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Abstract

The technological application of quantum features relies upon the certification of the
corresponding desirable properties of quantum states and processes. As our technical
capabilities advance, so does our need for understanding complex properties that go beyond
simple qubit entangled states and causal processes. This cumulative thesis addresses two
of the current challenges in quantum state and process characterisation. First, we study
the certification of high-dimensional entanglement that arises when systems are entangled
in more than two degrees of freedom. Second, we study the certification of processes with
indefinite causal order and the problem of channel discrimination.

High-dimensional encoding of quantum information provides a promising method of
transcending current limitations in quantum communication. The main goal of this part
of this thesis was to develop practically implementable tools to certify the dimensionality
of the entanglement taking into consideration the least possible amount of assumptions
about the state, and when viable, no assumptions at all. In the first work, we developed an
adaptive method that certifies the Schmidt number of a state using only two global product
measurements. We put our method to test in an experiment that certified entanglement in
9 dimensions on a state encoded in the orbital angular momentum of two photons.

When studying the most general transformations that act on a pair of quantum opera-
tions, an intriguing phenomenon emerges: some higher-order transformations may act on
their input operations in an indefinite causal order. Such non-causal properties have found
several theoretical advantages, from communication complexity to quantum computing. In
the second part of the thesis, a formalism of certification of non-causal properties under
different levels of assumptions was developed. This formalism can witness indefinite causal
order in device-dependent, independent, and semi-device-independent experiments, while
showing that a prominent higher-order operation, the quantum switch, can demonstrate
stronger non-causal properties than what was previously known. For the other works in this
part of the thesis, the focus was on the famous quantum information problem of channel
discrimination, proving several novel instances of tasks for which sequential strategies
outperform parallel ones, both for sets of unitary and general channels. We defined new
classes of strategies for channel discrimination that employ indefinite causal order and
proved them to be advantageous when compared to causally ordered ones. These strategies
may themselves be interpreted as methods for certification of indefinite causal order.
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Zusammenfassung

Die technische Anwendung quantenmechanischer Systeme erfordert die Zertifizierung
der gewünschten Eigenschaften der Quantenzustände und Prozesse. Mit dem Fortschreiten
der technologischen Möglichkeiten braucht es das Verständnis von komplexen Eigenschaften
die über simple qubit-verschränkte Zustände und kausale Prozesse hinausgehen. Diese
kumulative Arbeit beschäftigt sich mit zwei der kontemporären Herausforderungen in
Quantenzustands und-Prozess Charakterisierung. Zuerst behandelt die Arbeit die Zertifiz-
ierung von hochdimensionaler Verschränkung die Zustande kommt wenn Systeme in mehr
als zwei Freiheitsgraden verschränkt sind. Danach geht es weiter mit der Zertifizierung von
Prozessen mit indefiniter Kausalordnung und dem Problem der Kanalunterscheidung.

Hochdimensionale Kodierung von Quanteninformation bietet eine vielversprechende
Methode um gegenwärtige Beschränkungen in der Quantenkommunikation zu überwinden.
Das Hauptziel diesen Teils der Arbeit war die Entwicklung praktisch implementierbarer
Theoriewerkzeuge zur Zertifizierung der Dimensionalität der Verschränkung unter Berück-
sichtigung der mindestmöglichen Annahmen über den Zustand, oder, wenn möglich, gar
keiner Annahmen. In der ersten Arbeit haben wir eine adaptive Methode entwickelt, die den
Schmidt-Zahl eines Zustandes anhand von nur zwei globalen Produktmessungen nachweist.
Wir haben unsere Methode in einem Experiment getestet, bei dem die Verschränkung in
9 Dimensionen an einem Zustand bestätigt wurde, die im Drehimpuls zweier Photonen
kodiert ist.

Bei der Untersuchung der allgemeinsten Transformationen, die auf ein Paar von Quanten-
operationen einwirken können, tritt ein faszinierendes Phänomen auf: Einige Transform-
ationen höherer Ordnung können in einer unbestimmten kausalen Reihenfolge auf die
Eingabeoperationen einwirken. Solche nicht-kausalen Eigenschaften haben mehrere theor-
etische Vorteile von der Kommunikationskomplexität bis zum Quantencomputer gezeigt.
Im zweiten Teil der Arbeit wurde ein Formalismus für die Zertifizierung einer solchen
nicht-kausalen Ordnung unter verschiedenen Annahmeebenen entwickelt. In der ersten
Arbeit haben wir einen Zertifizierungsformalismus entwickelt, der dieses Phänomen in
geräteabhängigen, geräteunabhängigen und semi-geräteunabhängigen Experimenten zeigen
kann, und gleichzeitig gezeigt dass eine herausragende Operation höherer Ordnung, der
Quantenschalter, stärkere nicht-kausale Eigenschaften aufweisen kann als bisher bekannt.
Bei den anderen Arbeiten im zweiten Teil der Arbeit lag der Schwerpunkt auf dem bekannten
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Quanteninformationsproblem der Kanalunterscheidung, das mehrere neuartige Instanzen
von Aufgaben aufzeigt, bei denen sequentielle Strategien parallele Strategien sowohl für
einheitliche als auch für allgemeine Kanäle übertreffen. Wir haben dann neue Klassen
von Strategien zur Kanaldiskriminierung definiert, die eine unbestimmte kausale Ordnung
verwenden, und sie als vorteilhaft im Vergleich zu kausal geordneten erwiesen. Diese
Strategien können selbst als Methoden zur Zertifizierung einer unbestimmten kausalen
Ordnung interpretiert werden.
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Preamble

A certification procedure is one that can infer, in an unambiguous manner, that a
physical system or mathematical object exhibits a certain property. Typically, certification
procedures require only partial information about the object whose properties it intends to
certify. In other words, they do not require its complete description. A concrete example is
the certification of the entanglement of a quantum state by an entanglement witness, which
is a procedure that only requires the knowledge of the expectation value of the given state
for a certain observable. The full characterization of the state, which could be achieved by
state tomography, is not required for the evaluation of an entanglement witness, making it
more practical and efficient.

Such procedures come in handy particularly when considering complex quantum prop-
erties, for which complete characterization can be far too costly. Although somewhat
arbitrary, the term complex quantum properties is hereby used to refer to properties of
quantum systems which go beyond their simplest manifestation and have been shown to
bring advantages to information-theoretic tasks. It means high-dimensional, as opposed to
qubit entanglement. Multipartite, as opposed to bipartite states. Non-causal, as opposed
to causally ordered processes.

The main challenge addressed in this thesis is the development of methods to certify
two remarkable complex quantum properties: high-dimensional entanglement and indefinite
causal order. The certification of each of these two properties are driven by different
motivations and currently face contrasting stages of technological implementation.

In this Preamble, we outline the context and the contribution of this thesis to both
of these topics. The thesis is then composed of two parts: Part I, containing Chapter 1,
addresses the topic of certification of high-dimensional entanglement, while Part II, contain-
ing Chapters 2–4, addresses the topic of certification of indefinite causal order and channel
discrimination. In the Concluding Discussion, an outlook on future research directions is
presented.

Fast-developing quantum technologies have been proving their merit in the last couple
of decades. Quantum advantages for, e.g., computation [1], communication [2], security for
key distribution [3, 4], and simulations of complex systems [5, 6] have motivated remarkable
experimental achievements. Some examples are the distribution of pairs of entangled
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states across long distances [7, 8], over free-space [9, 10] and satellite links [11, 12], and
the fine-tuned control over various physical platforms, as for instance, photonics [13, 14],
ultracold atoms [15], integrated-optics [16], and superconducting circuits [17].

While the generation of quantum states that are entangled across two degrees of freedom
is readily available, the canonical way in photonics of generating two-dimensional polarization
entanglement in down-conversion processes already offers the potential for exploring more
complex entanglement properties in higher dimensions, by exploiting spatial degrees of
freedom [18, 19], orbital angular momentum [20–22], energy-time based encodings [23–26],
or combinations thereof, to create hyper-entangled quantum systems [27, 28].

High-dimensional entanglement has long been known to overcome some limitations of
qubit entanglement [29, 30], by offering better key rates [31], higher noise resistance [32, 33]
and improved security against different attacks [34]. Hence, the necessity of developing
solid theoretical tools that can allow us to take full advantage of the available technology
emerges.

One main concern is on certification methods that do not rely on assumptions about the
state being certified. Realistic scenarios of entanglement distribution for, e.g., communica-
tion purposes, cannot rely on the assumption that the state that arrives at the detectors
after traveling potentially long distances is the same as that which was generated by its
source. Moreover, assumptions about the source itself may put quantum protocols at risk
of suffering security breaches [35].

Nevertheless, due to the complexity of realizing measurements in high-dimensional
spaces, previous methods that aimed to certify dimensionality of entanglement often had
to resort to assumptions about the underlying quantum state, including, amongst others,
conservation of angular momentum [36], subtraction of accidentals [37], perfect correlations
in a desired basis [38], or that the experimentally-generated state is pure [39]. Although
often plausible, such assumptions decrease the strength of the certification result, which
will only hold as long as the assumptions can be guaranteed to do so.

Part I of this thesis focuses on these challenges: the development and testing of high-
dimensional entanglement certification methods that can be applied across multiple physical
platforms in a practical and efficient manner without relying on any assumptions about the
quantum state.

In Chapter 1, we devise and implement an experimentally-accessible method for certifying
the dimensionality of the entanglement of an unknown quantum state. In contrast to state
tomography, which requires (d + 1)2 global product measurements, where d is the local
dimension of the subsystems, and measurement of fidelity with respect to a pure state, which
requires (d+ 1) global product measurements, our method requires only two measurements,
regardless of the dimension of the underlying state.

Consider a bipartite quantum state, prepared in a laboratory, about which no information
is assumed — not even the dimension of its local systems. The goal is to certify whether or
not this state is entangled and, in case it is, quantify the dimensionality of its entanglement.
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Our method goes as follows. The first step is to choose a basis onto which the first
measurement, a local projective measurement, will be performed, along with the dimension
of the space that will be measured. Ideally, the chosen basis should be as close as possible to
the Schmidt basis of the state. Since no assumptions about the state are made, one cannot
know what the actual Schmidt basis is. Nevertheless, an educated guess is often possible,
and can be made based on the physical platform and degree of freedom used to encode the
state. For example, if the state of interested is encoded in the orbital-angular-momentum
degree of freedom of a pair of photons that were prepared through a process of spontaneous
parametric down conversion (SPDC), one may explore the natural symmetry that should
arise from the conservation of angular momentum to guess that the Schmidt basis of this
state should be close to the Laguerre-Gauss basis. The experiment reported in Chapter 1
follows this reasoning. Another example would be an experiment involving two-mode
squeezed states, for which the Fock basis could be the most appropriate choice for the
first measurement. While this educated guess will guide the choice of measurement, its
correspondence to the actual Schmidt basis of the measured state is not a requirement of the
method. This guess will not be part of the analysis of the data, therefore not constituting
an assumption.

The result of this first measurement will yield partial information about the state, and
this partial knowledge will be exploited in the next step to serve two purposes. The first is
the determination of a target state with respect to which the fidelity of the measured state
will be estimated. This target state is pure and has maximal entanglement dimensionality
for its subspace dimensions. The second purpose is the determination of the second basis of
measurement. This basis – which we have dubbed tilted basis – is a set of non-orthogonal,
normalized, and linearly independent vectors which are constructed by transforming a basis
that is mutually unbiased with respect to the first basis of measurement, according to
coefficients that are calculated from the outcome statistics of the first measurement.

Subsequently, a measurement onto the projectors of the second basis is performed locally
on each subsystem. With the outcome statistics of these two measurements, one now has
enough information about the measured state to compute a lower bound of its fidelity
with respect to the target state, and consequently infer a lower bound on the Schmidt
number of the measured state. This procedure guarantees a minimal dimensionality for the
entanglement of the measured state without any assumptions about its preparation.

Of course, in practice, some information about the state preparation is often available.
For example, if a state is prepared in the polarization degree of freedom of two photons,
and polarization is the only degree of freedom that will be measured in the experiment, one
could be confident that they are dealing with a two-qubit state. If, moreover, this state
was prepared though a process of SPDC, one could expect it to be close to a maximally
entangled state. The important question is then whether or not this knowledge will be
used/assumed in the analysis of the experimental data. By choosing not to use such
information in order to make assumptions about the state, but rather to simply guide
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the choice of the first measurement basis, we guarantee an entanglement certification that
stands regardless of the validity of any state preparation assumption.

It is true that a successful certification – in the sense of a certification of a value for
the entanglement dimensionality that is as close as possible to the actual entanglement
dimensionality of the measured state – relies on a good choice of the initial measurement
basis. Indeed, if this choice were made at random, most likely no entanglement would be
certified, even when applying the method to an entangled state. However, the point of the
method is to take advantage of the commonly available information about the potential
symmetries of the physical systems and degrees of freedom where the state is prepared to
make the best possible choice of measurement. Since the choice of initial measurement
basis is not taken as an assumption in the certification process, its result holds regardless of
whether the chosen basis was the actual Schmidt basis. Consequently, and crucially, a poor
choice of the first measurement basis will never lead to an over-estimation of entanglement,
although it could lead to an under-estimation. Another advantage of this adaptive method
is that the target state does not have to be guessed or established a priori, but it is rather
learned from the outcomes of the first measurement.

Although the theoretical merit of this method was well established by our proofs of
tightness of our fidelity bounds for several classes of states, described in Chapter 1, and
its independence of physical platform, its practical accessibility still remained to be put
to test in an experiment carried out under realistic circumstances. We therefore designed
and implemented an experiment using the orbital angular momentum of a pair of photons,
and certified 9-dimensional entanglement, a record for assumption-free high-dimensional
entanglement certification at the time of publication [40].

Another complex quantum property whose certification this thesis addresses is that of
the causal order of quantum processes. While in hindsight it is easy to see that both of
the topics of high-dimensional entanglement and of indefinite-causal-order approached in
this thesis fall under the same umbrella of certification of complex quantum properties, the
original motivation for the work of Part I of the thesis was, in many ways, the opposite of
that of Part II. While the development of methods for the certification of high-dimensional
entanglement was motivated by the current advances in quantum technologies, our study of
the certification of indefinite causal order instead had the original intention of motivating
such technological advances in its corresponding field.

The study of causal order in quantum information arises from the analysis of signaling
properties of probability distributions. Joint probability distributions are signalling when
the marginal probabilities of one party do not depend on the inputs of another. If, let us
say, a set of joint probability distributions are signalling from party A to B, it means that,
by their choice of inputs, party A can affect the marginal probabilities of party B, and
exploit this property to, for example, signal messages. Although signalling is not enough to
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establish a causal influence between the two parties, it is enough to establish the causal
order between them. A set of joint probability distributions can determine whether A is in
the past of B, B is in the past of A, or whether the events observed by the parties are not
directly causally related, which is the case when the marginal probabilities of each party do
not depend on the other.

To relate causal order relations to quantum physics, one can analyse what kind of
probability distributions can be generated by the operations allowed by quantum mechanics.
It is then convenient to analyse this question from the point of view of transformations
on quantum operations – the so-called higher-order operations [41–43]. Here, by quantum
operations, we are referring to operations that transform quantum states. The same way
that one can see, e.g., a unitary operation to be a transformation that maps quantum
states into quantum states, or a measurement to be a transformation that maps a quantum
state into a probability distribution, one can also think of higher-order operations to be
transformations of quantum operations. One example would be a transformation that
maps quantum channels into quantum channels, measurements into measurements, or any
quantum operation into a probability distribution. While transformations of quantum
states are reasonably well-understood, complex properties of transformations of quantum
operations arise when one considers their underlying causal structures. A useful formalism
to approach causal properties of higher-order operations is the one of process matrices [44].

Let us first consider a set of joint probability distributions whose marginals are inde-
pendent of the inputs of the other party and hence establish no causal ordering between
the events they describe. Then, one can ask what is the most general transformation that
can take a pair of quantum operations to a set of probability distributions of this kind. The
answer to this question is what we call a parallel process [42, 45]. Such transformations,
the parallel processes, can be realized by sending a bipartite quantum state through the
pair of operations that will be transformed and then measuring it, resulting in probability
distributions.

One could also ask what is the most general transformation that can take a pair of
quantum operations to a set of joint probability distributions that is signalling in one
direction, and hence establishes a fixed causal order between the events it describes. The
answer this time is an ordered or sequential process [42, 44, 46]. Ordered processes can
be physically implemented by sending a quantum state that is first acted upon by the
operations of the first party, then sent through a quantum channel to the second party,
who acts upon it with their quantum operations. The interaction of the process with the
operations of each party yields probability distributions. Auxiliary systems may also be
involved in the implementation of both parallel and ordered processes. The aforedescribed
process effectively takes a pair of quantum operations, each realized by one party, to
probability distributions that allow for signalling in one direction.

Another consideration is that of joint probability distributions which can be expressed
as a mixture (i.e. convex combination) of one-way signalling distributions. One can check
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that these distributions can always be achieved by the action of a process that can also be
described as a mixture of processes that are ordered in different directions. A mixture of
processes can be realized by flipping a coin and implementing a process that is order in one
direction when the coin lands on ‘heads’ and in another direction when it lands on ‘tails’.
Such processes, in turn, are called causally separable processes [44, 46].

Finally, following this reasoning, one question is still left to be asked: what is the most
general transformation that can take a pair of quantum operations to any general set of
probability distributions, without restrictions on their signalling relations? The answer to
this question is a general process or general process matrix [44, 46].

A general process is a valid transformation of pairs of quantum operations because it
generates valid probability distributions. However, it is known that there exist general
processes that are neither parallel, sequential, nor causally separable [44]. Moreover, some
of the probability distributions that these processes can generate when acting on a pair of
quantum operations also cannot themselves be described as mixtures of one-way signalling
distributions. Although transmission of information is allowed between the parties in
this scenario, it can be then concluded that neither the process itself nor the probability
distributions that it can generate can define a definite causal order between the observed
events. This interesting phenomenon has been called indefinite causal order [44].

An important follow-up question would then be: Can one describe a general indefinite-
causal-order process in terms of quantum states and quantum operations, similarly to how
we previously described parallel, sequential and causally separable process to be physically
realized by quantum states, channels, measurements, and coin-throwing? For some of these
processes, the answer is yes. A subclass of them, to which a much-studied process, the
quantum switch, belongs, has been shown to be implementable by coherent quantum control
of quantum operations [47, 48]. These results are nevertheless very recent and still remain
to be experimentally tested. But for the remaining indefinite-causal-order processes that
do not fit in this class, the answer to this question is currently an open avenue of research.

Currently, a general process matrix may most comfortably be seen as a mathematical
object of interesting properties about which we still lack physical intuition. However,
the limitations of our natural human intuition has, in the past, shown itself not to be
a good enough reason to discard the study of puzzling mathematical objects1. Some
physical and informational principles have been suggested as potential divisors of the
quantumly realizable and non-realizable processes [54–56]. Importantly, so far no such
principle has been able to conclusively rule out any process matrix, nor has any physically
or mathematically absurd consequence (such as the ability to send information to the past
or the ability to provide implausible computational advantages) been shown to arise from

1Looking back at the history of physics, one can easily find examples of theoretical findings which were
initially seen as potential mathematical pathologies only to later be confirmed as accurate theoretical models
for experimentally-observed phenomena. A few examples are the Poisson spot [49], the Dirac sea [50], the
gravitational lens [51], the gravitational wave [52], and the Higgs boson [53].
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the analysis of such objects.
Theoretically, the application of indefinite-causal-order has been shown to be advantage-

ous to numerous tasks. Some examples are the outperformance of indefinite-causal-order
processes over causally ordered ones in tasks such the discrimination of non-signaling
channels [57], communication complexity [58, 59], quantum computation [60], and inverting
unknown unitary operations [61].

Here enters the main motivation of the Part II of this thesis. By developing theoretical
frameworks for the experimental certification of indefinite causal order and demonstrating the
theoretical advantage of the application of these processes to quantum information tasks, we
aim to provide tools to assist the further technological development of protocols that involve
indefinite causal order and the continued investigation of their physical implementation.

In Chapter 2, we develop a framework for the certification of indefinite causal order
in process matrices under different sets of assumptions. Similarly to the certification of
high-dimensional entanglement in Part I, no assumptions are ever made about the object
whose properties the framework proposes to certify: the quantum state or the process
matrix. In contrast to our method of high-dimensional entanglement certification, which
assumes that the measurements implemented experimentally are exactly the ones described
in theory, for the certification of process matrices we consider scenarios in which the level
of assumptions about the operations being applied also varies.

Processes, just like quantum states, may be certified by full characterization – achieved
through process or state tomography [62–64] – or by the correlations they are able to
produce. An analysis of the correlations may or may not take into consideration information
about what operations were applied. A device-dependent approach is one that assumes full
knowledge of the involved quantum operations in the analysis of experimental data. It is in
this scenario that entanglement witnesses [65] and the analogous causal witnesses [46, 66]
may be tested. A device-independent analysis, on the other hand, is the one that dispenses
any potential knowledge about the quantum operations and takes conclusions solely based
on the analysis of probability distributions. In this scenario, entanglement of quantum
states can be certified through the violation of a Bell inequality [67, 68] and indefinite causal
order of processes can be certified through the violation of causal inequalities [44, 69].

Even though the process matrix formalism predicts general process matrices that can
generate correlations that allow for device-independent certification [44], a method for the
experimental implementation of such processes is currently unknown. The only process
matrix that has so far been the subject of experimental investigation is the quantum
switch [43, 57], which is known not to be device-independently certifiable [46, 70], and all
of its experiments to date have relied on a device-dependent analysis [71–80].

Another potential scenario for certification is the semi-device-independent scenario,
which makes assumptions about the operations of some, but not all, of the involved parties,
providing an intermediate test bed for the analysis of statistical data. These semi-device-
independent scenarios have been extensively used for the certification of entanglement,
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related to a phenomenon called quantum steering [81, 82], while the semi-device-independent
certification of process matrices was first proposed in the work of Chapter 2. This work has
unified certification for process matrices under different levels of assumptions, providing
a plethora of mathematical tools for the analysis of potential future experiments. We
have also shown that the indefinite-causal-order properties of the quantum switch can not
only be certified under device-dependent assumptions, but also in semi-device-independent
scenarios. This proves that the quantum switch can exhibit stronger non-causal properties
than what was previously known and hopefully contributes to paving the way to stronger
experimental demonstrations of indefinite causal order.

The last two chapters of the thesis, Chapter 3 and 4, study the classic2 quantum
information problem of channel discrimination and the application of indefinite-causal-order
strategies to this problem.

Analogously to the task of quantum state discrimination [83], in a task of channel
discrimination [83], one is given access to an unknown quantum channel, known to have
been drawn from a channel ensemble with a certain probability. The task is then to perform
transformations on this channel to determine which of the channels in the ensemble is the one
at hand. Typically, only a finite number of uses of the unknown channel are allowed, which
can also be seen as one being allowed to operate on a finite number of copies of the unknown
channel. Depending on the causal structure in which the copies of the channel are applied,
different discrimination strategies can be defined. Related to higher-order transformations
as well, these strategies may be described as parallel, sequential, or indefinite-causal-order
strategies [45].

The task of channel discrimination can also be interpreted as a certification of causal
properties of processes. In principle, if the maximal probability of successful discrimination
of an ensemble of channels under, for example, a parallel strategy is known, this information
can be used to certify that an unknown process is not parallel by performing a discrimination
task with said ensemble of channels and achieving a higher probability of success than
would be achievable by a parallel strategy. The same reasoning applies to the certification
of sequential and indefinite-causal-order processes.

Chapter 3 sets a tester formalism that unifies mathematical tools for the treatment of
parallel, sequential, and indefinite-causal-order strategies using two copies and applies it
to the discrimination of general channels. Chapter 4 extends this formalism to the task
of channel discrimination using k copies and applies it to the particular case of unitary
channels.

For general channels, we show a new example of the simplest instance of a channel
discrimination task, that of discriminating between two qubit-qubit channels using two
copies, for which a sequential strategy outperforms any parallel strategy. Our main example
involves an amplitude-damping channel and a bit-flip channel. For this same discrimination

2classic, not classical.
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task, we show that two kinds of strategies that involve indefinite causal order outperform
causal (i.e. parallel and sequential) strategies, composing a strict hierarchy of performance.

This same phenomenon can be observed in the discrimination of unitary channels. We
show both the first example of the advantage of sequential strategies, as compared to parallel
strategies, in the discrimination of a set of unitary channels and the first example of the
advantage of general indefinite-causal-order strategies as compared to sequential strategies.
We also prove two cases in which indefinite causal order is not advantageous. The first is
for the discrimination of a uniformly distributed set of unitary channels defined by unitary
operators that form a group, for which we prove that parallel strategies are optimal even
when considering general strategies for any finite number of copies. The second is for a
particular case of indefinite-causal order strategies constructed from switch-like processes.
We show that this class of strategies can never outperform sequential strategies in the
discrimination of sets of unitary channels for any finite number of copies.
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High-dimensional entanglement

11





CHAPTER 1
Measurements in two bases are

sufficient for certifying
high-dimensional entanglement

Jessica Bavaresco, Natalia H. Valencia, Claude Klöckl, Matej Pivoluska, Paul Erker,
Nicolai Friis, Mehul Malik, and Marcus Huber

Abstract. High-dimensional encoding of quantum information provides a promising
method of transcending current limitations in quantum communication. One of the
central challenges in the pursuit of such an approach is the certification of high-
dimensional entanglement. In particular, it is desirable to do so without resorting to
inefficient full state tomography. Here, we show how carefully constructed measurements
in two bases (one of which is not orthonormal) can be used to faithfully and efficiently
certify bipartite high-dimensional states and their entanglement for any physical
platform. To showcase the practicality of this approach under realistic conditions, we
put it to the test for photons entangled in their orbital angular momentum. In our
experimental setup, we are able to verify 9-dimensional entanglement for a pair of
photons on a 11-dimensional subspace each, at present the highest amount certified
without any assumptions on the state.
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Part I

Author Contribution

In this work, the doctoral candidate contributed to the formulation of the theor-
etical methods, to the construction of the initial experimental set up, the analysis of
the experimental data, and to the writing and revision of the manuscript.

1.1 Introduction

Quantum communication offers advantages such as enhanced security in quantum
key distribution (QKD) protocols [84] and increased channel capacities [85] with
respect to classical means of communication. All of these improvements, ranging from
early proposals [86] to recent exciting developments such as fully device-independent
QKD [87, 88], rely on one fundamental phenomenon: quantum entanglement. Cur-
rently, the workhorse of most implementations is entanglement between qubits, i.e.,
between two-dimensional quantum systems (e.g. photon polarization). However, it
has long been known that higher-dimensional entanglement can be useful in over-
coming the limitations of qubit entanglement [29, 30], offering better key rates [31],
higher noise resistance [32, 33] and improved security against different attacks [34].

Attempting to capitalize on this insight, recent experiments have successfully
generated and certified high-dimensional entanglement in different degrees of free-
dom. In particular, the canonical way of generating two-dimensional polarization
entanglement in down-conversion processes already offers the potential for exploring
entanglement in higher dimensions. This can be achieved by exploiting spatial
degrees of freedom [18, 19], orbital angular momentum (OAM) [20–22], energy-time
based encodings [23–26], or combinations thereof in hyper-entangled quantum sys-
tems [27, 28]. High-dimensional quantum systems have recently also been explored
in matter-based systems such as Cesium atoms [89] and superconducting circuits [90].
Thus, high-dimensional quantum systems are not only of fundamental interest but
are also becoming more readily available.

In this context, the certification and quantification of entanglement in many
dimensions is a crucial challenge since full state tomography (FST) for bipartite
systems of local dimension d requires measurements in (d + 1)2 global product
bases (i.e., tensor product bases for the global state) [91], which quickly becomes
impractical in high dimensions. Due to the complexity of realizing measurements in
high-dimensional spaces, previous experiments that aimed to certify entanglement
dimensionality (also known as Schmidt number) often had to resort to assumptions
about the underlying quantum state ρ, including, amongst others, conservation of
angular momentum [36], subtraction of accidentals [37], perfect correlations in a
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Chapter 1

desired basis [38], or the assumption that the experimentally generated state is
pure [39]. Although relying on such assumptions allows for a plausible quantification
of entanglement dimensionality, it is not enough for unambiguous certification,
which is desirable for secure quantum communication based on high-dimensional
entanglement. The certification of the Schmidt number of a state is crucial for this task
since a high-dimensional entangled state with low Schmidt number is LOCC equivalent
to a low-dimensional entangled state. Hence, unwieldy or inefficient entanglement
estimation would strongly mitigate possible advantages of high-dimensional encoding.
It is therefore of high significance to determine efficient and practical strategies for
certifying high-dimensional states and quantifying their entanglement.

Here, we present an efficient adaptive method that is tailored to better harvest
the information about entangled states generated in a given experiment, without the
need for any assumptions about the (generally mixed) underlying state and requiring
measurements in only two global product bases, regardless of the dimension of the
state. Our certification method can be implemented in any physical platform that is
suitable for high-dimensional quantum information processing. For the purpose of
assumption-free state certification, we certify the fidelity F (ρ,Φ) of the experimental
state ρ to a previously identified suitable target state |Φ〉. We show that measurements
in only two global product bases, {|mn〉}m,n and {|̃ij̃∗〉}i,j, are sufficient to select
|Φ〉 and to bound the fidelity from below by a quantity F̃ (ρ,Φ) ≤ F (ρ,Φ). For the
purpose of assumption-free entanglement certification and quantification, we use our
fidelity bound F̃ (ρ,Φ) to certify the Schmidt number of the state.

One of the most surprising consequences of our results is the fact that all pure
bipartite quantum states in any dimension can be faithfully certified by measurements
in only two global product bases. We prove this statement by deriving a tight lower
bound to the fidelity with an appropriately chosen target state. All that is required for
this certification is an educated guess of the corresponding Schmidt bases, which can
be inferred from the physical setup at hand for all typical quantum optical platforms.
The more accurate the identification of these bases, the higher the confidence in the
certified state.

For any identified target state |Φ〉, the fidelity bound becomes exact when the
setup indeed generates the pure state |Φ〉 or the mixed state obtained by dephasing
|Φ〉. We demonstrate that this method can be generalized to measurements in multiple
global product bases, yielding F̃ (M)(ρ,Φ), in which M + 1 is the total number of
measurements bases, and in prime dimensions the fidelity bounds using measurements
in d+1 bases (M = d) become exact for all states, i.e., F̃ (d)(ρ,Φ) = F (ρ,Φ). Moreover,
deriving general decompositions for dephased maximally entangled states further
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allows us to prove that unbiased measurement bases indeed provide a necessary and
sufficient condition for tight Schmidt number bounds for all pure states ρ = |Φ〉〈Φ| and
for maximally entangled states subject to pure dephasing. Our method can also be
used for entanglement quantification by providing lower bounds on the entanglement
of formation [92, 93]. Here, our bounds outperform previous methods in terms of
their noise robustness and the number of certified e-bits [94]. Finally, our bounds
are also shown to be applicable for the certification of certain types of multipartite
quantum states.

To put these theoretical predictions to the test in realistic circumstances with
actual noise, we devise and carry out an experiment based on photons entangled
in their orbital angular momentum, allowing our approach to prove its mettle. In
our experimental implementation, measurements are realised using computer pro-
grammable holograms implemented on spatial light modulators (SLMs). Employing
the theoretical methods developed here, we are able to certify high target-state
fidelities and verify record entanglement dimensionality: 9-dimensional entanglement
in 11-dimensional subspaces, without any assumptions on the state itself. We use our
experimental setup to fully explore the performance of our criteria for non-maximally
entangled states, showcasing the flexibility of the derived results.

1.2 Entanglement dimensionality

Consider a typical laboratory situation for preparing a high-dimensional quantum
system in a bipartite state ρ that is to be employed for quantum information
processing between two parties. In order to be useful, this state should be close to
some highly entangled target state that is normally required to have a high purity.
Let us therefore consider a pure target state |Φ〉 with a desired Schmidt rank k = kmax.
The Schmidt rank is a measure of the entanglement dimensionality of the state and
represents the minimum number of levels one needs to faithfully represent the state
and its correlations in any global product basis. Ideally, the target state’s Schmidt
rank is equal (or close) to the (accessible) local dimension, kmax = d, where we take
the local Hilbert spaces to have the same dimension, dim(HA) = dim(HB) = d. For
mixed states ρ the Schmidt rank generalizes to the Schmidt number

k(ρ) = inf
D(ρ)

{
max

|ψi〉 ∈{pi,|ψi〉}i

{
rank

(
TrB|ψi〉〈ψi|

)}}
, (1.1)

where the infimum is taken over all pure state decompositions, i.e., D(ρ) is the set of
all sets {(pi, |ψi〉)}i for which ρ =

∑
i pi|ψi〉〈ψi|,

∑
i pi = 1, and 0 ≤ pi ≤ 1.

The Schmidt number hence quantifies the maximal local dimension in which
any of the pure state contributions to ρ can be considered to be entangled and we
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hence call k the entanglement dimensionality of ρ. Note that this implies k ≤ d.
For example, any two-qubit entangled state (for which d = 2) has an entanglement
dimensionality k = 2. A higher-dimensional entangled state, like a two-qutrit state
(d = 3), could have Schmidt number k = 3, in which case it would indeed carry
qutrit entanglement, or it could have only k = 2, in which case the state would be
LOCC equivalent to a two-qubit entangled state. In the latter example, even though
the state has a higher local dimension, the entanglement dimensionality, which is
our quantity of interest, is not higher. Trivially, all separable states have k = 1.

1.3 Target state identification

The task at hand is to certify that the state ρ generated in the lab is indeed
close to the intended target state |Φ〉 and thus provides the desired high-dimensional
entanglement. One immediate first approach is to start with local projective measure-
ments in the local Schmidt bases, i.e., the global product basis {|mn〉}d−1m,n=0, which
we designate as our standard basis. These bases can typically be identified from
conserved quantities or the setup design, but depending on the physical setup, the
corresponding measurements are realised in different ways. In essence, a good choice
for the standard basis provides a good target state. For instance, in an optical setting
using OAM (as we employ in the experiment reported in this article) the chosen
standard basis is the Laguerre-Gauss (LG) basis. In this case, these measurements
are performed by coincidence post-selection after local projective filtering. That
is, SLMs programmed with the phase pattern of a specific state |mn〉 act as local
unitary operations, which are followed by single mode fibers (SMF) as local filters,
and the number Nmn of coincidences between local photon detectors is counted for
each setting corresponding to fixed values of m and n. In this way one can obtain
the matrix elements

〈mn|ρ|mn〉 =
Nmn∑
k,lNkl

. (1.2)

A measurement in one global product basis can be realized by one d-outcome
local measurement or equivalently replaced by d single-outcome local measurements.
The latter case employs the use of d local filter settings (d2 filter settings globally)
to obtain the values 〈mm|ρ|mm〉. These are used to nominate a target state |Φ〉 =∑d−1

m=0 λm|mm〉 by identifying

λm =

√
〈mm|ρ|mm〉∑
n〈nn|ρ|nn〉

. (1.3)

This association alone by no means guarantees that the state ρ really is equivalent
to the target state |Φ〉. Although the information about the diagonal elements of ρ
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provides an informed guess, it is not enough to infer entanglement properties. In
order to access this information, one could in principle perform costly FST. This
requires measurements in (d+ 1)2 global product bases [91], which is equivalent to
d2(d+ 1)2 global filter settings. Here, we propose a much more efficient alternative
method to obtain a lower bound on the Schmidt rank of ρ and on its fidelity to the
target state.

1.4 Dimensionality witnesses

For the certification of the Schmidt rank of ρ we consider the fidelity F (ρ,Φ) to
the target state |Φ〉, given by

F (ρ,Φ) = Tr
(
|Φ〉〈Φ|ρ

)
=

d−1∑

m,n=0

λmλn〈mm|ρ|nn〉. (1.4)

For any state ρ of Schmidt rank k ≤ d the fidelity of Eq. (1.4) is bounded by [95, 96]

F (ρ,Φ) ≤ Bk(Φ) :=
k−1∑

m=0

λ2im , (1.5)

where the sum runs over the k largest Schmidt coefficients, i.e., im, m ∈ {0, . . . , d−1}
such that λim ≥ λim′ ∀m ≤ m′. Consequently, any state for which F (ρ,Φ) >

Bk(Φ) is incompatible with a Schmidt rank of k or less, implying an entanglement
dimensionality of at least k + 1.

1.5 Fidelity bounds

The next step is hence to experimentally estimate the value of the fidelity F (ρ,Φ).
To see how this can be done, we split the fidelity into two contributions, one that
depends on the terms of Eq. (1.4) that are diagonal in the basis {|mn〉}m,n, which
will be called F1(ρ,Φ), and the other that depends on the off-diagonal terms, called
F2(ρ,Φ) (see Sec. 1.8).

The contribution F1(ρ,Φ) can be calculated directly from the already performed
measurements in the basis {|mn〉}m,n. However, exactly determining the term
F2(ρ,Φ) would require a number of measurements that scales with the dimension.
To avoid such a high overhead, we employ bounds for F2(ρ,Φ) that can be calculated
from measurements in only one additional basis {|j̃〉}j (see Sec. 1.8).
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Number of measurements

Method FST F (ρ,Φ) F̃ (ρ,Φ)

Global product bases (d+ 1)2 d+ 1 2

Local filter settings (d+ 1)2d2 (d+ 1)d2 2d2

Table 1.1: The table shows the number of required measurements for optimal full state
tomography (FST), optimal fidelity measurement (F (ρ,Φ)), and to calculate the fidelity
bounds presented in this work (F̃ (ρ,Φ)). The first line corresponds to the necessary number
of measured global product bases (which can be realised with at most d+ 1-outcome local
measurements), and the second line, the necessary number of local filter settings (which
can be realised with single-outcome local measurements).

Using the previously obtained values {λm}m, we define the basis {|j̃〉}j=0,...,d−1

according to

|j̃〉 =
1√∑
n λn

d−1∑

m=0

ωjm
√
λm|m〉, (1.6)

where ω = e2πi/d and {|m〉}m is the standard basis. Notice that, although the basis
vectors |j̃〉 are normalized by construction, they are not necessarily orthogonal, but
become orthogonal and even mutually unbiased w.r.t. to {|m〉}m when all λm are
the same. We hence refer to {|j̃〉}j as the tilted basis.

Due to this general non-orthogonality, the relation of Eq. (1.2) between the
diagonal matrix elements 〈̃ij̃∗|ρ|̃ij̃∗〉 and the coincidence counts Ñij for the local filter
setting |̃ij̃∗〉 requires a small modification in terms of an additional normalization
factor cλ := d2

(
∑
k λk)

2

∑
m,n

λmλn〈mn|ρ|mn〉, i.e.,

〈̃ij̃∗|ρ|̃ij̃∗〉 =
Ñij∑
k,l Ñkl

cλ. (1.7)

Apart from the inclusion of cλ (see detailed derivation in Appendix A), measurements
in the tilted basis are in principle not different from measurements in any orthonormal
basis.

The terms of Eq. (1.7), along with the measurement results in the standard basis,
allow us to bound the fidelity term F2(ρ,Φ), which in turn provides a lower bound
F̃ (ρ,Φ) for the fidelity F (ρ,Φ) that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

F̃ (ρ,Φ) ≤ F (ρ,Φ) ≤ Bk(Φ), (1.8)
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which is satisfied by any state ρ with Schmidt rank k or less. Conversely, the
entanglement dimensionality dent that is certifiable with our method is the maximal
k such that F̃ (ρ,Φ) > Bk−1(Φ).

A detailed derivation of this bound along with the proofs of its tightness can be
found in the Sec. 1.8. In Appendix A we further present a generalization of the fidelity
bound to multiple measurement bases, the derivation of bounds for entanglement of
formation that arise from our method, and an extension of our fidelity bound to a
family of multipartite states.

Crucially, our witness requires only 2 global product bases to be evaluated, and
is hence significantly more efficient than the d+ 1 and (d+ 1)2 bases required for the
exact evaluation of the fidelity or even a FST, respectively. For projective filtering
the overall number of filter settings is obtained by multiplying the number of required
bases by d2. A comprehensive comparison of required number of measurement
settings is given in Table 1.1.

1.6 Experimental certification of high-dimensional

entanglement

We now apply our witness to certify high-dimensional orbital-angular-momentum
(OAM) entanglement between two photons generated by Type-II SPDC in a non-
linear ppKTP crystal (see Fig. 1.1 for details). To this end, we display computer-
programmed holograms (Fig. 1.2(a) and (b)) on spatial light modulators (SLMs)
designed to manipulate the phase and amplitude of incident photons [97]. In this
manner, we are able to projectively measure the photons in any spatial mode
basis, e.g., the Laguerre-Gaussian (LG) basis, any mutually unbiased (MUB) [98]
or any tilted basis (TILT) composed of superpositions of elements of the standard
basis (Eq. (1.6)). Additional details of the experimental implementation, including
information on the holograms, can be found in Sec. 1.8 Methods and in Appendix A.

For local dimensions up to d = 11 (i.e., for azimuthal quantum numbers ` ∈
{−5, . . . , 5}) we then proceed in the following way. First, we measure the two-photon
state in the LG basis {|m〉}m to obtain a cross-talk matrix of coincidence counts Nmn

(Fig. 1.3 (a)), taking into account the effects of mode-dependent loss (see Appendix A).
This allows us to calculate the density matrix elements 〈mn|ρ|mn〉, estimate the
λm, and nominate the target state |Φ〉. We then use the set {λm}m to construct
the tilted basis {|j̃〉}j according to Eq. (1.6) and perform correlation measurements
(Fig. 1.3 (b)) that allow us to calculate 〈j̃j̃∗|ρ|j̃j̃∗〉. From these measurements, we
calculate the lower bound of the fidelity to the target state, for which we find high
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Figure 1.1: Experimental setup. A 405nm CW laser pumps a 5mm ppKTP crystal
to generate a pair of infrared (810nm) photons via the process of Type-II spontaneous
parametric down-conversion (SPDC), which are entangled in their orbital angular momentum
(OAM). The pump is removed by a dichroic mirror (DM) and the two photons are separated
by a polarizing beam splitter (PBS) and incident on two phase-only spatial light modulators
(SLMs). A half-wave plate (HWP) is used to rotate the polarization of the reflected photon
from vertical to horizontal, allowing it to be manipulated by the SLM. In combination with
single-mode fibers (SMFs), the SLMs act as spatial mode filters. The filtered photons are
detected by single-photon avalanche photodiodes (not shown) and time-coincident events
are registered by a coincidence counting logic (CC).

values, e.g., F̃ (ρ,Φ) = 76.2± 0.6% for d = 11 (data for other dimensions is presented
in Table 1.2). However, in our setup, the certification thresholds Bk for the tilted
basis are higher than for the MUB (e.g., B7 = 0.72 vs B7 = 0.64 for d = 11 in
tilted versus MUB respectively). We therefore also measure the correlations in
the first MUB {|j〉}j (Fig. 1.3 (c)) following the standard MUB construction by
Wootters et al. [98], corresponding to λm = 1/

√
d for all m in Eq. (1.6). Using these

measurements, we calculate lower bounds of the fidelity to the maximally entangled
state, and find F̃ (ρ,Φ+) = 74.8± 0.4% for d = 11, which is significantly above the
bound of B8(Φ

+) = 8
11
≈ 0.727, but below B9(Φ

+) = 9
11
≈ 0.818. We hence certify

9-dimensional entanglement in this way. Note that the asymmetry in the counts
just below and above the diagonal in Figs. 1.3 (b) and (c) corresponds to a slight
misalignment in the experiment. Errors in the fidelity are calculated by propagating
statistical Poissonian errors in photon-count rates via Monte-Carlo simulation of
the experiment. This demonstrates that our witness indeed works for efficiently
certifying high-dimensional entanglement. Moreover, this shows that although the
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           ℓ = -5             MUB1             MUB2             MUB3

           ℓ = -4              TILT1             TILT2               TILT3
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CC

SMF
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SMF
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a)

Figure 1.2: Holograms. (a) and (b) upper rows: examples of computer-generated holo-
grams displayed on the SLMs for measuring the photons in a d = 11 dimensional space;
(a) and (b) left panels: standard LG basis modes with azimuthal quantum number ` = −5
and −4; right panels of (a): 3 basis states from a MUB (denoted MUB1, MUB2, MUB3);
right panel of (b): 3 basis states from a tilted basis (Eq. (1.6)) (denoted TILT1, TILT2,
TILT3); (a) and (b) lower rows: intensity images of the modes filtered by these holograms
(see Appendix A for details on how these intensity images were obtained).

tilted basis measurements can achieve higher fidelities, one pays a price in terms of
increased certification thresholds, and thus an increased sensitivity to noise.

