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Abstract

Space–time finite element methods approximate solutions of time dependent partial differential
equations (PDEs) with a discrete set of functions that live on a mesh of space and time. They
allow for space–time adaptive meshing and are naturally high-order methods. However, compared
to time-stepping methods, they are inherently expensive due to time being treated as an additional
dimension of the mesh and of the approximation spaces. In the literature space–time methods
for linear hyperbolic and parabolic problems are well studied. However, much less work has been
devoted to nonlinear equations.

In this thesis, we explore ways to improve the efficiency of space–time finite element methods
for the wave equation using Trefftz methods combined with tent-pitching. Then, we introduce a
novel space–time method for a class of nonlinear parabolic PDEs known as cross-diffusion systems.

Trefftz methods are high-order Galerkin schemes in which all discrete functions are elementwise
solution of the PDE to be approximated. We present a space–time Trefftz discontinuous Galerkin
(DG) method for approximating the acoustic wave equation semi-explicitly on tent pitched meshes.
Tent pitched meshes are meshes that comply with the causality property of the PDE. They allow
to solve the equation elementwise, allowing locally optimal advances in time. Trefftz methods are
only viable when the PDE is linear and its coefficients are piecewise constant.

For the discretisation of the acoustic wave equation with piecewise smooth wavespeed, we
introduce a ’quasi-Trefftz’ discontinuous Galerkin method, where the discrete functions are ele-
mentwise approximate PDE solutions. We show that the new discretisation possesses the same
good approximation properties as the classical Trefftz one, and prove stability and high-order con-
vergence of the DG scheme. We introduce polynomial basis functions for the new discrete spaces
and describe a simple algorithm to compute them.

Cross-diffusion systems are systems of nonlinear parabolic PDEs that are used to describe
dynamical processes in several application, including chemical concentrations and cell biology.
We present a space–time approach to the proof of existence of bounded weak solutions of cross-
diffusion systems, making use of the system entropy to study long-term behavior and to show
nonnegativity of the solution, even when a maximum principle is not available. This approach
naturally gives rise to a novel space–time Galerkin method for the numerical approximation of
cross-diffusion systems that conserves their entropy structure. We prove existence and convergence
of the discrete solutions, and present numerical results for the porous medium, the Fisher-KPP,
and the Maxwell-Stefan problem.

All these methods have been implemented in Netgen/NGSolve. The source code is available
online at https://github.com/PaulSt.

https://github.com/PaulSt
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Kurzfassung

Raum-Zeit-Finite-Elemente-Methoden approximieren Lösungen von zeitabhängigen partiellen Dif-
ferentialgleichungen (PDE) mithilfe einer diskreten Menge an Funktionen, die über einem Netz
von Raum und Zeit konstruiert werden. Die Methoden ermöglichen adaptive Raum-Zeit-Netze
und sind naturgemäß von hoher Konvergenzordnung. Verglichen mit Zeitschrittverfahren sind sie
jedoch aufwändiger, da Zeit als eine weitere Dimension des Netzes und der Approximationsräume
behandelt wird. Lineare hyperbolische und parabolische Probleme sind in der Literatur bereits
umfangreich behandelt. Nicht-lineare Gleichungen wurden in dieser Hinsicht bisher kaum be-
sprochen.

In dieser Arbeit werden Möglichkeiten zur Effizienzsteigerung von Raum-Zeit-Finite-Elemente-
Methoden besprochen, unter Verwendung von Trefftz Methoden und in Kombination mit zeltförmi-
gen Netzen. Weiters wird eine neue Raum-Zeit-Methode für eine bestimmte Klasse an nicht-
linearen parabolischen PDEs, bekannt als Kreuz-Diffusionssysteme, vorgestellt.

Trefftz-Methoden sind Galerkin-Methoden hoher Konvergenzordnung, in denen alle diskreten
Funktionen auf jedem Element des Netzes bereits eine Lösung der betrachteten PDE sind. Zur
Approximation der akustische Wellengleichung präsentieren wir eine Raum-Zeit Trefftz unstetige
Galerkin-Methode (DG), die sich auf zeltförmigen Netzen explizit lösen lässt. Zeltförmige Netze
unterteilen das Raum-Zeit-Gebiet in zeltförmige Elemente, welche die Kausalität der PDE berück-
sichtigen. Sie erlauben die numerische Lösung elementweise zu berechnen, mit lokal optimalem
Fortschritt in der Zeit. Trefftz-Methoden sind ausschließlich auf lineare PDEs mit stückweise
konstanten Koeffizienten anwendbar.

Um die Trefftz-DG-Methode auf die akustische Wellengleichung mit stückweise stetigem Koef-
fizienten zu erweitern, stellen wir eine

”
quasi-Trefftz“-Methode vor, in der die diskreten Funktionen

elementweise Approximationen der PDE Lösungen sind. Wir zeigen, dass die neue Diskretisierung
die gleichen guten Approximationseigenschaften der klassischen Trefftz-Methode hat und Stabilität
und Konvergenz von hoher Ordnung aufweist. Weiters konstruieren wir polynomiale Basisfunk-
tionen für die Diskretisierung anhand eines simplen Algorithmus.

Kreuz-Diffusionssysteme sind Systeme von nichtlinearen parabolischen PDEs, welche die En-
twicklung von Dichten oder Konzentrationen in Mehrkomponentensystemen beschreiben. Wir
präsentieren eine Raum-Zeit Variante des Beweises der Existenz von beschränkten schwachen
Lösungen, in dem wir die Entropie des Systems benutzen, um das Langzeitverhalten der Lösun-
gen zu untersuchen, und zeigen darüber hinaus, dass sie nichtnegativ ist, auch wenn das Max-
imumprinzip nicht anwendbar ist. Diese Herangehensweise führt auf natürliche Art zu einer
neuen Raum-Zeit Galerkin Methode zur Diskretisierung von Kreuz-Diffusionssystemen, welche
die Entropie-Struktur des Systems erhält. Wir zeigen Existenz und Konvergenz der diskreten
Lösung und präsentieren numerische Resultate für die poröse Medium-Gleichung, die Fisher-KPP-
Gleichung und das Maxwell-Stefan-Problem.

Alle diese Methoden wurden in Netgen/NGSolve implementiert. Der Code ist online verfügbar
unter https://github.com/PaulSt.

https://github.com/PaulSt
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We use standard multi-index notation for partial derivatives and monomials, adapted for space–
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variable x only, i.e.
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xnf

∇ · σ(x, t) = ∂x1σ1 + · · ·+ ∂xnσn

For any vector distribution w in Rn+1 a space–time divergence div(x,t) and a space–time matrix-
valued curl-operator curl(x,t) are defined as

div(x,t)w =

n+1∑
j=1

Dejwj , and (curl(x,t)w)jk = Dekwj −Dejwk, 1 ≤ j, k ≤ n+ 1.

For a domain QT ⊂ Rn+1 in space and time the Sobolev spaces with regularity index k ∈ N
and summability index p ∈ N are given by

W k,p(QT ) = {f ∈ Lp : Dif ∈ Lp(QT ), ∀|i| ≤ k}.

The corresponding (semi-)norms are defined as

|f |Wk,p(Ω) =

∑
|i|=k
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|Dif |pdx

 1
p

and ‖f‖Wk,p(Ω) =
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j=1
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Wk,p(Ω)

 1
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.

In the special case of p = 2 we write for the resulting Hilbert space Hk(QT ) := W k,2(QT ), endowed
with the inner product

(u, v)Hk(QT ) =

k∑
|i|=0

(Diu,Div)L2(QT ).

To describe different regularity in space and time we make use of Bochner spaces over a time
interval [0, T ]. For a separable real Hilbert space H the Bochner space L2([0, T ];H) consist of
classes of measurable functions f : [0, T ]→ H, i.e.f(y) ∈ H for almost all y ∈ [0, T ] such that(∫

[0,T ]

‖f(y)‖2H dy

) 1
2

≤ ∞.

The Bochner Sobolev space is then given by

Hk([0, T ];H) = {f ∈ L2([0, T ];H) : ∂iyf ∈ L2([0, T ];H), ∀|i| ≤ k}.
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Chapter 1

Introduction

Finite element methods (FEM) are widely used numerical method to approximate the solution
of partial differential equations (PDE). They are based on a variational formulation of the PDE
problem and on a discretization of the functional space. The main idea to construct a discrete
approximation space is to subdivide the domain and to build local basis functions, which are
then used to approximate the solution. Main advantages of the FEM are its high flexibility,
accuracy, and solid mathematical foundation. Flexibility comes from the possibility of using
unstructured meshes and freedom in choosing the discrete spaces. Accuracy is usually provided
by two parameters: the mesh size h and the degree of the discrete space p, giving high order
approximation.

The idea origins from Walther Ritz, who, in 1908, used a discrete subspace of the infinite di-
mensional space in which the solution lies, in order to approximate the solution by minimizing the
energy of the PDE [96]. In 1915, Boris Galerkin then applied this idea to the variational formula-
tion of the PDE [37]. The notion of using finite elements to construct the discrete approximation
space was first applied to the variational setting by Courant in [22]. This marks the starting points
for the FEM for static problems. In order to treat time dependent problems, the classic approach
is to use finite element methods to discretize space and then use time stepping schemes to advance
in time. These methods are still popular today. However, in 1969 John Argyris first proposed
using finite elements in time and space in [5]. This marks the starting point of space–time FEM
philosophy: building the mesh and the basis functions in space and time.

This thesis explores space–time finite elements for parabolic and hyperbolic problems, investi-
gating the advantages and battling the drawbacks. The main advantages of using FEM in space–
time carry over from the static FEM: high flexibility, accuracy, and solid mathematical foundation.
A drawback compared to simple time stepping is that the use of approximation spaces based on
piecewise “total degree”polynomials in both space and time leads to a higher number of degrees of
freedom. Furthermore, the possibility of using unstructured meshes in space–time is a two edged
sword as it requires us to mesh the full space–time domain. On the upside, hp-refinement is made
possible in space–time, allowing for straightforward higher order approximation.

1.1 Hyperbolic problems

We will focus first on hyperbolic problems, considering the acoustic wave equation. Space–time
finite element methods for linear wave propagation go as far back as [51], and have been used
in combination with discontinuous Galerkin (DG) methods e.g. in [27, 36, 73, 82]. DG methods
are based on discontinuous piecewise polynomial functions, and so-called numerical fluxes which
impose continuity constraints at mesh inter-element boundaries. To construct an efficient method
we make use the of the flexebility of the space–time approach by using Trefftz functions and
tent–pitching.

Tent pitching techniques generate a space–time mesh, which complies with the causality prop-
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2 CHAPTER 1. INTRODUCTION

erties of the hyperbolic PDE. The resulting mesh consists of tent shaped objects, each advancing
locally optimally in time, with the PDE being explicitly solvable in each of them. DG methods pair
well with tent pitched meshes as DG upwind fluxes provide a natural way to advanced the solution
across element faces, see [36,75,82,94,114]. A way of constructing these meshes can, for instance,
be found in [31, 45, 110, 113]. Though the tent pitching strategy pairs well with DG methods,
also other methods are applicable in combination with tent pitched meshes. In [28,43,45,46,113],
schemes for the semi-discretization of different hyperbolic equations on tents are presented, which
map tents to a domain where space and time are separable. Similar to the Trefftz-DG method,
these schemes are able to solve in 3+1 dimensions, without building four dimensional elements.
Friedrichs theory is used in [44] in order to derive a conforming methods, and to prove its conver-
gence properties. We point out that tent pitching is not the only way to deal with the time step
restriction of locally refined meshes. A stabilization for a conforming space–time finite element
method on Cartesian (in time) meshes is presented in [106]. Classical time-stepping schemes can
still be applied successfully by splitting the domain into a coarse-mesh and a fine-mesh region,
then explicit time stepping in the coarse-mesh region is combined with local implicit or explicit
time stepping in the fine-mesh region. A fully explicit scheme can be found in [47,48].

The Trefftz methods are a class of Galerkin schemes for the approximation of linear partial
differential equations. Their distinctive property is that the restrictions to mesh elements of all
test and trial functions are particular solutions of the underlying PDE. The variational formulation
weakly enforces interelement continuity and initial/boundary conditions. They are named after
the seminal work of Erich Trefftz [109]. The main advantage of Trefftz schemes over more classical
ones is the higher accuracy for comparable numbers of degrees of freedom.

Trefftz methods have proved particularly successful for wave propagation in time-harmonic
regime; see e.g. [50] for a survey of the scalar case. Trefftz methods are often formulated in a DG
framework. DG methods are a popular choice for time-domain wave propagation, due to their
flexibility, efficiency and simplicity; see e.g. [3, 34,56,82,85].

Trefftz discretisations of time-dependent PDEs are intrinsically space–time methods (as op-
posed to space semi-discretisations and time-stepping): for the test and trial functions to be solu-
tion of the PDE they need to be functions of both space and time variables. Trefftz DG schemes
developed for time-domain (acoustic, electromagnetic and elastic) wave problems include interior
penalty (IP-DG) [8], hybrid DG (involving Lagrange multipliers on mesh interfaces) [91,112], and
versions related to the “ultra-weak variational formulation” [10, 30, 66–68, 81, 90]. In all cases, a
sensible choice of the DG numerical fluxes allows to write space–time Trefftz DG schemes as simply
as standard “DG-in-space+time-stepping” schemes. In particular, there is no need to solve huge
global space–time linear systems but implicit (and, on suitable meshes, even explicit, [90]) time-
stepping is possible. Numerical experiments on a wide range of academic test cases have shown
excellent properties in terms of approximation and convergence rates [8, 10, 30, 66–68, 90, 91, 112],
dissipation [8, 30,66,90], dispersion [30,66], conditioning [67], and even parallelism [90].

Since a sufficiently rich family of local exact solutions of the PDE is needed Trefftz schemes
require PDE coefficients to be elementwise constant. However, many relevant wave propagation
problems take place in a smoothly varying medium: classical examples are well-known in aeroa-
coustics, underwater acoustics, plasma physics, biomedical imaging, etc. Approximation of smooth
coefficients by piecewise-constant ones is not a viable strategy because it immediately spoils high-
order convergence, which is one of the strongest reasons to opt for a Trefftz approach. In the case
of time-harmonic acoustic wave propagation (Helmholtz equation) Trefftz methods were adapted
to smoothly varying coefficients with the introduction of generalized plane waves (GPWs) in [53].
GPWs are not exact PDE solutions but rather “solutions up to a given order”, in the sense of
Taylor polynomials. GPWs extend the accuracy property of Trefftz schemes to a much wider
setting (provably for h-convergence [52], so far only numerically for p-convergence). The critical
point to construct GPWs relies on the choice of an ansatz, mimicking the oscillatory behavior of
plane waves, while allowing for more degrees of freedom. However this is, in a sense, due more to
the nature of the Helmholtz equation than to the GPW idea in itself.
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1.2 Parabolic problems

We will consider a class of parabolic problems, including linear and nonlinear problems, known as
cross-diffusion systems.

Cross-diffusion systems are commonly used to describe dynamical processes appearing in mod-
eling, for example, population dynamics, ion transport through nanopores, tumor growth models,
and multicomponent gas mixtures. The challenge in the analysis of these systems is that the diffu-
sion matrix is not necessarily symmetric nor positive semi-definite, and thus no maximum principle
is available. Following the boundedness-by-entropy method introduced in [58], the remedy is to
make use of the entropy structure of the system. For a textbook version see [59]; see also [20,63].
Introducing the entropy function, a transformation of the solution, allows us to examine long-term
behavior and show that the solution is nonnegative and bounded. The key difference of our work
to the existing literature is that we do not make use of time stepping, but instead consider time and
space altogether. This naturally leads to a novel space–time Galerkin method for the numerical
approximation of cross-diffusion systems. The space–time approach entails test and trail spaces,
as well as the mesh, where time is included as additional dimension. This provides an easy way
to increase the approximation degree simultaneously in space and time, and makes space–time
hp-refinement possible.

Existing numerical schemes for cross-diffusion systems rely on time stepping methods. An en-
tropy/energy conserving time-stepping algorithm for thermomechanical problems was developed
in [92] being of second order in time. In [69], assuming existence of sufficient regular strong so-
lutions on some time interval [0, T ] of a scalar diffusion equation, Runge-Kutta methods were
studied using maximal regularity. Although maximal regularity also applies to a certain type
of cross-diffusion systems [93], Runge-Kutta methods were only applied to very restrictive class;
an example (semi-discrete Runge-Kutta scheme) can be found in [61]. In [57], an entropy di-
minishing/mass conserving fully discrete variational formulation for a cross-diffusion system was
presented.

Maxwell-Stefan systems, see [78, 102], describe multicomponent diffusive fluxes in non-dilute
solutions or gas mixtures, and are a prime example for the cross-diffusion systems considered here.
The first result on global solutions for the Maxwell-Stefan equations close to the equilibrium is
given in [41]. The global existence of solutions close to equilibrium and the large time convergence
to this equilibrium can be found in [39, Chapter 9], [40, 49], and [93, Chapter 12]. The proof
of existence of local classical solutions to the Maxwell-Stefan equations can be found in [12].
For a textbook on this topic, see [93]. The fact that the Maxwell-Stefan equations satisfy the
assumptions made in this work, see (H1)-(H2) in Section 4.1, is due to [62], where the entropy
structure of the Maxwell-Stefan system was used to prove the existence of globally bounded weak
solutions. An entropy structure was also identified for a generalized Maxwell-Stefan system coupled
to the Poisson equation in [60], where the existence of global weak solutions was proven as well.
The unconditional convergence to the unique equilibrium for given mass was shown in [49, 77]
without reaction terms. Those results were extended to also include reaction terms using mass-
action kinetics in [23], whenever a detailed balance equilibrium exists. The heat equation can be
recovered from the Maxwell-Stefan equation as a relaxation limit [97].

Numerical schemes for the Maxwell-Stefan equations in the literature rely on time-stepping. A
finite differences approximation can be found in [72, 74]. Fast solvers for explicit finite-difference
schemes were studied in [38]. A posteriori estimates for finite elements in the stationary case
are given in [19]. In [89], a mass conserving finite volume scheme was presented. Existence
of solutions for a mixed finite element scheme under some restrictions on the coefficients was
proven in [79]. The scheme of [26] was proven to also conserve the L∞ bound by making use of
a maximum principle. A scheme using finite elements in space and implicit Euler in time was
used to approximate a Poisson-Maxwell-Stefan system in [60]. That scheme, which is based on a
formulation in entropy variables, admits solutions that conserve the mass as well as the entropy
structure. As a by product, the solution satisfy an L∞ bound. Another scheme that is mass
conserving and conserves the L∞ bounds of the solutions was presented in [14]. A finite volume
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scheme that conserves mass and the non-negativity of the solutions is presented in [18] along side
a proof of its convergence.

On simultaneous space–time finite element approaches for parabolic problems, there is a rich
literature on the linear case, focusing on the heat equation. In continuous space–time methods,
due to the different orders of derivatives present, it is typical to choose a Petrov-Galerkin method,
see [2, 6, 103]. In [115], an unconditionally stable formulation for the finite element method on
anisotropic spaces is derived using a Hilbert-type transform, with the goal of a finite element-
boundary element coupling. In [108], bubble functions are used to derive a method that is stable
with respect to small values of the diffusion coefficient. A space–time wavelet method was presented
in [101]. Other recent developments include space–time discontinuous Galerkin methods, with at
least a discontinuity in the test functions in time, see [25, 70, 95, 98]. For space–time multi-grid
methods see [88,104,105]. We also point to [24,71,83].

For nonlinear parabolic equations, the existing literature on space–time methods is much
sparser. The adaptive finite element scheme introduced in [32] for linear parabolic problems was
extended in [33] to the scalar version of the nonlinear reaction-diffusion equation treated in this
work. A space–time discontinuous Galerkin method for scalar nonlinear convection and diffusion
was introduced in [111]. A space–time method for nonlinear PDEs using adaptive wavelets was
introduced in [1].

1.3 Outline of the dissertation

Chapter 2 follows [90]. In this chapter, we present original numerical results for the space–
time Trefftz discontinuous Galerkin method studied in [81], confirming the known, and conjectured,
properties of the method numerically. This implementation combines a Trefftz discontinuous
Galerkin method with tent pitched meshes, highlighting the importance of both techniques in
order to produce an efficient method. We point out that we can solve the problem in n + 1
dimensions, n ∈ {1, 2, 3}, without the need for n + 1 dimensional elements, since the Trefftz
method only requires the computation of integrals at interelement boundaries. Furthermore, we
introduce a way of recovering the solution of the second order system, and address in detail the
issue of inhomogeneous materials.

Chapter 3 follows [54]. Inspired by the generalized plane waves idea, we propose an extension
of the space–time Trefftz discontinuous Galerkin scheme for the acoustic wave equation of [81]
to the smoothly-varying wavespeed case. Since the Galerkin basis functions are solution of the
PDE up to a given order (with respect to the mesh size), the scheme is referred to as quasi-Trefftz
discontinuous Galerkin method. A remarkable outcome is that test and trial basis functions can
be taken as polynomials, and their coefficients can be computed with a simple iteration, which
is initialized by assigning their values at a given time. Their computation uses the first Taylor-
expansion terms of the functionG(x) = c−2(x), c being the problem wavespeed. The definition, the
algorithm for computing the basis construction, and the analysis of the polynomial quasi-Trefftz
discrete space properties are the main novel contributions of this chapter.

Chapter 4 follows [15]. Here, we develop a space–time approach to the boundedness-by-
entropy method, presented in [58], to prove existence of bounded weak solutions of cross-diffusion
systems, making use of the system entropy to examine long-term behavior and to show that the
solution is nonnegative, even when a maximum principle is not available. The main tool for the
proof will be the method of compensated compactness, which is a special technique applying the
classical div-curl lemma [107]. This approach naturally gives rise to a novel space-time Galerkin
method for the numerical approximation of cross-diffusion systems that conserves their entropy
structure. We prove existence and convergence of the discrete solutions, and present numeri-
cal results for the heat equation, the porous medium, the Fisher-KPP, and the Maxwell-Stefan
problem.



Chapter 2

Trefftz–DG method for the wave
equation

This chapter proceeds as follows. First, we introduce the Trefftz-DG method for the acoustic
wave equation with piecewise-constant wavespeed in Section 2.2, starting by stating the model
problem, defining the Trefftz spaces and finishing the section by formulating the method, as it was
introduced in [81]. We continue in Section 2.2.4 by reviewing different strategies of discretizing
the Trefftz spaces. In Section 2.3, we discuss some numerical details on how to evolve the solution
elementwise on a tent pitched mesh, and in Section 2.4, we show a way to recover the second
order solution from the first order formulation. Finally, we present numerical results1, which were
obtained by implementation of the method in Netgen/NGSolve [99,100], in Section 2.5.

2.1 Acoustic wave equation

We consider the initial boundary value problem (IBVP), given by the homogeneous acoustic wave
equation in first order formulation:

∇ · σ + c−2∂tv = 0 in QT ,

∇v + ∂tσ = 0 in QT ,

v(·, 0) = v0, σ(·, 0) = σ0 on Ω,

v = gD on ΓD × [0, T ],

nxΩ · σ = gN on ΓN × [0, T ],
ϑ
c v − σ · n

x
Ω = gR on ΓR × [0, T ].

(2.1)

Here

n ∈ N is the physical space dimension,

Ω ⊂ Rn is an open, bounded, Lipschitz polytope,

T > 0 is the final time,

QT = Ω× (0, T ) is the space–time cylinder,

(v,σ) : QT → R× Rn are the unknown fields (e.g. acoustic pressure and velocity),

nxΩ ∈ Rn is the outward pointing normal unit vector on ∂Ω,

ΓD,ΓN,ΓR are a partition of ∂Ω, one or two of them may be empty,

v0 ∈ L2(Ω),σ0 ∈ L2(Ω)n are the initial conditions,

gD, gN , gR are Dirichlet, Neumann and Robin boundary data, respectively,

1The code is available online at https://github.com/PaulSt/NGSTrefftz

5
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ϑ ∈ L∞(ΓR × [0, T ]) is a (uniformly positive) impedance parameter,

∇,∇· are the gradient and divergence operators in the space variable x,

∂t is the time derivative,

0 < c ∈ L∞(Ω) wavespeed, assumed piecewise-constant and independent of time.

If the initial condition σ0 is the gradient of a scalar field u0, i.e. σ0 = −∇u0, then the first
order system is equivalent to the second order system obtained by setting v = ∂tu and σ = −∇u:

−∆u+ c−2∂2
t u = 0 in QT ,

∂tu(·, 0) = v0, u(·, 0) = u0 on Ω,

∂tu = gD on ΓD × [0, T ],

−nxΩ · ∇u = gN on ΓN × [0, T ],
ϑ
c ∂tu+∇u · nxΩ = gR on ΓR × [0, T ].

(2.2)

The well-posedness of IBVP (3.1) in Bochner spaces is briefly discussed in [9, §2.2]. In two space
dimensions d = 2, the regularity of the solution in corner-weighted Sobolev space of Kondrat’ev
type is investigated in detail in [65, 76] and used in the convergence analysis of DG schemes in,
e.g., [9, 84,86].

Remark 2.1.1. If a source term is present, i.e. if the right-hand side of the IBVP is non-zero,
then one can use Duhamel’s principle to construct a particular solution and reduce the problem
back to the homogeneous one, see [35, Sect. 2.4.2].

