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Abstract

Distributed entanglement is a vital and exclusive resource for many quantum communication

protocols. Since remote parties cannot create shared entanglement using local operations

and classical communication (LOCC) alone, parts of entangled quantum states must be sent

via quantum channels. However, due to inevitable interaction with the environment during

transmission, the entanglement is degraded and thus the security of quantum communication

is compromised. One strategy to restore the quality of entanglement between two parties is

entanglement distillation. By LOCC the entanglement of an ensemble of quantum states can

be enhanced at the cost of the number of states.

In this thesis, entanglement distillation of photon pairs entangled in both, the energy-time

degree of freedom (DOF) and the polarisation DOF independently, is demonstrated in a proof

of principle experiment using passive linear optics only. This is the first photonic implemen-

tation that strictly follows the original proposal, with a polarising beam splitter efficiently

acting as deterministic controlled NOT gate between the two employed DOF. Moreover, by

employing hyperentanglement, the probability of success per photon pair sent is doubled com-

pared to the original proposal. It is demonstrated, that various contributions of distinct noise

models can be introduced independently in the two DOF. The high demands of interferometric

stability are met and so an ensemble with a bit flip error in the polarisation DOF and a bit and

bit-phase flip error in the energy-time DOF is successfully distilled. The results are consistent

with the predictions of the developed theoretical model.

Because entanglement distillation is one of the building blocks of a quantum repeater, the

results of this work are of great importance for the distribution of entanglement over long

distances and a future quantum world wide web connecting quantum computers.





Kurzdarstellung

Verteilte Verschränkung ist eine wichtige und exklusive Ressource für viele Quantenkommu-

nikationsprotokolle. Entfernte Parteien können mit lokalen Operationen und klassischer Kom-

munikation alleine keine geteilte Verschränkung erzeugen, sondern Teile von verschränkten

Quantenzuständen müssen über Quantenkanäle gesendet werden. Aufgrund der unvermeid-

lichen Interaktion mit der Umgebung während der Übertragung wird die Verschränkung je-

doch verschlechtert und damit die Sicherheit der Quantenkommunikation beeinträchtigt. Eine

Strategie zur Wiederherstellung der Qualität der Verschränkung zwischen zwei Parteien ist

die Verschränkungsdestillation. Mit gemeinsamen, aber lokalen Operationen und klassischer

Kommunikation kann die Verschränkung eines Ensembles von Quantenzuständen auf Kosten

der Anzahl der Zustände verbessert werden.

In dieser Arbeit wird die Verschränkungsdestillation von Photonenpaaren, die sowohl im

Energie-Zeit-Freiheitsgrad als auch im Polarisationsfreiheitsgrad unabhängig voneinander ver-

schränkt sind, in einem Machbarkeitsexperiment unter ausschließlicher Verwendung passiver

linearer Optiken demonstriert. Dies ist die erste photonische Implementierung, die strikt dem

ursprünglichen Versuchvorschlag folgt, wobei ein polarisierender Strahlteiler effizient als kon-

trolliertes NOT-Gate zwischen den beiden verwendeten Freiheitsgrade fungiert. Außerdem

wird durch den Einsatz von Hyperverschränkung die Erfolgswahrscheinlichkeit pro gesende-

tem Photonenpaar im Vergleich zum ursprünglichen Vorschlag verdoppelt. Es wird gezeigt,

dass verschiedene Beiträge unterschiedlicher Störungsmodelle unabhängig voneinander in die

beiden Freiheitsgrade eingebracht werden können. Die hohen Anforderungen der interferome-

trischen Stabilität werden erfüllt und so wird ein Ensemble mit einem Bit-Flip Fehler in dem

Polarisations Freiheitsgrad und einem Bit- und Bit-Phasen-Flip Fehler in dem Energie-Zeit

Freiheitsgrad erfolgreich destilliert. Die Ergebnisse sind konsistent mit den Vorhersagen des

entwickelten theoretischen Modells.

Da die Verschränkungsdestillation einer der Bausteine eines sogenannten Quanten-Repeaters

ist, sind die Ergebnisse dieser Arbeit von großer Bedeutung für die Verteilung von Ver-

schränkung über große Distanzen und ein zukünftiges Quanten-World-Wide-Web, das Quan-

tencomputer untereinander vernetzt.
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1 Introduction

By harnessing fragile quantum states, quantum information processing can outperform clas-

sical information processing on relevant tasks. On the one hand, quantum algorithms like

Grover’s search [1, 2] and Shor’s factoring [3, 4] offer up to exponential speedup compared to

the best known classical algorithms. Thereby, they threaten widespread classical encryption

techniques relying on computational assumptions. But quantum information offers both the

problem and its solution. While quantum computing threatens secure communication, quan-

tum communication, on the other hand, promises unconditional security. One of the most

mature quantum technologies is quantum key distribution, but practical challenges remain [5].

Not only is the key rate much lower than in the classical case, but also the distance that can

be bridged is limited. The distance is limited by noise due to the interaction of the quantum

state with the environment during transmission.

Unlike classical states, arbitrary unknown quantum states cannot be copied [6]. While this

is a fundamental pillar for the security of quantum communication, it is a challenge for com-

munication over noisy quantum channels. As noise is always present in real quantum channels

due to interactions with the environment, strategies to protect the quantum information car-

ried by the quantum state are required. One strategy is quantum error correction. The state

to be protected is embedded in a larger Hilbert space by redundantly encoding one logical

qubit in multiple physical qubits [7]. Another strategy uses entanglement distillation [8, 9]

and quantum teleportation [10, 11]. The task of sending an arbitrary unknown state is reduced

to sending a specific known, entangled state. As long as the received state contains sufficiently

large contributions of the original state, the sent state can be restored by distillation. In this

way, maximally entangled states can be distributed, which are a resource for many quantum

information processing protocols. With quantum teleportation, maximally entangled states

can be used to simulate a noiseless quantum channel. Over long distances and especially noisy

channels, this can still be applied by splitting the quantum channel in parts and use quantum

repeaters in between [12]. Quantum repeaters in turn, consist of nested entanglement distilla-

tion and entanglement swapping [13] and the resource costs scale polynomially with the total

distance bridged.

Here, a proof of concept entanglement distillation experiment using passive linear optics

and photon pairs entangled in both, the polarisation and the energy-time degree of freedom

independently is presented. The use of hyperentanglement, that is entanglement in multiple

degrees of freedom simultaneously, not only enables the implementation of a deterministic
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controlled NOT gate with linear optics, but also halves the number of photon pairs required

per distillation step. The success probability is at least doubled with respect to schemes not

taking advantage of hyperentanglement.

At this point a note on terminology seems appropriate. A commonly used term for what

is called here entanglement distillation is entanglement purification. The latter was coined

by some of the early works [8, 14]. However, the term purification is used by theorists for a

different concept [7]. To avoid confusion, the descriptive term distillation is used here instead,

which also dates back to 1996 [15]. Other terms such as entanglement concentration [16] and

filtering [17] are used for protocols with a similar goal but different approaches.

In section 2, basic relations and formalisms that are used throughout this work are briefly

introduced. This includes the formal description and the geometric representation of quan-

tum states in general and entangled states in particular. The Jones formalism used in the

theoretical part of the work is introduced. Relevant for the experimental part of the work are

the connection between Bell state fidelity and visibility as well as the statistics of single pho-

ton counting. In section 3, the generation of hyperentangled photon pairs is addressed. The

process of spontaneous parametric down conversion is introduced in general. Specifically, the

source configuration used in the experiment is discussed. Both polarisation degree-of-freedom

entanglement and energy-time degree-of-freedom entanglement are generated. It is explained

how the latter can be analysed with a Franson interferometer. Furthermore, the formal de-

scription of hyperentanglement is introduced and examples of its use are given. A motivation

of entanglement distillation and a brief history of entanglement distillation protocols as well

as a summary of photonic experiments performed so far is given in section 4. In section 5

the author’s own contribution to the experiment performed throughout this masters project

is discussed in detail. This includes the basic conception of the experiment, in particular the

implementation of the precisely controlled introduction of noise in both degrees of freedom.

The mathematical model developed by the author specifically for this experiment was used to

implement a simulation with Wolfram Mathematica. This simulation allows the model and the

performance of the single-copy entanglement distillation scheme to be illustrated with clear

examples. The difference between the ideal model and the experimental reality is indicated

and it is discussed how the model is adapted to close this gap. The experimental implemen-

tation is then presented and important steps of the alignment procedures are described. It is

explained how the Bell state fidelity is determined experimentally and the corresponding con-

figurations of the experimental setup are shown. In section 6 the results of the experiment are

presented and compared with the simulation. Differences and matches between the simulation

and experimental data is discussed. The conclusions of this work and an outlook to possible

future experiments is given in section 7.
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In this section a brief overview over the most relevant basics necessary to understand the later

sections of this work is given. More thorough treatments can be found in textbooks such as

by Cohen-Tannoudji et al [18], by Nielsen and Chuang [7] or by Barnett [19].

2.1 Pure and mixed quantum states

Quantum systems in a pure state can be described by a state vector

|𝜓⟩ =
∑︁
𝑛

|𝜑𝑛⟩ ⟨𝜑𝑛 |𝜓 ⟩ =
∑︁
𝑛

𝑐𝑛|𝜑𝑛⟩ , (2.1)

that is a coherent superposition of states of an orthonormal basis {|𝜑𝑛⟩} in a Hilbert space

H . State vectors are normalised, such that

|⟨𝜓 |𝜓 ⟩| =
∑︁
𝑛

|𝑐𝑛|2 = 1 , (2.2)

and allow to compute probabilities for the outcomes of the measurement of an observable.

Observables are described by hermitian operators. The possible measurement outcomes of an

observable 𝐴 are given by the eigenvalues of the operator 𝑎𝑛. For non-degenerate eigenvalues

there is just one eigenvalue corresponding to one eigenvector

𝐴|𝑢𝑛⟩ = 𝑎𝑛|𝑢𝑛⟩ . (2.3)

When an operator 𝐴 is applied to a system in state |𝜓⟩, the probability of obtaining outcome

𝑎𝑛 is

p (𝑎𝑛) = |⟨𝑢𝑛 |𝜓 ⟩|2 = ⟨𝜓 |𝑢𝑛 ⟩ ⟨𝑢𝑛 |𝜓 ⟩ , (2.4)

where |𝑢𝑛⟩⟨𝑢𝑛| = 𝑃𝑢𝑛 is the projector on the |𝑢𝑛⟩ state. The description of a pure state

contains the full knowledge about the state. This means that the measurement outcome can

be predicted with certainty provided the state of the system is an eigenstate of the applied

operator. In this case the measurement outcome equals the corresponding eigenvalue with

unit probability, while outcomes corresponding to the other eigenstates occur with probability
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zero. But if the system is not in an eigenstate of the measured observable, there is no unit

probability to obtain a certain outcome, but the outcome is probabilistic. This randomness

is not due to a lack of knowledge about the state, but rather due to the basis choice for

the measurement. When there is a lack of knowledge about the state of a system, the state

is called mixed and the best possible description is a statistical, incoherent mixture of pure

states. Equivalent to the state vector description, but more convenient for mixed states, is the

density matrix formalism. With this, a mixed state can be represented by the weighted sum

of pure states |𝜓𝑖⟩

𝜌 =
∑︁
𝑖=1

𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖| , (2.5)

where the weight 𝑝𝑖 is the probability to find the system in the pure state |𝜓𝑖⟩. The probabilities

𝑝𝑖 ≥ 0 are non-negative and sum up to one,
∑︀
𝑝𝑖 = 1. The description of a mixed quantum

state by the density matrix is not unique. However, mixed states that can be described by the

same density matrix cannot be distinguished from each other. The probability of obtaining

outcome 𝑎𝑛 when the projector 𝑃𝑢𝑛 is applied can be easily computed like

𝑝 (𝑎𝑛) = tr {𝑃𝑢𝑛𝜌} . (2.6)

More comprehensive introductions to the formalism of quantum theory can be found in text-

books such as [18] or [20].

An intuition for quantum state spaces can be supported by geometrical representations [21].

Quantum state spaces are strictly convex. The pure states are located on the extremal bound-

ary and the mixed state in the convex hull as linear combinations of pure states.

For qubits, that are two-levels systems, the state space is a three dimensional ball, known

as the Bloch ball. Orthogonal states are always vis-à-vis and per definition the states of the

computational basis {|0⟩, |1⟩} are located at the poles of the sphere. In Figure 2.1 the Bloch

ball is depicted. The labels indicate the three bases for the polarisation of photons. The

linearly polarised horizontal and vertical states |H⟩ and |V⟩ are located at the poles. The

other linear polarisation basis {|D⟩, |A⟩} and the circular polarisation basis {|R⟩, |L⟩} are

located at the equator.

The state vector of pure states on the Bloch sphere

|𝜓⟩ = cos
𝜃

2
|0⟩ + ei𝜙 sin

𝜃

2
|1⟩ , (2.7)

is parameterised by the azimuthal angle 𝜙 and the polar angle 𝜃 . With the representation
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Figure 2.1: Geometric representation of the qubit state space, known as Bloch ball. The
labels refer to the polarisation states of photons. As an example, a pure state represented
by a vector of unit length pointing on the surface of the ball and its parameterisation
with the azimuthal angle 𝜙 and the polar angle 𝜃 is sketched. Mixed states are described
by vectors of less than unit length pointing to the inside of the Bloch ball. In the course
of this work, the axes labels are used to refer to the bases. The x-axis for the D/A-basis,
the y-axis for the R/L-basis and the z-axis for the H/V-basis. This is not only shorter,
but offers the benefit, that different degrees of freedom can be described with the same
labels.
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|H⟩ = (1, 0)T and |V⟩ = (0, 1)T , the corresponding density matrix is

𝜌
(1)
Bloch =

(︃
cos2 𝜃

2
e−i𝜙 cos 𝜃

2
sin 𝜃

2

ei𝜙 cos 𝜃
2

sin 𝜃
2

sin2 𝜃
2

)︃
(2.8a)

=
1

2

(︃
1 + cos 𝜃 cos𝜙 sin 𝜃 − i sin𝜙 sin 𝜃

cos𝜙 sin 𝜃 + i sin𝜙 sin 𝜃 1 − cos 𝜃

)︃
(2.8b)

=
12 + r · 𝜎

2
, (2.8c)

with the unit Bloch vector r = cos𝜙 sin 𝜃 ex + sin𝜙 sin 𝜃 ey + cos 𝜃 ez and the Pauli vector

𝜎 = 𝜎xex + 𝜎yey + 𝜎zez, where ex, ey and ez are the unit vectors in x, y and z direction

respectively. Mixed states are described by non-unit Bloch vectors pointing inside the Bloch

ball. The decomposition of a mixed state is not unique, but there is always a basis that allows

a diagonal representation. The representation of the maximally mixed state is the same in

every basis. It is located at the origin of the Bloch ball, so the corresponding Bloch vector is

the null vector and the density matrix is the identity matrix 12/2 [7].

