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1. Introduction

Understanding the properties of solutions the Einstein equations

Ricµν −
1
2Rgµν = 8πTµν

is the backbone of Mathematical Relativity and thus of gaining a mathematically rigorous
understanding of our universe. Due to the complexity of these equations, a common
strategy to gain more insight into them is to consider how the equations behave for
certain simple, well-known models. From a cosmological perspective, one often uses
Friedman-Lemaître-Robertson-Walker (FLRW) spacetimes

M = I ×M, g = −dt2 + a(t)2ḡ

to describe the universe as a whole as a spacetime filled with an expanding homogeneous
ideal fluid with energy density ρ and pressure p, where I is an open subinterval of R,
a ∈ C∞(I) is governed by the Friedman equations and

(
M, ḡ

)
is a Riemannian manifold

of constant sectional curvature κ. Further, to slowly approach more phenomenological
matter models encoded by the energy-momentum tensor T on such geometric back-
grounds, it is a reasonable first step to couple it with simplest matter model conceivable,
namely by a scalar field associated with

Tµν [ϕ] = ∇µϕ∇νϕ−
1
2gµν∇

ηϕ∇ηϕ .

Since this FLRW model is, of course, a considerable simplification of the known universe,
the question arises of whether and which properties of FLRW spacetimes are conserved
when the structure of the spacetime only slightly deviates from this large-scale model –
in particular whether near-FLRW solutions to the Einstein Scalar-Field equations also
exhibit a Big Bang in the sense that the Riemann curvature tensor blows up toward the
left-hand boundary of I. While this past nonlinear stability of FLRW spacetimes has
been proven when the sectional curvature κ of

(
M, ḡ

)
is zero or positive (see [14, 15, 16]),

the problem remains open for κ = −1.

To approach this mathematically rather involved analysis, the aim of this thesis will be
to formulate a rigorous understanding on how solutions to the wave equation

�gψ = gµν∇µ∇νψ = 0

blow up toward the Big Bang singularity on a fixed FLRW background (M, g) as above,
where

(
M, ḡ

)
is of zero or negative sectional curvature, i.e. whether they also diverge
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along with the geometric quantities and if so, at what rate and which rough asymp-
totic form they take. Waves are of interest here since they arise as the natural form
scalar fields take and since they can be understood as a toy model for the linearized
Einstein equations. To be slightly more precise, it will become apparent that the geo-
metric properties of

(
M, ḡ

)
are only relevant in so far as they influence the scale factor

via the Friedman equations. Thus, a more general class of warped product spacetimes
will be analyzed where any additional geometric assumptions on the closed Riemannian
manifold

(
M, ḡ

)
are dropped, but the expansion rate within this spacetime is the one

obtained from the Friedman equations for κ = 0 and κ = −1 respectively. In this sense,
this thesis is a vast generalization of the arguments and results in [1] that provided an
asymptotic blow-up analysis of waves for “pure” FLRW spacetimes with κ = 0 (along
with generalizing the analysis to waves to the stiff-fluid background ρ = p as far as pos-
sible), even though certain structural ideas will follow along similar lines. To be more
precise, the fact that, unlike in flat spatial geometry, coordinate derivatives no longer
commute will severly complicate proving regularity statements toward the Big Bang.

After covering some basic notation in Chapter 2, Chapter 3 will provide a more compre-
hensive overview on how our mathematical question is naturally motivated from physical
considerations, in particular with regards to how FLRW spacetimes and the Friedman
equations arise in cosmology and as to how waves and the scalar-field energy-momentum
tensor are connected. The more general mathematical setup can then be established in
Chapter 4 along with many useful preliminary properties of the scale factor a and of
waves, after which Chapter 5 provides a necessary mathematical excursion for our anal-
ysis, generalizing the concepts of Sobolev spaces and ellipticity from the well-known
Euclidean case to the more general Riemannian setting.
With all of these tools in hand, it will be shown Chapter 6 that certain energies of
waves remain bounded toward the Big Bang singularity at t = 0, and similarly for waves
rescaled by their suspected leading asymptotic order, allowing to extract pointwise up-
per bounds for the rescaled variables that extend to t = 0. With this in hand, it will be
proven in Section 7.1 that, for p = (γ − 1)ρ, γ ∈ (2/3, 2), any smooth wave ψ takes the
asymptotic form

ψ(t, x) = A(x)t1−
2
γ + o

(
t
1− 2

γ

)
, respectively

ψ(t, x) = A(x)
∫ ∞
t

a(s)−3 ds+ o

(∫ ∞
t

a(s)−3 ds

)
for some A ∈ C∞

(
M
)
as t → 0 on warped product spacetimes associated with κ = 0,

respectively κ = −1. Furthermore, rather general sufficient conditions on the initial data
will be provided in Section 7.2 that ensure that A does not vanish. and hence guarantee
blow-up of highest possible order. More precisely, these conditions essentially state that
if the initial data of derivatives of ψ on some close enough initial hypersurface M t0

is dominated in a sufficiently strong L2-sense by velocity terms ‖∂tψ(t0, ·)‖L2(M) (i.e.
spatial inhomogeneities of the wave are comparatively small), then this is preserved when
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1. Introduction

developing toward the Big Bang hypersurface, ensuring that the highest order in t does
not vanish. The asymptotic results will be extended to the stiff case as far as possible
in Section 7.3, before closing out the main line analysis in Chapter 8 by connecting the
obtained results to the more general question of nonlinear stability of FLRW spacetimes
as in [14, 15, 16] that was posed earlier.
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2. Notation

Throughout this thesis and unless specified otherwise, Greek indices (µ, ν, . . . ) are num-
bered starting from 0, while Latin indices (i, j, k, . . . ) start from 1, and the Einstein
summation convention will be in force unless explictly stated otherwise.

When using local coordinates (xµ)µ=0,1,2,3 on a semi-Riemannian manifold of the form
(M = I ×M, g), where I is an open interval and M is a three dimensional Riemannian
manifold

(
M, ḡ

)
, we tacitly assume local coordinates on a suitable open coordinate

neighbourhood J × U take the form

x0(t, p) = t, xi(t, p) = χi(p),

where (χi) is a corresponding local chart on U . For the sake of notational simplici-
ty, we will occasionally use xi to refer to both the coordinates on some submanifold
M t = {t}×M and to the corresponding χ-chart on M where this nuance of embedding
isn’t relevant.
Accordingly, Γcab and ∂a (resp. Γ̄kij and ∂̄i) denote Christoffel symbols and coordinate
derivatives for local charts on M (resp. M). Further, ∇ (resp. ∇)1 are the Levi-Civita-
connections and �g (resp. ∆) the Laplace-Beltrami operators on (M, g) (resp.

(
M, ḡ

)
).

In particular, if ϕ is a smooth function on (M = I ×M, g), where ιt : M −→M t is the
standard smooth embedding, we will use the notation ϕ(t, ·) := ϕ ◦ ιt, similarly meaning
∇ϕ(t, ·) to be ∇(ϕ ◦ ιt) and so on for higher order spatial derivatives.
Additionally, volN denotes the volume form on the Riemannian manifold (N,h), and
unless stated otherwise, ψ : M → R is a smooth wave on the semi-Riemannian manifold
(M, g), i.e. �gψ ≡ 0.

For two non-negative functions f, g, f . g means that there exists a constant C > 0 such
that f ≤ Cg. If C is dependent on a set of variables v1, . . . , vn, we write f .v1,...,vn g.
Furthermore, f ' g means that f . g and g . f hold, and f 'v1,...,vn g is defined
analogously.

Finally, our convention for the natural numbers is N = {0, 1, 2, . . . }.

1It should be stressed that this notation is not consistent with [1], one of the main works this thesis will
build upon, since they use this symbol to mean the induced covariant derivative on corresponding
embedded hypersurfaces M t, which differs from our usage by a t-dependent scaling.
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3. Physical background

3.1. FLRW spacetimes and cosmology

To start off, this section will (re-)introduce FLRW spacetimes as they arise naturally in
cosmology, as well as collect some geometric formula for later usage. This serves mainly
as motivation and backdrop to the more general warped product setting introduced in
Section 4.1, and will mostly follow [9, Ch. 12.4].

Consider a four dimensional manifold M = I ×M , where I is some open subinterval
of R and M is a connected three-dimensional manifold. Further, we define ∂t to be the
vector field corresponding to classical derivative on I after lifting to M . The goal is to
construct a cosmological model in the sense of finding a Lorentzian metric g on M that
can approximately match the behaviour of the observable universe considered as a single
object, with internal complexities severely simplified. In this model, I and M should
encode time and space respectively. Thus, the following additional constraints have to
be imposed:

1. Due to the absence of any additional influence, a galaxy simplifed in the point p
should move along worldlines γp : t 7→ (t, p), i.e. these must be affinely parametrized
geodesics such that g (γ̇p, γ̇p) = g(∂t, ∂t) is a negative constant. For the sake of
convention, one chooses the scaling g(∂t, ∂t) = −1. From the perspective of the
3+1-formalism (see Chapter 8), this corresponds to lapse function n = 1 and
Gaussian shift vector X = 0.

2. On a large scale and on average, galaxies do not seem to move much relative to
one another. Hence, for any t ∈ I, we assume that ∂t is normal on any spatial
slice M t = {t}×M ⊆M since any point must be influenced by time equally when
developing along worldlines. It immediately follows2 that

(
M t, g|Mt

)
must be a

Riemannian manifold for any t ∈ I, and because M should be isometric to these
spatial slices to properly model them, M must also be Riemannian with regards
to some metric ḡ.

3. Even more precisely, no galaxy supercluster seems to be special or in a special place
compared to any other one. Instead of viewing every single galaxy supercluster
as an individual structure, this is modelled by saying that the universe looks the
same in all directions from every point. More formally, this isotropy should mean

2From here on out, g|Mt
is meant to denote the map M t 3 (t, p) 7→ g(t,p)|T(t,p)Mt×T(t,p)Mt

.
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3.1. FLRW spacetimes and cosmology

that, for any (t, p) ∈M , there exists an open neigbourhood such that, for any unit
vectors x, y ∈ T(t,p)M tangent to M t, there exists an isometry ϕ on M that takes
the form id× ϕ near (t, p) and satisfies dϕ(x) = y.

The last condition in particular forces a very rigid structure onto M :

Proposition 3.1.1 ([9, p. 342f.]). Given the assumptions stated above, any
(
M t, g|Mt

)
(and hence also

(
M, ḡ

)
) is of constant sectional curvature C(t) (resp. κ) (see Example

A.1.7). Additionally, for any s, t ∈ I, the diffeomorphism

µ ≡ µst : M s →M t, µ(s, p) = (t, p)

satisfies µ∗
(
g|Mt

)
= g|Ms

. The equivalent statement holds for M ↪→ M t, and more

precisely, there exists a smooth function a : I → R+ such that a(t)2ḡ = ι∗t

(
g|Mt

)
with

regards to the standard embedding ιt : M ↪→ M t. Finally, one can choose
(
M, ḡ

)
such

that κ ∈ {−1, 0, 1}.

Proof. Regarding the former, it suffices by Schur’s Lemma (see Lemma A.1.10) to prove
that, at any (t, p) ∈ M t, the sectional curvature is constant for nondegenerate planes
Π1,Π2 ⊂ T(t,p)M t. Since they must intersect in at least a one-dimensional subspace, they
are either the same or one can find unit vectors x, y, z tangent to M t such that (x, z) is
an orthonormal basis of Π1 and (y, z) is one of Π2. In either case, by the assumption
on local isotropy, we can hence find a local isometry ϕ = id × ϕ such that dϕ(x) = y
holds, and rotate ϕ to ensure that dϕ(z) = z is satisfied additionally. In particular, one
then has dϕ (Π1) = Π2. Since the sectional curvature is uniquely determined by the
curvature tensor (see Definition A.1.6) which is preserved under local isometries, κ is
also preserved by ϕ and must thus stay the same on any nondegenerate plane, so the
statement now follows.

Regarding the second point, we refer to the proof of [9, p. 342f., Prop. 12.6b)] for de-
tails – the essential idea is that since all hypersurfaces have constant sectional curvature
and are diffeomorphic to one another via µ, the metrics

(
g|Ms

)∣∣∣
(s,p)

and
(
g|Mt

)∣∣∣
(t,p)

can

only differ by a scale factor h ≡ h(s, t, p), i.e. h(s, t, p)2C(t) = C(s). Using the spatial
isotropy, one can then show that it is independent of p, which gives the statement. Note
that h in particular also satisfies h(s, t)2g|Mt

= g|Ms
, and that since µ is a diffeomor-

phism, h is nonvanishing, so the sign of C is fixed.

Further, for some fixed s ∈ I, we set κ = C(s)a(s)2, where κ ∈ {−1, 0, 1} encodes the
sign of C and we choose a(s) > 0 arbitrarily if κ = 0. Then, we assignM with the metric
ḡ such that ιs is an isometry with a(s)2ḡ = ι∗s

(
g|Ms

)
. From this, it already follows from

a similar argument as in the second step that
(
M, ḡ

)
has sectional curvature κ, and

that a(t) = a(s)/h(s,t) satisfies our desired property since, for any consistent family of
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3. Physical background

embeddings ιt : M ↪→M t, ιt = µts ◦ ιs must hold, and thus

ι∗t

(
g|Mt

)
= ι∗s

(
h(t, s)2g|Ms

)
= h(s, t)−2ι∗s

(
g|Ms

)
= a(s)2

h(s, t)2 ḡ = a(t)2ḡ .

In particular, h and thus also a can always be chosen to be positive without loss of
generality.

Thus, any cosmological model is already constrained to be within the following class of
spacetimes:

Definition 3.1.2. A Friedman-Lemaître-Robertson-Walker (FLRW) spacetime
is a four-dimensional Lorentzian manifold (M, g) such that M = I ×M , where

(
M, ḡ

)
is a closed (three dimensional) Riemannian manifold of constant sectional curvature
κ ∈ {−1, 0, 1} and I is an open subinterval of R, and3

g = gFLRW = −dt2 + a(t)2ḡ

holds for a function a ∈ C∞(I,R+).

Remark 3.1.3. The only condition that does not naturally arize from above discussion
is the closedness of (M, ḡ). While this is not always used in the definition for FLRW-
spacetimes, it is a rather natural additional assumption to impose upon a cosmological
model:
On the one hand, one does not experience the universe to have an “edge” at any point in
time and if such an edge were to exist, since we assume no point in the universe to have
any special role, it would have to be equally visible and in particular equally far away
from any observer – so it at best could exist at infinite distance from any particle in the
universe, at which point it is natural to discard it and to assume ∂M = ø. On the other
hand, there are no singularities on the macro scale of galaxy superclusters, so

(
M, ḡ

)
can reasonably be chosen to be geodesically complete. Further, for the sake of simplicity,
assuming the universe to be bounded is not too much of a restriction since only a finite
section of the universe could have ever had influence on our observable universe, so by
the Hopf-Rinow theorem, it is also closed under that assumption.

Before moving on, we quickly collect some formulas for geometric objects in FLRW
spacetimes:

Remark 3.1.4. Using the standard formula

Γρµν = 1
2g

ρσ
(
∂gσµ
∂xν

+ ∂gσν
∂xµ

− ∂gµν
∂xσ

)
,

the Christoffel symbols associated to the FLRW metric as in Definition 3.1.2 are as fol-
lows:

3dropping the obvious pullbacks along standard embeddings in the notation from here on out
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3.2. Perfect fluids, the Friedman equations and Big Bang singularities

Γ0
0µ = Γ0

µ0 = Γµ00 = 0

Γj0i = Γji0 = 1
2g

jσ ∂gσi
∂t

= 1
2a(t)−2ḡjkḡki · 2a(t)ȧ(t) = ȧ(t)

a(t)δ
j
i

Γ0
ij = −1

2

(
−∂gij
∂t

)
= a(t)ȧ(t) · ḡij

Γkij = 1
2a(t)−2ḡkl · a(t)2

(
∂ḡli
∂xj

+ ∂ḡlj
∂xi
− ∂ḡij
∂xl

)
= Γ̄kij

We deduce the following local identities for covariant derivatives for any vector fields
X,Y on M , with X,Y denoting the induced vector fields on M t (see Definition A.1.12
for the relationship between ∇ and ∇):

∇0X0 = ∂tX0

∇0Xi = ∂tXi −
ȧ(t)
a(t)Xi

∇iX0 = ∂iX0 −
ȧ(t)
a(t)Xi

∇iXj = ∂iXj − Γ̄kijXk − a(t) · ȧ(t)ḡijX0 = ∇iXj − a(t)ȧ(t) · ḡijX0

∇0Y
0 = ∂tY

0

∇0Y
k = ∂tY

k + ȧ(t)
a(t)Y

k

∇iY 0 = ∂iY
0 + a(t)ȧ(t) · ḡijY j

∇iY k = ∂iY
k + Γ̄kijY j + ȧ(t)

a(t)δ
k
i Y

0 = ∇iY
k + ȧ(t)

a(t)δ
k
i Y

0

Lemma 3.1.5 ([9, p. 354, Corollary 12.10]). If
(
M, ḡ

)
is of constant sectional curvature

κ, the Ricci curvature Ric of the associated FLRW spacetime is given as follows:

Ric(∂t, ∂t) = −3 ä
a
, Ric(∂t, X) = 0 ∀X⊥∂t

Ric(X,Y ) =
(

2 ȧ
2 + κ

a2 + ä

a

)
g(X,Y ) ∀X,Y⊥∂t

Its scalar curvature is
R = 6

(
ȧ2 + κ

a2 + ä

a

)
.

