin2 θo − r2 − a2 cos2 θo

)︁
+
a sin2 θo

sin2 θo

=
a

∆

(︁
2mr − a2(sin2 θo + cos2 θo)− r2 + (r2 − 2mr + a2)

)︁
= 0 , (3.61)

where in the second line we used (3.57), (3.58), and (3.59), as well as the fact that θ = θo
stays constant throughout the trajectory. Similarly, the calculation for u-equation (3.35)
is given by

du

dτ
=
r2 + a2

∆

(︂
r2 + a2 − aλ−

√︁
R(r)

)︂
+ a(λ− a sin2 θ)

=
r2 + a2

∆

(︁
r2 + a2 − a2 sin2 θo − r2 − a2 cos2 θo

)︁
+ a(a sin2 θo − a sin2 θo)

= 0 . (3.62)

The results (3.61) and (3.62) show that besides the polar angle θ, also the azimuthal angle
ψ, as well as the coordinate time u stay constant along a geodesic with impact parameters
(α = +a sin θo, β = 0).
Now let us discuss the solution for the left edge of the inner throat (3.55). We can solve
this system of equations for either a(θo) or θo(a). The easier case is the former, resulting
in

acrit, right(θo) =
3
√
3m

2

tan2 θo
| cos θo|

, (3.63)

where we already chose the plus sign in front of the square root since we restricted ourselves
to the case a > 0 (cf. section 2.2). This defines a critical rotation parameter a depending
on the observer’s polar position θo. For rotations faster than this critical rotation, the
observer at θo will perceive two distinct points with constant polar coordinate inside the
inner throat. Fig. 3.7 visualises the result of equation (3.63) for 0 ≤ θo ≤ π/2. Since the
physically acceptable cases are restricted to a < m, there is only a very limited range
of possible observer locations for two points of constant θ to appear. Solving (3.63) for
a/m = 1 gives us an upper bound to this range which is θo,max = π/6. Consequently, only
observers with 0 < θo < π/6 can in principle observe these two distinct points, depending
on the rotation speed a of the black hole.
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Figure 3.7.: Plot of (3.63) for 0 < θo < π/2. The shaded area indicates combinations
of a/m and θo where two distinct points of constant θ lie inside the inner
throat. On the boundary curve, the leftmost point of constant polar angle
lies exactly at the inner throat boundary, corresponding to a geodesic with
constant polar angle being captured in an orbit around the black hole. The
vertical line corresponds to θo = π/6.

The case of solving for θo(a) will give us no further insights, thus we are only stating
the result here without further discussion. As the equation for a in (3.55) is cubic in r
upon squaring both sides, it leads to three different solutions for r, which we then insert
in the equation for θo. Consequently, θo(a) has 3× 4 = 12 solutions, which are

θo,crit,1(a) =± arccos

(︄
±

√︄
−3ρm

(m− ρ)2

)︄
, (3.64)

θo,crit,2(a) =± arccos

(︄
±
√︄

6ρm

4ρm+m2 + ρ2 + i
√
3(ρ2 −m2)

)︄
, (3.65)

θo,crit,3(a) =± arccos

(︄
±
√︄

6ρm

4ρm+m2 + ρ2 − i
√
3(ρ2 −m2)

)︄
, (3.66)

where we defined ρ =
3
√︁
m3 − 2ma2 + 2ma

√
a2 −m2. It is not immediately obvious

whether these give the correct result or that they are even real-valued. By numerical
calculation one can see that the third of these solutions is the only one giving real results
and thus being the inverse function of (3.63). The ± in the argument of arccosine
determines the hemisphere the geodesic is bound to, and can thus, as before, be replaced
by h = sign(cos θ). The sign in front of arccosine corresponds to a mirroring about the
axis of symmetry which is equivalent to a rotation about π in the azimuthal direction.
Since Kerr spacetime is rotationally symmetric in the azimuthal angle, this describes the
same physical situation.
As a side note we want to mention that the calculations concerning the conservation of ψ and
u in the case of (α = +a sin θo, β = 0) above are not valid in the case (α = −a sin θo, β = 0),
meaning that even if the observer can see a geodesic with these impact parameters (which
is not always the case) it does not have constant ψ and u.
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Geodesic motion close to equatorial plane

Another question we can ask is how close a geodesic comes to the equatorial plane at
θ = π/2 on the course of its journey before escaping to r → −∞ and hitting a specific point
on the observer’s photographic plate (defined by the impact parameters α and β). These
geodesics are worth discussing as we can thus decide wheter a luminous thin accretion
disk around the black hole (typically assumed to be in the vicinity of the equatorial plane
at r > 0) will be visible for an observer at ro = −∞. Note that the simplification of an
infinitely thin accretion disk lying exactly in the equatorial plane (which is often made for
studying the visual appearance of the black hole for an observer outside the event horizon)
is of no use in the case of an observer at r < 0. The reason being that as was discussed in
the beginning of this subsection, geodesics connecting some source-point at r > 0 to an
observer at r < 0 can never cross the equatorial plane.
From the general behaviour of arccosine and (3.49) we can see that the polar turning point
closest to the equatorial plane is always θ+, regardless of the hemisphere specified by h.
In the northern hemisphere (0 < θ < π/2) we therefore have θ− < θ+, whereas in the
southern hemisphere (π/2 < θ < π) we get θ− > θ+. Because the spacetime is symmetric
under mirroring around the equatorial plane (most easily seen by taking z → −z in (2.9)),
the southern hemisphere case will not give different physical phenomena compared with
the northern hemisphere. Thus, we will restrict our analysis to the northern hemisphere.
Using (3.49) with (3.50) we can now numerically calculate θ± for each point inside the
inner throat and fixed θo and a/m. Examples for four different θo’s and a/m = 0.99 are
shown in Fig. 3.8. Any geodesic with certain impact parameters (α, β) inside the inner
throat will oscillate between its corresponding values for θ− (red) and θ+ (green). It is
clearly visible that these plots are, as anticipated, symmetric under β → −β. Furthermore,
one can see that an observer close enough to the axis of symmetry, namely with 0 < θo <
θcrit ≈ 0.5217 < π/6, receives a pair of two distinct photons which have constant angular
coordinate θ (corresponding to the red and the green surface touching). The upper bound
θcrit ≈ 0.5217 for θo describes the point where the impact parameters of the geodesic with
constant θ coincide with the inner throat boundary in the case of a/m = 0.99. The value
π/6 is the maximal upper bound associated to the extreme Kerr case a/m = 1 (cf. Fig. 3.7).
At θo = 0 there will be only one single point of constant θ, located at (α = 0, β = 0).
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(a) θo = π/180 (b) θo = π/8

(c) θo ≈ 0.5217 < π/6 (d) θo = π/4

Figure 3.8.: 3D-plots of θ+ (green) and θ− (red) inside the inner throat (grey disk) for fixed
subcritical rotation a/m = 0.99 and varying polar angle θo of the observer.
For angles θo < θcrit ≈ 0.5217 < π/6 there are two points where the green and
the red surface make contact, i.e. points where θ+ = θ− and thus θ = const.
along the geodesic.

If we only restrict α = 0 without exactly specifying β and 0 < θo < π/2, we find that
such a geodesic will always hit the axis of symmetry, indicated by the kink in the red θ−-
surface touching θ = 0 (clearly visible in Fig. 3.8b - 3.8d). To approach this quantitatively,
we are led to inspect (3.49) for α = 0:

θ−
⃓⃓
α=0

= arccos(h
√
u+)

⃓⃓
α=0

= arccos

(︄
h

2

√︄
3− 2β2

a2
+ cos(2θo) +

√︃
(a2 + 2β2 − a2 cos(2θo))2

a4

)︄

= arccos

(︄
h

2

√︃
3a2 − 2β2 + a2 cos(2θo) + a2 + 2β2 − a2 cos(2θo)

a2

)︄
= arccos(h) . (3.67)

The third equality is valid as a > 0, β2 ≥ 0 and cos(2θo) ≤ 1. In the northern hemisphere
(h = 1) this is zero while in the southern hemisphere (h = −1) this equals π – both values
correspond to reaching the axis of symmetry. This feature will also have further reaching
consequences for the general behaviour of the polar motion of geodesics with α = 0, as
will be discussed in subsection 4.1.4.
Additionally, the closest point to the equatorial plane can be inspected to have β = 0 and
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α = αmin, where αmin is the smallest possible value for α which still lies inside the inner
throat. In the special case of the observer being located exactly in the axis of symmetry at
θo = 0, all points at the inner throat boundary have the same θ±. Hence, generally at the
rightmost point inside the inner throat the photon which can come closest to the equatorial
plane throughout its journey will reach the observer. Since this is in the very proximity of
the inner throat boundary (corresponding to the radial potential barrier boundary) the
geodesic will stay a rather long time in the vicinity of the black hole (this will be discussed
in chapter 5). Having identified this special point inside the inner throat, we can calculate
θ± there and see how the oscillation in θ changes for different θo, and therefore how close
such a geodesic can approach the equatorial plane. Because the point we will calculate
lies exactly on the inner throat boundary (and not inside), this will only give us an upper
bound on θ± for geodesics inside the inner throat.
A visualisation of this is done in Fig. 3.9. It turns out that on the right edge of the inner
throat θ− = θo, i.e. the geodesic is always observed at its closest point to the axis of
symmetry. On the other hand, θ+ follows a strictly increasing function in θo, approaching
π/2 as θo → π/2 (recall that the case θo = π/2 must be excluded since in this case no
geodesics starting from r > 0 can reach the observer at ro = −∞).
To determine the proximity to the equatorial plane for a vortical null geodesic somewhere
along its path, we need only θ+. The polar distance to the equatorial plane is determined by
π
2 − θ+. In the case of a/m = 0.99 it is clear from Fig. 3.9 that if an accretion disk extends
(in polar direction) closer to the axis of symmetry than around θ ≈ 0.975 (corresponding to
the value of θ+ for θo = 0), it could theoretically be visible for every observer at ro = −∞.
Going to thinner accretion disk models, the observer at ro = −∞ needs to be closer to
the equatorial plane as well in order for π

2 − θ+ on the left edge of the inner throat to be
greater than the maximal extent of the accretion disk. This, in turn, results in a smaller
inner throat and hence a smaller field of view. It should also be noted that the geodesic
can achieve its closest point to the equatorial plane θ+ anywhere along its trajectory. In
individual cases, further analysis is needed to determine whether or not the observer at
ro = −∞ indeed is able to observe an accretion disk at r > 0 close to the equatorial plane.

Figure 3.9.: θ± for the rightmost point of the inner throat for varying polar angle of the
observer θo. In this plot we used a/m = 0.99.
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3.2.3. Gravitational redshift

For creating images of what an actual physical observer might see, one further task is to
consider the redshift along the geodesic. In this section we want to discuss the gravitational
redshift, and comment on the Doppler shift due to relative motion of source and observer
which we want to consider.
In this thesis we want the observer to be stationary, which is (in Boyer-Lindquist coordin-
ates) described by the worldline

γµo (t) = (t, ro, θo, φo)

where ro, θo and φo are constant. The four velocity of this observer is given by

Uµo = (uto, 0, 0, 0) .

Note that this does not necessarily correspond to an observer with zero angular momentum
at any radial position ro, which, due to the dragging of frames by the rotation of the black
hole, does not have constant azimuthal coordinate but rather rotates with angular velocity
[2]

dφ

dt
=

2amro

(r2o + a2)2 − (r2o − 2mro + a2)a2 sin2 θ
,

and only in the limit |ro| → ∞ we find that constant azimuthal coordinate corresponds to
zero angular momentum of the observer. We normalise the four velocity by imposing

−1 = g(Uo, Uo) = gtt(u
t
o)

2 ⇒ uto =
1√
−gtt

and consequently get

Uµo =

(︄
1√︁

−gtt(ro)
, 0, 0, 0

)︄
. (3.68)

To emphasise and keep track of the fact that gtt needs to be evaluated at the spacetime
location of the observer, we explicitly wrote out the dependence on ro. We immediately see
that since gtt(ro) = −(1− 2mro

Σ(ro)
) an observer at |ro| ≫ 1 has four velocity Uµo = (1, 0, 0, 0)

(note that Σ(ro) = r2o + a2 cos2(θ) ∝ r2o for large values of ro). This result is also obvious
with regard to the fact that in the limit |r| → ∞ we find that the Kerr metric describes
flat spacetime.
The light source we want to consider in this thesis is also stationary and located at fixed
rs = +∞ with some fixed angular coordinates θs and ψs. The four velocity Us of such a
source is in this case the same as for an observer at ro = −∞.
We will calculate the gravitational redshift in the same manner as one does the calculation
in the Schwarzschild case (see e.g. [10]).
The frequency of the emitted light as measured by an observer with four velocity Ua
(a ∈ {o, s}, where o denotes the considered observer and s denotes (a hypothetical observer
at) the light source) is given by

ωa = −g(Ua,K) , (3.69)

where K = κγ̇ (where κ > 0) is the frequency four vector of a photon corresponding to a
constant multiple of the tangent γ̇ = (ṫ, ṙ, θ̇, φ̇) of a null geodesic γ = (t, r, θ, φ) in Kerr
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3. Geodesics in Kerr spacetime

spacetime (the dot denotes differentiation with respect to some affine parameter along the
geodesic). Evaluating (3.69) further we find

ωa = −gµν Uµa Kν

= −gtt U taKt − gtφ U
t
aK

φ

= −U ta(ra)
(︁
gtt(ra)κ ṫ+ gtφ(ra)κ φ̇

)︁
, (3.70)

where again we can choose a = o for the observer, or a = s for (a hypothetical observer at)
the source. Since the quantities gtt and gtφ need to be evaluated at the spacetime position
of the observer, we emphasise this again by explicitly writing the dependence on the radial
position ra in the last line.
To relate this frequency measured by the observer to the frequency measured at the source,
i.e. relate ωo to ωs, we make use of the fact that energy is conserved along any geodesic,
which corresponds to ∂t being a Killing vector. Therefore the quantity

g(∂t,K) = gtt κ ṫ+ gtφ κ φ̇ = const. (3.71)

is conserved along the null geodesic connecting the source and the observer. Using this,
we find the relation of the frequency as measured by an observer ωo with the frequency as
measured at the source ωs to be

ωo = −U ta(ro)(gtt(ro)κṫ+ gtφ(ro)κφ̇)

= −U ta(ro)(gtt(rs)κṫ+ gtφ(rs)κφ̇)

=
U ta(ro)

U ta(rs)
ωs

=

√︁
−gtt(rs)√︁
−gtt(ro)