Our approach hence provides a lower bound for F (ρ,Φ) and k(ρ) using measure-
ments in as little as 2 global product bases. Each of these are realized by d local
filter settings on each side, totalling to 2d2 global filter settings instead of d2(d+ 1)2

for FST. For our state in a 11× 11-dimensional Hilbert space this corresponds to 242
filter settings, versus the 17,424 filter settings required for FST, which is a reduction
by two orders of magnitude.
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Figure 1.3: Experimental data certifying 9-dimensional entanglement. Two-photon
coincidence counts showing orbital angular momentum correlations in: (a) the standard
LG basis {|m〉, |n〉}m,n, (b) the tilted basis {|̃i〉, |j̃∗〉}i,j , and (c) the first mutually unbiased
basis {|i〉, |j∗〉}i,j . As seen in (a), our generated state is not maximally entangled (measured
Schmidt coefficients λm can be found in Appendix A). For each set of two-basis measure-
ments, we calculate a fidelity to the d = 11 target state of F̃ (ρ,Φ) = 76.2 ± 0.6% (LG
and tilted bases), and F̃ (ρ,Φ+) = 74.8± 0.4% (LG and MUB). Even though the fidelity
bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more
difficult to overcome, yielding a certified entanglement dimensionality of dent = 8, slightly
lower than the bound of dent = 9 obtained in the MUB case (c).

Experimental results

d dent F̃ (ρ,Φ+) F̃ (ρ,Φ)

3 3 91.5± 0.4% 92.5± 0.4%

5 5 89.9± 0.4% 90.0± 0.5%

7 6 84.2± 0.5% 86.9± 0.6%

11 9 74.8± 0.4% 76.2± 0.6%

Table 1.2: Fidelities F̃ (ρ,Φ+) and F̃ (ρ,Φ) to the maximally entangled state and to the
target state, obtained via measurements in two MUBs and two (M = 1) tilted bases in
dimension d, respectively. The second column lists the entanglement dimensionality dent
certified using F̃2(ρ,Φ

+).
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1.7 Discussion and outlook

A remarkable trait of high-dimensional entanglement is that measurements in
two bases are enough to certify any entangled pure state for arbitrarily large Hilbert
space dimension. We make use of this insight to establish fidelity bounds for states
produced under realistic laboratory conditions. Using two (or, if desirable more,
see Appendix A) local basis choices, these bounds can be employed to certify the
Schmidt rank and entanglement of formation in a much more efficient way than is
possible via full state tomography or even complete measurements of the fidelity. It is
also interesting to note that the two measurement bases required for optimal fidelity
certification become unbiased whenever the target state is maximally entangled. This
procedure could be viewed as a trusted device analogue to self-testing [99], requiring
significantly fewer measurements and exhibiting a much greater noise resistance.

The strength of our method has its origin in the fact that we use readily available
knowledge about the quantum system under investigation in terms of an educated
guess for the Schmidt bases. This is close in spirit to assumptions commonly used in
many experiments where preserved quantities in non-linear processes are harnessed
to create entanglement. For the case of our experimental setup, this amounted to
the conservation of transverse momenta [21]. Using holograms and couplings to
single-mode fibers essentially implements single-outcome measurements (projective
filtering), leading to 2d2 filter settings globally. This could be further improved by
means of a mode sorter [100, 101], reducing the global measurement settings to merely
2 (see Table 1.1 for a comprehensive overview) at the cost of using d-coincidence
detectors. But our proposed method is not limited to transverse momenta and OAM.
In energy-time based setups [23], conservation of energy leads to the frequency or
time-bin basis to be the natural Schmidt basis. Canonically these systems even
feature d-outcome measurements, making them ideal candidates for the application
of our method. Indeed, the states generated in the time-bin basis are generically
close to being maximally entangled [25] and thus the tilted measurement would
ideally be close to MUBs. There are various proposals as to how mutually unbiased
measurements could also be directly implemented as d-outcome measurements in
such systems [102, 103]. Finally, our method can be directly implemented using
multi-path interferometers [18] where the natural Schmidt basis is the path degree
of freedom. Let us stress again, however, that even deviations from the assumed
situation do not invalidate the bounds employed in our approach, but lead (at most)
to suboptimal performance, and an unambiguous certification is still ensured.

To demonstrate the practical utility of our method, we have performed an
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experiment using two photons entangled in their orbital angular momenta. We
were able to certify 9-dimensional entanglement in a 11 × 11-dimensional Hilbert
space, which is the highest number achieved so far without further assumptions
on the underlying quantum state. This is achieved using only two local, unbiased
measurement bases (11-outcomes each), which are realized by 242 local filters and
coincidence counting. Using similar measurements in the tilted bases we are able to
achieve target state fidelities of 92.5% in 3 dimensions and 76.2% in 11 dimensions. As
we have shown, the certification method proposed here is thus surprisingly robust to
noise and enables straightforward and assumption-free entanglement characterization
in realistic quantum optics experiments. This further illustrates the usefulness of
MUBs for the detection of entanglement [94, 104–109] and correlations [110].

Our certification method can also be generalized to operate with more than two
bases, enabling an adaptable increase in noise resistance when required, as discussed
in Appendix A. There we also show how our bounds can be extended to certify
entanglement of formation. Remarkably, this approach can also be generalized to
Greenberger-Horne-Zeilinger (GHZ)-like multipartite states recently created using
OAM [37, 111], making large multipartite states generated by the methods of
Ref. [112] certifiable in a scalable manner. We give a brief exposition of this result
in Appendix A.

1.8 Methods

1.8.1 Derivation of the fidelity lower bound

In this section, we provide a proof for the fidelity bound

F (ρ,Φ) ≥ F̃ (ρ,Φ), (1.9)

i.e., the right-hand side of Eq. (1.8) of the main text, where F (ρ,Φ) = F1(ρ,Φ) +

F2(ρ,Φ) and F̃ (ρ,Φ) = F1(ρ,Φ) + F̃2(ρ,Φ), each split into two contributions. Since
the first of these, given by

F1(ρ,Φ) :=
∑

m

λ2m〈mm|ρ|mm〉, (1.10)

is the same for both F and F̃ , we hence want to concentrate on showing that F2 ≥ F̃2,
where

F2(ρ,Φ) :=
∑

m 6=n

λmλn〈mm|ρ|nn〉, (1.11)
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whereas the lower bound to F2(ρ,Φ) is

F̃2 :=
(
∑

m λm)2

d

d−1∑

j=0

〈j̃j̃∗|ρ|j̃j̃∗〉 −
d−1∑

m,n=0

λmλn〈mn|ρ|mn〉

−
∑

m 6=m′,m 6=n
n6=n′,n′ 6=m′

γ̃mm′nn′
√
〈m′n′|ρ|m′n′〉〈mn|ρ|mn〉,

(1.12)

where the asterisk denotes complex conjugation of the vector components w.r.t.
{|m〉}m and the prefactor γ̃mm′nn′ is given by

γ̃mm′nn′ =





0 if (m−m′ − n+ n′) mod d 6= 0
√
λmλnλm′λn′ otherwise,

(1.13)

as we will show in the following. Here, the quantity F1(ρ,Φ), as well as the second
and third terms of F̃2 in Eq. (1.12) can be obtained directly from measurements
in the standard basis {|mn〉}m,n, whereas the first term of F̃2 is constructed from
diagonal density matrix elements w.r.t. to the tilted bases with elements

|j̃〉 =
1√∑
n λn

d−1∑

m=0

ωjm
√
λm|m〉, (1.14)

where ω = e2πi/d. This non-orthogonal construction is motivated by the observations
that |Φ〉 is in general non-maximally entangled and that the tilted basis interpolates
between the measurement bases required to obtain unit fidelities for pure product
states |Φ〉 = |mn〉 (where the standard basis suffices) and for maximally entangled
states |Φ〉 = |Φ+〉 (where the tilted basis becomes unbiased w.r.t. to the standard
basis). The tilted basis {|j̃〉}j can be seen as a particular construction of a basis that
satisfies the condition |〈m|j̃〉|2 = λmλj∀m, j with the standard basis {|m〉}m. Notice
that the standard definition of mutually unbiased bases (MUBs) is recovered when
λi = 1√

d
∀i.

For the proof, we then focus on the matrix elements obtained from measurements
w.r.t. the tilted basis. That is, we define the quantity

Σ :=
d−1∑

j=0

〈j̃j̃∗|ρ|j̃j̃∗〉 (1.15)

=
1

(
∑

k λk)
2

∑

m,m′

n,n′

√
λmλnλm′λn′ ×

d−1∑

j=0

ωj(m−m
′−n+n′)〈m′n′|ρ|mn〉. (1.16)

The sums over the standard basis components can then be split into several contri-
butions. When m = m′ and n = n′, the phases all cancel, the sum over the tilted

26



Chapter 1

basis elements has d equal contributions, and we hence have

Σ1 :=
d

(
∑

k λk)
2

∑

m,n

λmλn〈mn|ρ|mn〉. (1.17)

When m = m′ but n 6= n′ (or vice versa) one finds terms containing the sum

d−1∑

j=0

ωj(n
′−n) = δnn′ . (1.18)

Since n 6= n′, these terms vanish. For all remaining contributions to Σ one has
m 6= m′ and n 6= n′. These terms then again split into three sets. First, for m = n

and m′ = n′ we recover the desired terms of the form

Σ2 :=
d

(
∑

k λk)
2

∑

m6=n

λmλn〈mm|ρ|nn〉, (1.19)

which also appear in F2(ρ,Φ) in Eq. (1.11). The terms where m = n but m′ 6= n′ (or
vice versa) again vanish due to Eq. (1.18). Finally, this leaves the term

Σ3 :=
1

(
∑

k λk)
2

∑

m 6=m′
m 6=n
n6=n′
n′ 6=m′

√
λmλnλm′λn′ ×

d−1∑

j=0

ωj(m−m
′−n+n′)〈m′n′|ρ|mn〉, (1.20)

=
1

(
∑

k λk)
2

∑

m6=m′
m 6=n
n6=n′
n′ 6=m′

√
λmλnλm′λn′ × Re

(
cmnm′n′〈m′n′|ρ|mn〉

)
, (1.21)

where we have used the abbreviation cmnm′n′ :=
∑

j ω
j(m−m′−n+n′). In the last step

we have replaced cmnm′n′ by its real part, since for each combination of values for
m,n,m′, n′ the sum contains a term where the pairs (m,n) and (m′, n′) are exchanged.
Each term in the sum is hence paired with another term that is its complex conjugate,
and the total sum is hence real.

While Σ1 and Σ2 are accessible via measurements in the standard basis, the
off-diagonal matrix elements in Σ3 cannot be obtained from measurements w.r.t.
{|mn〉}m,n. In order to provide a useful lower bound for Σ we therefore have to
provide a bound for Σ3. To this end, we can bound the real part by the modulus,
i.e.,

Re
(
cmnm′n′〈m′n′|ρ|mn〉

)
≤ |cmnm′n′〈m′n′|ρ|mn〉| (1.22)

= |cmnm′n′ | · |〈m′n′|ρ|mn〉| . (1.23)
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We then use the Cauchy-Schwarz inequality to bound the second factor on the
right-hand side of (1.23) by writing ρ =

∑
i pi|ψi〉〈ψi| such that

| 〈m′n′|ρ|mn〉 | = |
∑

i

√
pi〈m′n′|ψi〉

√
pi〈ψi|mn〉 | (1.24)

≤
√∑

i

pi〈m′n′|ψi〉〈ψi|m′n′〉 ×
√∑

i

pi〈mn|ψi〉〈ψi|mn〉 (1.25)

=
√
〈m′n′|ρ|m′n′〉〈mn|ρ|mn〉. (1.26)

In Eq. (1.23), note that in the first factor, |cmnm′n′|, the sum
∑

j ω
j(m−m′−n+n′)

vanishes whenever (m−m′−n+n′) mod d 6= 0, and equals to d otherwise. Collecting
cmnm′n′/d with

√
λmλnλm′λn′ into γ̃mm′nn′ as defined in Eq. (1.13), this allows us to

bound the quantity Σ3 according to

Σ3 ≤
d

(
∑

k λk)
2

∑

m6=m′
m 6=n
n6=n′
n′ 6=m′

m−m′−n+n′=0

γ̃mm′nn′
√
〈m′n′|ρ|m′n′〉〈mn|ρ|mn〉. (1.27)

Collecting the different contributions to Σ we thus have

Σ = Σ1 + Σ2 + Σ3 =
d−1∑

j=0

〈j̃j̃∗|ρ|j̃j̃∗〉 (1.28)

≤ d

(
∑

k λk)
2

(∑

m,n

λmλn〈mn|ρ|mn〉+
∑

m6=n

λmλn〈mm|ρ|nn〉

+
∑

m6=m′
m 6=n
n6=n′
n′ 6=m′

m−m′−n+n′=0

γ̃mm′nn′
√
〈m′n′|ρ|m′n′〉〈mn|ρ|mn〉

)
. (1.29)

Conversely, this means that the term F2 can be bounded by

F2 =
∑

m6=n

λmλn〈mm|ρ|nn〉 (1.30)

≥ (
∑

k λk)
2

d

d−1∑

j=0

〈j̃j̃∗|ρ|j̃j̃∗〉 −
∑

m,n

λmλn〈mn|ρ|mn〉

−
∑

m 6=m′
m 6=n
n 6=n′
n′ 6=m′

m−m′−n+n′=0

γ̃mm′nn′
√
〈m′n′|ρ|m′n′〉〈mn|ρ|mn〉, (1.31)

as claimed for the quantity F̃2 in Eq. (1.12). The fidelity F (ρ,Φ) can hence be
bounded by measurements in only two local bases, {|m〉}m and {|j̃〉}j , for each party,
i.e., two global product bases {|mn〉}m,n and {|̃ij̃∗〉}i,j.
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1.8.2 Tightness of the fidelity bound

In this section, we show that whenever the system state ρ is either equal to the
(pure) target state ρ = |Φ〉〈Φ| or is a dephased maximally entangled state ρdeph(p) =

p|Φ+〉〈Φ+|+ 1−p
d

∑
m |mm〉〈mm|, the Schmidt number witness F̃ (ρ,Φ) > Bk−1(Φ) is

not only a sufficient, but also a necessary condition for |Φ〉 or ρdeph to have a Schmidt
rank larger or equal than k. For the state |Φ〉 this is obvious. Since the coefficients
λm are determined by measurements in the Schmidt basis of ρ = |Φ〉〈Φ|, the fidelity
bound is tight, and we have F̃ (ρ,Φ) = F (ρ,Φ) = 1 and Bk(Φ) is equal to 1 if and
only if k = d.

For dephased maximally entangled states we proceed by showing that there exists
a Schmidt-rank k state ρdeph(p = pk) such that F (ρdeph(pk),Φ) = Bk(Φ) for every k.
To this end, first note that ρdeph can be written as

ρdeph = p|Φ+〉〈Φ+|+ 1− p
d

∑

m

|mm〉〈mm| (1.32)

=
1

d

∑

m

|mm〉〈mm|+ p

d

∑

m 6=n

|mm〉〈nn| , (1.33)

which implies that λm = 1√
d
∀m. That is, the corresponding target state is |Φ〉 = |Φ+〉

and Bk = k
d
. The relevant fidelity then evaluates to

F (ρ,Φ) = F (ρdeph,Φ
+) =

1 + p(d− 1)

d
, (1.34)

and F (ρdeph,Φ
+) = Bk for p = pk = k−1

d−1 . All we need to do now is to show that
ρdeph(pk) has a Schmidt rank no larger than k. To see this, consider the family of
maximally entangled states in dimension k, i.e.,

|Φ+
α 〉 :=

1√
|α|
∑

m∈α

|mm〉 , (1.35)

where α ⊂ {0, 1, . . . , d− 1} with cardinality |α| = k. In dimension d, we can find
(
d
k

)

such states and consider their incoherent mixture, i.e.,

ρk =
1(
d
k

)
∑

α s.t. |α|=k

|Φ+
α 〉〈Φ+

α |. (1.36)

Since each of the Φ+
α has Schmidt rank k, the convex sum ρk cannot have a Schmidt

rank larger than k. Since there are
(
d−1
k−1

)
terms contributing to every nonzero

diagonal matrix element, we have 〈mn|ρk|mn〉 = 1
d
δmn. Similarly, every nonvanishing

off-diagonal matrix element has
(
d−2
k−2

)
contributions, and we hence have 〈mn|ρk|ij〉 =

k−1
d(d−1)δmnδij for m 6= i. It is then easy to see that the fidelity with the maximally
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entangled state (in dimension d) is F (ρk,Φ
+) = k

d
. More specifically, comparison

with Eq. (1.33) reveals that ρdeph = ρk for p = pk = k−1
d−1 . Since the Schmidt rank of

ρk is smaller or equal than k, we have hence shown that the Schmidt rank of the
dephased maximally entangled state ρdeph(pk) with F (ρdeph(pk),Φ) = Bk is k or less.
Consequently, F (ρdeph,Φ

+) > Bk−1 is a necessary and sufficient condition for ρdeph
to have Schmidt rank k.

Moreover, since the fidelity bound F̃ ≤ F is tight for ρdeph already for M = 1

and the tilted basis is unbiased w.r.t. the standard basis for dephased maximally
entangled states, we can conclude that measurements in two unbiased bases provide
the necessary and sufficient condition F̃ (ρdeph,Φ

+) > Bk−1 for Schmidt rank k for
these states.

1.8.3 Role of the target state

The initial designation of the target state |Φ〉, or rather its Schmidt basis,
helps to suitably adapt the dimensionality witness to the experimental situation.
Although identifying the Schmidt basis from the setup could in principle be seen
as an assumption about the underlying state, choosing a basis that is far from the
Schmidt basis doesn’t invalidate our certification method. Since the latter is based on
lower-bounding the fidelity to the target state, such a misidentification would simply
result in a reduced performance by using lower bounds on the fidelity to a state that
is far from the actual state. An analysis of how our fidelity bounds are affected by a
“wrong” choice of basis is provided in Appendix A. In other words, a non-optimal
guess can lead to what is called a type-II-error (i.e., a “false negative”), but never to a
type-I-error (i.e., a “false positive”). This means that a suboptimal guess of the target
state may lead to a less than optimal value for the certified fidelity and/or Schmidt
number. The entanglement dimensionality (Schmidt number) certified by a wrong
choice of basis may hence be lower than the actual entanglement dimensionality
(Schmidt number) of the underlying state ρ, but never higher. In summary, it can be
concluded that the performance of our method may depend on the expected target
state, but the method does not require any assumptions about the true system state
ρ.

While this certification method is thus independent of the specific circumstances
in the laboratory, it can be noted that it works particularly well for certain types
of states. For instance, whenever the target state matches the underlying state up
to pure dephasing, i.e., when ρ = p|Φ〉〈Φ|+ 1−p

d

∑
m |mm〉〈mm|, the fidelity bound

F̃ (ρ,Φ) ≤ F (ρ,Φ) is tight, since the last term in Eq. (1.12) vanishes in this case.
Moreover, whenever these states are pure (p = 1) or dephased maximally entangled
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states (arbitrary p but |Φ〉 = |Φ+〉) one can further show that the Schmidt number
bound F (ρ,Φ) ≤ Bk(Φ) is also tight (see Appendix A for derivation), in which case
we have F̃ (ρ,Φ) = F (ρ,Φ) = Bdent(Φ).

In addition, it can sometimes be helpful to select a “wrong" target state on
purpose. For example, the maximally entangled state |Φ+〉 = 1√

d

∑
m |mm〉, i.e.,

a target state whose coefficients where chosen to be λm = 1√
d
∀m, may at times

offer a higher Schmidt number lower bound than a target state with coefficients
λm taken from the measurement results in the standard basis, even though the
fidelity bound would be lower. In the case of the maximally entangled target state,
the tilted basis becomes an orthonormal basis that is mutually unbiased w.r.t. to
the standard basis and we have Bk(Φ

+) = k
d
. Since this bound is lower than for

general values of λm, it may be easier to overcome, particularly in the presence of
noise, and hence yield a higher certified Schmidt number. Indeed, this is the case in
our experimental realization (see Table 1.2 of the main text), where higher fidelity
bounds are attained with the tilted basis but higher Schmidt number is obtained
using MUBs. It is important to point out again, however, that regardless of the
choice of target state, the certified fidelity and Schmidt number will always be correct
and never over-estimated. In practice this means that a bad choice of basis may lead
to a worse noise resistance and it may be harder to certify any entanglement, but
when one manages to certify it, this result can be trusted.

1.8.4 Experimental details

Finally, let us discuss the experimental implementation of our entanglement
certification method in more detail. As shown in Fig. 1.1 of the main text, our
source consists of a single-spatial mode, continuous wave 405nm diode laser (Toptica
iBeam Smart 405 HP) with ∼140mW of power. The laser is demagnified with a 3:1
telescope system of lenses and focused by a 500mm lens to a spot size of 330µm (1/e2

beam diameter) at the ppKTP crystal. The 5mm long ppKTP crystal is designed for
degenerate Type-II spontaneous parametric downconversion (SPDC) from 405nm
to 810nm at 25◦C, and is housed in a custom-built oven for this purpose. The
SPDC process generates orthogonally polarized pairs of photons entangled in the
Laguerre-Gaussian (LG) basis. The photon pairs are recollimated by a 200mm lens,
separated by a polarizing beamsplitter (PBS), and incident on phase-only spatial
light modulators (SLMs).

The SLMs (Holoeye PLUTO) have a parallel-aligned LCOS design with a di-
mension of 15.36mm×8.64mm, resolution of 1920×1080 pixels, reflectivity of ap-
proximately 60%, and a diffraction efficiency of 80% at 810nm. The photons are
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transformed and reflected by these SLMs (shown in transmission for simplicity) and
coupled into single-mode fibers (SMFs) with a coupling efficiency of approx. 50%. The
SMFs carry the photons to single-photon avalanche detectors (not shown, Excelitas
SPCM-AQRH-14-FC) with a detection efficiency of 60% at 810nm. The detectors are
connected to a custom-built coincidence counting logic (CC) with a coincidence-time
window of 5ns.

The SLMs and SMFs together act as projective filters for the photon spatial modes.
The SLMs are used to display a computer-generated hologram (CGH) that multiplies
the incident photon amplitude by an arbitrary amplitude and phase. In this manner,
photons in a particular spatial mode (Laguerre-Gaussian or superpositions thereof)
are converted to a fundamental Gaussian mode, which then effectively couples to
the SMF. The manipulation of both the phase and amplitude of a photon by means
of a phase-only device such as an SLM requires the design of a class of phase-only
CGHs that allow one to encode arbitrary scalar complex fields. Following the Type
3 method in Ref. [97], our CGH encodes the modulation of a complex field given
by s(x, y) = A(x, y) exp[iφ(x, y)] into a phase-only function whose functional form
depends explicitly on the amplitude and phase of the field s(x, y). This allows
arbitrary complex amplitudes to be generated/measured by a phase-only device,
albeit at the expense of additional loss. Additionally, we divide the measurement
amplitude s(x, y) by an offset fundamental Gaussian amplitude in order to maximize
its overlap with the SMF mode.

A two-photon count rate of approximately 23,000 pairs/sec (Gaussian modes) is
measured at the detectors (with blazed gratings displayed on the SLMs), and singles
rates of 160,000 and 173,000 counts/sec in the reflected and transmitted PBS arms
respectively. The resulting coincidence-to-singles ratios are consistent with the losses
described above in each arm. The lossy complex amplitude hologram described above
further reduces the two-photon Gaussian-mode count rate to 668 pairs/sec. These
holograms have a mode-dependent loss that varies for different incident modes. In
Appendix A, we discuss how the coincidence and singles rates allow us to account for
this mode-dependent loss. As shown in Fig. 1.3 (a) of the main text, the resultant
state measured by these holograms in the standard Laguerre-Gaussian basis is close to
|Φ〉 =

∑10
m=0 λm|mm〉, with 89% counts on the diagonal. The individual λm values are:

λ0 = 0.255, λ1 = 0.259, λ2 = 0.292, λ3 = 0.315, λ4 = 0.335, λ5 = 0.349, λ6 = 0.339,
λ7 = 0.316, λ8 = 0.305, λ9 = 0.272, and λ10 = 0.260. Note that m ∈ {0, . . . , 10}
corresponds to Laguerre-Gaussian modes with an OAM of ` ∈ {−5, . . . , 5}. The
measured state is correlated in OAM, as the reflection at the PBS flips the sign of
one photon from the initially OAM-anti-correlated state.
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The probability that one CW pump photon downconverts into a pair of photons
in our ppKTP crystal is 10−9. While this is two orders of magnitude higher than
β-BBO, it is still quite low. The corresponding probability of two pairs being
produced simultaneously is then significantly lower at 10−18 and can be neglected.
The rate of accidental counts becomes a factor when the singles rates are high and
the measurement integration time is long. For example, in the Gaussian (brightest)
modes, there are 6675 pairs measured in 10 seconds. The total singles are 230438
and 249617, an accidental rate of ≈2.9/sec. Correcting for accidental coincidences in
in this manner increases the measured fidelities of our states slightly.

33





Part II

Indefinite causal order
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CHAPTER 2
Semi-device-independent certification

of indefinite causal order

Jessica Bavaresco, Mateus Araújo, Časlav Brukner, Marco Túlio Quintino

Abstract. When transforming pairs of independent quantum operations according to
the fundamental rules of quantum theory, an intriguing phenomenon emerges: some
such higher-order operations may act on the input operations in an indefinite causal
order. Recently, the formalism of process matrices has been developed to investigate
these noncausal properties of higher-order operations. This formalism predicts, in
principle, statistics that ensure indefinite causal order even in a device-independent
scenario, where the involved operations are not characterised. Nevertheless, all physical
implementations of process matrices proposed so far require full characterisation of
the involved operations in order to certify such phenomena. Here we consider a semi-
device-independent scenario, which does not require all operations to be characterised.
We introduce a framework for certifying noncausal properties of process matrices in
this intermediate regime and use it to analyse the quantum switch, a well-known
higher-order operation, to show that, although it can only lead to causal statistics
in a device-independent scenario, it can exhibit noncausal properties in semi-device-
independent scenarios. This proves that the quantum switch generates stronger
noncausal correlations than it was previously known.
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2.1 Introduction

A common quantum information task consists in certifying that some uncharacter-
ised source is preparing a system with some features. By making the assumption that
the measurement devices are completely characterised, that is, that they are known
exactly, it is possible to infer properties of the system. In this device-dependent
scenario, fidelity of a quantum state with respect to a target state can be estimated,
entanglement witnesses can be evaluated [65], and even complete characterisation of
the source via state tomography is possible [64].

Remarkably, it is possible to certify properties of systems even without fully
characterizing the measurement devices [67, 68]. In such a device-independent
scenario it is only assumed that the measurements are done by separated parties
and compose under a tensor product, which is justified by implementing them with
a space-like separation. Under these circumstances, Bell scenarios can be used
to certify properties like entanglement of quantum states [68], incompatibility of
quantum measurements [113], or to perform device-independent state estimation via
self-testing [114, 115].

Since the assumptions are weaker, demonstrations of device-independent certific-
ation are usually experimentally challenging. For instance, although experimental
device-independent certification of entanglement has been reported [116–119], its
experimental difficulty has so far prevented its use in practical applications such
as device-independent quantum key distribution [120] and randomness certification
[121].

An interesting middle ground is the semi-device-independent scenario, where
assumptions are made about some parties but not others. Semi-device-independent
schemes have been developed and extensively studied for the certification of entan-
glement [81] and measurement incompatibility [122, 123], known as EPR-steering,
and applied to quantum key distribution protocols where some but not all parties
can be trusted [124].

A close analogy can be developed with regard to the certification of indefinite
causal order, as encoded in a process matrix [44]. A process matrix is a higher-order
operation [41, 42, 54] – i.e. a transformation of quantum operations – that acts on
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independent sets of operations. Fundamental laws of quantum theory predict the
existence of process matrices that act on these operations in a such a way that a
well-defined causal order cannot be established among them. Process matrices with
indefinite causal order were proven to be a powerful resource, outperforming causally
ordered ones in tasks such as quantum channel discrimination [57], communication
complexity [58, 59], quantum computation [60], and inverting unknown unitary
operations [61].

To certify that a process matrix in fact does not act in a causally ordered way, there
are two standard methods available in the literature. The first is to evaluate a causal
witness [46, 66]. Analogous to the evaluation of an entanglement witness, this method
relies on detailed knowledge of the quantum operations being implemented, and as
such it allows for a device-dependent certification. All experimental certifications
of indefinite causal order to date either measure a causal witness [72, 74] or rely
on similar device-dependent assumptions [71, 73, 75]. The second method is the
violation of a causal inequality, phenomenon which is also predicted by quantum
mechanics [44, 69]. Analogous to the violation of a Bell inequality, this method does
not rely on detailed knowledge of the quantum operations implemented by the parties,
but rather only that they compose under a tensor product. As such, it allows for a
device-independent certification. When a causal inequality is violated, it is verified
that least one of the principles used to derived it is not respected. Moreover, this
claim holds true independently of the physical theory that supports the experiment
that led to the violation. Hence, although we focus on quantum theory, indefinite
causal order could in principle be certified even without relying on the laws of
quantum mechanics. Although it would be highly desirable to perform such device-
independent certification of indefinite causal order, no physical implementation of
process matrices that would violate a causal inequality is currently known.

In this work, we introduce a semi-device-independent framework for certifying
noncausal properties of process matrices that allows for an experimental certifica-
tion of indefinite causal order that relies on fewer assumptions than previous ones.
In our semi-device-independent scenario, the operations of some parties are fully
characterized while no assumptions are made about the others.

We begin by considering the bipartite case, for which we construct a general
framework for certifying indefinite causal order in a semi-device-independent scenario,
while contextualizing previously developed device-dependent and -independent ones.
We then extend our framework to a tripartite case in which the third party is always
in the future of the other two, and provide an extensive machinery that may be
generalized to other multipartite scenarios. We apply our methods to the notorious
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quantum switch [43, 57], a process matrix that, despite having an indefinite causal
order, only leads to causal correlations in a device-independent scenario. We show
that the noncausal properties of the quantum switch can be certified in a semi-device-
independent way, proving that it generates stronger noncausal correlations than it
was previously known.

2.2 Preliminaries

In our certification scheme, we will deal with statistical data in the form of
behaviours.

A general bipartite behaviour {p(ab|xy)} is a set of joint probability distributions,
that is, a set in which each element p(ab|xy) is a real non-negative number such
that

∑
a,b p(ab|xy) = 1 for all x, y, where a ∈ {1, . . . , OA} and b ∈ {1 . . . , OB} are

labels for outcomes and x ∈ {1, . . . , IA} and y ∈ {1, . . . , IB} are labels for inputs, for
parties Alice and Bob, respectively.

The most general operation allowed by quantum theory is modelled by a quantum
instrument, which is a set of completely-positive (CP) maps that sum to a completely-
positive trace-preserving (CPTP) map [125].

The Choi-Jamiołkowski (CJ) isomorphism [126–128] allows us to represent every
linear map1 M : L(HI)→ L(HO) by a linear operator M ∈ L(HI ⊗HO) acting on
the joint input and output Hilbert spaces. In this representation, a set of instruments
is a set of operators {Ia|x}, Ia|x ∈ L(HI ⊗HO), that satisfies

Ia|x ≥ 0, ∀ a, x (2.1)

TrO
∑

a

Ia|x = 1I , ∀ x, (2.2)

where x ∈ {1, . . . , I} labels the instrument in the set and a ∈ {1, . . . , O} its outcomes,
and 1I is the identity operator on HI .

Now let us consider the most general set of behaviours which respects quantum
theory. For that we follow the steps of ref. [44] to analyse behaviours that can
be extracted by pairs of independent quantum instruments. Let {Aa|x}, Aa|x ∈
L(HAI ⊗HAO) and {Bb|y}, Bb|y ∈ L(HBI ⊗HBO) be the Choi operators of Alice’s
and Bob’s local instruments. We then seek a function which assigns probabilities to
a pair of instrument elements Aa|x and Bb|y. In order to preserve the structure of
quantum mechanics, we assume that this function is linear in both arguments. It
follows from the Riesz representation lemma [129] that this general linear function

1In this paper we only consider finite dimensional complex linear spaces. That is, all linear spaces are
isomorphic to Cd for some natural number d.
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necessarily has the form of p(ab|xy) = Tr
[
(AAIAOa|x ⊗BBIBO

b|y )W
]
for some linear

operator W ∈ L(HAI ⊗HAO ⊗HBI ⊗HBO). In order to be consistent with extended
quantum scenarios, we also consider the case where Alice and Bob may share a
(potentially entangled) auxiliary quantum state ρ ∈ L(HAI′ ⊗ HBI′ ), and have
instruments {A′a|x}, A′a|x ∈ L(HAI′AIAO), {B′b|y}, B′b|y ∈ L(HBI′BIBO) which acts on
the space of the operator W and the auxiliary state ρ. A process matrix is then
defined as the most general linear operator W such that

p(ab|xy) = Tr
[
(A
′AI′AIAO
a|x ⊗B′BI′BIBOb|y )(WAIAOBIBO ⊗ ρAI′BI′ )

]
(2.3)

represents2 elements of valid probability distributions for every state ρ and sets of
instruments {A′a|x} and {B′b|y}.

It was shown in ref. [46] that a linear operator W is a process matrix if and only
if it respects

W ≥ 0 (2.4)

Tr W = dAOdBO (2.5)

AIAOW =AIAOBO W (2.6)

BIBOW =AOBIBO W (2.7)

W =AO W +BO W −AOBO W, (2.8)

where XW := TrXW ⊗ 1X

dX
is the trace-and-replace operation and dX = dim(HX).

We then define process behaviours {pQ(ab|xy)} as behaviours which can be
obtained by process matrices according to

pQ(ab|xy) = Tr
[
(AAIAOa|x ⊗BBIBO

b|y ) WAIAOBIBO
]
, (2.9)

for all a, b, x, y.
Now we begin to discuss the causal properties of behaviours and process matrices.
A behaviour is considered causally ordered when it can be established that one

party acted before the other because the marginal probability distributions of one
party do not depend on the inputs of the other. Formally, we have that a behaviour
{pA≺B(ab|xy)} is causally ordered from Alice to Bob if it satisfies

∑

b

pA≺B(ab|xy) =
∑

b

pA≺B(ab|xy′), (2.10)

for all a, x, y, y′, and equivalently from Bob to Alice.

2In eq. (2.3), as well as in some other equations, we add superscripts on the operators to indicate the
Hilbert spaces in which they act, for sake of clarity.
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Behaviours that are within the convex hull of causally ordered behaviours are
also considered causal, as they can be interpreted as a classical mixture of causally
ordered behaviours. Hence, a causal behaviour {pcausal(ab|xy)} is a behaviour that
can be expressed as a convex combination of causally ordered behaviours, i.e.,

pcausal(ab|xy) := qpA≺B(ab|xy) + (1− q)pB≺A(ab|xy), (2.11)

for all a, b, x, y, where 0 ≤ q ≤ 1 is a real number. Behaviours that do not satisfy
eq. (2.11) are called noncausal behaviours.

Following the same reasoning as the one in the definition of a general process
matrix, in order to associate causal properties to process matrices we now define
causally ordered process matrices as the most general operator that takes pairs of
local instruments to causally ordered behaviours, that is,

pA≺B(ab|xy) = Tr
[
(Aa|x ⊗Bb|y) W

A≺B] , (2.12)

for all a, b, x, y. This definition is equivalent to the one in refs. [42, 44], which states
that a bipartite process matrix WA≺B ∈ L(HAI ⊗HAO ⊗HBI ⊗HBO) is causally
ordered from Alice to Bob if it satisfies

WA≺B =BO W
A≺B, (2.13)

and equivalently from Bob to Alice.
In line with the definition of a causal behaviour, a causally separable process

matrix W sep ∈ L(HAI⊗HAO⊗HBI⊗HBO) is a process matrix that can be expressed
as a convex combination of causally ordered process matrices, i.e.,

W sep := qWA≺B + (1− q)WB≺A, (2.14)

where 0 ≤ q ≤ 1 is a real number. Process matrices that do not satisfy eq. (2.14) are
called causally nonseparable process matrices.

2.3 Certification

Let us consider the following task: we are given a behaviour that describes
the statistics of a quantum experiment. We analyse this behaviour in the process
matrix formalism, that is, we assume that there exists a process matrix W and
sets of local instruments that give rise to this behaviour according to the rules of
quantum theory. Without any information aboutW – i.e., without direct assumptions
about the process matrix – the goal is to verify whether it is causally nonseparable.
Additionally, information about the instruments which were performed may or may
not be given.
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The assumptions about the instruments can be split in three: device-dependent,
-independent, and semi-device-independent. A device-dependent certification scenario
is one in which the operations of all parties are fully characterised, i.e., the whole
matrix description of the elements of all applied instruments is known. A device-
independent certification scenario is the opposite, no knowledge or assumption is
made regarding the operations performed by any parties, not even the dimension
of the linear spaces used to describe them. Finally, a semi-device-independent
certification scenario is one in which at least one party is device-dependent, which is
often called trusted, and at least one is device-independent, often called untrusted.

In the following we formalise our notions of certification for bipartite process
matrices. We refer to appendix B.5 and to section 2.4 for a discussion of more general
scenarios.

Definition 2.1 (Device-dependent certification). Given a process behaviour {pQ(ab|xy)},
that arises from known instruments {Aa|x} and {Bb|y} and an unknown bipartite
process matrix, one certifies that this process matrix is causally nonseparable in a
device-dependent way if, for some a, b, x, y,

pQ(ab|Aa|x , Bb|y) 6= Tr
[
(Aa|x ⊗Bb|y)W

sep] , (2.15)

for all causally separable process matrices W sep.

Definition 2.2 (Device-independent certification). Given a process behaviour {pQ(ab|xy)},
that arises from unknown instruments and an unknown bipartite process matrix, one
certifies that this process matrix is causally nonseparable in a device-independent way
if, for some a, b, x, y,

pQ(ab|xy) 6= Tr
[
(Aa|x ⊗Bb|y)W

sep] (2.16)

for all causally separable process matrices W sep and all general instruments {Aa|x}
and {Bb|y}.

Definition 2.3 (Semi-device-independent certification). Given a process behaviour
{pQ(ab|xy)}, that arises from unknown instruments on Alice’s side, known instru-
ments {Bb|y} on Bob’s side, and an unknown bipartite process matrix, one certifies
that this process matrix is causally nonseparable in a semi-device-independent way if,
for some a, b, x, y,

pQ(ab|x ,Bb|y) 6= Tr
[
(Aa|x ⊗Bb|y)W

sep] (2.17)

for all causally separable process matrices W sep and all general instruments {Aa|x}.
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On eqs. (2.15), (2.16), and (2.17) one can identify the quantities that are given –
the behaviour and the trusted instruments that belong to the device-dependent parties
– and the variables in the certification problem – the unknown instruments that belong
to the device-independent parties and any causally separable process matrix. If one
can guarantee that, for any sets of instruments for the device-independent parties
and any causally separable process matrix, the given behaviour cannot be described
by the left-hand side of eqs. (2.15), (2.16), or (2.17), then the fact that the process
matrix that generated this behaviour is causally nonseparable is certified. A summary
of the given quantities and variables in each certification scenario is provided by
table 2.1.

Before proceeding we remark an analogy with the entanglement certification
problem in which behaviours are assumed to arise from quantum measurements
performed on a quantum state. In the entanglement certification case, device-
dependent scenarios are related to entanglement witnesses [65], device-independent
scenarios to Bell nonlocality [68], and the semi-device-independent ones to EPR-
steering [81].

2.3.1 Device-dependent

We start be analysing the device-dependent scenario and definition 2.1. This
scenario has been thoroughly studied before using the concept of causal witnesses
[46], analogous to entanglement witnesses [65], and now we formulate it under our
certification paradigm.

In this scenario, the behaviour and sets of instruments of both parties are given
and we aim to check whether the given process behaviour is consistent with performing
these exact instruments on a causally separable process matrix. This problem can
be solved by semidefinite programming (SDP) with the following formulation:

given {pQ(ab|xy)}, {Aa|x}, {Bb|y}
find W

subject to pQ(ab|xy) = Tr
[
(Aa|x ⊗Bb|y)W

]
∀ a, b, x, y

W ∈ SEP,

(2.18)

where SEP denotes the set of causally separable matrices (i.e. W is constrained to
eq. (2.14)) which can be characterized by SDP.

If the problem is infeasible, that is, if there does not exist a process matrix W
that satisfies the constraints of eq. (2.18), then the process matrix that generated
{pQ(ab|xy)} is certainly causally nonseparable. Consequently, there exists a causal
witness that can certify it, without the need of performing full tomography of the
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Device-dependent

Given quantities Variables

{pQ(ab|xy)} W

{Aa|x}, {Bb|y}

Device-independent

Given quantities Variables

{pQ(ab|xy)} dAI , dAO , dBI , dBO

{Aa|x}, {Bb|y}

W

Semi-device-independent

Given quantities Variables

{pQ(ab|xy)} dAI
, dAO

{Bb|y} {Aa|x}

W

Table 2.1: Comparison between the given (known) quantities and the variables (unknown
quantities) in each scenario with different levels of assumptions about the operations of
each party involved in the task of certifying noncausal properties of a process matrix.

process matrix [46]. On the contrary, if the problem is feasible, then the solution
provides a causally separable process matrix that could have generated the given
behaviour.

We now show that all causally nonseparable process matrices can be certified to
be so in a device-dependent way.

Theorem 2.1. All noncasual process matrices can be certified in a device-dependent
way for some choice of instruments.

The proof of the above theorem follows from the fact that one can always consider
a scenario where Alice and Bob have access to tomographically complete instruments,
which allows for the complete characterization of the process matrix [62, 63].
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2.3.2 Device-independent

A device-independent approach for the process matrix formalism has been previ-
ously studied in terms of causal inequalities [69], analogous to Bell inequalities [68],
and now we formulate it under our certification paradigm, exploring definition 2.2.

In a device-independent scenario, besides assuming that the given behaviour
is a process behaviour following eq. (2.9), no extra assumptions are made. It is
then necessary to check whether the given behaviour is consistent with probability
distributions that come from any tensor product of pair of sets of instruments, with
fixed number of inputs and outputs, performed on any causally separable process
matrix of any dimension.

Before characterizing the problem of whether a certain behaviour can be obtained
by a causally separable process matrix, we ask the more fundamental question
of whether any behaviour can be obtained by a general process matrix on which
instruments are performed locally. That is, whether all general (valid) behaviours
are process behaviours.

By definition, every process matrix leads to valid general behaviours. However, it
is shown in ref. [130] that in the scenario where all parties have dichotomic inputs and
outputs, the deterministic two-way signalling behaviour defined by p2WS(ab|xy) :=

δa,yδb,x, where δi,j = 1 if i = j and δi,j = 0 otherwise, cannot be obtained exactly by
any process matrix. Here we show that one cannot obtain this two-way signalling
behaviour even approximately for finite-dimensional process matrices. The proof can
be found in appendix B.1.

Theorem 2.2. All process behaviours are valid behaviours, however, not all valid
behaviours are process behaviours.

In particular, in the scenario where all parties have dichotomic inputs and outputs,
any behaviour {p(ab|xy)} such that

1

4

∑

a,b,x,y

δa,yδb,x p(ab|xy) > 1− 1

d+ 1

is not a process behaviour for process matrices with total dimension dAIdAOdBIdBO =

d.

Here we can make a parallel with Bell nonlocality, where the Popescu-Rohrlich
behaviour is known to respect the non-signalling conditions which arise naturally in
Bell scenarios but cannot be obtained by performing local measurements on entangled
states [131–133].

As for causal behaviours, the analogous question is also pertinent. Can all causal
behaviours be obtained by pair of sets of instruments and causally separable process
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matrices? We answer this question positively, which allows us to relate the properties
of a behaviour directly to the properties of the process matrices that could have
given rise to it.

Lemma 2.1. A general behaviour is causal if and only if it is a process behaviour
that can be obtained by a causally separable process matrix.

The proof is made by explicitly constructing the instruments and causally sep-
arable process matrix that can recover any causal behaviour. It can be found in
appendix B.2.

This result allows us to identify which causally nonseparable process matrices
can be certified in a device-independent way:

Theorem 2.3. A process matrix can be certified to be causally nonseparable in a
device-independent way if and only if it can generate a noncausal behaviour for some
choice of instruments for Alice and Bob.

Proof. If a process matrix is causally separable then its behaviours will be causal.
If a behaviour is causal, even though it could in principle have been generated by
a causally nonseparable process matrix, according to lemma 2.1 it can always be
reproduced by a causally separable process matrix. Hence, no causal properties of
the process matrix can be inferred.