3.2. Perfect fluids, the Friedman equations and Big Bang
singularities

In the last section and in particular in Lemma 3.1.5, the shape of the purely geometric
components of the Einstein equations for our cosmological model has been determined,
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3. Physical background

so what remains to be done is to formulate a reasonable framework for the matter com-
ponents. In the initial simplification, we dropped all internal complexities of the universe
and viewed any point as equivalent to any other. So, one essentially views the universe
as one single homogeneous substance. As such, the closest physical approximation is a
perfect fluid with some energy density ρ and pressure p that moves through spacetime
with four-velocity u. The energy-stress tensor for such a perfect fluid takes the form

Tµν = (ρ+ p)uµuν + pgµν

(see [9, p.337f.] for a heuristic derivation). Further, since our model has to remain
spatially homogeneous in how energy and pressure are distributed, we can assume p and
ρ to be covariantly constant, and because we assumed the worldlines of any “molecule”
in our fluid to flow along ∂t, we simply have (uµ) = (−1, 0, 0, 0)T . For any tangent
vectors X,Y orthogonal to ∂t, the tensor thus reduces to:

T (∂t, ∂t) = (ρ+ p)− p = ρ, T (∂t, X) = 0, T (X,Y ) = pg(X,Y ) (1)

However, since the energy stress tensor must be divergence free because the Einstein
tensor is, some further constraints have to be imposed on how ρ and p may be chosen:

Lemma 3.2.1. Consider an FLRW spacetime (M, g) with scale factor a. The energy-
momentum tensor given by (1), where p and ρ are only dependent on t, is divergence-free
if and only if the following continuity equation is satisfied:

∂tρ = −3 ȧ
a

(ρ+ p) (2)

Proof. By [10, p.28, (2.66)], ∇µTµν = 0 simply reduces4 to

∂tρ− tr(k)ρ− kijT ij = 0,

where k is the second fundamental form of the spatial hypersurfaces M t (see Definition
A.1.13) and tr(k) is its trace with regards to g. With Remark 3.1.4, we compute:

kij = −g
(
∇∂̄i(∂t), ∂̄j

)
= −Γci0gcj = − ȧ(t)

a(t)a(t)2ḡij = −ȧ(t)a(t)ḡij

In particular, tr(k) = −ȧ(t)a(t)ḡijgij = −3 ȧ(t)
a(t) holds, and since kijT ij = p · tr(k) by (1),

the statement now follows.

Hence, the Einstein equations for our cosmological model take the following form:

Proposition 3.2.2. An FLRW spacetime (M, g) of the form M = I ×M , with scale
factor a and where

(
M, ḡ

)
is of constant sectional curvature κ, solves the Einstein

4In general, this also contains an evolution condition on the shear stress components T0i, but these are
zero for our stress tensor and hence this is trivially satisfied.
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3.2. Perfect fluids, the Friedman equations and Big Bang singularities

equations when coupled with the divergence-free energy-momentum tensor as in (1) if
and only if, along with the continuity equation, the Friedman equations are satisfied:(

ȧ

a

)2
= 8π

3 ρ− κ

a2 (3)

ä

a
= −4π

3 (ρ+ 3p) . (4)

Proof. Again, it obviously suffices to show this equivalence when inserting any combi-
nation of ∂t and arbitrary vectors X,Y orthogonal to ∂t into either sides of the Einstein
equations

Ric− 1
2Rg = 8πT.

With Lemma 3.1.5, one computes that both sides always vanish when inserting ∂t and
X, and can rephrase the remaining equations as

8πρ = −3 ä
a

+ 3
((

ȧ+ κ

a2

)2
+ ä

a

)
= 3 ȧ

2 + κ

a2 .

8πp · g(X,Y ) =
(

2 ȧ
2 + κ

a2 + ä

a

)
g(X,Y )− 3

(
ȧ2 + κ

a2 + ä

a

)
g(X,Y )

=
[
− ȧ

2 + κ

a2 − 2 ä
a

]
g(X,Y ) .

The first equation is already (3). Inserting this into the second equation and dropping
g(X,Y ), we equivalently obtain

8πp = −1
3 · 8πρ− 2 ä

a

and thus (4) after rearranging.

Remark 3.2.3. At this point, it should be stressed that one ultimately, the Friedman
equations being satisfied for some fixed κ ∈ {−1, 0, 1} is the only additional constraint
that is going to be imposed on warped product spacetimes

(
I ×M, g

)
with metrics of

the form
g = −dt2 + a(t)2ḡ

later on:
(
M, ḡ

)
will be considered as a general closed Riemannian manifold that is not

necessarily of constant sectional curvature (see Section 4.1 for more on this point and
the general setting of our statements). However, it is still instructive to see how these
equations arise from geometric properties that follow from intuitive restrictions a simple
cosmological model should satisfy. Furthermore, while the main physical application
of our results still lies within “true” FLRW spacetimes, the relevance of being able to
consider these more general warped products will be further explored in Chapter 8.
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3. Physical background

Remark 3.2.4. Finally, we can use these equations to give some intuition to the formal
definition of a Big Bang singularity for warped products as just described:
The universe is currently observed to be expanding (see [9, p.347]), so ȧ

a is currently
positive, hence so is ȧ by our sign convention. As long as one has ρ+3p > 0, ä is strictly
decreasing, hence ȧ must always have been positive, i.e. a must have been strictly in-
creasing. In particular, this means that if we want to consider the time variable t on the
maximal interval of existence I = (tmin, tmax) for a, a must (heuristically) converge to 0
approaching tmin since this would be the first point at which the spacetime metric would
fail to be Lorentzian. This would correspond to matter being contracted to a singular
point from a physical perspective, i.e. ρ should diverge toward∞. To safely ensure this,
it suffices to assume, after multiplying both sides of (3) by a2 and taking the limit, that
ȧ2 (and hence ȧ > 0) diverges toward ∞ approaching tmin. Note that precisely if all of
these requirements are met, Lemma 3.1.5 implies that the Ricci tensor (for an FLRW
spacetime) also diverges, so the breakdown of our spacetime is encoded directly within
the Einstein equations via the curvature.

Altogether, this means that we say an FLRW spacetime, or more generally a warped
product spacetime of the type outlined in Remark 3.2.3, forms a Big Bang singularity
when a → 0 and ȧ → ∞ hold approaching tmin (see [9, p.348, Def. 12.16]). In Section
4.2, we will more rigorously show that a Big Bang actually forms in our setting, along
with the singularities being “physical” in the sense that ρ→∞ holds toward tmin.

3.3. Waves and the scalar-field matter model

In addition to the now essentially complete set-up for the substratum of our universe, it
is now of interest to consider first ways of introducing matter beyond just the substra-
tum into this model and to analyse its behaviour. In this short section following [10,
p. 30-35], we will briefly recap how the wave equation arises from a very simple matter
model and then verify the continuity equation for the corresponding energy-momentum
tensor.

As mentioned previously, one of the most basic approaches that we could conceivably
use is modelling matter by a smooth scalar function ϕ : M → R that is not influenced
by any potential. Hence, in analogy to the classical Lagrangian of a free particle, the
relativistic Lagrangian associated with such matter would be

L = −1
2∇

µϕ∇µϕ = −1
2g

µν∇µϕ∇νϕ . (5)

In analogy to the non-relativistic Euler-Lagrange equations, the corresponding equation
of motion for a Lagrangian L are given by

∇µ
(

δL
δ (∇µϕ)

)
= δL

δϕ
,
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3.3. Waves and the scalar-field matter model

while the energy-momentum tensor (arising from minimizing the action functional cor-
responding to the Lagrangian) reads

Tµν [ϕ] = −2 δL
δgµν

+ Lgµν

(see [10, p.30, (3.1)-(3.2)]). For our simple matter model arising from (5), one now easily
calculates that the energy-momentum tensor reads

Tµν [ϕ] = −2 ·
(
−1

2∇µϕ∇νϕ
)
− 1

2gµν∇
αϕ∇αϕ

= ∇µϕ∇νϕ−
1
2gµν∇

αϕ∇αϕ (6)

and that the equation of motion simply becomes

∇µ
(
−1

2∇µϕ
)

= 0 ⇔ �gϕ = ∇µ∇µϕ = 0 .

To fully introduce scalar field matter into the gravitational system, one would have to
add (6) to the energy-momentum tensor of the perfect fluid substratum within our Ein-
stein equations, or at the very least just couple the Einstein tensor with the scalar-field
energy-momentum for a fixed scalar field, either of which would create co-dependencies
which would greatly complicate our analysis. As a first step toward such problems, we
will hence fix the geometric FLRW background as in Definition 3.1.2 with a scale factor
a arising from the Friedman equations and consider the wave equation on it. This de-
couples the geometry from the influence of the scalar field while one can still reasonably
expect similar asymptotics to the coupled case since many perfect fluid solutions to the
Einstein equations as discussed in Section 3.2 can arise from scalar field solutions, as
discussed in [3, Ch. 1]

It should be checked whether we need to impose further conditions on the wave for our
energy momentum tensor to be divergence free. However, this is not the case:

Lemma 3.3.1. Let ψ be a smooth wave on a Lorentzian manifold (M, g) and let
Tµν ≡ Tµν [ψ] be the corresponding energy-momentum tensor given by (6). Then, the
continuity equations ∇µTµν = 0 are satisfied.

Proof. Using that, for the Levi-Civita connection, ∇µgµν = 0 and ∇ν∇µψ = ∇µ∇νψ
hold, one calculates:

∇µTµν [ψ] = ∇µ∇µψ · ∇νψ +∇µ∇νψ · ∇µψ −
1
2 (∇µ (∇αψ · ∇αψ)) gµν

= �gψ · ∂νψ +∇ν∇µψ∇µψ −
1
2 (∇ν (∇αψ · ∇αψ))

= 0 +∇µ∇νψ · ∇µψ −
1
2(∇ν∇αψ · ∇αψ +∇αψ · ∇ν∇αψ)

= 0

13



3. Physical background

As a final remark, it should be noted that the initial value problem

�gψ = 0, ψ(t0, x) = u0(x), ∂tψ(t0, x) = u1(x)

admits unique smooth solutions in a vast class of (maximally developed globally hyper-
bolic) spacetimes, including FLRW spacetimes and the slightly more general notion of
warped product spacetimes which will be formally introduced shortly (see [13, p.144,
Thm. 12.6]), so “only” considering smooth waves in this thesis isn’t a restriction in any
meaningful way.

14



4. Mathematical preparation

4.1. Setting
To summarize the framework established in the previous chapter, the cosmological model
at the basis of our analysis is an FLRW spacetime (Definition 3.1.2), in which the
expansion rate is coupled with the energy density ρ and pressure p of the substratum via
the Friedman equations (3),(4) as well as the continuity equation in Lemma 3.2.1. As
a toy case for introducing scalar field matter, we consider a scalar field ψ that satisfies
the wave equation �gψ = 0. Within this thesis, we will further amend and simplify this
framework as follows:

• It will turn out that the precise type of the Riemannian spatial geometry is ir-
relevant beyond its influence on the scale factor via the Friedman equations. In
particular, we will call a spacetime (M, g) a warped product spacetime (or
simply warped product) if it satisfies all conditions of Definition 3.1.2 except that(
M, ḡ

)
need not have constant sectional curvature, as briefly introduced

in Remark 3.2.3. In the following, (M, g) will always be a warped product unless
stated otherwise.
Note again that, from a purely physical perspective, only FLRW spacetimes them-
selves are of direct interest due to the arguments in section 3.1, but allowing these
toy considerations of spatial inhomogeneities is an interesting indicator for further
nonlinear stability analysis of FLRW spacetimes and more that goes beyond sheer
mathematical generality for its own sake. Furthermore, it is easily seen that all
formulas in Remark 3.1.4 also apply to warped products.

• We will restrict ourselves to considering spatial geometries of zero and negative
sectional curvature, i.e. κ = 0 and κ = −1 by Proposition 3.1.1. In particular, we
call (M, g) of type 0 (resp. type –1) if a satisfies the Friedman equations (3),(4)
and the continuity equation (2) for κ = 0 (resp. κ = −1). The former case is
considered mainly as a generalization of [1] and since it will provide slightly easier
proofs that make the arguments associated with κ = −1 a little more accessible.
This latter case is relevant since this is where the question of nonlinear stability
of the FLRW Big Bang singularity in presence of scalar field matter is still open.
(See Chapter 8 for more on how the results we will have achieved lead into that
more general problem.)

• As will be shown in Section 4.2, we can (and thus will) consider M = R+ ×M for
all warped product spacetimes in this thesis, setting the Big Bang singularity at
t = 0, i.e. a(0) = 0 (see Remark 3.2.4).
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4. Mathematical preparation

• Again to simplify our calculations, we want to keep p and ρ as simple as possible
while still having some physical relevance. However, simply setting ρ = p = 0
would amount to a being constant in type 0 and the Milne universe with a(t) = t
in type −1, neither of which would admit a Big Bang singularity even in their
true FLRW analogues (see [12, p.360f.] for details on the latter, i.e. the Milne
universe). Thus, the next best way to connect them is via linear dependency, i.e.
p = (γ − 1)ρ, along with ρ > 0, which will also always be assumed for the scale
factor of a warped product spacetime unless stated otherwise.

We will mostly constrain ourselves to γ ∈ (2/3, 2), additionally considering γ = 2
whenever possible. The latter is called the stiff case since γ − 1 corresponds
to the square of the speed of sound cs within the material (when the former is
nonnegative) which can at most be equal to c2 = 1. While this interpretation of
γ − 1 is of course only reasonable when γ ≥ 1 is satisfied, extending to γ > 2/3
(or equivalently to all γ < 2 with ρ+ 3p > 0) allows considerations of all possible
values of γ where a Big Bang as defined in Remark 3.2.4 actually forms, since
precisely then, ä remains strictly negative by the second Friedman equation (4).
For γ ≤ 2/3, since ρ should be strictly positive from a physical perspective, ä would
be constant or strictly increasing, which obviously prevents ȧ(0) = ∞ and thus
a Big Bang singularity as defined in Remark 3.2.4. Finally, it should be noted
that a dust filled universe is associated to γ = 1, while a radiation filled universe
corresponds to γ = 4/3 (see [4, Chapters 6.4.5, 6.4.6]).

The goal will be to analyze how waves blow up on type 0 and type −1 warped products,
with scale factors arising from ρ and p given by the Friedman equations and choice of
γ, towards the Big Bang singularity. As will be mentioned in the following analysis,
some of the core ideas (especially in type 0) are to an extent generalisations of the
work done in [1]. However, these generalisations not only manage to extend some of the
ideas to γ = 2, but also show that assumptions on the spatial geometry are mostly not
necessary, while [1] heavily used flatness of the spatial geometry within their analysis
by using the fact that coordinate derivatives commute. Furthermore, and a little more
obviously, we additionally extend the analysis to a different class of scale factors that
require significantly more care, as will be seen in the next section.

4.2. Analysis of the scale factor

We have to quickly collect how the linear relation between pressure and energy density
influences the scale factor and verify that a Big Bang singularity then actually manifests:

The continuity equation from Lemma 3.2.1 now reads

ρ̇ = −3 ȧ
a
γρ (7)

16



4.2. Analysis of the scale factor

or after rearranging (since we assume ρ to be non-vanishing)

ρ̇

ρ
= −3γ ȧ

a
. (8)

Recall from Definition 3.1.2 that (without loss of generality), one considers a to be
positive on I = R+. After integrating using ρ > 0 and a > 0, it follows there is some
B > 0 such that

log(ρ(t)) = −3γ log(a(t)) + log(B)

and hence
ρ(t) = B · a(t)−3γ > 0 . (9)

The first Friedman equation (3) now reduces to

ȧ =

√
8πB

3 a2−3γ − κ , (10)

again choosing the positive sign since this is what is physically observed (see Remark
3.2.4). In particular, one immediately sees lim

t→0
ȧ(t) = ∞ when requiring a(0) = 0 since

2−3γ < 2 holds for γ > 2
3 , so any solution to this equation exhibits a Big Bang singularity

which is then also physical by (9). The reformulated first Friedman equation (10) now
also immediately implies the second one, i.e. (4), by derivating and using p = (γ − 1)ρ
in (∗):

ä = 1
2ȧ

8πB
3 (2− 3γ)a1−3γ ȧ

(9)= 4π
3 (2− 3γ)ρa

= −4π
3 (1 + 3(γ − 1))ρa

(∗)= −4π
3 (ρ+ 3p)a (11)

Hence, one only needs to analyze the solutions to (10). For κ = 0, this simplifies to

ȧ =

√
8πB

3 · a1− 3γ
2 ,

or after rearranging (since 1− 3γ
2 < 0 already rules out that a vanishes in the interior of

any solution interval)

ȧa
3γ
2 −1 =

√
8πB

3 .

After integrating on [0, t] and substituting the integrand, it follows with a(0) = 0 that

2
3γ a(t)

3γ
2 =

√
8πB

3 t
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4. Mathematical preparation

or equivalently

a(t) =

3γ
2

√
8πB

3

 2
3γ

t
2

3γ .

holds for all t > 0. Since we can absorb all time-independent constants into the met-
ric without loss of generality (both strictly within FLRW spacetimes and in warped
products), it is completely sufficient for the warped products of type 0 to analyse those
endowed with the scale factor a(t) = t

2
3γ for 2/3 < γ ≤ 2.

For κ = −1, the situation is roughly similar, but the analysis is significantly more
involved:

Lemma 4.2.1. Consider the initial value problem

ȧ = f(a) :=

√
8πB

3 a2−3γ + 1, a(0) = 0 (12)

for a : R+
0 −→ R, B > 0, γ ∈ (2/3, 2]. This problem has a unique solution a with the

following properties:

• a is strictly increasing.