2.2 Trefftz–DG method

2.2.1 Space–time meshes

The mesh Th(QT ) of the space–time domain QT is assumed to consist of non-overlapping Lipschitz
polytopes, where h = maxK∈Th(QT ) hK , with hK being the anisotropic diameter defined in (2.8).
For each mesh face F = ∂K1 ∩ ∂K2, for K1,K2 ∈ Th(QT ), we assume that it either lies below
the characteristic speed 1/c, or is vertical (parallel to the time axis). In more rigorous terms: Let
(nxF , n

t
F ) be the normal vector to F with ntF ≥ 0, then either

c|nxF | < ntF and we call the face space-like, or

ntF = 0 and we call the face time-like.

Notice, however, that no CFL-condition or any other time step size restriction is imposed on the
time-like faces.

A mesh with space-like faces only is called a tent pitched mesh. In the numerical experiments
presented below, we generate tent pitched meshes by using the algorithm presented in [45] (see
also [113]). The mesh is buit by progressively advancing in time, stacking tent-shaped objects
on top or each other, each of them union of (n + 1)-simplices. The main idea is that the tent
height is chosen such that the differential equation is explicitly solvable in each tent. Therefore,
the local maximal time advance at a spatial point has to respect the causality constraint, which
corresponds to a local CFL-condition. This allows us to advance the solution tent by tent, not
necessarily having to solve a global system. For independent tents, i.e. tents that are not on top
of each other, the computations can be done in parallel. We remark that, in the numerical tests,
we observe no stability issues with tents pitched very close to the limit of the causality condition.

We use the following notation for the mesh skeleton and its parts:

Fh :=
⋃

K∈Th
∂K,

F space
h :=

⋃
{F ⊂ Fh space-like face}, F time

h :=
⋃
{F ⊂ Fh time-like face},
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Figure 2.1: A tent pitched mesh with faces below the characteristic speed and a time-like faces,
which are contained inside two tents.

F0
h := Ω× {0}, FTh := Ω× {T},
FD
h := ΓD × [0, T ], FN

h := ΓN × [0, T ], FR
h := ΓR × [0, T ].

This classification of the faces is represented in Figure 2.1.

2.2.2 Trefftz spaces

By definition, Trefftz functions in the kernel of the considered differential operator. For the first
order wave equation, we define the local and global Trefftz space as

T (K) :=
{

(w, τ ) ∈ L2(K)1+n s.t. τ |∂K ∈ L
2(∂K)n, ∂tw, ∇ · τ ∈ L2(K),

∂tτ , ∇w ∈ L2(K)1+n, ∇ · τ + c−2∂tw = 0, ∇w + ∂tτ = 0
}

T (Th) :=
{

(w, τ ) ∈ L2(QT )1+n, s.t. (w|K , τ |K) ∈ T (K) ∀K ∈ Th
}
,

respectively. Note that, by assuming that the solution is in T (Th), we require additional smooth-
ness on the solution, as in general we only have that ∂tv +∇ · σ ∈ L2(K), for all K ∈ Th.

We derive the Trefftz-DG method for any choice of discrete test and trial space with a Trefftz
property, which we denote by Tp(Th). A possible choice for a polynomial Tp(Th) is given in
Section 2.2.4 below.

2.2.3 The method

Following [81], we derive the Trefftz-DG method for the IBVP in (2.1). The method is derived
from a local weak formulation, obtained by multiplying the two equations in (2.1) by test and trial
functions w and τ , respectively, and integrating by parts on each element K of the mesh Th(QT ).
Then, adding the two equations gives

−
∫
K

v
(
∇ · τ + c−2∂tw

)
+ σ · (∂tτ +∇w) dV

+

∫
∂K

v
(
τ · nxK + c−2wntK

)
+ σ ·

(
w · nxK + τntK

)
dS = 0.

(2.3)

By choosing Trefftz test functions (w, τ ) ∈ Vp(K), the volume integrals over K vanishes. We are
left with: ∫

∂K

v̂hp
(
τ · nxK + c−2wntK

)
+ σ̂hp ·

(
w · nxK + τntK

)
dS = 0. (2.4)
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Typical for DG methods, the continuity of the numeric solution on inter-element boundaries is
enforced within the bilinear form of the method. To this end, the trace of the solution (v,σ) in
the boundary integral has been replaced by the numeric fluxes (v̂hp, σ̂hp), which we define below.

We use standard DG notation for averages {{·}}, space normal jumps [[·]]N and time (full)
jumps [[·]]t of piecewise-continuous scalar and vector fields on internal faces: on F = ∂K1 ∩ ∂K2,
for K1,K2 ∈ Th,

{{w}} :=
w|K1

+ w|K2

2
, {{τ}} :=

τ|K1
+ τ|K2

2
,

[[w]]N := w|K1
nxK1

+ w|K2
nxK2

, [[τ ]]N := τ|K1
· nxK1

+ τ|K2
· nxK2

,

[[w]]t := w|K1
ntK1

+ w|K2
ntK2

[[τ ]]t := τ|K1
ntK1

+ τ|K2
ntK2

Across time-like faces, the information is passed by using centered fluxes with jump penaliza-
tion, whereas, across space-like faces, the information is passed upward in time, resembling an
up-wind scheme. More precisely, the fluxes on the inter-element faces are chosen as

v̂hp =



v−hp
v0

{{vhp}}+ β[[σhp]]N

vhp

gD

vhp + β(σhp · nxΩ − gN )

(1− δ)vhp + δc
ϑ (σ · nxΩ + gR)

σ̂hp =



σ−hp on F space
h ,

σ0 on F0
h,

{{σhp}}+ α[[vhp]]N on F time
h ,

σhp on FTh ,
σhp − α(vhp − gD)nxΩ on FDh ,
gNnxΩ on FNh ,
(1− δ)(ϑc vhp − gR)nxΩ + δσhp on FRh .

where α, β, and δ are penalty parameters, which will be chosen constant (notice that they are
needed on time-like and boundary faces only). By w+ and w− we denote the trace of a function w
on space-like faces from the adjacent element at higher and lower times, respectively. Notice that
these fluxes are consistent. Moreover, the fluxes on the Robin faces satisfy the following “cross
consistency” property:

ϑ

c
v̂hp − σ̂hp · nxΩ = gR.

Finally, we plug the definition of the fluxes into (2.4) and sum over all elements K ∈ Th(QT ).
Then the Trefftz-DG method for the wave equation reads:

We recap the Trefftz-DG method introduced in [81]. Let Tp(Th) be a closed (e.g. finite-
dimensional) subspace of the Trefftz space T (Th). We consider the following variational formula-
tion:

Seek (vhp,σhp) ∈ Tp(Th)

such that A(vhp,σhp;w, τ ) = `(w, τ ) ∀(w, τ ) ∈ Tp(Th), (2.5)

where

A(vhp,σhp;w, τ ) :=

∫
Fspace
h

(
c−2v−hp[[w]]t + σ−hp · [[τ ]]t + v−hp[[τ ]]N + σ−hp · [[w]]N

)
dS

+

∫
FTh

(c−2vhpw + σhp · τ ) dx

+

∫
Ftime
h

(
{{vhp}}[[τ ]]N + {{σhp}} · [[w]]N + α[[vhp]]N · [[w]]N + β[[σhp]]N[[τ ]]N

)
dS

+

∫
FD
h

(
σhp · nxΩ w + αvhpw

)
dS +

∫
FN
h

(
vhp(τ · nxΩ) + β(σhp · nxΩ)(τ · nxΩ)

)
dS

+

∫
FR
h

( (1− δ)ϑ
c

vhpw + (1− δ)vhp(τ · nxΩ) + δ(σhp · nxΩ)w +
δc

ϑ
(σhp · nxΩ)(τ · nxΩ)

)
dS
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`(w, τ ) :=

∫
F0
h

(c−2v0w + σ0 · τ ) dx +

∫
FD
h

gD
(
αw − τ · nxΩ

)
dS

+

∫
FN
h

gN
(
β τ · nxΩ − w

)
dS +

∫
FR
h

gR

(
(1− δ)w − δc

ϑ
τ · nxΩ

)
dS.

On a tent pitched mesh, as the one in Figure 2.1, the method is semi-explicit, meaning that
the solution on each tent only depends on the tents below, allowing to solve each tent explicitly,
and tents independent from each other in parallel; details are given in Section 2.3.1 below. The
situation where also vertical faces are present, is needed, for instance, in the case of piecewise
constant wavespeed, is discussed in Section 2.3.2 below. Note that the method only includes
integrals over element boundaries, thus only quadrature on n dimensional simplices is needed.

2.2.4 Choice of discrete Trefftz spaces

So far, we have not specified what discretization of the Trefftz space Tp(K) ⊂ T (K) to use.
We introduce the straightforward choice, given by all polynomials in space–time that fulfill the
first order wave equation. For an element K ⊂ Rn+1 in the mesh Th(QT ), we define the local
polynomial Trefftz space as

Tp(K) := Pp(Rn+1)n+1 ∩ T (K),

where we denote by Pp(K) the space of polynomials on K of degree ≤ p. In general, it is possible
to choose different polynomial degrees p in different elements. Here, we choose a uniform p, as
this is consistent with the numerical examples below. The global Trefftz-DG space on the whole
mesh is then given by Tp(Th) :=

∏
K∈Th T

p(K). The dimension of the elemental Trefftz space is
given by

dimTp(K) = (n+ 1)

(
p+ n
n

)
= Op→∞(pn),

where we recall that ( ab ) = a!
b!(a−b)! for b ≤ a ∈ N0. Notice that, for the total degree polynomial

space, one has dim(Pp(Rn+1)n+1) = Op→∞(pn+1).

Let us now assume that the first order problem is derived from a second order problem. Then
it is natural to derive the vector valued Trefftz space for the first order problem from a scalar
Trefftz space for the second order problem. We now detail this approach as it is the one we use
for the numerical results presented in Section 2.5. Let us start by defining the polynomial Trefftz
space for the second order problem:

Up(K) :=
{
u ∈ Pp(K) : −∆u+ c−2∂2

t u = 0
}
.

We are able to construct a basis for this space using the recursion formula introduced in [81,
Remark 13]. We recall it here, for completeness. We need some multi-index notation: for α ∈ Nn0
we denote |α| = α1+· · ·+αn and xα = xα1

1 . . . xαnn . Furthermore, let em := (0, . . . , 0, 1, 0, . . . , 0) ∈
Nn0 with 1 in the m-th entry. Consider a space–time polynomial

u(x, t) =
∑

α∈Nn0 , k∈N0,
|α|+k≤p

ak,αx
αtk.

We want to compute the coefficients ak,α such that the polynomial is Trefftz. This is done by
inserting the polynomial into the second order wave equation and collecting terms of equal power
to find that

ak,α =
c2

k(k − 1)

n∑
m=1

(αm + 1)(αm + 2)ak−2,α+2em (2.6)

has to hold for the polynomial to be Trefftz. To start the recursion, we need to choose polynomial
bases (in the space variables only) for k = 0 and k = 1, respectively. More precisely, we start by
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choosing polynomial basis functions {b̃1, . . . , b̃( p+nn )} for the space Pp(Rn) and {b̂1, . . . , b̂( p−1+n
n )}

for Pp−1(Rn). Then we can introduce a basis for Up(K) such that either u(·, 0) = b̃` and ∂tu(·, 0) =

0, or u(·, 0) = 0 and ∂tu(·, 0) = b̂` for some `. Hence, we can construct the basis for Up(K) out
of two sets of polynomial basis functions of Pp(K) and Pp−1(K). This lets us determine the
dimension as

dimUp(K) =

(
p+ n
n

)
+

(
p− 1 + n

n

)
=

2p+ n

p

(
p− 1 + n

n

)
.

Then, a Trefftz space for solving the second order system using a first order formulation can
be derived as in [81, §6.2]

Wp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ Pp+1(K),

with −∆u+ c−2∂2
t u = 0 in K,∀K ∈ (Th)

}
.

(2.7)

With a basis given by

Up+1(K) = span{bj , j ∈ I} by setting Wp(K) = span{(∂tbj ,−∇bj), j ∈ I}.

We have that

dimWp(K) = dimUp+1(K)− 1 =
2p+ n+ 2

p+ 1

(
n+ p
n

)
and furthermore Wp(K) ⊂ Tp(K). A recursion formula, similar to (2.6), can also be derived for
Tp(K), however the numerical results in Section 2.5 are centered around Wp(K).

Remark 2.2.1. It is sufficient to compute the coefficients only once for c = 1 and then fix the
wavenumber by a coordinate transform. Furthermore, for numerical stability, it is convenient to
shift the basis functions to the center of the element and scale them by its anisotropic diameter,
which is defined by

hK := sup
(x,t),(y,s)∈K

(|x− y|2 + c2|t− s|2)1/2 (2.8)

for a mesh element K. For reference coordinates (x̂, t̂), the coordinate transform given by

(x, t) = (hK x̂, hKc
−1t̂)

transforms the Trefftz basis û(x̂, t̂) of wavespeed 1 to Trefftz basis functions û(x, t) of arbitrary
wavespeed c. In the case of Trefftz functions for the first order system (v̂, σ̂), we need to choose

v(x, t) = cv̂(x̂, t̂), σ(x, t) = σ̂(x̂, t̂).

2.3 Evolution within a tent

The tent pitched mesh allows us to solve local tents explicitly. This is due to the fact that the
slope of the mesh faces is below the characteristic speed 1/c, thus the local solution on a tent can
be computed once the solution on its inflow boundary is known. In Section 2.3.1, we discuss how
to evolve the solution within a tent with constant wavespeed inside the tent itself. The case where
the wavespeed changes within a tent is considered in Section 2.3.2. Notice that, in the constant
wavespeed case, tents coincide with mesh elements, while in the latter case tents on the interface
contain more than one mesh element.

2.3.1 Constant wavespeed

Let us denote the bottom and top faces of the tent, respectively, by

T bot
h ⊂ (F space

h ∪ F0
h) and T top

h ⊂ (F space
h ∪ FTh ).
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Furthermore, tent faces on the boundary are denoted by TDh ⊂ FDh for Dirichlet, TNh ⊂ FNh for
Neumann boundaries, and TRh ⊂ FNh for Robin boundaries.

Since the solution is explicit on each tent, we only need to solve a local system of size
dim(Tp(K))× dim(Tp(K)). The system is derived from (2.5) and is given by the following equation

∫
T top
h

c−2vhpwn
t
K + σhp · τntK + vhpτ · nxK + σhp · (wnxK) dS

+

∫
TDh

(σhp · nxΩ + αvhp)w dS +

∫
TNh

vhp(τ · nxΩ) + β(σ · nxΩ)(τ · nxΩ) dS

+

∫
FR
h

( (1− δ)ϑ
c

vhpw + (1− δ)vhp(τ · nxΩ) + δ(σhp · nxΩ)w +
δc

ϑ
(σhp · nxΩ)(τ · nxΩ)

)
dS

= −
∫
Tbot
h

c−2vbotwn
t
K + σbot · τntK + vbotτ · nxK + σbot · nxKw dS

+

∫
TDh

gD(αw − τ · nxΩ) dS +

∫
TNh

gN (βτ · nxΩ − w) dS +

∫
FR
h

gR

(
(1− δ)w − δc

ϑ
τ · nxΩ

)
dS

(2.9)
where, in the case T bot

h ⊂ F0
h, (vbot,σbot) = (v0,σ0), and in the case T bot

h ⊂ Fspaceh , (vbot,σbot)
on a given face is the previously computed solution in the tent sharing that face in lower time.

x

t

T time
h

T top
h

Tbot
h

c = c1c = c2

Figure 2.2: The spatial integration points are mapped to the faces of the tent. The solution is
determined using the known input on the bottom integration points (dots), and is evaluated on
the top integration points (squares).

For the numerical integration, we only need an integration rule for n-simplices, in order to
integrate over the boundary of the tent. We can define an integration rule on the spatial mesh
once, which we can then map to the faces of the tent. This idea is visualized in Figure 2.2. After
solving on the tent, we need to evaluate (vhp,σhp) in the integration points on T top

h , and store
these values for the next tent. On each spatial integration point, we only need to store the most
recent results, leading to a total storage of: (total number of integration points) · (n+ 1).

2.3.2 Piecewise constant wavespeed

Recall that we assume that the wavespeed is constant in time and piecewise constant in space. In
this case, we always consider initial spatial meshes that are aligned with the discontinuities of the
wavespeed. To treat such a jump within a space–time tent, we need to incorporate the jump terms
from our DG formulation (2.5). This involves integrating on the time-like inter-element boundary
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contained inside the tent, denoted by T time
h ⊂ F time

h . According to (2.5), one has to add to the
left-hand side of (2.9) the term∫

T time
h

({{vhp}}[[τ ]]N + {{σhp}} · [[w]]N + α[[vhp]]N · [[w]]N + β[[σhp]]N [[τ ]]N ) dS.

Since the tent now includes two mesh elements, the system matrix is now of size 2 dim(Tp(K))×
2 dim(Tp(K)). The extension to interfaces between more than two materials follows.

2.4 Recovery of the solution of the second order equation

In the case where the problem comes from a second order formulation we can substitute v = ∂tu
and σ = −∇u to write the method in terms of test and trial functions from Up+1(K). Then the
method (2.5) reads:

find uhp ∈ Up+1(Th) s.t.

Â(uhp; v) = ˆ̀(v) ∀v ∈ Up+1(Th),
(2.10)

with
Â(uhp; v) := A(∂tuhp,−∇uhp; ∂tv,−∇v) and ˆ̀(v) := `(∂tv,−∇v).

The constant basis function does not contribute to formulation (2.10), as only derivatives of
the unknown uhp are present. Thus, this formulation produces the same results as (2.5) with
vp(Th) = Wp(Th). In order to fix the constants and recover the solution to the second order wave
equation, we modify the original formulation by adding the additional terms∫

Fspace
h

−[[uhp]]tv
+ dS +

∫
F0
h

uhpv dS

to the bilinear form Â(uhp; v), and ∫
F0
h

u0v dS

to the right hand side ˆ̀(v), where and u0(x) = u(x, 0). Note that these terms preserve the
consistency of the formulation.

Therefore, when evolving the solution inside a single tent, we need to add
∫
T top
h

uhpv and∫
Tbot
h

ubotv to the left- and right-hand side, respectively, of the formulation discussed in Section 2.3.

2.5 Numerical tests

In this section we present numerical test results in one, two, and three spatial dimensions. If
not otherwise stated, we use the following settings for the numerical examples. We consider the
problem (3.1) with initial and Dirichlet boundary conditions such that the analytical solution is
(v,σ) = (∂tu,−∇u), where u is the standing wave

u(x, t) = cos(πx1) cos(πx2) cos(πx3) sin(πtc
√
n)/(
√
nπ), (2.11)

given here in 3+1 dimensions, and set the wavespeed c = 1. An example is plotted in 1+1
dimensions in Figure 2.3. The penalty parameters are chosen as α = β = 0.5. We measure the
error

e(v,σ; vhp,σhp) =
(
c−2‖v(·, T )− vhp(·, T )‖2L2(Ω) + ‖σ(·, T )− σhp(·, T )‖2L2(Ω)

) 1
2

,

at final time T , which we choose at T = 1. The tent pitched meshes are produced by the algorithm
presented in [45]. In this algorithm, the height of the tents is limited by the slope of the edges, and
not by the slope of the faces. All timings were performed on a server with two Intel(R) Xeon(R)
CPU E5-2687W v4, with 12 cores each.
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Figure 2.3: Approximation of the standing wave on a 1+1 dimensional space–time tent pitched
mesh.

2.5.1 Approximation properties of Trefftz spaces

We compare the approximation properties of the Trefftz space to the first-order derivatives Yp(Th)
of the full polynomial space given by

Yp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ Pp+1(K), ∀K ∈ (Th)
}
, p ∈ N0.
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Figure 2.4: Comparison between Trefftz functions Wp and full polynomial space Yp, in terms of
order (left) and local dofs (right) for fixed h = 2−2, 2−3.

The DG method used with the full polynomial space Yp requires the computation of integrals
also in space–time volumes, as opposed to the Trefftz-DG method (2.5) where the volume integrals
cancel. Therefore, we need to add back in the volume term to the left-hand side of the formulation
(2.5), giving the new left-hand side:

Ã(vhp,σhp;w, τ ) :=

−
∑
K∈Th

∫
K

vhp
(
∇ · τ + c−2∂tw

)
+ σhp · (∂tτ +∇w) dV

+A(vhp,σhp;w, τ ).

We now need to solve Ã(vhp,σhp;w, τ ) = `(w, τ ), ∀(w, τ ) ∈ Pp(Th)n+1 for (vhp,σhp) ∈
Yp(Th)n+1. We discuss the DG method with volume integral in more detail in Section 3.2.3.

For the numerical results, we have taken as spatial domain the unit square (0, 1)2 partitioned
into uniform, triangular, unstructured meshes in with mesh width h. The time domain is par-
titioned by a uniform mesh of size ht ≈ h. The results obtained with the Trefftz-DG method
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and with the non-Trefftz–DG method on these Cartesian meshes are shown in Figure 2.4. The h
convergence in the DG norm is optimal, according to [81, Thm. 3], with a rate of O(hp+1/2). In
terms of polynomial degree p, both choices exhibit exponential convergence speed. The benefits
of the Trefftz space becomes clear when comparing errors versus the global number of degrees of
freedom, as seen in the right plot in Figure 2.4.

2.5.2 Comparing space–time meshing strategies

In Section 2.3, we have seen how to advance the solution element wise on a tent pitched mesh.
We now compare this approach to solving the full system on a Cartesian (in time) space–time
slab. To solve the full system we use a block Jacobi solver. When comparing the timing of the
two strategies, we only consider solving the tents sequentially, i.e. on a single thread. For this
comparison, we choose a quasi-uniform mesh of the unit square in space and the final time equal
to the mesh size, i.e. one CFL-conforming time step on the Cartesian mesh. As a spatial domain
we take the unit square, meshed with

As spatial mesh, we take a uniform, triangular, unstructured mesh of the unit square (0, 1)2

with mesh width 2−3. On top of which we construct both, the tent pitched and the Cartesian,
mesh. For the Cartesian mesh in time, we choose the hight of the element ht ≈ 2−3.
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Figure 2.5: Comparison of the Trefftz-DG method on Cartesian (in time) meshes and tent pitched
meshes.

The results in Figure 2.5 on the left show that the error between the two mesh types differs
slightly. As the two space–time meshes are constructed on top of the same spatial mesh, a single
space–time tent element will contain several spatial elements, giving it a larger diameter than the
space–time right triangular prism in the Cartesian mesh. This explains the difference in error
and convergence rate. On the right in Figure 2.5 we compare the runtime, where sequential tent
pitching is about a magnitudes faster. This shows that no parallelization of the tent pitching
method is necessary to outperform the implicit solver.

2.5.3 Choice of spatial basis functions

As we have seen in Section 2.2.4, the recursion formula (2.6) for the derivation of the Trefftz
basis functions, can be initialized with an arbitrary choice of polynomial basis functions in space
variable only.

In the following, we compare three different choices for the initial polynomial basis functions:
monomials, Legendre, and Chebychev polynomials. In all cases, the basis functions are shifted to
the center of each element and scaled, as described in Remark 2.2.1. We compare them in 1+1
dimensions, on the space–time unit square. The mesh considered is a Cartesian mesh of spatial
size h = 2−2. The problem is solved globally using formulation (2.5).
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Figure 2.6: Different types of initial polynomial basis functions. Comparison of the error (left)
and the conditioning of the system global matrix (right).

The results in Figure 2.6 show that all choices behave the same for low degrees. However, for
higher degrees, Legendre and Chebychev polynomials fail to approximate the solution, due to the
bad conditioning of the system matrix, compared to the monomials. The good properties of the
two sets of basis functions do not carry over when developed in the recursion.

2.5.4 Tent pitching in 3 space dimensions

For this example, we choose as a spatial domain Ω the unit cube (0, 1)3. As discussed in Section 2.3,
we solve the tent pitched mesh elementwise, and in parallel. The initial quasi-uniform spatial mesh
consists of tetrahedrons of maximal size h. We then use tent pitching in 3 + 1 dimensions, until
the algorithm stops at time T = 1, where we compute the error. The results of this are shown in
Figure 2.7.
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Figure 2.7: Tent pitching 3+1 dimensions. Convergence comparison with respect to the maximum
mesh size on the left, and with respect to the Trefftz polynomial degree on the right.

In Figure 2.7 on the left, we plot the error in terms of h for different values of polynomial
degree p of Wp(QT ). Note that here we are plotting the error in L2(Ω × T ) norm. Contrary to
the DG norm, the L2 norm is mesh independent. We observe the rate O(hp+1). We also consider
convergence in terms of degree p of the Trefftz space Wp(Th), and report the results in Figure 2.7,
right plots. For our analytic solution, we can observe exponential convergence.
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Figure 2.8: Comparison of computational time for different number of threads.

In Figure 2.8, we compare computational times for different number of threads used for the
parallel processing of the tents. For large mesh sizes we observe limited speedup, as there are
not enough elements to be processed in parallel. With decreasing meshsize the speedup is almost
proportional to the number of threads. However, one has to take into account that some overhead
is involved.

2.5.5 Dissipation of energy

For smooth enough functions (w, τ ) the energy at a fixed time t̂ is given by

E(w, τ ) =
1

2

∫
Ω×t̂

(
c−2w2 + |τ |2

)
dS.