From the formulation of the device-independent certification problem in defini-
tion 2.2, it is not clear whether one could obtain a simple characterisation to solve
it. In particular, because there are no constraints on the dimension of the linear
spaces and there is a product of variables (that represent the unknown instruments
and process matrix). Interestingly, we can explore the above theorem to present
simple necessary and sufficient conditions for a general behaviour to allow for device-
independent certification of indefinite causal order. This follows from the fact that
a behaviour can be checked to be noncausal by linear programming [69]. More
explicitly, the certification problem can be formulated as follows:

given {pQ(ab|xy)}
find q1(λ), q2(λ)

s.t. pQ(ab|xy) =
∑

λ

[
q1(λ)DA≺B

λ (ab|xy) + q2(λ)DB≺A
λ (ab|xy)

]
, ∀ a, b, x, y

q1(λ) ≥ 0, q2(λ) ≥ 0, ∀ λ,

(2.19)

where {DA≺B
λ (ab|xy)} and {DB≺A

λ (ab|xy)} are the finite set of deterministic causal
distributions described in ref. [69].
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If the problem is infeasible, then the process matrix that was used to generate
the process behaviour {pQ(ab|xy)} is certainly causally nonseparable and there
exists a causal inequality that can witness it [69]. If the problem is feasible, then
one can use the results presented in appendix B.2 to explicitly find a causally
separable process matrix W sep and sets of instruments {Aa|x} and {Bb|y} such that
pQ(ab|xy) = Tr

[
(Aa|x ⊗Bb|y)W

sep
]
.

Differently from the device-dependent scenario, it is known that some causally
nonseparable process matrices cannot be certified in a device-independent way
[46, 70, 134]. In particular, there exist causally nonseparable bipartite process
matrices that, for any choice of instruments of Alice and Bob, will always lead to
causal behaviours. This result was first presented in ref. [134] and we rephrase it
here:

Proposition 2.1 (Device-dependent certifiable, device-independent noncertifiable
process matrix). There exist causally nonseparable process matrices that, for any sets
of instruments, always give rise to causal behaviours. That is, a causally nonseparable
process matrix that cannot be certified in a device-independent way.

In particular, let W ∈ L(HAIAOBIBO) be a process matrix and W TB be the partial
transposition of W with respect to some basis in L(HBIBO) for Bob. If W TB is
causally separable, the behaviour generated by pQ(ab|xy) = Tr

[
(Aa|x ⊗Bb|y)W

]
is

causal for every sets of instruments {Aa|x} and {Bb|y}.

We would like to remark that this phenomenon can be seen as a consequence of
the choice of definition of causally separable process matrices. Recalling section 2.2,
a causally ordered process matrix is defined as the most general operator WA≺B

that takes any pairs of sets of instruments to causally ordered behaviours according
to pA≺B(ab|xy) = Tr[(Aa|x ⊗ Bb|y) W

A≺B]. On the other hand, the definition of a
causally separable process matrix W sep as a convex combination of process matrices
with definite causal orders, instead of focusing on the behaviours, has an arguably
more physical motivation of a classical mixture of causal orders. If the definition were
to, alternatively, focus on the behaviours, then a natural choice would be to define
a ‘causally separable’ process matrix W̃ sep as the most general operator that takes
any pairs of sets of instruments to causal behaviours according to pcausal(ab|xy) =

Tr[(Aa|x ⊗ Bb|y) W̃ sep]. With this alternative, inequivalent definition, ‘causally
nonseparable’ process matrices would always lead to noncausal behaviours, for
some choice of instruments, by definition. We observe the phenomenon of causally
nonseparable process matrices leading exclusively to causal behaviours, presented in
proposition 2.1, when we take the physically motivated definition, and it exposes an
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intrinsic difference between these two kinds of reasoning. In the next sections, we
show how this phenomenon manifests itself in the semi-device-independent scenario.

2.3.3 Semi-device-independent

In this final scenario, which has not been explored for process matrices before, we
have the information of the behaviour and the instruments of one party, in this case,
Bob. According to definition 2.3, one needs to check whether the given behaviour
can be reproduced by performing these exact given instruments for Bob, and any set
of instruments for Alice with fixed number of inputs and outputs, on any causally
separable process matrix that has a fixed dimension on Bob’s side. Since both the
process matrix and Alice’s instruments are variables in eq. (2.17), it is not clear
whether this problem can be solved by SDP.

Our approach contrasts a previous one which exploits communication complexity
tasks to certify indefinite causal order in process matrices assuming an upper bound
for communication capacity between parties and the dimension of their local systems
[58, 59].

However, consider the following expression for a process behaviour,

p(ab|xy) = Tr
[
(Aa|x ⊗Bb|y)W

]
(2.20)

= Tr
[
Bb|y TrA(Aa|x ⊗ 1BW )

]
(2.21)

= Tr
(
Bb|yw

Q
a|x

)
, ∀ a, b, x, y, (2.22)

which motivates us to define wQa|x.

Definition 2.4 (Process assemblage). A process assemblage {wQa|x} is a set of
operators wQa|x ∈ L(HBI ⊗HBO) for which there exist a process matrix WAIAOBIBO

and a set of instruments {AAIAOa|x } such that

wQa|x = TrAIAO
[
(AAIAOa|x ⊗ 1BIBO)WAIAOBIBO

]
, (2.23)

for all a, x.

By defining the process assemblage, we gather all the variables in the certification
problem in one object and can start to relate properties of this object to properties
of the process matrix. We remark that the process assemblage generalizes the notion
of assemblage in EPR-steering [81, 135], which is recovered when both Alice’s and
Bob’s output spaces have dAO = dBO = 1. Consequently, {Aa|x} becomes a set of
POVMs, W becomes a bipartite quantum state, and the process assemblage recovers
the steering assemblage σa|x = TrA(Aa|x ⊗ 1BρAB) [135].
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Let us first examine the equation below more closely:

p(ab|xy) = Tr
(
Bb|ywa|x

)
. (2.24)

In the same way that a process matrix was defined as the most general operator
that takes sets of local instruments to a behaviour, we can define a general assemblage
to be the most general object that takes a set of instruments to a valid behaviour and
respects linearity. In the appendix B.3, we prove that this definition is equivalent to:

Definition 2.5 (General assemblage). A general assemblage {wa|x} is a set of
operators wa|x ∈ L(HBI ⊗HBO) that satisfies

wa|x ≥ 0 ∀ a, x (2.25)

Tr
∑

a

wa|x = dBO ∀ x (2.26)

∑

a

wa|x =BO

∑

a

wa|x ∀ x. (2.27)

By defining the general assemblage as the most general set of operators that takes
a set of instruments to a behaviour and respects linearity, we are no longer considering
its relation with a process matrix or requiring that it is a process assemblage.

If one compares the set of all general assemblages to the set of all process
assemblages, it is clear that the set of general assemblages contains the set of process
assemblages, since one can see from eq. (2.21) that all process assemblages lead to
valid behaviours. But the former set is in principle larger, an outer approximation
with a simpler characterisation. We show that, indeed, the set of general assemblages
is larger than the set of process assemblages, because just like general behaviours,
not all general assemblages can be realised by process matrices.

Theorem 2.4. All process assemblages are valid assemblages, however, not all valid
assemblages are process assemblages.

In particular, in the scenario where Alice has dichotomic inputs and outputs, the
general assemblage {wa|x} given by wa|x = |x〉〈x| ⊗ |a〉〈a| is not a process assemblage.

The proof presented in appendix B.1 is based on the fact that this assemblage
can lead to a deterministic two-way signalling behaviour, which we know not to be
attainable by process matrices from theorem 2.2.

Although the process assemblage can be regarded as a generalisation of the steering
assemblage that arises in EPR-steering scenarios, here we point out an important
difference between semi-device-independent certification of indefinite causal order
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and entanglement. A fundamental result on EPR-steering theory is that all steering
assemblages admit a quantum realisation by performing POVMs on a quantum state
[136–138]. On the other hand, theorem 2.4 shows that some process assemblages do
not admit a quantum realisation by performing a set of instruments on a process
matrix.

The next step is to assign causal properties to assemblages. A natural approach
is to define that an assemblage {wQ,A≺Ba|x } is causally ordered from Alice to Bob if it
is a process assemblage that can be obtained from a process matrix that is causally
ordered from Alice to Bob, namely,

wQ,A≺Ba|x = TrA[(Aa|x ⊗ 1B)WA≺B] ∀ a, x, (2.28)

for some set of instruments {Aa|x} and some causally ordered process matrix WA≺B,
and equivalently from Bob to Alice.

Since the above definition depends on an unknown set of instruments {Aa|x}, it
is not easy to check whether a given general assemblage {wa|x} is causally ordered.
We therefore derive a simpler characterisation of causally ordered assemblages that
is equivalent to the one above.

Analogously to how we defined a general assemblage, we characterise the most
general set of operators {wA≺Ba|x } that give rise to a causally ordered behaviour
{pA≺B(ab|xy)} according to the equation

pA≺B(ab|xy) = Tr(Bb|yw
A≺B
a|x ), (2.29)

for any set of instruments {Bb|y} for Bob. We then prove its equivalence to the
definition below in appendix B.3.

Definition 2.6 (Causally ordered assemblages). An assemblage {wA≺Ba|x } is causally
ordered from Alice to Bob if it satisfies

wA≺Ba|x =BO w
A≺B
a|x ∀ a, x, (2.30)

while an assemblage {wB≺Aa|x } is causally ordered from Bob to Alice if it satisfies

∑

a

wB≺Aa|x =
∑

a

wB≺Aa|x′ ∀ x, x′. (2.31)

In appendix B.2, we show that all causally ordered assemblages {wA≺Ba|x } and
{wB≺Aa|x } can be realized by some set of instruments {Aa|x} and some causally ordered
process matrix WA≺B and WB≺A, respectively. That is, we show that all {wA≺Ba|x }
satisfy eq. (2.28), and analogously for the causal order B ≺ A.
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We now contrast the statement made in the previous paragraph with general
assemblages. As stated before, the technique of defining the general assemblage as
the most general set of linear operators that takes instruments to general behaviours
results in an object that cannot always be described by process matrices. On the
other hand, in the case of causally ordered assemblages, this technique yielded an
object that can always be described by (causal) process matrices. The main point to
be taken here is that to characterize the most general set of linear operators that takes
instruments to some kind of behaviour is a mathematical artifice to find an outer
approximation to the set of assemblages that are described by process matrices. The
goal is to find an approximation of this set with a potentially simpler characterization.
This approximation may be tight, as in the case of causal assemblages, or may not be
tight, as in the case of general assemblages. We explore this further in appendix B.5
for assemblages in tripartite scenarios.

We now define a causal assemblage by taking the elements of the convex hull of
causally ordered assemblages.

Definition 2.7 (Causal assemblage). An assemblage {wcausal
a|x } is causal if it can be

expressed as a convex combination of causally ordered assemblages, i.e.,

wcausal
a|x := qwA≺Ba|x + (1− q)wB≺Aa|x , (2.32)

for all a, x, where 0 ≤ q ≤ 1 is a real number. An assemblage that does not satisfy
eq. (2.32) is called a noncausal assemblage.

We can now express our result in terms of the following lemma, proved in
appendix B.2.

Lemma 2.2. A general assemblage is causal if and only if it is a process assemblage
that can be obtained from a causally separable process matrix.

This result allows us to identify which causally nonseparable process matrices
can be certified in a semi-device-independent way:

Theorem 2.5. A process matrix is certified to be causally nonseparable in a semi-
device-independent way if and only if it can generate a noncausal assemblage for
some choice of instruments for Alice.

Proof. If a process matrix is causally separable then its assemblages will be causal.
If the assemblage is causal, even though it could in principle have been generated
by a causally nonseparable process matrix, according to lemma 2.2 it can always be
reproduced by a causally separable process matrix and hence this property cannot
be certified.
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Note that all requirements for an assemblage to be causal are linear and positive
semidefinite constraints, hence one can check whether an assemblage is causal via
SDP.

However, in our semi-device-independent certification scenario, the only informa-
tion available is the process behaviour and Bob’s instruments, not the assemblage
itself. If it were the case that Bob’s instruments are tomographically complete, he
could obtain full information about the assemblage, and check whether it is causal via
SDP. Nevertheless, we show that it is possible to check whether a given behaviour can
certify indefinite causal order in a semi-device-independent scenario using SDP even
without the knowledge of the assemblage. We do this by rephrasing our certification
task in terms of an unknown assemblage.

Definition 3’ (Semi-device-independent certification, with assemblages). Given a
behaviour {pQ(ab|xy)}, that arises from unknown instruments on Alice’s side, known
instruments {Bb|y} on Bob’s side, and an unknown bipartite process matrix, one
certifies that this process matrix is causally nonseparable in a semi-device-independent
way if, for some a, b, x, y,

pQ(ab|x ,Bb|y) 6= Tr(Bb|y w
causal
a|x ) (2.33)

for all causal assemblages {wcausal
a|x }.

Now we are able to formulate the semi-device-independent certification problem
in terms of SDP:

given {pQ(ab|xy)}, {Bb|y}
find {wa|x}
s.t. pQ(ab|xy) = Tr(Bb|y wa|x) ∀ a, b, x, y
{wa|x} ∈ CAUSAL,

(2.34)

where CAUSAL denotes the set of causal assemblages, that is, {wa|x} is constrained
to eq. (2.32).

As in the previous cases, if the problem is infeasible, then the process matrix
that was used to generate the process behaviour {pQ(ab|xy)} is certainly causally
nonseparable. If the problem is feasible, then one can use the results presented in
appendix B.2 to explicitly find a causally separable process matrix W sep and sets of
instruments {Aa|x} such that wa|x = TrA[(Aa|x ⊗ 1B)W sep].

All three SDP formulations we presented in eqs. (2.18), (2.19) and (2.34) are
feasibility problems which can be turned into optimisation problems that allow for a
robust certification of indefinite causal order. We discuss this further in section 2.4.
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We now show that not all process matrices can be certified in a semi-device-
independent way, as some process matrices cannot lead to noncausal assemblages.
The proof is in appendix B.4.

Theorem 2.6 (Device-dependent certifiable, semi-device-independent noncertifiable
process matrix). There exist causally nonseparable process matrices that, for any
sets of instruments on Alice’s side, always give rise to causal assemblages. That
is, causally nonseparable process matrices that cannot be certified in a semi-device-
independent way.

In particular, let W ∈ L(HAIAOBIBO) be a process matrix and W TA be the partial
transposition of W with respect to some basis in L(HAIAO) for Alice. If W TA is
causally separable, the assemblages generated by wa|x = TrA[(Aa|x⊗1B)W ] are causal
for every set of instruments {Aa|x}.

We remark that the above theorem strictly extends proposition 2.1 which was
first proved in ref. [134]. That is, with the same hypothesis – that W TA is causally
separable – we can make a stronger claim – that W cannot be certified as causally
nonseparable even if Bob is treated in a device-dependent way (is trusted).

In ref. [134], the authors show that, when extended with an entangled state, the
resulting process matrix can violate a causal inequality and can therefore be certified
in a device-independent way. This implies that this extended process matrix can also
be certified in a semi-device-independent way. Ref. [134] leaves as an open question the
existence of a causally nonseparable bipartite process matrix that cannot be certified
in a device-independent way even when extended by entanglement. We remark
that this open question is also relevant in the context of semi-device-independent
certification.

Another natural question also emerges: is there a bipartite process matrix that
can be certified to be causally nonseparable in a semi-device-independent scenario
but that cannot be certified to be causally nonseparable in any device-independent
scenario? Although we believe such process matrix exists, no example is currently
known.

2.4 The Quantum Switch

The concepts of certification presented in the previous section have a natural
generalisation to different multipartite scenarios. We are now going to illustrate
one particular tripartite case by discussing and presenting some results involving
the quantum switch [43, 57]. In appendix B.5, we present a detailed extension of
the concepts and results from the bipartite case, introduced in section 2.3, to the

54



Chapter 2

tripartite case in which the quantum switch is defined, and pave the way to future
more general tripartite and multipartite extensions.

On its first appearance, the quantum switch was defined as a higher-order trans-
formation that maps quantum channels into quantum channels and it can be defined
as the following. Let UA and UB be two unitary operators that act on the same
space of a target state |ψ〉t. Let |c〉c := α|0〉 + β|1〉, |α|2 + |β|2 = 1, be a ‘control’
state that is able to coherently control the order in which the operations UA and UB
are applied. The quantum switch acts as following:

switch(UA, UB) = |0〉〈0|c ⊗ UA UB + |1〉〈1|c ⊗ UB UA. (2.35)

When applied to the state |c〉c ⊗ |ψ〉t we have

switch(UA, UB)|c〉 ⊗ |ψ〉 = α |0〉 ⊗ UA UB |ψ〉+ β |1〉 ⊗ UB UA |ψ〉. (2.36)

Physically, the equation above can be understood as the control qubit determining
which unitary is going to be applied first on the target state |ψ〉. If the control qubit
is in the state |0〉 (α = 1, β = 0), the unitary UB is performed before the unitary UA.
If the control qubit is in the state |1〉 (α = 0, β = 1), the unitary UB is performed
before the unitary UA. In general, if the control qubit is in the state |c〉 = α|0〉+β|1〉,
α 6= 0, β 6= 0, the output state will be in a coherent superposition of two different
causal orders.

In the process matrix formalism, ref. [54] has analysed the quantum switch as a
four-partite process matrix of which the first party has only an output space, which
defines the input target and control states, one party inputs UA, another party inputs
UB, and a final party obtains the output control and target states. Here we follow
instead the steps of ref. [46] to associate tripartite process matrices to the quantum
switch. This can be done by absorbing the input target and control states into the
process matrix and setting the third party with output space of dimension equal
to one. Hence, the quantum switch is described by a family of tripartite process
matrices that is shared among three parties, Alice, Bob, and Charlie, for which
Charlie is always in the future of Alice and Bob, and the causal order between Alice
and Bob may or may not be well defined. A consequence of the fact that Charlie is
last and his output space HCO has d = 1 is that the most general instrument Charlie
can perform is a POVM.

Formally, we define a family of tripartite process matrices associated to the
quantum switch according to:
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Definition 2.8 (Quantum switch processes). Let |w(ψ, α, β)〉 ∈ HAIAOBIBOC
t
IC

c
I be

|w (ψ, α, β)〉 =α |ψ〉AI |Φ+〉AOBI |Φ+〉BOCtI |0〉CcI + β |ψ〉BI |Φ+〉BOAI |Φ+〉AOCtI |1〉CcI ,
(2.37)

where |ψ〉 is a d-dimensional pure state, α, β are complex numbers such that |α|2 +

|β|2 = 1, and |Φ+〉 =
∑d

i=1 |ii〉 is a maximally entangled unnormalised bipartite qudit
state, the Choi representation of the identity channel.

Then, the pure quantum switch processes are a family of tripartite process matrices
given by

Wswitch(ψ, α, β) = |w (ψ, α, β)〉〈w (ψ, α, β)|. (2.38)

When the control state is in a nontrivial superposition of |0〉 and |1〉, the quantum
switch processes have been shown to have some interesting properties [46, 70]. They
are causally nonseparable process matrices, meaning they cannot be expressed as
a convex combination of tripartite process matrices with definite causal ordered
between Alice and Bob, with Charlie in their common future. Namely, when α 6= 0

and β 6= 0,
Wswitch(ψ, α, β) 6= qWA≺B≺C + (1− q)WB≺A≺C , (2.39)

for all |ψ〉, and all real numbers 0 ≤ q ≤ 1. The exact definitions of causally ordered
and general tripartite process matrices can be found in appendix B.5.

However, when Charlie is traced out, the resulting bipartite process matrices
shared by Alice and Bob are causally separable, namely,

TrCcICtI [Wswitch(ψ, α, β)] = qWA≺B + (1− q)WB≺A, (2.40)

for all |ψ〉, α, and β, where q = |α2|.
These causally nonseparable tripartite process matrices can be certified in a

device-dependent way, since theorem 2.1 also holds for tripartite process matrices.
Yet, it has been shown in refs. [46, 70] that the quantum switch processes cannot be
certified in a device-independent way, as they always lead to causal behaviours for
any choice of instruments of Alice, Bob, and Charlie. It remains to find out whether
these processes can be certified in semi-device-independent scenarios.

For this purpose, we extend all concepts and methods from bipartite semi-
device-independent certification. Much like in the bipartite case, we make different
assumptions about the knowledge of the operations performed by each party. We call
untrusted (U) a party that is treated in a device-independent way and trusted (T)
a party that is treated in a device-dependent way, and we use the convention
Alice Bob Charlie for denoting the parties. For example, a scenario TTU means
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Alice = T (device-dependent), Bob = T (device-dependent), and Charlie = U (device-
independent). The four inequivalent semi-device-independent tripartite scenarios are
TTU, TUU, UTT, and UUT.

The core idea of the certification task remains the same. For a given process
behaviour and given sets of instruments for the trusted parties, one needs to check
whether it is possible that this behaviour comes from performing this instruments on
a causally separable tripartite process matrix. We also derive the concepts of general,
process, causally ordered, and causal assemblages for each scenario. In appendix B.5,
we provide all details and calculations, including for the tripartite device-dependent
TTT and -independent UUU scenarios.

Our next theorem strengthens the previous result [46] that showed that the
quantum switch processes cannot be certified in a full device-independent scenario,
i.e., in the UUU scenario. We show that when the instruments of Alice and Bob are
unknown, even if the measurements performed by Charlie are known, the quantum
switch processes can never be proven to be causally nonseparable, for any pairs of
sets of instruments for Alice and Bob. In other words, we prove that the quantum
switch processes cannot be certified to be causally nonseparable in the UUT scenario.
The previous result of the full device-independent scenario can now be seen as a
particular case of the theorem we now present, whose proof is in appendix B.6.

Theorem 2.7. The quantum switch processes cannot be certified to be causally
nonseparable on a semi-device-independent scenario where Alice and Bob are untrusted
and Charlie is trusted (UUT).

Moreover, any tripartite process matrix W ∈ L(HAIAOBIBOCI ), with Charlie in
the future of Alice and Bob, that satisfies

Tr[(AAIAOa|x ⊗BBIBO
b|y ⊗ 1CI )WAIAOBIBOCI ] = qpA≺B(ab|xy) + (1− q)pB≺A(ab|xy),

(2.41)

for all a, b, x, y, where 0 ≤ q ≤ 1 is a real number, cannot be certified to be causally
nonseparable in a UUT scenario.

We now show that in the three remaining semi-device-independent scenarios,
TTU, TUU, and UTT, the quantum switch processes can be certified to be causally
nonseparable, proving that they can demonstrate stronger noncausal properties than
it was previously known.

For our remaining calculations we use the reduced quantum switch process

Wred := TrCtI

[
Wswitch

(
|0〉, 1√

2
,

1√
2

)]
. (2.42)
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By choosing a reduced, mixed switch process in these scenarios, in which the space of
the target state is traced out, we guarantee that the pure switch process version can
also be certified without performing any measurements on the output target space.

We show that the reduced quantum switch process Wred can be certified in the
TTU, TUU, and UTT scenarios by providing sets of instruments for the device-
independent (untrusted) parties that, when applied to Wred, generate TTU-, TUU-,
and UTT-assemblages that are noncausal. We prove these assemblages to be non-
causal by means of SDP.

To calculate the assemblages, we choose the following instruments for each
untrusted party:

AAIAO0|0 = BBIBO
0|0 = |0〉〈0| ⊗ |0〉〈0|, M

CcI
0|0 = |+〉〈+|,

AAIAO1|0 = BBIBO
1|0 = |1〉〈1| ⊗ |1〉〈1|, M

CcI
1|0 = |−〉〈−|,

AAIAO0|1 = BBIBO
0|1 = |+〉〈+| ⊗ |+〉〈+|,

AAIAO1|1 = BBIBO
1|1 = |−〉〈−| ⊗ |−〉〈−|,

(2.43)

where |±〉 = 1√
2
(|0〉 ± |1〉).

Let us illustrate with the TUU case. To construct the TUU-assemblage, we use
the instruments from eq. (2.43) for the untrusted parties, Bob and Charlie, according
to

wswitch
bc|yz = TrBC [(1A ⊗Bb|y ⊗Mc|z)Wred] ∀ b, c, y, z. (2.44)

Then, we show via SDP that

wswitch
bc|yz 6= qwA≺B≺Cbc|yz + (1− q)wB≺A≺Cbc|yz , ∀ b, c, y, z, (2.45)

proving that the switch process can be certified in this scenario. This is possible due
to the SDP characterization of causal assemblages presented in appendix B.5 (for
instance, see definition B.20 for the TUU scenario). It follows analogously for the
scenarios TTU and UTT.

To be able to compare and quantify the causal properties of the quantum switch
across different certification scenarios, from full device-dependent to full device-
independent, we introduce a robustness measure. We start by defining the noisy
version of the switch, a mixture of the reduced quantum switch process with a ‘trivial’
process matrix (the normalised identity):

W η
red := η

1
dI

+ (1− η)Wred, (2.46)

where dI = dAIdBIdCcI is the dimension of the joint input spaces.
We then estimate the minimum value of η for whichW η

red has only causal properties
in a given scenario. For example, in the device-dependent scenario, this is the

58



Chapter 2

minimum value of η for which W η
red is causally separable. In a semi-device-dependent

scenario, this is the minimum value of η for which W η
red only generates causal

assemblages. Finally, for the device-independent scenario, this is the minimum value
of η for which W η

red only generates causal behaviours.
It is immediate to see that in the UUU (device-independent) scenario, η∗ = 0,

since the switch process always generates causal behaviours [46]. Equivalently for
the UUT scenario, as a direct consequence of our theorem 2.7. For the TTT scenario,
we evaluate via SDP a value of η∗ = 0.6118 for which W η∗

red is causally separable and
bellow which it is causally nonseparable.

In the remaining scenarios, TTU, TUU, and UTT, in order to calculate the exact
value of η∗, one should consider every possible assemblage that could be generated
from W η

red, by optimizing over the set of instruments of the device-independent
(untrusted) parties. Since we only consider the fixed instruments of eq. (2.43), we
calculate lower bounds for η∗. Additionally, as detailed in appendix B.5, in some
of these scenarios our SDP characterization of the set of causal assemblages only
constitutes an outer approximation of the set of assemblages that can be described
by causal process matrices. Since with SDP we calculate the minimum η for the
assemblages to be inside this outer approximation, this again gives only a lower
bound for η∗.

Let us illustrate again with the TUU case. We construct a noisy TUU-assemblage
using the instruments from eq. (2.43) and W η

red according to

wη,switch
bc|yz = TrBC [(1A ⊗Bb|y ⊗Mc|z)W

η
red] ∀ b, c, y, z. (2.47)

We then calculate via SDP the minimum value of η for which wη,switch
bc|yz is causal and

below which it is noncausal. This value constitutes a lower bound for η∗. In the TUU
scenario, we evaluate η∗ ≥ 0.1621 for the reduced switch process. Analogously, we
evaluate η∗ ≥ 0.1802 in the UTT scenario. Finally, in the TTU scenario, η∗ ≥ 0.5687.
All these values are summarized in table 2.2. All code used to obtain these results is
freely available in an online repository [139]. We remark that the set of instruments
required to obtain a robust certification of noncausal separability of the quantum
switch is relatively simple and that Charlie can be restricted to perform a single
POVM.

The quantum switch has motivated several experiments that explore optical
interferometers to certify indefinite causal order of process matrices [71, 72, 74, 75].
Up to now, all experimental results rely on, among other assumptions, complete
knowledge of the instruments to certify of causal nonseparability, i.e., they are
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TTT

η∗ = 0.6118

Noncausal

UTT TTU

η∗ ≥ 0.1802 η∗ ≥ 0.5687

Noncausal Noncausal

UUT TUU

η∗ = 0 η∗ ≥ 0.1621

Causal Noncausal

UUU

η∗ = 0

Causal

Table 2.2: The quantum switch can be certified to be causally nonseparable in scenarios
TTT, UTT, TTU, and TUU and cannot be certified in scenarios UUT and UUU, where T
stands for trusted (device-dependent), U for untrusted (device-independent) and we have
chosen the order Alice, Bob, and Charlie (for instance, TTU represents the scenario where
Alice and Bob are treated in a device-dependent and Charlie in a device-independent way).
The values and bounds for η∗ concern the critical value of the mixing parameter 0 ≤ η ≤ 1
in eq. (2.46) for which the quantum switch cannot be certified to causally nonseparable on
each scenario, and below which, it can be certified. All non-zero values were obtained via
SDP. All code is publicly available in an online repository [139].

fully device-dependent. As shown in this section, one can also certify the causal
nonseparability of the quantum switch without trusting some of the instruments
and measurement apparatuses, in a semi-device-inpedendent way. We have used the
machinery developed in this paper to analyse the experiments of refs. [72] and [74]
and concluded that, the instruments used in these experiments could allow us to
make a stronger claim than what was reported. More precisely, the instruments used
to certify that the quantum switch is causally nonseparable on refs. [72] and [74] can
lead to a semi-device-independent certification of the noncausal properties of the
quantum switch in the TTU scenario. We discuss this results further in appendix B.7.

2.5 Conclusions

We developed a framework for certifying indefinite causal order in the process
matrix formalism under different sets of assumptions about the operations of the
involved parties. In particular, we constructed a semi-device-independent approach
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to certification of causally nonseparable process matrices, and unified previously
explored device-dependent and -independent approaches. We showed that the sets
of causally nonseparable process matrices that can be certified in each scenario
are different. More specifically, we proved that some bipartite process matrices
can be certified to be causally nonseparable in a device-dependent way but not in
a semi-device-independent way, and that some tripartite process matrices can be
certified to be causally nonseparable in a semi-device-independent way but not in a
device-independent way.

In our framework, we formulated the problem of certifying causally nonseparable
process matrices in the device-dependent, semi-device-independent, and device-
independent scenarios in terms of semidefinite programming (SDP), implying they
can be efficiently solved.

We also showed that some noncausal behaviours and some noncausal assemblages
cannot be obtained by process matrices according to the rules of quantum mechanics.
For the device-independent case, we presented non-trivial bounds that relate the
dimension of a process matrix with its maximal attainable violation of a causal
game inequality. Concerning bipartite causal behaviours and causal assemblages, we
explicitly showed how to obtain them from causally separable process matrices.

Concerning the quantum switch, we proved that it can produce noncausal cor-
relations, that is, can be certified to be causally nonseparable, in three out of four
semi-device-independent scenarios, and proved that its noncausal properties cannot
be certified in the remaining one. Finally, we showed that previous experiments that
claim to have certified causal nonseparability with the quantum switch under device-
dependent assumptions [72, 74] could have, in principle, dropped some assumptions
to achieve a stronger form of certification. Our results provide the theoretical basis
for a future experimental demonstration of stronger noncausal phenomena that will
rely on weaker assumptions than previous ones.

All our code is available in an online repository [139] and can be freely used and
edited.
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CHAPTER 3
Strict hierarchy between parallel,

sequential and indefinite-causal-order
strategies for channel discrimination

Jessica Bavaresco, Mio Murao, Marco Túlio Quintino

Abstract. We present an instance of a task of minimum-error discrimination of two
qubit-qubit quantum channels for which a sequential strategy outperforms any parallel
strategy. We then establish two new classes of strategies for channel discrimination
that involve indefinite causal order and show that there exists a strict hierarchy among
the performance of all four strategies. Our proof technique employs a general method
of computer-assisted proofs. We also provide a systematic method for finding pairs of
channels that showcase this phenomenon, demonstrating that the hierarchy between
the strategies is not exclusive to our main example.

Under review. Manuscript submitted on 27 Nov 2020.
arXiv:2011.08300 [quant-ph]
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etical formalism, to the construction of the main example, wrote the code applied on
the initial investigation of the main questions, conducted the typicality analysis, and
wrote the main text of the manuscript.

3.1 Introduction

The discrimination of quantum operations is one of the most fundamental tasks in
quantum information science. It relates to the elementary ability to experimentally
distinguish among different quantum dynamics, which comes into play, for example,
in tasks associated to certification of quantum circuits.

A plethora of interesting results on this topic has been demonstrated over the
course of the years. For the scenario in which the task consists of the discrimination of
a pair of channels using only one query, or copy, of an unknown channel, the problem
of finding the maximal probability of successful discrimination has been related to the
Helstrom measurement [83] and the diamond norm [140, 141]. In striking contrast
with the problem of state discrimination – in which any two states can only be
perfectly discriminated with a finite number of copies if they are orthogonal – it has
been shown that any pair of unitary channels can always be perfectly discriminated
for some finite number of copies [142]. Still concerning pairs of unitary channels,
it has been shown that there is no advantage of sequential strategies over parallel
strategies for discrimination with any finite number of copies [143]. However, for
general channels, there can be an advantage of sequential strategies over parallel ones,
as demonstrated in Ref. [144] with an example of two qubit-ququart entanglement
breaking channels, and in Ref. [145] with an example of two qubit-qubit generalized
amplitude damping channels.

In a related task that consists of the discrimination of two ‘no-signalling bipartite
channels’, a more general strategy was constructed from the quantum switch [43].
This strategy involved indefinite causal order, and it was shown to not only provide
an advantage over causal, i.e. sequential and parallel, strategies, but also to allow
for perfect discrimination, which would otherwise not be achievable [57]. This
phenomenon already hints that indefinite causal order could be useful for the task
of channel discrimination, similarly to how it has proven to be advantageous for
other tasks, such as the inversion of unknown unitary operations [61], communication
complexity [58, 59], and quantum computation [60].

In this paper, we have two main contributions to the study of channel discrimina-
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tion. The first is the demonstration of a new example of an advantage of a sequential
strategy over any parallel strategies for the simplest task of channel discrimination
– the one between a pair of qubit-qubit channels, an amplitude damping channel
and a bit-flip channel. The second is the demonstration that strategies that involve
indefinite causal order can outperform parallel and sequential strategies for the
same task of channel discrimination. In order to do so, we define two new classes
of strategies – which we call separable and general – that may be applied to this
problem and make use of indefinite causal order. Together, these results constitute
a strict hierarchy between four different strategies of channel discrimination. To
demonstrate our results, we develop and apply a general method of computer-assisted
proofs.

3.2 Minimum-error channel discrimination

The task of minimum-error channel discrimination works as follows: With prob-
ability pi, Alice is given an unknown quantum channel C̃i : L(HI)→ L(HO), drawn
from an ensemble E = {pj, C̃j}Nj=1 that is known to her. Being allowed to use a finite
number of copies of the channel C̃i, her task is to determine which channel she received,
by performing operations on this channel and guessing the value of i ∈ {1, . . . , N}.
This problem is equivalent to Alice extracting the ‘classical information’ i which is
encoded in the channel C̃i. In the simplest case of this task, when Alice is allowed
to use one copy of the channel she received, the most general quantum operations
that Alice could apply in her laboratory are to send part of a potentially entangled
state ρ ∈ L(HI ⊗ Haux) through the channel C̃i, and jointly measure the output
with a positive operator-valued measure (POVM) M = {Ma},Ma ∈ L(HO ⊗Haux),
announcing the outcome of her measurement as her guess. Then, her probability
of correctly guessing the value of i is given by psucc :=

∑N
i=1 piTr

[
(C̃i ⊗ 1̃)(ρ)Mi

]
,

where 1̃ is the identity map on L(Haux).
Alice can improve her chances by optimizing over the operations she applies

on the unknown channel based on her knowledge of the ensemble. Her maximal
probability of success in this case is then given by p∗succ := max{ρ,M} psucc, where the
optimization occurs over all possible strategies {ρ,M}.

By means of the Choi-Jamiołkowski isomorphism1 [126–128], we can represent a
quantum channel C̃ (i.e. a completely positive, trace-preserving map) as a positive
semidefinite operator C ∈ L(HI ⊗ HO), called its ‘Choi operator’, that satisfies

1The Choi-Jamiołkowski isomorphism is a one-to-one correspondence between linear maps Λ̃ : L(HI)→
L(HO) and linear operators L ∈ L(HI ⊗ HO) defined by L := (1̃ ⊗ Λ̃)(Φ+), where Φ+ =

∑
ij |ii〉〈jj| ∈

L(HI ⊗HI), with {|i〉} being an orthonormal basis.
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C ≥ 0 and TrOC = 1I , where TrO denotes the partial trace over HO and 1I the
identity operator on HI . Using the link product notation2 [42], we can rewrite the
probability of successful discrimination as psucc =

∑N
i=1 piCi ∗ ρ ∗MT

i .

3.3 Tester formalism for two copies

In principle, Alice could apply a more general strategy by constructing the most
general map that takes a quantum channel to a set of probability distributions. This
map is defined by the most general set of operators T = {Ti}Ni=1, Ti ∈ L(HI ⊗HO)

that respect the relation p(i|C) = Tr(C Ti) for all Choi states of channels C, where
{p(i|C)} is a probability distribution. This set of operators has been characterized
as a general tester, a set T = {Ti} that satisfies Ti ≥ 0 ∀i and∑i Ti = σ⊗ 1O, where
σ ∈ L(HI) is a quantum state [42, 146] (see also App. C.1). Remarkably, it has
been shown that every general tester has a quantum realization in terms of states
and measurements. Namely, for any strategy given by a general tester, a state and
measurement that are able to implement it can always be constructed, in such a
way that each tester element can be recovered as Ti = ρ ∗MT

i . This mathematical
equivalence allows for a simpler characterization of Alice’s strategies, who can
now optimize over general testers T to achieve a maximal probability of successful
discrimination that is equivalently3 given by p∗succ = max{T}

∑N
i=1 piTr (TiCi).

Now let us analyse the more interesting case in which Alice receives two copies
of the channel Ci. With two copies, Alice has the freedom of choosing how to
concatenate these channels in order to gain more information about them.

The first and simplest option is to apply the two copies of the unknown channel in
parallel, by sending a joint state ρ ∈ L(HI1 ⊗HI2 ⊗Haux) through both copies of Ci
and then measuring the output with a POVMM = {Mi},Mi ∈ L(HO1⊗HO2⊗Haux),
where HI1 (HI2) represents the input space of the first (second) copy of Ci, and
equivalently for the output spaces. Just like in the one-copy case, this strategy can be
expressed by a two-copy parallel tester, a set of operators TPAR = {TPAR

i }, that satisfy
a number of linear constraints defined bellow, and that always accept a quantum
realization in terms of states and measurements, according to TPAR

i = ρ ∗MT
i [42]

(see Fig. 3.1(a)). In the following we use the notation XA := TrXA ⊗ 1X

dX
and

dX = dim(HX).

2Let F ∈ L(HA⊗HB) and G ∈ L(HB⊗HC) be two linear operators. We define the link product between
them as F ∗ G := TrB [(FAB ⊗ 1C)(1A ⊗ GBCTB )], where ·TB is the transposition in the computational
basis of HB . If Ci ∈ L(HI ⊗HO) is the Choi operator of a quantum channel C̃i : L(HI)→ L(HO), then
for every state ρ ∈ L(HI) we have that C̃i(ρ) = Ci ∗ ρ = TrI

[
Ci (ρT ⊗ 1O)

]
∈ L(HO).

3Notice that we can drop the transpose over Ti in the expression of the maximal probability of success
since the set of testers is equal to the set of testers with a transposition, not affecting the optimization.
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Definition 3.1 (Two-copy Parallel Tester). A parallel tester is a set of linear
operators TPAR = {TPAR

i }Ni=1, T
PAR
i ∈ L(HI1O1I2O2) such that TPAR

i ≥ 0, ∀i and
WPAR :=

∑
i T

PAR
i satisfies Tr(WPAR) = dO1dO2 and

WPAR =O1O2 W
PAR. (3.1)

WPAR is called a parallel process.

More generally, Alice could use her two copies of Ci in a sequential manner, first
sending a state ρ ∈ L(HI1 ⊗Haux1) through the first copy of Ci, next applying to the
output a general channel Ẽ : L(HO1 ⊗Haux1)→ L(HI2 ⊗Haux2), then sending part
of the output of channel Ẽ through the second copy of Ci and finally measuring the
output with a POVM M = {Mi},Mi ∈ L(HO2 ⊗Haux2). Analogously to the parallel
case, the tester associated to this strategy – a sequential tester T SEQ = {T SEQ

i } which
can be expressed as T SEQ

i = ρ ∗ E ∗MT
i , where E ∈ L(HO1 ⊗Haux1 ⊗HI2 ⊗Haux2)

is the Choi operator of map Ẽ, meaning it can always be realized by quantum
circuit [42] (see Fig. 3.1(b)) – has been characterized as the following:

Definition 3.2 (Two-copy Sequential Tester). A sequential tester is a set of linear
operators T SEQ = {T SEQ

i }Ni=1, T
SEQ
i ∈ L(HI1O1I2O2) such that T SEQ

i ≥ 0, ∀i and
W SEQ :=

∑
i T

SEQ
i satisfies Tr(W SEQ) = dO1dO2 and

W SEQ =O2 W
SEQ (3.2)

I2O2W
SEQ =O1I2O2 W

SEQ. (3.3)

W SEQ is called a sequential process.

Parallel and sequential strategies have long been regarded as the most general
strategies for channel discrimination. We now propose a more general strategy
for channel discrimination than the sequential one, that arises from the following
reasoning: In the same fashion of the characterization of the general one-copy tester,
we may characterize a general two-copy tester as the most general set of operators
TGEN = {TGEN

i } that map a pair of quantum channels, represented by their Choi
operators CA ∈ L(HI1 ⊗ HO1) and CB ∈ L(HI2 ⊗ HO2), to a valid probability
distribution according to p(i|CA, CB) = Tr[(CA ⊗ CB)TGEN

i ]. It is shown in the
App. C.1 that this definition is equivalent to:

Definition 3.3 (Two-copy General Tester). A general tester is a set of linear
operators TGEN = {TGEN

i }Ni=1, T
GEN
i ∈ L(HI1O1I2O2) such that TGEN

i ≥ 0, ∀i and
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WGEN :=
∑

i T
GEN
i satisfies Tr(WGEN) = dO1dO2 and

I1O1W
GEN =I1O1O2 W

GEN (3.4)

I2O2W
GEN =O1I2O2 W

GEN (3.5)

WGEN =O1 W
GEN +O2 W

GEN −O1O2 W
GEN. (3.6)

WGEN is called a general process.

Both parallel and sequential processes are particular cases of general processes
(see Fig. 3.2(b)). Nevertheless, the formalism of process matrices has shown that
there are general processes that do not respect a definite causal order [44, 46] – which
is defined as the ability of a process to be described as a parallel, ordered, or as a
classical mixture of ordered processes, called ‘causally separable’ process matrices,
motivating the definition of our final class of testers:

Definition 3.4 (Two-copy Separable Tester). A separable tester is a set of linear
operators T SEP = {T SEP

i }Ni=1, T SEP
i ∈ L(HI1O1I2O2) such that T SEP

i ≥ 0, ∀i and
W SEP :=

∑
i T

SEP
i satisfies Tr(W SEP) = dO1dO2 and

W SEP = qW 1≺2 + (1− q)W 2≺1, (3.7)

where 0 ≤ q ≤ 1 and W 1≺2(2≺1) is a sequential process with slot 1(2) coming before
slot 2(1). W SEP is called a separable process.

Notice that our characterizations are equivalent to imposing that W SEQ, WGEN,
and W SEP are ordered, general, and causally separable process matrices, respect-
ively [44, 46].

The set of separable processes is then the convex hull of the set of sequential
processes whose slots follow the order 1 ≺ 2 and 2 ≺ 1. Parallel processes are
the ones at the intersection of these two sets, satisfying both conditions of the
ordering of the slots. Finally, separable processes are also a particular case of general
processes [44, 46] (see Fig. 3.2(b)).

The definition of separable processes was conceived from the idea that one could
plug two different channels CA and CB in the two slots of process W SEP, which
would then represent a mixture of a process that applies channel CA before channel
CB with one that applies channel CB before CA. One could then expect that this
classical mixture of causal orders should not be relevant for the problem in which the
two channels being plugged into the separable tester are identical: two copies of Ci.
Nonetheless, we show that separable testers indeed provide advantage over sequential
testers in the task of channel discrimination, which hints at a more complicated
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Figure 3.1: Schematic representation of the realization of every two-copy (a) parallel tester
TPAR with a state ρ and a POVM M , (b) sequential tester T SEQ with a state ρ, a channel
Ẽ, and a POVM M , and (c) general tester TGEN with a process matrix W and a POVM
M .

structure of separable testers than of separable processes themselves. Notice that,
if Alice had access to two sequential testers T 1≺2 and T 2≺1, and in each round of
her experiment she would throw a coin to decide in which tester to plug her two
copies of Ci, the tester that she would be implementing would in fact be such that
Ti = q T 1≺2

i + (1− q)T 2≺1
i . This subclass of separable testers, in which the convex

combination condition is satisfied by each tester element individually, can never
achieve a better performance than a sequential tester in a channel discrimination
task. The fact that we indeed encounter advantages by using separable testers shows
that they cannot be simply realized by ordered circuits and classical randomness,
and implies that the set of separable testers is strictly larger than the convex hull of
the set of sequential testers that are ordered in different directions (see Fig. 3.2(a)).