2.2 Entangled states

The state space of composite quantum systems is the tensor product of the respective individual

Hilbert spaces. In such spaces there exist peculiar states that are not tensor products of

elements of the individual Hilbert spaces. In other words, there are composite states that

cannot be separated into a tensor product of states from the Hilbert spaces of the subsystems.

Such non-separable states are called entangled [22, 23].

The Bloch representation (eq. (2.8)) can be extended to two-qubit states. A product state

of systems A and B is then written as

𝜌
(2)
Bloch = 𝜌A ⊗ 𝜌B =

1

4
(12 + 𝑎𝑖𝜎𝑖) ⊗ (12 + 𝑏𝑗𝜎𝑗) (2.9a)

=
1

4
(12 ⊗ 12 + 𝑎𝑖𝜎𝑖 ⊗ 12 + 𝑏𝑗12 ⊗ 𝜎𝑗 + 𝑡𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗) , (2.9b)

where the sum convention is used, 𝑖, 𝑗 ∈ {x, y, z} and 𝑡𝑖𝑗 ≡ 𝑎𝑖𝑏𝑗 . One possible basis for

the two-qubit state space is the computational basis {|00⟩, |01⟩, |10⟩, |11⟩}. Another possible

basis is formed by the four maximally entangled Bell states {|𝜑+⟩, |𝜓+⟩, |𝜑−⟩, |𝜓−⟩}. These

Bell states can be expressed in the Bloch representation (eq. (2.9)) with 𝑎𝑖 = 𝑏𝑖 = 0, but

𝑡𝑖𝑗 = ±𝛿𝑖𝑗 . The coefficients 𝑡𝑖𝑖 for the four states are summarised in Table 2.1. Maximally

entangled here means that the full information the system can carry is encoded in the global

correlations and the partial trace over one system leaves the other in the maximally mixed

state [24].
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Table 2.1: Coefficients 𝑡𝑖𝑖 of the Bloch representation of the Bell states. As discussed in
section 2.3, the coefficient 𝑡𝑖𝑖 equals the visibility in the 𝑖-basis. Depending on the basis,
the visibility of a Bell state is one in case of correlation and minus one in case of anti-
correlation. Distinctively, the triplet state 𝜓− is anti-correlated in all three bases.

Bell state 𝑡xx 𝑡yy 𝑡zz

|𝜑+⟩ ⟨𝜑+| 1 -1 1
|𝜓+⟩⟨𝜓+| 1 1 -1
|𝜑−⟩ ⟨𝜑−| -1 1 1
|𝜓−⟩⟨𝜓−| -1 -1 -1

By local operations only any Bell state can be mapped to the others up to global phases.

The unilateral Pauli 𝜋 rotations about an axis 𝑘 are described by the corresponding Pauli

matrix 𝜎𝑘. Starting from 𝜑+ state, this is demonstrated with the Bell states expressed in the

computational basis

(12 ⊗ 12) |𝜑+⟩ =
|00⟩ + |11⟩√

2
= |𝜑+⟩ , (2.10)

(12 ⊗ 𝜎x) |𝜑+⟩ =
|01⟩ + |10⟩√

2
= |𝜓+⟩ , (2.11)

(12 ⊗ 𝜎z) |𝜑+⟩ =
|00⟩ − |11⟩√

2
= |𝜑−⟩ , (2.12)

(12 ⊗ i𝜎y) |𝜑+⟩ =
|10⟩ − |01⟩√

2
= −|𝜓−⟩ . (2.13)

The rotation about the y-axis in equation (2.13) is the same as a 𝜋 rotation about the x-axis

directly followed by a 𝜋 rotation about the z-axis as i𝜎y = 𝜎z𝜎x .

2.3 Fidelity and visibility

The fidelity is a measure for the distance between two quantum states 𝜌 and 𝜏

𝐹 (𝜏, 𝜌) ≡ tr

{︂√︁
𝜏

1
2𝜌𝜏

1
2

}︂2

. (2.14)

It takes the minimal value of 0 if the two states have no common contributions and it is equal

to one in case the two states are the same [7]. For pure target states 𝜏 = 𝜏 2 , the fidelity

simplifies to the overlap of the two states

𝐹 (𝜏, 𝜌) = tr {𝜏𝜌} . (2.15)
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For the target state 𝜑+, a two-qubit state 𝜌 in the Bloch representation (eq. (2.9)) and by

following the lines of equation (A.1), the fidelity can be expressed as

𝐹𝜑+ (𝜌) = tr

{︂
1

4
(12 ⊗ 12 + 𝑎𝑖𝜎𝑖 ⊗ 12 + 𝑏𝑗12 ⊗ 𝜎𝑗 + 𝑡𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗)

1

4
(12 ⊗ 12 + 𝜎x ⊗ 𝜎x − 𝜎y ⊗ 𝜎y + 𝜎z ⊗ 𝜎z)

}︂ (2.16a)

=
1

4
(1 + 𝑡xx − 𝑡yy + 𝑡zz) . (2.16b)

As shown in Appendix A.1, the coefficient 𝑡𝑘𝑘 corresponds to the visibility of the two-qubit

state in the 𝑘-basis

𝑉𝑘𝑘 (𝜌) = tr {𝜌 (𝜎𝑘 ⊗ 𝜎𝑘)} = 𝑡𝑘𝑘 , (2.17)

with 𝑘 ∈ {x, y, z}. As an example, the visibility of the state 𝜌 in the computational basis is

computed as

𝑉zz (𝜌) = tr {𝜌 (𝜎z ⊗ 𝜎z)} = tr {𝜌 (|00⟩⟨00| − |01⟩⟨01| − |10⟩⟨10| + |11⟩⟨11|)} . (2.18)

Experimentally, the visibility is determined as the contrast between parallel and orthogonal

analyser settings 𝐶‖ and 𝐶⊥,

𝑉 =
𝐶‖ − 𝐶⊥

𝐶‖ + 𝐶⊥
, (2.19)

normalised by the total. For correlated states, the visibility is positive, for anti-correlated

states the visibility is negative. Bell states, discussed in the previous section, are perfectly

correlated, so the visibility in the computational basis takes the extremal values 𝑉zz = +1 for

the 𝜑± states and 𝑉zz = −1 for the 𝜓± states.

The fidelity with respect to the 𝜑+ can then be computed from the visibilities measured in

the three mutually unbiased bases x, y, and z as

𝐹𝜑+ (𝜌) =
1

4
(1 + 𝑉xx (𝜌) − 𝑉yy (𝜌) + 𝑉zz (𝜌)) . (2.20)

2.4 Jones formalism

In the Jones formalism the horizontal and vertical polarisation of light are described by the

vectors |H⟩ = (1, 0)T and |V⟩ = (0, 1)T . Non-depolarising components are described by

2 × 2 matrices. A wave plate is a phase retarder that introduces a relative phase between the
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horizontal and the vertical component

𝑊 (𝜉) ≡
(︃

1 0

0 e−𝑖𝜉

)︃
. (2.21)

Special cases of phase retarders are the a quarter-wave plate (QWP) and a half-wave plate (HWP)

with 𝜉 = 𝜋/2 and 𝜉 = 𝜋 respectively. The description of a waveplate set at an angle 𝜃 is

obtained by congruence with the 2-dimensional rotation matrix 𝑅 (𝜃)

𝑄𝜃 ≡ 𝑅 (𝜃)𝑊 (𝜋/2)𝑅 (−𝜃) , H𝜃 ≡ 𝑅 (𝜃)𝑊 (𝜋)𝑅 (−𝜃) , (2.22)

with

𝑅 (𝜃) ≡
(︃

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

)︃
. (2.23)

A more comprehensive discussion of the formal descriptions of polarisation can be found in [25].

2.5 Single photon counting

The quanta of light are called photons. Each photon carries an energy of E = ~𝜔, where

~ is the reduced Planck constant and 𝜔 is the frequency of the light. As a consequence of

this quantisation, the actual photon number in an optical field fluctuates even if the classical

intensity is constant in time [26]. For coherent light of constant intensity such as emitted by

a laser, the probability to find 𝑛 photons in a small time interval is described by the Poisson

distribution

P (𝑛; 𝜈) =
𝜈𝑛

𝑛!
e−𝜈 , (2.24)

which is uniquely defined by the mean photon number 𝜈 = ⟨𝑛⟩ (see e.g. [27]). The variance

𝜎2 of the Poisson distribution equals the mean, such that

𝜎 =
√
𝜈 . (2.25)

As photons cannot be observed directly, a photon detector converting the light field into an

electric current is required for photon counting. If the light is dim, the electric pulses returned

by the detector are clearly separated in time and each pulse is associated with a photon

incident on the detector. Due to a non-unit quantum efficiency not every photon incident on

the detector is detected, but the distribution of pulses returned by the detector is sampled

from the photon statistics. With the assumption of a random sampling, also the detector

pulses follow Poissonian statistics [27].
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The temporal correlation between optical fields at two locations can be analysed by coin-

cidence counting of the pulses returned by two detectors. Each pulse is time tagged. If the

difference between a time tag 𝑡1 at one detector and a time tag 𝑡2 at the other detector is

smaller than half the defined coincidence window 𝑡cow,

|𝑡1 − 𝑡2| <
𝑡cow
2
, (2.26)

the two corresponding pulses are declared to be coincident. But not only correlated pairs may

lead to a coincidence count. In experiment, loss, non-unit detector efficiency and dark counts

lead to coincidence counts of uncorrelated pairs. For local count rates 𝑅1 and 𝑅2 detector one

and two respectively, the accidental count rate 𝑅acc can be approximated by

𝑅acc ≈ 𝑅1𝑅2𝑡cow . (2.27)

This approximation is valid for a small number of average counts per coincidence window [28].



3 Generation of entangled photon pairs

The starting point of every experiment working with entangled photons has to be a reliable

source of entangled photons. Most commonly nowadays, spontaneous parametric down con-

version (SPDC) is used in various configurations. Since the first efficient SPDC source for

entangled photon pairs in 1995 [29], the performance was optimised over decades of research

and applications [30].

In this section, the process of SPDC is introduced in general. The source configuration as

used in the experiment is discussed in detail. In a first step, the generation of entanglement

in the polarisation DOF, then the generation of entanglement in the energy-time DOF and

the basic working principle of a Franson interferometer are explained. Finally the formal

description of independent DOF and applications of simultaneous entanglement in multiple

DOF are briefly reviewed.

3.1 Spontaneous parametric down conversion

In an SPDC process a pair of single photons results from a non-linear interaction of a material

with a pump photon. When an external electric field is applied to a dielectric material, dipoles

contributing to the total internal field are induced. This response of a dielectric material to

applied electric fields is described by the polarisation

𝑃 = 𝜖0
(︁
𝜒(1)𝐸1 + 𝜒(2)𝐸1𝐸2 + 𝜒(3)𝐸1𝐸2𝐸3 + . . .

)︁
, (3.1)

where 𝜖0 is the vacuum electric permittivity, 𝜒(1) is the linear susceptibility and 𝜒(2),𝜒(3) are

the second-order and the third-order susceptibility, respectively. While often the proportional

description of the polarisation density 𝑃 ∝ 𝐸 is sufficient, in non-linear materials the higher

order susceptibilities become too large to be neglected. More detailed discussions of non-linear

optics can be found in various text books, e.g. [31], as well as in specialised books such as [32].

With the second order susceptibility, processes like SPDC are described. SPDC is a three

wave mixing process where the photon number is not conserved. A pump photon of frequency

𝜔𝑝 is converted to two photons, one typically called signal with frequency 𝜔𝑠 and the other

idler with frequency 𝜔𝑖 (see Fig. 3.1). Even though 𝜒(2) is non-negligible, it is still small, so the

SPDC process is rare and the pump power is much higher compared to the power in the signal

and idler modes. In addition, it is spontaneous as it is governed by vacuum fluctuations in the
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Figure 3.1: Schematic of three wave mixing in a non-linear medium. A pump pho-
ton (𝜔𝑝) is converted to a pair of photons, called signal (𝜔𝑠) and idler (𝜔𝑖).

lower energy modes. During the down conversion process both, energy and momentum are

conserved. The momentum conservation leads to a phase matching condition, that can vary in

two aspects. First, the emission can be either non-collinear or collinear with the pump beam.

Unlike the non-collinear emission, the collinear emission does not require spatial filtering and

so allows for easier alignment and brighter sources as the collection efficiency can be much

higher. The second aspect is the polarisation of the emitted photons. Signal and idler photons

emitted from type-0 and type-I phase matched sources both have the same polarisation. The

polarisation is parallel to the pump photon’s polarisation for type-0 and perpendicular to the

pump photon’s polarisation for type-I phase matching. Whereas photons emitted from type-II

sources are of orthogonal polarisation. Phase matching can either be achieved by tuning the

angle between the optical axis of the non-linear material and the pump wave vector, or by

designing the non-linear material such that the optical axis is flipped periodically. The latter

is called quasi phase matching. The flipped domains mutually compensate the spatial walk

off and so make longer crystals with a longer interaction length possible. This allows to build

brighter sources with narrower bandwidth [30].

3.2 Sagnac configuration

The Sagnac configuration [33, 34] is one of many possible layouts for SPDC sources [30]. A

single quasi phase matched non-linear crystal is placed in a polarising Sagnac interferometer

and is so pumped from two directions. While the bidirectional pumping does not make use of

the full pump power due to the separation into the two directions, it makes compensation for

material imperfections of two different crystals superfluous. Moreover, the common path of

both pump directions as well as the down converted photons in the collinear case makes this

setup especially phase stable. In principle the Sagnac configuration works with all types of

phase matching [30]. Here, the focus is on a collinear phase matched type-II crystal as used

in the experiment and depicted in Figure 3.2. With a continuous wave pump laser at low

power, the probability of multi-pair emission can be neglected and the SPDC photons obey
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Figure 3.2: SPDC source with a collinear type-II phase matched periodically polarised
Potassium titanyl phosphate (ppKTP) crystal. The pump beam (blue, subscript p)
is transmitted by the dichroic mirror. The horizontal component of the pump beam
is transmitted by the dual wavelength polarising beam splitter (PBS) and propagates
through the Sagnac loop clockwise (a). The polarisation of both, the photon pairs (red,
subscript s for signal and i for idler) and the pump beam is flipped by the dual wave-
length half-wave plate (HWP) set at an angle of 𝜋/4. The idler photons are transmitted,
while pump beam and signal photons are reflected by the PBS. At the dichroic mirror,
the signal photon is split from the pump beam which is reflected back on itself. In (b)
the process for the vertical component of the pump beam is shown. Reflected at the PBS,
the pump polarisation is flipped by the HWP so that the pump passes the ppKTP crys-
tal again horizontally polarised. Finally, for this case the signal photons are horizontally
polarised and the idler photons are vertically polarised. The superposition of both cases
leads to entangled photon pairs as described by equation (3.2).
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Poissonian statistics [35]. The resulting two photon polarisation state

|𝜓SPDC⟩ ∝ |VsHi⟩ + ei (𝜑p+𝜑0)𝛽|HsVi⟩ , (3.2)

can be fully controlled by the phase 𝜑p between the horizontally polarised and the vertically

polarised components of the pump laser 𝐸H and 𝐸V as well as their ratio 𝛽 ∝ 𝐸V/𝐸H. The

fixed phase 𝜑0 is determined by material dispersion of the optical components [33].