ωs , (3.72)

where in the last line we used (3.68). As already mentioned earlier we have that gtt(ro/s) →
−1 as |ro/s| → ∞, and thus in the case of the observer being at ro = −∞ and the source
being at rs = +∞ there will be no gravitational redshift and we find ωo = ωs.
Lastly, we want to mention that in the case of a stationary observer at ro = −∞ and a
stationary source at rs = +∞ there will be no relative motion between source and observer
and thus we also do not need to consider any Doppler shift.
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Before we start solving any equations, we specify again the goal we want to achieve in a
summarising way. Our main aim is to visualise what a stationary observer located at some
angles θo and ψo far away from the central black hole in the negative-r-region (ro = −∞)
would see if they were to look directly at the centre of symmetry. The light source in this
scenario is assumed to be at positive radii rs > 0 (we ultimately want to take rs → +∞ in
this work but nothing prevents one to use finite rs > 0). To obtain this visualisation, we
need to find null geodesics (i.e. the paths of photons) which connect the source and the
observer. These geodesics start at the source at rs > 0 and end up at the observer at r < 0,
thus they need to be vortical null geodesics (Q < 0 or η < 0) as shown in the previous
section. Consequently, we need to solve the equations of motion for vortical null geodesics.
They will be characterised by either the constants of motion (λ, η) or equivalently by the
impact parameters (α, β). The transformation can easily be done using (3.43) and (3.44).
Because the equations of motion and their solution do not give additional insight after the
transformation, we will not give an explicit form here. Nevertheless, the impact parameters
are an important tool for the visualisation and thus we will use them when implementing
the solutions in Mathematica and consequently for any numerical calculations.
Apart from introducing (α, β), we did some more preliminary work towards achieving
our goal by finding the differential equations of motion for null geodesics in Eddington-
Finkelstein-like coordinates in subsection 3.1.1. For convenience we restate them here:

dr

dτ
= νr

√︁
R(r) , (4.1)

dθ

dτ
= νθ

√︁
Θ(θ) , (4.2)

dψ

dτ
=

a

∆

(︂
2mr − aλ−

√︁
R(r)

)︂
+

λ

sin2 θ
, (4.3)

du

dτ
=
r2 + a2

∆

(︂
r2 + a2 − aλ−

√︁
R(r)

)︂
+ a(λ− a sin2 θ) , (4.4)

where we used the radial and angular potentials R(r) and Θ(θ), as well as the horizon-
defining function ∆. Definitions can be found in (3.14), (3.12) and (2.3), respectively.
For the task of solving these equations analytically, a well-suited approach is to cast them
in integral form (similar to (3.7)-(3.10)). This approach was also taken by [17] whose
calculations we will follow for the main part. However, in some points we will use different
methods which we will indicate appropriately. The main difference to begin with is that
we work in Eddington-Finkelstein-like coordinates which are regular globally, whereas the
authors of [17] did their calculations in Boyer-Lindquist coordinates. Consequently, their
solution is not valid for geodesics crossing the horizons, for they will become singular in φ
and t there. As they were only interested in the Kerr exterior, these singularities did not
state a problem for their analysis.
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In integral form (4.1)-(4.4) become∫︂ θo

θs

dθ√︁
Θ(θ)

=

∫︂ ro

rs

dr√︁
R(r)

, (4.5)

ψo − ψs = νr

∫︂ ro

rs

a(2mr − aλ−
√︁
R(r))

∆
√︁
R(r)

dr

+ νθ

∫︂ θo

θs

λ

sin2(θ)
√︁
Θ(θ)

dθ , (4.6)

uo − us = νr

∫︂ ro

rs

r2∆+ 2mr(r2 + a2 − aλ)− (r2 + a2)
√︁
R(r)

∆
√︁
R(r)

dr

+ νθ a
2

∫︂ θo

θs

cos2 θ√︁
Θ(θ)

dθ . (4.7)

Notice that equation (4.5) couples the r- and θ-motion. This is due to the fact that both
the left-hand-side as well as the right-hand-side are equal to the elapsed Mino time τ along
the geodesic. We will use this fact later by fixing the source’s radial position rs in addition
to the observer’s location and thus being able to calculate the polar angle of the source θs.
The equations (4.5)-(4.7) are the general integral equations of motion for a null geodesic
in Kerr spacetime. However, as mentioned above, we will restrict ourselves to the subclass
of vortical null geodesics which have no turning points in the radial direction to solve the
equations analytically. Accordingly, the radial potential R(r) never vanishes along the
geodesic and thus all its four roots are complex. In the case of no real roots, a quartic
polynomial (such as R(r) is) has pairs of complex roots, meaning that for the roots ri
(i = 1, 2, 3, 4) of R(r) we can arrange that r1 = r2̄ and r3 = r4̄ (where the bar denotes
complex conjugation). In the case of R(r) this was shown to hold true for vortical null
geodesics by [17] where they also calculated an especially compact analytic form of the roots
ofR(r) which we will use (the formulas thereof are reproduced in Appendix A.1). Sometimes
it can be useful to write the radial potential as R(r) = (r − r1)(r − r2)(r − r3)(r − r4).
As a consequence of the radial potential R(r) only possessing complex-valued roots, the
denominator of the r-integral in (4.5)-(4.7) either does not vanish at all or only at the
horizons. This singularity at ∆ = 0 is counteracted by the regularising transformation to
Eddington-Finkelstein-like coordinates, meaning that as the denominator approaches zero,
so does the numerator.
Lastly, a few words about the general approach of calculating the starting values of a
geodesic which hit the observer’s photographic plate (at certain impact parameters α and
β). The fact that we want to fix the observer’s position and the impact parameters results
in the necessity of calculating the geodesic trajectory “back in time”. Thus, what we really
calculate is the trajectory of a vortical null geodesic which starts from the observer at
ro = −∞ and some α and β inside the inner throat, and ends at the source at rs > 0.
We are allowed to do this because this is equivalent to an exchange of the integration
boundaries. In our case we can thus also “integrate backwards” by a simple flip of the
sign νr. One only needs to be careful when interpreting the geodesic trajectories and
transforming them to Kerr-Schild coordinates. Some aspects of this will be discussed at
the beginning of the next chapter 5. As this is the standard approach in many black hole
visualisations (see e.g. [19] or [16]), we will adopt it here.
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4.1. Analytic solutions

In this section we will present the analytic solution of the integral equations of motion. To
this effect, as already mentioned earlier, we will mainly follow [17] but instead use Eddington-
Finkelstein-like coordinates (u, r, θ, ψ) over Boyer-Lindquist coordinates (t, r, θ, φ) to enable
the resulting vortical null geodesics to cross the horizons. The primary method used to
solve the equations is to reduce them to elliptic integrals. In section 4.2 we will then solve
the integrals numerically, with the results being used to cross-check the validity of the
analytic formulas on a numerical basis. The actual working progress was that these two
sections were done in parallel, resulting in finding discrepancies in some of the integrals
used by [17].
The antiderivatives of the integral equations of motion are calculated in a general setting for
vortical null geodesics with no radial turning points, i.e. we do not yet specify the source’s
or the observer’s location. Only later when implementing the solutions in Mathematica,
we may take the limit ro → −∞ and rs → +∞ to speed up numerical calculations.
In order to follow [17] in the calculation of the antiderivatives and hence allowing a
comparison of this thesis and their work, we need to define some additional quantities
which can be found in Appendix A.1. Included are formulas for the roots ri (i = 1, 2, 3, 4)
of the radial potential, as well as for a1, a2, b1, b2, C, D, g0, k, k4, x4(r), h, and X4(τ).
We will also define the integrals

I± = νr

∫︂ ro

rs

dr

(r − r±)
√︁
R(r)

, (4.8)

Iℓ = νr

∫︂ ro

rs

rℓ dr√︁
R(r)

(4.9)

in the same way as [17]. In the following I will always denote the antiderivative of an
integral I, so e.g. I± is the antiderivative of I± = I±(ro)− I±(rs).
To start off the section, we will give a very brief introduction into the theory of elliptic
integrals for the readers who may not be well-versed in this topic, mainly giving only
definitions and some relations. An extensive discussion of elliptic integrals/functions and
their relations and properties can be found in e.g. [1] or [15], on which the next subsection
is based.

4.1.1. Brief intermezzo on elliptic integrals and Jacobi elliptic functions

Elliptic Integrals

An integral of the form ∫︂
R(x, y) dx

is called an elliptic integral if R(x, y) is rational and y =
√︁
P (x) where P (x) is a polynomial

either cubic or quartic in x. In the general case, these integrals cannot be solved using
elementary functions. All elliptic integrals can be reduced to an integral of a rational
function and three canonical elliptic integrals, which are known as the elliptic integrals of
the first, second, and third kind. Due to this, it is worth while studying these canonical
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forms, which are defined as

First Kind : F [φ,m] :=

∫︂ φ

0

dθ√︁
1−m sin2 θ

, (4.10)

Second Kind : E[φ,m] :=

∫︂ φ

0

√︁
1−m sin2 θ dθ , (4.11)

Third Kind : Π[n, φ,m] :=

∫︂ φ

0

dθ

(1− n sin2 θ)
√︁

1−m sin2 θ
. (4.12)

Note that [1] and [15] use different conventions for the arguments m of F [φ,m], E[φ,m]
and Π[n, φ,m]. The formulas differ from (4.10)-(4.12) only by exchanging m→ k =

√
m

in the arguments on the left-hand side, while on the right-hand sides we have m → k2.
These forms are obviously equivalent but since we later want to implement the solutions
of the integral equations of motion (expressed in terms of these canonical elliptic integrals)
into Mathematica, we adapt here the convention built into Mathematica (which is the one
used in (4.10)-(4.12)).
The canonical elliptic integrals are all odd functions in φ satisfying F [−φ,m] = −F [φ,m],
E[−φ,m] = −E[φ,m], as well as Π[n,−φ,m] = −Π[n, φ,m]. In the general case φ ̸= π/2
the integrals (4.10)-(4.12) are called incomplete canonical elliptic integrals. For φ = π/2
we call them complete canonical elliptic integrals and denote them by

First Kind : K[m] := F
[︂π
2
,m
]︂
=

∫︂ π/2

0

dθ√︁
1−m sin2 θ

, (4.13)

Second Kind : E[m] := E
[︂π
2
,m
]︂
=

∫︂ π/2

0

√︁
1−m sin2 θ dθ , (4.14)

Third Kind : Π[n,m] := Π
[︂
n,
π

2
,m
]︂
=

∫︂ π/2

0

dθ

(1− n sin2 θ)
√︁

1−m sin2 θ
. (4.15)

In the following we will drop the term “canonical” as well as the specification complete/in-
complete. This will always be clear from the notation and/or the context.

Jacobi Elliptic Functions

Based on the elliptic integrals, one can define inverse functions as follows. Let u = F [φ,m]
be the elliptic integral of the first kind. We define

am[u,m] := φ (4.16)

to be the inverse of F [φ,m], thus considering φ to be a function of u. am[u,m] is called
Jacobi amplitude and by definition we have F [am[u,m],m] = u. From this we can
construct three further Jacobi elliptic functions

sn[u,m] = sin(am[u,m]) = sin(φ) , (4.17)
cn[u,m] = cos(am[u,m]) = cos(φ) , (4.18)

dn[u,m] =

√︂
1−m sin2(am[u,m]) =

√︂
1−m sin2(φ) , (4.19)

which are called sine-amplitude, cosine-amplitude, and delta-amplitude, respectively. From
the definition it follows immediately that sn2[u,m] + cn2[u,m] = 1 and dn2[u,m] +m sn2[u,m] = 1.
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The functions sn[u,m] and cn[u,m] are periodic in u with period 4K[m], whereas dn[u,m]
is 2K[m]-periodic. Here, K[m] is the complete elliptic integral of the first kind. Another
constructible function we need later is

sc[u,m] =
sn[u,m]

cn[u,m]
. (4.20)

To make subsequent equations involving elliptic integrals and elliptic function easier to
read, we will consistently use square brackets for their arguments. For all other purposes
involving brackets, we will utilise different brackets.

4.1.2. τ-integral

To get a solution for the Mino time along the geodesic, we can take two approaches, one
where τ will depend on the polar angle θs/o and one where it will depend on the radius
rs/o. We will follow the latter strategy for which we rewrite (4.1) as

dτ = νr
dr√︁
R(r)

. (4.21)

By path integrating from the source to the observer we get

τo − τs = νr

∫︂ ro

rs

dr√︁
R(r)

. (4.22)

Using the definition (4.9) from above, we see that the right-hand side is equal to I0. One
can look up the antiderivative of this when integrating from some y1 up to r in e.g. [15]
§3.145 with the result being (note that this integral table uses a different convention of
elliptic integrals)

I0(r) =
2 νr
C +D

F [arctan(x4(r)) + arctan(g0), k4] . (4.23)

Thus we can construct the integral in (4.22) as being the integral
∫︁ ro
rs

=
∫︁ y1
rs

+
∫︁ ro
y1

=∫︁ ro
y1

−
∫︁ rs
y1

. Consequently, (4.23) is the antiderivative of the integral in (4.22) and we can
write

τo = τs + I0(ro)− I0(rs) , (4.24)

which is our general solution for the Mino time τo along the geodesic in dependence of the
radial position of the source rs and of the observer ro as well as the starting time τs. In
the cases when we are only interested in the elapsed Mino time along the geodesic we can
set τs = 0 as our starting point at the light source.

4.1.3. r-integral

To get a formula for the radial component of a vortical null geodesic, the authors of [17]
inverted (4.24) by using the basic properties of elliptic integrals and elliptic functions to
get a formula for ro(τ). Since the transformation to Eddington-Finkelstein-like coordinates
does not change the equations for τ and r, our calculation would yield the exact same
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result. For that reason we adopt the result for the radial coordinate presented in [17]
(where a full derivation can be found in Appendix B Section 4). The final formula is

ro(τ) = −a2
(︃
g0 − sc[X4(τ), k4]

1 + g0 sc[X4(τ), k4]

)︃
− b1 , (4.25)

which depends implicitly on the source’s radial position rs and the initial direction νr via
X4(τ).
This formula is useful for us because with (4.24) we can first calculate the final Mino time
of the geodesic, i.e. when the geodesic reaches the observer, while with (4.25) we can
“track” the geodesic along its path of increasing Mino time. Thus we can calculate the null
geodesic’s radial position for all times between the emission of the photon at τs and the
observation of it at τo. An example trajectory with rs = −∞, ro = +∞ and θs = π/4 can
be found in Fig. 4.1. To avoid confusion we again want to stress that we integrate from
the observer to the source. Therefore, in Fig. 4.1 the geodesic starts at rs = −∞ at τ = 0
and is terminated at ro = +∞ (in contrast to the setup given in the beginning of this
chapter). This is no big problem as τ is only a parameter along the geodesic, and thus we
can simply mirror and shift these plots such that they start at ro = +∞ at τ = 0 and end
at rs = −∞. Hence, we recover our setup from the beginning of this section. The same
procedure is followed in all the other subsections of this chapter where it applies.
The impact parameters α = −0.15 and β = 0.1 are chosen somewhat arbitrarily, with the
only requirement that these points lie inside the inner throat. One can verify that the point
(α = −0.15, β = 0.1) really lies inside the inner throat by Fig. 5.9, which will be discussed
in section 5.1. The left of the two plots in Fig. 4.1 shows the actual radial trajectory
(normalised by the black hole’s mass parameter m) while the right one shows the trajectory
of arctan(r/m). This rescaled version will later be useful for numeric integration since it
captures the infinities r = ±∞ in the finite values arctan(r) = ±π/2.

