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ABSTRACT

This work presents a new mathematical model for tactical transporta-
tion planning in a horizontal collaboration defined by warehouse
sharing and the joint organization of transport. The model enables
sustainable planning by associating estimated CO; equivalent (CO»e)
emissions to each logistic operation and then allows to optimize for
transportation costs, emissions or both objectives through carbon
pricing. Furthermore, it features intermodal transport, handling and
storage capacities, diverse products and realistic tariff structures with
volume discounts. Graph-structures to linearize these non-linear tariffs
are developed and a mixed-integer formulation is derived, which is
provably strengthened by multiple sets of valid inequalities.

To solve large-scale instances, a hybrid heuristic composed of two parts
is developed. The first part corresponds to a slope scaling matheuristic,
which is generalized to non-negative integer variables. Due to this
generalization, a new slope scaling design principle based on mono-
tonicity is introduced. The second part consists of a local search, which
reroutes flow of multiple products at once along lowest-cost paths in
the network.

Results obtained from simulating collaboration in the Danube Region
using the regional available transportation infrastructure including
railway and shipping networks reveal significant saving potentials in
both costs and CO,e emissions. Cost minimizing solutions always lead
to reductions of the carbon footprint. However, minimizing for emis-
sions can significantly further this reduction, but requires a minimum
size of the collaboration to be cost-efficient.



ZUSAMMENFASSUNG

Diese Arbeit préasentiert ein neues mathematisches Modell zur takti-
schen Transportplanung in einer horizontalen Kollaboration, definiert
durch gemeinschaftlich gentitzte Warenlager und einer gemeinsa-
men Organisation des Transportes. Das Modell erlaubt nachhaltige
Planung indem jeder logistischen Operation ein geschitzter Emissi-
onswert in CO,-Aquivalent (CO,e) zugeordnet und danach eine Opti-
mierung der Transportkosten, Emissionen oder beider Werte durch
CO,-Bepreisung ermoglicht wird. Zudem berticksichtigt es intermo-
dalen Verkehr, Umschlag- und Lagerkapazititen, Diversitdt von Pro-
dukten und realistische Tarifstrukturen mit Mengenrabatten. Es wer-
den Graphstrukturen, um diese nicht-linearen Tarife zu linearisieren,
entwickelt und eine gemischt-ganzzahlige Formulierung hergeleitet,
welche nachweislich durch giiltige Ungleichungen gestarkt wird.

Um grofle Instanzen zu losen, wird eine zweiteilige, hybride Heuristik
entwickelt. Der erste Teil entspricht einer Slope Scaling Matheuristik,
welche fiir nicht-negative ganzzahlige Entscheidungsvariablen gene-
ralisiert wird. Aufgrund dieser Generalisierung wird ein neues Slope
Scaling Designprinzip basierend auf Monotonie eingefiihrt. Der zweite
Teil besteht aus einer Lokalen Suche, welche im Netzwerk Fluss von
mehreren Waren gleichzeitig entlang von Pfaden niedrigster Kosten
umleitet.

Ergebnisse, erzielt durch die Simulation von Kollaboration in der
Donauregion unter Einbezug der regional verfiigbaren Transportin-
frastuktur einschliefflich des Bahn- und Schiffsnetzwerkes, zeigen
signifikantes Sparpotential beziiglich Kosten und CO,e Emissionen.
Kostenminimieriende Lésungen fithren immer zu einer Reduktion des
CO,-Fufiabdrucks. Eine Emissionenminimierung kann diese Redukti-
on noch signifikant verbessern, benétigt aber eine Mindestgrofie der
Kollaboration, um kosteneffizient zu sein.
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PREFACE

Results from this thesis were presented in a talk at the 8th Interna-
tional Physical Internet Conference (IPIC2021) held in virtual form
on the 15th and 16th of June, 2021. As a result, parts of this work
will appear in the proceedings of this conference (see Gosch et al. [1]).
This concerns parts of all chapters of this thesis except Chapter 2 and
parts of the abstract. Therefore, in the beginning of each chapter, a
short notice is included about which sections will appear in altered or
unaltered form in Gosch et al. [1].
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Das Klima der Kontinente [hingt ab von den Verinderungen],
welche der Mensch [...] durch die Entwicklung grofler Dampf- und
Gasmassen an den Mittelpunkten der Industrie hervorbringt.

— Alexander von Humboldt, 1844



INTRODUCTION

The transport sector is responsible for over 14% of the total anthro-
pogenic greenhouse gas emissions. Approximately 43% of these emis-
sions can be attributed to freight transportation [4]. Furthermore, the
OECD predicts a tripling of the global goods traffic until 2050 [5, 6]
and when continuing with the status-quo, transport emissions are
predicted to increase at the fastest rate compared to any other energy-
related end-use sector [4]. As a result, urgent measures must be taken
to reduce the rising emissions in freight logistics.

Central solution proposals for a more sustainable transport of goods
are: modal shifts, increasing freight load factors for example through
consolidation, and better optimized and integrated transport networks
[4, 5, 7]. A recent paradigm in logistics addressing all these points at
once is collaboration between competitors taking the form of sharing
warehouses and jointly organizing freight transportation. This so
called horizontal collaboration [8] is a major stepping stone of the
EU’s strategy to achieve climate-neutrality by 2050 [9, 10] and an
integral part of the Physical Internet vision [11].

Therefore, this thesis introduces and solves a new mathematical model
to optimally and sustainably plan and use logistic resources in a
horizontal collaboration. Planning and decision making in logistics
and supply chain management is structured into three different levels,
strategic (long-term), tactical (medium-term) and operational (short-
term) [12, 13]. The model introduced here assumes that the relevant
transportation infrastructure is already in place and is concerned with
tactical planning which sets the general conditions for operational
decisions.

1.1 PROBLEM DESCRIPTION

Competing enterprises with diverse sets of products want to collab-
orate to reduce logistic costs and emissions. This collaboration is
characterized by sharing transportation and opening up warehouses
for mutual usage, both enabled by packing goods in modular and
standardized load units. The companies together have a network of
warehouses spread over different geographical regions with differing
product demands, but not every enterprise on its own has a warehouse
in every demand region. Furthermore, different companies can have

This chapter
including Section
1.1 and a shortened
version of Section
1.2 will appear in
Gosch et al. [1].



INTRODUCTION

product demands in similar geographical regions. Consequently, they
could share certain transport routes.

Now, to deliver goods into a demand region on time, the companies
want to devise a shared transportation strategy which makes effective
use of new consolidation and storage potentials and existing inter-
modal infrastructure whose usage is unlocked through higher product
volumes. As these planning issues require some lead time, they are
interested in developing a tactical freight plan.

Hence, the model’s main focus is in finding optimal paths freight
should take through the existing network. This includes tariff, trans-
port mode and storage choices making effective use of spatial and
temporal consolidation potentials and of opportunities for economics
of scale. The model is not concerned with concrete vehicle routing,
packing problems or similar as these decisions are part of operational
planning.

Key Model Aspects

Sustainable planning is achieved by associating estimated CO; equiva-
lent (CO,e) emissions to each logistic operation and optionally pricing
them allowing for internalization. Internalization refers to estimating
costs of wider effects of business activities on the community and
ecosystem and integrating them into the companies budgets [14]. As
a result, the developed model allows to optimize for transportation
costs, CO,e emissions or both.

The diversity of products is met with a holistic commodity-modelling
approach. This includes if necessary, special transportation conditions
such as cooling. Then, through adding a time dimension, the model al-
lows for expiry-aware shared routing of perishable and non-perishable
goods.

The model considers a network of facilities which can be warehouses,
factories or transshipment points, connected by (capacitated) trans-
portation relations of arbitrary types in space and time. As a result,
intermodal transportation possibilities are integrated capturing their
full implications on emission, cost and delivery time.

Additionally, each node in the network can be endowed with handling
capacity limits. Storage possibilities are represented by transport
relations in time between the same facility.

Finally, the model incorporates realistic tariff structures with all-
unit volume discounts often found in practice [15]. We design graph-
structures to linearly model these tariffs. These allow us to formulate
the problem as a capacitated network design problem [16].



1.2 OVERVIEW

1.2 OVERVIEW

This work starts with an overview of the relevant theoretical back-
ground in Chapter 2. In Chapter 3 the linear mixed-integer program-
ming formulation of the model is introduced. Due to the model being
NP-hard (see Section 3.2.6), to successfully solve large instances two
different types of heuristics are developed and combined:

* In Section 4.1 the slope scaling heuristic [17, 18] is generalized
to non-negative integer variables making it applicable to the
current model. Slope scaling is a matheuristic originally devel-
oped for network design problems with binary variables and
constitutes an integral part of state-of-the-art hybrid heuristics
for this problem type [19, 20]. It consists of an iterative solu-
tion process based on solving an approximate polynomial-time
problem exactly and using the gathered solution to update the
approximation. Section 4.1 and the results of Chapter 5 challenge
the main slope scaling design paradigm that the approximation
has to match the costs of the original problem and put forward
a more fundamental design paradigm based on monotonicity.

* In Section 4.2 a local-search based approach - using the slope
scaling heuristic as a fast and effective construction heuristic -
is developed. Based on ideas from Harks et al. [21], it jointly
reroutes flow of multiple commodities using lowest-cost paths
in the network.

The aforementioned heuristics as well as a commercial MIP-solver are
applied to generated problem instances based on the real intermodal
transportation infrastructure in the Danube Region. This includes
real ports along the Danube and the actual train and street network
in the looked upon industrial regions. The results of which can be
found in Chapter 5 and show that optimizing for transportation costs
in general results in significant savings in costs and CO,e emissions.
These emission reductions can be increased when only optimizing for
the carbon footprint. However, then a certain minimum critical size of
the collaboration is necessary to simultaneously result in a cost saving
solution.

A conclusion of this work including future research directions can be
found in chapter 6.



The term
programming for
optimization traces
back to the US
military around
World War I1. It
used the term
“program” to refer to
logistical supply
plans or training
and deployment
schedules of combat
units. In the post
war period the US
military tasked a
group of researchers
including George
Dantzig with
programming - the
planning of such
programs [25].

BACKGROUND

This thesis is fundamentally concerned with optimization [22, 23]. In
an optimization problem one is usually given a function f : X — R
and a set of constraints restricting all possible arguments x € X called
solutions to a feasible region () C X. Then, the goal is to find a feasible
solution x* € ) with the smallest’ function value. As a result, an
optimization problem can formally be stated as:

min f(x)

subject to x € () (2.1)
xeX

with f often called the objective or cost function.

Depending on the choice of f, X and () different areas of optimization
are distinguished [24]. In discrete or combinatorial optimization () is a
finite or countably infinite set. A special case of combinatorial opti-
mization arises when () is a subset of Z" called integer programming.
However, if () is uncountable (e.g. an infinite subset of IR") one speaks
of continous optimization. The main optimization problem considered
in this thesis defines a solution as a pair of integer and real variables
and thus is called a mixed-integer program (MIP). In general having
O CZV xR" P with1 < p <n—1 defines the area of mixed-integer
programming.

To solve this thesis” optimization problem techniques from continuous
and integer optimization are used, which have been developed for
linear objective functions. If f is linear one speaks of linear program-
ming or integer linear programming, respectively. Section 2.1 introduces
the main concepts and algorithms from the field of linear program-
ming used in this work. Section 2.2 gives on overview of the relevant
concepts from integer linear programming.

Solution techniques presented in Section 2.1 and 2.2 guarantee to find
an optimal solution. However, many optimization problems are NP-
hard and finding an optimal solution to large instances is infeasible.
Polynomial time methods, which guarantee some closeness to an opti-
mal solution are called approximation algorithms [26]. They are a special
case of a general class of algorithms known as heuristics, which provide
solutions without guaranteeing optimality [27]. While approximation

Without loss of generality the text is only concerned with minimization problems.
Every maximization problem can be transformed into a minimization problem by
defining a new objective function f(x) = —f(x).



2.1 LINEAR PROGRAMMING

algorithms are often specifically developed for a given problem meta-
heuristics are general procedures to derive problem-specific heuristics,
but mostly come without any approximation guarantees [28]. Sec-
tion 2.3 introduces concepts from metaheuristics used to develop a
heuristic for the optimization problem in this work. Approximation
algorithms are not used in this work and hence, their presentation
omitted.

Last but not least, Section 2.4 introduces concrete optimization prob-
lems relevant for this work.

2.1 LINEAR PROGRAMMING

The following presentation of linear programming, including the de-
velopments of the different simplex methods to solve linear programs
in Sections 2.1.1 to 2.1.3, is mainly based on the book from Bertsimas
and Tsitsiklis [2].

Linear programming refers to an optimization problem (2.1) where
both the cost function f and constraints are linear. A linear program
(LP) can be written as follows:

min cTx (2.2)
subject to Ax>b

¢ € R" refers to the cost vector and x € R” are the decision variables.
A € R™™" is the constraint matrix, which together with b € R"
defines m constraints for the n variables.

Each problem in general form (2.2) can be transformed into standard
form (2.3) and vice versa.

min cTx (2.3)
subject to Ax=1b
x>0

Therefore, the feasible region for formulation (2.2) is the set {x €
R"|Ax > b} and for formulation (2.3) {x € R"|Ax = b,x > 0}. Both
sets are polyhedra, see Definition 1.

Definition 1. [2] A polyhedron P is a set that can be described in the
form {x € R"|Ax > b}, where A is an m x n matrix and b is a vector
in R™,



However, a
polyhedron can have
exponentially many
corners with respect

to the problem size.

BACKGROUND

Studying the geometry of polyhedra is important for both devising
solutions algorithms for LPs (see Section 2.1.1) as well as solving
integer linear programming problems (see Section 2.2).

Important about a polyhedron are its corner points. While there are
intuitive geometric definitions of a corner point, here an equivalent
algebraic definition is given, which is important for the algorithmic
development of the simplex algorithm in Section 2.1.1. The definition
is based on constraints being active. A constraint i is called active if a
given vector x € R" fulfils it with equality, i.e. a] x = b; with 4; being
the i-th row of matrix A.

Definition 2. [2] Consider a polyhedron P defined by linear equality
and inequality constraints, and let x* be an element of R".

a) The vector x* is a basic solution if:
i) All equality constraints are active;

ii) Out of the constraints that are active at x*, there are n of
them that are linearly independent.

b) If x* is a basic solution that satisfies all of the constraints, we say
that it is a basic feasible solution.

One can show that an x € P is a corner point of P if and only if x is
a basic feasible solution. Furthermore, two basic solutions are called
adjacent if they share n — 1 active and linear independent constraints.

Assume one is given the polyhedron P of a linear optimization prob-
lem for which an optimal solution exists. An important result [2] about
P is that if it has at least one corner point it has an optimal solution,
which is a corner point. Now, assume the polyhedron P stems from an
LP in standard form. Then, it can be shown that if the LP in standard
form has at least one solution, P has at least one corner point and
hence, an optimal solution to the LP can be found at the corner points
of P. Therefore, in the search for an optimal solution to an LP in
standard form one can restrict oneself to only search at the corners of
Pp.

A local optimal solution has no improving solutions in its vicinity, but
in general is not guaranteed to be the globally best solution. However,
linear programs have per definition linear cost functions and hence,
always convex objectives. Additionally, P can also be shown to be a
convex set. These facts imply that each local optimal solution for a
linear program is also globally optimal [2].



2.1 LINEAR PROGRAMMING
2.1.1  Primal Simplex Method

The main idea behind the (primal) simplex method [2] is to move
from one basic feasible solution to another adjacent basic feasible
solution with reduced costs until a local optimum is reached. That
such an algorithm indeed terminates with a globally optimal solution
is motivated in the previous Section 2.1. It showed that for each feasible
LP in standard form the search for optimal solutions can be restricted
to corner points, i.e. basic feasible solutions. Furthermore, it showed
that for LPs a locally optimal solution always corresponds to a globally
optimal one.

Assume an LP in standard form is given. Furthermore, assume the m
rows of A are non-redundant and hence, linearly independent. Then,
one can show that for each basic solution x € R” so called basic-indices
B(1),...,B(m) exist for which the following holds: the matrix columns
Ap(),- -+, Ap(m) are linearly independent, and if i ¢ {B(1),...,B(m)}
it follows that x; = 0.

Indices i ¢ {B(1),...,B(m)} are called non-basic. The basic columns
Ap(1), -+, Ap(m) span R™ and are brought together to form a m x m
dimensional basis matrix B. Likewise, the elements xp(1), ..., Xp(y) in
x form the vector xp. Due to x; = 0 for all i ¢ {B(1),...,B(m)},
Ax = Bxp = b. Therefore, a unique basic feasible solution can be
obtained from B by solving xp = B~ 1b.

As mentioned in the beginning, the main idea behind the simplex
method is to move from one basic feasible solution to another. For
this a direction d and scalar 6 have to be chosen to yield another basic
feasible solution x + 0d. This is achieved by choosing a non-basic index
j and move by 6 in the direction of x;, while letting the solution values
associated to the other non-basic indices unchanged. Therefore, d]- =1
and d; =0 foralli ¢ {B(1),...,B(m)} excepti=j.

When moving into the direction of the j-th non-basic variable, the
basic variables xp have to change by xp 4 6dg. One can show that
choosing dg = —B *1A]- results into a new feasible solution given 6 is
small enough.

Now, all elements of the direction d to move into to generate a new
basic feasible solution have been defined. The chosen direction d
changes the cost function by ¢'d = ¢; + cfdp = ¢; — c[B 71 A;.

The question remains how far one has to move along 4 to yield another
basic feasible solution. This is answered in Algorithm 1 representing
one iteration of the simplex method. Its steps are taken and adapted
from Bertsimas and Tsitsiklis [2]. The algorithm assumes that a basic
feasible solution x and the associated basic matrix B are given. Fur-

Omne can show the
full-row rank
assumptions can be
made without loss of
generality.

B as a subscript
denotes the basic
indices.
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thermore, it assumes global access to the data of the LP, i.e. A and

b.

Note that due to the possibility of exponentially many basic feasible
solutions, the simplex method may need exponentially many iterations
to terminate. However, in practice, it is observed that the simplex
method is efficient in calculating solutions to linear programming
problems. In general, the linear programming problem is solvable
in polynomial time. The first polynomial time algorithm for linear
programming, proofing the polynomial time solvability of LPs, was
the ellipsoid method. However, practically more useful polynomial
time algorithms are interior-point methods [2].

Algorithm 1: One Iteration of the Simplex Method [2]

1 Function simplex_iteration(x, B):

2 foreach non-basic index j do
3 L Cj cj—clnglAj // Compute the change in cost

4 if all ¢; are non-negative then
5 LTerminate algorithm // x is an optimal solution

6 else

7 L Choose a j with ¢; <0

8 dg + —B_lAj

g if all elements in dp are non-negative then

10 L Terminate algorithm with optimal costs —oo

) *B(i)
11 0 < ming_ mlds<f)<0}(_%)

12 Let | be such that 0 equals —y
B(l)
13 Update B by replacing column Ap(;) with A;
14 Xj <— 0
15 foreach basic index i # | do
16 L xB(i) — xB(i) + gdB(z)
17 return x,B // x is a new basic feasible solution with
associated basis B

2.1.2  Dual Simplex Method

If one is given a minimization problem (2.1), a feasible solution x,
which is an upper bound to the optimal solution x*, i.e. x* < x, is
called a primal bound. A lower bound on x* is called a dual bound.

For each linear programming problem, a so called dual problem can be
defined, which searches for the maximal lower bound on the optimal
solution of the original problem. In this context, the original LP is
called the primal problem. A solution to the primal problem is always
greater or equal to a solution of the associated dual problem, this
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property is known as weak duality. For linear programming problems
in particular, it can be shown that the optimal solution to a primal
problem and the optimal solution to the associated dual problem
coincide. This property is called strong duality [2].

The simplex method of Section 2.1.1 can be seen as moving from
one primal basic feasible solution to another one, until the solution is
also feasible for the associated dual problem. The dual simplex method
works similarly. However, it starts from a basic feasible solution to the
dual problem and moves from one basic feasible solution for the dual
problem to another until primal feasibility is reached.

2.1.3 Network Simplex Method

Network flow problems (see Section 2.4.1) can be formulated as linear
programming problems and hence, solved using the simplex or dual
simplex method. However, it is possible to develop a simplex method
specialized to the underlying network structure called the network
simplex algorithm. It has been shown to lead to significantly faster
solution times compared to general simplex methods when applied to
solve network flow problems [2].

2.2 INTEGER LINEAR PROGRAMMING

The sections concerning integer linear programming closely follow
the books Wolsey [3] and Nemhauser and Wolsey [22].

Integer linear programming refers to an optimization problem (2.1)
where both the cost function f and constraints are linear, but the
feasible solutions are restricted to integer values. An integer linear
program (IP) can be formulated as follows:

min ¢’ x (2.4)

Ax <b
Xj > 0 and integer Vi=1,...,n

where x is n-dimensional. Furthermore and similar to the linear pro-
gramming case (see problem (2.2)), c is an n-dimensional cost vector,
b is a vector of m dimensions and A is the constraints matrix with m
rows and n columns. If only some of the variables in problem (2.4)
are restricted to be integer values one speaks of a linear mixed-integer
programming problem (MIP).

Note that P corresponding to {x € R" : Ax < b} is a polyhedron (see
Definition 1).
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Definition 3. [3] A polyhedron P C R" is a formulation for a set
XCZ"ifandonly if X = PNZ".

Given two optimization problems (P1) min{f(x) : x € X’ C R"} and
(P2) min{c(x) : x € X C R"}. P1 is called a relaxation of P2 if X C X’
and f(x) < ¢(x) for all x € X. It follows that an optimal solution to
P1 is always smaller or equal to an optimal solution of P2.

A formulation P is called ideal if it corresponds to the convex hull of
all points in X. As argued in Section 2.1, the linear program min{ch :
x € conv(X)} has an optimal solution x* at one of its corner points
defined by X. However, the LP is a relaxation of min{c’x : x € X}.
Therefore, by solving the LP, one can solve min{c’x : x € X}.

Definition 4. [3] Given a set X C IR”, and two formulations P; and P,
for X. Pj is a better formulation than P, if P; C P,.

However, if neither P; C P, nor P, C P;, the formulations are said to
be incomparable. Obtaining a better formulation can be achieved by
adding valid inequalities to a formulation.

Definition 5. [22] The inequality mx < 79 is called a valid inequality
for X if it is satisfied by all points in X.

If adding a valid inequality to a formulation P for X results in a better
formulation, the valid inequality is said to strengthen the formulation.

Note that X is a subset of conv(X), which again is a subset of all pos-
sible formulation for X. However, for NP-hard problems, obtaining an
explicit description for conv(X) is usually not feasible unless P = NP.

Especially relevant for integer programming is the following type of
relaxation:

Definition 6. [3] For the integer program min{cTx : x € PN Z"} with
formulation P = {x € R". : Ax < b}, the linear programming relaxation
is the linear program x' = max{c’x : x € P}.

As mentioned in Section 2.1.2, a solution x, which is an upper bound
to an optimal solution x* for a given optimization problem, is called a
primal bound. A lower bound on x* is called a dual bound. Therefore, the
solution x'* from a linear programming relaxation of an IP provides
a dual bound to the optimal solution x* to the IP.

2.2.1 LP-Based Branch & Bound

IPs can be solved by the linear programming based branch & bound
algorithm. Its pseudocode is given in Algorithm 2, which is adapted
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from Wolsey [3]. The algorithm assumes to solve an initially pro-
vided optimization problem min{cTx : x € X} with formulation P. In
the following, problem X refers to minimizing ¢’ x over X using an
associated formulation P.

Algorithm 2: LP-Based Branch & Bound [3]
1 Flmction lp_branch_and_bound(c, X, P):

N

Add problem X with formulation P to empty list L.

Initialize primal-bound ¢ to +co

Set incumbent solution x* to None

while L is not empty do

Choose problem X' with formulation P! from L.

Solve the LP relaxation over P! to obtain solution ¥ and
dual bound value cLP.

if X' is empty then

9 L Prune X! by infeasibility

10 else if ¢’ > C then

11 L Prune X! by bound

12 else if x'P7 € X then

N o U s W

@

// xLPi is feasible for the original IP.
13 if cI? < C then
14 L ¢+ ct? _
15 x* ¢ xLPA
16 | Prune X! by optimality
17 else
18 Choose an index j for which x].LP " is fractional.
19 Xi— X'N{x:x < Lx].LP’ij}
20 X, X'Nn{x:x; > (x].LP’iW}
21 P+ P'n{x:x < Lx].LP’iJ}
22 Pl P'n{x:x;> (x].LP”T}
23 Add problem X} with formulation P} and X} with
| formulation P; to problem list L.