3.3 Energy-time entanglement and the Franson

interferometer

The correlations of photons generated with SPDC sources are not necessarily restricted to

polarisation entanglement. Due to energy conservation, entanglement in the energy-time (e-t)

degree of freedom (DOF) is always present if the crystal is pumped with a continuous-wave

laser [30, 36]. While the emission time of a photon pair is uncertain, the two photons are

always emitted simultaneously and the photons created at different times can be coherent to

each other. Because time is a continuous variable, the e-t state of an SPDC photon pair is

described by the integral

|𝜓SPDC⟩e−t =

∫︁
d𝑡𝑓 (𝑡) |𝑡⟩s|𝑡⟩i , (3.3)

where 𝑓 (𝑡) is non-zero over the coherence time of the pump laser 𝜏pump .

In 1989 Franson [37] proposed an experiment to violate a Bell inequality with the e-t DOF. In

the subsequent years several experiments demonstrated a violation [38, 39, 40, 41, 42, 43, 44].

In contrast to Franson’s original proposal, all the experimental implementations employed

SPDC sources for the generation of entangled photons.

The Franson interferometer proposed in [37] consists of two unbalanced Mach-Zehnder (MZ)

interferometers A and B as depicted in Figure 3.3. The time delays Δ𝐿𝑖 introduced by the

long arms 𝐿𝑖 with respect to the short arms 𝑆𝑖 should be much larger than the coherence

length of the single photons

𝜏sp ≪
Δ𝐿𝑖
𝑐

=
𝐿𝑖 − 𝑆𝑖

𝑐
, (3.4)

with the speed of light 𝑐, such that no interference is observed locally at Alice’s or Bob’s side.

Instead, interference is observed in the coincidence counts if the delays are not larger than the

coherence time of the pump laser

Δ𝐿𝑖
𝑐

≪ 𝜏pump . (3.5)
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Figure 3.3: Schematic of a Franson interferometer. One photon of a pair created in the
entangled photon pair source enters one arm of the interferometer. Each arm consists
of an unbalanced Mach-Zehnder interferometer with one detector per output port. The
phases in the long arms, 𝜙A and 𝜙B, are adjustable.

The latter condition ensures the coherence of the four possible events SASB, SALB, LBSA and

LALB. However, as can be seen in the delay histogram sketched in Figure 3.4, the events

Figure 3.4: Delay histogram of a Franson interferometer. The central peak at zero time
delay contains two interfering contributions. The side peaks form an non interfering back-
ground. The units are arbitrary.

SALB and LASB are clearly distinguishable from the others by the temporal delay and so form

a non-interfering background. The remaining terms SASB and LALB are indistinguishable if

the introduced time delays are about the same in both arms

Δ𝐿A ≈ Δ𝐿B . (3.6)

When excluding the side peaks, the output state is proportional to a coherent superposition

|𝜓⟩ ∝ |SS⟩ + ei𝜑|LL⟩ , (3.7)
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with 𝜑 equal to the sum of the phases of the single photons

𝜑 = 𝜙A + 𝜙B = 𝜔s

Δ𝐿A

𝑐
+ 𝜔i

Δ𝐿B

𝑐
(3.8a)

=
𝜔s + 𝜔i

2𝑐
(Δ𝐿A + Δ𝐿B) +

𝜔s − 𝜔i

2𝑐
(Δ𝐿A − Δ𝐿B) (3.8b)

≈ 𝜔p

2𝑐
(Δ𝐿A + Δ𝐿B) . (3.8c)

Then, the coincidence rate with a coincidence window narrowed to the central peak is propor-

tional to

⃒⃒
1 + ei𝜑

⃒⃒2
= 2 + 2 cos

(︁𝜔p

2𝑐
(Δ𝐿A + Δ𝐿B)

)︁
. (3.9)

An advanced setup introduced by Strekalov et al [45] employs both, the polarisation entangle-

ment and the e-t entanglement of photon pairs created with an SPDC source to circumvent

the post-selection on the central peak. The experimental setup was varied only slightly by

replacing the four BS with PBS.

3.4 Hyperentanglement

As mentioned in the previous sections, quantum systems are not restricted to entanglement in

one DOF only. The state of a system that is entangled in multiple DOF is called hyperentan-

gled [36, 46]. Formally, the states of different DOF are treated exactly like states of different

copies of a quantum systems like multiple qubits. If they are independent of each other, they

can be expressed as product state. For the simplest case of two DOF this is

𝜌 = 𝜌DOF1 ⊗ 𝜌DOF2 . (3.10)

Hyperentanglement has been used to improve existing quantum information processing proto-

cols. Following a proposal by Kwiat and Weinfurter [47], several experimental implementations

demonstrated an improvement of the Bell state analysis [48, 49, 50]. The Bell state analysis

is a building block not only of dense coding, that has the goal to increase the channel capac-

ity [51], but also of quantum teleportation [10, 11] and entanglement swapping [13]. Further,

the noise resilience is not only increased since hyperentangled states live in a larger Hilbert

space, but also due to the fact, that the DOF vary in their sensitivity to different noise sources.

This has been used to improve entanglement distribution [52, 53].
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In this section, entanglement distillation is motivated and historical aspects are given. The

entanglement distillation scheme on which the experiment is based as well as earlier photonic

entanglement distillation experiments are reviewed in detail.

4.1 Introduction to entanglement distillation

Quantum entanglement shared over long distances is indispensable for many quantum com-

munication tasks. Because entanglement cannot be produced by local operations and classical

communication of remote parties, it is first produced at one location and then distributed to

the corresponding communication parties via quantum channels. Due to interaction with the

environment, dissipation and decoherence inevitably reduce the purity and so the entanglement

of the shared quantum states.

If instead of just one copy of a certain maximally entangled state, multiple copies are dis-

tributed, the originally sent state can be reconstructed by local operations and classical com-

munication. Entanglement distillation protocols increase the entanglement of an ensemble of

quantum states at the expense of the number of copies [8, 14]. By joint but local operations,

entangling actions and measurements as well as classical two-way communication for posts-

election, 𝑀 < 𝑁 states of close to maximal entanglement can be distilled from 𝑁 not too

impure input states. Aside from the reachable fidelity, the yield 𝑌 = 𝑀/𝑁 as well as the

distillation basin, that is the region of useful positive gain, are measures for the performance

of an entanglement distillation protocol.

The first entanglement distillation protocols were proposed in 1996. Bennett et al (BBPSSW) [8]

introduced their protocol in the context of quantum teleportation and the simulation of a noise-

less quantum channel. The scheme presented by Deutsch et al (DEJMPS) [14] is very similar

to the BBPSSW scheme but was originally discussed in the context of quantum key distribu-

tion. There is no consensus within the scientific community on the terminology. Both the term

entanglement distillation and the term entanglement purification date back to 1996 [8, 14, 15].

Here the term entanglement distillation is used as it is considered more descriptive and avoids

possible confusion due to the different use of the term purification by theorists [7]. Other terms

such as entanglement concentration [16] and filtering [17] that appear in this context denote

fundamentally different schemes. Protocols known as filtering act on one copy at a time. By

non-unitary, local operations unwanted contributions are filtered out [54, 55, 56]. Asymptotic
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protocols such as hashing or breeding, on the contrary, act on a large number of input states

in a single step [8, 57]. The number and position of errors in the ensemble is identified and

can be corrected subsequently. While they offer the benefit of a nonzero yield, a low tolerance

for noisy operations and a required high input fidelity makes them not feasible in real appli-

cations. A third group of entanglement distillation protocols contains the two aforementioned

proposals by BBPSSW and DEJMPS [8, 14]. Recurrence protocols act on a fixed number,

mostly two identical copies of qubit pairs at a time. The output of a successful distillation step

is used as input for the next distillation step. With each iteration the attractive fixpoint of

unit fidelity is approached. The number copies required grows exponentially with the number

of distillation steps and the yield for unit fidelity is zero.

4.2 BBPSSW entanglement distillation scheme
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Figure 4.1: Circuit diagram of the entanglement distillation scheme as introduced by
BBPSSW [8]. This scheme forms the basis for the single-copy entanglement distillation
protocol experiment performed during this masters project. The grey vertical dashed
lines indicate stops used to explain the scheme in the text.

Here, the recurrence protocol as introduced by BBPSSW [8] will be discussed in more depth,

since this is the basis for the experiment performed. A single distillation step is illustrated

in a circuit diagram in Figure 4.1. Two singlet states 𝜓− are produced by the sources I and

II. At the position (a) in the diagram, the state of both entangled pairs is a pure state. One

qubit of each pair is sent to one party, Alice or Bob. Due to the effect of noisy channels,

these pure states evolve to mixed states (b) during transmission. While the qubits sent to

Alice may experience a different noisy channel than those sent to Bob, both qubits sent to one

party experience the same noisy channel such that the pairs I and II are in the same mixed

state. The incoming mixed states are initialised by bilateral and unilateral rotations, which

turn unknown noise into white noise and prepare the state for the actual distillation. At this

point, the initialisation step is only very briefly reviewed. A more detailed discussion of this

procedure can be found in references [8, 9].
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The first part of the initialisation step is the application of the same random rotations

on both qubits of a pair. These bilateral rotations leave the singlet state 𝜓− invariant and

transform the triplet states 𝜓+, 𝜑+ and 𝜑− into each other. The result is a Werner state [22],

that is a singlet state with admixed white noise, having the same fidelity with respect to the

singlet state as the input state. Consequently, all input states with the same singlet state

fidelity end up in the same Werner state.

In the second part of the initialisation step, the Werner state is prepared for the subsequent

distillation process. By a unilateral 𝜋 rotation about the y-axis, the dominant contribution

of the singlet state is transformed to a contribution of the 𝜑+ state (c). As introduced in

section 2.2, a 𝜋 rotation about the y-axis is described by the Pauli matrix 𝜎y. The noise

remains unchanged, such that a Werner state of fidelity 𝐹 is transformed like

(12 ⊗ 𝜎y) (2𝐹 − 1) |𝜓−⟩⟨𝜓−| + (1 − 𝐹 )1 = (2𝐹 − 1) |𝜑+⟩⟨𝜑+| + (1 − 𝐹 )1 . (4.1)

This initialisation is crucial for recurring distillation steps and ensures the universality of the

BBPSSW scheme. For the following steps it is sufficient to discuss the case of a Werner like

state.

At the core of the scheme is the bilateral controlled NOT (bCNOT) gate. The qubits of pair

I are used as control and the qubits of pair II are used as target. The bCNOT itself does not

change the fidelity of the ensemble but permutes the entries of the Bell diagonal matrix (d)

as shown in Table A.1 in appendix A.2. Only in combination with a post-selection a subset

of increased Bell state fidelity can be selected. For the post-selection, the qubits of the target

pair are measured in the computational basis by both parties and the results are compared

via classical two-way communication. If the measurement outcomes are the same, the control

pair is kept, otherwise it is discarded. The measurements of the target pair consume half of

the input pairs a priori and thereby limit the yield from above to one half. The yield is further

lowered by discarding control pairs depending on the input state.

The performance of the scheme is illustrated in Figure 4.2. For input pairs of equal input

fidelities (a) there are three distinct regions to discuss. Between 0.25 and 0.5 input fidelity

the gain is negative, so in this region the scheme fails. The positive gain for input fidelitites

below 0.25 is not interesting, as the maximal output fidelity does not exceed the fidelity of the

maximally mixed state. A positive, useful gain can be obtained for input fidelities larger than

one half. The fixpoint of that region is at unit fidelity. But due to the low success probability

per step and the number of required distillation steps, the global yield for unit fidelity goes

to zero. As soon as the input fidelitites of the two pairs involved in one purification step

are not the same (b), the gain with respect to the maximal input fidelity, that is depicted in

Figure 4.2 (b) drops compared to the BBPSSW case of equal input fidelities. The region of

positive gain is also called distillation basin.
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Figure 4.2: The gain in fidelity for a Werner state in both input qubit pairs. On the
left (a) the output fidelity is plotted as a function of the input fidelity (red line). The di-
agonal indicates zero gain. The only useful gain can be obtained for input fidelities larger
than one half. This region is depicted in the frame on the right hand side (b). The in-
put fidelity of pair I is shown on the x-axis and the fidelity of pair II is shown on the y-
axis. The colour indicates the gain with respect to the maximal input fidelity. The cut
along the diagonal corresponds to the case depicted on the left (a). The maximum gain is
reached for equal input fidelities and the gain becomes negative for large differences in the
input fidelities.

4.3 Photonic entanglement distillation

Photons are good qubit carriers for quantum communication tasks. They travel at a high

speed and interact little with the environment. It is therefore desirable to implement photonic

entanglement distillation protocols. The Bennet scheme discussed in the previous section relies

on two controlled NOT (CNOT) gates. Unfortunately it is especially challenging to implement

a photonic CNOT gate that acts on qubits carried by two different photons with a sufficiently

low error rate [58, 59, 60, 61].

Based on the BBPSSW scheme Pan et al [62] proposed an experiment for a single distillation

step without twirling with two polarisation entangled photon pairs and passive linear optics.

They analyse that a CNOT gate followed by a measurement of the target bit corresponds to a

full parity measurement. Depending on the state of the control qubit, the CNOT gate flips the

logical state (0 or 1) of the target qubit. If the target qubit is found to be in the logical state

0 after the action of the CNOT gate, both qubits had the same state before, i.e. the input

states were of even parity. If the target qubit is found to be in the logical state 1 after the

action of the CNOT gate, the input states were of odd parity. They continue by pointing out,

that at least a test for even parity of two independent polarisation qubits can be performed

by overlapping two photons at a PBS followed by coincidence measurement. For a successful

distillation step, the communication parties have to prove even parity by four-fold coincidences.
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Additionally, one pair has to be measured in the diagonal basis. Depending on the outcome,

a phase correction is required to obtain a 𝜑+ state. The fidelity reached with this protocol is

the same as in the BBPSSW scheme. But, due to the demanding post-selection criterion it

has only half the success probability for each step and so a much lower yield. Experimentally,

the overlap at the PBS is challenging, especially with two independent sources as sketched in

this proposal by Pan et al [62].

