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Abstract

This thesis is a short survey of some major results concerning an open problem
of model theory known as Vaught’s conjecture (VC).

In its original form VC states that the number of isomorphism types of
contable models of a complete first order theory in a countable vocabulary is
either at most ℵ0 or else c, the cardinality of the continuum.

After providing a short historical background and a motivation in section
1, we introduce the infinitary language Lω1,ω in section 2. Following [12], we
define the notions α equivalence (∼α), infinitary equivalence (≡∞,ω) and study
consistency properties as well as end extensions. The most important results in
this section are Scott’s Isomorphism Theorem, the Omitting Types Theorem,
the Model Existence Theorem and a sufficient criterion in order to determine if
an infinitary sentence has a small uncountable model.

Still following [12] in section 3 we show how countable models can be coded as
elements of standard Borel spaces. We define the notion of a scattered infinitary
sentence and present a characterisation of it. We also provide two different
proofs of a result by Morley which states that every sentence of Lω1,ω either has
at most ℵ1 many isomorphism types of its countable models or else continuum
many.

In section 4 we focus on three major results: 1. A theorem by Harnik and
Makkai stating that every counter example to VC has a model of cardinality
ℵ1 which is not ≡∞,ω equivalent to any countable model. 2. A model theoretic
proof of a theorem by Hjorth which states that if VC is false, then there is a
counterexample which has only models of cardinality ℵ0 or ℵ1. 3. A theorem
by Harrington stating that the Scott ranks of models of a VC counterexample
are unbounded below ℵ2.

Section 5 is based on chapter 5 of [9] and some unpublished notes by Martin
Ziegler and Elisabeth Bouscaren. We show that it is enough to prove VC for
theories (or infinitary sentences) in the language of graphs or bounded lattices.

In section 6 we mostly follow [2] and [10] in order to see how results of de-
scriptive set theory are used to study model theoretic questions. We present
Hjorth’s original proof of his theorem which was already discussed in section
4. Then we move on to the more general problem of the topological Vaught
conjecture and show that VC for infinitary sentences is equivalent to TVC(S∞),
the topological Vaught conjecture with respect to the group S∞, as well as to
TVC(H(C)), where C is the Cantor space and H(C) is the group of homeomor-
phisms of C. Finally, we present the proof that the general topological Vaught
conjecture is equivalent to TVC(H(IN)), where IN is the Hilbert cube.
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Zusammenfassung

Diese Masterarbeit behandelt einige wichtige Resultate aus der Forschung an
einem offenen Problem der Modelltheorie, bekannt als Vaughts Vermutung,
abgekürzt mit VC für Vaught’s Conjecture.

VC wurde erstmals im Jahr 1959 formuliert. In ihrer ursprünglichen Form
besagt sie, dass eine vollständige Theorie der Prädikatenlogik, die ein abzählbares
Vokabular verwendet, entweder höchstens ℵ0 viele Isomorphietypen von abzählbaren
Modellen hat oder andernfalls Kontinuum viele. Es werden im Lauf der Arbeit
Verallgemeinerungen von VC vorgestellt.

Die Arbeit ist in 6 Abschnitte unterteilt:
Nach einem kurzem geschichtlichen Hintergrund und einer Motivation in

Sektion 1 wenden wir uns in Sektion 2 infinitären Sprachen der Form Lω1,ω(τ)

zu. Es werden unter anderem die Begriffe Consistency property, α-Äquivalenz
(∼α), Scott Rang, infinitäre Äquivalenz (≡∞,ω) und End extension eingeführt
und untersucht. Die wichtigsten und später benötigten Ergebnisse in diesem Ab-
schnitt sind Scott’s Isomorphismus Theorem, das Omitting Types Theorem, das
Model Existence Theorem sowie ein hinreichendes Kriterium um festzustellen,
ob ein infinitärer Satz ein überabzählbares Modell hat, das nur abzählbar viele
Typen realisiert. Wir halten uns hierbei an [12].

Im dritten Abschnitt folgen wir weiter [12] und zeigen, wie abzählbare Mod-
elle als Elemente eines Polnischen Raumes kodiert werden können. Der Begriff
scattered sentence wird eingeführt und charakterisiert. Weiters werden zwei
verschiedene Beweise eines Theorems von Morley präsentiert, welches besagt,
dass ein Lω1,ω Satz entweder höchstens ℵ1 viele abzählbare Isomorphietypen
hat oder andernfalls Kontinuum viele.

Sektion 4 behandelt 3 wesentliche Resultate: 1. Ein Theorem von Harnik
und Makkai, welches besagt, dass jedes Gegenbeispiel zu VC ein Modell der
Kardinalität ℵ1 hat, das nicht ≡∞,ω äquivalent zu einem abzählbaren Modell ist.
2. Ein modelltheoretischer Beweis eines Theorems von Hjorth, welches besagt,
dass wenn VC falsch ist, dann gibt es ein Gegenbeispiel, das nur Modelle der
Kardinalität ℵ0 und ℵ1 hat. 3. Ein Theorem von Harrington, welches besagt,
dass die Scott Ränge von Modellen eines VC Gegenbeispiels unbeschränkt unter
ℵ2 sind.

Der fünfte Abschnitt basiert auf Kapitel 5 von [9] und auf unpublizierten
Notizen von Martin Ziegler und Elisabeth Bouscaren. Es wird gezeigt, dass es
für einen Beweis von VC ausreicht, nur Theorien (infinitäre Sätze) zu betrachten,
die in der Sprache von Graphen oder Verbänden formuliert sind.

Sektion 6 hält sich überwiegend an [2] und [10] um relevante Zusammenhänge
zwischen Modelltheorie und deskriptiver Mengentheorie aufzuzeigen. Wir stellen
den ursprünglichen Beweis von Hjorths Theorem vor, das schon im 4. Ab-
schnitt studiert wurde. Dann wenden wir uns der allgemeineren topologis-
chen Vaught Vermutung zu - abgekürzt mit TVC für Topological Vaught Con-
jecture - und zeigen, dass VC für infinitäre Sätze äquivalent ist zu sowohl
TV C(S∞), der topologischen Vaught Vermutung für die Gruppe S∞, als auch zu
TV C(H(C)), wobei C den Cantor-Raum bezeichnet und H(C) die Homöomor-
phismengruppe von C. Schließlich wird gezeigt, dass die allgemeine TVC äquiv-
alent zu TV C(H(IN)) ist, wobei mit IN der Hilbertwürfel gemeint ist.
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1 Introduction

1.1 Preliminaries and Motivation

It is assumed that the reader is familiar with the following basic notions of first
order logic:

� A language of first order logic. We call the set of constant, relation and
function symbols a vocabulary. Familiarity with free and bound variables,
terms, atomic formulas, formulas, subformulas, sentences and theories is
also assumed.

� A model M, also called a structure, for a given language L. If M is
a model, k a natural number greater 0, φ(v1, . . . , vk) a L-formula with
free variables among v1, . . . , vk and a1, . . . , ak are in M, then well known
expressions likeM |= φ(a1, . . . , ak) orM |= T , where T is a L-theory, will
be used without explanation.

� A Submodel M1 and an elementary submodel M2 of a given model N.
The former will be notated with M1 ⊂ N, the latter with M2 ≺ N.

� A homomorphism, an elementary embedding and an isomorphism of mod-
els.

� The semantic consequence. If a set of formulas Γ of a given language L
implies another set of formulas Σ then this is notated with Γ |= Σ. In case
Σ = {φ} the notation Γ |= φ is used.

Definitions and examples can be found for example in chapters 1 - 3 of [5]. All
languages in this section will be first order.

Throughout this thesis results from set theory are used which require the
Axiom of choice. We therefore assume ZFC.

Let L be a language, κ a cardinal and T a complete theory, i.e. T |= σ
or T |= ¬σ, for all sentences σ of L. A natural question to ask is how many
models of cardinality κ up to isomorphism does T have. Clearly, every model
of cardinality κ is isomorphic to one which has the set κ as its universe, so if
we let λ := |L| and µ := max{κ, λ} then it is easy to see that there are at most
2µ many isomorphism classes of models of T of cardinality κ. This observation
leads to the following

Definition. � (The spectrum function) The function I which maps each
tuple (T, κ), where T is a theory and κ a cardinal, onto the cardinal
number of isomorphism classes of models of T of cardinality κ is called
the spectrum function.

� An isomorphism class is also called an isomorphism type.

� If I(T, κ) = 1 then T is called κ-categorical.

Notation. � A k-tuple (u1, . . . , uk) or a sequence (ui : i ∈ ω) of elements of
a set U is often written as u if misunderstandings can be ruled out. If W is
a set and g : U −→W is a function, then g(u) stands for (g(u1), . . . , g(uk)).

� Sometimes expressions like
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∧
i∈I

φi or
∨
i∈I

φi

are used. Here, I is a finite index set and each φi is a formula. These
expressions describe a finite conjunction (or disjunction) in an arbitrary
order of the reader’s liking, such that for each i ∈ I, φi occurs exactly
once.

� We define ω+ := ω \ {0} and c := 2ℵ0 , the cardinality of the reals.

We assume that the reader is familiar with basic forcing arguments as some
of them will be used later in this thesis. A good introduction to the theory of
forcing can be found in [11].

Unless specifically stated otherwise, all vocabularies considered in this thesis
are countable, all first order theories are complete and have infinite models.
Complete theories with finite models are not interesting for us because of the
following

Proposition 1.1.1. (Folklore) Let T be a complete theory of an arbitrary, not
necessarily countable, language L. If T has a finite model, then all models of T
are isomorphic.

Proof. If M =< {a1, . . . , ak}, ... > is a model of T and k := |M | ∈ ω+, then
T |= ”There are exactly k elements”.

Suppose there is N |= T not isomorphic to M. Let N be the universe of N
and S the set of all bijections from M onto N . Clearly, |S| = k!.

For all f ∈ S, there is a quantifier free formula φf (v1, . . . , vk) such that

M |= φf (a) and N |= ¬φf (f(a)).

By defining

Ψ := ∃v1 . . . ∃vk[(
∧

1≤i<j≤k

(vi 6= vj)) ∧ (
∧
f∈S

φf (v))]

we get M |= Ψ and N |= ¬Ψ, contradicting the assumption that T is complete.

ℵ0-categorical theories have been studied thoroughly in the last century.
Characterisations were given by Erwin Engeler, Czes law Ryll-Nardzewski and
Lars Svenonius, see for example theorem 7.3.1 of [9]. A well known example for
such a theory is DLO, the theory of dense linear orders without endpoints.

Section 3.3 of [5] shows that there is a complete T with I(T,ℵ0) = k, if
k ∈ (ω + 1) \ {0, 2} ∪ {c}.

”Vaught’s Never Two” theorem - see theorem 6.1 of [21] and also theorem
3.3.48 of [5] - is a surprising result by Robert Vaught stating that I(T,ℵ0) = 2
is impossible. At the end of [21] the author asks the following question:

” Can it be proved, without the use of the continuum hypothesis, that there
exists a complete theory having exactly ℵ1 non-isomorphic denumerable

models? ”
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This problem has not been solved yet. Since many mathematicans believe the
answer to this question to be negative, it was reformulated as a conjecture,
known as Vaught’s Conjecture, which is abbreviated by V C1 in this thesis:

V C1: If T is a complete theory of a countable language, then either
I(T,ℵ0) ≤ ℵ0 or I(T,ℵ0) = c.

This statement is trivially true if we assume the continuum hypothesis (CH),
i.e. 2ℵ0 = ℵ1, which is undecidable in ZFC.

The study of V C1 has led to new questions which can be seen as more general
versions of the original problem and are independent of the value of c. We will
see proofs of results related to V C1 using methods of descriptive set theory and
model theory. A first new perspective gives us infinitary logic.

2 The Language Lω1,ω

2.1 Basics

Definitions and results of this subsection can be found in chapter 1 of [12].
Let τ be a vocabulary and V := {vα|α < ω1} a set of distinct variables.

The language Lω1,ω (τ) is defined analogously to a first order language with
the exception that countable conjunctions and disjunctions are allowed. That
means:

� All variables of terms and formulas are in V .

� Atomic formulas are atomic first order formulas.

� The rules for negation, finite conjuntion, finite disjunction and quantifica-
tion are the same as for first order logic.

� New rules: If F is a countable set of Lω1,ω(τ) formulas, then∨
φ∈F

φ and
∧
φ∈F

φ

are Lω1,ω(τ) formulas.

For this thesis, the author has chosen to expand the standard definition of Lω1,ω:
A new symbol >, called verum, is added and defined as an atomic sentence with
no variables or constnats.

Hence forth, when considering a specific vocabulary τ , the notation ”Lω1,ω”
will be used instead of ”Lω1,ω(τ)” if misunderstandings can be ruled out.The
notation is chosen to indicate that countable conjunctions and disjunctions are
allowed but only finite blocks of quantifiers.

The definitions of subformulas as well as of free and bound variables of a
Lω1,ω formula are defined analogously to first order formulas and extended in
an obvious way. The following facts are easily checked via induction on formula
complexity:

Fact 2.1.1. Every Lω1,ω formula has at most ℵ0 many variables and subformu-
las.

3



Fact 2.1.2. If a Lω1,ω formula has only finitely many free variables, then the
same holds for each of its subformulas.

For a τ model M := 〈M, . . . 〉, a Lω1,ω-formula φ(v) and a map π : V −→M ,
one defines the notion M |= φ(π(v)) inductively just as for first order formulas
with the exception that if F is a countable set of Lω1,ω forumlas then

M |=
∧
ψ∈F

ψ(π(v)) iff M |= ψ(π(v)), for all ψ ∈ F,

and
M |=

∨
ψ∈F

ψ(π(v)) iff M |= ψ(π(v)), for some ψ ∈ F.

Furthermore, we define M |= > for all τ structures.

Notation. From now on, as in texts on first order logic, the expression

M |= φ(m)

is used, where m := π(v).

Infinitary logic enables us to characterize classes of certain structures which
cannot be axiomatized in first order logic.

Example 2.1.3. Let τ := {e, ◦}, the vocabulary of groups. The class of torsion
groups is not axiomatizable by a first order theory. This can be shown using the
compactness theorem - see theorem 2.1.8 of [5]. However, we can characterize
these structures by a single Lω1,ω-sentence, namely

σG ∧ ∀x(
∨
n∈ω+

x ◦ · · · ◦ x︸ ︷︷ ︸
n times

= e),

where σG is the conjunction of the group axioms.

On the other hand, some useful results of first order logic do not hold in
infinitary logic:

Example 2.1.4. The compactness theorem. For n ∈ ω+, let φn be defined as

∃x1 . . . ∃xn∀y(

n∨
i=1

y = xi)

and for n > 1, let

ψn := ∃x1 . . . ∃xn(
∧

1≤i<j≤n

xi 6= xj).

Consider the set Σ := {σ} ∪ {ψn|n ∈ ω, n > 1}, where

σ :=
∨
n∈ω+

φn.

Clearly, Σ is not satisfiable, even though each of its finite subsets is.
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Example 2.1.5. The upward Löwenheim-Skolem theorem. Let τ := {ci|i < ω}
be a vocabulary of constant symbols. Define

σ := [
∧

0≤i<j<ω

(ci 6= cj)] ∧ [∀x(
∨
i<ω

x = ci)].

This Lω1,ω-sentence has an infinite model, but not in every cardinality. In fact,
every model of σ is countable.

Definition. We define the function ∼: Lω1,ω −→ Lω1,ω inductively:

� ∼ (φ) := ¬φ, if φ is atomic.

� ∼ (¬φ) := φ.

� For F ⊆ Lω1,ω and |F | ≤ ℵ0,

∼ (
∧
φ∈F

φ) :=
∨
φ∈F

∼ (φ) and ∼ (
∨
φ∈F

φ) :=
∧
φ∈F

∼ (φ).

� If v is a variable, then ∼ (∀vφ) := ∃v ∼ (φ) and ∼ (∃vφ) := ∀v ∼ (φ).

The next result can be easily verified via induction on formula complexity:

Proposition 2.1.6. Let M be a τ structure and φ a Lω1,ω-formula. Then

M |=∼ φ iff M |= ¬φ.

Every first order theory of a countable language can be written as a Lω1,ω-
sentence. By expanding the definition of the spectrum function to include in-
finitary sentences we get a generalized version of V C1:

V C2: For every Lω1,ω-sentence σ of a countable vocabulary, either
I(σ,ℵ0) ≤ ℵ0 or I(σ,ℵ0) = c.

Clearly, V C2 ⇒ V C1.

Definition. A fragment of Lω1,ω(τ) is a set A of Lω1,ω(τ) formulas such that
there is an infinite set W of variables with the following properties:

� All variables of A are in W .

� All closed atomic formulas and those with variables of W are in A.

� If φ(x, . . . ) ∈ A and t is a term, either closed or with variables of W , then
φ(t, . . . ) ∈ A.

� If φ ∈ A, v is a variable of φ and u ∈W , then φ′ ∈ A, where φ′ is gained
from φ by replacing each occurrence of v with u.

� A is closed under the function ∼ as well as under negation (¬), finite
conjunctions, finite disjunctions and quantification over variables of W .

� A is closed with respect to subformulas.

5



Definition. Let A ⊆ Lω1,ω be a fragment and M := 〈M, . . . 〉, N := 〈N, . . . 〉
be τ structures such that M ⊆ N . Then M is called an A elementary submodel
of N, notated by M ≺A N, if for all n < ω, all φ(v1, . . . , vn) ∈ A and all
m = (m1, . . . ,mn) ∈Mn, we have

M |= φ(m) iff N |= φ(m).

We can now state the infinitary version of the Tarski-Vaught criterion, a well
known result of first order logic:

Proposition 2.1.7. Let M := 〈M, . . . 〉, N := 〈N, . . . 〉 be τ structures such that
M ⊂ N and A be a fragment of Lω1,ω(τ). Then M ≺A N if and only if for all
φ(v, y) ∈ A and all m of M , N |= ∃yφ(m, y) implies N |= φ(m, a), for some
a ∈M .

The proof can be done via induction on formula complexity.
There is also a downward Löwenheim-Skolem theorem for Lω1,ω:

Lemma 2.1.8. Suppose A is a countable fragment in which all formulas have
only finitely many free variables, M := 〈M, . . . 〉 is a τ structure and T ⊆ M .
Then there is B := 〈B, . . . 〉 such that B ≺A M, T ⊆ B and |B| ≤ max{ℵ0, |T |}.

The proof is similar to that of the first order version, using Skolem functions.
There are also other infinitary languages. One of particular interest for us

is L∞,ω.

Definition. The language L∞,ω is the class of all formulas which can be built
by the rules for formulas of first order logic with the additional rule:

� If F is a arbitrary set of L∞,ω formulas, then∧
φ∈F

φ and
∨
φ∈F

φ

are L∞,ω formulas.

Clearly, Lω1,ω ⊂ L∞,ω.
In model theory, one is often interested, if two models agree on sentences of

a certain complexity which is determined by quantifiers.

Definition. We inductively define the quantifier rank of a L∞,ω formula φ,
notated by qr(φ):

� qr(φ) := 0, if φ is atomic.

� qr(¬φ) := qr(φ).

� If F is a set of L∞,ω formulas, then

qr(
∧
φ∈F

φ) = qr(
∨
φ∈F

φ) := sup{qr(φ)|φ ∈ F}

� qr(∃vφ) := qr(φ) + 1

One can verify by induction on formula complexity that qr(φ) is an ordinal
number, for every φ ∈ L∞,ω, and if φ ∈ Lω1,ω, then qr(φ) < ω1.

6



2.2 Scott Rank and Scott’s Isomorphism Theorem

Unless otherwise stated, definitions and results are from section 2.2 of [12]

Definition. Via induction on α ∈ ON, for a given vocabulary τ , the equivalence
relation ∼α is defined on the class of all tuples (M; a), where M := 〈M, . . . 〉 is
a τ structure and a ∈M<ω.

� If (M; a) ∼α (N; b), then length(a) = length(b).

� (M; a) ∼0 (N; b) iff for all atomic φ(v), M |= φ(a)⇔ N |= φ(b).

� (M; a) ∼α+1 (N; b) iff for all c ∈M there is d ∈ N such that

(M; aac) ∼α (N; b
a
d),

and for all d ∈ N there is c ∈M such that

(M; aac) ∼α (N; b
a
d).

For a limit ordinal α > 0, (M; a) ∼α (N; b) iff for all β < α

(M; a) ∼β (N; b).

By induction on α ∈ ON one checks:

Fact 2.2.1. If (M; a) ∼α (N; b) and β < α, then (M; a) ∼β (N; b).

We will see that each ∼α equivalence class can be described by a single
infinitary foumula.

Definition. For every τ structure M := 〈M, . . . 〉 and every a ∈ M<ω, we
inductively define the formula χM

a,α(v), where length(v) = length(a):

� χM
a,0(v) is the conjunction of all atomic and negated atomic formulas ψ(v)

such that M |= ψ(a).

�

χM
a,α+1(v) := [

∧
c∈M
∃wχM

aac,α(v, w)] ∧ [∀w(
∨
c∈M

χM
aac,α(v, w))].

� If α > 0 is a limit ordinal, then

χM
a,α(v) :=

∧
β<α

χM
a,β(v).

Remark. It is because of this definition that we added the closed atomic sen-
tence > to the language. If τ is a vocabulary without constant symbols and
a = ∅, then χM

a,0 = >.

We can make the following immediate observations:

Proposition 2.2.2. Let M := 〈M, . . . 〉 be a τ structure, k < ω and a ∈ Mk.
Then for every ordinal α:

1. χM
a,α(v) ∈ L∞,ω and has quantifier rank α.

7



2. M |= χM
a,α(a).

3. If M is countable and α < ω1, then χM
a,α(v) ∈ Lω1,ω.

Proof. Straight forward induction on α ∈ ON. For the third statement, keep
in mind that we are only considering countable vocabularies.

The next Lemma is also easy to prove and will turn out useful later in this
thesis.

Lemma 2.2.3. Let M := 〈M, . . . 〉, N := 〈N, . . . 〉 be τ structures, k ∈ ω,
a ∈Mk and b ∈ Nk. The following are equivalent for α ∈ ON:

1. (M; a) ∼α (N; b).

2. χM
a,α(v) = χN

b,α
(v).

3. For all k formulas ψ(v) ∈ L∞,ω with quantifier rank ≤ α,

M |= ψ(a) iff N |= ψ(b).

Proof. The equivalence of all three statements can be proved by induction on
α ∈ ON.

Proposition 2.2.4. Let M and N be infinite τ structures and κ := max{|M |, |N |}.
There is γ < κ+ such that for all k < ω, a ∈ Mk and b ∈ Nk the following
holds:

If (M; a) ∼γ (N; b), then (M; a) ∼α (N; b), for all α ∈ ON.

Proof. We define the length of a tuple a as lg(a) and for every α ∈ ON,

Γα := {(a, b) ∈M<ω × N<ω| lg(a) = lg(b) and (M; a) 6∼α (N; b)}.

By fact 2.2.1, Γα ⊆ Γβ , for α ≤ β, and via induction on α one can show that
if Γα = Γα+1, then Γα = Γβ , for all β ≥ α. Since |M<ω × N<ω| = κ, there is
γ < κ+ such that Γγ = Γγ+1. Clearly, γ has the proposed property.

Definition. � We write M ≡α N if (M; ∅) ∼α (N; ∅), that is if M and N
satisfy the same L∞,ω sentences of quantifier rank ≤ α. Two structures
M and N are called infinitarily equivalent, notated by M ≡∞,ω N or in
this thesis simply by M ≡∞ N, if M ≡α N, for all α ∈ ON.

� For every τ structure M, the least γ < |M |+ such that for all k < ω and
all k-tuples a, b of M ,

(M; a) ∼γ (M; b) implies (M; a) ∼γ+1 (M; b),

is called the Scot rank or Scott height of M, denoted by sr(M).

Combining Lemma 2.2.3 with proposition 2.2.4, we see that the Scott rank
of a model can be described by an infinitary sentence. Given a τ structure M
with Scott rank γ, we call the formula

ΨM := χM
∅,γ ∧

∧
k<ω

[
∧

a∈Mk

∀v1 . . . ∀vk(χM
a,γ(v)→ χM

a,γ+1(v))]

the Scott sentence of M.
The next result gives a characterisation of infinitary equivalence and of the

isomorphism relation on countable structures.
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Theorem 2.2.5. (Scott’s Isomorphism Theorem) Let M, N be two models.
Then

1. M ≡∞ N iff M |= ΨN iff N |= ΨM.

2. If M and N are countable, then M ∼= N iff N |= ΨM.

Proof. 1. We only check M |= ΨN ⇒ M ≡∞ N: Let δ := sr(N) and as in
the proof of proposition 2.2.4 for α ∈ ON, define

Γα := {(a, b) ∈M<ω × N<ω| lg(a) = lg(b) and (M; a) 6∼α (N; b)}.

It follows form the definition of ΨN and Lemma 2.2.3, that Γδ = Γδ+1 and
then by induction Γδ = Γβ , for all β ≥ δ.
M |= χN

∅,δ means that (∅, ∅) /∈ Γδ and therefore M ≡∞ N.

2. The direction (⇒) is clear.

The proof of (⇐) can be done via a back and forth argument:

Let (an : n < ω) be an enumeration of M , (bn : n < ω) be one of
N and δ := sr(M). Since N |= ΨM, it follows - using Lemma 2.2.3
- M ≡δ+1 N, so for a0 ∈ M we can choose i ∈ ω minimal such that
(M; a0) ∼δ (N; bi). Suppose k < ω+, a ∈ Mk, b ∈ Nk and (M; a) ∼δ
(N; b). In particular, a 7→ b is a finite partial embedding from M into N.
Choose j ∈ ω minimal such that bj does not occur in b. As in the first step,
we have (M; a) ∼δ+1 (N; b), hence we can choose r ∈ ω minimal such that

(M; aaar) ∼δ (N; b
a
bj). In the following step we choose j ∈ ω minimal

such that aj does not occur in a and then use the same argument to extend
the finite partial embedding. Since both enumerations are countable, the
union of these finite embeddings is an isomorphism from M onto N.