2.2.2  Cutting Plane Algorithm

The cutting plane algorithm is based upon iteratively strengthening a
given formulation P for an integer programming problem min{c’x :
x € X} by adding valid inequalities. The added valid inequalities are
chosen so as to cut away the solution obtained through solving the
linear programming relaxation over P. More formally, the following
problem is solved either in an exact or heuristic fashion:

11
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Definition 7. [3] The Separation Problem associated with min{cTx : x €
X} is the problem: Given x* € R”, is x* € conv(X)? If not, find an
inequality 7tx < 71 satisfied by all points in X, but violated by point

x*.

The cutting plane method is given in Algorithm 3, which is taken
and adapted from Wolsey [3]. It assumes that to solve the arising
separation problem a known family of valid inequalities J is provided.
If the separation problem can’t be solved through a valid inequality in
J and no integer solution has been found, the algorithm terminates.
However, the strengthened formulation can be used in a subsequent
branch & bound solution approach.

Algorithm 3: Cutting Plane Algorithm [3]

1 FBnction cutting_plane(P F):

2 t+0

3 Pt P

4 while True do

5 | Solve the linear program min{c’x : x € P!} to obtain a

solution x'P.

6 if x!P4 € 7" then

7 L Terminate because x'" is an optimal solution for IP.
8 else

9 Try to solve the separation problem for x'"! given F.
10 if 3(n!, h) € F with 'xP4 > 7l then

// A valid inequality cutting away xEPt has
been found.

11 Pl P {x: iy < 7}

12 t—t+1
13 else

14 L Terminate without an integer solution found.

2.2.3 Branch & Cut

The branch & cut algorithm is closely related to the linear program-
ming based branch & bound algorithm introduced in Section 2.2.1.
However, its main difference is that it applies a cutting plane algorithm
to each subproblem (node in the branch & bound tree) to improve the
corresponding LP relaxation.

Complex branch & cut algorithms underly state-of-the-art commercial
MIP solvers such as CPLEX [29] or Gurobi [30].
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2.3 METAHEURISTICS

Metaheuristics can be seen as high-level templates to develop problem
specific heuristic optimization algorithms [31]. They are most prevalent
for NP-hard optimization problems when exact solution methods
fail [32].

The presentation in this section closely follows two good reference
works written on the subject: Gendreau and Potvin [28], and Talbi

[32].

Metaheuristics can be divided in single-solution based or population
based:

* Single-solution based refers to a type of metaheuristic, which
operates on one solution only and iteratively tries to move from
its current solution to another one in the search space of possible
solutions. The presentation here focuses on a specific single-
solution based metaheuristic called local search (see Section 2.3.1).

¢ Population based methods maintain a set of solutions, which
are iteratively improved. A famous example are genetic algo-
rithms [33].

Let () be the set of all feasible solutions to an optimization problem.
Then, ) is called the search space.

Definition 8. [32] A neighbourhood function N is a mapping N : QO —
2! that assigns to each solution x of Q) a set of solutions N(x) C Q.

N(x) is called the neighbourhood of x and a solution ¥’ € N(x) a
neighbour to x. Now, a move is defined as an operator m that takes as
input a solution x and changes it to one of its neighbours x’ € N(x).

2.3.1  Local Search

Local search is one of the most simple metaheuristics [28, 32]. It re-
quires an initial solution x usually provided by a construction heuristic.
Then, it generates the neighbourhood N(x) of the current solution and
selects a new improving solution x’ € N(x) as the current one. This
process is repeated until it reaches a local optimum or a termination
criterion is fulfilled.

The pseudocode adapted from Talbi [32] is shown in Algorithm 4.
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Algorithm 4: Local Search

1 FEnction LS():

x < initial solution
while Termination criterion not fulfilled do
Generate N(x)
if there is no better neighbour then
L break

else
L Select a better neighbour x" € N(x)

N

o Ul s W

@

x — x'

2.3.2  Hybrid Metaheuristics

Hybrid metaheuristics are heuristics, which usually combine ideas
from a metaheuristic with other algorithmic ideas from different fields
or other metaheuristics. Combining multiple different strategies for
optimization to exploit synergies gained traction with the no free lunch
theorems for optimization [36, 37]. They imply that the improved
performance of an optimization algorithm on a set of problems always
comes from a drop of performance on other problem sets. Therefore,
there can’t exist one single algorithm outperforming all others on all
possible problems.

An example of a hybrid heuristic combining strategies from two dif-
ferent metaheuristics are genetic algorithms applying a local search on
new solutions obtained through recombination. In general, evolution-
ary algorithms employing a local search module are called memetic
algorithms [28].

For this work especially relevant are hybrid heuristics, which combine
ideas from metaheuristics with exact optimization techniques from
the fields of linear programming (see Section 2.1) and integer linear
programming (see Section 2.2). Such hybrid algorithms are termed
matheuristics.

Exemplary, a MIP solver can be used to search through a neighbour-
hood of solutions defined by fixing a certain proportion of decision
variables [38]. Another example for defining a neighbourhood is to
add so called local branching constraints [39]. Given a bit-vector x repre-
senting a solution, they restrict the MIP to find new solutions having
at most k bit-flips compared to x.

Recently, combining metaheuristics with machine learning algorithms
has become popular. There are multiple approaches from learning cer-
tain decisions in optimization algorithms using reinforcement learning
up to end-to-end learning using deep neural networks. For a general
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survey of this emerging field see Bengio et al. [40]. In recent years
graph neural networks [41, 42] often proofed to be key building blocks
to effectively solve combinatorial optimization tasks with the help of
machine learning. A survey focusing on graph neural networks for
combinatorial optimization has recently been written by Cappart et al.

[43]-

There are a multitude of ways of how to exactly combine metaheuris-
tics with other algorithmic techniques [28]. One of the most natural
ways is to embed one algorithm into the other as done in memetic
algorithms. This work can also be seen as following this approach.
First a matheuristic (using techniques from linear programming, see
Section 4.1) is employed to obtain an initial solution, which is then
improved by a local search algorithm (see Section 4.2).

2.4 PROBLEM CLASSES

Mathematical models solvable using the previously introduced tech-
niques are a standard tool for decision making in logistics and supply
chain management [13, 44]. Crainic and Laporte [45] give an overview
of common optimization problems arising in strategic, tactical and
operational transportation planning.

In this section two related problem classes are introduced. First, the
minimum cost flow problem [46] relevant for the slope scaling heuris-
tic is introduced in Section 2.4.1. It also includes an important theorem
about representing flow used in the local search heuristic from Sec-
tion 4.2.

Section 2.4.2 introduces the general network design problem [16] of
which the model introduced in Chapter 3 is a variation of. Network
design problems are, among many other application areas, very promi-
nent in freight planning [12].

2.4.1  Network Flow Problems

The following exposition closely follows Ahuja et al. [46].

Assume a directed graph G = (N, A) with n = |[N| nodes and
m = | A| arcs is given, in which each arc (i, ) € A has costs ¢;j and a
maximal capacity u;;. Furthermore, each node i € V has a balance b;,
which when positive indicates supply of and when negative demand
for flow. The sum over all supply and demand is assumed to be zero.

15
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In the minimum cost network flow problem (MCFP) one searches flow-
values x;; defined on each arc (i, ) € A as follows:

min Z cz-]-xz-]- (25)
(ij)eA
Z Xij — Z Xji = b; Vie N (2.6)
JEN JEN
0< Xij < Ujj V(l,]) c A (27)

with constraints (2.6) representing flow conservation and constraints
(2.7) capacity restrictions.

The MCFP is solvable in polynomial time and in practice can be
efficiently solved using the network simplex algorithm (see Section
2.1.3). Through certain choices of b;, c;; and u;; other well-known
problems such as the shortest path problem or the maximum flow problem
can be obtained as special cases [46].

Flow Decomposition Theorem

In the MCFP flow has been defined on arcs. However, it is possible to
define an equivalent flow on paths and cycles. To derive this, an arc flow
is formally defined as a vector, which has an element x;;, V(i,]) € A
and satisfies

Z Xij — Z Xji = —¢; Vie N (2.8)
jeEN jEN
0< Xij < Ujj V(l,]) cA (29)

with Y1 ; e; = 0 [46]; e; can but does not necesserily coincide with the
supply or demand of a node and is called the imbalance of node i. An
excess node is defined as a node with more inflow than outflow, hence
e; > 0 and a deficit node as one with more outflow than inflow, hence
e; < 0.

For an alternative flow definition, denote with P the set of all directed
paths between any pair of nodes and with W the set of all directed
cycles in G. Then, one defines a path and cycle flow by introducing flow
variables xp VP € P and xyy YW € 'W.

The following theorem establishes that any path and cycle flow can be
represented as an arc flow and vice versa.
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Theorem 1 (Flow Decomposition Theorem). [46] Every path and cycle
flow has a unique representation as nonnegative arc flows. Conversely,
every nonnegative arc flow can be represented as a path and cycle flow
(though not necessarily uniquely) with the following two properties:

1. Every directed path with positive flow connects a deficit node to
an excess node.

2. At most n 4+ m paths and cycles have nonzero flow; out of these,
at most m cycles have nonzero flow.

One way to generalize this result to multicommodity network flow
problems with |K| commodities is to consider a separate flow decom-
position for each commodity k. Then one can upper bound the number
of nonzero paths and cycles by |K| - (n + m).

Due to the time-dependent structure of the graphs considered in this
work, they do not have cycles. Thus, every flow decomposition is
entirely made up of flow paths.

2.4.2  Network Design Problems

The following exposition closely follows the survey on network de-
sign problems by Magnanti and Wong [16] as well as the surveys by
Gendron et al. [47] and by Crainic [12].

In network design problems, one is given a directed graph G = (V, A)
with a set of nodes V and arcs A. Additionally, a commodity set K is
given with each commodity k € K having source nodes O(k) C V and
demand nodes D(k) C V supplying of or demanding d¥ commodities,
depending on if i € O(k) or i € D(k), respectively. Now, one wishes to
find a minimum cost selection of arcs and commodity flows on these
arcs to satisfy the demands for each commodity.

Therefore, there are two sets of decision variable for each arc (i, ) € A:
integer design variables y;; with associated fixed-costs f;; and real-
valued flow variables xf.‘- with linear costs cf In general, network
design problems can have arbitrary (non-linear) cost functions with
respect to the design and flow variables. However, then the problem
can’t be formulated as a linear mixed-integer program.
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The general linear network design problem takes the following form:

min Z f,]y,]—f—z Z ck x (2.10)

(ij)eA kel (ij)eA

of ifi e O(k)

1

Y xh =Y xi=q-dt ifieDk) VieVkek
jev jev
0 otherwise

(2.11)

Y xffj <Bjy; V(,j)eA (2.12)
kek

(x,y) €S (2.13)

xz-‘]- >0 V(,j)eAkek (2.14)

vi€d V(ijeA (2.15)

Constraints (2.11) are classic flow conversation constraints and in-
equalities (2.12) capacitate the flow with respect to arc choices. If B;;
is larger than the possible flow in the system, the problem is called
uncapacitated.

Equation (2.13) and the set S refer to any problem specific side con-
straints such as topology restrictions. The set )} in constraints (2.15)
could be {0,1} and hence, an arc can either be chosen or not chosen,
or Y can also be the set of natural number INy. Then it represents units
of facility installed (quote from Crainic [12]).

For network design A prominent example of the network design problem common in
~ problemsin trangportation planning [12] and especially relevant for this work is
sustainable planning o (capacitated) fixed-charged network flow problem (MCND). It arises

see McKinnon et al. . .
[14]. ~ When there are no problem specific constraints 2.13 and ) = {0,1}.

The MCND is NP-hard and difficult to solve in practice. State-of-the-
art heuristics mostly combine heuristic and exact solution methods
and among the most recent works are Gendron et al. [19] and Akhavan
Kazemzadeh et al. [20]. For a recent exact solution approach based
on a cutting-plane algorithm see Chouman et al. [48] and for another
recent work based on branch and prize see Gendron and Larose [49].

It is known that the LP-relaxation bounds of the MCND are very weak
[47]. Therefore, one often adds the following valid inequalities (VI) [12,

19, 47]:

xp <dy; V(j)eAkek (2.16)

with d¥ representing the sum over all commodities k in the system.
With respect to the integer solutions the valid inequalities (2.16) are
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redundant with constraints (2.12), however, they are known to signifi-
cantly strengthen the MIP formulation. Therefore, and as they can be
shown to be facet defining for a relaxed version of the MCND, the in-
equalities (2.16) are called strong linking constraints and equations (2.12)
weak linking constraints. Even though the strong linking constraints
are probably the most simple and common VI, there are other known
types of VI and Chouman et al. [48] give an overview of four other
classes of valid inequalities for the MCND.

This section is closed by noting that network design formulations have
impressive modelling power and the above presented model includes
many famous problems such as the Steiner tree, traveling salesman,
vehicle routing or facility location problem as special cases [16]. These
problems are known to be computationally hard [50]. Therefore, the
general network design problem inherits their (and the MCND’s)
difficulty and is again NP-hard.
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MATHEMATICAL MODEL

This chapter presents the formal model developed and used in this
work. Fundamentally two stages of the underlying network are differ-
entiated.

First, Section 3.1 presents a time-expanded network. With Section 3.1.1,
it includes a description of how to model a diverse set of commodities.
Section 3.1.2 formally introduces the non-linear transportation tariffs
with all-unit discounts used in this work. It derives cost functions
covering these tariff structures extending the list of tariff cost func-
tions presented in Harks et al. [21]. However, these cost functions are
inherently non-linear and hence, result in a non-linear objective.

Therefore, in a second stage arcs representing transport relations
between nodes can be replaced with more complex graph-structures
to obtain a linear mixed-integer programming (MIP) formulation called
the tariff-expanded network (see Section 3.2). These graph-structures are
called graph-gadgets [21] and Section 3.2.1 develops new graph-gadgets
for the tariff introduced in Section 3.1.2. On this basis Sections 3.2.2
to 3.2.4 develop the linear MIP formulation allowing to apply exact
MIP-solvers to the problem. Last but not least, Section 3.2.5 introduces
multiple strong valid inequalities for the MIP formulation.

If one only optimizes for emissions the time- and tariff-expanded
networks coincide as the time-expanded network only consists of arcs
with linear cost factors (representing the emissions). Furthermore,
the heuristic solution approaches also operate on the time-expanded
network due to being able to handle the non-linear cost functions
induced by the employed tariffs.

This chapter is concluded with Section 3.2.6 showing that the model
presented here includes the tactical transportation problem (TTP) intro-
duced by Harks et al. [21] as a special case. Therefore, the current prob-
lem is called the generalized tactical transportation problem (GTTP)
and inherits the NP-hardness of the TTP.

3.1 TIME-EXPANDED NETWORK

The time-expanded network G7 is constructed for a certain time
horizon T (e.g. 7, 14 or 30 days) with the individual time periods
summarized in the set 7 = {1,.., T}. Gy is built up from a set of
base nodes copied T-times resulting into a time-expanded node set
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V7. Base nodes are either: physical facilities (e.g. warehouses, factories
or transshipment points) with each facility being part of a demand
region, demand nodes used to represent demand regions, or bin nodes
to remove unused or expired goods form the system. There is only
one bin node in the set of base nodes.

Then, the arc set A consists of transport relations between these
nodes in different time periods. Transport relations can be of arbitrary
types and we distinguish transportation modes M = {L,R,S} con-
sisting of lorry (L), rail (R) and ship (S), storage arcs connecting the
same facility at two consecutive time periods denoted by type C, and
artificial arcs connecting each facility to its regional demand node as
well as to the bin node. These use the type-symbol ().

Network Structure

The facilities are connected among themselves based on physical
realities. If for example two facilities i, j € V7 are connected by a road
network, then there exists an arca = (7, j, L) € Ay with corresponding
non-zero distance d, and non-zero travel time 7,. Storage arcs have a
distance of zero but a travel-time of one. For each time-period, there
is one bin node and each facility is connected to it with distance and
travel time of zero.

Facilities in a demand region are connected to the associated demand
node with distance and travel times of zero using mode (). Hence,
demand in the region the warehouse is located in can be satisfied
directly out of stock. This is due to the fact that the model is only
concerned with successful transportation into a region to fulfil its
demand and the inner-regional distribution to customers should be
addressed by an operational model.

Furthermore, each facility is connected to every other demand region
except its own using mode L with non-zero distances and travel times.
These connections represent direct deliveries by lorries into a demand
region without first delivering into a regional facility or using any
form of intermodal transport.

3.1.1  Commodities

All facilities are supplied with a certain stock of products also called
commodities each time period acting as source nodes. Demand nodes
have associated commodity demands for each time period acting as
sinks. The set of commodities is denoted by K.

In general, products can be highly diverse in their volume and weight
henceforth called the products properties (see also Harks et al. [21]). As
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MATHEMATICAL MODEL

an example, it does make a non-negligible impact on the transporta-
tion costs and available resources if one transports a certain number
of styrofoam sheets compared to the same number of steel beams.
Therefore, each commodity k € K has an associated extent py; for each
property | € P.

Additionally, products have different transportation and storage char-
acteristics. As an example, some goods may require cooling to specific
temperatures or can be perishable. To model different transportation
requirements, we introduce a product type concept and associate to
each commodity a specific type from a set of types . Only goods of
the same type can be transported together. In the instances generated
for this work two types of goods are separated, those whose storage-
containers require electricity and those whose storage-containers don't.

Additionally, to address perishability commodities k € K can have
varying lifetimes Aty. As a result, a commodity is defined as perishable
if its lifetime is smaller than the number of time-periods in the network.
Consequently, commodities can be grouped into a set of perishable
ones K, and a set of non-perishable ones K.

In order to correctly handle perishability in the model, each perish-
able commodity has an associated production timestamp t € T and is
counted as expired in time-periods greater than t 4 At;. Therefore,
with x, € R the flow of perishable commodity k produced at time ¢
is denoted and with x; € ]Rar the flow of non-perishable commodity k.

These can be pooled together into a flow vector x IRgCT'HKAHT‘.

The summed-up extent of property I € P over all commodities of type
o € X in x is given by the flow-sum function P/ (x) = Y ;¢ Ke PriX +
YreT Lke Kg PriXk;- The sets K% and K comprise all non-perishable or
perishable goods of type o.

3.1.2  Tariffs

Each transport relation has one associated tariff for each product type.
Harks et al. [21] give a good overview of possible tariffs and their
resulting cost functions. In this work, we are especially concerned
with all-unit quantity discounts as they are the most prevalent [15].

Corresponding tariffs usually have a set of cost levels N = {1,..., N}
defining different cost rates depending on the shipped volume or
weight. Therefore, Harks et al. [21] develop a cost function with dif-
ferent linear cost rates depending on the sent flow extent in some
property t € P as follows.

Each cost level n € N is applied starting from transport volume B,
and has the linear cost rate c,. As a result, the cost function by Harks
et al. [21] for flow vector x and a specific product type ¢ is given as
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C(x) = min{c, - max{P/(x), Bn}} (3.1)
neN

However, only linearly pricing transport volumes does not adequately
capture the diversity of all-unit volume discount tariffs employed by
freight transportation companies. Especially, it is not applicable to
constant cost levels for different transport weight or quantity intervals
or a combination of a fixed-cost rate with volume-dependent linear
costs resulting in piecewise-linear cost levels (see Figure 3.1). An
overview of such tariffs with more complex cost structures is given in
Kempkes and Koberstein [51]. Below, we formalize these tariffs used
in our work.

All-Unit Discount Costs

2000 A
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—— Constant Cost levels
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Figure 3.1: In this work constant cost levels are used for rail and ship con-
nections and piecewise-linear cost levels for lorry tariffs. The
displayed tariffs have one cost level for the first three transport
units (TUs) and a second discounted cost level starting with the
fourth ordered TU. In this work, one TU always corresponds to
one 4o-feet ISO container.

3.1.2.1  Constant Cost Levels with All-Unit Discounts

Constant cost levels for different weight or quantity intervals are,
among others, often encountered in rail cargo shipments. In them for
each cost level n € N a different fixed-cost rate f, is assumed.

In theory these cost levels can have arbitrary interval lengths, but here
a fixed property- and type-dependent interval length of B} is assumed
and interpreted as the capacity in direction I € P of one installed
transport unit (TU) on this transport relation. Exemplary, for rail or ship
cargo shipments one transport unit could be one ISO container (see
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Figure 3.1). Then, the number of installed TUs for product type o is

given by 7 = maxicp{ [},

In the mixed-integer problem installed TUs are additional integer
decision variables (see Section 3.2.2). Now, B, denotes the minimum
number of TUs at which cost level n starts to be applicable. The
starting cost of the n-th level is b, and represents the base cost of
shipping B, containers. This yields the cost function (3.2).

C(x) = ]rqrél/\r}{fn -max{§” — B, 0} + bn} (3-2)

Exemplary, b, can represent the price of g, TUs with the new cost
rate fy, i.e. by = fuPn. If fn < fu_1, this represents an all-unit discount
structure. However, if b, represents the costs of 3, — 1 TUs to the pre-
vious price rate f,_; plus the costs of one TU to the current rate f,,, it
would represent incremental discounts. Note that to formulate the cost
function not in terms of installed TUs, but in term of single-property

levels (as for example weight levels), replace 7 with 77 = [p’;(;,x) 1.

3.1.2.2 Piecewise-Linear Cost Levels with All-Unit Discounts

Tariffs with different piecewise linear cost levels are very similar to
the constant cost levels case except that for each discount level n, we
additionally assume variable costs ¢, for the actual volume or weight
of flow. The resulting cost function writes

Clx) = géi/{}{fn-max{]]”—ﬁn,()} + cp-max{ P (x) —BJ(Bn — 1),0}+by }
(33)

Again, setting b, = fufn + cxBf (Bn — 1) with f, < f,_1 and ¢, < c,q
results in all-unit discounts. Note that the linear costs only depend
on one property. This cost function exemplary arises when modelling
transportation costs with lorries. A fixed costs part arises for each
commissioned truck due to various singular factors such as driver
wages. Linear costs arise due to increasing fuel consumption based on
its actual weight.

3.2 TARIFF-EXPANDED NETWORK

Due to the complex tariff structures employed if one would define
a mixed-integer model on the time-expanded graph G7, the arcs
representing transport relations would have highly non-linear cost
functions. This would make it difficult to apply established and pow-
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erful solution techniques for integer linear programs. To address this
problem, two specific concepts are used.

First, we introduce a second set of decision variables y representing the
number of installed transport units (TUs) on each arc. A TU represents
a certain amount of capacity bought for product flow on this arc and is
a non-negative integer variable. These TUs can be containers, trucks or
similar. This concept naturally leads to a capacitated network design
formulation but alone is not enough to result into a linear formulation.
A similar concept is used by Harks et al. [21] and more general units
of facility installed (taken from Crainic [12]) is common in the network
design literature.

Secondly, each simple arc in G7 representing a transport relation is
replaced by a more complex graph structure known as graph gadgets.
These gadgets are again made up of arcs and nodes and - together with
the above decision variables - allow to linearly model the non-linear
cost structures induced by the employed tariffs.

The resulting network G = (V,.A) constructed from G7 is called
tariff-expanded. Employing tariff-expansion allows to derive a linear
mixed-integer model defined on G which is a variant of the fixed-
charge network flow problem.

Cy (CE, y)

AN

(a) Transport relation with non-linear (b) Add parallel arcs for each cost
cost function. level.

C(z,y) = min,eny Cp(z,y)

Ci(z,y) = fr-y+c1 Y pute

S

€2

[ ]
.

€1 e
€4 !

(c) Replace each parallel arc with four  (d) Simplify graph structure of first tar-
arcs and one gadget node. iff level.

Figure 3.2: Graph gadget construction.

3.2.1  Graph Gadgets

Graph gadgets were first introduced by [21] for their employed trans-
portation tariffs. In this section, we extend their approach by deriv-
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ing graph gadgets for tariffs with constant cost levels s and for
tariffs with piecewise-linear cost levels t);,,. It is assumed that the
cost levels are discount structures, i.e. have monotonic cost levels
Cu(x,y) < Cy—1(x,y). The description starts with the graph gadget
construction for the piecewise-linear case.

First, the number of transport containers depending on the flow 7 is
replaced by the decision variable y leading to a cost function C(x,y)
depending on both x and y. Therefore, it is possible and done in
practice to book more TUs than necessary to get a higher discount
(see Figure 3.1).

For the second step assume one t;;, is active on a transport relation.
Then, the graph gadget is constructed using the steps outlined in
Figure 3.2. At first, the transport relation is replaced by one arc for
each cost level n € N with cost function C,(x,y) (see Figures 3.2a
and 3.2b). Then, each of these arcs is replaced by the graph structure
shown in Figure 3.2c.