In [81, §5.3], the Trefftz-DG method was shown to be dissipative, which we can also observe in
numerical examples. We test on a model problem with analytical solution

u(x, t) = sin(πx) sin(πt),

on the domain [0, 1]× [0, T ]. We solve using the tent pitching algorithm.
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Figure 2.9: Error in energy over time and for different order of Trefftz polynomials.
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The space mesh considered is a uniform partition of the interval [0, 1] into 5 elements. We
measure the relative error in the energy given by

E(∂tu,−∇u)− E(uhp,σhp)

E(∂tu,−∇u)
.

In Figure 2.9 on the left, we can see that the error in energy increases in time. As the energy of the
analytical solution is constant, and we are plotting the error without absolute value, we deduce
that the energy of the numerical solution is decreasing in time. The results actually suggest that
the energy of the numerical solution decreases linearly in time. In Figure 2.9 on the right, we
compare the error in the energy at three different times T = 100, 1000, 10000, plotting it against
the degree of Trefftz polynomials in a range from 2 to 8. We observe exponential convergence for
increasing order. Furthermore, greater times T seem to affect the error only by a multiplicative
factor.

2.5.6 Non-uniformly refined spatial meshes

Now that we have verified the convergence of the Trefftz-DG method with tent pitching initialized
on quasi-uniform spatial meshes, we test the advantages of the method on a non-uniformly refined
spatial mesh.
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Figure 2.10: The convergence rates on uniform and non-uniform meshes and timings (bottom)
with the singular initial condition (top) for Trefftz functions of order p = 3.

In this test, the refinement is applied to resolve a singular solution at the reentrant corner of
an L-shaped domain, given by Ω = [−1, 1]2 \ ([0, 1]× [−1, 0]). The mesh refinement strategy used
takes the diameter of a spatial mesh elements K as

hK = hmaxr
1−µ,
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where r is the distance of K to the reentrant corner, fixing a minimal mesh size of hmin = h
1/µ
max.

Motivated by the theoretical results in [4], we choose µ = 1
3 .

We consider a model problem with solution given, in polar coordinates, by

u(r, φ, t) = cos(at) sin(νφ)Jν(ar), (2.12)

where Jν denotes the Bessel function of the first kind. We consider ν = 2/3, so that ∇u is
singular at the origin. We solve up to time T = 1 for a = 10. To avoid numerically integrate the
singularity, we use the method to reconstruct the second order solution uhp ∈ Up(QT ), introduced
in Section 2.4, to measure the error given by ‖u(·, T )− uhp(·, T )‖L2(Ω).

The comparison between results obtained with uniform and non-uniform mesh refinement
are shown in Figure 2.10 for Trefftz functions of degree p = 3. We compare the two different
meshing strategies by plotting them against (global dof)−1/3. For the uniformly refined meshes,
the convergence rate is bounded by the smoothness of the solution u ∈ H5/3−ε(QT ), for ε > 0.
We observe a convergence rate of O(h1). Using the non-uniformly refined meshes, we are able to
recover optimal convergence for the third order Trefftz polynomials, as seen in Figure 2.10.

mesh hmax total #dofs L2-error dof-rate runtime [s]

uniform

0.07 3.2× 105 1.8× 10−2 - 0.6234
0.05 8.8× 105 1.2× 10−2 1.2638 1.5916
0.03 3.9× 106 6.7× 10−3 1.1022 7.9157
0.01 1.0× 108 2.1× 10−3 1.0662 255.3233

non-uniform

0.12 1.1× 106 2.2× 10−2 - 3.276
0.10 2.0× 106 8.3× 10−3 5.1308 4.6809
0.08 3.8× 106 3.0× 10−3 4.7041 8.0069
0.06 9.8× 106 8× 10−4 4.2104 23.4588

Table 2.1: Convergence rates and runtime comparison for a singular solution on the L-shapes
domain, comparing uniform meshing and meshes refined towards the singularity.

Table 2.1, gives a closer look on some of the properties already visualized in Figure 2.10 and
also shows the runtime (in seconds). For the computations we used 24 threads. In Figure 2.10
on the bottom right, we compare the runtime with the degrees of freedom. We observe that the
uniform and the non-uniform mesh take about the same time for comparable numbers of degrees
of freedom. Thus, no significant locking, due to the spatial refinement, occurs.

2.5.7 Wave propagation in an heterogeneous material

In the following example we investigate the reflection of a wave at an interface of two different
materials. This experimental setup was also performed in [7, 64]. We consider the space–time
domain QT = [0, 2]2 × (0, 1], and problem (2.5) with homogeneous Dirichlet boundary conditions.
The wavespeed is the piecewise constant function given by

c(x1, x2) =

{
1 x1 ≤ 1.2,

3 x1 > 1.2.

As initial condition, we take a Gaussian wave given by

u0(x) = exp (−‖x− x0‖2/δ2), v0(x) = 0,

where we choose x0 = (1, 1) and δ = 0.01. The computations are performed with polynomial
degree p = 4.

Snapshots of the solution are shown in Figure 2.12. In the Snapshots, the right part of the
domain has spatial mesh sizes up to 0.03, whereas in the left part we choose as spatial mesh size
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of 0.01, in order to better capture the steeper wavefront in the slower traveling material. First,
we see that the initial condition unfolds in the left homogeneous part of the medium. At T = 0.2,
the wave crosses over into the material with higher wave velocity. In the next snapshot we can see
that the wave splits into a part traveling to the right with a higher velocity and shallow wavefront,
and a part reflected at the interface traveling backwards to the left. Finally, at the time T = 0.4,
we can also observe the weaker Huygens wave, which traveled parallel to the interface, before
traveling back towards the left.
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reflected wave
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initial wave measurement
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Figure 2.11: Sketch of the expected wave pattern (left) and measured output quantity (right).

In Figure 2.11 on the left we present a sketch of the actions described above, also indicating a
region where we measured the output

uC(t) = ‖u(·, t)‖L1(ΩC).

The domain of measurement was chosen ΩC = [1 − εC , 1 + εC ] × [0.25 − εC , 0.25 + εC ], with
εC = 2−7. The measurement over time is presented in Figure 2.11 on the right and shows that
we are able to distinguish the three incoming waves. We can see the very weak Huygens wave
arriving first, followed by the initial wave and the reflected one.
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Figure 2.12: Wave traveling through inhomogeneous material, shown at times T = 0.1, 0.2, 0.3, 0.4.



Chapter 3

Quasi–Trefftz DG method for the
wave equation with
piecewise-smooth coefficient

We give several preliminary definitions and notation concerning the initial boundary value prob-
lems to be discretised in §3.1, the space–time meshes in §3.2.1, the numerical parameters needed
for the definition of the DG scheme in §3.2.2, the mesh-dependent norms used in the error analysis
in §3.2.4, along with Taylor polynomials, wave operators and anisotropic weighted norms in §3.3.1.

The variational formulation of the quasi-Trefftz DG method is introduced in §3.2.3. Re-
mark 3.2.1 compares this formulation with some closely related ones appeared in [9, 81, 82, 90].
Well-posedness, stability and quasi-optimality of the quasi-Trefftz DG scheme are described in
§3.2.5, heavily relying on [81]. This section also briefly lists several related results such as sharper
bounds under more restrictive assumptions, energy dissipation, as well as error bounds on inter-
faces and partial cylinders.

The polynomial, local, discrete, quasi-Trefftz space QUp(K) for the (smooth-wavenumber)
second-order wave equation is defined in §3.3.2, p standing for the polynomial degree of the basis
functions on a mesh element K. Proposition 3.3.2 shows that for an appropriate choice of p all wave
equation solutions are approximated by this space with high orders in the (space–time) element
size. This is a fully-explicit, high-order, h-convergence result; on the other hand p-convergence
results (i.e. regarding convergence for increasing polynomial degrees) on general elements are not
available, neither for the Trefftz DG for the constant-coefficients wave equation [81], nor for the
GPW-based DG scheme for the Helmholtz equation [52]. These best-approximation estimates lead
to convergence bounds for the quasi-Trefftz DG scheme in §3.3.3. In particular, for a suitable choice
of the numerical parameters entering the DG formulation, we obtain the same orders of convergence
as in the constant-coefficient case [81, §6], even if we require stronger solution regularity (see
Remark 3.3.7).

For the method to be practical, of course one needs to be able to explicitly compute the basis
functions: we describe a family of bases in §3.3.4. Given any basis of the classical polynomial space
in n real variables, Algorithms 1 and 2 give a simple recipe for the computation of a corresponding
quasi-Trefftz basis (in n = 1 and n > 1 space dimensions, respectively).

Sections 3.3.2–3.3.4 focus on quasi-Trefftz schemes for solutions of the second-order wave equa-
tion. However the DG scheme (3.7) applies more generally to the first-order acoustic wave equation.
Thus §3.3.5 briefly describes another quasi-Trefftz discrete space, suited for the acoustic first-order
system, together with the recipe for the computation of its basis. In the constant-coefficient case
the two classes of discrete spaces were proposed and analysed in [81, §6.1–6.2].

In Section 3.4 we illustrate the results of several numerical experiments for the implementation

21
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of the quasi-Trefftz DG method in Netgen/NGSolve1 [99,100]. In particular, we briefly discuss the
dependence on the penalty parameters and the orders of convergence, we compare the proposed
method against standard polynomial and Trefftz DG schemes, and consider both prismatic and
“tent-pitched” meshes, corresponding to implicit and semi-explicit time-stepping respectively.

3.1 Acoustic wave equation with variable coefficient

We consider the IBVP given in Equations (2.1) and (2.2), now with wavespeed 0 < c ∈ L∞(Ω)
assumed to be piecewise-smooth in space. We recall the IBVP:

∇ · σ + c−2∂tv = 0 in QT ,

∇v + ∂tσ = 0 in QT ,

v(·, 0) = v0, σ(·, 0) = σ0 on Ω,

v = gD on ΓD × [0, T ],

nxΩ · σ = gN on ΓN × [0, T ],
ϑ
c v − σ · n

x
Ω = gR on ΓR × [0, T ],

(3.1)

With the same notation and assumptions, the corresponding IBVP for the second-order (scalar)
wave equations reads as



−∆u+ c−2∂2
t u = 0 in QT ,

∂tu(·, 0) = v0, u(·, 0) = u0 on Ω,

∂tu = gD on ΓD × [0, T ],

−nxΩ · ∇u = gN on ΓN × [0, T ],
ϑ
c ∂tu+∇u · nxΩ = gR on ΓR × [0, T ].

(3.2)

3.2 Discontinuous Galerkin discretisation

In this section we closely follow [81, §3–5]; we extend assumptions, notation, definitions and results
to the case of piecewise-smooth c and non-Trefftz discretisations.

3.2.1 Mesh assumptions and notation

The space–time domain QT is subdivided in a non-overlapping mesh Th, where every element
K ∈ Th is an n+ 1-dimensional Lipschitz polytope. We assume that c|K ∈ C∞(K) for all K ∈ Th,
and that each face (F = K1 ∩K2 with positive n-dimensional measure for some K1,K2 ∈ Th) is
an n-dimensional polytope. We denote by (nxF , n

t
F ) ∈ Rn+1 the unit normal vector orthogonal to

a mesh face F , with ntF ≥ 0 and |nxF |2 + (ntF )2 = 1. We assume that each face F is either

space-like, i.e. |nxF | sup
(x,t)∈F

c(x) ≤ ntF , (3.3)

or time-like, i.e. ntF = 0.

A space-like face F lies below (i.e. in the past of) the cone of dependance of each of its points;
its slope (when seen as the graph the function x 7→ t such that (x, t) ∈ F ) is bounded by 1/c(x).
A time-like face is a union of segments parallel to the time axis. The class of meshes includes
both Cartesian-product meshes such as those of [9] (nxF = 0, ntF = 1 on all space-like faces) and

tent-pitched meshes such as those of [82,90]
(
ntF ≈ c√

1+c2

)
; see two examples plotted in Figure 3.5.

1The code is available online at https://github.com/PaulSt/NGSTrefftz

https://github.com/PaulSt/NGSTrefftz
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We choose a “centre point” (xK , tK) ∈ K for each mesh element K ∈ Th, for example the
barycentre, which will be used in the proof of the approximation estimates and to define the basis
functions. We define a radius and a “weighted radius” of each element as

rK := sup
(x,t)∈K

|(x, t)− (xK , tK)| , rK,c := sup
(x,t)∈K

∣∣(x, c(x)t
)
−
(
xK , c(xK)tK

)∣∣ , (3.4)

with |·| the Euclidean distance in Rn+1.
We introduce a piecewise-constant function γ defined on F space

h ∪ F0
h ∪ FTh , measuring how

close to characteristic cones the space-like mesh faces are:

γ :=
‖c‖C0(F ) |nxF |

ntF
on F ⊂ F space

h , γ := 0 on F0
h ∪ FTh . (3.5)

We define a “space-like interface” as a connected union of space-like faces Σ ⊂ F space
h ∪F0

h∪FTh
that is the graph of a Lipschitz-continuous function fΣ : Ω → [0, T ]. By (3.3), the Lipschitz
constant of fΣ in x ∈ Ω will be at most c−1(x). The unit normal vector on Σ is denoted (nxΣ, n

t
Σ).

3.2.2 DG flux and penalisation parameters

We fix three “numerical flux parameter” functions on portions of the mesh skeleton, and two
“volume penalisation coefficients”:

α ∈ L∞
(
F time
h ∪ FD

h

)
, β ∈ L∞

(
F time
h ∪ FN

h

)
, δ ∈ L∞

(
FR
h

)
, µ1, µ2 ∈ L∞(QT ).

We assume that all these are uniformly positive and bounded:

α, β, δ, µ1, µ2 > 0, ‖δ‖L∞(FR
h ) < 1,∥∥α−1

∥∥
L∞(Ftime

h ∪FD
h )
,
∥∥β−1

∥∥
L∞(Ftime

h ∪FN
h )
,
∥∥δ−1

∥∥
L∞(FR

h )
,
∥∥µ−1

1

∥∥
L∞(QT )

,
∥∥µ−1

2

∥∥
L∞(QT )

<∞.

We also define the values

µK+ : = max
{
‖µ1‖L∞(K) , ‖µ2‖L∞(K)

}
,

µK− : = max
{∥∥µ−1

1

∥∥
L∞(K)

,
∥∥µ−1

2

∥∥
L∞(K)

}
, ∀K ∈ Th.

(3.6)

3.2.3 DG formulation

Let Vhp(Th) be a closed (e.g. finite-dimensional) subspace of the broken Sobolev space

H(Th) :=
∏
K∈Th

(
H1(K)×H1(K)n

)
.

We consider the following variational formulation:

Seek (vhp,σhp) ∈ Vhp(Th)

such that A(vhp,σhp;w, τ ) = `(w, τ ) ∀(w, τ ) ∈ Vhp(Th), (3.7)

where

A(vhp,σhp;w, τ ) := −
∑
K∈Th

∫
K

(
vhp

(
∇ · τ + c−2∂tw

)
+ σhp ·

(
∂tτ +∇w

))
dV

+

∫
Fspace
h

(
c−2v−hp[[w]]t + σ−hp · [[τ ]]t + v−hp[[τ ]]N + σ−hp · [[w]]N

)
dS

+

∫
FTh

(c−2vhpw + σhp · τ ) dx
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+

∫
Ftime
h

(
{{vhp}}[[τ ]]N + {{σhp}} · [[w]]N + α[[vhp]]N · [[w]]N + β[[σhp]]N[[τ ]]N

)
dS

+

∫
FD
h

(
σhp · nxΩ w + αvhpw

)
dS +

∫
FN
h

(
vhp(τ · nxΩ) + β(σhp · nxΩ)(τ · nxΩ)

)
dS

+

∫
FR
h

( (1− δ)ϑ
c

vhpw + (1− δ)vhp(τ · nxΩ) + δ(σhp · nxΩ)w +
δc

ϑ
(σhp · nxΩ)(τ · nxΩ)

)
dS

+
∑
K∈Th

∫
K

µ1c
2
(
∇ · σhp + c−2∂tvhp

)(
∇ · τ + c−2∂tw

)
dV

+
∑
K∈Th

∫
K

µ2

(
∂tσhp +∇vhp

)
·
(
∂tτ +∇w

)
dV,

`(w, τ ) :=

∫
F0
h

(c−2v0w + σ0 · τ ) dx +

∫
FD
h

gD
(
αw − τ · nxΩ

)
dS

+

∫
FN
h

gN
(
β τ · nxΩ − w

)
dS +

∫
FR
h

gR

(
(1− δ)w − δc

ϑ
τ · nxΩ

)
dS.

Noting that all terms involving c are integrated by parts with respect to the time variable only,
the derivation in [81, §4] shows that the formulation (3.7) is consistent:

if (v,σ) ∈ H(Th) is solution of (3.1), then A(v,σ;w, τ ) = `(w, τ ) ∀(w, τ ) ∈ H(Th).

Remark 3.2.1. The differences between (3.7) and [81, equation (7)] (equiv. equation (2.5)) are
the following: (i) we allow position-dependent and possibly discontinuous wavespeed c; (ii) we
allow fields that are not local solution of the PDE system (i.e. our method is not Trefftz); (iii)
as a consequence we have a volume term in A(·, ·), ensuring consistency; (iv) we have a further
stabilisation/penalisation volume term (the term involving µ1, µ2). This term can be understood
as a Galerkin–least squares (GLS) correction.

The formulation of [81] has been studied also in [90] and extended to the non-Trefftz case,
with piecewise-constant coefficient, in [9] (with tensor-product and sparse polynomial bases). With
appropriate choices of the numerical flux parameters the present formulation is a special case of
that in [82] (see the comparison in [81, Rem. 4]).

Although the variational problem (3.7) couples the discrete solution on all mesh elements in
QT , the structure of the terms on F space

h (the space-like part of the mesh skeleton) allows to
compute the solution (vhp,σhp) by solving a sequence of smaller linear systems; see [81, p. 398].
E.g., if the elements of a quasi-uniform mesh can be grouped in N “time-slabs” Ω × (ti−1, ti),
with 0 = t0 < t1 < · · · < tN = T , ti − ti−1 ≈ T/N , then the discrete solution on each time-slab
can be computed from the solution on the previous time-slab, solving N linear systems of size
O(dim Vhp(Th)/N) each. This is equivalent to an implicit time-stepping.

3.2.4 Mesh-dependent norms

We define two mesh- and flux-dependent norms on T(Th):

|||(w, τ )|||2DG :=
1

2

∥∥∥∥(1− γ
ntF

)1/2

c−1[[w]]t

∥∥∥∥2

L2(Fspace
h )

+
1

2

∥∥∥∥(1− γ
ntF

)1/2

[[τ ]]t

∥∥∥∥2

L2(Fspace
h )n

(3.8)

+
1

2

∥∥c−1w
∥∥2

L2(F0
h∪F

T
h )

+
1

2

∥∥τ∥∥2

L2(F0
h∪F

T
h )n

+
∥∥∥α1/2[[w]]N

∥∥∥2

L2(Ftime
h )n

+
∥∥∥β1/2[[τ ]]N

∥∥∥2

L2(Ftime
h )

+
∥∥∥α1/2w

∥∥∥2

L2(FD
h )

+
∥∥∥β1/2τ · nxΩ

∥∥∥2

L2(FN
h )
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+

∥∥∥∥( (1− δ)ϑ
c

)1/2

w

∥∥∥∥2

L2(FR
h )

+

∥∥∥∥(δcϑ )1/2

τ · nxΩ
∥∥∥∥2

L2(FR
h )

+
∑
K∈Th

(∥∥∥µ1/2
1 (c∇ · τ + c−1∂tw)

∥∥∥2

L2(K)
+
∥∥∥µ1/2

2 (∂tτ +∇w)
∥∥∥2

L2(K)n

)
;

|||(w, τ )|||2DG+ := |||(w, τ )|||2DG

+ 2

∥∥∥∥( ntF
1− γ

)1/2

c−1w−
∥∥∥∥2

L2(Fspace
h )

+ 2

∥∥∥∥( ntF
1− γ

)1/2

τ−
∥∥∥∥2

L2(Fspace
h )n

+
∥∥∥β−1/2{{w}}

∥∥∥2

L2(Ftime
h )

+
∥∥∥α−1/2{{τ}}

∥∥∥2

L2(Ftime
h )n

+
∥∥∥α−1/2τ · nxΩ

∥∥∥2

L2(FD
h )

+
∥∥∥β−1/2w

∥∥∥2

L2(FN
h )

+
∑
K∈Th

(∥∥∥µ−1/2
1 c−1w

∥∥∥2

L2(K)
+
∥∥∥µ−1/2

2 τ
∥∥∥2

L2(K)

)
.

These are norms on the broken Sobolev space H(Th) defined on the mesh Th. Indeed, |||(w, τ )||| =
0 for (w, τ ) ∈ H(Th) implies that (w, τ ) is solution of the IBVP with zero initial and boundary
conditions, so (w, τ ) = (0,0) by the well-posedness of the IBVP itself; see [67, Lemma 4.1].

As in [81, §5.3], we define the energy of a field (w, τ ) ∈ H(Th) on a space-like interface Σ as

E(Σ;w, τ ) :=

∫
Σ

(
wτ · nxΣ +

1

2
(c−2w2 + |τ |2)ntΣ

)
dS. (3.9)

3.2.5 Well-posedness, stability, quasi-optimality

Integration by part on a mesh element gives for any field (w, τ ) ∈ H(Th)∫
K

w
(
∇ · τ + c−2∂tw

)
+ τ ·

(
∂tτ +∇w

)
dV −

∫
∂K

wτ · nxK +
1

2

(
c−2w2 + |τ |2

)
ntK dS = 0.

(3.10)

The results of [81, §5.2] hold also in the current, slightly extended, setting and are summarised
in the following theorem.

Theorem 3.2.2. The bilinear form A is coercive in ||| · |||DG norm and continuous in ||| · |||DG+–
||| · |||DG norms, and the linear functional ` is continuous:

A(w, τ ;w, τ ) ≥ |||(w, τ )|||2DG, (3.11)

|A(v,σ;w, τ )| ≤ Cc|||(v,σ)|||DG+ |||(w, τ )|||DG, where

Cc :=

{
2, if FR

h = ∅,
2 max

{∥∥ 1−δ
δ

∥∥1/2

L∞(FR
h )
,
∥∥ δ

1−δ
∥∥1/2

L∞(FR
h )

}
if FR

h 6= ∅,
(3.12)

|`(w, τ )| ≤
(

2
∥∥c−1v0

∥∥2

L2(F0
h)

+ 2 ‖σ0‖2L2(F0
h) + 2

∥∥∥α1/2gD

∥∥∥2

L2(FD
h )

+ 2
∥∥∥β1/2gN

∥∥∥2

L2(FN
h )

+
∥∥∥(c/ϑ)1/2gR

∥∥∥2

L2(FR
h )

)1/2

|||(w, τ )|||DG+ .

The variational problem (3.7) admits a unique solution (vhp,σhp) ∈ Vhp(Th), for any choice of
Vhp(Th). The discrete solution satisfies the error bound

|||(v − vhp,σ − σhp)|||DG ≤ (1 + Cc) inf
(w,τ )∈Vhp(Th)

|||(v − w,σ − τ )|||DG+ . (3.13)
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Moreover, if gD = gN = 0 (or the corresponding parts FD
h ,FN

h of the boundary are empty) then

|||(vhp,σhp)|||DG ≤
(

2
∥∥c−1v0

∥∥2

L2(F0
h)

+ 2 ‖σ0‖2L2(F0
h) +

∥∥∥(c/ϑ)1/2gR

∥∥∥2

L2(FR
h )

)1/2

.

Of the differences between the methods in §3.2.3 and in [81] listed in Remark 3.2.1: (i) is
unimportant for the proof of Theorem 3.2.2 as the terms involving c are integrated by parts in
time only; (ii) does not affect the theorem as the Trefftz property is replaced by the presence of
the first volume term in (3.7); the term described in (iii) is taken care by the identity (3.10); the
term of (iv) coincides with the new term in the ||| · |||DG norm.

The error bound (3.13) slightly differs from the quasi-optimality result (Céa lemma) in classical
FEM analysis in that the norm (||| · |||DG+) at the right-hand side is stronger than that (||| · |||DG)
at the left-hand side. This mismatch is typical of the DG formulation employed here, not only for
hyperbolic equations (as in [9, 67, 81]) but also for the analogous discretisation of the Helmholtz
equation, see [50, §2.2.1].

Under more restrictive assumptions, slightly stronger results are possible. On a mesh made
of Cartesian-product elements, or more generally if nxF = 0 on all faces F ⊂ F space

h , then the co-
ercivity inequality (3.11) is an equality: A(w, τ ;w, τ ) = |||(w, τ )|||2DG for all (w, τ ) ∈ T(Th).
If gD = gN = 0 (or the corresponding parts FD

h ,FN
h of the boundary are empty) then the

|||(w, τ )|||DG+ norm at the right-hand side of the bound on |`(w, τ )| can be substituted by
|||(w, τ )|||DG.

The bound (3.13) allows to control the DG error only in the ||| · |||DG norm, which involves
jumps on internal faces. However a simple adaptation of the proof allows to control the L2 norm
of the traces on space-like interfaces of the error. Let Σ be a space-like interface, as defined in
§3.2.1. Assume that Vhp(Th) = {(w, τ ) ∈ Vhp(Th), supp (w, τ ) ⊂ {(x, t), 0 ≤ t ≤ fΣ(x)}} ⊕
{(w, τ ) ∈ Vhp(Th), supp (w, τ ) ⊂ {(x, t), fΣ(x) ≤ t ≤ T}} (i.e. that the discrete functions are
indeed discontinuous across Σ). Then [81, Prop. 1] gives that

E(Σ; v − v−hp,σ − σ
−
hp) ≤

5

2

∥∥(1− γ)−1
∥∥
L∞(Σ)

(1 + Cc)
2 inf

(w,τ )∈Vhp(Th)
|||(v − w,σ − τ )|||2DG+ .