Let us look at some examples:

Example 2.2.6. Define M := (Q, <) with the standard linear order. Then
sr(M) = 0, since if k < ω and a, b ∈ Qk satisfy the same atomic formulas, there
is an automorphism of M mapping a onto b.

Example 2.2.7. Consider the models M := (ℵ1×Q, <1) and N := (ℵ1×Q, <2).
In M we define (α, q) <1 (β, r) if either β < α or α = β and q < r, and in N
(α, q) <2 (β, r) iff α ∈ β or α = β and q < r in Q.

Using the downward Löwenheim Skolem theorem, one can show

M ≡∞ (Q, <) ≡∞ N,

hence sr(M) = sr(N) = 0. Clearly, M � N, since every element of M has ℵ1

many predecessors, which is not the case in N.

Remark. This example shows that infinitary equivalence of two models does
not imply that they are isomorphic. However, two structures are ≡∞,ω equiva-
lent if and only if they are isomorphic in some generic extension of the universe:
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(⇒) Suppose M and N are two infinitarily equivalent models and let κ :=
max{|M |, |N |}. Consider the forcing notion P := (Fn(ω, κ), <), the set of all
finite functions from ω into κ, where for all p, q ∈ P :

p ≤ q :⇔ p ⊇ q.

If G is a generic filter, then since the relation ∼α is absolute for transitive models
of ZFC, M and N are ≡∞,ω equivalent and countable in V [G], hence by Scott’s
theorem the models are isomorphic.

The direction (⇐) follows from the fact that the statement

”M |= φ(a)”

is absolute for transitive models of ZFC.

Example 2.2.8. Consider M := (Z, 0̇, +̇), where 0̇Z = 0 and +̇ is interpreted
with the standard addition. We check that sr(M) = 1: Suppose k ∈ ω+,
a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Zk and (M; a) ∼1 (M; b), then for 1 ≤ j ≤ k,
we have |aj | = |bj |. This follows as for every divider d > 0 of aj , the formula

∃y(y+̇ . . . +̇y︸ ︷︷ ︸
d times

= x)

has quantifier rank 1 and is therefore satisfied by both aj and bj . With a similar
argument one can show that either a = b or a = −1 · b. Obviously, the identity
map and the map a 7→ −a are automorphisms of M, hence sr(M) ≤ 1.

On the other hand, it is easy to check that (M, 1) ∼0 (M, 2), but

(M, 1) 6∼1 (M, 2),

which means sr(M) > 0.

2.3 Model Existence and Omitting Types

Even though the compactness theorem does not hold in Lω1,ω, there is another
way to check whether a set of formulas has a model. The idea is due to Michael
Makkai and adapts a Henkin argument for infinitary logic. One important
notion we will need several times in this thesis is that of a consistency property.
We assume that our countable vocabulary contains an infinite set C of constant
symbols. Also, recall the definition of ∼ φ, for φ ∈ L∞,ω.

Definition. A consistency property is a set Σ of countable sets of Lω1,ω sen-
tences such that for all σ ∈ Σ the following conditions hold:

(C0) If µ ⊆ σ, then µ ∈ Σ.

(C1) If φ ∈ σ, then ¬φ 6∈ σ.

(C2) If ¬φ ∈ σ, then there is µ ∈ Σ such that σ ∪ {∼ φ} ⊆ µ.

(C3) If ∧
φ∈F

φ ∈ σ,

then for all φ ∈ F there is µ ∈ Σ such that σ ∪ {φ} ⊆ µ.
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(C4) If ∨
φ∈F

∈ σ,

then there is φ ∈ F and µ ∈ Σ such that σ ∪ {φ} ⊆ µ.

(C5) If ∀vφ(v) ∈ σ, then for all c ∈ C there is µ ∈ Σ such that σ ∪ {φ(c)} ⊆ µ.

(C6) If ∃vφ(v) ∈ σ, then there is c ∈ C and µ ∈ Σ such that σ ∪ {φ(c)} ⊆ µ.

(C7) Let t be an arbitrary closed term, i.e. a term with no variables, and
c, d ∈ C.

a.) If (c = d) ∈ σ, then there is µ ∈ Σ such that σ ∪ {d = c} ⊆ µ.

b.) If c = t, φ(t) ∈ σ, then there is µ ∈ Σ such that σ ∪ {φ(c)} ⊆ µ.

c.) There is e ∈ C and µ ∈ Σ such that σ ∪ {e = t} ⊆ µ.

The next two facts are easy to verify:

Fact 2.3.1. If Σ0 is a set of countable sets of Lω1,ω-sentences satisfying C1−C7,
then Σ := {δ|∃σ ∈ Σ0, δ ⊆ σ} is a consistency property.

Fact 2.3.2. If Σ0 is a consistency property, then so are Σ1 and Σ2, where

Σ1 := {σ ∈ Σ0| σ is finite}

and Σ2 is the set of all σ ∈ Σ0, in which only finitely many constant symbols of
C occur.

Theorem 2.3.3. (Model Existence Theorem) If Σ is a consistency property
and σ ∈ Σ, then there is a countable model M |= σ.

Proof. (Sketch) Let A be the smallest fragment conatining σ which is closed
under ∼. Clearly, A is countable.

Using an enumeration of A which lists every formula infinitely many times
and the definition of a consistency property, one can inductively build a set
Γ :=

⋃
{σn|n < ω} ⊆ A, where σ0 := σ and σn ∈ Σ, for all n < ω. Γ has the

following properties:

� For every closed term t there is a constant c ∈ C such that (c = t) ∈ Γ.

� If ∨
ψ∈F

ψ

is in Γ, then some ψ ∈ F is also in Γ.

� If ¬ψ ∈ Γ, then ∼ ψ ∈ Γ.

� If ∃xψ(x) is in Γ, then for some constant symbol c, ψ(c) ∈ Γ.

Then consider the equivalence relation on the set of constant symbols C defined
by c ∼ d :⇔ (c = d) ∈ Γ. The model M has the set of equivalence classes C/ ∼
as its universe. All symbols of the vocabulary can be interpreted in an obvious
way such that every element of the universe is the interpretation of a constant
symbol and for all ψ ∈ Γ, M |= ψ. See the proof of theorem 4.1.6 in [12] for the
details.
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By a slight modification of the previous proof one can show:

Theorem 2.3.4. (Extended Model Existence Theorem) Let Σ be a consistency
property and T a countable set of Lω1,ω-sentences (in the vocabulary τ) such
that for all σ ∈ Σ and all ψ ∈ T σ ∪ {ψ} ∈ Σ. Then for all σ ∈ Σ, T ∪ σ has a
countable model.

As in the proof of the previous theorem, a countable model is constructed
in which every element is the interpretation of a constant symbol.

One important application of the Model Existence Theorem is the infinitary
and generalized version of the Omitting Types Theorem:

Theorem 2.3.5. Let A ⊆ Lω1,ω be a countable fragment, T ⊆ A a satisfiable
theory and for every n ∈ ω Θn(v1, . . . , vkn) a set of A formulas. Suppose that
for all n and all A formulas ψ(v1, . . . , vkn) such that T + ∃vψ(v) is satisfiable
there is θ ∈ Θn such that T + ∃v(ψ(v) ∧ θ(v)) is satisfiable. Then

T +
∧
n<ω

(∀v
∨
θ∈Θn

θ(v))

is satisfiable.

Proof. Add a new set of constant symbols C to the given vocabulary. Let A′

be the set of all formulas of A with only finitely many free variables. Then A∗

is defined as the smallest fragment containing {φ(c)|φ(v) ∈ A′, c ∈ C<ω} and

∆ := {
∨
θ∈Θn

θ(c)| n < ω, c ∈ Ckn}.

Now consider the set Σ of all elements of the form σ0 ∪ T ∪∆, where σ0 ⊆ A∗
is a finite set of sentences and T ∪ σ0 is satisfiable. It is not difficult to show
that Σ is a consistency property. The only interesting case is (C4) when∨

φ∈F

φ ∈ ∆.

Let µ := σ0∪T ∪∆ be an element of Σ. Since σ0 is finite, there are only finitely
many constant symbols of C, c1, . . . , cl, occurring in it, and therefore

ψ(c1, . . . , cl) :=
∧
φ∈σ0

φ ∈ A∗.

Without loss of generality assume that l = kn. Then by assumption for some
θ ∈ Θn

T + ∃v(ψ(v) ∧ θ(v))

is satisfiable, hence µ ∪ {θ(c)} ∈ Σ.
Since T is satisfiable, we have µ0 := T ∪∆ ∈ Σ and so there is a countable

model of µ0 in which every element is the interpretation of a constant symbol
of C.

The result is called omitting types theorem because it gives us a sufficient cri-
terion for the existence of a countable model which does not realise a countable
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set of given types: Suppose we have a countable fragment A a theory T ⊆ A,
and a set

{tn(v1, . . . , vin) : n < ω}

of types such that for every n < ω and every φ(v1, . . . , vin) satisfiable with T ,
there γ(v) ∈ tn such that T + ∃v(φ(v) ∧ ¬γ(v)) is satisfiable, then by defining
Θn := {¬γ : γ ∈ tn}, we can apply the omitting types theorem an get a model
which omits every tn.

In first order logic one can use the compactness theorem to prove that the
class of all countable well orders cannot be axiomatized. With the help of
theorem 2.3.3 we can show that this class cannot be characterized by a Lω1,ω-
sentence either.

Lemma 2.3.6. Suppose the countable vocabulary τ has a binary relation symbol
<̇ and φ is a Lω1,ω-sentence such for all α < ω1 there is a model M of φ
containing (α,<) as a submodel. Then there is N |= φ such that (Q, <) embeds
into it as a submodel.

Proof. First, we consider a new vocabulary τ∗ by adding two countably infinite
sets C and D := {ds|s ∈ Q} of new constant symbols. Let

∆ := {dr<̇ds| r, s ∈ Q, r < s} ⊆ Lω1,ω(τ∗)

and Σ the set of all elements µ with the following properties:

(P1) µ = σ0 ∪ {φ} ∪ ∆, where σ0 is a finite set of τ∗ sentences in which only
finitely many new constant symbols occur and σ0 ∪ {φ} is satisfiable.

(P2) If no symbols of D occur in σ0, then for all α < ω1, there is a model
of σ0 ∪ {φ} such that (α,<) can be embedded into it, and if ds1 , . . . , dsk
are all symbols of D occurring in σ0 and s1 < · · · < sk in Q, then for all
α < ω1, there is a model M |= σ0 ∪ {φ} such that dMs1 < · · · < dMsk in M

and for 1 ≤ j < k, (α,<) can be embedded into the sets (<, dMs1 ) := {a ∈
M | a <M dMs1 },

(dMsj , d
M
sj+1

) := {a ∈M |dMsj <
M a <M dMsj+1

}

and (dMsk , <) := {a ∈M | dMsk <
M a}.

Once we have shown that Σ is a consistency property, the proof is complete,
since clearly {φ} ∪ ∆ ∈ Σ. This is a routine exercise and there are only two
interesting cases.

C4: Suppose µ = σ0 ∪ {φ} ∪∆ ∈ Σ and without loss of generality for some
countable set of τ∗ formulas F , ∨

ψ∈F

ψ

is in σ0. Then using the regularity of ω1, it follows that for some ψ ∈ F ,
µ ∪ {ψ} ∈ Σ.

(C7) − b.): We only check the case when φ(t) = (dr<̇dq) ∈ ∆, for some
r < s ∈ Q and t ∈ {dr, dq}. Assume without loss of generality that t = dr,
µ = σ0 ∪ {φ} ∪ ∆ ∈ Σ, c is a constant symbol 6∈ D, s1 < · · · < r < · · · < sk
a finite sequence in Q such that all constant symbols of D occurring in σ0
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are among ds1 , . . . , dr, . . . , dsk and {(dr<̇dq), (c = dr)} ⊆ µ. We will see that
µ2 := µ ∪ {c<̇dq} ∈ Σ. If α < ω1 and β := α + α, then there is a model M
of σ0 ∪ {φ} such that (β,<) can be emebbed into it according to (P2). If ds
occurs in σ0, then M witnesses both (P1) and (P2) for µ2. Otherwise, suppose
r ≤ si < q < si+1. We can get a model M′ of µ2 by interpreting dq in M

such that (α,<) can be embedded into (dM
′

si , d
M′

q ). This is possible, since by

assumption (β,<) can be embedded into (dMsi , d
M
si+1

), hence both (P1) and (P2)
hold for µ2.

Remark. The assumption that every α < ω1 can be embedded into some model
of φ is necessary, since otherwise the argument of the proof cannot simultane-
ously guarantee that Σ satisfies C4 and that {φ} ∪∆ ∈ Σ.

As an immediate consequence we have

Corollary 2.3.7. Let φ be a Lω1,ω-sentence in a vocabulary with a binary rela-

tion symbol <̇ such that in every model M of φ <̇
M

is a well order on M . Then
the set of order types of models of φ is bounded below ω1.

Remark. (See also page 85 of [2]) It is possible to characterize the class of
countable well orders with a Lω1,ω-theory: Let τ be a vocabulary with a single
binary relation symbol <̇. Via induction on α < ω1 one can define a Lω1,ω-

formula φα(v) such that for every model M and all a ∈M : M |= φα(a) iff <̇
M

is a linear order and ((<, a), <̇
M

) is a well order of order type α.
Let

σα := ∀x(
∨
β<α

φβ(x)) ∨ ∃x(φα(x)),

and T := {σα| α < ω1}. Then a countable structure is a model of T if and only
if it is a well order.

2.4 End Extensions and Small Uncountable Models

Even though V C2 focuses on isomorphism types of countable models, we will
also take a look at what can be said about uncountable models of presumed
counterexamples.

Definition. (1) Let (Mα : α < µ) be a sequence of models such that for all
α < β < µ, Mα ⊂Mβ . Define the model N as follows:

– The universe of N is N :=
⋃
α<µMα.

– cN := cM0 , for every constant symbol c of τ .

– For every relation symbol R of τ ,

RN :=
⋃
α<µ

RMα .

– For every function symbol f of τ ,

fN :=
⋃
α<µ

fMα .
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Then N is called the limit of this sequence, also notated as

limα→µMα.

(2) Let µ ∈ ON and (Mα := 〈Mα, . . . 〉 : α < µ) be a sequence of models such
that the following hold:

– Mα ⊆Mβ , for α < β.

– For every limit ordinal λ < µ, Mλ = limα→λMα.

Then (Mα : α < µ) is called a chain of models. If A ⊆ L∞,ω is a fragment
and in addition Mα ≺A Mβ , for α < β < µ, then (Mα : α < µ) is called
an A-elementary chain of models.

Proposition 2.4.1. (i) Let µ be an arbitrary ordinal, A ⊆ Lω1,ω is a countable
fragment and (Mα : α < µ) is an A elementary chain with limit N, then
Mα ≺A N, for all α < µ.

(ii) If µ is a regular uncountable cardinal, (Mα : α < µ) be a chain of infinite
models with limit N and σ ∈ Lω1,ω a sentence. Then N |= σ if and only if the
set

{α < µ : Mα |= σ}

contains a club set.

Proof. (i) is easy to check.
(ii) is an application of the downward Löwenheim-Skolem theorem and uses

the fact that Mλ is the limit of the chain restricted to λ, for every nonempty
limit λ < µ. E.g. for the direction (⇒) consider the fragment A ⊆ Lω1,ω

generated by σ. Clearly, A is countable and using the regularity of µ, one can
easily check that

{α < µ : Mα ≺A N}

is as desired.

In first order logic every theory with an uncountable model has a model in
every cardinality. This can be shown with the help of the compactness theorem.
As we have seen this result is not true in infinitary logic.

However, if A ⊆ Lω1,ω is a countable fragment, σ ∈ A is a sentence with
an infinite model and every countable model of σ has a proper A-elementary
extension, then there is an A-elementary chain (Mα : α < ω1) of countable
models of σ such that Mα �A Mβ , for α < β. Clearly, the limit of this chain is
also a model of σ and has cardinality ℵ1. We present a sufficient criterion for
the existence of a proper elementary chain.

Definition. (1) Let R be a binary relation symbol of a given vocabulary τ
and M := 〈M, . . . 〉 ⊆ N := 〈N, . . . 〉 τ -structures. N is called an end
extension of M if for all a, b ∈ N aRb and b ∈ M implies a ∈ M , where
R = RN.

N is called a strong end extension of M if N is an end extension of M,
M $ N, and for all b ∈ N \M and a ∈M aRb.
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(2) Let ψ(x,w) ∈ L∞,ω. The expression ∃∗xψ(x,w) stands for the formula
∀y∃x(yRx ∧ ψ(x,w)).
∀∗xψ(x,w) stands for the formula ∃y∀x(yRx→ ψ(x,w)). In both formu-
las y is a variable not occurring in (x,w).

(3) Let A ⊆ L∞,ω be a fragment. We say A has property (∗), if it has the
following closure properties:

(∗)1 If

ψ,
∨
φ∈F

φ ∈ A,

then ∨
φ∈F

(φ ∧ ψ),
∨
φ∈F

(ψ ∧ φ) ∈ A.

(∗)2 If

∃v
∨
φ∈F

φ(v) ∈ A, then
∨
φ∈F

∃vφ(v) ∈ A,

where F ⊆ A and all formulas of F have their free variables among
v.

With respect to linear orders, strong end extensions are just proper end
extensions, and we only consider such end extensions in this thesis.

Theorem 2.4.2. Let τ be a countable vocabulary with a binary relation symbol

<̇ and M a countable model in which <:= <̇
M

is a linear order. If A ⊆ Lω1,ω(τ)
is a countable fragment with property (∗), then M has a countable A-elementary
strong end extension if and only if the following holds in M:

(i) For all a ∈M there is b ∈M such that a < b.

(ii) If ψ(x, y, w) ∈ A, then

M |= ∀w[∃∗x∃yψ(x, y, w)→ (∃∗y∃xψ(x, y, w) ∨ ∃y∃∗xψ(x, y, w))].

(iii) If ∨
ψ∈F

ψ(x,w) ∈ A,

then
M |= ∀w(∃∗x

∨
ψ∈F

ψ(x,w)→
∨
ψ∈F

∃∗xψ(x,w)).

Proof. (⇒): Let N be a strong A-elementary extension of M and b ∈ N \M . We
will check that (ii) holds, a similar argument works for the other two properties.

Let u ∈M and assume - using M ≺A N - N |= ∃yψ(b, y, u). If
N |= ψ(b,m, u), for some m ∈M , then since a < b for all a ∈M , we have

M |= ∃y∃∗xψ(x, y, u).

Otherwise, N |= ψ(b, n, u), where n ∈ N \M , and consequently

M |= ∃∗y∃xψ(x, y, u).
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(⇐): Let M := 〈M, . . . 〉 be countable and satisfy (i)− (iii). Enlarge the given
vocabulary τ to τ ′, by adding new constants

{d}∪̇C,

where C := {cm|m ∈ M} .If c = (cm1
, . . . , cmk) is a k-tuple of C, then m(c)

denotes (m1, . . . ,mk). Define

T := {ψ(d, c)|ψ(x, v) ∈ A, c ∈ C<ω and M |= ∀∗xψ(x,m(c))}

and for a ∈M ,

θa(y) := (
∨
m∈M

y = cm) ∨ ca<̇y.

Note that there is a strong end extension of M iff T ∪ {∀yθa(y) : a ∈M} has a
model. This oservation uses property (i). We will show the existence of such a
model by using the omitting types theorem (2.3.5).

Claim 1 : T is satisfiable.
Extend τ ′ to τ ′′ by adding a countable set U of new constants and let Σ be

the set of all σ with the following properties:

� σ is a finite set of Lω1,ω(τ ′′) sentences all of which are of the form

ψ(d, c, u),

for some ψ(x, v, w) ∈ A with only finitely many free variables, c ∈ C<ω
and u ∈ U<ω.

� For
χσ(d, c, u) :=

∧
ψ∈σ

ψ(d, c, u),

we have
M |= ∃∗x∃wχσ(x,m(c), w).

Then Σ is a consistency property. The proof is routine and we will only check
(C4) for which the property (∗) is used: Suppose σ ∈ Σ and∨

ψ∈F

ψ(d, c, u) ∈ σ.

It follows that
M |= ∃∗x

∨
ψ∈F

∃w[ψ ∧ χσ](x,m(c), w).

Note that by the definition of the (∗) property, this formula is in A, therefore
we can apply (iii) and conclude σ ∪ {ψ} ∈ Σ, for some ψ ∈ F .

Using property (i), it is easy to check that for every φ ∈ T and every σ ∈ Σ,
σ ∪ {φ} ∈ Σ, hence the extended model existence theorem (2.3.4) guarantees
that T is satisfiable.(q.e.d.-Claim 1)

Claim 2 : If ψ(x, v) ∈ A and c ∈ C<ω, then T + ψ(d, c) is satisfiable if and
only if M |= ∃∗xψ(x,m(c)).

(→): If M 6|= ∃∗xψ(x,m(c)), then M |= ∀∗x¬ψ(x,m(c)), hence ¬ψ(d, c) is
in T and T + ψ(d, c) is not satisfiable.
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(←): If M |= ∃∗xψ(x,m(c)), then {ψ(d, c)} ∈ Σ and by the extended model
existence theorem T + ψ(d, c) is satisfiable. (q.e.d.-Claim 2)

In order to apply the omitting types theorem, we check that for every,
ψ(x, y, v) ∈ A and c ∈ C<ω such that T + ∃yψ(d, y, c) is satisfiable, there is
a model for

T + ∃y[ψ(d, y, c) ∧ θa(y)],

for every a ∈M .
By claim 2 and the fact that < is a linear order, we have

M |= ∃∗x∃y[(ψ(x, y,m(c)) ∧ a < y) ∨ (ψ(x, y,m(c) ∧ y ≤ a)].

Since (iii) holds in M, there are two possibilities:

(1) M |= ∃∗x∃y(ψ(x, y,m(c)∧a < y): In this case we are done by claim 2 and
the fact that ca<̇y |= θa(y).

(2) M |= ∃∗x∃y(ψ(x, y,m(c)) ∧ y ≤ a): Apply (ii) and since clearly

M 6|= ∃∗y∃x(ψ(x, y,m(c)) ∧ y ≤ a),

there is n ∈M such that

M |= ∃∗x(ψ(x, n,m(c)) ∧ n ≤ a),

which by claim 2 implies that

T + ∃y[ψ(d, y, c) ∧
∨
m∈M

y = cm]

and therefore T + ∃y[ψ(d, y, c) ∧ θa(y)] is satisfiable.

The omitting types theorem now guarantees the existence of a strong end ex-
tension of M.

Corollary 2.4.3. Let < be a binary relation symbol of the vocabulary τ , A a
countable fragment with property (∗) and M a countable model such that <M is
a linear order. If M has a strong A-elementary end extension, then it has one
with cardinality ℵ1.

Proof. If M1 is a countable strong end extension of M, then by the previous
theorem properties (i) − (iii) hold in M. Since M ≺A M1, this is also true
in M1, hence M1 has a countable strong end extension M2. Clearly, we can
build an A elementary chain of length ℵ1 of strong end extensions of M. Then
the limit of this chain has cardinality ℵ1 and is also a strong end extension of
M.

Corollary 2.4.4. Let τ be a vocabulary with a binary relation symbol < and
φ ∈ Lω1,ω(τ) a sentence. Suppose M is a model of φ and <M is a well order
of order type ω1. Then there is a model N of φ with cardinality ℵ1 such that
(Q, <) embeds into it.

Proof. Let A be the smallest fragment containing φ with property (∗).
Add a new unary relation symbol P and let σ be the sentence in the new

vocabulary τ ′ stating:

18



(1) ∃x¬Px.

(2) < is a linear order and ∀x∀y[(x < y ∧ Py)→ Px].

(3) P is an A-elementary submodel.

(3) can easily be expressed as an infinite conjunction using the Tarski-Vaught
criterion. Note that since A is countable, σ ∈ Lω1,ω(τ ′).

For every α < ω1, there is a countable model (Mα, Pα) of φ ∧ σ such that
(α,<) embeds into it and Pα ≺A Mα ≺A M: This is a straight forward ap-
plication of the downward Löwenheim-Skolem theorem. By the undefinability
of well orders (see Lemma 2.3.6) there is a countable model (B,P) of φ ∧ σ,
such that (Q, <) embeds into it. But then clearly B is a strong A-elementary
end extension of P, seen as τ -structures. Thus properties (i) − (iii) of theo-
rem 2.4.2 hold in B. By the previous corrolary B has a strong end extension N
of cardinality ℵ1.

Now we have the necessary means to present a sufficient criterion for a Lω1,ω-
sentence to have an uncountable model that realizes only countably many types.

Definition. Let A ⊆ Lω1,ω be a fragment. A model M is called A-small if
for all k < ω, M realizes ≤ ℵ0 many k-types ⊆ A. M is called small if it is
Lω1,ω-small.

Proposition 2.4.5. A model N is small iff there is a countable model M such
that M ≡∞,ω N.

Proof. (⇒): Recall the definitions of ∼α, for α ∈ ON, χN
a,α(v), where a ∈ N<ω,

and the characterisation given in Lemma 2.2.3.
Since the vocabulary τ is countable and N realizes only countably many

complete types ⊆ Lω1,ω, it is easy to show inductively that for α < ω1 the
following conditions hold:

� χN
a,α(v) ∈ Lω1,ω, for all a ∈ N<ω.

� |{χN
a,α(v)| a ∈ N<ω}| ≤ ℵ0.