3.4 Discrimination of general channels

With our constructed unified framework for channel discrimination at hand, we
can now define the maximal probability of successful discrimination under each of
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the four described strategies by allowing Alice to optimize over different classes of
testers. The maximal probability of successful discrimination of a channel ensemble
E = {pi, Ci} using two copies under strategy S ∈ {PAR, SEQ, SEP,GEN} then reads

P S := max
{TS}

N∑

i=1

piTr
(
T Si C

⊗2
i

)
. (3.8)

It is clear that these four strategies – parallel, sequential, separable, and general –
form a hierarchy since the set of testers that they define is a superset of the previous
one, in this exact order, implying the relation PPAR ≤ P SEQ ≤ P SEP ≤ PGEN for any
fixed ensemble. We show that, in fact, all these three inequalities can be strictly
satisfied by explicitly calculating all P S for a specific ensemble.

To compute the values of P S , we phrase the optimization problems that define it
in terms of semidefinite programming (SDP). Essentially,

given {pi, Ci}
maximize

∑

i

piTr
(
T Si C

⊗2
i

)

subject to {T Si } is a tester with strategy S.

(3.9)

This problem can be equivalently solved by its dual problem

given {pi, Ci}
minimize λ

subject to piC
⊗2
i ≤ λW

S ∀ i,
(3.10)

where W S lies in the dual affine4 of the set of processes WS , as demonstrated in
App. C.2.

SDPs can be solved by efficient numerical packages which, despite being in practice
accurate, suffer from imprecisions that come from the use of floating-point variables.
In order to overcome this issue, we provide in the App. C.3 an algorithm for computer-
assisted proofs (see [150, 151] for other examples). Using our computer-assisted proof
method, which does not make use of floating-point variables, we obtain exact upper
and lower bounds for P S , arriving at a result that has the same mathematical rigour
as an analytical proof.

4For the case of separable testers, instead of imposing that WS lies in the dual affine set of separable
processes, we should impose that piC⊗2

i ≤ H with H ≤W 1≺2 and H ≤W 2≺1 where W i≺j lies in the dual
affine set of sequential processes Wi≺j . See App. C.2 for details. Notice that our formulation of the dual
problem is analogous to the one presented in Ref. [147, 148] and may be seen as a generalization of the
Yuen-Kennedy-Lax bound for state discrimination [149].
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T SEQ
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(2 � 1)

T SEP

Set of all processes WSSet of all testers T S

WPAR

WSEQWSEP

WGEN

WSEQ

Figure 3.2: Graphical representation of the nesting relations between (a) the sets of all testers
T S := {TS ;TS = {TSi }} and (b) the sets of all processes WS := {WS ;WS =

∑
i T
S
i },

where S ∈ {PAR, SEQ, SEP,GEN} represents parallel, sequential, separable, or general
strategies.

Theorem 3.1. In the simplest instance of a channel discrimination task using k = 2

copies, i.e., discrimination between N = 2 qubit-qubit channels, there exist ensembles
for which the maximal probability of successful discrimination of parallel, sequential,
separable, and general strategies obey the strict hierarchy

PPAR < P SEQ < P SEP < PGEN. (3.11)

Sketch of the proof. The proof is constructive and considers the channel ensemble
composed by p1 = p2 = 1/2, an amplitude damping channel5 C̃AD with damping
parameter γ = 67/100, and a bit-flip channel6 C̃BF with flipping parameter η = 87/100.
We start by applying standard numerical packages to solve the primal SDP (3.9)
and obtain an ansatz for the optimal tester of each discrimination strategy. From
the numerically imperfect ansatz, we construct a valid tester, following the steps
of Algorithm 2 in App. C.3. We then calculate the probability of successful dis-
crimination with this valid tester, which provides a rigorous lower bound for the
maximal probability of success. To calculate a rigorous upper bound, we repeat
this procedure, now taking as ansatz the numerical solution of the dual SDP (3.10)
for a dual affine process, and following the steps of Algorithm 1 in the App. C.3.
Applying this method, we calculated the following bounds: 8346

10000
< PPAR < 8347

10000
,

8446
10000

< P SEQ < 8447
10000

, 8486
10000

< P SEP < 8487
10000

, and 8514
10000

< PGEN < 8515
10000

. The clear gap

5The action of an amplitude damping channel on a qubit state is given by C̃AD(ρ) = K0ρK
†
0 +K1ρK

†
1 ,

where K0 = |0〉〈0|+
√

1− γ|1〉〈1| and K1 =
√
γ|0〉〈1|.

6The action of a bit-flip channel on a qubit state is given by C̃BF(ρ) = η ρ+ (1− η)XρX, where X is
the Pauli X operator.
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between the upper bound of one strategy and the lower bound of the next concludes
the proof. �

Similar gaps can also be found for different ensembles of amplitude damping
and bit-flip channels, and also for ensembles of two amplitude damping channels,
a problem which has already been previously studied [152–155] and for which we
provide more details in App. C.4. Moreover, this phenomenon is not particular
to these channels. In App. C.4, we present a simple method of sampling pairs of
quantum channels that present a gap between all four strategies, for the case of
qubit-qubit channels, in approximately 94% of the rounds.

3.5 Quantum realization of testers

Having demonstrated the theoretical advantage of these strategies, we would now
like to discuss their potential implementation. As already mentioned, for the case
of parallel and sequential strategies, it is known that from every tester that can be
obtained, for example, as the optimal solution of an SDP, one can always construct
in an algorithmic manner a state, a channel, and a POVM that constitute a quantum
realization for each tester element [42]. Therefore, they can be used to physically
implement these testers by means of a quantum circuit, as depicted on Fig. 3.1(a)
and (b).

We now address the class of separable testers. Given a separable tester {T SEP
i }, one

can always construct a process matrixW F :=
∑N

i=1 T
SEP
i ⊗|i〉〈i|F ∈ L(HI1O1I2O2⊗HF )

and a POVM M = {Mi}i, Mi := |i〉〈i| ∈ HF such that each tester element can
be recovered as T SEP

i = W ∗MT
i . Notice that the process matrix W F satisfies the

condition that TrFW F =
∑N

i=1 T
SEP
i = W SEP. Remarkably, process matrices that

satisfy this condition have recently been shown in Ref. [47] to be realizable with
circuits that employ a coherent quantum control of causal orders, implying that all
separable strategies of channel discrimination, including the ones that we have shown
to be advantageous over causal strategies, can be physically implemented. This class
of process matrices was also shown not to be device-independently certifiable [46] nor
semi-device-independently certifiable when only the future space is characterized [156].
One notable example of this class is the quantum switch [43]. Even though we
have shown that separable strategies may outperform causal strategies of channel
discrimination, we have not been able to construct an example of an advantageous
strategy that employs the quantum switch specifically.

Finally, for the case of general testers, a ‘realization’ analogous to the case of
separable testers but that involves a general process matrix and a POVM is always
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possible, as depicted on Fig. 3.1(c). A quantum realization of general testers would
then depend on the ability to physically implement any process matrix. Unfortunately,
at this point, the physical implementation of general process matrices remains an
open question. It is our hope that our demonstration of the theoretical advantage of
general strategies for channel discrimination will further motive the investigation of
potential implementation of general processes.

3.6 Conclusions

We have demonstrated a new example of the advantage of a sequential strategy
over any parallel strategy for a task of minimum-error discrimination, one between two
qubit-qubit channels. We also established two new classes of strategies that involve
indefinite causal order and showed that they can outperform causal ones. Moreover,
we proved a strict hierarchy between these four classes of discrimination strategies.
Our main example concerns the discrimination of an amplitude-damping channel
and a bit-flip channel, however, we showed that this phenomenon is not unique, by
presenting a simple method of constructing pairs of channels that, with very high
probability, exhibit a strict hierarchy between all four strategies of discrimination.
The main technique used in this paper was a method of computer assisted proofs,
that finds immediate application in a plethora of quantum information problems
that involve semidefinite programming. We hope that this method can contribute to
paving the way to more rigorous numerical proofs in quantum information science.

All our code is available in an online repository [157] and can be freely used and
edited.
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CHAPTER 4
Unitary operation discrimination

beyond group structures:
Advantages of adaptive and

indefinite-causal-order strategies

Jessica Bavaresco, Mio Murao, Marco Túlio Quintino

Abstract. For minimum-error channel discrimination tasks that involve more than
two unitary channels, we show that sequential (i.e. adaptive) strategies may outperform
parallel ones. Additionally, we show that general strategies that involve indefinite
causal order may outperform sequential ones. For the case in which the set of unitaries
being discriminated form a group, we show that parallel strategies are indeed optimal,
even when considering general strategies. Finally, we show that strategies based on
the quantum switch cannot outperform sequential strategies for the discrimination of
unitary channels.

Manuscript in preparation.
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Author Contribution

The role of the doctoral candidate in this work was to contribute to the theoretical
results, to write the code applied on the initial investigation of the main questions,
to conduct the typicality analysis, and to write the main text of the manuscript.

4.1 Introduction

The ability to discriminate between different quantum objects plays a fundamental
role in quantum information processing [83], quantum hypothesis testing [158], and
quantum parameter estimation [159]. A particular instance of main relevance is
the discrimination between unitary quantum operations, problem which physically
corresponds to discriminating between different closed quantum dynamics. From a
quantum computational perspective, algorithms based on quantum oracles such as
Deustch-Josza [160], Grover’s [161], and Simon’s [162] algorithm may be recast as a
discrimination task between quantum oracles, which are unitary operations [163].

The discrimination of unitary channels is a topic that has been extensively studied:
Contrarily to the problem of quantum state discrimination, in which two states cannot
be perfectly distinguished with a finite number of copies unless their are orthogonal,
in Refs. [142, 164] it was shown that any pair of unitary channels can indeed be
always perfectly distinguished with a finite number of copies. These references have
also shown that the maximal probability of successful discrimination of a pair of
unitary channels in a parallel scheme can always be achieved without the need for an
auxiliary system, which implies without an entangled input state in the single-copy
case, and with a k-partite entangled state in the k-copy case. Such k-copy parallel
strategies were also shown to achieve perfect discrimination for a pair of unitary
channels [142, 164]. Subsequently, a sequential scheme that can also achieve perfect
discrimination of a pair of unitary channels using a finite number of copies, without
the need for an auxiliary system – and hence without entanglement – was provided
in Ref. [165]. Furthermore, Ref. [143] demonstrated the fact that a sequential scheme
can never outperform a parallel scheme in a task of discrimination between two
unitary channels using a finite number of copies. Concerning the discrimination of
sets of more than two unitary channels, several necessary and sufficient conditions
for perfect discrimination were developed in Ref. [166]. When considering unitaries
which are a representation of a group and uniformly sampled, Ref. [143] showed that
sequential strategies can never outperform parallel strategies, for any finite number
of copies.

Motivated by the recent advances in channel discrimination theory [45] that have
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established the advantage of discrimination strategies that involve indefinite causal
order for general channels, we now turn our attention to the particular case of unitary
channels.

Extending the framework developed in Ref. [45] to discrimination tasks that allow
for the use of multiple copies of an unknown channel, we achieve the following main
results. The first is the proof of the optimality of parallel strategies, even when
compared against general strategies, in tasks of discrimination of an ensemble with a
uniform probability distribution over a set of unitary channels that form a group.
However, the optimally of parallel strategies ends there. For ensembles of unitary
channels that either do not form a group or that are distributed according to a non-
uniform probability distribution, we show that sequential (a.k.a. adaptive) strategies
can be advantageous over parallel strategies. Moreover, we show that general
strategies that apply indefinite causal order can outperform sequential strategies.

Finally, we show that for a particular case of general strategies, one that applies
processes related to the quantum switch [43], cannot outperform sequential strategies
in the discrimination of unitary channels.

4.2 Minimum-error channel discrimination

In a task of minimum-error channel discrimination, one is given access to an
unknown quantum channel C̃i : L(HI)→ L(HO), that was drawn with probability pi
from a known ensemble of channels E = {pj, C̃j}Nj=1. The task is to determine which
channel from the ensemble was received, using a limited amount of uses/queries
of it. In order to accomplish this task in the case where only a single use of the
unknown channel is allowed, one may send part of a potentially entangled state
ρ ∈ L(HI ⊗ Haux) through the channel C̃i and subsequently jointly measure the
output state with positive-operator valued measure (POVM) M = {Ma}Na=1,Ma ∈
L(HO ⊗Haux). When both state and measurement are optimized according to the
knowledge of the ensemble, the outcome of the measurement will correspond to
the most likely value of the label i of the unknown channel. Then, the maximal
probability of successfully determining which channel is at hand is given by P :=

maxρ,{Mi}
∑N

i=1 piTr
[
(C̃i ⊗ 1̃)(ρ)Mi

]
, where 1̃ is the identity map.

When more than one use, or copy, as we will refer to from now on, is allowed,
different strategies come into play, each exploring a different order in which the copies
of the unknown channel are applied. In Figs. 4.1(a) and (b), we illustrate two such
possibilities, a parallel and a sequential strategy, respectively. However, a more general
strategy can be defined by considering the most general higher-order transformation
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that can map k quantum channels to a valid probability distribution. It has been
shown that some general strategies may employ processes with an indefinite causal
order, and that these strategies may outperform parallel and sequential ones in tasks
of channel discrimination [45].

4.3 Tester formalism for k copies

To facilitate the approach to this problem, a concise formalism of testers [42],
also referred to as process POVMs [146, 167], was developed in Ref. [45], providing
practical tools for both the comparison between different strategies and for the
efficient computation of the maximal probability of successful discrimination of a
channel ensemble under a given strategy.

A tester is a set of positive semidefinite operators T = {Ti}Ni=1, Ti ∈ L(HI ⊗HO),
which obey certain normalization constraints, and that, when taken the trace with
the Choi state of a quantum channel1 , lead to a valid probability distribution.
In this sense, testers are to channels what POVMs are to states. The simplest
example is the general single-copy tester T = {Ti}Ni=1, which satisfies Ti ≥ 0 ∀ i,∑

i Ti = σI ⊗ 1O, where Tr(σI) = 1. These constraints guarantee that every tester
T can be realized by a quantum state ρ and a POVM M = {Mi}i according
to Ti = Traux[(ρI,aux ⊗ 1O)(1I ⊗ Maux,O

i )], and, conversely, that every state and
measurement can construct a valid tester [42, 146]. Thus, the maximal probability of
success can be expressed equivalently in terms of testers and Choi states of channels,
according to P = max{Ti}

∑N
i=1 piTr (TiCi). The advantage of this representation is

the simplification of the optimization problem that defines the maximal probability of
success: now, optimization over different discrimination strategies may be achieved by
maximizing P over the set of valid testers, as opposed to optimizing over both states
and measurements, while guaranteeing that the optimal tester can be implemented
by quantum states and measurements.

For the case of k copies, different normalization constraints define testers that
represent different classes of strategies. Parallel strategies are represented by parallel
testers TPAR = {TPAR

i }Ni=1, T
PAR
i ∈ L(HI ⊗HO), where HI :=

⊗k
i=1HIi and HO :=

1In order to apply the tester formalism, we will make use of the Choi-Jamiołkowski (CJ) representation
of quantum maps.The CJ isomorphism is a one-to-one correspondence between completely-positive maps
and positive semidefinite operators, that allows one to represent any linear map L̃ : L(HI) 7→ L(HO) by a
linear operator L ∈ L(HI⊗HO) defined by L := (1̃⊗ L̃)(Φ+), where 1̃ : L(HI) 7→ L(HI) is the identity map
and Φ+ =

∑
ij |ii〉〈jj| ∈ L(HI ⊗HI), where {|i〉} is an orthonormal basis, is an unnormalized maximally

entangled state. In this representation, a quantum channel, i.e., a CPTP map C̃ : L(HI) 7→ L(HO), is
represented by a linear operator C ∈ L(HI ⊗HO), often called the ‘Choi state’ of channel C̃, that satisfies
C ≥ 0 and TrOC = 1I , where TrO denotes the partial trace over HO and 1I the identity operator on HI .
In particular, the Choi state of a unitary channel is proportional to a maximally entangled state.
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⊗k
i=1HOi . Parallel testers, similarly to the single-copy case, can always be expressed

in terms of states and measurements. Defining WPAR :=
∑

i T
PAR
i , parallel testers

are the ones that satisfy

TPAR
i ≥ 0 ∀ i (4.1)

TrWPAR = dO (4.2)

WPAR =O W
PAR, (4.3)

where dO = dim(HO) = dO1 . . . dOk is the dimension of the collective output space
and X(·) = TrX(·)⊗ 1X/dX denotes a trace-and-replace operation.

Sequential strategies are represented by sequential testers [42], T SEQ = {T SEQ
i }Ni=1,

T SEQ
i ∈ L(HI ⊗HO). Sequential testers are testers which can always be constructed

from an input state, a sequence of CPTP maps, and a final POVM. Defining
W SEQ :=

∑
i T

SEQ
i , sequential testers are the ones that satisfy

T SEQ
i ≥ 0 ∀ i (4.4)

TrW SEQ = dO (4.5)

W SEQ =Ok W
SEQ (4.6)

IkOkW
SEQ =O(k−1)IkOk W

SEQ (4.7)

. . .

I2O2...IkOkW
SEQ =O1I2O2...IkOk W

SEQ. (4.8)

This is equivalent to defining W SEQ to be a k-slot comb [42], or a k-partite ordered
process matrix [46] (see also Refs. [168, 169]).

Finally, general strategies are represented by general testers TGEN = {TGEN
i }Ni=1,

TGEN
i ∈ L(HI ⊗HO). General testers are defined as the most general set of positive

semidefinite operators {TGEN
i } that takes k different channels to an element of a

probability distribution, according to p(i|C1 ⊗ . . .⊗ Ck) = Tr[TGEN
i (C1 ⊗ . . .⊗ Ck)].

Defining WGEN :=
∑

i T
GEN
i , general testers must satisfy

TGEN
i ≥ 0 ∀ i (4.9)

Tr[WGEN(C1 ⊗ . . .⊗ Ck)] = 1, (4.10)

for all Choi states of quantum channels Ci ∈ L(HIi ⊗ HOi). This is equivalent
to defining WGEN to be a general k-partite process matrix [44, 46]. We refer to
Ref. [45] for a detailed derivation of the two-copy general tester and to Ref. [46] for
a derivation of multipartite process matrices. Ordered processes, such as WPAR and
W SEQ, form a subset of general processes. However, some general processes exhibit
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Figure 4.1: Schematic representation of the realization of every k-copy (a) parallel tester
TPAR with a state ρ and a POVM M , (b) sequential tester T SEQ with a state ρ, channels
Ẽi, i ∈ {1, k − 1}, and a POVM M , and (c) general tester TGEN with a process matrix W
and a POVM M .

an indefinite causal order, that is, they are valid processes that are neither ordered,
nor convex combinations of ordered processes.

Contrarily to the parallel and sequential cases, a realization of general testers
in terms of quantum operations (states, channels, and measurements) is an open
problem. More specifically, a general tester can always be constructed from a general
process matrix and a POVM [45], as illustrated in Fig. 4.1(c), however, only a subset
of process matrices are currently known to be realizable with quantum operations [47]
(see also [48]). This subset, known as ‘quantum control of causal order’, has been
shown to bring advantage to the discrimination of general channels [45].

Regardless of the chosen strategy, the maximal probability of successful dis-
crimination of an ensemble of N channels E = {pi, Ci}Ni=1 using k copies is given
by

P S = max
{TSi }

N∑

i=1

piTr
(
T Si C

⊗k
i

)
, (4.11)

where S ∈ {PAR, SEQ,GEN}. P S can be computed via semidefinite programming
(SDP).
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4.4 Discrimination of unitary channels

We start considering a discrimination task that involves unitary operations that
form a group. We show that, for an ensemble composed of a set of unitaries that
form a group and a uniform distribution, parallel strategies do not only perform as
well as sequential ones [143] but are indeed the optimal strategies for discrimination
– even considering general strategies that may involve indefinite causal order. In
the following, unitary channels will be simply denoted by unitary operators U
that satisfy UU † = 1, and the Choi state of a unitary channel will be denoted as
|U〉〉〈〈U | ∈ L(HI ⊗HO), with |U〉〉 :=

∑
i(1⊗ U)|ii〉.

Theorem 4.1. For ensembles composed of a uniform probability distribution and
a set of unitary channels that form a group up to a global phase, in discrimination
tasks that allow for k copies, parallel strategies are optimal, even when considering
general strategies.

More specifically, let E = {pi, Ui}i be an ensemble with N unitary channels where
pi = 1

N
∀ i and the set {Ui}i forms a group up to a global phase. Then, for any

number of copies k, and for every general tester {TGEN
i }, there exists a parallel tester

{TPAR
i }i, such that

N∑

i=1

Tr
(
TPAR
i |Ui〉〉〈〈Ui|⊗k

)
=

N∑

i=1

Tr
(
TGEN
i |Ui〉〉〈〈Ui|⊗k

)
. (4.12)

The proof of this theorem can be found in Appendix D.1.
Theorem 4.1 has two crucial hypotheses: (1) the set of unitary operators is a

representation of some group and (2) the distribution {pi} is uniform. If at least one
of these hypotheses is not satisfied, then Theorem 4.1 in fact does not hold, as we
show in the following.

Theorem 4.2. There exist ensembles of unitary channels for which sequential
strategies of discrimination outperform parallel strategies.

Let us start with the case where the set of unitaries is not a unitary representation
of a group but the probability distribution of the ensemble is uniform. In the following,
σx, σy, σz are the Pauli operators and H := |+〉〈0|+|−〉〈1|, where |±〉 := 1√

2
(|0〉±|1〉),

is the Hadamard gate.

Example 4.1. The ensemble composed by a uniform probability distribution and
N = 4 qubit-qubit unitary channels given by U1 = 1, U2 = σx, U3 = σy, and
U4 =

√
σz, in a discrimination task that allows for k = 2 copies, can be discriminated

under a sequential strategy success probability P SEQ = 1 while any parallel strategy
copies yields PPAR < 1.
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The proof of this example, in which we explicitly show a sequential strategy that
allows for perfect discrimination, is in Appendix D.2.

The next example concerns a set of unitaries that form a group up to a global
phase but the probability distribution of the ensemble is not uniform.

Example 4.2. Let {Ui}i := {1, σx, σy, σz, H, σxH, σyH, σzH} be a tuple of eight
unitary channels that forms a group up to a global phase, and let {pi}i be a tuple
of probabilities in which each element pi is proportional the i-th digit of the number
π ≈ 3.1415926, that is, {pi}i := { 3

31
, 1

31
, 4

31
, 1

31
, 5

31
, 9

31
, 2

31
, 6

31
}. For the ensemble

{pi, Ui}i, in a discrimination task that allows for k = 2 copies, sequential strategies
outperform parallel strategies, i.e., PPAR < P SEQ.

The proof of this example is also in Appendix D.2, and applies the method of
computer-assisted proofs developed in Ref. [45]. In Example 4.2, we have set the
distribution {pi}i to be proportional to the digits of the constant π to emphasise
that the phenomenon of sequential strategies outperforming parallel ones when the
set of unitary channels form a group does not require a particularly well chosen
non-uniform distribution. In practice, we have observed that even with randomly
generated distributions, optimal strategies often respect PPAR < P SEQ.

In the particular aforementioned examples, general strategies do not outperform
sequential strategies. However, for the case of discrimination of unitary channels
using k = 3 copies, we show that general strategies are indeed advantageous.

Theorem 4.3. There exist ensembles of unitary channels for which general strategies
of discrimination outperform sequential strategies.

Let us start again with the case where the set of unitaries is not a group but
the probability distribution of the ensemble is uniform. For the following, we define
Hy := |−y〉〈0|+ |+y〉〈1|, where |±y〉 := 1√

2
(|0〉 ± i|1〉), and HP := |+P 〉〈0|+ |−P 〉〈1|,

where |+P 〉 := 1
5
(3|0〉+ 4|1〉) and |−P 〉 := 1

5
(4|0〉 − 3|1〉).

Example 4.3. For the ensemble composed by a uniform probability distribution
and N = 4 qubit-qubit unitary channels given by U1 =

√
σx, U2 =

√
σz, U3 =√

HP , and U4 =
√
Hy, in a discrimination task that allows for k = 3 copies,

general strategies outperform sequential strategies, and sequential strategies outperform
parallel strategies. Therefore, the maximal probabilities of success form a strict
hierarchy PPAR < P SEQ < PGEN.

The proof of this example can be found in Appendix D.3.
General strategies can also be advantageous for the discrimination of an ensemble

composed by a non-uniform probability distribution and a set of unitaries that forms
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a group. Let the set of unitaries in Example 4.3 be the set of generators of a group
of unitary operators. Now consider the ensemble composed by such group and a
probability distribution given by pi = 1

4
for the four values of i corresponding to

the four unitaries which are the generators of the group, and pi = 0 otherwise. It is
straightforward to see that the maximal probabilities of successfully discriminating
this ensemble would be the same as the ones in Example 4.3, hence satisfying
PPAR < P SEQ < PGEN. Although somewhat artificial, this example shows that
advantages of general strategies are indeed possible for this kind of unitary channel
ensemble.

Although general indefinite-causal-order strategies can be advantageous for the
discrimination of unitary channels, this is not the case for one particular sub-class of
general strategies: those which can be constructed from the quantum switch [43].

Let Vmn, with m ∈ {0, 1}, n ∈ {0, 1, 2} be unitary operators that act on a target
and an auxiliary system, and U1, U2 be unitary operators that act only on the target
system. Finally, let {|m〉〈m|c}i be projectors that act on a control system. Then, we
define the switch-like superchannel, which transforms a pair of unitary channels into
one unitary channel, according to

WSL(U1, U2) :=|0〉〈0|c ⊗ V02 (U2 ⊗ 1)V01 (U1 ⊗ 1)V00

+|1〉〈1|c ⊗ V12 (U1 ⊗ 1)V11 (U2 ⊗ 1)V10,
(4.13)

where 1 is the identity operator acting on the auxiliary system. In the case where
Vmn = 1 ∀m,n, one recovers the standard quantum switch [43].

The switch-like superchannel has been previously considered in Refs. [56, 170],
in the context of reversability-preserving transformations. Generalizations of the
switch-like superchannel that transform k instead of 2 unitaries are presented in
detail in Appendix D.4, applying unitaries {Vmn}m,n, with m ∈ {0, . . . , k!− 1} and
n ∈ {0, . . . , k}, and considering all permutations of the target unitaries {Ul}kl=1.

Now, let W SL ∈ L(HP ⊗ HI ⊗ HO ⊗ HF ) be the k-slot switch-like process
associated with the k-slot generalization of the switch-like superchannel in Eq. (4.13).
A general discrimination strategy, given by the k-copy switch-like tester T SL = {T SL

i },
T SL
i ∈ L(HI ⊗HO) can be constructed using the a k-slot switch-like process W SL, a

quantum state ρ ∈ L(HP ) that acts on the ‘past’ space of the k slots of W SL, and a
POVM {Mi}, Mi ∈ L(HF ), that acts on the ‘future’ space, according to

T SL
i := TrPF [(ρ⊗ 1)W SL(1⊗Mi)] (4.14)

where the identity operators 1 act on the correspondent complementary spaces.
We show that such switch-like strategies exhibit no advantage over sequential

strategies for the discrimination of N unitary channels using k copies.
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Theorem 4.4. The action of the switch-like process on k copies of a unitary operation
U can be equivalently described by a sequential process that acts on k copies of the
same unitary operation.

Consequently, in a discrimination task involving the ensemble E = {pi, Ui}i
composed by N unitary channels and some probability distribution, and that allows
for k copies, for every switch-like tester {T SL

i }, there exists a sequential tester {T SEQ
i }i

that attains the same probability of success, according to

N∑

i=1

piTr
(
T SL
i |Ui〉〉〈〈Ui|⊗k

)
=

N∑

i=1

piTr
(
T SEQ
i |Ui〉〉〈〈Ui|⊗k

)
. (4.15)

The proof can be found in Appendix D.4, where we provide a simple construction
of a sequential strategy that performs as well as any switch-like strategy using the
same number of copies for unitary channel discrimination.

4.5 Numerical investigation

The advantage of sequential and general strategies in the discrimination of unitary
channels is not restricted to main examples given in Theorems 4.2 and 4.3. In fact,
by sampling sets of unitary channels uniformly distributed according to the Haar
measure, and using these sets to construct ensembles with probability pi = 1/N ∀ i,
one can find several other examples of the advantage of sequential and general
strategies.

For the case of qubit-qubit unitaries and k = 2 copies, we have observed gaps
between parallel and sequential strategies for ensembles of N ∈ {4, . . . , 25} unitary
channels. By calculating the averages of the maximal probabilities of success 〈PPAR〉
and 〈P SEQ〉, we observed that for N ∈ {4, . . . , 6} the ratio 〈PPAR〉/〈P SEQ〉 decreases
with N , the minimum ratio occurring at N = 6, and then increasing for N ∈
{7, . . . , 25}. At N = 25, gaps are hardly detected. This observation is in line with
the idea that, in the limit where the ensemble is composed of all qubit-qubit unitary
channels, therefore forming the group U(2), it is expected that parallel strategies
would be optimal.

We also remark that, for the case of qutrit-qutrit unitaries, we discovered a
gap between the performance of parallel and sequential strategies already for a
discrimination task of only N = 3 unitaries using k = 2 copies, while in the qubit
case, the first example of this phenomenon was found only for N = 4. For the case
of k = 2 copies and uniformly sampled unitary channels, we have not found any
advantage of general strategies over sequential ones.
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Uniformly sampling qubit-qubit unitary channels

N k = 2 k = 3

2 PPAR = P SEQ = PGEN PPAR = P SEQ = PGEN

3 PPAR = P SEQ = PGEN PPAR < P SEQ = PGEN

4 PPAR < P SEQ = PGEN PPAR < P SEQ < PGEN

...
...

...

9 PPAR < P SEQ = PGEN PPAR < P SEQ < PGEN

...
...

25 PPAR ≈ P SEQ = PGEN

Table 4.1: Summary of numerical findings. N denotes the number of unitary channels in
the ensemble and k denotes the number of copies. The bold equalities on row N = 2 mark
analytical results [143]. A strict inequality between the maximal probabilities of success of
different strategies in a certain scenario indicates that examples of ensembles that exhibit
such gap were encountered. An equality indicates that, for all sampled ensembles, the
maximal probabilities of success of different strategies were equal, up to numerical precision.
More details on Appendix D.5.

However, the advantage of general strategies over causally ordered ones (parallel
and sequential) is common for the task of discriminating unitaries with k = 3 copies.
Still considering uniformly sampled qubit-qubit unitaries, in the 3-copy case, we have
found a strict hierarchy of discrimination strategies in scenarios of N ∈ {4, . . . , 9},
and an advantage of sequential over parallel strategies for the case of N = 3. Both
the ratios of the averages 〈PPAR〉/〈P SEQ〉 and 〈P SEQ〉/〈PGEN〉 increase with N in
the range in question.

A summary of these findings is presented in Table 4.1. More details can be found
in Appendix D.5, including a plot of the ratios of the averages of the probabilities of
success under different strategies.

4.6 Conclusions

We extended the unified tester formalism of Ref. [45] to the case of k copies and
applied it particularly to the studied of discrimination tasks among only unitary
channels. Our first contribution was to prove that, in a discrimination task among a
set of unitaries that form a group, parallel strategy are always optimal, even when
comparing against the performance of general strategies.

Subsequently, we showed the first example of a unitary discrimination task in
which a sequential strategy outperforms any parallel strategy. Our task involves
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the discrimination among 4 unitary channels using 2 copies, which can be perfectly
discriminated with a sequential strategy but not with a parallel one. We explicitly
provided the optimal discrimination strategy for this task.

We also showed that general strategies that involve indefinite causal order are
advantageous for the discrimination of unitary channels. Our simplest example of this
phenomenon is a task of discriminating among 4 unitary channels using 3 copies. A
potential quantum realization of the optimal general strategies that are advantageous
in this scenario is, unfortunately, still an open problem. We then demonstrated
that, general strategies that are created from switch-like transformations can never
perform better than sequential strategies for unitary channel discrimination.

No advantage of general strategies was found in scenarios involving discrimination
of unitary channels using only k = 2 copies. We conjecture that, when considering
k = 2 copies, such advantage is indeed not possible, for any number of unitaries
N . We also remark that, when considering k = 2 copies, Refs. [56, 170] prove
that superchannels which preserve reversibility (i.e. transform unitary channels
into unitary channels), are necessarily of the switch-like form. Intuitively, it seems
plausible that the optimal general strategy for discriminating unitary channels would
be one that transforms unitary channels into a unitary channels, hence the argument
of reversibility preservation combined with our Theorem 4.4 might lead to a proof
for our conjecture.

All our code is available in an online repository [171] and can be freely used and
edited.
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Concluding Discussion

As bipartite and high-dimensional entanglement become theoretically and experi-
mentally tamed, the next step in entanglement research seems to be in the direction
of quantum networks.

A quantum network is composed of multiple distant parties who share entangled
states with each other and are equipped with the tools to execute multipartite
quantum protocols of communication or cryptography, for example. As a current
technological challenge is the construction of a single source that can prepare and
distribute quantum states that carry genuine multipartite correlations across several
parties, we can focus on the already well-developed bipartite entanglement sources
and develop the methods to apply them as building blocks of a fully-connected
quantum network.

To approach this task, recent works have been presented [172, 173]. Some of the
topics addressed so far are how bipartite entanglement can be distributed pairwise
through a network that is able to apply joint operations to the subsystems of
each node in order to transform several bipartite states into a genuinely connected
multipartite network and what is the most appropriate notion of entanglement in
this scenario.

This line of research is showing itself to be very promising, with also previous
developments having been achieved on the study of Bell nonlocality in networks [174–
177]. It goes very much in the line of the work developed in the first part of this
thesis, and takes the goal of developing practically implementable theoretical tools
for the certification of complex quantum properties that can make maximal use of
currently available technologies from the topic of high-dimensional entanglement to
that of network entanglement.

On a different front, as more advantages for information-theoretic and com-
putational tasks due to indefinite causal order are uncovered, the motivation for
understanding precisely which process matrices can be physically implemented be-
comes stronger.
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An interesting parallel1 to the problem of the implementability of process matrices
can be drawn for the (no-longer-a) problem of the implementability of transformations
of quantum states.

When asking what are the most general operations that can transform quantum
states into quantum states, one can quickly arrive at the answer: positive and
trace-preserving maps. Since these mathematical objects, when applied to a density
matrix will yield a density matrix, one could expect them to plausibly correspond
to physical operations. Except, as we know, if one applies a positive map to part
of a larger density matrix, the resulting object might no longer correspond to a
quantum state (as the resulting operator may have negative eigenvalues). Even
though the answer is correct, one might then realize that the question initially asked
might not have been the most relevant one. What is the most general operation that
transforms quantum states into quantum states even when applied to only a part
of a quantum state? The answer then is a completely-positive and trace-preserving
map and it is the correct answer to this question. But how can we know whether
the question was sufficiently broad to guarantee that we have now arrived at an
answer that indeed corresponds to physical operations? One could argue, because of
Stinespring’s dilation theorem [178]. It guarantees that the every completely-positive
trace-preserving map can be implemented with the use of an auxiliary system and
a unitary map acting on a larger-dimensional space. It is generally agreed that
unitaries can be realized in the lab, so case closed.

When it comes to higher-order operations, we are not quite there yet. We do not
know2 how to go to the lab and implement general transformations that map quantum
channels to quantum channels, or quantum instruments to probability distributions.
But a fair amount of care has been put into posing the right question. The definition
of a process matrix does not satisfy only the requirement of transforming quantum
operations accordingly but also the requirement of properly transforming parts
of larger quantum operations, and when allowing the involved parties to share
additional non-signaling resources like entangled states. These requirements forbid,
for example, objects who could achieve full two-way signalling or feed information to
one’s own past, creating closed time-like curves. The question now is whether these
requirements, imposed from within the perspective of quantum information theory,
are sufficient to single out the processes that can be implemented. Only further
investigation will be able to tell us.

1Brought to my attention in a discussion with Marcelo Terra Cunha.
2And not just because we are theorists. The experimentalists also do not know.
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APPENDIX A
Supplemental Information of

Chapter 1

In this supplemental material, we provide detailed proofs and additional calcula-
tions illustrating the versatility of the results presented in the main text, as well as
more information on the experimental implementation. To provide some context, let
us compactly summarize the main results:

Fidelity bound: F̃ (M)(ρ,Φ) ≤ F (ρ,Φ)

• Obtained from measurements in M + 1 global product bases;

• Exact for dephased pure states with only two bases (M = 1);

• Free of assumptions about the state ρ;

• Exact in prime dimensions for M = d;

• Also works for certain classes of multipartite entangled states;

Schmidt number witness: F̃ (ρ,Φ)⇒ dent

• Exact for all pure states;

• Exact for dephased max. entangled states;

Entanglement bound: F̃ (ρ,Φ+)⇒ EoF(ρ)

• Improvement w.r.t. previous bounds [94].
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The basis for these results are measurements in two (M = 1) (or more (M > 1))
global product bases, one of which – the standard basis {|mn〉}m,n – provides initial
data (a set of values {λm}) that is used to construct the other (“tilted”) basis. To
summarize this method:

Adaptive strategy for certifying entanglement dimensionality:

(1) Identify standard basis {|mn〉} and measure coincidences {Nmn} to obtain
{〈mn|ρ|mn〉}.

(2) Calculate {λm} and nominate target state |Φ〉.

(3) Construct tilted basis {|j̃〉} and measure coincidences {Ñij} to obtain {〈j̃j̃∗|ρ|j̃j̃∗〉}.

(4) Evaluate F̃ (ρ,Φ) and Bk=1(Φ), . . ., Bk=d−1(Φ). The certified entanglement
dimensionality is dent = max{k | F̃ (ρ,Φ) > Bk−1(Φ)}.

To be more precise, the (first) local tilted basis {|j̃〉}j=0,...,d−1 is constructed from
the local standard basis {|m〉}m=0,...,d−1 according to

|j̃〉 =
1√∑
n λn

d−1∑

m=0

ωjm
√
λm|m〉. (A.1)

To obtain the values {λm}, we use the following method. As explained in the
main text, local filters [e.g., an appropriately programmed spatial light modulator
(SLM)] are employed to allow only systems in particular states to be detected. For
a particular setting with fixed m and n corresponding to the global orthonormal
basis {|mn〉}m,n one then counts the coincidences Nmn, which give an estimate of
the diagonal density matrix elements of the underlying system state ρ via

〈mn|ρ|mn〉 =
Nmn∑
i,j Nij

. (A.2)

These matrix elements in turn determine the values

λm =

√
〈mm|ρ|mm〉∑
n〈nn|ρ|nn〉

, (A.3)

which can be interpreted as nominating a target state |Φ〉 =
∑d−1

m=0 λm|mm〉. Meas-
urements in the second (tilted) basis (and potential additional tilted bases) then
allow to evaluate a lower bound F̃ (ρ,Φ) for the fidelity F (ρ,Φ) ≥ F̃ (ρ,Φ) to the
target state, as well of a number of threshold values Bk=1(Φ), . . ., Bk=d−1(Φ). A
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Schmidt-rank of k is then certified if the fidelity bound F̃ (ρ,Φ) surpasses the value
Bk−1(Φ), given by

Bk(Φ) :=
k−1∑

m=0

λ2im . (A.4)

Additional information on various aspects of this method and its implementation
are given in the following. Section A.1 details how measurements in the tilted basis
can be performed. In Sec. A.2, the noise robustness of our approach is discussed for
the important special case of maximally entangled target states subject to white noise.
In Sec. A.3, we discuss the generalization of the fidelity bounds to measurements
in more than two bases. We continue by discussing some simple bounds for the
entanglement of formation in Sec. A.4, before showing the connection to the fidelity
bounds to the maximally entangled state and discussing the robustness of these
quantification techniques in comparison to previous methods in Sec. A.5. We show
how the method can naturally be extended to the multipartite case in Sec. A.6. In
Sec. A.7 we analyse the effects of a non-ideal choice of the standard basis, while
Sec. A.8 shows evidence for the mutual unbiasedness of the implemented measurement
bases. In Sec. A.8.1, we show an experimental example of a second spatial mode basis
and discuss how mutually unbiased measurements can be readily implemented in a
wide range of high-dimensional quantum systems using current technology. Finally,
in Sec. A.8.2, we discuss two sources of systematic error introduced by our specific
measurement devices – mode-dependent loss and imperfect hologram measurements.

A.1 Normalization for measurements in the tilted bases

We now discuss in more detail how the measurements in the bases {|mn〉}m,n and
{|̃ij̃∗〉}i,j can be performed by means of a post-selection procedure that we refer to
as projective filtering. As explained above, estimates of the diagonal matrix elements
〈mn|ρ|mn〉 of ρ w.r.t. the standard basis can be obtained from coincidence counting.
For the standard basis, one finds

∑
m,n〈mn|ρ|mn〉 = 1 by construction, which is

sensible, since this expression corresponds to Tr(ρ) for an orthonormal basis. In
other words,

∑
m,n |mn〉〈mn| = 1 is a resolution of the identity.

The same cannot be said for the (generally non-orthogonal) basis {|j̃〉}j . However,
the projectors {|j̃〉〈j̃|}j can be used to construct a valid non-projective (d+1)-outcome
positive operator-valued measure (POVM). The first d elements of this POVM corres-
pond to projectors in the tilted basis divided by a factor of d, while the last POVM
element is obtained by subtracting the sum of the aforementioned elements from the
identity, which results in a positive semi-definite operator, that is, the set of POVM
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elements for a measurement in a tilted basis is
{

1
d
{|j̃〉〈j̃|}j=0,...,d−1, 1− 1

d

∑d−1
j=0 |j̃〉〈j̃|

}
.

By construction this is a (d+1)-outcome measurement. However, when measurements
are performed using projective filtering, only d filter settings, corresponding to the d
projectors |j̃〉〈j̃|, need to be performed if the measurement results of the standard
basis are already available. To see this, note that projective filtering implies that in-
stead of the probabilities pj = 〈j̃|ρ|j̃〉 and p̄ = Tr

(
(1−∑d−1

j=0 |j̃〉〈j̃|)ρ
)

= 1−∑d−1
j=0 pj ,

one obtains only the count rates Nj = Npj and N̄ = Np̄, where N is the overall
number of photons such that N = N̄ +

∑d−1
j=0 Nj. The d values Nj alone hence do

not fully determine the desired values pj = Nj/N , but the normalization factor N
can be determined from

∑d−1
j=0 Nj together with the measurements already performed

in the standard basis {|m〉}m, which yield
∑d−1

j=0 pj = 1
N

∑d−1
j=0 Nj.

For the two-party scenario with measurements w.r.t. the global product basis
{|̃ij̃∗〉}i,j, this sum of density matrix elements in the tilted basis is calculated as

∑

i,j

〈̃ij̃∗|ρ|̃ij̃∗〉 =
1

(
∑

k λk)
2

∑

m,m′

n,n′

√
λmλnλm′λn′ × 〈m′n′|ρ|mn〉

∑

i

ωi(m−m
′)
∑

j

ωj(n−n
′)

(A.5)

=
d2

(
∑

k λk)
2

∑

m,n

λmλn〈mn|ρ|mn〉 =: cλ, (A.6)

where we have defined the normalization factor cλ as the inverse of the overall
photon number and added the subscript λ to emphasize the dependence on the initial
measurements in the standard basis. If we had naively considered the coincidence
counts Ñij in the tilted basis, and the quantity analogous to the right-hand side of
Eq. (A.2), we would have found

∑
i,j

Ñij∑
k,l Ñk,l

= 1, by construction. To relate the
coincidences to the matrix elements w.r.t. to the tilted basis, we hence include the
additional normalization factor cλ of Eq. (A.6), i.e.,

〈̃ij̃∗|ρ|̃ij̃∗〉 = cλ
Ñij∑
k,l Ñk,l

, (A.7)

as stated in the main text.