If gD = gN = 0 and ΓR = ∅ the IBVP (3.1) preserves energy: E(FTh ; v,σ) = E(F0
h; v,σ). The

DG scheme dissipates energy: E(FTh ; vhp,σhp) ≤ E(F0
h; vhp,σhp); the dissipation can be quantified

in terms of the jumps on the faces and the residual in the mesh elements with the same technique
of [81, §5.3] and [9, Rem. 5.7].

For any space-like interface Σ, the results of Theorem 3.2.2 can be localised to the partial
space–time cylinder QΣ = {(x, t),x ∈ Ω, 0 < t < fΣ(x)}, by proceeding as in [9, §5.3].

3.3 Quasi-Trefftz space

In this section, we present the first extension of Generalized Plane Waves to a time-dependent
problem, focusing on two main aspects: properties of the resulting function spaces, and explicit
construction of the basis fucntions.

3.3.1 Definitions and notation

We recall the Leibniz product rule for multi-indices:

Di(ff̃) =
∑

j∈Nn+1
0 , j≤i

(
i

j

)
DjfDi−j f̃, where

(
i

j

)
:=

i!

j!(i− j)!
=

(
ix1

jx1

)
· · ·
(
ixn
jxn

)(
it
jt

)
,

(3.14)
i! := ix1

! · · · ixn !it! and j ≤ i means that the inequality holds component-wise. The length of a
multi-index is |i| = |ix| + it := ix1

+ · · · + ixn + it. For any field f ∈ Cm(K), denote the Taylor
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polynomial of order m+ 1 (and polynomial degree at most m) centered at (xK , tK) by

Tm+1
K [f ](x, t) :=

∑
|i|≤m

1

i!
(x− xK)ix(t− tK)itDif(xK , tK).

It follows that

DiTm+1
K [f ](xK , tK) =

{
Dif(xK , tK) if |i| ≤ m,
0 if |i| > m.

(3.15)

Lagrange’s form of the Taylor remainder [17, Cor. 3.19] is the following: if f has m+ 1 continuous
derivatives in a neighbourhood of the segment S with extremes (xK , tK) and (x, t), then

∃(x∗, t∗) ∈ S such that f(x, t)− Tm+1
K [f ](x, t) =

∑
|j|=m+1

1

j!
(x− xK)jx(t− tK)jtDjf(x∗, t∗).

(3.16)
For an elementwise-smooth, positive, spatial function G : Ω→ R (representing c−2) we denote the
variable-coefficient second-order wave operator

(�Gf)(x, t) := ∆f(x, t)−G(x)∂2
t f(x, t).

We denote the partial derivatives of G evaluated at an element centre as

gix :=
1

ix!
D(ix,0)G(xK), so that G(x) =

∑
ix∈Nn0

(x− xK)ixgix . (3.17)

We underline the value of a particular partial derivative that will come into play in the definition
of the quasi-Trefftz space: for f ∈ C |i|+2(K),

(Di�Gf)(xK , tK) =

n∑
k=1

Di+2ekf(xK , tK)−
∑
jx≤ix

ix!

jx!
gix−jxD

(jx,it+2)f(xK , tK). (3.18)

This is obtained using Leibniz formula (3.14) and noting that only terms with jt = it contribute
since G is independent of time.

We use standard notation for local Cm norms and seminorms, introduce wavespeed-weighted
(dimensionally-homogeneous) seminorms Cmc , and extend local spaces to global spaces in the
piecewise-smooth case: for m ∈ N0

‖f‖C0(K) := sup
(x,t)∈K

|f(x, t)|, |f |Cm(K) := max
|i|=m

∥∥Dif∥∥
C0(K)

, |f |Cmc (K) := max
|i|=m

∥∥c−itDif∥∥
C0(K)

,

Cm(Th) :=
∏
K∈Th

Cm(K), |f |Cm(Th) := max
K∈Th

|f |K |Cm(K) , |f |Cmc (Th) := max
K∈Th

|f |K |Cmc (K) .

(3.19)

3.3.2 Local quasi-Trefftz space and approximation properties

We define the “quasi-Trefftz” space for the second-order wave equation on a mesh element K ∈ Th
as

QUp(K) :=
{
f ∈ Pp(K) | Di�Gf(xK , tK) = 0, ∀i ∈ Nn+1

0 , |i| < p− 1
}
, p ∈ N. (3.20)

This is the space of degree-p space–time polynomials f , such that the Taylor polynomial of their
image by the wave operator �Gf vanishes at the element centre (xK , tK) up to order p− 2. From
(3.18), the space QUp(K) is well-defined if G ∈ Cmax{p−2,0} in a neighbourhood of xK . For p = 1,
we simply have QU1(K) = P1(K).
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Remark 3.3.1. Compare the above definition to the ’standard’ Trefftz space. We define the
polynomial Trefftz space for the second order wave equation with constant wavespeed inside the
mesh element K as

Up(K) :=
{
u ∈ Pp(K) : −∆u+ c−2∂2

t u = 0
}
.

For constant wavespeed the quasi-Trefftz space is equal to this space, see Remark 3.3.11.

The next proposition shows that smooth solutions of the wave equation are approximated in
QUp(K) with optimal convergence rate with respect to the element radius rK (recall rK ≤ diamK
from the definition (3.4)). By “optimal” we mean that the rate is equal to the rate offered by
the full polynomial space Pp(K). We give two approximation estimates: one in classical Cm

seminorms and one in their weighted version Cmc defined in (3.19), with rK,c in place of rK . We
will use the latter bound in the convergence analysis of the DG scheme in §3.3.3.

Proposition 3.3.2. Let u ∈ Cp+1(K) be solution of �Gu = 0, with G ∈ Cmax{p−2,0}(K).
Then the Taylor polynomial T p+1

K [u] ∈ QUp(K).
Moreover, if K is star-shaped with respect to (xK , tK), with rK and rK,c are as defined in (3.4)

while q ∈ N0 satisfies q ≤ p, then

inf
P∈QUp(K)

|u− P |Cq(K) ≤
(n+ 1)p+1−q

(p+ 1− q)!
rp+1−q
K |u|Cp+1(K) ,

inf
P∈QUp(K)

|u− P |Cqc (K) ≤
(n+ 1)p+1−q

(p+ 1− q)!
rp+1−q
K,c |u|Cp+1

c (K) .

(3.21)

Proof. Since T p+1
K [u] is polynomial of degree p, in order to show that it belongs to QUp(K) we

only need to verify that Di�GT
p+1
K [u](xK , tK) = 0, for all |i| < p − 1. From the identity (3.18),

this quantity is a linear combination of the partial derivatives of order at most equal to |i|+ 2 ≤ p
of the Taylor polynomial at (xK , tK), which according to (3.15) coincide with the corresponding
partial derivatives of u:

Di�GT
p+1
K [u](xK , tK) = Di�Gu(xK , tK).

Since �Gu = 0 in K, these partial derivatives vanish, hence T p+1
K [u] ∈ QUp(K).

We prove the inequality in (3.21) involving the weighted norms Cmc (K) using the norm defi-

nition (3.19), the identity DiT p+1
K [u] = T

p+1−|i|
K [Diu] for |i| ≤ p from [80, eq. (3.5)], and Taylor’s

theorem (3.16):

inf
P∈QUp(K)

|u− P |Cqc (K) ≤
∣∣∣u− T p+1

K [u]
∣∣∣
Cqc (K)

= max
i∈Nn+1

0 , |i|=q

∥∥∥c−itDi(u− T p+1
K [u])

∥∥∥
C0(K)

= max
i∈Nn+1

0 , |i|=q

∥∥∥c−it(Diu− T p+1−q
K [Diu])

∥∥∥
C0(K)

(3.16)

≤ max
i∈Nn+1

0 , |i|=q

∑
|j|=p+1−q

1

j!

∥∥∥((x, ct)− (xK , ctK)
)j
c−it−jtDi+ju(x, t)

∥∥∥
C0(K)

≤ (n+ 1)p+1−q

(p+ 1− q)!
rp+1−q
K,c |u|Cp+1

c (K) .

In the last step we used
∑
|j|=p+1−q

1
j! = (n+1)p+1−q

(p+1−q)! , [80, p. 198]. The first bound in (3.21) follows

from the same chain of inequalities, after dropping all powers of c.

Bound (3.21) gives approximation rates with respect to the mesh size (h-convergence) but is
unsuitable for proving convergence for increasing polynomial degrees (p-convergence): while the
coefficient in the bound is infinitesimal for p → ∞, in general, the seminorm |u|Cp+1(K) is not
bounded in the same limit.
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Remark 3.3.3. In general, unlike full polynomial spaces, quasi-Trefftz spaces with increasing p are
not nested, i.e. QUp(K) 6⊂ QUp+1(K). To see this: consider f(x, t) = x2

1 + t2 ∈ P2, G(x) = 1 + x1

in a neighbourhood K of (xK , tK) = (0, 0), then f satisfies �Gf = 2 − 2(1 + x1) = −2x1, so
�Gf(xK , tK) = 0 and ∂x�Gf(xK , tK) = −2, therefore f ∈ QU2(K) \QU3(K).

On the other hand, QU1(K) = P1(K) ⊂ QU2(K) = {f ∈ P2(K) : ∆f −G(xK , tK)∂2
t f = 0}.

Remark 3.3.4. One could define a more general version of the space QUp by imposing the van-
ishing of the derivatives up to an arbitrary order:

QUp,q(K) :=
{
f ∈ Pp(K) | Di�Gf(xK , tK) = 0, ∀|i| < q − 1

}
, p, q ∈ N.

For these spaces we have the inclusions QUp,q+1(K) ⊂ QUp,q(K) ⊂ QUp+1,q(K) and QUp,p(K) =
QUp(K). However, let us now motivate why the choice q = p is preferable.

• For q < p the space QUp,q(K) is larger than QUp(K), but since QUp,q(K) ⊂ Pp(K) it does not
offer better h-convergence rates than those showed in Proposition 3.3.2 for QUp(K). Moreover,
it does not serve as a generalisation of a Trefftz space any more. Indeed, in the case of con-
stant G the inclusion Up(K) := {f ∈ Pp(K) : �Gf = 0 in K} ⊂ QUp,q(K) is always true,
nevertheless the identity Up(K) = QUp,q(K) holds if and only if q ≥ p.

• For q > p the space QUp,q(K) is too small and loses his favorable approximation properties.
Indeed, take n = 1, ix = p− 1, it = 0. Then, for a solution f of �Gf = 0 we have that

∂ixx ∂
it
t �GT

p+1
K [f ](xK , tK)

(3.18)
=

∂p+1
x T p+1

K [f ]−
ix∑

jx=0

ix!

jx!
gix−jx∂

jx
x ∂

2
t T

p+1
K [f ]

 (xK , tK)

= −
p−2∑
jx=0

ix!

jx!
gix−jx∂

jx
x ∂

2
t T

p+1
K [f ](xK , tK)

(
T p+1
K [f ] ∈ Pp(K)

)
(3.15)

= −
p−2∑
jx=0

ix!

jx!
gix−jx∂

jx
x ∂

2
t f(xK , tK)

(3.18)
=

(
∂ixx ∂

it
t �Gf︸ ︷︷ ︸
=0

−∂p+1
x f + g0∂

p−1
x ∂2

t f
)

(xK , tK)

= ∂p−1
x

(
(g0 −G)∂2

t f
)
(xK , tK) (∂2

xf = G∂2
t f)

6= 0, in general.

Therefore, T p+1
K [f ] /∈ QUp,p+1(K), which contradicts the essential property used in the proof of

Proposition 3.3.2 to prove the approximation properties of the space.

Moreover, for q > p the dimension of QUp,q(K) depends on the function G (is equal
to dimUp(K) for constant G and smaller in general), while we see in the following that
dimQUp(K) is independent of G.

Hence, the choice q = p yields the smallest subspace of Pp(K) in this class that offers the same
h-convergence rates of Pp(K) itself, when approximating solutions of �Gu = 0.

3.3.3 Global quasi-Trefftz space and DG convergence bounds

We use the local spaces QUp(K) to define a discrete space for the DG scheme of §3.2.3. Recall
that QUp(K) was constructed for the second-order scalar wave equation, while the DG scheme
addresses the first-order system. A global quasi-Trefftz discrete space can be defined as

QWp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ QUp+1(K)
}
, p ∈ N0, (3.22)
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where in each element K the local space QUp+1(K) is defined with G(x) = c−2(x). The elements
of QWp(Th) are vector polynomials of degree at most p.

Following again [81], for each element K ∈ Th we introduce a notation for the space-like and
the time-like parts of its boundary and two related coefficients:

∂spaceK :=∂K ∩ (F space
h ∪ F0

h ∪ FTh ), ∂timeK := ∂K ∩ (F time
h ∪ FD

h ∪ FN
h ∪ FR

h ),

ξtime
K := max

{
‖2cα‖L∞(∂K∩(Ftime

h ∪FD
h )) + ‖c/β‖L∞(∂K∩(Ftime

h ∪FN
h )) ,

‖2β/c‖L∞(∂K∩(Ftime
h ∪FN

h )) + ‖1/(cα)‖L∞(∂K∩(Ftime
h ∪FD

h )) , (3.23)

‖(1− δ)ϑ‖L∞(∂K∩(FR
h )) , ‖δ/ϑ‖L∞(∂K∩(FR

h ))

}
,

ξspace
K :=

∥∥ntK(2(1− γ)−1 + 1
)∥∥
L∞(∂spaceK)

,

with γ as defined in (3.5). The dimensionless coefficients ξ•K measure the impact of the choices
made in a concrete implementation of the DG scheme – in terms of the numerical flux parameters
and the element shapes – on the convergence bounds of Theorem 3.3.5. If c ∈ C0(Ω) and

α = β−1 = c−1, δ = ϑ2/(1 + ϑ2), (3.24)

then ξtime
K = 3 while ξspace

K only depends on the maximal slope of the space-like faces of K and on
c. If all faces of K are either aligned with or perpendicular to the time axis, i.e. nt ∈ {0, 1}, then
ξspace
K = 3 as well.

We measure mesh regularity by fixing a dimensionless parameter η > 0 such that

rK,c

(
|∂Kspace| ‖c‖−1

C0(K) + |∂Ktime|
)
≤ η|K| ∀K ∈ Th. (3.25)

Remark 3.3.9 gives more details about η in the case of cuboidal elements.
The next theorem gives error bounds for the quasi-Trefftz space–time DG scheme (3.7).

Theorem 3.3.5. Let u ∈ C1(QT ) ∩ Cp+2(Th), for some p ∈ N0, be solution of the IBVP (3.2)
with G ∈ C0(Ω) ∩ Cmax{p−1,0}(Th) and (v,σ) = (∂tu,−∇u) be the corresponding solution to the
IBVP (3.1). Let (vhp,σhp) be the solution of the DG formulation (3.7) with the discrete space
Vhp(Th) = QWp(Th). Assume that each mesh element K is star-shaped with respect to its centre
point (xK , tK). Then,

1

2

∥∥c−1(v − vhp)
∥∥
L2(FTh )

+
1

2
‖σ − σhp‖L2(FTh )n (3.26)

≤ |||(v,σ)− (vhp,σhp)|||DG

≤ (1 + Cc)
(n+ 1)p+1

p!

( ∑
K∈Th

|K|
[(
η ‖c‖C0(K) max{ξspace

K , ξtime
K }+ µK−rK,c

) (n+ 1)3rK,c
(p+ 1)2

+ 4nµK+ ‖c‖2C0(K)

]
r2p
K,c |u|

2
Cp+2
c (K)

)1/2

.

The values of Cc, µK±, ξ•K and η are defined in equations (3.12), (3.6), (3.23) and (3.25), re-
spectively. If the numerical flux parameters are set according to (3.24) and all space-like faces are
perpendicular to the time axis, then ξspace

K = ξtime
K = 3.

If moreover the volume penalty parameters are chosen as

µ1|K = µ2|K = rK,c ‖c‖−1
C0(K) ∀K ∈ Th, (3.27)

then the right-hand side of the estimate (3.26) can be bounded by

(1 + Cc)
|QT |1/2(n+ 1)p+1

p!
sup
K∈Th

(
‖c‖1/2C0(K)

[
(ηξK + 1)(n+ 1)3

(p+ 1)2
+ 4n

]1/2

r
p+1/2
K,c |u|Cp+2

c (K)

)
(3.28)

with ξK = max{ξspace
K , ξtime

K }.
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Proof. Recalling that the ||| · |||DG+ norm in (3.8) differs from the analogous one in [81] only by
the presence of the volume terms, the first step in the proof of [81, Thm. 2] allows to control the
||| · |||DG+ norm of any (possibly discontinuous) (w, τ ) ∈ C1(Th) by local norms:

|||(w, τ )|||2DG+ ≤
∑
K∈Th

[
ξspace
K

(∥∥c−1w
∥∥2

L2(∂spaceK)
+ ‖τ‖2L2(∂spaceK)n

)
+ ξtime

K

(∥∥∥c−1/2w
∥∥∥2

L2(∂timeK)
+
∥∥∥c1/2τ∥∥∥2

L2(∂timeK)n

)
+
∥∥∥µ−1/2

1 c−1w
∥∥∥2

L2(K)

+
∥∥∥µ−1/2

2 τ
∥∥∥2

L2(K)n
+
∥∥∥µ1/2

1 (c∇ · τ + c−1∂tw)
∥∥∥2

L2(K)
+
∥∥∥µ1/2

2 (∂tτ +∇w)
∥∥∥2

L2(K)n

]
≤
∑
K∈Th

[(
ξspace
K |∂spaceK|+ ξtime

K ‖c‖C0(K) |∂
timeK|+ µK−|K|

)(∥∥c−1w
∥∥2

C0(K)
+ n ‖τ‖2C0(K)n

)
+ |K|µK+

(∥∥c−1∂tw
∥∥2

C0(K)
+ n ‖∇w‖2C0(K)n + n ‖∂tτ‖2C0(K)n + ‖c∇ · τ‖2C0(K)

)]
.

Now we use the quasi-optimality (3.13), the relation between the discrete spaces QUp+1(K) and
QWp(Th), the assumption (v,σ) = (∂tu,−∇u), the local best-approximation bound (3.21), the
definition of η (3.25):

1

(1 + Cc)2
|||(v,σ)− (vhp,σhp)|||2DG

(3.13)

≤ inf
(whp,τhp)∈QWp(Th)

|||(v,σ)− (whp, τhp)|||2DG+

(3.22)
= inf

uhp∈
∏
K∈Th

QUp+1(K)
|||
(
∂t(u− uhp),−∇(u− uhp)

)
|||2DG+

≤
∑
K∈Th

inf
uhp∈QUp+1(K)

[(
ξspace
K |∂spaceK|+ ξtime

K ‖c‖C0(K) |∂
timeK|+ µK−|K|

)
(n+ 1) |u− uhp|2C1

c (K)

+ 4n|K|µK+ ‖c‖2C0(K) |u− uhp|
2
C2
c (K)

]
(3.21)

≤ (n+ 1)2p

(p!)2

∑
K∈Th

[(
ξspace
K |∂spaceK|+ ξtime

K ‖c‖C0(K) |∂
timeK|+ µK−|K|

) (n+ 1)3r2
K,c

(p+ 1)2

+ 4n|K|µK+ ‖c‖2C0(K)

]
r2p
K,c |u|

2
Cp+2
c (K)

(3.25)

≤ (n+ 1)2p

(p!)2

∑
K∈Th

|K|
[(
η ‖c‖C0(K) max{ξspace

K , ξtime
K }+ µK−rK,c

) (n+ 1)3rK,c
(p+ 1)2

+ 4nµK+ ‖c‖2C0(K)

]
r2p
K,c |u|

2
Cp+2
c (K) .

Under assumption (3.27) the last expression is bounded by

(n+ 1)2p

(p!)2

∑
K∈Th

|K| ‖c‖C0(K)

[
(ηmax{ξspace

K , ξtime
K }+ 1)

(n+ 1)3

(p+ 1)2
+ 4n

]
r2p+1
K,c |u|

2
Cp+2
c (K)

≤ |QT |(n+ 1)2p

(p!)2
sup
K∈Th

(
‖c‖C0(K)

[
(ηmax{ξspace

K , ξtime
K }+ 1)

(n+ 1)3

(p+ 1)2
+ 4n

]
r2p+1
K,c |u|

2
Cp+2
c (K)

)
,

where we used that
∑
K∈Th |K| = |QT |. Estimates (3.26) and (3.28) follow taking square roots.

Theorem 3.3.5 immediately extends to quasi-Trefftz discrete spaces Vhp(Th) with different
polynomial degrees in each mesh elements.
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Remark 3.3.6 (Relevance of µ2). When the discrete space is taken as Vhp(Th) = QWp(Th), the
choice of the parameter µ2 is immaterial because of the vanishing of the term in A(·; ·) it multiplies.
On the other hand, the assertion of Theorem 3.3.5 holds also for the space Vhp(Th) = QTp(Th)
(defined below in §3.3.5), and in this case µ2 needs to be chosen as in (3.27).

Remark 3.3.7 (Error analysis in Cm and Sobolev spaces). In Proposition 3.3.2 and Theorem 3.3.5
we study approximation properties of quasi-Trefftz functions and convergence rates of the corre-
sponding DG scheme using Cm(K)-type spaces. With piecewise-constant wavespeed c, Trefftz best-
approximation estimates in Sobolev spaces require every element K to be star-shaped with respect
to a space–time ellipsoid, [81, §6.1.2]. The parameters defining this ellipsoid have an important
role in the approximation bounds. This ellipsoid is defined as the image of a ball under an affine
transformation of K whose pull-back transforms the wave equation into its copy with unit speed
(see the proof of [81, Corollary 3]). In the setting considered here instead c varies smoothly in
K, thus the shape defined by mapping the sphere is in general not an ellipsoid but a more com-
plicated set. Moreover, the non-affine transformation would not preserve polynomials, preventing
a straightforward extension of the theory of [81, §6.1.2, 6.2.3] to the smooth wavespeed case. A
precise approximation theory for quasi-Trefftz spaces and Sobolev norms is beyond the scope of this
work.

A study using classical Sobolev norms Hm(K), possibly weighted with the wavespeed similarly
to (3.19) above and [81, eq. (37)], will be the subject of future work. This would allow to treat less
regular solutions.

Remark 3.3.8 (Rate optimality). Despite the use of Cm spaces in the analysis, the convergence

rates for a given polynomial degree are optimal: compare the term r
p+1/2
K,c in (3.28) and the term

h
mK+1/2
K in [81, eq. (46)] (with hK ≈ 2rK,c, mK = p). On the other hand, the solution regularity

required is stronger.
A more sophisticated treatment of corner singularity in polygonal domains using weighted

Sobolev spaces is done in [9].

Remark 3.3.9 (Value of η for a cuboid). Condition (3.25) is a condition on the “chunkiness”
of the mesh elements. For instance, if all elements are translated copies of the Cartesian product
(0, Lx)n × (0, Lt) between a space segment/square/cube and a time interval, the centres (xK , tK)
are their barycentres, and c is constant in K, then

|K| = LnxLt, |∂Kspace| = 2Lnx, |∂Ktime| = 2nLn−1
x Lt, rK,c =

1

2

√
nL2

x + c2L2
t

and η can be taken as ηcuboid := 2n
3
2 ( Lx

cLt
+ cLt

Lx
) since

2n
3
2

(
Lx

cLt
+
cLt
Lx

)
≥ n

3
2 (Lx + cLt)

2

cLxLt
≥

1
2

√
nL2

x + c2L2
t (2L

n
x + 2ncLn−1

x Lt)

cLnxLt

=
rK,c(|∂Kspace|+ c|∂Ktime|)

c|K|
.

Thus η is minimal for “isotropic” cuboids with Lx = cLt.

3.3.4 Basis functions

Here, we describe the construction of basis functions for QUp(K); those for QWp(Th) can then
obtained simply by taking their appropriate partial derivatives.

To construct a basis of the quasi-Trefftz space QUp(K) space, we first choose two polynomial
bases in the space variable only:{

b̂J

}
J=1,...,(p+nn )

basis for Pp(Rn), and
{
b̃J

}
J=1,...,(p−1+n

n )
basis for Pp−1(Rn).
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Their total cardinality is

N(n, p) :=

(
p+ n

n

)
+

(
p− 1 + n

n

)
=

(p− 1 + n)! (2p+ n)

n! p!
.

We define the following N(n, p) elements of QUp(K):{
bJ ∈ QUp(K) |

bJ(·, tK) = b̂J and ∂tbJ(·, tK) = 0 for J ≤
(
p+n
n

)
,

bJ(·, tK) = 0 and ∂tbJ(·, tK) = b̃J−(p+nn ) for
(
p+n
n

)
< J

}
J=1,...,N(n,p).

(3.29)

In the rest of this section we show that the elements bJ are well-defined, that they can be computed
with a simple algorithm, and that they constitute a basis of QUp(K).