Using this and the regularity of ω1 it follows that there is α < ω1 such that for
all n < ω and a, b ∈ Nn:

(N; a) ∼α (N; b) implies (N; a) ∼α+1 (N; b).

Thus sr(N) < ω1 and ΨN ∈ Lω1,ω, where ΨN is the Scott sentence of N. By
the downward Löwenheim-Skolem theorem there is a countable model M |= ΨN,
which by Scott‘s isomorphism theorem means N ≡∞,ω M.

(⇐): Let M be countable, N ≡∞,ω M, k < ω and a ∈ Nk. We will see that
the Lω1,ω-type of a is realized in M.

Suppose this is not so. Then for every b ∈ Mk there is φb(v) ∈ Lω1,ω such
that

N |= φb(a) and M |= ¬φb(b).

Hence
N |= ∃v

∧
b∈Mk

φb(v), but M 6|= ∃v
∧
b∈Mk

φb(v),
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a contradiction. Therefore N realizes at most as many complete Lω1,ω-types as
M does, i.e. ≤ ℵ0 many.

Definition. Let (X,<) be a linear order and p ∈ X. An element q ∈ X is
called successor of p if p < q and there is no r ∈ X such that p < r < q.

p is called a limit point if p is not minimal and for all r < p there is s ∈ X
such that r < s < p.

Theorem 2.4.6. If a sentence φ ∈ Lω1,ω has an uncountable model which is A-
small, for every countable fragment A ⊆ Lω1,ω, then φ has a small uncountable
model.

Proof. Let M be an uncountable model of φ which isA-small for every countable
fragment A. Since φ is a sentence, we can by the downward Löwenheim-Skolem
theorem assume that M , the universe of M, is ω1.

As in the proof of proposition 2.4.5 one can show via induction on α < ω1

that for all n < ω the equivalence relation En,α on Mn defined by

a En,α b :⇔ (M; a) ∼α (M; b)

has only countably many equivalence classes. Here, the conditions of the theo-
rem and the characterisation of Lemma 2.2.3 are explicitly used.

Now we extend the vocabulary τ to τ ′ by adding the following symbols:

� A binary relation symbol <.

� For every n < ω a 2n+ 1 ary relation symbol En.

� For every n < ω a n+ 1 ary function symbol fn.

Then extend M to M′ by interpreting the new symbols as follows:

� <M′ is the element relation on ω1.

� EM′n (α, a1, . . . , an, b1, . . . , bn) iff aEn,αb.

� Choose fM
′

n : Mn+1 7→ ω such that for all α < ω1 and a, b ∈Mn:

fM
′

n (α, a) = fM
′

n (α, b)⇔ aEn,αb.

We can do this, since En,α has only countably many equivalence classes.

Now let σ ∈ Lω1,ω(τ ′) be the sentence stating:

(S1) < is a linear order, there is a minimal element and every element has a
successor.

(S2) For every n < ω: If y is the <-minimal element, then for all v, w:

En(y, v, w)↔
∧
ψ∈F

[ψ(v)↔ ψ(w)],

where F is the set of all atomic τ -formulas.

(S3) For every n < ω and all y: If z is the successor of y then for all v, w:

En(z, v, w)↔ (∀r∃t[En+1(y, var, wat)] ∧ ∀t∃r[En+1(y, var, wat)]).
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(S4) For all n < ω and all y: If y is a limit point then

En(y, v, w)↔ ∀x < y(En(x, v, w)).

(S5) For all n < ω and all v, w:

∀y∀x[(En(y, v, w) ∧ x < y)→ En(x, v, w)].

(S6) For all n < ω: There is an initial segment I with respect to < of order
type ω such that im(fn) ⊆ I and:

∀y∀v∀w[fn(y, v) = fn(y, w)↔ En(y, v, w)].

Clearly, M′ |= φ ∧ σ, and (M,<M′) is a well order of order type ω1. Therefore
we can apply corrolary 2.4.4. Let N := 〈N, . . . 〉 be a model of cardinality ℵ1

such that N |= φ ∧ σ and (Q, <) ⊂ (N, <N).
It follows from (S5) and (S6) that for all k < ω, we have an equivalence

relation En on Nn defined by

aEnb :⇔ ∃q ∈ Q (ENn (q, a, b)).

Via induction on α < ON one can easily show that for all n < ω and a, b ∈ Nn,
aEnb implies (N � τ ; a) ∼α (N � τ ; b), hence a and b realize the same Lω1,ω(τ)-
type in N � τ . En has only countably many equivalence classes, thus N � τ is
small.

2.5 Atomic and Prime Models

In Robert Vaught’s studies about isomorphism types of theories and especially
in the proof of his Never Two Theorem the notions of atomic and saturated
models played a crucial role. We can generalize these ideas for L∞,ω theories.
Only atomic models are important for this thesis.

Notation. If T ⊆ L∞,ω is a theory and Σ,∆ are sets of L∞,ω formulas, then

Σ |=T ∆

stands for T ∪ Σ |= ∆. In case Σ = {φ}, we write φ |=T ψ.

Definition. Let A ⊆ L∞,ω be a fragment and T ⊆ A a satisfiable theory.

� If k ∈ ω, then a formula is called a k formula, if it has at most k free
variables.

� T is A-complete if for all sentences σ ∈ A either T |= σ or T |= ¬σ.

� Let k < ω and φ(v1, . . . , vk) ∈ A a k-formula. We say φ(v) is k- complete
in A over a theory T ⊆ A if for all k-formulas ψ(v) ∈ A either φ |=T ψ
or φ |=T ¬ψ, but not both. If the parameters k, T,A are clear from the
context, then we simply call φ(v) complete. A k formula ψ(v) ∈ A is
called completable (over T ) if for some complete φ(v), we have φ |=T ψ.
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� Let k < ω. A k-type of A is a set of formulas t ⊆ A such that for
some variables v1, . . . , vk, every formula of t has its free variables among
v1, . . . , vk and for some model M and some a ∈ Mk, M |= ψ(a), for all
ψ(v) ∈ t. If for all k-formulas ψ ∈ A either ψ ∈ t or ¬ψ ∈ t, then t is
called complete in A. Given a model M and a ∈M<ω, tpAM(a) is defined
as the set of all lg(a)-formulas ψ(v) ∈ A such that M |= ψ(a).

� If M is a model ThA(M) is the set of all sentences ∈ A which are true in
M.

� A model M is called A-atomic if for all k < ω and all a ∈ Mk, tpAM(a)
contains a complete formula over ThA(M). We simply call a model atomic,
if A is clear from the context.

� A model M is called A-prime, if for all models N of ThA(M) there is an
A-elementary embedding M ↪→A N

� A complete theory T is called atomic if it has an atomic model.

If t(v) is a complete type of A containing the complete theory T and ψ(v) ∈ t
is complete over T , then t is called isolated over T .

Remark. For every n < ω, one can define a topology on the set of all complete
n-types. This topological space is called a Stone space with the Stone topology.
A n-type t is isolated if and only if it is an isolated point in the corresponding
Stone space.

In this case we also have, that for some complete formula φ(v) ∈ t,

t = {ψ(v) ∈ A : φ |=T ψ}.

From here on, unless stated otherwise, A is a countable fragment of Lω1,ω.
It turns out that important results about atomic models in first order logic

also hold in infinitary logic.

Lemma 2.5.1. Let T be an A-complete theory. Then T has an atomic model
iff for every k < ω and every k-formula ψ(v) ∈ A satisfiable with T there is a
k-formula φ(v) which is complete over T such that φ |=T ψ.

Proof. The directon (⇒) is immediate.
The direction (⇐) can be shown by using the omitting types theorem (2.3.5)

and defining Θn as the set of all n-complete formulas over T .

Lemma 2.5.2. If M is a countable model, then M is A-atomic iff it is A-prime.

Proof. (⇒): Let M := {ak|k < ω}, T := ThA(M) and N an arbitrary model of
T .

Since M is atomic and T complete, there is ψ1(v1) complete over T such
that M |= ψ1(a1), hence N |= ψ1(b1), for some b1 ∈ N .

Then M |= ψ2(a1, a2), for some complete 2-formula ψ2(v1, v2) ∈ A. It follows
ψ1(v1) |=T ∃v2ψ2(v1, v2) and so N |= ψ2(b1, b2), for some b2 ∈ N . By continuing
this process we get a function from M into N . The elementarity follows from
the fact that for every n < ω a and b satisfy the same n-complete formula.

(⇐): Suppose M is prime, k < ω and a ∈ Mk such that S := tpAM(a) does
not contain a k-complete formula. Define Θ(v) := {¬ψ(v)| ψ(v) ∈ S}. It follows
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that Θ and T satisfy the conditions of the omitting types theorem, hence there
is a countable model N of T in which S is omitted, therefore M cannot be
embedded A-elementarily into N, a contradiction.

Remark. The argument for the direction (⇒) can also be used in a back and
forth manner, in order to show that two countable atomic models of the same
complete theory are isomorphic.

Lemma 2.5.3. Suppose A ⊆ Lω1,ω(τ) is a countable fragment, T ⊆ A is A-
complete and for every k < ω, there are at most ℵ0 many complete k-types
t ⊆ A such that T ⊆ t. Then T has a countable A-atomic model.

Proof. Suppose this is not so, let k < ω and ψ(v) be a k-formula satisfiable with
T which is not completable in A.

By assumption, there is an enumeration (tn : n < ω) of all complete k-
types of A, which contain T ∪ {ψ} as a subset. If none of them is isolated,
then for every k-formula γ(v) which is satisfiable with T and for every n < ω,
there is θn(v) ∈ tn such that T + ∃v(γ(v) ∧ ¬θn(v)) is satisfiable. Then by the
omiting types theorem, there is a countable model M of T which omitts tn, for
all n < ω. But T is complete, hence ∃vψ(v) ∈ T and since every complete type
of A containing ψ is listed, one of them is realized in M, a contradiction.

The previous three lemmas are also true in first order logic.We now have the
tools to prove

Lemma 2.5.4. Suppose φ ∈ Lω1,ω is a complete sentence and M is a model of
φ. Then sr(M) ≤ qr(φ) + ω.

Proof. It is not difficult to show that a Lω1,ω-sentence is complete if and only
if it is ω-categorical. By Scott’s isomorphism theorem and the downward
Löwenheim-Skolem theorem, we can without loss of generality assume that M
is countable.

Let A ⊆ Lω1,ω be the smallest fragment containing φ and α := qr(φ) + ω.
Clearly, qr(ψ) ≤ α, for all ψ ∈ A.

Since φ is ω-categorical, M is A-prime for models of φ and therefore atomic.
Now suppose k < ω, a, b ∈ Mk and (M; a) ∼α (M; b). Then a and b

satisfy the same A-complete k-formulas in M. We can then use a back and
forth argument to construct an automorphism of M mapping a onto b. Thus,
(M; a) ∼α+1 (M; b) and by the definition of the Scott rank, we have sr(M) is
less or equal α.

3 Connections to Descriptive Set Theory

Unless stated otherwise, results of this section can be found in or are based on
chapters from [12].

3.1 Important Results for this Thesis

Familiarity with the following notions is required:

� A topological T2( metric, complete, seperable, product, analytic) space.
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� A Borel (analytic) function and a homeomorphism between topological
spaces.

� A σ-algebra, a Borel (analytic(Σ1
1), coanalytic (Π1

1)) subset of a topological
space.

Definition. (i) A topological space X is completely metrizable if it admits a
compatible metric d such that (X, d) is complete. A seperable completely
metrizable space is called a Polish space.

(ii) A standard Borel space is a measurable space (X,S), such that for some
Polish topology O on X, S is the σ-algebra of Borel ssets generated by O.

N denotes the Baire space which is Polish.
Polish spaces have been mathamatical objects of great interest and it is an

important observation that Lω1,ω-formulas and every model with universe ω can
be interpreted as elements of Polish spaces. This enables us to study VC in the
framework of descriptive set theory.

We can interpret countable trees and relations on ω as elements of N . This
will be useful in later proofs and for coding Lω1,ω-formulas.

The following four well known results will be needed, proofs of them can be
found for example in [10].

Lemma 3.1.1. Let X,Y be analytic T2 spaces and f : X 7→ Y be a function.
The following are equivalent:

(i) f is Borel.

(ii) The graph of f is a Borel subset of X × Y .

(iii) The graph of f is an analytic set.

(iv) f is analytic.

Theorem 3.1.2. (Souslin’s Perfect Set Theorem for Analytic Sets) Let X be a
Polish space and A ⊆ X be analytic. Then A is either countable or else contains
a perfect set.

Definition. An ω-tree is a tree ⊆ ω<ω. A tree is well founded if it has no
infinite branch.

Lemma 3.1.3. WF , the set of codes of well founded ω-trees, is Π1
1 but not

analytic.

Corollary 3.1.4. (i) The set of codes of well founded relations on ω is Π1
1

but not analytic.

(ii) (Σ1
1-bounding of well founded relations) If A ⊆ N is an analytic subset of

codes of well founded relations on ω, then

sup{ρ(R) : R ∈ A} < ω1,

where ρ(R) ∈ ON is the rank of R.
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Next, we look at a coding method for Lω1,ω-formulas with finitely many free
variables: Suppose we have a countable set of variables V , coded by an infinite
subset of ω, a coding of the symbols ”¬”, ”∧”, ”

∧
”, ”∃y”, where y ∈ V and

a coding of first order formulas as Gödel numbers. For a first order formula ψ
with variables of V , let dψe denote the Gödel number of ψ.

Definition. A labeled tree is a triple (T, l, v) ∈ N 3, where T codes an ω-tree
and l, v code functions from T into ω such that for all s ∈ T , one of the following
holds:

(1) s ∈ T is a terminal node, l(s) is the Gödel number of an atomic formula
ψ and v(s) is the set (code) of the variables of ψ.

(2) l(s) = d¬e, sa0 is the only successor in T and v(s) = v(sa0).

(3) l(s) = d∃ye, for some y ∈ V , sa0 is the only successor of s in T and
v(s) = v(sa0) \ {y}.

(4) l(s) = d∧e and

v(s) =
⋃
i<ω

sai∈T

v(sai)

is finite.

A Lω1,ω code, i.e. a code for a Lω1,ω formula with finitely many free variables,
is a labeled tree (T, l, v), where T is well founded. A sentence code is a Lω1,ω

code with v(∅) = ∅.

So an atomic formula ψ is coded by ({∅}, l, v), where l(∅) = dψe and v(∅)
codes the variables of ψ.

If F ⊂ ω and {ψj : j ∈ F} is set of Lω1,ω formulas all of which have free
variables among v1, . . . , vk and ψj is coded by the labeled tree (Tj , lj , vj), for
j ∈ F , then

∧
j∈F ψj is coded by the labeled tree (T, l, v), where

T := {∅} ∪ {jas : j ∈ F, s ∈ Tj},

l(∅) := d
∧
e and forj ∈ F and s 6= ∅, l(s) := lj(t) if and only if s = jat and

t ∈ Tj . The value v(∅) is defined as in (4) of the definition and for s = jat,
where j ∈ F and t ∈ Tj , v(s) := vj(t).

Analogously, we can define labeled trees when ψ is of the form ∃yφ or ¬φ.
The value l(∅) always tells us if we are dealing with an atomic formula, a nega-
tion, an existential formula or a conjunction.

Since WF is Π1
1, we have that the set of formula codes and the set of sentence

codes is Π1
1.

3.2 The Space of Countable Models

Definition. Let ω and 2 = {0, 1} be equipped with the discrete topology and
the vocabulary τ = C ∪ R ∪ F , where C is the set of constant symbols, R the
set of relation symbols and F the set of function symbols. For each r ∈ R
and f ∈ F , let nr, (nf )be the arity of r, respectively f , Mr := ωnr × {r} and
Mf := ωnf × {f}. Define the index set

J := C ∪
⋃
{Mr : r ∈ R} ∪

⋃
{Mf : f ∈ F}
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and the topological spaces (Xj , Oj), for j ∈ J as follows: Oj is the discrete
topology on Xj , i.e P (Xj), and

Xj :=

{
2, j ∈ ωnr × {r}, for some r ∈ R
ω, else

Then
Xτ :=

∏
j∈J

Xj

equipped with the product topology is called the space of τ -structures.

Each element x ∈ Xτ codes a τ structure Mx with universe ω in a canonical
way:

� cMx := x(c), for c ∈ C.

� If r ∈ R, then rMx(a1, . . . , anr ) :⇔ x((a1, . . . , anr , r)) = 1

� If f ∈ F , then fMx : ωnf 7→ ω is defined by

(a1, . . . , anf )→ x((a1, . . . , anf , f)).

Conversely, for every τ structure M with universe ω there is a unique x ∈ Xτ
such that Mx = M.

Since τ is countable, Xτ is a Polish space. For a first order quantifier free
formula ψ(v) and a ∈ ωlg(v) let Bψ(a) := {x ∈ Xτ : Mx |= ψ(a)}. Then

{Bψ(a) : ψ(v) quantifier free and first order, a ∈ ωlg(v)}

is a basis for the topology on Xτ . The next proposition can be proven via
straight forward induction on formula complexity.

Proposition 3.2.1. Let ψ(v1, . . . , vk) be a Lω1,ω-formula and a1, . . . , ak ∈ ω.
Then {x ∈ Xτ : Mx |= ψ(a)} is Borel.

Definition. For a sentence φ ∈ Lω1,ω(τ), Mod(φ) is defined as

{x ∈ Xτ : Mx |= φ}.

Hence, Mod(φ) with the inherited σ-algebra is a standard Borel space. We
identify Mod(φ) with {Mx : x ∈Mod(φ)}.

Definition. LetA ⊆ Lω1,ω be a fragment, n < ω and T ⊆ A a theory. Sn(A, T )
denotes the set of all complete n-types s(v) ⊆ A such that T ∪s(v) is satisfiable.

Suppose that A is countable, φ ∈ A is a sentence and n < ω. If we take
the index set J of all n-formulas of A, then Y :=J 2 equipped with the product
topology is homeomorphic to the Cantor space. We identify it with P (J) by
identifying each subset of J with its characteristic function.

Now consider the function g : Mod(φ)× ωn 7→ Y defined by

(x, a) 7→ tpAMx
(a).
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With the help of proposition 3.2.1 we see that this function is Borel. Since
both the domain and the codomain of g are Polish spaces it follows, that the
image im(g) is analytic. Clearly, im(g) = Sn(A, φ). Thus, for all n < ω, either
Sn(A, φ) is countable, or else it contains a perfect set. In particular:

|Sn(A, φ)| ≤ ℵ0 or |Sn(A, φ)| = c.

Proposition 3.2.2. (i) For every n < ω and every α < ω1, the equivalence
relation Eα,n on Xτ × ωn defined by

(x, a)Eα,n(y, b) :⇔ (Mx; a) ∼α (My; b)

is Borel.

(ii) For every α < ω1, the set of all x ∈ Xτ with sr(Mx) ≤ α is Borel.

Proof. (i) The proof can be done via induction on α < ω1. For the case α = 0,
we use poposition 3.2.1 and the fact that the vocabulary τ is countable.

(ii) is an easy consequence of (i).

The isomorphism relation ∼= on Xτ is analytic, since it is the projection of
the Borel set of all (x, y, f) ∈ X 2

τ ×N such that f is an isomorphism from Mx

onto My but it is not necessarily Borel. In fact, we have

Lemma 3.2.3. Let φ ∈ Lω1,ω be a sentence. Then ∼= is Borel on Mod(φ) iff
there is a countable bound on the set of Scott ranks of elements of Mod(φ).

Proof. (⇒):We define a set W of 4-tuples (M,N, R, z) ⊆ Mod(φ)2 × N × N ,
where R codes a linear order on ω and z a subset of ω × (∪n<ω(ωn × ωn)).The
linear order R has the following properties:

� 0 is R-minimal.

� Every element a ∈ ω that is not R-maximal has a successor, denoted by
sR(a).

For all n < ω, z satisfies:

(1) For all a, b ∈ ωn, (0, a, b) ∈ z iff (M; a) ∼0 (N; b).

(2) If (m, a, b) ∈ z and xRm, then (x, a, b) ∈ z.

(3) For all m ∈ ω and a, b ∈ ωn, (sR(m), a, b) ∈ z iff for all c ∈ ω there is

d ∈ ω such that (m, aac, b
a
d) ∈ z and for all d ∈ ω there is c ∈ ω such

that (m, aac, b
a
d) ∈ z.

(4) If m ∈ ω is a R-limit point 6= 0 and a, b ∈ ωn, then (m, a, b) ∈ z iff for all
xRm, (x, a, b) ∈ z.
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One can show that W is a Borel subset and for all α < ω1 and M,N ∈Mod(φ),
there is (M,N, R, z) ∈W , where R is a wellorder of order type α, and

(M; a) ∼βx (N; b)⇔ (x, a, b) ∈ z,

where βx := ot({y ∈ ω : yRx}).
If ∼= is Borel on Mod(φ), then the set A, defined as

{R ∈ N : (M,N, R, z) ∈W, for some z, (x, ∅, ∅) ∈ z, for all x ∈ ω, and M � N},

is analytic.
Claim: If (M,N, R, z) ∈ W , (xk : k < ω) is a sequence in ω such that for

all k, xk+1Rxk and for some k, n < ω, a, b ∈ ωn, we have (xk, a, b) ∈ z, then
there is an isomorphism from M onto N mapping a onto b.

This is easily proven via a back and forth argument using (1)-(3).
As a consequence of the claim we get that each R ∈ A is a wellorder. By

Σ1
1-bounding there is α < ω1 such that ot(R) < α, for all R ∈ A. But this

means that for all M,N ∈Mod(φ), M ≡α N is equivalent to M ∼= N or in other
words, χM

∅,α is ω-categorical, for all M ∈Mod(φ).

Now we apply Lemma 2.5.4 and conclude that the Scott ranks of Mod(φ)
are bounded by α+ ω.

(⇐): Let γ < ω1 such that sr(M) < γ, for all M ∈Mod(φ).
If we define ΨM as the Scott sentence of M, then by the definition of the

Scott-sentence it follows that qr(ΨM) ≤ γ + ω, for all M ∈Mod(φ). Therefore,
if M,N ∈Mod(φ) and M ∼γ+ω N, then M ∼= N, hence the ∼=-relation is equal
to the ∼γ+ω relation which is Borel.

The following results are presented without proof.

Theorem 3.2.4. (i) (Silver [19]) If E is a Π1
1-equivalence relation on a stan-

dard Borel space X with uncountably many equivalence classes, then there
is a perfect set of E-inequivalent elements ⊆ X.

(ii) (Burgess [3]) If E is a Σ1
1-equivalence relation on a standard Borel space X

with ≥ ℵ2 equivalence classes, then there is a perfect set of E-inequivalent
elements ⊆ X.

Corollary 3.2.5. (Morley) For every sentence φ ∈ Lω1,ω(τ), either there are
at most ℵ1 many countable isomorphism types of φ or else there is a perfect set
of pairwise non isomorphic countable models ⊆Mod(φ).

Proof. Since ∼= is Σ1
1 and Mod(φ) is a standard Borel space, the statement

immediately follows from (ii), but it can also be proven using (i):
Suppose I(φ,ℵ0) ≥ ℵ2. Then for some α < ω1,

Aα := {x ∈Mod(φ) : sr(Mx) = α}

contains ℵ2 many pairwise non isomorphic models. As we have seen before,
Aα is a standard Borel space and by the definition of the Scott sentence and
Lemma 2.2.3 it follows that the isomorphism relation restricted toAα is identical
to the ≡α+ω-relation which is Borel and therefore Π1

1. Now (i) implies the
existence of a perfect set of pairwise non isomorphic models of φ.
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Definition. Let T ⊆ Lω1,ω(τ) be a theory. We say T has perfectly many models
if there is a perfect set of pairwise non isomorphic models in Mod(T ).

Currently, no example of a Lω1,ω-sentence φ with I(φ,ℵ0) = ℵ1 is known.
Since every known example for I(φ,ℵ0) = c has perfectly many models, we
introduce a new version of V C.

V C3: For every Lω1,ω(τ)-sentence φ of a countable vocabulary τ , either
I(φ,ℵ0) ≤ ℵ0 or else φ has perfectly many models.

Clearly, V C3 is the strongest version introduced so far. Also note that it is
independent of the value of c. From now on our focus will be on this problem.

We have considered Vaught’s conjecture for infinitary sentences. One might
think about a generalisation to theories of infinitary sentences but this question
can be answered easily:

First, note that a satisfiable theory T ⊆ Lω1,ω(τ) which is complete in
Lω1,ω(τ) is ω categorical: If M is a countable model of T , then T |= ΨM, the
Scott sentence of M. It follows that V C3 is trivially true for complete theories
of Lω1,ω.

If we consider arbirtary theories of Lω1,ω, then we have a counterexample.

Example 3.2.6. (also see page 85 of [2]) Let τ := {<}, where < is binary. Via
induction on α < ω1 we can define a sentence σα ∈ Lω1,ω(τ) which characterizes
the structure (α,<) up to isomorphism. Let σ0 := ∀x(x 6= x).

Suppose we have defined σα. Then let σα+1 state that < is a linear order,
there is a largest element x and the set of all y < x satisfies σα.

At limit stages α > 0, σα states that < is a linear order, for all β < α,
there is x such that the set of all y < x satisfies σβ , and for all x, the set of
all y < x satisfies σβ , for some β < α. This can be expressed with a countable
conjunction and a countable disjunction, hence σα ∈ Lω1,ω(τ).

Now, for α < ω1, the sentence φα ∈ Lω1,ω(τ) states that < is a linear order
and either σβ , for some β ≤ α, holds, or there is x such that the set of all y < x
satisfies σα.