Now, the decision variables associated with the arcs in the graph
gadget in Figure 3.2¢ have to be capacitated and priced in the following
way to model t);,,. Variable y; associated to e; is set to be binary, i.e.
y1 < 1. The TU-capacity of e; is set to infinity. The costs of e; are set
to the starting cost of the tariff level this graph structure represents,
i.e. c(e1) = by,. This means any flow over this graph structure has to
pay at least the starting costs of this tariff. As these already include
the costs of B, — 1 fully filled TUs, c(e;) = 0 with y, < B, — 1. As by,
also includes the price of the empty pB,-th TU, costs on e3 are set to the
linear costs only c(e3) = ¢, - P/ (x3) and e3 is restricted to be chosen
only once y3 < 1. The capacity in property | € P of each TU on e; to
ey is set to the physical capacity By of one real TU employed on this
transport relation. Lastly, the costs of e, are set to the cost rate of the
new tariff level c(es) = fu - ya + cn - Pf (xy).

An optimal solution will automatically first fill arc e, then e3 and only
then use ey. If each tariff level is replaced by such a graph structure,
again by an argument of optimality, only this graph structure will be
chosen resulting into the minimum cost tariff level for a given flow x.

However, the graph structure for the first tariff level can be simplified
to only one arc with Cy(x,y) = f1-y+c1- P/ (x) as by = 1 = 0.If only
a small number of tariff-levels exists, this significantly reduces model
size. The graph gadget developed above includes a graph gadget for
constant cost tariff levels as special case when ¢, = 0.

From a pure mathematical perspective, it is possible to model the
employed tariffs using only two outer edges. However, this would
not preserve the number of employed TUs for counting purposes
necessary for handling capacity restrictions (see Section 3.2.4).
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3.2.2  Decision Variables

To formulate the objective and constraints, we formally define the
decision variables on the network G = (V, A). Note that the node set
V decomposes into a set of facilities 7, demand nodes D, bin nodes
B, and gadget nodes G and that each node is uniquely identified by in
index-time pair (i, 7). As a result, an arc a € A connecting (i, T) with
(j, ') is identified by a five tuple (i, j, T, T/, m) with m representing the
type of the transport relation. Arcs connecting to and from a gadget
node inherit the transport mode m of the original transport relation.

The flow of non-perishable goods xk € R; is defined on all arcs a € A
and for each non-perishable commodity k € K. The flow of perishable
goods x'gt € ]R(J)r is defined on all arcs 2 = (i,j,7,7/,m) € A with
7' <t + Aty and for each perishable commodity k € K.. The second
decision variable v € Ny describing the number of transport units of

type o € X installed is defined for alla € A and ¢ € X.

All flow-variables on an arc a can be collected into a flow vector x,.
These can be again stacked to one big flow vector x. Analogously a
TU vector y is constructed.

3.2.3 Objective

The objective consists of a weighted sum of costs and emissions (for a
review on green network design see McKinnon et al. [14], for green
planning techniques in general see Bektas et al. [52]). The (linear) cost
term includes system-wide transportation, handling and storage costs
as given by equation (3.4).

Clry) = X X |f0E + TP, (xo)|

acAoex

(3-4)

Fixed-costs per transport unit of type ¢ on arc a are f;. Flow extent in
property [ € P of type ¢ on arc a is linearly priced by cj. The priced
flow-extent property I € P depends on the employed tariff. Therefore,
it is dependent on the looked upon arc a and written as a function
thereof I(a).

The emissions term (3.5) looks very similar except it replaces fixed-
costs with fixed CO,e emissions Aj per TU and variable CO,e emis-
sions J7 per flow extent.

Mxy) = 3 T [ ATyE + 5P, (xa)]

acAoexr

(3-5)

The combined objective reads
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n;iyn MC(x,y) + A2A(x,y) (3.6)

Different choices of A; and A, allow different CO,e pricing schemes.
COze pricing can be ignored by setting A, = 0. Minimizing for emis-
sions only is enabled by setting A1 = 0.

3.2.4 Constraints

The model is presented in a cut-set formulation and 6~ (v) and 6™ (v)
have their usual meaning of all incoming or outgoing arcs, respectively,
from node v € V. Additionally, mode-specific cut-sets are defined for
each facility v € F with J,,(v) representing the set of all incoming
arcs of type m.

One could define 4, (v) analogously. But to formulate handling capac-
ity constraints in the model, we need to capture the correct number of
outgoing transport units of a specific type using the arcs in ;) (v). In
its analogous definition, it will be distorted due to the graph-gadgets.
To correct this distortion, in 4, (v) the arcs connecting node v to graph-
gadget nodes are not included and in return the outgoing arcs of
graph-gadget nodes of type m are added.

To formalize the mode-specific cut-sets, note that the arc set A can
be decomposed into mode-specific arc-sets A, := {(i,j, 7,7, m’) €
A|lm’ = m}. This allows to define mode-specific cut-set 6,,(v) as
0 (v)N Ay forallv e F.

As mentioned above, to correctly count outgoing TUs using 6}/ (v), we
don’t include the arcs connecting node v to graph-gadget nodes and
in return add the outgoing arcs of graph-gadget nodes of type m.

Denote by G(v) = {¢'|(v,7/,T,7/,m) € A, v € G} the set of graph-
gadget nodes which are direct successors to node v. Remember that
for &, (v) one wants to exclude arcs going into graph-gadget nodes
but include arcs going out of graph-gadget nodes. This leads to the
following formal definition:

Add outgoing arcs from associated gadget nodes to the outgoing arc-set ...

St :=( (6Fo)u |J 67@))nAn)\ | 6,

v'eG(v) v'eG(v)

... but only choose arcs of mode m

... and exclude arcs connecting node v to associated gadget nodes.
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Having defined the used cut-sets, the constraints read as follows:

= Y =0k Vk e Kr,v e V\B (3.7)
acét(v) acé=(v)
= Y xi=sh VkeKpteT,veFUG (38)
acdt(v) acé—(v)
Y. N dt=wt VkeKpav=(i,1)€D (3.9
t=0aeé~(v)
T
Z pklx'; + Z Zpkle;f <Bly, VieP,oeXLacA (3.10)
keKs keKg t=0
vo <uy VoeXac A (3.11)
Y., Y yi<h© Voe{+,-}meMuoeF
veX aedg, (v)
(3.12)
Z Z yo < nl Yme M,veF (3.13)
UEL ae6,, (v)US,: (v)

The constraints can be grouped into flow-conservation constraints (3.7)-
(3.9) and capacity constraints (3.10)-(3.13).

Constraint (3.7) defines flow-conservation for non-perishable goods
with a positive bk to represent a source for commodity k and negative
to represent demand for commodity k. The following two constraints
handle the more complex case of perishable goods.

Equation (3.8) concerns the conservation of flow through facility and

gadget nodes. For gadget nodes s =0as they have no supply of

goods. If a facility acts as a source for commodity k in time period ¢,
ki

sy > 0.

The third flow-conservation constraint (3.9) regards demand satisfac-
tion of perishable goods. Each region has a time-dependent demand
wk for perishable commodity k which must be exactly fulfilled by its
incoming flow. Demand for a commodity k can be satisfied by any
commodity k; independent of its production timestamp t.

Constraint (3.10) links the flow of goods with the necessary transport
units. BY, refers to the maximal extend of property / a TU on arc a for
commodities of type ¢ can transport. For this study on arcs of mode
m € M, BY always corresponds to one go-ft ISO container except in
the case when a graph-gadget requires adjusting the capacity.

Constraint (3.11) establishes a maximum number of TUs for type ¢
installable on arc a. Together with (3.10) it capacitates the flow on a
given arc. Storage volume is capacitated by setting B, = 1 and uj to
the real world warehouse capacity for the respective property /.
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Equation (3.12) capacitates incoming (—) and outgoing (+) handling
operations separately. This captures the operational truth in cross-
docks with separated incoming and outgoing docks or conceptually
similar architectures like transshipment-points with mode-switches.

Lastly, constraint (3.13) capacitates the sum of containers handled both
for incoming and outgoing operation. This is relevant for facilities
like a classic warehouse with a specific number of docks for lorries
not strictly split into incoming and outgoing docks. During handling
commodity types are not distinguished (exemplary, a container crane
is oblivious to the fact that a specific container has a cooling module
or not).

3.2.5 Strengthening Valid Inequalities

In this section three different types of valid inequalities (VI) are devel-
oped. These VI are specifically devised to exploit the problem structure
induced by the employed graph-gadgets. They are compatible with
one another and strengthen the LP relaxation of the tariff-expanded
MIP formulation.

A complete characterization of the polyhedral hierarchy induced by
the strengthening constraints is given in Section 5.2.2.1 and based upon
empirical results as well as the theoretical investigation presented here.

3.2.5.1 Strengthened Capacity Constraints

Equation (2.16) in Section 2.4.2 defines strengthening inequalities for
the fixed-charge network flow problem (MCND). To remind the reader
they are stated again in equation (3.14):

x’; < dkya Vke K,ae A (3.14)
In the MCND the integer variables are binary and d* refers to the sum
over all commodities k in the system.

To adapt these VI to the GTTP to strengthen constraints (3.10) one has
to incorporate product dimensions as follows:

x’; < b’;yg VoeX, ke KFac A (3.15)
xlgf < b';fyg VoeX, ke K{,teT,ac A (3.16)

Constants bf or by are the sums over all supply of commodity k or
k¢, which is present in the system up to the time period arc a starts in
and, which can reach arc a based on the network topology.



3.2 TARIFF-EXPANDED NETWORK

However, VI (3.15) and (3.16) are only effective if the volume and
weight (the property extents) of the summed commodities is less than
a transport unit on the looked upon arc can carry. Mathematically
speaking, if BY, > pybk, VI € P or B, > pubk, VI € P, respectively.
This is very likely not the case as in most time periods the supply of
products in the system has a much larger volume and weight than a
transport unit BY,, I € P provides capacity for (see Harks et al. [21]
for a similar argument).

Nonetheless, selectively applying these VI can have great effects as
argued in the following. Notice that in the tariff-expanded network
most transport relations are replaced with graph-gadgets and each
tariff-level has a graph-structure as shown in Figure 3.3 (for a general
explanation of the graph-gadgets see Section 3.2.1).

Arc e; in such a graph-structure connects a physical node with a
gadget-node and always represents a tariff-level choice. It has infinite
capacity and the associated design variable is binary. Hence, the
associated linking constraints (3.10) take the form of classic big-M
constraints. The big-M value can be calculated based on the available
commodities of the respective type and their extent in the system at
the time period arc e; starts in (see Appendix A.1 on how available
commodities are counted for the instances in this work). For this
arc-type the above argument of ineffectiveness does not apply.

Applying constraints (3.15) and (3.16) only to these type of arcs empir-
ically proofs to significantly improve the quality of the lower bound
obtained by the LP relaxation (see results in Section 5.2.2.1). Further-
more, they aid the branch and cut process in commercial MIP-solvers
(see Table 5.2 in Section 5.2.2).

When employing the strengthening constraint not only to the above
binary arcs but all arcs for which the effectiveness criterion holds. One
can still observe a slight strengthening of the model mostly driven
by VI (3.16). This is due to the sum of available perishable goods
produced at a certain time period is significantly smaller than the sum
of available non-perishable goods over all time periods and hence, the
effectiveness criterion way more often fulfilled. However, this very
slight increase in the LP relaxed solution comes at the cost of having
multiplied the number of strengthening constraints. This leads to a
model blow-up, which hinders the solution process due to among
others disproportionately slowing down the LP solving step. Therefore,
this approach is not used.

3.2.5.2 Intra-Tariff-Level Strengthening Constraints

Transport relations usually have multiple tariff levels and hence, mul-
tiple graph-structures as shown in Figure 3.3 in parallel. Note that
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€2

€1

Figure 3.3: Graph-gadget structure for one cost level for a transport relation
with an all-unit volume discount tariff.

the first (starting) tariff level can be represented by a single arc (see
Figure 3.2d).

The main idea behind intra-tariff-level strengthening constraints is the
insight that an optimal integer solution would never choose multi-
ple tariff-levels together. However, an LP relaxed solution might use
multiple tariff-levels fractionally. To combat this possibility a set of con-
straints are developed, which reduce the solution-space with respect
to tariff-level combinations.

In the current work transport relations usually have three tariff levels.
Hence, the following presentation focuses on this case but it can be
generalized to arbitrary numbers of tariff levels. Therefore, the number
of containers of the first tariff-level arc is denoted y;. For the other two
tariff levels each, a graph-structure as shown in Figure 3.3 is inserted.
The design variable corresponding to arc e; for the second tariff level
is denoted y, and the design variable corresponding to arc e; in the
third tariff level is denoted ys.

The added constraints read as follows:

y1 <UB(1—y2) (3-.17)
y1 < UB(1—y3) (3.18)
N
<1- 7L .
y2 <1 UB, (3.19)
<1l-y; (3.20)
Y1
<1-—-— = .
y3 <1 UB, (3.21)
yB<l-1 (3-22)

Here, UB; refers to the upper bound on the number of TUs choosable
in the first tariff level. In the investigated instances, this number is
usually a small positive one-digit integer. Remember that y, and y3
are binary choice variables.

These constraints are no ordinary valid inequalities in the sense that
they do cut away sub-optimal integer solutions. This is easy to see as
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for example choosing the second and third tariff levels at once is a
valid solution for both the MIP and its LP-relaxation. However, having
chosen y, inequality (3.22) makes it infeasible to also choose y3 (or a
fraction thereof). That an optimal integer solution never uses two tariff
levels at once is explained in Section 3.2.1 and is connected to the fact
of monotonic cost levels and the structure of the graph-gadgets.

The above argument proofs that the polyhedron of the LP relaxation
is made smaller and hence, these constraints indeed strengthen the
formulation. However, experimental results from Section 5.2.2.1 show
that these constraints to not increase the lower bound found by the LP
relaxation. This can be explained by the conjecture that monotonic cost
levels not only imply no optimal integral solution with two chosen
cost levels at once but also that no optimal LP relaxed solutions with
more than one cost level chosen exist.

Even though the lower bound is not improved, the constraints in-
troduced in this section show superior performance in the branch
and cut solution process of commercial MIP solvers (see Table 5.2 in
Section 5.2.2). This can be explained by the significant reduction of the
feasible solution space to explore by cutting away sub-optimal integer
solutions.

3.2.5.3 Inner-Tariff-Level Strengthening Constraints

The main idea behind inner-tariff-level strengthening constraints is to
make choosing arcs e, e3 and e4 in Figure 3.3 dependent on choosing
the relevant tariff level, i.e. on choosing e;.

Denote by y1 up to y4 the design variables corresponding to the above-
mentioned arcs. Then the strengthening constraints take the following
form:

y2 < UBsi (3-23)
y3 < UBsy; (3-24)
yas < UBsy1 (3-25)

The constants UB; refer to upper bounds for y;. These are set in the
graph-gadget construction (see Section 3.2.1). UB4 can be set to the
maximum number of ordered TUs left (when y, and y3 are at their
upper bounds) before reaching the next tariff level. For the last tariff-
level UB4 has no natural small upper bound. Therefore, one can omit
constraints (3.25) for the last tariff level.

The empirical results in Section 5.2.2.1 show that inner-tariff-level
strengthening constraints indeed cut away optimal LP-relaxed solu-
tions and hence, strengthen the formulation.
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As these VI only concern the choice of design variables inside one
tariff cost level, they still allow solutions choosing multiple tariff levels
at once. This proofs the incomparability of the polyhedra induced
by intra-tariff-level compared to inner-tariff-level strengthening con-
straints.

Note that inner-tariff-level strengthening constraints also cut away
feasible but sub-optimal integer solutions, which unnecessarily choose
some Y, y3 or y4 but not y;. These can never be optimal solutions
as these choices incur costs but can’t transport any flow due to the
flow-conservation constraints (3.7) and (3.8), together with y; not
chosen.

3.2.6 Hardness Result

Harks et al. [21] show that the TTP is NP-hard. The following theorem
proofs the NP-hardness of the GTTP.

Theorem 2. The GTTP generalizes the TTP introduced in Harks et al.
[21].

Proof. 1t is shown that the TTP arises as a special case of the GTTP.

Consider instances with ¥, bk = 0 for all k € K7, only one com-
modity type and no perishable goods. Then there is no flow to the
bin node and there are no constraints (3.8) and (3.9). Furthermore, the
second term on the left-hand side of constraint (3.10) drops out. Lastly,
only consider those instances with non-restricting (or unbounded)
handling capacities. Therefore, the handling capacity constraints (3.12)
and (3.13) have no effect and can be omitted. Now the problem formu-
lation takes the general form of the TTP. Therefore, the GTTP solves
the TTP which arises as a special case from the GTTP. ]
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In this chapter a hybrid heuristic composed of two parts is developed.
The first part consists of a slope scaling heuristic (SSC) presented in
Section 4.1 to construct a good solution in minimal time. SSC has
original been developed for the MCND [17, 18], however, in this
work it is generalized to non-negative integer variables and hence,
applicable to a much broader range of network design problems
including the model from Chapter 3. Additionally, Section 5.2.3 shows
that in the general integer regime, SSC’s prime design paradigm of
how to scale the slope is challenged and a more fundamental property
of monotonicity uncovered.

In Section 4.2 a local search (LS) algorithm is developed, which com-
prises the second part of the hybrid heuristic and in its design is
heavily inspired by Harks et al. [21]. It operates on an initial solution
generated by the slope scaling mechanism. The LS is based upon a
path-decomposition of flow and removes individual paths to reroute
freed products on more optimal routes. However, Section 4.2 intro-
duces a new rerouting operator, which as evidenced in the results in
Section 5.2.4 significantly outperforms the rerouting schemes proposed
by Harks et al. [21].

Note that this work also experimented with the iterative linear pro-
gramming heuristic (ILPH) [19] as its nice theoretical properties such
as finite convergence (see Wilbaut and Hanafi [53] and Hanafi and
Wilbaut [54]) can be generalized to non-negative integer variables.
However, it was found that ILPH does not scale well to larger in-
stances.

4.1 SLOPE SCALING

Slope Scaling (SSC) is an iterative solution process based on solving an
approximate linear program LP exactly. The resulting commodity-
flow solution ¥ is used to construction a feasible solution (%, 7) to the
original problem MZP. Then, (%,7) is used to update the coefficients
in the objective of LP yielding LP’ in such a way that the objective
function value v(MZP(Z,7)) equals v(LP’(%)). Now, this process is
repeated with LP'.

Therefore, the main idea is to incorporate the fixed-costs occurred by
the integer variables 7 through linearization into the cost-coefficients
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of %. This additional set of linear cost coefficients at iteration t of
the heuristic is denoted p(t) and the corresponding linear program
as LP(p(t)). Algorithm 5 presents the pseudocode of this solution
process.

Algorithm 5: Slope Scaling Heuristic
1 FEnction SSC(Tax):

V" 4= 00

memory <— empty list

(x*,y*) <= (None, None)

t=0

Calculate p(0) using equation (4.8)

while CpuTime() < Tpax do

Solve LP(p(t)) to obtain a solution &*
Obtain feasible §* using equation (4.5)
10 0 U(MI’P(X*,]?*))

N

© o NN & U s W

11 if 9 in memory then
12 L break
13 else

14 L Add ¢ to memory

15 if 7 < v* then
16 v 0
17 (% y") < (2,77

18 | Calculate p(t + 1) based on ¥* using equations (4.6) or
(47 t+—t+1

4.1.1  An Approximate Linear Program

LP(p(t)) takes the form of a network flow problem (see Section 2.4.1)
and its objective reads:

o(LP(p(t))) = min Y- Y- [ (Aief + 4207 +p5(D) - Py (xa)] (4)

acAoex

the used decision variables and coefficients other than pJ (t) are de-
fined as in the original problem (compare with the MZP-objective in
Section 3.2.3).

The linear program uses the same flow-conservation constraints (3.7) -
(3.9) as the original model (see Section 3.2.4). The other constraints are
adapted as follows:
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T
Z paxk + Z Z puxkt <BGu VleP,ccXac A (4.2)
keks. keKS, =0

Yo Y P(xs) <ByHY° VIEP,0€{t—},meEM,vEF
ceX aedy (v)
(4-3)
Y Y P(x)<BL! VIePmeMuoeF  (4.4)

0EX 0€6, (v)Udy, (v)

Constraints (4.2) merge (3.10) and (3.11). The adapted handling con-
straints (4.3) and (4.4) (compare to the original ones (3.12) and (3.13))
use the mild assumption of same TU property-extents By, [ € P
on one mode m and commodity type o, valid for all the used input

instances.

An exact solution X of LP(p(t)) can be calculated efficiently by lin-
ear programming algorithms (see Section 2.1). If an instance has no
capacitating handling constraints, LP(p(t)) takes the form of a multi-
commodity minimum-cost flow problem and for this case the network
simplex algorithm [2] outperforms more general simplex algorithms
(see Section 5.2.3.1).

4.1.2  Constructing a Feasible Solution

After solving LP(p(t)) to obtain %, a heuristic solution (%, j) to MZP
is obtained by choosing feasible #/;-values based on £, for alla € A
and o € X as follows:

77 = max{[ 5 (4.5)

with m(a) denoting the mode used by arc a.

Implicitly estimating the number of TUs by summing up flow-extent
over multiple arcs as done in (4.3) and (4.4) could lead to minor count-
ing differences compared with 7, obtained through equation (4.5).

To see this, think about two incoming arcs to a transshipment node
each transporting as much flow as to fill up one third of a TU. In
summation the flow does require only one TU even though it actually
requires two. Thus, if in instances with handling constraints some
are slightly violated, the solution is repaired by rerouting flow ex-
ceeding handling capacities using a variant of the local search moves
introduced in Section 4.2.
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4.1.3 Updating the Approximate Linear Program

Having obtained a feasible solution (£, /), the linear cost coefficients
p(t) are updated resulting into p(f + 1) and an updated linear program
LP(p(t+1))) to solve in the next iteration.

In this section two alternative updating schemes are developed. The
first one termed cost-matching (see Section 4.1.3.1) follows the general
design paradigm behind previous slope scaling mechanisms [17, 18].
That is, having the property that the cost function of the original
problem and the updated approximation have the same value.

Section 4.1.3.2 introduces an alternative updating scheme based on
monotonicity.

4.1.3.1  Cost-Matching Update

Using (%,7), p(t) can be updated as follows:

(M fS + BN /Bl () iF P, (%) > 0

05 (t) otherwise

pr(E+1) = { 40

with A f; referring to the weighted costs and A>AJ to the weighted
emissions of one TU. Denote with v(MZP(%,7j)) the objective value
of MZP given the solution pair (X,7). Furthermore, denote with
v(LP(p(t), %)) the objective value of LP(p(t)) given a solution *.

The updating scheme (4.6) results in v( MZP (%, 7)) = v(LP(p(t +1))).
This can be seen by plugging in the terms on the right hand side of
equation (4.6) into the LP-objective (4.1), which yields the objective of
the original MIP (see Section 3.2.3).

Figure 4.1 shows that this cost-matching updating scheme results in a
zigzag shaped cost-coefficient value with respect to increasing flow
extent. This is due to the fact that starting at certain product volumes
an additional ordered TU is needed, which then is barely filled and
hence, sharply increases costs.

Another property of the updating scheme (4.6) is that for each tariff
level the minimum cost-coefficient value is reached when all ordered
transport units are fully filled independent of how many TUs are
ordered. Exemplary, Figure 4.1 shows that when filling up the first,
second or third TU, the blue line always converges to the same cost-
coefficient value before spiking due to ordering an additional TU.

The monotonic updating scheme in Section 4.1.3.2 is designed to
overcome these possibly disadvantageous properties through putting
an emphasis on smoothness.
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4.1.3.2  Monotonic Update

It is possible to omit 7 from the update equation (4.6) yielding

(MfF + A7) /P, (%a) if P, (%a) > 0

I(a)
05 () otherwise

Pa(t+1) = (4.7)

Then v(MZIP(%,7)) # v(LP(p(t+1))), but for + > 1 the update
scheme becomes monotonic on each tariff level with respect to increas-
ing flow extent. This property can be seen in Figure 4.1 and interpreted
as favouring higher transport volumes on an arc no matter the filling
rate of the last TU, playing into the economics of scale.

Evolution of the Linearization Coefficient

0.010 A Cost-Matching Update
Monotonic Update
0.008 1

0.006 -

0.004

Cost-Coefficient [€-Cent]

0.002 A

0.000 -

20 40 60 80 100 120 140 160
Weight [t]

Figure 4.1: Updated cost-coefficient value based on simulated product flow
and the all-unit discount costs tariff with linear-cost levels shown
in Figure 3.1. About every 26.5t a new TU has to be ordered. At
8ot a new discounted tariff level starts.