Constructing the J-th basis function of (3.29) is equivalent to finding the set of coefficients
(ak = akx,kt)k∈Nn+1

0 ,|k|≤p such that the polynomial

bJ(x, t) :=
∑

k∈Nn+1
0 ,|k|≤p

ak(x− xK)kx(t− tK)kt

fulfills the following system of equations
Di�GbJ(xK , tK) = 0 J = 1, . . . , N(n, p), i ∈ Nn+1

0 , |i| < p− 1,

bJ(·, tK) = b̂J and ∂tbJ(·, tK) = 0 J = 1, . . . ,
(
p+n
n

)
,

bJ(·, tK) = 0 and ∂tbJ(·, tK) = b̃J J =
(
p+n
n

)
+ 1, . . . , N(n, p).

(3.30)

The second and the third sets of equations assign the values of all akx,0 and akx,1. From (3.18)
and since Di((x − xK)kx(t − tK)kt) 6= 0 at (xK , tK) if and only if i = k, the first equation in
(3.30) corresponding to the

(
∂ixx ∂

it
t �GbJ

)
(xK , tK) term reads

n∑
l=1

(ix + 2el)!it! aix+2el,it −
∑
jx≤ix

ix!(it + 2)!gix−jxajx,it+2 = 0. (3.31)

This equation is used to compute the element with j = i in the sum, since g0 = G(xK) > 0 its
coefficient is non-zero:

aix,it+2 =

n∑
l=1

(ixl + 2)(ixl + 1)

(it + 2)(it + 1)g0
aix+2el,it −

∑
jx<ix

gix−jx
g0

ajx,it+2, (3.32)

where the strict inequality j < i in the summation means that j ≤ i and j 6= i. We compute
these values iteratively. We need to make sure that at every step of the iterations we use values
already computed.

We note that the parameter function G = c−2 enters the computation of bJ only through its
Taylor coefficients at (xK , tK), i.e. the gi defined in (3.17).

One could also write the equations (3.31) as a linear system, where the right-hand side vector
is given by the known values of akx,0, akx,1, and solve it. However the recursive implementation
appears simpler.

The next two sections describe in detail the iterative algorithm to compute the coefficients in

the cases n = 1 and n > 1, respectively. Possible choices of the space-only bases
{
b̂J

}
,
{
b̃J

}
are

described in the numerical results section 3.4.

Proposition 3.3.10. The polynomials {bJ}J=1,...,N(n,p) defined by (3.30) (and computable with
the algorithms of §3.3.4–3.3.4) constitute a basis for the space QUp(K).

Proof. The algorithms described in §3.3.4–3.3.4 show that (3.30) uniquely defines the N(n, p)
polynomials bJ . The first set of conditions in (3.30) ensures that bJ ∈ QUp(K). The traces on
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{t = tK} of these polynomials ensure that they are linearly independent: if
∑N(n,p)
J=1 cJbJ = 0

then, by (3.30)
∑(p+nn )
J=1 cJ b̂J = 0 and

∑N(n,p)

J=(p+nn )+1
cJ b̃J = 0, so cJ = 0 for all J because

{
b̂J

}
and{

b̃J

}
are assumed to be linearly independent.

Relation (3.32) holds not only for the elements of the basis, but for the monomial expansion of
any element of QUp(K). Then Algorithms 1 and 2 (which simply apply (3.32) following a precise
ordering of the multi-indices i) show that the Taylor coefficients in (xK , tK) of any f ∈ QUp(K)
are uniquely determined by the coefficients aix,0 and aix,1, and hence by f(·, tK) and ∂tf(·, tK).
Since f(·, tK) ∈ Pp(Rn) and ∂tf(·, tK) ∈ Pp−1(Rn), f is linear combination of the {bJ}. Thus this
set spans QUp(K) and we conclude the proof.

From the proposition it follows that the conditions in the definition (3.20) of QUp(K) are
linearly independent:

dim
(
Pp(K)

)
−#{i ∈ Nn+1

0 | |i| ≤ p− 2} =

(
p+ n+ 1
n+ 1

)
−
(
p+ n− 1
n+ 1

)
= dim

(
QUp(K)

)
.

Remark 3.3.11. Proposition 3.3.10 implies that

dim
(
QUp(K)

)
= N(n, p) =


2p+ 1 n = 1

(p+ 1)2 n = 2
1
6 (p+ 2)(p+ 1)(2p+ 3) n = 3

= Op→∞(pn).

For large polynomial degrees p, the dimension of the quasi-Trefftz space is much smaller than the
dimension of the full space–time polynomial space of the same degree: dim(Pp(K)) =

(
p+n+1
n+1

)
=

Op→∞(pn+1) (recall that K ⊂ Rn+1).

Proposition 3.3.2 shows that both spaces QUp(K) and Pp(K) have comparable h-approximation
properties when the function to be approximated is solution of the (variable-coefficient) wave equa-
tion. This is the main advantage offered by Trefftz and quasi-Trefftz schemes: same approximation
power for much fewer degrees of freedom.

The dimension of QUp(K) is equal to the dimension of the Trefftz space of the same degree
for the constant-coefficient wave equation [81, §6.2.1], for the Laplace equation (i.e. the space of
harmonic polynomials in Rn+1 of degree ≤ p) and for the Helmholtz equation [50, §3] (the space
of circular/spherical and plane waves in Rn+1 with the same approximation order).

Similarly, dim(QWp(K)) = dim(QUp+1(K))− 1 = Op→∞(pn).

The construction of the basis functions: the case n = 1

We first describe the one-dimensional case for the sake of clarity.

For each basis function bJ we need to compute the coefficients akx,kt , kx, kt ∈ N0, kx + kt ≤ p;
they are represented by the dots constituting a triangular shape in the plan of indices (kx, kt) ∈ N2

0,
as represented on Figure 3.1. We recall that the coefficients {aix,0, 0 ≤ ix ≤ p}, and {aix,1, 0 ≤ ix ≤
p − 1}, represented by the shaded area in the figure, are known from the choice of the “Cauchy

data” bases
{
b̂J

}
,
{
b̃J

}
. Formula (3.32) allows to compute aix,it+2 from similar coefficients

akx,it+2 with kx < ix and from aix+2,it . This suggests to proceed “diagonally”: i.e. to compute
the values akx,kt for kx + kt = ` increasingly from ` = 2 to ` = p. On each of these diagonals
(in gray in the figure) we compute the values of akx,`−kx for decreasing kx. This means that we
perform a double loop: in terms of the graphical representation, the external loop moves away
from the origin (↗) and the inner loop moves from the kx axis to the kt axis (↖). This procedure
is described in Algorithm 1.
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p

aix+2,it

aix,it+2

kx

kt

Cauchy

data

ix

it

Figure 3.1: Graphical representation of the algorithm used to compute a quasi-Trefftz basis func-
tion in the case n = 1 (and p = 6), see §3.3.4. The function bJ is defined by the coefficients akx,kt
corresponding to the small circles ◦. The coefficients corresponding to the dots in the shaded area
(kt ∈ {0, 1}) are given by the “Cauchy data”, the second and third set of equations in (3.30). The
first equation in (3.30) for (ix, it) = (2, 2) relates the four nodes depicted with a black dot • and is
used to compute aix,it+2 (explicitly with (3.32)), corresponding to the node surrounded by a red
circle ○. All these coefficients (in the non-shaded region) are computed with formula (3.33) in a
double loop: first across diagonals ↗, and then along diagonals ↖.

Algorithm
Data: (gm)m∈N0 , xK , tK , p.

Choose polynomial bases
{
b̂J

}
,
{
b̃J

}
, fixing coefficients akx,0, akx,1.

For each J = 1, . . . , N(n, p) (i.e. for each basis function), we construct bJ as follows:
for ` = 2 to p (loop across diagonals ↗) do

for it = 0 to `− 2 (loop along diagonals ↖) do
set ix = `− it − 2 and compute

aix,it+2 =
(ix + 2)(ix + 1)

(it + 2)(it + 1)g0
aix+2,it −

ix−1∑
jx=0

gix−jx
g0

ajx,it+2 (3.33)

end

end

bJ(x, t) =
∑

0<kx+kt≤p

akx,kt(x− xK)kx(t− tK)kt

Algorithm 1: The algorithm for the construction of bJ in the case n = 1, §3.3.4.

The construction of the basis functions: the case n > 1

Algorithm 2 extends Algorithm 1 to the general case n > 1. The main novelty is that for each
value of ` = |ix|+ it + 2 and of it there are several coefficients aix,it to be computed, exactly one
for each ix ∈ Nn0 with |ix| = `−2− it, thus a further inner loop over ix is needed. Each coefficient
of the innermost loop can be computed independently of the others.

Figure 3.2 depicts the dependence between these coefficients, represented as integer-coordinate
points in the (ix, it) space for n = 2. The general coefficient, indicated by the red diamond, is
computed with (3.34) as linear combination of the coefficients corresponding to the black dots. The
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structure of the algorithm ensures that, when a coefficient aix,it is computed, all the coefficients
needed for the right-hand side of (3.34) have already been computed.

kx1

kx2

kt

0

ix1

ix1 + 2
`+ 2

it

it + 2

`+ 2

Figure 3.2: Representation of Algorithm 2 to compute the coefficient aix,it of a quasi-Trefftz basis
function bJ for n = 2, p ≥ 5, ` = 5 and (ix, it) = (3, 1, 1). The coefficient a3,1,3, represented by
the large red diamond �, is computed with formula (3.34) from the nine coefficients indicated by
the black dots •. The two yellow triangles in the planes kt = 0 and kt = 1 indicate the coefficients
whose values are given by the “initial conditions” b̂J and b̃J in the second and third equation
of (3.30). To ensure that the right-end side of (3.34) is well-defined for every (ix, it), Algorithm
2 computes the coefficients first looping through triangles parallel to the one depicted in blue
(which corresponds to stage ` = 5 of the loop), then through horizontal planes, and finally along
the horizontal segments determined by the intersection between the two planes.

Algorithm
Data: (gm)m∈N0

, xK , tK , p.

Choose polynomial bases
{
b̂J

}
,
{
b̃J

}
, fixing coefficients akx,0, akx,1.

For each J = 1, . . . , N(n, p) (i.e. for each basis function), we construct bJ as follows:
for ` = 2 to p (loop across {|ix|+ it = `− 2} hyperplanes, ↗) do

for it = 0 to `− 2 (loop across constant-time hyperplanes ↑) do
for ix with |ix| = `− it − 2 do

aix,it+2 =

n∑
l=1

(ixl + 2)(ixl + 1)

(it + 2)(it + 1)g0
aix+2el,it −

∑
jx<ix

gix−jx
g0

ajx,it+2 (3.34)

end

end

end

bJ(x, t) =
∑

|kx|+kt≤p

akx,kt(x− xK)kx(t− tK)kt

Algorithm 2: The algorithm for the construction of bJ in the general case.
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3.3.5 Quasi-Trefftz discrete spaces for the first-order problem

The quasi-Trefftz space QWp(Th) was defined in (3.22) from derivatives of solutions to the second-
order wave equation. Thus it offers high-order approximation properties only for solutions (v,σ)
to IBVPs (3.1) related to a solution u of the second-order IBVPs (3.2) by the relation (v,σ) =
(∂tu,−∇u). We briefly describe a larger discrete space suitable to approximate the general first-
order IBVP (3.1).

For p ∈ N0 and any mesh element K ∈ Th, we set

QTp(K) :=

{
(w, τ ) ∈ Pp(K)n+1

∣∣∣ Di(∇w + ∂tτ )(xK , tK) = 0
Di(∇ · τ +G∂tw)(xK , tK) = 0

∀i ∈ Nn+1
0 , |i| < p

}
,

QTp(Th) :=
∏
K∈Th

QTp(K).

(3.35)

It is easy to check that QWp(Th) ⊂ QTp(Th). This implies that the convergence results of Theo-
rem 3.3.5 hold also with QTp(Th) in place of QWp(Th).

Given any basis
{
b̃J(x)

}
J=1,...,(p+nn )

of Pp(Rn), we can define a basis for QTp(K) as

{
bJ,l(x, t) ∈ QTp(K) such that

bJ,0(x, tK) =
(
b̃J(x),0

)
,

bJ,l(x, tK) =
(

0, b̃J(x)el

)
, l = 1, . . . , n

}
J=1,...,(p+nn ); l=0,...,n

.

To compute explicitly a basis element bJ,l from b̃J , we expand it in monomials:

bJ,l(x, t) =
∑

k∈Nn+1
0 , |k|≤p

ak(x− xK)kx(t− tK)kt , l = 0, . . . , n, for
{
ak = ak(J, l)

}
|k|≤p ∈ Rn+1.

We index the components of the field b(x, t) = bJ,l(x, t) from b0(x, t) to bn(x, t), and write
similarly ak = (a0

k, . . . , a
n
k). Space–time multi-indices are split as previously in space and time

parts k = (kx, kt). Then the conditions corresponding respectively to Di
(
∂xλb

0 + ∂tb
λ
)

(xK , tK)

for λ from 1 to n, namely the components of the vector-valued constraint, and Di
(∑n

λ=1 ∂xλb
λ +

c−2∂tb
0
)

(xK , tK), namely the scalar-valued constraint, in the definition (3.35) of QTp(K) can be

written in terms of coefficients as

0 =(ix + eλ)!it!a
0
(ix+eλ,it)

+ ix!(it + 1)!aλ(ix,it+1), λ = 1, . . . , n,

0 =

n∑
λ=1

(ix + eλ)!it!a
λ
(ix+eλ,it)

+
∑
jx≤ix

ix!(it + 1)!gix−jxa
0
(jx,it+1).

Then b = bJ,l ∈ QTp(K) if and only if its coefficients satisfy the recurrence relations

a0
(ix,it+1) = −

n∑
λ=1

ixλ + 1

g0(it + 1)
aλ(ix+eλ,it)

−
∑
jx<ix

gix−jx
g0

a0
(jx,it+1),

aλ(ix,it+1) = − ixλ + 1

it + 1
a0

(ix+eλ,it)
, λ = 1, . . . , n.

The coefficients aλ(kx,0), λ = 0, . . . , n, |kx| ≤ p, are known from the comparison with the space-

only basis element b̃J . All the other coefficients aλk can be computed with a double loop: first
over |k| = 1, . . . , p, and then over kt = 1, . . . , |k|, similarly to Algorithms 1–2. The procedure is
described in Algorithm 3.
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It is possible to verify that the bJ,l constitute a basis of QTp(K) following the lines of the proof
of Proposition 3.3.10. It follows that

dim
(
QTp(K)

)
= (n+ 1)

(
p+ n

n

)
=

(n+ 1)(p+ 1)

2p+ 2 + n

(
dim

(
QWp(K)

)
+ 1
)

= Op→∞(pn).

Algorithm
Data: (gm)m∈N0 , xK , tK , p.

Choose polynomial basis {b̃J}, fixing coefficients aλkx,0
.

For each J = 1, . . . , N(n, p) and l = 0, . . . , n, we construct bJ,l as follows:
for ` = 1 to p (loop across {|ix|+ it = `− 1} hyperplanes, ↗) do

for it = 0 to `− 1 (loop across constant-time hyperplanes ↑) do
for ix with |ix| = `− it − 1 do

a0
(ix,it+1) = −

n∑
λ=1

ixλ + 1

g0(it + 1)
aλ(ix+eλ,it)

−
∑
jx<ix

gix−jx
g0

a0
(jx,it+1),

aλ(ix,it+1) = − ixλ + 1

it + 1
a0

(ix+eλ,it)
, λ = 1, . . . , n.

end

end

end

bJ,l(x, t) =
∑

k∈Nn+1
0 , |k|≤p

ak(x− xK)kx(t− tK)kt

Algorithm 3: The algorithm for the construction of bJ,l in the general case.

3.4 Numerical tests

We present some numerical test results in one and two space dimensions. Except for the last
example, we consider the initial boundary value problem (3.2) with Dirichlet boundary conditions
only, i.e. ΓN = ΓR = ∅. We test our method with the following wavespeed parameters G = c−2,
exact solutions u, and space–time domain QT :

n = 1, G(x) = x+ 1, u(x, t) = Ai(−x− 1) cos(t), QT = (0, 5)2,
(3.36a)

n = 2, G(x1, x2) = x1 + x2 + 1, u(x1, x2, t) = Ai(−x1 − x2 − 1) cos(
√

2t), QT = (0, 1)3,
(3.36b)

n = 2, G(x1, x2) = (x1 + x2 + 1)−2, u(x1, x2, t) = (x1 + x2 + 1)ae−
√

2
√
a(a−1)t, QT = (0, 1)3.

(3.36c)

Here Ai is the Airy function, which fulfills Ai′′(x) = xAi(x), and we choose a = 2.5 in (3.36c). The
corresponding wavespeeds c(x) range respectively in the intervals [

√
1/6, 1] ≈ [0.41, 1], [

√
1/3, 1] ≈

[0.58, 1] and [1, 3] for the three problems (3.36). Then, the solution of the first-order wave equation
is given by (v,σ) = (∂tu,−∇u).

To construct the quasi-Trefftz basis we pre-compute coefficients of G’s Taylor expansion (3.17)
at the centre of each mesh element. We choose a monomial basis (scaled according to the element

size) for
{
b̂J

}
, and

{
b̃J

}
, as input of Algorithms 1–2. This is motivated by experiments described

in [90, §6.3], where monomials, chosen as initial basis for the construction of the standard Trefftz
space, outperformed Legendre and Chebyshev basis. Remarkably, if space–time mesh elements
share the same centre in space, namely xK , then the coefficients of the quasi-Trefftz basis functions
are identical on both elements, therefore they can be computed once and used on both elements.
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The section continues as follows. In §3.4.1 we compare different choices for the penalisation
coefficients. The quasi-Trefftz discretisation is compared against a full polynomial space and a
standard Trefftz space in §3.4.2. In §3.4.3 we use a special type of space–time meshes allowing
for semi-explicit time-stepping: tent-pitched meshes. Finally, we show snapshots of the numerical
approximation of a Gaussian pulse traveling through a heterogeneous medium in §3.4.4.

3.4.1 Volume penalisation and numerical flux parameters

In this experiment we consider different combinations of the numerical flux parameters α, β and
the volume penalisation coefficient µ1. We recall that for QWp(Th) the choice of the parameter µ2

is irrelevant (see Remark 3.3.6). Furthermore, we use Dirichlet boundary conditions, thus δ does
not appear. We compare the choices for the parameters given in (3.27) and (3.24) against setting
them to zero. We fix p = 4 and a sequence of Cartesian meshes in 1+1 dimensions with square
space–time mesh elements K = (xK − h

2 ,xK + h
2 ) × (tK − h

2 , tK + h
2 ), and compare against the

exact solution (3.36a) (which can be seen in Figure 3.5).

µ1 = 0, p = 4, problem (3.36a)

α = 0, β = 0 α = c−1, β = 0 α = 0, β = c α = c−1, β = c

h DG-error rate DG-error rate DG-error rate DG-error rate

2−3 2.0× 10−6 0. 2.5× 10−6 0. 2.7× 10−6 0. 3.1× 10−6 0.
2−4 8.9× 10−8 4.50 1.1× 10−7 4.49 1.2× 10−7 4.49 1.4× 10−7 4.49
2−5 3.9× 10−9 4.50 4.8× 10−9 4.50 5.4× 10−9 4.49 6.1× 10−9 4.49
2−6 1.7× 10−10 4.50 2.1× 10−10 4.50 2.4× 10−10 4.50 2.7× 10−10 4.50

Table 3.1: Errors committed by the quasi-Trefftz DG method for different combinations of the
numerical flux parameters and vanishing volume penalisation coefficient.

µ1|K = rK,c ‖c‖−1
L∞(K), p = 4, problem (3.36a)

α = 0, β = 0 α = c−1, β = 0 α = 0, β = c α = c−1, β = c

h DG-error rate DG-error rate DG-error rate DG-error rate

2−3 2.1× 10−6 0. 2.5× 10−6 0. 2.5× 10−6 0. 3.1× 10−6 0.
2−4 9.0× 10−8 4.53 1.1× 10−7 4.51 1.1× 10−7 4.50 1.4× 10−7 4.50
2−5 4.0× 10−9 4.51 4.8× 10−9 4.50 4.8× 10−9 4.50 6.1× 10−9 4.50
2−6 1.7× 10−10 4.50 2.1× 10−10 4.50 2.1× 10−10 4.50 2.7× 10−10 4.50

Table 3.2: Errors committed by the quasi-Trefftz DG method for different combinations of the
numerical flux parameters and positive volume penalisation coefficient.

The results are shown in Tables 3.1 and 3.2. The errors are measured in the |||·|||DG norm (3.8).
We observe optimal convergence in all cases, despite vanishing jump- or volume-penalisation term.
Even though the volume penalisation term is needed for the well-posedness proof in Theorem 3.2.2,
in this example it is not necessary for the discrete problem to be well-posed and for the numerics
to converge with optimal rate. In this example, the choices suggested by the analysis (shown in
the last column of Table 3.2) result in a slightly larger error: this is because some of the terms
on time-like faces in the ||| · |||DG norm vanish when α or β are set to zero. Similar behaviors
were observed for the wave equation in [67, Fig. 6], for the Helmholtz equation in [42, Fig. 7–8]
(concerning the flux parameters) and in [55, §5.1] (concerning the volume penalisation parameter).

The O(hp+1/2) convergence rates observed coincide with those proved in the bound (3.28). If,
instead of using the ||| · |||DG norm, we measure the error at final time only, specifically in the
L2(Ω×{T}) norm for both the v and the σ components, we obtain O(hp+1) convergence rates (we
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do not report the values here), i.e. they are half a power higher than those in the ||| · |||DG norm.
The same half-order difference has been observed for the non-Trefftz version of the same method
and c = 1 in Table 1 of [9]; see also the considerations after Proposition 6.5 therein. Moreover,
being the L2(Ω × {T}) norm parameter-independent, the errors are slightly smaller for the flux
parameter values suggested in (3.24).

3.4.2 Approximation properties of quasi-Trefftz spaces

We compare the numerical error for different choices of the discretisation spaces: the quasi-Trefftz
space QWp(Th) of (3.22), the first-order derivatives Yp(Th) of the full polynomial space, and the
Trefftz space Wp(Th), respectively defined by

Yp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ Pp+1(K), ∀K ∈ (Th)
}
, p ∈ N0,

Wp(Th) :=
{

(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −∇u, u ∈ Pp+1(K),

−∆u+ c−2(xK)∂2
t u = 0 in K,∀K ∈ (Th)

}
.

Here we recall the definition of the space Wp(Th), already given in (2.7). This is the Trefftz space
for the approximated IBVP in which the wavespeed c is substituted by an elementwise-constant
approximant. We have Wp(Th),QWp(Th) ⊂ Yp(Th) and dimWp(Th) = dimQWp(Th).

We consider the problems (3.36b) and (3.36c) in 2+1 dimensions and set initial and boundary
conditions accordingly. We use meshes that are Cartesian product between a spatial, quasi-
uniform, unstructured, triangular mesh in (0, 1)2 with spatial meshwidth h, and a uniform mesh
in time with time-step ht ≈ h. Therefore all elements are right triangular prisms and all their
sides have comparable lengths. We set the volume penalisation and numerical flux parameters
to the values in (3.27) and (3.24), respectively. The errors are measured in ||| · |||DG norm. The
results are displayed in Figures 3.3 and 3.4.
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Figure 3.3: Comparison of different approximation spaces for problem (3.36c) as described in
Section 3.4.2. Left panel: h-convergence. Right panel: p-convergence; the three sets of curves
correspond to h = 2−2, 2−3, 2−4.

Figure 3.3 focuses on (3.36c). The left panel plots the error against the mesh size for different
values of p: the quasi-Trefftz space and the full polynomial space show the same, optimal, rate of
convergence O(hp+1/2). The full polynomial space has a slightly smaller error throughout. The
standard Trefftz space, however, does not achieve convergence with the same rate, but the rate is
instead limited by roughly O(h2); this is due to the low-order (piecewise-constant) approximation
of c in the construction of the basis functions. The right panel of Figure 3.3 shows the error against
the polynomial degree p for mesh sizes h = 2−2, 2−3, 2−4. We observe exponential convergence
for both the quasi-Trefftz space and the full polynomial space. As expected, the standard Trefftz
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space does not lead to convergence in p because the approximation of c does not improve with
p-refinement.
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Figure 3.4: Left panel: comparison of different approximation spaces in terms of numbers of
degrees of freedom for problem (3.36b), as described in §3.4.2. The continuous lines correspond
to a mesh with h = 2−3 and the dashed ones to h = 2−4. The nodes in each line correspond to
polynomial degrees p = 1, 2, 3, 4. Right panel: the same errors (for h = 2−4) plotted against the
computational time, including calculating the basis functions, assembly and solve. Both plots show
that the quasi Trefftz space QWp(Th) allows more efficient computations than the full polynomial
space Yp(Th).

In Figure 3.4 we switch to problem (3.36b) and plot (in the left panel) the error against
the global number of degrees of freedom, on a fixed mesh, for increasing polynomial degrees p.
The continuous and dashed lines correspond to two different mesh sizes, h = 2−3 and h = 2−4

respectively. The right panel plots the same error against the computational time. These plots
illustrate the power of the quasi-Trefftz approach compared to the full polynomial approach,
as discussed in Remark 3.3.11: for comparable numbers of degrees of freedom the quasi-Trefftz
method can achieve much higher accuracy. In this example the accuracy improvement is up to
about one and a half orders of magnitude, as observed when comparing the errors and the number
of degrees of freedom for QW4(Th) and Y3(Th).

3.4.3 Tent-pitched meshes

The meshes used in all numerical examples in §3.4.1–3.4.2 are Cartesian products between a mesh
in space and one in time. Thus the numerical solution has to be computed simultaneously for all
the elements corresponding to the same time interval; this is analogous to an implicit time-stepping
scheme.