A.2 Noise robustness

In this section, we discuss the special case of a maximally entangled target state,
which is particularly interesting for several reasons. First, it provides a simple
theoretical testing ground to evaluate the performance of our method in the presence
of noise, as illustrated in Fig. A.1. There, we assume ρ to be a mixture of |Φ+〉 with
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Figure A.1: Noise-resistance of the fidelity bound for high-dimensional isotropic
states. The curves show the fidelity bound F̃ (ρiso(p),Φ

+) (weighted by the dimension
d) for isotropic states ρiso(p) = p|Φ+〉〈Φ+| + 1−p

d2
1 in d × d dimensions as functions of

the visibility p for d = 2 (blue) to d = 10 (green) in steps of 1. The intersections of
the curves with the horizontal lines at the points

(
pk(d), d × F̃ (ρiso(pk),Φ

+)
)
(colored

dots), where the intersection coordinates on the vertical axis are d × F̃ (ρiso(pk),Φ
+) =

d × Bk(Φ+) = k ∈ {1, . . . , 9}, indicate that visibilities p > pk certify an entanglement
dimensionality of at least dent = k + 1. In other words, for any p the certified dimension is
dent = dd× F̃ (ρiso,Φ

+)e. For instance, for isotropic states in local dimension d = 3 with
visibility p > pk=2(d = 3) = 10

13 (vertical dashed line), our fidelity bound certifies Schmidt
rank dent = 3.

a maximally mixed state, i.e., an isotropic state ρiso = p|Φ+〉〈Φ+|+ 1−p
d2

1, where the
visibility p satisfies 0 ≤ p ≤ 1 and 1 is the identity operator in dimension d2. This
allows us to identify the visibility thresholds for the certification of the Schmidt ranks
of maximally entangled states subject to white noise. Second, the fidelity bounds
for the target state |Φ+〉 can be used to construct bounds on the entanglement of
formation, as explained in the Supplementary Information. Although the selection
of |Φ+〉 as a target state may not be optimally suited for a given experimental
situation, it thus nonetheless provides an efficient method for the direct certification
of the number of e-bits in the system. In Sec. A.5, we show that this entanglement
quantification method outperforms previous approaches [94] in terms of detected
e-bits and noise robustness.

A.3 Improved bounds using multiple bases

Next, we will show how measurements in more than one tilted basis can be
included to improve the fidelity bounds. To this end, first note that the choice of
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tilted basis is not unique. For instance, all of the statements made so far about the
properties of the tilted basis would remain unaffected if additional phase factors
independent of j were to be included in the definition of |j̃〉. That is, we have only
relied on using identities such as

∑
j ω

j(m−n) = d δmn. For example, let us consider a
family of tilted bases {|j̃k〉}j,k parameterized by an integer k ≥ 0, such that

|j̃k〉 =
1√∑
n λn

d−1∑

m=0

ωjm+km2
√
λm|m〉. (A.8)

For k = 0 we hence recover the original tilted basis. When the target state is a
product state (and hence separable), all vectors within any tilted basis collapse to
the same standard basis vector (up to a global phase factor), and are hence fully
contained within the standard basis. In this case, and indeed, whenever any of the
Schmidt coefficients vanish identically, tilted bases are no longer complete, and hence
cannot technically even be considered to be bases anymore. However, when the
target state is maximally entangled, |Φ〉 = |Φ+〉, we have λn = 1√

d
∀n, in which

case all of the tilted bases become orthonormal. Moreover, in this case one can
recognize this construction as that of Ref. [98], i.e., for prime dimensions the choices
k ∈ {0, 1, . . . , d− 1} provide a maximal set of d mutually unbiased bases (MUBs),
d + 1 if one includes the standard basis {|m〉}m. For non-prime dimensions, the
construction still provides an MUB w.r.t. to the standard basis for every choice of k,
but the bases for different k are in general not unbiased w.r.t to each other. We will
return to these interesting special cases in Sec. A.5.

In the more realistic scenario where |Φ〉 is not separable but also not maximally
entangled and all Schmidt coefficients λm (as estimated from initial measurements in
the standard basis) have arbitrary nonzero values, we may construct nonorthogonal
but complete tilted bases {|j̃k〉}j,k according to Eq. (A.8). As for the MUBs, this con-
struction provides d inequivalent tilted bases for odd prime dimensions, measurements
w.r.t. which are sufficient for the fidelity bound to become tight, as we shall discuss
in the following. To see this, first note that the only contribution of the additional
phases ωkm2 appears in the complex coefficient cmnm′n′ =

∑
j ω

j(m−m′−n+n′), which
we can then replace by

c
(k)
mnm′n′ :=

∑

j

ωj(m−m
′−n+n′) ωk(m

2−m′2−n2+n′2). (A.9)

Clearly, when using any single one of the bases {|j̃k〉}j,k, the modification of the
constant cmnm′n′ becomes irrelevant again due to the modulus, i.e., |c(k)mnm′n′ | =

|c(0)mnm′n′ | for all k.
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However, we may use several of the tilted bases simultaneously to obtain an

advantage. Replacing the term Σ =
d−1∑
j=0

〈j̃j̃∗|ρ|j̃j̃∗〉 by an average over M different

tilted bases as defined by Eq. (A.8), i.e.,

Σ→ Σ(M) = 1
M

M−1∑

k=0

d−1∑

j=0

〈j̃kj̃∗k|ρ|j̃kj̃∗k〉, (A.10)

one finds that the only affected term in the bound F̃2 for F2 is Σ3. That is, we may
replace the coefficient γ̃mm′nn′ by the modified coefficient

γ̃
(M)
mm′nn′ = γ̃mm′nn′

1
M

∣∣∣∣∣
M−1∑

k=0

ωk(m
2−m′2−n2+n′2)

∣∣∣∣∣ , (A.11)

and define the quantity F̃ (M) := F1 + F̃
(M)
2 ≤ F , where

F̃
(M)
2 :=

(
∑
m λm)

2

d
Σ(M) −

d−1∑

m,n=0

λmλn〈mn|ρ|mn〉 −
∑

m 6=m′,m 6=n
n6=n′,n′ 6=m′

γ̃
(M)
mm′nn′

√
〈m′n′|ρ|m′n′〉〈mn|ρ|mn〉.

(A.12)

In the least favourable possible case all phases in the sum over k are aligned and
γ̃
(M)
mm′nn′ = γ̃mm′nn′ , but in general γ̃(M)

mm′nn′ ≤ γ̃mm′nn′ . Consequently, the fidelity
bounds can only be improved by including measurements in more than one tilted
basis.

In fact, when the dimension d is a (non-even) prime, we have F̃ (M ′) ≥ F̃ (M) for
M ′ ≥ M , and for M = d the prefactor γ̃(M=d)

mm′nn′ vanishes exactly and the fidelity
bound becomes tight, i.e., F = F̃ (M=d) . In order to show this, we need to examine
the sum in Eq. (A.11). At first it is important to realize that since the value of
γ̃mm′nn′ does not depend on k, only cases for which (m−m′ − n+ n′) mod d = 0

need to be examined, otherwise γ̃mm′nn′ = 0 leads to γ̃(M)
mm′nn′ = 0. Let us therefore

prove the following claim. For parameter choices fulfilling the conditions

m 6= m′,m 6= n,

n 6= n′, n′ 6= m′,

(m−m′ − n+ n′) mod d = 0

(A.13)

it holds that (m2 −m′2 − n2 + n′2) 6= 0. We will prove this claim by contradiction.
In order to do so, suppose that both of the following equalities hold

m+ n′ = m′ + n mod d (A.14)

m2 + (n′)2 = (m′)2 + n2 mod d. (A.15)
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Without loss of generality suppose m > n, which also implies m′ > n′. Let us define
c := m− n = m′ − n′, which allows us to rewrite Eq. (A.15) as

m2 + n′2 = (n′ + c)2 + (m− c)2 mod d

m2 + n′2 = (n′)2 + 2cn′ + c2 +m2 − 2cm+ c2 mod d

0 = 2c2 + 2cn′ − 2cm mod d

0 = 2c(c+ n′ −m) mod d

0 = 2c(m′ −m) mod d.

(A.16)

The last equality holds, if and only if 2c(m′ − m) is a multiple of d. Since d is
an odd prime, the only possibility is that either c or (m′ −m) are multiples of d.
Clearly, since c = m − n, m > n and m,n ∈ {0, . . . , d − 1}, 0 < c < d, and c is
therefore not a multiple of d. Similarly, since m 6= m′ and m,m′ ∈ {0, . . . , d − 1},
−d < (m′ −m) < d, therefore (m′ −m) is not a multiple of d. We hence arrive at a
contradiction with Eq. (A.16) and conclude that under the conditions of (A.13) we
have (m2 −m′2 − n2 + n′2) 6= 0.

Therefore, when working withM different tilted bases,
∑M−1

k=0 ωk(m
2−m′2−n2+n′2) is

a sum of M different1 powers of ω. We subsequently have to show that the absolute
value of this sum can be bounded to be strictly lower than M . Moreover, the bound
improves with increasing M , and whenever M = d, the sum in Eq. (A.11) and hence
also the sum in the last line of Eq. (A.12) vanishes. Before we turn to the more
general statement for arbitrary M , let us briefly focus on the case M = d, where it
can be easily seen that for non-zero (m2−m′2−n2 +n′2)

∑d−1
k=0 ω

k(m2−m′2−n2+n′2) = 0.
For general values M < d let us now analytically bound |∑M−1

k=0 ωkc|, where c is
a non-zero integer. Naturally, the exact value of this sum depends on the particular
value of c, but here we give a general bound. To this end, we first argue that the
worst case (the highest possible sum) corresponds to the situation, where kc ranges
over subsequent powers of ω (i.e. c = 1). This can be seen from the fact that powers
of ω can be represented in the complex plane as vectors lying on the unit circle with
the centre at the origin. The absolute value of the sum of several different powers of
ω can therefore be seen as the size of the sum of their corresponding vectors. Recall
that for odd-prime dimension d, the exponent kc ranges over M different numbers
between 0 and d− 1. Now it is not hard to see that by fixing the number of vectors
M , the worst case sum (i.e., the largest absolute value) corresponds to the sum of
the M vectors next to each other on the complex plane, which in turn corresponds to

1The difference of the powers results from the fact that in the mod prime multiplicative group, every
non-zero element is a generator of the whole group. This means that since (m2−m′2−n2 +n′2) is non-zero,
iterating over different values of k results in different values of the whole exponent.
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the subsequent powers of ω. With this knowledge, we have to bound one particular
worst case sum, given by

M−1∑

k=0

ωk =
M−1∑

k=0

e
2πik
d . (A.17)

Using a variant of the Dirichlet kernel [179], i.e.,

M−1∑

k=0

eiMx = e
i(M−1)x

2
sin
(
Mx
2

)

sin
(
x
2

) (A.18)

with x = 2π
d
, we have

M−1∑

k=0

ωk = e
i(M−1)π

d
sin
(
Mπ
d

)

sin
(
π
d

) . (A.19)

Taking the absolute value reveals that for any choice of non-zero integer c we have
∣∣∣∣∣
M−1∑

k=0

ωkc

∣∣∣∣∣ ≤
∣∣sin

(
Mπ
d

)∣∣
∣∣sin

(
π
d

)∣∣ . (A.20)

After plugging this lower bound into Eq. (A.11), all (non-zero) prefactors γ̃(M)
mm′nn′

become decreasing functions of M , on the interval 1 ≤M ≤ d, which concludes the
proof that F̃ (M ′) ≥ F̃ (M) for M ′ ≥M in odd prime dimensions.

For general dimension d, however, it is not the case that F̃ (M ′) ≥ F̃ (M) for
M ′ ≥M , except for the case when M = 1 (for any dimension).

An illustration of the improvement obtained by including multiple tilted bases is
given in Fig. A.2 for an isotropic state ρiso = p|Φ+〉〈Φ+|+ 1−p

d2
1 in dimension d = 7.

Such a state highlights the influence of white noise on the certification method, since
the isotropic state is a mixture of a maximally entangled and a maximally mixed
state. We have hence shown that an improvement of the bounds by using more than
two global product bases is possible in principle. In Sec. A.5 we will further illustrate
this improvement for quantifying entanglement.

A.4 Bounds on the entanglement of formation

In this section, we discuss a method for bounding the entanglement of formation
in bipartite systems of arbitrary dimension. To provide a self-contained approach,
let us first give a pedagogical review of the entanglement of formation and useful
bounds for it also discussed in Ref. [94], before we make use of the fidelity bounds
established thus far in Sec. A.5. To begin, recall that the subsystems A and B
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Figure A.2: Improved fidelity bound & dimensionality witness for isotropic state.
The curves show the fidelity bound F̃ (M)(ρiso(p),Φ+) (weighted by the local dimension d = 7)
for isotropic states ρiso(p) = p|Φ+〉〈Φ+|+ 1−p

d2
1 in d×d dimensions as functions of the visibility

p for local dimension d = 7 for different numbers of global product bases, i.e., M = 1 (blue)
toM = 7 (green) in steps of 1. The intersections of the curves with the horizontal lines at the
points

(
p
(M)
k (d), d×F̃ (M)(ρiso(p

(M)
k ),Φ+)

)
(colored dots), where the intersection coordinates

on the vertical axis are d× F̃ (M)(ρiso(p
(M)
k ),Φ+) = d×Bk(Φ+) = k ∈ {1, . . . , 6}, indicate

that visibilities p > p
(M)
k certify an entanglement dimensionality of at least dent = k + 1

when M tilted bases are used. In other words, for any p the certified dimension is
dent = dd× F̃ (M)(ρiso,Φ

+)e. For instance, for isotropic states in local dimension d = 7 our
fidelity bound with one tilted basis (M = 1) certifies Schmidt rank dent = 2 for a visibility
p > p

(M=1)
k=1 (d = 7) = 43

85 (right vertical dashed line), whereas for two tilted bases (M = 2)
a visibility p > p

(M=2)
k=1 (d = 7) ≈ 0.3997 (left vertical dashed line) is enough to certify

dent = 2.

of a pure bipartite state |ψ〉AB are entangled if and only if their reduced states
ρA = TrB(|ψ〉〈ψ|) and ρB = TrA(|ψ〉〈ψ|) are mixed. This fact can easily be seen
from the Schmidt decomposition, i.e., that any pure state |ψ〉AB ∈ HAB = HA ⊗HB

may be written as

|ψ〉AB =
k−1∑

m=0

λm|φm〉A|χm〉B (A.21)

with respect to the Schmidt bases {|φm〉A}m and {|χm〉B}m, and where k ≤ min{dim(HA),

dim(HB)}. The entanglement of the state |ψ〉AB may therefore be quantified by the
mixedness 1 − Tr(ρ2A) of the reduced states. More specifically, we can define the
entropy of entanglement EL via the linear entropy SL as

EL(|ψ〉) = SL(ρA) =
√

2
(
1− Tr(ρ2A)

)
. (A.22)
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This method for entanglement quantification can be extended to mixed states via a
convex-roof construction, i.e., we define

EL(ρ) := inf
D(ρ)

∑

i

pi SL(ρ
(i)
A ) , (A.23)

where the infimum is taken over the set of all pure state decompositions of ρ, i.e.,

D(ρ) =
{{(

pi, ψi
)}

i
|ρ=

∑

i

pi|ψi〉〈ψi|, 0 ≤ pi ≤1,
∑

i

pi=1
}
, (A.24)

where ρ(i)A = TrB
(
|ψi〉〈ψi|

)
.

A simple bound on this convex roof of the linear entropy was derived in Refs. [180,
181]. Defining the quantity

I(ρ) =
√

2
d(d−1)

∑

m6=n

(
|〈mm|ρ|nn〉| −

√
〈mn|ρ|mn〉〈nm|ρ|nm〉

)
, (A.25)

for bipartite systems of equal local dimension d, i.e., dim(HA) = dim(HB) = d, with
bases {|φn〉A ≡ |n〉A} and {|χn〉B ≡ |n〉B}, it was shown in [180, 181] that

I(ρ) ≤ EL(ρ) . (A.26)

Now, we want to see how I(ρ) can used to bound also the entanglement of formation
(EoF) [92, 93], defined as the convex roof extension of the entropy of entanglement
when the von Neumann entropy S(ρ) = −Tr

(
ρ log(ρ)

)
is used instead of the linear

entropy, i.e.,

EoF(ρ) := inf
D(ρ)

∑

i

pi S(ρ
(i)
A ) . (A.27)

To understand this connection, let us briefly expand upon the derivation given in
Ref. [94]. First, note that for pure states |ψ〉 we have

I(|ψ〉) ≤ EL(|ψ〉) =
√

2
(
1− Tr(ρ2A)

)
. (A.28)

Therefore, if I(|ψ〉) ≥ 0 we can write

Tr(ρ2A) ≤ 1 − 1
2
I2(|ψ〉), (A.29)

which implies that

− log
(
Tr(ρ2A)

)
≥ − log

(
1 − 1

2
I2(|ψ〉)

)
(A.30)
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since log x is a monotonically increasing function. With the additional negative sign
we can recognize the left-hand side as the Rényi 2-entropy, defined as

Sα(ρ) :=
1

1− α logTr(ρα) (A.31)

for α = 2. For all α, β ∈ N and for all ρ, the Rényi entropies satisfy Sα(ρ) ≥ Sβ(ρ)

for α ≤ β. In particular, this means that

S1(ρ) = lim
α→1

Sα(ρ) ≥ S2(ρ) = − log
(
Tr(ρ2)

)
(A.32)

and consequently one has

S1(ρA) ≥ − log
(

1 − 1
2
I2(|ψ〉)

)
. (A.33)

For pure states, the (von Neumann) entropy of the subsystem is equal to the EoF
and we have hence obtained the desired bound. To see that the bound also holds for
mixed states, simply note that − log(1− x2/2) is a convex function. Similarly, the
function I(ρ) is convex, since

I1 :=
∑

m6=n

|〈mm|ρ|nn〉| (A.34)

is convex, while

I2 :=
∑

m 6=n

√
〈mn|ρ|mn〉〈nm|ρ|nm〉 (A.35)

is concave, i.e., by Jensen’s inequality [182]

I1(
∑

i

piρi) ≤
∑

i

piI1(ρi), (A.36)

I2(
∑

i

piρi) ≥
∑

i

piI2(ρi), (A.37)

for 0 ≤ pi ≤ 1 and
∑

i pi = 1. This allows us to conclude that for all states ρ, for
which I(ρ) ≥ 0 one has

EoF(ρ) ≥ − log
(

1 − 1
2
I2(ρ)

)
. (A.38)

Here, it is first useful to note here that the value of I(ρ) (in particular, whether or
not I is non-negative) for a given state depends on the bases {|m〉A}m and {|n〉B}n
that are chosen. For instance, if both bases are chosen to be the same single-qubit
bases and the quantum state in question is the singlet state |ψ−〉 = 1√

2

(
|01〉 − |10〉

)
,

where |0〉 and |1〉 are assumed to be the eigenstates of the third Pauli matrix
Z = diag{1,−1}, then I(|ψ−〉) = −1. In other words, the bases {|m〉A}m and
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Figure A.3: Entanglement bounds for isotropic state. (a) The dashed and solid
curves show the lower bounds for EoF obtained forM = 1 and ρiso(p) using the bounds from
Ref. [94] (dashed) and using the bound presented here in (A.42) (solid curves), respectively,
for dimensions d = 3 (blue) to d = 10 (green) in steps of 1 and in units of log d. It can be
seen that the newly improved bounds can certify higher entanglement for given visibilities
p. (b) The bound of Ref. [94] (orange, dashed) is compared with the bound of (A.42) (solid
curves) for fixed dimension d = 7 and varying numbers of bases, M = 1 (blue) to M = 7
(green) in steps of 1.

{|n〉B}n should be chosen with a specific family of states in mind. For pure states, it
is most useful to choose the Schmidt bases of the two subsystems.

Second, observe that, on the one hand, the term I2 contains only diagonal
matrix elements and hence can practically easily be estimated using measurements
in one pair of global product bases only. That is, counting the coincidences Nmn

in the basis setting |m〉A|n〉B, we can reconstruct the desired matrix elements as
〈mn|ρ|mn〉 = Nmn/

(∑
i,j Nij

)
. On the other hand, to estimate the off-diagonal

matrix elements of the term I1 precisely, one would be required to reconstruct the
entire density matrix by way of state tomography. However, this costly procedure
can be avoided by supplementing the measurements in the basis {|mn〉}m,n by
measurements in one (or more) MUBs w.r.t. {|mn〉}m,n to provide a lower bound on
I2(ρ).

A.5 Entanglement quantification using mutually unbiased

bases

Having established the usefulness of the quantity I(ρ) for bounding the entan-
glement of formation, let us now relate it to the fidelity bounds we have discussed
before. Inspection of the fidelity to the maximally entangled state, i.e.,

F (ρ,Φ+) = 1
d

∑

m

〈mm|ρ|mm〉 + 1
d

∑

m6=n

〈mm|ρ|nn〉, (A.39)
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immediately lets us obtain the bound
∑

m6=n

|〈mm|ρ|nn〉| ≥
∑

m 6=n

〈mm|ρ|nn〉 (A.40)

= dF (ρ,Φ+)−
∑

m

〈mm|ρ|mm〉. (A.41)

Since F (ρ,Φ+) ≥ F̃ (M), this, in turn, implies that

I(ρ) ≥
√

2

d(d− 1)

(
d F̃ (M)(ρ,Φ+)−

∑

m

〈mm|ρ|mm〉 −
∑

m6=n

√
〈mn|ρ|mn〉〈nm|ρ|nm〉

)

(A.42)

≥
√

2

d(d− 1)

(
dΣ(M) − 1−

∑

m6=n

√
〈mn|ρ|mn〉〈nm|ρ|nm〉

−
∑

m6=m′,m 6=n
n6=n′,n′ 6=m′

γ̃
(M)
mm′nn′

√
〈m′n′|ρ|m′n′〉〈mn|ρ|mn〉

)
, (A.43)

where we have inserted the fidelity bound F̃ (M) for multiple MUBs derived in Sec. A.3.
The measurements performed to lower-bound the entanglement dimensionality of
ρ may hence directly be used to also obtain a lower bound on the entanglement of
formation.

We further note that the bound of (A.42) can also be considered to be a gener-
alization of the bounds discussed in Ref. [94], where a similar, but strictly weaker
bound for I(ρ) is provided, corresponding to setting M = 1 and γ̃(M)

mm′nn′ → 1. To
provide direct comparisons of our bounds with the methods of Ref. [94], we again
turn to the example of the isotropic state ρiso = p|Φ+〉〈Φ+|+ 1−p

d2
1, where 0 ≤ p ≤ 1,

|Φ+〉 = 1√
d

∑
n |nn〉, and 1 is the identity in dimension d2. A comparison of the

performance of these bounds for entanglement quantification for the assumed state
ρiso is shown in Fig. A.3.

The isotropic state also provides an ideal theoretical testing ground for the noise
robustness of these bounds, since it corresponds to mixing a maximally entangled state
with white noise and hence allows to characterize the robustness of the entanglement
bounds against decoherence. To this end, we compare the critical visibilities pcrit,
that is, the parameters appearing in ρiso(p) for which the different methods stop
detecting entanglement. Ideally, this could be the case for the value pcrit = 1

d+1
,

below which the isotropic state is separable [32]. For the bound of Ref. [94] we
find pBW

crit = d2−3d+4
d2−2d+4

, whereas our bound from (A.42) provides p(M)
crit = d(d−1)+f(M)

d(d2−1)+f(M)
,

where f(M) =
∑

m6=m′,m6=n
n6=n′,n′ 6=m′

γ̃
(M)
mm′nn′ . As illustrated in Fig. A.4, the improved bounds

presented here significantly improve on the noise resistance of the bounds.
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Figure A.4: Critical visibilities. The curves show the parameters p for which the
entanglement of the isotropic states in d × d dimensions become undetectable using the
bound of Ref. [94] (upper orange curve) and the bound of (A.42) for M = 1, 2, 3 (blue solid,
dashed, dotted curves), respectively. The bottom purple curves indicates the value below
which ρiso is separable. The irregular behaviour of the curves for M > 1 originates from
the fact that the bases we use are all unbiased w.r.t. each other only in prime dimensions
(green dots).

A.6 Multipartite entanglement certification

In this appendix, we give a brief outlook on the multipartite case. For this
purpose we define a family of generalized GHZ states for arbitrary local dimension
and arbitrary weights {λi}i as

|GHZλ,n,d〉 :=
d−1∑

i=0

λi|i〉⊗n , (A.44)

with
∑

i λ
2
i = 1. The GHZ-weights λi can be interpreted as generalized Schmidt

coefficients for this particular family of states and our fidelity method can be applied
in full analogy to the bipartite cases discussed previously. As, before, we can introduce
local tilted bases for the n-partite case as

|j̃(n)〉 :=
1√∑
k λ

2/n
k

d−1∑

m=0

ωjmλ1/nm |m〉, (A.45)

such that |j̃(n=2)〉 ≡ |j̃〉 coincides with our previous definition for bipartite systems.
We are then interested in determining a fidelity bound F̃ (ρ,GHZλ,n,d) such that

F (ρ,GHZλ,n,d) := Tr(ρ|GHZλ,n,d〉〈GHZλ,n,d|) (A.46)

≥ F̃ (ρ,GHZλ,n,d) . (A.47)
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Such a bound can indeed be found and, as we shall see, it takes the form

F̃ (ρ,GHZλ,n,d) :=
(∑

k

λ
2/n
k

)n
〈0̃(n)|⊗nρ|0̃(n)〉⊗n −

∑

(α,β)∈γ

λαλβ
√
〈α|ρ|α〉〈β|ρ|β〉.

(A.48)

where α = (i1, . . . , in) and β = (j1, . . . , jn) are multi-indices with ik, jl ∈ {0, 1, . . . , d−
1}, and we have used the notation |α〉 = |i1, . . . , in〉 and λα :=

∏
ik∈α λ

1/n
ik

. The sum
in the second line of Eq. (A.48) runs over pairs of multi-indices in the set γ, which is
given by

γ := {(α, β)|α /∈ γα ∨ β /∈ γβ}, (A.49)

and γα := {α = (i, i, . . . , i)|i = 0, 1, . . . , d− 1} are the sets of multi-indices where all
sub-indices ik are the same.

To prove the relation of Eq. (A.48), we expand the all-zero diagonal element in
the tilted basis w.r.t. the standard basis, that is, inserting from Eq. (A.45) we write

〈0̃(n)|⊗nρ|0̃(n)〉⊗n =
(∑

k

λ
2/n
k

)−n∑

α,β

λαλβ〈α|ρ|β〉 (A.50)

and observe that, just as in the bipartite case, all density matrix elements appear. We
can then use this to replace terms in the fidelity on the left-hand side of Eq. (A.47)
i.e.,

F (ρ,GHZλ,n,d) =
∑

i,j

λiλj〈i|⊗nρ|j〉⊗n (A.51)

=

(∑

k

λ
2/n
k

)n

〈0̃(n)|⊗nρ|0̃(n)〉⊗n −
∑

(α,β)∈γ

λαλβ〈α|ρ|β〉 . (A.52)

Now, we invoke the Cauchy-Schwarz inequality |〈α|ρ|β〉| ≤
√
〈α|ρ|α〉〈β|ρ|β〉 to

bound the last term in Eq. (A.51) as we have done in the case of bipartite states,
such that we get

F (ρ,GHZλ,n,d) ≥
(∑

k

λ
2/n
k

)n
〈0̃(n)|⊗nρ|0̃(n)〉⊗n −

∑

(α,β)∈γ

λαλβ
√
〈α|ρ|α〉〈β|ρ|β〉

(A.53)

= F̃ (ρ,GHZλ,n,d) . (A.54)

Note that in the case that ρ = |GHZλ,n,d〉〈GHZλ,n,d| all the elements in the sum over
(α, β) ∈ γ vanish, as only terms 〈i|⊗nρ|j〉⊗n appear and (A.47) becomes an equality.
This shows that it is in principle possible to certify a unit fidelity with a multipartite
and multi-dimensional target state for any n and d. However, using only a single
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tilted basis element |0̃(n)〉 comes at the expense of reduced noise resistance, as we
have seen in the bipartite case. Although this leaves room for improving the bound
by the inclusion of additional tilted basis elements, the practical optimization over
all potential combinations of phases is beyond the scope of this brief outlook.

A.7 Effects of a wrong choice of Schmidt basis on the

fidelity lower bounds

In this section we provide an example of how a choice of standard basis that
does not correspond exactly to the Schmidt basis of the generated state affects the
value of our fidelity lower bound F̃ (ρ,Φ). Our example is based on the physically
motivated situation in which there is a misalignment between the local reference
frames of each party.

For the two-qutrit maximally entangled state |Φ+
3 〉 = 1√

3
(|00〉+ |11〉+ |22〉) we can

assume without loss of generality that one side, Alice, performs the first measurement
in the correct Schmidt basis while the other side, Bob, measures in a basis that is
rotated w.r.t to Alice’s measurement basis. This is due to the U ⊗ U∗ invariance
of the isotropic states. Hence, let Alice measure in the standard basis {|0〉, |1〉, |2〉}
and let Bob measure in a one-parameter rotation of a two-dimensional subspace of
Alice’s basis, namely,

|0̄〉 = cos θ|0〉+ sin θ|1〉 (A.55)

|1̄〉 = sin θ|0〉 − cos θ|1〉 (A.56)

|2̄〉 = |2〉. (A.57)

From the results of the measurements in the global product basis {|mn̄〉}m,n, one
can compute the target state and the tilted basis for each party and complete the
procedure outlined in the main text to obtain a fidelity lower bound and a certified
Schmidt number. The results for this case are plotted in Fig. A.5 for this example.

This result illustrates how a sub-optimal choice of Schmidt basis can lead to
suboptimal fidelity bounds and certified entanglement dimensionality. Crucially,
however, it does not invalidate our method as the certified fidelity and entanglement
are nonetheless valid. Moreover, one can see that, in our example, small deviations
do not cause our fidelity bound to drop drastically, on the contrary, one can still
certify maximal entanglement dimensionality up to at least 20% rotation.
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Figure A.5: Plot of fidelity lower bound F̃ (Φ+
3 ,Φ) for the maximally entangled two-qutrit

state as a function of the rotation angle θ when one of the sides measures in a standard
basis that is rotated in a two-dimensional subspace w.r.t. the measurement basis on the
other side. The horizontal lines show the threshold of the fidelity bound in which Schmidt
numbers k = 3 and k = 2 can be certified.

A.8 Classical prepare-and-measure experiment: LG basis

Here we demonstrate a classical experiment in which we prepare modes in the
standard Laguerre-Gaussian (LG) basis and the first mutually unbiased basis (MUB),
and then perform measurements in both bases using the technique discussed in the
Methods section. The purpose of this experiment is to perform an unfolded, classical
version of our two-photon entanglement setup. Also referred to as the Klyshko
advanced-wave picture [183], this is equivalent to replacing the crystal with a mirror,
propagating light back through one of the detectors, reflecting it at the crystal plane,
and then propagating it back to the other detector (compare Fig. A.6 (b) with the
setup figure in the main text). In this manner, we can show that we are able to
generate and measure arbitrary complex amplitudes, and that our measured bases
are indeed mutually unbiased with respect to each other.

As shown in Fig. A.6 (b), modes in seven-dimensional LG and MUB bases are
generated using computer generated holograms (CGH) implemented on the SLM
labelled (g). Intensity images of these modes obtained on a CCD camera are shown
in Fig. A.6 (a). The modes generated by SLM (g) are imaged onto SLM (m) by a 4f
system of lenses (l3, 400mm) through a pinhole to pick off the first diffraction order
of the SLM and remove zero-order diffraction noise. The pinhole is also where the
crystal plane would be in the Klyshko picture (dotted rectangle). A measurement of
a particular mode is performed by the spatial-mode filter implemented by SLM (m),
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Figure A.6: Classical prepare-and-measure experiment: LG basis. a) CCD images
of the 7-dimensional Laguerre-Gaussian (LG) basis and first mutually unbiased basis (MUB)
modes. b) The experiment consists of a strongly attenuated IR laser incident on a spatial
light modulator (SLM (g)) used for generating arbitrary spatial modes. SLM (g) is imaged
onto SLM (m), which displays measurement holograms for arbitrary spatial modes. A
pinhole is used to remove zero-order diffraction noise from SLM (g), and is also located
at the “crystal" plane in the unfolded Klyshko picture [183]. The light from SLM (m) is
coupled into a single-mode fiber (SMF), which is connected to a single-photon avalanche
diode (SPAD). c) Experimental data showing measured counts when states are prepared
and measured in both bases. The data are strongly correlated when the preparation and
measurement bases are the same, and completely uncorrelated when they are not.
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Figure A.7: Classical prepare-and-measure experiment: 9-dimensional pixel
basis. CCD images of a) the first Pixel basis mode, and b) first mutually unbiased
basis (MUB) mode. c) Experimental data showing measured counts when states are pre-
pared and measured in both bases. The data are strongly correlated when the preparation
and measurement bases are the same, and completely uncorrelated when they are not.

a single-mode fiber (SMF), and a single-photon avalanche photodiode (SPAD). The
measurement holograms on SLM (m) are scanned through modes in both LG and
MUB bases to obtain a 14×14 element matrix of counts shown in Fig. A.6 (c). The
counts are normalised such that the total counts measured across one basis are equal
for each generated mode. As can be clearly seen, when modes in the same basis are
generated and measured, a strong diagonal matrix is obtained, with a visibility of
94.8% (LG) and 84.4% (MUB) — defined as the sum of diagonal counts divided by
total counts. The visibility in the LG basis is lower than the near-unity theoretical
value due to imperfect alignment. The MUB visibility is further lowered due to
errors introduced by the CGH method for approximating a more complex scalar field
with a phase-only hologram, which is confirmed by simulation. When the generation
and measurement bases are different, the data sets are seen to be mutually unbiased
(flat), with a visibility approaching 1/7=14.3% in both cases (15.6% and 13.5%).
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A.8.1 Examples of MUBs in other experimental
degrees-of-freedom/platforms

The purpose of this section is to show that our entanglement certification technique
can be readily applied to other photonic degrees-of-freedom (DOFs), as well as to
other physical platforms such as atoms. We do this by first demonstrating a second
set of measurement bases with our classical prepare-and-measure experiment: the
Pixel basis. Then, we discuss recent experimental examples of mutually unbiased
measurements in the time-frequency and path degrees-of-freedom. Finally, building
on recent experiment results, we show how such measurements are also feasible in
high-dimensional atomic systems consisting of Cesium atoms.

First, we use the classical prepare-and-measure experiment discussed in Sec. A.8
to demonstrate a second set of mutually unbiased bases for the photonic position-
momentum DOF. As shown in Fig. A.7 (a), the Pixel basis is composed of nine
position states, defined by nine discrete macro-pixels. The figure shows the intensity
profile of the first Pixel basis state recorded on a CCD, with the eight empty boxes
indicating the positions of the remaining Pixel basis states. Fig. A.7 (b) shows the
intensity profile of the first state from the first mutually unbiased basis (MUB) to
the Pixel basis, constructed according to the standard method discussed in Ref. [98].
Using the setup from Fig. A.6 (b), every state in the Pixel and MUB bases is generated
using SLM (g) and imaged onto the measurement SLM (m). The measurement SLM
(m) is used to display measurement holograms in both bases, resulting in an 18×18
element matrix of counts shown in Fig. A.7 (c). As can be clearly seen, when modes
in the same basis are generated and measured, a strong diagonal matrix is obtained,
with a visibility of 96.6% (Pixel) and 83.7% (MUB). As for the LG basis, the MUB
visibility is slightly lower than the Pixel basis due to errors introduced by the CGH.
When the generation and measurement bases are different, the data are again seen to
be mutually unbiased (flat), with a visibility approaching 1/9=11.1% in both cases
(11.1% and 11.0%).

Despite the significant difficulties in the implementation of arbitrary measure-
ments on high-dimensional quantum systems, measurements in specific bases (such
as MUBs) are quite common, with recent advances allowing for this in several exper-
imental platforms. Here we briefly discuss how mutually unbiased and tilted basis
measurements can be implemented in these platforms, allowing our entanglement
certification technique to be directly applied in a wide range of future experiments.
While we have demonstrated precise control and measurement over photonic spatial
modes, recent experiments have been performed that show similar capabilities for
other high-dimensional DOFs such as time-frequency and path.
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For example, the experiment of Kues et al. [39] demonstrates on-chip, high-
dimensional frequency-mode entanglement via spontaneous four-wave mixing in a
micro-ring resonator. In order to measure their entangled state, the authors use a
combination of two programmable phase filters and an electro-optic phase modulator
to perform projective measurements corresponding to state vectors of the form
|ψproj〉 =

∑d−1
k=0 αke

iφk |k̄ + k〉 where the projection amplitudes αk and the phases φk
can be chosen arbitrarily for a given frequency mode k̄. This is precisely the type of
transformation that would be required for a measurement in an arbitrary tilted or
mutually unbiased basis of frequency modes, allowing the direct application of our
method to this platform.

Another recent experiment by Karpiński et al. [184] used an electro-optic mod-
ulator to carry out a temporal Fourier transform of heralded single-photon pulses,
while preserving their quantum coherence. This “time lens" applies the exact trans-
formation required to measure temporal pulse-mode-entangled states in the mutually
unbiased frequency basis. In the recent experiment by Carolan et al. [185], the au-
thors demonstrate exquisite control over a rapidly reprogrammable 6-mode integrated
photonic circuit, implementing Haar random unitaries with an extremely high fidelity.
Combined with multi-outcome measurements at the end of the linear circuit, their
system can readily be used to perform measurements in a six-dimensional mutually
unbiased basis of path modes.

In the recent experiment by Anderson et al. [89], the electron and nuclear spins
of individual 133Cs atoms were used as a test bed for implementing high-dimensional
unitary transformations on an atomic system. Radio frequency and microwave
magnetic fields were used to generate control Hamiltonians with excellent performance
even in the presence of static and dynamic perturbations, allowing the implementation
of unitary maps in a 16-dimensional Hilbert space with fidelities greater than 0.98.
This was followed by a Stern-Gerlach measurement apparatus that measured the
population in the 16-dimensional Hilbert space. Together, these unitary operations
and multi-outcome measurements are precisely what is required to measure in a
mutually unbiased basis of electron and nuclear 133Cs atoms spins.

Finally, one may note that multi-qubit systems, such as have been realized in
photonic systems [186–189], superconducting qubits [190], or trapped ions [191], can
also yield subsystems with high local dimension for suitable bipartitions of groups
of multiple qubits. Such platforms are often composed of individually controllable
qubits, e.g., for quantum computation or simulation [191], and usually permit
arbitrary (projective) single-qubit measurements, and hence allow measurements w.r.t.
mutually unbiased or tilted bases for any bipartition. For instance, measurements
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Systematic error due to imperfect measurements

d F̃ (ρ,Φ+) F̃s1(ρ,Φ+) F̃s2(ρ,Φ+)

3 91.5± 0.4% 98.0% 95.6%

5 89.9± 0.4% 96.4% 92.3%

7 84.2± 0.5% 94.6% 87.6%

11 74.8± 0.4% 89.7% 80.6%

Table A.1: F̃ (ρ,Φ+) and F̃s1/2(ρ,Φ+) are experimental and simulated fidelities to the
maximally entangled state obtained via measurements in two MUBs in dimension d,
respectively. F̃s1(ρ,Φ+) is obtained by incorporating the effects of imperfect hologram
measurements on an ideal state estimated from measurements in the LG basis. F̃s2(ρ,Φ+) is
obtained by additionally taking into account the misalignment-induced crosstalk measured
in the LG basis.

w.r.t. the local Pauli Z and X operators for all qubits would be a simple realization
of a MUB measurement. Our methods are thus also applicable to such systems.

The above examples clearly demonstrate the wide applicability of our entanglement
certification technique to a variety of physical systems, and highlights its potential
for significantly impacting future experiments on high-dimensional entanglement in
photonic and atomic platforms, and beyond.

A.8.2 Systematic errors

While there are no assumptions made about the state or how it is produced, the
method introduced here intrinsically puts trust on the measurement devices to work
correctly. Hence, a crucial part of the experiment is an in-depth characterization of
the measurement method. While from a physical point of view, one would expect
the crystal to predominantly produce perfectly correlated pairs due to a conservation
of angular momentum, the real data features a significant amount of cross-talk and
noise, ultimately diminishing the certified entanglement and dimensionality. On the
other hand, non-perfect unbiasedness of the observables could even lead to classically
correlated photons to appear entangled, the most extreme case being a measurement
in two identical bases that while assumed to be unbiased, are actually the same.
Furthermore, the coincidence counts in different settings may not correspond to the
density matrix elements in the way assumed if the detector efficiency is different for
the different bases, which could lead to either over- or under-estimation of correlations
(and with it entanglement). These are all potential systematic errors that we want
to address in this final section.

113



Appendix

While the predominant source of crosstalk is due to imperfect alignment, our
paradigm of state-independence also includes the notion of reference frames (i.e. we
do not assume to have a perfect common reference frame) and this misalignment can
only decrease observed correlations. In other words, alignment issues are essentially
captured by local unitary operations and can never lead to an increase of correlations
where there are none.

Upon inspecting the correspondence of coincidence counts to density matrix ele-
ments we noticed a significant impact of mode-dependent loss. The usual assumption
that coincidence counts Cij of N photon pairs per unit of time in basis elements i
and j respectively are related to density matrix elements via

Cij = N〈ij|ρ|ij〉 , (A.58)

implicitly assumes (1) a constant photon pair production rate and (2) a universal
coupling efficiency that is independent of i and j. While the measured pair production
rate fluctuations are low enough for that estimation to be valid, we actually do
expect a strong mode-dependent loss. In the LG-basis we expect from theoretical
computations that higher modes have a lower coupling efficiency in the single-mode
fibers [192], which should lead to a systematic suppression of higher-mode coincidence
counts and with it a systematic under-estimation of entanglement. The exact coupling
efficiency, however, depends on many intricate details of the physical setup and any
theoretical computation could increase systematic errors in unpredictable ways. In
this section we thus introduce a general method that corrects for mode-dependent
loss using only the singles and coincidences in the setup and will find application also
in many other quantum optical setups. Denoting the singles per unit time in detector
A/B as SA/Bi , as well as the mode dependent loss factors as ηA/Bi , we conclude that:

Cij = N〈ij|ρ|ij〉ηAi ηBi (A.59)

as well as

S
A/B
i = N〈i|ρA/B|i〉ηA/Bi (A.60)

Now if we define

Mij :=
Cij
SAi S

B
j

=
1

N

〈ij|ρ|ij〉
〈i|ρA|i〉〈j|ρB|j〉

(A.61)

we can use the fact that

∑

j

Mij〈j|ρB|j〉 = [M ~ρB]i =
1

N

∑
j〈ij|ρ|ij〉
〈i|ρA|i〉

=
1

N
(A.62)
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This allows us to get N , as well as conclude that

〈i|ρB|i〉 =
∑

j

(M)−1ij
1

N
(A.63)

Now all that is left is to insert this into the definition of Mij to get

〈ij|ρ|ij〉 =
Mij(

∑
j(M)−1ij )(

∑
i(M

T )−1ij )

(
∑

i

∑
j(M)−1ij )

(A.64)

The only assumptions remaining in this correction method are a constant pair
production rate and that the majority of singles is generated by photon pairs. These
assumptions can also be verified using the experimental data by checking that
[M ~ρB]−1i = N is indeed equally true for all i. Using this correction method we
indeed find the expected effect: higher order modes in LG basis were significantly
suppressed leading to artificially reduced coincidence counts. We account for this
mode-dependent loss in our data, allowing us to more accurately estimate a target
state and hence construct a more optimum tilted basis.

A second source of systematic error is the effect of imperfect measurements
on the resulting fidelity bounds. As shown in Sec. A.8, the classical (one-photon)
measurements made using our computer-generated holograms (CGHs) in the LG
and the MUB bases are not perfect, with the MUB basis showing a lower visibility
than the LG basis. In the two-photon experiment, this would manifest as additional
counts appearing in the off-diagonals of the data matrices shown in the main text,
which would in turn lower the measured fidelity bounds. In order to estimate this
quantitatively, we proceed as follows.

First, we calculate the ideal state as obtained from diagonal measurements in the
LG basis, by setting the off-diagonal (crosstalk) counts to zero and calculating the
resulting density matrix. Second, we use this state to calculate the ideal experimental
data one would obtain if measuring in the first MUB. Next, we simulate the imperfect
measurements in MATLAB for each input state and hologram by multiplying the
complex field amplitude by the hologram amplitude, and then calculating its overlap
with a Gaussian fiber mode amplitude. The resulting probability matrices for the
LG and MUB bases capture the resulting imperfections of the CGH measurement
process. This process is repeated for each dimension considered in our experiment.
We find that the imperfections in the LG measurement are almost negligible, while
the visibility in the MUB drops as a function of dimension. We then calculate the
effect of these hologram imperfections on the ideal two-photon experimental data
calculated above.