Note that the original slope scaling updating scheme for binary vari-
ables is both cost-matching and monotonic [18]. Therefore, one can
view the original cost-matching updating function as the best mono-
tonic one from the space of all monotonic updating functions.

In this view generalizing to general non-negative integer variables
poses the important updating scheme design question:

Should the space of cost-matching functions or the space of monotonic
function be explored?

The monotonic updating scheme introduced here is an attempt to
explore this alternative function space. The results in Section 5.2.3
indicate that the monotonic update scheme outperforms the cost-
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matching one. For a detailed discussion of these results the reader is
referred to Section 5.2.3.

4.1.4 Initializing the Approximate Linear Program

Initial cost estimates are set to the linearized costs of one full TU on
the respective connection independent of the used updating scheme.
Equation (4.8) represents the initialization formula.

pa(t =0) = (Afd + A207)/ By (4-8)

4.1.5 Termination Criterion

The slope scaling heuristic starts at ¢ = 0 and runs for as many
iterations until a specific time limit is reached.

However, it is observed that SSC sometimes gets stuck in a loop always
producing the same solution sequence over and over again. This is
due to the fact that the updating schemes are deterministic producing
the same cost-coefficients given the same inputs.

As this loop can be of arbitrary iteration size. The costs of all generated
solutions are stored and if a new solution is generated with already
seen costs, it is assumed to be identical leading to a solution loop.
Then SSC terminates.

4.1.6  Time-Expanded vs Tariff-Expanded Network

The slope scaling mechanism introduced here can be applied on the
much more memory-efficient time-expanded network by replacing
a € A with a € A7 in the approximate linear program and in each
iteration adapt the cost factors ¢ and f; to the best available tariff
level for the chosen ;.

All results involving slope scaling in Chapter 5 are produced by SSC
operating on the time-expanded network.
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4.2 LOCAL SEARCH

The presented local search (LS) is inspired by Harks et al. [21] and
based upon the flow decomposition theorem [46] presented in Section
2.4.1, which states that every non-negative arc flow can be represented
as a path and cycle flow. Thus, given an initial solution, the basic idea
of the local search is to construct a path-decomposition of flow on the
acyclic time-expanded graph G7. Then, randomly dissolve paths and
reroute the flow. This results in a new path-decomposition of flow and
the process can be repeated until no improvements are possible.

Section 4.2.1 formally introduces the concept of a path decomposition
on G7 and presents two different ways to calculate it. Section 4.2.2
introduces two different rerouting schemes, which can be applied after
a flow has been released by dissolving one or multiple paths. Based
on these two sections, Section 4.2.3 introduces the neighbourhoods
and moves used by the local search. With all these definitions in hand,
Section 4.2.4 presents the local search algorithm including a detailed
pseudocode.

Note that the LS can operate on the time-expanded graph rather
than on the tariff-expanded one, as it can handle non-linear arc-costs.
Furthermore, the LS is fundamentally concerned with commodity
flows and assumes flow is always accompanied by corresponding
transport unit choices y using equation (4.5) from Section 4.1.2, even
though y may not be explicitly mentioned.

4.2.1  Path Decompositions

A path-decomposition P consists of a set of tuples (P, xp). Each tuple
consists of a directed path P in G5 = (V7, A7) and the transported
commodities xp € IRgCTH'KAHT‘. Paths carry only commodities of a
specific type and due to the topology of the network, either end in a
demand or bin node. Therefore, a path is either called a demand-path
or a bin-path.

Note that for a given flow, P is not necessarily unique. This inspires
multiple different calculation schemes for P based on depth-first search
(DFS) as presented in and adapted from Harks et al. [21].

4.2.1.1  Unidirectional Construction

To calculate a path decomposition in a unidirectional manner similar
to Harks et al. [21], first select the subset of source nodes S from V-
and define all flow on each arc from a given solution as unassigned.
Then, for each s € S taken in chronological order, iterate through all

41



42

HEURISTICS

product types ¢ € ¥ and apply the following algorithmic scheme until
all ougoing flow is associated to flow-paths:

Starting at s, for each incident arc, the flow of commodities of type
o that could be assigned to a path traversing this arc is calculated.
Then, the arc whose assignable flow has maximal weight is chosen.
Next, this process is repeated for the newly connected node until a
bin or demand node is reached. Finally, add the calculated path P and
associated flow-vector xp to the path-decomposition and declare on
each arc a € P the flow xp as assigned.

The pseudocode for this construction can be found in Appendix A.2.

Chronologically going through the source nodes ensures that each
flow-path indeed ends in a bin or demand node. To see this, assume a
source node s’ is chronologically before another source s and sends
products to s. Furthermore, assume that starting from s products
sourced by s’ and products sourced by s share the same path through
the network to a destination node d. Then, applying the above flow-
path construction scheme on node s before processing s’ results in a
flow-path having associated all products flowing from s to 4 including
those sourced by s’. However, afterwards, applying the flow-path
construction scheme on node s’ will find a flow-path which ends
at s as the flow outgoing from s is already associated to a different
flow-path.

4.2.1.2  Bidirectional Construction

An alternativ path decomposition construction scheme again inspired
and adapted from Harks et al. [21] repeats the following steps for each
product type o

1. Sort all arcs with respect to highest savings potential. Highest
savings potential is defined as having the highest impact on
the objective function when the unassigned flow of type ¢ is
removed.

2. Apply a bidirectional depth-first search. Starting from the arc
who currently has the highest savings potential, choose arcs in
both directions with maximal savings potential with respect to
the possible flow of type o carried by the flow-path in construc-
tion.

3. As in the unidirectional construction, add the calculated path
P and associated flow-vector xp to the path-decomposition and
declare on each arc a € P the flow xp as assigned. Then, go back
to the second step until all flow of type ¢ is associated to a flow
path.
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See Appendix A.2 on how to adapt the given pseudocode for the
bidirectional construction.

Due to also applying a depth-first search in a backward direction it is
not necessary to perform the iteration in a chronological manner.

4.2.2  Rerouting Schemes

If one or multiple paths are removed from the path decomposition
P, the now freed commodities have to be routed anew to fulfil all
demands. Here, two rerouting schemes are introduced: heaviest-first
rerouting in Section 4.2.2.1 taken and adapted from Harks et al. [21],
and cheapest-first rerouting in Section 4.2.2.2 developed independently
in this work to overcome shortcoming of heaviest-first rerouting. In
both rerouting schemes an algorithmic subproblem related to knapsack
problems [55] arises due to storage and capacity constraints. How to
optimally solve this problem is discussed in Section 4.2.2.3.

The presentation in the following subsections assumes that s refers
to a source node and t to a demand node. Furthermore, the current
commodity-flow in G is denoted x. Then, Ai(s,t, x) refers to the
maximal quantity of commodity k sourced by s and deliverable to
demand node t with respect to the demand of ¢ for k and the existing
flow x (i.e. not already in x). For all commodities k € K these Ak(s, , x)

can be assembled into a vector A(s,t, x) € ]qu. It is not necessary to
use a separate Ay, (s, t, x) as k; is specified by k and the time-period of
s. With W(A(s, t, x)) the total weight of all commodities in A(s, t, x) is
denoted.

The algorithms below also depend on shortest path calculations in
Gr. For this, weights w(a) are defined on all met arcs a € Ay as
follows: w(a) = c(a,x + A) — c(a, x), which represents the change in
costs for arc 2 when A commodities are added to the existing flow in
the system.

Note that shortest path calculations in G7 can be made in linear time
O(|Vr| + | A7|) due to the fact that G7 is a dicrected acyclic graph
(DAG) [26].

4.2.2.1 Heaviest-First Rerouting

In heaviest-first rerouting one searches a (s, t)-pair allowing for the
highest delivery weight. Then, one calculates a cheapest path from s
to t and adds the found path to the path decomposition. These two
steps are repeated until all demand has been satisfied or infeasibility
is detected.
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Heaviest-first rerouting is presented in Algorithm 6 and assumes a
flow-vector x is given, which represents an earlier calculated solution
with flow of type ¢ along some paths removed (see Section 4.2.3).

Algorithm 6: Heaviest-First Rerouting

1 Function reroute_heaviest_first(x):

2 while not all demand has been satisfied do
3 | Lets,t € Vr such that t reachable by s and W(A(s,t,x)) is

maximum
4 | if nosuch (s,t) pair exists then
5 L break

6 A< A(s,t, f)

7 | Compute shortest path P in G from s to t w.r.t.
w(a) =c(a,x+ A) —c(a, x)

8 Adapt A if handling or storage capacity constraints
violated

9 Augment x along P by A

10 if not all demand satisfied then
11 L return infeasibility detected

12 else
13 Route unused commodities directly to bin nodes and
update x.

14 return x

Infeasibility is possible when rerouting perishable commodities and
having at least two demand nodes with unsatisfied demand. To see
this, assume that a demand node d; in time-period t could get its
products from source node s; and s;. Another demand node d; in
time-period ¢ + 1 can only get its products from source s, because those
from source s; will have perished in time-period ¢ + 1. However, line 3
could choose the pair (sp,d1) depleting the available commodities
from s,. Empirically it is found that this case happens only rarely.

Adapting A in line 8 leads to a relaxed multidimensional bounded
knapsack problem (MBKP) with a special structures, which allows to
derive an optimal solution in closed form as shown in Section 4.2.2.3.
Note that the shortest path calculation is implemented in a way to
only consider arcs with left-over handling or storage capacity.

4.2.2.2  Cheapest-First Rerouting

The cheapest-first or more accurately the cheapest-relative-cost rerouting
differs to heaviest-first rerouting by choosing the (s, t)-pair that results
in the cheapest path relative to the transported weight. The idea is to
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make better use of existing transport routes by "filling them up". The
pseudocode of which is shown in Algorithm 7.

Harks et al. [21] describes the difficulty of their heaviest-first rerout-
ing scheme to effectively exploit consolidation potentials. The results
in Section 5.2.4.2 show that cheapest-first rerouting consistently out-
performs heaviest-first rerouting, which in part can be explained by
the results from Section 5.2.4.4 empirically showing that cheapest-
first rerouting is superiour at finding and exploiting consolidation
opportunities.

Algorithm 7: Cheapest-Relative-Cost Rerouting

1 Function reroute_cheapest_first(x):

2 while not all demand has been satisfied do

3 t < demand region with heaviest unsatisfied demand
4 S <« set of all source nodes with unrouted products
reaching t
5 if S = @ then
L break

Ppest < empty path
8 Pyest.c — 00
9 foreach s € S do

10 A+ A(S, t, x)

11 Compute shortest path P in G7 from s to t w.r.t.
w(a) < c(a,x+A) —c(a,x)

12 Adapt A if handling or storage capacity constraints
violated

13 ¢(P) < additional costs of sending A over P given x

14 P.c <+ c(P)/W(A)

15 if P.c < Pyeg.c then

16 Pyest < P

17 L Pyest A +— A

18 | Augment x along Pyest by Ppest.A
19 if not all demand satisfied then
20 L return infeasibility detected

21 else
22 Route unused commodities directly to bin nodes and
update x.

23 return x

4.2.2.3 Adapting Transported Goods to Capacity Constraints

In both rerouting schemes it could be necessary to adapt (reduce) the
carried products A € ]qu on a path P to A to satisfy handling or
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storage capacities available on the arcs along P. A represents the largest
feasible shipment on P, where largest is defined as the shipment with
the highest delivery-weight.

As shown in the following, adapting A to fulfil storage capacities
leads to a relaxed bounded knapsack problem, whereas adapting A to
fulfil handling capacities leads to a relaxed multidimensional bounded
knapsack problem. However, due to its special structure not only the
first but also the second problem can be solved in closed form as
shown in Theorem 4.

The individual entries of an adapted product vector A are denoted
O, k € K. For easy readability denote with W the weight-property
and with Vj the volume-property of commodity k. The commodities
in all instances used in this work have exactly these two properties.

Storage capacity exceeded

Assume the products A exceed the storage capacity V.« provided by
a specific arc. Note that in the GTTP storage capacity is only restrictive
in volume. Therefore, one wants to maximize the delivery weight with
respecting the maximal possible delivery volume. This leads to the
following relaxed bounded knapsack problem (BKP) [55]:

K|
max ) Wiy (4.9)
k=1
K]
subject to Z Viedr < Vipax (4.10)
j=1
0<o <Ay, 0eRVkeK (4.11)

If 5, would be restricted to integer values, the original BKP formulation
would be obtained. However, for the current work, only the optimal
solution vector of the LP-relaxation is of interest. Using the concepts
(taken from Kellerer et al. [55]) of efficiency ey := % and of a split item
s defined by

s—1 s
Z Vi < Vinax and Z VD > Vinax
k=1 k=1

one can compute the optimal LP-solution in a straight forward manner,
using the following lemma:

Lemma 3. [55] If the item types are sorted by decreasing efficiencies
such that
e1 =>e > 2 e
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then the optimal solution vector §tF := (5P, .. (5‘%3‘) of the LP-
relaxation of BKP is given by
P::Ak fork=1,...,s—1
=0 fork=s+1,...,|K]|

Handling capacity exceeded

Assume the products A exceed the handling capacities Vjux or Wiy
of a node incident to an arc in P. V,;;, and Wy, follow from the
maximal number of TUs the node can handle and the dimensions of
the respective TUs.

Similar to the storage case, one wants to maximize the delivery weight
respecting Vj;ax and Wi,ay. This leads to the following relaxed multidi-
mensional bounded knapsack problem (MBKP) [55]:

IK|
max Z W6 (4.12)
k=1
K]
subject to Z Vidr < Vipax (4.13)
k=1
IK|
Z Wkék < Whax (414)
k=1
0<o <Ay, 0 eRVkeK (415)

It differs from the general MBKP by not only relaxing J; from inte-
ger values to reals, but in the objective coinciding with one of the
constraints. In the following, the problem arising from the above one
when requiring all d; to be integer is called MBKP'. Notice, if one re-
moves equation (4.13) and changes the equations (4.15) to J; € {0,1}
one obtains the subset sum problem (SSP) [55].

The property of the objective coinciding with one of the constraints
allows to derive a simple proof for a theorem similar to Lemma 3 for
the MBKP'. For this, define again efficiencies ¢, as %, but split items
have to be defined for each dimension of the knapsack problem:

Split item sy defined by

Svl

Z ViAy < Vipar and Z ViDg > Vipax
k=1

Split item sy defined by
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SWw— 1
Y Wil < Wiy and Z Wik > Winax
k=1 k=1

Now, the following theorem derived in this work provides a closed
form solution on how to calculate an optimal A from A satisfying the
handling constraints.

Theorem 4. If the item types are sorted by decreasing efficiencies such
that
e1 > e > 2 e

then the optimal solution vector 6/ := (5FF,.. 9 K‘) of the LP-
relaxation of the MBKP” is given by
5,%1) = Ay fork=1,...,5s—1 = min(sy,sw)—1

1
5SLP = = (Vmax Z VkAk> if s =sy <sw

1 s—1
(SSLP = W (Wmax — Z WkAk> if s =sw < sy
s

SLP =0 fork=s+1,...,|K]|

However, if s = sy = sy then

5LP _mln{‘}s <Vmax Zk VkAk> (Wmax Zk WkAk>}

Proof. The solution 6t is by construction feasible for the relaxed
MBKP’. Furthermore, notice that there are exactly three distinct cases,
either sy < sw, sy > sy or sy = sy.

Case sy < sw :

By Lemma 3 the constructed 6.7 is an optimal solution to the relaxed
BKP. However, it is obvious that the relaxed BKP is a relaxation of
the relaxed MBKP’ obtained by removing the bound on the maximal
weight (constraint (4.14)). Therefore, and as 6L is an optimal solution
to the relaxed BKP and feasible for the relaxed MBKF”’, it is an optimal
solution to the relaxed MBKP".

Case sy > sy :
By construction OLP has maximal weight Wy As SLP is feasible and
the objective is to maximize weight, 6" is an optimal solution.

Case sy = sy :
For this case note that the above proofs do not rely on the fact that
sy < sw or sy > sw, but on a solution 6" having either max-

imal volume Vj;,y or maximal weight Wy,,,. Therefore, if oM =

%S (Vmax — Zi;ll VkAk>, then the argument of Case sy < sy proofs
optimality. Otherwise, the argument given for Case sy > sy proofs

optimality for 67, O
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4.2.3  Neighbourhoods

Two types of neighbourhoods are distinguished. They are defined as
the set of all solutions constructible

1. by removing an arbitrary demand-path;

2. by removing a group of demand-paths sharing the same trans-
port relation and carried flow type o;

and all bin-paths and then, repairing the solution by rerouting the
flow. In the second case, the removal and rerouting are repeated for
all o € .

Therefore, the neighbourhoods are characterized by a given path-
decomposition and the employed rerouting scheme R and are denoted
N1 (P, R) and N2(P, R), respectively.

A move is defined by randomly choosing a solution from N7 (P, R) or
N2 (P, R) and accepted, if it improves upon the current solution. To
apply such a move it is not necessary to generate the whole neigh-
bourhood: for A; remove a randomly choosen path from P and then
apply the rerouting scheme R; for A; select a random arc with at least
one path and for all ¢ € X repeat: remove all paths carrying flow of
type o over this arc from P and apply R.

4.2.4 Algorithm

The local search works by in the beginning constructing a solution
using slope scaling, followed by choosing an initial neighbourhood
N;(?,R) and then, repeating the following steps until convergence or
a time limit:

1. Construct a path-decomposition for N;(P, R).

2. Follow randomly chosen improving neighbouring solutions until
the improvement over a certain number of iterations falls below
a threshold.

3. Change R and go to step 1. If all R have been used with N; in
the previous iterations, change i instead.

Algorithm 8 presents the detailed pseudocode. The pseudocode as-
sumes that an initial solution x with objective value v(x) is given.
Furthermore, a set of path decomposition schemes P (see Section
4.2.1) and rerouting schemes R (see Section 4.2.2) are given.

Line 6 constructs a path decomposition of x and chooses a computation
scheme from P depending on N;. In this work P either has only one
element and hence, the computation scheme is clear or two elements,
a unidirectional computation scheme A and bidirectional one B. Then,
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if N; = Nj scheme A is used and if N; = N, then B is used. This
strategy is taken from Harks et al. [21] introducing move dependent
path decomposition calculations.

Besides a time limit, there are two other termination criterions in lines
9 and 22. The one in line 22 is triggered, when all neighbourhoods
have been searched unsuccessfully for improving solutions, hence the
LS has found a local optimum.

The termination criterion in line 9 is chosen so as to be fulfilled if over
the course of 100 iteration, the objective could not be improved by at
least 10% of what it had improved over in the previous 100 iterations.

Algorithm 8: Local Search for the GTTP

1 Function local_search(x, P, R, Tyux):

2 v < o(x)

30+ 0

4 i<+ 1

5 while CpuTime() < Ty do

6 P < construct_path_decomposition(x, Nj, P)
7 for R e R do

8 Vold < 0F

9 while not termination criterion do

10 Choose random # and associated P from N;(P, R)
11 if v(%) < v* then

12 XX

13 P+ 'jD

14 if Oold == v* then

15 L c+—c+1

16 else

17 L c+0

18 if %2 == 0 then

9 | | i=

20 else

21 | i=

22 if c==2- "R,‘ then
23 L break

Note that the LS presented here differs from Section 2.3.1 by using
multiple neighbourhoods. To see the effects of using different neigh-
bourhoods and rerouting schemes the reader is referred to the results
in Section 5.2.4.2.
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This chapter presents a detailed summary of the results obtained when
applying the introduced solution algorithms (see Chapters 3 and 4) to
the data used to simulate horizontal cooperation in the Danube region.
It starts with introducing these problem instances and their generation
process in Section 5.1. In the subsequent Section 5.2 the results of
applying a state-of-the-art MIP solver and the developed heuristics
are shown and the algorithmic aspects of these results discussed. The
managerial implications are discussed in Section 5.3.

5.1 DATA

5.1.1 Description

The instances are based on a dataset introduced by Wolfinger et al.
[56] including locations of major cities, train stations and Danube
ports in Austria, Slovakia, Hungary, Romania, Serbia, and Bulgaria.
For this work, each city region has been categorized as small (pop-
ulation (P) < 100.000), medium (100.000 < P < 1.000.000) or large
(P > 1.000.000). Then, nine random locations have been added in each
city and large ones additionally equipped with a cross-dock. All road-
distances have been recalculated using Ariadne [57]. Distance and
time-matrices of other transport modes were taken from Wolfinger
et al. [56]. Moreover, each city is interpreted as a demand region
and we randomly distribute commodity demands and stocks (see
Section 5.1.2.2).

Generated instances range in size from two collaborating warehouses
in two different regions up to the exhaustion of our memory lim-
its during the solution process. More precisely, input instances can
be grouped into having two (R2), fife (R5) or ten regions (R10). R2-
instances are generated with either one or four warehouses per region.
R5-instances are generated with two or four warehouses per region.
For R10-instances the five more populated regions have four ware-
houses and five lower populated ones have two. Warehouses are
again grouped representing association to different companies (see
Section 5.1.2.1). For each selected region the closest cross-dock, train
station and port in the dataset by Wolfinger et al. [56] is included. All
instances have a time period of one day and are generated in three
different time horizon (T) versions of 7, 14 or 30 days with halve of
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their commodities being perishable. Lastly, each instance has a version
with active handling constraints (tight t) and without (loose ). There-
fore, instance groups are identified using R<#>_T<#>_t /I and using
a * instead of <#> to indicate averages over all respective instance
groups. In each instance half of the commodities are perishable.

In total 60 instances have been generated (see Appendix B) leading
to 180 optimization problems considering optimizing for costs, emis-
sions or both. The input instances and the code to generate them are
available on https://github.com/sapero/gttp-data.

5.1.2 Generation
In the following sections, the data generation process is described.

5.1.2.1  Warehouse-Groups

Given C groups (for example companies) indexed using set C and N
warehouses indexed using set N. Assume C < N. Each warehouse is
assigned to a group using the following algorithm:

1. Associate to each ¢ € C a unique random warehouse n € N
preferably from a new location.

2. Remove associated warehouses from N.

Remove |C/3]| groups from C

4. YN # @, go to step 1.

A

5.1.2.2  Commodities

Half of the products (non-perishable and perishable) are evenly associ-
ated to the groups. The other half of products are randomly assigned
to a group in such a way that the assignment probability is directly
proportional to the group size. Furthermore, each product is requested
in between 25% and 100% of all demand regions (but at least one) in
which the group has no associated warehouses. A product is twice
as likely to be demanded in a middle-sized demand region and four
times as likely to be demanded in a large-sized demand region com-
pared to a small-sized region. The product dimension is drawn from a
heavy-tailed Lévy-distribution with location y = 0 and scale ¢ = 0.2
to emphasize smaller products but not exclude larger ones (see Figure
5.1). The dimension® is rounded up to the next 0.01 m® (interpretable
as a minimum modular-container size) and redrawn if exceeding 2.16

1 2.16 m> roughly correspond to the maximal dimensions of a fully loaded Euro-pallet.


https://github.com/saper0/gttp-data
https://github.com/saper0/gttp-data

5.1 DATA

—— Lévy distribution: y=0,c=0.2
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Figure 5.1: (Unscaled) Probability density function of commodity volumes.

m3. Product weight is calculated by assuming a density uniformly

kg 2
pomc R

drawn between 50 % and 1200
The average requested product-weight in a demand region is drawn
uniformly between the weight of exactly one product ky and 20.000
kg. Additionally, the drawn demand is lowered by 10% for small
regions and increased by 10% for large regions. The average requested
number of products 7 is then calculated by dividing the requested
product-weight by ki and rounding to the next integer. A product is
requested daily, every two days or weekly. The actual product demand
for each request is drawn from a normal distribution with mean # and

a standard deviation of 0.1 - 7.

Each product is in stock in one or multiple warehouses. A product
demand is satisfied by the closest warehouse of the associated com-
pany. If the product is perishable, its lifetime is set uniformly between
the minimum travel time ¢,,;,, of a truck to the most distant associated
demand node and t,,;,, + 4.

Warehouse-stock is generated in the time-period such that a truck can
fulfil the requested demand on time. This means, if the demand is at
time ¢ the stock is generated for time period t — t,,;,. To determine the
generated stock size for a commodity its average request size for a
particular demand region 7 is summed up over all demand regions
it has to service yielding 75, and adding 20% interpretable as safety
stock.

The maximal capacity of a warehouse is set in such a way that the
maximal generated stock for the warehouse is assumed to occupy
between 50% and 80% of its capacity (again drawn uniformly). If a
warehouse carries no stock, its capacity is set to half of the average
capacity found in its region size.