This problem has been addressed in a proposal by Simon et al [63]. They suggest a single

non-linear crystal passed twice by a pulsed pump. By fixing the phase between the two passages

of the pump laser, not only polarisation entanglement, but also path entanglement is generated

independently. With such an hyperentangled state, a PBS can actually act as CNOT with the

polarisation DOF as control and the path DOF as target. The action of the PBS as CNOT

is discussed in more detail in section 5. For the post-selection, no polarisation qubits are

consumed. But instead the path DOF is consumed by the choice of the combination of output

port. Regarding the success probability of polarisation qubits, this protocol outperforms also

the BBPSSW scheme by employing hyperentanglement. A drawback of establishing the spatial

entanglement at the source is the required phase stability on the scale of the wavelength for

the possible paths the photons can take.

Experimentally, photonic entanglement distillation based on the BBPSSW scheme has been

shown by Pan et al [64]. The setup is apparently influenced by the improved proposal [63], but

the post-selection still relies on four fold coincidences following [62]. They were able to meet

the high demands on stability and successfully distilled entanglement from a state including

a bit flip error. With a similar setup Walther et al [65] demonstrated that with entanglement

distillation an ensemble not violating a Bell inequality can be lifted above the threshold to

violate a Bell inequality.





5 Experimental single-copy entanglement

distillation

In this section, the authors contributions to the experiment performed during this masters

project will be presented in detail. To begin with, the basic working principle of the single-

copy distillation scheme is presented in section 5.1. Essential differences to previous schemes

are pointed out. The generation of noise, theoretically and experimentally, in both DOF,

polarisation and energy-time, is discussed in section 5.2. In section 5.3 the mathematical

model developed specifically for this experiment is introduced. This model is used to simulate

the experiment and illustrate the performance of the scheme by comprehensible examples.

Experimental imperfections and adaptions of the model to close the gap between theory and

experiment are discussed. The setup of the experimental implementation and the different

configurations for the measurements of the fidelities are described in sections 5.4 and 5.5.

5.1 Principle of the single-copy entanglement

distillation scheme

The entanglement distillation protocol demonstrated here uses passive linear optics and pho-

tons entangled in both, the polarisation DOF, and the energy-time (e-t) DOF. Similarly to

the proposal by Simon and Pan [63], only one photon pair is used per distillation step. But

rather than the proposed spatial DOF, the e-t DOF is used as additional resource to improve

the entanglement in the polarisation DOF. The e-t DOF offers the benefit, that, in contrast

to the spatial DOF, no phase stability is required for distribution.

The circuit diagram of this single-copy distillation scheme as shown in Figure 5.1 could lead

to the misunderstanding that the two DOF are split up spatially or that more than one pair

of photons is involved per step. Neither is the case. The diagram should rather illustrate that

the qubits encoded in independent DOF of one photon pair can be treated the same way as

qubits encoded in the same DOF of two pairs as depicted in Figure 4.1. But unlike two-copy

entanglement distillation [64], where both qubit pairs are encoded in the same DOF, the yield

can be doubled in single-copy entanglement distillation. Measuring the auxiliary DOF for

post-selection does not reduce the yield in the DOF to be distilled. This allows for a yield of

up to 1 to be achieved.



24 5 Experimental single-copy entanglement distillation

0 1

Bob

QIP
protocolEntangled

Photon 
Pair

Source Measurement

Two-way classical communication

Alice

QIP
protocol

Measurement

0 1 N
oi

sy
  C

ha
nn

el
 B DOF I

DOF IIN
oi

sy
  C

ha
nn

el
 ADOF I

DOF II

Figure 5.1: Circuit diagrams of single-copy entanglement distillation. This diagram
should stress the similarities and differences with the BBPSSW scheme shown in Fig-
ure 4.1. Both schemes have a bilateral CNOT at the core. The initialisation is omitted
here, as only one step is conducted. In contrast to the BBPSSW scheme, here only one
photon pair entangled in two DOF is created by a single source and only two quantum
channels are needed for distribution. The two DOF have a very different susceptibility to
the action of the noisy channels. After application of the bCNOT, in both schemes, the
source qubit pair is post-selected according to the measurement result of the target qubit
pair.
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Figure 5.2: Conceptual schematic of the single-copy entanglement distillation scheme.
Photon pairs entangled in both, polarisation and energy-time, are generated at the
source. With a controlled noisy channel, entanglement can be degraded on purpose be-
fore it is distilled again. The PBS in the Franson type interferometer act as bCNOT. By
coincidence measurement in the output channels S′A and S′B as well as L′

A and L′
B post-

selection on the 𝜑± Bell states in the e-t DOF is realised. The aim of the single-copy
entanglement distillation scheme is to increase the Bell state fidelity in the polarisation
DOF at the expense of entanglement in the e-t DOF. The motorised (M) stages are used
to adjust to high Franson visibility and to control the phase in the long paths.
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Experimentally, the single-copy entanglement distillation scheme for the polarisation and

the e-t DOF is implemented with a Franson type interferometer as shown in Figure 5.2. The

especially noise resilient e-t DOF is projected onto a two dimensional subspace of delays

{SS, SL,LS,LL}. Because the temporal delays can be directly associated with the length of

the different spatial paths, the labels long L and short S are used and the DOF is occasionally

called path DOF. In the modified Franson interferometer as it is shown in Figure 5.2 the exit

BS in each arm of the Franson interferometer, as introduced in section 3.3, is replaced with a

PBS. These PBS act locally as CNOT gates on the polarisation and the path DOF of one and

the same photon. Here, the polarisation DOF acts as control and the path DOF as target.

Horizontally polarised photons are transmitted, so the path DOF is not affected. Vertical

photons are reflected, so the path DOF is flipped.

Table 5.1: Truth table of a CNOT gate on the left compared with the input and output
of a PBS on the right. The first label is the control and the second label is the target.
The labels for the spatial modes are as used in Figure 5.2.

logic PBS
before after before after

0 0 0 0 H S H S′

0 1 0 1 H L H L′

1 0 1 1 V S V L′

1 1 1 0 V L V S′

In Table 5.1 the analogy between a CNOT acting on logical states 0 and 1 and a PBS is

shown in a truth table. Horizontally polarised light (H) as well as the short path before (S)

and after (S′) the PBS can be associated with the logical state 0. Vertically polarised light

(V) as well as the long path before (L) and after (L′) the PBS can be associated with the

logical state 1. The action of the bCNOT on the Bell basis is discussed in appendix A.2. It

is remarkable that all combinations of control and target states are permuted but only the

combination of 𝜑+ in both DOF is left invariant. This property distinguishes the 𝜑+ state

from the other Bell states and makes it the natural target state for entanglement distillation.

The measurement of the auxiliary e-t DOF for post-selection is performed implicitly by the

choice of output ports of the interferometer.

5.2 Producing the noise

For the experiment, it is crucial to be in control over the input states. Only with an accurate

control it is possible to test various contributions of distinct noise models.

The noisy channel as sketched in Figure 5.2 acts on the transmitted photons, but does not

have the same effect on the two DOF, polarisation and energy-time. Since both independent

DOF have a very different susceptibility to environmental influences, they can and must be



26 5 Experimental single-copy entanglement distillation

manipulated separately. It is sufficient to have a noisy channel in the arm of one party only

as all Bell states can be transformed into each other locally as demonstrated in eqns. (2.10)

to (2.13).

5.2.1 Noise in polarisation

Noisy 
Channel

M M

Figure 5.3: Schematic of the noisy polarisation channel. With this set of two HWP
and two QWP it is possible to reach every state on the Bloch sphere. The HWP are mo-
torised (M) such that they can be rotated quickly and precisely.

The polarisation DOF of the input state is manipulated in a controlled fashion with a

combination of four alternating QWP and HWP as depicted in Figure 5.3. In the following,

this combination will be called HQHQ channel or simply noisy channel.

To understand the action of the noisy channel and how it is used to create mixed states in

polarisation, it will be analysed locally first. So the input state is a single polarisation qubit.

The effect on two-qubit states will be discussed thereafter.

Noisy polarisation channel acting on one qubit

Assume the second HWP, sandwiched by the QWP, to be set to 𝜗 and the other three wave

plates set to 0∘. Then, a horizontally polarised input, expressed in the Jones formalism (cf.

section 2.4), is transformed as

𝑄0𝐻𝜗𝑄0𝐻0|H⟩ = cos (2𝜗) |H⟩ − i sin (2𝜗) |V⟩ . (5.1)

Because the action of the HQHQ channel can be described by a unitary transformation, the

pure input state is transformed to a pure output state. By setting the second HWP to −𝜗,

a horizontally polarised input is transformed to cos (2𝜗) |H⟩ + i sin (2𝜗) |V⟩ , which is also a

pure state. If half of the time the channel is set to +𝜗 and the other half it is set to −𝜗, the

ensemble average is a mixed state depicted in Figure 5.4 in a cut of the Bloch ball. The convex

combination of the two pure states with balanced contributions is located on the z-axis and
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Figure 5.4: Cut of the Bloch ball spanned by H/V and R/L basis. The noisy polarisa-
tion channel in bit flip configurations rotates input states about the x-axis (D/A-basis),
that points into the drawing plane. The channel set at 𝜗 corresponds to a rotation by 4𝜗
on the Bloch sphere. The resulting pure states for channel settings ±𝜗 are marked with
green arrows pointing to the surface of the sphere. The equal mixture of both cases is
marked by the orange arrow on the z-axis (H/V-basis) pointing to the inside of the ball.
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so can be represented by a diagonal matrix in the H/V basis

𝜌+𝜗 + 𝜌−𝜗
2

=
1

2
𝑄0𝐻𝜗𝑄0𝐻0|H⟩⟨H| (𝑄0𝐻𝜗𝑄0𝐻0)

†

+
1

2
𝑄0𝐻−𝜗𝑄0𝐻0|H⟩⟨H| (𝑄0𝐻−𝜗𝑄0𝐻0)

†
(5.2a)

= cos2 (2𝜗) |H⟩⟨H| + sin2 (2𝜗) |V⟩⟨V| , (5.2b)

and the fidelity with respect to the horizontally polarised state is 𝐹H (𝜗) = cos2 (2𝜗) .

The performance of the noisy channel has been measured with the alignment laser (810 nm)

and a polarimeter, which can track the polarisation of coherent light. The results as well as

the theoretical prediction for the rotation about the x-axis are shown in Figure 5.5.

Figure 5.5: Bloch sphere representation of the action of the polarisation noisy channel
in theory (a) and in experiment (b). The setting for the bit flip rotates the state about
the x-axis (D/A-basis). Arrows of the same colour represent the Bell state vectors of the
polarisation obtained for waveplate settings at angles of the same magnitude, which was
scanned in steps of 2.5∘. The experimental data was taken with a polarimeter measuring
the polarisation state of the red alignment laser. Strictly speaking, (b) does not show a
Bloch sphere, but a Poincare sphere in the typical Bloch sphere orientation. The compar-
ison of experiment (b) and theory (a) highlights the excellent performance of the noisy
channel.

Similarly rotations about the other axes can be performed as shown in Figure 5.6.
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Figure 5.6: Bloch sphere representation of the action of the polarisation noisy channel.
With different settings of the noisy channel it is possible to rotate the polarisation (a)
about the z-axis (H/V-basis), (b) about the y-axis (R/L)-basis. The arrows indicate the
polarisation of the 810 nm alignment laser after the noisy channel measured with a po-
larimeter. The angle set at the noisy channel has been scanned in steps of 2.5∘ from ±0∘

to ±22.5∘.

Noisy polarisation channel acting on two qubits

Returning to two-qubits states, these rotations on one qubit can map all Bell states to each

other as discussed in section 2.2. With the HQHQ channel set at zero, the state prior to

the distillation setup should be the 𝜑+ state. Since the HQHQ channel in the experimental

implementation is not designed to be removed and there is no neutral setting in the sense that

could be described by an identity matrix, the setting for the channel alignment was chosen

with all wave plates set to 0. In total, the HQHQ channel then acts like a 1, 5-wave plate,

which can be treated as HWP. This de facto HWP has to be treated as part of the channel that

is always present and the angles have to be chosen accordingly as discussed in appendix A.3.

As a result the input state of the noisy channel is a 𝜑− state that is transformed as

𝜌QHQH (𝛼, 𝛽, 𝛾, 𝛿) ≡ (𝑄𝛿𝐻𝛾𝑄𝛽𝐻𝛼 ⊗ 12) |𝜑−⟩⟨𝜑−|
(︁
𝐻†
𝛼𝑄

†
𝛽𝐻

†
𝛾𝑄

†
𝛿 ⊗ 12

)︁
. (5.3)

With the similar configuration as for the single qubit case discussed before and the same

procedure of averaging over the ±𝜗 settings, a mixed state diagonal in the Bell basis

1

2
𝜌QHQH (𝜗, 0, 0, 0) +

1

2
𝜌QHQH (−𝜗, 0, 0, 0) = cos2 (2𝜗) |𝜑+⟩⟨𝜑+| + sin2 (2𝜗) |𝜓+⟩⟨𝜓+| ,

(5.4)
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with adjustable contributions of the 𝜑+ and the 𝜓+ states is obtained. The fidelity of this

state with respect to the 𝜑+ state is

𝐹𝜑+ (𝜗) = cos2 (2𝜗) . (5.5)

Unless specifically stated otherwise, from here on all fidelities should be understood with

respect to the 𝜑+ state. Accordingly, phase and combined bit and phase flip contributions can

be produced by suitable settings summarised in Table 5.2.

Table 5.2: The angles to set the quarter-wave plates (Q) and the half-wave plates (H) at
to produce mixed states in polarisation with a well defined error. The wave plate acting
on the incoming photons first stands right in the table. Given an input state 𝜑−, a bit
flip (𝜓+), a phase flip (𝜑−) as well as a bit-phase flip error (𝜓−) with respect to the 𝜑+

state can be produced with the noisy channel settings specified in the table. To obtain
the mixed state given in the first column, the two settings per row must be chosen with
equal probability per integration time.

output state Q H Q H

𝐹 (𝜗) |𝜑+⟩⟨𝜑+| + (1 − 𝐹 (𝜗)) |𝜓+⟩⟨𝜓+| 0 ±𝜗 0 0
𝐹 (𝜗) |𝜑+⟩⟨𝜑+| + (1 − 𝐹 (𝜗)) |𝜑−⟩ ⟨𝜑−| 𝜋/4 ±(𝜋/4 − 𝜗) 𝜋/4 0
𝐹 (𝜗) |𝜑+⟩⟨𝜑+| + (1 − 𝐹 (𝜗)) |𝜓−⟩⟨𝜓−| 0 0 0 ±𝜗

5.2.2 Noise in energy-time

The energy-time DOF is more robust than the polarisation DOF. What is good for real quan-

tum communication applications, is a challenge for a proof of principle experiment in the lab.