Consider the theory T := {φα : α < ω1}. It is easy to show that a countable
τ -structure M satisfies T if and only if it is a well order. Thus, T has uncountably
many isomorphism types.

Clearly, T cannot have perfectly many models, because that would give us
an analytic set of well orders whose order types are unbounded below ℵ1, a
contradiction to Σ1

1 bounding of well founded relations.

3.3 Scattered Sentences

In the previous section we saw that for every countable fragment A and every
n < ω, the set of complete n-types ⊆ A can be seen as an analytic subset of
the Cantor space. Using Silver’s theorem, one can easily show that if for some
Lω1,ω-sentence φ, some A and some n < ω, there is a perfect set of complete
and satisfiable n-types ⊆ A containing φ, then there is a perfect set of pairwise
non isomorphic countable models ⊆ Mod(φ). In that case φ trivially satisfies
V C3. Therefore, we are interested in sentences which do not have this property.

Definition. A Lω1,ω-sentence φ is called scattered, if for every countable frag-
ment A ⊆ Lω1,ω and every n < ω, |Sn(A, φ)| ≤ ℵ0.
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Clearly, if I(φ,ℵ0) ≤ ℵ0, then φ must be scattered.
For a scattered sentence φ ∈ Lω1,ω(τ), let (Aφ,α : α < ω1) be a sequence of

fragments defined as follows:

� Aφ,0 is the smallest fragment containing φ.

� Aφ,α+1 is the smallest fragment containing all formulas of the form∧
ψ∈t

ψ(v),

where t(v1, . . . , vn) ⊆ Aα is a complete and satisfiable n-type such that
φ ∈ t, and n < ω.

� For every limit ordinal λ ∈ (0, ω1),

Aφ,λ :=
⋃
α<λ

Aφ,α.

Proposition 3.3.1. Let φ be scattered.

(i) For all α < ω1, Aφ,α is a countable fragment of Lω1,ω(τ) in which all
formulas have only finitely many free variables and if α ≤ β < ω1, then
Aφ,α ⊆ Aφ,β.

(ii) If M,N ∈Mod(φ), n < ω and a, b ∈ ωn, then for all α < ω1,

tp
Aφ,α
M (a) = tp

Aφ,α
N (b) implies (M; a) ∼α (N; b).

Proof. (i) can easily be shown via induction on α < ω1.
We check (ii) inductively:

� The case for α = 0 is clear,since every atomic formula is in Aφ,0.

� α→ α+ 1: Let n < ω, (M, a), (N, b) ∈Mod(φ)× ωn, such that

tp
Aφ,α+1

M (a) = tp
Aφ,α+1

N (b),

and c ∈ ω. Then

γ(v1, . . . , vn+1) :=
∧
ψ∈t

ψ(v1, . . . , vn+1)

is in Aφ,α+1, where t := tp
Aφ,α
M (aac).

By assumption, it follows that N |= ∃vn+1γ(b), which by induction hy-

pothesis implies (M; aac) ∼α (N; b
a
d), for some b ∈ ω. For symmetry

reasons this means (M; a) ∼α+1 (N; b).

� The case for limit ordinals ∈ (0, ω1) follows, since (Aφ,α : α < ω1) is a
chain of fragments.
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Remark. Regarding (ii): In general, (M; a) ∼α (N; b) does not imply

tp
Aφ,α
M (a) = tp

Aφ,α
N (b).

E.g.let M := (Z, <) a1 := 1, a2 := 2, b1 := 1, b2 := 3 and φ the Scott sentence
of M.

We have sr(M) = ω, (M; a) ∼0 (M; b) but a and b do not satisfy the same
first order formulas in M, and these are contained in Aφ,0.

We can now give a first characterisation for a sentence to be scattered.

Lemma 3.3.2. Let φ ∈ Lω1,ω(τ) be a sentence. The following are equivalent:

(i) φ is scattered.

(ii) For every α < ω1, there are only countably many ≡α-equivalence classes
on Mod(φ).

(iii) φ does not have perfectly many models.

Proof. (i) ⇒ (ii): If φ is scattered and for some α < ω1 there are uncount-
ably many ≡α-equivalence classes on Mod(φ), then by the previous proposition
the countable fragment Aφ,α has uncountably many satisfiable complete types
containing φ, a contradiction.

(ii) ⇒ (i): If φ is not scattered, then for some countable fragment A of
Lω1,ω(τ) and some n < ω, uncountably many complete n-types ⊆ A are realized
in Mod(φ).

Since A is countable, there is γ < ω1 such that qr(ψ) < γ, for all ψ ∈ A.
Let α := γ + ω.

For every M ∈ Mod(φ) there is a Lω1,ω(τ) sentence σM of quantifier rank
α + n describing the set of n-types of A which are realized in M. Clearly, for
M,N ∈Mod(φ), we have

M realizes the same n-types in A as N iff M |= σN iff σM = σN.

Since there are continuum many complete n-types in A, it follows that there
is an uncountable set S ⊆ Mod(φ), such that if M,N ∈ S and M 6= N then
σM 6= σN, hence there are uncountably many ≡α+n classes in Mod(φ).

(iii)⇒ (i): If φ is not scattered, then for some α < ω1, there are uncountably
many ≡α classes on Mod(φ), and since ≡α is a Borel equivalence relation, it
follows from Silver’s theorem, that φ has perfectly many models.

(i) ⇒ (iii): Suppose S ⊆Mod(φ) is a perfect set of pairwise nonisomorphic
models. We proceed similarily to the proof of Lemma 3.2.3.

Let W ⊆ Mod(φ)2 × N × N be the set of all tuples (M,N, R, z), where z
and the linear order R are as in the specified proof.

Consider the set of all R such that for some M,N ∈ S and some z ∈ N ,
(M,N, R, z) is in W , where M 6= N and (x, ∅, ∅) ∈ z, for all x ∈ ω. As in 3.2.3
we argue that it is an analytic set of well orders and hence, by Σ1

1 bounding is
bounded by some α < ω1. It follows that there are uncountably many ≡α+1

classes in Mod(φ) and thus, by (ii) φ is not scattered.

Remark. With a slight modification of the proof one can show that φ is scat-
tered if and only if for all n < ω and all α < ω1, there are at most ℵ0 many ∼α
classes in Mod(φ)× ωn.
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We also have the necessary knowledge to give a second proof of Morley’s
theorem: If φ is scattered, then for every α < ω1 there are ≤ ℵ0 many isomor-
phism classes of models of φ with Scott rank ≤ α, since we have already seen
that for these models the isomorphism relation is identical to the ∼α+ω-relation.
Therefore, I(φ,ℵ0) ≤ ℵ1 · ℵ0 = ℵ1.

Definition. Let T ∪ {φ(v)} be a set of first order formulas of an arbitrary
vocabulary, where T is a theory.

� φ is called upwards absolute for models of T if for all models M,N of T
such that M ⊂ N we have

M |= φ(a) implies N |= φ(a),

for all a in M.

� φ is called downwards absolute if for all models M,N of T such that
M ⊂ N and all a in M , we have

N |= φ(a) implies M |= φ(a).

� φ is called absolute for models of T if it is both downwards and upwards
absolute.

Definition. In the language of set theory the set of ∆0 formulas is the smallest
set S of first order formulas such that

(1) S contains all atomic formulas.

(2) S is closed under negation and conjunction.

(3) If ψ ∈ S and x, y are variables, then ∀x(x ∈ y → ψ) and ∃x(x ∈ y ∧ ψ)
are in S.

For n < ω, we can now recursively define a hierachy of first order formulas:

� A formula φ is Σ0 or Π0 if it is ∆0.

� φ is Σn+1 if φ is of the form ∃vψ(v), where ψ(v) is Πn.

� φ is Πn+1 if it is of the form ∀vψ(v), where ψ(v) is Σn.

A formula φ is called ∆n if modulo ZFC it is equivalent to both a Σn and a
Πn formula.

One important result which will not be proved here is

Theorem 3.3.3. (Shoenfield’s Absoluteness Theorem) If M ⊆ N are transitive
models of ZFC, (ω1)N ⊆M and P ∈M is a Polish space of the form N y ×ωl,
where y ∈ ω + 1 and l ∈ ω, then every Σ1

2 relation on P is absolute between M
and N .

This implies that if M ⊆ N are transitive models of ZFC, (ω1)N ⊆M , φ(v)
is a Σ2 formula and a ∈ P<ω, where P ∈ M is Polish as in the theorem, such
that φ(a) defines a Σ1

2 relation on P and all unbounded quantifiers range over
elements of P only, then

M |= φ(a)⇔ N |= φ(a).
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An important consequence of this result is that the property of being a scat-
tered sentence of Lω1,ω is absolute for the transitive models of ZFC which are
considered in this thesis, as it can be expressed by a Σ2 formula φ(v) stating

”v is a code for a Lω1,ω sentence and there is a code T for a binary tree such
that every distinct branches f1, f2 of T are codes for nonisomorphic elements

of Mod(v).”

Lemma 3.3.4. If φ ∈ Lω1,ω(τ) is not scattered, then there is a perfect set of
pairwise nonisomorphic models of φ all of which have the same Scott rank.

Proof. It suffices to show that the lemma holds in countable transitive models
of ZFC.

Let M be such a model and φ ∈M be a non scattered sentence of Lω1,ω(τ).
Choose a forcing notion P ∈M which preserves cardinals such that for a P

generic G ⊆ P
M [G] |= c > ℵ1,

where M [G] is the generic extension of M .
By Shoenfield’s absoluteness theorem, φ is not scattered in M [G], hence

there is a perfect set S of pairwise nonisomorphic models in Mod(φ)M [G].
Recall that for every α < ω1 the set of all A ∈ Mod(φ) with sr(A) = α is

Borel.
In M [G] we have |S| > ℵ1 thus by the perfect set theorem for some α < ω1

there is a perfect set of pairwise nonisomorphic models with Scott rank α. This
can be expressed with a Σ2 formula and some real f ∈ NM which codes a well
order on ω of order type α. Here we are using the fact that the ∼α relation is
Borel.

Since ωM1 = ω
M [G]
1 and by absoluteness, φ has perfectly many models of

Scott rank α in M .

It is for absoluteness reasons that we prefer V C3. However, we have

Proposition 3.3.5. If ZFC ` V C2 then ZFC ` V C3.

Proof. We show that if ZFC proves V C2, then V C3 holds in all countable
transitive models of ZFC.

Suppose this is not so and let M be a countable transitive model of ZFC
such that for some φ ∈ Lω1,ω(τ) ∩M

M |= I(φ,ℵ0) > ℵ0,

but φ does not have perfectly many models in M . It follows that φ is scattered
and by Morley’s theorem

M |= I(φ,ℵ0) = ℵ1.

Let P ∈ M be a forcing notion which preserves cardinals such that for a P
generic filter G ⊆ P

M [G] |= c > ℵ1.

By absoluteness, φ is scattered in M [G] and has uncountably many isomorphism
types.
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Since M [G] |= ZFC, it follows that V C2 holds in the generic extension and
therefore

M [G] |= I(φ,ℵ0) = c.

But then by Morley’s theorem, φ has perfectly many models and by absoluteness
φ is not scattered in M , a contradiction.

4 Uncountable Models of Vaught Counter Ex-
amples

Unless stated otherwise, the proofs presented in this section are based on [12].
Since V C3 is still an open problem, we can ask what consequences can be

derived if it fails.

Definition. A counterexample to V C3, or simply a VCE, is a scattered sentence
φ ∈ Lω1,ω(τ) with I(φ,ℵ0) = ℵ1.

Let us first check that every VCE has an uncountable model.

4.1 Minimal Vaught Counter Examples

Definition. Let φ ∈ Lω1,ω(τ) be a VCE.

(1) We call φ a minimal VCE if for all sentences σ ∈ Lω1,ω(τ) either

φ ∧ σ, or φ ∧ ¬σ

has uncountably many countable models but not both.

(2) Let n < ω and ψ(v1, . . . , vn) ∈ Lω1,ω(τ). We say ψ(v) is φ-large if

φ ∧ ∃vψ(v)

has uncountably many countable models. If for all n-formulas χ(v) of
Lω1,ω(τ), either ψ ∧ χ or ψ ∧ ¬χ is φ-large but not both, then ψ(v) is
called minimal φ-large.

Lemma 4.1.1. Suppose φ1 ∈ Lω1,ω is a VCE. Then there is a minimal VCE
φ0 such that φ0 |= φ1.

Proof. Assume φ1 is not implied by a minimal VCE. We construct a countable
fragment A with uncountably many types containing φ1.

Let C be a countable set of new constants, τ ′ := τ ∪ C and define Σ as the
set of all σ with the following properties:

(i) σ is a finite set of τ ′-sentences in which only finitely many new constants
occur.

(ii) σ ∪ {φ1} has uncontably many countable models.

It is not difficult to check that Σ is a consistency property, the case (C4) uses
the regularity of ω1.
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Next, we choose an enumeration of C, a well order of Lω1,ω and construct
a binary tree T := {σs : s ∈ 2<ω} and a sequence (An : n < ω) of countable
fragments. Each σs will be a finite set of τ ′-sentences containing φ1.

Let V be a countable set of variables containing all variables of φ1, choose
an enumeration (tn : n < ω) of all τ ′-terms with variables in V and a function
h : ω 7→ ω × ω , such that h−1(m,n) is infinite, for every (m,n) ∈ ω × ω.

For every countable fragment A ∈ Lω1,ω(τ ′) with variables in V, let fA be
a function from ω into the set of all sentences of A, such that every sentence
ψ ∈ A has an infinite preimage. T is defined recursively on every level:

� σ∅ :=< φ > and let A0 be the smallest fragment containing φ.

� Suppose n < ω, σs is defined for s ∈n 2 and h(n) = (k1, k2). Let

χn :=

{
fAk1 (k2), k1 ≤ n
fAn(k2), else

Now extend σs to σ′s as follows: If σs + χn ∈ Σ, then χn ∈ σ′s, otherwise
¬χn ∈ σ′s. Furthermore, if σs + χn ∈ Σ and

.) χn = ¬ψ, then ∼ ψ ∈ σ′s.

.) χn =
∧
ψ∈F ψ, then the smallest ψ ∈ F \ σs is in σ′s.

.) χn =
∨
ψ∈F , then ψ ∈ σ′s, where ψ ∈ F is minimal such that σs+ψ ∈

Σ.

.) χn = ∀xψ(v), then ψ(c) ∈ σ′s, where c is the minimal constant of τ ′

such that ψ(c) 6∈ σs.
.) χn = ∃vψ(v), then ψ(c) ∈ σ′s, where c is the minimal new constant

not occurring in σs.

Then add tn = c to σ′s, where c is the minimal new constant not occurring
in σ′s. By this construction, σ′s ∈ Σ, and if we define

γ(c1, . . . , ck) :=
∧
ψ∈σ′s

ψ,

where c1, . . . , ck are all new constants occurring in σ′s, then γ := ∃vγ(v)
is a φ1-large sentence ∈ Lω1,ω(τ) and since γ |= φ1, γ is a VCE, which by
our assumption is not minimal. Hence there is a Lω1,ω(τ)-sentence ρ with
variables in V, such that γ ∧ ρ and γ ∧ ¬ρ are φ1-large. Then define

σsa0 := σ′s ∪ {γ ∧ ρ}, and σsa1 := σ′s ∪ {γ ∧ ¬ρ}.

� Let An+1 be the smallest fragment of Lω1,ω(τ ′) containing

{σs : s ∈n+1 2}.

This completes the definition of T . Let f ∈ω 2. Then by our construction, the
set

P (
⋃
n<ω

σf�n)
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is a consistency property, hence Bf :=
⋃
n<ω σf�n is satisfiable.

Now consider the countable fragment

A :=
⋃
n<ω

An ∩ Lω1,ω(τ).

If f, g ∈ω 2 are distinct, then Bf∩A, Bg∩A are distinct, complete and satisfiable
types containing φ1, a contradiction to φ1 being scattered.

Corollary 4.1.2. If φ is a VCE and ψ(v1, . . . , vk) is a φ-large k-formula, then
there is a minimal φ-large formula ψ2(v) such that ψ2 |= ψ.

Proof. Add k new constants c1, . . . , ck, thereby getting a new vocabulary τ ′.
Then φ∧ ψ(c1, . . . , ck) is a VCE in Lω1,ω(τ ′). By the previous Lemma, there is
a minimal VCE γ(c) sucht that γ(c) |= φ ∧ ψ(c). Clearly, ψ2 := γ(v1, . . . , vk) is
minimal φ-large.

Now we have the necessary knowledge to show that every VCE has an un-
countable model with many types.

Theorem 4.1.3. If φ ∈ Lω1,ω is a VCE, then there is a model N of φ which
has cardinality ℵ1 and is not ≡∞,ω equivalent to any countable model.

Proof. By Lemma 4.1.1, we can assume that φ is a minimal VCE. Our goal is
to define a chain of special countable fragments (Aα : α < ω1) and a chain of
countable models of φ (Mα : α < ω1) such that for α < β, Mα is a proper Aα-
elementary submodel of Mβ . The limit of this model chain will be the desired
model.

Let A0 be a countable fragment containig φ such that for all n < ω and all
φ-large formulas ψ(v1, . . . , vn), there is a minimal φ-large formula ψ′(v) ∈ A0

implying ψ, and let T0 be the set of all φ-large sentences of A0. Because φ is a
minimal VCE and ℵ1 is regular, T0 is a satisfiable A0-complete theory.

If ψ(v) ∈ A0 is satisfiable with T0, then for some minimal φ-large ψ′(v) ∈ A,
we have ∀v(ψ′(v)→ ψ(v)) ∈ T0, hence ψ′(v) |=T0

ψ(v).
If ψ′(v) ∈ A0 is a minimal φ-large n-formula and ψ(v) ∈ A is an arbitrary

n-formula such that ψ′ ∧ ψ is φ-large, then ¬∃v(ψ′ ∧ ¬ψ) ∈ T0, thus ψ′ |=T0
ψ.

This means that for all n < ω, the minimal φ-large n-formulas are exactly the
n-complete formulas over T0 and every n-formula in A0 which satisfiable with
T0 is implied by a n-complete formulas. By Lemma 2.5.1, T0 has a countable
A0-prime model M0.

Given Aα countable, Tα ⊆ Aα as the set of all φ-large sentences and Mα

Aα-prime, we let Aα+1 be a countable fragment such that

� Aα ∪ {ΨMα} ⊆ Aα+1, where ΨMα is the Scott sentence of Mα.

� For all n < ω, every φ-large n-formula is implied by a minimal φ-large
n-formula in Aα+1.

Then let Tα+1 be the set of all φ-large sentences of Aα+1.
As in the case for α = 0, one can show that Tα+1 has a countableAα+1-prime

model, and since Tα ⊆ Tα+1, we can assume

Mα ≺Aα Mα+1.
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Furthermore, since ¬ΨMα
∈ Tα+1, Mα+1 is a proper extension.

At limit stage α let Aα :=
⋃
β<αAα, Tα :=

⋃
β<α Tβ and Mα :=

⋃
β<αMβ .

Clearly, Mα is countable and Mα |= Tα. If n < ω, and a ∈ Mn
α , then for some

β < α, a ∈ Mn
β . Since Mβ is Aβ-atomic, there is a minimal φ-large formula

ψ(v), such that Mα |= ψ(a). Notice that ψ(v) is also n-complete over Tα, hence
Mα is Aα-atomic and therefore prime.

Now let N :=
⋃
α<ω1

Mα and T :=
⋃
α<ω1

Tα. Then φ ∈ T , N |= T and
|N | = ℵ1.

Suppose there is a countable model M, such that N ≡∞,ω M. Then by the
downward Löwenheim-Skolem theorem, there is α < ω1 such that Mα ≡∞,ω M,
hence by Scott’s isomorphism theorem, we have N |= ΨMα , a contradiction,
since ¬ΨMα

∈ T .

Every uncountable model of a VCE φ is A-small, for every countable frag-
ment A ⊆ Lω1,ω, because φ is scattered. Thus, using theorem 2.4.6, we get

Corollary 4.1.4. Every VCE has at least ℵ1 many small models of cardinality
ℵ1.

Proof. Let φ be a VCE. The existence of a small uncountable model is clear.
Since φ is scattered, it has only countably many isomorphism types of Scott

rank α, for every α < ω1. Hence for every α < ω1, there is a countable set Fα
of Scott sentences such that every countable model of φ with Scott rank ≤ α
satisfies exactly one sentence of Fα.

Now let
ρα := φ ∧ ¬(

∨
ψ∈Fα

ψ).

Then ρα is also a VCE, which has a small model N of cardinality ℵ1. Clearly,
every model of ρα is also a model of φ and by definition has Scott rank > α.

4.2 Hjorth’s Theorem

We know that an infinitary sentence with an infinite model does not need to
have a model in every infinite cardinality. Gerg Hjorth showed in[6] that if V C3

fails, then there must be a VCE with no models in any cardinality greater than
ℵ1. For this he used a descriptive set theoretic approach but there is also a
model theoretic one which will be presented here.

Definition. Let K be a class of finite τ -structures. We say

(Em) K has the joint embedding property if for all A1, A2 ∈ K, there is B ∈ K
and embeddings g1 : A1 7→ B, g2 : A2 7→ B.

(Am) K has the amalgamation property if for all A,B1, B2 ∈ K with embeddings
fi : A 7→ Bi, 1 ≤ i ≤ 2, there is C ∈ K with embeddings gi : Bi 7→ C such
that g1 ◦ f1 = g2 ◦ f2.

(Dam) K has the disjoint or strong amalgamation property if it satisfies (Am),
and for the embeddings gi, 1 ≤ i ≤ 2, we have

g1(B1 \ im(f1)) ∩ g2(B2 \ im(f2)) = ∅.
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Example 4.2.1. Let K be the class of all finite linear orders. Then K satisfies
(Em) and (Dam).

Example 4.2.2. The class K of finite groups satisfies (Em,Dam):

(Em): If A,B ∈ K, then the direct product C := A × B is also in K and
clearly, there are monomorphisms A ↪→ C and B ↪→ C.

(Dam): Let (A, ◦), (B1, ◦), (B2, ∗) ∈ K, A ⊂ Bi, for 1 ≤ i ≤ 2, and A = B1∩B2.
Consider the group C given by the presentation < S|R >, where S := B1 ∪B2

is the set of generators and R the set of relations defined by:

� xyz−1 = 1, for x, y, z ∈ B1 and x ◦ y = z or x, y, z ∈ B2 and x ∗ y = z.

� xyx−1y−1 = 1, for x ∈ B1 \A and y ∈ B2 \A.

It is easy to show that C ∈ K and that it is isomorphic to some C ′ ∈ K which
contains both B1 and B2 as subgroups.

Definition. Let K be a class of finite structures. A model M := 〈M, . . . 〉 is
called K-generic if

(G1) For all finite F ⊆M , there is A ∈ K such that F ⊆ A ⊂M.

(G2) For all A ∈ K, there is an embedding from A into M.

(G3) If A,B ∈ K, A ⊂ B and A ⊂M, then there is B′ ∈ K and an isomorphism
f : B 7→ B′ such that B′ ⊂M and f � A = idA.

Proposition 4.2.3. Suppose K is a class of finite τ -structures which satisfies
(Em,Am), is closed under isomorphism and has at most ℵ0 many isomorphism
types. Then there is a countable K-generic model which is unique up to isomor-
phism.

Proof. Let (Bn : n < ω) be an enumeration of representatives of all isomorphism
types of K and K′ be the set of all modelsA such that A ⊂ ω andA is isomorphic
to Bk, for some k < ω. Clearly, K′ is countable, so let (An : n < ω) be an
enumeration of K′.

Let i : ω 7→ ω × ω, n 7→ (i0(n), i1(n)) be a map such that for all m,n ∈ ω,
(m,n) has an infinite preimage.

Using (Em), we can choose C0 ∈ K such that C0 ⊂ ω and Ai0(0),Ai1(0) can
be embedded into it.

Suppose we have Cn. There are two possibilities:

(i) Ai0(n+1) ⊂ Cn and Ai0(n+1) ⊂ Ai1(n+1). Then by (Am) there is Cn+1 ∈ K
such that Cn+1 ⊂ ω, Cn ⊂ Cn+1 and there is an embedding from Ai1(n+1)

into Cn+1 which fixes Ai0(n+1).

(ii) If we are not in case (i), then use (Em) and choose Cn+1 ∈ K such that
Cn+1 ⊂ ω, Cn ⊂ Cn+1 and Ai0(n+1),Ai1(n+1) can be embedded into Cn+1.

Let M :=
⋃
n<ω Cn. It is easy to check that M is countable and satisfies (G1-

G3), hence it is K-generic.
The proof that two countableK-generic models are isomorphic uses a straight

forward back and forth argument. For example the extension of a given finite
embedding uses (G3).
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Remark. Under the conditions of the previous proposition we can express (G1-
G3) with a single sentence φK ∈ Lω1,ω(τ), thus a model N satisfies φK if and
only if it is K-generic. We call φK the generic sentence of K. In particular, φK
is ω-categorical.

For the rest of this subsection, the vocabulary τ is countable and has no con-
stant symbols. Every class K of finite τ -structures is closed under isomorphism
and has exactly ℵ0 many isomorphism types.

Lemma 4.2.4. Suppose the class K satisfies (Dam) and has the following strong
version of the joint embedding property.

(Em*): For all A,B ∈ K, there is C ∈ K and embeddings

f : A 7→ C, g : B 7→ C

such that im(f)∩ im(g) = ∅. Then there is a K-generic model of cardinality ℵ1.

Proof. We expand the vocabulary to τ ′ by adding a new unary function symbol
F and define K′ as the class of all finite τ ′-models A such that A � τ ∈ K.
Then it follows easily that K′ has only countably many isomorphism types and
satisfies (Em,Am). By proposition 4.2.3, there is a countable K′-generic model
M′ and it follows from the previous proof that |M′| = ℵ0.