2 Minimum weight-density corresponds to the density of styrofoam [58].
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5.1.2.3 Handling Capacities

Loosely and tightly capacitated version of each instance are generated.
In a loosely capacitated version only warehouses are capacitated in
the way explained above. In the tightly capacitated instance each
transshipment point has an incoming and outgoing handling capacity
of 30% of the average demand in the associated region (inspired by
Wolfinger et al. [56])) and a total handling capacity of 60%. If the
associated region has no demand, handling capacity is calculated
based on the closest region having non-zero demand.

5.1.2.4 Tariffs

Tariffs with three levels of volume discounts are employed. Piecewise-
linear cost levels are used for lorry connections and constant cost
levels for rail and ship connections. On these connections TUs always
correspond to 4o-feet ISO containers. Handling costs are integrated
into the arc costs. Prices are set based on information from an industry
partner.

5.2 EXPERIMENTS

This section presents detailed results of and empirical comparisons
between the different devised solution algorithms. Furthermore, the
statistical significance of the results are examined using the methodol-
ogy described in Section 5.2.1. Section 5.2.2 examines the performance
of applying a state-of-the-art MIP-solver (CPLEX 12.10) on the MIP for-
mulation presented in Chapter 3 and compares the effects of including
different strengthening constraints. Section 5.2.3 presents the results
of applying the slope scaling heuristic (55C, see Section 4.1) using dif-
ferent cost-approximation strategies. Then, Section 5.2.4 proceeds with
presenting detailed results of applying different local search variants
on solutions obtained by slope scaling. Finally, Section 5.2.5 presents a
comparisons between the best performing MIP, SSC and local search
configurations and hence, summarizes and concludes the algorithmic
findings. A reader interested only in the results of the best performing
algorithm can skip the individual in-depth result-analyses and jump
directly to Section 5.2.5.

Solutions calculated on our test instances are evaluated with respect
to a direct delivery solution. In a direct delivery solution demand for
a product is satisfied by lorry shipments without the possibility of
cooperation. This means consolidation is only possible across ware-
houses associated to the same company. Direct delivery instances
are generated by removing transshipment nodes and arcs connecting
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warehouses from different companies from the original input instances.
Next, a MIP-solver is applied on the adapted instances for one hour.
The thereby calculated direct delivery solutions are either optimal or
proven to be within a 1% optimality gap.

If not otherwise specified reported numbers when optimizing for
emissions refer to the percentual emission reduction compared to
the emissions of the direct delivery solution. When optimizing for
costs the results refer to the percentual reduction in costs compared
to the direct delivery solution. However, when jointly optimizing for
both, the reported results refer to the percentual reduction on the
sum of emissions and costs by pricing one tonne of CO,e with 100€
[59] (using the avoidance cost approach [14]). Calculated standard
deviations given for instance groups and usually refer to inner-group
deviations if not otherwise specified.

All experiments were written in C++ using CPLEX 12.10, had a time
limit of one hour, and were performed on an Intel(R) Xeon(R) CPU
E5-2640 v3 @ 2.60GHz CPU with 32 GB RAM.

5.2.1 Statistical Significance of Results

It is not always clear if a method could beat another method due
to being superior or if it just happened by chance. Therefore, when
applicable, the statistical significance of the reported results is exam-
ined. For this statistical analysis the Wilcoxon signed rank test [60] is
employed. It is a paired difference test meaning it assumes matched
sample-pairs (X;,Y;) (in our context the results of two competing
methods on the same instance i) and tests whether their means match.
The null hypothesis Hy of the Wilcoxon signed rank test states that the
pair-wise differences §; = |X; — Y;i| follow a symmetric distribution
around zero. This is in contrast to other paired difference tests often
assuming J; follows a certain parametric distribution. Exemplary, the
paired T-test [61] assumes &; follows a normal distribution.

After computing J;, the p-value, which is the probability of seeing an
event at least as extreme as the current data under the assumption of
Hy is calculate. The p-value can be identified with the probability of
falsely rejecting Hy (i.e. committing a type I error) [61]. As a result, Hy
is discarded with a significance level « if

p-value < «

For the analyses in the forthcoming sections X; corresponds to result
of method X on instance 7 or the mean result if the method has random
components. Furthermore, « is chosen to be 0.05.
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If more than two methods have to be compared the significance test is
performed for each methods pair separately. However, to then correct
for the increased chance of type 1 errors due to multiple comparisons
Bonferroni correction [62] is used in which the target significance level
« is divided by the number of comparisons K. As an example each
local search variant is tested against five others, hence, to achieve a
target level of « = 0.05 for each variant individual tests are performed
with « = 0.01.

5.2.2 MIP

Table 5.1 gives an overview of the MIP formulations compared in
this section. Especially, MIPO refers to the original model presented
in Section 3.2. Other numberings refer to different combinations of
strengthening constraints.

Table 5.1: Table of MIP formulations explored. For a detailed explanation of
the different types of strong valid inequalities see Section 3.2.5.

Name | Strengthening Constraints
MIPO | None

MIP1 | Capacity

MIP2 | Capacity + Intra-Tariff

MIP3 | Capacity + Inner-Tariff

MIP4 | Capacity + Intra-Tariff + Inner-Tariff

To support CPLEX in finding solutions within the time limit of one
hour each run was initialized with its corresponding (feasible) direct
delivery solution. Therefore, only improved solutions to the state
of the art can be found. However, for all but the smallest instances
CPLEX struggled with finding other feasible solutions and needed
excessive time in the root node solution process. Therefore, the MIP
emphasis switch was set to one indicated emphasizing feasibility over
optimality [29] alleviating the problem.

Table 5.2 shows the results of applying the different MIP formulations
to the problem instances. Good results are achieved when optimizing
for emissions especially on small instances. High in-group variance is
observed as planning over 7, 14 or 30 days has a significant effect on
found emission reductions (see Appendix C.2).

The found average emission reductions reduce when the instance sizes
increase. This is not due to fundamentally less emission reduction
potential (compare this to the results of the local search in Section
5.2.4) but due to the MIP failing to find better solutions for some
larger instances in the group (see Appendix C.2). Especially, the MIP
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fails to find improving solutions when handling constraints are em-
ployed indicating that handling constraints increase the hardness of
the resulting problem. Having handling constraints more often re-
sults in the MIP sticking with the direct delivery solution used for
initialization and hence, reducing the average emission reductions of
groups with larger instances. This is also indicated by the increase of
in-group standard deviation. However, for the group with the largest
instances R10_T*_x the in-group standard deviation decreases again
as a lot of instances are including which yield no improving solution,
i.e. contribute a 0.0% weighting.

Table 5.2: Average results including instance group standard deviations
achieved by the MIP formulations presented in Table 5.1 on differ-
ent instance groups compared to the direct delivery solution. Note
that strengthening constraints are only added when optimizing for
costs or both costs and emissions. The MIP mostly fails to solve
the optimization problem when a cost term is present.

MIPo [%] MIP1 [%] MIP2[%] MIP3 [%] MIP4 [%]

Optimize for Emissions
R2_T* * 27.3%x13.8 - - - -
R5_T* *  15.3+18.6 - - - -
R1o_ T* * 9.2+15.1 - - - -
R*_T* * 19.4%17.4 - - - -
Optimize for Costs
Ra2_T* * 2.0£4.0 3.8%5.9 3.8+5.8 3.8+5.7 3.6+5.8
R5_T*_* -0.0£0.0 -0.0£0.0 -0.0£0.0 -0.0£0.0 -0.0£0.0
R1o_T* *  o.0%0.0 - - - -
R*_T*_* 1.5+3.5 3.0%5.4 3.0%5.3 3.0%5.3 2.8+5.3
Joint Optimization for Costs and Emissions
Ro_T*_* 2.1+4.1 3.7£6.0 3.9%6.2 3.6£6.2 3.6£6.3
Rs_T*_* -0.0£0.0 -0.0£0.0 -0.0£0.0 -0.0£0.0 -0.0£0.0
R10_T*_ * -0.0%0.0 - - - -

R*_T* * 1.4+3.5 2.9+5.5 3.0%5.6 2.8+5.7 2.9+5.8

Note that when the MIP finds improving solutions while optimizing
for emissions it usually proofs closeness towards an optimal solution
as can be seen in Table 5.3. For the calculations Table 5.3 instances have
been excluded for which the MIP does not find improving solutions
(using an improvement threshold of at least 5%). Therefore, it shows
that for small instances or medium sized ones without handling
constraints the MIP finds provable good solutions and can also serve
as a benchmark for the solutions found by the heuristics.
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Table 5.3: Average optimality gap with its in-group standard deviation
achieved by a MIP solver when successfully optimizing for emis-
sions only. No sensible optimality gaps can be calculated when
optimizing for costs.

Optimality Gap [%]

Optimize for Emissions

Ra_T*_ * 2.9+3.3
Rs_T* * 7.6£4.5
R1o_T*_* 12.8+6.3
R* T* * 5.1+5.0

If the MIP has to optimize either for costs only or for a combined
objective it can’t operate on the time-expanded network but needs
to introduce graph-gadgets to linearize non-linear tariff structures
(see Section 3.2). As a result, the model size increases significantly.
This model blow-up leads to the MIP either not finding an improving
solution or not fitting into the available memory at all. As a con-
sequence, no sensible optimality gaps can be computed. This effect
can be seen in Table 5.2, which shows that when optimizing for an
objective including costs improving solutions can only be found for
the smallest (and hence, unrealistic) test instances (see also Table C.1
and C.3). Additionally, this effect is visualized in Table 5.4. It shows
the number of instances fitting into memory. While most of the in-
stances can be loaded into memory when optimizing for emissions
this picture reverses when graph-gadgets have to be used. The num-
ber of instances fitting into memory is additionally reduced when
strengthening constraints are added, which too increase the size of
the model formulation. Therefore, one can conclude that if one wants
to optimize for costs on realistic large-scale instances incorporating
realistic tariff scenarios one has to turn to different methods than exact
solution approaches. These results motivate the study of heuristics for
the general tactical transportation problem introduced in this work.

5.2.2.1 A Closer Look at Strengthening the MIP Formulation

Even though the MIP fails to solve large-scale GTTP instances when the
optimization includes a cost term the strengthening constraints have
measurable impact. Table 5.2 shows that when the MIP formulation
is strengthened in general higher savings can be calculated. These
results are statistically significant as shown in Table 5.5. On the one
hand this analysis reveals that strengthening the formulation results
in statistically significant improvements on the objective function, but
on the other hand it also reveals that the strengthened formulations
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Table 5.4: Number of instances for which the MIP fits into memory. In the
first column the total number of instances in each group are shown.

MIPo [%] MIP1 [%] MIP2 [%] MIP3 [%] MIP4 [%]

Optimize for Emissions
Ra2_T*_* 24/24 - - - -
Rs_T* * 22/24 - - - -
Rio_T* * 10/12 - - - -
R*_T*_* 56/60 - - - -

Optimize for Costs

Ro_T* * 22/24 22 22 22 22
R5_T*_* 7/24 6 6 6 6
R1o_T*_* 1/12 0 0 0 0
R*_T* * 30/60 28 28 28 28
Joint Optimization for Costs and Emissions
Ra_T*_* 22/24 22 22 22 22
Rs_T*_ * 9/24 6 6 6 6
R1o_T*_ * 1/12 0 0 0 0
R* T * 32/60 28 28 28 28

compared between themselves don’t result in significant improve-
ments. Therefore, one can conclude that for practical performance
only adding capacity-strengthening constraints is sufficient.

Table 5.5: Statistical significance of different results obtained when choosing
one MIP formulation compared to the others.

MIPo MIP1 MIP2 MIP3 MIP4

MIPo - <001 <0.01 <0.01 <0.01
MIP1 <o.01 - 0.44 0.69 0.98
MIP2 <o0.01 0.44 - 0.61 0.62
MIP3 <o0.01 0.69 0.61 - 0.38

MIP4 <o0.01 0.98 0.62 0.38 -

Table 5.6 highlights the strengthening effects of the strengthening
constraints on the polyhedron induced by the MIP formulation by
summing over the objective value of the best found LP solutions on
instances solved using all five different formulations MIPO - MIP4.

The results of Table 5.6 empirically proof the fact that certain differ-
ent types of strengthening constraints indeed are strengthening the
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Table 5.6: Effects of different MIP formulations on the best found LP solution.
Only the smallest instance group is shown as it is the only instance
group where each formulation could solve the LP relaxation in the
given time limit of one hour.

MIPo [%] MIP1[%] MIP2[%] MIP3[%] MIP4 [%]

Optimize for Costs
Rz2_T* * 584095 1143872 1143872 1217610 1217610
Joint Optimization for Costs and Emissions

Ra_T* * 481982 696292 696292 895098 895098

formulation. Denote with MIP@ - MIP4 the polyhedra of the different
formulations. By definition the following relations hold:

e MIP4 C MIP3 and MIP3 ¢ MIP4
MIP4 C MIP2 and MIP2 ¢ MIP4
MIP3 C MIP1 and MIP1 ¢ MIP3
MIP2 C MIP1 and MIP1 ¢ MIP2
MIP1 C MIPO and MIPO ¢ MIP1

These are due to the following fact: Look at the left C relations. Here,
each formulation on the right hand side (RHS) employs constraints,
which are a true subset of the employed constraints of the formu-
lation on the left hand side (LHS) (see Table 5.1). Hence, the LHS
formulations include at most all the solutions included in the RHS
formulations proofing RHS ¢ LHS or additionally, cut away solutions
found in the RHS polyhedron resulting in LHS C RHS.

Table 5.6 proofs that certain LHS formulations cut away solutions from
the RHS polyhedron. Especially, it proofs:

e MIP4 C MIP2
e MIP3 C MIP1
e MIP1 C MIPO

and by transitivity

e MIP4 C MIP1 and MIP4 C MIPO
e MIP3 C MIPO
e MIP2 C MIPO

Section 3.2.5 shows that MIP2 and MIP3 are incomparable, i.e. MIP2 €
MIP3 and MIP3 & MIP2, hence MIP4 = MIP2N MIP3 C MIP3.

Furthermore, Section 3.2.5 shows MIP2 C MIP1 completing the
polyhedral hierarchy investigation.
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5.2.3 Slope Scaling

This section compares the results of applying different slope scaling
mechanism to the problem data. Especially, using a cost-matching
objective-coefficients updating scheme or a monotonic one (see Section
4.1) are explored.

Table 5.7 shows that the monotonic update scheme outperforms the
objective-costs matching one. The reported variances are mainly due
to the different saving potentials depending on the time horizon (see
Tables C.4, C.5 and C.6). Table 5.8 proofs the statistical significance of
the monotonic update scheme outperforming the cost-matching one.

This indicates that the prevalent design paradigm behind slope scaling
mechanisms - matching objective costs between the original and ap-
proximate problem [17] - is not necessarily key to its success. It can be
outperformed by a monotonic updating scheme trading cost-matching
for smoothness.

Table 5.7: Relative improvement over the direct delivery solution with
instance-group variance when applying slope scaling for one itera-
tion or with different objective-coefficient updating schemes.

1 Iteration [%] Monotonic [%] Cost-Matching [%]

Optimize for Emissions

Ra_T* * 29.5+10.1 29.8+10.0 209.7+10.2
R5_T* * 28.2+11.5 29.3+11.3 20.0+11.4
R1o_T*_* 27.1+10.2 28.5+10.2 28.4+10.0
R*_T*_* 28.6+10.6 29.4+10.4 29.2+10.5
Optimize for Costs
Ra_T*_* -0.7£4.5 0.9%3.4 -0.1£4.0
Rs_T*_* 6.1+5.6 12.3+5.6 9.8+4.5
R1o_T*_* 8.1+5.1 16.5+5.0 14.1%4.5
R* T*_* 3.6+6.2 8.3+7.9 6.5+7.1
Joint Optimization for Costs and Emissions
Ra_T* * 0.2+5.4 2.1+4.0 1.5+4.2
Rs_T*_ * 10.4+6.7 14.7%6.4 12.2+5.6
Rio_T* * 11.7+5.8 17.9%5.4 15.8+4.8
R*_T* * 6.4%8.0 10.0+8.6 8.4%7.7

Section 4.1 shows that the original slope scaling updating scheme for
binary variable is also monotonic. Therefore, these results raise the
question if monotonicity of the updating scheme is a more funda-
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mental property for a successful slope scaling algorithm than cost-
matching.

Theses insight can be used to devise novel problem specific update
rules diverting from pure objective-costs matching. Especially, when
devising a slope scaling mechanism for a given non-binary MIP one
should examine if cost-matching is appropriate to the given problem
structure. As a practical example, the alternative updating schemes
based on monotonicity used in this work successfully exploits the
problem specific property of economics of scale through always en-
couraging sending more flow over an already established arc (see
Figure 4.1 in Section 4.1).

Table 5.7 additionally shows, that using only one iteration of slope
scaling results in good solutions close to the converged ones. This
property is exploited by the local search which shows superior perfor-
mance when applied on the first found solution (see the discussion
in Section 5.2.4). Note that for convergence slope scaling often needs
hundreds of iterations with most iterations not yielding an improv-
ing solution. For some large-scale instances slope scaling does not
converge at all.

Table 5.8: Statistical significance of the results of SSC with monotonic updat-
ing rule compared to other SSC algorithms. Due to all p-values
being smaller than 0.025 (0.05 divided by two for two comparisons,
see Bonferroni correction [62]) the hypothesis that the slope scal-
ing update rule or number of iterations result in the same mean
objective value can be rejected.

1 Iteration [\%] Cost-Matching [\ %]

Optimize for Emissions < 0.025 < 0.025
Optimize for Costs < 0.025 < 0.025
Joint Optimization < 0.025 < 0.025

5.2.3.1 A Closer Look at Exploiting Instance Structure

Assume that the linear programm SSC solves at iteration ¢ is called
LP(t). An exact solution to LP(t) can of course be calculated effi-
ciently by linear programming algorithms. However, if an instance has
no capacitating handling constraints LP(t) takes the form of a multi-
commodity minimum-cost flow problem [46]. In this case the results in
Table 5.9 show that using the specialized network simplex algorithm [2]
provided by CPLEX outperforms the more general simplex algorithms
with respect to solution speed.

For instances with handling constraints the primal simplex outper-
forms the network simplex algorithm by an order of magnitude. Fur-
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thermore, it also outperforms the dual simplex. Therefore, and as
the dual basis information is not needed for the heuristics, in all re-
ported SSC or hybrid heuristic results instances without handling
constraints are always solved using the network simplex and instances
with handling constraints are always solved using the primal simplex
algorithm.

Table 5.9: Solving time of different simplex algorithms on the slope scaling
linear programs. Results refer to the average solution time needed
to perform the first iteration of slope scaling (i.e. solve LP(t = 0)).
Therefore, one does not need to distinguish updating schemes as
they share the same initialization scheme. Averages are taken only
over instances each method could solve in less then one hour time.
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Primal Simplex [s] Dual Simplex [s] Network Simplex [s]

Optimize for Emissions

R* T* 1 18.9 27.8 12.5
R*_T*_t 98.7 192.2 600.8
Optimize for Costs
R*_T*_1 20.8 29.8 12.6
R*_T*_t 46.6 53.1 48.5
Joint Optimization for Costs and Emissions
R*_T*_1 19.5 25.9 12.7
R*_T* t 46.7 84.5 202.6

5.2.4 Local Search

An analysis of the local search heuristic introduced in Section 4.2 has
multiple facets. In Section 5.2.4.1 the results of using different slope
scaling variants as construction heuristics are presented. This yields
the basis for comparing the use of different neighbourhood structures
shown in Section 5.2.4.2. Section 5.2.4.3 examines the robustness of
the local search towards small perturbations of the input data. Lastly,
Section 5.2.4.4 examines the effectiveness of local search and different
rerouting schemes in increasing the utilization rate of transport units.

5.2.4.1 Comparing Different Local Search Initialization Schemes

To compare the effect of different initialization schemes the local
search variant LS5 combining two types of path decomposition and
rerouting schemes (see Table 5.12) is used. Table 5.10 shows the results
of applying LS5 on top of a solution provided by three different slope
scaling variants. It reveals that using only one iteration of slope scaling
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as a construction heuristic outperforms the other initialization schemes
in a large majority of cases. Table 5.11 shows that the differences in
performance are statistically significant.

Table 5.10: Relative improvement over the direct delivery solution when
using different local search initialization schemes. Standard devi-
ations of the mean are calculated over 10 independent runs. For
the monotonic and cost-matching updating scheme slope scaling
is run until convergence (or the time limit of one hour).

1 Iteration [%] Monotonic [%] Cost-Matching [%]

Optimize for Emissions

Rz _T* * 30.7+0.1 30.9+0.1 30.5+0.1
R5_T*_* 31.9+0.2 31.240.1 30.8+0.1
R1o_T*_* 30.9+0.3 20.9+0.2 29.2+0.3
R* T* * 31.2+0.1 30.840.1 30.4+0.1

Optimize for Costs

Ra_T*_* 6.0£0.2 5.8+0.2 5.9+0.2
Rs_T*_* 20.1+0.3 19.3+0.2 16.0+0.4
Ri1o_T* * 23.6+0.5 19.9+0.2 17.140.2
R*_T* * 14.9+0.3 13.8+0.2 12.0£0.3

Joint Optimization for Costs and Emissions

Ra_T* * 8.0+0.2 7.7£0.2 7.8+0.2
R5_T* * 21.5+0.3 20.8+0.1 17.3+0.3
R1o_T*_* 24.3%0.4 21.8+0.2 18.7+0.2
R*_T*_* 16.4+0.3 15.6+0.2 13.6+0.2

The superiority of using only one iteration of slope scaling can be
explained due to two separate reasons:

* Fast initial solution construction: One iteration of SSC is completed
very fast (see Table 5.9) giving the local search more time to
improve the solution before the time limit of one hour is reached.
This is a major factor for medium to large-scale instances as for
these SSC sometimes needs hundreds of iterations to converge or
does not converge at all. Consequently, the LS does not converge
to a local optimum in the given time limit.

* Diverse, suboptimal initial solution: A solution obtained after one it-
eration of SSC is already quite good (see Table 5.7) but often uses
a more diverse set of transport connections than a converged
solution, which already cut away a lot of suboptimal routes.
However, having a diverse set of opened routes seems to help
the LS to explore different regions of the search space as by con-
struction the LS favours using already established connections
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than opening new ones. If the provided initial solution includes
only a very restricted set of opened transport connections as in
a converged SSC solution one can observe that the LS usually
converges faster towards a suboptimal local minimum. In the
extreme case of using the direct delivery solution as an initial
solution, which only has direct lorry deliveries as established
routes LS can be observed to sometimes fail to find any improve-
ments at all. Therefore, it seems critical that the construction
heuristic provides a solution with a diverse set of transport con-
nections in line with findings for a similar problem reported in
Harks et al. [21]. One iteration of slope scaling provides such an
initial solution and the preliminary experiments with initializing
the LS with the direct delivery solution were discontinued.

Table 5.11: Statistical significance of using one SSC iteration to initialize the
local search compared to other SSC initialization schemes. Due
to all p-values being smaller than 0.025 (0.05 divided by two
for two comparisons, see Bonferroni correction [62] and Section
5.2.1) the hypothesis that the mean results of the local search are
independent of the slope scaling variant can be rejected.

Monotonic [\%] Cost-Matching [\ %]

Optimize for Emissions < 0.025 < 0.025
Optimize for Costs < 0.025 < 0.025
Joint Optimization < 0.025 <0.025

5.2.4.2 A Closer Look at Using Different Local Search Neighbourhoods

This section compares using different combinations of neighbourhoods
introduced in Section 4.2. Table 5.12 gives on over of the local search
variants explored. Each variant uses as a construction heuristic one
iteration of slope scaling (see previous Section 5.2.4.1).

Table 5.13 compares the results of the different LS variants introduced
in Table 5.12. Interestingly, it shows that not LS5, which uses the most
different neighbourhoods but LS2 provides the best solutions. Also, it
can be observed that LS variants making use of the cheapest rerouting
scheme in general outperform LS variants only making use of heaviest
rerouting (LS1 and LS4). This can be explained by the fact that cheapest
relative rerouting searches - per definition - for the route which best
uses a new or established transport connection and in this making
very effective use of consolidation potentials.

However, the differences between the achieved objective values in
Table 5.13 are small making the question of statistical significance
an interesting one. When optimizing for emissions Table 5.14 shows
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Table 5.12: Table of local search variants explored. Max. weight refers to a
path decomposition calculated using an unidirectional DFs based

on maximal associable weight and max. savings refers to addition-

ally using a path decomposition calculated using a bidirectional
DFS based on maximal achievable savings when changing to the
local search remove-all move (see Section 4.2). Cheapest revers to
employing cheapest-relative-cost rerouting while heaviest refers
to heaviest-first rerouting. If combined LS starts with cheapest

rerouting (see again Section 4.2).