Figure 4.1.: An example radial trajectory of a vortical null geodesic with impact parameters
α = −0.15 and β = 0.1. The rotation parameter is set to a/m = 0.99. Because
we measure distances in terms of the black hole’s mass m, we are plotting
r/m and arctan(r/m).

4.1.4. θ-integral

With the solution for the polar angle we proceed similarly to the subsection before in the
sense that we just state the final formula as it was derived in [17] and leave out the details,
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which, in the case of vortical null geodesics, can be found in [17] Section III B.
Accordingly, the formula for the polar angle is given by

θo(τ) = arccos

(︃
h
√
u− dn

[︃√︁
u− a2

(︁
τ + νθ Gθ(θs)

)︁
, 1− u+

u−

]︃)︃
, (4.26)

where h = sign(cos θs), u± is defined as in (3.50), and Gθ(θ) is given by

Gθ(θ) = − h√︁
u− a2

F

[︄
arcsin

(︄√︄
cos2 θ − u−
u+ − u−

)︄
, 1− u+

u−

]︄
. (4.27)

Using this formula we can calculate the θ-trajectory of any geodesic with impact parameters
inside the inner throat. We can use the general periodicity properties of the elliptic function
presented in subsection 4.1.1 to determine the period of the polar angle.

(a) α = −0.15, β = 0.1 (b) α = 0, β = 0.1

Figure 4.2.: Two example θ-trajectories calculated with (4.26) with rs = −∞, ro = +∞
and θs = π/4. (a) It is smooth in the general case α ̸= 0. (b) For α = 0
the trajectory is not smooth at θ− = 0. The rotation parameter is set to
a/m = 0.99 in both plots. The vertical line denotes one full period of θ.

However, there is a problem with the smoothness for geodesics with α = 0, which
can be seen in Fig. 4.2b. In the next chapter we will see that this case corresponds to
geodesics going through the axis of symmetry. In the general case α ̸= 0 the trajectory
oscillates smoothly between θ+ and θ−, thus staying in one hemisphere (in the example
in Fig. 4.2a in the northern hemisphere characterised by sign(cos θs) = 1). Recall that
Fig. 3.8 and the discussion thereof in subsection 3.2.2 showed us that for α = 0 we have
θ− = 0, meaning that such a geodesic reaches the axis of symmetry. Keeping that in
mind, we see that a trajectory whose impact parameter α approaches zero (i.e. going from
Fig. 4.2a to Fig. 4.2b), the turning point at θ− loses its smooth nature and develops into
a cusp. In order for the trajectory to stay smooth along its path from the source to the
observer, we extend it to negative values of θ, thus the oscillation takes place in the range
−θ+ ≤ θ ≤ θ+. This extension is achieved by flipping the sign of the right-hand side in
(4.26) for certain ranges of Mino time τ along the geodesic which are specified using the
periodicity properties of the elliptic function dn[u,m]. We are allowed to alter (4.26) in
this way without getting problems with it being the antiderivative to (4.2) because of the
ambiguity in the inverse of cosine (which is used in the derivation).

49



4. Solving the geodesic equations

In order to implement this modification, we can calculate at which Mino time τ the solution
for θ(τ) becomes zero, i.e. we solve the equation θ(τ) = 0 for τ . Doing so gives us

τ0 =
1

a
√
u−

F

[︄
arcsin

(︄√︄
u− − 1

u− − u+

)︄
, 1− u+

u−

]︄
− νθ Gθ(θs) , (4.28)

where we used a > 0. By inserting the special case α = λ = 0 into equation (3.48) for u±,
we get u+ = 1 and u− = −η/a2. This, in turn, simplifies (4.29), yielding

τ0 =
1

a
√
u−

K

[︃
u− − 1

u−

]︃
− νθ Gθ(θs) . (4.29)

Based on the periodicity of dn[u,m] we can deduce that the sign of the right hand side of
equation (4.26) needs to be flipped for

1 + 4m

a
√
u−

K

[︃
u− − 1

u−

]︃
− νθ Gθ(θs) < τ <

3 + 4m

a
√
u−

K

[︃
u− − 1

u−

]︃
− νθ Gθ(θs) , (4.30)

with m ∈ R.
The modified trajectory in the case of Fig. 4.2b can be seen in Fig. 4.3. Notice that also in
this case the hemisphere does not change since h = sign(cos(θ)) = sign(cos(−θ)) and the
geodesic never crosses the equatorial plane at θ = π/2.
The modified analytic solution coincides with the numerical solution (discussed in section
4.2) which confirms the need for this correction on a numerical basis.

Figure 4.3.: We can smooth out the polar angle trajectory for geodesics with α = 0 by
extending it to negative θ. The hemisphere defined by sign(cos θ) stays the
same throughout. The plotted trajectory has impact parameters (α = 0, β =
0.1). In this case the vertical line denotes one half-period of the polar angle.

There is another approach to get smooth trajectories of the geodesic when combining
all solutions for r, θ, ψ, and u (i.e. the trajectory in Kerr-Schild coordinates should
ultimately be smooth – see subsection 5.1.4), which does not involve altering the solution
for θ. To this end we would need to artificially introduce a discontinuity in the solution
for ψ at the point where the polar angle gets reflected at θ− = 0 (see subsection 4.1.5).
The reader can easily convince themself that this is true because θ is the polar and ψ
is the azimuthal angle. Therefore, a trajectory going through the axis of symmetry can
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be achieved by either allowing negative values of the polar angle or by a “jump” in the
azimuthal angle by π, both resulting in the same trajectory in Cartesian coordinates (in
our case pseudo-Cartesian coordinates in the form of Kerr-Schild coordinates). We did not
choose this second strategy since the first one seems more natural.

4.1.5. ψ-integral

To get a solution for the ψ-integral, it is useful to write (4.6) in the form

ψo − ψs = Iψ + λGφ (4.31)

where we defined

Iψ := Iφ − Ireg,φ , (4.32)

Iφ := νr

∫︂ ro

rs

a(2mr − aλ)

∆
√︁
R(r)

dr , (4.33)

Ireg,φ := νr

∫︂ ro

rs

a

∆
dr , (4.34)

Gφ := νθ

∫︂ θo

θs

dθ

sin2 θ
√︁
Θ(θ)

. (4.35)

The regularisation integral (4.34) appears due to the coordinate transformation from
Boyer-Lindquist to Eddington-Finkelstein-like coordinates. We can follow [17] and rewrite
Iφ as

Iφ =
2ma

r+ − r−

[︄(︃
r+ − aλ

2m

)︃
I+ −

(︃
r− − aλ

2m

)︃
I−

]︄
, (4.36)

where I± are defined in (4.8). The calculation how to get from (4.33) to (4.36) is shown
in appendix A.2. The resulting formula for ψo is

ψo = ψs +
2ma

r+ − r−

[︃(︃
r+ − aλ

2m

)︃
I+ −

(︃
r− − aλ

2m

)︃
I−

]︃
− Ireg,φ + λGφ . (4.37)

The task of finding a solution for the azimuthal angle ψ is now reduced to finding the
antiderivatives of (4.8), (4.34), and (4.35). Let us begin with the least problematic one,
which is the antiderivative of (4.35). As was shown in [17], this integral in terms of elliptic
integrals equates to

Gφ =
1

(1− u−)
√︁
u− a2

Π

[︃
u+ − u−
1− u−

,Υτ , 1−
u+
u−

]︃
− νθ Gφ(θs) (4.38)

where they introduced

Υτ = am

[︃√︁
u− a2 (τ + νθ Gθ(θs)) , 1−

u+
u−

]︃
, (4.39)

Gφ(θ) = − h

(1− u−)
√︁
u− a2

Π

[︄
u+ − u−
1− u−

, arcsin

(︄√︄
cos2 θ − u−
u+ − u−

)︄
, 1− u+

u−

]︄
, (4.40)
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and where the definitions of Gθ(θ) and u± are given in (4.27) and (3.50), respect-
ively. Instead of using τ in Gφ we could also use both θs and θo and calculate Gφ =
νθ (Gφ(θo)− Gφ(θs)). Taking this approach would not allow us to calculate θo and ψo in
parallel, therefore we will use (4.38).
In the next step we will calculate the antiderivative of (4.34), which can easily checked to
be

Ireg,φ = νr
a (ln(r − r+)− ln(r − r−))

r+ − r−
. (4.41)

Lastly, finding an antiderivative to (4.8) turned out to be actually kind of tricky. The
reason for this is that we were not able to confirm the antiderivative found by [17] when
cross-checking it with the numerical integration. To the best of our knowledge there seems
to be a mistake somewhere in the formulas presented, be it some typo, a calculation
error, or that the integral table they used was faulty. Thus, we calculated it anew using
Mathematica, which gave the result

I1
±(r) =

νri(r2 − r±)√
a1a2(r1 − r±)(r3 − r±)

F

[︃
arcsin

(︄√︄
2ia2(r − r3)

(r − r1)(r2 − r3)

)︄
,
D2

4a1a2

]︃
+

νri(r2 − r±)(r1 − r3)√
a1a2(r1 − r±)(r3 − r±)

×Π

[︃
(r2 − r3)(r1 − r±)

2ia2(r3 − r±)
, arcsin

(︄√︄
2ia2(r − r3)

(r − r1)(r2 − r3)

)︄
,
D2

4a1a2

]︃
(4.42)

with D2 = (a1 + a2)
2 + (b1 − b2)

2. This function is not continuous over the whole range
of r – as it turns out it has a discontinuity just below r = 0. We can correct for this by
introducing an integration constant which includes two Heaviside functions H[ · ] as well
as the complete elliptic integrals. This integration constant has the form

ccorr,φ(r) =− 2νrH[−r] H

[︄
−Im

(︄
arcsin

(︄√︄
2ia2(r − r3)

(r − r1)(r2 − r3)

)︄)︄]︄
×

×

(︄
i(r2 − r±)√

a1a2(r1 − r±)(r3 − r±)
K

[︃
D2

4a1a2

]︃

+
i(r2 − r±)(r1 − r3)√
a1a2(r1 − r±)(r3 − r±)

Π

[︃
(r2 − r3)(r1 − r±)

2ia2(r3 − r±)
,
D2

4a1a2

]︃)︄
(4.43)

and needs to be added to (4.42) to give a smooth solution for all values of r. We finally
arrive at an equation for the antiderivative of I±

I±(r) = I1
±(r) + ccorr,φ(r) , (4.44)

which coincides with numerical integration over the whole range of r.
Now we are able to compute ψo with (4.37) using (4.38) as well as the antiderivatives (4.41)
and (4.44). To calculate it numerically, we further need to specify the impact parameters
α and β of the geodesic and whether its initially in- or outgoing (νr = ±1), the black hole
parameters m and a, as well as the beforehand calculated values rs, ro, θo, τs and τo.
An example of an azimuthal trajectory can be found in Fig. 4.4, where we again used

52



4.1. Analytic solutions

rs = −∞, ro = +∞ and θs = π/4. The grey horizontal line in the plot lies at ψ = −2π,
which, naively thinking, would correspond to one whole revolution of the geodesic “around”
the black hole, or more precisely around the axis of symmetry. One might be tempted to
define the geodesic’s order based on this. However, in section 6.1 we will see that there is
a different approach which leads to the desired characterisation of the order of a geodesic.

Figure 4.4.: An example azimuthal angle trajectory for a geodesic with (α = −0.15, β =
0.1). The black hole’s rotation parameter is set to a/m = 0.99. The grey
horizontal line is at ψ = −2π.

4.1.6. u-integral

Solving the u-equation (4.7) is very similar to solving the ψ-equation (4.6). We once more
begin by rewriting the integral equation (4.7) in a simpler form

uo − us = Iu + a2Gt , (4.45)

where we defined

Iu := It − Ireg,t , (4.46)

It := νr

∫︂ ro

rs

r2∆+ 2mr(r2 + a2 − aλ)

∆
√︁
R(r)

dr , (4.47)

Ireg,t := νr

∫︂ ro

rs

r2 + a2

∆
dr , (4.48)

Gt := νθ

∫︂ θo

θs

cos2 θ√︁
Θ(θ)

dθ . (4.49)

The regularisation integral Ireg,t is the result of the coordinate transformation from Boyer-
Lindquist to Eddington-Finkelstein-like coordinates. As before, we can follow the approach
in [17] and rewrite It as

It =
(2m)2

r+ − r−

[︃
r+

(︃
r+ − aλ

2m

)︃
I+ − r−

(︃
r− − aλ

2m

)︃
I−

]︃
+ (2m)2 I0 + 2mI1 + I2 . (4.50)

Again, the calculation how to get from (4.47) to (4.50) is shown in appendix A.2. The
integrals I± and Iℓ (with ℓ = 0, 1, 2) are defined in (4.8) and (4.9), respectively. Thus, to
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get a solution for u, we need find solutions to (4.8), (4.9), (4.48), as well as (4.49). Luckily
for us, we have solved (4.8) in the previous subsection, so we do not need to worry about
this integral anymore. Next, we can take the solution of (4.49) as it was solved in [17]
(specifically in Section III B). They found that for vortical null geodesics one gets

Gt =

√︃
u−
a2

E

[︃
Υτ , 1−

u+
u−

]︃
− νθ Gt(θs) , (4.51)

where Υτ is defined as in (4.39), and where they introduced

Gt(θ) = −h
√︃
u−
a2

E

[︄
arcsin

(︄√︄
cos2 θ − u−
u+ − u−

)︄
, 1− u+

u−

]︄
. (4.52)

Next, it is straightforward to get the antiderivative for Ireg,t, which can be checked to be

Ireg,t(r) = νr

(︃
r +

a2 + r2−
r− − r+

ln(r − r−)−
a2 + r2+
r− − r+

ln(r − r+)

)︃
. (4.53)

This leaves us with the task to solve Iℓ for ℓ = 0, 1, 2, which we will solve similar to above.
Let us begin with the antiderivative of I0, for which we could confirm that the solution
presented in [17] coincides with numerical integration. The correct solution is (4.23) as it
was already used in subsection 4.1.2 for the solution for the Mino time.
Next, since we could not confirm the formulas for I1 and I2 given in [17], we calculate
these antiderivatives anew using Mathematica, for which we get

I1(r) =νr

√︄
4

(r2 − r4)(r3 − r1)

(︄
2a1Π

[︃
r4 − r1
r3 − r1
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(︄√︄
(r3 − r1)(r − r4)

(r4 − r1)(r − r3)

)︄
, k

]︃

− ir3 F

[︃
arcsin

(︄√︄
(r3 − r1)(r − r4)

(r4 − r1)(r − r3)

)︄
, k

]︃)︄

− 2νrH[−r]H

[︄
−Im

(︄
arcsin

(︄√︄
(r3 − r1)(r − r4)

(r4 − r1)(r − r3)

)︄)︄]︄
Re

(︄
2a1Π
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r4 − r1
r3 − r1

, k

]︃
− ir3K[k]

)︄
,

(4.54)

I2(r) =νr

{︄
(r − r1)

√︄
(r − r4)(r − r2)

(r − r1)(r − r3)
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−
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(4.55)
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where the last term in each formula is the correction constant to ensure a smooth trajectory
for all values of r.
With these solutions we can write

Iℓ = Iℓ(ro)− Iℓ(rs) , (4.56)

for ℓ ∈ {1, 2}, and together with (4.23) and the solution for I± from the last subsection
we can find an analytical solution for (4.50). Finally, also using (4.51) and (4.53) we can
get a formula for uo in (4.45). To calculate the coordinate time uo along the geodesic, we
further need to specify us; to get the elapsed coordinate time uo along the geodesic, we set
us = 0. As in the case for ψo, to calculate uo numerically, we need to also specify α, β, νr,
m, a and the beforehand calculated values for rs, ro, θo, τs and τo. Such a trajectory can
be found in Fig. 4.5, which starts at rs = −∞ and θs = π/4 and ends at ro = +∞.