• a(t) ≥ t for all t ≥ 0, with equality only at t = 0.

• a ∈ C
(
[0,∞),R+

0

)
∩ Cω

(
(0,∞),R+)

• a(t) ' t
2

3γ as t→ 0

•
∫∞
t a(s)−3ds <∞ for all t > 0

• For t0 > 0 small enough, 0 < t < t0,

∫ t0

t
a(s)−3ds '

t1−
2
γ − t

1− 2
γ

0 γ < 2
log(t0)− log(t) γ = 2

Proof. To start off, the first point is immediate for any positive5 solution of ȧ = f(a) on
its maximal open interval of existence since ȧ > 1, and so is the second when additionally
considering the initial value.
Now, we move to the shifted initial value problem

ȧ = f(a), a(t0) = a0 > 0 (13)
5Any real solution of (12) must be nonnegative, even if we weren’t requiring this w.l.og. : If it were to
become negative, then the differential equation can only be satisfied as long as a(t) < −

(
3

8πB

)3γ−2
<

0, so no continuous extension to a(0) = 0 is possible.
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4.2. Analysis of the scale factor

at t0 > 0. Since f : (0,∞) −→ R is smooth, a unique smooth real-valued solution
exists on some maximal interval of existence I = (tmin, tmax). Since 2 − 3γ < 0, f is
monotonously decreasing and in particular one has

a(t) ≤

√
1 + 8πB

3 a2−3γ
0 · (t− t0) + a0 .

In particular, assuming one were to have tmax ∈ R, lim
t↑tmax

a(t) would exist in R+ since a
is increasing and would be bounded, and then the Picard-Lindelöf Theorem would admit
a local solution of ȧ = f(a) at a(tmax) that, by uniqueness, would be an extension of a
beyond I, contradicting maximality. Thus, I = (tmin,∞).

Furthermore, because a is strictly increasing and positive on I, a converges approaching
tmin. It follows that a(t) → 0 as t ↓ tmin – else, one could again find a local conti-
nuation at a(tmin) by the Picard-Lindelöf Theorem, contradicting maximality. Finally,
t ∈ (0,∞) 7→ a(t + tmin) now solves (12) – or equivalently, we can assume tmin = 0
without loss of generality for a solution of (13) since no solution can be extended past
0.

Additionally, f extends to a holomorphic function on the simply connected set
V := C\{z ∈ C|Im(z) ≥ 0} by appropriate choice of logarithm, thus (13) has a unique
holomorphic local solution around any t0 ∈ I with initial condition a(t0) ∈ R by the
Cauchy-Kovalevskaya Theorem [6, p.46f.]. Hence, this local uniqueness yields a real
analytic solution on I = (0,∞) to the real-valued differential equation that must agree
with any real solution on an open subinterval of I, and in particular any real solution
on I must be analytic.

On the other hand, assume there were two different (maximally extended) solutions
a1, a2 to (12), then some ã > 0 has to exist such that a1(t1) = ã = a2(t2) for some
0 < t1 < t2. However, both a1 and t 7→ a2(t + t2 − t1) locally solve the initial value
problem

ϕ̇(t) = f(a), ϕ(t1) = ã .

Its solutions are locally unique and (as argued before) analytic on their open existence
intervals, hence any two local solutions are extendible to a common maximal solution
since analytic functions are uniquely determined by their values on any open set. In par-
ticular, it follows that a2(t2− t1) = a1(0) = 0. Since a2 is strictly increasing, t2− t1 = 0
would have to hold, which is a contradiction. Hence, (12) has a unique continuous solu-
tion on [0,∞) which must then also be analytic on (0,∞).

To prove the asymptotic behaviour of a, consider b(t) := a(t)
3γ
2 which satisfies

ḃ = 3γ
2 a

3γ
2 −1ȧ = 3γ

2

√
a3γ−2 + 8πB

3 .
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Hence, using a(0) = 0 and 3γ − 2 > 0, we obtain lim
t→0

ḃ(t) = 3γ
2

√
8πB

3 > 0. By the

l’Hospital rule, it now follows that

lim
t→0

a(t)
t

2
3γ

=
(

lim
t→0

b(t)
t

) 2
3γ

= lim
t→0

(
ḃ(t)

) 2
3γ > 0 ,

which shows the fourth bullet point.
Finally, with all the previous results, one calculates for any t > 0 that

0 <
∫ ∞
t

a(s)−3ds <

∫ ∞
t

s−3ds = 1
2t2 <∞,

and respectively for t0 small enough and 0 < t < t0 that∫ t0

t
a(s)−3ds '

∫ t0

t
s
− 2
γ ds

=


1

2
γ
−1

(
t
1− 2

γ − t01− 2
γ

)
γ < 2

log(t0)− log(t) γ = 2
.

4.3. Some central formulas
Next, we need to relate the Laplace-Beltrami-operators of (M, g) and

(
M, ḡ

)
in warped

product spacetimes:

Lemma 4.3.1. For any ϕ ∈ C∞(M),

(�gϕ)(t, ·) = −
(
∂2
t ϕ
)

(t, ·) + a(t)−2∆ϕ(t, ·)− 3 ȧ(t)
a(t)(∂tϕ)(t, ·).

Proof.

�gϕ =gµν∇µ∇νϕ
(∗)= − ∂t(∂tϕ) + g0l

(
∂t(∇lϕ)− ȧ(t)

a(t)∇lϕ
)

+ a(t)−2ḡkl
(
∇k∇lϕ(t, ·)− ȧ(t)

a(t)a(t)2ḡkl∂tϕ

)
=− ∂2

t ϕ+ a(t)−2∆ϕ(t, ·)− 3 ȧ(t)
a(t)∂tϕ,

with (∗) due to Remark 3.1.4 and the last step with g0l = 0, ḡklḡkl = ḡlkḡkl = δll = 3.
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Remark 4.3.2. In particular, in warped products of type 0, one has a(t) = t
2

3γ w.l.o.g.
(see the discussion preceding Lemma 4.2.1) and thus obtains

(�gϕ)(t, ·) = −
(
∂2
t ϕ
)

(t, ·) + t
− 4

3γ ∆ϕ(t, ·)− 2
γt

(∂tϕ)(t, ·).

Corollary 4.3.3. For any smooth wave ψ and any t > 0, it holds that(
∂2
t ψ
)

(t, ·) = a(t)−2∆ψ(t, ·)− 3 ȧ(t)
a(t)(∂tψ)(t, ·).

Furthermore, for any N ∈ N0, ∆Nψ : (t, x) 7→
(
∆Nψ(t, ·)

)
(x) is also a smooth wave.

Proof. The former is immediate from Lemma 4.3.1, which we also use to prove the latter,
along with the fact that ∆ and ∂t commute when acting on smooth functions:(

�g∆Nψ
)

(t, ·) = −∂2
t ∆Nψ(t, ·) + a(t)−2∆N+1ψ(t, ·)− 3 ȧ(t)

a(t)∂t∆
Nψ(t, ·)

=
[
∆N

(
−∂2

t ψ + a−2∆ψ − 3 ȧ
a
∂tψ

)
(t, ·)

]
= ∆N [�gψ(t, ·)] = 0.

It should be noted that the fairly unassuming fact that ∆ and �g commute irrespective
of spatial geometry, as essentially just shown, will become central in extending many of
the ideas of [1] to our analysis – there, energy estimates could simply be extended to
spatial coordinate derivatives of arbitrary high order since they all commute with the
Laplacian in flat spatial geometry, which makes it comparatively easy to extract regular-
ity statements on waves towards the Big Bang. Along with the ellipticity properties that
will be collected in Section 5.2, [∆,�g] = 0 will bridge the gap left by moving from this
to different and more general spatial geometries, in particular in the proof of Theorem
7.1.1.

Remark 4.3.4. The basic structure of the wave operator just established allows to com-
pute the spatially homogeneous waves that will serve as the main points of comparison
for the general blow-up behaviour: A smooth homogeneous wave ψ(t, x) ≡ ψ(t) satisfies
the second order differential equation

−∂2
t ψ − 3 ȧ

a
∂tψ = 0 ⇔ a3∂tψ̇ + 3a2ȧψ̇ = 0

⇔ ∂t
(
a3ψ̇

)
= 0

⇔ ψ̇ = C1a
−3 for C1 ∈ R

In type 0, homogeneous waves thus take the explicit form

ψ̇(t) =

C1t
1− 2

γ + C2 γ ∈ (2/3, 2)
C1 log(t) + C2 γ = 2

(14)
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while one can use the second-to-last point in Lemma 4.2.1 for type −1 to write the
homogeneous waves as

ψ(t) = C1

∫ ∞
t

a(s)−3 ds+ C2 for C1, C2 ∈ R . (15)

In particular, in either setting, we thus expect waves to behave like t1−
2
γ towards

the Big Bang singularity in warped product spacetimes that don’t arise from
stiff fluids, and like log(t) in the stiff case. In the following, when referring to
homogeneous waves, it will always be assumed that they vanish in the far field where
this is possible (C2 = 0) and are not constant (C1 6= 0).

Finally, before moving on, we quickly collect what will in the following always be referred
to as “integration by parts” and will be used ad nauseum:

Lemma 4.3.5. For any ϕ, ϕ̃ ∈ C∞
(
M
)
, the following holds:∫

M
ḡ
(
∇ϕ,∇ϕ̃

)
volM = −

∫
M
ϕ∆ϕ̃ volM

Proof. By Stokes’ Theorem on closed manifolds, one has∫
M

div
(
ϕ∇ϕ̃

)
volM = 0 .

The statement now follows with div
(
ϕ∇ϕ̃

)
= ḡ

(
∇ϕ,∇ϕ̃

)
+ ϕ∆ϕ̃.

22



5. Mathematical background

A key ingredient in analyzing and controlling the blow-up behaviour of waves will be
energy estimates that are closely related to integrals over derivatives that structurally
resemble what, in Euclidean space, one would call Sobolev norms. Thus, before moving
on, it needs to be (re-)established how (and to which extent) the theory of Sobolev spaces
can be extended to the Riemannian setting, including the theory of elliptic operators
and their relation to these new Sobolev spaces:

5.1. Sobolev Spaces and Sobolev Estimates
Let V be a bounded open subset of Rn, and k ∈ N. We define

‖f‖Hk
eucl

(V ) :=
√√√√∑
|α|≤k

∫
V
|Dαf |2,

as the standard L2-Sobolev norm of order k on V , where one sums over all multiindices
α ∈ Nn0 with |α| =

∑n
i=1 αi ≤ k. Hk

eucl(V ) then denotes the completion of C∞
(
V
)

with regards to this norm. In the following, we will assume that V is also bounded and
has a smooth boundary (for example a ball), since in this case, one can find bounded
extension operators Ek : Hk

eucl(V ) −→ Hk
eucl(Rn) for any k ∈ N such that, for any

u ∈ Hk(V ), Eku|V = u holds almost everywhere and the support of Eku is contained in
some bounded open set W with V ⊂⊂W (see [5, p. 254, Thm. 5.4.1]).
This allows us to deduce the following Sobolev inequality for any k > n

2 and any
u ∈ C∞(V ):

‖u‖L∞(V ) = ‖Eku‖L∞(V ) ≤ ‖Eku‖L∞(Rn) . ‖Eku‖Hk
eucl

(Rn) . ‖u‖Hk
eucl

(V ) (16)

Here, we used Morrey’s inequality on Rn for p = 2 for the penultimate step, i.e.

‖f‖L∞(Rn) . ‖f‖Hk(Rn) for all f ∈ C∞ (Rn)

for k > n
2 (see [5, p. 266, Thm 5.6.4]), and the boundedness of Ek in the final step.

Next, we define (L2–)Sobolev norms on closed Riemannian manifolds as follows for any
open subset U ⊆M and k ∈ N (see [2, p. 457, (3)]):

‖f‖Hk(U) =
√√√√∫

U
f2volM +

∑
1≤m≤k

∫
U

∣∣∣∇mf ∣∣∣2
ḡ
volM
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∣∣∣∇mf ∣∣∣2
ḡ

= ḡi1j1 ḡi2j2 . . . ḡimjm
(
∇i1∇i2 . . .∇imf

) (
∇j1∇j2 . . .∇jmf

)
Again, Hk(U) then denotes the completion of C∞

(
U
)
with regards to the respective

Sobolev norms. In particular, for k = 1, the norm takes the form

‖f‖H1(U) =
√∫

U
f2volM +

∫
U

∣∣∣∇f ∣∣∣2
ḡ
volM

which then also induces a Hilbert space structure on H1(U) with regards to the scalar
product 〈

f, f̃
〉
H1(U)

:=
∫
U
ff̃ volM +

∫
U
ḡ
(
∇f,∇f̃

)
volM .

One can show the following lemma, using normal neighbourhoods and that any open
neighbourhood in M is relatively compact:

Lemma 5.1.1. [7, Lemma 2.2.1] For any chart (U, x) on a closed connected Riemannian
manifold

(
M, ḡ

)
, ‖ · ‖H1(U) 'ḡ ‖(·) ◦ x−1‖H1

eucl
(x(U)).

More central to our analysis will be an inequality proved along very similar lines:

Lemma 5.1.2. For any small enough normal chart (U, x) centered around p ∈ U on a
closed connected three-dimensional Riemannian manifold

(
M, ḡ

)
, one has

‖u‖L∞(U) .ḡ ‖u‖H2(U) .

Covering M with finitely many of these neighbourhoods, it follows by a standard appro-
ximation argument that, for all u ∈ H2

(
M
)
,

‖u‖C(M) .ḡ ‖u‖H2(M). (17)

Proof. Note that for any ε > 0 (w.l.o.g. ε < 1), there exists a small enough normal
neighbourhood U such that, in the respective normal coordinates, one has∣∣∣ḡij − δij∣∣∣ < ε,

∣∣∣Γ̄kij∣∣∣ < ε

(see Corollary A.1.5) and hence∣∣∣ḡi1j1 ḡi2j2 − δi1j1δi2j2∣∣∣ ≤ ∣∣∣ḡi1j1∣∣∣ ∣∣∣ḡi2j2−δi2j2∣∣∣+ δi2j2
∣∣∣ḡi1j1 − δi1j1∣∣∣

< (1 + ε)ε+ ε = (2 + ε)ε .

Setting C > 0 such that ( 9∑
k=1

ak

)2

≤ C
9∑

k=1
a2
k
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5.1. Sobolev Spaces and Sobolev Estimates

is satisfied for any (ak)k=1,...,9 ⊆
(
R+

0

)9
, the following thus holds for all ϕ ∈ C∞

(
M
)
:∣∣∣∣∣∣∣∇2

ϕ
∣∣∣2
ḡ
− δi1j1δi2j2∂i1∂i2ϕ∂j1∂j2ϕ

∣∣∣
≤
∣∣∣ḡi1j1 ḡi2j2 − δi1j1δi2j2 ∣∣∣ ∣∣∣∇i1∇j1ϕ∇i2∇j2ϕ∣∣∣+
+ δi1j1δi2j2

∣∣∣∇i1∇i2ϕ∇j1∇j2ϕ− ∂i1∂j1ϕ∂i2∂j2ϕ∣∣∣
≤ (2 + ε)ε

 3∑
i,j=1

∣∣∣∇i∇jϕ∣∣∣
2

+
3∑

i,j=1

∣∣∣∣(∇i∇jϕ)2
− (∂i∂jϕ)2

∣∣∣∣
≤ [C(2 + ε) + 1]ε

 3∑
i,j=1

∣∣∣∇i∇jϕ∣∣∣2
+

3∑
i,j=1
|∂i∂jϕ|2

≤ [2C(2 + ε) + 2 + 1]ε

 3∑
i,j=1
|∂i∂jϕ|2

+ [2C(2 + ε) + 2]ε
( 3∑
k=1

∣∣∣Γ̄kij∣∣∣ |∂kϕ|
)2

≤ [2C(2 + ε) + 2 + 1]ε

 3∑
i,j=1
|∂i∂jϕ|2

+ 4[2C(2 + ε) + 2]ε
( 3∑
k=1

ε2 |∂kϕ|2
)

After integration, using ε < 1 and updating C, one obtains∣∣∣∣∫
U

∣∣∣∇2
ϕ
∣∣∣2
ḡ
volU −

∫
U
δi1j1δi2j2∂i1∂i2ϕ∂j1∂j2ϕ volU

∣∣∣∣
≤Cε

 3∑
i,j=1

∫
U
|∂i∂jϕ|2 volU +

3∑
k=1

∫
U
|∂kϕ|2 volU



and after re-arranging that

(1− Cε)
3∑

i,j=1

∫
U
|∂i∂jϕ|2 volU − Cε

3∑
k=1

∫
U
|∂kϕ|2volU ≤

∫
U

∣∣∣∇2
ϕ
∣∣∣2
ḡ
volU .

The terms on the left hand side correspond to the terms in the Euclidean Sobolev
norms after coordinate transformation to x(U). Putting this together with the other
contributions to the Sobolev norm over U and using Lemma 5.1.1, we deduce

(1− Cε)
∥∥∥ϕ ◦ x−1

∥∥∥2

H2
eucl

(x(U))

≤
∥∥∥ϕ ◦ x−1

∥∥∥2

L2(x(U))
+ (1− Cε)

3∑
k=1

∫
U
|∂kϕ|2 volU + (1− Cε)

3∑
i,j=1

∫
U
|∂i∂jϕ|2 volU
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5. Mathematical background

=
∥∥∥ϕ ◦ x−1

∥∥∥2

H1
eucl

(x(U))
+ (1− Cε)

3∑
i,j=1

∫
U
|∂i∂jϕ|2 volU − Cε

3∑
k=1

∫
U
|∂kϕ|2 volU

. ‖ϕ‖2H1(U) +
∫
U

∣∣∣∇2
ϕ
∣∣∣2
ḡ
volU = ‖ϕ‖2H2(U) ,

In particular, the statement now follows with (16) when choosing ε > 0 small enough
such that 1− Cε > 0 holds, since one then has

‖ϕ‖L∞(U) =
∥∥∥ϕ ◦ x−1

∥∥∥
L∞(x(U))

.
∥∥∥ϕ ◦ x−1

∥∥∥
H2
eucl

(x(U))
. ‖ϕ‖H2(U) .