Name Path Decomposition Rerouting Scheme
LSO Max. Weight Cheapest
LS1 Max. Weight Heaviest
LS2 Max. Weight Cheapest + Heaviest
LS3 | Max. Weight + Max. Savings Cheapest
LS4 | Max. Weight + Max. Savings Heaviest
LS5 | Max. Weight + Max. Savings Cheapest + Heaviest

Table 5.13: Results of the different local search variants defined in Table 5.12.
Variance refers to the standard deviation from the mean over ten

independent runs.

LSo [0/0] LS1 [0/0] LS2 [O/o] LS3 [0/0] LS4 [0/0]

LS5 [0/0]

Ro_T* *
R 5_T*_*

Optimize for Emissions
30.740.1 30.5+0.1 30.7#0.1 30.7#0.1 30.5+0.1

31.8+£0.1 31.6+£0.1 31.9+0.1 31.9+0.1 31.740.1

R1o_T*_* 30.9%0.1 30.6+0.1 30.9#+0.1 30.9%0.1 30.7+0.1

R* T* *

Ro T* *
R 5_T*_*

31.2+0.1 31.0£0.1 31.2#0.1 31.2#0.1 31.0+0.1
Optimize for Costs
5.9£0.2 3.3*0.1 6.0%0.2 5.9+0.2 3.5%0.1

20.2+0.2 18.9i0.2 20.3%0.2 20.2+0.2 19.0%0.2

R1io_T* * 23.840.3 23.4+0.2 23.9+0.3 23.9%0.3 23.6+0.2

R*_T*_*

Ro T* *
R 5_’1"*_*

14.9£0.2 13.2£0.2 15.0%0.2 14.9+0.2 13.4%0.2
Joint Optimization for Costs and Emissions
7.9+0.2 6.2+0.1 8.0%0.2 7.9+0.2 6.4%0.1

21.5+£0.2 20.74£0.2 21.6%0.2 21.5+0.2 20.8+0.2

R10_T*_* 24.4+0.2 24.1+0.2 24.6%0.2 24.5+0.2 24.2+0.2

R>(- T**

16.4+0.2 15.34+0.2 16.5+0.2 16.4+0.2 15.4+0.2

30.7+0.1
31.9+0.2

30.9+0.3
31.240.1

6.0+0.2
20.1£0.3
23.6£0.5
14.9%0.3

8.0+0.2
21.5+0.3
24.3%0.4
16.4+0.3

that LS variants only depending on heaviest rerouting result in statis-
tically significant different results to LS variants also depending on
cheapest rerouting. This phenomenon also appears when optimizing
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for costs (see Table 5.15) or a joint optimization (see Table 5.16). This
establishes the importance of using cheapest rerouting and that as
a stand-alone (LSO and LS3) cheapest rerouting performs superior to
heaviest rerouting. In all three significance test tables LSz, LS3, and
LS5 are statistically indistinguishable. However, comparing to LSo
sometimes yielding statistically significant results. Therefore, one can
argue that either using a second path decomposition or a second
rerouting schemes helps the LS to find better local optima, but the
presence of both is unnecessary and can even hurt. As a result, one
can recommend choosing a second rerouting schemes rather than
a second path decomposition as in the case here implementing the
second rerouting schemes is easy whereas implementing the second
path decomposition is more complex. Note that LS2 is the only LS
variant always yielding significantly better results to LS0. However, its
results still are only slightly better than LS® making the most simple
LS variant already a good choice to solve the current problem.

Table 5.14: Statistical significance of different local search variants when
optimizing for emissions. To achieve a statistical significance level
of 0.05 each individual test is performed with a significance level
of 0.01 (see Section 5.2.1)

Optimizing for Emissions

67

LSo LS1 LSz LS3 LS4 LS5
LSo - <0.01 <0.01 <0.01 <0.01 <0.01
LS1 <o.01 - <001 <0.01 <0.01 <O0.01
LS2 <o0.01 <o0.01 - 0.68 <0.01 0.09
LS3 <o0.01 <o0.01 0.68 - <0.01 0.06
LS4 <o0.01 <001 <001 <001 - < 0.01
LS5 <o0.01 <0.01 0.09 0.06 <0.01 -

Table 5.15: Statistical significance of different local search variants when
optimizing for costs. To achieve a statistical significance level of
0.05 each individual test is performed with a significance level of
0.01 (see Section 5.2.1)

Optimizing for Costs

LSo LS1 LS2 LS3 LS4 LS5
LSo - <0.01 <0.01 0.06 <0.01 0.14
LS1 <o.01 - <0.01 <0.01 <0.01 <0.01
LS2 <o0.01 <o0.01 - 0.09 <0.01 048
LS3 o0.06 <0.01 0.09 - <0.01 0.51
LS4 <001 <0.01 <001 <0.01 - <o0.01
LS5 o.14 <0.01 048 0.51 <0.01 -
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Table 5.16: Statistical significance of different local search variants when
jointly optimizing for costs and emissions. To achieve a statistical
significance level of 0.05 each individual test is performed with a
significance level of 0.01 (see Section 5.2.1)

Joint Optimization for Costs and Emissions
LSo LS1 LS2 LS3 LS4 LS5

LSo - <001 <0.01 <0.01 <O0.01 0.05
LS1 <o.01 - <0.01 <0.01 <0.01 <0.01
LS2 <o0.01 <o0.01 - 0.06 <0.01 0.72
LS3 <o0.01 <o0.01 0.06 - <0.01 0.28
LS4 <o0.01 <001 <001 <001 - < 0.01

LS5 o.05 <0.01 0.72 0.28 <o0.01 -

5.2.4.3 A Note on the Robustness of Results

Local search using slope scaling as a construction heuristic proofs
the most powerful solution algorithm for the optimization problem
introduced in this work (see Section 5.2.5). Therefore, one could ask
the question how robust solution of the LS are to slight perturbations
of the input instance. This question is examined by taking a medium
sized instance and generating the commodity distributions in it using
30 different seeds resulting in a total of 60 slightly different instances -
30 with and 30 without handling constraints.

Table 5.17 shows the result of applying LS5 on this instance set. The
variances refer to the standard deviation of the mean objective value
calculation over the 30 instances. As these standard deviations are
very low one can conclude that the results of the LS are robust with
respect to small variations of the input instance.

Table 5.17: Table showing how much the solutions of the hybrid local search
vary when the same instance is generated with 30 different seeds
(i.e. different commodity and demand distributions). For this ex-
periment, the following test instance has been chosen: fife regions,
two warehouses per region, time horizon of 14, 100 commodities.
Results are the mean improvements compared to the direct deliv-
ery solution and the standard deviations over the 30 seeds.

Optimize for | No Handling Constraints [%] Handling Constraints [%]

Emissions 37.9 £ 1.8 30.7 £ 1.3
Costs 25.4 + 1.6 247 + 1.8
Both 26.6 £ 1.5 25.0 £ 1.6
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Table 5.18: Utilization of transport units is calculated based on the maximum
(percentual) filling degree with respect to volume and weight. The
utilization values for each used transport mode are then averaged
to yield a total utilization percentage. Local Search refers to LH2
and Slope Scaling to one iteration of SSC. LS variation refers to
the standard deviation around the mean over 10 independent
runs.

Local Search [%] Slope Scaling [%] Direct Delivery [%]

Optimizing for Emissions

Rz _T* * 65.4+0.5 62.6 69.5
R5_T*_* 66.6+0.5 59.5 62.7
R1o_T*_* 58.9+0.5 51.8 54.3
R*_T*_ * 64.8+0.5 59.4 63.7
Optimizing for Costs
Ra_T*_* 70.8+1.3 66.2 69.5
Rs_T*_* 71.6+0.8 59.1 62.7
R1o_T*_* 64.7+0.7 51.2 54.3
R*_T* * 70.1+1.0 60.7 63.7
Joint Optimization for Costs and Emissions
Ra_T* * 70.1+1.1 59.7 69.5
R5_T*_* 71.5+0.7 59.4 62.7
R1o_T*_* 64.3%0.7 51.7 54.3
R*_T* * 69.7+0.9 58.2 63.7

5.2.4.4 Utilization of Transport Units

Table 5.18 shows the degree (in percent) to which transport units
are filled in the direct delivery solution, the slope scaling solution
after one iteration (as a basis for LS) and after having applied LS.
The results show that LS greatly increases the filling degree of used
transport units from the SSC solution and significantly exceeding the
direct delivery solution. Hence, one can argue that the employed LS
is effective in finding solutions making good use of newly arising
consolidation potentials. Furthermore, in the direct delivery column
only the filling degree of lorry shipments are reported as no other
transport modes are used. However, every LS solution uses at least
two modes of transport and a lot use three, hence the reported filling
degrees are averages over the transport modes and indicate very high
utilization across transport modes.

Slope scaling after one iteration yields a suboptimal but very inter-
modal solution (see discussion in Section 5.2.4.1). Therefore, it shifts
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a lot of flow on a diverse set of transport connections, which in the
direct delivery solution are only transported via direct lorry shipments
explaining its slightly lower utilization ratio.

While these findings have managerial implications as discussed in
Section 5.3, in this section an algorithmic point is raised. Table 5.19
shows that in most cases using a cheapest compared to a heaviest
rerouting scheme better utilizes existing transportation routes and
as a result makes better use of consolidation potentials. This further
explains the superiority of cheapest relative routing introduced in this
work compared to heaviest rerouting introduced by Harks et al. [21].

Table 5.19: Table showing the utilization of transport units in local search
solutions calculated either through cheapest (LS0) or heaviest
(LS1) rerouting. Utilization of transport units is calculated as in
Table 5.18. LS variation again refers to the standard deviation
around the mean over 10 independent runs.

LHo [%] LHz1 [%]
Optimizing for Emissions

R2_T* *  65.3%05 64.8+0.4
R5_T* *  66.6+0.5 66.1£0.5
R1o_T*_* 58.8+0.5 58.2+0.4
R*.T*_*  64.7+0.5 64.240.4

Optimizing for Costs
R2_T* * 70.8+1.3 70.9%0.4
Rs_T* *  71.5+0.8 71.1+0.6
R10_T*_* 64.5+0.8 64.2+0.7
R*_T* *  ro.0t1.0 69.8+0.6
Joint Optimization for Costs and Emissions
R2_T* *  ro.az1.0 69.0£0.6
R5_T* *  wi.4+o0.7 70.7+0.6
R1o_ T* * 64.1%0.7 63.5+0.7
R*_T*_*  69.6+0.8 68.7+0.6

5.2.5 Summary of Solution Approaches

Table 5.20 compares the best performing algorithmic variant of each
solution approach analyzed in the previous Sections 5.2.2, 5.2.3, and
5.2.4. It clearly shows that the hybrid local search outperforms the
other solution approaches by large margins and most prominently
when a cost term is included in the objective. It also shows that when
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optimizing for emissions only slope scaling already results in good
solutions. Furthermore, exactly solving the optimization problem fails
except for the smallest of instances.

Table 5.20: Contrasting the three different solution approaches developed
in this work by picking the best performing algorithmic variant
of each approach for comparison. Therefore, local search refers
to variant LH2 (see Table 5.12), slope scaling uses a monotonic

updating scheme (see Table 5.7), and MIP is MIP2 (see Table 5.1).

Reported results are percentual improvements over the direct
delivery solutions. Standard deviations are calculated for each
instance-group and independent of the method or objective are
mainly caused by instances having different time horizons of
7, 14 or 30 days. For the local search results the mean values
(of the instance-group mean and standard deviation) over 10
independent runs are reported.

Local Search [%] Slope Scaling [%] MIP [%]

Optimize for Emissions

Ra_T* * 30.7+10.1 29.8+10.0 27.3+13.9
R5_T*_* 31.9+10.8 29.3+11.3 15.3+18.6
R1o_T*_* 30.9+9.8 28.5+10.2 9.2+15.1
R*_T*_* 31.2+10.2 20.4%10.4 19.4+17.4
Optimize for Costs
Rz _T* * 6.0%4.9 0.9%3.4 3.8+5.8
R5_T*_* 20.3+5.2 12.3%5.6 0.0£0.0
R1o_T*_* 23.9%+5.7 16.5+5.0 -
R*_T*_* 15.0%9.3 8.3%£7.9 3.0£5.3
Joint Optimization for Costs and Emissions

Ra_T*_* 8.0%5.3 2.1%4.0 3.9+6.2
Rs_T*_* 21.6+5.8 14.7+6.4 0.0£0.0
R1o T* * 24.6+5.8 17.9+5.4 -

R* T*_* 16.5+9.1 10.0+8.6 3.0£5.6

The results are statistically significant due to the fact that the paired
differences of the mean between LH2 and LH@ are already statistically
significant but smaller by large margins than the paired differences
between the different solution approaches in Table 5.20. Hence, for
brevity the statistical significance test results are omitted.
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5.3 MANAGERIAL INSIGHTS

The following discussion is based upon the best obtained results on
each instance, which are consistently achieved by local search (see
Table 5.20). While Table 5.20 shows the value of the objective, which
may be costs, emissions or a combination of both, Table 5.21 shows the
mean costs and emissions calculated for each instance group relative
to the direct delivery solution. Based on these results the managerial
implications of optimizing for emission reductions are discussed in
Section 5.3.1, the implications of minimizing costs are discussed in
Section 5.3.2, and a joint optimization is discussed in Section 5.3.3. A
detailed analysis on the effects of collaboration on consolidation and
intermodal usage can be found in Section 5.3.4.

Table 5.21: Percentual improvement of the costs and emissions of the best
found solutions (calculated by local search variant LH2, see Section
5.2.4.2) compared to the respective quantity in the direct delivery
solution. The reported standard deviations are calculated for each
instance-group. Results are averages over 10 independent runs
and found to be robust. Results for individual instances and run-
wise standard deviations can be found in Appendix C.3.

Costs [%] Emissions [%]

Average Min. Max. Average Min. Max.
Optimize for Emissions
Ra_T* * -71+58 -16.6 59 30.7+10.1 13.8 48.6
Rs_T* * 135+7.8 -30 257 31.9+108 167 53.0
R1o_T* * 173+£8.7 -12 281 309+9.8 187 506
R*.T* * 5.6+13.0 -16.6 28.1 31.2+10.2 13.8 53.0
Optimize for Costs
Ra_T* * 6.0£49 0.4 167  8.6x4.8 1.3 18.7
R5_T* * 20.3+5.2 107 301 23.6£84 11.1 37.2
R1o_T*_* 23.9+57 16.3 308 24.3*7.3 13.0 37.7
R* T** 15.0+9.3 04 308 175+101 1.3 37.7
Joint Optimization for Costs and Emissions

Ra_T* * 4.8+56 -1.6 173 20085 47  31.1
Rs5_T* * 20.045.6 102 307 283+9.9 14.2 459
R1o_ T* * 23.9+5.9 156 313 278479 16.2 43.7
R*T** 143%+9.9 -1.6 313 24.849.8 4.7 459
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5.3.1 Concerning Minimizing Emissions

Table 5.21 shows that optimizing for emissions universally leads to
significant CO,e reduction possibilities averaging 31.2%=10.2% (13.8%
- 53.0%) independent of the size of the collaboration. However, we find
emission reduction potentials are strongly correlated with the planning
horizon. A planning horizon of 7 days lead to on average 20.5%=%3.7%
COze reduction, 14 days to 33.0%=5.2%, and 30 days to 41.1%=%7.6%.
This is due to the fact that intermodal transport has longer lead times.
Therefore, some changeover time from lorry transportation is needed
to make effective use of its possibilities.

An unexptected result is that the best solutions for small instances
with collaborating companies between two regions result on average in
slightly increased costs (7.1%=+5.8%). Interestingly, the calculated small
cost increases together with the average emission reductions of roughly
30% are consistent with a real life case study conducted in the EU in
which four companies (shippers) from two regions collaborated [63].
Hence, the results showcase the existence of a minimum necessary size
of the collaboration such that decisions aiming at emission reduction
also result in cost savings.

In general, one can conclude that larger collaborations correlate with
larger cost saving potentials and using more than two collaborating re-
gions leads to a direct net profit for collaborating companies. An open
problem is how to best distribute the costs between the collaborating
enterprises. This question of fairness is not addressed in this work,
however Cruijssen [64] shows how it can be approached in practice
based on concepts from cooperative game theory.

Note that there are three instances, two in instance group R5_Tx_x
and one in group R10_T*_x, which resulted in a cost increase when
optimizing for emissions. However, these results are very specific
outliers produced by the largest and computationally most demanding
instances in these groups (see Appendix C.3). For these three instances
the construction heuristic for the local search - one iteration of slope
scaling - needed up one hour of time and the solution could not be
improved by local search moves. Therefore, these results can be seen
as artefacts due to stopping the optimization prematurely. All three
instances are instances with handling constraints. In general, results
on the same instance with and without handling constraints active
show very similar results up to a few percentage points (see again
Appendix C.3). Hence, it can be concluded that the results from their
no handling constraints counterpart instances are a good predictor of
the results obtained when the optimization could have proceeded. All
three instances counterparts achieve double-digit cost savings strongly
supporting the assumption that these three instances would achieve
high cost savings given longer computation time.
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5.3.2 Concerning Minimizing Costs

When optimizing for transportation costs contrary to emission mini-
mization Table 5.21 showcases as expected a clear correlation of the
objective with the size of the collaboration. This is due to the fact
that larger collaborations increasingly enable cost-efficient consolida-
tion and intermodality. Significant cost reductions are possible on all
looked upon instances averaging 15.0%%9.3% (0.4% - 30.8%). Similar
to optimizing for emissions a dependence on the planning horizon is
found. Concretely, there is less saving potential for a horizon of 7 days
(12.0%%8.9%) than 14 days (15.9%=9.2%) than 30 days (17.0%=%9.1%).
This can be explained by increased consolidation possibilities when
more time periods are considered (see discussion concerning Table

5.22).

Additionally, Table 5.21 shows that as expected optimizing for trans-
portation costs simultaneously leads to emission reductions which
are more pronounced the larger the size of the collaboration and the
more time periods considered. However, emission reductions are not
as large as when optimizing for them only (see Section 5.3.1). Further-
more, there is no threshold on the size of the collaboration such that
minimizing costs would also results in reduced emissions. Therefore,
collaboration whatever the size always is a climate positive action.

5.3.3 Concerning Jointly Minimizing Costs and Emissions

Table 5.21 shows that internalizing CO,e emissions results in a good
trade-off between optimizing for costs or emissions only. It shows the
same qualitative behaviour as optimizing for costs (see Section 5.3.2).
On average it leads to only slightly less or equal cost saving solutions
while significantly improving on the CO; footprint.

That a joint optimization can result in a few outliers with slightly
better cost savings than only optimizing for costs can be seen in the
maximum found cost saving column in Table 5.21. The increased cost
savings are small and can be explained by the fact that including
an emission term in the optimization can aid finding cost-effective
solution when both objectives point towards the same regions in the
solution space.

As explained in Section 5.2 for the current optimization one tonne of
COze is priced with 100€ [59] (using the avoidance cost approach [14]).
Increasing the price tag on carbon emissions will most likely further
encourage the use of greener intermodal transport.
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Table 5.22: In-depth analysis of consolidation and intermodality. The first
column gives a measure on the relative intermodal consolidation.
It measures in percent how much less outgoing rail, ship and
cross-dock to cross-dock transport units are ordered relative to the
incoming truckloads (lorry TUs). The second column shows the
number of ordered ship and rail TUs relative to all ordered TUs.
The last column shows the percentual increase of the average
filling rate calculated over all ordered TUs compared to the direct
delivery solution. The non-relative total utilization ratio can be
found in Table 5.18. Again, reported results are averages over 10
independent runs and found to be robust.

Consolidation [%] Rail & Ship [%] Filling Rate [%]

Optimize for Emissions

R2_T* * 25.4+16.7 6.3+2.7 -5.6+9.1
R5_T* * 13.1+8.2 7.2+4.4 7.4£10.2
R1o_T*_* 20.2+10.6 7.9+5.6 13.8+13.5
R*_T*_* 19.4+13.7 6.9+4.0 3.1+12.8
Optimize for Costs
Ra_T* * 10.9£9.0 3.2+1.6 3.0%5.9
R5_T*_* 15.6+7.5 2.8+0.5 15.1+8.3
Rio_T*_* 19.5+7.7 2.9+0.6 24.8+13.8
R*_T*_* 14.3+8.7 3.0+1.1 11.8+11.8
Joint Optimization for Costs and Emissions
Ra_T* * 10.2+8.9 4.3+1.4 1.8+5.2
R5_T*_* 13.9+7.7 4.0+1.2 15.0+8.4
R1o_T* * 18.2+7.1 4.1+1.5 23.9+13.4
R*_T* * 13.1£8.5 4.1+1.4 11.1+11.8

5.3.4 A Closer Look at Consolidation and Intermodal Usage

Table 5.22 highlights intermodal consolidation, the use of greener
transport modes such as ship and rail, and the general filling rates
of ordered transport units. It shows that when optimizing for costs
or jointly for costs and emissions consolidation effects are more pro-
nounced and transport units better utilized when the size of the
collaboration increases. Furthermore, internalizing emissions leads to
higher usage of rail and ship connections. The small decrease in the
measured consolidation effect and utilization rate when optimizing
for both objectives compared to costs only can be explained due to
the fact that greener intermodal opportunities start to be viable with
less transport volume. This viability differences can be explained by
emission reductions compensating higher intermodal consolidation
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requirements, which would otherwise be necessary so that the chosen
intermodal route is cost-efficient. When optimizing for emission the
results show that there are a lot of consolidation and intermodal rout-
ing opportunities which could drastically cut emissions but are not
yet viable from a cost perspective. An emission minimizing solution
results in more than double the use of intermodal containers than
optimizing for costs only.

Another type of consolidation not shown in Table 5.22 involves ship-
ments between warehouses. These can happen either to send out
consolidated shipments or to bring in a large volume of products
into a region to satisfy its demands over multiple time periods using
one consolidated shipment. Such a large shipment of products then
requires storage in a regional warehouse over one or multiple time
periods. We find when optimizing for emissions TUs on warehouse to
warehouse connections make up on average 3.7%=%4.2% (0% - 14.9%)
of the total number of ordered TUs. When optimizing for costs they
make up 2.6%=%2.5%(0% - 8.4%) and when optimizing for both they
make up 2.4%3-2.5%(0% - 8.5%). This small decrease when optimizing
for both objectives can be explained by the increased intermodal usage.
Without horizontal collaboration (in the direct delivery solutions) this
quantity is effectively zero and hence, these results point towards an
active use of warehouse sharing.

Lastly, the average delivery time of a shipment on the last arc to a
demand node drops on average to 0.3+0.2 days when optimizing for
emissions compared to on average 1.2=0.2 days in the direct delivery
solutions. Optimizing for costs results in 0.74-0.1 days and optimizing
for both objectives results in 0.6+0.2 days. This indicates that products
are very often shipped into a demand region by means different to
direct delivery by lorry.



CONCLUSION

This work introduced a new mathematical model for tactical transport
planning in a horizontal collaboration. The model incorporates realistic
tariff structures, intermodal transport, handling capacities and storage
possibilities. Furthermore, it can be applied to plan transportation
with a diverse set of products among others supporting perishability
or special transport needs such as cooling. The model allows for sus-
tainable planning through internalizing CO»e costs. Hence, it can be
used to minimize transportation costs, emissions or both together. Sub-
sequently, graph-structures to linearize the non-linear cost-functions
induced by the tariffs are developed and a mixed-integer formulation
of the model is derived. To aid the exact solution process, multiple
valid inequalities have been developed and proven to strengthen the
model formulation.

Furthermore, a memory efficient hybrid heuristic to solve large-scale
instances has been developed. The hybrid heuristic is composed of
two parts, a matheuristic called slope scaling, which is generalized
to non-negative integer variables and a local search. In generalizing
slope scaling, a new design principle based upon monotonicity has
been found to outperform the traditional cost-matching one.

These solution techniques were successfully applied to generated
problem instances based on the real transportation infrastructure -
including railway and shipping - in the Danube Region. This revealed
significant saving potentials in both costs and emissions. As expected,
optimizing for transportation costs automatically leads to a reduced
carbon footprint. However, optimizing for the carbon footprint only
necessitates a minimum size of the collaboration for transportation
costs to simultaneously decrease. Therefore, these results support the
assumption that horizontal collaboration in warehouse-sharing and
unlocking intermodal freight transport opportunities positively impact
emissions and climate-neutral actions. As a result, further efforts need
to be made to promote collaboration in real-world settings.