Figure 4.5.: An example u-trajectory for a geodesic with (α = −0.15, β = 0.1). The black
hole’s rotational parameter is a/m = 0.99. Because we measure time in terms
of the black hole’s mass m, we are plotting u/m.

4.2. Numerical solution

To solve the system of differential equations (4.1)-(4.4) numerically, we make a few
adjustments. For one, we will use the second order differential equation for r and θ,
which will avoid possible problems when encountering turning points in the radial or polar
direction. We get

d2r

dτ2
=

1

2

dR(r)

dr
, (4.57)

d2θ

dτ2
=

1

2

dΘ(θ)

dθ
, (4.58)

where we simplified the formulas using the original first order equations.
Furthermore, due to the nature of numerical integration, it is wise to avoid infinities
wherever it is possible. Thus we will remove the infinity from the radial equation by
making the coordinate change x = arctan(r) and solve the equation for the coordinate
x(τ). For this new “radial” coordinate we can identify r = ±∞ with x = ±π/2. In the
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end we effectively want to solve the following system of differential equations:

d2x

dτ2
= cos(x(τ))

(︃
((a− λ)2 + η) cos(3x(τ))

+ sin(x(τ))
(︁
1 + a2η + ((1 + η)(1− a2) + λ2) cos(2x(τ))

)︁)︃
, (4.59)

d2θ

dτ2
= λ2

cos(θ(τ))

sin3(θ(τ))
− a2 cos(θ(τ)) sin(θ(τ)) , (4.60)

dψ

dτ
=

a

∆(tan(x(τ)))

(︂
2 tan(x(τ))− aλ−

√︁
R(tan(x(τ)))

)︂
+

λ

sin2(θ(τ))
, (4.61)

du

dτ
=

tan(x(τ)) + a2

∆(tan(x(τ)))

(︂
tan2(x(τ)) + a2 − aλ−

√︁
R(tan(x(τ)))

)︂
+ aλ− a2 + a2 cos2(θ(τ)) , (4.62)

where the radial potential R(r) is defined as in (3.30), we wrote the functional dependence
in ∆(r) = r2 − 2r + a2 explicitly, and we already set m = 1 everywhere. These equations
are given in terms of the constants of motion λ and η, and not the impact parameters
α and β but the conversion is trivially done with (3.43) and (3.44) and does not give
additional insight. The only problem could arise by considering an observer for which
sin θo = 0. We can proceed with this as before by noting that geodesics which reach such
an observer must necessarily have λ = 0. Therefore, it is enough to express the equations
in terms of the impact parameters α and β and only then take the limit θo → 0, which
ensures that the equations remain finite.
In order to solve this system numerically, we need to impose initial conditions for each
coordinate (two initial values for each second order equation and one initial value for each
first order equation, thus six in total). Four initial values are the positional coordinates
of the observer, i.e. the starting values of the geodesic when we want to follow it “back
in time”. We will set the Mino time τ = 0 at the observer, thus we fix x(0) = −π/2,
θ(0) = θo, ψ(0) = ψo, u(0) = uo. For each second order equation, we additionally need
to state the rate of change of the coordinate at the observer. One can calculate that
x′(0) = νr and θ′(0) = β for the starting point at x(0) = −π/2. We require that the
impact parameters α and β are such that the point they describe lies inside the inner
throat. Geodesics with impact parameters inside the inner throat do not have turning
points in the radial coordinate, thus for them to be able to reach the observer at r = −∞
(or equivalently x = −π/2) they must be initially ingoing, i.e. νr = −1 (remember that we
integrate “into the past”). The fact that the derivative in the radial coordinate is finite at
r = ±∞ (x = ±π/2) is a result of the coordinate change r = tan(x).
For the numerical integration we use Mathematica and its built-in function NDSolve. The
method of choice is explicit Runge-Kutta. Because we start the integration at the observer
at ro = −∞, we will stop it once we reach the source at rs > 0. An example trajectory
with with ro = −∞ and rs = +∞ can be found in Fig. 4.6. The observer’s position and the
impact parameters are chosen as in the examples in the previous section and thus the plots
coincide. This is obvious since one way to validate the analytic solutions was that they
would coincide with the numerical integration. However, only because the analytic and
numerical solutions coincide for one specific pair of impact parameters does not necessarily
mean that they match for all other pairs of impact parameters as well, which will be
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discussed in the next subsection.

(a) (b)

(c) (d)

Figure 4.6.: Numerically calculated trajectories for (a) x = arctan(r(τ)), (b) θ(τ), (c)
ψ(τ) and (d) u(τ) for a geodesic with impact parameters (α = −0.15, β = 0.1)
and ro = −∞ and rs = +∞ (corresponding to xo = −π/2 and xs = +π/2),
θo = π/4, ψo = 0 and uo = 0. The black hole’s rotation parameter is set to
a/m = 0.99.

4.3. Comparing analytics and numerics

With both the analytic and the numeric solution of the geodesic equations of motion we
now have two distinct ways of calculating the position of the (light-emitting) source for
each vortical null geodesic (photon) coming from rs > 0 and with impact parameters inside
the inner throat (corresponding to a point on the photographic plate of the observer). The
question is what method is faster and/or more precise. In this subsection we will discuss a
few differences/similarities of the analytic and numeric solution to the geodesic equations
of motion and argue which solution best to use in which situation.
It should be clear that for some geodesics the two different solutions will coincide (up to
a very high accuracy) since one of the premises we used to check whether the analytic
antiderivatives were valid was that the resulting trajectory would coincide with the
numerical integration, which we assumed to be correct. However, the analytic and the
numeric trajectories need not always coincide perfectly. Simply speaking, the analytic
solutions are just the difference of the antiderivatives of the integrals of motion evaluated at
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the start and the end point of the geodesic, whereas the numerical integration uses a finite
step size to determine the next point in the trajectory, therefore “following” the geodesic
step by step. This finite step size could become a problem in impact-parameter-regions
where only small deviations of the trajectory result in completely different behaviours of
the geodesic, as is the case in the vicinity of the inner throat boundary. In this region
minor changes in the impact parameters decide whether the radial potential has two or zero
real roots, i.e. whether the geodesic gets reflected into the region it came from by reaching
a turning point in the radial motion, or can pass through to the other asymptotically flat
region of spacetime, thus having no radial turning points at all.
To determine how accurate the solutions are, we compare the results for θs, ψs and us for
geodesics which are emitted at rs = +∞ and observed at ro = −∞. This is the maximal
range in r and thus the error should be largest for such trajectories. In the short discussion
that follows we will consider the accuracy of the equations in the example case a/m = 0.99
for an observer located at θo = π/4, ψo = 0 and uo = 0. These values are chosen such that
the inner throat remains relatively big while at the same time examining (asymmetric)
features arising from the rotation of the black hole. A more thorough discussion of why we
chose this exact observer’s location can be found at the beginning of the next chapter 5.
In this section we will talk about distances in the α-β-impact-parameter-plane. To compare
the mentioned distances to the whole extent of the inner throat, recall that for m = 1,
a/m = 0.99, and θo = π/4 it is egg-shaped with semi-major axis of around 0.6 and
semi-minor axis of about 0.5 (cf. the blue curve in Fig. 3.6).
Far inside the inner throat (up to a distance of 10−3 from the inner throat boundary)
the difference of the analytic and the numeric solution for θs and us is maximally 10−9,
while in the worst case it is of the order 10−8 for τs and ψs. We interpret this as complete
agreement of the two solutions.
As expected, the error grows with decreasing distance to the throat boundary. At a
distance of 10−8 from the boundary the maximal error we get is around 10−5 in θs and us,
and 10−4 in τs and ψs. Even closer at 10−10 away from the boundary we find that the
maximal disagreement in θs, us, τs, as well as ψs is of order 10−3. The error in the angles
is still rather small in comparison with the polar and azimuthal range of θs (0 < θs < π/2)
and ψs (0 < ψs < 2π), meaning that for the observer such small angular errors would
not be perceivable. Furthermore, these regions where the accuracy might get lost form
a very thin strip just inside the inner throat boundary. Taking all this into account, we
conclude that for all practical purposes our solutions match at least up to a distance of
10−10 from the throat boundary, corresponding to the agreement of the numerical and
analytical solution in the region which an actual physical observer would (probably) be
able to resolve. We further discuss the topic of the possible (photographic) resolution an
actual physical observer could probably achieve in section 6.1.
As a rule of thumb we can say that the error we make in the calculated starting position
θs, us, and ψs, as well as in the calculated Mino time τs is in the worst case of the order
of machine precision (≈ 10−16) divided by the distance to the throat boundary times 104.
As a final point of this subsection we want to note that the numerical integration always
calculates the whole trajectory, regardless of whether we only need the source’s positional
values or the whole path connecting the source and the observer. This is due to the
nature of numerical integration but it also adds a lot of (often unnecessary) calculations
to the solution. Because of this, when we are only interested in the source’s position, we
will generally use the analytic formulas as they are only differences of analytic formulas
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(i.e. we do not calculate any point in between the source and the observer) and thus the
computation is a lot quicker. When we are interested in the whole trajectory connecting
the source and the observer, we can choose which method to use since in this case both
methods take more or less the same time. This freedom of choice is due to the fact that
the analytic and the numerical solutions match rather well (up to very close to the inner
throat boundary).
Fig. 4.7 shows the difference of the numerical and analytic solution along a vortical null
geodesic with impact parameters (α = −0.15, β = 0.1). As this corresponds to the example
trajectory always considered in this chapter, the individual trajectories (calculated with
both the numeric and analytical solution) can be found in the various figures in sections
4.1 and 4.2. As is expected far away from the inner throat boundary, the different solutions
match up to a very high accuracy.

(a) (b)

(c) (d)

Figure 4.7.: Difference of the numerical and the analytic solution for a geodesic with
(α = −0.15, β = 0.1) along its trajectory. The black hole’s rotation parameter
is set to a/m = 0.99.
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After having solved the geodesic equations of motion in the last section, in this section
we want to visualise and analyse some individual trajectories of vortical null geodesics in
more detail. To this end, we will show the trajectories of some of the (arguably) more
interesting vortical null geodesics in Kerr-Schild coordinates. Recall from section 2.1.3
that in Kerr-Schild form, the metric has an underlying flat spacetime and thus we will
treat the coordinates (x, y, z) as pseudo-Cartesian coordinates.
Throughout this section we will consider a black hole with rotation a/m = 0.99. This
rotational parameter just below criticality is chosen such that the effects of rotation are
considerably large. The observer will be located at ro = −∞, θo = π/4, ψo = 0 and
uo = 0. This radial position ensures that our premise of the observer far away in the
negative-r-region is fulfilled, while the polar angle θo = π/4 makes sure that the geodesic
stays in the northern hemisphere throughout its trajectory. By doing so, it can also be
guaranteed that the inner throat (i.e. the field of view of the observer) is reasonably large
while still maintaining the asymmetry caused by the loss of symmetry of the spacetime
in the polar direction. In comparison, if the observer would be located nearer to the
equatorial plane (π/4 < θo < π/2) the throat size would decrease while it would become
more symmetric closer to the axis of symmetry (0 < θo < π/4) (cf. Fig. 3.6). Furthermore,
due to the rotational symmetry in the azimuthal direction, we can choose ψo arbitrary.
The choice uo = 0 corresponds to the coordinate time of the observation of the vortical
null geodesic, which can also be chosen arbitrarily. We will start the integration at the
position of the observer and integrate until we hit the source at rs = +∞. By inverting
the parameter τ along the geodesic, we get a trajectory which starts at the source and is
terminated at the observer. In this section we are more interested in the behaviour of the
geodesic between the source and the observer (especially in the vicinity of the black hole)
and thus the source’s exact position is not important.
Recall from subsection 2.1.4 that one can cross over from one asymptotically flat region
to the other (i.e. from r > 0 to r < 0 or vice versa) only by crossing the disk bounded
by the ring singularity. We only consider vortical null geodesics which can never cross
the equatorial plane at θ = π/2. Hence, in Kerr-Schild coordinates they can only go from
positive to negative values of z by crossing the disk located in the x-y-plane and therefore
changing the sign of r. Because of that, in the plots made in Kerr-Schild coordinates which
we will show in this section, the region with positive/negative z corresponds to the region
with positive/negative radius r. We can therefore interpret the “upper half” of the 3D-plots
as the positive-r-region while the “lower half” corresponds to the negative-r-region, both
being the northern hemisphere in their respective asymptotically flat region of spacetime
(defined by the polar angle between 0 and π/2). Consequently, the horizons and ergosphere
are only present at positive z while the causality violating region is only present at negative
z.
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5.1. Trajectories in Kerr-Schild coordinates

In the last section we already showed some trajectories in Eddington-Finkelstein-like
coordinates, but only considered the trajectories individually. To get a feeling for how the
trajectory of a vortical null geodesic would actually look like in three spatial dimensions, we
need to combine the radial and the angular solutions. In order to do so, we can transform
them into Kerr-Schild coordinates (x, y, z) as described in subsection 2.1.3 and plot them
in a three-dimensional Cartesian coordinate system (similarly to the discussion and plot
of the horizons and the ring singularity in Fig. 2.2). However, one needs to be careful
as this transformation involves the quantities φ+ r# and u+ r∗. Due to our setup, we
send photons “into the future” (the parameter τ increases along the geodesic) from the
observer at negative radii to the source at positive radii, meaning that we effectively choose
νr = +1. This results in the fact that the coordinates we calculate are actually ψ = φ− r#
and u = t− r∗, making the standard transformation unusable because of the alternating
signs in these equations. Only by using the discrete symmetry t → −t, φ → −φ of the
Boyer-Lindquist metric, and thus changing the geodesic from radially outgoing to radially
ingoing, we get the quantities ψ = −φ − r# and u = −t − r∗, allowing us to use the
transformation (2.13)-(2.15) with −ψ and −u. This way we get a geodesic which starts
at rs = +∞ and is terminated at ro = −∞, as opposed to our integration starting at
ro = −∞ and ending at rs = +∞.
At the end of this section the reader can find a plot of the inner throat (Fig. 5.9) where
we marked the impact parameters used for the trajectories in this section. This can be
viewed in anticipation of the next chapter 6, especially section 6.1.