Then M := M′ � τ is K-generic. Let us check for example (G3): Suppose
A,B ∈ K, A ⊂ B and A ⊂M. By (G1) for M′, there is A′ ⊂M′ containing A
as a τ -submodel. Define A∗ := A′ � τ
K satisfies (Dam), hence there is C ∈ K, such that B,A∗ ⊂ C and

(B \A) ∩ (A∗ \A) = ∅.

C can easily be extended to C ′ ∈ K′ such that A′ ⊂ C ′. Now apply (G3) for
M′ and then restrict to τ , keeping in mind that K is closed under isomorphism.

Now we construct a proper embedding from M into itself. Let f := FM′ .
Start with an arbitrary A ∈ K such that A ⊂ M. By interpreting the

new function symbol as the idA we get an element A′ ∈ K′ which by (G2)
can be embedded into M′. Using (G2,G3), one can extend this function to a
τ -embedding from M into itself. The image of this embedding is a subset of

{x ∈M : f(x) = x}

which can easily be shown to be a proper subset.
Thus there is a chain (Mα : α < ω1) of countable K-generic models with

Mα $Mβ ,

whenever α < β < ω1. If we define N :=
⋃
α<ω1

Mα and φK as the τ -sentence
describing (G1-G3), then it is easy to show that |N| = ℵ1 and N |= φK, hence
N is also K-generic.

With this theoretic foundation let us consider the following vocabulary τ0:
For every k < ω, τ0 has a binary relation symbol Sk and a (k + 2)-ary relation
symbol Rk. We define K0 as the class of finite τ0-structures satisfying the
following sentences:

(A1) ∀x∀y[(
∨
i<ω Sixy) ∧

∧
i<ω(Sixy →

∧
j 6=i ¬Sjxy)].

39



(A2) For every k < ω, the sentence

∀a0∀a1∀b1 . . . ∀bk[Rka0a1b→ (a0 6= a1 ∧
∧
i 6=j

(bi 6= bj))].

(A3) For every k < ω and every permutation σ on {0, . . . k − 1}, the sentence

∀a0∀a1∀b(Rka0a1b↔ Rka0a1σ(b)).

(A4) For every k < ω, the sentence

∀a0∀a1∀b[Rka0a1b→
∧
i<ω

(

k∧
j=1

(Sia0bj ↔ Sia1bj))].

(A5) For every k < ω, the sentence

∀a0∀a1∀b∀c[(Rka0a1b ∧
k∧
j=1

(c 6= bj))→
∧
i<ω

(Sia0c→ ¬Sia1c)].

(A6) ∀a0∀a1[(a0 6= a1)→
∨
k<ω(∃b1 . . . ∃bkRka0a1b)].

This means that every element of K0 is a finite, complete, colored and directed
graph in which two distinct elements are connected by exactly two directed
edges.

If A ∈ K0 and a0 6= a1 are in A, then the set of all points b1, . . . bk in A which
are connected to a0 and a1 with the same color is finite. For these elements, we
have RAk a0a1b.

Proposition 4.2.5. K0 is closed under isomorphism, it has ℵ0 many isomor-
phism types and satisfies (Em*) and (Dam).

Proof. Clearly, K0 is closed under isomorphism, and since there are exactly
ℵ0 many finite models in K0 with universe contained in ω, we have ℵ0 many
isomorphism types.

Let us check (Dam) for example: Suppose A,B1,B2 ∈ K0 and without loss
of generality A = B1∩B2 and A ⊂ B1,B2. Define C := B1∪B2 and S as the set
of all i < ω, such that for some (u, v) ∈ B2

1 ∪B2
2 , we have SB1

i (uv) or SB2
i (uv).

Then let W := (B1 \B2)× (B2 \B1)∪ (B2 \B1)× (B1 \B2) and H : W 7→ ω \S
be injective.

We interpret the relation symbols on C as follows:

� For i < ω and (u, v) ∈ C2,

SCi (u, v) :⇔


(u, v) ∈ B2

1 and SB1
i (u, v)

(u, v) ∈ B2
2 and SB2

i (u, v)

(u, v) ∈W and i = H(u, v).

� For k < ω u, v,∈ C, where u 6= v, and b1, . . . , bk ∈ C are distinct, let
RCk(uvb) if {b1, . . . , bk} is the set of all b ∈ C, such that for all i < ω

SCi (ub)⇔ SCi (vb).
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Clearly, B1,B2 ⊂ C and C ∈ K0.
The argument for (Em*) is similar.

Lemma 4.2.6. Let φK0 be the generic sentence of K0. Then φK0 has a model
of cardinality ℵ1 but not of any greater cardinality.

Proof. By the previous proposition and Lemma 4.2.4, φK0
has a model of car-

dinality ℵ1.
Suppose there is a model N := 〈N, . . . 〉 of φK0

with cardinality greater
than ℵ1. By the downward Löwenheim-Skolem theorem there is a K0-generic
submodel M := 〈M, . . . 〉 of N with cardinality ℵ1.

Let c ∈ N \M . Then the function H : M 7→ ω, defined by a 7→ i, where
SN
i (ac), is injective, which is a contradiction, since M is uncountable.

Next, we expand the vocabulary τ0 to τ1 by adding two unary predicate
symbols P,Q and a binary relation symbol F .

Let K1 be the set of all finite τ1- structures A with the following properties:

� The universe of A is the disjont union of PA and QA.

� The symbols of τ0 are interpreted as relations on PA only.

� PA � τ0 is either empty or an element of K0.

� FA is a function from PA into QA.

Proposition 4.2.7.

(i) K1 has ℵ0 many isomorphism types, is closed under isomorphism and
satisfies (Em*,Dam). Hence there is a K1-generic model of cardinality
ℵ1.

(ii) If M is a K1-generic model, then |QM| ≥ ℵ0, FM is a surjective function
from PM onto QM and PM � τ0 is K0-generic.

Proof. The proof of (i) is similar to that of proposition 4.2.5.
(ii): Let M := 〈M, . . . 〉 be K1-generic. QM is infinite, since for every k < ω,

there is a structure A ∈ K1 such that PA = ∅ and |QA| = k which by (G2) can
be embedded into M.

For the surjectivity of fM we use the generic property (G3): Let c ∈ QM.
Then the model A with universe {c}, QA := {c} and all other relation symbols
interpreted as ∅ is a submodel of M.

Let b be an element not in M , and define the model B ∈ K1 as follows:

� PB := {b} and QB := {c}.

� FB := (b, c)

� SB1 (b, b), and all other relation symbols are interpreted as ∅.

Then A ⊂ B, and by applying (G3) we see that c ∈ im(FM).
The proof that PM � τ0 is K0-generic is a straight forward check of (G1-G3)

and can be done by expanding structures of K0 to ones in K1 and then use the
genericity of M.
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Remark. By slightly modifying the construction of the proper embedding of a
countable K1-generic model into itself - shown in the proof of Lemma 4.2.4 -, one
can show that there is a K1-generic model N of cardinality ℵ1 with |QN| = ℵ0.
One simply adds the new unary function symbol G and considers the class K′1
of all finite models A in the new vocabulary such that A � τ0 ∈ K0 or empty and
GA � QA = idQA . It is then easy to construct the embedding i of a countable
K1-generic model M into itself such that i(PM) ( PM and i(QM) = QM.

Corollary 4.2.8. The K1-generic sentence φK1
has no models of cardinality

greater than ℵ1.

Proof. If N is a model of φK1
of cardinality greater than ℵ1, then by (ii) of the

previous proposition, |PN| > ℵ1 and therefore φK0
has a model of cardinality

greater than ℵ1, a contradiction.

Definition. Let M := 〈M, . . . 〉 be a τ -structure and A ⊆ M . A is called a
set of absolute indiscernibles if every permutation of A can be extended to an
automorphism of M.

Example 4.2.9. Let K := (0, 1,+, ∗) be a field and the vocabulary τ consist
of a constant symbol, a binary function symbol and for every a ∈ K, a unary
function symbol fa.

We can see every K-vector space as a τ -model V := 〈V, . . . 〉, where the unary
function symbols are interpreted as the scalar multiplications.

Then every linearly independent subset X ⊆ V is a set of absolute indis-
cernibles.

Proposition 4.2.10. If M is a countable K1-generic model, then QM is a set
of absolute indiscernibles.

Proof. This can be shown with a back and forth argument. We only present
one direction.

Suppose π : QM 7→ QM is bijective, A ∈ K1 is a submodel of M and
i : A 7→M is an embedding such that

i � QA = π � QA.

Let A′ := imi(A), a ∈ PM \ A′ and q ∈ QM \ A′. By (G1) there is a B ∈ K1

with A′ ⊂ B ⊂ M and a, q ∈ B. Using (G3) it is easy to find a B2 ∈ K1 such
that A ⊂ B2 ⊂M, QB2 = π−1(QB) and there is an isomorphism from B2 onto
B which extends i and agrees with π on QB2 .

We can now prove

Theorem 4.2.11. (Hjorth) If V C3 fails, then there is a VCE which has only
models of cardinality ℵ0 and ℵ1.

Proof. Let µ be a countable vocabulary disjoint from τ1 and σ ∈ Lω1,ω(µ) be a
VCE. Define τ2 := τ1 ∪ µ and consider the τ2-sentence ψ stating the following:

� φK1
, the K1-generic sentence.

� For every constant symbol c ∈ µ, the sentence Qc.
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� For every k < ω+ and every k-ary relation symbol R ∈ µ, the sentence

∀v[R(v)→
k∧
i=1

(Q(vi))].

� For every k < ω+ and every k-ary function symbol G of µ,

∀v[(

k∧
i=1

(Pvi → G(v) = v1)) ∧ ([

k∧
i=1

Qvi]→ Q(Gv))].

� σQ, which is the sentence σ relativised to the predicate Q, or in other
words, the set defined by the formula Qv is a µ-model of σ.

So in essence every model of ψ is K1-generic when restricted to τ1 and the µ-
structure is only interesting on the Q-predicate. Furthermore, the Q-predicate
is a model of σ, seen as a µ-structure.

Since we know that there is a countable K1-generic model M and |QM| = ℵ0,
we can easily interpred every countable model of σ in QM, thereby getting a
model of ψ.

Claim: If M1,M2 ∈Mod(ψ), then M1
∼= M2 if and only if

QM1 � µ ∼= QM2 � µ.

(Proof of the claim.) The direction (⇒) is clear.
The direction (⇐) follows from the fact that if M ∈Mod(ψ) then M � τ1 is

a model of φK1 and QM is a set of absolute indiscernibles.(q.e.d.-Claim)
Since I(σ,ℵ0) = ℵ1, we have I(ψ,ℵ0) = ℵ1.
Furthermore, ψ does not have a perfect set of pairwise non isomorphic count-

able models, because otherwise σ would have one too. Thus ψ is a VCE.
Using the results of the previous subsection or the remark to proposition 4.2.7,

we see that ψ has a model of cardinality ℵ1 but of no greater cardinality, since
ψ |= φK1 .

4.3 Harrington’s Theorem

We now take a look at what can be said about the Scott ranks of uncountable
models of a VCE. Leo Harrington was the first to prove that the Scott ranks of
such models are unbounded below ℵ2 but the proof presented here is based on
[1].

Recall from section 3.3 that for a scattered sentence φ ∈ Lω1,ω(τ) we defined
a chain of countable fragments (Aφ,α : α < ω1). Now suppose that φ is a
VCE. We define a tree of Lω1,ω(τ)-theories (T , <), where t1 < t2 if t1 $ t2, for
t1, t2 ∈ T . T is the set of all theories t which satisfy the following conditions:

(1) There is α < ω1 and M ∈ Mod(φ) such that t = ThAφ,α(M), the set of
all sentences of Aφ,α which are true in M.

(2) If α < ω1 and M ∈Mod(φ) such that t = ThAφ,α(M), then for all β < α,
t ∩Aφ,β is not ω-categorical.
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T is easily seen to be a tree and is called the Morley tree of φ.
One can easily check that if t ∈ T , α < ω1 and M ∈ Mod(φ) such that

t = ThAφ,α(M), then for all β < α, t ∩Aφ,β ∈ T . In this case α is called the
height of t, notated by hgt(t). We define Tα as the set of all t ∈ T with height
α.

First, we present some easy results about the Morley tree.

Proposition 4.3.1. For every α < ω1,

(i) Tα 6= ∅.

(ii) If t ∈ Tα, then t is Aφ,α-atomic, that is it has a countable Aφ,α-prime
model.

Proof. (i): Let α < ω1. Since φ is a VCE, it is scattered, hence there is a
complete theory t ⊆ Aφ,α and an uncountable set D ⊆Mod(φ) of pairwise non
isomorphic models such that for all M,N ∈ D, ThAφ,α(M) = t = ThAφ,α(N),
which means that t is not ω-categorical.

(ii): This follows immediately from lemma 2.5.3 and the fact that φ is
scattered.

Corollary 4.3.2. If λ < ω1 is a limit ordinal and (tβ : β < λ) is a chain of
theories, where tβ ∈ Tβ, for β < λ, then

⋃
β<λ tβ ∈ Tλ.

Proof. Every tβ is Aφ,β-atomic and λ is countable, hence there is a sequence
(βn : n < ω) of ordinals in λ which is cofinal in λ and a sequence (Mn : n < ω)
in Mod(φ) such that for all n < ω, Mn |= tβn and

Mm ≺Aφ,βm Mn,

for m < n < ω. If we set

N :=
⋃
n<ω

Mn, and tλ :=
⋃
n<ω

tβn ,

then tλ =
⋃
β<λ tβ , N |= tλ and since no tβ is ω-categorical, we have tλ ∈ Tλ.

Lemma 4.3.3. (a) If M ∈Mod(φ), then there is a terminal node t ∈ T such
that M |= t.

(b) Let λ < ω1 be a limit ordinlal 6= ∅. There is β < λ and t ∈ Tβ such that t
has a unique extension in Tλ.

Proof. (a): Let α := sr(M) + ω. By proposition 3.3.1, we know that for every
N ∈Mod(φ),

ThAφ,α(M) = ThAφ,α(N) implies M ≡α N,

which is equivalent to M ∼= N. Hence ThAφ,α(M) is ω-categorical. If we choose
γ < ω1 minimal with that property, we have the desired terminal node in Tγ .

(b): If this is not so, then by using the previous corollary, we can easily build
a binary tree S of elements of T with the following properties:

� Every element of S has height < λ.

� The union of every branch of S is in Tλ.
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But then there are c many complete Aφ,λ-types containing φ, a contradiction.

Corollary 4.3.4. There is t ∈ T and a club set S ⊆ ω1, such that t has a
unique extension in Tα, for every α ∈ S.

Proof. Let L be the set of all limit ordinals 6= ∅ in ω1. By the previous lemma,
there is a regressive function f on L such that for every λ ∈ L, there is t ∈ Tf(λ)

with a unique extension in Tλ.
Using Fodor’s theorem we find that there is a stationary set L′ ⊆ L on which

f is constant with some value β < ω1.
Since φ is scattered and Aφ,β is countable, there is some t ∈ Tβ which has a

unique extension in Tα for uncountably many α ∈ L′. Let S′ be the set of those
α. Then S defined as the closure of S′ in ω1 is club, and one easily checks that
t has a unique extension in Tα, for every α ∈ S.

Lemma 4.3.5. If λ < ω1 is a limit ordinal 6= ∅, t ∈ Tλ and M ∈Mod(φ) such
that M |= t, then sr(M) ≥ λ.

Proof. Let M = 〈M, . . . 〉 and suppose sr(M) = β < λ. We will derive a
contradiction by showing that tβ+2 := t ∩Aφ,β+2 is ω-categorical.

First, for an arbitrary model A := 〈A, . . . 〉, k < ω, a ∈ Ak and α < ω1, we
define

∆(A, a, α) := tpAAφ,α(a).

Using proposition 3.3.1 and the definition of the Scott rank, we conclude that
for every k < ω and every a ∈ Mk, the following sentence of Aφ,β+2 is true in
M and therefore in t:

σa,β := ∀v1 . . . ∀vk[
∧

ψ∈∆(M,a,β)

ψ(v)→
∧

ψ∈∆(M,a,β+1)

ψ(v)].

Now let N := 〈N, . . . 〉 be a model of tβ+2, k < ω, a ∈Mk, b ∈ Nk and suppose
(M; a) ∼β (N; b). Then the following sentence is true in M:

∃v[
∧

ψ∈∆(N,b,β)

ψ(v)].

By proposition 3.3.1, any k-tuple of M which satisfies ∆(N, b, β) is∼β-equivalent
to b and therefore to a. Hence ∆(M, a, β) = ∆(N, b, β) and since N |= σa,β , we
have ∆(M, a, β + 1) = ∆(N, b, β + 1) which implies (M; a) ∼β+1 (N; b).

Clearly, N |= tβ , thus M ≡β N and we can in a back and forth manner
construct an isomorphism from M onto N.

With these results we can now present a different proof of the fact that every
VCE has an uncountable model which is not small (recall theorem 4.1.3): By
corollary 4.3.4, the Morley tree T has a branch S of lenght ω1. For α < ω1, let
tα := S ∩ Tα.

It is not difficult to show that there is a cofinal sequence of limit ordinals
(βi : i < ω1) in ω1 and a chain (Mβi : i < ω1) of countable models with the
following properties:

� Mβi is a Aφ,βi-prime model of tβi .
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� If i < j < ω1, then Mβi is a porper Aφ,βi-elementary submodel of Mβj .

The limit N of this chain has cardinality ℵ1 and is a model of
⋃
S.

If N is small, then by the downward Löwenheim-Skolem theorem, for every
i < ω1, there is j such that i < j < ω1 and N ≡∞,ω Mβj . This is a contradiction
to the previous lemma, since then there is i < j < ω1 such that

Mβi ≡∞,ω N ≡∞,ω Mβj

and βj > sr(Mβi).

Proposition 4.3.6. If φ is a minimal VCE, then there is a club set C ⊆ ω1

such that whenever α ∈ C, M,N ∈Mod(φ) and sr(M), sr(N) ≥ α, then

M ≡α N.

Proof. If φ is a minimal VCE, then for every α < ω1, there is a unique tα ∈ Tα
with I(tα,ℵ0) = ℵ1. Now define C as the set of all non empty limit ordinals
α < ω1 such that every model M ∈ Mod(φ) with M 6|= tα has Scott rank less
than α. One can easily check that C is club.

If α ∈ C and M,N ∈ Mod(φ) with Scott rank ≥ α, then clearly, M and N
are models of tα which is a complete type of sentences in Aφ,α. Using proposi-
tion 3.3.1 we see that M ≡α N.

Before we look at the proof of the main result we need to make a small
detour to a model theoretic construction called a twisted direct limit.

Definition. Let τ, τ ′ be vocabularies and A,A′ be fragments of L∞,ω(τ) and
L∞,ω(τ ′) respectively. A fragment embedding from A into A′ is an injective
function π : A 7→ A′ with the following properties:

(1) π is the identity on atomic τ -formulas.

(2) π respects finite conjunctions and disjunctions.

(3) π(∀yψ) = ∀yπ(ψ) and π(∃yψ) = ∃yπ(ψ).

(4) If

φ =
∧
ψ∈F

ψ (or φ =
∨
ψ∈F

ψ)

is an infinite conjunction (disjunction), then π(φ) is an infinite conjunction
(disjunction) and for all ρ ∈ A, ρ ∈ F if and only if π(ρ) is a conjunct
(disjunct) of π(φ).

(5) For all ψ ∈ A, π(ψ) has the same free variables as ψ.

Now let µ be a limit ordinal and (τα : α < µ) be a chain of countable
fragments, i.e.

� For α < β < µ, τα ⊆ τβ .

� If λ is a nonempty limit ordinal in µ, then τλ =
⋃
α<λ τα.

Suppose that for each α < µ, we have a fragment Aα ⊆ L∞,ω(τα).
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Definition. (a) For all α ≤ β < µ, let πα,β : Aα 7→ Aβ be a fragment
embedding such that πα,α = idAα and for α ≤ β ≤ γ < µ,

πα,γ = πβ,γ ◦ πα,β .

Then (πα,β : α ≤ β < µ) is called a directed system of fragment embed-
dings.

(b) Let τ∗ :=
⋃
α<µ τα and A∗ ⊆ L∞,ω(τ∗) be a fragment. If in addition

to the directed system we have for every α < µ a fragment embedding
πα,∗ : Aα 7→ A∗ such that A∗ =

⋃
α<µ im(πα,∗) and for α ≤ β < µ,

πα,∗ = πβ,∗ ◦ πα,β ,

then (A∗, πα,∗ : α < µ) is called the direct limit of (πα,β : α ≤ β < µ).

(c) Suppose that in addition to a directed system of fragment embeddings we
have a sequence of models (Mα : α < µ), for all α ≤ β < µ a map

ρα,β : Mα 7→Mβ

such that Mα is a τα-structure, ρα,α = idMα
, for α ≤ β ≤ γ < µ,

ρα,γ = ρβ,γ ◦ ρα,β ,

and for all ψ(v) ∈ Aα,

Mα |= ψ(a) iff Mβ |= πα,β(ψ)(ρα,β(a)).

Then (Mα, πα,β , ρα,β : α ≤ β < µ) is called a twisted elementary system.

Lemma 4.3.7. Let (πα,β : α ≤ β < µ) be a directed system of fragment embed-
dings with limit (A∗, πα,∗ : α < µ) and (Mα, πα,β , ρα,β : α ≤ β < µ) be a twisted
elementary system. Then there is a τ∗-structure M∗ and maps (ρα,∗ : α < µ),
where ρα,∗ : Mα 7→M∗ with the following properties:

(i) ρα,∗ = ρβ,∗ ◦ ρα,β, for α ≤ β < µ.

(ii) M∗ =
⋃
α<µ im(ρα,∗).

(iii) For all α < µ, all k < ω, all k-formulas ψ(v) ∈ Aα and all a ∈Mk
α,

Mα |= ψ(a) iff M∗ |= πα,∗(ψ)(ρα,∗(a)).

Remark. Under the conditions of this Lemma the model M∗ is called the limit
of the twisted elementary system.

Proof. Let F be the set of all functions f such that

� dom(f) = [α, µ), for some α < µ.

� f(α) ∈Mα and for all β ∈ (α, µ), f(β) = ρα,β(f(α)).
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Clearly, im(f) ⊆
⋃
α<µMα, for every f ∈ F , and every element of F is uniquely

determined by its value on the minimum of the its domain.
Furthermore, if f, g ∈ F and for some β ∈ dom(f) ∩ dom(g), f(β) = g(β),

then f ⊆ g or g ⊆ f . This follows from the fact that each ρα,β is injective and
the commuting property (c) of the definition.

This implies that we have an equivalence relation on F defined by f ∼ g if
f ⊆ g or g ⊆ f .

The universe M∗ of the proposed τ∗-structure is the quotient space F/ ∼.
For f ∈ F , let [f ] denote the∼-equivalence class of f andm(f) := min(dom(f)).

Let α < µ. If c ∈ τα is a constant symbol, then cM∗ := [fc], where m(f) = α
and fc(α) = cMα .

If R ∈ τα is a k-ary relation symbol and f1, . . . , fk ∈ F , then

RM∗([f1] . . . [fk]) :⇔ RMγ (f1(γ), . . . fk(γ)),

where γ := max({m(f1), . . . ,m(fk), α}).
If G ∈ τα is a k-ary function symbol and f1, . . . , fk ∈ F , then again let

γ := max({m(f1), . . . ,m(fk), α}) and

GM∗([f1], . . . , [fk]) := [h],

where m(h) = γ and h(γ) = GMγ (f1(γ), . . . , fk(γ)).
Using the fact that fragment embeddings fix atomic formulas and the com-

muting property, one can easily show that these interpretations are well defined.
For α < µ, let ρα,∗ : Mα 7→M∗ be defined by ρα,∗(a) := [f ], where m(f) = α

and f(α) = a. Then properties (i) and (ii) follow immediately.
(iii) is proven via induction on formula complexity. The case for atomic

formulas uses the fact, that atomic formulas are fixed by fragment embeddings.
We only check the direction (⇐) if ψ is of the form ∃yφ(y, v).

Suppose α < µ, ψ ∈ Aα, a in Mα and g ∈ F such that

M∗ |= πα,∗(φ)([g], ρα,∗(a)).

Let β := m(g). If β ≤ α, then using the induction hypothesis, we have

Mα |= φ(g(α), a).

If α < β, then using the commuting property and the induction hypothesis, we
have

Mβ |= πα,β(φ)(g(β), ρα,β(a)).

Since fragment embeddings respect quantifiers and by the definition of a twisted
elementary system, it follows that

Mα |= ∃yφ(y, a).

Definition. A twisted elementary system (Mα, ρα,β : α ≤ β < µ) is called
atomic if each Mα is Aα-atomic and for all α ≤ β < µ and all ψ(v) ∈ Aα,

ψ is complete over Th(Mα) iff πα,β(ψ) is complete over Th(Mβ).
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Lemma 4.3.8. If µ < ω1 and (Mα, ρα,β , α ≤ β < µ) is a twisted elementary
atomic system, where all vocabularies, models and fragments are countable, then
its limit M∗ is A∗-atomic. Furthermore, for every α < µ and every formula
ψ(v) ∈ Aα, we have ψ(v) is complete over ThAα(Mα) iff πα,∗(ψ)(v) is complete
over ThA∗(M∗).

Proof. Clearly, M∗ is countable. Let ψ(v) ∈ Aα be complete, for some α < µ,
β < µ and χ(v) ∈ Aβ .

If β ≤ α and Mα |= ∀v(ψ(v) → πβ,α(χ)(v)), then by Lemma 4.3.7 and the
commuting property, M∗ |= ∀v(πα,∗(ψ)(v)→ πβ,∗(χ)(v)).