We now discuss an alternative space–time meshing strategy: tent pitching. We call a mesh
“tent-pitched” if all interior faces are space-like according to the definition in (3.3). This implies
that the numerical solution in a given element K can be computed only from the numerical
solutions on the elements that are adjacent to K and lying “before” K, thanks to the causality
constraint (represented in the DG formulation (3.7) by the use of the v−hp and σ−hp traces on F space

h ).
The solution can be computed independently, and in parallel, in several mesh elements and the
solution procedure resembles an explicit time-stepping.

An example of a 1+1-dimensional tent-pitched mesh on QT = (0, 5) × (0, 5) can be seen in
Figure 3.5. This mesh is constructed for the wavespeed c(x) = (1 + x)−1/2 of problem (3.36a),
thus the tents in the right part of the domain are allowed to be “taller” than those on the left, i.e.
to have longer extension in the time direction, without violating the causality constraint of having
slope bounded by c−1(x).
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Figure 3.5: A Cartesian-product mesh (left) and a tent-pitched mesh (right) on the domain QT =
(0, 5)2. Both show the solution u of problem (3.36a).

The algorithm used to produce the tent-pitched mesh used here can be found in [45]. A closer
look into the implementation of Trefftz functions on tent-pitched meshes is given in [90].

To optimize storage during the computations on a tent-pitched mesh we only need to store the
solution furthest in time. Therefore, in this section we measure the error at the final-time term in
the definition of the DG norm (3.8):

error(T ) =

(∥∥∥√G(·)(v(·, T )− vhp(·, T ))
∥∥∥2

L2(Ω)
+ ‖σ(·, T )− σhp(·, T )‖2L2(Ω)

)1/2

,

with final time T = 1. We use tent-pitched meshes in 2+1 dimensions to approximate problem
(3.36b).
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Figure 3.6: The final-time error (left) and the computational time (right) for the sequential solution
of Problem (3.36b) on tent-pitched (continuous lines) and Cartesian meshes (dashed lines).

We first compare the error committed on tent-pitched meshes against that on Cartesian-
product meshes (of the same kind of those in §3.4.2). For a fair comparison we plot the error
in terms of the number of degrees of freedom, for varying mesh sizes. On the left panel of Fig-
ure 3.6 we observe optimal convergence rates of O(#dof−(p+1)/3) for both meshing strategies,
which corresponds to O(hp+1). The Cartesian-product mesh outperforms the tent-pitched mesh
in terms of efficiency per degrees of freedom, due to the fact that we need more tent elements to
cover the same space–time volume. However, in terms of computational time, shown in the right
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panel of Figure 3.6, the tents perform better since they do not require the solution of any large
linear system, even though in this comparison the solution is only solved sequentially without any
parallelisation.
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Figure 3.7: Left panel: the error on tent-pitched meshes for problem (3.36c). Right panel: the
speedup in the computational time for 2 to 16 threads.

Next we study the effect of parallelisation. We measure the speedup obtained by increasing
the number of threads, i.e. the maximum number of elements on which the solution is computed
independently in parallel. Now we consider problem (3.36c); the final-time error in terms of the
mesh size is shown in the left panel of Figure 3.7. The speedup in the computational time for 2,
4, 8 and 16 threads is shown in the right panel of Figure 3.7. We observe that the speedup factor
is quite close to the number of threads. The figure shows that increasing the number of threads is
beneficial only for moderate mesh sizes, as otherwise there are not enough independent tents. All
timings were performed on a server with two Intel(R) Xeon(R) CPU E5-2687W v4, with 12 cores
each.

3.4.4 Gaussian pulse in a non-homogenous medium

We illustrate the propagation of a vertical Gaussian pulse traveling through a medium with
wavespeed varying along the x2-direction, G(x1, x2) = 1 + x2. The initial conditions are given by

σ0(x1, x2) =
(
− 2x1

δ2
e−

x21
δ2 , 0

)
, v0(x) = 0 on Ω = (0, 1)2,

setting δ = 2−5. We choose homogeneous Neumann boundary conditions, a tent-pitched mesh
as discussed in the previous section, spatial mesh size h = 2−7 and polynomial degree p = 3.
Snapshots of the solution are shown in Figure 3.8. At T = 0 the initial condition is constant in
x2-direction. In the next snapshot, at T = 0.25, we can see the expected effects of the variable
wavespeed: at the top of the domain, the wave travels faster than at the bottom. At T = 0.5
the wavefront on the top side reaches the right border. In the last image, at T = 0.75, we can
see the wave being reflected from the right boundary. Boundary effects due to the homogeneous
Neumann boundary conditions at the top and bottom of the domain can also be observed.

In Figure 3.9 we plot the energy (3.9) for different spatial mesh sizes h = 2−5, 2−6, 2−7. The
energy is computed at constant times t multiple of 0.0025 as E(t;w, τ ) := 1

2

∫
Ω

(c−2w2 + |τ |2) dS,
by forcing the tent pitched mesh into slabs. As observed in §3.2.5, the method is dissipative. For
h = δ = 2−5 there are not enough elements to resolve the wave front with sufficient accuracy, and
the energy dissipates very quickly. For the two finer meshes the energy loss behaves much better;
in particular for h = 2−7 only 0.076% of the initial energy is lost at the final time T = 1.
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Figure 3.8: Snapshots of the solution of the problem described in Section 3.4.4 at times
0, 0.25, 0.5, 0.75.
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Figure 3.9: The energy (3.9) of the numerical solution shown in Figure 3.8.



Chapter 4

Entropy structure preserving
method for cross-diffusion systems

The structure of this chapter is as follows. In Section 4.1, we state the problem and make the
necessary assumptions for the existence of an entropy function. In Section 4.2, we present the
space–time Galerkin method on a regularized formulation of the problem in the entropy variable
unknown, and state our two main results in proposition 4.2.2 and proposition 4.2.3, namely exis-
tence and convergence of discrete solutions, respectively. Existence of discrete solutions is proven
in Section 4.2.1. The proof of convergence will be split into two parts, first showing convergence
with respect to mesh size in Section 4.2.2, then proving convergence as the regularization param-
eter goes to zero in Section 4.2.3. In Section 4.2.4, we are then able to prove existence of a weak
solution of the continuous problem. Numerical tests for the porous medium, the Fisher-KPP, and
the Maxwell-Stefan problem are presented in Section 4.3. All numerical results1 were obtained
using the finite element software Netgen/NGSolve, see [99,100]. Additionally, in Section 4.4, we re-
formulate the Maxwell-Stefan system with implicitly given currents in terms of the concentrations,
and test it numerically.

4.1 General setting

Let Ω ⊂ Rn be a bounded domain, and ρ0 ∈ L∞(Ω)N , N ≥ 1, a vector-valued function. We
consider the following nonlinear reaction-diffusion system in the vector-valued unknown ρ(t) =
(ρ1, . . . , ρN )(·, t) : Ω→ RN :

∂tρ−∇ · (A(ρ)∇ρ) = f(ρ) in Ω, t > 0,

(A(ρ)∇ρ) · ν = 0 on ∂Ω, t > 0,

ρ(0) = ρ0 in Ω.

(4.1)

Here, A(ρ) ∈ RN×N is the diffusion matrix, f(ρ) : RN → RN represents the reactions, and ν is
the outward pointing unit normal vector at ∂Ω; moreover, for 1 ≤ i ≤ N ,

(∇ · (A(ρ)∇ρ))i =

n∑
µ=1

N∑
j=1

∂

∂xµ

(
Aij(ρ)

∂ρj
∂xµ

)
, ((A(ρ)∇ρ) · ν)i =

n∑
µ=1

N∑
j=1

Aij(ρ)
∂ρj
∂xµ

νµ.

We make the following hypotheses, which are similar to the assumptions made by A. Jüngel
in [58].

(H1) A ∈ C0(D;RN×N ) and f ∈ C0(D;RN ), for a bounded domain D ⊂ (0,∞)N .

1The code is available online at https://github.com/PaulSt/CrossDiff
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(H2) There exists a convex function s ∈ C2(D, [0,∞)) ∩ C0(D), with s′ : D → RN invertible and
u := (s′)−1 ∈ C1(RN ,D), such that the following two conditions are satisfied:

(H2a) There exists a constant γ > 0 such that

z · s′′(ρ)A(ρ)z ≥ γ|z|2 ∀z ∈ RN , ρ ∈ D.

Note that s′′(ρ) is matrix-valued, with (s′′(ρ))k` = ∂
∂ρk

(s′(ρ))` = ∂2

∂ρk∂ρ`
s(ρ).

(H2b) There exists a constant Cf ≥ 0 such that

f(ρ) · s′(ρ) ≤ Cf ∀ρ ∈ D.

A discussion on when it is posssible to find a convex function s such that (H2) is satisfied for
cross-diffusion equations can be found in [21] (see [21, Lemma 22]).

Definition 4.1.1. Let T > 0. We call ρ ∈ L2(0, T ;H1(Ω)N ) ∩ H1(0, T ; (H1(Ω)′)N ) a weak
solution of (4.1) if∫ T

0

〈φ, ∂tρ〉dt+

N∑
i,j=1

∫ T

0

∫
Ω

∇φi ·Aij(ρ)∇ρjdxdt =

∫ T

0

∫
Ω

φ · f(ρ)dxdt (4.2)

for all φ ∈ L2(0, T ;H1(Ω)N ), with ρ(0) = ρ0, where 〈·, ·〉 denotes the duality product between
H1(Ω)N and (H1(Ω)′)N .

4.2 Space–time Galerkin method

Let the time T ∈ (0,∞) be fixed. We denote by QT = (0, T ) × Ω the space–time cylinder for a
domain Ω ⊂ Rn, n ≥ 1. The main idea for a space–time numerical scheme is to perform integration
by parts in (4.2) in the time variable, and to use the embedding

C([0, T ];L2(Ω)N ) ⊂ L2(0, T ;H1(Ω)N ) ∩H1(0, T ; (H1(Ω)′)N ), (4.3)

which can be proved exactly as in [35, Chapter 5.9, Theorem 3]. We arrive at the following lemma,
which will be proved in section 4.2.4 below (see Remark 4.2.9).

Lemma 4.2.1. Let T > 0. A function ρ ∈ L2(0, T ;H1(Ω)N ) ∩ H1(0, T ; (H1(Ω)′)N ) is a weak
solution of (4.1) if and only if

a(ρ,φ;ρ0):=︷ ︸︸ ︷∫
Ω

φ(T ) · ρ(T )dx−
∫

Ω

φ(0) · ρ0dx−
∫ T

0

∫
Ω

∂tφ · ρdxdt

+

N∑
i,j=1

∫ T

0

∫
Ω

∇φi ·Aij(ρ)∇ρjdxdt =

∫ T

0

∫
Ω

φ · f(ρ)dxdt (4.4)

for all φ ∈ H1(QT )N . Here, we use the notation φ(t) := tr(φ)(t, ·), where tr denotes the trace
operator tr : H1(QT )N → L2({0, T} × Ω)N .

The next step is to introduce the following regularized problem: find w ∈ H1(QT )N such that

ε(φ,w)H1(QT )N + a(ρ, φ; ρ0) +

N∑
i,j=1

∫ T

0

∫
Ω

∇φi · Aij(ρ)∇ρjdxdt =

∫ T

0

∫
Ω

φ · f(ρ)dxdt (4.5)

for all φ ∈ H1(QT )N , where w is the so-called entropy variable, which satisfies ρ = u(w). Here,
we have denoted by (·, ·)H1(QT )N the standard H1(QT )N inner product.

Next, we discretize equation (4.5). Let {Vh}h>0 be a family of finite dimensional spaces,
parametrized by h > 0, such that, for every h, Vh ⊂ C0(QT )N . We make the following approx-
imability assumption on the family of spaces {Vh}h>0.
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(H3) For all v ∈ H1(QT )N ,
lim
h→0

inf
vh∈Vh

‖v − vh‖H1(QT )N = 0.

Finally, we consider the following space–time Galerkin scheme in the entropy variable unknown:
Find wεh ∈ Vh such that, by setting ρεh := u(wεh), it holds true that

ε(φ,wεh)H1(QT )N + a(ρεh, φ; ρ0) +

N∑
i,j=1

∫ T

0

∫
Ω

∇φi ·Aij(ρεh)∇(ρεh)jdxdt =

∫ T

0

∫
Ω

φ · f(ρεh)dxdt

(4.6)

for all φ ∈ Vh. The first term in (4.6) can be interpreted as a stabilization term for the Galerkin
scheme, with parameter ε > 0. This is used to obtain a control of the entropy variable. Note that
we want to find a solution wεh ∈ Vh. Due to the nonlinearity of u, we expect that ρ = u(wεh) /∈ Vh.

The following two propositions will be proven in section 4.2.1 and section 4.2.4, respectively.

Proposition 4.2.2 (Existence of discrete solutions). Assume that ρ0 : Ω → D is measurable.
Then there exists a solution wεh ∈ Vh of method (4.6). Moreover, every solution wεh ∈ Vh of (4.6),
for ε, h > 0, satisfies the entropy estimate

ε‖wεh‖2H1(QT )N +

∫
Ω

s(ρh(T ))dx+ γ

∫
QT

|∇ρεh|2dxdt ≤
∫

Ω

s(ρ0)dx+ Cf |Ω|T, (4.7)

where ρ = u(wεh), |Ω| is the volume of Ω, and γ and Cf are as in Assumption (H2).

Proposition 4.2.3 (Convergence). Assume that ρ0 : Ω→ D is measurable, and let wεh ∈ Vh be a
solution of (4.6) for ε, h > 0. Then there exist a weak solution

ρ ∈ L2(0, T ;H1(Ω)N ) ∩H1(0, T ; (H1(Ω)′)N ) ∩ L∞((0, T )× Ω)N

of (4.1) and sequences hi, εi → 0, as i→∞, such that

u(wεihi)→ ρ in Lr(QT )N , as i→∞

for all r ∈ [1,∞). Moreover, ρ satisfies the entropy estimate∫
Ω

s(ρ(τ))dx+ γ

∫ τ

0

∫
Ω

|∇ρ|2 dxdt ≤
∫

Ω

s(ρ0)dx+ Cf |Ω|τ (4.8)

for all τ ∈ (0, T ], where |Ω| is the volume of Ω, and γ and Cf are as in Assumption (H2).

4.2.1 Existence of a solution of the numerical scheme

Proof of Proposition 4.2.2. The idea is to use Leray-Schauder fixed-point theorem for the mapping
Φ : Vh → Vh, v 7→ w, where w denotes the unique solution of (4.6) for ρ = u(v). Since A, f, u are
continuous, so is Φ. Since Vh has finite dimension, Φ is also compact. Then by the Leray-Schauder
fixed-point theorem, we obtain that Φ admits a fixed-point if we can show that the set

{w ∈ Vh : w = σΦ(w), σ ∈ [0, 1]}

is bounded.
Let w = σΦ(w) for σ ∈ (0, 1] and choose φ := w. Then (4.6) entails

ε

σ
‖w‖2H1(QT )N +

∫
Ω

w(T ) · ρ(T )dx−
∫

Ω

w(0) · ρ0dx−
∫ T

0

∫
Ω

∂tw · ρdxdt

+

N∑
i,j=1

∫ T

0

∫
Ω

∇wi ·Aij(ρ)∇ρjdxdt =

∫ T

0

∫
Ω

w · f(ρ)dxdt.



48 CHAPTER 4. CROSS-DIFFUSION SYSTEMS

Using that ρ = u(w) and ∂t(s(u(w))) = s′(u(w)) · ∂t(u(w)) = w · ∂t(u(w)), we have

∂tw · ρ = ∂tw · u(w) = ∂t(w · u(w))− w · ∂t(u(w)) = ∂t(w · u(w)− s(u(w)))

= ∂t(w · ρ− s(ρ)).

Thus, by the fundamental theorem of calculus,∫
Ω

w(T ) · ρ(T )dx−
∫

Ω

w(0) · ρ0dx−
∫ T

0

∫
Ω

∂tw · ρdxdt

= −
∫

Ω

(
s(ρ(0)) + w(0) · (ρ0 − ρ(0))

)
dx+

∫
Ω

s(ρ(T ))dx.

Note that, by definition, s′(ρ) = s′(u(w)) = w. The convexity of s then implies that

s(ρ(0)) + w(0) · (ρ0 − ρ(0)) = s(ρ(0)) + s′(ρ(0)) · (ρ0 − ρ(0)) ≤ s(ρ0)

and hence,∫
Ω

w(T ) · ρ(T )dx−
∫

Ω

w(0) · ρ0dx−
∫ T

0

∫
Ω

∂tw · ρdxdt ≥
∫

Ω

s(ρ(T ))dx−
∫

Ω

s(ρ0)dx.

The next step is to use (H2a) in combination with w = s′(ρ), which yields that

N∑
i,j=1

∇wi ·Aij(ρ)∇ρj =

N∑
i,j=1

∇(s′(ρ))i ·Aij(ρ)∇ρj

=

N∑
i,j,k=1

∇ρk · (s′′(ρ))kiAij(ρ)∇ρj ≥ γ|∇ρ|2,

where |∇ρ|2 :=
∑n
`=1 |

∂
∂x`

ρ|2. Moreover, due to (H2b) and w = s′(ρ), we have

w · f(ρ) = s′(ρ) · f(ρ) ≤ Cf .

Therefore, we can conclude the entropy estimate

ε

σ
‖w‖2H1(QT )N +

∫
Ω

s(ρ(T ))dx+ γ

∫
QT

|∇ρ|2dxdt ≤
∫

Ω

s(ρ0)dx+ Cf |Ω|T.

Hence, ‖w‖2H1(QT )N is uniformly bounded, because σ ≤ 1. Thus, the Leray-Schauder theorem

is applicable and yields that Φ has a fixed point, and therefore the scheme (4.6) admits a solu-
tion. Using these calculations for σ = 1, it follows that every solution has to satisfy the entropy
inequality (4.7).

4.2.2 Convergence of the numerical scheme as h→ 0

We will show that, for a fixed ε > 0, the numerical scheme (4.6) converges as h→ 0.

Proposition 4.2.4 (Convergence of the scheme for fixed ε > 0). Let wh ∈ Vh be a solution
of (4.6) with fixed ε > 0, satisfying the entropy estimate (4.7). Then there exists w ∈ H1(QT )N

with ρ := u(w) ∈ L2(0, T,H1(Ω)N ), and a sequence h` → 0 such that

ρh` := u(wh`)→ ρ strongly in Lr(QT ) for all r ∈ [1,∞).

Moreover, w, ρ solve (4.5) and satisfy the entropy estimate

ε‖w‖2H1(QT )N +

∫
Ω

s(ρ(T ))dx+ γ

∫
QT

|∇ρ|2dxdt ≤
∫

Ω

s(ρ0)dx+ Cf |Ω|T. (4.9)
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Proof. The first part of the assertion follows from the fact that wh is uniformly bounded in
H1(QT )N , which yields that there exists w ∈ H1(QT )N and subsequence h` → 0 such that
wh` ⇀ w in H1(QT )N , due to the Banach-Alaoglu theorem, and wh` → w in L2(QT )N , due to
Rellich’s theorem. In particular, we can choose this subsequence in such a way that wh` converges
a.e. to w. As u is bounded (see Assumption (H2)), the dominated convergence theorem entails
the strong convergence of ρh` ≡ u(wh`) → u(w) =: ρ in Lr(QT )N for all r ∈ [1,∞). Combining
this with the entropy estimate (4.7), there exists another subsequence (which we do not relabel)
such that ρ` ⇀ ρ weakly in L2(0, T,H1(Ω)N ).

Finally, owing to assumption (H3), for every φ ∈ H1(QT )N , there exists φh` ∈ Vh` such that
φh` → φ in H1(QT )N . Using φh` as a test function in (4.6), we obtain (4.5) in the limit hi → 0,
as each integral in (4.6) converges separately. The entropy inequality (4.9) is a consequence of
Fatou’s lemma and the weak lower semicontinuity of the norm.

The following corollary will be used in the analysis of the limit for ε→ 0 (see proof of Propo-
sition 4.2.6 below).

Corollary 4.2.5. Let τ, δ ≥ 0 be such that τ + δ ≤ T . Let w ∈ H1(QT )N together with ρ :=
u(w) ∈ L2(0, T,H1(Ω)N ) be a solution of (4.5). It holds true that

ε‖w‖2H1(Qτ )N +
1

δ

∫ τ+δ

τ

∫
Ω

s(ρ)dxdt+ γ

∫ τ

0

∫
Ω

|∇ρ|2dxdt

≤ (1 + δ)

∫
Ω

s(ρ0)dx+ Cf |Ω|(τ + δ(1/2 + T )), (4.10)

where Qτ := (0, τ)× Ω.

Proof. Set

ψ(t) :=


1 if t < τ,

1− t−τ
δ if τ ≤ t ≤ τ + δ,

0 otherwise.

Thus, wψ ∈ H1(QT )N . Similarly as in the proof of Proposition 4.2.2, we use ρ = u(w) and

∂t(ψw) · ρ = ∂t(ψw · ρ)− ψw · ∂tρ = ∂t(ψw · ρ− ψs(ρ)) + ∂tψs(ρ)

and, since ψ(T ) = 0 and ψ(0) = 1,∫
QT

∂t(wψ) · ρdxdt+

∫
Ω

w(0) · ρ0dx =

∫
QT

∂tψs(ρ)dxdt+

∫
Ω

(
s(ρ(0)) + w(0) · (ρ0 − ρ(0))

)
dx.

Thus, using the definition of ψ, and treating the last term of the previous equation as in the proof
of Proposition 4.2.2, we get∫

QT

∂t(wψ) · ρdxdt+

∫
Ω

ψ(0)w(0) · ρ0dx+
1

δ

∫ τ+δ

τ

∫
Ω

s(ρ)dxdt ≤
∫

Ω

s(ρ0)dx.

From (4.5) tested with φ = wψ and the previous inequality, we get

ε(ψw,w)H1(QT )N +

N∑
i,j=1

∫ T

0

∫
Ω

∇(ψw)i ·Aij(ρ)∇ρjdxdt+
1

δ

∫ τ+δ

τ

∫
Ω

s(ρ)dxdt

≤
∫

Ω

s(ρ0)dx+

∫ T

0

∫
Ω

ψw · f(ρ)dxdt

which, due to the properties of ψ and the assumption (H2), entails
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ε(ψw,w)H1(QT )N +
1

δ

∫ τ+δ

τ

∫
Ω

s(ρ)dxdt+ γ

∫ τ

0

∫
Ω

|∇ρ|2dxdt ≤
∫

Ω

s(ρ0)dx+ Cf |Ω|(τ + δ/2).

Finally, we can estimate the first term as

ε(ψw,w)H1(QT )N = ε

∫ T

0

∫
Ω

(
ψ|w|2 + ψ|∇w|2 + ∂t(ψw) · ∂tw

)
dxdt

= ε

∫ T

0

∫
Ω

(
ψ|w|2 + ψ|∇w|2 + ψ|∂tw|2 + ∂tψw · ∂tw

)
dxdt

≥ ε‖w‖2H1(Qτ )N − δε
∫ τ+δ

τ

∫
Ω

w · ∂twdxdt.

Using the Cauchy-Schwarz inequality and the definition of the H1 norm yields

δε

∫ τ+δ

τ

∫
Ω

w · ∂twdxdt ≤ δε‖w‖2H1((τ,τ+δ)×Ω)N ,

and therefore

ε‖w‖2H1(Qτ )N +
1

δ

∫ τ+δ

τ

∫
Ω

s(ρ)dxdt+ γ

∫ τ

0

∫
Ω

|∇ρ|2dxdt

≤ δε‖w‖2H1((τ,τ+δ)×Ω)N +

∫
Ω

s(ρ0)dx+ Cf |Ω|(τ + δ/2).

Note that we cannot estimate the first term on the right-hand side by the first term on the left-hand
side, because the domain of the norms are disjoint. Fortunately, we have the entropy estimate
(4.9), which we add δ times to this inequality to get

ε(1 + δ)‖w‖2H1(Qτ )N +
1

δ

∫ τ+δ

τ

∫
Ω

s(ρ)dxdt+ δ

∫
Ω

s(ρ(T ))dx+ γ(1 + δ)

∫ τ

0

∫
Ω

|∇ρ|2dxdt

≤ (1 + δ)

∫
Ω

s(ρ0)dx+ Cf |Ω|(τ + δ(1/2 + T )),

which, since s(ρ(T )) ≥ 0, implies the assertion.

4.2.3 Limit of ε→ 0

We consider the limiting problem

−
∫

Ω

φ(0) · ρ0dx−
∫ T

0

∫
Ω

∂tφ · ρdxdt+

N∑
i,j=1

∫ T

0

∫
Ω

∇φi ·Aij(ρ)∇ρjdxdt

=

∫ T

0

∫
Ω

φ · f(ρ)dxdt (4.11)

and all φ ∈ (H1(QT ))N with φ(T ) = 0. As in the statement of Lemma 4.2.1, we use the notation
φ(t) := tr(φ)(t, ·), where tr denotes the trace operator tr : H1(QT )N → L2({0, T} × Ω)N .

Proposition 4.2.6. Let τ, δ ≥ 0 such that τ + δ ≤ T . Let w ∈ H1(QT )N together with ρ :=
u(w) ∈ L2(0, T,H1(Ω)N ) be a solution of (4.5). Then there exist ρ ∈ L2(0, T ;H1(Ω)N ) with
ρ(t, x) ∈ D for a.e. (t, x) ∈ QT being a solution of (4.11) and a subsequence εj → 0 such that

ρεj → ρ in every Lr(QT )N , r ∈ [1,∞), as εj → 0.