5.1.1. Trajectory with α = −0.15 and β = 0.1

The example trajectory of the last chapter plotted in Kerr-Schild coordinates can be found
in Fig. 5.1, where (a) shows the trajectory in Eddington-Finkelstein-like coordinates and
(b) shows the trajectory in Kerr-Schild coordinates. The middle plot in Fig. 5.1b shows the
trajectory visualised in pseudo-Cartesian coordinates. The ring singularity is a purple ring
lying in the equatorial plane at z = 0. Considering the scenario discussed at the beginning
of this section, the starting point of the geodesic is at rs = +∞, corresponding to the
direction of the green curve at z > 0. Along the geodesic the radial value decreases and
the geodesic approaches the black hole and subsequently the disk bounded by the ring
singularity. When it reaches z = 0, it crosses this disk and changes the sign of its radial
coordinate from r > 0 to r < 0. To emphasise this, the colouring changes from green to
orange at this transition. Lastly the geodesic can be seen to escape to radial negative
infinity, where it is ultimately “caught” by the observation at a photographic plate or the
like.
The left plot in Fig. 5.1b shows the projection of the trajectory onto the x-z-plane. We
already mentioned earlier that vortical null geodesics can only go from the lower to the
upper half plane of this plot by crossing the disk bounded by the ring singularity and
therefore transitioning from r > 0 to r < 0 or vice versa. And since the hemisphere does
not change along the trajectory, both the upper and the lower half plane correspond to the
northern hemisphere in each of the respective asymptotically flat regions. We also included
the intersection of the boundaries of the ergosphere (light blue) and the event/Cauchy
horizon (solid/dashed grey) with the x-z-plane to this projective plot, but due to the
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fact just mentioned we only added them for z > 0 (r > 0) while for z < 0 (r < 0) these
surfaces are not present at all. In turn, the causality violating region can only be found for
r < 0 – the intersection of its boundary with the x-z-plane is only plotted in the lower half
plane (dark blue). It can be seen quite nicely that along the path of the geodesic which
comes from rs = +∞ in the top right it first crosses the light blue curve and enters the
ergosphere before crossing both the event and the Cauchy horizon and finally exiting the
ergoregion again. Only then it crosses over to negative values of r by going through the
disk bounded by the ring singularity (purple), emphasised by the change of colour from
green to orange, until it finally escapes to ro = −∞.
In the rightmost plot of Fig. 5.1b the projection onto the x-y-plane is displayed. As before,
the event horizon (continuous) and the Cauchy horizon (dashed) are coloured in grey.

(a)

(b)

Figure 5.1.: The example trajectory of the last chapter with impact parameters (α =
−0.15, β = 0.1). (a) shows the trajectory in Eddington-Finkelstein-like
coordinates while (b) shows the trajectory in Kerr-Schild coordinates. The
green part of the geodesic in (b) is at positive r (z > 0) while the orange
part is at negative r (z < 0). The left plot in (b) is the projection onto the
x-z-plane in which the upper (lower) half plane corresponds to r > 0 (r < 0).
Hence, the ergosphere (light blue) and the horizons (grey) are only drawn for
z > 0 and the causality violating region (dark blue) is only drawn for z < 0.
The right plot in (b) is the projection onto the x-y-axis, where we included
the intersections with the horizons in grey. The ring singularity is depicted as
a purple ring lying in the equatorial plane at z = 0.
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5.1.2. Trajectories close to the inner throat boundary

The next two vortical null geodesics we will investigate in more detail are both close to
the inner throat boundary. Let us start with one characterised by the impact parameters
(α = −0.2315214984, β = 0). We calculated that for β = 0 the exact throat boundary
should lie at approximately α = −0.23152149851285644. The difference of these two values
is about 1.13 × 10−10, meaning this point is more than 10−10 away from the boundary.
This is good since we argued before that in this region the accuracy of both the analytic
and the numerical solution should be acceptable, meaning we can use either solution to
calculate the trajectory. However, because the numerical integration becomes problematic
below a certain distance to the inner throat boundary, we will calculate this trajectory
with the analytic formulas.
When envisioning a vortical geodesic very close to the throat boundary in an r-λ-plot (as
in Fig. 3.2c) we expect that it passes the opening just below r = 0 in the close vicinity of
the grey forbidden area. Thus we expect that the trajectory stays rather long at small
negative radial values until it escapes to ro = −∞. During this time it may make multiple
revolutions in the θ- and/or ψ-coordinate.
This is indeed also the suggestion of the plots in Eddington-Finkelstein-like coordinates,
shown in Fig. 5.2a. Again the integration was done starting at the observer at ro = −∞
and terminated at the source at rs = +∞. The arctan(r/m)-plot in Fig. 5.2a conveys the
fact that for a rather long Mino time span (from around τ = 2 to τ = 15) the geodesic
stays just below r = 0. In the same time interval, the polar angle θ oscillates multiple times
between θ+ and θ−, and the azimuthal angle ψ wraps around the axis of symmetry multiple
times. For the general spatial appearance of the trajectory in Kerr-Schild coordinates, the
u-coordinate is not necessary, nevertheless, we included it here for completeness.
Similar to the previous subsection, we combine the radial and angular trajectories by using
the transformation to Kerr-Schild coordinates. Thus, we are able to plot the trajectory in
three-dimensional pseudo-Cartesian coordinates (Fig. 5.2b). The green corresponds again
to the region with r > 0 while the orange part lies in the region r < 0. As is best visible
in the left plot of Fig. 5.2b, (upon inverting the time direction) the geodesic comes from
rs = +∞ and, as in the first example, crosses the ergoregion and the horizons to further
transition to negative radii by going through the disk. Also in this plot it can be seen that
indeed right after this transition, the geodesic stays a rather long time in the close vicinity
of the ring singularity, as was suggested by the arctan(r/m)-plot in Fig. 5.2a.
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(a)

(b)

Figure 5.2.: The trajectory of a vortical null geodesic with (α = −0.2315214984, β = 0)
(a) Eddington-Finkelstein-like coordinates and (b) Kerr-Schild coordinates.
(a): the arctan(r/m)-plot shows that the geodesic stays just below r = 0 for
a rather long span of Mino time; the vertical lines in the θ-plot show the
periodicity of the polar angle; the horizontal lines in the ψ-plot correspond to
multiples of 2π. (b): the projection onto the x-z-plane shows (in accordance
with (a)) that the geodesic stays a rather long time just below r = 0; the
projection onto the x-y-plane show that during this stay the azimutal angle
constantly decreases as the geodesic “wraps around” the axis of symmetry; the
ergosphere, the horizons, and the causality violating region are depicted as in
Fig. 5.1b.

The second trajectory close to the inner throat boundary we want to inspect lies on
the “opposite side” of the inner throat, namely at (α = 0.9783392085, β = 0). The true
throat boundary on this side is at approximately α = 0.978339208614951, meaning that
our point is around 1.15× 10−10 away from the true boundary and thus it is ensured that
the geodesic can be computed with both the numerical and the analytic solution since
the accuracy is acceptable for both. As for the first geodesic close to the inner throat
boundary, we will, however, again compute the trajectory using the analytic formulas.
The resulting trajectories in Eddington-Finkelstein-like coordinates can be found in Fig. 5.3a.
The trajectories look for the most part similar to the ones for (α = −0.2315214984, β = 0)
in Fig. 5.2a with the exception of the ψ-solution which now increases “stepwise” rather
than decreasing monotonically (as in Fig. 5.2a). Another major difference is the behaviour
in the θ-component for which the lower bound is now π/4, whereas before π/4 was the
upper bound. The point where θ+ and θ− flip is the point where they are equal at
(α = +a sin θo, β = 0), which will be discussed in subsection 5.1.3.
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The corresponding path in Kerr-Schild coordinates is plotted in Fig. 5.3b. Because the
ψ-coordinate in Fig. 5.3a is not monotonically decreasing, the resulting path in Kerr-Schild
coordinates with (α = 0.9783392085, β = 0) shows a completely different behaviour than
the geodesic before with (α = −0.2315214984, β = 0). As can be seen in the right plot
in Fig. 5.3b it does not “wrap around” the axis of symmetry in the same manner, instead
revolving around the axis of symmetry in the opposite direction. For that reason it is hard
to define a meaningful measure of the order of a geodesic on the basis of the azimuthal
angle ψ. In the next chapter we will see that we can use another characterisation of the
order of a geodesic based on the polar coordinate. Another striking observation is that the
geodesic comes very close to the ring singularity (up to around 4×10−4m), yet the geodesic
can never hit it. This last statement is justified by the fact that only geodesics which are
bound to the equatorial plane can actually hit the ring singularity (already discussed by [5]).

(a)

(b)

Figure 5.3.: The trajectory of a vortical null geodesic with (α = 0.9783392085, β = 0)
(a) Eddington-Finkelstein-like coordinates and (b) Kerr-Schild coordinates.
(a): the arctan(r/m)-plot shows that the geodesic stays just below r = 0 for
a rather long span of Mino time; the vertical lines in the θ-plot show the
periodicity of the polar angle; the horizontal lines in the ψ-plot correspond to
multiples of 2π. (b): the projection onto the x-z-plane shows (in accordance
with (a)) that the geodesic stays a rather long time just below r = 0; the
projection onto the x-y-plane shows that during this stay the azimutal angle
gradually grows as the geodesic “wraps around” the axis of symmetry; the
ergosphere, the horizons, and the causality violating region are depicted as in
Fig. 5.1b.

Whether or not these geodesics traverse the causality violating region from subsection
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2.3.4 can neither be deduced with certainty from the three-dimensional Kerr-Schild plots,
nor from the projections onto the x-y-axis or onto the x-z-axis in Fig. 5.2b and 5.3b. To
investigate this feature, we can inspect the value of the metric component gφφ along either
geodesic (remember that the causality violating region is defined as the region where
gφφ < 0). The resulting curves are shown in 5.4. The left plots in the subfigures (a) and
(b) show gφφ along the geodesic parametrised by Mino time τ , whereas the right plots
show gφφ against the radius r/m. Since the causality violating region is only present for
r < 0, we only need to inspect the latter in this range. Doing so for the first vortical
null geodesic with (α = −0.2315214984, β = 0) (Fig. 5.4a) shows that along its trajectory
gφφ > 0 everywhere. However, the vortical null geodesic with (α = 0.9783392085, β = 0)
(Fig. 5.4b) travels multiple times through the causality violating region. With respect to
the Mino time τ along the geodesic, these “dips” into the causality violating region seem
somewhat fairly spread – this results from the fact that the geodesic stays a rather long
amount of Mino time just below r = 0 where violation of causality can happen. Inspecting
the right plot of Fig. 5.4b reveals that indeed these journeys inside the causality violating
region happen for small negative r.

(a) α = −0.2315214984, β = 0 (b) α = 0.9783392086, β = 0

Figure 5.4.: The metric component gφφ along the two example trajectories close to the inner
throat boundary. While the geodesic with (α = −0.2315214984, β = 0) in (a)
clearly keeps gφφ > 0 along its trajectory, the one with (α = 0.9783392085, β =
0) in (b) experiences gφφ < 0 several times at small negative r and hence
traverses the causality violating region.

5.1.3. Trajectories with constant polar angle

We discussed in subsection 3.2.2 that there are certain pairs of impact parameters
resulting in a trajectory with constant polar angle θ. These special points are at
(α = ±a sin θo, β = 0), although it does not have to be the case that both these
points lie inside the inner throat. However, we can say with certainty that the point
(α = +a sin θo, β = 0) is always included in the inner throat, thus we will first visualise
the trajectory of a vortical null geodesic with exactly these values.
In subsection 3.2.2 we showed that along a geodesic with impact parameters (α =
+a sin θo, β = 0) not only the polar angle θ but also the azimuthal angle ψ and the
coordinate time u are constant. The full trajectory in Eddington-Finkelstein-like coordin-
ates can be seen in Fig. 5.5a.
We can again transform this vortical null geodesic to Kerr-Schild coordinates and plot it
in three dimensions, shown in Fig. 5.5b. Neither the polar nor the azimuthal angle change,
resulting in a straight trajectory which goes through the y-axis at a sin θo = 0.99 sinπ/4.
The exact value of this crossing is just and incident as this value comes from the trans-
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formation law to Kerr-Schild coordinates (2.13)-(2.15) and is not further connected to the
value of α. Furthermore, with this transformation law it is easy to verify that the geodesic
is a straight line in Kerr-Schild coordinates.

(a)

(b)

Figure 5.5.: Trajectory of a vortical null geodesic with constant polar angle θ at (α =
+a sin θo, β = 0) in (a) Eddington-Finkelstein-like coordinates and (b) Kerr-
Schild coordinates. (a): θ, ψ, and u are constant along the geodesic. (b): the
trajectory seems to be a completely straight line going through the y-axis at
a sin θo = 0.99 sinπ/4; the ergosphere, the horizons, and the causality violating
region are depicted as in Fig. 5.1b.