If β > α, then πα,β(ψ) is Aβ-complete. Suppose

Mβ |= ∀v(πα,β(ψ)(v)→ χ(v)).

Then as in the previous case, M∗ |= ∀v(πα,∗(ψ)(v) → πβ,∗(χ)(v)). Hence,
πα,∗(ψ)(v) is A∗-complete.

If for some α < µ and ψ ∈ Aα, πα,∗(ψ) is complete in A∗, then by the
definition of a fragment embedding and Lemma 4.3.7, it easily follows that ψ is
Aα-complete.

It also follows from the previous Lemma, that every k-tuple of M∗ satisfies
a A∗-complete formula.

Now we turn our attention back to the proof of Harrington’s theorem. The
main idea is to use a forcing notion P which collapses ℵ1 of the ground model.
With the help of the forcing relation we will define a new tree of theories T∗,
called the generic Morley tree. This tree will have height ω2 in the ground
model but in any P -generic extension T∗ will be the Morley tree. Therefore,
every theory of T∗ is satisfiable in the gerneric extension but it turns out that
it is also satisfiable in the ground model.

The forcing notion P is the set of all finite functions f with dom(f) ⊆ ω and
im(f) ⊆ ω1, also notated by Fn(ω, ω1). P is ordered by reverse inclusion, i.e.
p � q :⇔ q ⊆ p.

P has the ω2-c.c. that is all antichains j P have cardinality less than ℵ2,
hence it preserves cardinalities greater or equal ℵ2. It follows that if V is a
transitive ground model of ZFC and G is a P -generic filter, then in the generic

extension V[G] we have ℵV2 = ℵV[G]
1 . For the rest of this subsection we assume φ

to be a VCE of Lω1,ω(τ).

Definition. Let (P,R1), (Q,R2) be partial orders.

� A map f : P 7→ Q is called order preserving if for all p, s ∈ P , pR1s
implies f(p)R2f(s). We say f is an isomorphism of orders if it is bijective
and both f and f−1 are order preserving. An (order) automorphism on
P is an isomorphism from P onto itself.

� (P,≺) is called almost homogeneous if for all p, q ∈ P , there is an auto-
morphism f : P 7→ P such that f(p) and q are compatible.

The following facts are due to [11] and are easy to prove.

Fact 4.3.9. Fn(ω, ω1) is almost homogeneous.

49



Fact 4.3.10. Let (P,≺, 1) be an almost homogeneous partial order, p ∈ P ,
ψ(v1, . . . , vk) be a formula and a1, . . . , ak elements of the ground model V. Then
either 1  ψ(ǎ1, . . . , ǎk) or 1  ¬ψ(ǎ1, . . . , ǎk).

This enables us to prove

Lemma 4.3.11. In the ground model V, let A be a fragment of Lω2,ω(τ) with
cardinality less or equal ℵ1, φ ∈ A and ṫ be a P -name .

(1) If p ∈ P such that

p  ”ṫ is an Ǎ-complete and satisfiable theory containing φ̌”,

then there is q � p in P such that for all sentences ψ ∈ A, either q  ψ̌ ∈ ṫ
or q  ¬̌ψ ∈ ṫ. If G ⊆ P is a P -generic filter and p ∈ G, then ṫG is in V.

(2) If p ∈ P and n < ω such that

p  ”ṫ is a complete n-type of Ǎ containig φ̌”,

then there is q � p in P such that for all n-formulas ψ(v) ∈ A, either
q  ψ̌ ∈ ṫ, or q  ¬̌ψ ∈ ṫ.If G ⊆ P is a P -generic filter and p ∈ G, then
ṫG ∈ V.

Proof. (1): The argument takes place in the ground model V.
Suppose that no such q ∈ P exists. There is a transitive model N := 〈N, . . . 〉

of a large enough finite fragment of ZFC such that |N | = ℵ1, A, P, ṫ ∈ N and
the following holds in N:

� p  ”ṫ is an Ǎ-complete and satisfiable theory containing φ̌”.

� For all q � p in P , there is a sentence ψ ∈ A and r � q such that

r 6 ψ̌ ∈ ṫ and r 6 ¬̌ψ ∈ ṫ.

By the downward Löwenheim-Skolem theorem, there is a countable elementary
submodel N′ of N, containingA, p, P, ṫ as elements. Now let B be the Mostowski
collapse of N′ and P ′,A′ be the image of P and A under the collapsing isomor-
phism.

We have an enumeration (Dn : n < ω) of all dense subsets of P ′ in V. There
is a binary tree Tp := {ps : s ∈ 2<ω} ⊆ P such that

� p∅ ∈ D0 and p∅ � p.

� If s ∈n 2, then psa0, psa1 ∈ Dn and � ps, and there is a sentence ψs ∈ A′
such that

psa0  ¬̌ψ ∈ ṫ and psa1  ψ̌ ∈ ṫ.

For every f ∈n 2, there is a P ′-generic Gf ⊆ P ′ containing {pf�n : n < ω}.
Then tf := ṫGf is an A′-complete theory φ, and there is Mf ∈ B[Gf ] satisfying
tf . Since the satisfaction relation is absolute for transitive models of ZFC, Mf

is a model of tf in V.
It easily follows from the construction of Tp that Mf 6∼= Mg, for f 6= g in n2,

but then φ is not scattered, a contradiction.
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Hence the set of all q ∈ P such that q  ψ̌ ∈ ṫ or q  ¬̌ψ ∈ ṫ is dense below
p. If G is P -generic and p ∈ G, then for some q ∈ G,

ṫG = {ψ ∈ A : ψ is a sentence and q  ψ̇ ∈ Ȧ},

which is in V, since the forcing relation is definable in the ground model.
The argument for (2) is very similar.

Now consider the chain of Lω2,ω(τ)-fragments (A∗,α : α < ω2) in V defined
as follows:

� A∗,0 is the smallest fragment containing φ.

� If A∗,α j Lω2,ω is a fragment of cardinality less or equal ℵ1, then A∗,α+1

is the smallest fragment containing Aα and all formulas of the form∧
ψ∈t

ψ,

where for some n < ω, t ⊆ A∗,α is a set of n-formulas and for some p ∈ P

p  ”ť is a complete Ǎ∗,α-type containing φ̌”.

� At limit stages α > 0, A∗,α :=
⋃
β<αA∗,β .

Notice that if α < ω2 and |A∗,α| ≤ ℵ1, then |A∗,α+1| ≤ ℵ1. Otherwise there is
p ∈ P and a countable transitive model M of ZFC believing that φ is scattered
and for some n < ω and some fragment A of cardinality less or equal ℵ1, there
are at least ℵ2 many sets t of n-formulas of A such that

p  ”φ̌ is scattered and ť is a complete Ǎ-type containing φ̌”.

If G ⊆ P is generic and p ∈ G, then in M[G] there are at least ℵ1 many complete
A-types containing φ. This is a contradiction, since A is countable in M[G] and
by absoluteness, φ is scattered.

For α < ω2, let T∗,α be the set of all theories t ⊆ A∗,α such that for some
p ∈ P , p forces the statement

”ť is a satisfiable, complete theory ⊆ Ǎ∗,α, φ̌ ∈ ť and for all β < α̌, ť ∩A∗,β is
not ω-categorical.”

In this case we say p witnesses t ∈ T∗,α.
It follows from the arguments above that for all α < ω2, T∗,α 6= ∅, |T∗,α| ≤ ℵ1,

and using fact 4.3.10 we get

Proposition 4.3.12. For all α < ω2, if t ∈ T∗,α, then this is witnessed by 1.

In the ground model, the generic Morley tree contains the Morley tree.

Proposition 4.3.13. If α < ω1, then A∗,α = Aφ,α and T∗,α = Tα.

Proof. Via induction on α < ω1: A∗,0 = Aφ,0, by definition.
The case for limit stages is clear.
If t ⊆ A∗,α and p ∈ P forces t to be a complete type, then this is also forced

by 1. SinceA∗,α is countable, there is a countable transitive model B := 〈B, . . . 〉
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of ZFC such that A∗,α, t ∈ B and 1 forces t to be a complete type of A∗,α in
B. There is a (Fn(ω, ω1))B- generic G in V and in B[G] t is a complete type of
A∗,α. By absoluteness of the satisfaction relation, this is also true in the ground
model, hence ∧

ψ∈t

ψ ∈ Aφ,α+1.

If t ⊆ Aφ,α is a complete type, then in V there is a countable transitive model
of ZFC, where this is also true and therefore forced by 1. Hence,∧

ψ∈t

ψ ∈ A∗,α.

With an analogous arument one can show that for α < ω1, T∗,α = Tα.

We can now prove the crucial result for Harringtons theorem.

Lemma 4.3.14. For all α < ω2 and all t ∈ T∗,α, t is satisfiable in V.

Proof. By proposition 4.3.13 we can assume α ≥ ω1. For the rest of the proof
we denote the fragment simply as A, because the index plays no role.

There is a transitive model B := 〈B, . . . 〉 of ZFC which has cardinality ℵ1

and P, t,A ∈ B. B is the limit of an elementary chain (Bβ : β < ω1) of countable
submodels such that P, t,A ∈ B0. We define Cβ as the Mostowsky collapse of
Bβ , gβ : Bβ 7→ Cβ as the collapsing isomorphism, tβ := gβ(t), Aβ := gβ(A) and
for β ≤ γ < ω1, πβ,γ := (gγ ◦ g−1

β ) � Aβ . Clearly, im(πβ,γ) ⊆ Aγ and since the
vocabulary τ is countable, we can assume that πβ,γ is the identity on atomic
formulas.

It is easy to check that (πβ,γ : β ≤ γ < ω1) is a commuting system of
fragment embeddings with direct limit (A, πβ,∗ : β < ω1), where

πβ,∗ := g−1
β � Aβ .

Claim 1: For every β < ω1, tβ is satisfiable.
(Proof of the claim): Cβ is countable and transitive, hence there is a generic
Gβ ∈ V such that tβ is satisfiable in Cβ [Gβ ], and then by absoluteness, tβ is
satisfiable. (q.e.d.-Claim 1)

Claim 2: For β ≤ γ < ω1, ψ(v) ∈ Aβ is complete over tβ iff πβ,γ(ψ)(v) is
complete over tγ .
(Proof of the claim): This follows from the fact that Bβ is an elementary sub-
model of Bγ : Let k < ω and U be the set of all k-formulas of Aβ . Then U ∈ Cβ
and πβ,γ(U) is the set of all k-formulas of Aγ . ψ(v) ∈ U is complete over tβ if
and only if for all δ(v) ∈ U , either

∀v[ψ(v)→ δ(v)]

is in tβ or
∀v[ψ(v)→ ¬δ(v)]

is in tβ . Using Bβ ≺ Bγ , we see that this is true in Cβ if and only if for all
δ(v) ∈ πβ,γ(U), either

∀v[πβ,γ(v)→ δ(v)]
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or
∀v[πβ,γ(v)→ ¬δ(v)]

is in tγ .(q.e.d.-Claim 2)
In order to get a model for t we inductively construct an atomic twisted

elementary sysetm (Mβ , ρβ,γ , β ≤ γ < ω1): Suppose µ < ω1 and we have an
atomic twisted elementary system (Mβ , ρβ,γ : β ≤ γ ≤ µ), where each Mβ is a
countable Aβ-atomic model of tβ .

Let Mµ+1 be a countable Aµ+1-atomic model of tµ+1. Such a model exists,
since φ is scattered, Aβ is a countable fragment of Lω1,ω(τ) and tµ+1 is a com-
plete theory containing φ. Using claim 2, we can find a map ρµ,µ+1 from Mµ

into Mµ+1 analogously to the proof that atomic models are prime. Then for
β < µ, we define ρβ,µ+1 := ρµ,µ+1 ◦ ρβ,µ, thereby extending the atomic twisted
elementary system to µ+ 1.

If µ < ω1 is a nonempty limit ordinal and (Mβ , ρβ,γ : β ≤ γ < µ) is atomic,
then we can simply use lemma 4.3.8 and extend the system to µ.

Hence, we get an atomic twisted elementary system

(Mβ , ρβ,γ : β ≤ γ < ω1).

Let M∗ the limit of this system and σ ∈ t ∩ Bβ , for some β < ω1. Then
Mβ |= gβ(σ), hence

M∗ |= πβ,∗(gβ(σ))

but πβ,∗(gβ(σ)) = σ. We have found a model of t in V.

Proposition 4.3.15. If α < ω2 is a nonempty limit ordinal, t ∈ T∗,α and
M |= t, then sr(M) ≥ α.

Proof. If not, then there is a countable transitive model M of ZFC in which the
proposition is false.

In M there is a limit ordinal α < [ω2]M , t ∈ [T∗,α]M and a model B of t with
sr(B) < α. But by absoluteness, for every P -generic G, we have

M [G] |= ”B is a model of t”

and sr(B)M = sr(B)M [G]. Since the generic Morley tree of M is the Morley

tree in M [G] and α < ω
M [G]
1 , we get a contradiction to lemma 4.3.5.

Remark. If φ is a VCE, then one could continue the construction of the generic
Morley tree beyond ℵ2 in hope of showing the existence of a model of cardinality
ℵ2 but then it is unclear whether claim 1 of lemma 4.3.14 would still hold. If
β < ω2, then Cβ can be uncountable in the ground model and we can no longer
guarantee the existence of a generic Gβ ∈ V.

This completes the proof of Harrington’s theorem. An immediate corollary
is that every VCE has at least ℵ2 many isomorphism types of cardinality ℵ1. It
is not yet known whether I(φ,ℵ1) = 2ℵ1 , for a VCE φ.

Proposition 4.3.16. If φ is a VCE, then there are ℵ2 many ≡∞,ω-classes of
models of cardinality ℵ1.
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Proof. Two models with different Scott rank cannot be infinitarily equivalent,
hence by Harrington’s result, for every VCE φ, there are at least ℵ2 many
≡∞,ω-classes of models of cardinality ℵ1.

If for some α < ω2, there are ℵ3 many classes, then this is true in some
countable transitive model M of ZFC.

Let G be P -generic. By the absoluteness of the satisfaction relation and

since φ is still scattered in M [G], this gives us some β < ω
M [G]
1 such that there

are uncountably many ≡β,ω equivalence classes of countable models of φ, a
contradiction.

5 Structure Interpretations

In this section we show that it is enough to show V C3 for certain languages.
Subsection 0 and subsection 1 are based on chapter 5.5 of [9].

Definition. (1) Let M := 〈M, . . . 〉 be a τ -structure and A ⊆ M . A sub-
set X of Mk is called (first order) definable over A if for some formula
ψ(v1, . . . , vk, w1, . . . , wl) of L(τ) and some a ∈ Al,

X = {m ∈Mk : M |= ψ(m, a)}.

If A = ∅, then X is simply called definable.

(2) Let τ1, τ2 be vocabularies and N := 〈N, . . . 〉 a τ2 model. Suppose that
for some k ∈ ω+, we have a set I consisting of the following first order
τ2-formulas:

(I1) One k-formula ψD(v1, . . . , vk) such that D, the subset of Nk defined
by this formula, is non empty.

(I2) One 2k-formula ψE(v1, . . . , v2k) defining an equivalence relation on
D.

(I3) For every constant symbol d ∈ τ1, a k-formula ψd(v1, . . . , vk) defining
an equivalence class of D/E.

(I4) For every l-ary relation symbol R ∈ τ1, a kl-formula ψR(w1, . . . , wl)
defining an E invariant relation on Dl.

(I5) For every l-ary function symbol F ∈ τ1, a k(l + 1)-formula
ψF (w1, . . . , wl+1) defining an E invariant relation on Dl+1 such that

{([a1], . . . , [al+1]) ∈ (D/E)l+1 : N |= ψF (a1, . . . , al+1)}

is a function from (D/E)l into D/E.

Then we call I a set of τ1-interpretation formulas and define the τ1-
structure NI as follows:

– The universe is D/E.

– A constant symbol d ∈ τ1 is interpreted with the E equivalence class
defined by ψd.

– A l-ary relation symbol R ∈ τ1 is interpreted as

{([a1], . . . , [al]) ∈ (D/E)l : N |= ψR(a1, . . . , al)}.
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– A l-ary function symbol F ∈ τ1 is interpreted with the function
described in (I5).

If a τ1 model M := 〈M, . . . 〉 is isomorphic to NI , then NI is called a k
dimensional interpretation of M in N.

Remark. If the equivalence relation is the identity, then we identify D/E with
D.

Proposition 5.0.1. Let N be a τ2 model and NI be a k dimensional τ1-
interpretation. Then there is a map π : L∞,ω(τ1) 7→ L∞,ω(τ2) such that if
l < ω and ψ ∈ L∞,ω(τ1) is a l-formula, then π(ψ) is a kl-formula, and for all
[a1], . . . , [al] ∈ D/E,

NI |= ψ([a1], . . . , [al]) iff N |= π(ψ)(a1, . . . , al).

Proof. (Sketch) Using the interpretation formulas of I one can define a map H
from all τ1 terms into the set of all τ2 first order formulas, such that:

� If t has l variables, then H(t) has k(l + 1) free variables.

� If t(v1, . . . , vl) is a τ1-term, then for all a1, . . . , al, b ∈ D,

tNI ([a1], . . . , [al]) = [b] iff N |= H(t)(a1, . . . , al, b).

If d ∈ τ1 is a constant symbol, then H(d) := ψd(v), for a variable y,

H(y) := ψE(v1, v2),

and if f ∈ τ1 is a l-ary function symbol and t1, . . . , tl are τ1-terms with variables
among v1, . . . , vm, then

H(f(t1, . . . , tl)) := ∃u1, . . . ,∃ul[(
l∧
i=1

H(ti)(w, ui)) ∧ (ψf (u1, . . . , ul, s))],

where w = (w1, . . . , wkm). Using H, one then defines π via induction on formula
complexity and proves the proposition simultaneously.

Remark. The map π of the previous proof does not depend on the models NI

and N but only on the τ1-interpretation formulas. Furthermore, it maps τ1-first
order formulas onto τ2-first order formulas.

5.1 In Infinitary Logic

For a countable vocabulary τ , recall the definitions of the space of countable
τ models, Xτ , and of Mod(φ), where φ is a sentence of Lω1,ω(τ) (See subsec-
tion 3.2).

Now suppose that for some k ∈ ω+, we have a set I of τ2 formulas of the
form (I1)− (I5). If τ1 is countable, there is a Lω1,ω(τ2)-sentence σI stating:

� ∃vψD(v).

� ψE defines an equivalence relation E on D, the set defined by ψD.

55



� For every constant symbol d ∈ τ1 ψd(v) defines an E equivalence class in
D.

� For every l-ary relation or function symbol s ∈ τ1, ψs is E-invariant, and
if s is a function symbol, then ψs induces a function on D/E.

For all models N of σI , NI is a k dimensional τ1-interpretation.
Suppose that for every model M ∈ Xτ1 there is N ∈ Mod(σI) such that

M ∼= NI . Then by proposition 5.0.1 for every sentence φ ∈ Lω1,ω(τ1) there is a
sentence φ∗ ∈ Lω1,ω(τ2) such that

Mod(φ∗) = {N ∈Mod(σI) : NI ∈Mod(φ)}.

Since for all A,B ∈Mod(σI), A ∼= B implies AI ∼= BI , we have

I(φ,ℵ0) ≤ I(φ∗,ℵ0).

It can happen that I(φ,ℵ0) < I(φ∗,ℵ0), for example let τ1 be a vocabulary
consisting of ℵ0 many constant symbols and τ2 := τ1 ∪ {R}, where R is an
unary relation symbol. For the set I of τ1-interpretation formulas, we simply
choose D to be the entire uiverse E the identity and for every constant symbol
c ∈ τ1, ψc(v) := (v = c). Clearly, every τ1-model is the reduct of a τ2-model
and therefore isomorphic to a 1-dimensional τ1-interpretation NI , where N is a
model of σI .

Let
φ :=

∧
i 6=j

(ci 6= cj).

Then one can show I(φ,ℵ0) = ℵ0, but I(φ∗,ℵ0) = c. If instead of Mod(σI) we
consider Mod(ρ), where ρ := ∀xR(x), then we can still interpret every elment
of Mod(φ) in some element of Mod(ρ) but now we have for all A,B ∈Mod(ρ)

A ∼= B iff AI ∼= BI ,

thus, if we define φ′ := ρ ∧ φ∗, then I(φ,ℵ0) = I(φ′,ℵ0).
This illustrates the main focus of this section: We show that if τ2 is one of

certain finite vocabularies, then every Lω1,ω(τ1)-sentence of an arbitrary count-
able vocabulary τ1 can be interpreted in the language Lω1,ω(τ2) in the sense
that there is a Lω1,ω(τ2)-sentence σ2 with following properties:

(A) For every M ∈ Mod(σ1), there is N ∈ Mod(σ2) in which M can be
interpreted.

(B) For every N ∈Mod(σ2), there is M ∈Mod(σ1) which can be interpreted
in N.

(C) I(σ1,ℵ0) = I(σ2,ℵ0).

If we can show this, then clearly V C3 for Lω1,ω(τ2)-sentences implies the general
version.

Proposition 5.1.1. Let τ2 be a countable relational vocabulary with symbols of
unbounded arity. Then for every countable vocabulary τ1, there is a Lω1,ω(τ2)
sentence σ and a homeomorphism

H : Xτ1 7→Mod(σ)

such that for all A,B ∈ Xτ2 , A ∼= B iff H(A) ∼= H(B).
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Proof. Let s 7→ Rs be an injective map from τ1 into τ2 such that Rs has at
least the same arity as s and if s is a l-ary function symbol, then Rs is at least
l + 1-ary.

Given an arbitrary τ1-model M, it is not difficult to find a τ2-model N in
which it can be interpreted:

� The universe of N is M .

� If d ∈ τ1 is a constant symbol and Rd is n-ary, then Rd is interpreted as
{(dM, . . . , dM)} ⊆Mn.

� If s ∈ τ1 is a l-ary relation or function symbol and Rs is n-ary, then Rs is
interpreted such that the projection on M l or M l+1 is identical with sM.

This observation motivates the choice of the following Lω1,ω(τ2)-sentences:

� If c ∈ τ1 is a constant symbol and Rc is n-ary, then σc states that Rc has
exactly one element which is in the diagonal of the universe, i.e. all of its
coordinates are equal.

� If r ∈ τ1 is a l-ary relation symbol and Rr is n ary, then σr states that if
some n-tuple v is in Rr, then all n-tuples with the same first l coordinates
as v are in Rr.

� If f ∈ τ1 is a l-ary function symbol and Rf is n-ary, then

φ1 := ∀v1, . . . ,∀vl∃vl+1(Rf (v1, . . . , vl, vl+1, . . . , vl+1)),

and the sentence φ2 states that for all l-tuples v, there is at most one
(n− l)-tuple w such that (v, w) is in Rf . Then set σf := φ1 ∧ φ2.

� Let T be the set of all symbols R ∈ τ2 which are not of the form Rs, for
some s ∈ τ1. Then for R ∈ T set σR := ∀vR(v).

Now let ψD(v1) := (v1 = v1) and ψE(v1, v2) := (v1 = v2). For a constant symbol
c ∈ τ1, we choose ψc(v1) := Rc(v1, . . . , v1), for a l-ary relation symbolr ∈ τ1, we
define ψr(v1, . . . , vl) := Rr(v1, . . . , vl, vl, . . . , vl), and if f ∈ τ1 is a l-ary function
symbol set ψf (v1, . . . , vl+1) := Rf (v1, . . . , vl+1, vl+1, . . . , vl+1). This gives us the
set I of τ1-interpretation formulas.

Then for
σ := (

∧
s∈τ1

σs) ∧ (
∧
R∈T

σR),

we see that every A ∈ Xτ1 is of the form NI , for a uniquely determined N in
Mod(σ). It is easily checked that the map H : Xτ1 7→Mod(σ),

A 7→ H(A)

such that H(A)I = A is a homeomorphism and respects the isomorphism rela-
tion in both directions.

Corollary 5.1.2. Let τ2 be a relational vocabulary with symbols of unbounded
arity. Then V C3 is true if and only if V C3 is true for Lω1,ω(τ2)-sentences.
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Proof. The direction (⇒) is clear.
(⇐): If τ1 is an arbitrary countable vocabulary and φ a Lω1,ω(τ1)-sentence,

then by the proof of the previous result, every A ∈ Mod(φ) can be interpreted
in H(A).

Using proposition 5.0.1, we see, that the image of H �Mod(φ) is of the form
Mod(σ∗), for some σ∗ ∈ Lω1,ω(τ2). Thus, if σ∗ has perfectly many models, then
so does φ.

Definition. � Let τg be the vocabulary with a single binary relation symbol

Ė. An undirected graph is a τg-structure V := (V, ĖV) in which Ė is
interpreted as a symmetric binary relation.

� If (V,E) is an undirected graph and x ∈ V , then the valency of x is defined
as

val(x) := |{b ∈ V : xEb}|.

If κ = val(x), then we call x a κ-point.

� Let (V,E) be an undirected graph, n ∈ ω+ and p ∈ V . We say p has a
tail of length n, if there is an injective sequence (xi : 1 ≤ i ≤ n) in V \ {p}
such that pEx1, xiExi+1, for 1 ≤ i < n, val(xi) = 2, for 1 ≤ i < n, and
val(xn) = 1. We say p has an infinite tail, if there is sequence (xi : i ∈ ω+)
as above with the exception that no point of this sequence has valency 1.

All graphs considered in this thesis are undirected.

Theorem 5.1.3. Let τ be an arbitrary countable vocabulary and φ a sentence
of Lω1,ω(τ). There is a Lω1,ω(τg)-sentence σ such that:

(i) Every model of σ is a graph and every model of φ can be interpreted in a
model of σ.