Remark 5.1.3. The proof of Lemma 5.1.2 also shows one half of the norm equivalence
between H2(U) and H2

eucl(x(U)) on small enough normal charts (even in arbitrary di-
mensions, since dim

(
M
)

= 3 was only used in the final set of inequalities), where the
other half can be argued completely analogously and is thus omitted here, but then of
course also extends toM . For higher order Sobolev spaces, the situation is more intricate
a priori since curvature terms enter into the analysis.

Further we note that, as in the Euclidean case, notions of weak derivative and integration
by parts naturally extend from smooth functions to Sobolev spaces by the same density
arguments.

5.2. Elliptic Differential Operators and Elliptic Regularity
In the light of Corollary 4.3.3, we need to better understand Laplace-Beltrami operator
∆ on

(
M, ḡ

)
for our analysis, in particular due to the ellipticity properties of the stan-

dard Laplacian being useful tools in Euclidean space that we would like to have at our
disposal. However, the metric dependencies again necessitate some caution in trying to
extend even the notion of elliptic operators to manifolds. In this short section, we will
quickly collect some results in this vein from [2, p. 459-467].

In the following, P : C∞
(
M
)
→ C∞

(
M
)

is a linear differential operator of order
k ∈ N\{0} and

Pu =
∑
|α|≤k

aα∂
α
u

holds in local coordinates for any u ∈ C∞
(
M
)
and with summing over multi-indices α,

where aα are smooth.

Definition 5.2.1 (see [2, p. 460f.]). For ξ ∈ T ∗xM , the principal symbol
σξ(P, ·) : M → R is defined in local coordinates around x ∈M as

σξ(P, x) = ik

k!
∑
|α|=k

aα(x)ξα
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5.2. Elliptic Differential Operators and Elliptic Regularity

(
with ξα =

∏dim(M)
i=1 ξαi

)
. For an equivalent coordinate-invariant definition, let x ∈ M

and ϕ ∈ C∞
(
M
)
with ϕ(x) = 0, dϕ(x) = ξ. Then,

σξ(P ;x) = ik

k!P
(
ϕk
)∣∣∣
x
.

Morally, the principal symbol locally isolates the highest order derivatives and combines
this information into a global object. The appearance of i is an admittedly slightly
inconvenient remnant of trying to preserve consistency with taking adjoints – however,
we are only going to apply this to second order differential operators (i.e. k = 2) where
everything remains real-valued.

Definition 5.2.2 ([2, p. 461f.]). A differential operator P : C∞
(
M
)
→ C∞

(
M
)
is

called elliptic at x ∈ M if σξ(P ;x) 6= 0 holds for all (real) ξ ∈ T ∗xM\{0}. An elliptic
operator is elliptic at every x ∈M .

Example 5.2.3. Note that this is consistent with ellipticity of a differential operator P
of order 2 in an open subset of Rn, i.e.

P =
n∑

i,j=1
aij∂i∂j+

n∑
k=1

bk∂k+c,
n∑

i,j=1
aijξ

iξj 6= 0

resp. n∑
i,j=1

aijξ
iξj ≥ θ > 0

 ∀ξ ∈ Rn .

Example 5.2.4. In local coordinates, we can write the Laplace-Beltrami operator
∆ : C∞

(
M
)
→ C∞

(
M
)
as

∆ = ḡij∇i∇j = ḡij
(
∂i∂j + Γkij∂k

)
.

Thus, the principal symbol reads

σξ(∆; p) = −1
2 ḡ

ij(p)ξiξj .

Since ḡ is a Riemannian metric, ḡij(p) is negative definite, so the princial symbol is
strictly negative for ξ 6= 0. Thus, ∆ is an elliptic operator.

With this necessary nomenclature established, one can now also formulate the following
estimates that we will apply to the Laplace Beltrami operator ∆ throughout the rest of
the thesis:

Proposition 5.2.5 ([2, p.463, Thm. 27]). For any smooth function u ∈ C∞
(
M
)
,

where M is a closed Riemannian manifold, k, l,m ∈ N, k 6= 0 and an elliptic differential
operator P of order k, one has that

‖u‖Hk+l(M) . ‖Pu‖Hl(M) + ‖u‖L1(M) . ‖u‖Hk+l(M) and

‖u‖Ck+m(M) . ‖Pu‖Cm(M) + ‖u‖C(M) . ‖u‖Ck+m(M)
These estimates extend to corresponding Sobolev spaces and weak derivatives by the stan-
dard density argument.
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5. Mathematical background

Note that closedness is essential for this to hold, since the lack of boundary allows to
translate statements on interior regularity in Euclidean space to the entire manifold
by covering the compact manifold M with finitely many suitable coordinate neighbour-
hoods. Additionally, this statement on elliptic regularity yields the following crucial
estimate:

Corollary 5.2.6. For any smooth function u on a closed Riemannian manifold
(
M, ḡ

)
,

one has
‖u‖C(M) ≤ C

(
‖u‖L2(M) + ‖∆u‖L2(M)

)
. (18)

for a ḡ-dependent constant C > 0

Proof. With (17) and then applying the first inequality of Proposition 5.2.5 with k =
2, l = 0 for the elliptic operator ∆ of order 2 (see Example 5.2.4), we collect the following
estimates for any u ∈ C∞

(
M
)
:

‖u‖C(M) .ḡ ‖u‖H2(M) . ‖u‖L1(M) + ‖∆u‖L2(M).

In particular, we can estimate first summand on the right hand side with the Hölder
inequality applied to 1·u, sinceM is of finite volume, and the statement now follows.
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6. Energy estimates
With all of the necessary tools now introduced, this chapter will establish the necessary
energy estimates that allow for some a priori control of (rescaled) waves toward the Big
Bang singularity, which will be essential in proving the asymptotic results.

For a smooth function ϕ : M → R, consider the following energies:

E(t, ϕ) = E(ϕ(t, ·)) =
∫
M
|∂tϕ(t, ·)|2 + a(t)−2

∣∣∣∇ϕ(t, ·)
∣∣∣2
ḡ
volM (19)

EN (t, ϕ) = E
(
∆Nϕ(t, ·)

)
(20)

Since ϕ and a are smooth and M is closed, the derivative of the integrand of EN (t, ϕ)
is uniformly bounded on any compact subset of R+, so the Dominated Convergence
Theorem allows to pull the differentiation in time past the integral, which we will use
without additional remarks from here on out. It follows analogously that t 7→ E(t, ϕ)
is smooth for ϕ ∈ C∞(M). Similarly, we will use without further notice that ∂t com-
mutes with any differential operator on M , in particular ∂t∇ϕ = ∇∂tϕ holds for any
ϕ ∈ C∞(M).

6.1. Wave energy estimates
The behaviour of homogeneous waves established in Remark 4.3.4 already indicates that
general waves should roughly behave like t1−

2
γ (resp.

∫∞
t a(s)−3 ds) towards the Big

Bang singularity at t = 0 in type 0 (resp. −1) warped product spacetimes, at the very
least when the spatial inhomogeneities entering via ∆ψ are comparatively small. For
homogeneous waves, the energy of order N = 0 is easily seen to take form

E(t, ψhom) '
∣∣∣t− 2

γ

∣∣∣2 = t
− 4
γ = a(t)−6

for type 0 by the calculation preceding Lemma 4.2.1, and

E(t, ψhom) '
∣∣∣−a(t)−3

∣∣∣2 = a(t)−6

for type −1. The next proposition thus formalizes this intuition to general waves:

Proposition 6.1.1. For any N ∈ N and 0 < t < t0, the following estimate holds on
any warped product spacetime (M, g) with scale factor a such that ȧ > 0 holds and for
arbitrary p, ρ such that the Friedman and continuity equations are satisfied:

a(t)6EN (t, ψ) ≤ a(t0)6EN (t0, ψ) .
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6. Energy estimates

In warped product spacetimes of type 0 with p = (γ − 1)ρ, γ ∈ (2/3, 2], i.e. a(t) = t
2

3γ ,
this reads

t
4
γEN (t, ψ) ≤ t0

4
γEN (t0, ψ) .

Note that by the rephrased Friedman equation (10) for κ = 0 and κ = −1, our “standard”
warped product spacetimes of type 0 and −1 with linear equation of phase p = (γ − 1)ρ
are actually included in this proposition.
Two different proofs of this statement will be provided: The former is a little shorter
and relies solely on the form of the wave operator via Corollary 4.3.3. The latter arises
more or less directly from the relativistic framework established in Section 3.3 that was
also utilized in [1] (which we will follow closely in that proof) as well as for nonlinear
stability analysis in [15, 16]. It will also become important in Section 7.2 because makes
this inequality a little more precise. For both proofs, we quickly note that it suffices to
prove the estimate for N = 0 as it then immediately extends to the waves ∆Nψ for any
N ∈ N by Corollary 4.3.3.

Proof 1 of Proposition 6.1.1. Since t 7→ E(t, ψ) is smooth, one calculates using Corollary
4.3.3 to replace ∂2

t ψ as well as integration by parts (see Lemma 4.3.5):

∂tE(t, ψ) =
∫
M

[
2∂2

t ψ(t, ·)∂tψ(t, ·) + 2a(t)−2 · ḡ
(
∂t∇ψ(t, ·),∇ψ(t, ·)

)
−2 ȧ(t)

a(t)3

∣∣∣∇ψ(t, ·)
∣∣∣2
ḡ

]
volM

=
∫
M

[
2
(
a(t)−2∆ψ(t, ·)− 3 ȧ(t)

a(t)∂tψ(t, ·)
)
∂tψ(t, ·)

−2a(t)−2∂tψ(t, ·)∆ψ(t, ·)− 2 ȧ(t)
a(t)a(t)−2

∣∣∣∇ψ(t, ·)
∣∣∣2
ḡ

]
volM

=
∫
M
−
[
6 ȧ(t)
a(t) |∂tψ(t, ·)|2 + 2 ȧ(t)

a(t)a(t)−2
∣∣∣∇ψ(t, ·)

∣∣∣2
ḡ

]
volM

≥− 6 ȧ(t)
a(t)E(t, ψ)

By integration on [t, t0], we obtain

E(t, ψ) ≤ E(t0, ψ) +
∫ t0

t
6 ȧ(s)
a(s)E(s, ψ) ds .

From the Gronwall lemma, it now follows that

E(t, ψ) ≤ E(t0, ψ) exp
(∫ t0

t
6 ȧ(s)
a(s) ds

)
= E(t0, ψ) exp

(∫ a(t0)

a(t)

6
x
dx

)

= E(t0, ψ)
(
a(t0)
a(t)

)6
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6.1. Wave energy estimates

and thus the statement holds.

Before moving on to the second proof, we need to establish energy fluxes in this context:

Definition 6.1.2. The energy flux JX [ϕ] is the covector field defined by the projection
of the energy-momentum tensor of scalar field matter (see (6)) along the vector field
X ∈ X (M), i.e. one defines

JXa [ϕ] = XbTab[ϕ] = Xb
(
∇aϕ∇bϕ−

1
2gab∇

cϕ∇cϕ
)
.

for a smooth function ϕ : M → R. Note that

J∂t0 [ϕ] = T00[ϕ] = 1
2

(
|∂tϕ|2 + a(t)−2

∣∣∣∇ϕ∣∣∣2
ḡ

)
holds, so in a certain sense, the energies EN naturally arise from how scalar-field matter
is encoded in an energy-momentum tensor.

Proof 2 of Proposition 6.1.1. Set X = a(t)3∂t. Then, one computes

∇µXν = gµσ
[(
∂σa

3
)
∂νt + a3∇σ∂νt

]

=


−3a2ȧ µ = ν = 0
gµσa3Γν0σ = gµν ȧa2 = ḡµν ȧ µ, ν 6= 0
0 else

with Remark 3.1.4. Thus, recalling that, since ψ is a wave, the divergence of T vanishes
(see Lemma 3.3.1), one sees:

∇µ
(
JXµ [ψ]

)
= (∇µXν)Tµν [ψ] +Xν (∇µTµν [ψ])

= − 3a2ȧT00[ψ] + ȧḡijTij [ψ]

= a2ȧ

[
−3

2

(
|∂tψ|2 + a−2

∣∣∣∇ψ∣∣∣2
ḡ

)
+ a−2ḡij∇iψ∇jψ

−1
2
(
a−2ḡij

) (
a2ḡij∇cψ∇cψ

)]
= a2ȧ

[
−3

2

(
|∂tψ|2 + a−2

∣∣∣∇ψ∣∣∣2
ḡ

)
+ a−2

∣∣∣∇ψ∣∣∣2
ḡ

+3
2 |∂tψ|

2 − 3
2a
−2
∣∣∣∇ψ∣∣∣2

g

]
= − 2ȧ

∣∣∣∇ψ∣∣∣2
ḡ
≤ 0 (21)

since ȧ > 0 by assumption. The induced volume form volMs
on M s = {s} ×M is given

by

volMs
=

√
det(g|Ms

)
det(ḡ) volM =

√
(a(s)2)3 det(ḡ)

det(ḡ) volM = a(s)3volM
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6. Energy estimates

by the Jacobi transformation law. Now, we choose the orientation on M such that
(−∂t,B) is positively oriented for any positively oriented local basis B on TM . Using
the divergence theorem by integration over the volume form volM associated with said
orientation yields

−
∫ t0

t

∫
Ms

div
(
JX [ψ]

)
volMs

ds =
∫

[t,t0]×M
div

(
JX [ψ]

)
volM

=
∫
Mt0

JX0 [ψ]volMt0
−
∫
Mt

JX0 [ψ]volMt

= 1
2a(t0)6

∫
M

[
|∂tψ(t0, ·)|2 + a(t0)−2

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ

]
volM

− 1
2a(t)6

∫
M

[
|∂tψ(t, ·)|2 + a(t)−2

∣∣∣∇ψ(t, ·)
∣∣∣2
ḡ

]
volM

= 1
2a(t0)6E(t0, ψ)− 1

2a(t)6E(t, ψ),

which can be rearranged to

a(t)6E(t, ψ) = a(t0)6E(t0, ψ) + 2
∫ t0

t

∫
Ms

div
(
JX [ψ]

)
volMs

ds . (22)

Since the divergence term is nonpositive by (21), the statement now follows.

Along with some of the Sobolev machinery established in Chapter 5, this already allows
for rather precise pointwise control of waves towards t = 0:

Corollary 6.1.3. In the setting of Proposition 6.1.1, with (t, x) ∈ M, 0 < t < t0, the
following estimate holds for any smooth wave ψ:

∣∣∣∆Nψ(t, x)
∣∣∣ ≤ Ca(t0)3

(∫ t0

t
a(s)−3 ds

)(√
EN (t0, ψ) +

√
EN+1(t0, ψ)

)
+
∣∣∣∆Nψ(t0, x)

∣∣∣
(23)

where C > 0 is a ḡ-dependent constant. In particular, in the type 0 warped products with
a(t) = t

2
3γ with p = (γ − 1)ρ, it follows that

∣∣∣∆Nψ(t, x)
∣∣∣ ≤ Ct0 2

γ

(√
EN (t0, ψ) +

√
EN+1(t0, ψ)

)
t
1− 2

γ −t0
1− 2

γ

2
γ
−1

2
3 < γ < 2

log(t0)− log(t) γ = 2

+
∣∣∣∆Nψ(t0, x)

∣∣∣ (24)

and this extends to warped products of type −1 with the same equations of phase for p
and ρ, choosing small enough t0 > 0 and updating C ≡ C(ḡ, t0, ρ(t0)).
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6.2. Rescaled energy estimates

Proof. Applying Corollary 5.2.6 in the third line, one computes

∣∣∣∆Nψ(t, ·)
∣∣∣ ≤ ∣∣∣∣∫ t0

t
∂t∆Nψ(s, x)ds

∣∣∣∣+ ∣∣∣∆Nψ(t0, x)
∣∣∣

≤
∫ t0

t

∥∥∥∂t∆Nψ(s, ·)
∥∥∥
L∞(M) ds +

∣∣∣∆Nψ(t0, x)
∣∣∣

≤ C ·
∫ t0

t

(∥∥∥∂t∆Nψ(s, ·)
∥∥∥
L2(M) +

∥∥∥∂t∆N+1ψ(s, ·)
∥∥∥
L2(M)

)
ds +

∣∣∣∆Nψ(t0, x)
∣∣∣

≤ C ·
∫ t0

t

(√
EN (s, ψ) +

√
EN+1(s, ψ)

)
ds +

∣∣∣∆Nψ(t0, x)
∣∣∣

(∗)
≤ C ·

(√
EN (t0, ψ) +

√
EN+1(t0, ψ)

)∫ t0

t

a(t0)3

a(s)3 ds +
∣∣∣∆Nψ(t0, x)

∣∣∣ ,
where (∗) follows from Proposition 6.1.1.
In type 0, (24) is simply obtained by computing the integral. Moving on to type −1, by
the last point in Lemma 4.2.1, one has

∫ t0

t
a(s)−3 ds .t0,ρ(t0)

∫ t0

t

(
s
− 2

3γ
)3

ds =
∫ t0

t
s

2
γ ds

for t0 > 0 small enough, and thus the final claim follows.