An early idea for introducing a bit flip error in e-t by hardware employed an additional Franson

interferometer. The idea was discarded as the stabilisation of four imbalanced Mach-Zehnder

interferometers would be experimentally challenging. More details on this idea can be found

in appendix A.4. Finally, the noise was produced by widening the coincidence window in

the postprocessing. Recalling the Franson interferometer discussed in section 3.3, there are

two coherent contributions LL and SS to the peak around zero time difference which allow

to see interference. The two distinguishable terms SL and LS, that form a non-interfering

background, are usually excluded by post-selection. Assuming the Franson interferometer is

adjusted to constructive interference in the 𝜑+ state and the side peaks are of equal magnitude,

then widening the coincidence window results in the mixed state

𝜌e−t = 𝐹 (|SS⟩ + |LL⟩) (⟨SS| + ⟨LL|) +
1 − 𝐹

2
(|LS⟩⟨LS| + |SL⟩⟨SL|) . (5.6)
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This incoherent admixture is actually the same as a mixed state with equal 𝜓+ and 𝜓−

contributions

|𝜓+⟩e−t⟨𝜓+| + |𝜓−⟩e−t⟨𝜓−| =
1

2
(|SL⟩ + |LS⟩) (⟨SL| + ⟨LS|)

+
1

2
(|SL⟩ − |LS⟩) (⟨SL| − ⟨LS|)

(5.7a)

=
1

2
(|SL⟩⟨SL| + |SL⟩⟨LS| + |LS⟩⟨SL| + |LS⟩⟨LS|)

+
1

2
(|SL⟩⟨SL| − |SL⟩⟨LS| − |LS⟩⟨SL| + |LS⟩⟨LS|)

(5.7b)

= |LS⟩⟨LS| + |SL⟩⟨SL| . (5.7c)

5.3 Simulation of single-copy entanglement

distillation

To get an idea of the capability of the protocol, it is useful to simulate the experiment. During

this masters project a mathematical model was developed specifically for this experiment. This

model is introduced in section 5.3.1 and is used to illustrate the performance of the scheme

with comprehensible examples in section 5.3.2. An adapted model accounting for experimental

imperfections is discussed in section 5.3.3.

5.3.1 Mathematical model

Following equation (3.10), the state right before the two PBS is described by independent

states in both DOF, energy-time and polarisation

𝜌init = 𝜌pol,init ⊗ 𝜌e−t,init . (5.8)

This description excludes global noise in the sense of noise that can only be described in the

common Hilbert space.

The PBS act as bCNOT and permute the entries of the density matrices. In the model this

is described by a unitary matrix UbCNOT discussed in appendix A.2. While the bCNOT does

not change the fidelity of the ensemble, the post-selection does. The criterion of coincidences

in parallel output ports is described by the projection on the 𝜑± states in the e-t DOF

𝑃𝜑± = 1pol ⊗ [|𝜑+⟩e−t⟨𝜑+| + |𝜑−⟩e−t⟨𝜑−|] , (5.9)



32 5 Experimental single-copy entanglement distillation

such that the state after purification can be described as

𝜌post =
P𝜑±𝜌bCNOTP𝜑±

tr {P𝜑±𝜌bCNOT}
, (5.10)

with the state

𝜌bCNOT = UbCNOT𝜌initU
†
bCNOT , (5.11)

after the bCNOT but before the post-selection.

Finally, the fidelity with respect to the 𝜑+ state in the polarisation DOF can be computed

as

𝐹pol,out = pol⟨𝜑
+|tre−t {𝜌post} |𝜑+⟩pol , (5.12)

where tre−t is the partial trace over the e-t DOF.

5.3.2 Examples

As discussed in the previous section, it is in principle possible to produce noise independently in

the two DOF. The noise can be produced about distinct axes and various combinations thereof.

It would be desirable to test the ability of the setup to distil starting from a Werner like state

in both DOF as this is the basis for the recurrence scheme proposed by BBPSSW [8]. But this

is, if possible at all with this setup, experimentally challenging as the required configuration

of the setup is not trivial. In addition, both, the distillation basin as well as the predicted

maximal gain is small as shown in Figure 4.2. Not only is the controlled generation of Werner

states challenging, but also the theoretical discussion is lengthy due to the large number of

terms. Instead, the mathematical description will be illustrated using simpler examples.

One of the simplest, but still comprehensive, examples is the case of a bit flip in both

DOF (BB), this is a mixture of 𝜑+ and 𝜓+ states. The state incident on the PBS is then

described by a product state of the two independent DOF as in equation (5.8)

𝜌BB
init = [𝐹pol|𝜑+⟩pol⟨𝜑+| + (1 − 𝐹pol) |𝜓+⟩pol⟨𝜓+|]

⊗ [𝐹e−t|𝜑+⟩e−t⟨𝜑+| + (1 − 𝐹e−t) |𝜓+⟩e−t⟨𝜓+|] .
(5.13)

The four non-zero entries of this density matrix are on the diagonal. These entries can be

found again in Table 5.3, which is an excerpt with the relevant rows from Table A.1. Addi-

tionally, the values of the entries are given in the column fidelity. While the first two rows

remain unchanged, the permutation action of the bCNOT becomes apparent in the two bottom

rows. The colour indicates both, the post-selection on the 𝜑± states and the quality of their

contribution after the distillation process. Grey coloured rows indicate that the contributions
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Table 5.3: Action of bCNOT and post-selection in the case of a bit flip error in both
DOF. Each row corresponds to an entry of the density matrix. While the values in the
first column remain unchanged by the action of the bCNOT, the corresponding some po-
sitions in the density matrix are permuted. The entries before the bCNOT are given in
the second and the third column, the entries after the bCNOT are given in the fourth and
the fifth column. While the entries described by the first two rows remain unchanged by
the action of the bCNOT, the entries described by the two bottom lines are swapped by
the bCNOT. The grey coloured lines are discarded by postselection on the 𝜑± states in
the energy-time DOF. The remaining contributions from the red and the green rows form
the distilled ensemble.

before (𝜌BB
init) after (𝜌BB

bCNOT)

fidelity control (pol) target (e-t) control (pol) target (e-t)

𝐹pol𝐹e−t 𝜑+ 𝜑+ 𝜑+ 𝜑+

𝐹pol (1 − 𝐹e−t) 𝜑+ 𝜓+ 𝜑+ 𝜓+

(1 − 𝐹pol)𝐹e−t 𝜓+ 𝜑+ 𝜓+ 𝜓+

(1 − 𝐹pol) (1 − 𝐹e−t) 𝜓+ 𝜓+ 𝜓+ 𝜑+

are discarded because the e-t DOF is in a 𝜓± state after the bCNOT. Contributions in green

and red coloured rows are kept, but only the contributions in the green row are beneficial

for the distillation result as it contains a 𝜑+ state in the polarisation DOF. The state after

post-selection is computed following equation (5.10). The resulting, normalised state is then

𝜌BB
post =

𝐹pol𝐹e−t|𝜑+⟩pol⟨𝜑+| + (1 − 𝐹pol) (1 − 𝐹e−t) |𝜓+⟩pol⟨𝜓+|
1 − 𝐹pol − 𝐹e−t + 2𝐹pol𝐹e−t

. (5.14)

Due to the contributions from the red row, there is still a bit flip error present in the state after

the post-selection 𝜌BB
post . The output fidelity with respect to the 𝜑+ state in the polarisation

DOF is then, following eq. (5.12),

𝐹BB
pol,out =

𝐹pol𝐹e−t

1 − 𝐹pol + 𝐹e−t (2𝐹pol − 1)
, (5.15)

where the nominator equals the yield.

The performance in case of the bit flip error in both DOF (BB) is illustrated in Figure 5.7.

For the case of equal input fidelities in both DOF, the model for the Werner state in both

DOF (WW) from Figure 4.2 is included for comparison. While the gain for BB is negative for

all input fidelities below one half, it exceeds the gain for WW in the interesting region of input

fidelities larger than one half. The maximal gain for BB is more than three times higher than

for WW. Additionally, the distillation basin is much larger for BB than for WW and includes

all possible combinations of input fidelities as long as they are both larger than one half.

A second example will be discussed in less detail. Getting closer to both a realistic scenario

and the BBPSSW case, the performance for the case of a Werner state in polarisation and a



34 5 Experimental single-copy entanglement distillation

Figure 5.7: Theoretical gain with respect to the maximal input fidelity for the case of
a bit flip in both DOF. On the left (a) the case for equal input fidelities is shown. The
previously discussed case of a Werner state in both DOF is included for comparison. The
case for different input fidelities, shown on the right (b), is restricted to the region be-
tween 0.5 and 1.

Figure 5.8: Theoretical gain with respect to the maximal input fidelity for the case of a
Werner state in polarisation and a bit flip and bit-phase flip error the e-t DOF. On the
left (a) the case for equal input fidelities is shown. The previously discussed cases of a
Werner state in both DOF and a bit flip error in both DOF is included for comparison.
The case for different input fidelities, shown on the right (b), is restricted to the region
between 0.5 and 1.
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bit flip as well as a bit-phase flip error in the e-t DOF (WBBP) is computed similarly to the

previous example. The results of this simulation are shown in Figure 5.8 in the same manner

as the previous simulations for WW and BB. The three different error models are compared

for the case of equal input fidelities in both DOF. The overall behaviour of WBBP is similar to

BB but the maximal gain is lower. Nevertheless, it is still more than twice the maximal gain

of WW. For different input fidelities, different observations can be made for the region above

and below the diagonal. Above the diagonal, a region of negative gain exist, that reach as far

down as for WW. Below the diagonal, the gain is non-negative for all combinations of input

fidelities above one half as it is for BB. Apparently, the gain in the region above the diagonal

is governed by the state in the e-t DOF, while the gain in the region below is governed by the

state in the polarisation DOF. In theory, the protocol does not make a difference between bit

flip errors and bit-phase flip errors, so also the combination of both gives the same results.

The poorer performance for WW compared to the other two scenarios is due to the phase

flip contributions contained in white noise. A phase flip cannot be distilled directly with this

protocol which manifests in a negative gain for all input fidelities above one half.

5.3.3 Experimental imperfections

So far, in the model everything has been assumed to be ideal and imperfections of components

or alignment have not been taken into account. In the experiment, however, neither the state

prepared by the source, nor the noise generation or the components and the alignment of

the distillation setup are ideal. The reflection and transmission coefficients of the BS were

measured, included in the model and the effect on the predicted gain was found to be in

the sub per mill range. Of a similar magnitude is the influence of the PBS and their real

performance acting as bCNOT at the heart of the protocol.

The input state, in contrast, does have a significant influence on the performance. Mis-

alignment is the major issue for the initial polarisation state and introduces mainly bit flip

and bit-phase flip contributions. Three delicate points are the power splitting ratio and the

phase at the source, introduced in section 3.1, as well as the channel alignment with the po-

larisation controller pedals. The initial state in e-t is affected by the alignment of the Franson

interferometer on the one hand. Both, non ideal path length differences as well as non per-

fect overlap of the spatial modes reduce the fidelity. On the other hand, the electronics of

the stabilisation seems to introduce noise as slightly higher visibilities were observed with the

interferometer free drifting. Nevertheless, the stabilisation is required for long term stability

during the measurement.

In the adapted model the input state is assumed to be a Bell diagonal mixed state in each

DOF. The fidelities are computed from the visibilities with the noisy channel set to neutral

and the coincidence window restricted to the central peak. Because the misalignment, and so

the visibilities of the input state vary between the measurement days, the input state has to
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be readjusted for each measurement run.

Not yet included in the model is the real performance of the noisy channel as well as the role

of phase compensation after the PBS. The noise generation is assumed as perfect rotations

about the axes. While it would be manageable to do the computations for the examples

presented in the previous section by hand, the model including at least some experimental

imperfections is too complex to be computed manually. Analytic results were computed with

Wolfram Mathematica. These results were used to generate plots with Python shown and

discussed in comparison with the experimental data in section 6.

5.4 Experimental setup

An overview over the full experimental setup is given in Figure 5.9. Actually, the setup is never

used in the shown configuration, but some of the removable components are always taken out

depending on the fidelity that is to be measured. A more detailed discussion on the three

configurations follows in section 5.5.
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Figure 5.9: Schematic of the full experimental setup for single-copy entanglement distil-
lation. The building blocks are the entangled photon pair source, the noisy channel and
the two arms of the Franson type interferometer. Additionally, the active stabilisation
with the pump laser, the polarisation controllers for channel alignment as well as polaris-
ers and wave plates for various measurements discussed in the text are included in this
figure. The components next to two-sided arrows are removable.

The basic structure is the same modified Franson interferometer as shown in the simplified

version of the setup in Figure 5.2.

In addition to the passive stabilisation by a cardboard box covering the optical table with the

Franson-type interferometer, also an active stabilisation is required for the long term stability
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throughout a measurement. For this purpose, the same frequency-locked external grating

diode laser (ECDL) that is employed as pump laser for the source is used. It enters each

unbalanced Mach-Zehnder interferometer on the remaining input port of the BS, propagates

along the same paths as the single photons and is filtered out by spectral filters after the PBS.

One of these spectral filters is a dichroic mirror that redirects the stabilisation laser to a HWP

set at 𝜋/8 followed by a PBS. This combination erases the which-path information and so

allows the photodiodes to detect an interference signal. The signal of the two photodiodes

is subtracted and then processed by a proportional-integral-derivative controller (PID) which

returns a feedback signal to the piezoelectric actuator moving the translation stage.

For the detection of the single photons, Excillitas avalanche photodiodes1 are used. The

signals from the detectors are recorded with the time tagging module Swabian instruments

Time Tagger Ultra and saved as raw data. At a later time, with the relative delays between

the channels set, this raw data is analysed by a coincidence logic. The software for handling

the output of the time tagging module was kindly provided and adapted to the needs of the

experiment by Lukas Bulla and Jan Lang. This includes both, the software for the live view

during the experiment and the coincidence logic employing the so called ladder algorithm.

Further post-processing is done with Python.

In the following, the setup and central alignment steps of both source and Franson type

interferometer will be explained in more detail.

5.4.1 Entangled photon pair source

The source has already been used in this configuration for other experiments. So, coarse

realignment was only necessary after cleaning and replacement of single components. For this,

the active support of Jan Lang and Lukas Bulla was very helpful. Otherwise, only fine tuning

was necessary before each distillation measurement day to ensure a high fidelity input state.

The SPDC source is set up in Sagnac configuration, introduced in section 3.2, with a type-II

phase-matched ppKTP crystal with collinear emission. Here the setup of the source is described

starting from the pump laser. The pump laser is the same ECDL at 405 nm as used for the

stabilisation coupled to a single-mode fibre to clean the spatial mode. With the polarisation

controller pedals followed by a polariser set at H the pump laser power can be controlled

without affecting the frequency of the laser. The HQHQ channel gives full control over the

polarisation state of the pump laser. With the first HWP the state is rotated in the linear basis

and so the power splitting ratio at the PBS in the Sagnac loop can be controlled. The QWP

are set at 𝜋/4 such that the phase of the pump state and so the phase of the resulting single

photon state can be controlled with the second HWP as discussed in section 3.2. By coupling

the single photons to single-mode fibres, indistinguishability in spatial modes is ensured.