A key factor that results in a lowering of the measured fidelity bound in experiment
is the crosstalk due to imperfect alignment. We incorporate this crosstalk into our
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fidelity calculation by using the LG basis data obtained in experiment, and the
MUB data obtained from the above simulation. In this manner, both the effects
of imperfect measurement and misalignments are captured in our systematic error-
corrected fidelity bounds. Table A.1 lists the measured fidelities F̃ (ρ,Φ+) from
experiment, the simulated fidelities F̃s1(ρ,Φ

+) taking into account the effects of
imperfect hologram measurements, and simulated fidelities F̃s2(ρ,Φ

+) additionally
incorporating the effects of misalignment-induced crosstalk only in the LG basis
(taken from the measured data). The effects of crosstalk on the MUB measurements
cannot be added in independently of the simulated systematic error, but one can
expect that it will lower the fidelities even more, ideally approaching the measured
values F̃ (ρ,Φ+). Thus, imperfect measurements are always seen to result in an
under-estimation of correlations, thus lowering our fidelities from their ideal expected
values.
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APPENDIX B
Supplemental Information of

Chapter 2

In these appendices we provide material to complement the main text. In
appendix B.1, we present the proofs of theorems 2.2 and 2.4, regarding behaviours and
assemblages that cannot be expressed in terms of process matrices. In appendix B.2,
we present the proofs of lemmas 2.1 and 2.2, regarding the realization of causal
behaviours and assemblages in terms of causally separable process matrices. In
appendix B.3, we show how to obtain the characterization of general and causal
assemblages presented in definitions 2.5 and 2.6. In appendix B.4, we present the
proof of theorem 2.6, showing a class of causally nonseparable process matrices that
cannot be certified in a semi-device-independent way. In appendix B.5, we re-derive
all concepts and results of the main text concerning certification of bipartite process
matrices for the tripartite process matrices whose third party is always in the future
of the other two. We start by defining all notions of certification for these tripartite
process matrices and then explore each scenario (TTT, UUU, TTU, TUU, UTT, and
UUT) in detail. This appendix contains technical results not used nor mentioned
in the main text. In appendix B.6, we present the proof of theorem 2.7, i.e., we
prove that the quantum switch cannot be certified to be causally nonseparable in
the UUT scenario. Finally, in appendix B.7, we present our theoretical analysis of
the quantum switch experiments of refs. [72] and [74].
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B.1 Behaviours and assemblages unattainable by process

matrices

In this appendix, we prove theorem 2.2 and theorem 2.4, concerning behaviours
and assemblages which cannot be obtained by process matrices. We start by present-
ing and proving the following lemma, which will be necessary for the proof of
theorem 2.2.

Lemma B.3. Let A ∈ L(H1 ⊗H2) be a positive semidefinite operator. It holds that

dTr2(A)⊗ 1− A ≥ 0. (B.1)

where d = min{d1, d2} and 1 denotes the identity operator acting on H2.

Proof. Let us start with the case where A is a rank-1 operator, so that A = |λ〉〈λ|
for some unnormalized vector |λ〉. The Schmidt decomposition ensures that every
bipartite vector |λ〉 ∈ (H1 ⊗H2) can be written as |λ〉 =

∑d
i=1 λi|ii〉 for some real

non-negative coefficients {λi}di=1 and d = min{d1, d2}. We can then define a diagonal
operator D : H1 → H1, D :=

√
d
∑d

i=1 λi|i〉〈i| such that |λ〉 = D ⊗ 1|φ+
d 〉 where

|φ+
d 〉 :=

∑d
i=1

1√
d
|ii〉 is a d-dimensional maximally entangled state acting on H1⊗H2.

Using the diagonal operator D, and D† = D, the partial trace Tr2(A) can be
written as

Tr2(A) = Tr2
(
D ⊗ 1|φ+

d 〉〈φ+
d |D ⊗ 1

)
(B.2)

=
DD

d
. (B.3)

Direct calculation of the left-hand side of inequality (B.1) leads to

dTr2(A)⊗ 1− A = d
DD ⊗ 1

d
−D ⊗ 1|φ+

d 〉〈φ+
d |D ⊗ 1 (B.4)

= D ⊗ 1
(
1⊗ 1− |φ+

d 〉〈φ+
d |
)
D ⊗ 1 (B.5)

≥ 0, (B.6)

where the last inequality holds since 1⊗ 1− |φ+
d 〉〈φ+

d | ≥ 0 and D ≥ 0 .
To prove the general case, note that we can write A as a sum of rank-1 operators,

A =
∑

i

∣∣λ(i)
〉〈
λ(i)
∣∣. Since for every i it holds that

dTr2
(∣∣λ(i)

〉〈
λ(i)
∣∣)⊗ 1−

∣∣λ(i)
〉〈
λ(i)
∣∣ ≥ 0, (B.7)

we also have that

dTr2

(∑

i

∣∣λ(i)
〉〈
λ(i)
∣∣
)
⊗ 1−

∑

i

∣∣λ(i)
〉〈
λ(i)
∣∣ ≥ 0, (B.8)
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and hence,

dTr2(A)⊗ 1− A ≥ 0. (B.9)

Theorem 2.2. All process behaviours are valid behaviours, however, not all valid
behaviours are process behaviours.

In particular, in the scenario where all parties have dichotomic inputs and outputs,
any behaviour {p(ab|xy)} such that

1

4

∑

a,b,x,y

δa,yδb,x p(ab|xy) > 1− 1

d+ 1

is not a process behaviour for process matrices with total dimension dAIdAOdBIdBO =

d.

Proof. It follows by definition that all process behaviours are valid behaviours, we
now show that there exist valid behaviours that are not process behaviours for any
finite dimension. Assume that there exists a process matrix W with total dimension
dAIdAOdBIdBO = d and instruments {Aa|x}, {Bb|y} such that

p(ab|xy) = Tr
[
W (Aa|x ⊗Bb|y)

]
(B.10)

and

psucc
GYNI =

1

4

∑

abxy

δayδbxp(ab|xy) > 1− 1

d+ 1
, (B.11)

where δij is the Kronecker’s delta function and psucc
GYNI is the probability of success

achieved by this behaviour in the GYNI causal game (defined in ref. [69]).
Let then we define the GYNI operator

M :=
1

4

∑

abxy

δayδbxAa|x ⊗Bb|y, (B.12)

so that

psucc
GYNI = Tr(WM). (B.13)

Since W is a valid process matrix, it admits the decomposition

W = AOW + BOW − AOBOW, (B.14)

and by linearity we have

psucc
GYNI = Tr(AOWM) + Tr(BOWM)− Tr(AOBOWM). (B.15)
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Since AOW and BOW are causally ordered process matrices, they cannot violate
the GYNI causal inequality and respect [69]

Tr(MW sep) ≤ 1

2
. (B.16)

Also, it follows from lemma B.3 that

− Tr(AOBOWM) ≤ −1

d
Tr(WM). (B.17)

We than have

psucc
GYNI = Tr(WM) = Tr(AOWM) + Tr(BOWM)− Tr(AOBOWM) (B.18)

≤ 1

2
+

1

2
− 1

d
Tr(WM), (B.19)

which implies

psucc
GYNI = Tr(WM) ≤ 1− 1

d+ 1
, (B.20)

and bounds the maximal attainable value for process behaviours on the GYNI causal
game, which can attain psucc

GYNI = 1 for general behaviours.
Note that this robust bound only holds for finite dimensional process matrices. In

ref. [130], the authors have shown that a process matrix W cannot attain the exact
maximal success probability in the GYNI causal game i.e., psucc

GYNI = Tr(WM) = 1,
even with infinite dimension.

Theorem 2.4. All process assemblages are valid assemblages, however, not all valid
assemblages are process assemblages.

In particular, in the scenario where Alice has dichotomic inputs and outputs, the
general assemblage {wa|x} given by wa|x = |x〉〈x| ⊗ |a〉〈a| is not a process assemblage.

Proof. First we see that wa|x = |x〉〈x| ⊗ |a〉〈a| is a valid assemblage, since |x〉〈x| ⊗
|a〉〈a| ≥ 0 for all a, x, and

∑

a

wa|x = |x〉〈x| ⊗ 1 ∀ x. (B.21)

Assume then that {wa|x} is a process assemblage. Then, there must exist a
process matrix W and instruments {Aa|x} such that

wa|x = TrAIAO
[(
Aa|x ⊗ 1

)
W
]
, (B.22)

and that for any set of instruments {Bb|y},

p(ab|xy) = Tr(Bb|ywa|x) = Tr
[(
Aa|x ⊗Bb|y

)
W
]
. (B.23)
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Consider now the valid set of instruments given by

Bb|y = |b〉〈b| ⊗ |y〉〈y|. (B.24)

Behaviours obtained by this set of instruments and the assemblage {wa|x} would be

p(ab|xy) = Tr(Bb|ywa|x) (B.25)

= δb,xδa,y ∀ a, b, x, y, (B.26)

which according to theorem 2.2 cannot be obtained by any finite dimensional process
matrix, contradicting the hypothesis that {wa|x} is a process assemblage.

B.2 Behaviours and assemblages attainable by causally

separable process matrices

In this appendix we prove lemma 2.1 and lemma 2.2, which we restate for the
convenience of the reader.

Lemma 2.1. A general behaviour is causal if and only if it is a process behaviour
that can be obtained by a causally separable process matrix.

Proof. To prove the if part we show that causally separable process matrices can
only give rise to causal behaviours, regardless of the instruments performed on them.

We start by showing that a behaviour {p(ab|xy)} that comes from acting with any
sets of instruments {Aa|x} and {Bb|y} on a process matrix that is causally ordered
from Alice to BobWA≺B is also causally ordered from Alice to Bob. Given {p(ab|xy)}
that arises from WA≺B according to

p(ab|xy) = Tr
[
(Aa|x ⊗Bb|y) W

A≺B] (B.27)

= Tr
[
(AAIAOa|x ⊗BBIBO

b|y ) WAIAOBI ⊗ 1BO

dBO

]
, (B.28)

one can check that Alice’s marginal probability distributions,

∑

b

p(ab|xy) =
∑

b

Tr
[
(AAIAOa|x ⊗BBIBO

b|y ) WAIAOBI ⊗ 1BO

dBO

]
(B.29)

= Tr
[
(AAIAOa|x ⊗ 1BI )(WAIAOBI ) TrBO(1AIAO ⊗ 1

dBO

∑

b

BBIBO
b|y )

]

(B.30)

=
1

dBO
Tr
[
(AAIAOa|x ⊗ 1BI )WAIAOBI

]
, (B.31)
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are independent of y for all a, x. Hence, p(ab|xy) = pA≺B(ab|xy) is causally ordered
from Alice to Bob. Equivalently, WB≺A implies {pB≺A(ab|xy)}.

Hence, behaviours that come from a causally separable process matrix according
to

p(ab|xy) = Tr
[
(Aa|x ⊗Bb|y) W

causal] (B.32)

= Tr
[
(Aa|x ⊗Bb|y) (qWA≺B + (1− q)WB≺A)

]
(B.33)

= qpA≺B(ab|xy) + (1− q)pB≺A(ab|xy) (B.34)

are causal by definition. In other words, causally separable process matrices can only
generate causal behaviours.

To prove the only if part we show that all behaviours that are causal can be
reproduced by performing some instruments on some causally separable process
matrix.

Given a causal behaviour {pcausal(ab|xy)}, according to Bayes’ rule and the non-
signalling principle, one can decompose it in the following form:

pcausal(ab|xy) =q pA≺B(ab|xy) + (1− q)pB≺A(ab|xy) (B.35)

=q pA≺BA (a|x)pA≺BB (b|axy) + (1− q)pB≺AB (b|y)pB≺AA (a|bxy), (B.36)

so that {pA≺BA (a|x)}, {pA≺BB (b|axy)}, {pB≺AB (b|y)}, {pB≺AA (a|bxy)}, and q are given
quantities.

First, for the contribution that is causally ordered from Alice to Bob, pA≺B(ab|xy),
we construct instruments {AA≺Ba|x } and {BA≺B

b|y } according to

AA≺Ba|x = 1AI ⊗ pA≺BA (a|x)|ax〉〈ax|AO (B.37)

BA≺B
b|y =

∑

a,x

pA≺BB (b|axy)|ax〉〈ax|BI ⊗ 1BO

dBO
, (B.38)

and process matrix

WA≺B =
1AI

dAI
⊗ |Φ+〉〈Φ+|AOBI ⊗ 1BO , (B.39)

where |Φ+〉〈Φ+| is the Choi operator of the identity channel, with |Φ+〉 =
∑d

i=1 |ii〉.
It can be checked that

Tr
[
(AA≺Ba|x ⊗BA≺B

b|y ) WA≺B
]

= pA≺BA (a|x)pA≺BB (b|axy) (B.40)

= pA≺B(ab|xy), (B.41)
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for every a, b, x, y. Hence, such construction can recover any behaviour that is
causally ordered from Alice to Bob. Analogously, for {pB≺A(ab|xy)}, one has

AB≺Aa|x =
∑

b,y

pB≺AA (a|bxy)|by〉〈by|AI ⊗ 1AO

dAO
, (B.42)

BB≺A
b|y = 1BI ⊗ pB≺AB (b|y)|by〉〈by|BO (B.43)

WB≺A =
1BI

dBI
⊗ |Φ+〉〈Φ+|BOAI ⊗ 1AO . (B.44)

Now, for causal behaviours, which are convex combinations of causally ordered
behaviours, we construct instruments and process matrices in such a way that each
causal order acts on a complementary subspace. That is, we define the valid process
matrix

W causal = qWA≺B ⊗ |00〉〈00|A
′
IB
′
I + (1− q)WB≺A ⊗ |11〉〈11|A

′
IB
′
I , (B.45)

by extending Alice’s and Bob’s input spaces according toHAI(BI) → HAI(BI)⊗HA
′
I(B
′
I),

and we define the valid instruments

Aa|x = AA≺Ba|x ⊗ |0〉〈0|A
′
I + AB≺Aa|x ⊗ |1〉〈1|A

′
I (B.46)

Bb|y = BA≺B
b|y ⊗ |0〉〈0|B

′
I +BB≺A

b|y ⊗ |1〉〈1|B
′
I . (B.47)

In this way, it is easy to check that orthogonal terms cancel out and we arrive at

Tr
[
(Aa|x ⊗Bb|y) W

causal] = qpA≺B(ab|xy) + (1− q)pB≺A(ab|xy) (B.48)

= pcausal(ab|xy), (B.49)

recovering any causal behaviour.

Lemma 2.2. A general assemblage is causal if and only if it is a process assemblage
that can be obtained from a causally separable process matrix.

Proof. To prove the if part we show that a causally separable process matrix can
only give rise to a causal assemblage regardless of Alice’s sets of instruments. First
we show that an assemblage that is generated by a process matrix that is ordered
from Alice to Bob is also ordered from Alice to Bob.

BOwa|x =BO TrA
[
(Aa|x ⊗ 1)WA≺B] (B.50)

= TrA
[
(Aa|x ⊗ 1)BOW

A≺B] (B.51)

= TrA
[
(Aa|x ⊗ 1)WA≺B] (B.52)

= wa|x, (B.53)
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since WA≺B =BO W
A≺B. Hence, {wa|x} = {wA≺Ba|x } is causally ordered from Alice to

Bob.

Next, we show that an assemblage that is generated by a process matrix that is
ordered from Bob to Alice is also ordered from Bob to Alice.

∑

a

wa|x =
∑

a

TrA
[
(Aa|x ⊗ 1)WB≺A] (B.54)

= TrA
[
(
∑

a

Aa|x ⊗ 1)AOW
B≺A

]
(B.55)

= TrAI
[
WBIBOAI (TrAO

∑

a

Aa|x ⊗ 1BIBO)
]

(B.56)

= TrAI
[
WBIBOAI (1AI ⊗ 1BIBO)

]
, (B.57)

which is independent of x. Hence, {wa|x} = {wB≺Aa|x } is causally ordered from Bob to
Alice.

Consequently, assemblages that come from causally separable process matrices
according to

wa|x = TrA
[
(Aa|x ⊗ 1)W causal] (B.58)

= TrA
[
(Aa|x ⊗ 1) (qWA≺B + (1− q)WB≺A)

]
(B.59)

= qwA≺Ba|x + (1− q)wB≺Aa|x (B.60)

are causal by definition. In other words, causally separable process matrices can only
generate causal assemblages.

To prove the only if part we show that all assemblages that are causal can be
reproduced by performing some instruments on some causally separable process
matrix. Given a causal assemblage, it can be decomposed in {wA≺Ba|x } and {wB≺Aa|x }
with some convex weight q.

With the contribution that is causally ordered from Alice to Bob, {wA≺Ba|x }, one
can write its elements as wA≺Ba|x = σBIa|x⊗ 1BO , where Tr

∑
a σa|x = 1. We show that it

can be recovered by instruments

AA≺Ba|x = 1AI ⊗ σT AOa|x , (B.61)

where T is the transposition in the computational basis of HAO , and a causally
ordered process matrix from Alice to Bob

WA≺B =
1AI

dAI
⊗ |Φ+〉〈Φ+|AOBI ⊗ 1BO , (B.62)
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where |Φ+〉〈Φ+| is the Choi operator of the identity channel, with |Φ+〉 =
∑d

i=1 |ii〉.
Indeed,

TrAIAO
[
(AA≺Ba|x ⊗ 1BIBO) WA≺B

]
= TrAO

[
(σT AOa|x ⊗ 1BIBO)(|Φ+〉〈Φ+|AOBI ⊗ 1BO)

]

(B.63)

= σBIa|x ⊗ 1BO (B.64)

= wA≺Ba|x . (B.65)

On the other hand, with the contribution that is causally ordered from Bob to
Alice, {wB≺Aa|x }, one can write

∑
aw

B≺A
a|x = ρBI ⊗ 1BO , where TrρBI = 1. Since ρ ≥ 0,

it can be written as ρ =
∑

i µi|i〉〈i|, which is purified by |ψ〉 =
∑

i

√
µi|ii〉. We show

that {wB≺Aa|x } can be recovered by instruments {Aa|x},

AB≺Aa|x = (ρ−
1
2
A
′
I ⊗ 1A

′′
I )wT AIa|x (ρ−

1
2
A
′
I ⊗ 1A

′′
I )⊗ 1AO

dAO
, (B.66)

where ρ−1 is the inverse of ρ on its support, HAI = HA
′
I ⊗HA

′′
I , T is the transposition

in the {|i〉}i basis, and a causally ordered process matrix from Bob to Alice

WB≺A = |ψ〉〈ψ|BIA
′
I ⊗ |Φ+〉〈Φ+|BOA

′′
I ⊗ 1AO . (B.67)

Indeed,

TrAIAO
[
(AB≺Aa|x ⊗ 1BIBO) WB≺A

]
= wB≺Aa|x . (B.68)

Finally, just like in the proof of lemma 2.1, by allowing the different causal
orders to act in complementary subspaces, we can recover any convex combinations
of causally ordered assemblages, i.e., causal assemblages, from causally separable
process matrices.

B.3 Characterization theorems for general and causal

assemblages

In this appendix, we prove the equivalence between the definition induced by
eq. (2.24) and definition 2.5, that is, we show that the most general set of operators
{wa|x} that satisfies

p(ab|xy) = Tr(Bb|ywa|x) ∀ a, b, x, y, (B.69)

where {p(ab|xy)} is a general behaviour and {Bb|y} is a valid set of instruments, is a
general assemblage of definition 2.5.
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Next, we prove this equivalence to hold also between the definition induced by
eq. (2.29) and definition 2.6, that is, we show that the most general set of operators
{wA≺Ba|x } that satisfies

pA≺B(ab|xy) = Tr(Bb|yw
A≺B
a|x ) ∀ a, b, x, y, (B.70)

where {pA≺B(ab|xy)} is a behaviour that is causally ordered from Alice to Bob and
{Bb|y} is a valid set of instruments, is an assemblage that is causally ordered from
Alice to Bob, of definition 2.6, end equivalently from Bob to Alice.

Let us begin with the conditions of a general assemblage.
Non-negativity yields

p(ab|xy) ≥ 0 ∀Bb|y ≥ 0 ⇐⇒ wa|x ≥ 0 ∀ a, x, (B.71)

while normalization yields
∑

a,b

p(ab|xy) =
∑

a,b

Tr(Bb|ywa|x) = 1. (B.72)

Let By =
∑

bBb|y be the Choi operator of a CPTP map. Then, following ref. [46],
we can parametrize it according to

By =[1−BO] Y +
1
dBO

, (B.73)

where Y is an hermitian operator and we define the map [1−BO]M = M −BO M .
Applying the parametrization, it follows that

∑

a

Tr
[(

[1−BO]Y +
1
dBO

)
wa|x

]
= 1. (B.74)

If Y = 0, we have

Tr
(

1

dBO

∑

a

wa|x

)
= 1 ⇐⇒ Tr

∑

a

wa|x = dBO . (B.75)

If Y 6= 0, and using eq. (B.75), we have

Tr
(

[1−BO]Y
∑

a

wa|x

)
= 0. (B.76)

Due to the self-duality of the map [1−BO]·,

Tr
(

[1−BO]Y
∑

a

wa|x

)
= Tr

(
Y [1−BO]

∑

a

wa|x

)
= 0 ∀Y ⇐⇒ [1−BO]

∑

a

wa|x = 0.

(B.77)
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Hence, ∑

a

wa|x =BO

∑

a

wa|x. (B.78)

Together, eqs. (B.71), (B.75) and (B.78) define a general assemblage. It is simple
to verify that general assemblages lead to valid probability distributions for all sets
of instruments.

For assemblages that are causally ordered from Alice to Bob, we require first
that they satisfy the conditions of a general assemblage, in order to lead to valid
behaviours, and second that Alice’s marginal probability distributions

∑

b

pA≺B(ab|xy) = Tr
(∑

b

Bb|yw
A≺B
a|x

)
(B.79)

are independent of y, so that the resulting behaviour is causally ordered from Alice
to Bob. The implication is that

∑

b

pA≺B(ab|xy) = Tr
[(

[1−BO]Y +
1
dBO

)
wA≺Ba|x

]
(B.80)

= Tr
(
[1−BO]Y w

A≺B
a|x

)
+

1

dBO
Tr
(
wA≺Ba|x

)
. (B.81)

will be independent of y if and only if

Tr
(
[1−BO]Y w

A≺B
a|x

)
= Tr

(
Y [1−BO]w

A≺B
a|x

)
= 0 ∀ Y ⇐⇒ [1−BO]w

A≺B
a|x = 0. (B.82)

Hence,
wA≺Ba|x =BO w

A≺B
a|x ∀ a, x. (B.83)

Finally, for an assemblage that is causally ordered from Bob to Alice, it is also
required that they satisfy the conditions of a general assemblage. To guarantee that
Bob’s marginal probability distributions

∑

a

pA≺B(ab|xy) = Tr
(
Bb|y

∑

a

wA≺Ba|x

)
(B.84)

are independent of x, it is necessary and sufficient that
∑

a

wB≺Aa|x =
∑

a

wB≺Aa|x′ ∀ b, x, x′, y. (B.85)

Together, eqs. (B.83) and (B.85) and the conditions of general assemblages define
causally ordered assemblages. It is simple to verify that causal assemblages lead to
causal probability distributions for all sets of instruments.

The technique used here to arrive at the definitions of general and causal as-
semblages is the same that will be used in all tripartite scenarios to define their
respective general and causal assemblages.
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B.4 Causally nonseparable process matrices that cannot be

certified in a semi-device-independent way

In this section we present the proof of theorem 2.6 from the main text.

Theorem 2.6 (Device-dependent certifiable, semi-device-independent noncertifiable
process matrix). There exist causally nonseparable process matrices that, for any
sets of instruments on Alice’s side, always give rise to causal assemblages. That
is, causally nonseparable process matrices that cannot be certified in a semi-device-
independent way.

In particular, let W ∈ L(HAIAOBIBO) be a process matrix and W TA be the partial
transposition of W with respect to some basis in L(HAIAO) for Alice. If W TA is
causally separable, the assemblages generated by wa|x = TrA[(Aa|x⊗1B)W ] are causal
for every set of instruments {Aa|x}.

Proof. We start our proof by showing that if W TA is causally separable then the
assemblages generated by wa|x = TrA[(Aa|x ⊗ 1B)W ] are causal for every set of
instruments {Aa|x}. Straightforward calculations shows that the transposition map
is self-adjoint (i.e. Tr[AT B] = Tr[ABT ], ∀ A,B), in particular, it is true that

TrA
[
(Aa|x ⊗ 1)W TA

]
= TrA

[
(ATa|x ⊗ 1)W

]
∀ Aa|x. (B.86)

Now notice that every instrument can be written as a transposition of another
instrument and we can define new valid instruments via A′a|x := ATa|x, which allows us
to recover any assemblages generated by W and instruments {Aa|x} with a causally
separable process matrix. More precisely, since (ATa|x)

T = Aa|x, the mathematical
identities

wa|x = TrA[(Aa|x ⊗ 1)W ] (B.87)

= TrA
[
((ATa|x)

T ⊗ 1)W
]

(B.88)

= TrA
[
(ATa|x ⊗ 1)W TA

]
(B.89)

= TrA[(A′a|x ⊗ 1)W sep] (B.90)

provide an explicit decomposition for the assemblage {wa|x} in terms of a causally
separable process matrix and valid instruments.

We finish our proof by referring to ref. [134], which presents several examples
of process matrices W which are causally nonseparable but that W TA is causally
separable.
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B.5 Certification of tripartite process matrices

Here we generalize our approach to certification of indefinite causal order for
a tripartite scenario where a process matrix is shared between parties Alice, Bob,
and Charlie. In this particular tripartite scenario, Charlie is always in the future
of Alice and Bob, so we only study tripartite process matrices that have the causal
order (A,B) ≺ C, however, the causal order between Alice and Bob may or may
not be well defined. We will only consider this kind of tripartite scenario, the one
which is appropriate for the study of the quantum switch processes. A semi-device-
independent approach to more general tripartite scenarios, or multipartite scenarios,
may be derived, in principle, from a straightforward generalization of our particular
tripartite scenario. For more general multipartite scenarios under a device-dependent
approach, we refer the reader to ref. [193], and for device-independent, ref. [194].

In the following, we explicitly extend all concepts, definitions, and results from
the bipartite case presented in the main text to the tripartite case. We start by
defining certification in all 6 inequivalent scenarios that arise from making different
assumptions about the operations of each party: TTT (device-dependent), UUU
(device-independent), TTU, TUU, UTT, and UUT (semi-device-independent).

Definition B.9 (TTT (device-dependent) certification). Given a tripartite behaviour
{p(abc|xyz)} that arises from known instruments {Aa|x} and {Bb|y}, known POVMs
{M c|z}, and an unknown tripartite process matrix, one certifies that this process
matrix is causally nonseparable if, for some a, b, c, x, y, z,

p(abc|Aa|x , Bb|y,M c|z) 6= Tr
[
(Aa|x ⊗Bb|y ⊗M c|z)W

sep] , (B.91)

for all causally separable tripartite process matrices W sep.

Definition B.10 (UUU (device-independent) certification). Given a tripartite beha-
viour {p(abc|xyz)} that arises from unknown instruments and an unknown tripartite
process matrix, one certifies that this process matrix is causally nonseparable if, for
some a, b, c, x, y, z,

p(abc|xyz) 6= Tr
[
(Aa|x ⊗Bb|y ⊗Mc|z)W

sep] , (B.92)

for all causally separable tripartite process matrices W sep, all general instruments
{Aa|x} and {Bb|y}, and all general POVMs {Mc|z}. A process matrix certified in
such way is called UUU-noncausal, or device-independent noncausal.

Definition B.11 (TTU (semi-device-dependent) certification). Given a tripartite
behaviour {p(abc|xyz)} that arises from known instruments {Aa|x} and {Bb|y} on
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Alice’s and Bob’s side, unknown POVMs on Charlie’s side, and an unknown tripartite
process matrix, one certifies that this process matrix is causally nonseparable if, for
some a, b, c, x, y, z,

p(abc|Aa|x, Bb|y, z) 6= Tr
[
(Aa|x ⊗Bb|y ⊗Mc|z)W

sep] , (B.93)

for all causally separable tripartite process matrices W sep and all general POVMs
{Mc|z}. A process matrix certified in such way is called TTU-noncausal.

Definition B.12 (TUU (semi-device-dependent) certification). Given a tripartite
behaviour {p(abc|xyz)} that arises from known instruments {Aa|x} on Alice’s, un-
known instruments on Bob’s and Charlie’s side, and an unknown tripartite process
matrix, one certifies that this process matrix is causally nonseparable if, for some
a, b, c, x, y, z,

p(abc|Aa|x, y, z) 6= Tr
[
(Aa|x ⊗Bb|y ⊗Mc|z)W

sep] , (B.94)

for all causally separable tripartite process matrices W sep, all general instruments
{Bb|y}, and all general POVMs {Mc|z}. A process matrix certified in such way is
called TUU-noncausal.

Definition B.13 (UTT (semi-device-dependent) certification). Given a tripartite
behaviour {p(abc|xyz)} that arises from unknown instruments on Alice’s side, known
instruments {Bb|y} and {M c|z} on Bob’s and Charlie’s side, and an unknown tripartite
process matrix, one certifies that this process matrix is causally nonseparable if, for
some a, b, c, x, y, z,

p(abc|x ,Bb|y,M c|z) 6= Tr
[
(Aa|x ⊗Bb|y ⊗M c|z)W

sep] , (B.95)

for all causally separable tripartite process matrices W sep and all general instruments
{Aa|x}. A process matrix certified in such way is called UTT-noncausal.

Definition B.14 (UUT (semi-device-dependent) certification). Given a tripartite
behaviour {p(abc|xyz)} that arises from unknown instruments on Alice’s and Bob’s
side, known POVMs {M c|z} on Charlie’s side, and an unknown tripartite process
matrix, one certifies that this process matrix is causally nonseparable if, for some
a, b, c, x, y, z,

p(abc|x, y, M c|z) 6= Tr
[
(Aa|x ⊗Bb|y ⊗M c|z)W

sep] , (B.96)

for all causally separable tripartite process matrices W sep and all general instruments
{Aa|x} and {Bb|y}. A process matrix certified in such way is called UUT-noncausal.
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B.5.1 Device-dependent – TTT

Following ref. [46], a tripartite process matrix, with Charlie in the future of Alice
and Bob, is an operator W ∈ L(HAI ⊗HAO ⊗HBI ⊗HBO ⊗HCI ) that satisfies

W ≥ 0 (B.97)

Tr W = dAOdBO (B.98)

AIAOCIW =AIAOBOCI W (B.99)

BIBOCIW =AOBIBOCI W (B.100)

CIW =AOCI W +BOCI W −AOBOCI W. (B.101)

A tripartite process matrix WA≺B≺C is causally ordered from Alice to Bob to
Charlie if it satisfies

CIW
A≺B≺C =BOCI W

A≺B≺C (B.102)

BIBOCIW
A≺B≺C =AOBIBOCI W

A≺B≺C , (B.103)

and a tripartite process matrix WB≺A≺C is causally ordered from Bob to Alice to
Charlie if it satisfies

CIW
B≺A≺C =AOCI W

B≺A≺C (B.104)

AIAOCIW
B≺A≺C =AIAOBOCI W

B≺A≺C . (B.105)

A tripartite process matrix W sep is causally separable if it can be expressed as a
convex combination of causally ordered process matrices of the kind WA≺B≺C and
WB≺A≺C , i.e.,

W sep := qWA≺B≺C + (1− q)WB≺A≺C (B.106)

where 0 ≤ q ≤ 1 is a real number. A tripartite process matrix that does not satisfy
eq. (B.106) is called causally nonseparable.

Just as in the bipartite case, all causally nonseparable tripartite process matrices
can be certified in a device-dependent way for some choice of instruments, since
tomographically complete instruments allow for the full characterization of the
process matrix. Hence, theorem 2.1 also holds in the tripartite case.

B.5.2 Device-independent – UUU

A tripartite behaviour {p(abc|xyz)} is a set of joint probability distributions, that
is, a set in which each element p(abc|xyz) is a real number, such that

p(abc|xyz) ≥ 0 ∀ a, b, c, x, y, z (B.107)
∑

a,b,c

p(abc|xyz) = 1 ∀ x, y, z, (B.108)
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where a ∈ {1, . . . , OA}, b ∈ {1 . . . , OB}, and c ∈ {1 . . . , OC} label the outcomes and
x ∈ {1, . . . , IA}, y ∈ {1, . . . , IB}, and z ∈ {1, . . . , IC} label the inputs.

A tripartite behaviour in which Charlie is in the future of Alice and Bob is a
behaviour {p(abc|xyz)} that satisfies

∑

c

p(abc|xyz) =
∑

c

p(abc|xyz′) ∀ a, b, x, y, z, z′, (B.109)

that is, a behaviour whose Alice and Bob’s joint marginal does not depend on
Charlie’s inputs. We will only consider this type of behaviours and will refer to them
as simply tripartite behaviours.

A tripartite behaviour is called a tripartite process behaviour if there exist a
tripartite process matrix WAIAOBIBOCI , sets of instruments {AAIAOa|x } and {BBIBO

b|y },
and a set of POVMs {MCI

c|z } such that

pQ(abc|xyz) = Tr
[
(AAIAOa|x ⊗BBIBO

b|y ⊗MCI
c|z ) WAIAOBIBOCI

]
∀ a, b, c, x, y, z.

(B.110)
Just like in the bipartite case, it can be shown that the tripartite process matrix

is the most general operator that leads to valid tripartite behaviours when taken
the trace with product instruments. Additionally, since not all bipartite behaviours
can be realized by process matrices and the bipartite case is a particular case of the
tripartite case, not all tripartite behaviours can be realized by process matrices as
well. Hence, theorem 2.2 also holds in the tripartite case.

A tripartite behaviour {pA≺B≺C(abc|xyz)} is causally ordered from Alice to Bob
to Charlie if Alice’s marginals do not depend on the inputs of Bob and Charlie, that
is,

∑

b,c

pA≺B≺C(abc|xyz) =
∑

b,c

pA≺B≺C(abc|xy′z′) ∀ a, x, y, y′, z, z′, (B.111)

and a tripartite behaviour {pB≺A≺C(abc|xyz)} is causally ordered from Bob to Alice
to Charlie if Bob’s marginals do not depend on the inputs of Alice and Charlie, that
is,

∑

a,c

pB≺A≺C(abc|xyz) =
∑

a,c

pB≺A≺C(abc|x′yz′) ∀ a, x, x′, y, z, z′. (B.112)

A tripartite behaviour {pcausal(abc|xyz)} is causal if it can be written as a convex
combination of causally ordered behaviours of the kind {pA≺B≺C(abc|xyz)} and
{pB≺A≺C(abc|xyz)}, i.e.,

pcausal(abc|xyz) := qpA≺B≺C(abc|xyz) + (1− q)pB≺A≺C(abc|xyz), (B.113)

where 0 ≤ q ≤ 1 is a real number. A tripartite behaviour that does not satisfy
eq. (B.113) is called noncausal.
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Lemma B.4. A tripartite behaviour is causal if and only if it is a tripartite process
behaviour that can be obtained by a causally separable tripartite process matrix.

Proof. It can be straightforwardly checked that a behaviour that comes from a
causally separable process matrix is causal, the tripartite case being analogous to
the bipartite case (see lemma 2.1). To prove that all causal tripartite behaviours
can be reproduced by a causally separable tripartite process matrix, we provide
the explicit construction of instruments and process matrix below. Given a causal
tripartite behaviour {pcausal(abc|xyz)}, one can write its decompostion into definite
causal orders using {pA≺B≺C(abc|xyz)}, {pB≺A≺C(abc|xyz)}, and q. According to
Bayes’ rule and the nonsignaling principle we can calculate the quantities

pA≺B≺C(abc|xyz) = pA≺B≺CA (a|xyz)pA≺B≺CB (b|axyz)pA≺B≺CC (c|abxyz) (B.114)

= pA≺B≺CA (a|x)pA≺B≺CB (b|axy)pA≺B≺CC (c|abxyz). (B.115)

We use them to define instruments

AA≺B≺Ca|x = 1AI ⊗ pA≺B≺CA (a|x)|ax〉〈ax|AO (B.116)

BA≺B≺C
b|y =

∑

a,x

pA≺B≺CB (b|axy)|ax〉〈ax|BI ⊗ |abxy〉〈abxy|BO (B.117)

MA≺B≺C
c|z =

∑

a,b,x,y

pA≺B≺CC (c|abxyz)|abxy〉〈abxy|CI , (B.118)

and the process matrix

WA≺B≺C =
1AI

dAI
⊗ |Φ+〉〈Φ+|AOBI ⊗ |Φ+〉〈Φ+|BOCI . (B.119)

One can check that

Tr
[
(AA≺B≺Ca|x ⊗BA≺B≺C

b|y ⊗MA≺B≺C
c|z ) WA≺B≺C

]
= (B.120)

= pA≺B≺CA (a|x)pA≺B≺CB (b|axy)pA≺B≺CC (c|abxyz) (B.121)

= pA≺B≺C(abc|xyz). (B.122)

Equivalently, the instruments and process matrix for the causal order B ≺ A ≺ C

can be constructed, and by allowing each order to act on a complementary input
subspace, just like in the proof of lemma 2.1, all causal tripartite behaviours can be
recovered.

Theorem B.8. A tripartite process matrix is certified to be causally nonseparable
in a device-independent way if and only if it can generate a noncausal tripartite
behaviour for some choice of instruments for Alice and Bob and some choice of
POVMs for Charlie.

The proof is analogous to theorem 2.3.
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B.5.3 Semi-device-independent – TTU

We start the first semi-device-independent tripartite scenario by defining as-
semblages in the TTU scenario using the same reasoning and motivation as the
bipartite case, explained in the main text.

Definition B.15 (Process TTU-assemblage). A process TTU-assemblage is a set
of operators {wQc|z}, w

Q
c|z ∈ L(HAIAO ⊗ HBIBO), for which there exists a tripartite

process matrix WAIAOBIBOCI and a set of POVMs {MCI
c|z } such that

wQc|z = TrCI
[
(1AIAO ⊗ 1BIBO ⊗MCI

c|z )WAIAOBIBOCI
]
, (B.123)

for all c, z.

Definition B.16 (General TTU-assemblage). A general TTU-assemblage is a set
of operators {wc|z}, wc|z ∈ L(HAIAO ⊗HBIBO), that satisfies

wc|z ≥ 0 ∀ c, z (B.124)
∑

c

wc|z = WAIAOBIBO ∀ z, (B.125)

where WAIAOBIBO is a valid bipartite process matrix.

Intuitively, behaviours are extracted from TTU-assemblages according to

p(abc|xyz) = Tr
[
(Aa|x ⊗Bb|y)wc|z

]
∀ a, b, c, x, y, z. (B.126)

Contrarily to the bipartite case, for which we proved that not all general as-
semblages can be realized by process matrices (theorem 2.4), for the TTU scenario,
we prove that general and process TTU-assemblages are actually equivalent.

Theorem B.9. A general TTU-assemblage is valid if and only if it is a process
TTU-assemblage.

Proof. By substituting the definition of a tripartite process matrix and POVMs into
eq. (B.123) it is easy to check that the resulting assemblage satisfies definition B.16.
To show that any valid TTU-assemblage can be obtained with process matrices
and instruments, we give the following explicit construction. Given a general TTU-
assemblage {wc|z} and the general bipartite process matrixW =

∑
cwc|z, we construct

Charlie’s POVMs {Mc|z} according to

Mc|z = W− 1
2wTc|zW

− 1
2 , ∀ c, z, (B.127)

where the transpose T is taken in the basis in which W is diagonal. Notice that this
implies dim(HCI ) = dim(HAIAO ⊗HBIBO) for this particular construction. The sum
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∑
cMc|z = W− 1

2

∑
cw

T
c|zW

− 1
2 = W− 1

2WW− 1
2 = 1 for all z guarantees it is a valid

set of POVMs.
Now, by writing the process matrix W in its diagonal basis, W =

∑
ij µij|ij〉〈ij|,

we can define its purification

|WABC〉 =
∑

ij

√
µij|ij ij〉. (B.128)

The object WABC = |WABC〉〈WABC | is a well defined tripartite process matrix.
This is true particularly because the dimension of Charlie’s output space is 1, that
is, because it is in the future of Alice and Bob, and follows from the fact that
TrCWABC = W . Hence,

TrC
[
(1A ⊗ 1B ⊗MC

c|z)W
ABC

]
= TrC

[
(1AB ⊗W− 1

2wTc|zW
− 1

2 )WABC
]

(B.129)

= wc|z, (B.130)

for all c, z. This concludes the proof that all TTU-assemblages can be realized with
valid tripartite process matrices and a set of POVMs for Charlie.

We now define our notion of causality for TTU-assemblages.

Definition B.17 (Causal TTU-assemblage). A TTU-assemblage is causally ordered
from Alice to Bob to Charlie if it satisfies

∑

c

wA≺B≺Cc|z = WA≺B ∀ z, (B.131)

where WA≺B is a bipartite process matrix causally ordered from Alice to Bob, and
equivalently from Bob to Alice.

A TTU-assemblage {wcausal
c|z } is causal if it can be expressed as a convex combina-

tion of causally ordered TTU-assemblages, i.e.,

wcausal
c|z := qwA≺B≺Cc|z + (1− q)wB≺A≺Cc|z ∀ c, z, (B.132)

where 0 ≤ q ≤ 1 is a real number. A TTU-assemblage that does not satisfy eq. (B.132)
is called a noncausal TTU-assemblage.

Notice that one can decide whether a TTU-assemblage is causal by means of
SDP.

Lemma B.5. A TTU-assemblage is causal if and only if it is a process TTU-
assemblage that can be obtained from a causal tripartite process matrix.
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The proof is analogous to the one in theorem B.9. Notice that in this case WABC

will be the purification of a causally ordered process matrix, and therefore, also
causally ordered.

Theorem B.10. A tripartite process matrix is certified to be causally nonseparable
in a semi-device-independent TTU way if and only if it can generate a noncausal
TTU-assemblage for some choice of POVMs for Charlie.

The proof is analogous to theorem 2.5.

B.5.4 Semi-device-independent – TUU

The other semi-device-independent cases follow analogously. We continue with
the TUU scenario.

Definition B.18 (Process TUU-assemblage). A process TUU-assemblage is a set
of operators {wbc|yz}, wbc|yz ∈ L(HAIAO), for which there exist a tripartite process
matrix WAIAOBIBOCI , a set of instruments {BBIBO

b|y }, and a set of POVMs {MCI
c|z }

such that

wQbc|yz = TrBIBOCI
[
(1AIAO ⊗BBIBO

b|y ⊗MCI
c|z )WAIAOBIBOCI

]
, ∀ b, c, y, z. (B.133)

Definition B.19 (General TUU-assemblage). A general TUU-assemblage is a set
of operators {wbc|yz}, wbc|yz ∈ L(HAIAO), that satisfies

wbc|yz ≥ 0 ∀ b, c, y, z (B.134)

Tr
∑

b,c

wbc|yz = dAO ∀ y, z (B.135)

∑

c

wbc|yz =
∑

c

wbc|yz′ ∀ b, y, z, z′ (B.136)

∑

b,c

wbc|yz =AO

∑

b,c

wbc|yz ∀ y, z. (B.137)

Intuitively, behaviours are extracted from TUU-assemblages according to

p(abc|xyz) = Tr
(
Aa|x wbc|yz

)
∀ a, b, c, x, y, z. (B.138)

In the bipartite case, we have proven that not all general bipartite assemblages
can be realized by process matrices (are process bipartite assemblages), while in the
previous tripartite case, TTU, we have proven that all general TTU-assemblages can
indeed be realized by process matrices (are process TTU-assemblages). However, in
this tripartite scenario, TUU, as well as in the remaining cases, UTT and UUT, it is
not clear whether all general TUU-, UTT-, and UUT-assemblages can be realized by
process matrices. We leave this problem as an open question.
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Nevertheless, all process TUU-assemblages are valid general TUU-assemblages.
We now define our notion of causality for TUU-assemblages.

Definition B.20 (Causal TUU-assemblage). A TUU-assemblage is causally ordered
from Alice to Bob to Charlie if it satisfies

∑

b,c

wA≺B≺Cbc|yz =
∑

b,c

wA≺B≺Cbc|y′z′ ∀ y, y′, z, z′, (B.139)

and from Bob to Alice to Charlie if it satisfies
∑

c

wB≺A≺Cbc|yz =AO

∑

c

wB≺A≺Cbc|yz ∀ b, y, z. (B.140)

A TUU-assemblage {wcausal
bc|yz } is causal if it can be expressed as a convex combina-

tion of causally ordered TUU-assemblages, i.e.,

wcausal
bc|yz := qwA≺B≺Cbc|yz + (1− q)wB≺A≺Cbc|yz ∀ b, c, y, z, (B.141)

where 0 ≤ q ≤ 1 is a real number. A TUU-assemblage that does not satisfy eq. (B.141)
is called a noncausal TUU-assemblage.

Notice that one can decide whether a TUU-assemblage is causal by means of an
SDP.

All causally separable tripartite process matrices lead to causal TUU-assemblages,
for whatever choice of instruments. Whether all causal TUU-assemblages can be
written in terms of causally separable process matrices is not clear, although for the
particular case of assemblages that are causally ordered from Alice to Bob to Charlie,
we can show this to be the case.