Moreover, ρ satisfies the entropy inequality

1

δ

∫ τ+δ

τ

∫
Ω

s(ρ)dxdt+ γ

∫ τ

0

∫
Ω

|∇ρ|2dxdt ≤ (1 + δ)

∫
Ω

s(ρ0)dx+ Cf |Ω|(τ + δ(1/2 + T )). (4.12)
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In the proof of Proposition 4.2.6, the key ingredient to prove strong convergence of (at least
a subsequence of) ρε will be the idea of compensated compactness, which is a special technique
applying the classical div-curl lemma; see, e.g. [107].

Lemma 4.2.7 (div-curl lemma). Let α, α` ∈ L2(QT )1+n and β, β` ∈ L2(QT )1+n. Then

α` ⇀ α in L2(QT )1+n as `→ +∞, and (div(t,x)α
`)`∈N is bounded in L2(QT ),

β` ⇀ β in L2(QT )1+n as `→ +∞, and (curl(t,x)β
`)`∈N is bounded in L2(QT )(1+n)×(1+n)

implies that

α` · β` ⇀ α · β in D′(QT ) as `→ +∞,

where D′(QT ) denotes the dual space of D(QT ) := C∞c (QT ).

Proof of Proposition 4.2.6. Let wε, ρε := u(wε) denote the solution of (4.5) satisfying the entropy
inequality (4.9). For any fixed i, i = 1, . . . , N , we define the vector-valued functions with (1 + n)
components

αε =

(
ρεi − ε∂twεi
Jεi − ε∇wεi

)
and βε :=

(
ρεi
0

)
, where Jεi = −

N∑
j=1

A(ρε)ij∇ρεj .

Note that, by assumption, D is bounded and so is ρε = u(wε). Thus, thanks to the entropy
estimate (4.9), αε, βε are bounded uniformly in L2(QT )1+n w.r.t. ε ∈ (0, 1). By the Banach-
Alaoglu theorem, there exist α, β ∈ L2(QT )1+n and a subsequence ε` → 0 such that

αε` ⇀ α,βε` ⇀ β in L2(QT )1+n as ε` → 0.

Clearly, β has the form (ρi, 0) for some ρi ∈ L2(QT ). Due to the entropy estimate (4.9),
√
εwεi

is bounded in H1(QT ). Hence, βε0 − αε0 = ε∂tw
ε
i → 0 in L2(QT ) as ε → 0, implying that

ρi := β0 = α0 and α · β = ρ2
i , where in this context the index 0 denotes the first component of the

(1 + n)-dimensional vector. Moreover, one can easily show that

‖curl(t,x)β
ε‖L2(QT )(1+n)×(1+n) ≤ C‖∇ρεi‖L2(QT )n

for some C > 0. Again by the entropy estimate (4.9), this implies that curl(t,x)β
ε is uniformly

bounded in L2(QT )(1+n)×(1+n) w.r.t. ε ∈ (0, 1). In order to apply the div-curl lemma, it remains
to prove that the space–time divergence of αε is bounded. For this, we require the equation for ρεi
in the interior of QT , i.e., from equation (4.5),

ε

∫
QT

ψwεidxdt+ ε

∫
QT

∂tψ∂tw
ε
idxdt+ ε

∫
QT

∇ψ · ∇wεidxdt−
∫
QT

∂tψρ
ε
idxdt

+

N∑
j=1

∫
QT

∇ψ ·Aij(ρε)∇ρεjdxdt =

∫
QT

ψfi(ρ
ε)dxdt

for all ψ ∈ H1
0 (QT ). We can rewrite this by using the weak space–time divergence of αε as

−
∫
QT

∇(t,x)ψ · αεdxdt =

∫
QT

∂tψ(ε∂tw
ε
i − ρεi)dxdt

+

∫
QT

∇ψ ·

ε∇wεi +

N∑
j=1

Aij(ρ
ε)∇ρεj

 dxdt

=

∫
QT

ψfi(ρ
ε)dxdt− ε

∫
QT

ψwεidxdt
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for all ψ ∈ H1
0 (QT ). We observe that the right-hand side defines a bounded operator on L2(QT )

due to the entropy estimate (4.9) and the fact that fi is uniformly bounded as a continuous
function defined on a compact set (see (H2)). This yields that div(t,x)α

ε is uniformly bounded in
L2(QT ). Therefore, we can apply the div-curl lemma and obtain that

(ρε`i − ε`∂tw
ε`
i )ρε`i = αε` · βε` ⇀ α · β = ρ2

i in D′(QT ) as ε` → 0.

Using that ρε`i ⇀ ρi and ε`∂tw
ε`
i → 0 in L2(QT ), we obtain that∫

QT

(ρε`i )2φ2dxdt→
∫
QT

ρ2
iφ

2dxdt as ε` → 0

for all φ ∈ C∞c (QT ). Hence, φρε`i → φρi in L2(QT ) for all φ ∈ C∞c (QT ). In particular, there exists
a subsequence not being relabeled such that ρε`i → ρi a.e. in QT . For almost every (t, x) ∈ QT , we
know that ρε`(t, x) ∈ D and that D is bounded. Thus, we can apply the dominated convergence
theorem, which yields that

ρi
ε` → ρi in every Lr(QT ), r ∈ [1,∞), as ε` → 0,

and that ρ(t, x) ∈ D for almost every (t, x) ∈ QT .
Moreover, the entropy inequality (4.9) also states that ∇ρεi is bounded in L2(QT )n indepen-

dently of ε. Since |ρε| = |u(wε)| = |(s′)−1(wε)| ≤ supv∈D |v|2, according to (H2), then, using
again (4.9), we obtain

‖ρεi‖2L2(0,T ;H1(Ω)) =

∫
QT

(ρεi)
2dxdt+

∫
QT

|∇ρεi |2dxdt

≤ |Ω|T‖ρεi‖2L∞(QT ) +
1

γ

(∫
Ω

s(ρ0)dx+ Cf |Ω|T
)

≤ 1

γ

∫
Ω

s(ρ0)dx+

(
sup
v∈D
|v|2 +

Cf
γ

)
|Ω|T,

namely, ρεi is bounded in L2(0, T ;H1(Ω)) independent on ε. Taking yet another subsequence,
which we do not relabel, we can see that there exists ρi ∈ L2(0, T ;H1(Ω)) such that ρε`i ⇀ ρi
in L2(0, T ;H1(Ω)). In particular, ∇ρε`i ⇀ ∇ρi in L2(QT )n. We already have seen that

√
εwε is

bounded in H1(QT )N , then εwε → 0 in H1(QT )N .
Now, we prove that ρ is solution to the limiting problem (4.11). Let φ ∈ H1(QT ) with trace

φ(T ) = 0. Using that A is bounded, according to (H1), and the dominated convergence theorem
yields ∫

QT

|∇φ|2|Aij(ρε`)|2dxdt→
∫
QT

|∇φ|2|Aij(ρ)|2dxdt as ε` → 0.

In particular, ∇φAij(ρε`) converges strongly in L2(QT )n. For each i = 1, . . . , N , we test the
equation for ρεi (see (4.5)) with functions φ ∈ H1(QT ) with trace φ(T ) = 0, take the limit for
ε = ε` → 0, and obtain

−
∫

Ω

φ(0)ρ0
i dx−

∫ T

0

∫
Ω

∂tφρidxdt+

N∑
j=1

∫ T

0

∫
Ω

∇φ ·Aij(ρ)∇ρjdxdt

=

∫ T

0

∫
Ω

φfi(ρ)dxdt

for all i = 1, . . . , N .
Finally, recall that ρε satisfies the entropy estimate (4.10) from Corollary 4.2.5. Thus, we

obtain the entropy inequality (4.12) as a direct consequence of the lower weak continuity of the
L2 norm and the Fatou lemma.
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4.2.4 Existence of a weak solution

In this section, we prove that problem (4.1) possesses a weak solution ρ in the sense of Definition 1.
Moreover, we prove the equivalence stated in Lemma 4.2.1 beetween the weak formulation (4.2)
in Definition 1 and the weak formulation (4.4).

Proposition 4.2.8. Let ρ be given by Proposition 4.2.6. Then ρ ∈ H1(0, T ; (H1(Ω)′)N ) and
ρ ∈ C0([0, T ];L2(Ω)) with ρ(0) = ρ0. Moreover, it satisfies the entropy inequality∫

Ω

s(ρ(τ))dx+ γ

∫ τ

0

∫
Ω

|∇ρ|2 dxdt ≤
∫

Ω

s(ρ0)dx+ Cf |Ω|τ. (4.13)

for almost all τ ∈ (0, T ).

Proof. Using the equation (4.11), we obtain that

∣∣∣∣∫
QT

∂tφρidxdt

∣∣∣∣ ≤ N∑
j=1

∫
QT

|∇φ||Aij(ρ)∇ρj |dxdt+

∫
QT

|φ||fi(ρ)|dxdt+

∫
Ω

|φ(0)||ρ0,i|dx

≤ Cρ‖φ‖L2(0,T ;H1(Ω))

using that ρ ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)). This implies that, for each i = 1, . . . , N , ρi has a
weak time derivative satisfying ∂tρi ∈ L2(0, T ;H1(Ω)′). Then the embedding H1(0, T ;H1(Ω)′) ∩
L2(0, T ;H1(Ω)) ⊂ C0([0, T ];L2(Ω)), entails that every ρi is continuous in time, and so is ρ. We
obtain the desired entropy estimate as a limit δ → 0 of (4.12).

It remains to show that ρ(0) = ρ0 in L2(Ω)N . For this, let ψ ∈ H1(Ω)N and, for τ ∈ (0, T ),
define

φτ (t, ·) :=

{(
1− t

τ

)
ψ(·) in Ω× [0, τ ],

0 in Ω× (τ,+∞).

We easily see that φτ → 0 in L2(0, T ;H1(Ω)N ) as τ → 0. Then, from equation (4.11) tested with
φτ , we get that, for all ψ ∈ H1(Ω)N ,∫

Ω

(
1

τ

∫ τ

0

ρdt− ρ0

)
ψdx→ 0 as τ → 0.

Finally, the continuity implies that limτ→0
1
τ

∫ τ
0
ρdt = ρ(0), which entails ρ(0) = ρ0.

Remark 4.2.9. Using the last part of the proof of Proposition 4.2.8, we can easily show that
any solution ρ of (4.4) satisfies ρ(0) = ρ0. Therefore, the proof of Lemma 1 is a straightforward
application of the integration by parts formula and of the embedding (4.3).

Corollary 4.2.10. Let ρ be given by Proposition 4.2.6. Then ρ is a solution of (4.2).

Proof. Thanks to Proposition 4.2.8, we know that ρ possesses enough regularity such that we can
integrate in (4.11) w.r.t. t, which yields (4.2) for all φ ∈ H1(QT )N with φ(T ) = 0. Using a density
argument yields the assertion.

The proof of Propositon 4.2.3 is now straightforward.

Proof of Propositon 4.2.3. We only have to collect the previous results to obtain the proposition
using a diagonal sequence argument.
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4.3 Applications and numerical tests

In this section, we apply the general setting of section 4.1 and numerically test the space–time
Galerkin method of section 4.2 by considering four problems: the (linear) heat equation (sec-
tion 4.3.1), the porous medium equation (section 4.3.2), the Fisher-KPP equation (section 4.3.3),
and the Maxwell-Stefan system (section 4.3.4); in the latter case, the discussion on the general
setting is postponed to section 4.4. We remark that we apply this nonlinear setting to the lin-
ear heat equation for validation purposes and, in particular, in order to stress its unconditional
stability on a simple test problem.

In all cases, we consider the entropy density s : D → [0,+∞) defined by

s(ρ) =

N∑
j=1

ρj log ρj +

1−
N∑
j=1

ρj

 log

1−
N∑
j=1

ρj

+ log(N + 1), (4.14)

where D :=
{
ρ ∈ (0, 1)N :

∑N
i=1 ρi < 1

}
. We have

(s′(ρ))` = log
ρ`

1−
∑N
j=1 ρj

and (s′′(ρ))k` =
δk`
ρ`

+
1

1−
∑N
j=1 ρj

.

Then s ∈ C2(D, [0,∞)) ∩ C0(D) and is convex. Moreover, u : RN → D defined as

u`(w) =
ew`

1 +
∑N
i=1 e

wi
for ` = 1, . . . , N

is in C1(RN ,D), and is the inverse of s′. Thus, the preamble of assumption (H2) is satisfied.
In the numerical experiments below, we use continuous space–time finite element discretization

spaces. On the space–time cylinder QT = Ω×(0, T ), with Ω bounded interval (n = 1) or Lipschitz
polytope (n > 1), we consider families of shape-regular simplicial or Cartesian meshes {Th}h>0.
The parameter h denotes the mesh granularity, namely Th = {Ki, i = 1, . . . , Nh}, hK := diam(K),
and h := maxK∈Th hK .

As discretization spaces, we choose {Vh}h>0 = {V p
h , p ∈ N}h>0, with

V p
h =

{
v ∈ C0(QT )N : v|K ∈ Pp(K)N ∀K ∈ Th

}
, (4.15)

where Pp(K) denotes the space of polynomial functions on K of degree at most p, if K is a
simplex, or of degree at most p in each variable, if K is a cuboid. Therefore, the approximability
assumption (H3) in the first part of section 4.2 is satisfied.

Defining B : RN → RN×N as

B(w) = A(u(w))u′(w),

the space–time Galerkin method (4.6) can be rewritten more explicitly in terms of the entropy
variable unknown as follows:

Find wεh ∈ V
p
h such that

ε(φ,wεh)H1(QT ) +

∫
Ω

φ(T ) · u(wεh(T ))dx−
∫

Ω

φ(0) · ρ0dx−
∫
QT

∂tφ · u(wεh)dxdt

+

N∑
i,j=1

∫
QT

∇φi ·Bij(wεh)∇(wεh)jdxdt =

∫
QT

φ · f(u(wεh))dxdt

for all φ ∈ V p
h . (4.16)

Throughout this section, we measure the absolute numerical error defined by ‖ρ− u(wεh)‖L2(QT ).
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4.3.1 Heat equation

We apply our general approach to the linear heat equation:
∂tρ = ∆ρ in Ω, t > 0,

∂νρ = 0 on ∂Ω, t > 0,

ρ(0) = ρ0 in Ω.

This corresponds to problem (4.1) with N = 1, A ≡ 1, and f ≡ 0. Furthermore, D = (0, 1) and
the entropy density s : D → [0,+∞) is given by

s(ρ) = ρ log ρ+ (1− ρ) log(1− ρ) + log(2),

and thus s′(ρ) = log ρ
1−ρ , and s′′(ρ) = 1

ρ(1−ρ) .

For this choice of A(ρ) and f(ρ), assumption (H1) is obviously satisfied, and assumptions (H2a)
and (H2b) are fulfilled with γ = 4 and Cf = 0.

For the numerical tests, we take Ω = (0, 1)2 and ρ0(x) = 0.5 cos(πx1) cos(πx2) + 0.5, so that
the problem has the analytical solution given by

ρ(t, x) = 0.5 exp(−2π2t/τ) cos(πx1) cos(πx2) + 0.5,

where we use τ = 7 to rescale the time. The solution is shifted and scaled in order to avoid the
singularities of s′ at 0 and 1. Without this rescaling, the system matrix is highly ill-conditioned,
which prohibits optimal convergence rates. We solve (4.16), setting ε = 0 and solving the non-
linearity by Newton’s method. We use unstructured space–time simplicial meshes, an example is
shown in Figure 4.1. The Newton method converges in 6 steps, for all considered values of h and
p. We measure the L2 error on the whole space–time domain. In Figure 4.2, the convergence rates
of the h- and the p-version of the method are shown. We observe optimal rates, exponential in p
and of order p + 1 in h. In the case of p = 4, we observe a preasymptotic region for very large
mesh sizes; the exact rates are shown in Table 4.1.
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Figure 4.1: Plot of the analytic solution on an unstructured space–time mesh with h = 0.1 (left)
and its entropy (right).

4.3.2 The porous medium equation

Let m > 1. The porous medium equation is given by
∂tρ = ∆ρm in Ω t > 0,

∂ν(ρm) = 0 on ∂Ω, t > 0,

ρ(0) = ρ0 in Ω.
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Figure 4.2: Convergence rates for the space–time Galerkin approximation towards the exact solu-
tion of the heat equation, in polynomial degree p (left), and mesh size h (right).

p = 3
h error rate

2−1 2.3× 10−3 0
2−2 3.1× 10−4 2.9
2−3 2.4× 10−5 3.7
2−4 2.1× 10−6 3.5
2−5 1.3× 10−7 4.0
2−6 8.4× 10−9 4.0

p = 4
h error rate

2−1 4.8× 10−4 0
2−2 3.0× 10−5 4.0
2−3 2.3× 10−6 3.7
2−4 5.9× 10−8 5.3
2−5 1.8× 10−9 5.0
2−6 5.7× 10−11 5.0

Table 4.1: Numerical results for the heat equation.

We can write the porous medium equation in the form of (4.1) for N=1, A(ρ) = mρm−1, and
f ≡ 0. The entropy density is the same as for the heat equation.

Proposition 4.3.1. Assumptions (H1) and (H2) are satisfied for m ∈ (1, 2].

Proof. For D = (0, 1) and m > 1, A(ρ) = mρm−1 is in C0(D), thus (H1) is stisfied. As (H2b) is
obvious, we only neen to prove that (H2a) is satisfied, namely that s′′(ρ)A(ρ) ≥ γ for some γ > 0
and all ρ ∈ D. Thus let ρ ∈ (0, 1) = D. Then, whenever m ∈ (1, 2],

s′′(ρ)A(ρ) =
mρm−1

ρ(1− ρ)
=

m

ρ2−m(1− ρ)
≥ m =: γ.

We test the space–time Galerkin method for this problem with initial conditions and Neumann
boundary conditions chosen such that

ρ(x, t) =

[
(m− 1)(x− α)2

2m(m+ 1)(β − t)

] 1
m−1

is the exact solution, with α and β real parameters, on Ω = (0, 1). We consider the case m =
2, α = 5, β = 5, ε = 0 on unstructured simplicial space–time meshes.

In Figure 4.3, we show the convergence rates of the scheme. Regardless of the nonlinearity, we
match the convergence rates of the heat equation, i.e. exponential in p and of order p+ 1 in h.

In contrast to the heat equation, the power law in the porous medium equation introduces
a finite propagation speed of the solution. This is best observed by the interesting behavior of
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Figure 4.3: Convergence rates towards the exact solution of the porous medium equation, in
polynomial degree p (left), and mesh size h (right).

certain initial conditions that induce a waiting time. That is, the solution keeps a fixed support
until the waiting time is reached. On Ω = (0, π), the initial condition given by

ρ0(x) =

{
sin2/(m−1)(x) if 0 ≤ x ≤ π,
0 otherwise,

produces this behavior. It is shown in [87] that the corresponding solution has a waiting time
of t∗ = m−1

2m(m+1) . As we choose m = 2, here t∗ = 0.083̇. We choose u0 = 10−16 for 0 /∈ [0, π]

to avoid ill-conditioning. Furthermore, to ensure convergence of the Newton method used as a
solver, we had to choose ε = 10−8, making use of the regularization term. We solve on a Cartesian
space–time mesh until final time T = 0.2, with spatial mesh size hs = 0.05, and temporal mesh
size ht = hs/2, and fix p = 5. The results are shown in Figure 4.4. Looking at snapshots of the
numerical solution we can observe that it keeps a compact support set. In Figure 4.4, on the right,
we plot the value of the solution on the left interface against time, marking the expected waiting
time t∗ with the vertical line.
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Figure 4.4: Snapshots of the solution of the porous medium equation emitting a waiting time, at
different times (left) and the value at the left interface (right).
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4.3.3 The Fisher-KPP equation

We consider the Fisher-KPP equation
∂tρ = A∆ρ+ ρ(1− ρ) in Ω, t > 0,

A∂νρ = 0 on ∂Ω, t > 0,

ρ(0) = ρ0 in Ω,

with A > 0 now constant. This agrees with formulation (4.1), with N = 1, A(ρ) = A, and
f(ρ) = ρ(1 − ρ). We set again D := (0, 1). Assumptions (H1) and (H2a) are clearly satisfied.
Choosing an entropy density such that assumption (H2b) is satisfied with Cf = 0 allows for the
right-hand side of the entropy estimate (4.7) to be independent of time. Motivated by this, we
now investigate the rescaled entropy density s : D → (0,+∞) given by

s(ρ) = ρ log ρ+ (m− ρ) log(m− ρ), (4.17)

with m to be chosen. Note that f(ρ) > 0 for ρ ∈ (0, 1), and n/ρ − 1 > 1 if and only if ρ < m/2.
Thus,

f(ρ)s′(ρ) = ρ(1− ρ) log
ρ

m− ρ
= −ρ(1− ρ) log (

m

ρ
− 1) ≤ 0

for all for ρ ∈ (0, 1) if and only if m ≥ 2. We choose m = 2 so that the hypothesis (H2b) is fulfilled
with Cf = 0.

We start again by investigate convergence towards a smooth solution. We choose Ω = (0, 1),
and initial conditions and Neumann boundary conditions such that

ρ(x, t) =
1[

1 + exp(− 5
6 t+ 1√

6
x)
]2

is the exact solution for A = 1. We set ε = 10−16 and solve on unstructured simplicial space–time
meshes. The results are presented in Figure 4.5. We observe again optimal convergence rates in
both p and h, namely exponential in p and of order p+ 1 in h.
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Figure 4.5: Convergence rates in polynomial degree p (left) and mesh size h for the exact solution
of the Fisher-KPP equation.

Next, we aim to reproduce the experiments presented in [11], considering an initial condition
with a jump, given by ρ0(x) = 1 if 0 < x < 1/2 and 0 elsewhere, with diffusion coefficient
A = 10−4. We solve using p = 3 on a Cartesian mesh with hs = 0.025, ht = 0.4 up to T = 8.
Once again, we choose ε = 10−8 to avoid ill-conditioning in the solver. Snapshots of the numerical
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solution are taken every 1.3̇ seconds, the results are shown in Figure 4.6 on the left. In Figure 4.6
on the right, we consider different choices for the entropy up to T = 15. Note that at the point
in time the solution has already converged to ρ ≡ 1. The choice for the entropy density in [11]
was ρ log(ρ)− ρ+ 1. We compare this choice to the entropy in (4.17) for different values of m in
Figure 4.6. For the choice of m = 2, we recover a similar behavior of the entropy, namely, a region
with slow decay followed by an exponential decay. As the solution converges to 1 it can easily be
seen that for m > 2 the entropy does not convergence to zero exponentially, as exemplified by the
choice of m = 2.1 in the figure.
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Figure 4.6: Snapshots of the numerical solution for the Fisher-KPP (left) and different choices of
the entropy (right). The choices are as follows: Entropy 1 is the one used in [11], Entropy 2 is
given by (4.17) with m = 2, and Entropy 3 is (4.17) with m = 2.1.

4.3.4 The Maxwell-Stefan system

The Maxwell-Stefan system for three-component gas diffusion (N = 2) can be written as
∂tρi = ∇ ·

(∑2
j=1Aij(ρ1, ρ2)∇ρj

)
in Ω, t > 0,∑2

j=1Aij(ρ1, ρ2)∂νρj = 0 on ∂Ω, t > 0,

ρi(0) = (ρ0)i in Ω

for i = 1, 2, with

A(ρ1, ρ2) =
1

δ(ρ1, ρ2)

(
d1 + (d3 − d1)ρ1 (d3 − d2)ρ1

(d3 − d1)ρ2 d2 + (d3 − d2)ρ2

)
(4.18)

and

δ(ρ1, ρ2) = d1d2(1− ρ1 − ρ2) + d2d3ρ1 + d3d1ρ2.

The unknowns ρ1 and ρ2 represent the concentrations of the first two gases (ρ3 = 1− (ρ1 + ρ2));
the parameters d1, d2, and d3 are the diffusion coefficients of the three gases.

In section 4.4, we derive this form of the Maxwell-Stefan system, prove that it fits our frame-
work, and discuss the case N > 2.

In [13, Sec. 2] numerical results were presented for the three component gas diffusion experi-
ment originally performed by Duncan and Toor in [29]. The setting is the following. Consider two
bulbs of size 77.99 cm3 and 78.63 cm3, respectively, which are connected by a capillary tube of
length 85.9 mm and diameter 2.08 mm, with a valve in the middle. We consider the Maxwell-Stefan
equations with N = 2, corresponding to the gas mixture composed of hydrogen (ρ1), nitrogen (ρ2),
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Figure 4.7: The mesh used for the Duncan-Toor example, depicting the Nitrogen content after
about one hour.
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Figure 4.8: Comparison of the mole fractions in the left side of the device.

and carbon dioxide (ρ3). We consider the following initial gas mixture in the left- and right-hand
side of the device.

Left: (ρ0)1 = 0.000, (ρ0)2 = 0.501, (ρ0)3 = 0.499,

Right: (ρ0)1 = 0.501, (ρ0)2 = 0.499, (ρ0)3 = 0.000.

For these gases, the diffusion coefficients are

d1 = 83.3−1, d2 = 68.0−1, d3 = 16.8−1.

In Figure 4.7, the computational domain is shown. We choose the spatial mesh size hs = 2.08,
equal to the diameter of the tube. The size of the Cartesian product mesh in time is chosen as
hs/2. We solve iteratively on these slabs, restarting the computations with the previous solution
as initial condition. We fix p = 1.