1To be more precise, type SPCM-800-11-FC with serial number 29865 (A0) and 29863 (A1) and type SPCM-
AQRH-14-FC with serial numbers 26740 (B0) and 26739 (B1) are used.
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Before the crystal is inserted into the loop, the loop is aligned such that it mimics a retro-

reflecting mirror for both propagation directions of the blue pump laser. For easier alignment

of the loop a Faraday rotator and a PBS are added right in front of the laser. This modification

allows to maximise the back-coupling to the single-mode fibre at the same time as the 0th order

interference on a screen is minimised. At this point, the first HWP determining the power

splitting is set. A good value for the back-coupling is found to be a quarter of the input pump

power. When the loop is set and the crystal is inserted into the loop the translation DOF

and the rotational DOF of the crystal are roughly aligned. The translation DOF are aligned

with respect to the back-coupling, while the rotation DOF are aligned with respect to the

interference on the screen. By manipulating all DOF of the collimators, that couple the single

photons to the single-mode fibre, iteratively, first the local counts, then the coincidence counts

and the heralding are maximised. Fine tuning is then done by minimal changes of the crystal

position.

Locally the desired state is set only with the HQHQ channel iteratively rotating the two

HWP. The visibilities in the linear bases are measured with polarisers inserted right in front of

the single photon collimators. To obtain the desired input state at the distillation setup, the

channels from the source to the Franson type interferometer have to be aligned. First, a bit

flip is introduced in one of the channels in order to transform 𝜓 states generated by the type-II

source to 𝜑 states received at the Franson type interferometer. At the source, the polarisers

are set arbitrarily in the H/V basis. In one arm, the input polariser at the distillation setup is

adjusted orthogonally with respect to the polariser in the same arm at the source. In the other

arm, the input polariser is set parallel to the corresponding polariser at the source. The long

arms are blocked and the polarisers after PBS are set to H in the A0 and B0 ports and to V in

the A1 and B1 ports. With the polarisation controller pedals the local counts at A and B are

minimised. In a second step, the phase and the balance are adjusted with the HQHQ channel

at the source. For this the polarisers at the source are removed and the input polarisers at

the distillation setup are set to D and A respectively. By minimising the coincidence counts

again, the target state 𝜑+ is set, which is required for the distillation process and exhibits

correlations in both linear bases.

5.4.2 Distillation setup

The final distillation setup is shown in Figure 5.10. Unlike the schematic setup in Figure 5.9

might suggest, the complete Franson type interferometer is fit on one optical table.

In contrast to the source, the Franson type interferometer used for distillation was built

from scratch. The alignment of the setup pursues two principal objectives. Firstly, a good

spatial mode overlap has to be ensured in each Mach-Zehnder interferometer even when the

translation stage is moved or polarisers or wave plates are rotated. This includes that the

single-mode coupling after the interferometer should not be affected by different measurement
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Figure 5.10: Photography of the modified Franson interferometer in the lab. The blue
and red lines illustrate the propagation paths of the pump laser and the single photons
respectively. The imbalance of the Mach-Zehnder interferometers causes a temporal delay
of approximately 2.6 ns.
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settings. Secondly, the polarisation has to be maintained until it is analysed and crosstalk

between the DOF has to be prevented.

The unbalanced Mach-Zehnder (MZ) interferometers are aligned individually with an 810 nm

alignment laser. In a first step, pinholes aligned to the height of the laser beam right after the

collimator are used to align mirrors and BS such that the propagation paths strictly follow

the hole grid of the optical table. This ensures reflections through an angle of 90∘ and is

beneficial for both main objectives stated before. In connection with the use of silver coated

mirrors, the polarisation is not disturbed in an uncontrolled fashion. Furthermore, moving

the translation stages does neither affect the mode overlap nor the single-mode coupling. The

spatial mode can also be affected by the rotation of wedged polarisers or wave plates, causing

varying transversal walk-off. Because this can severely affect the coupling from free space to

the single-mode fibre, the components with the least wedge are selected from the batch. With

the polarisers before and after the MZ interferometer set to D interference is observed in both

output ports. With the translation stage moving at the lowest possible motor speed and an

Ophir Spiricon beam profiler in the one arm and a power meter in the other arm, the visi-

bility of the free space interference is maximised. This is done by fine adjustment of the two

mirrors in the long path. While the free-space visibility usually exceeds 97 %, the visibility

after coupling to single-mode fibre reaches up to 99 %. The relative phase between H and V

components is corrected with tilted QWP in the output ports A1 and B1 with respect to the

output ports A0 and B0 to ensure that the interference fringes in the two ports are in phase.

When the alignment of the 810 nm modes is finished, the components for the stabilisation

with the blue pump laser are aligned. The components of the interferometer are not touched

again, but the interference visibility of the stabilisation laser is maximised with the two mirrors

before the interferometer. The demands are not as high as for the single photons, because a

visibility of 90 % is sufficient for the PID controllers to work properly and the photo diodes

have a large detection area. The signal of the photo diodes is directed to both, an oscilloscope

for screening during a measurement and an analogue subtractor including a low pass filter

provided and installed by Lukas Bulla. The parameters of the PID are set following no certain

procedure but such that the target position is reached in a reasonable time and the system is

stable over hours. The setup is stable over days and only very little realignment of the mirrors

in the long paths is required to prepare the interferometer for a measurement day.

5.5 Determine the fidelity

The fidelity cannot be measured directly, but is computed from visibilities in three different

bases. These visibilities are in turn computed from coincidence counts with parallel and

orthogonal analyser settings as discussed in section 2.3. Often, a lower bound for the fidelity

(|𝑉xx| + |𝑉zz|) /2 ≤ 𝐹 is computed with the visibilities in the linear bases. This turns out to be
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not sufficient for this experiment. As discussed before, each isolated noise model corresponds

to a rotation about an axis. While the visibilities in bases that are in the plane of rotation

are increased or reduced due to the rotation, the visibility in the basis along the rotation axis

does not change. Therefore, the bound is exact for rotations about the x-axis and about the

z-axis, but it is far off for rotations about the y-axis. A rotation about the y-axis results in a

bit-phase error, so the visibilities depend on the fidelity like

𝑉𝑘𝑘 (𝐹 |𝜑+⟩⟨𝜑+| + (1 − 𝐹 ) |𝜓−⟩⟨𝜓−|)
=tr {(𝜎𝑘 ⊗ 𝜎𝑘) ((2𝐹 − 1)𝜎x ⊗ 𝜎x − 𝜎y ⊗ 𝜎y + (2𝐹 − 1)𝜎z ⊗ 𝜎z)}

(5.16a)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝐹 − 1 , for 𝑘 = 𝑧

−1 , for 𝑘 = 𝑦

2𝐹 − 1 , for 𝑘 = 𝑧

. (5.16b)

With an underestimated fidelity it is not possible to properly asses the performance of the

distillation process. As a consequence, the visibilities along all three axes have to be measured

such that the fidelity can be computed exactly following equation (2.16). In Figure 5.11 both,

the measured polarisation input visibilities used to compute the fidelity and the corresponding

theoretical prediction are plotted for the example of a bit flip error, i.e. a rotation about

the x-axis. The overall agreement is good. The visibility in D/A is slightly below unity, and

the H/V visibility is always above the predicted value. While the non-perfect input state is

considered as a parameter in the model, the noisy channel is not. Minor misalignment of the

four wave plates accumulates to the deviation from the model in Figure 5.11.

For a full measurement, each data point is composed of three fidelitites. Firstly, this is the

initial polarisation fidelity 𝐹pol,init. It in includes both, the intentional reduction of the fidelity

by the noisy channel, and the reduction due to a non-ideal input state as well as misalignment

of the noisy channel. Secondly, this is the other fidelity of the input state, the energy-time

fidelity 𝐹e−t,init. Even though this fidelity should not change for different settings of the noisy

channel, it is measured for each setting. Thirdly, this is the polarisation fidelity of the output

state after the distillation step 𝐹pol,out. Set in relation to the input fidelities, the output

fidelity allows to evaluate the performance of the setup. For the different measurements the

configuration of the setup is varied slightly.

5.5.1 Fidelity in Polarisation

For the measurements concerning the input polarisation, the motorised polarisers after the

noisy channel, but before the interferometers are inserted as shown in Figure 5.12. The QWP

are inserted as well for measurements in the circular basis and they are removed for measure-

ments in the linear bases. Since the projection on a certain polarisation state takes place at

the polarisers, the rest of the interferometer works as a bucket detector and should collect all
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Figure 5.11: Visibility of the input polarisation state for a rotation about the x-axis
plotted over the input polarisation fidelity 𝐹pol,init. The theoretical lines are plotted in
a colour matching the markers that indicate measured values. The experimental data
is accidental count corrected and the error bars originating from the counting statistics
are too small to be displayed. The subscripts in the legend refer to the axes of the Bloch
sphere, e.g. 𝑉xx is the visibility for A and B measuring in the D/A basis.
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Figure 5.12: Setup configuration for measurement of input polarisation fidelity. The
polarisation analysers are set directly after the channels and the interferometer is reduced
to two bucket detectors. An active stabilisation is not required. This a reduced version
of the full setup shown in Figure 5.9, so the same legend applies and it is not shown here
again.



5.5 Determine the fidelity 43

transmitted photons. While there is no polarisation entanglement after the polarisers, energy

time entanglement is still present and would lead to interference effects if not one of the paths

were blocked. The long path is blocked, as the losses are smaller in the short path. With only

the short paths working, there are no interferometers to stabilise, so the active stabilisation

can be switched off. Since the polarisers after the PBS cannot be removed, they are set to H

and V in the transmitted paths (S′
A/S′

B) and the reflected paths (L′
A/L′

A) respectively. The

coincidence counts for the four channel combinations are processed and added thereafter. Per

initial polarisation fidelity, measurements are required at 24 different settings, each with an

integration time of 10 s.
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Figure 5.13: Setup configuration for measurement of output polarisation fidelity. All
components are needed but the polarisers and QWP before the interferometer. This a
reduced version of the full setup shown in Figure 5.9, so the same legend applies and it is
not shown here again.

The measurements for the output polarisation fidelity are more demanding than the mea-

surements for the input polarisation fidelity. The long paths are unblocked and the active

stabilisation is employed, because phase stability is required. The polarisers and the QWP

before the interferometer are removed such that the noisy polarisation state is forwarded to the

distillation interferometer. While going through all the polariser combinations in the bases,

the polarisers on one side are always in the same setting, as only coincidences between Alice

and Bob are of interest. By considering only coincidences between S′
A and S′

B as well as L′
A

and L′
A, the post-selection on 𝜑± states in the e-t DOF is realised. Similarly to the input

polarisation fidelity, 24 different settings are required per data point.

5.5.2 Fidelity in energy-time

In contrast to the four required configurations per basis for polarisation measurements, only

one configuration per basis is required for energy-time measurements. This sums up to six

settings per initial polarisation fidelity. To compute the visibility, the coincidence counts
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Figure 5.14: Setup configuration for measurement of energy-time fidelity. All polarisers
are inserted and all QWP are removed. The polarisers and the phase control of the sta-
bilisation laser are used to set the basis. This a reduced version of the full setup shown in
Figure 5.9, so the same legend applies and it is not shown here again.

between the same PBS output modes, that is S′
A and S′

B as well as S′
A and L′

A are subtracted

from those between opposite output modes. All polarisers are inserted, so the states entering

the interferometer are not entangled in polarisation anymore. For the first basis, the so called

time of arrival basis, all polarisers are set to H, so there should be only transmission at the

PBS and the signals at the detectors can be associated with the paths taken by the photons.

Photons reflected by the BS take the long path and are detected in the one output (L′
A/L′

A),

while photons transmitted by the BS are detected in the other output (S′
A/S′

B). There are

no interference effects, so active stabilisation is not required. By setting all polarisers on

D, a superposition basis can be measured. The polarisers after the PBS delete the path

information such that interference can be observed in the e-t DOF. The configuration for the

second superposition basis is realised by introducing a phase shift in the long paths. This phase

shift is controlled by manipulating the polarisation state of the stabilisation laser. Because the

same laser is used for pumping the SPDC source and the stabilisation, it is of exactly half the

wavelength of the single photons. By tilting a QWP at Alice’s side and rotating the HWP of

the QHQ channel at Bob’s side, a phase shift of 𝜋 is introduced for the laser in the imbalanced

Mach-Zehnder interferometer. This introduces a phase shift of 𝜋/2 for the single photons in

the long paths.
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The distillation basin for a bit flip error in polarisation and a bit flip and bit-phase flip error in

the e-t DOF reaches at least from a fidelity 𝐹e−t = 0.5135(12) to a fidelity 𝐹e−t = 0.9352(7) in

the energy-time DOF. This is a lower bound for the region of positive gain as no measurement

data exists at the extremal points of the basin. The maximally measured total gain in fidelity

is

(𝐹pol,out − max (𝐹pol,init, 𝐹e−t))max = 0.1031(9) , (6.1)

at 𝐹pol,init = 0.7344(8), 𝐹e−t = 0.7344(11) and a yield of 𝑌 = 0.6317(6). The error is

computed by Gaussian error propagation of the standard deviation of the Poissonian counting

statistics.

Figure 6.1: Heatmaps of the gain in polarisation fidelity with respect to the maximal in-
put fidelity in experiment (a) and theory (b). Accidental corrected measured data points
are indicated by markers. In total the data points are the result of 594 single measure-
ment settings. The lines are drawn at zero gain. The dotted line in the experimental plot
is the theoretical zero line for comparison. The same normalisation and the same colour
map applies to both frames.

The heatmaps in Figure 6.1 give an impression of the performance of the setup for a bit

flip error in polarisation and a bit and bit-phase flip error in the e-t DOF. On the axes,

the input fidelity in polarisation and energy-time are depicted. The markers in the left plot
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indicate measured data points and the colour represents the gain in polarisation fidelity with

respect to the maximal input fidelity for each point. The spacing of the grid of data points is

determined vertically by the coincidence windows chosen in post-processing. The horizontal

spacing is determined by the noisy channel settings during the experiment. In total, 594 single

measurements, each with 10 s integration time, were conducted to obtain the data presented

in Figure 6.1. Between the measurement points the gain is interpolated using triangulation

and linear interpolation. The distillation basin is limited by the line of zero gain, which is

indicated by a solid line in each plot. In the plot of the experimental data, the theoretical zero

gain line is included as a dashed line for comparison. Close to unit input fidelities, there is a

white region that could not be reached with the input states.

The model takes the imperfect input state into account, and so predicts the overall behaviour

much better than the ideal model discussed in section 5.3.2. The information about the input

state is gained from the data point with neutral HQHQ setting and narrow coincidence window.

This is the point with the largest fidelity in both DOF. In the plots this corresponds to the

top most right point. In contrast to the ideal case, regions of negative gain are predicted even

for input fidelities larger than one half and the distillation basin is not symmetric about the

diagonal.