Here we present our explicit construction of any TUU-assemblage that is causally
ordered from Alice to Bob to Charlie by a tripartite process matrix that is causally
ordered from Alice to Bob to Charlie.

Given a TUU-assemblage {wA≺B≺Cbc|yz }, we can define the state ρ such that
∑

b,cw
A≺B≺C
bc|yz

= ρAI ⊗ 1AO . Since ρ ≥ 0 it can be written as ρ =
∑

i µi|i〉〈i|, which can be purified
by |psi〉 =

∑
i

√
µi|ii〉. Then, let {BA≺B≺C

b|y } and {MA≺B≺C
c|z } be instruments

BA≺B≺C
b|y = 1BI ⊗ |by〉〈by|BO (B.142)

MA≺B≺C
c|z =

∑

b,y

(
ρ−

1
2
C
′
I ⊗ 1C

′′
I

)
w
T A≺B≺C C

′
IC
′′
I

bc|yz

(
ρ−

1
2
C
′
I ⊗ 1C

′′
I

)
⊗ |by〉〈by|C

′′′
I ,

(B.143)

where ρ−1 be the inverse of ρ on its support, the transpose T is taken on the {|i〉}i
basis and HCI = HC

′
I ⊗HC

′′
I ⊗HC

′′
I . Let

WA≺B≺C = |ψ〉〈ψ|C
′
IAI ⊗ |Φ+〉〈Φ+|C

′′
I AO ⊗ 1BI

dBI
⊗ |Φ+〉〈Φ+|C

′′′
I BO (B.144)
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be a tripartite process matrix that is causally ordered from Alice to Bob to Charlie.
Then, it is true that the assemblage {wA≺Bbc|yz } can be recovered by

TrBIBOCI
[
(1A ⊗BA≺B≺C

b|y ⊗MA≺B≺C
c|z )WA≺B≺C

]
= wA≺B≺Cbc|yz . (B.145)

B.5.5 Semi-device-independent – UTT

Here we detail our concepts and definitions for the UTT scenario.

Definition B.21 (Process UTT-assemblage). A process UTT-assemblage is a set of
operators {wa|x}, wa|x ∈ L(HBIBO ⊗HCI ), for which there exist a tripartite process
matrix WAIAOBIBOCI and a set of instruments {AAIAOa|x } such that

wQa|x = TrAIAO
[
(AAIAOa|x ⊗ 1BIBO ⊗ 1CI )WAIAOBIBOCI

]
, ∀ a, x. (B.146)

Definition B.22 (General UTT-assemblage). A general UTT-assemblage is a set
of operators {wa|x}, wa|x ∈ L(HBIBO ⊗HCI ), that satisfies

wa|x ≥ 0 ∀ a, x (B.147)

Tr
∑

a

wa|x = dBO ∀ x (B.148)

CI

∑

a

wa|x =BOCI

∑

a

wa|x ∀ x. (B.149)

Intuitively, behaviours are extracted from UTT-assemblages according to

p(abc|xyz) = Tr
[
wa|x(Bb|y ⊗Mc|z)

]
∀ a, b, c, x, y, z. (B.150)

Definition B.23 (Causal UTT-assemblage). A UTT-assemblage is causally ordered
from Alice to Bob to Charlie if it satisfies

CIw
A≺B≺C
a|x =BOCI w

A≺B≺C
a|x ∀ a, x, (B.151)

and from Bob to Alice to Charlie if it satisfies

CI

∑

a

wB≺A≺Ca|x =CI

∑

a

wB≺A≺Ca|x′ ∀ x, x′. (B.152)

A UTT-assemblage {wcausal
a|x } is causal if it can be expressed as a convex combina-

tion of causally ordered UTT-assemblages, i.e.,

wcausal
a|x := qwA≺B≺Ca|x + (1− q)wB≺A≺Ca|x ∀ a, x, (B.153)

where 0 ≤ q ≤ 1 is a real number. A UTT-assemblage that does not satisfy eq. (B.153)
is called a noncausal UTT-assemblage.
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Notice that one can decide whether a UTT-assemblage is causal by means of an
SDP.

It is not clear whether all general UTT-assemblages can be realized by tripart-
ite process matrices nor whether all causal UTT-assemblages can be realized by
causally separable tripartite process matrices. Nevertheless, the set of general UTT-
assemblages is an outer approximation of the set of process UUT-assemblages and
the set of causal UUT-assemblages is an outer approximation of the set of process
UTT-assemblages that come from causally separable process matrices. What is not
clear is whether these approximations are tight.

B.5.6 Semi-device-independent – UUT

The final tripartite semi-device independent scenario studied in this work is the
UUT scenario.

Definition B.24 (Process UUT-assemblage). A process UUT-assemblage is a set of
operators {wab|xy}, wab|xy ∈ L(HCI ), for which there exist a tripartite process matrix
WAIAOBIBOCI and sets of instruments {AAIAOa|x }, {BBIBO

b|y } such that

wQab|xy = TrAIAOBIBO
[
(AAIAOa|x ⊗BBIBO

b|y ⊗ 1CI )WAIAOBIBOCI
]
, ∀ a, b, x, y.

(B.154)

Definition B.25 (General UUT-assemblage). A general UUT-assemblage is a set
of operators {wab|xy}, wab|xy ∈ L(HCI ), that satisfies

wab|xy ≥ 0 ∀ a, b, x, y (B.155)

Tr
∑

a,b

wab|xy = 1 ∀ x, y. (B.156)

Intuitively, behaviours are extracted from UUT-assemblages according to

p(abc|xyz) = Tr
(
wab|xy Mc|z

)
∀ a, b, c, x, y, z. (B.157)

The set of general UUT-assemblages is an outer approximation of the set of
process UUT-assemblages but it is not clear to us whether this approximation is
tight, i.e., it is not clear whether or not all general UUT-assemblages can be obtained
by tripartite process matrices.

Definition B.26 (Causal UUT-assemblage). A UUT-assemblage is causally ordered
from Alice to Bob to Charlie if it satisfies

Tr
∑

b

wA≺B≺Cab|xy = Tr
∑

b

wA≺B≺Cab|xy′ ∀ a, x, y, y′, (B.158)
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and from Bob to Alice to Charlie if it satisfies

Tr
∑

a

wB≺A≺Cab|xy = Tr
∑

a

wB≺A≺Cab|x′y ∀ b, x, x′, y. (B.159)

A UUT-assemblage {wcausal
ab|xy } is causal if it can be expressed as a convex combina-

tion of causally ordered UUT-assemblages, i.e.,

wcausal
ab|xy := qwA≺B≺Cab|xy + (1− q)wB≺A≺Cab|xy ∀ a, b, x, y, (B.160)

where 0 ≤ q ≤ 1 is a real number. A UUT-assemblage that does not satisfy eq. (B.160)
is called a noncausal UUT-assemblage.

Notice that one can decide whether a UUT-assemblage is causal by means of an
SDP.

For the case of causal UUT-assemblages, we prove that our approximation is
indeed tight, i.e., that all causal UUT-assemblages can be realized by causal tripartite
process matrix, analogously to lemma 2.2 in the bipartite case and lemma B.5 in the
TTU tripartite case.

Lemma B.6. A UUT-assemblage is causal if and only if it is a process UUT-
assemblage that can be obtained from a causal tripartite process matrix.

Proof. We begin by showing that all UUT-assemblages that come from a causal
process matrix are causal. Let {wab|xy} be such that

wab|xy = TrAIAOBIBO
[
(AAIAOa|x ⊗BBIBO

b|y ⊗ 1CI )WA≺B≺C
]
, ∀ a, b, x, y. (B.161)

Then, using eq. (B.102), which is CIWA≺B≺C =BOCI W
A≺B≺C , it is possible to deduce

that Tr
∑

bwab|xy is independent of y, and hence {wab|xy} = {wA≺B≺Cab|xy } is causally
ordered. The equivalent is true for the order B ≺ A ≺ C.

To prove the only if part we show that every causal UUT-assemblage can be
reproduced by acting with some instruments on a causal process matrix. Given a
causal UUT-assemblage, it can be decomposed into {wA≺B≺Cab|xy } and {wB≺A≺Cab|xy } with
some convex weight q.

From {wA≺B≺Cab|xy }, we define1

pA≺B≺C(ab|xy) := Tr(wA≺B≺Cab|xy ) ∀ a, b, x, y, (B.162)

pA≺B≺CA (a|x) :=
∑

b

Tr(wA≺B≺Cab|xy ) ∀ a, x, (B.163)

ρab|xy :=
wA≺B≺Cab|xy

Tr(wA≺B≺Cab|xy )
∀ a, b, x, y, (B.164)

1If Tr(wA≺B≺Cab|xy ) = 0, we define ρab|xy as the null operator.
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Using Bayes’ rule we also have pA≺B≺CB (b|axy) = pA≺B≺C(ab|xy)/pA≺B≺CA (a|x). With
this given quantities, we can construct instruments {AA≺B≺Ca|x } and {BA≺B≺C

b|y },

AA≺B≺Ca|x = 1AI ⊗ pA≺B≺CA (a|x)|ax〉〈ax|AO ∀ a, x (B.165)

BA≺B≺C
b|y =

∑

a,x

pA≺B≺CB (b|axy)|ax〉〈ax|BI ⊗ ρT BO
ab|xy ∀ b, y, (B.166)

and also the process matrix

WA≺B≺C =
1AI

dAI
⊗ |Φ+〉〈Φ+|AOBI ⊗ |Φ+〉〈Φ+|BOCI , (B.167)

and check that

TrAIAOBIBO
[
(AA≺B≺Ca|x ⊗BA≺B≺C

b|y ⊗ 1CI )WA≺B≺C
]

= (B.168)

= pA≺B≺CA (a|x)pA≺B≺CB (b|axy)ρab|xy (B.169)

= wA≺B≺Cab|xy (B.170)

for every a, b, x, y. Analogously, the same holds for {wB≺A≺Cab|xy }.
Finally, just like in the proof of lemma 2.1, by allowing the different causal orders

to act in complementary subspaces, we can recover any convex combinations of
causally ordered assemblages, i.e., causal assemblages.

Theorem B.11. A tripartite process matrix is certified to be causally nonseparable
in a semi-device-independent UUT way if and only if it can generate a noncausal
UUT-assemblage for some choice of instruments for Alice and Bob.

The proof is analogous to theorem 2.5.

B.6 Proof that the quantum switch processes are causal in

the UUT scenario

In this appendix we prove theorem 2.7, which we restate for the convenience of
the reader.

Theorem 2.7. The quantum switch processes cannot be certified to be causally
nonseparable on a semi-device-independent scenario where Alice and Bob are untrusted
and Charlie is trusted (UUT).

Moreover, any tripartite process matrix W ∈ L(HAIAOBIBOCI ), with Charlie in
the future of Alice and Bob, that satisfies

Tr[(AAIAOa|x ⊗BBIBO
b|y ⊗ 1CI )WAIAOBIBOCI ] = qpA≺B(ab|xy) + (1− q)pB≺A(ab|xy),

(2.41)
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for all a, b, x, y, where 0 ≤ q ≤ 1 is a real number, cannot be certified to be causally
nonseparable in a UUT scenario.

Proof. Let

wswitch
ab|xy := TrAIAOBIBO

[
(AAIAOa|x ⊗BBIBO

b|y ⊗ 1CI )W switch
]

(B.171)

be a UUT-assemblage generated by the quantum switch. We define

p(ab|xy) := Tr(wswitch
ab|xy ) (B.172)

and2

ρab|xy :=
wswitch
ab|xy

p(ab|xy)
. (B.173)

Given that

p(ab|xy) = Tr(wswitch
ab|xy ) (B.174)

= Tr
[
(AAIAOa|x ⊗BBIBO

b|y ⊗ 1CI )W switch
]

(B.175)

= qpA≺B(ab|xy) + (1− q)pB≺A(ab|xy), (B.176)

since the quantum switch is device-independent causal, one can write

wswitch
ab|xy = p(ab|xy)ρab|xy (B.177)

= qpA≺B(ab|xy)ρab|xy + (1− q)pB≺A(ab|xy)ρab|xy. (B.178)

One can verify that the first term satisfies

Tr
(∑

b

pA≺B(ab|xy)ρab|xy

)
=
∑

b

pA≺B(ab|xy)Tr(ρab|xy) = p(a|x) (B.179)

and

Tr
(∑

a

pB≺A(ab|xy)ρab|xy

)
=
∑

a

pB≺A(ab|xy)Tr(ρab|xy) = p(b|y). (B.180)

Hence,
pA≺B(ab|xy)ρab|xy = wA≺Bab|xy (B.181)

is an assemblage causally ordered from Alice to Bob and

pB≺A(ab|xy)ρab|xy = wB≺Aab|xy (B.182)

is an assemblage causally ordered from Bob to Alice. Consequently,

wswitch
ab|xy = qwA≺Bab|xy + (1− q)wB≺Aab|xy (B.183)

is UUT causal for all instruments of Alice and Bob.
This proof holds for all process matrices W for which

p(ab|xy) = Tr
[
(AAIAOa|x ⊗BBIBO

b|y ⊗ 1CI )W
]
∈ CAUSAL. (B.184)

2If Tr(wswitch
ab|xy ) = 0, we define ρab|xy as the null operator.
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B.7 Analysis of experimental implementations of the

quantum switch

In this appendix we present more details of our analysis of the experimental results
involving the quantum switch reported in refs. [72, 74]. Among other assumptions,
both papers consider a device-dependent scenario, where the analysis is made by
assuming complete knowledge of all instruments involved (although no assumption is
made about the process matrix). Here, we show that the experiment reported in both
papers could have also certified indefinite causal order in a semi-device-independent
scenario, where no assumptions are made about the instruments of one of the parties.

We remark that (device-dependent) causal witnesses, including the ones of refs. [72,
74], are derived assuming that all instruments are implemented perfectly. However,
due to experimental imperfections, this assumption is seldom true. One might then
obtain a noncausal – even nonprocess – behaviour simply because the implemented
instruments are not the ideal ones, rather than the data being genuinely noncausal
(or nonprocess). Indeed, we have analysed the experimental data3 collected in
ref. [72] and verified that if the instruments performed by Alice, Bob, and Charlie
are trusted, the experimental behaviour is not a process behaviour. That is, there
does not exist any process matrix W , causally separable or not, that can generate
the experimental behaviour consistently with the assumed instruments4. To properly
anaylse experimental data we would need to allow some leeway in the instruments
and probabilities, but developing the methods for that is beyond the scope of this
paper.

Therefore, in order to avoid potential false positive results due to experimental
error, we have considered the statistics one would have obtained in an ideal version of
the experiment instead of considering the data collected on the actual experiments.

We start by analysing the device-dependent experiment described in ref. [74]
by Goswami et al., which considers an optical setup where three parties, Alice,
Bob, and Charlie, have access to the reduced quantum switch process Wred (see
eq. (2.42)). In this experiment, Alice and Bob can choose between the 8 different
unitary operations5 and Charlie performs a measurement in the σX basis on the
control qubit state. Theoretically, the statistics of an ideal device-dependent TTT

3We have analysed the data points of this experiment without taking the error bars into consideration.
4Moreover, even if we drop the assumption about the knowledge of the instrument performed by Charlie,

there is no process matrix which is consistent with the experimental data collected.
5Note that an unitary operation can be seen as an instrument with deterministic classical output.
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(trusted-trusted-trusted) experiment would be given by the behaviour

pideal1(c|x, y) := Tr
[(
Ux ⊗ Uy ⊗M c

)
Wred

]
, (B.185)

where the instruments {Ux} and {M c} are the ones described on the supplemental
material of ref. [74]. As pointed in ref. [74], the behaviour {pideal1(c|x, y)} certifies
indefinite causal order in a device-dependent way. Using the SDP formulation of the
problem described in appendix B.5, we show that the noisy behaviour

pideal1
η (c|x, y) := (1− η) pideal1(c|x, y) + η

1

2
(B.186)

where pI(c|x, y) = 1
2
is a uniform probability distribution, cannot be described by a

causally separable tripartite process matrix, i.e., for some c, x, y,

pideal1
η (c|x, y) 6= Tr

[(
Ux ⊗ Uy ⊗M c

)
W sep] , (B.187)

in the range η ∈ [0, 0.1989). Hence, in this range of η, the behaviour {pideal1
η (c|x, y)}

certifies indefinite causal order in a device-dependent (TTT) way.
In order to analyse the behaviour {pideal1(c|x, y)} in a semi-device-independent

scenario, we drop the hypothesis that the measurement {Mc} performed by Charlie
is trusted, working in a TTU (trusted-trusted-untrusted) scenario. Using the SDP
formulation of the problem described in appendix B.5, we show that the noisy
behaviour {pideal1

η (c|x, y)} cannot be described by a causal TTU-assemblage, i.e., for
some c, x, y,

pideal1
η (c|x, y) 6= Tr

[(
Ux ⊗ Uy

)
wcausal
c

]
, (B.188)

in the same range of η ∈ [0, 0.1989). Hence, in this range of η, the behaviour
{pideal1

η (c|x, y)} certifies indefinite causal order in a semi-device-independent (TTU)
way.

Therefore, the experimental setup described in ref. [74] allows for certification
of indefinite causal order with weaker hypotheses – in a semi-device-independent
scenario. Using the machinery developed in this work, we could not show that the
behaviour {pideal1(c|x, y)} can certify indefinite causal order in the UTT or TUU scen-
arios. However, since some of our SDP methods for the tripartite case may provide
only an outer approximation of the sets of causal assemblages (see appendix B.5), we
cannot discard the possibility of such certification either. We remark, nevertheless,
that we have proven that it is possible to certify that the switch process is causally
nonseparable in these scenarios for the right choice of instruments (see section 2.4).

The experiment performed in ref. [72] by Rubino et al. considers a four-partite
version of the switch process which is slightly more general than the tripartite one
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discussed in this paper. While we consider a tripartite switch process where the
target state is embedded in the process, ref. [72] considers a four-partite switch
process in which the target state can be chosen by a fourth part in the common past
of all other parties. If we label the fourth party DO (David output), the process
matrix of the four-partite quantum switch is given by W 4

switch := |w4
switch〉〈w4

switch|,
where

|w4
switch〉 :=

1√
2

(
|Φ+〉DOAI |Φ+〉AOBI |Φ+〉BOCtI |1〉CcI + |Φ+〉DOBI |Φ+〉BOAI |Φ+〉AOCtI |0〉CcI

)

(B.189)
and |Φ+〉 := |00〉+ |11〉 is an unnormalized maximally entangled two-qubit state.

Reference [72] considers an optical setup where Alice, Bob, Charlie, and David
have access to a reduced four-partite quantum switch process given by W 4

red :=

TrCtI (W 4
switch). In this experiment, David can choose between 3 different states

ρd, Alice can choose between 12 different dichotomic instruments {Aa|x}, and Bob
can choose between 10 unitary operations represented by the instruments {Uy}.
Theoretically, in an ideal device-dependent TTTT experiment, the statistics would
be given by the behaviour

pideal2(a, c|x, y, d) := Tr
[(
ρd ⊗ Aa|x ⊗ Uy ⊗M c

)
W 4

red

]
, (B.190)

where the instruments {ρd}, {Aa|x}, {Uy}, and {M c} are the ones described on the
supplemental material of ref. [72].

In order to use the SDP formulations described in appendix B.5, we restrict our
analysis to the particular case where David outputs the state ρ1 = |0〉〈0|. That is,
we analyse the behaviour

pideal2(a, c|x, y, 1) := Tr
[(
|0〉〈0| ⊗ Aa|x ⊗ Uy ⊗M c

)
W 4

red

]
. (B.191)

Notice that when David is restricted to the choice of the state |0〉〈0|, the four-
partite reduced switch process W 4

red relates to the tripartite reduced switch process
Wred (eq. (2.42)) via the identity

TrDO
[(
|0〉〈0|DO ⊗ 1AIAO ⊗ 1BIBO ⊗ 1C

c
I
)
W 4

red

]
= Wred. (B.192)

Moreover, if the behaviour {pideal2(a, c|x, y, 1)} allows for certification of indefinite
causal order, the full behaviour {pideal2(a, c|x, y, d)} also allows for certification of
indefinite causal order. We can, hence, use our tripartite machinery to certify
indefinite causal order in this particular four-partite case.

Using the SDP formulation of the problem described in appendix B.5, we show
that the noisy behaviour

pideal2
η (a, c|x, y, 1) := (1− η) pideal2(a, c|x, y, 1) + η

1

4
(B.193)
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where pI(a, c|x, y) = 1
4
is a uniform probability distribution, cannot be described by

a causally separable tripartite process matrix, i.e., for some a, c, x, y,

pideal2
η (a, c|x, y, 1) 6= Tr

[(
Aa|x ⊗ Uy ⊗M c

)
W sep] , (B.194)

in the range η ∈ [0, 0.2300). Hence, in this range of η, the behaviour {pideal2
η (a, c|x, y, 1)}

certifies indefinite causal order in a device-dependent (TTT) way.
We now analyse the behaviour pideal2 in a semi-device-independent scenario,

where we drop the hypothesis that the measurement {Mc} performed by Charlie
is trusted, working in a TTU (trusted-trusted-untrusted) scenario. Using the SDP
formulation of the problem described in appendix B.5, we show that the noisy
behaviour {pideal1

η (c|x, y)} cannot be described by a causal TTU-assemblage, i.e., for
some a, c, x, y,

pideal2
η (a, c|x, y, 1) 6= Tr

[(
Aa|x ⊗ Uy

)
wcausal
c

]
, (B.195)

in the same range of η ∈ [0, 0.2300). Hence, in this range of η, the behaviour
{pideal2

η (a, c|x, y, 1)} certifies indefinite causal order in a semi-device-independent
(TTU) way.

Therefore, the experimental setup described in ref. [72] allows for certification
of indefinite causal order with weaker hypotheses – in a semi-device-independent
scenario. Using the machinery developed in this work, we could not show that the
behaviour {pideal2(a, c|x, y, d)} can certify indefinite causal order in other semi-device-
independent scenarios. However, since we have only considered the case where the
state ρz chosen by David is fixed and some of our SDP methods for the tripartite
case may provide only an outer approximation of the sets of causal assemblages (see
appendix B.5), we cannot discard the possibility of such certification either. We
remark, nevertheless, that we have proven that it is possible to certify that the switch
process is causally nonseparable in other semi-device-independent scenarios for the
right choice of instruments (see section 2.4).
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APPENDIX C
Supplemental Information of

Chapter 3

Here we present support material that complements the main text. It is struc-
tured as follows: Sec. C.1. Characterization theorem for general testers, Sec. C.2.
Semidefinite programming and dual affine spaces, Sec. C.3. Computer-assisted proofs,
and Sec. C.4. Sampling general channels and the typicality of the hierarchy between
discrimination strategies.

C.1 Characterization theorem for general testers

We starting by demonstrating, for sake of completeness, the characterization of
general one-copy testers that was presented in the main text, in the language of our
paper. This result is already known and follows from Ref. [42].

Theorem C.2. Let T = {Ti}Ni=1, Ti ∈ L(HI ⊗HO), called a general one-copy tester,
be the most general set of operators that satisfy the relation

p(i|C) = Tr (TiC) , (C.1)

for all Choi operators of quantum channels C ∈ L(HI ⊗HO), where {p(i|C)} is a
set of probability distributions. Let W :=

∑
i Ti. Then, T = {Ti} is a set of operators

that satisfy

Ti ≥ 0 ∀ i (C.2)

Tr(W ) = dO (C.3)

W = OW. (C.4)
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Proof. In order to guarantee that {p(i|C)} is a valid probability distribution, two
conditions must be imposed: positivity and normalization.

Positivity:

p(i|C) = Tr (TiC) ≥ 0 ∀ i, C ≥ 0 ⇐⇒ Ti ≥ 0 ∀ i. (C.5)

Normalization:
∑

i

p(i|C) = Tr(
∑

i

TiC) = Tr (W C) = 1 ∀ channels C, (C.6)

where C is the Choi operator of a quantum channel, and therefore of a trace-preserving
map, which can be parametrized as C = X −O X + 1

dO
, where X is an self-adjoint

operator, using the same technique as in Appendix B of Ref. [46]. Then,

Tr[W (X −O X +
1
dO

)] = 1 ∀ self-adjoint X. (C.7)

We can split this in two cases: X = 0 and X 6= 0.
For X = 0:

Tr[W (X −O X +
1
dO

)] =
Tr(W )

dO
= 1 ⇐⇒ Tr(W ) = dO. (C.8)

For X 6= 0:

Tr[W (X −O X +
1
dO

)] = Tr [W (X −O X)] + 1 = 1 ∀X 6= 0 (C.9)

⇐⇒ Tr [W (X −O X)] = 0 ∀X 6= 0 (C.10)

⇐⇒ Tr [(W −O W )X] = 0 ∀X 6= 0 (C.11)

⇐⇒ W −O W = 0. (C.12)

The equivalence between Eqs. (C.10) and (C.12) is given by the self-duality of the
‘trace-and-replace’ map, namely Tr(W OX) = Tr(OW X).

Together, conditions Tr(W ) = dO (Eq. (C.3)) and W =O W (Eq. (C.4)) imply
that W can be written as W = σ ⊗ 1O, where σ ∈ L(HI) is a normalized quantum
state.

Now we prove a new characterization theorem, the one of general two-copy testers.
In this case, we will need additional hypotheses. One is the hypothesis that a tester
may not only be able to act on two copies of the same channel but also be able to
act on two different, independent channels. This hypothesis is physically motivated
in the sense that, if a general tester is a device in a quantum lab that can act on
two copies of the same channel, then one should also be able to plug in two different
channels and have it perform a meaningful physical operation. The second is that
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these channels should be allowed to also act on auxiliary, potentially entangled,
systems, and when a general tester acts upon part of these channels, the operation it
performs should still result in a valid probability distribution. This last hypothesis
is automatically satisfied in the one-copy case.

Formally, we have:

Theorem C.3. Let TGEN = {TGEN
i }Ni=1, TGEN

i ∈ L(HI1 ⊗HO1 ⊗HI2 ⊗HO2), called
a general two-copy tester, be the most general set of operators that satisfy the relation

p(i|CA, CB, ρAB) = Tr
[
(TGEN

i ⊗ ρAB)(CA ⊗ CB)
]
, (C.13)

for all Choi operators of quantum channels CA ∈ L(HI1 ⊗HO1 ⊗Haux1) and CB ∈
L(HI2 ⊗HO2 ⊗Haux2), and for all quantum states ρAB ∈ L(Haux1 ⊗Haux2), where
{p(i|C)} is a set of probability distributions. Let WGEN :=

∑
i T

GEN
i . Then, TGEN =

{TGEN
i } is a set of operators that satisfy

TGEN
i ≥ 0 ∀ i (C.14)

Tr(WGEN) = dO1dO2 (C.15)

I1O1W
GEN =I1O1O2 W

GEN (C.16)

I2O2W
GEN =O1I2O2 W

GEN (C.17)

WGEN =O1 W
GEN +O2 W

GEN −O1O2 W
GEN. (C.18)

Proof. Again, in order to guarantee that {p(i|CA, CB)} is a valid probability distri-
bution, the conditions of positivity and normalization must be imposed.

Positivity:

p(i|CA, CB, ρAB) = Tr
[
(TGEN

i ⊗ ρAB)(CA ⊗ CB)
]
≥ 0 ∀ i, CA ≥ 0, CB ≥ 0, ρAB ≥ 0

(C.19)

⇐⇒ TGEN
i ≥ 0 ∀ i. (C.20)

Normalization:
∑

i

p(i|CA, CB, ρAB) = Tr[(
∑

i

TGEN
i ⊗ ρAB)(CA ⊗ CB)]

= Tr
[
(WGEN ⊗ ρAB)(CA ⊗ CB)

]
= 1

∀ channels CA, CB and states ρAB.

(C.21)

Notice that condition Eq. (C.21) is exactly the normalization condition that, in
Appendix B of Ref. [46], defines WGEN as a bipartite process matrix. Hence, it
immediately follows from the proof contained therein that WGEN must respect
Eqs. (C.15)-(C.18).
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C.2 Semidefinite programming formulation and dual affine

spaces

In this section we present a method to obtain a dual problem formulation for a
class of convex optimization problems which covers the SDP presented in our main
text. This method employs ideas and techniques first presented in Ref. [148].

A subset of linear operators W ⊆ L(H) is said to be affine if for every set of real
numbers {wi}i respecting

∑
iwi = 1, and for every subset {Wi}i ⊆ W we have that

(
∑

iwiWi) ∈ W .

Definition C.5 (Dual affine space [148].). LetW ⊆ L(H) be a set of linear operators.
The dual affine space W of W is defined via

W ∈ W when Tr(W W ) = 1, ∀W ∈ W . (C.22)

If W ⊆ L(H) is the set of all quantum states, i.e., positive semidefinite operators
W ∈ L(H) such that Tr(W ) = 1, the only operator W such that Tr(W W ) =

1, ∀W ∈ W is the identity operator. Hence, the dual affine space of set of quantum
states has a single element which is the identity operator 1 and corresponds to the
normalisation constraint for quantum measurements.

If WPAR ⊆ L(HI ⊗HO), where HI =
⊗k

i=1 Ii and HO =
⊗k

i=1Oi stands for the
set of all parallel processes, i.e., positive semidefinite operators that can be written
as WPAR = σI ⊗ 1O, with Tr(σ) = 1, one can check that its dual affine space is given
by a set of linear operators WPAR respecting TrO(W

PAR
) = 1I , which is the set of

quantum channels without the positivity condition.
If WSEQ ⊆ L(HI ⊗HO) stands for the set of all sequential processes, Ref. [148]

shows that its dual affine spaceWSEQ is given by the set of Choi operators of k-partite
channels with memory1 [169] without the positivity constraint. In particular, for the
two-slot case, an operator W SEQ ∈ L(HI1 ⊗HO1 ⊗HI2 ⊗HO2) belongs to the dual
affine space of the sequential processes if and only if W SEQ respects

O2W
SEQ

=I2O2 W
GEN (C.23)

O1I2O2W
SEQ

=I1O1I2O2 W
SEQ (C.24)

Tr(W SEQ
) = dI1dI2 . (C.25)

IfWGEN ⊆ L(HI⊗HO) stands for the set of all general processes, Ref. [148] shows
that its dual affine space WGEN is given by the set of Choi operators of k-partite
no-signalling channels [195, 196] without the positivity constraint. In particular, for

1Note that a k-partite channel with memory is formally equivalent to a quantum comb with k − 1 slots
[42]
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Figure C.1: Normalization constraints for parallel, sequential, and general two-slot processes,
and for their dual affine spaces, which correspond to the normalization constraints for
bipartite channels, bipartite channels with memory, and bipartite no-signalling channel
respectively. Note that the dual affine space of a set WS may be intuitively visualized as
the largest set of “quantum objetcs” WS such that “connecting” objects from WS to objects
from WS always lead to the scalar number 1.

the two-slot case, an operator WGEN ∈ L(HI1 ⊗HO1 ⊗HI2 ⊗HO2) belongs to the
dual affine space of the general processes if and only if WGEN respects

O2W
GEN

=I2O2 W
GEN (C.26)

O1W
GEN

=I1O1 W
GEN (C.27)

Tr(WGEN
) = dI1dI2 . (C.28)

We have summarized the normalization constraints of parallel, sequential, and
general processes and their respective dual affine spaces in Fig. C.1.

We now describe a method for obtaining the dual formulation of the SDPs
presented in this paper based on the concept of dual affine spaces. In the main text
we have defined the primal optimization problem as
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given {pi, Ci}
maximize

∑

i

piTr
(
T Si C

⊗2
i

)

subject to {T Si } ∈ T S ,

(C.29)

where T S is the set of all testers with strategy S. This problem can also be
written as

given {pi, Ci}
max

∑

i

piTr
(
T Si C

⊗2
i

)

s.t. T Si ≥ 0
∑

i

T Si ∈ WS

(C.30)

where WS is set of all processes with strategy S.
We start this section by considering the above optimization problem for the case

where the set WS is affine, which is the case for parallel, sequential, and general
processes. For these strategies, we do not need to restrict ourselves to the case of
k = 2 copies of the input channel Ci but the method applies for any k ∈ N. Note
that the normalization constraints of separable processes do not form an affine set,
for which reason the case of separable testers will be tackled later. We also point
that the for k > 2, the definition of k-slots separable processes have several nuances
and there is still no consensus on a single definition [193].

For finite dimensions, if W is an affine set we have that W =W, i.e., the dual
affine space of the dual affine space of W is simply W . Hence, for cases where W is
affine, the primal SDP presented in Eq. (C.30) can be written as:

given {pi, Ci}
max

∑

i

piTr
(
T Si C

⊗k
i

)

s.t. T Si ≥ 0

W S :=
∑

i

T Si

Tr(W SW
S
) = 1, ∀W S ∈ WS ,

(C.31)

a formulation which has infinitely many constraints
[
Tr(W S W

S
) = 1,∀W S ∈ WS

]
.

These infinitely many constraints can be made finite by writing
[
Tr(W S W

S
j ) = 1,∀ j

]
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where {W S
j }j is an affine basis for WS , i.e., every W

S ∈ WS can be written as
W
S

=
∑

j wjW
S
j for a set of coefficients {wj}j respecting

∑
j wj = 1. The Lagrangian

of the maximization problem can then be written as

L =
∑

i

piTr
(
C⊗ki T Si

)
+
∑

i

Tr
(
T Si Γi

)
+
∑

ij

[
1− Tr

(
T Si W

S
j

)]
λj. (C.32)

Hence, if Γi ≥ 0 and {T Si }i is a tester, L ≥∑i piTr(C
⊗k
i T Si ). By re-arranging

terms, the Lagrangian can be written as

L =
∑

i

Tr

[
T Si (piC

⊗k
i + Γi)− (

∑

j

W
S
j λj)

]
+
∑

j

λj. (C.33)

We then arrive at the dual problem by taking the supremum of the Lagrangian
over the primal variables {T Si }i and W S . Finally, the solution of the dual problem
will be given by the minimization over the dual variables {Γi}i and {λi}i under the
constraint that Γi ≥ 0,∀ i. The dual problem can be written as

given {pi, Ci}
minimize

∑

j

λj

s.t. Γi ≥ 0 ∀ i
piC

⊗k
i + Γi +

∑

j

λjW
S
j = 0, ∀ i

(C.34)

Removing the Γi dummy variables, we obtain

given {pi, Ci}
min

∑

j

λj

s.t. piC
⊗k
i ≤

∑

j

λjWj
S ∀ i.

(C.35)

The requirement of having an affine basis {W S
j }j can be dropped by defining

λ :=
∑

j λj and W
S

:=
∑

j
λjWj

S

λ
and noting that, by construction, for any choice of

coefficient λj , W
S is an affine combination of the affine basis elements {W S

j }i, hence
W
S necessarily belongs to WS . We can then write
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given {pi, Ci}
min λ

s.t. piC
⊗k
i ≤ λW

S

W
S ∈ WS ,

(C.36)

where the dual affine space of the sets used in this work are explicitly presented in
Fig. C.1.

Due to the product of variables λ and W S , the constraint piC⊗ki ≤ λW
S is not

linear. This problem can be easily circumvented by noting that the elements of dual
affine spaces have a fixed trace Tr(W S

). We can then “absorb” the variable λ into
W
S by defining W ′S := λW S .
For the case of separable testers, the primal problem can be formulated as

given {pi, Ci}
max

∑

i

piTr
(
T SEP
i C⊗2i

)

s.t. T SEP
i ≥ 0

W SEP :=
∑

i

T SEP
i = qW 1≺2 + (1− q)W 2≺1

W 1≺2 ∈ W1≺2, W 2≺1 ∈ W2≺1

q ∈ [0, 1],

(C.37)

where W i≺j is the set of sequential processes with slot i coming before slot j. The
SDP described in Eqs. (C.37) can also be written as

given {pi, Ci}
max

∑

i

piTr
(
T SEP
i C⊗2i

)

s.t. T SEP
i ≥ 0
∑

i

T SEP
i = W 1≺2 +W 2≺1

Tr
(
W 1≺2W

1≺2
a

)
= q, ∀a

Tr
(
W 2≺1W

2≺1
b

)
= 1− q, ∀b

W 1≺2 ≥ 0, W 2≺1 ≥ 0

(C.38)

where the set
{
W

i≺j
l

}
l
is an basis for the dual affine space of ordered processes.

154



Appendix C

The Lagrangian of the SDP presented in Eqs. (C.38) can be written as

L =
∑

i

piTr
(
C⊗2i T SEP

i

)
+
∑

i

Tr
(
T SEP
i Γi

)
+
∑

i

Tr
[
(T SEP

i −W 1≺2 −W 2≺1)H
]

(C.39)

+
∑

a

[
q − Tr

(
W 1≺2W

1≺2
a

)]
λ1≺2a +

∑

b

[
(1− q)− Tr

(
W 2≺1W

2≺1
b

)]
λ2≺1b

(C.40)

+ Tr(W 1≺2σ1≺2) + Tr(W 2≺1σ2≺1). (C.41)

By re-arranging terms we obtain

L = Tr
[
T SEP
i (piC

⊗2
i + Γi +H)

]
(C.42)

+ Tr
[
W 1≺2(σ1≺2 −H −

∑

a

W
1≺2
a λ1≺2a

)]
+ Tr

[
W 2≺1(σ2≺1 −H −

∑

b

W
2≺1
b λ2≺1b

)]

(C.43)

+ q
(∑

a

λ1≺2a −
∑

b

λ2≺1b

)
+
∑

b

λ2≺1b . (C.44)

Which leads to the dual problem

given {pi, Ci}
minimize

∑

b

λ2≺1b

s.t. Γi ≥ 0 ∀ i
σ1≺2 ≥ 0, σ2≺1 ≥ 0

q0 ≥ 0, q1≺2 ≥ 0

Γi = −piC⊗2i −H, ∀ i
σ1≺2 = H +

∑

a

W
1≺2
a λ1≺2a

σ2≺1 = H +
∑

b

W
2≺1
b λ2≺1b

∑

b

λ2≺1b =
∑

a

λ1≺2a .

(C.45)
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By removing the dummy variables we get

given {pi, Ci}
minimize

∑

b

λ2≺1b

s.t. piC
⊗2
i ≤ −H, ∀ i

−H ≤
∑

a

W
1≺2
a λ1≺2a

−H ≤
∑

b

W
2≺1
b λ2≺1b

∑

b

λ2≺1b =
∑

a

λ1≺2a .

(C.46)

As before we define λ :=
∑

b λ
2≺1
b =

∑
a λ

1≺2
a , W 1≺2

:=
∑

a
λ1≺2
a Wa

1≺2

λ
and W 2≺1

:=
∑

b

λ2≺1
b Wa

2≺1

λ
, and set −H 7→ H to obtain the simplified SDP

given {pi, Ci}
minimize λ

s.t. piC
⊗2
i ≤ H, ∀ i

H ≤ λW
1≺2

H ≤ λW
2≺1

W
1≺2 ∈ W1≺2

W
2≺1 ∈ W2≺1

.

(C.47)

C.3 Computer-assisted proofs

In this section we provide a general algorithm that can be used to obtain a
rigorous computer-assisted proof from numerical optimization packages which may
use floating-point variables. Since floating-point variables use approximations to
store real numbers, the constraints required by the optimization problem cannot be
satisfied exactly. For instance, let Cfloat ∈ L(HI ⊗HO) be a matrix with floating-
point variables which is certified by a computer to respect the quantum channel
constraints, i.e.,

Cfloat ≥ 0 (C.48)

OCfloat =IO Cfloat (C.49)

Tr(Cfloat) = dI . (C.50)

Due to floating-point rounding errors, these constraints may be violated in a rigorous
analysis, that is, they are satisfied only up to a numerical precision. For this reason,
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numerical solutions involving floating-point variables or rounding approximations
may lead to accuracy problems [197, 198]. In order to circumvent the floating-point
accuracy issue, we provide an algorithm that, given a floating-point variable matrix
which satisfies the constraints of a desired set, up to some numerical precision, we
construct another matrix which does not make use of floating-point and satisfies the
constraints of the desired set exactly. Here, by desired set we refer to six main sets
consider in this work: parallel processes, sequential processes, general processes, and
their dual affine spaces.

Before proceeding, we present an useful characterization of the aforementioned
sets in a unified manner in terms of projections. More precisely, all these sets can be
written as: C ∈ L(H) belongs to the desired set C ⊆ L(H) if and only if2

C ≥ 0 (C.51)

C = P̃ (C) (C.52)

Tr(C) = γ, (C.53)

for a suitable linear space H, for some linear projection map P̃ : H → H, i.e., some
map P̃ such that P̃ ◦ P̃ = P̃ and P̃ (1) = 1, and for some normalization coefficient γ.
Here, the set C is phrased in such a general way that it covers, for example, the set
of quantum states, channels, combs, and processes, among others.

For instance, if the desired set C is the set of quantum channels, we have that
H = HI ⊗HO and C ∈ C if and only if

C ≥ 0 (C.54)

C = P̃ (C) = C −O C +IO C (C.55)

Tr(C) = γ = dI . (C.56)

If the desired set is the set of two-slot parallel processes WPAR, we have that
H = HI1 ⊗HO1 ⊗HI2 ⊗HO2 and W ∈ WPAR if and only if

W ≥ 0 (C.57)

W = P̃PAR(W ) =O1O2 W (C.58)

Tr(W ) = γPAR = dO1dO2 . (C.59)

The projection maps P̃ S for the sets of processes WS and P̃
S
for the sets of dual

affine spaces WS used in this section are presented in Table. C.1.
We now present Algorithm 1, which takes a linear operator Cfloat respecting the

conditions of a set C described by Eqs. (C.51)-(C.53) up to numerical precision and

2Note that when dual affine spaces are considered, the positivity constraints C ≥ 0 is not required.
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Processes

PARALLEL P̃PAR(W ) =O1O2 W

SEQUENTIAL P̃ SEQ(W ) =O2 W −I2O2 W +O1I2O2 W

GENERAL
P̃GEN(W ) =I1O1O2 W −I1O1 W +O1I2O2 W

−I2O2W +O1 W +O2 W −O1O2 W

Dual affine space (Channels)

PARALLEL P̃
PAR

(W ) = W −O1O2 W +I1I2O1O2 W

SEQUENTIAL P̃
SEQ

(W ) = W −O2 W +I2O2 W −O1I2O2 W +I1O1I2O2 W

GENERAL
P̃

GEN
(W ) = W −O1 W +I1O1 W −O2 W +I2O2 W

−O1I2O2W −I1O1O2 W +O1O2 W +I1O1I2O2 W

Table C.1: Projectors onto the linear space spanned by parallel, sequential, and general
processes and their respective dual affine spaces. In all these cases, H = HI1 ⊗ HO1 ⊗
HI2 ⊗HO2 . In addition, we remark that the trace constraint of Eq. (C.53) for processes is
Tr(W ) = dO1dO2 and for their dual affine spaces, we have Tr(W ) = dI1dI2 .

provide an operator COK which respects the conditions of C exactly. Also, all the
steps of our algorithm can be done without approximations or the use of numerical
floating-point variables.

Algorithm 1:

1. Construct the non-floating-point matrix Cfrac by truncating the

matrix Cfloat

This allows us to work with fractions and to avoid numerical imprecision.

2. Define the matrix C :=
Cfrac + (Cfrac)

†

2
to obtain a self-adjoint

matrix C

Ensures that we are dealing with self-adjoint matrices

3. Project C into a valid subspace and obtain P̃ (C)

Ensures that the operator is in the valid linear subspace.
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4. Find a coefficient η such that D̃η

(
P̃ (C)

)
:= ηP̃ (C) + (1 − η)1 is positive

semidefinite

Ensures positivity without leaving the valid subspace.

5. Output the operator COK = γ
D̃η(P̃ (C))

Tr[D̃η(P̃ (C))]
which lies in C

Ensures the trace condition, preserving positivity and without leaving the valid
subspace.

One way to complete step 3 is to start with η = 1 and check if the operator
C is already positive semidefinite. If C is not positive semidefinite, we can slowly
decrease the value of η and check if D̃η(C) is positive definite. Checking if a
matrix is positive semidefinite can be done efficiently by implementing the Cholesky
decomposition algorithm and checking whether the algorithm leads to a valid Cholesky
decomposition.

One can verify that the operator COK provided by the algorithm described above
necessarily belongs to the desired valid set S with the aid of the following theorem.

Theorem C.4. Let P̃ : L(H) → L(H) be a linear projector i.e., P̃ ◦ P̃ = P̃ ,
which respects P̃ (1) = 1. Let D̃η : L(H) → L(H) be an affine map defined by
D̃η(C) := ηC + (1− η)1. It holds that

D̃η

(
P̃ (C)

)
= P̃

(
D̃η

(
P̃ (C)

))
(C.60)

Proof.