In subsection 3.2.2 we also mentioned that in the case of (α = −a sin θo, β = 0) we
do not get constant ψ and u. To confirm this also numerically, the plots in Fig. 5.6
show a geodesic with impact parameters (α = −a sin θo, β = 0). As this point in the
impact-parameter-plane is not visible for an observer at θo = π/4, we moved their position
closer to the axis of symmetry to θo = π/8, for which (α = −a sin θo, β = 0) corresponds
to a point inside the inner throat.
Already in Fig. 5.6a we can see that ψ and u are not constant along this geodesic, a feature
which can also be observed in Fig. 5.6b.
A noteworthy feature observed in Fig. 5.6b is that the geodesic ends up much closer to the
axis of symmetry (when one follows it to ro = −∞) compared with the previous cases,
which is the result of the smaller polar angle of θo = π/8.
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(a)

(b)

Figure 5.6.: The trajectory of a vortical null geodesic with (α = −a sin θo, β = 0) in (a)
Eddington-Finkelstein-like and (b) Kerr-Schild coordinates for an observer at
θo = π/8. (a): the coordinates ψ and u are not constant along the geodesic.
(b): as ψ and u change along the trajectory, it is no straight line as in Fig. 5.5b;
the ergosphere, the horizons, and the causality violating region are depicted
as in Fig. 5.1b.

5.1.4. Trajectories going through the axis of symmetry

Concluding the visualisation of individual trajectories, we again want to argue for the
necessity of changing the analytic solution for the polar angle θ (presented in subsection
4.1.4) in the case of α = 0, namely by extending it through to negative values of θ and
therefore letting it oscillate between −θ+ < θ < +θ+ instead of 0 = θ− < θ < θ+.
For that reason we are considering three adjacent trajectories. We fixed β = 0.1 for all
of them and considered geodesics with α = −0.001, α = 0, and α = +0.001. We expect
that a correct solution of the equations of motion give us similar geodesics in all three
cases. In the first step, we will calculate these geodesics with the unmodified solution for θ
from subsection 4.1.4. We will again start the integration at ro = −∞ and terminate it at
rs = +∞.
The resulting curves for r, θ and u in Eddington-Finkelstein-like coordinates (shown in
Fig. 5.7a) strengthen our expectation that the trajectories are similar (one cannot tell
the different curves for r, θ and u apart). Note that the grey and black curves (with
α ≠ 0) never touch θ = 0 since θ− > 0, however the red curve (with α = 0) does so since
θ− = 0 (cf. subsection 3.2.2). Only the behaviour in ψ separates the three trajectories:
The geodesic with α < 0 (grey) seems to have a “jump down” of around −π at τ ≈ 2.1 (at
the point where θ− is reached), while the one with α > 0 (black) “jumps up” by around π
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at the same time. These jumps, although being steep, are continuous.
The transformed trajectories in Kerr-Schild coordinates can be seen in Fig. 5.7b.

(a)

(b)

Figure 5.7.: The uncorrected trajectories of three neighbouring vortical null geodesics
with β = 0.1. Here the individual trajectories are colour-coded: grey denotes
α = −0.001, red α = 0, and black α = +0.001. Where the trajectories overlap,
only the black curve is visible. The thin vertical line in the middle plot of
(b) corresponds to the axis of symmetry. For a reasonable solution, they
should show similar behaviour throughout the whole trajectory in Kerr-Schild
coordinates.

To interpret the “jumps” in ψ qualitatively, recall that the azimuthal coordinate increases
around the axis of symmetry in the anticlockwise direction. At τ ≈ 2.1, the grey trajectory
(with α = −0.001) passes just to the left of the axis of symmetry. This is equivalent to a
very fast rotation in ψ by around π in the clockwise direction, thus the “jump” down. The
black trajectory (with α = +0.001) experiences the opposite, namely it passes just to the
right of the axis of symmetry, “jumping” up by around π in the ψ-coordinate. After the
passing when the trajectories departs again from the axis of symmetry, the polar angle θ
increases again.
However, the red ψ-trajectory (with α = 0) is smooth throughout its whole path, resulting
in an effective reflection at the axis of symmetry, as can be seen quite nicely in Fig. 5.7b.
The only way that it would not get reflected in this manner is to either (1) add or subtract
an additional π to the azimuthal coordinate, therefore going around the axis of symmetry
artificially, or (2) extend the domain of θ to negative values, thus letting the geodesic really
cross over the axis of symmetry. As the latter seems more natural, we will choose option
(2). The numerical solution results also in variant (2). To extend the domain of θ we need
to modify the solution of the integral equation of motion as described in subsection 4.1.4.
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The resulting corrected trajectory of the three example geodesics can be seen in Fig. 5.8.

(a)

(b)

Figure 5.8.: The corrected trajectories of the three neighboring vortical null geodesics
from Fig. 5.7. The colour-coding is the same as before. The thin vertical line
in the middle plot of (b) corresponds to the axis of symmetry. These three
geodesics are smooth through the axis of symmetry and show the same overall
behaviour in Kerr-Schild coordinates.

On the one hand, as is evident from Fig. 5.8a, the θ-trajectory for geodesics with α = 0
now departs from neighbouring trajectories with α ̸= 0. On the other hand, through
the modification we gained a smooth trajectory for the three neighbouring vortical null
geodesics in Kerr-Schild coordinates. The main point we want to emphasise is that they
now end up in the same region of spacetime. This ensures that if the source at positive
radii is only finitely big and vortical null geodesics connecting the source and the observer
come close to and even pass through the axis of symmetry, there will be no artefact on the
observers photographic plate which would let him determine the exact position of the axis
of symmetry (which would seem somewhat unnatural).
To conclude this short discussion, let us again briefly comment option (1) of creating a
smooth trajectory in Kerr-Schild coordinates (which we do not choose), namely to leave
the θ-solution as it is and artificially introduce a discontinuity in the ψ-solution. This
discontinuity would need to be a “jump” by π + 2nπ where n ∈ Z. By choosing n = 0 we
would basically let the red path follow the black one, thus creating a smooth trajectory. The
choice n = −1 would let the red trajectory follow the grey one, also resulting in a smooth
trajectory. Other choices of n need not be considered as the spacetime is 2π-periodic in
the azimuthal direction.
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5.2. Location of example trajectories inside the inner throat

To end this chapter, we want to give the reader a feeling for where the points which
were discussed in this section are located inside the inner throat. Fig. 5.9 shows the inner
throat for an observer located at θo = π/4, which is the scenario we discussed for the
most part in this chapter. One can interpret the α-β-plane as a photographic plate for
an observer very far away from the black hole. Considering this, the marked points in
the plot would correspond to points where the detector would have clicked since the
corresponding photon would reach it at this exact point. We want to mention that the red
points (α = −0.2315214984, β = 0) and (α = 0.9783392086, β = 0), although seemingly
almost outside the inner throat, are just inside the boundary (for β = 0 the boundary
would be at approximately at α = −0.23152149851285644 and α = 0.978339208614951).
The three neighbouring trajectories with β = 0.1 from subsection 5.1.4 are not resolved
individually in Fig. 5.9 but rather appear as one purple dot due to their vicinity in the
impact-parameter-plane.
Furthermore, since the second case of the geodesic with constant polar angle at (α =
−a sin θo, β = 0) was done with the observer at θo = π/8, this point is not included in
Fig. 5.9.
The main point we want to get across with Fig. 5.9 is that when comparing the trajectories
corresponding to the individual points, we see that by going closer to the inner throat
boundary the geodesic takes more and more Mino time from the source to the observer (as
can be seen by the plots in Eddington-Finkelstein-like coordinates), resulting in multiple
periods in the polar motion and therefore higher orders of the geodesics (cf. section 6.1).

Figure 5.9.: The impact parameters of geodesics which have been discussed in this section:
(α = −0.15, β = 0.1) in blue, (α = −0.2315214984, β = 0) and (α =
0.9783392086, β = 0) in red, (α = +0.99 sin(π/4), β = 0) in green, and the
three neighbouring geodesics (α = −0.001, β = 0.1), (α = 0, β = 0.1) and
(α = +0.001, β = 0.1) in purple.
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As the first point of this chapter we will discuss the concept of order applied to the case of
vortical null geodesics inside the inner throat. In the black hole exterior, a useful definition
of the order is connected to the amount of times the geodesic crosses the equatorial plane
(see e.g. [11]). Since the geodesics we are considering are neither confined to the black hole
exterior nor can they ever cross the equatorial plane, it is clear that this method will not
work for us in a straightforward way. However, we can do something similar by classifying
the geodesics based on their behaviour in the θ-coordinate.
Afterwards, in section 6.2 we will study what portion of the sky at postive radii an observer
located at ro = −∞ can see. To do this, we first discretise the inner throat within
Mathematica. Then, for each point thus characterised by a certain (α, β) we can calculate
the angular values θs and ψs, as well as its coordinate time us, corresponding to the origin
of the vortical null geodesic reaching the observer at the specified impact parameters. The
bottom line of this section will be that the observer at ro = −∞ can only see a certain
region of the sky at rs = +∞. Furthermore, we created a short film which visualises the
field of view of the observer.
We can use the angular data calculated in section 6.2 to also study how an observer
would perceive the sky at positive radii and what kind of distortions and/or other effects
they would observe. To this end, we consider two toy light sources which span the whole
northern hemisphere of the sky at rs = +∞. In addition, we animated a short sequence of
snapshots illustrating what an observer with varying azimuthal coordinate would see. All
of this will be discussed in section 6.3.

6.1. Order of the geodesics

In the case of the black hole exterior, one can define the order of a null geodesic by
considering the amount of times it crosses the equatorial plane on its way from the emitting
source to the observer [11]. In our case, this is not possible since we deal with vortical
null geodesics which never cross θ = π/2. In the Kerr exterior, instead of considering the
crossings of the equatorial plane, one can equivalently consider the number of turning
points in the polar angle along the trajectory [19]. The reader can easily convince themself
that this is true by recalling that geodesics in the exterior region of a Kerr black hole
oscillate in the polar coordinate θ around the equatorial plane at π/2.
We will pick up this characterisation with a slight modification, namely that we will not
count the amount of turning points in the θ-motion but rather the number of whole periods
the θ coordinate undergoes, meaning that we actually only count every second turning
point. The advantage of this is that in the northern/southern hemisphere we are thus
counting the number of minima/maxima in the θ-motion (i.e. the amount of times θ− is
reached), which in turn correspond to the points of closest approach of the geodesic to the
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axis of symmetry. These are exactly the points where the geodesic “revolves” around the
axis, and hence achieves an increase in order. It just happens to be the case in the exterior
region of the black hole that these points of closest approach to the axis of symmetry
correspond to both the maxima and minima in the polar motion, rather than just either
of the minima/maxima for vortical geodesics in the northern/southern hemisphere. An
exception to this is only made for geodesics with α = 0, as for those we use the modified
solution for θ (see subsection 4.1.4) and therefore the number of crossings of the axis of
symmetry at θ = 0 needs to be counted.
In our characterisation, until the geodesic motion in θ has reached one whole period, it
will be considered of order zero or as direct image. Between the first whole period and
the second it will be called of order one, between the second and the third it is of order
two, etc. This can easily be calculated with the periodicity properties of elliptic integrals,
which depend on the elapsed Mino time τ along the geodesic. For that reason we only
need to calculate the difference of the final to the starting Mino time ∆τ using (4.24), and
determine the order with the periodicity properties given in subsection 4.1.1.
Consider the example of Fig. 4.2a where we highlighted the periodicity with vertical lines –
according to our characterisation this would correspond to order one. On the other hand,
the example close to the inner throat boundary in Fig. 5.2a is of order four following our
definition.
We can calculate this order for each point inside the inner throat where we can influence
the result by choosing the starting and the ending radius of the geodesic as well as the
starting polar angle. The maximum order is reached when the geodesic travels from
r = −∞ to r = +∞ (or vice versa), which is why we chose this as an example in Fig. 6.1.
In Fig. 6.1a we calculated the order of 163, 048 pairs of impact parameters inside the inner
throat. The resolution is 2.5× 10−3 and the closest we come to the throat boundary is
2.5 × 10−4 (in all the plots in Fig. 6.1 the closest point to the inner throat boundary is
one order of magnitude smaller than the general resolution). As one can see, the vast
majority of geodesics characterised in this parameter region is of order zero, indicated
by the colour red. Only in the close vicinity of the throat boundary are some geodesics
with order one, coloured orange. By zooming in on the small rectangle on the left side of
the inner throat and enhancing the resolution we obtain Fig. 6.1b. Here, the resolution
is 5× 10−5, and there is a clearly visible strip of first order geodesics. Zooming further
in we obtain Fig. 6.1c, with a resolution of 5 × 10−6. This is the first time that second
order geodesics appear. Fig. 6.1d with a resolution of 2 × 10−7 does not give any new
features, only Fig. 6.1e reveals third order geodesics for the first time. For this we needed
to approach the throat boundary up to 10−9 with a resolution of 10−8. As is also visible
in the last picture, the combined yellow and blue strip of second and higher order images
has a thickness of about 5× 10−7.
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(a) (b) (c)

(d) (e)

Figure 6.1.: Visualisation of the order of vortical null geodesics inside the inner throat
which start at ro = −∞ and θo = π/4, and end at rs = +∞. Direct images
(order zero) are coloured red, first order images orange, second order images
yellow, and higher orders are collectively coloured blue. From (a) to (e) we
zoom ever further in onto the marked rectangular region of the previous plot.

We end this subsection with the conclusion that an observer very far away from the
black hole would probably only be able to see direct and first order images of vortical
null geodesics inside the inner throat. This is justified by the very demanding resolution
requirements as a result of the small thickness of the images of order two and higher.
Let us assume for the sake of argument that the observer uses a rectangular detector
and optics such that the inner throat just barely fits inside the detector plate. We do
not care about the actual optical system of the telescope the observer uses, but only
about the detector itself. This would mean that the detector covers approximately the
impact-parameter-region −0.232 < α < 0.978 and −0.538 < β < 0.538. For this field of
view and a required resolution of 5×10−7 one would need a detector with about 5.166×1012

pixels (or about 4.93× 106 megapixels). Accordingly, each side of the detector would need
to have between two and three million pixels. In actual astronomical observations one
of the best cameras is at the Vera C. Rubin Observatory in Chile with 3,200 megapixels
(approximately 3.2 billion pixels). Space telescopes have even much less detector pixels
than that. Consequently, these high-order-features would probably be impossible to resolve
using present-day camera technology when looking at the whole inner throat. The observer
would need better optics to zoom in on one side of the inner throat as we have done in
Fig. 6.1. This also seems unrealistic since it already took great effort to be able to resolve
M87* as a whole with the Event Horizon Telescope.
On the other hand, the first-order-strip (orange) has a thickness of about 3× 10−4. The

75



6. Visualisation of sky as seen through the disk

requirement to resolve this would be a detector with less than 1.5× 107 pixels, or about
14.3 megapixels, which is far more realistic.