(ii) I(φ,ℵ0) = I(σ,ℵ0).

Proof. By proposition 5.0.1, it suffices to show this for the case that τ is a
relational vocabulary with exactly one k-ary relation symbol, for every k ∈ ω+.

Let (pk : k ∈ ω+) be an enumeration of all prime numbers ≥ 5. We code a
τ -structure M := 〈M, . . . 〉 in a graph G as follows:

Every element a ∈M is identified with a point p(a) ∈ G, which has exactly
3 points of valency 1 connected to it. We call the subgraph of G defined by
these four points a D-code, because this will be expressed by the interpretation
formula ψD.

Suppose Rk ∈ τ is k-ary and a ∈ RM
k . This will be coded by a finite subgraph

Ga ⊆ G, called a Rk-code:

� The D-code containing p(ai) is a subgraph of Ga, for 1 ≤ i ≤ k.

� There is exactly one point xr ∈ Ga, which is connected to exactly pk many
points with valency 1 which also belong to Ga.

� If 1 ≤ i ≤ k, then p(ai) is connected to a point ei ∈ Ga of valency 3 which
is in turn connected to xr and has a tail t(ei) ⊆ Ga of length i + 1. For
i 6= j, ei 6= ej and t(ei), t(ej) are disjoint.
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� Apart from pk many points of valency 1, xr is only connected to ei, for
1 ≤ i ≤ k, hence val(xr) = k + pk.

� For 1 ≤ i ≤ j ≤ k, p(ai) is not connected to p(aj).

� Ga contains no other points than the ones described above.

Let us look at one illustration of such a code graph: Suppose r is a binary
relation symbol, a1, a2 ∈M and (a1, a2) ∈ rM. Then G(a1,a2) looks like this:

xr 7

e1

e2

t1

t2

p(a1)

p(a2)

3

3

Here, the red squares with number 3 symbolise 3 points of valency 1 which are
connected to p(a1) and p(a2).

Seven points of valency 1 are connected to xr, which is symbolised by the
red square with number 7.

t1 symbolises a tail of length 2 connected to e1 and t2 a tail of length 3
connected to e2.

We can easily define such a code graph with a first order τg-formula.
The τg-formula ψD(v1) says that v1 is connected to 3 distinct points of

valency 1. This formula defines the set D.
Let k ∈ ω+ and ψk(v1, . . . , vk) be the τg-formula saying that vi ∈ D, for

1 ≤ i ≤ k, and v1, . . . , vk belong to a Rk-code, where viEei.
The equivalence relation on D is the identity. We now have the set I of

τ -interpretation formulas.
The sentence σ0 ∈ Lω1,ω(τg) states the following:

(1) E is a symmetric relation and for all (x, y) ∈ D ×D, ¬(xEy).

(2) Every element belongs to a D-code or to a Rk-code, for some k < ω+.

(3) For all k < ω+ and for all (v1, . . . , vk) ∈ Dk, there is at most one Rk-code
of the form G(v1,...,vk).

Notice that, since we are working in infinitary logic, there is such a sentence.
It is easy to see that for every M ∈ Xτ , there is a N ∈ Mod(σ0) such that

M ∼= NI . Furthermore, if A,B ∈Mod(σ0) and AI ∼= BI , then A ∼= B.
Now we can use proposition 5.0.1 and conclude that there is a τg-sentence

σ such that σ |= σ0, every M ∈ Mod(φ) is isomorphic to some NI , where
N ∈ Mod(σ), and for all N ∈ Mod(σ), NI

∼= M, for some M ∈ Mod(φ). This
completes the proof.

Corollary 5.1.4. V C3 is true if and only if it holds for every sentence of
Lω1,ω(τg).
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5.2 In First Order Logic

This subsection is based on [23]. For a first order theory T in the countable
vocabulary τ , we write Mod(T ) for Mod(

∧
σ∈T σ).

We return to Vaught’s conjecture for first order theories. Since we only
considererd first order interpretation formulas, the definition of an interpretation
and the notion NI , where N is a τ2-model and I a set of τ1 interpretation
formulas, are the same as for infinitary logic.

Proposition 5.0.1 also holds for first order logic as does proposition 5.1.1
with the difference that instead of an infinitary sentence we get a first order
theory in the relational language with the specific properties.

We consider the following stronger version of V C1:

V C3(FO): If T is a complete first order theory of a countable vocabulary with
infinite models then either I(T,ℵ0) ≤ ℵ0 or else there is a perfect set of pairwise
nonisomorphic models in Mod(T ).

We also have

Proposition 5.2.1. If τ2 is a relational vocabulary with symbols of unbounded
arity then V C3(FO) is true if and only if it is true for τ2 theories.

The proof is similar to that of corollary 5.1.2. If τ1 is an arbitrary countable
vocabulary, then a complete first order τ1 theory T can be interpreted in a
complete first order τ2 theory T ∗ such that there is a homeomorphism from
Mod(T ) onto Mod(T ∗).

Next, we want to show that V C3(FO) for theories of graphs is equivalent to
the general version. This turns out to be a bit more complicated, because we
cannot simply use the coding method used in the proof of theorem 5.1.3. The
main problem with this approach is that in general we cannot express in a first
order theory that every element of the graph either belongs to a D-code or to
a R-code, where R is a relation symbol. In infinitary logic we can do this by
using infinite conjunctions and disjunctions.

Given an arbitrary countable relational vocabulary τ and a complete τ theory
T , we could use the set I of τ intrepretation formulas from 5.1.3 and get a theory
T ∗ of the graph vocabulary τg such that every element of Mod(T ) is isomorphic
to some MI , where M ∈ Mod(T ∗) but we cannot guarantee that AI ∼= BI
implies A ∼= B, for A,B ∈ Mod(T ∗). It can be the case that I(T,ℵ0) ≤ ℵ0 but
I(T ∗,ℵ0) = c. T ∗ in general will not be complete but how can we find a complete
extension of it without increasing the number of its countable isomorphism
types?

Therefore, we choose a slightly different technique of coding which gives us
the following

Theorem 5.2.2. Let τg be the vocabulary of graphs and τ be an arbirtary count-
able vocabulary. There is a τg-theory T∗ and a set of τ interpretation formulas
I such that the following hold:

(i) Every M ∈ Xτ is isomorphic to NI , for some N ∈Mod(T∗).

(ii) For every N ∈Mod(T∗), the set

{A ∈Mod(T∗) : AI ∼= NI}
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has ℵ0 many isomorphism types.

Proof. Let R be the binary relation symbol of τg. Again, by proposition 5.1.1,
it suffices to show the theorem for the case that τ is a relational vocabulary
with exactly one k-ary relation symbol, for every k ∈ ω+.

If G is a graph and x ∈ G, then we call x a P-point if val(x) ≥ 4.
Fix a function t : ω+ 7→

⋃
k∈ω+

ωk, k 7→ tk, with the following properties:

� tk = (a1, . . . , ak+1) ∈ ωk+1 and 2 < ai < aj , for 1 ≤ i < j ≤ k + 1.

� If k1 < k2, then no element of ω occurs both in tk1 and in tk2 .

� Every natural number > 2 occurs in some tk.

First, we give a general idea of how we code a τ -model M in a graph G:

� Every element x of M is identified with a P-point px ∈ G which has exactly
one tail with length 2.

� If Sk is the k-ary relation symbol of τ , tk = (a1, . . . , ak+1) and

(x1, . . . , xk) ∈ SM
k ,

then there is a P-point u ∈ G which has exactly one tail of length ak+1

and for 1 ≤ i ≤ k, pxi is connected with a 3-point ei which has a tail of
length ai and is also connected to u. We call the subgraph consisting of
{pxi : 1 ≤ i ≤ k}∪{ei : 1 ≤ i ≤ k}∪{u} together with the tails mentioned
above a Sk-code.

We now make this idea precise by formulating the theory T∗ which states:

(1) There is no isolated point and ∀x¬(xRx).

(2) Every 1-point is connected to a 2-point.

(3) Every 3-point is connected to two P-points and one 2-point.

(4) For every natural number n ≥ 5, T∗ contains the sentence stating

” Every P-point has valency ≥ n and there are at least n P-points with a
tail of length 2”.

(5) Every P-point is connected to exactly one 2-point and otherwise only 3-
points.

(6) If k ∈ ω+ and tk = (a1, . . . , ak+1), then T∗ has the sentence stating

”For all P-points x1, . . . , xk with a tail of length 2 , there is at most one
Sk-code containing x1, . . . , xk such that for 1 ≤ i ≤ k, xi is conneceted to

the 3-point ei which has a tail of length ai.”

(7) If k, tk are as in (6), then T∗ contains the sentence stating

”For every P-point u with a tail of length ak+1, there is a unique Sk-code
containing u and every 3-point with a tail of length ai belongs to a

unique Sk code.”
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(8) For k ∈ ω+, tk = (a1, . . . , ak+1) and 1 ≤ i ≤ k,

”There is no P-point with a tail of length ai and there is no 3-point with
a tail of length ak+1 or of length 2”.

(9) For every natural number n > 1, T∗ states that if x, y are two points of
valency ≥ 3 or if both have valency 1, then there is no path of length n
from x to y consisting of 2-points.

(10) For every n > 2, there are no circles consisting of n 2-points.

(11) For every n ∈ ω+, T∗ states:

”If x, y are two P-points then there are n 3-points with a tail of length at
least n each of which is connected to both x and y”.

Let ψE(v1, v2) := (v1 = v2), ψD(v1) be the τg formula stating that v1 is a P-point
with a tail of length 2 and for k ∈ ω+ with tk = (a1, . . . , ak+1), let ψk(v1, . . . , vk)
state that v1, . . . , vk are P-points with a tail of length 2 and belong to a Sk-code
such that for 1 ≤ i ≤ k, vi is connected to the 3-point ei which has a tail of
length ai. This defines the set I of τ -interpretation formulas.

It is easily checked that T∗ is satifiable and for every A ∈Mod(T∗), AI ∈ Xτ .
Furthermore, for every M ∈ Xτ , there is A ∈Mod(T∗) such that AI ∼= M, which
completes the proof of (i).

Suppose A ∈ Mod(T∗) and g ∈ ω. If val(g) ≤ 2, then g belongs to a tail
which is either finite or infinite. If the tail is finite then it leads to a 3- or a
P-point.

If the tail is infinite, then it either belongs to a point of valency ≥ 3 or it is
a tail with an initial 1-point but not leading to a 3- or P-point or the tail is a
connected subgraph consisting of 2-points without initial points.

Otherwise g is either a 3- or a P-point with a finite or infinite tail.
Define Y (A) as the set of all P-points of A with an infinite tail, H1(A) as the

set of all inifinite tails in A with an initial 1-point and H2(A) as the set of all
infinite connected subgraphs of A consisting of 2-points. If Y (A), H1(A), H2(A)
are empty, then we call A a root model of T∗.

Let M(A) be the submodel of A consisting of all elements x with one of the
following properties:

(A) x is a P-point with a finite tail or x is a 3-point connected to two P-points
with a finite tail.

(B) x belongs to a tail of some y which satisfies (A).

Then M(A) is a root model of T∗ and M(A)I = AI . We call M(A) the root
model of A. One can now prove without difficulty the following

Claim: If A,B ∈Mod(T∗), then A ∼= B if and only if AI ∼= BI and

|Y (A)| = |Y (B)|, |H1(A)| = |H1(B)| and |H2(A)| = |H2(B)|.

Thus, for any given A ∈ Mod(T∗), there are ℵ0 many isomorphism types in
Mod(T∗) whose root models are isomorphic to M(A).
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Corollary 5.2.3. V C3(FO) is true if and only if it holds for theories of graphs
in the vocabulary τg.

Proof. We only show (⇐) and assume without loss of generality that T is a
complete theory with infinite models in the relational vocabulary τ which has
exactly one k-ary relation symbol for every k ∈ ω+.

Suppose I(T,ℵ0) > ℵ0 and let the vocabulary τg, the τg theory T∗ and the
set I of interpretation formulas be as in the previous proof. By interpreting T
in τg, we get a τg theory Tg which contains T∗ as a subset.For A ∈ Mod(Tg),
we define Y (A), H1(A), H2(A) as in the previous proof.

Tg does not have to be complete but there are either at most coutably many
complete and satisfiable extensions of Tg or else continuum many.

In the former case there must be a complete extension of Tg with uncountably
many isomorphism types. This can be seen by using the main claim of the
previous proof. Thus, by assumption there is a perfect set S ⊂ Mod(Tg) of
pairwise nonisomorphic models. For all triples (k1, k2, k3) with k1, k2, k3 ≤ ℵ0,
the set

{A ∈Mod(Tg) : |Y (A)| = k1, |H1(A)| = k2, |H2(A)| = k3}

is Borel, since it is of the form Mod(σ), where σ is a sentence of Lω1,ω(τg).
Clearly, there are ℵ0 many of such triples (k1, k2, k3), hence we can use the
claim of the previous proof and the perfect set theorem and assume without
loss of generality that for all distinct A,B ∈ S, AI 6∼= BI .

Now consider the following map ρ : S 7→Mod(T ): If A ∈ S then ρ(A) is the
element of Mod(T ) which is isomorphic to AI by enumerating the elements of
the set D which is defined by ψD(v1).

It is easy to show that ρ is Borel and injective, hence im(ρ) contains a perfect
set.

If there is a perfect set of complete extensions of Tg, then since the elementary
equivalence relation on Xτg is Borel we can use Silver’s theorem to see that there
is a perfect set of pairwise nonisomorphic models of Tg and then use the same
argument as before.

We now consider another different finite vocabulary τL := {∧,∨}, where ∧,∨
are binary function symbols.

Definition. A lattice is a τL-structure M := 〈M, . . . 〉, in which the following
sentences are true:

(1) (Associativity) For all a, b, c ∈M ,

a ∧ (b ∧ c) = (a ∧ b) ∧ c; and a ∨ (b ∨ c) = (a ∨ b) ∨ c.

(2) (Absorption) For all a, b ∈M

a ∧ (a ∨ b) = a = a ∨ (a ∧ b).

(3) (Commutativity) For all a, b ∈M ,

a ∧ b = b ∧ a and a ∨ b = b ∨ a.
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(4) (Idempotence) For all a ∈M , a ∧ a = a = a ∨ a.

Lattices are often studied in universal algebra.

Example 5.2.4. If (M,<) is a linear order, then we can define a lattice L with
M as its universe simply by setting for all a, b ∈M ,

� a ∧ b := min{a, b} and

� a ∨ b := max{a, b}.

Definition. Let τl := τL ∪ {0∗, 1∗}, where 0∗, 1∗ are two constant symbols.
A bounded lattice is a τl-structure M such that M � τL is a lattice and the
following holds

� (Identity) For all a ∈M , a ∧ 1∗ = a = a ∨ 0∗.

Example 5.2.5. If (B,+, ∗,−, 0, 1) is a Boolean algebra, then (B,+, ∗, 0, 1) is
a bounded lattice.

If L is a lattice we can define a partial reflexive order via

a ≤ b :⇔ a ∧ b = a.

One can easily check that a ≤ b if and only if a∨ b = b. Furthermore, it follows
that for every a, b ∈ L,

a ∧ b = inf{c ∈ L : c ≤ a, c ≤ b}

and
a ∨ b = sup{c ∈ L : a ≤ c, b ≤ c}

On the other hand, suppose (L,≤) is a reflexive partial order such that for all
a, b ∈ L, inf{a, b} and sup{a, b} exists then L can be made into a lattice by
defining a ∧ b := inf{a, b} and a ∨ b := sup{a, b}.

Given a lattice L and x ∈ L, we define Lx := {a ∈ L : a ≤ x} and the height
of x as

h(x) := sup{|A| : A ⊆ Lx, A is linearly ordered by ≤}.

The height of a lattice L is defined as

sup{h(x) : x ∈ L}.

We now show how graphs can be interpreted in lattices.

Theorem 5.2.6. Let τg be the vocabulary of graphs. There is a set I of τg
interpretation formulas in the vocabulary τl and a satisfiable τl theory T∗ with
the following properties:

(i) Every N ∈Mod(T∗) is a bounded lattice of height ≤ 4.

(ii) There is a Borel surjection ρ from Mod(T∗) onto the set of all graphs in
Xτg such that for all A,B ∈Mod(T∗)

A ∼= B ⇔ ρ(A) ∼= ρ(B).
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Proof. We will identify lattices in this proof with their corresponding partial
orders.

The idea is to identify a vertex g of a graph G with an element p(g) of height
2 in a lattice L. If a, b ∈ G are connected, then the supremum of p(a) and p(b)
will have height 3, otherwise it is 1.

Here is an illistration:

g1

g2

g3

g4

Graph G

l1 l2

0

Lattice L(G)

l4 l3

e1 e2 e3

1

We see how the graph G is coded by a lattice L(G) of height 4. The elements
l1, . . . , l4 in L(G) have height 2 and correspond to the vertices g1, . . . , g4 of G.
The elements e1, e2, e3 indicate which vertices belong to an edge.

Apart from the axioms for bounded lattices T∗ states:

(1) The maximal element 1 has height at most 4.

(2) For every n ∈ ω+:

” There are at least n elements of height 2.”

(3) Every element of height 3 has at most 2 predecessors of height 2.

T∗ is clearly consistent and satisfies (i).
Let ψE(v1, v2) := (v1 = v2) and ψD(v1) define the set of all elements of

height 2. The formula ψR(v1, v2) states the following:

”v1 and v2 have height 2 and either v1 = v2 and there is one element c of
height 3 such that v1 ≤ c and for all u 6= v1 of height 2, u 6≤ c, or v1 6= v2 and

there is an element c of height 3 such that v1 ≤ c and v2 ≤ c.”

This gives us the set I of τg interpretation formulas.
It is clear that for every graph G of cardinality ℵ0 there is M ∈ Mod(T∗)

which is unique up to isomorphism such that MI
∼= G.

For L ∈Mod(T∗), consider the order isomorphism H from ω onto

D = {a ∈ L : L |= ψD(a)}.
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Then we define ρ(L) as the graph with universe ω where k,m ∈ ω are connected
if and only if

L |= ψR(H(k), H(m)).

That is ρ(L) is the unique element of Xτg which is isomorphic to LI via H.
It is a routine exercise to show that ρ satisfies (ii).

Corollary 5.2.7. (i) V C3(FO) is true if and only if it holds for theories of
bounded lattices of height ≤ 4.

(ii) V C3 is true if and only if it holds for every infinitary sentence all of whose
models are bounded lattices of height ≤ 4.

Proof. (i): By corollary 5.2.3 it suffices to show that V C3(FO) for bounded
lattices of height ≤ 4 implies V C3(FO) for graphs. We can use an analogous
argument for this.

Let the set I of τg interpretation formulas, the τl theory T∗ and the map ρ
be defined as in the previous proof.

If T is a complete theory of graphs with infinite models and I(T,ℵ0) > ℵ0,
then there is a theory of bounded lattices containing T∗ with a perfect set
S ⊆ Mod(T∗) of pairwise nonisomorphic models such that ρ[S] ⊆ Mod(T ).
This gives us an uncountable Borel set of pairwise nonisomorphic models of T
and by the perfect set theorem, T has perfectly many models.

(ii): If V C3 is true for every sentence of Lω1,ω(τl) all of whose models
are bounded lattices of height ≤ 4, then by the previous proof V C3 holds
for Lω1,ω(τg) sentences, which as we already know implies the general con-
jecture.

V C1(FO) has been proven for several special cases, e.g. in [14] for theories
with one unary function symbol, for ω-stable theories in [18] and for o-minimal
theories in [13].

In [20] John Steel proved V C3 for tree like orders, i.e. for every infinitary
sentence using only a binary relation symbol each of whose model is a partial
order (A,<) such that for all a ∈ A, {y ∈ A : y < a} is linearly ordered, thereby
genealising Matatyahu Rubin’s proof of V C1(FO) for linear orders (see [17]).

It is an open question whether Vaught’s conjecture for first order theories
implies the infinitary version.

6 The Topological Vaught Conjecture

The definitions of this section can be found in [10] and in [2], unless stated
otherwise, the results can be found in [2].

We turn our attention to a further generalisation of Vaught’s conjecture.

6.1 Topological Group Actions

Definition. (1) A topological group is a group (G, ◦, e) together with a topol-
ogy O on G such that the function H : G×G 7→ G defined by

(x, y) 7→ x ◦ y−1

is continuous. The group is called Polish if O is Polish.
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(2) Let X be a set and (G, ◦, e) a group. A (left)group action of G on X is a
map

∗ : G×X 7→ X

such that for all x ∈ X and g, h ∈ G,

e ∗ x = x and (g ◦ h) ∗ x = g ∗ (h ∗ x).

(3) If the topological group G acts on the set X via ∗, then the binary relation
∼ on X defined by

x ∼ y :⇔ ∃g ∈ G(g ∗ x = y)

is an equivalence relation called the orbit equivalence relation. For every
x ∈ X, the equivalence class of x is called the orbit of x. If x ∼ y, then
x, y are called orbit or G equivalent.

(4) Let X be a set, A ⊆ X and R an equivalence relation on X. A is called
R-invariant,if for all x ∈ X and all a ∈ A, aRx implies x ∈ A.

(5) If G is a Polish group, X is a standard Borel space and the action ∗ is
Borel, then X is called a Borel G-space. In case the action is continuous
and X is Polish, then X is called a Polish G space.

(6) A map ρ : X 7→ Y between Borel G spaces is called a homomorphism if it
respects the group action. It is called an embedding (isomorphism) if it is
injective (bijective). A homomorphism is Borel if it is Borel measurable.

In this section we only consider invariant sets with respect to the orbit
equivalence relation.

Lemma 6.1.1. If X,Y are Borel G spaces and ρ : X 7→ Y , π : Y 7→ X are
Borel embeddings, then there are invariant Borel subsets A ⊆ X and B ⊆ Y
such that ρ(A) = Y \ B and π(B) = X \ A. In particular X and Y are Borel
isomorphic.

Proof. Let A0 := ∅, S0 := Y and for n ∈ ω,

An+1 := X \ π(Sn) and Sn+1 := Y \ ρ(An+1).

Then A :=
⋃
n<ω An and B :=

⋂
n∈ω Sn are as claimed.

Theorem 6.1.2. Let H be a Polish group and G ⊆ H be a closed subgroup.
If X is a Borel G space with action ∗1, then there is a Borel H space Y with
action ∗2such that

(i) X is a Borel subset of Y .

(ii) g ∗2 x = g ∗1 x, for all g ∈ G and x ∈ X, and every H orbit of Y contains
exactly one G orbit of X.

(iii) If X is a Polish G space, then Y can be chosen to be a Polish H space
such that X is a closed subset of Y .
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Proof. (Sketch, for the details see theorem 2.3.5 of [2]) G acts on X ×H via

g ◦ (x, h) := (g ∗1 x, gh),

where gh is the group product of g, h in H.
Consider the quotient space Y := (X ×H/G,S), where S is the quotient σ

algebra with respect to the Borel algebra of X ×H. One can show that this is
a standard Borel space. For x ∈ X and h ∈ H, the orbit equivalence class of
(x, h) is denoted by [x, h].

Now the action ∗2 of H on Y is given by

h ∗2 [x, h′] := [x, h′h−1].

One can easily show that this action is well defined and Borel.
The map x 7→ [x, e] is a Borel injection from X into Y , hence X can be seen

as a Borel subset of Y . This proves (i).
∗2 agrees with ∗1 on G × X, as [g ∗1 x, e] = [x, g−1] = g ∗2 [x, e], for all

(g, x) ∈ G×X.
If [x, h] ∈ Y , then h ∗2 [x, y] = [x, e] ∈ X, thus every H orbit contains a G

orbit of X. Suppose x, y ∈ X and for some h ∈ H, h ∗2 [x, e] = [y, e]. Then by
definition, y is in the G orbit of x, hence (ii) is proven.

For (iii) one checks that the quotient topology on Y is Polish. This is done
by first proving that it is T2 and second countable and regular. Urysohn’s
metrization lemma then implies that Y is seperably metrizable. It follows that
Y is Polish.

For a topological space X, let F (X) denote the set of all closed subsets of
X. The Effros space is defined as (F (X), S), where S is the σ algebra on F (X)
generated by the sets of the form

{F ∈ F (X) : F ∩ U 6= ∅}

and U ranges over all nonempty open subsets of X. One can show that if X is
Polish, then the Effros space is a standard Borel space (see e.g. theorem 12.6
of [10]).

A Borel G space is called universal if every Borel G space can be embedded
into it.

Theorem 6.1.3. For any Polish group G there is a Borel G space (UG, ∗) such
that for every seperably metrizable topological space X and every Borel group
action ◦ of G on X, there is a Borel embedding from (X, ◦) into (UG, ∗).

Proof. (Sketch) UG is defined as (F (G))ω, where F (G) is the Effros Borel space
of G, and G acts on UG via

g ∗ (Fn)n∈ω := (gFn)n∈ω.

This action is Borel.
If X is a seperably metrizable space with a Borel G action ◦, then choose

an enumeration (Sn : n ∈ ω) of a basis of the topology.
For A ⊆ G let

E(A) := {g ∈ G : For all open nbhd V of g, V ∩A is not meager}.
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Clearly, E(A) is closed.
One then defines π : X 7→ UG, x 7→ (πn(x))n∈ω, where

πn(x) := (E({g ∈ G : g ◦ x ∈ Sn}))−1.

We skip the details of the proof that this is the desired embedding.

Remark. The result can be sharpened(theorem 2.6.6 of [2]): For every Polish
group G, there is a compact universal Polish G space.

The following result will also be useful. For a proof see theorem 5.2.1 of [2].

Theorem 6.1.4. Let X be a Borel G space. There is a Polish G space Y which
is Borel isomorphic to X.