The results are shown in Figure 4.8. We recover the same behavior shown in [13]. Both
hydrogen and carbon dioxide converge monotonically to the expected equilibrium. Nitrogen shows
the peculiar behavior known from the experiment. Note that the values in [13] differ from the ones
found in our experiment, this is most likely due their simplification of the computational domain,
using a symmetry argument.

4.4 The Maxwell-Stefan system revisited

In this section, we derive the formulation of the Maxwell-Stefan system as that used in section 4.3.4,
and show that it fits into the general framework of section 4.1 (section 4.4.1). For the case N > 2,
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in which an explicit representation of the currents may not be easily derived, we introduce and
analyze an alternative space–time Galerkin method, which is based on a formulation that is implicit
for the currents (section 4.4.2).

Let ρ0 ∈ L∞(Ω)N+1 such that ρ0 ≥ 0 and
∑N+1
i=1 (ρ0)i = 1. The Maxwell-Stefan equations are

given by the continuity equations
∂tρi +∇ · Ji = 0 in (0, T )× Ω,

ν · Ji = 0 on (0, T )× ∂Ω,

ρi(0) = (ρ0)i in Ω

(4.19)

for i = 1, . . . , N + 1, where the currents Ji are implicitly given by

∇ρi =

N+1∑
j=1

ρiJj − ρjJi
Dij

(4.20)

for some Dij = Dji > 0.

4.4.1 Explicit formula for the currents

In this section, we establish an explicit representation of the currents, which allows us to derive the
formulation of the Maxwell-Stefan system in the concentration variable unknowns. We follow [12]
(see also [62]).

Let Mij(ρ) := D−1
ij ρi − δij

∑N+1
k=1 D−1

ik ρk, i, j = 1, . . . , N + 1. Thus,

∇ρi =

N+1∑
j=1

Mij(ρ)Jj .

Using ρi ≥ 0 and Dij = Dji > 0, it is easy to see that M(ρ) is quasi-positive (Mij(ρ) ≥ 0 for i 6= j).
Moreover, provided that ρi > 0 for all 1 ≤ i ≤ N + 1, M(ρ) is irreducible. Direct calculations
show that

KerM(ρ) ⊇ span{ρ} and ImM(ρ) ⊆

{
v :

N+1∑
i=1

vi = 0

}
.

Moreover, R−1M(ρ)R, with R = diag(ρ
1/2
1 , . . . , ρ

1/2
N+1), is symmetric, thus all the eigenvalues of

M(ρ) are real. By the Perron-Frobenius theory for quasi-positive, irreducible matrices, one deduces
that the eigenvalue zero has multiplicity one (we refer to [12] or [62] for details). We deduce

KerM(ρ) = span{ρ} and ImM(ρ) =

{
v :

N+1∑
i=1

vi = 0

}
. (4.21)

As M(ρ) is not invertible, we have to restrict ourselves to a subspace of all possible currents
J in order to obtain an explicit formula for J . For this, we make the assumption that the total
current

Jtot :=

N+1∑
i=1

Ji

vanishes. Then by summing in (4.19) over all i = 1, . . . , N + 1, we see that

ρtot =

N+1∑
i=1

ρi
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is constant in time, and hence ρtot =
∑N+1
i=1 (ρ0)i = 1. Using this, we can rewrite the implicit

formulation of the currents as

∇ρi =
ρi

(
−
∑N
j=1 Jj

)
−
(

1−
∑N
j=1 ρj

)
Ji

Di(N+1)
+

N∑
j=1

ρiJj − ρjJi
Dij

(4.22)

As before, we can define a matrix

Mij(ρ) :=
ρi
Dij
− ρi
Di(N+1)

− δij

(
N∑
k=1

ρk
Dik

+
1−

∑N
l=1 ρl

Di(N+1)

)
, i, j = 1, . . . , N. (4.23)

From (4.21), the matrix M(ρ) has full rank, and hence it is invertible. We have

Ji = −
N∑
j=1

Aij(ρ)∇ρj with A(ρ) := −M(ρ)−1.

Remark 4.4.1. The matrix M(ρ) is actually independent from the diagonal elements Dii.

Proposition 4.4.2. Let s be as in (4.14), and let M be given by (4.23). Then, the matrix-valued
function A(ρ) := −M(ρ)−1 fulfills (H1) and (H2a).

Proof. Let A(ρ) = −M−1(ρ). The fact that M is smooth directly implies that A is smooth.
Similarly as in the proof of [62, Lemma 3.2], one can show that

n∑
i=1

∂iw ·A(u(w))s′′(u(w))−1∂iw ≥ γ|∇u(w)|2 (4.24)

for some γ > 0 and all smooth w.
In order to prove (H2a), we have to show that

z · s′′(ρ)A(ρ)z ≥ γ|z|2 for all z ∈ RN , ρ ∈ D.

Let ρ ∈ D, x0 ∈ Ω, and z ∈ RN . We define the following vector-valued function of x:

w(x) := s′(ρ) + s′′(ρ)z(x− x0) · ê1,

where ê1 denotes the unit vector (1, 0, . . . , 0) ∈ Rn. We have

∂iw(x0) = δi1s
′′(ρ)z

and, for u = (s′)−1,

∂iu(w(x0)) = u′(w(x0))∂iw(x0) = u′(w(x0))δi1s
′′(ρ)z = u′(w(x0))δi1s

′′(u(w(x0)))z = δi1z.

This, together with (4.24), implies that

z · s′′(ρ)A(ρ)z = (s′′(ρ)z) ·A(ρ)s′′(ρ)−1(s′′(ρ)z)

=

n∑
i=1

∂iw(x0) ·A(u(w(x0)))s′′(u(w(x0)))−1∂iw(x0)

≥ γ|∇u(w(x0))|2 = γ|z|2,

which proves the assertion.
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For N = 1, the matrix M(ρ) is actually a scalar, which is given by

M(ρ) = − ρ1

D12
− 1− ρ1

D12
= − 1

D12
.

Hence, J1 = D12∇ρ1. Therefore, in this case the Maxwell-Stefan system reduces to the heat
equation.

For three species/gases (N = 2), we have

M(ρ1, ρ2) =

(
ρ1
D11
− ρ1

D13
− ρ1

D11
− ρ2

D12
− 1−ρ1−ρ2

D13

ρ1
D12
− ρ1

D13
ρ2
D21
− ρ2

D23

ρ2
D22
− ρ2

D23
− ρ1

D21
− ρ2

D22
+ 1−ρ1−ρ2

D23

)

= −
( 1
D13

+
(

1
D12
− 1

D13

)
ρ2

(
1
D13
− 1

D12

)
ρ1(

1
D23
− 1

D21

)
ρ2

1
D23

+
(

1
D21
− 1

D23

)
ρ1

)
.

Let

d1 :=
1

D13
, d2 :=

1

D23
, d3 :=

1

D12
,

and recall that D21 = D12. One can verify that

δ(ρ1, ρ2) := detM(ρ1, ρ2) = d1d2(1− ρ1 − ρ2) + d2d3ρ1 + d3d1ρ2 6= 0.

Let A(ρ) denote the inverse of −M(ρ). We can rewrite the Maxwell-Stefan equations as the
system in section 4.3.4.

4.4.2 Implicit formulation for the currents

In subsection 4.4.1, we have seen that the Maxwell-Stefan system (4.19)-(4.20), can be written in
the form (4.1), with f = 0 and A(ρ) being given by the inverse of −M(ρ) for

Mij(ρ) :=
ρi
Dij
− ρi
Di(N+1)

− δij

(
N∑
k=1

ρk
Dik

+
1−

∑N
l=1 ρl

Di(N+1)

)
, i, j = 1, . . . , N.

Moreover, we have computed A(ρ) explicitly for N = 1 and N = 2. However, for large N , it is
more complicated to find the explicit formulation for A(ρ). In any case we do not expect a simple
formulation in these cases. Therefore, this section provides a space–time Galerkin scheme, which
avoids the explicit computation of the inverse of M.

Let q, p ∈ N. We consider the following problem:

Find wεh ∈ V
p
h , J

µ ∈ V q
h , µ = 1, . . . , n, such that

0 = ε(φ0, wεh)H1(QT ) +

∫
Ω

φ0(T ) · u(wεh(T ))dx−
∫

Ω

φ0(0) · ρ0dx−
∫
QT

∂tφ
0 · u(wεh)dxdt

−
n∑
µ=1

(∫
QT

∂xµφ
0 · Jµdxdt+

∫
QT

φµ ·
(
∂xµw

ε
h − s′′(u(wh))M(u(wεh))Jµ

)
dxdt

)
∀φ0 ∈ V p

h , φ
µ ∈ V q

h , µ = 1, . . . , n. (4.25)

Proposition 4.4.3. Assume that ρ0 : Ω → D is measurable. Then there exists a solution wεh ∈
V p
h , J

µ ∈ V q
h , µ = 1, . . . , n of the method (4.25).

For the proof of Proposition 4.4.3, we need the following lemma.

Lemma 4.4.4. If wεh ∈ V
p
h , J

µ ∈ V q
h , µ = 1, . . . , n, solves (4.25), then

ε‖wεh‖2H1(QT ) +

∫
Ω

s(u(wεh(T )))dx+ γ

n∑
µ=1

∫
QT

|M(u(wεh))Jµ|2dxdt ≤
∫

Ω

s(ρ0)dx.
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Proof. We can use φ0 = wεh and φµ = 0 for µ = 1, . . . , n as test functions and, similarly to the
proof of Proposition 4.2.2, we obtain that

ε‖wεh‖2H1(QT ) +

∫
Ω

s(u(wεh(T )))dx−
n∑
µ=1

∫
QT

Jµ · ∂xµwεhdxdt ≤
∫

Ω

s(ρ0)dx.

The next step is to use the test functions φ0 = 0 and φµ = Jµ for µ = 1, . . . , n to obtain

n∑
µ=1

∫
QT

Jµ · ∂xµwεhdxdt =

n∑
µ=1

∫
QT

Jµ · s′′(u(wεh))M(u(wεh))Jµdxdt.

According to assumption (H2a), we know that s′′(v)A(v) is positive semi-definite and satisfies

z · s′′(v)A(v)z ≥ γ|z|2 for all z ∈ RN , v ∈ D.

Choosing v = u(wεh), z :=M(u(wεh))Jµ, we see that

γ|M(u(wεh))Jµ|2 ≤ Jµ · M(v)s′′(v)A(v)M(v)Jµ = −Jµ · M(v)s′′(v)Jµ,

where in the last step we have used that A(v) is the inverse of −M(v). Thus, we conclude that

ε‖wεh‖2H1(QT ) +

∫
Ω

s(u(wεh(T )))dx+ γ

n∑
µ=1

∫
QT

|M(u(wεh))Jµ|2dxdt ≤
∫

Ω

s(ρ0)dx.

Proof of Proposition 4.4.3. The idea of the proof is to proceed similarly to the proof of Proposition
4.2.2. We define the mapping

Φ : V p
h × (V q

h )n → V p
h × (V q

h )n, (v, I1, . . . , In) 7→ (w, J1, . . . , Jn),

where w is (uniquely) defined via the equation

0 = ε(φ0, w)H1(QT ) +

∫
Ω

φ0(T ) · u(v(T ))dx−
∫

Ω

φ0(0) · ρ0dx−
∫
QT

∂tφ
0 · u(v)dxdt

−
n∑
µ=1

∫
QT

∂xµφ
0 · Iµdxdt for all φ0 ∈ V p

h ,

and Jµ denotes the unique solution (see below for a justification) of∫
QT

φµ · ∂xµvdxdt =

∫
QT

φµ · s′′(u(v))M(u(v))Jµdxdt for all φµ ∈ V q
h . (4.26)

Note that the mapping Φ is well-defined, as (4.26) admits a unique solution for given v ∈ V p
h

according to the Lemma of Lax-Milgram: we see that ∂xµv ∈ L2(QT )N and the matrix
−s′′(u(v))M(u(v)) ∈ L∞(QT )N×N is positive definite, because for all z ∈ RN

z ·
(
− s′′(u(v))M(u(v))

)
z = A(u(v))y · s′′(u(v))y

= y · s′′(u(v))A(u(v))y

(H2a)

≥ γ|y|2 =
γ

‖A(u(v))‖2
‖A(u(v))‖2|y|2

≥ γ

‖A(u(v))‖2
|A(u(v))y|2 =

γ

‖A(u(v))‖2
|z|2
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for y := A(u(v))−1z = −M(u(v))z. Moreover, the mapping Φ is continuous since A and u are
continuous. Then by the Leray-Schauder fixed-point theorem, we obtain that Φ admits a fixed-
point if we can show that the set

{(w, J1, . . . Jn) ∈ Vh × (V q
h )n : (w, J1, . . . Jn) = σΦ(w, J1, . . . Jn), σ ∈ [0, 1]}

is bounded. Let (w, J1, . . . , Jn) = σΦ(w, J1, . . . , Jn) for σ ∈ (0, 1]. Similarly to Lemma 4.4.4, we
can prove the entropy estimate

ε

σ
‖w‖2H1(QT ) +

∫
Ω

s(u(w(T )))dx+
γ

σ

n∑
µ=1

∫
QT

|M(u(w))Jµ|2dxdt ≤
∫

Ω

s(ρ0)dx.

Using that σ ∈ (0, 1] is bounded from above yields a uniform bound on w in V q
h and onM(u(w))Jµ

in L2(QT )N . As V q
h is finite dimensional, we directly obtain that ‖w‖L∞(QT )N is uniformly

bounded. Thus,

‖Jµ‖L2(QT )N ≤ ‖A(u(w))‖L∞(QT )N×N ‖M(u(w))Jµ‖L2(QT )N

is also uniformly bounded. As all norms are equivalent on V q
h , this directly implies that Jµ is

uniformly bounded in V q
h . Thus, the Leray-Schauder theorem is applicable and yields that Φ has

a fixed-point, and therefore the scheme (4.25) admits a solution.

Proposition 4.4.5. Let ρ0 : Ω → D be measurable and wεh ∈ V
p
h , J

ε,µ
h ∈ V q

h , µ = 1, . . . , n, be a
solution for of (4.25) for ε, h > 0. Then there exist a solution ρ of (4.4) and sequences hi, εi → 0,
as i→∞, such that

u(wεihi)→ ρ in Lr(QT ), as i→∞

for all r ∈ [1,∞). Moreover, ρ satisfies the entropy estimate∫
Ω

s(ρ(τ))dx+ γ

∫ τ

0

∫
Ω

|∇ρ|2 dxdt ≤
∫

Ω

s(ρ0)dx (4.27)

for all τ ∈ (0, T ], where |Ω| is the volume of Ω.

Proof. The proof is analogue to the proof of Proposition 4.2.3. We only need to replace Proposition
4.2.4 by Lemma 4.4.6 below.

Lemma 4.4.6 (Convergence of the scheme for fixed ε > 0). Let wh ∈ V p
h , J

µ
h ∈ V

q
h , µ = 1, . . . , n

be a solution of (4.25), with fixed ε > 0. Then there exists ρ ∈ H1(QT )N with ρ(t, x) ∈ D for a.e.
(t, x) ∈ QT and s′(ρ) ∈ H1(QT )N , and a sequence h` → 0 such that

ρh` := u(wh`)→ ρ and wh` → s′(ρ)

strongly in L2(QT ) and weakly in H1(QT ). Moreover, ρ solves (4.5) and satisfies the entropy
estimate (4.9) for w = s′(ρ).

Proof. The fact that wh is uniformly bounded in H1(QT )N yields that there exists w ∈ H1(QT )N

and subsequence h` → 0 such that wh` ⇀ w in H1(QT )N , due to the Banach-Alaoglu theorem,
and wh` → w in L2(QT )N due to Rellich’s theorem. As u is bounded, the dominated convergence
theorem entails the convergence for ρh` ≡ u(wh`) to ρ := u(w) along another subsequence (which
we do not relabel).

For the second part, we note that, due to the Banach-Alaoglu theorem and the boundedness of
M(u(wh))Jµh in L2(QT )N , we know that there exist ξµ ∈ L2(QT )N such that, for a subsequence
(not being relabeled),

M(u(wh))Jµh ⇀ ξµ weakly in L2(QT )N .

In particular,

Jµh = −A(u(wh))M(u(wh))Jµ ⇀ −A(ρ)ξµ =: Jµ weakly in Lr(QT )N
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for every r ∈ [1, 2). Finally, for every φµ ∈ H1(QT )N , j = 0, . . . , n, there exist φµh` ∈ V
p
h`
∩ V q

h`

such that φµh` → φµ in H1(QT )N . Using φµh` as a test function in (4.25), in the limit hi → 0, we
obtain

0 = ε(φ0, wh)H1(QT ) +

∫
Ω

φ0(T ) · u(wh(T ))dx−
∫

Ω

φ0(0) · ρ0dx−
∫
QT

∂tφ
0 · u(wh)dxdt

−
n∑
µ=1

(∫
QT

∂xµφ
0 · Jµdxdt+

∫
QT

φµ ·
(
∂xµwh − s′′(u(wh))M(u(wh))Jµ

)
dxdt

)
,

as each integral in (4.25) converges separately. In particular, by the fundamental lemma of calculus
of variations, we see that ∂xµwh = s′′(u(wh))M(u(wh))Jµ and equivalently

Jµ =M(u(wh))−1s′′(u(wh))−1∂xµwh = −A(u(wh))u′(wh)∂xµwh = −A(u(wh))∂xµu(wh),

which implies that ρ solves (4.5). Finally, the entropy inequality is a consequence of Fatou’s
lemma.

4.4.3 Numerical Tests

We again turn to [13, Sec. 3] for numerical results we can compare our method to. This time,
we consider a model for the lung. The computational domain resembles on branch of the tree
structure found in the bottom of the lung. The domain, depicted in Figure 4.9, consists of the
inflow, Γ1, on top, the outflow, Γ2, located on the bottom of the two branches, and the alveoli, Γ3,
located in the middle of each of the branches. The remaining boundary Γ4 is a wall where nothing
goes in or out. Opposed to the domain presented in the reference, we consider the branches of the
lung to be symmetrical and perpendicular to each other. The paper does not mention the angle
between the branches used there. Also the size of the alveoli is left unspecified in the paper. Here,
we split the boundary of the branches into three equal parts, with the alveoli (Γ3) in the middle.
On Γ1,Γ2,Γ3 we impose Dirichlet boundary conditions to model the gas exchange with the other
parts of the lung. On the wall, Γ4, we take homogeneous Neumann boundary conditions.

Γ3

Γ3 Γ3

Γ3

Γ1

Γ4

Γ2Γ2

0.54 mm

1.41 mm

0.50 mm

1.17 mm

Figure 4.9: Computational domain for the lung model.

We make use of the implicit formulation (4.25) to find the numerical solution. To incorporate
the Dirichlet boundary condition, we use Nitsche’s method and add to (4.25) the following terms:

n∑
µ=1

∫
(0,T )×ΓD

Jµνµ · φ0 +

∫
(0,T )×ΓD

(u(w)− ρD) · φµνµ +

∫
(0,T )×ΓD

ηhs
−1(u(w)− ρD) · φ0

for a parameter η > 0, hs being the spatial mesh size, on the Dirichlet boundary ΓD. In the
examples below, we use η = 1. The first term comes from the integration by parts. The second
and third terms are productive zeros that weakly enforce the Dirichlet boundary condition, and
are chosen such that they agree with Nitsche’s method for the heat equation in the degenerative
case.
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Diffusion of air

In the following example, compare [13, Sec. 3.4], we choose alveolar air as initial condition and as
the Dirichlet data on the outflow and alveoli. On the inflow boundary we choose humidified air
as Dirichlet data. See Table 4.2 for the gas components of the different types of air, and Table 4.3
for the diffusion coefficients.

Humidified air Alveolar air Alveolar heliox
Nitrogen 0.7409 0.7490 0.0000
Oxygen 0.1967 0.1360 0.1360
Carbon dioxide 0.0004 0.0530 0.0530
Water 0.0620 0.0620 0.0620
Helium 0.0000 0.0000 0.7490

Table 4.2: Components of the different gas mixtures.

Oxygen Carbon dioxide Water Helium
Nitrogen 21.87 16.63 23.15 74.07
Oxygen 16.40 22.85 79.07
Carbon dioxide 16.02 63.45
Water 90.59

Table 4.3: Diffusion coefficients of the different gases.

Since there is no helium present we can reduce the number of species involved, setting N = 3.
For the numerical calculations we choose spatial mesh size hs = 0.3 and measure the value of the
gas every 0.001 seconds. The discrete system is not ill-conditioned and we are able to choose ε = 0.
In Figure 4.10 we show the numerical results for Oxygen and Carbon dioxide as the other gases
stay (almost) constant. Both converge to their equilibrium value. Comparing the results to [13],
we can see that the equilibrium value slightly differs, which is likely due to the symmetry of the
domain and size of the alveoli.
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Figure 4.10: Numerical results of the mole fractions Oxygen and Carbon dioxide inside the lung
for air mixture.
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Diffusion of air/heliox

Next, we try to reproduce the results form [13, Sec. 3.5]. We consider alveolar heliox as initial
condition. As the Dirichlet data on the outflow and alveoli, we also choose alveolar heliox, whereas
we put humidified air on the inflow. The discrete system is very ill-conditioned due to the gas
components taking zero values. In order for the solver to converge, we had to choose ε = 10−4.
Furthermore, to avoid the singularity of the entropy density, we adjust the helium content in air
and the nitrogen content in heliox to be 10−6, subtracting the same amount of water, in order to
keep them summing to one. Note that this is not unreasonable, for example, the correct amount
of helium in air is about 5.3 · 10−7. With these adjustments, the solver converges. The numerical
results are shown in Figure 4.11. Both oxygen and carbon dioxide levels rise above the values
in provided gas mixtures, before they start to decrease towards the equilibrium value. This is
the expected behavior. However, the maximum values reached here are slightly lower than the
ones found in [13]. This can be attributed to the perturbations of the zero concentrations and, as
already seen, to the approximation of the geometry.
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Figure 4.11: Numerical results of the mole fractions Oxygen and Carbon dioxide inside the lung
for air/heliox mixture.



Chapter 5

Outlook and open questions

We have considered some applications of space–time approaches to the numerical approximation
of evolutionary partial differential equations.

In Chapter 2, we have presented implementational aspects and numerical results for the Trefftz-
DG method for the acoustic wave equation, originally presented in [81]. In particular, we have
seen that in combination with the tent pitched meshes strategy it gives rise to a very effective
algorithm. As we have seen in the numerical examples, for analytic solutions we get exponential
convergence rates in the polynomial degree p. A significant and challenging extension, from a
theoretical point of view, is the analysis of the approximation properties for increasing polynomial
degrees, i.e. the p-convergence. Further possible developments include the extension to the case
of electromagnetic waves (Maxwell’s equations).

We extended the Trefftz-DG method to a variable coefficient in Chapter 3. We envisage that
the quasi-Trefftz method can be extended to elastic and electromagnetic wave propagation in
heterogeneous materials, and more generally to a wider class of hyperbolic or Friedrichs systems.
For constant-coefficient examples of space–time Trefftz DG schemes for elastodynamics, electro-
magnetics and kinetic equations/transport models see [10], [30, 66] and [16], respectively. The
proposed approach might be effective also for the approximation of PDEs whose nature changes in
the computational domain, exemplified by the Euler–Tricomi equation (∂2

xu+x∂2
yu = 0), used for

applications in transonic flows and plasma physics. The numerical analysis performed here is only
a first step towards the establishment of a more comprehensive theory of quasi-Trefftz polynomial
schemes. More work is needed to address refined approximation estimates in Sobolev norms (see
Remark 3.3.7), the treatment of less regular solutions (e.g. with corner singularities), the proof
of error bounds in mesh-independent norms, the analysis of dispersion and dissipation properties.
The construction of non-polynomial quasi-Trefftz spaces could be relevant, for example, in order
to efficiently approximate solutions that are localised in frequency.

In Chapter 4 we have presented a novel space–time method for cross-diffusion systems with
several numerical examples for different PDEs. The method has high potential, allowing for space–
time hp-refinement, ready to be extended to other equations and combined with more efficient
solvers, with an open source code ready available. Physical consistent schemes for nonlinear PDEs
often involve a large number Newton iterations. Our new space–time finite element method allows
straightforward high order approximation while using only a minimal number of Newton iterations.
The main trick is to solve the equation directly on a space–time cylinder in one step. Furthermore,
contrary to the existing space–time FEMs for the heat equation, it does not require a correction
term to achieve optimal convergence rates. Therefore, we hope to see more applications of the
space–time approach for parabolic equations in the near future. In the numerical examples, we
have observed optimal convergence rates, given that the solution stays away from the singularities
of the entropy. Lifting this restriction could be the topic of future works. Also, more efficient
numerical treatment of the space–time system is of interest.
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[11] F. Bonizzoni, M. Braukhoff, A. Jüngel, and I. Perugia, A structure-preserving
discontinuous Galerkin scheme for the Fisher-KPP equation, Numer. Math., 146 (2020),
pp. 119–157.

[12] D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, in Parabolic prob-
lems, vol. 80 of Progr. Nonlinear Differential Equations Appl., Birkhäuser/Springer Basel
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[60] A. Jüngel and O. Leingang, Convergence of an implicit Euler Galerkin scheme for
Poisson-Maxwell-Stefan systems, Adv. Comput. Math., 45 (2019), pp. 1469–1498.
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