6.2. Field of View

This section is dedicated to answer the question: What portion of the sky at positive radii
can an observer at ro = −∞ in principle see? To this end we again consider an exemplary
observer at (ro = −∞, θo = π/4, ψo = 0) and integrate the equations up to rs = +∞. As
before, the spacetime location of the observer is chosen such that the inner throat remains
rather large while maximising the asymmetry due to the rotation of the central object,
therefore being able to view the rotational effects with acceptable resolution. The black
hole’s rotation parameter is as usual set to a/m = 0.99 to ensure that rotational effects
are large while still having horizons.
To calculate θs and ψs we need pairs of impact parameters (α, β) which we can put into the
analytic solutions of the geodesic equations of motion. We obtain such pairs by discretising
the inner throat, which is easily done in Mathematica. To be better track these pairs we
colour-code them based on their distance to the centre of the inner throat – warm colours
are in the middle while cool colours correspond to the region close to the inner throat
boundary. This results in the appearance of the inner throat for the observer as seen in
Fig. 6.2a. In total, the discretisation results in 1,492,000 pairs of (α, β) with a closest
distance to the inner throat boundary of 3× 10−4. The distance to the boundary is chosen
such that we only get first order images (cf. section 6.1). Higher order images will be
discussed later in this section.
Fig. 6.2b shows the calculated starting angles in a θs-ψs-plot, where we already considered
the azimuthal coordinate modulo 2π. Each point is coloured according to its point in
the inner throat. It is apparent that large portions of the sky at positive radii are not
visible for the observer as images of order zero – about half of Fig. 6.2b is empty as no
geodesics originating from these angular regions reach the observer as zeroth order images.
This statement of the very restricted (zero’th order) field of view of the observer is further
reinforced by the fact that vortical null geodesics are bound to one hemisphere, meaning
that Fig. 6.2b only shows half of the whole sky at positive radii (the other half would
correspond to π/2 < θs < π). It is also important to note that there is a strip close to the
equatorial plane characterized by max(θ+) < θs < π/2 where no vortical null geodesics
at all (irrespective of their order) can reach the observer. It was discussed in subsection
3.2.2 that this point of maximal θ+ lies at the left edge of the inner throat. This forbidden
region is represented by the shaded grey area in Fig. 6.2b.
In order to better visualise what portion of the sky is covered by these starting angles,
one can make a polar plot where the distance to the origin is the polar coordinate
θs while the angle around the origin (increasing in the anticlockwise direction) is the
azimuthal angle ψs – shown in Fig. 6.2c. This can be accomplished by the transformation
(θs, ψs) → (θs cos(ψs), θs sin(ψs)) and plotting the resulting pairs in a Cartesian coordinate
grid. Doing this allows us to view Fig. 6.2c as the projection of the northern hemisphere
onto a two-dimensional plane. The boundary of the plot is the equatorial plane, represented
by a circle with radius π/2. As in Fig. 6.2b, irrespective of the order of the vortical null
geodesics, there is a strip (now in form of an annulus of thickness max(θ+), again depicted
as a shaded grey region) which is inherently not observable for an observer at negative
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radii. A minor insight from this polar plot is that the region of the sky at r > 0 which
the observer can see as zeroth order images is actually even smaller than suggested by
Fig. 6.2b. This stems from the fact that the field of view covers the region around the
axis of symmetry at θs = 0. Furthermore, it becomes apparent that the vast majority of
the inner throat (e.g. the middle to the dark blue region in Fig. 6.2a) corresponds only
to a very limited portion of the sky at positive radii. This visible region is apparently
almost centred around (θs = π/4, ψs = 0) – the exact same values as at the observer
(θo = π/4, ψo = 0) – and only slightly shifted in the negative azimuthal direction (as can
be seen in Fig. 6.2b). Because of the periodicity in the azimuthal direction, this results in
a shift of the centre to just below 2π, which can best be observed in Fig. 6.2b. One might
explain this fact as stemming from the rotation of the black hole in the negative azimuthal
direction as seen by the observer at ro = −∞. Only by approaching the boundary region
of the inner throat (purple region in Fig. 6.2a), the field of view vastly increases in size,
thus “fanning out”, and seemingly shifting in the positive ψ-direction.

(a) (b) (c)

Figure 6.2.: The field of view for an observer at (ro = −∞, θo = π/4, ψo = 0). (a): The
inner throat as seen by the observer. The minimal distance to the inner throat
boundary is d = 0.0003. (b): The calculated pairs of starting angles (θs, ψs)
for geodesics starting at rs = +∞. The grey area is the forbidden region
max(θ+) < θs < π/2. (c): The calculated starting angles (θs, ψs) in a polar
plot. Here the distance to the origin is the polar angle θs while the angle going
around the origin in the anticlockwise direction is ψs. The blue circle with
radius π/2 corresponds to the equatorial plane, the forbidden region is now
an annulus with thickness π/2−max(θ+).

A further feature of the resulting curves in the polar plot is that these curves develop
caustic-like structures before they fold in on themselves at certain distances from the inner
throat boundary. Due to the overlapping of curves, this can hardly be seen in Figs. 6.2b
and 6.2c, which is why we included Fig. 6.3, showing the outermost purple ring inside
the inner throat from Fig. 6.2a with a distance to the boundary of d = 0.0003, as well as
the corresponding starting angles (θs, ψs) in a polar plot. In the left plot of Fig. 6.3 the
considered ring is coloured orange while the inner throat boundary is depicted in grey (the
throat boundary and the ring are not distinguishable because of the small value of d).
For better readability of how the ring inside the inner throat corresponds to the curve in
the polar plot, certain points are marked by coloured dots.
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The left edge of the inner throat is marked by a red dot – the location at which a caustic-like
structure develops in the polar plot in the course of approaching the inner throat boundary.
Going even closer to the inner throat boundary, one finds that the curve consequently
folds in on itself and thus turns “inside out”. By comparing the distance d = 0.0003
from the inner throat boundary (where this caustic appears) to the thickness of the strip
corresponding to first order in Fig. 6.1, we see that the “folding” happens exactly at the
point where geodesics transition from order zero to order one.
The green dot is located on the right edge of the considered ring. Since the right edge of
the inner throat is where the maximum of θ+ occurs (cf. subsection 3.2.2), the green dot
in the polar plot is closest to the equatorial plane (i.e. the blue circle with radius π/2).
The region between this max(θ+) and the equatorial plane is a forbidden region (shaded
grey), represented in a polar plot by an annulus with inner radius max(θ+) and outer
radius π/2 from which no geodesics reaching the observer at ro = −∞ can originate. As
the distance to the inner throat boundary decreases, the green dot approaches the border
of the forbidden regions multiple times, each one corresponding to an increase in order
(defined on the periodicity of θ).

Figure 6.3.: Field of view for a ring inside the inner throat with a distance of d = 0.0003
away from the inner throat boundary. This corresponds to the closest ring
to the inner throat boundary seen in Fig. 6.2. Already here the caustic like
structure, developing at the verge of two different orders of geodesics, can be
observed. The coloured dots are included for better orientation. The forbidden
region is a shaded annulus with thickness π/2−max(θ+).

The features just described can be seen better in a film we made (see
https://www.quantagon.at/masters-thesis/), from which Fig. 6.3 is but one frame. In
this film, we again considered centred rings inside the inner throat, growing in size from
frame to frame and thus approaching the inner throat boundary (until the point where
the analytic and the numerical solutions cease to coincide). The calculated starting angles
(θs, ψs) are plotted in a polar plot as in Fig. 6.3.
It is clearly visible that the field of view shifts in the anticlockwise direction in the polar
plot as the corresponding curve in the inner throat approaches the boundary, thus covering
large portions of the sky at positive infinity close to the inner throat boundary.
Also the formation of caustic-like structures in the polar plot and the subsequent “folding”
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of the curve at the transition of geodesics with order n to order n+ 1 can be extended
to n ≥ 1. Further snapshots of the film at the transitions of order n to order n+ 1 (for
n = 0, 1, 2) can be found in Fig. 6.4. Here we omit the corresponding plots of the inner
throat because one cannot distinguish the orange curves and the throat boundary for such
small distances d. The transitions to higher orders happen at approximately d = 3× 10−4,
d = 5× 10−7, and d = 9× 10−9. These numerical values are in agreement with section
6.1. The fact that the curve in the polar plot folds in on itself means that the field of
view covers the same part of the sky more than once. This results in the observer seeing
multiple images of the same radiating object at rs = +∞, each one corresponding to a
specific order of vortical null geodesics. Therefore, as in the exterior case of the Kerr black
hole, the observer can in principle see infinitely many images. However, most of them are
confined to a very small area in the boundary region of the inner throat and thus are not
resolvable for a physical observer, as discussed in section 6.1.
Lastly, we can hereby numerically verify a finding from subsection 3.2.2. By inspection of
the green dot (corresponding to the rightmost point of the considered ring inside the inner
throat) in the polar plot of the film, it becomes clear that this point comes closer to the
equatorial plane than all other points but never crosses the forbidden (grey) region. This
can be ascribed to the fact that the maximum of θ+ is reached on the right edge of the
inner throat.
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(a) Transition from zero’th to first order

(b) Transition from first to second order

(c) Transition from second to third order

Figure 6.4.: The polar plots at the transition of the left edge of the inner throat (red
dot) to higher orders, signalled by the occurrence of a caustic-like structure
followed by the curve “folding in” on itself. The orange curve corresponds to a
centred curve in the inner throat with distance d to the boundary.
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6.3. Observing the sky

Having discussed what portion of the sky at rs = +∞ the observer at ro = −∞ can in
principle see, we now want to find out how they would perceive a source lying in this field
of view. In particular, we are interested in any effects distorting the appearance of the
source as seen by the observer such as rotations, reflections, stretching or compression, etc.
To visualise these distortions we will assume that the whole sky at rs = +∞ radiates
light. For the inner throat we take the same discretisation as in Fig. 6.2a, and thus we
can also use the starting angles (θs, ψs) as they were calculated before. For the colour
of the emitted light we will consider two simple toy sources which will give us insight in
distorting effects.
Furthermore, we can consider the observer “orbiting” around the black hole by varying their
azimuthal angle ψo while keeping θo fixed. Thus, the observer circles around the black hole
at a certain altitude determined by their polar angle. Without considering any frequency
shifting effects, we consequently get snapshots of the distortion effects for such an orbiting
observer, presented in a short film (https://www.quantagon.at/masters-thesis/). This only
gives non-trivial results for the case considered in subsection 6.3.2, which is why we solely
created the video in this scenario.

6.3.1. Colouring the sky in polar direction

In order to obtain the distortion in the “vertical” (polar) direction, we consider a toy source
of light at rs = +∞ emitting light in four basic colours depending on the polar angle θs.
In the range 0 < θs < π/8 the sky emits yellow light, for π/8 < θs < π/4 it emits red light,
for π/4 < θs < 3π/8 it emits blue light, and finally in the range 3π/8 < θs < π/2 it emits
green light. We do not need to consider the polar range π/2 < θs < π as this corresponds
to the southern hemisphere, which vortical null geodesics arriving at the observer in the
northern hemisphere can never reach. The colour pattern is illustrated in Figs. 6.5b and
6.5c, where we already overlayed the source with the calculated starting angles (θs, ψs).
In a flat spacetime, an observer at positive radii (ro > 0) near the centre of symmetry
would perceive the pattern we are considering here as follows: yellow would be on top
(around the axis of symmetry), then lowering their sight in the direction of the equatorial
plane they would perceive the colours ordered as yellow - red - blue - green (further “below”
it would abruptly become black if we only assume that the northern hemisphere is radiating
light).
From the distribution and the density of the pairs (θs, ψs) in Figs. 6.5b and 6.5c we can
already deduce that most parts of what the observer (in curved spacetime) at ro = −∞
will see are blue and red, some parts will appear yellow, and almost nothing should be
green. This last part is also true very close to the throat boundary (i.e. for any order
of the geodesics), since the forbidden region max(θ+) < θs < π/2 lies entirely in the
green part of the sky. As an alternative point of view on this we refer to section 6.2, and
especially Fig. 6.2, where we have seen that the area around the middle of the inner throat
corresponds to a rather confined area on the sky at rs = +∞, centred at θs = θo = π/4
in the polar direction. Furthermore, we see that for this light source the transition from
red to blue on the sky happens at π/4, and thus the change in colour inside the inner
throat lies exactly at the point of constant θ at (α = +a sin θo, β = 0). Due to the limited
angular range of the starting angles, we conclude that the majority of the inner throat
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must be blue and red.
This is also what is illustrated in Fig. 6.5a, which shows the appearance of the inner throat
for the observer at ro = −∞ in this scenario. Each pair of impact parameters (α, β) is
coloured according to the respective position on the sky at rs = +∞ of the starting angles
(θs, ψs) calculated with this pair. Depending on the location of the polar angle θs (as seen
in Figs. 6.5b and 6.5c), the point inside the inner throat is coloured yellow, red, blue, or
green. It is apparent that our expectation holds true and that red and blue are indeed
the most prominent colours as seen by the observer, taking up 96.5% of the inner throat
(red ≈ 50%, blue ≈ 46.5%), only around 3% are yellow, and 0.5% are green. These shares
do not change by much when we consider geodesics closer to the inner throat boundary
(i.e. higher orders of geodesics) as they take up relatively very little space inside the inner
throat and consequently also on the photographic plate of the observer.
Concerning distortion effects: we see that the differently coloured sections are not bordered
by straight lines, as opposed to how an observer in a flat spacetime somewhere at positive
radii would perceive them. Furthermore, the colours are skewed in one direction due to the
asymmetry arising from the rotation of the black hole, while the ordering of the colours
is flipped, so e.g. red is now “below” blue (as opposed for an observer in flat spacetime
at ro > 0). We conclude that the source appears both distorted and flipped in the polar
direction for the observer.

(a) (b) (c)

Figure 6.5.: Distortion of the sky at positive infinity coloured in polar direction. (a):
illustration of how the observer at ro = −∞ would perceive the sky at rs = +∞
in this scenario. (b) and (c): θs-ψs- and polar plot of the toy light source
separating the sky at rs = +∞ in polar direction into four sections of different
colour, as well as the calculated starting angles (θs, ψs) in grey.