6.2 Applications to Model Theory

The most interesting Polish group for this thesis is S∞, the group of permuta-
tions of ω, where multiplication is the composition of functions and the topology
is inherited from N . S∞ acts on Xτ in a canonical way: Let g ∈ S∞ and x ∈ Xτ
then g ∗ x is the element y ∈ Xτ such that Mx

∼= My via g. This action is
continuous and called the logic action.

Proposition 6.2.1. A subgroup G of S∞ is closed if and only if there is a
countable relational vocabulary τ and some M ∈ Xτ such that

G = Aut(M),

where Aut(M) is the automorphism group of M.

Proof. (⇒): Suppose G ≤ S∞ is closed and for every k ∈ ω+, let Mk be the
quotient space of ωk of the orbit equivalence relation with respect to G, i.e.
a, b ∈ ωk are equivalent if for some g ∈ G, b = g(a).

For every k ∈ ω+ and every s ∈ Mk let Rs be a k ary relation symbol and
define τ := {Rs : s ∈Mk, for some k ∈ ω+}.

Consider M ∈ Xτ in which Rs is interpreted with s.
Using the fact that G is closed, it is easy to show that G = Aut(M).
(⇐): If G = Aut(M), for some M ∈ Xτ , where τ is countable, and f in

S∞ \ G, then without loss of generality, for some atomic formula ψ(v1, . . . , vl)
and some a ∈ ωl, we have

M |= ψ(a), and M 6|= ψ(f(a)).

This is also true for the open set of all h ∈ S∞ which agree with f on a.

In the proof of proposition 5.1.1 we saw that if τ2 is a relational vocabulary
of unbounded arity then for every countable vocabulary τ1 there is a continuous
injection from Xτ1 into Xτ2 . It is easy to check that this function respects the
S∞ action on the logic spaces, in particular it is a Borel embedding of Polish
S∞ spaces. By lemma 6.1.1 we have, that if τ1, τ2 are relational vocabularies of
unbounded arity, then Xτ1 and Xτ2 are Borel isomorphic.
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Lemma 6.2.2. Let τ1 be a relational vocabulary such that for some k ∈ ω+, all
of its symbols have arity less or equal k. If τ2 is a vocabulary consisting of a
single n ary relation symbol, where n > k, then there is no embedding from Xτ2
into Xτ1 .

Proof. We can assume without loss of generality that n = k + 1.
For a finite injection b ∈ ω<ω, we define Sb := {g ∈ S∞ : b ⊆ g}.
Since all symbols of τ1 are bounded by k, every x ∈ Xτ1 has the following

property

P∗: If g ∗ x 6= x, then for some injective b ∈ ωk, b ⊆ g and h ∗ x 6= x, for all
h ∈ Sb.

We show that there is a model M ∈ Xτ2 which does not satisfy P∗, hence there
cannot be an embedding from Xτ2 into Xτ1 , as ¬P∗ is preserved under such
maps.

Let Y := {(a1, . . . , an) : ai 6= aj , 1 ≤ i < j ≤ n}. We identify a subset of Y
with its characteristic function which is an element of 2Y . Equipped with the
product topology 2Y is homeomorphic to the Cantor space.

For n ≤ m < ω and b ∈ ωm injective, define

P (m, b) := {f ∈ 2Y : ∀a ∈ dom(b)n, a ∈ f ⇔ b(a) ∈ f}.

For n ≤ m and l ∈ ω, let Q+(m, b, l) be the set of all f ∈ 2Y such that
if f ∈ P (m, b), then for some injective c ∈ ωm+1, b ⊆ c, l ∈ dom(c) and
f ∈ P (m+ 1, c), and Q−(m, b, l) the set of all f ∈ 2Y such that if f ∈ P (m, b),
then for some injective c ∈ ωm+1, b ⊆ c, l ∈ range(c) and f ∈ P (m + 1, c).
It follows that for all m ≥ n, all l ∈ ω and all b ∈ ωm, both Q+(m, b, l) and
Q−(m, b, l) are open and dense in 2Y .

For b ∈ ωk, we also define A(k, b) as the set of all f ∈ 2Y for which there is
an injective c ∈ ωn such that b ⊆ c and f ∈ P (n, c). It is easy to verify that
A(k, b) is also open and dense.

Since 2Y is a Baire space, there is some S in⋂
b∈ωk

A(k, b) ∩
⋂

l,m∈ω,m≥n
b∈ωm

(Q+(m, b, l) ∩Q−(m, b, l))

such that ∅ 6= S and Y 6= S.
Now let M := (ω,R), where R ⊆ ωn is defined by

a ∈ R :⇔ a ∈ S.

Clearly, there is g ∈ S∞ such that g ∗M 6= M . If b ∈ ωk and b ⊆ g, then
by the specific choice of S, we can via a back and forth argument construct an
automorphism of M extending b. Thus, every element of the S∞ orbit of M
does not satisfy P∗ and can therefore not be embedded into Xτ1 .

Theorem 6.2.3. If τ is a relational vocabulary of unbounded arity, then Xτ is
a universal Borel S∞ space.

Proof. It suffices to prove the theorem for the special case that τ has infinitely
many k ary relation symbols, for every k ∈ ω+.
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First note that S∞ acts contionusly on the Baire space N via composition

g ∗ f := g ◦ f,

for (g, f) ∈ S∞ ×N , and that for every g ∈ S∞ the map

N 3 f 7→ g ∗ f

is a homeomorphism on N .
Thus, we have a Borel action of S∞ on the Effros Borel space F (N ) defined

by
g ∗2 A := gA = {g ∗ f : f ∈ A}.

Now let V := (F (N ))ω with the componentwise action of S∞. Clearly, this is
also a Borel S∞ space.

By theorem 6.1.3, we know that U := (F (S∞))ω is an universal Borel S∞
space, where F (S∞) is the Effros Borel space of S∞.

It is easy to check that the map

U 3 (An)n∈ω 7→ (An)n∈ω ∈ V

is a Borel embedding of S∞ spaces, where A is the closure of A in N , for
A ⊆ S∞ ⊆ N , therefore, V is an universal Borel S∞ space.

If we can find an embedding from V into Xτ , the theorem follows.
For (m,n) ∈ ω × ω+, let R(m,n) be a n ary relation symbol of τ .
Every closed subset of N is the set of branches of a tree T ⊆ ω<ω.
Suppose a := (Am)m∈ω ∈ V and let (Tm)m∈ω be the sequence of trees such

that Am is the set of branches of Tm. We define a τ model Ma by interpreting
R(m,n) as

{s ∈ ωn : s ∈ Tm}.

Let < Ma > be the code of Ma in Xτ . Then the proof that

V 3 a 7→< Ma >∈ Xτ

is a Borel embedding of S∞ spaces is routine.

Corollary 6.2.4. Let τ be a countable relational vocabulary, M ∈ Xτ with
automorphism group G ≤ S∞ and µ be a relational vocabulary of unbounded
arity disjoint from τ . Then the set of all µ extensions of M is an universal G
space.

Proof. Without loss of generality we can assume that µ is the vocabulary from
the previous proof with infinitely many relation symbols in every arity.

G is a closed subgroup of S∞, hence by theorem 6.1.2 and the previous
result, Xµ is an universal Borel G space.

If we modify the map a 7→< Ma > of the previous proof such that Ma is a µ
extension of M , then we get a Borel embedding of G spaces from (F (N ))ω into

{B ∈ Xτ∪µ : B � τ = M}.
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We know that by Scott’s isomorphism every x ∈ Xτ can be characterized by
a single sentence and we have also seen that the set of all models which satisfy
a given sentence is Borel. Thus, we have

Proposition 6.2.5. For every x ∈ Xτ , the orbit of x under the logic action is
Borel.

Fact 6.2.6. Let X be a Polish G-space and A,B ⊆ X be analytic, disjoint and
G-invariant. There is a G-invariant Borel subset C such that A ⊆ C ⊆ X \ B.
C is said to seperate A and B.

This can be proven using the well known fact that two analytic and disjoint
sets in a Polish space can be seperated by a Borel set.

A subset B of a topological space X is called nowhere dense if (B)◦ = ∅. If
B ⊆ X is a countable union of nowhere dense subsets of X, then B is called
meager. A set is comeager if its complement is meager. A topological space is
called a Baire space if every nonempty open subset is non meager.

Every Polish space is a Baire space and every open subset of a Polish space
equipped with the relative topology is also Baire.

Notation. (Category Quantifiers) If X is a topological space and P is a prop-
erty, then ∀∗xP (x) means that {x ∈ X : P (x)} is comeager.
∃∗xP (x) means that {x ∈ X : P (x)} is not meager.

Definition. (Vaught Transforms) Let G be a Polish group acting on a set X
via ∗, A ⊆ X and U ⊆ G open and nonempty. Then

� A∆U := {x ∈ X : ∃∗g ∈ U such that g ∗ x ∈ A}.

� A∗U := {x ∈ X : ∀∗g ∈ U(g ∗ x ∈ A)}.

If U = G, we simply use A∗ and A∆.

It easily follows that A ⊆ X is invariant iff A = A∗, iff A = A∆.
With this notions we can show a theorem by Lopez-Escobar:

Theorem 6.2.7. (Theorem 16.8 of [10]) The invariant Borel sets of Xτ are
exactly the ones of the form Mod(φ), where φ is a Lω1,ω(τ)-sentence.

Proof. (Sketch) For each k < ω, let Uk be the set of all injective k-sequences in
ω<ω and if u ∈ Uk, then let [u] := {g ∈ S∞ : u ⊂ g−1}. Clearly, [u] is clopen.

Then, for A ⊆ Xτ , define

A∗k := {(x, u) ∈ Xτ × ωk : u ∈ Uk, x ∈ A∗[u]}.

For every Borel set A ⊆ Xτ and every k < ω, A∗k is of the form

Aφ,k:={(x, a) ∈ Xτ × ωk : Mx |= φ(a)},

where φ(v) is a k-formula of Lω1,ω(τ) and a ∈ Uk. This follows from the fact
that the set of all A ⊆ Xτ , for which A∗k is of the form Aφ,k, contains every open
set and is closed under complementation and countable intersections.

Then consider the case for k = 0: Clearly, if φ ∈ Lω1,ω is a sentence, then
Aφ is Borel and invariant.

On the other hand, if A ⊆ Xτ is Borel and invariant, then A = A∗ = A∗0
which is of the form Aφ.
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An immediate consequence of this result is that every countable τ -structure
can be characterized up to isomorphism by a Lω1,ω-sentence, since we have
pointed out that the orbit of every model is a Borel set which is clearly invariant.
This result was already proven in theorem 2.2.5 but notice that here we have
only given an existential proof whereas in section 2 we provided an example of
a characterizing sentence. We also have:

Corollary 6.2.8. (Interpolation Theorem, see corollary 16.11 of [10]) Let τ1, τ2
be countable vocabularies, φ a Lω1,ω(τ1)-sentence, ψ a Lω1,ω(τ2)-sentence and
define τ ′ := τ1 ∩ τ2. Suppose that with respect to τ1 ∪ τ2, we have φ |= ψ. Then
there is a Lω1,ω(τ ′)-sentence σ such that φ |= σ |= ψ.

Proof. Let A be the set of all x ∈ Xτ ′ for which there is a y ∈ Xτ1 such that

My |= φ, and My � τ
′ = Mx,

and B the set of all x ∈ Xτ ′ for which there is a y ∈ Xτ2 such that

My |= ¬ψ, and My � τ
′ = Mx.

Then A and B are analytic, disjoint and invariant, hence there is an invariant
Borel set C ⊆ Xτ ′ seperating them. By the Lopez-Escobar theorem C = Aσ for
some sentence σ ∈ Lω1,ω(τ ′). it is easy to check that φ |= σ |= ψ.

We can now present Hjorth’s original proof of theorem 4.2.11:
Recall that in section 4 we considered a countable infinite vocabulary τ1

which has an unary predicate symbol Q′. We defined a special sentence ψ of
Lω1,ω(τ1), namely the K1 generic sentence, which has models of cardinality ℵ0

and ℵ1 but of no higher cardinality.
Let M ∈Mod(ψ) and Q := Q′M .In proposition 4.2.7 it was shown that QM

is infinite and later that Q is a set of absolute indiscernibles.
Fix an arbitrary bijection ρ from Q onto ω. It follows that there is a contin-

uous group homomorphism π from Aut(M) onto S∞ given by

Aut(M) 3 g 7→ ρ ◦ g ◦ ρ−1 ∈ S∞.

Suppose µ is an arbitrary contable vocabulary disjoint from τ1 and σ ∈ Lω1,ω(µ)
is a counterexample to V C3. Then Mod(σ) is a Borel S∞ space with uncount-
ably many but not perfectly many orbits. It is also a Borel Aut(M) space with
the acton g ∗2 x := π(g) ∗ x, for g ∈ Aut(M) and x ∈ Mod(σ). Note that the
orbit equivalence relation generated by ∗2 is equal to the one generated by ∗.

Let τ ′1 be a relational vocabulary of unbounded arity disjoint from τ1 and
τ2 := µ ∪ τ1 ∪ τ ′1. By corollary 6.2.4, the τ2 extensions of M form a universal
Aut(M) space, denoted by Y . Clearly, Y ⊆ Xτ2 .

Thus, there is a Borel embedding

F : Mod(σ) 7→ Y.

Let B := im(F ). Then B is Borel. Now consider

C := {N ∈ Xτ2 : N ∼= A, for some A ∈ B}.

C is Borel, since it can also be described as the set of all N ∈ Xτ2 which satisfy
ΨM , the Scott sentence of M , and for which all N ′ ∈ Y isomorphic to N are in
B. Clearly, C is invariant with respect to the standard action of S∞.
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By theorem 6.2.7, there is a sentence φ ∈ Lω1,ω(τ2) such that C = Mod(φ).
We have φ |= ΨM , hence φ has no models in cardinality greater than ℵ1.
It is also obvious that φ has uncountably but not perfectly many models, as

any perfect set of pairwise non isomorphic models of φ yields a perfect set of
nonisomorphic models of σ. (q.e.d.)

We have seen that V C3 is a problem about the orbit equivalence relation of
a Polish group action on an invariant Borel subset of a Polish space. This
observation leads to the so called topological Vaught conjecture (TVC).

TVC2(G): Let X be a Polish G-space and A ⊆ X be invariant and Borel.
Then either there are ≤ ℵ0 many G-orbits in A or else A contains a perfect
set of pairwise non orbit equivalent elements.

Clearly, TV C2(S∞) implies V C3 and is independent of the value of c. There
are also other versions:

TVC1(G): If X is a Polish G space, then either there are at most ℵ0

many G orbits or else there is a perfect subset of X of pairwise non orbit
equivalent elements.

TVC3(G): If X is a Borel G space, then either there are at most ℵ0

many G orbits or else there is a perfect set of pairwise non orbitequivalent
elements in X.

Historically, TV C1(G) is the first version and was formulated by D.H. Miller(see [16]
p.484). The idea to consider model theoretic problems from a descriptive set
theoretic and topological point of view was already discussed by R. Vaught
in [22].

Proposition 6.2.9. If G is a Polish group, then all three versions of the topo-
logical Vaught conjecture for G are equivalent.

Proof. Clearly, we have TV C3(G)⇒ TV C2(G)⇒ TV C1(G).
TV C1(G)⇒ TV C3(G) follows imediately from the fact that evrey Borel G

space is Borel isomorphic to a Polish G space.

Since we are only considering Polish groups here and in light of the previous
proposition, we simply write TV C(G) from now on.

Proposition 6.2.10. Let G be a Polish group. Then TV C(G) holds if and only
if TV C(A) is true, for every closed subgroub A ≤ G.

Proof. (I thank Mathematics Stack Exchange user Edward H for his help with
this proof.)

(⇒): Let A ≤ G be closed and X be a Polish A space with uncountably
many orbits.

By theorem 6.1.2 there is a Polish G space Y containing X as a closed subset
such that the action ◦ of G on Y extends the action of A on X and every G
orbit of Y contains exactly one A orbit of X.

Assuming TV C(G), it follows that there is a perfect set W ⊆ Y of pairwise
G independent elements.

The set
S := {(w, g) ∈W ×G : g ◦ w ∈ X} ⊆ Y ×G
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is closed and has domain W . Thus, by the Jankov, von NeumannUniformization
Theorem (see theorem 18.1 of [10]), there is a σ(Σ1

1) measurable function

ρ : (W,σ(Σ1
1)) 7→ (G,B(G)),

where σ(Σ1
1) is the σ algebra of W generated by the Σ1

1 sets and B(G) is the
Borel algebra of G, such that for all w ∈ W , (w, ρ(w)) ∈ S. In particular ρ is
Baire measurable, i.e. for every open set U ⊆ G, ρ−1(U) has the Baire property.
It follows that ρ is continuous on a dense Gδ subset B ⊆W . Then

{ρ(w) ◦ w : w ∈ B}

is an uncountable Borel subset of pairwise A independent elements of X, hence
by the perfect set theorem, X has perfectly many A orbits.

The direction (⇐) is immediate.

Theorem 6.2.11. The following are equivalent:

(1) V C3

(2) TV C(S∞).

Proof. (2)⇒ (1) is clear.
(1)⇒ (2): Suppose X is a Borel S∞ space.
Let τ be the relational vocabulary with exactly one k ary symbol for every

k ∈ ω+. By theorem 6.2.3, Xτ is a universal S∞ space, hence there is a Borel
embedding π from X into Xτ . Since im(π) is an invariant Borel subset of Xτ ,
there is a sentence σ ∈ Lω1,ω(τ) such that im(π) = Mod(σ). If there are
uncountably many S∞ orbits in X, then I(σ,ℵ0) > ℵ0 and thus by V C3, σ has
perfectly many models.

Any perfect set of pairwise non isomorphic models of σ easily gives us a
perfect set of non orbit equivalent elements in X.

Let X,Y be metrizable spaces, X compact and C(X,Y ) be the set of all
continuous functions from X into Y .

For K ⊆ X closed an U ⊆ Y open, define

V (K,U) := {f ∈ C(X,Y ) : f [K] ⊆ U}.

Then {V (K,U) : K ⊆ X closed, U ⊆ Y open} is a subbasis for a topology on
C(X,Y ), called the compact open topology of C(X,Y ). In this thesis we only
deal with this topology when considering C(X,Y ).

If d is a compatible metric for Y , then

du(f, g) := sup{d(f(a), g(a)) : a ∈ X}

is a compatible metric for the compact open topology of C(X,Y ). One can show
- see for example theorem 4.19 of [10] - that if Y is Polish then so is C(X,Y ).

In the special case where X = Y , we consider the set of all homeomorphisms
on X. Together with the composition operation this set is a group, called the
homeomorphism group of X and denoted by H(X). It is not difficult to show
that H(X) is a Polish group with the toplogy it inherits as a Gδ subset of
C(X,X). A compatible metric is given by

d∗(f, g) := du(f, g) + du(f−1, g−1).
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Homeomorphism groups are studied in particular with respect to the connections
between the topological properties of a space X and the algebraic properties of
its homoemorphism group.

Lemma 6.2.12. Let C := 2N be the Cantor space. The following are equivalent:

(i) TV C(S∞).

(ii) TV C(H(C)).

Proof. (i)⇒ (ii): First, we show that H(C) is isomorphic to a closed subgroup
of S∞.

Let M be the set of all clopen subsets of C. Since C is compact and metriz-
able, it follows that |C| = ℵ0.

M is closed under finite intersections and unions, hence we can see it as
a countable model M :=< M,∩,∪ > of a language with two binary function
symbols.

Every homeomorphism π ∈ H(C) determines an automorphismHπ ∈ Aut(M)
via

Hπ(A) := π[A],

for A ∈M .
Conversly, H ∈ Aut(M) gives us a homeomorphism πH ∈ H(C) via

πH(x) :=
⋂
{H(A) : A ∈M, x ∈ A},

for x ∈ C. It is a routine exercise to show that πH is well defined and that the
map

H(C) 3 π 7→ Hπ ∈ Aut(M)

is an isomorphism of topological groups.
If we fix a bijection from M onto ω, then by proposition 6.2.1, H(C) is iso-

morphic to a closed subgroup of S∞, therefore by proposition 6.2.10 TV C(S∞)
implies TV C(H(C)).

(ii)⇒ (i): Similarily to the previous direction, we show that S∞ is isomor-
phic to a closed subgroup of H(C): Given σ ∈ S∞ and f ∈ C, let fσ ∈ C be
defined via

fσ(n) := f(σ−1(n)),

for n ∈ ω.
It is not difficult to show that the map Gσ : C 7→ C, f 7→ fσ is a homeo-

morphism, and that the map G : S∞ 7→ H(C), σ 7→ Gσ is a continuous group
monomorphism. Furthermore, G is a homeomorphism between S∞ and im(G)
equipped with the relative topology.

It remains to show that im(G) = im(G). Let n ∈ ω, g ∈ im(G) and define
the following clopen sets

B(n,0) := {f ∈ C : f(n) = 0} and B(n,1) := {f ∈ C : f(n) = 1}.

Clearly, C = B(n,0)∪̇B(n,1), hence C = g[B(n,0)]∪̇g[B(n,1)], and since g ∈ im(G),
it follows that for some m ∈ ω,

g[B(n,0)] = B(m,0) and g[B(n,1)] = B(m,1).
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Using this and the fact that g−1 ∈ im(G), it is easy to see that for some σ ∈ S∞,
g = Gσ.

By proposition 6.2.1, we get TV C(S∞).

Definition. Let I := [0, 1] ⊆ R be equipped with its standard topology. The
product space IN is called the Hilbert cube.

The topological Vaught conjecture is in fact a problem about a specific group.

Lemma 6.2.13. The following are equivalent:

(i) TV C(G), for every Polish group G.

(ii) TV C(H(IN)).

Proof. (i)⇒ (ii) is clear.
(ii) ⇒ (i) is based on the following result by Uspenskii (for a proof see

theorem 9.18. of [10]):

Every Polish group is isomorphic to a closed subgroup of H(IN).

Then using proposition 6.2.10 completes the proof.

Some obvious attemps to generalise TV C further can be answered:
Let us first look at a version for analytic sets.

TVC(G,Σ1
1): ”For every Polish G space X and every invariant analytic

subset A ⊆ X, there are either at most ℵ0 many G orbits in A or else A
contains a perfect set of pairwise non orbit equivalent elements.”

Then we have a counterexample:

Example 6.2.14. For α < ω1, let Mα be the set of all sequences (zβ : β < α),
where zβ ∈ Z and zβ 6= 0 for only finitely many β. We define a linear order<α
on Mα as follows: (xβ : β < α) <α (yβ : β < α), if xi < yi, where i < α is
maximal such that xi 6= yi.

Let τ be the vocabulary with only one binary relation symbol and A be the
set of all elements in Xτ which are isomorphic to some Mα or to Mα×(Q, <) with
the colexicographic order, for some α < ω1. Using a Σ1

1 bounding argument,
one can show that A has ℵ1 many but not perfectly many isomorphism types.

In [15] it is shown that A is the set restricions of countable linearly ordered
abelian groups with universe ω to the vocabulary τ , hence there is an analytic
set on which the logic action of S∞ has uncountably but not perfectly many
orbits.

Remark. It follows from John Steel’s article ([20]) that the set A of the pre-
vious example is not Borel: Suppose otherwise. Then since A is invariant with
respect to the S∞ action, by theorem 6.2.7, A = Mod(φ) for some sentence
φ ∈ Lω1,ω(τ).

Note that all elements of A are linear and therefore tree like orders, hence
by [20], φ satisfies V C3 and A has perfectly many orbits, a contradiction.
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Remark. Sets of models of the form Mod(φ) are called elementary classes.
More generally, if K ⊆ Xτ and for some countable extension τ∗ of τ and a

sentence φ∗ ∈ Lω1,ω(τ∗), K is the set of τ restrictions of Mod(φ∗), then K is
called a pseudoelementary class.

If K is pseudoelementary and determined by φ∗, then we can define an
equivalence relation on Mod(φ∗) via

A ∼ B :⇔ A � τ ∼= B � τ.

It is easy to check that this is a Σ1
1 relation, therefore by Burgess’ theorem there

are either at most ℵ1 many equivalence classes or else perfectly many.
The set A of the previous example shows that the version of V C3 for pseu-

doelementary classes is false.

TV C2(S∞) cannot be generalized to coanalytic sets, as we can simply choose
A to be the set of codes of countable wellorders in the language τ .

One might try to generalise TV C3(S∞) with respect to the group action.
Instead of the Borel algebra we could consider the previously mentioned σ al-
gebra S := σ(Σ1

1) generated by the analytic sets and demand that the action of
S∞ on the Polish space is S measurable. In this case we get a counterexample
as follows: Let τ,A be as in the previous example and C := 2N be the Cantor
space.

There is a continuous embedding fromA, equipped with the relative topology
of Xτ , into C. This follows from the well known fact that every Polish space
can be continuously embedded into C.

Since A is uncountable and analytic, there is a continuous embedding from
C into A.

With a Schröder-Bernstein argument we can construct a bijection π : A 7→ C
which is S measurable in both directions.

Using π, we get a S measurable S∞ action on C with uncountably but not
perfectly many orbits.

TV C(G) has been proven for several special cases, e.g.:

� If G is nilpotent or if it admits an invariant metric (see [8]). In particular
every abelian Polish group satisfies the TV C.

� If G is locally compact. This is a well known and immediate consequence
of a result by Edward Effros (see [4]).

Definition. Let G,H be topological groups. G is said to divide H if there is a
closed subgroup H ′ ≤ H and a continuous surjective group homomorphism

π : H ′ � G.

We have seen that TV C(S∞,Σ
1
1) is false. In [7] it is shown that for every Polish

group G, TV C(G,Σ1
1) fails if and only if S∞ divides G. As a consequence we

get that should TV C(S∞) be false then TV C(G) is true if and only if S∞ does
not divide G.
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