6.2. Rescaled energy estimates

To derive a more precise asymptotic behaviour, it is now intuitive to consider the analo-
gous energies for waves rescaled by the leading order suggested by Proposition 6.1.1 and
Corollary 6.1.3. We start with type 0 warped products:

Proposition 6.2.1. Let 2/3 < γ < 2 and set

Γ = max
( 4

3γ , 4−
4
γ

)
.

For a smooth wave ψ in a warped product spacetime (M, g) of type 0, we set
ψ̂(t, x) = ψ(t,x)/t1−2/γ. Then, for any N ∈ N and 0 < t < t0, the following estimates
hold for a ḡ-dependent constant C > 0:

tΓEN
(
t, ψ̂

)
≤ tΓ0EN

(
t0, ψ̂

)
,

∣∣∣∆N ψ̂(t, ·)
∣∣∣ ≤ Ct

Γ
2
0

1− Γ
2

(
t
1−Γ

2
0 − t1−

Γ
2

)(√
EN

(
t0, ψ̂

)
+
√
EN+1

(
t0, ψ̂

))
+
∣∣∣∆N ψ̂(t0, ·)

∣∣∣
(25)
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6. Energy estimates

Proof. Again, it suffices to just prove the case N = 0. First, we calculate6 with the
explicit form of �g given by Remark 4.3.2:

�g
(
ψ̂
)

=− ∂2
t

(
ψ

t
1− 2

γ

)
+ t
− 4

3γ ∆
(

ψ

t
1− 2

γ

)
− 2
γt
∂t

(
ψ

t
1− 2

γ

)

=

−∂2
t ψ + t

− 4
3γ ∆ψ − 2

γt∂tψ

t
1− 2

γ

− 2
(2
γ
− 1

)
∂tψ

t
2− 2

γ

−
(2
γ
− 1

)(2
γ
− 2

)
ψ

t
3− 2

γ

− 2
γt

(2
γ
− 1

)
ψ

t
2− 2

γ

=�gψ
t
1− 2

γ

− 2
t

(2
γ
− 1

)[
∂tψ

t
1− 2

γ

+
(2
γ
− 1

)
ψ

t
2− 2

γ

]

=− 2
t

(2
γ
− 1

)
∂tψ̂

In particular, after rearranging, one has:

∂2
t ψ̂ = t

− 4
3γ ∆ψ̂ + 2

t

(1
γ
− 1

)
∂tψ̂

Now, one can perform a similar computation to the first proof of Proposition 6.1.1:

∂tE
(
t, ψ̂

)
=
∫
M

[
2∂2

t ψ̂ · ∂tψ̂ + 2t−
4

3γ · ḡ
(
∂t∇ψ̂,∇ψ̂

)
− 4

3γ t
− 4

3γ−1
∣∣∣∇ψ̂∣∣∣2

ḡ

]
volM

=
∫
M

[
2
(
t
− 4

3γ ∆ψ̂ + 2
t

(1
γ
− 1

)
∂tψ̂

)
∂tψ̂

−2t−
4

3γ ∂tψ̂ ·∆ψ̂ −
4

3γtt
− 4

3γ
∣∣∣∇ψ̂∣∣∣2

ḡ

]
volM

=
∫
M

[1
t

(4
γ
− 4

) ∣∣∣∂tψ̂∣∣∣2 − 4
3γtt

− 4
3γ
∣∣∣∇ψ̂∣∣∣2

ḡ

]
volM

≥− 1
t

max
(

4− 4
γ
,

4
3γ

)∫
M

[∣∣∣∂tψ̂∣∣∣2 + t
− 4

3γ
∣∣∣∇ψ̂(t, ·)

∣∣∣2
ḡ

]
volM

=− Γ
t
E
(
t, ψ̂

)
From here, we can deduce the first estimate precisely as in Proposition 6.1.1, replacing
4
γ with Γ. The pointwise estimate also follows analogously to Corollary 6.1.3, with

∥∥∥∂tψ̂(t, ·)
∥∥∥
L∞(M) ≤ C

(
t0
t

)Γ
2
(√

E
(
t0, ψ̂

)
+
√
E1
(
t0, ψ̂

))
(26)

for any 0 < t < t0, x ∈M (and similarly for N > 0).
6notationally surpressing t-dependency of ψ and its derivatives here and in the rest of the proof
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6.2. Rescaled energy estimates

Remark 6.2.2. Note that

Γ =

 4
3γ

2
3 < γ ≤ 4

3
4− 4

γ
4
3 ≤ γ < 2

holds since the former is strictly decreasing in γ, the latter strictly increasing and both
agree for γ = 4

3 . Thus, one has

0 < 1− Γ
2 =

1− 2
3γ

2
3 < γ ≤ 4

3
2
γ − 1 4

3 ≤ γ < 2

and Proposition 6.2.1 also proves that

(t, x) 7→ ∆Nψ(t, x)
t
1− 2

γ

is uniformly bounded, since the first summand in (25) is independent of x and the second
is uniformly bounded in x since ψ is continuous on the compact submanifold M t0 . With
1 − Γ/2 > 0, the inequailty (26) even shows that, for any x ∈ M , t 7→

(
∆Nψ(t,x)

t
1− 2

γ

)
is

absolutely continuous on [0, t0].
Expanding this to scale factors associated with negatively curved space works along
similar lines because the same asymptotic behaviour is exhibited in principle. However,
because this similarity truly only holds as t approaches 0, the statements become a little
more technically involved:
Proposition 6.2.3. Let ψ be a smooth wave on a warped product spacetime (M, g) of
type −1 with γ ∈ (2/3, 2]. We define ψ̂(t, x) := ψ(t,x)/h(t), h(t) =

∫∞
t a(s)−3 ds. Then,

for any ε > 0, there exists t0 > 0 small enough such that, for

Γε = max(6(γ − 1) + ε, 2),

a(t)ΓεE
(
t, ψ̂

)
≤ a(t0)ΓεE

(
t0, ψ̂

)
holds for any 0 < t < t0. Additionally, and strictly improving the case γ = 2, the
following estimate is satisfied for arbitrary t0 > 0 and again any 0 < t < t0:

a(t)6E
(
t, ψ̂

)
≤ a(t0)6E

(
t0, ψ̂

)
Proof. Step 1: Once again, we first need to understand how the wave operator acts on
ψ̂, using ∂th = −a−3:

�gψ̂ = − ∂2
t

(
ψ

h

)
+ a−2∆ψ

h
− 3 ȧ

a
∂t

(
ψ

h

)
= − ∂2

t ψ

h
− 2∂tψ

(
−−a

−3

h2

)
− ψ

(
2a
−6

h3 − 3 ȧa
−4

h2

)

+ 1
h
a−2∆ψ − 3 ȧ

a

(
∂tψ

h
− ψ−a

−3

h2

)
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= �gψ
h
− 2a

−3

h

[
∂tψ

h
− ψ−a

−3

h2

]

= 2 ḣ
h
∂tψ̂

Hence, again after re-arranging,

∂2
t ψ̂ = a(t)−2∆ψ̂ −

(
3 ȧ
a

+ 2 ḣ
h

)
∂tψ̂

follows. In trying to analogize the proof of Proposition 6.2.1 as much as possible, we will
need to compare ḣ/h to ȧ/a for small times:

Step 2: We will show

lim
t→0

ḣ/h
ȧ/a

(t) = 3γ
2 − 3

for any γ ∈ (2/3, 2]. First, we simplify this expression:

ḣ/h
ȧ/a

= −a
−3a

ȧh
= −

(
a2ȧ

)−1

h

As t→ 0, the denominator diverges toward ∞ as shown in Lemma 4.2.1. Regarding the
numerator, the rephrased Friedman equation (10) with κ = −1 gives

a2ȧ = a2

√
1 + 8πB

3 a2−3γ =

√
a4 + 8πB

3 a6−3γ .

With a(0) = 0 and 6− 3γ > 0 for γ < 2, this gives

lim
t→0

(
a(t)2ȧ(t)

)−1
=

∞ γ < 2√
3

8πB γ = 2
.

Thus, the claim already follows for γ = 2. Else, we can apply the l’Hospital’s rule:

lim
t→0

ḣ/h
ȧ/a

(t) =− lim
t→0

a(t)−2ȧ(t)−1

h(t)

=− lim
t→0

−2a(t)−3ȧ(t)ȧ(t)−1 − a(t)−2ȧ(t)−2ä(t)
−a(t)−3

=− 2− lim
t→0

a(t)ä(t)
ȧ(t)2

(∗)= − 2− lim
t→0

a(t)
(
−4π

3 (1 + 3(γ − 1))ρ
)

1 + 8πB
3 a(t)2−3γ

(∗∗)= − 2− lim
t→0

a(t)2
(
−4π

3 (3γ − 2)Ba(t)−3γ
)

1 + 8πB
3 a(t)2−3γ
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=− 2 + lim
t→0

4πB
3 (3γ − 2)

a(t)3γ−2 + 8πB
3

=− 2 + 1
2(3γ − 2) = 3γ

2 − 3,

where we used (11) for (∗) to substitute ä in the numerator, and (10) with κ = −1 to
replace ȧ in the denominator, as well as p = (γ − 1)ρ and (9) to replace ρ in (∗∗). For
the final limit, we recall that 3γ − 2 is positive for γ > 2/3, that a(0) = 0 holds and that
B isn’t zero.

Step 3: With this information in hand, we can now treat the energy as usual: Using
Step 1 to replace ∂2

t ψ̂, we calculate

∂tE
(
t, ψ̂

)
=
∫
M

(
2∂2

t ψ̂ · ∂tψ̂ − 2∂tψ̂ · a−2∆ψ̂ − 2 ȧ
a3

∣∣∣∇ψ̂∣∣∣2
ḡ

)
volM

=
∫
M

(
−
(

6 ȧ
a

+ 4 ḣ
h

) ∣∣∣∂tψ̂∣∣∣2 − 2 ȧ
a
a−2

∣∣∣∇ψ̂∣∣∣2
ḡ

)
volM

≥ −max
(

6 ȧ
a

+ 4 ḣ
h
, 2 ȧ
a

)
E(t, ψ̂)

Now, it follows from Step 2 that, for any ε > 0, there exists some small enough t0 > 0
such that, for all 0 < t < t0,

ḣ(t)
h(t) ≤

(3γ
2 − 3 + ε

4

)
ȧ(t)
a(t)

(since both a and ȧ are positive) and hence

∂tE
(
t, ψ̂

)
≥−max

(
6 + 4 ·

(3γ
2 − 3 + ε

4

)
, 2
)
ȧ(t)
a(t)E

(
t, ψ̂

)
=− Γε

ȧ(t)
a(t)E

(
t, ψ̂

)
.

The stated energy estimate is now just the usual Gronwall argument. The argument for
the second inequality works analogously, simply estimating

∂tE(t, ψ) ≥ −max
(

6 ȧ
a

+ 4 ḣ
h
, 2 ȧ
a

)
E(t, ψ̂) ≥ −6 ȧ

a
E(t, ψ̂) ,

since ḣ = −a−3 < 0, h > 0 and ȧ/a > 0, and then continuing as usual.

In particular, we can derive the following pointwise estimate along similar lines as before:

Corollary 6.2.4. For (M, g), ψ̂ and Γε as in Proposition 6.2.3 and 2/3 < γ < 2, there
exists t0 > 0 small enough for any ε > 0 such that, for any 0 < t < t0, the following
pointwise estimate holds:∣∣∣ψ̂(t, ·)

∣∣∣ ≤ ∣∣∣ψ̂(t0, ·)
∣∣∣+ Ca(t0)

Γε
2

(√
EN (t0, ψ̂) +

√
EN+1(t0, ψ̂)

)
t
1−Γε/3γ
0 − t1−Γε/3γ

1− Γε/3γ
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6. Energy estimates

For the stiff case (γ = 2), one analogously obtains, again not requiring t0 > 0 to be
small,

∣∣∣ψ̂(t, ·)
∣∣∣ ≤ |ψ̂(t0, ·)|+ Ca(t0)3

(√
EN

(
t0, ψ̂

)
+
√
EN+1

(
t0, ψ̂

))
(log(t0)− log(t))

Proof. We quickly sketch the ansatz for the first case (w.l.o.g. for N = 0) so far as
it differs from the proof of the corresponding estimate in Proposition 6.1.1 (possibly
updating C along the way):

∣∣∣ψ̂(t, ·)
∣∣∣ ≤ ∣∣∣ψ̂(t0, ·)

∣∣∣+ ∫ t0

t

∥∥∥∂tψ̂(s, ·)
∥∥∥
L∞(M) ds

≤
∣∣∣ψ̂(t0, ·)

∣∣∣+ C

∫ t0

t

(√
E
(
s, ψ̂

)
+
√
E1
(
s, ψ̂

))
ds

≤
∣∣∣ψ̂(t0, ·)

∣∣∣+ C

(√
E
(
t0, ψ̂

)
+
√
E1
(
t0, ψ̂

))
a(t0)Γε/2

∫ t0

t
a(s)−Γε/2 ds

Further, by Lemma 4.2.1, there exists some K > 0 for t0 > 0 small enough such that,
for all 0 < s < t0,

a(s)−Γε/2 ≤ K ·
(
s

2
3γ
)−Γε/2

= Ks
−Γε
3γ .

Hence, ∫ t0

t
a(s)−Γε/2 ds ≤ K · t

1−Γε/3γ
0 − t1−Γε/3γ

1− Γε/3γ

holds and the estimate follows after updating C.
The statement for γ = 2 follows by precisely the same argument, using the respective
energy estimate in Proposition 6.2.3.

Remark 6.2.5. Again, we turn to the question of whether the rescaled wave is absolutely
continuous toward the Big Bang, which will help us answer whether we can extend it to
the Big Bang hypersurface: If Γε = 2, one has

1− Γε
3γ = 1− 2

3γ > 0,

and else
1− Γε

3γ = 1−
(

2γ − 1
γ

+ ε

3γ

)
= 2
γ
− 1− ε

3γ

is positive for small enough ε > 0 since 2
γ − 1 > 0 for γ < 2. Hence, the proof once again

even shows that ψ̂ is absolutely continuous close to t = 0, so lim
t→0

ψ̂(t, x) exists for any
x ∈M .
Furthermore, it should be noted that this does not work for the stiff case since the
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6.2. Rescaled energy estimates

upper estimate just obtained still diverges toward ∞ logarithmically when approaching
t = 0. This is also related to why we need to work with the slightly unwieldy Γε in type
−1: Just using the secondary estimate in Proposition 6.2.3 doesn’t yield an improved
behaviour of the rescaled wave compared to the wave itself a priori, while on the other
hand the asymptotic nature of our analysis necessitates some smallness assumptions on
t0 > 0 to obtain a sufficiently strong control of the energy in powers of the scale factor.

These estimates will prove to be completely sufficient for the upcoming analysis on
warped product spacetimes of types 0 and −1. However, when restricting back to “true”
FLRW spacetimes with flat and hyperbolic spatial geometry, additional energies can
provide more precise control of relevant Sobolev norms, as outlined in Section A.2.
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7. Global blow-up of waves

In this chapter, all results will be combined to rigorously prove what the energy estimates
already suggest – that smooth waves exhibit blow-up towards the Big Bang singularity
of at most the same rate as homogenous waves. Further, sufficient conditions to verify
whether a wave blows up at precisely this rate will be provided. However, as the estimates
in Section 6.2 suggest, the stiff case will have to be treated somewhat separately.

7.1. Asymptotics outside of the stiff case

To start off, the rescaled pointwise estimates can be directly utilized to extract the
highest possible leading order term:

Theorem 7.1.1. Let ψ be a smooth wave on a warped product spacetime (M, g) of type
0 or −1, with scale factor a associated to γ ∈ (2/3, 2). Then,

A(x) := lim
t→0

ψ(t, x)
t
1− 2

γ

, respectively A(x) := lim
t→0

ψ(t, x)∫∞
t a(s)−3 ds

,

exists and defines a smooth function on M .

Proof. First, let’s turn to type 0: Since, by Remark 6.2.2,

t ∈ (0, t0] 7→ ∆Nψ(t, x)
t
1− 2

γ

is absolutely continuous for any fixed x ∈ M , with a time derivative that is integrable

on [0, t0], AN (x) := lim
t→0

∆Nψ(t, x)
t
1− 2

γ

exists for any N ∈ N, x ∈M .

To prove smoothness, we will prove that, for any N ∈ N , this pointwise convergence also
extends to H2

(
M
)
, and thus AN ∈ H2

(
M
)
, as well as that ∆AN = AN+1 is satsified

almost surely in L2
(
M
)
(in the sense of weak derivatives). To see why this is sufficient,

choose an arbitrary decreasing sequence (tn)n∈N with 0 < tn ≤ t0 for all n ∈ N and
tn → 0 as n→∞. Further, define

fN,n(x) := ∆Nψ(tn, x)

t
1− 2

γ
n

,
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7.1. Asymptotics outside of the stiff case

so (fN,n)n∈N converges to AN pointwise for any N ∈ N and these subsequences are
consistent in the sense that ∆fN,n = fN+1,n holds for all n,N ∈ N. If the convergence
also holds in H2

(
M
)
for all N ∈ N, then one in particular has that (fN,n)n∈N is a

Cauchy sequence with regards to the norm

‖∆(·)‖H2(M) + ‖ · ‖H2(M)
for any N ∈ N since we chose the subsequences to be consistent. By using Lemma 5.1.2
on each of these terms, it is then also a Cauchy sequence with regards to

‖∆(·)‖C(M) + ‖ · ‖C(M)

for any N ∈ N and thus a Cauchy sequence in C2
(
M
)
equipped with the standard norm,

by the second set of inequalities in Proposition 5.2.5 (with k = 0, m = 2). Since the
latter is a Banach space and any limit in C2

(
M
)
must coincide with the pointwise limit,

it follows that AN ∈ C2
(
M
)
must hold for any N ∈ N. If ∆AN = AN+1 holds almost

surely in L2
(
M
)
, it must now also hold classically. Now using Proposition 5.2.5 for

k = 2,m = 2, it now follows by the same approximation argument that AN ∈ C4
(
M
)

is satisfied for any N , and by iterating this argument that AN ∈ C∞
(
M
)
must hold for

any N ∈ N. In particular, this shows that A is smooth and ∆NA0 = AN .