P̃
(
D̃η

(
P̃ (C)

))
= P̃

(
ηP̃ (C) + (1− η)P̃ (1)

)
(C.61)

= ηP̃
(
P̃ (C)

)
+ (1− η)P̃

(
P̃ (1)

)
(C.62)

= ηP̃ (C) + (1− η)1 (C.63)

= D̃η

(
P̃ (C)

)
. (C.64)

Algorithm 1 allows us to obtain upper bounds for the maximal probability of
discriminating an ensemble of quantum channels. For the case in which the desired
set C is the set of dual affine spaces of processes WS for some strategy S, Cfloat

is the floating-point matrix of a dual affine W S
float, that can be obtained using

numerical convex optimization packages to solve the dual problem SDP, and map

P̃ is one of the projection maps P̃
S
, then Algorithm 1 will return a matrix W S

OK

that satisfies the constraints of the set WS exactly. A rigorous upper bound on the
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maximal probability for discriminating the ensemble {pi, Ci}i is then given by the
value pupper such that piC⊗ki ≤ pupperWOK for all i. Note that if the channels Ci are
also represented with floating-point variables, one can also use Algorithm 1 to obtain
exact channels Ci,OK.

In order to calculate lower bounds, we can use the primal SDP to obtain a set of
{Ti,float}Ni=1 which satisfies the conditions of some desired class of tester up to some
numerical precision. To tackle this situation, we present an algorithm to obtain a set
of operators {Ti,OK}Ni=1 which satisfies the tester constraints exactly. Note that this
algorithm also works for positive-operator valued measures (POVMs), instruments,
and super-instruments, among others.

Algorithm 2:

1. Construct the non-floating-point matrix Ti,frac by truncating the

matrix Ti,float

This allows us to work with fractions and to avoid numerical imprecision.

2. Define the matrices Ti :=
Ti,frac + (Ti,frac)

†

2
to obtain self-adjoint

matrices Ti

Ensures that we are dealing with self-adjoint matrices

3. Project W :=
∑N

i=1 Ti into a valid subspace and obtain P̃ (W )

Ensures the operator W is in the valid linear subspace.

4. Define the extra-outcome tester element T∅ := P̃ (W )−W
Useful step to later ensure the normalization constraints.

5. Find a coefficient η such D̃η(T∅) ≥ 0 and D̃η(Ti) ≥ 0 holds for every i

Ensures positivity of all tester elements.

6. Define Wη :=
(∑N

i=1 D̃η(Ti)
)

+ D̃η(T∅)

Defines a positive semidefinite operator such that Wη = P̃ (Wη)

7. Output the set TOK :=



γ

D̃η(Ti) +
D̃η(T∅)
N

Tr(Wη)




i

which is a valid tester

Equally distributes the tester element D̃η(T∅) between elements indexed by i.

Similarly to algorithm 1, one can verify that the set TOK is a valid tester.

Theorem C.5. The operator TOK defined in step 6 of Algorithm 2 is a valid tester.
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Proof. By construction all tester elements

TiOK := γ
D̃η(Ti) + D̃η(T∅)

N

Tr(Wη)
(C.65)

are positive semidefinite, we then need to show that WOK :=
∑

i Ti,OK respects
P̃ (WOK) = WOK and Tr(WOK) = γ. For that, note that

WOK =γ
N∑

i=1

D̃η(Ti) + D̃η(T∅)

N

Tr(Wη)
(C.66)

=γ
Wη

Tr(Wη)
. (C.67)

We can then guarantee that Tr(WOK) = γ and

Wη =

[
N∑

i=1

ηTi + (1− η)1

]
+ ηT∅ + (1− η)1 (C.68)

= ηW + (1 + η)N1 + ηP̃ (W )− ηW + (1− η)1 (C.69)

= ηP̃ (W ) + (1− η)(N + 1)1 (C.70)

= ηP̃ (W ) + (1− η)(N + 1)P̃ (1) (C.71)

= P̃ (Wη). (C.72)

Algorithm 2 allows us to obtain lower bounds for the maximal probability of
discriminating an ensemble of quantum channels. A floating-point set of matrices
{T Si,float}i, can be obtained via numerical convex optimization packages to solve
the primal problem SDP. Then Algorithm 2 will return a set of matrices T SOK that
satisfies the constraints of the set T S exactly. A rigorous lower bound on the
maximal probability for discriminating ensemble {pi, Ci}i is then given by the value
plower =

∑N
i=1 piTr

(
C⊗ki T Si,OK

)
.

We have implemented the algorithms presented in this section and the remaining
code necessary for the calculation of the upper- and lower bounds presented in
this paper. All code has been uploaded to an online repository [157]. The SDP
optimization was implemented in MATLABTM using the package cvx [199] and tested
independently with the solvers MOSEK [200], SeDuMi [201], and SDPT3 [202]. The
computer-assisted proof step used to obtain the exact upper and lower bounds
was implemented in MathematicaTM. All our code can be freely used, edited, and
distributed under the MIT license [203].
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Strategy gap Number of pairs of channels
(out of 100 000)

PPAR < P SEQ 99 955

P SEQ < P SEP 99 781

P SEP < PGEN 94 026

PPAR < P SEQ < P SEP < PGEN 94 015

Table C.2: The first column denotes between which strategies of channel discrimination a
gap in performance was found and the second column denotes how many of the 100, 000
pairs of channels that were sampled demonstrated such a gap.

C.4 Sampling general channels and the typicality of the

hierarchy between discrimination strategies

Our method for generating a general channel goes as follows:

1. Fix input dimension dI and output dimension dO.

2. Uniformly sample a positive semidefinite matrix A of size (dIdO)-by-(dIdO),
according to the Hilbert-Schmidt measure. This can be done, for example,
using the function RandomDensityMatrix of the freely distributed MATLAB
toolbox QETLAB [204].

3. Define C to be the projection of A on the subspace of valid quantum channels,
according to

C = A− OA+
1
dO
. (C.73)

4. Check whether C is a positive semidefinite matrix. If not, discard C and repeat
the process. If yes, than C represents the Choi operator of a valid quantum
channel C̃ : L(HI)→ L(HO).

We have sampled 100, 000 pairs of general qubit-qubit channels using this method
and computed, using our SDP methods, the maximal probability of discriminating
these channels in an ensemble where both channels are equally probable, using
parallel, sequential, separable, and general strategies. Our results are summarized in
Table C.2. The first column denotes between which strategies a gap was found and
the second column denotes how many of the 100, 000 pairs of channels had such gap.

In particular, the last line of Table C.2, which shows that a strict hierarchy
PPAR < P SEQ < P SEP < PGEN between all four strategies was found by 94, 015 pairs
of channels, implies that our method has around 94% probability of generating a
pair of qubit-qubit channels that showcases this phenomenon.
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Figure C.2: Probability of successfully discriminating an amplitude damping channel and a
bit-flip channel, in an equiprobable ensemble, using k = 2 copies. The value of the decay
parameter of the amplitude damping channel varies with the interval γ ∈ [0, 1], while the
flipping parameter of the bit-flip channel is fixed at η = 0.87. The four curves represent
parallel, sequential, separable, and general strategies of channel discrimination. A clear gap
between all four strategies is clearly visible in the picture-in-picture plot, with γ ∈ [0.5, 0.7].

For the case of discriminating between amplitude damping channels and bit-flip
channels, in order to show that the phenomenon of the advantage between different
strategies is not unique to a specific choice of parameters, we plot on Fig. C.2 the
probability of successful discrimination between an amplitude damping channel
with decay parameter γ ∈ [0, 1] and a bit-flip channel with fixed flipping parameter
η = 0.87. A clear gap between all four strategies can be clearly seen on the zoomed
picture-in-picture, which plots only γ ∈ [0.5, 0.7]. Similar plots can be obtained for
different values of η.

It is also true that a strict hierarchy between strategies of channel discrimination
can be found when discriminating among two amplitude damping channels, in an
equiprobable ensemble, with different decay parameters. Using our methods, we have
calculated the probability of success for all four strategies, and would like to point
out one interesting case of discrimination between one amplitude damping channel
with γ1 = 0.37 and another with γ2 = 0.87, which gives
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8101

10000
< PPAR <

8102

10000

<
8161

10000
< P SEQ <

8162

10000

<
8166

10000
< P SEP <

81665

100000

<
8167

10000
< PGEN <

8168

10000
.

(C.74)

Here, we confirm that there exists advantage in the discrimination of amplitude
damping channels using sequential strategies over parallel strategies. Furthermore,
we show that the case of discrimination among two amplitude damping channels is
also an example of a complete hierarchy among all four strategies.
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APPENDIX D
Supplemental Information of

Chapter 4

Appendix D.1 presents the proof of Theorem 4.1, Appendix D.2 presents the
proof of Examples 4.1 and 4.2, Appendix D.3 presents the proof of Example 4.3,
Appendix D.4 presents the proof of Theorem 4.4, and finally Appendix D.5 contains
further details on our numerical results.

Some of the sections in the Appendix will make use of the link product [205]
between two linear operators, which is a useful mathematical tool to compose linear
maps that are represented by their Choi operators. If C̃ := B̃◦Ã is the composition of
the linear maps Ã : L(H1)→ L(H2) and B̃ : L(H2)→ L(H3), the Choi operator of C̃
is given by C = A∗B where A and B are the Choi operators of Ã and B̃, respectively,
and ∗ stands for the link product, which we now define. Let A ∈ L(H1 ⊗H2) and
B ∈ L(H2 ⊗ H3) be linear operators. The link product A ∗ B ∈ L(H1 ⊗ H3) is
defined as

A12 ∗B23 := Tr2
[(

(A12)T2 ⊗ 13
)(

11 ⊗B23
)]
, (D.1)

where (·)T2 stands for partial the transposition on the linear space H2.

We remark that identifying the linear spaces where the operators act is an
important part of the link product, also, if we keep track on these linear spaces, the
link product is commutative and associative.

D.1 Proof of Theorem 4.1

We start this Section with Lemma D.1, which plays a main role in the proof of
Theorem 4.1, and may be of independent interest. The theorems presented in this
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section employ methods which are similar to the ones in Ref. [164, 206] which exploit
the covariance of testers processes to parallelize strategies.

Lemma D.1. Let {TU}U , TU ∈ L(HI ⊗HO), be a general k-slot tester associated
to the general process W :=

∑
U TU , which respects the commutation relation

W IO
(
1⊗ U⊗k

)IO
=
(
1⊗ U⊗k

)IO
W IO, (D.2)

for every unitary operator U ∈ L(Cd) from a set {U}U .
Then, there exists a parallel k-slot tester {TPAR

U }i such that

Tr
(
TPAR
U |U〉〉〈〈U |⊗k

)
= Tr

(
TU |U〉〉〈〈U |⊗k

)
∀ U ∈ {U}U . (D.3)

Moreover, this parallel tester can be written as TPAR
U = ρI

′I ∗M I′O
U where HI′ is

an auxiliary space which is isomorphic to HI , ρ ∈ L(HI ⊗HI′) is a quantum state
defined by

ρI
′I :=

√
W

T I
′I

|1〉〉〈〈1|I′I
√
W

T I
′I

, (D.4)

and {MU}U is a POVM defined by1

M I′O
U :=

√
W
−1I′O

TU
I′O
√
W
−1I′O

. (D.5)

Proof. We start our proof by verifying that ρ ∈ L(HI′ ⊗ HI) is a valid quantum
state. The operator ρ is positive semidefinite because it is a composition of positive
semidefinite operators and the normalisation condition follows from

Tr(ρ) =Tr
(√

W
T I
′I

|1〉〉〈〈1|I′I
√
W

T I
′I
)

(D.6)

=Tr
(
W T I

′I |1〉〉〈〈1|I′I
)

(D.7)

=Tr
(
W I′I |1〉〉〈〈1|T I

′I
)

(D.8)

=Tr
(
W I′I |1〉〉〈〈1|I′I

)
(D.9)

=1, (D.10)

where the last equation holds because, since W is a general process, it satisfies
Tr(WC) = 1 for any C that is the Choi operator of a channel.

Let us now verify that the set of operators {MU}U forms a valid POVM. For
that it is enough to recognise that all operators MU are compositions of positive
semidefinite operators that add up to the identity, according to

1Here,
√
W
−1

stands for the inverse of
√
W on its range. If the operator W is not not full-rank, the

composition W W−1 =: ΠW is not the identity 1 but the projector onto the subspace spanned by the range
of
√
W . Due to this technicality, when the operator W is not full rank, we should define the measurements

as MI′O
U :=

√
W
−1I

′O
TU

I′O
√
W
−1I

′O
+ 1

N
(1−WW−1). With that, the proof written here also applies to

the case where the operator W is not full-rank.
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∑

U

MU =
√
W
−1I′O∑

U

TU
I′O√

W
−1I′O

(D.11)

=
√
W
−1I′O

W I′O
√
W
−1I′O

(D.12)

=1I
′O. (D.13)

The relation
√
W
−1
W
√
W
−1

= 1 can be shown by writing W in an orthonormal
basis as W =

∑
i αi|i〉〈i| and

√
W
−1

=
∑

i α
−1/2
i |i〉〈i|.

Recall that for any unitary operator U , we have the identity |U〉〉〈〈U |T = |U∗〉〉〈〈U∗|
and if CIO is the Choi operator od a linear map C̃ : L(HI) → L(HO), ρI′I ∈
L(HI′⊗HI) is a linear operator, it holds that ρI′I ∗CIO =

(
1̃⊗ C̃(ρI

′I)
)I′O

. Also, if

a diagonalisable operator W IO commutes with
(
1⊗ U⊗k

)IO, its positive semidefinite
square root

√
W also commute with2

(
1⊗ U⊗k

)IO, hence we have

√
W (1⊗ U⊗k) = (1⊗ U⊗k)

√
W. (D.14)

By taking the complex conjugation on both sides of Eq. (D.14) and exploiting the
fact that

√
W =

√
W
†
implies

√
W

T
=
√
W
∗
, it holds that

√
W

T
(1⊗ U∗⊗k) = (1⊗ U∗⊗k)

√
W

T
. (D.15)

With these identities in hand, we can evaluate the link product ρI′I∗
(
|U⊗k〉〉〈〈U⊗k|T

)IO

to obtain

ρI
′I ∗
(
|U〉〉〈〈U |⊗kT

)IO
=ρI

′I ∗
(
|U∗〉〉〈〈U∗|⊗k

) IO (D.16)

=
[
(1⊗ U∗⊗k) ρ (1⊗ UT⊗k)

]I′O
(D.17)

=
[
(1⊗ U∗⊗k)

√
W

T |1〉〉〈〈1|
√
W

T
(1⊗ UT⊗k)

]I′O
(D.18)

=
[√

W
T

(1⊗ U∗⊗k) |1〉〉〈〈1| (1⊗ UT⊗k)
√
W

T
]I′O

(D.19)

=
(√

W
T |U∗〉〉〈〈U∗|⊗k

√
W

T
)I′O

. (D.20)

2Indeed, two diagonalisable operators A and B commute if and only if they are diagonal in the same
basis. Now, if A :=

∑
i αi|i〉〈i|, its positive semidefinite square root is also diagonal in the same basis, in

particular,
√
A =

∑
i

√
αi|i〉〈i|. Hence, if A commutes with B,

√
A also commutes with B.
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We now finish the proof by verifying that

Tr
(
TPAR
U |U〉〉〈〈U |⊗k

)
= Tr

[
(ρI

′I ∗M I′O
U ) |U〉〉〈〈U |⊗kIO

]
(D.21)

= (ρI
′I ∗M I′O

U ) ∗ (|U〉〉〈〈U |⊗k)T IO (D.22)

= M I′O
U ∗

(
ρI
′I ∗ |U∗〉〉〈〈U∗|⊗k IO

)
(D.23)

= M I′O
U ∗

(√
W

T |U∗〉〉〈〈U∗|⊗k
√
W

T
)I′O

(applying Eq. (D.20))

(D.24)

= Tr

[
M I′O

U

(√
W

T |U∗〉〉〈〈U∗|⊗k
√
W

T
)T I′O

]
(D.25)

= Tr
[
M I′O

U

(√
W |U〉〉〈〈U |⊗k

√
W
)I′O]

(D.26)

= Tr
[(√

W
−1
TU
√
W
−1)I′O (√

W |U〉〉〈〈U |⊗k
√
W
)I′O]

(D.27)

= Tr
(
TU |U〉〉〈〈U |⊗k

)
. (D.28)

Now we prove Theorem 4.1.

Theorem 4.1. For ensembles composed of a uniform probability distribution and
a set of unitary channels that form a group up to a global phase, in discrimination
tasks that allow for k copies, parallel strategies are optimal, even when considering
general strategies.

More specifically, let E = {pi, Ui}i be an ensemble with N unitary channels where
pi = 1

N
∀ i and the set {Ui}i forms a group up to a global phase. Then, for any

number of copies k, and for every general tester {TGEN
i }, there exists a parallel tester

{TPAR
i }i, such that

N∑

i=1

Tr
(
TPAR
i |Ui〉〉〈〈Ui|⊗k

)
=

N∑

i=1

Tr
(
TGEN
i |Ui〉〉〈〈Ui|⊗k

)
. (4.12)

A set of unitary operators {U}U , U ∈ L(Cd) forms a group up to a global phase
if there exist real numbers φi such that:

• eiφ11 ∈ {U}U

• If A ∈ {U}U , then eiφAA−1 ∈ {U}U

• If A,B ∈ {U}U , then eiφABAB ∈ {U}U
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Before presenting the proof we recall that unitary operators which are equivalent
up do a global phase represent equivalent unitary channels. That is, if U ′ = eiφU :

HI → HO is a linear operator, its associated channel is given by

Ũ ′(ρ) = U ′ρU ′
† (D.29)

= eiφe−iφUρU † (D.30)

= UρU † (D.31)

= Ũ(ρ) (D.32)

and its Choi operator |U〉〉〈〈U | respects

|U〉〉〈〈U | = |U ′〉〉〈〈U ′|. (D.33)

Due to this fact, the two sets of operators {Ui}i and {eiφiUi}i represent the same set
of quantum channels.

Proof. The proof will proceed as following, using the general tester {TGEN
U }U , we

construct another general tester {TU}U which obeys

1

N

∑

U∈{U}U

Tr
(
TGEN
U |U〉〉〈〈U |⊗k

)
=

1

N

∑

U∈{U}U

Tr
(
TU |U〉〉〈〈U |⊗k

)
. (D.34)

Then, we prove that the general tester {TU}U we defined respects the hypothesis
of LemmaD.1, hence there exists a parallel tester {TPAR

U }U which is equivalent to
{TU}U when acting on the set of unitary operators {U}U .

Let us start by defining the general tester {TU}U as:

TU :=
1

N

∑

V ∈{U}U

(
1I ⊗ V †⊗k

)IO
TGEN
V U

IO (
1I ⊗ V ⊗k

)IO
, (D.35)

where V U stands for the standard operator composition up to a global phase, that is,
if V U is not in the set {U}U , we pick eiφV UV U , which is ensured to be an element of
{U}U . Before proceeding, we should verify that the set of operators {TU}U is indeed
a valid general tester. Notice that since TU is a composition of positive semidefinite
operators, it holds that TU ≥ 0 for every U . We now show that W :=

∑
U TU is a
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valid general process. First, note that

W :=
∑

U

TU (D.36)

=
∑

U

1

N

∑

V

(1⊗ V †⊗k)TGEN
V U (1⊗ V ⊗k) (D.37)

=
1

N

∑

U

∑

V

(1⊗ V †⊗k)TGEN
V (V −1U) (1⊗ V ⊗k) (D.38)

=
1

N

∑

U

∑

V

(1⊗ V †⊗k)TGEN
U (1⊗ V ⊗k) (D.39)

=
1

N

∑

V

(1⊗ V †⊗k)
∑

U

TGEN
U (1⊗ V ⊗k) (D.40)

=
1

N

∑

V

(1⊗ V †⊗k)WGEN (1⊗ V ⊗k), (D.41)

where WGEN :=
∑

U T
GEN
U and, in Eq. (D.38), we have used the change of variable

U 7→ V −1U , which does not affect the sum because the set {U}U is a group.

Notice also that, if CIO is the Choi operator of a quantum channel, the operator
defined by

C ′IO :=
1

N

∑

V

(1⊗ V ⊗k)IO CIO (1⊗ V †⊗k)IO, (D.42)

is a valid channel, since it is positive semidefinite and TrO(C ′IO) = TrO(CIO) = 1I .
It then follows that, for every quantum channel of the form C =

⊗k
i=1C

IiOi
i , we have

Tr(W IOCIO) =
1

N
Tr

[∑

V

(1⊗ V †⊗k)WGEN (1⊗ V ⊗k)C
]

(D.43)

=
1

N
Tr

[
WGEN

∑

V

(1⊗ V ⊗k)C (1⊗ V †⊗k)
]

(D.44)

= Tr(W IOC ′IO) (D.45)

= 1, (D.46)

ensuring that {TU}U is a valid general tester.

The next step is to show that the tester {TU}U attains the same success probability
for discriminating the ensemble E = {pU , |U〉〉〈〈U |}U as the tester {TGEN

U }U . This

170



Appendix D

claim follows from direct calculation, that is,

1

N

∑

U

Tr(TU |U〉〉〈〈U |⊗k) =
1

N2

∑

U

∑

V

Tr
[
(1⊗ V †⊗k)TGEN

V U (1⊗ V ⊗k) |U〉〉〈〈U |⊗k
]

(D.47)

=
1

N2

∑

U

∑

V

Tr
[
TGEN
V U (1⊗ V ⊗k) |U〉〉〈〈U |⊗k (1⊗ V †⊗k)

]

(D.48)

=
1

N2

∑

U

∑

V

Tr
(
TGEN
V U |V U〉〉〈〈V U |⊗k

)
(D.49)

=
1

N2

∑

U

∑

V

Tr
(
TGEN
V (V −1U) |V

(
V −1U

)
〉〉〈〈V

(
V −1U

)
|⊗k
)

(D.50)

=
1

N2

∑

U

∑

V

Tr
(
TGEN
U |U〉〉〈〈U |⊗k

)
(D.51)

=
1

N

∑

U

Tr
(
TGEN
U |U〉〉〈〈U |⊗k

)
. (D.52)

The final step is to verify that the process W :=
∑

U TU commutes with 1⊗ U⊗k
for every unitary operator U ∈ {U}U to ensure that the tester {TU}U fulfils the
hypothesis of Lemma D.1. Direct calculation shows that

(1⊗ U⊗k)W (1⊗ U †⊗k) =(1⊗ U⊗k) 1

N

∑

V

(1⊗ V †⊗k)WGEN (1⊗ V ⊗k)(1⊗ U †⊗k)

(D.53)

=
1

N

∑

V

(
1⊗

(
UV †

)⊗k)
WGEN

(
1⊗

(
V U †

)⊗k) (D.54)

=
1

N

∑

V

[
1⊗ (U(V U)†)⊗k

]
WGEN

[
1⊗ ((V U)U †)⊗k

]

(D.55)

=
1

N

∑

V

(1⊗ V †⊗k)WGEN (1⊗ V ⊗k) (D.56)

=W. (D.57)

Hence, we have that

W IO
(
1⊗ U⊗k

)IO
=
(
1⊗ U⊗k

)IO
W IO, (D.58)

and by LemmaD.1, one can construct a parallel tester {TPAR
U }U which respects

Tr
(
TPAR
U |U〉〉〈〈U |⊗k

)
= Tr

(
TU |U〉〉〈〈U |⊗k

)
∀ U ∈ {U}U , (D.59)
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and therefore, by applying Eq. (D.52), we have

1

N

∑

U

Tr
(
TPAR
U |U〉〉〈〈U |⊗k

)
=

1

N

∑

U

Tr
(
TGEN
U |U〉〉〈〈U |⊗k

)
, (D.60)

concluding our proof.

D.2 Proof of Examples 4.1 and 4.2

The Examples in this Section show the advantage of sequential strategies over
parallel strategies in channel discrimination tasks that involve only unitary channels
and using k = 2 copies. In the examples of this section, general strategies cannot
outperform sequential ones.

We start by proving Example 4.1 from the main text. It concerns the discrimin-
ation of an ensemble composed of a uniform probability distribution and a set of
unitaries that does not form a group.

Example 4.1. The ensemble composed by a uniform probability distribution and
N = 4 qubit-qubit unitary channels given by U1 = 1, U2 = σx, U3 = σy, and
U4 =

√
σz, in a discrimination task that allows for k = 2 copies, can be discriminated

under a sequential strategy success probability P SEQ = 1 while any parallel strategy
copies yields PPAR < 1.

Proof. Before starting the proof we note that the four Bell states can be written as:

|φ+〉 :=
|00〉+ |11〉√

2
= (1⊗ 1) |φ+〉, |φ−〉 :=

|00〉 − |11〉√
2

= (1⊗ σz) |φ+〉,

|ψ+〉 :=
|01〉+ |10〉√

2
= (1⊗ σx) |φ+〉, |ψ−〉 :=

|01〉 − |10〉√
2

= (−i) (1⊗ σy) |φ+〉.

Also, since
√
σz = |0〉〈0|+ i|1〉〈1|, we can check that the state

(1⊗√σz) |φ+〉 =
|00〉+ i|11〉√

2
(D.61)

is orthogonal to |ψ+〉 and |ψ−〉. We will now exploit these identities to construct a
sequential strategy that attains P SEQ = 1 with k = 2 uses.

The strategy goes as follows. Define the auxiliary space Haux to be isomorphic to
HI1 and prepare the initial state ρ ∈ L(HI1 ⊗Haux) as

ρI1aux := |φ+〉〈φ+|I1aux. (D.62)
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The state ρI1aux will then be subjected to the first copy of a unitary operation Ui,
leading to the state

(Ui ⊗ 1aux) ρI1aux (Ui ⊗ 1aux)† = (Ui ⊗ 1aux) |φ+〉〈φ+|I1aux (Ui ⊗ 1aux)† . (D.63)

We are now in the situation where we can act on the system. We then perform a
projective measurement with POVM elements given by

Mψ+ := |ψ+〉〈ψ+| (D.64)

Mψ− := |ψ−〉〈ψ−| (D.65)

Mφ := |φ+〉〈φ+|+ |φ−〉〈φ−| (D.66)

and Lüders instruments, that is, after the measurements, the output quantum system
is given by M̃i(ρ) =

√
Miρ
√
Mi
† with probability Tr

(
M̃i(ρ)

)
= Tr(ρMi). It can be

checked that, if Ui = σx, one obtains the outcome associated to Mψ+ with probability
one. Similarly, if Ui = σy, one obtains the outcome associated with Mψ− with
probability one. Hence, in these two cases, we have perfect channel discrimination.
Now, if we obtain the outcome associated to Mφ, the unitary Ui can be either 1 or
√
σz.

After performing the projective measurement with elements {Mφ,Mψ+ ,Mψ−}
and a Lüders instrument, the quantum system is subjected to a second copy of Ui.
Direct calculation shows that if Ui = 1, then after use of the second copy of unitary
Ui, the state of the system is

(1⊗ 1)2 |φ+〉 = |φ+〉. (D.67)

If Ui =
√
σz after the second use of the unitary Ui the state of the system is

(1⊗√σz)2 |φ+〉 = |φ−〉. (D.68)

Since |φ+〉 and |φ−〉 are orthogonal, they can be discriminated with probability
one. Hence, the set of unitary operators {Ui}4i=1 can be perfectly discriminated in a
sequential strategy with k = 2 copies.

Using the tester formalism, this sequential strategy would be presented in terms of
a sequential tester T SEQ = {T SEQ

i }, which can be implemented by an input quantum
state ρ, a quantum encoder channel Ẽ, and a quantum measurement {Ni}i. For
completeness, we now present an explicit sequential tester that attains P SEQ = 1.
As in the strategy described earlier, we set the initial state as ρI1aux := |φ+〉〈φ+|I1aux.
Now, instead of using an instrument, we define a second auxiliary Haux’ ∼= HI2⊗Haux
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and a quantum encoder channel Ẽ : L(HO1 ⊗Haux)→ L(HI2 ⊗Haux ⊗Haux’) as

Ẽ(ρ) =
(√

Mφ ρ
√
Mφ
†)⊗Maux’

φ

+
(√

Mψ+ ρ
√
Mψ+

†)⊗Maux’
ψ+

+
(√

Mψ− ρ
√
Mψ−

†)⊗Maux’
ψ− .

(D.69)

We finish our sequential tester construction by presenting quantum measurement
given by operators Ni ∈ L(HO2 ⊗Haux ⊗Haux’),

N1 := |φ+〉〈φ+| ⊗Mφ (D.70)

N2 := |φ−〉〈φ−| ⊗Mφ (D.71)

N3 := 1⊗Mψ+ (D.72)

N4 := 1⊗Mψ− . (D.73)

In this way, if E is the Choi operator of the channel Ẽ, the sequential tester with
elements T SEQ

i := ρ ∗ E ∗NT
i respects

∑
iTr(T

SEQ
i |Ui〉〉〈〈Ui|⊗2) = 1.

In order to show that the probability PPAR of discriminating these unitaries with
k = 2 copies in a parallel strategy is strictly less than one, we make use of the dual
problem formulation of the SDP presented in (4.11). Reference [45] shows that the
dual problem formulation for the case of parallel strategies reads

given {pi, Ci}
minimize λ

subject to piC
⊗2
i ≤ λW ∀ i,

(D.74)

where W ∈ L(HI ⊗HO) is the Choi state of a quantum channel that maps HI to
HO, that is, W ≥ 0 and TrO(W ) = 1I . Hence, in order to obtain an upper bound
for the maximal success probability PPAR, it is enough to find a value λ < 1 and the
Choi state of a quantum channel W that respect

1

4
|Ui〉〉〈〈Ui|⊗2 ≤ λW for i ∈ {1, 2, 3, 4}. (D.75)

Using the computer assisted method presented in Ref. [45], we obtain an operator
W which satisfies all the quantum channel conditions exactly and that for λ = 9741

1000
,

the inequality (D.75) holds. Hence, PPAR ≤ 9741
1000

. In the online repository in Ref. [171]
we present a MathematicaTM notebook that can be used to verify that W is a valid
Choi state of a quantum channel.

We now prove Example 4.2 from the main text. It concerns the discrimination
of an ensemble composed of a non-uniform probability distribution and a set of
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unitaries that forms a group. In the following, σx, σy, σz are the Pauli operators and
H := |+〉〈0|+ |−〉〈1|, where |±〉 := 1√

2
(|0〉 ± |1〉), is the Hadamard gate.

Example 4.2. Let {Ui}i := {1, σx, σy, σz, H, σxH, σyH, σzH} be a tuple of eight
unitary channels that forms a group up to a global phase, and let {pi}i be a tuple
of probabilities in which each element pi is proportional the i-th digit of the number
π ≈ 3.1415926, that is, {pi}i := { 3

31
, 1

31
, 4

31
, 1

31
, 5

31
, 9

31
, 2

31
, 6

31
}. For the ensemble

{pi, Ui}i, in a discrimination task that allows for k = 2 copies, sequential strategies
outperform parallel strategies, i.e., PPAR < P SEQ.

Proof. The first step of the proof is to ensure that the tuple {1, σx, σy, σz, H, σxH,
σyH, σzH} forms a group up to a global phase. This is done by direct inspection.
The second step of the proof is to ensure that there is a sequential strategy which
outperforms any parallel one. We accomplish this step with the aid of the computer-
assisted-proof methods presented in Ref. [45]. These methods allow us to compute
rigorous and explicit upper and lower bounds for the maximal probability of success
under parallel and sequential strategies. We obtain

8196

10000
< PPAR <

8197

10000
< P SEQ <

8198

10000
, (D.76)

ensuring that PPAR < P SEQ.
The code used in the computer-assisted proof of the this example is publicly

available at our online repository in Ref. [171], along with a MathematicaTM notebook
file which shows that this set of unitaries forms a group.

D.3 Proof of Example 4.3

The Example in this Section shows the advantage of general strategies over
sequential strategies and of sequential strategies over parallel strategies, in channel
discrimination tasks that only involve unitary channels and using k = 3 copies.

We start by proving Example 4.3 from the main text. It concerns the discrimina-
tion of an ensemble composed of a uniform probability distribution and a set of unit-
aries that does not form a group. For the following, we define Hy := |−y〉〈0|+ |+y〉〈1|,
where |±y〉 := 1√

2
(|0〉±i|1〉), andHP := |+P 〉〈0|+|−P 〉〈1|, where |+P 〉 := 1

5
(3|0〉+4|1〉)

and |−P 〉 := 1
5
(4|0〉 − 3|1〉).

Example 4.3. For the ensemble composed by a uniform probability distribution
and N = 4 qubit-qubit unitary channels given by U1 =

√
σx, U2 =

√
σz, U3 =√

HP , and U4 =
√
Hy, in a discrimination task that allows for k = 3 copies,
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general strategies outperform sequential strategies, and sequential strategies outperform
parallel strategies. Therefore, the maximal probabilities of success form a strict
hierarchy PPAR < P SEQ < PGEN.

Proof. The proof follows from direct application of the computer-assisted methods
presented in Ref. [45]. These methods allow us to find explicit and exact paral-
lel/sequential/general testers which attain a given success probability, ensuring then
a lower bound for the maximal success probability for its class. Also, we can obtain
an exact parallel/sequential/general upper bound given the SDP dual formulation.
The code used to obtain the computer-assisted proof of the presenting theorem is
publicly available at the online repository in Ref. [171].

The computed bounds for the maximal probability of successful discrimination
are:

9570

1000
< PPAR <

9571

1000

<
9876

1000
< P SEQ <

9877

1000

<
9881

1000
< PGEN <

9882

1000
,

(D.77)

showing the advantage of strategies that apply indefinite causal order over ordered
ones and proving a strict hierarchy between strategies for the discrimination of a set
of unitary channels.

D.4 Proof of Theorem 4.4

In this Section, we prove Theorem 4.4 from the main text, which concerns the
inability of switch-like strategies to outperform sequential strategies on channel
discrimination tasks that involve only unitary operations.

Theorem 4.4. The action of the switch-like process on k copies of a unitary operation
U can be equivalently described by a sequential process that acts on k copies of the
same unitary operation.

Consequently, in a discrimination task involving the ensemble E = {pi, Ui}i
composed by N unitary channels and some probability distribution, and that allows
for k copies, for every switch-like tester {T SL

i }, there exists a sequential tester {T SEQ
i }i

that attains the same probability of success, according to

N∑

i=1

piTr
(
T SL
i |Ui〉〉〈〈Ui|⊗k

)
=

N∑

i=1

piTr
(
T SEQ
i |Ui〉〉〈〈Ui|⊗k

)
. (4.15)
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In order to provide a better intuition on this result, before presenting the formal
definition of switch-like process with k slots and proving Theorem 4.4 in full generality,
we present a proof for the k = 2 case which is illustrated in Fig. D.1.

For the case k = 2, the switch-like superchannel transforms a pair of unitary
channels {U1, U2} into one unitary channel, according to

WSL(U1, U2) :=|0〉〈0|c ⊗ V02 (U2 ⊗ 1)V01 (U1 ⊗ 1)V00

+|1〉〈1|c ⊗ V12 (U1 ⊗ 1)V11 (U2 ⊗ 1)V10,
(D.78)

where 1 is the identity operator acting on the auxiliary system and Vπi are fixed
unitary operators. Note that, if U1 = U2 = U , we have

WSL(U,U) =|0〉〈0|c ⊗ V02 (U ⊗ 1)V01 (U ⊗ 1)V00

+|1〉〈1|c ⊗ V12 (U ⊗ 1)V11 (U ⊗ 1)V10.
(D.79)

We now define a controlled version of the unitary operators V0i as

V ctrl
0i := |0〉〈0|c ⊗ V0i + |1〉〈1|c ⊗ 1. (D.80)

and a controlled version of V1i as

V ctrl
1i := |0〉〈0|c ⊗ 1 + |1〉〈1|c ⊗ V1i. (D.81)

We first note that due to orthogonality of |0〉 and |1〉, we have V ctrl
1i V ctrl

0i =

|0〉〈0|c ⊗ V0i + |1〉〈1|c ⊗ V1i. Hence, a direct calculation shows that

V ctrl
12 V ctrl

02 (U ⊗ 1) · V ctrl
11 V ctrl

01 (U ⊗ 1) · V ctrl
10 V ctrl

00 =

= (|0〉〈0|c ⊗ V02 + |1〉〈1|c ⊗ V12) (U ⊗ 1) ·
(|0〉〈0|c ⊗ V01 + |1〉〈1|c ⊗ V11) (U ⊗ 1) ·
(|0〉〈0|c ⊗ V00 + |1〉〈1|c ⊗ V10) (U ⊗ 1) (D.82)

=WSL(U,U). (D.83)

This shows that, when U1 = U2 = U , a 2-slot sequential circuit which performs
the operations V ctrl

12 V ctrl
02 , V ctrl

11 V ctrl
01 , and V ctrl

10 V ctrl
00 can perfectly simulate the two-slot

switch-like superchannel. See Fig. D.1 for an illustration.

Definition D.1 (Switch-like superchannel). Let {π}π, π ∈ {0, . . . , k! − 1} be a
set where each integer π represents a permutation of the set {1, . . . , k} and σπ :

{1, . . . , k} → {1, . . . , k} be the permutation function such that, after permutation π,
the element i ∈ {1, . . . , k} is mapped to σπ(i). The k-slot switch-like superchannel
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acts on a set of k unitary operators {Ui}ki=1, Ui : HIi → HOi as

WSL(U1, . . . , Uk) :=

k!−1∑

π=0

|π〉〈π| ⊗
[
Vπk

(
Uσπ(k) ⊗ 1aux)Vπ(k−1)

(
Uσπ(k−1) ⊗ 1aux)Vπ(k−2) . . .

(
Uσπ(1) ⊗ 1aux)Vπ0

]
,

(D.84)

where {Vπn}πn is a set of unitary operators defined as

Vπ0 : HPt ⊗Haux → HIσπ(1) ⊗Haux (D.85)

Vπn : HIσπ(i) ⊗Haux → HOσπ(i+1) ⊗Haux for n ∈ {1, . . . , k − 1} (D.86)

Vπk : HIσπ(k) ⊗Haux → HFt ⊗Haux (D.87)

Here we have defined the switch-like superchannel only by its action on unitary
operations, without explicitly stating how the switch-like superchannel acts on general
quantum operations nor its process W SL ∈ L

(
HP ⊗HI ⊗HO ⊗HF

)
. In order to

prove Theorem 4.4, and for the main purpose of this paper, knowing the action of
switch-like superchannels only on unitary operations will be enough, but for the sake
of concreteness, we also present an explicit process which implements the switch-like
superchannel. For that, we define the process W SL := |USL〉〉〈〈USL| where

USL :=
⊕

π

VπkVπk−1 . . . Vπ1Vπ0. (D.88)

Following Lemma 1 in Ref. [56] (see also Theorem 2 of Ref. [54]), one can verify that
the processW SL acts on unitary operators accordingly to the switch-like superchannel,
as presented on Definition D.1.

Proof. We start our proof by defining the generalised controlled operation

V ctrl
n :=

k!−1∑

π=0

|π〉〈π| ⊗ Vπn ∀ n ∈ {0, . . . , k}, (D.89)

which is a valid unitary operator since V ctrl
n

(
V ctrl
n

)†
= 1. Now, note that, due to

orthogonality of the vectors |π〉, we have

V ctrl
k (U ⊗ 1)V ctrl

(k−1)(U ⊗ 1)V ctrl
(k−2) . . . (U ⊗ 1)V ctrl

0 =WSL(U, . . . , U). (D.90)

Hence, similarly to the k = 2 case, a simple concatenation of the operators V ctrl
i

provides a k-slot sequential quantum circuit which perfectly simulates the switch-like
k-slot superchannel when all input unitary channels are equal.
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˜

˜
=

∀ Ui

Mρ
V00 V10 V01 V11 V02 V12

UiUi

c

t

a

ρ MWSL

Ui

Ui
c

t

a

Figure D.1: A 2-copy sequential strategy, that attains the same probability of successful
discrimination of any 2-copy switch-like strategy, for all sets of unitaries {Ui}Ni=1. Line
“c” represents a control system, “t”, a target system, and “a”, an auxiliary system. Both
strategies can be straightforwardly extended to k copies.

Since every sequential quantum circuit can be written as an ordered process
W SEQ ∈ L

(
HP ⊗HI ⊗HO ⊗HF

)
[205], when k identical unitary operators U are

plugged into the process W SEQ, the output operation is described by

W SEQ ∗ |U〉〉〈〈U |⊗k = W SL ∗ |U〉〉〈〈U |⊗k, (D.91)

where ∗ is the link product and W SL is a process associated to the switch-like
superchannel. Hence, if

T SL
i := TrPF [(ρ⊗ 1)W SL(1⊗Mi)] (D.92)

is the tester associated to the switch-like strategy, then one can construct a sequential
tester

T SEQ
i = TrPF [(ρ⊗ 1)W SEQ(1⊗Mi)] (D.93)

such that, for any unitary operator U , one has

Tr
(
T SL
i |U〉〉〈〈U |⊗k

)
= Tr

(
T SEQ
i |U〉〉〈〈U |⊗k

)
, (D.94)

ensuring that there is always a sequential tester which performs as well as any
switch-like one.
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Uniformly sampling qubit-qubit unitary channels

N k = 2 k = 3

2 PPAR = P SEQ = PGEN PPAR = P SEQ = PGEN

3 PPAR = P SEQ = PGEN PPAR < P SEQ = PGEN

4 PPAR < P SEQ = PGEN PPAR < P SEQ < PGEN

...
...

...

9 PPAR < P SEQ = PGEN PPAR < P SEQ < PGEN

...
...

25 PPAR ≈ P SEQ = PGEN

Table 4.1: Summary of numerical findings. N denotes the number of unitary channels in
the ensemble and k denotes the number of copies. The bold equalities on row N = 2 mark
analytical results [143]. A strict inequality between the maximal probabilities of success of
different strategies in a certain scenario indicates that examples of ensembles that exhibit
such gap were encountered. An equality indicates that, for all sampled ensembles, the
maximal probabilities of success of different strategies were equal, up to numerical precision.

D.5 Numerical Findings

In this section we elaborate further on our numerical analysis.

In order to find more examples of the advantage of sequential and general strategies
for unitary channel discrimination, we applied the following sampling method. To
create ensembles {pi, Ui}Ni=1, with pi = 1/N ∀ i, we uniformly sampled sets of up to N
unitary operators according to the Haar measure. Most ensembles were composed
with qubit unitaries, although some qutrit examples were also analysed.

Then, we evaluated semidefinite programmes (SDP) to compute the maximal
probability of successful discrimination of each ensemble under parallel, sequential,
and general strategies, using k = 2 and k = 3 copies. We analysed ensembles of up
to N = 25 unitaries.

For qubit unitaries, and k = 2 copies, ensembles of N = 2 and N = 3 unitaries
were sampled 50 000 times, ensembles of N = 4 and N = 5 unitaries were sampled
25 000 times, and ensembles of between N = 6 and N = 25 unitaries were sampled
1 000 times. Still for qubit unitaries but for k = 3 copies, ensembles of N = 2

unitaries were sampled 10 000 times, ensembles of N = 3 unitaries were sampled
5 000 times, and ensembles of between N = 4 and N = 9 unitaries were sampled 500

times.

For k = 2, the maximal probability of success of general and sequential strategies
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Figure D.2: Ratios of the averages of the maximal probability of success of parallel and
sequential strategies using k = 2 copies. Ensembles of N ∈ {2, . . . , 25} qubit unitaries.
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Figure D.3: Ratios of the averages of the maximal probability of success of parallel and
sequential strategies, and of sequential and general strategies, using k = 3 copies. Ensembles
of N ∈ {2, . . . , 9} qubit unitaries.
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coincided, up to numerical precision, for all ensembles. The same was true between
parallel and sequential strategies for all ensembles of N = 3 qubit unitaries. For
k = 3, sequential and general strategies coincided for all ensembles of N = 2 and
N = 3 unitaries qubit. In all other scenarios, gaps were observed.

We then calculated the averages of the maximal probability of success for each
N , k, and strategy. We plot the ratio of these averages for k = 2 in Fig. D.2 and
for k = 3 in Fig. D.3. In Fig D.2, only the 〈PPAR〉/〈P SEQ〉 ratio is plotted, while
〈P SEQ〉/〈PGEN〉 is omitted, since 〈P SEQ〉 and 〈PGEN〉 coincide. In Fig. D.3, both
ratios are plotted.

The qutrit unitary results are not plotted. Only scenarios of k = 2 were analysed,
with N = 2 and N = 3, each sampled 350 and 100 times, respectively. A gap between
sequential and separable strategies was found for N = 3, and no gaps between
parallel, sequential, and general strategies was found in the other cases.

These results are also summarized in Table 4.1 in the main text, repeated here
for convenience of the reader.
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