The points for a fixed coincidence window fluctuate around a horizontal line for different

noisy channel settings. This may be caused by a variation of the single-mode coupling efficiency

with the position of the wave plates in the noisy channel due to wedging. A different behaviour

can be observed for fixed noisy channel settings and various coincidence windows. In principle

it would be expected to find the markers on a straight vertical line. This is not the case.

The polarisation input fidelity decreases with the e-t input fidelity and so with an increasing

coincidence window. Most severely, this can be observed for high polarisation input fidelities

as they are most fragile. This indicates a crosstalk between the polarisation DOF and the

energy-time DOF, such that the two DOF cannot be manipulated completely independently.

A possible cause of this crosstalk was observed at the source. Due to reflections within the

source, side peaks with correlations opposite to the correlation dominating the central peak

of coincidence counts are observed. When the coincidence window is widened, not only the

side peaks of the Franson-type interferometer are included, but also the side peaks originating

from the source. The sudden increase of the deviation from the vertical line for low e-t input

fidelities can be explained by the fact that the side peaks caused by reflections in the source are

slightly further away from the central peak than the side peaks of the Franson interferometer.

More details on the source side peaks can be found in appendix A.5. The bit flip and bit-

phase flip errors introduced by the crosstalk, however, do not explain the gain reached in the

experiment in the region of small e-t and large polarisation input fidelities, which is larger

than predicted by the model.

While the overall shape of the distillation basins agree, the theoretical basin exceeds the

experimental basin for high e-t fidelities and it is smaller than the experimental basin for e-t
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fidelities below 0.8.

Figure 6.2: Gain plotted for various constant input polarisation fidelities. For each cut
the lines and markers of the same colour represent theoretical and experimental data re-
spectively. The plot should be treated with care as the experimental and the theoretical
cuts do not agree exactly.

The heatmaps in Figure 6.1 do not allow for a direct comparison of experimental data and

theoretical model as they are side by side. A direct comparison is not that easy, because the

model takes the imperfect input state into account but considers the noise generation in both

DOF as ideal. As a result cuts through the heatmaps for fixed input fidelities are easy in

the model, which is not the case in the experiment, as discussed in the previous paragraph.

Therefore cuts through the heatmaps for constant input fidelities should be treated carefully.

The experimental and the theoretical cuts for a constant input polarisation fidelity shown

in Figure 6.2 overlap only at the maximal energy-time fidelity and diverge towards lower e-t

fidelity. Not only the region of positive gain is shown, but the ordinate reaches to negative

gain. Both, for an e-t fidelity close to 0.5 and close to 1 the gain is negative regardless of the

polarisation fidelity. The weakness of the model becomes most apparent again for small e-t

fidelities and large pol fidelities.

The cuts for the extremal e-t fidelities in Figure 6.3 are below zero gain for all polarisation

fidelities, since the distillation basin is not cut. Otherwise, similar observations as for the cuts

for constant polarisation fidelities can be made.

By employing the energy-time DOF, the yield in the polarisation DOF is boosted and reaches

up to 1. In Figure 6.4 the experimentally achieved yield as well as the theoretically predicted
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Figure 6.3: Gain plotted for various constant input energy-time fidelities. For each cut
the lines and markers of the same colour represent theoretical and experimental data re-
spectively. The plot should be treated with care as the experimental and the theoretical
cuts do not agree exactly.

Figure 6.4: Yield in the polarisation DOF plotted from experimental data (a) and from
the theoretical model (b). The markers in (a) indicate measured data points. The colour
indicates the obtained yield, this is the number of output states divided by the number of
input states in polarisation. Between the data points triangulation and linear interpola-
tion is used.
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yield is shown. It is maximal for high input fidelities in both DOF and decreases to 0.5 with

the input fidelities.





7 Conclusions and outlook

In this proof of principle experiment of entanglement distillation using passive linear optics and

photons hyperentangled in the polarisation and the energy time DOF a gain that is positive

by up to 114 standard deviations has been obtained.

It has been demonstrated, that distinct errors can be introduced and controlled by a comb

of wave plates in the polarisation DOF and by including the non-interfering background in the

energy-time DOF. In both DOF the visibility has been measured in three mutually unbiased

bases in order to determine the Bell state fidelity exactly. The demand of phase stability on

the order of the wavelength of the two unbalanced Mach-Zehnder interferometers has been

met such that high energy-time fidelities could be measured and successful distillation could

be performed. A maximal total gain of more than 10 % for a bit flip error in the polarisation

DOF and a bit and bitphase flip error in energy-time DOF has been reached. The overall

behaviour of the experimental results can be described by a model that takes the experimental

input state into account. Cross talk between the DOF and the phase compensation are not

yet considered in the model. Including this as well might improve the model further.

Based on this experiment, further experiments can be performed. Some require no or little

modifications of the setup, others require more effort. As the setup is at the moment, various

error models can be tested. Aside from a bit flip error the noisy channel can also produce

phase flip and bit-phase flip errors. While a phase flip error alone is not too interesting as only

negative gain is predicted and a bit-phase flip error is expected to give the same results as the

bit flip error described in this work, they can all be combined resulting in a Werner state in

polarisation. Other ways to produce a Werner state in polarisation may include heating and

mechanically twisting the fibres.

Full quantum state tomography would allow deeper insights in the performance of the setup

and theoretical hypotheses could be tested. The purity could be computed and used as a

verification that the input state actually is a mixed state. While the fidelity is a lower bound

for entanglement, a real entanglement measure such as the concurrence could be computed.

Additionally, it could be verified that the Schur product relates the density matrices of the

input and the output states.

The proposed pumping scheme DEPP [66] can easily be implemented by inserting dual

wavelength HWP in the long paths before the PBS. This way bit flip and phase flip errors can

be treated in one step.

Considerable modifications of the setup are required to add more dimensions to the analysis
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of the energy-time DOF. For this, more possible paths of different length are required. In

principle more DOF could be employed, such that more than one distillation step could be

performed. Already with two steps also the phase flip error could be purified following the

BBPSSW scheme. Prerequisite for the expansion to more DOF is the feasibility of the gener-

ation of hyperentanglement in those additional DOF and of an efficient implementation of the

CNOT gate between the DOF.

Both the polarisation and the e-t DOF have been proven suitable for entanglement distribu-

tion under real conditions via free-space [52] as well as fibre [67, 68]. In the long term, it would

be desirable to bring distillation protocols out of the lab and test them under field conditions.

While writing this thesis, the results of this experiment as well as a closely related experiment

were published [69, 70].



Appendix

A.1 Fidelity and visibility

The visibility along an axis 𝑘 with 𝑘 ∈ {𝑥, 𝑦, 𝑧} of a two qubit state in Bloch representation

computes as

𝑉𝑘𝑘
(︁
𝜌
(2)
𝐵𝑙𝑜𝑐ℎ

)︁
= tr

{︂
1

4
(12 ⊗ 12 + 𝑎𝑖𝜎𝑖 ⊗ 12 + 𝑏𝑖12 ⊗ 𝜎𝑖 + 𝑡𝑖𝑗𝜎𝑖 ⊗ 𝜎𝑗) · 𝜎𝑘 ⊗ 𝜎𝑘

}︂
(A.1a)

=
1

4
(tr {(12 ⊗ 12) (𝜎𝑘 ⊗ 𝜎𝑘)} + 𝑎𝑖tr {(𝜎𝑖 ⊗ 12) (𝜎𝑘 ⊗ 𝜎𝑘)}

+𝑏𝑖tr {(12 ⊗ 𝜎𝑖) (𝜎𝑘 ⊗ 𝜎𝑘)} + 𝑡𝑖𝑗tr {(𝜎𝑖 ⊗ 𝜎𝑗) (𝜎𝑘 ⊗ 𝜎𝑘)}) ,
(A.1b)

with (𝐴⊗𝐵) (𝐶 ⊗𝐷) = 𝐴𝐶 ⊗𝐵𝐷 and tr {𝐴⊗𝐵} = tr {𝐴} tr {𝐵} ,

=
1

4

(︁
tr {𝜎𝑘}2 + 𝑎𝑖tr {𝜎𝑖𝜎𝑘} tr {𝜎𝑘} + 𝑏𝑖tr {𝜎𝑘} tr {𝜎𝑖𝜎𝑘}

+ 𝑡𝑖𝑗tr {𝜎𝑖𝜎𝑘} tr {𝜎𝑗𝜎𝑘} ) ,
(A.1c)

with tr {𝜎𝑖} = 0 and 𝜎𝑖𝜎𝑗 = 𝛿𝑖𝑗12 + i
∑︀

𝑘∈{𝑥,𝑦,𝑧} 𝜖𝑖𝑗𝑘𝜎𝑘 ,

=
1

4
𝑡𝑖𝑗𝛿𝑖𝑘𝛿𝑗𝑘tr {12}2 =

1

4
𝑡𝑘𝑘2

2 (A.1d)

= 𝑡𝑘𝑘 . (A.1e)

A.2 Bilateral CNOT

In the Bell basis {𝜑+, 𝜓+, 𝜑−, 𝜓−} the action of the bCNOT can be described by the 16 × 16

permutation matrix

UbCNOT = 12 ⊗ diag (12, 02, 𝜎x, 02) + 𝜎x ⊗ diag (02,12, 02, 𝜎x) , (A.2)

where 12 and 02 denote the 2D identity and the 2D zero matrix respectively. 𝜎x is the Pauli-x

matrix. An overview of the action of the bCNOT can be found in Table A.1 . A CNOT gate

followed by a measurement of the target qubit is a parity measurement. Similarly the bCNOT

followed by a correlation measurement of the target state in the computational basis can be
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Table A.1: Action of the bilateral CNOT gate on Bell states with the polarisation DOF
as source qubit and the spatio-temporal DOF as target qubit. The combinations in the
left two columns are transformed to the combinations in the same row in the right two
columns.

before after

source (pol) target (e-t) source (pol) target (e-t)

𝜑+ 𝜑+ 𝜑+ 𝜑+

𝜑+ 𝜓+ 𝜑+ 𝜓+

𝜑+ 𝜑− 𝜑− 𝜑−

𝜑+ 𝜓− 𝜑− 𝜓−

𝜓+ 𝜑+ 𝜓+ 𝜓+

𝜓+ 𝜓+ 𝜓+ 𝜑+

𝜓+ 𝜑− 𝜓− 𝜓−

𝜓+ 𝜓− 𝜓− 𝜑−

𝜑− 𝜑+ 𝜑− 𝜑+

𝜑− 𝜓+ 𝜑− 𝜓+

𝜑− 𝜑− 𝜑+ 𝜑−

𝜑− 𝜓− 𝜑+ 𝜓−

𝜓− 𝜑+ 𝜓− 𝜓+

𝜓− 𝜓+ 𝜓− 𝜑+

𝜓− 𝜑− 𝜓+ 𝜓−

𝜓− 𝜓− 𝜓+ 𝜑−

seen as parity measurement in some sense. If the measurement results are correlated, meaning

the target state is in a 𝜑 state, the states before the bCNOT were either both in a 𝜑 or both in

a 𝜓 state. If the measurement results are anti-correlated, the states before the bCNOT were

either in a 𝜑 and a 𝜓 or in a 𝜓 and a 𝜑 state.

Some more patterns can be found in Table A.1. The target state is left invariant if the

source was in a 𝜑 state and the target state experiences a bit flip if the source was in a 𝜓 state.

The source state, in turn, is left invariant if the target state was in a 𝜑+ or in a 𝜓+ state. If

the target state was in a 𝜑− or in a 𝜓− state, the source state experiences back-action and the

phase is flipped.

A.3 Noisy polarisation channel

A general rotation on the Bloch sphere by an angle 𝜃 about a vector n can be described as

𝑅n (𝜃) = exp

(︂
−i

𝜃

2
n · 𝜎

)︂
, (A.3)
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where 𝜎 = (𝜎x, 𝜎y, 𝜎z)
T

is a vector with the Pauli matrices as elements. The rotations along

the cartesian axes are then

𝑅x (𝜃) = e−i 𝜃
2
𝜎x = cos

(︂
𝜃

2

)︂
1− i sin

(︂
𝜃

2

)︂
𝜎x =

(︃
cos 𝜃

2
−i sin 𝜃

2

−i sin 𝜃
2

cos 𝜃
2

)︃
, (A.4)

𝑅y (𝜃) = e−i 𝜃
2
𝜎y = cos

(︂
𝜃

2

)︂
1− i sin

(︂
𝜃

2

)︂
𝜎y =

(︃
cos 𝜃

2
− sin 𝜃

2

sin 𝜃
2

cos 𝜃
2

)︃
, (A.5)

𝑅z (𝜃) = e−i 𝜃
2
𝜎z = cos

(︂
𝜃

2

)︂
1− i sin

(︂
𝜃

2

)︂
𝜎x =

(︃
e−i 𝜃

2 0

0 ei
𝜃
2

)︃
. (A.6)

These rotations can be reproduced precisely by the HQHQ channel. For practical purposes

the angles of the wave plates are chosen, such that the rotations are mimicked up to the action

of a half-wave plate set at 0.

𝑄0𝐻𝜗𝑄0𝐻0 =

(︃
cos 2𝜗 i sin 2𝜗

−i sin 2𝜗 − cos 2𝜗

)︃
= 𝑅x (4𝜗)𝐻0 , (A.7)

𝑄𝜋
4
𝐻𝜋

4
−𝜗𝑄𝜋

4
𝐻0 =

(︃
cos 2𝜗 sin 2𝜗

sin 2𝜗 − cos 2𝜗

)︃
= 𝑅y (4𝜗)𝐻0 , (A.8)

𝑄0𝐻0𝑄0𝐻𝜗 =

(︃
e−2i𝜗 0

0 −e2i𝜗

)︃
= 𝑅z (4𝜗)𝐻0 . (A.9)
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Figure A.1: Setup including bit flip interferometer with transmission modulator in the
long paths.

To introduce a tunable bit flip error in the e-t DOF, two concatenated Franson interfer-

ometers as shown in Figure A.1 may be used. The output state of the first interferometer
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is

|𝜓⟩out,1 =
1

2

(︀
|S⟩A + e𝑖𝛽A

√
𝑡A|L⟩A

)︀
⊗ 1

2

(︀
|S⟩B + e𝑖𝛽B

√
𝑡B|L⟩B

)︀
(A.10)

=
1

4

(︁
|SS⟩AB + e𝑖(𝛽A+𝛽B)

√
𝑡A𝑡B|LL⟩AB + e𝑖𝛽A

√
𝑡A|LS⟩AB + e𝑖𝛽B

√
𝑡B|SL⟩AB

)︁
.