Interesting future work perspectives are to incorporate operational or
strategic decisions into the model formulation. From an algorithmic
perspective, it would be interesting to incorporate stochastic elements
into the slope scaling mechanism and investigate if this allows to visit
larger regions of the search space and avoid being trapped in a solution
loop. Furthermore, it would be interesting to develop non-model based
heuristics to be able to scale to even larger instances than generated
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The conclusion will
appear in partly
shortened form in
Gosch et al. [1].
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CONCLUSION

in this work. Large fixed-charge network design problems (MCND)
are still challenging for exact and heuristic solution approaches [19,
48]. However, the standard benchmark dataset, modern heuristics
for the MCND are evaluated on [19, 20], was introduced nearly 20
years ago by Crainic et al. [65] and its instances are comparatively
small to the instances generated in this work. Exemplarely, instances
in the standard benchmark dataset have at most 100 nodes and 700
arcs. However, instances in this work can have thousands of nodes
and up to hundreds of thousands of arcs. Therefore, it would be a
worthwhile endeavour to generate a new larger benchmark dataset and
investigate state-of-the-art heuristics on how well they scale. Such an
undertaking would greatly benefit other researcher and practitioners
in choosing the correct algorithmic solution approach when confronted
with possibly real-world instances in size not represented through the
standard benchmark dataset.



Wahrlich:
Erkennst du das Da-Sein als einen Gewinn,
Erkenne: Das Nicht-Sein macht brauchbar.

— Laozi
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IMPLEMENTATION NOTES

A. 1 STRENGTHENED CAPACITY CONSTRAINTS

The instances used in this work separate two types of commodities:
those that need electricity (¢71) and those who don’t (¢2). Products of
type o1 are always perishable, products of type o0, are always non-
perishable.

An upper bound for the product-extent of type ¢ for an arc starting
at a node v in time period t and ending in time period t' is calculated
as follows: sum over the extent of all &q-products produced up to time
period t — 1 and, which won’t be expired in time period #'. Then, add
the extent of oq-products sourced by node v at time period t.

An upper bound for products of type 0> on the same arc is calculated
by summing over the extent of all c>-products supplied up to time
period t — 1 and subtracting the extent of all o»-products demanded
up to time period t. Furthermore, add all o>-products supplied by
node v at time ¢.

A.2 PATH DECOMPOSITION PSEUDOCODE

Algorithm g presents the pseudocode for how to calculate a bin and
demand path decomposition based on a unidirectional depth-first
search (see Section 4.2.1.1). It operates on a time-expanded graph
Gr = (Vr, A7) assumed to be globally accessable. Furthermore the
existence of a global unassigned flow variable x, for each arca € A7 is
assumed that initially corresponds to the flow on arc a in a calculated
initial solution.

Algorithm 9 can be adapted to the bidirectional case (see Section
4.2.1.2) by implemented a backward direction in dfs_construct and
calling it before line 11. Additionally, instead of lines 4 to 8 do iterate
over all product types o, sort arcs based on highest savings potential
and always choose the arc with the current highest savings potential
for the inner loop part.
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88 IMPLEMENTATION NOTES

Algorithm 9: Calculate Unidirectional Path Decomposition

1

2
3
4

5
6

7
8

9

10
11

12
13
14
15
16
17

18

1

]

20
21

22

23

24

25
26

27
28

2

O

30

31
32
33
34
35

Function calc_path_decomposition():

bin_path_decomp < empty list

demand_path_decomp < empty list

Select subset S of source nodes in Vi

Sort all s € S chronologically

foreach s € S in chronological order do

foreach product type o do

while there is unassinged outgoing flow of type o do

P < new empty path

Po<o

dfs_construct(P, s)

if destination node of P is of type bin then
L Add P to bin_path_decomp

else
L Add P to demand_path_decomp

foreach arc a in P do
L X ¢ x;,—P.x

Function dfs_construct(P, n):

Apest < None
X_SUMppg — —1
Xpest <— None
foreach outgoing arc a from node n do
x < Get assignable flow of type P.c to path P when
choosing arc a
x_sum < Calculate aggregated flow attribute (such as
total weight) for x
if x_sum > x_sumpes and x not empty then
Apest < @
X_SUMMpest <— X_SUTN
x_best < x

if ap,s is None then
L return

else
Add arc a5 to path P
P.x < Xpost
n < destination node of a;,;
dfs_construct(P, n)




INSTANCES TABLE

Table B.1 lists all generated instances and their properties. Note that
each row in Table B.1 corresponds to two instances one with and one
without handling capacity constraints.

Table B.1: Lists the properties of all 60 generated instances. The properties
in the table are given in the following order: number of selected
regions, number of collaborating companies, number of total ware-
houses, number of included transshipment nodes (cross-docks,
train stations and ports), number of commodities (half of which
are perishable), and time horizon T. Each row corresponds to two
instances one with and one without handling capacity constraints.

Regions Companies Warehouses Transshipment Commodities T

2 2 2 6 20 7
2 2 2 6 20 14
2 2 2 6 20 30
2 2 2 6 100 7
2 2 2 6 100 14
2 2 2 6 100 30
2 8 8 6 100 7
2 8 8 6 100 14
2 8 8 6 100 30
2 8 8 6 500 7
2 8 8 6 500 14
2 8 8 6 500 30
5 10 10 14 100 7
5 10 10 14 100 14
5 10 10 14 100 30
5 10 10 14 500 7
5 10 10 14 500 14
5 10 10 14 500 30
5 15 20 14 100 7
5 15 20 14 100 14
5 15 20 14 100 30
5 15 20 14 500 7
5 15 20 14 500 14
5 15 20 14 500 30
10 20 30 22 100 7
10 20 30 22 100 14
10 20 30 22 100 30
10 20 30 22 500 7
10 20 30 22 500 14
10 20 30 22 500 30
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DETAILED RESULT TABLES

This chapter shows the results of the applied solution procedures
on every generated instance. Individual instances are identified us-
ing R<#>_W<#>_C<#>_K<#>_T<#>_t/l. W<#> indicates total
number of warehouses and C<#> the number of collaborating com-
panies. K<#> indicates the number of commodities in the instance.

The results of applying a MIP solver on the different MIP formulation
are displayed in Section C.1. The results obtained by slope scaling can
be found in Section C.2. Section C.3 shows not the objective but the
costs and emissions of each instance when applying local search.

When not otherwise specified results are percentual improvements
with 0.00 referring to 0% and 1.00 referring to 100%.

C.1 MIXED-INTEGER PROGRAMMING

Most instances have no relative improvement as the MIP is initialized
with the direct delivery solution but fails to find an improved solution.
NaN indicates that the MIP did not fit into the available memory. Only
instances where at least one MIP fitted into memory are shown.

Table C.1: Optimize for Costs: Relative improvement on the objective func-
tion compared to the direct delivery solution obtained when using
the different MIP formulation with CPLEX 12.10. and 1h comput-

ing time.

MIP:1 MIP2 MIP3 MIP4 MIP5
R2_W2_C2_Ki1oo_T14_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Ki1oo_T14_t 0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Ki100_T30_l -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Ki1oo_T30_t -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Ki1o0o_T7_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Ki1o00_T7_t -0.00 -0.00 -0.00 -0.00  0.00
R2_W2_C2_K20_T14_1 0.11 0.14 0.14 0.13 0.14
R2_W2_C2_K20_T14_t 0.12 0.13 0.13 0.14 0.14
R2_W2_C2_K20_T30_1 0.06 0.17 0.16 0.15 0.15

Continued on next page
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Table C.1: Optimize for Costs: Relative improvement on the objective func-
tion compared to the direct delivery solution obtained when using
the different MIP formulation with CPLEX 12.10. and 1h comput-

ing time.

MIP1 MIP2 MIP3 MIP4 MIP5
R2_W2_C2_K20_T30_t -0.00 0.15 0.15 0.17  0.15
R2_W2_C2_K20_T7_1 0.07 0.07 0.07 0.07 0.07
R2_W2_C2_K20_T7_t 0.07 0.07 0.07 0.07 0.07
R2_W8_C8 K100 _T14_l1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_K1o0_T14_t -0.00  -0.00 -0.00 -0.00 -0.00
R2_W8_C8_K100_T30_l -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_K100_T30_t -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_Ki100_T7_1 -0.00 005 0.06 0.06 0.05
R2_W8_C8_Ki1o00_T7_t -0.00 0.04 0.05 0.05 -0.00
R2_W8_C8_Ks500_T14_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8 _Ks00_T14_t -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_Ks00_T7_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_K500_T7_t -0.00 -0.00 -0.00 -0.00 -0.00

R5_W10_C10_K100_T14.1 -0.00 -0.00 -0.00 -0.00 -0.00

R5_Wi1o0_C10_Kioo_T14_t -0.00 -0.00 -0.00 -0.00 -0.00

R5_W10_C10_K100_T7_l -0.00 -0.00 -0.00 -0.00 -0.00
R5_W10_C10_K1o00_T7_t -0.00 -0.00 -0.00 -0.00 -0.00
R5_W20_C15_K100_T14.1 -0.00 NaN NaN NaN NaN
R5_W20_C15 K100 _T7_1 -0.00 -0.00 -0.00 -0.00 -0.00
R5_W20_C15_K100_T7_t -0.00 -0.00 -0.00 -0.00 -0.00

R10_W30_C20_Ki100_T7_1 -0.oo0 NaN NaN NaN NaN

Table C.2: Optimize for Emissions: Relative improvement on the objective
function compared to the direct delivery solution obtained when
using the different MIP formulation with CPLEX 12.10. and 1h
computing time.

MIP1 MIP2 MIP3 MIP4 MIPs

R2_W2_C2_K100_T14_l 039 039 039 039 0.39
R2_W2_C2_Ki1o0o_T14_t 034 034 034 034 0.34
R2_W2_C2_K100_T30_1 0.49 049 049 049  0.49
R2_W2_C2_K1o00_T30_t 041 041 041 041  0.41
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Table C.2: Optimize for Emissions: Relative improvement on the objective
function compared to the direct delivery solution obtained when
using the different MIP formulation with CPLEX 12.10. and 1h
computing time.

MIP1 MIP2 MIP3 MIP4 MIPs5

R2_W2_C2_Ki100_T7_1 0.24 024 024 024 024
R2_W2_C2_Ki100_T7_t 0.21 0.21 0.21 0.21 0.21
R2_W2_C2_K20_T14_1 0.29 0.29 0.29 0.29 0.29
R2_W2_C2_K20_Ti14_t 028 028 028 028 028
R2_W2_C2_K20_T30_1 039 039 039 039 0.39
R2_W2_C2_K20_T30_t 039 039 039 0.39 0.39
R2_W2_C2_K20_T7_1 0.17 0.7 0.17 017  0.17
R2_W2_C2_K20_T7_t 0.16 0.16 0.16 0.16 0.16
R2_W8_C8_K100_T14_1 035 035 0.35 035 0.35
R2_W8_C8_Kioo_Ti4_t 030 030 030 0.30 0.30
R2_W8_C8_K100_T30_l 0.47 0.47 047 047 047
R2_W8_C8_K100_T30_t 0.01 0.01 0.01 0.01 0.01
R2_W8_C8_Ki100_T7_l 0.23 0.23 0.23 0.23 0.23
R2_W8_C8_Ki1oo_T7_t 0.20 0.20 0.20 0.20  0.20
R2_W8_C8_Ks500_T14_1 035 0.35 0.35 0.35 0.35
R2_W8_C8_Ks500_T14_t 0.04 0.03 004 0.05 0.04
R2_W8_C8_Ks500_T30_1 0.45 0.45 0.45 045  0.45
R2_W8_C8_Ks00_T30_t 0.00 0.00 0.00 0.00  0.00
R2_W8_C8_Ks00_T7_1 0.22 022 022 022 0.22
R2_W8_C8_Ks00_T7_t 0.19 0.19 020 0.19 0.19

R5_W10_C10_K100_T14_l 0.42 042 042 043 041
R5_W10_C10_Ki1o0o0_T14_t -0.00 -0.00 -0.00 -0.00 -0.00
R5_W10_C10_K100_T30_1 051 0.51 051 051  0.51
R5_W10_C10_K100_T30_t 0.00 0.00 0.00 0.00  0.00
R5_W10_C10_K100_T7_1 0.25 0.25 0.25 0.25 0.25
R5_W10_C10_Kioo_T7_t 0.21 0.05 021 021 0.06

R5_W10_C10_Ks00_T14_1 035 034 035 035 0.34

R5_W10_C10_Ks00_T14_t 0.00 0.00 0.00 0.00 0.00
R5_W10_C10_Ks500_T30_1 0.00 0.00 0.00 0.00 0.00
R5_W10_C10_K500_T30_t 0.00 0.00 0.00 0.00 0.00
R5_W10_C10_K500_T7_1 0.22 022 022 022 0.22
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Table C.2: Optimize for Emissions: Relative improvement on the objective
function compared to the direct delivery solution obtained when
using the different MIP formulation with CPLEX 12.10. and 1h
computing time.

MIP1 MIP2 MIP3 MIP4 MIPs

R5_W10_C10_Ks00_T7_t -0.00 -0.00 -0.00 -0.00 -0.00
R5_W20_C15_K100_T14_1 038 039 038 039 038
R5_W20_C15_K100_T14_t 0.00 0.00 0.00 0.00  0.00
R5_W20_C15_K100_T30_1 051 051 051 051 0.51
R5_W20_C15_K100_T30_t -0.00 -0.00 -0.00 ~-0.00 -0.00
R5_W20_C15_K100_T7_l 026 026 026 026 026
R5_W20_C15_K100_T7_t 0.03 -0.00 0.03 -0.00 -0.00

R5_W20_C15_Ks500_T14_1 0.00 0.35 035 0.00 0.35

R5_W20_C15_K500_T14_t 0.00 0.00 0.00 0.00  0.00
R5_W20_C15_K500_T7_1 0.22 0.22 0.22 0.22 0.22
R5_W20_C15_Ks500_T7_t 0.00 0.00 0.00 0.00 0.00

R10_W30_C20_K100_T14.1 o037 o037 037 037 0.37
R10_W30_C20_K100_T14_t -0.00 -0.00 -0.00 -0.00 -0.00
R10_W30_C20_K100_T30.1 ©0.00 ©0.00 o0.00 0.00 0.00
R10_W30_C20_K100_T30_.t ©0.00 000 ©0.00 000 0.00
R10_W30_C20_K100_T7_1 030 030 030 030 0.30
R10_W30_C20_K100_T7_t 0.00 0.00 0.00 0.00  0.00
R10_W30_C20_Ks500_T14.1 -0.00 -0.00 -0.00 -0.00 -0.00
R10_W30_C20_K500_T14.t -0.00 -0.00 -0.00 -0.00 -0.00
R10_W30_C20_K500_T7_1 0.25 0.25 0.25 0.25 0.25

R10_W30_C20_K500_T7_t 0.00 0.00 0.00 0.00  0.00

Table C.3: Joint Optimization for Costs and Emissions: Relative improve-
ment on the objective function compared to the direct delivery
solution obtained when using the different MIP formulation with
CPLEX 12.10. and 1h computing time.

MIP1 MIP2 MIP3 MIP4 MIPs

R2_W2_C2_K100_T14_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Ki1o0o_T14_t -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_K100_T30_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Kio00_T30_t -0.00 -0.00 -0.00 -0.00 -0.00
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Table C.3: Joint Optimization for Costs and Emissions: Relative improve-
ment on the objective function compared to the direct delivery
solution obtained when using the different MIP formulation with
CPLEX 12.10. and 1h computing time.

MIP1 MIP2 MIP3 MIP4 MIPs

R2_W2_C2_Ki1o00_T7_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W2_C2_Ki1o00_T7_t -0.00 -0.00 -0.00 0.01 0.02
R2_W2_C2 K20 _Ti4_1 0.12 014 0.13 0.14 0.15
R2_W2_C2_ K20 _T14_t 0.12 014 0.14 0.14 0.15
R2_W2_C2_K20_T30_1 007 0.16 0.15 0.17 0.1y
R2_W2_C2_K20_T30_t -0.00 o0.17 0.18 0.17 0.18
R2_W2_C2_K20_T7_1 0.07 0.07 0.07 0.07 0.07
R2_W2_C2_K20_T7_t 0.07 0.07 0.07 0.07 0.07
R2_W8_C8_K1o0o_T14_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_K1oo0_T14_t -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_K100_T30_l -0.00 -0.00 -0.00 -0.00 ~-0.00
R2_W8_C8_K100_T30_t -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_K1o00_T7_1 -0.00  0.04 0.03 -0.00 -0.00
R2_W8_C8_Ki1oo_T7_t 0.00 0.03 -0.00 -0.00 -0.00

R2_W8_C8 _Ks00_T14_1 -0.00 -0.00 NaN -0.00 -0.00
R2_W8_C8_Ks00_T14_t -0.00 -0.00 NaN -0.00 -0.00
R2_W8_C8_Ks00_T7_1 -0.00 -0.00 -0.00 -0.00 -0.00
R2_W8_C8_Ks00_T7_t -0.00 -0.00 -0.00 -0.00 -0.00
Rs5_W10_C10_K100_T14_1 -0.00 -0.00 -0.00 -0.00 -0.00
R5_W1o0_C10_Ki00_T14_t -0.00 -0.00 -0.00 -0.00 -0.00
R5_W1o0_C10_K100_T7_l -0.00 -0.00 -0.00 -0.00 -0.00
R5_W10_C10_Kioo_T7_t -0.00 -0.00 -0.00 -0.00 -0.00
R5_W10_C10_Ks500_T7_1 -0oo NaN NaN NaN NaN
R5_W10_C10_Ks500_T7 t -0.00 NaN NaN NaN NaN
R5_W20_C15_K100_T14.1 o0.00 NaN NaN NaN NaN
R5_W20_C15 _K1o0_T7_1 -0.00 -0.00 -0.00 -0.00 -0.00
R5_W20_C15_K100_T7_t -0.00 -0.00 -0.00 -0.00 -0.00
R1io_W30_C20_K100_T7_1 -0.00 NaN NaN NaN NaN

C.2 SLOPE SCALING



C.2 SLOPE SCALING

Table C.4: Optimize for Costs: Relative improvement on the objective func-
tion compared to the direct delivery solution obtained when ap-
plying slope scaling and stopping after the first iteration or until it
converged using the monotonic or cost-matching update scheme.

1 Iteration Monotonic Cost-Matching

R2_W2_C2_K100_T14_1 -0.02 -0.00 -0.02
R2_W2_C2_K100_T14_t -0.01 0.01 -0.01
R2_W2_C2_K100_T30_l 0.00 0.01 0.00
R2_W2_C2_Ki1o0o_T30_t -0.01 0.01 -0.01
R2_W2_C2_Ki1o00_T7_1 -0.04 -0.00 -0.02
R2_W2_C2_Kioo_Ty_t -0.03 -0.00 -0.02
R2_W2_C2_K20_Ti4_1 -0.06 -0.03 -0.05
R2_W2_C2_K2o0_T14_t -0.04 -0.03 -0.01
R2_W2_C2_K20_T30_1 -0.00 0.03 0.01
R2_W2_C2_K20_T30_t 0.04 0.04 0.04
R2_W2_C2_K20_T7_1 -0.11 -0.05 -0.08
R2_W2_C2_K20_T7_t -0.08 -0.04 -0.08
R2_W8_C8_K100_T14_1 0.03 0.03 0.03
R2_W8_C8_Kioo_T14_t 0.03 0.03 0.03
R2_W8_C8_K100_T30_l 0.10 0.10 0.10
R2_W8_C8_Ki100_T30_t 0.08 0.08 0.08
R2_W8_C8_Ki100_T7_l -0.01 -0.00 -0.01
R2_W8_C8_K100_T7_t -0.00 -0.00 -0.00
R2_W8_C8_Ks00_T14_1 -0.02 -0.00 -0.01
R2_W8_C8_Ks500_T14_t -0.02 -0.00 -0.01
R2_W8_C8_Ks500_T30_1 -0.01 0.02 0.01
R2_W8_C8_Ks00_T30_t -0.01 0.02 0.00
R2_W8_C8_Ks00_T7_1 -0.01 0.00 -0.00
R2_W8_C8_Ks500_T7_t -0.01 0.00 -0.00
R5_W10_C10_Ki100_T14_1 0.06 0.15 0.12
R5_W10_C10_Ki1o0o_T14_t 0.08 0.14 0.11
R5_W10_C10_K100_T30_1 0.14 0.21 0.18
R5_W10_C10_K100_T30_t 0.14 0.20 0.14
R5_W10_C10_Ki100_T7_1 -0.02 0.07 0.05
R5_W10_C10_Kioo_T7_t -0.01 0.06 0.04
R5_W10_C10_K500_T14_1 0.05 0.10 0.08
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Table C.4: Optimize for Costs: Relative improvement on the objective func-
tion compared to the direct delivery solution obtained when ap-
plying slope scaling and stopping after the first iteration or until it
converged using the monotonic or cost-matching update scheme.

1 Iteration Monotonic

Cost-Matching

R5_W10_C10_Ks00_T14_t 0.05
R5_W10_C10_K500_T30_1 0.10
R5_W10_C10_Ks00_T30_t 0.10
R5_W10_C10_K500_T7_1 0.01
R5_W10_C10_Ks00_T7_t 0.01
R5_W20_C15_K100_T14_l 0.06
R5_W20_Ci15_K100_T14_t 0.07
R5_W20_C15_K100_T30_l1 0.13
R5_W20_C15_K100_T30_t 0.15
R5_W20_C15_K100_T7_1 -0.03
R5_W20_C15_K100_T7_t -0.02
R5_W20_C15_Ks500_T14_1 0.06
R5_W20_C15_Ks500_T14_t 0.07
R5_W20_C15_K500_T30_1 0.12
R5_W20_C15_Ks500_T30_t 0.12
R5_W20_C15_Ks500_T7_1 0.01
R5_W20_C15_Ks500_T7_t 0.01
R10_W30_C20_K100_T14_1 0.07
R10_W30_C20_K100_T14_t 0.10
R10_W30_C20_K100_T30_1 0.15
R10_W30_C20_Ki100_T30_t 0.18
R10_W30_C20_K100_T7_1 0.03
R10_W30_C20_K100_T7_t 0.06
R10_W30_C20_K500_T14_1 0.07
R10_W30_C20_Ks500_T14_t 0.08
R10_W30_C20_Ks500_T7_1 0.03

R10_W30_C20_K500_T7_t 0.03

0.09
0.14
0.14
0.04
0.03
0.15
0.14
0.23
0.19
0.07
0.07
0.13
0.13
0.18
0.17
0.07
0.06
0.20
0.19
0.26
0.18
0.16
0.16
0.17
0.14
0.10

0.09

0.07
0.12
0.10
0.05
0.03
0.11
0.11
0.19
0.18
0.05
0.05
0.12
0.11
0.12
0.12
0.06
0.06
0.19
0.19
0.18
0.18
0.14
0.14
0.14
0.08
0.09

0.08




C.2 SLOPE SCALING

Table C.5: Optimize for Emissions: Relative improvement on the objective
function compared to the direct delivery solution obtained when
applying slope scaling and stopping after the first iteration or
until it converged using the monotonic or cost-matching update

scheme.

1 Iteration Monotonic Cost-Matching
R2_W2_C2_Ki1o0o_T14_l 0.39 0.39 0.39
R2_W2_C2_Ki1o0_T14_t 0.30 0.30 0.30
R2_W2_C2_K100_T30_l 0.48 0.48 0.48
R2_W2_C2_Kioo_T30_t 0.36 0.36 0.36
R2_W2_C2_Ki1o00_T7_1 0.23 0.23 0.23
R2_W2_C2_Ki1o00_T7_t 0.17 0.18 0.17
R2_W2_C2_K20_T14_1 0.27 0.27 0.27
R2_W2_C2_K20_T14_t 0.23 0.24 0.23
R2_W2_C2_K20_T30_l 0.37 0.37 0.37
R2_W2_C2_K20_T30_t 0.32 0.33 0.34
R2_W2_C2_K20_T7_1 0.16 0.16 0.16
R2_W2_C2_K2o0_T7_t 0.13 0.13 0.13
R2_W8_C8_K1o00_T14_1 0.35 0.35 0.35
R2_W8_C8_Ki1o0_T14_t 0.26 0.27 0.27
R2_W8_C8_K100_T30_l 0.47 0.47 0.47
R2_W8_C8_K100_T30_t 0.35 0.36 0.36
R2_W8_C8_K100_T7_1 0.22 0.22 0.22
R2_W8_C8_Kioo_T7_t 0.15 0.16 0.15
R2_W8_C8_Ks500_T14_1 0.35 0.35 0.35
R2_W8_C8 _Ks00_T14_t 0.30 0.30 0.30
R2_W8_C8_Ks00_T30_1 0.44 0.44 0.44
R2_W8_C8_Ks500_T30_t 0.37 0.37 0.37
R2_W8_C8_Ks500_T7_1 0.22 0.22 0.22
R2_W8_C8_Ks500_T7_t 0.18 0.18 0.18
R5_W10_C10_K100_T14_1 0.37 0.38 0.38
R5_W10_C10_K100_T14_t 0.24 0.26 0.25
R5_W10_C10_K100_T30_l 0.50 0.51 0.51
R5_W10_C10_K100_T30_t 0.33 0.34 0.33
R5_W10_C10_K100_T7_1 0.17 0.19 0.18
R5_W10_C10_K100_T7_t 0.12 0.14 0.12
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Table C.5: Optimize for Emissions: Relative improvement on the objective
function compared to the direct delivery solution obtained when
applying slope scaling and stopping after the first iteration or
until it converged using the monotonic or cost-matching update

scheme.