By Remark 6.2.2, (t, x) 7→
∣∣∣∣∆Nψ(t,x)

t
1− 2

γ

∣∣∣∣2 is uniformly bounded on [0, t0] × M for any

N ∈ N. In particular, since M is closed and thus has finite volume, x 7→
∣∣∣∣∆Nψ(t,x)

t
1− 2

γ

∣∣∣∣2
is bounded from above by an integrable function. Hence, we can use the Dominated
Convergence Theorem for t approaching 0 to deduce that AN is square integrable. More
precisely, choosing (fN,n)n∈N as before, this shows that (fN,n)n∈N converges to AN in
L2
(
M
)
for any N ∈ N as n→∞ after rearranging. Again by the consistency property

∆fN,n = fN+1,n, it follows that this sequence must be a Cauchy sequence with regards
to

‖∆(·)‖L2(M) + ‖ · ‖L2(M),

so also with regards to ‖·‖H2(M) by Proposition 5.2.5. Thus, fN,n converges in H2
(
M
)
,

and this limit must obviously agree with AN almost everywhere, so AN ∈ H2
(
M
)
. Fur-

thermore, by the consistency property and uniqueness of limits, ∆AN and AN+1 must
represent the same element of L2

(
M
)
. Smoothness of A now follows as argued above.

For type −1, Remark 6.2.5 yields existence along the same lines and fulfills the role of
Remark 6.2.2 in the rest of the proof as well. Besides replacing t1−

2
γ by

∫∞
t a(s)−3 ds,

everything else now follows identically since no (other) properties of the scale factor were
used at any point.
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This statement already shows that one has, as t→ 0,

ψ(t, ·)−A · t1−
2
γ = o

(
t
1− 2

γ

)
, resp.

ψ(t, ·)−A ·
∫ ∞
t

a(s)−3 ds = o

(∫ ∞
t

a(s)−3 ds

)
= o

(
t
1− 2

γ

)
in warped product spacetimes of type 0 (resp. type −1) outside of the stiff setting.
However, this behaviour can be shown to be more uniform in the sense of convergence
with regards to our energies, which will be proven along similar lines as in [1]:

Theorem 7.1.2. Under the conditions of Theorem 7.1.1 in type 0 warped products, the
following holds:

lim
t→0

t
4
γEN

(
t, ψ(t, ·)−A · t1−

2
γ

)
= 0

Proof. For t > 0, one calculates (using the Cauchy-Schwarz and Young inequalities in
the first estimate and Proposition 6.2.1 in the second):

t
4
γE

(
t, ψ(t, ·)−A · t1−

2
γ

)
= t

4
γ

∫
M

[∣∣∣∣∂tψ(t, ·)−
(

1− 2
γ

)
t
− 2
γA

∣∣∣∣2 + t
− 4

3γ
∣∣∣∇ψ(t, ·)− t1−

2
γ∇A

∣∣∣2
ḡ

]
volM

= t
4
γ

∫
M

∣∣∣∣∣t1− 2
γ ∂t

(
ψ(t, ·)
t
1− 2

γ

)
+
(

1− 2
γ

)
t
− 2
γ

(
ψ(t, ·)
t
1− 2

γ

−A
)∣∣∣∣∣

2

+

+ t
2− 4

γ
− 4

3γ

∣∣∣∣∣∇
(
ψ(t, ·)
t
1− 2

γ

)
−∇A

∣∣∣∣∣
2

ḡ

 volM
≤ 2t

4
γ

∫
M

[
t
2− 4

γ

∣∣∣∂tψ̂∣∣∣2 + t
− 4
γ

(
1− 2

γ

)2 ∣∣∣ψ̂ −A∣∣∣2 +

+ t
2− 4

γ
− 4

3γ

(∣∣∣∇ψ̂∣∣∣2
ḡ

+
∣∣∣∇A∣∣∣2

ḡ

)]
volM

= 2
[
t2E

(
t, ψ̂

)
+
(

1− 2
γ

)2 (∫
M

∣∣∣ψ̂ −A∣∣∣2 volM)+ t
2− 4

3γ

∫
M

∣∣∣∇A∣∣∣2
ḡ
volM

]

≤ 2
[
t2−ΓtΓ0E

(
t0, ψ̂

)
+
(

1− 2
γ

)2 (∫
M

∣∣∣ψ̂(t, ·)−A
∣∣∣2 volM)+ t

2− 4
3γ

∫
M

∣∣∣∇A∣∣∣2
ḡ
volM

]

As t→ 0, the first summand vanishes since Γ < 2 (see Remark 6.2.2), the second utilizing
the Dominated Convergence Theorem and the third because A is smooth (so the integral
is finite) and γ > 2

3 forces the prefactor to vanish. Altogether, the statement follows for
N = 0 and extends to N ∈ N as usual by Corollary 4.3.3.

Theorem 7.1.3. Denoting h(t) =
∫∞
t a(s)−3 ds, the following holds setting of Theorem

7.1.1 for type −1:
a(t)6EN (t, ψ −Ah)→ 0 as t→ 0 .
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Proof. Similar to before, one calculates:

a(t)6E (t, ψ −Ah)

= a(t)6
∫
M

[∣∣∣∂tψ(t, ·) + a(t)−3A
∣∣∣2 + a(t)−2

∣∣∣∇ψ(t, ·)− h(t)∇A
∣∣∣2
ḡ

]
volM

= a(t)6
∫
M

∣∣∣∣∣h(t)∂tψ̂(t, ·)− a(t)−3

h(t) ψ(t, ·) + a(t)−3A

∣∣∣∣∣
2

+

+ a(t)−2h(t)2
∣∣∣∇ψ̂(t, ·)−∇A

∣∣∣2
ḡ

 volM
≤ 2a(t)6

∫
M

[
h(t)2

∣∣∣∂tψ̂(t, ·)
∣∣∣2 + a(t)−6

∣∣∣ψ̂(t, ·)−A
∣∣∣2 +

+ a(t)−2h(t)2
(∣∣∣∇ψ̂(t, ·)

∣∣∣2
ḡ

+
∣∣∣∇A∣∣∣2

ḡ

)]
volM

= 2a(t)6h(t)2E
(
t, ψ̂

)
+ 2

∫
M

∣∣∣ψ̂(t, ·)−A
∣∣∣2 volM + 2h(t)2a(t)4

∫
M

∣∣∣∇A∣∣∣2
ḡ
volM (27)

Now, we analyse all three terms as t→ 0:

• Regarding the first term, we have shown in Lemma 4.2.1 that a(t) = O
(
t

2
3γ
)

and h(t) = O
(
t
1− 2

γ

)
. Thus, a(t)6h(t)2 = O

(
t2
)
. On the other hand, combining

Proposition 6.2.3 and again Lemma 4.2.1 yields for arbitrarily small ε > 0 as long
t0 > t > 0 small enough:

E
(
t, ψ̂

)
≤ E

(
t0, ψ̂

)(a(t0)
a(t)

)Γε
≤ E

(
t0, ψ̂

)
a(t0)Γε · Ct−2/3γΓε

If Γε = 2, one has −2Γε/3γ = −4/3γ > −2. Else, one has

−2Γε
3γ = − 2

3γ (6(γ − 1) + ε) = 4
γ
− 2− ε

3γ
For 0 < ε < 3γ (4/γ − 2) = 12 − 6γ, one can ensure that this is positive (recalling
γ < 2). Hence, one deduces that E(t, ψ) = O

(
t−2+δ

)
holds for some δ > 0 in any

case and thus the first summand vanishes.

• The second term simply vanishes by the Dominated Convergence Theorem as be-
fore.

• Regarding the final term, one has by Lemma 4.2.1 that

h(t)2a(t)4 = O
(
t
2− 4

γ
+ 8

3γ
)

= O
(
t
2− 4

3γ
)
,

so this factor converges to 0 as t→ 0 since γ > 2/3. Since A is smooth, the integral
is finite and this term as a whole converges to 0.
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7. Global blow-up of waves

Altogether, the entire right hand side of (27) now vanishes in the limit, proving the
statement.

7.2. Sufficient conditions for leading order blow-up in the
non-stiff case

The statements so far only show that waves blow-up at most with the same rate as
homogeneous waves, but given the data of a wave on some spatial hypersuface M t0 , the
previous results don’t make a statement on whether this is actually attained since A
could just vanish entirely. However, one would heuristically expect that this shouldn’t
happen for almost homogeneous waves, and this intuition will be made more precise in
this section, extending the similar analysis for flat FLRW spacetimes performed in [1].
To this end, some technical lemmata need to be established:

Lemma 7.2.1. For any smooth wave ψ on a warped product spacetime as in Proposition
6.1.1 and any 0 < t < t0, the following holds:√∫

M

∣∣∣∇ψ(t, ·)
∣∣∣2
ḡ
volM ≤

√∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM +

√
2
√
E(t0, ψ) + E1(t0, ψ)

∫ t0

t

a(t0)3

a(s)3 ds

Proof. For the sake of convenience, we denote F (t, ψ) :=
√∫

M

∣∣∣∇ψ(t, ·)
∣∣∣2
ḡ
volM . One

calculates:

−1
2
(
∂t
(
F (·, ψ)2

))
(s) = − 1

2

(
∂t

(∫
M

∣∣∣∇ψ∣∣∣2
ḡ
volM

))
(s)

=
∫
M
−ḡ

(
∇ψ(s, ·), ∂t∇ψ(s, ·)

)
volM

≤
∫
M

∣∣∣∇ψ(s, ·)
∣∣∣
ḡ
·
∣∣∣∂t∇ψ(s, ·)

∣∣∣
ḡ
volM

≤
√∫

M

∣∣∣∇ψ(s, ·)
∣∣∣2
ḡ
volM

√∫
M

∣∣∣∇∂tψ(s, ·)
∣∣∣2
ḡ
volM

≤F (s, ψ)
√∫

M
|∂tψ(s, ·) · ∂t∆ψ(s, ·)| volM

≤F (s, ψ)
√

1
2

∫
M
|∂tψ(s, ·)|2 + |∂t∆ψ(s, ·)|2 volM

≤F (s, ψ)

√
E(s, ψ) + E1(s, ψ)

2

≤F (s, ψ)

√
E(t0, ψ) + E1(t0, ψ)

2
a(t0)3

a(s)3
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7.2. Sufficient conditions for leading order blow-up in the non-stiff case

On the other hand, one has 1
2
(
∂t
(
F (·, ψ)2)) (s) = F (t, ψ) · ∂tF (s, ψ). Hence,

−∂tF (s, ψ) ≤
√

2
√
E(t0, ψ) + E1(t0, ψ)a(t0)3

a(s)3

and thus the statement follows from integration on s ∈ [t, t0].

Next, we need to be able relate A to our energies so that we can then control its size
by that of initial data. Even though the arguments in both types are very similar, they
will be treated separately for the sake of readability:

Lemma 7.2.2. In the setting of type 0 in Theorem 7.1.1, one has

lim
t↓0

a(t)6E(t, ψ) = lim
t↓0

t
4
γE(t, ψ) =

(
1− 2

γ

)2 ∫
M
|A|2 volM

Proof. One calculates for arbitrary t > 0:

t
4
γE(t, ψ) = t

4
γ

∫
M

[
|∂tψ(t, ·)|2 + t

− 4
3γ
∣∣∣∇ψ(t, ·)

∣∣∣2
ḡ

]
volM

= t
4
γ

∫
M

[∣∣∣∣(1− 2
γ

)
t
− 2
γA+ ∂t

(
ψ −At1−

2
γ

)∣∣∣∣2 +

+ t
− 4

3γ ḡ
(
∇
(
ψ −At1−

2
γ

)
,∇
(
ψ(t, ·)−At1−

2
γ

))
+

+2t1−
2
γ
− 4

3γ ḡ
(
∇ψ(t, ·),∇A

)
− t2−

4
γ
− 4

3γ
∣∣∣∇A∣∣∣2

ḡ

]
volM

=
∫
M

(
1− 2

γ

)2
|A|2 volM + 2t

2
γ

∫
M
A · ∂t

(
ψ −At1−

2
γ

)
volM

+ t
4
γE

(
t, ψ −At1−

2
γ

)
− t2−

4
3γ

∫
M

[
2∆A · ψ

t
1− 2

γ

+
∣∣∣∇A∣∣∣2

ḡ

]
volM

Taking t → 0, the third summand vanishes by Theorem 7.1.2, and so does the second
one since, using Hölder’s inequality, its absolute value is bounded by

2t
2
γ ‖A‖L2(M)

√∫
M

∣∣∣∂t (ψ −At1− 2
γ

)∣∣∣2 volM ≤ 2‖A‖L2(M)

√
t

4
γE

(
t, ψ −At1−

2
γ

)
.

As shown in Remark 6.2.2, (t, x) 7→ ψ(t,x)/t1−
2
γ is uniformly bounded on [0, t0]×M . Since

A is smooth by Theorem 7.1.1, all other terms in the final integral are well-defined and
bounded, so the Dominated Convergence Theorem can be applied to the first summand
in the final integral, in particular showing that the integral converges as t approaches 0.
Because 2− 4

3γ > 0 holds, the final term also vanishes, proving the lemma.

Lemma 7.2.3. In the type −1 setting of Theorem 7.1.1, the following holds:

lim
t→0

a(t)6E(t, ψ) =
∫
M
|A|2volM
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7. Global blow-up of waves

Proof. As earlier, denote h(t) =
∫∞
t a(s)−3 ds and then calculate:

a(t)6E(t, ψ) = a(t)6
∫
M
|∂tψ(t, ·)|2 + a(t)−2

∣∣∣∇ψ(t, ·)
∣∣∣2
ḡ
volM

= a(t)6
∫
M

[∣∣∣∂t (ψ −Ah)− a(t)−3 ·A
∣∣∣2 + a(t)−2

∣∣∣∇ (ψ −Ah)
∣∣∣2
ḡ

+2a(t)−2h(t)ḡ
(
∇ψ,∇A

)
− a(t)−2h(t)2

∣∣∣∇A∣∣∣2
ḡ

]
volM

= a(t)6E(t, ψ −Ah)− 2a(t)3
∫
M
A · ∂t (ψ −Ah) volM +

∫
M
|A|2 volM

− a(t)4h(t)2
∫
M

[
ψ

h
·∆A+

∣∣∣∇A∣∣∣2
ḡ

]
volM (28)

The first term vanishes by Theorem 7.1.3, and so does the second one by the same
Hölder-argument as in the previous proof. Regarding the final term, ψ/h = ψ̂ converges
to A pointwise by definition and is uniformly bounded by Remark 6.2.5, so the integral
remains finite in the limit by the Dominated Convergence Theorem. Furthermore, by
Lemma 4.2.1, as t approaches 0, a(t)4 = O

(
t

8
3γ
)
and h(t)2 = O

(
t
2− 4

γ

)
. Hence, the

prefactor asymptotically behaves like t2−
4

3γ and in particular converges to zero, so the
entire summand does as well. Since all terms beside ‖A‖2

L2(M) now vanish in the limit,
the statement follows.

With these lemmata now in hand, we can use the previous energy estimates to construct
sufficient conditions that A does not vanish. Again, for the sake of simplicity, we first
start out with type 0:

Theorem 7.2.4. Suppose that, under the assumptions of Theorem 7.1.1 for type 0
warped products, for sufficiently small t0 > 0, ∂tψ(t0, ·) is not identically zero and there
exists some ε ∈ (0, 1) such that

ε

[
1−Gt

2− 4
3γ

0

] ∫
M
|∂tψ(t0, ·)|2 volM > Gt

2− 4
3γ

0

∫
M
|∂t∆ψ(t0, ·)|2 volM (29)

and

(1− ε)
[
1−Gt

2− 4
3γ

0

]
t

4
3γ
0

∫
M
|∂tψ(t0, ·)|2 volM >

>

(
1 +Gt

2− 4
3γ

0

)∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM +Gt

2− 4
3γ

0

∫
M

∣∣∣∇∆ψ(t0, ·)
∣∣∣2
ḡ
volM (30)

hold, where G := 32
3γ
(
1− 2

γ

)2 (3γ
8 −

2
1+ 2

3γ
+ 1

2− 4
3γ

)
= 4

1−
(

2
3γ

)2 > 0. Then ‖A‖L2(M) > 0.