(A.11)

The normalisation is chosen such that the state is normalised to one before entering the first

interferometer. Half of the counts are lost at the second beamsplitters in both, Alice’ and

Bob’s, arms. The output state of the second interferometer only is

|𝜓⟩out,2 =
1

2

(︁
|SS⟩AB + e𝑖(𝜑A+𝜑B)|LL⟩AB + e𝑖𝜑A|LS⟩AB + e𝑖𝜑B|SL⟩AB

)︁
. (A.12)

The overall output state |𝜓⟩out = |𝜓⟩out,1 ⊗ |𝜓⟩out,2 lives in a 16 dimensional space. While all

components can be coherent, some are distinguishable due to the time delay accumulated in

the long paths. By coincidence measurement a six dimensional subspace spanned by |SSSS⟩,
|SSLL⟩, |LLSS⟩, |LLLL⟩, |LSSL⟩, |SLLS⟩ is selected. Here the first two labels represent

the short (S) and the long (L) path taken in the first interferometer at Alice’s and Bob’s

side respectively. The third and the fourth labels represent the paths taken in the second

interferometer. In order to get a symmetric bit flip, it is assumed that 𝑡A = 𝑡B ≡ 𝑡.

The fidelity with respect to the Bell states is computed by projecting onto

|𝜑+⟩ :
1

2
(|SS⟩ + |LL⟩) ⊗ (|SS⟩ + |LL⟩) , (A.13)

|𝜑−⟩ :
1

2
(|SS⟩ + |LL⟩) ⊗ (|SS⟩ − |LL⟩) , (A.14)

|𝜓+⟩ :
1√
2

(|SLLS⟩ + |LSSL⟩) , (A.15)

|𝜓−⟩ :
1√
2

(|SLLS⟩ − |LSSL⟩) . (A.16)

Here, only the state after the second interferometer is of interest. For the |𝜑±⟩ states the

relative phase of the terms at the first interferometer is chosen as +1 as this is the output
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state in the used ports (see [71]). The resulting fiedlities are

𝐹𝜑+ =
1

32

(︀
1 + 𝑡2 + 2𝑡 cos (𝛽A + 𝛽B)

)︀
cos2

(︂
𝜑A + 𝜑B

2

)︂
, (A.17)

𝐹𝜑− =
1

32

(︀
1 + 𝑡2 + 2𝑡 cos (𝛽A + 𝛽B)

)︀
sin2

(︂
𝜑A + 𝜑B

2

)︂
, (A.18)

𝐹𝜓+ =
1

16
𝑡 cos2

(︂
𝛽A − 𝛽B − 𝜑A + 𝜑B

2

)︂
, (A.19)

𝐹𝜓− =
1

16
𝑡 sin2

(︂
𝛽A − 𝛽B − 𝜑A + 𝜑B

2

)︂
. (A.20)

The contributions of the central peak and the first two side peaks are shown in Table A.2.

The two side peaks with time delay ±2 both contain only one term, that is e𝑖(𝛽B+𝜑B)
√
𝑡|SLSL⟩

for T−2 and e𝑖(𝛽A+𝜑A)|LSLS⟩ for T2 .

Table A.2: Output after concatenated Franson interferometers, ordered by relative time
delay. Style of timing analysis inspired by [72]

T−1 T0 T1

e𝑖𝜑B |SSSL⟩ |SSSS⟩ e𝑖𝜑A |SSLS⟩
e𝑖(𝛽A+𝛽B+𝜑B)𝑡 |LLSL⟩ e𝑖(𝜑A+𝜑B) |SSLL⟩ e𝑖(𝛽A+𝛽B+𝜑A)𝑡 |LLLS⟩

e𝑖𝛽B
√
𝑡 |SLSS⟩ e𝑖(𝛽A+𝛽B)𝑡 |LLSS⟩ e𝑖𝛽A

√
𝑡 |LSSS⟩

e𝑖(𝛽B+𝜑A+𝜑B)
√
𝑡 |SLLL⟩ e𝑖(𝛽A+𝛽B+𝜑A+𝜑B)𝑡 |LLLL⟩ e𝑖(𝛽A+𝜑A+𝜑B) |LSLL⟩

e𝑖(𝛽A+𝜑B)
√
𝑡 |LSSL⟩

e𝑖(𝛽B+𝜑A)
√
𝑡 |SLLS⟩

A.5 Source side peaks

As discussed in section 3.3 the Franson interferometer produces peaks of different time delays.

The central peak with zero time delay between the detected single photons is surrounded by

two side peaks of ±Δ𝑡 time delay determined by the imbalance of the MZ interferometers.

To keep the number of accidental coincidence counts low, the coincidence window is usually

kept narrow. For the controlled introduction of an error in the energy-time DOF though,

the coincidence window is widened gradually until the side peaks are fully included. Ideally

this affects only the e-t DOF and not the polarisation DOF. Unfortunately, this is not the

case, as can be seen in the results presented in section 6. Even during measurements of the

input polarisation fidelity sidepeaks are observed. For this measurement the Mach-Zehnder

interferometers are turned off by blocking the long arm (ref. section 5.5.1), so no sidepeaks

can be produced by the Franson interferometer. The observed sidepeaks are traced back to

the source. Here they are observed analysing the polarisation with a Bob module connected

via single-mode fibre. The side peaks always contain the unwanted correlations, which are
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minimal in the central peak. Maximising the state, and so the central peak, on correlated

coincidences leads to maximised anti-correlated coincidences in the side peaks. Similarly cor-

related coincidences are maximal in the side if anti-correlated coincidences are maximal in

the central peak. Reflections at the long pass filter and in the single-mode fibre have been

excluded by tilting or replacing them. The side peaks vanish when the polarisation is analysed

with polarisers in front of the collimators for the single photons. From this, it is assumed that

the side peaks arise from a reflection at the collimator. The photons travel back to the loop,

pass the HWP in the loop and are so directed back to the collimator they were reflected from

but with orthogonal polarisation. This is why they cannot pass the polariser a third time.

Figure A.2: Crosstalk between the polarisation and the energy-time DOF. The devi-
ation of the fidelities is given with respect to a narrow coincidence window that corre-
sponds to the maximal energy-time fidelity. The noisy channel is fixed at the neutral po-
sition. By widening the coincidence window the e-t fidelity decreases, but at some point
also the polarisation fidelity with respect to the 𝜑+ state decreases. This is caused by the
source side peaks discussed in the text.

The side peaks have not been a problem for experiments that used this source before as

the coincidence window has been small enough to exclude the side peaks at all times. In this

distillation experiment, however, widening the coincidence window is essential and so the side

peaks caused by reflections in the source which occur at a similar time delay as the side peaks

of the Franson interferometer cannot be avoided. As the path length difference in the Franson

interferometer is chosen carefully and should not be changed and the collimator cannot be

tilted, the only option would be to increase the distance between the Sagnac loop and the

collimators. This would decrease the stability of the source due to more sensitive coupling to

the single-mode fibres. In addition, the couplers would have to be positioned on a different
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breadboard and the acrylic box for passive stabilization would have to be extended.
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William K. Wootters. Teleporting an unknown quantum state via dual classical and

einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895, 1993.

[11] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, and

Anton Zeilinger. Experimental quantum teleportation. Nature, 390(6660):575, 1997.



62 Bibliography

[12] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on entangle-

ment purification. Phys. Rev. A, 59:169, 1999.

[13] Jian-Wei Pan, Dik Bouwmeester, Harald Weinfurter, and Anton Zeilinger. Experimental

entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett.,

80:3891, 1998.

[14] David Deutsch, Artur Ekert, Richard Jozsa, Chiara Macchiavello, Sandu Popescu, and

Anna Sanpera. Quantum privacy amplification and the security of quantum cryptography

over noisy channels. Phys. Rev. Lett., 77:2818, 1996.

[15] Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. Distillability of inseparable

quantum systems, 1996.

[16] Charles H. Bennett, Herbert J. Bernstein, Sandu Popescu, and Benjamin Schumacher.

Concentrating partial entanglement by local operations. Phys. Rev. A, 53:2046, 1996.

[17] N. Gisin. Hidden quantum nonlocality revealed by local filters. Physics Letters A,

210(3):151, 1996.

[18] Claude Cohen-Tannoudji. Quantum mechanics : 1. Textbook physics. Wiley Hermann,

New York, NY Paris, 2., rev. and enl. ed., [repr.]. edition, 2005.

[19] Stephen M Barnett. Quantum information. Oxford master series in atomic, optical and

laser physics ; 16. Oxford Univ. Pr., Oxford, 1. publ. edition, 2009.

[20] Jun J Sakurai. Modern quantum mechanics. Pearson new international edition. Pearson,

Harlow, Essex, 2. edition, 2014.

[21] Ingemar Bengtsson and Karol Zyczkowski. Geometry of Quantum States: An Introduction

to Quantum Entanglement. Cambridge University Press, 2006.

[22] Reinhard F. Werner. Quantum states with einstein-podolsky-rosen correlations admitting

a hidden-variable model. Phys. Rev. A, 40:4277, 1989.

[23] Ryszard Horodecki, Pawe l Horodecki, Micha l Horodecki, and Karol Horodecki. Quantum

entanglement. Rev. Mod. Phys., 81:865, 2009.

[24] Anton Zeilinger. A Foundational Principle for Quantum Mechanics, pages 235–245.

Springer International Publishing, Cham, 2019.

[25] E. Collett. Field Guide to Polarization. Field Guide Series. SPIE Press, 2005.

[26] Bahaa E Saleh. Fundamentals of photonics. Wiley series in pure and applied optics.

Wiley, New York, NY, 2. edition, 2007.



Bibliography 63

[27] Anthony Mark Fox. Quantum optics : an introduction. Oxford master series in physics ;

15 : Atomic, optical and laser physics. Oxford Univ. Pr., Oxford, 1. publ. edition, 2006.

[28] Zhe-Yu Jeff Ou. Quantum optics for experimentalists. World Scientific, New Jersey

London Singapore Beijing Shanghai Hong Kong Taipei Chennai Tokyo, 2017.

[29] Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, Anton Zeilinger, Alexander V.

Sergienko, and Yanhua Shih. New high-intensity source of polarization-entangled photon

pairs. Phys. Rev. Lett., 75:4337, 1995.

[30] Ali Anwar, Chithrabhanu Perumangatt, Fabian Steinlechner, Thomas Jennewein, and

Alexander Ling. Entangled photon-pair sources based on three-wave mixing in bulk crys-

tals, 2020.

[31] E. Hecht. Optics, Global Edition. Pearson Education Limited, 2016.

[32] Robert W. Boyd. Nonlinear optics. Academic Press, Amsterdam; Boston, 3. edition,

2008.

[33] Taehyun Kim, Marco Fiorentino, and Franco N. C. Wong. Phase-stable source of

polarization-entangled photons using a polarization sagnac interferometer. Phys. Rev.

A, 73:012316, 2006.

[34] Alessandro Fedrizzi, Thomas Herbst, Andreas Poppe, Thomas Jennewein, and Anton

Zeilinger. A wavelength-tunable fiber-coupled source of narrowband entangled photons.

Opt. Express, 15(23):15377, 2007.

[35] Hiroki Takesue and Kaoru Shimizu. Effects of multiple pairs on visibility measurements

of entangled photons generated by spontaneous parametric processes. Optics Communi-

cations, 283(2):276, 2010.

[36] Paul G. Kwiat. Hyper-entangled states. Journal of Modern Optics, 44(11-12):2173, 1997.

[37] J. D. Franson. Bell inequality for position and time. Phys. Rev. Lett., 62:2205, 1989.

[38] Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel. Observation of nonlocal interference in

separated photon channels. Phys. Rev. Lett., 65:321, 1990.

[39] J. G. Rarity and P. R. Tapster. Experimental violation of bell’s inequality based on phase

and momentum. Phys. Rev. Lett., 64:2495, 1990.

[40] J. D. Franson. Two-photon interferometry over large distances. Phys. Rev. A, 44:4552,

1991.

[41] J Brendel, E Mohler, and W Martienssen. Experimental test of bell’s inequality for energy

and time. Europhysics Letters (EPL), 20(7):575, 1992.



64 Bibliography

[42] P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao. High-visibility interference in a bell-

inequality experiment for energy and time. Phys. Rev. A, 47:R2472, 1993.

[43] P. R. Tapster, J. G. Rarity, and P. C. M. Owens. Violation of bell’s inequality over 4 km

of optical fiber. Phys. Rev. Lett., 73:1923, 1994.

[44] R Y Chiao, P G Kwia, and A M Steinberg. Quantum non-locality in two-photon exper-

iments at berkeley. Quantum and Semiclassical Optics: Journal of the European Optical

Society Part B, 7(3):259, 1995.

[45] D. V. Strekalov, T. B. Pittman, A. V. Sergienko, Y. H. Shih, and P. G. Kwiat.

Postselection-free energy-time entanglement. Phys. Rev. A, 54:R1, 1996.

[46] Julio T. Barreiro, Nathan K. Langford, Nicholas A. Peters, and Paul G. Kwiat. Generation

of hyperentangled photon pairs. Phys. Rev. Lett., 95:260501, 2005.

[47] Paul G. Kwiat and Harald Weinfurter. Embedded bell-state analysis. Phys. Rev. A,

58:R2623, 1998.

[48] Carsten Schuck, Gerhard Huber, Christian Kurtsiefer, and Harald Weinfurter. Complete

deterministic linear optics bell state analysis. Phys. Rev. Lett., 96:190501, 2006.

[49] Julio T. Barreiro, Tzu-Chieh Wei, and Paul G. Kwiat. Erratum: Beating the channel

capacity limit for linear photonic superdense coding. Nature Physics, 4(8):662, 2008.

[50] Brian P. Williams, Ronald J. Sadlier, and Travis S. Humble. Superdense coding over

optical fiber links with complete bell-state measurements. Phys. Rev. Lett., 118:050501,

2017.

[51] Klaus Mattle, Harald Weinfurter, Paul G. Kwiat, and Anton Zeilinger. Dense coding in

experimental quantum communication. Phys. Rev. Lett., 76:4656, 1996.

[52] Fabian Steinlechner, Sebastian Ecker, Matthias Fink, Bo Liu, Jessica Bavaresco, Marcus

Huber, Thomas Scheidl, and Rupert Ursin. Distribution of high-dimensional entanglement

via an intra-city free-space link. Nature Communications, 8:15971, 2017. Article.

[53] Sebastian Ecker, Frédéric Bouchard, Lukas Bulla, Florian Brandt, Oskar Kohout, Fabian

Steinlechner, Robert Fickler, Mehul Malik, Yelena Guryanova, Rupert Ursin, and Marcus

Huber. Overcoming noise in entanglement distribution. Phys. Rev. X, 9:041042, 2019.

[54] Frank Verstraete, Jeroen Dehaene, and Bart DeMoor. Local filtering operations on two

qubits. Phys. Rev. A, 64:010101, 2001.

[55] Paul G. Kwiat, Salvador Barraza-Lopez, André Stefanov, and Nicolas Gisin. Experimental
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ment distribution over a 96-km-long submarine optical fiber. Proceedings of the National

Academy of Sciences, 116(14):6684, 2019.



66 Bibliography

[68] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin. Distribu-
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