1 Iteration Monotonic

Cost-Matching

R5_W10_C10_Ks00_T14_1
R5_W10_C10_Ks00_T14_t
R5_W10_C10_K500_T30_1
R5_W10_C10_Ks00_T30_t
R5_W10_C10_Ks00_T7_1
R5_W10_C10_Ks00_T7_t
R5_W20_C15_K100_T14_1
R5_W20_C15_K100_T14_t
R5_W20_C15_K100_T30_1
R5_W20_C15_K100_T30_t
R5_W20_C15_K100_T7_1
R5_W20_C15_K100_T7_t
R5_W20_C15_Ks500_T14_1
R5_W20_C15_Ks500_T14_t
R5_W20_C15_K500_T30_1
R5_W20_C15_Ks500_T30_t
R5_W20_C15_Ks500_T7_1
R5_W20_C15_Ks500_T7_t
R10_W30_C20_K100_T14_1
R10_W30_C20_K100_T14_t
R10_W30_C20_K100_T30_1
R10_W30_C20_Ki100_T30_t
R10_W30_C20_K100_T7_l
R10_W30_C20_K100_T7_t
R10_W30_C20_K500_T14_1
R10_W30_C20_K500_T14_t
R10_W30_C20_K500_T7_1
R10_W30_C20_K500_T7_t

0.33
0.27

0.44
0.30
0.20
0.15
0.36
0.25
0.49

0.33
0.17

0.12

0.33
0.26

0.45
0.27
0.19
0.14
0.35
0.25
0.48
0.31
0.24
0.16
0.35
0.21
0.22

0.15

0.33
0.27

0.45
0.30
0.20
0.15
0.38
0.26
0.51
0.34
0.19
0.15
0.35
0.27
0.46
0.27
0.20
0.15

0.37
0.25

0-49
0.31
0.27
0.19
0.37
0.21
0.23

0.16

0.33
0.27

0-45
0.30
0.20
0.15
0.37
0.27
0.50
0.33
0.19
0.15

0.34
0.26

0.45
0.27
0.20
0.14
0.37
0.25
0.48
0.31
0.27
0.20
0.36
0.21
0.23

0.15




C.2 SLOPE SCALING

Table C.6: Joint Optimization for Costs and Emissions: Relative improve-
ment on the objective function compared to the direct delivery
solution obtained when applying slope scaling and stopping after
the first iteration or until it converged using the monotonic or
cost-matching update scheme.

1 Iteration Monotonic Cost-Matching

R2_W2_C2_Ki1o0o_T14_l 0.01 0.01 0.01
R2_W2_C2_Ki1o0_T14_t 0.01 0.01 0.01
R2_W2_C2_K100_T30_l 0.03 0.04 0.03
R2_W2_C2_K1o00_T30_t 0.02 0.02 0.02
R2_W2_C2_Ki100_T7_1 -0.03 0.00 -0.02
R2_W2_C2_Ki1o00_T7_t -0.03 0.00 -0.02
R2_W2_C2_K20_T14_1 -0.07 -0.01 -0.02
R2_W2_C2_K20_Ti4_t -0.05 -0.01 -0.00
R2_W2_C2_K20_T30_l -0.01 0.03 0.03
R2_W2_C2_K20_T30_t 0.01 0.04 0.05
R2_W2_C2_K20_T7_1 -0.11 -0.06 -0.08
R2_W2_C2_K20_T7_t -0.11 -0.04 -0.05
R2_W8_C8_K1o00_T14_1 0.02 0.03 0.02
R2_W8_C8_Ki1o0_T14_t 0.03 0.04 0.03
R2_W8_C8_K100_T30_l 0.12 0.12 0.12
R2_W8_C8_K1o0o_T30_t 0.11 0.12 0.11
R2_W8_C8_K100_T7_1 0.00 0.01 0.00
R2_W8_C8_Ki100_T7_t 0.01 0.01 0.01
R2_W8_C8_K500_T14_1 0.01 0.02 0.02
R2_W8_C8 _Ks00_T14_t 0.01 0.02 0.02
R2_W8_C8_Ks00_T30_1 0.03 0.05 0.04
R2_W8_C8_Ks500_T30_t 0.03 0.04 0.04
R2_W8_C8_Ks00_T7_1 0.00 0.00 0.00
R2_W8_C8_Ks500_T7_t 0.00 0.00 0.01
R5_W10_C10_K100_T14_1 0.12 0.18 0.15
R5_W10_C10_K100_T14_t 0.10 0.15 0.11
R5_W10_C10_K100_T30_l 0.20 0.25 0.23
R5_W10_C10_K100_T30_t 0.18 0.21 0.18
R5_W10_C10_K100_T7_l 0.00 0.08 0.05
R5_W10_C10_K100_T7_t 0.03 0.07 0.04

Continued on next page

99



100

DETAILED RESULT TABLES

Table C.6: Joint Optimization for Costs and Emissions: Relative improve-
ment on the objective function compared to the direct delivery
solution obtained when applying slope scaling and stopping after
the first iteration or until it converged using the monotonic or
cost-matching update scheme.

1 Iteration Monotonic

Cost-Matching

R5_W10_C10_Ks00_T14_1
R5_W10_C10_Ks00_T14_t
R5_W10_C10_K500_T30_1
R5_W10_C10_Ks00_T30_t
R5_W10_C10_Ks00_T7_1
R5_W10_C10_Ks00_T7_t
R5_W20_C15_K100_T14_1
R5_W20_C15_K100_T14_t
R5_W20_C15_K100_T30_1
R5_W20_C15_K100_T30_t
R5_W20_C15_K100_T7_1
R5_W20_C15_K100_T7_t
R5_W20_C15_Ks500_T14_1
R5_W20_C15_Ks500_T14_t
R5_W20_C15_K500_T30_1
R5_W20_C15_Ks500_T30_t
R5_W20_C15_Ks500_T7_1
R5_W20_C15_Ks500_T7_t
R10_W30_C20_K100_T14_1
R10_W30_C20_K100_T14_t
R10_W30_C20_K100_T30_1
R10_W30_C20_Ki100_T30_t
R10_W30_C20_K100_T7_l
R10_W30_C20_K100_T7_t
R10_W30_C20_K500_T14_1
R10_W30_C20_K500_T14_t
R10_W30_C20_K500_T7_1
R10_W30_C20_K500_T7_t

0.10
0.09
0.16
0.15
0.05
0.04
0.11
0.11
0.20
0.20

-0.01
0.01
0.12
0.10
0.19
0.16
0.05
0.04
0.12
0.13
0.21
0.22
0.06
0.07
0.13
0.12
0.06

0.06

0.14
0.13
0.19
0.17
0.07
0.05
0.17
0.16
0.27
0.21
0.09
0.08
0.16
0.15
0.22
0.20
0.08
0.07
0.22
0.19
0.28
0.22
0.17
0.15
0.19
0.15
0.12

0.10

0.12
0.09
0.17
0.15
0.07
0.05
0.13
0.12
0.21
0.20
0.07
0.05
0.15
0.11
0.19
0.16
0.08
0.06
0.20
0.17
0.23
0.22
0.14
0.14
0.17
0.12
0.10

0.09
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For brevity only result tables useful for the discussions in Chapter 5

are given.

Costs and Emissions of Local Search Results

Table C.7: Optimize for Costs: Relative improvement on costs and emissions
compared to the direct delivery solution obtained when applying
the most successful heuristic (local search variant LS2)

Costs [%] Std [%] Emissions [%] Std [%]
R2_W2_C2_Ki1o0o_T14_1 2.6 0.1 10.3 0.3
R2_W2_C2_Kio0_T14_t 1.9 0.2 7.8 0.4
R2_W2_C2_K100_T30_l 3.3 0.1 14.7 0.7
R2_W2_C2_Ki100_T30_t 2.0 0.2 10.2 0.4
R2_W2_C2_Ki1o0o_T7_1 0.5 0.2 1.5 0.9
R2_W2_C2_Kioo0_T7_t 0.4 0.2 1.3 1.1
R2_W2_C2_K20_T14_1 8.0 0.5 7.1 0.2
R2_W2_C2_K20_Ti4_t 7.3 0.6 7.7 0.4
R2_W2_C2_K20_T30_1 12.6 0.4 12.3 0.4
R2_W2_C2_K20_T30_t 12.3 0.3 12.7 0.2
R2_W2_C2_K20_T7_1 1.2 0.0 2.7 0.0
R2_W2_C2_K2o0_T7_t 1.3 0.0 43 0.3
R2_W8_C8_K1o00_T14_1 11.2 0.3 11.3 0.3
R2_W8_C8_Kio0_T14_t 11.1 0.4 11.3 0.4
R2_W8_C8_K100_T30_l 16.7 0.2 18.7 0.1
R2_W8_C8_K100_T30_t 15.8 0.2 17.8 0.3
R2_W8_C8_K100_T7_1 6.5 0.5 6.3 0.3
R2_W8_C8_Kioo_T7_t 6.6 0.3 6.4 0.3
R2_W8_C8_Ks500_T14_1 3.5 0.2 6.8 0.5
R2_W8_C8 _Ks00_T14_t 3.6 0.2 6.8 0.6
R2_W8_C8_Ks500_T30_1 4.9 0.1 11.2 0.3
R2_W8_C8_Ks500_T30_t 4.8 0.1 10.6 0.3
R2_W8_C8_Ks00_T7_1 2.4 0.1 3.2 0.5
R2_W8_C8_Ks00_T7_t 2.4 0.1 3.3 0.3
R5_W10_C10_K100_T14_1 25.1 0.3 28.1 0.4
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Table C.7: Optimize for Costs: Relative improvement on costs and emissions
compared to the direct delivery solution obtained when applying
the most successful heuristic (local search variant LS2)

Costs [%] Std [%] Emissions [%] Std [%]
R5_W1o0_C10_K100_T14_t 24.0 0.3 24.9 0.5
R5_W10_C10_K100_T30_1 29.2 0.1 37.2 0.4
R5_W10_C10_K1o0o_T30_t 25.4 0.3 32.7 0.3
R5_W10_C10_K100_T7_1 19.5 0.2 14.2 0.5
R5_W10_C10_K100_T7_t 19.4 0.4 13.6 0.6
R5_W10_C10_K500_T14_1 17.2 0.2 23.8 0.4
R5_W10_C10_Ks00_T14_t 16.6 0.1 22.9 0.3
R5_W10_C10_K500_T30_1 19.2 0.2 31.2 0.2
R5_W10_C10_Ks00_T30_t 16.7 0.1 30.4 0.3
R5_W10_C10_K500_T7_1 11.1 0.1 12.9 0.4
R5_W10_C10_Ks00_T7_t 10.7 0.1 11.1 0.3
R5_W20_C15_K100_T14_l 26.0 0.3 27.3 0.5
R5_W20_C15_K100_T14_t 25.4 0.3 25.0 0.2
R5_W20_C15_K100_T30_1 30.1 0.3 35.0 0.3
R5_W20_C15_K100_T30_t 26.5 0.3 31.1 0.2
R5_W20_C15_K100_T7_l 19.4 0.4 15.3 0.5
R5_W20_C15_K100_T7_t 19.4 0.3 14.8 0.3
R5_W20_C15_Ks500_T14_1 20.2 0.2 24.5 0.4
R5_W20_C15_Ks500_T14_t 19.2 0.2 22.8 0.3
R5_W20_C15_Ks500_T30_1 20.4 0.3 32.0 0.1
R5_W20_C15_K500_T30_t 17.4 0.2 31.0 0.2
R5_W20_C15_Ks500_T7_1 14.9 0.1 12.5 0.2
R5_W20_C15_Ks500_T7_t 14.4 0.1 11.2 0.4
R10_W30_C20_K100_T14_1 30.4 0.2 29.4 0.2
R10_W30_C20_K100_T14_t 28.1 0.3 25.4 0.3
R10_W30_C20_K100_T30_1 30.8 0.3 37.7 0.2
R10_W30_C20_K100_T30_t 23.2 0.3 30.8 0.2
R10_W30_C20_K100_T7_l 27.6 0.4 22.2 0.3
R10_W30_C20_K100_T7_t 27.3 0.4 20.3 0.4
R10_W30_C20_K500_T14_1 21.6 0.2 26.1 0.2
R10_W30_C20_Ks500_T14_t 16.7 0.2 22.8 0.2
R10_W30_C20_K500_T7_1 17.2 0.1 15.5 0.1
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Table C.7: Optimize for Costs: Relative improvement on costs and emissions
compared to the direct delivery solution obtained when applying
the most successful heuristic (local search variant LS2)

Costs [%]

Std [%]

Emissions [%] Std [%]

R10_W30_C20_Ks500_T7_t

16.3

0.2

13.0 0.3

Table C.8: Optimize for Emissions: Relative improvement on costs and emis-
sions compared to the direct delivery solution obtained when
applying the most successful heuristic (local search variant LS2).

Costs [%] Std [%] Emissions [%] Std [%]
R2_W2_C2_Ki1o0o_T14_l -10.7 0.0 38.9 0.0
R2_W2_C2_Kioo_T14_t -11.3 0.3 32.1 0.1
R2_W2_C2_K100_T30_l -10.0 0.1 48.6 0.0
R2_W2_C2_Ki100_T30_t -12.1 0.2 38.2 0.2
R2_W2_C2_Ki1o00_T7_1 -14.4 0.0 23.4 0.0
R2_W2_C2_Kio0o0_T7_t -12.2 0.6 18.9 0.2
R2_W2_C2_K20_T14_1 -7.1 0.0 28.1 0.0
R2_W2_C2_K20_Ti4_t -2.0 0.5 26.2 0.1
R2_W2_C2_K20_T30_1 -1.5 0.4 38.4 0.0
R2_W2_C2_K2o0_T30_t 1.4 0.2 36.1 0.3
R2_W2_C2_K20_T7_1 -16.6 0.0 16.5 0.0
R2_W2_C2_K2o0_T7_t -11.7 0.0 13.8 0.0
R2_W8_C8_K100_T14_1 -3.7 0.1 35.0 0.0
R2_W8_C8_Ki1o00_T14_t -1.0 0.3 28.4 0.1
R2_W8_C8_K100_T30_l 3.9 0.1 46.9 0.0
R2_W8_C8_K1o0o_T30_t 5.9 0.1 38.5 0.1
R2_W8_C8_K100_T7_1 -6.4 0.0 22.5 0.0
R2_W8_C8_Kioo_T7_t -3.2 0.4 16.4 0.1
R2_W8_C8_Ks500_T14_1 -10.8 0.0 35.2 0.0
R2_W8_C8_Ks500_T14_t -9.4 0.2 30.9 0.1
R2_W8_C8_Ks500_T30_1 -10.2 0.0 44.5 0.0
R2_W8_C8_Ks500_T30_t -8.4 0.1 38.1 0.0
R2_W8_C8_Ks00_T7_1 -10.5 0.0 22.4 0.0
R2_W8_C8_Ks00_T7_t -7.4 0.2 18.8 0.1
R5_W10_C10_Ki100_T14_1 20.3 0.2 40.9 0.1
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Table C.8: Optimize for Emissions: Relative improvement on costs and emis-
sions compared to the direct delivery solution obtained when
applying the most successful heuristic (local search variant LS2).

Costs [%] Std [%] Emissions [%] Std [%]
R5_W10_C10_K1o00_T14_t 19.6 0.2 31.1 0.1
R5_W10_C10_K100_T30_1 25.7 0.1 53.0 0.1
R5_W10_C10_K1o0o_T30_t 22.3 0.3 38.6 0.2
R5_W10_C10_K100_T7_1 12.2 0.2 22.2 0.1
R5_W10_C10_K100_T7_t 13.3 0.3 18.2 0.2
R5_W10_C10_K500_T14_1 11.5 0.1 34.9 0.0
R5_W10_C10_Ks00_T14_t 9.8 0.2 30.1 0.1
R5_W10_C10_K500_T30_1 14.8 0.1 45.9 0.0
R5_W10_C10_Ks00_T30_t -3.0 0.1 29.9 0.1
R5_W10_C10_K500_T7_1 5.3 0.1 21.6 0.0
R5_W10_C10_Ks00_T7_t 4.0 0.2 16.7 0.1
R5_W20_C15_K100_T14_l 18.2 0.1 39.8 0.0
R5_W20_C15_K100_T14_t 20.4 0.3 31.8 0.1
R5_W20_C15_K100_T30_1 25.0 0.1 51.7 0.1
R5_W20_C15_K100_T30_t 22.2 0.3 37.8 0.2
R5_W20_C15_K100_T7_1 12.5 0.2 23.3 0.1
R5_W20_C15_K100_T7_t 13.6 0.3 19.0 0.2
R5_W20_C15_Ks500_T14_1 14.5 0.1 36.2 0.0
R5_W20_C15_Ks500_T14_t 12.6 0.1 29.7 0.1
R5_W20_C15_Ks500_T30_1 16.8 0.2 46.4 0.1
R5_W20_C15_K500_T30_t -2.9 0.2 27.5 0.1
R5_W20_C15_Ks500_T7_1 7.5 0.1 21.7 0.0
R5_W20_C15_Ks500_T7_t 6.7 0.2 17.2 0.0
R10_W30_C20_K100_T14_1 23.7 0.2 39.7 0.1
R10_W30_C20_K100_T14_t 24.2 0.2 31.9 0.1
R10_W30_C20_K100_T30_1 28.1 0.4 50.6 0.2
R10_W30_C20_K100_T30_t 18.0 0.2 31.3 0.1
R10_W30_C20_K100_T7_l 21.2 0.2 29.9 0.1
R10_W30_C20_K100_T7_t 22.1 0.3 23.5 0.2
R10_W30_C20_K500_T14_1 16.8 0.1 38.0 0.0
R10_W30_C20_Ks500_T14_t -1.2 0.2 21.0 0.1
R10_W30_C20_K500_T7_1 10.3 0.1 24.8 0.0
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Table C.8: Optimize for Emissions: Relative improvement on costs and emis-
sions compared to the direct delivery solution obtained when
applying the most successful heuristic (local search variant LS2).

Costs [%]

Std [%]

Emissions [%] Std [%]

R10_W30_C20_Ks500_T7_t

99

0.2

18.7 0.1

Table C.9: Joint Optimization for Costs and Emissions: Relative improve-
ment on costs and emissions compared to the direct delivery
solution obtained when applying the most successful heuristic
(local search variant LS2)

Costs [%] Std [%] Emissions [%] Std [%]
R2_W2_C2_Ki1o0o_T14_l -0.2 0.4 23.9 1.1
R2_W2_C2_Ki1o0o_T14_t -0.5 0.4 23.4 1.2
R2_W2_C2_K100_T30_1 1.4 0.3 29.3 0.7
R2_W2_C2_Kio0o0_T30_t 0.2 0.3 27.9 0.6
R2_W2_C2_Ki100_T7_1 -1.4 0.2 9.8 0.3
R2_W2_C2_Ki1o00_T7_t -1.6 0.5 10.3 1.3
R2_W2_C2_K20_T14_1 7.2 0.5 22.1 0.4
R2_W2_C2_K20_Ti4_t 7.1 0.6 22.1 0.4
R2_W2_C2_K20_T30_1 10.9 0.5 29.8 0.3
R2_W2_C2_K20_T30_t 10.9 0.5 29.5 0.6
R2_W2_C2_K20_T7_1 1.7 0.6 4.7 1.3
R2_W2_C2_K20_T7_t 1.7 0.5 5.1 1.6
R2_W8_C8_K100_T14_l 11.2 0.2 22.2 0.3
R2_W8_C8_Ki1o00_T14_t 11.0 0.3 21.9 0.4
R2_W8_C8_K100_T30_l 17.3 0.2 30.2 0.2
R2_W8_C8_Ki1o0_T30_t 16.3 0.1 31.1 0.2
R2_W8_C8_K1o00_T7_1 6.4 0.3 12.5 0.4
R2_W8_C8_Ki1o0_T7_t 6.2 0.3 11.8 0.2
R2_W8_C8_Ks00_T14_1 0.8 0.2 20.9 0.5
R2_W8_C8_Ks00_T14_t 0.8 0.3 20.7 0.7
R2_W8_C8_Ks00_T30_1 2.6 0.1 25.4 0.3
R2_W8_C8_Ks500_T30_t 2.2 0.2 25.9 0.3
R2_W8_C8_Ks00_T7_1 0.9 0.4 10.4 0.9
R2_W8_C8_Ks00_T7_t 1.2 0.2 9.1 0.6
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Table C.9: Joint Optimization for Costs and Emissions: Relative improve-
ment on costs and emissions compared to the direct delivery
solution obtained when applying the most successful heuristic
(local search variant LS2)

Costs [%] Std [%] Emissions [%] Std [%]

R5_W10_C10_K10o_T14_1 25.2 0.2 35.0 0.4
R5_W10_C10_K100_T14_t 23.3 0.3 27.8 0.3
R5_W10_C10_K100_T30_1 29.7 0.1 45.9 0.2
R5_W10_C10_Ki1o0o0_T30_t 25.2 0.2 35.4 0.2
R5_W10_C10_K100_T7_1 19.5 0.4 17.6 0.4
R5_W10_C10_K1o00_T7_t 18.9 0.6 15.3 0.3
R5_W10_C10_K500_T14_1 16.9 0.1 30.4 0.2
R5_W10_C10_Ks00_T14_t 15.8 0.1 27.4 0.2
R5_W10_C10_K500_T30_1 18.9 0.2 40.4 0.2
R5_W1o0_C10_K500_T30_t 15.1 0.1 35.3 0.1
R5_W10_C10_K500_T7_1 10.8 0.1 17.5 0.1
R5_W10_C10_Ks00_T7_t 10.2 0.2 14.3 0.4
R5_W20_C15_K100_T14_l 26.4 0.4 32.6 0.6
R5_W20_C15_K100_T14_t 25.8 0.5 28.0 0.4
R5_W20_C15_K100_T30_l1 30.7 0.2 43.0 0.3
R5_W20_C15_K100_T30_t 26.9 0.4 34.3 0.3
R5_W20_C15_K100_T7_1 18.8 0.4 17.7 0.5
R5_W20_C15_K100_T7_t 18.3 0.5 15.4 0.3
R5_W20_C15_K500_T14_1 19.9 0.1 31.4 0.2
R5_W20_C15_K500_T14_t 18.6 0.1 26.9 0.2
R5_W20_C15_K500_T30_1 20.1 0.2 40.6 0.1
R5_W20_C15_K500_T30_t 16.0 0.4 34.5 0.2
R5_W20_C15_Ks500_T7_1 14.2 0.2 17.5 0.2
R5_W20_C15_Ks500_T7_t 14.0 0.2 14.2 0.2
R10_W30_C20_K100_T14_1 30.4 0.2 33.0 0.2
R10_W30_C20_K100_T14_t 28.1 0.2 27.9 0.2
R10_W30_C20_K100_T30_1 31.3 0.3 43.7 0.2
R10_W30_C20_K100_T30_t 23.9 0.4 32.6 0.2
R10_W30_C20_K100_T7_1 27.4 0.5 24.8 0.5
R10_W30_C20_K100_T7_t 26.8 0.4 21.4 0.3
R10_W30_C20_K500_T14_1 22.0 0.2 31.9 0.2
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Table C.9: Joint Optimization for Costs and Emissions: Relative improve-
ment on costs and emissions compared to the direct delivery
solution obtained when applying the most successful heuristic
(local search variant LS2)

Costs [%] Std [%] Emissions [%] Std [%]

R10_W30_C20_K500_T14_t 16.4 0.2 25.7 0.2
R10_W30_C20_K500_T7_1 16.8 0.2 20.4 0.1
R10_W30_C20_Ks500_T7_t 15.6 0.1 16.2 0.1
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