Proof. Applying the results (21) and (22) from the energy-flux approach to the original
energy estimates, it follows that

a(t)6E(t, ψ) = a(t0)6E(t0, ψ)− 4
∫ t0

t

∫
Ms

ȧ(s)
∣∣∣∇ψ(s, ·)

∣∣∣2
ḡ
volMs

ds
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7.2. Sufficient conditions for leading order blow-up in the non-stiff case

Thus, recalling volMs
= a(s)3volM and using Lemma 7.2.1 for a lower bound, these

estimates follow:

a(t)6E(t, ψ) = a(t0)6E(t0, ψ)−
∫ t0

t
4ȧ(s)a(s)3

∫
M

∣∣∣∇ψ(s, ·)
∣∣∣2
ḡ
volM ds

≥ a(t0)6E(t0, ψ)−
∫ t0

t
4ȧ(s)a(s)3

(√∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM +

+
√

2
√
E(t0, ψ) + E1(t0, ψ) ·

∫ t0

s

a(t0)3

a(r)3 dr

)2

ds

≥ a(t0)6E(t0, ψ)− 8
(∫

M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM

)∫ t0

t
ȧ(s)a(s)3 ds

− 16a(t0)6[E(t0, ψ) + E1(t0, ψ)]
∫ t0

t
ȧ(s)a(s)3

(∫ t0

s
a(r)−3 dr

)2
ds

= a(t0)6E(t0, ψ)− 2
(∫

M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM

)(
a(t0)4 − a(t)4

)
− 16a(t0)6(E(t0, ψ) + E1(t0, ψ))

∫ t0

t
ȧ(s)a(s)3

(∫ t0

s
a(r)−3 dr

)2
ds

(31)

By Lemma 7.2.2, the left hand side converges to
(
1− 2

γ

)2
‖A‖2

L2(M), so it only needs to
be shown that the right hand side is strictly greater than zero as t → 0. One quickly
collects (∫ t0

s
a(r)−3 dr

)2
=
(∫ t0

s
r

2
γ dr

)2
=

 t1− 2
γ

0 − s1− 2
γ

1− 2/γ

2

and

ȧ(s)a(s)3
(∫ t0

s
a(r)−3 dr

)2
= 2

3γ s
(

2
3γ−1

)
+ 2
γ

 t1− 2
γ

0 − s1− 2
γ

1− 2
γ

2

= 2

3γ
(
1− 2

γ

)2

(
s

8
3γ−1

t
2− 4

γ

0 − 2s
2

3γ t
1− 2

γ

0 + s
1− 4

3γ

)
.

Thus, when taking the integral over [0, t0], the respective summands are as follows:∫ t0

0
s

8
3γ−1

t
2− 4

γ

0 ds = 3γ
8 t

8
3γ
0 t

2− 4
γ

0 = 3γ
8 t

2− 4
3γ

0∫ t0

0
s

2
3γ t

1− 2
γ

0 ds = 1
1 + 2

3γ
t
1+ 2

3γ
0 t

1− 2
3γ

0 = 1
1 + 2

3γ
t
2− 4

3γ
0∫ t0

0
s

1− 4
3γ ds = 1

2− 4
3γ
t
2− 4

3γ
0
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7. Global blow-up of waves

After taking the limit t→ 0, the right hand side of (31) now becomes

t
4
γ

0 E(t0, ψ)− 2t
8

3γ
0

∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM

− 32
3γ
t

4
γ

0 (E(t0, ψ) + E1(t0, ψ))(
1− 2

γ

)2

(
3γ
8 −

2
1 + 2

3γ
+ 1

2− 4
3γ

)
t
2− 4

3γ
0

= t
4
γ

0 E(t0, ψ)− 2t
8

3γ
0

∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM −G(E(t0, ψ) + E1(t0, ψ))t

2+ 8
3γ

0

= t
4
γ

0

(
1−Gt

2− 4
3γ

0

)∫
M
|∂tψ(t0, ·)|2volM

−Gt
4
γ

0 t
2− 4

3γ
0

∫
M
|∂t∆ψ(t0, ·)|2volM

− t
8

3γ
0

(
1 +Gt

2− 4
3γ

0

)∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM −Gt

8
3γ
0 t

2− 4
3γ

0

∫
M

∣∣∣∇∆ψ(t0, ·)
∣∣∣2
ḡ
volM

One now easily checks that if the conditions (29) and (30) are satisfied, this is positive,
i.e. ‖A‖L2(M) > 0.
Finally, one should check that G can be simplified as stated:

G = 32

3γ
(
1− 2

γ

)2

(
3γ
8 −

2
1 + 2

3γ
+ 1

2− 4
3γ

)

= 32(
1− 2

γ

)2

(1
8 −

2
3γ + 2 + 1

2(3γ − 2)

)

= 32

(3γ + 2)(3γ − 2)− 16(3γ − 2) + 4(3γ + 2)

8(3γ + 2)(3γ − 2)
(
1− 2

γ

)2


= 4

9γ2 − 4− 48γ + 32 + 12γ + 8

(9γ2 − 4)
(
1− 2

γ

)2


= 4 γ2 − 4γ + 4(

γ2 − 4
9

) (
1− 2

γ

)2 = 4(γ − 2)2(
γ2 − 4

9

) (
1− 2

γ

)2 = 4

1−
(

2
3γ

)2

It should be noted that this criterion is marginally weaker than the corresponding The-
orem 1.1.2 in [1] when applying it to flat FLRW spacetimes due to the smallness of t0
not only being necessary to keep the weights of spatial terms comparatively small, but
additionally to ensure 1−Gt

2− 4
3γ

0 > 0. However, it is significantly stronger in general in
the sense that is does not rely on the spatial geometry in any way, while [1] needed this
to then leverage energy estimates on coordinate derivatives of ψ. Furthermore, since
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7.2. Sufficient conditions for leading order blow-up in the non-stiff case

we essentially only used the energy estimates as well as some arithmetic manipulations
on the scale factor, this already indicates how we can extend such a criterion to the
framework associated with κ = −1:

Theorem 7.2.5. Suppose that, under the assumptions of Theorem 7.1.1 for type −1, for
sufficiently small t0 > 0, ∂tψ(t0, ·) is not identically zero, that there exist (γ-dependent)
constants k1, k2, k3 > 0 such that the scale factor a satisfies

k1t
2

3γ ≤ a(t) ≤ k2t
2

3γ and (32)

0 ≤ ȧ(t) ≤ k3
2

3γ t
2

3γ−1 (33)

for all t ∈ (0, t0] and that there is some ε ∈ (0, 1) such that

ε

[
1− G̃t

2− 4
3γ

0

] ∫
M
|∂tψ(t0, ·)|2 volM > G̃t

2− 4
3γ

0

∫
M
|∂t∆ψ(t0, ·)|2 volM (34)

and

(1− ε)
[
1− G̃t

2− 4
3γ

0

]
a(t0)2

∫
M
|∂tψ(t0, ·)|2 volM >

>

(
1 + G̃t

2− 4
3γ

0

)∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM + G̃t

2− 4
3γ

0

∫
M

∣∣∣∇∆ψ(t0, ·)
∣∣∣2
ḡ
volM (35)

hold, where G̃ := 4
1−
(

2
3γ

)2 k3k3
2

k6
1
> 0. Then ‖A‖L2(M) > 0.

Remark 7.2.6. It should be noted that, by Lemma 4.2.1, suitable k1 and k2 exist
for t0 > 0 small enough due to the asymptotic behaviour near the Big Bang, and an
appropriate k3 > 0 then also exists since, by (12), the following holds for small enough
t ∈ (0, t0):

ȧ(t) =

√
8πB

3 a(t)2−3γ + 1 .

√
8πB

3 t
4

3γ−2 + 1 . t
2

3γ−1

Proof of Theorem 7.2.5. Up to (31), the proof is identical to the type 0 setting, where
the limit of the left hand side even converges precisely to ‖A‖2

L2(M) by Lemma 7.2.3,
and the only thing that needs to be done is to track how the constants incurred from
(32) and (33) affect when the right hand side of (31) is positive. Hence, one checks:

∫ t0

t
ȧ(s)a(s)3

(∫ t0

s
a(r)−3 dr

)2
ds ≤ k3k

3
2

k6
1

∫ t0

t

2
3γ s

2
3γ−1

s
2
γ

(∫ t0

s
r
− 2
γ dr

)2
ds

One now performs precisely the same calculations as in type 0 and the right hand side
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7. Global blow-up of waves

of (31) becomes

a(t0)6E(t0, ψ)− 2a(t0)4
∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM

− 32
3γ
a(t0)6(E(t0, ψ) + E1(t0, ψ))(

1− 2
γ

)2

(
3γ
8 −

2
1 + 2

3γ
+ 1

2− 4
3γ

)
k3k

3
2

k6
1
t
2− 4

3γ
0

= a(t0)6E(t0, ψ)− 2a(t0)4
∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM − G̃a(t0)6t

2− 4
3γ

0 (E(t0, ψ) + E1(t0, ψ))

= a(t0)6
(

1− G̃t
2− 4

3γ
0

)∫
M
|∂tψ(t0, ·)|2volM

− G̃t
2− 4

3γ
0 a(t0)6

∫
M
|∂t∆ψ(t0, ·)|2volM

− a(t0)4
(

1 + G̃t
2− 4

3γ
0

)∫
M

∣∣∣∇ψ(t0, ·)
∣∣∣2
ḡ
volM − a(t0)4G̃t

2− 4
3γ

0

∫
M

∣∣∣∇∆ψ(t0, ·)
∣∣∣2
ḡ
volM

Again, one now just checks that the conditions (34) and (35) ensure that this is strictly
larger than zero, proving the statement.

Remark 7.2.7. In slightly less technical terms, Theorems 7.2.4 and 7.2.5 show that, if
the L2-norm of the first order time derivative sufficiently dominates L2-norms of spatial
derivatives of up to third order on some close enough initial data hypersurface M t0 –
i.e. if the wave is “velocity term dominated (VTD)” near the Big Bang –, then the wave
exhibits the maximal possible blow-up. Put even more simply, small spatial inhomo-
geneities close to the Big Bang don’t significantly influence the asymptotic
behaviour of the wave compared to homogeneous waves. Note that one easily sees
from the form of G and G̃ that this criterion becomes harder to satisfy towards “weaker”
Big Bang singularities as γ ↓ 2

3 .

Finally, all criteria so far could only make statements on whether A is globally identical
to zero or not, fundamentally relying on the closedness of M to utilize (among other
things) the divergence theorem and thus relying on global information. However, one can
also formulate a (

(
M, ḡ

)
-dependent) criterion on whether A is pointwise non-vanishing:

Theorem 7.2.8. Consider the setup of Theorem 7.1.1. Let K > 0 be such that
‖ϕ‖2

C(M) ≤ K2
(
‖ϕ‖2

L2(M) + ‖∆ϕ‖2
L2(M)

)
for all ϕ ∈ C∞

(
M
)
. Further, let ε > 0,

|C| > K
1− 2

γ

ε (resp. |C| > Kε) for type 0 (resp. type −1) case and ψhom(t, x) := C · t1−
2
γ

(resp. ψhom(t, x) = C ·
∫∞
t a(s)−3 ds) be homogeneous waves (see Remark 4.3.4). Then,

if
a(t0)6 [E (t0, ψ − ψhom) + E (t0,∆ (ψ − ψhom))] ≤ ε2

holds for some t0 > 0, A is non-vanishing.
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7.3. Asymptotics in the stiff case

Proof. Only type 0 will be proven since type −1 follows identically, exchanging t1−
2
γ

with h and adapting for the differences in scaling that causes.
First, note that a suitable K > 0 exists by Corollary 5.2.6. Further, ψh and hence also
ψ − ψh are smooth waves. In particular, we obtain(

1− 2
γ

)2
‖A− C‖2

L2(M) = lim
t→0

a(t)6E(t, ψ − ψhom) ≤ a(t0)6E(t0, ψ − ψhom).

As shown in the proof of Theorem 7.1.1,

∆
(
ψ − ψ
t
1− 2

γ

)
→ ∆(A− C) = ∆A

holds as t→ 0 since ψ−ψh converges to A−C in C2
(
M
)
, so energy estimates equally

apply here and we obtain with Proposition 6.1.1:(
1− 2

γ

)2 (
‖A− C‖2

L2(M) + ‖∆(A− C)‖2
L2(M)

)
≤ a(t0)6 [E (t0, ψ − ψhom) + E (t0,∆ (ψ − ψhom))] ≤ ε2

By definition of K, it now follows that

|A(x)− C|2 ≤ K2
(
‖A− C‖2

L2(M) + ‖∆ (A− C) ‖2
L2(M)

)
≤ K2(

1− 2
γ

)2 ε
2

and thus by assumption
|A(x)| ≥ |C| − K

1− 2
γ

ε > 0 .

In short, this again verifies the intuition that, if a wave is almost homogeneous on
an initial data hypersuface, it remains so approaching the Big Bang and hence
has almost the same leading order asymptotics. This criterion is however less precise
than the global criteria since it explicitly needs the rather crude embedding constant K
that also depends on ḡ, and as the VTD-behaviour is far less explicit.

7.3. Asymptotics in the stiff case
For scale factors associated with stiff fluids, the previous strategy doesn’t quite work
because, as mentioned in Remark 6.2.5, one can a priori at most achieve a logarithmic
pointwise bound on the L1-norm of the time derivative of the rescaled waves, so the
absolute continuity argument that was used to prove the existence of A in Theorem
7.1.1 fails a priori. However, we can employ a more explicit calculation to at least show
the asymptotic behaviour qualitatively:
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7. Global blow-up of waves

Theorem 7.3.1. If ψ is a smooth wave over a warped product spacetime (M, g) of
type 0 or −1, with scale factor a associated to γ = 2, then there exist A ∈ C∞

(
M
)
,

r ∈ C∞(M) such that, for type 0,

ψ(t, x) = A(x) log(t) + r(t, x)

holds with r(t, x) = o(log(|t|)) approaching 0, and for type −1

ψ(t, x) = A(x)
∫ ∞
t

a(s)−3 ds+ r(t, x),

is satisfied, where r(t, x) = o
(∫ t0
t a(s)−3 ds

)
as t → 0. It then also immediately follows

(using Lemma 4.2.1 in type −1 warped products) that

ψ(t, x) = O (| log(t)|) (t→ 0)

Proof. From the re-arranged wave equation in Corollary 4.3.3, we have (since a(t) > 0
is satisfied for all t > 0)

∂2
t ψ + 3 ȧ

a
∂tψ = a−2∆ψ

⇔ a3∂tψ̇ + 3ȧa2ψ̇ = a∆ψ

⇔ ∂t
(
a3ψ̇

)
= a∆ψ

By integration, we obtain

ψ̇(t, x) = a(t0)3ψ̇(t0, x)a(t)−3 − a(t)−3
∫ t0

t
a(s)∆ψ(s, x) ds

for some t0 > 0. Set L = t0 for type 0 and L = ∞ for type −1. Then, again by
integration and re-arranging (at first only formally), one obtains

ψ(t, x) =ψ(t0, x)− a(t0)3∂tψ(t0, x)
∫ t0

t
a(s)−3 ds+

∫ t0

t
a(s)−3

(∫ t0

s
a(r)∆ψ(r, x) dr

)
ds

=
(∫ L

t
a(s)−3 ds

)(
−a(t0)3∂tψ(t0, x) +

∫ t0

0
a(r)∆ψ(r, x) dr

)

−
(∫ L

t0
a(s)−3 ds

)(
−a(t0)3∂tψ(t0, x) +

∫ t0

0
a(r)∆ψ(r, x) dr

)
+ ψ(t0, x)

−
∫ t0

t

∫ s

0
a(s)−3a(r)∆ψ(r, x) dr ds (36)

Of course, this rearrangement is only allowed if r 7→ a(r)∆ψ(r, x) is integrable on (0, t0],
which we will now check: By Corollary 6.1.3 for N = 1, one knows that

|∆ψ(r, x)| ≤ |∆ψ(t0, x)|+ Ca(t0)3
(∫ t0

r
a(s)−3 ds

)(√
E1(t0, ψ) +

√
E2(t0, ψ)

)

52



7.3. Asymptotics in the stiff case

is satisfied for some ḡ-dependent constant C. For the sake of this argument, this infor-
mation is simplified by possibly updating C and working with the estimate

|∆ψ(r, x)| ≤ C
(

1 +
∫ t0

r
a(s)−3 ds

)
.

By Lemma 4.2.1 with γ = 2, one has a(t) ' t
1
3 and hence

∫ t0
t a(s)−3ds = O (| log(t)|)

for type −1 as t → 0, and in type 0 one even has a(t) = t
1
3 for all t > 0 and thus∫ t0

t a(s)−3ds = log(t0) − log(t). Hence, one obtains the following (for w.l.o.g. small
enough t0 > 0 in type −1, and possibly updating C):∫ t0

s
|a(r)∆ψ(r, x)| dr ≤ C

∫ t0

s
r

1
3 (1 + | log(r)|) dr

≤ C
[3

4

(
t

4
3
0 − s

4
3 + t

4
3
0 | log(t0)|+ s

4
3 | log(s)|

)
+
∫ t0

s

3
4r

1
3 dr

]
= C

[3
4

(
t

4
3
0 (1 + | log(t0)|) + s

4
3 (−1 + | log(s)|)

)
+ 9

16

(
t

4
3
0 − s

4
3

)]
As s approaches 0, this remains bounded since sα| log(s)| → 0 as s → 0 for any α > 0,
so all our above calculations were justified. (Note that, for type −1, L = ∞ is allowed
by Lemma 4.2.1.)
First, we now finish type −1: As already implied by (36), we set A and r as follows:

A(x) := −a(t0)3∂tψ(t0, x) +
∫ t0

0
a(r)∆ψ(r, x) dr

r(t, x) := ψ(t0, x)−
(∫ L

t0
a(s)−3 ds

)(
−a(t0)3∂tψ(t0, x) +

∫ t0

0
a(q)∆ψ(q, x) dq

)
−
∫ t0

t

∫ s

0
a(s)−3a(q)∆ψ(q, x) dq ds

Since ψ and a are smooth, so are A and r. To prove the statement, it only needs to be
shown that r is of strictly lesser order than

∫∞
t a(s)−3 ds, i.e. strictly lesser order than

| log(t)|. Obviously, this only needs to be verified for the only non-constant term in the
second line. We check, along similar lines to before, w.l.o.g. for t0 > 0 small enough:∣∣∣∣∫ t0

t
a(s)−3

∫ s

0
a(r)∆ψ(q, x) dq ds

∣∣∣∣ ≤ C ∫ t0

t

1
s

∫ s

0
q

1
3 (1 + | log(q)|) dq ds

≤ C
∫ t0

t

1
s

[3
4s

4
3 − 0 + 3

4s
4
3 | log(s)| − 0 + 3

4

∫ s

0
q

1
3 dq

]
ds

= C

∫ t0

t

1
s

[3
2s

4
3 + 9

16s
4
3 + 0

]
ds

= 33
16C

∫ t0

t
s

1
3 ds

.
(
t

4
3
0 − t

4
3

)
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7. Global blow-up of waves

Thus, r remains bounded as t → 0, in particular r(t, x) = o(| log(t)|) as t → 0 and the
statement follows.