6.3.2. Colouring the sky in azimuthal direction

To study the distortion in the “horizontal” (azimuthal) direction, we consider another toy
light source covering the whole sky at rs = +∞, emitting light in the same four basic
colours as before, but now depending on the azimuthal angle ψs. Because the azimuthal
angle has a range of 2π, the splits are as follows: for 0 < ψs < π/2 the sky emits yellow
light, for π/2 < ψs < π it is red, for π < ψs < 3π/2 it is blue, and for 3π/2 < ψs < 2π it is
green. This pattern can be seen in Figs. 6.6b and 6.6c, where we again also already plotted
the starting angles (θs, ψs) to see which regions are covered (i.e. visible for the observer).
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Again, let us first get an intuition how an observer in a flat spacetime at positive radii
would perceive this light source. In this scenario, the coloured parts of the sky do appear
to them as vertical strips meeting at the zenith (at the axis of symmetry). By considering
them as such, we can say that the colours change in the horizontal direction. Starting from
the border of green and yellow at ψs = 0, as the observer turns in the positive azimuthal
direction (“from right to left”), they would see the colours of the sky in the order yellow -
red - blue - green. After the last green strip, the colour pattern repeats because of the
2π-periodicity in the azimuthal coordinate.
Similarly to before, we can infer from the distribution and the density of the pairs (θs, ψs)
in Figs. 6.6b and 6.6c what colours are most prominent for the observer at ro = −∞ (in
curved spacetime). We expect that most of the inner throat should appear green and
yellow, and only small parts light up in red and blue. Because the centre of the field of
view is slightly shifted in the negative azimuthal direction, we can further assume that the
middle of the inner throat will be coloured green. The fact that the majority of this field
of view only covers a rather confined area at the sky also strengthens our suspicion that
green and yellow will be the two most prominent colours, whereas red and blue do not
cover a great percentage of the inner throat.
The final picture of the inner throat as seen by the observer at ro = −∞ in this scenario
is illustrated in Fig. 6.6a, which matches the discussion above. In this case the relative size
of the green and yellow region combined is again overwhelming at 98.4% (green ≈ 73.7%,
yellow ≈ 24.7%), whereas red (≈ 1.2%) and blue (≈ 0.4%) are barely visible at all. In fact,
the red and blue areas in the inner throat are restricted to the boundary region. This is
due to the fact that the centre of the field of view lies at θs = π/4 and small negative ψs,
and only greatly increases in size by approaching the inner throat boundary, thus covering
the region π/2 < θs < 3π/2.
Finally, let us mention the distortion effects seen by the observer. It was to be expected
that as before the borders separating the different colours are no straight lines, as they
are seen by an observer in flat spacetime at positive radii, but rather bent and twisted.
Furthermore, similarly to before, the “ordering” of the colours is flipped (e.g. green is now
“left” of yellow).

83



6. Visualisation of sky as seen through the disk

(a) (b) (c)

Figure 6.6.: Distortion of the sky at positive infinity coloured in azimuthal direction.
(a): illustration of how the observer at ro = −∞ would perceive the sky at
rs = +∞ in this scenario. (b) and (c): θs-ψs- and polar plot of the toy light
source separating the sky at rs = +∞ in azimuthal direction into four sections
of different colour, as well as the calculated starting angles (θs, ψs) in grey.

Animation of observer orbiting the black hole

The azimuthal position of the observer ψo = 0 is chosen arbitrarily, which, because of
the underlying rotational symmetry of Kerr spacetime, is irrelevant for the behaviour of
the vortical null geodesics. We may, however, vary this angle ψo, which results in the
rotation of the field of view for the observer in the polar plot of Fig. 6.2c. One can see this
by finding that ψs is only linearly dependent on ψo (cf. equation (4.37)). Equivalently,
we can also rotate the source while keeping ψo fixed. However, one needs to be careful
since a rotation of the observer in the positive ψ-direction is equivalent to a rotation of
the source in the negative ψ-direction. Either way, the result is presented in a short film
(which can be found at https://www.quantagon.at/masters-thesis/) in which the azimuthal
coordinate of the observer ψo increases from frame to frame. Because each frame needs
to be calculated individually, making a film takes a lot more computational resources.
This is why we used a slightly worse resolution for the animation, only taking the starting
angles (θs, ψs) for 149,000 individual pairs of impact parameters inside the inner throat
into consideration. It was made sure, however, that the closest distance to the inner throat
stays the same at 5× 10−4, thus giving the full picture of zero’th order geodesics. Apart
from this difference in resolution, Fig. 6.6a corresponds to the first frame of the film.
It can be seen quite nicely that the middle of the inner throat magnifies the restricted
field of view of the sky at rs = +∞ as the transitions of the colours happen rather quickly
there. At the same time, the regions in the vicinity of the inner throat boundary cramp
together large parts of the sky at positive infinity, thus showing multiple colours at once
throughout the whole revolution of the observer around the black hole.
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The purpose of this master’s project was to simulate the visual appearance of a Kerr black
hole for an observer far away from this central object in the region with negative radius (i.e.
the region where the black hole acts repellent). The light source in this scenario is located
at positive radii, meaning that the null geodesics connecting the emission point and the
observer must cross both horizons as well as the disk bounded by the ring singularity.
To accomplish this task, we started in chapter 3 by presenting a derivation of the first
order geodesic equations of motion [5] and transformed the resulting system from Boyer-
Lindquist to Eddington-Finkelstein-like coordinates to avoid the coordinate singularity at
the horizons. Then we parametrised the geodesic by Mino time [24] in order to decouple
the system of differential equations, and further restricted the equations to null geodesics
for which two of the four constants of motion are fixed. Upon analysing the radial potential
in more detail, we found that the only null geodesics originating at positive radii and
reaching arbitrary large negative radii are in a subclass called vortical null geodesics
(characterised by the negativity of Carter’s constant of motion). For visualisation purposes
it is convenient to relate the remaining two constants of motion to impact parameters [2],
functioning as a coordinate grid on a small part of the sky of an observer substantially far
away from the black hole. Based on the number of roots of the radial potential, one can
define an inner and an outer throat in the impact-parameter-plane [18]. Inside the inner
throat no radial turning points occur and thus it served as the field of view for our observer.
The analysis of the polar potential gave us insight into the polar motion of null geodesics
by calculating the turning points. It turns out that vortical null geodesics are bound to
one hemisphere, i.e. they can never cross the equatorial plane. Furthermore, there are at
most two points inside the inner throat for which the polar angle stays constant along the
whole geodesic. One of these points corresponds to the principal null congruence on which
Eddington-Finkelstein-like coordinates are based [29]. We argued that a thin accretion
disk around the black hole at positive radii would mostly not be visible for the observer
at negative infinity. From our calculations we can additionally deduce that there is no
gravitational redshift for photons travelling from positive to negative radial infinity.
In chapter 4 we solved the geodesic equations for vortical null geodesics with no radial
turning point analytically (using elliptic integrals and elliptic functions) and numerically.
By comparing the two approaches, we were able to correct some formulas from [17]. The
numerical and analytical solutions coincide to high accuracy within a reasonable distance
to the inner throat boundary.
We put these analytic solutions to use in chapter 5 where we studied some exemplary
trajectories originating from positive radial infinity and going to negative radial infinity
in both Eddington-Finkelstein-like and Kerr-Schild coordinates. Due to our setup, we
integrate in the opposite direction, which is why one needs to be careful with the trans-
formation between the two coordinate systems.
The beginning of chapter 6 was devoted to the classification of geodesics inside the inner
throat by their order. We defined this order on the elapsed Mino time along the geodesic
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and the periodicity property of its polar motion. This can be seen as a generalisation of the
definition of order in the exterior case of a Kerr black hole [11][16][19][20]. We concluded
that an observer with modern-day technology would only be able to resolve zero’th and
first order geodesics. Thus, they could merely observe a rather restricted portion of the
sky at positive infinity. A more advanced observer could in principle see infinitely many
images of large parts of the sky.
Finally, we found that our observer at negative infinity would perceive a light source at
positive infinity flipped in both the azimuthal, as well as the polar direction, corresponding
to an effective rotation of the source by π. Two short animations (which can be found at
https://www.quantagon.at/masters-thesis/) gave additional insights in both the order and
the appearance of the light source.

With our analytic solutions to the geodesic equations of motion one can answer many
more questions than we presented here. We state some of these questions in the following,
yet defer them to future work.
In the final chapter we considered a light source at positive radial infinity as the order
and the distortion effects are maximal for this setup. However, there is nothing which
prevents one from modelling a more realistic scenario using our solutions to the equations
of motion. Such light sources may be a star orbiting the black hole, or a thick accretion
disk around the black hole at positive radii. In the case of an astrophysically acceptable
thick accretion disk it would be interesting how much the observer at negative radii would
be able to see (cf. discussion at the end of subsection 3.2.2). As these light sources are
located at finite radii and are non-stationary, it is necessary to calculate the corresponding
gravitational redshift and frequency shift from the source to the observer along the vortical
null geodesic. By doing this and devoting enough computational resources (as well as
writing efficient code), one could generate stunning images in the spirit of [19]. Moreover,
by calculating the frequency shift along vortical null geodesics one can model light curves
(similar to [11]), which probably are observationally more relevant for real astrophysical
missions in the near future.
Furthermore, for causality reasons it would be interesting if one can analytically determine
whether a null geodesic arriving at the observer traversed Carter’s time machine.
One can also ask whether there are significant changes in the behaviour of null geodesics
(and thus in the appearance of the light source for the observer in our scenario) in the
case of an electrically charged black hole. This requires an adaption of our analysis to the
case of Kerr-Newman spacetime.
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A. Appendix

A.1. Definitions of necessary quantities for the antiderivatives

To proceed with the calculation of the antiderivatives in section 4.1 in the same way as in
[17], we need to set some ground rules and define a few quantities. For a better overview
we will do this here.
In the case of no radial turning point, all roots of the radial potential R(r) are complex
with r1 = r̄2 and r3 = r̄4 (where the bar denotes complex conjugation). These roots are
not hard to calculate in general but we will give the form found in [17] as they derived
them in the especially compact form

r1 = −z −
√︃

−A
2
− z2 +

B
4z

, (A.1)

r2 = −z +
√︃

−A
2
− z2 +

B
4z

, (A.2)

r3 = −z −
√︃

−A
2
− z2 − B

4z
, (A.3)

r4 = −z +
√︃

−A
2
− z2 − B

4z
, (A.4)

(A.5)

where they defined

A = a2 − η − λ2 , (A.6)

B = 2m
(︁
η + (λ− a)2

)︁
, (A.7)

C = −a2η , (A.8)

as well as

z =

√︃
ξ0
2
, (A.9)

ξ0 = ω+ + ω− − A
3
, (A.10)

ω± =
3

⌜⃓⃓⎷−Q
2
±

√︄(︃
P
3

)︃3

+

(︃
Q
2

)︃2

, (A.11)

P = −A2

12
− C , (A.12)

Q = −A
3

[︄(︃
A
6

)︃2

− C

]︄
− B2

8
. (A.13)
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A. Appendix

Furthermore, some formulas needed in section 4.1 are

r3 = b1 − ia1 , (A.14)
r1 = b2 − ia2 , (A.15)

C =
√︁
(r3 − r1)(r4 − r2) , (A.16)

D =
√︁
(r3 − r2)(r4 − r1) , (A.17)

g0 =

√︄
4a22 − (C −D)2

(C +D)2 − 4a22
, (A.18)

k =
D2

C2
, (A.19)

k4 =
4CD

(C +D)2
, (A.20)

x4(r) =
r + b1
a2

, (A.21)

h = sign(cos θs) , (A.22)

where a1, b1, a2, b2 are uniquely specified by the restrictions on the roots. Note that C
from (A.8) is not equal to C from (A.16).
For the calculation of the radial solution we additionally need

X4(τ) =
C +D

2
(νrτ + I0(rs)) , (A.23)

where I0(rs) denotes the antiderivative of (4.9) for ℓ = 0 evaluated at the source’s radial
position rs, and τ is the Mino time.

A.2. Rewriting Iφ and It

To simplify (4.33) we start by writing it as

Iφ = νr

∫︂ ro

rs

dr√︁
R(r)

a(2mr − aλ)

(r − r+)(r − r−)
(A.24)

= νr

∫︂ ro

rs

dr√︁
R(r)

f1(r) (A.25)

and use partial fraction decomposition to rewrite f1(r). The two decompositions we need
for this are

1

(r − r+)(r − r−)
=

1

(r − r+)(r+ − r−)
− 1

(r − r−)(r+ − r−)
, (A.26)

r

(r − r+)(r − r−)
=

r+
(r − r+)(r+ − r−)

− r−
(r − r−)(r+ − r−)

. (A.27)

94



A.2. Rewriting Iφ and It

With these two formulas we can write

f1(r) =
a(2mr − aλ)

(r − r+)(r − r−)

= 2ma
r

(r − r+)(r − r−)
− a2λ

1

(r − r+)(r − r−)

=
2ma

r+ − r−

(︃
1

r − r+

(︃
r+ − aλ

2m

)︃
− 1

r − r−

(︃
r− − aλ

2m

)︃)︃
. (A.28)

By inserting (A.28) back into (A.25) and using the definition of I± from (4.8) we find

Iφ =
2ma

r+ − r−

[︄(︃
r+ − aλ

2m

)︃
I+ −

(︃
r− − aλ

2m

)︃
I−

]︄
. (A.29)

Simplifying (4.47) is very similar, although it takes a few more steps. First, let us write It
as

It = νr

∫︂ ro

rs

dr√︁
R(r)

(︃
r2 +

2mr(r2 + a2 − aλ)

(r − r+)(r − r−)

)︃
= νr

∫︂ ro

rs

dr√︁
R(r)

f2(r) . (A.30)

Using the partial fraction decompositions (A.27) and

r3

(r − r+)(r − r−)
= r + r+ + r− +

1

r+ − r−

(︃
r3+

r − r+
−

r3−
r − r−

)︃
, (A.31)

we can rewrite f2(r) as

f2(r) = r2 + 2m
r3

(r − r+)(r − r−)
+ (2ma2 − 2maλ)

r

(r − r+)(r − r−)

= r2 + 2m(r + r+ + r−) +
2m

r+ − r−

(︃
r3+

r − r+
−

r3−
r − r−

)︃
+

2ma2 − 2maλ

r+ − r−

(︃
r+

r − r+
− r−
r − r−

)︃
= r2 + 2m(r + r+ + r−) +

2m

r+ − r−

(︃
r+(r

2
+ + a2)− aλr+
r − r+

−
r−(r

2
− + a2)− aλr−
r − r−

)︃
= r2 + 2mr + (2m)2 +

(2m)2

r+ − r−

(︃
r+

r − r+

(︃
r+ − aλ

2m

)︃
− r−
r − r−

(︃
r− − aλ

2m

)︃)︃
,

(A.32)

where in the last equality we used that r+r− = a2 and r++r− = 2m. Inserting (A.32) back
into (A.30) and using the definitions of I± and Iℓ as given in (4.8) and (4.9), respectively,
gives us

It =
(2m)2

r+ − r−

[︃
r+

(︃
r+ − aλ

2m

)︃
I+ − r−

(︃
r− − aλ

2m

)︃
I−

]︃
+ (2m)2I0 + 2mI1 + I2 . (A.33)
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