For type −1, note that since L = t0, the first summand in the second line of (36)
vanishes, and one has ∫ L

t
a(s)−3 ds =

∫ t0

t

1
s
ds = log(t0)− log(t) .

Thus, (36) becomes

ψ(t, x) = − log(t)
(
−a(t0)3∂tψ(t0, x) +

∫ t0

0
a(r)∆ψ(r, x) dr

)
+ log(t0)

(
−a(t0)3∂tψ(t0, x) +

∫ t0

0
a(r)∆ψ(r, x) dr

)
+ ψ(t0, x)

−
∫ t0

t

∫ s

0
a(s)−3a(r)∆ψ(r, x) dr ds

and we analogously set

A(x) := a(t0)3∂tψ(t0, x)−
∫ t0

0

∫ t0

s
a(r)∆ψ(r, x) dr ds

r(t, x) := ψ(t0, x) + log(t0)
(
−a(t0)3∂tψ(t0, x) +

∫ t0

0

∫ t0

s
a(q)∆ψ(q, x) dq ds

)
−
∫ t0

t

∫ s

0
a(s)−3a(q)∆ψ(q, x) dq ds

The argument now follows identically since the only term that isn’t obviously of order
o(| log(t)|) approaching 0 is the same one as in type −1, where all terms also have the
same asymptotic behaviour.

Remark 7.3.2. In principle, Theorem 7.1.1 could also have been proven this way –
to be more precise, considering warped product spacetimes of type 0 for the sake of
simplicity and since they contain the essential asymptotic information, one has from
Corollary 6.1.3 that

∆ψ(r, x) .ḡ,t0,ψ(t0,·) 1 + t
1− 2

γ

holds for all 0 < t < t0. In particular, since a(t) = t
2

3γ , it would follow along similar
lines to above that∣∣∣∣∫ t0

t
a(q)∆ψ(q, x) dq

∣∣∣∣ . ∫ t0

t

(
q

2
3γ + q

1− 4
3γ
)
dq .t0,γ 1− t1+ 1

3γ + 1
2− 4

3γ

(
t
2− 4

3γ
0 − t2−

4
3γ

)

which would remain bounded as t → 0. However, the approach in Section 7.1 has the
conceptual advantage that it essentially only relies on the energy estimates which (as
the energy-flux approach for Proposition 6.1.1 indicates) still allow for explicit “wiggle
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7.3. Asymptotics in the stiff case

room” that is explicitly controllable, as we calculated in section 7.2. This could then
become essential for nonlinear stability analysis of FLRW spacetimes within solutions
to the Einstein equations, since in particular there may be a shift away from the warped
product metric structure

g = −dt2 + a(t)2ḡ

which was fundamental to Lemma 4.3.1 and thus the initial re-arrangement that needed
to be a precise equality for the argument in this section to work.

Remark 7.3.3. Sadly, one cannot reach blow-up criteria for the stiff case with the
same methods as in the non-stiff setting, which we will now quickly illustrate for the
framework associated with κ = −1 (similar issues occur in the setting associated with
flat space): Referring to (27) and looking at the first term on the right hand side, one
sees that the energy convergence now no longer holds since, by Proposition 6.2.3, one
can only obtain

a(t)6h(t)2E
(
t, ψ̂

)
≤ a(t0)6E

(
t0, ψ̂

)
h(t)2

which would diverge since h(t) diverges logarithmically approaching t = 0. Thus, one
would need to rescale the energy by some function approaching 0 toward the Big Bang
faster than a(t)6 to obtain any type of energy convergence. This rescaling would then
have to be carried over the proof of Lemma 7.2.3, or more precisely (28), killing both
the entire left hand side since we know that term to be bounded by Proposition 6.1.1
and also the ‖A‖2

L2(M)-term on the right hand side used to relate the energies with A.
Thus, this lemma and with it the entire approach to our global and pointwise blow-up
conditions as in Theorem 7.2.5 sadly fail.
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8. A brief glimpse into nonlinear stability
analysis

As indicated in Chapter 1, the results from Chapter 7 aren’t just of interest in terms
of understanding the behaviour of waves on a fixed FLRW-background, but also in so
far as they serve as a toy case for a more general (non-)linear stability analysis of Big
Bang formation around FLRW-spacetimes within the Einstein Scalar-Field and Stiff-
Fluid equations. To further illustrate this connection, it will be briefly illustrated how
many of the arguments and results run in parallel to the nonlinear stability results ob-
tained by J. Speck in spatial sectional κ = 1 (see [16]):

The core additional consideration that needs to be taken is having to control pertur-
bations of the metric. However, the Einstein equations can be reformulated within the
so-called 3+1-formalism in such a way that there still is a regular time-function t̂ that has
level setsM t and with regards to which the equations can be seen as a system of evolution
equations within the following geometric objects: the metric g|Mt

on the hypersurfaces,
the second fundamental form k on M t, the lapse function N = |g

(
∇t̂,∇t̂

)
|−

1
2 and the

shift function X = ∂t̂ − N · nMt
. These are then reformulated for rescaled versions of

these variables in such a way that the suspected leading order is eliminated. From here,
the arguments for these metric components work along the same conceptual lines as the
energy estimates in Propositions 6.1.1, 6.2.1 and 6.2.3 – one defines a suitable energy
flux adapted to the geometric framework that produces energies which, once inserting
the evolution equations, can be shown to be at the very least only barely divergent a
priori. This is achieved by developing the resulting integrals in terms of the scale factor
that was analyzed similar to Lemma 4.2.1. In fact, one sees in [16, p.924, (9.7a)]7 that
essentially the same energy flux is used for the scalar-field component as was introduced
in Definition 6.1.2, up to using a rescaled metric object for the spatial component instead
of the fixed background metric in our approach.

Speck then improved these estimates by commuting the equations with a global system
of Killing vector fields on S3 in the same way that we used the fact that �g and ∆
commute to induce energy estimates of higher order, and in particular also the point-
wise controls in Corollary 6.1.3, Proposition 6.2.1 and Corollary 6.2.4, as well as in the
absolute continuity arguments in extracting a footprint state A. While no fully global
analogue to this vector field system specifically can exist for κ = −1, the fact that the
Laplace-Beltrami operator was completely sufficient for our purposes indicates that this

7after decoding the rescaled variables and the different convention in scale factor
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may not be necessary to obtain similar statements. In particular, Speck’s approach al-
lows for a more immediate comparison of the energies with Sobolev norms by more or
less counting orders of derivation, which was circumvented in the above analysis by using
the ellipticity of ∆, and had to be replaced again due to the lack of global Killing fields.
However, at least in “true” FLRW spacetimes, one could have added further energies
that bridge this gap and allow direct control of arbitrarily high Sobolev norms, as out-
lined in Section A.2. This can then, in turn, yield pointwise control as per our argument
in Lemma 5.1.2. However, the fact that spatial geometry was truly irrelevant for our
argumentation using elliptic operators does indicate this to be approach that may be
better adapted to dealing with the general types of nonlinear perturbations that need to
be controlled. Returning to the approximate energy identities themselvs, a priori diver-
gent estimates can then be improved by a bootstrapping argument to obtain sufficiently
strong asymptotic control, which was not yet necessary for our toy case.

In comparing the general results of [16] to what was achieved in this thesis, while ob-
viously the statements on stability regarding any geometric information and the actual
Big Bang formation itself would still need to be shown, the waves in negative spatial
curvature seem to behave very similarly, at least for this toy case, to the scalar fields
in [16]: There, the rescaled variables converge to “footprint states” which they can be
shown to be close to for small initial data. The latter in particular matches up well with
staying pointwise close to homogeneous waves for close enough initial data in Theorem
7.2.8. Furthermore, the solutions in [16] are velocity term dominated in the sense that the
footprint states arise from considering only velocity terms in the corresponding evolution
equations, which is precisely how the homogeneous waves as points of comparison were
obtained in Remark 4.3.4. Again, this behaviour essentially means that time derivative
terms are the primary cause of blow-up, which is in accordance with the very explicit
L2 velocity term dominated behaviour in the sufficient blow-up conditions formulated
in Theorems 7.2.4 and 7.2.5. The fact that the stiff case causes some slight technical
issues in formulation of a sufficient blow-up condition, while not ideal, is also reflected
in the results of [16], namely that specifically the rescaled time derivative only converges
pointwise in terms of spatial derivatives of at least order 1 (see [16, p. 974, (19.2e)]) –
the logarithmic blow-up behaviour seems to be rather ill-behaved under simple rescaling.

In short, the results of this thesis are promising indicators that a more general nonlinear
stability analysis of Big Bang formation for near-FLRW spacetimes in negative sectional
curvature should not only be possible, but yield equally strong results to [16] where one
had κ = 1 – or, for that matter, [15] with κ = 0, which utilized a very similar approach
to similar results.
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A. Appendix

A.1. Basic differential geometry

For all following statements, let (N,h) be a semi-Riemannian manifold with Riemann
curvature tensor R unless specified otherwise.

Normal coordinates

Definition A.1.1. An open neighbourhood U of a point p ∈ N is called normal if the
exponential map expp : V → U is a diffeomorphism from a star-shaped neighbourhood
V ⊆ TpM of 0p onto U , and totally normal (often also (geodesically) convex) if it
is a normal neighbourhood of all of its points. Any point in N has a totally normal
neighbourhood (see [9, p. 130, Prop. 5.7]).

Lemma A.1.2 ([7, p. 21, Thm. 1.4.4]). In normal coordinates centred at p, one has

gij(p) = δij , Γkij(0) = 0 for all i, j, k

Remark A.1.3. Since q 7→ hij(q) is smooth in any coordinate system, so is q 7→ hij(q).
In particular, in any normal neighbourhood U centred around p and for any ε > 0, there
exists some open neighbourhood Uε ⊆ U of p such that, for all q ∈ Uε,

max
(
|hij(q)− δij | ,

∣∣∣hij(q)− δij∣∣∣) < ε (37)

Remark A.1.4 ([8, p. 85, Proof of Thm. 1.9.10]). Let U = exp−1
p (V ) be an open

normal neighbourhood centred in p. Consider E = (πTM , exp), Z = E(V ) and W ⊆ U
such that W × W ⊂⊂ Z. Then, denoting by Γkij(r1, r2) the Christoffel symbols of
normal coordinates centered around r1 in r2, it holds that, for any ε > 0, there exists a
neighbourhood Wε ⊆W of p such that one has, for all q, q′ ∈Wε,∣∣∣Γkij(q, q′)∣∣∣ < ε . (38)

Corollary A.1.5. For any ε > 0, a compact manifold (N,h) can be covered by finitely
many totally normal neighbourhoods U1, . . . , Un such that (37) and (38) hold on any
Ui, i = 1, . . . , n.
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A.1. Basic differential geometry

Sectional curvature

Definition A.1.6 ([9, p. 77, Lemma 3.39]). Let p ∈ N and Π ⊆ TpN be a nondegenerate
plane spanned by v, w ∈ Π. Then, the sectional curvature of the plane Π is defined
by

κ(Π) ≡ κ(v, w) = h (Rvwv, w)
h(v, v)h(w,w)− h(v, w)2

and is independent of choice of basis. Further (see [9, p. 78, Lemma 3.41]), κ uniquely
determines R.

Example A.1.7 ([9, p. 83, Corollary 3.43]). (N,h) is of constant sectional curva-
ture if κ(Π) = κ ∈ R is satisfied for any p ∈ N and all nondegenerate planes Π ⊆ TpN .
The curvature tensor R and the Ricci tensor Ric then take the form

R(u, v)w = κ (h(w, u)v − h(w, v)u) .

Ric(u, v) = κ(dim(N)− 1)h(u, v)

Example A.1.8 ([9, p.228, Corollary 8.25]). The complete and simply connected Rie-
mannian manifolds (N,h) of dimension n ≥ 2 and of constant curvature κ are isometric
to the sphere Sn(r) for κ = 1

r2 , Euclidean space Rn for κ = 0 and hyperbolic space Hn(r)
for κ = − 1

r2 .

Corollary A.1.9 ([9, p. 220, Corollary 8.11]). Any space of constant sectional curvature
is locally symmetric with regards to the Levi-Civita-connection ∇N , i.e. ∇NR = 0.

Lemma A.1.10 (Schur’s Lemma). Any connected semi-Riemannian manifold (N,h) of
dimension dimN = n ≥ 3, where the sectional κ(Πp) = κp is constant for any p ∈ N
and any nondegenerate plane Πp ⊆ TpN , is of constant sectional curvature.

Proof. Starting from the second Bianchi identity (see [9, p. 76, Prop. 3.37])

∇eRabcd +∇dRabec +∇cRabde = 0,

one obtains after contraction in a and c that

∇eRicbd −∇dRicbe +∇aRabde = 0

and after contracting again b and d

∇eR−∇bRicbe −∇aRicae = 0,

which becomes the contracted Bianchi identity
1
2∇R = div (Ric)

after rearranging. By the assumption on the sectional curvature in any point p ∈ N , it
follows that the curvature tensor takes the form

Ruvw = κ(p) (h(w, u)v − h(w, v)u) ,
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so one has after contraction

Ric = κ(p)(n− 1)h, R = κ(p)n(n− 1) .

Inserting this back into the contracted Bianchi identity, it follows that
n(n− 1)

2 ∇κ = (n− 1)∇κ

holds since ∇h = 0, which can only be true if ∇κ = 0 since n 6= 1, 2. Thus, κ must be
constant.

Riemannian submanifolds and the second fundamental form

For these final collected statements, let
(
M, ḡ

)
be a (semi-)Riemannian submanifold of

the semi-Riemannian manifold (M, g), i.e. there is an inclusion map ι : M → M such
that ι∗g = ḡ.

Definition A.1.11 ([9, p.98f.]). For any p ∈M , one has the decomposition

TpM = TpM ⊕ TpM
⊥

with associated normal projection nor : TpM → TpM
⊥. Further, the set of vector

fields over ι is defined as

X
(
M
)

=
{
X ∈ C∞

(
M,TM

)∣∣∣πTM ◦X = ι
}
.

In particular, for any Y ∈ X (M), Y ◦ ι is a vector field over ι, and one has the analogous
orthogonal decomposition

X
(
M
)

= X
(
M
)
⊕X

(
M
)⊥

with associated normal projection

nor : X
(
M
)
→ X

(
M
)⊥

.

Definition A.1.12. Let V,X ∈ X (M) be smooth extensions of V ,X ∈ X
(
M
)
(these

exist by [9, p.33]). The induced connection ∇ : X
(
M
)
×X

(
M
)
→ X

(
M
)
is defined

by ∇VX ≡ ∇VX = (∇VX) ◦ ι. (To see that this is well-defined, see [9, p. 99, Lemma
4.1].)

Definition A.1.13. The second fundamental form

k : X
(
M
)
×X

(
M
)
→ X

(
M
)⊥

, k
(
V ,W

)
= nor

(
∇VW

)
is a symmetric and C∞

(
M
)
-bilinear tensor ([9, p. 100]). If

(
M, ḡ

)
has the unit normal

n ∈ X
(
M
)⊥

(after embedding along ι), one has (see [11, p.35, (3.19)])

k
(
V ,W

)
= −g

(
ι∗V ,∇Wn

)
.
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A.2. An alternative approach to energies
The goal of the energy estimates in Chapter 6 was to ultimately gain control on suffi-
ciently high Sobolev norms of ∂tψ and ∂tψ̂, respectively. For our purposes, the energies
introduced were completely sufficient even on warped product spacetimes due to the
ellipticity of ∆. However, it may be instructive to consider how precise we could have
made this control if needed, in particular if reverting back to “true” FLRW-spacetimes
could allow for some simplicifations when extending our results to nonlinear stability
analysis as outlined in Chapter 8.

First, one needs to define energies capable of controlling derivatives of even order in an
L2-sense: In our proof, the “important” term in these energies is the one containing the
time derivative, since this is used to extract absolute continuity of ψ and ψ̂ respectively.
Thus, for this alternative approach, we are interested in how we can find suitable en-
ergies that can be utilized to directly control spatial Sobolev norms of ∂tψ(t, ·) – i.e.
whether, given additional geometric assumptions, simply using L2-norms of ∆Nϕ and
∇∆Nϕ can sufficiently control the Sobolev norms of any ϕ ∈ C∞

(
M
)
in such a way

that we can apply this to an energy conservation calculus. First, we need to construct
energies containing gradients of ∂tψ that remain bounded toward the Big Bang:

Lemma A.2.1. We define

E
(
t,∇ψ

)
=
∫
M

∣∣∣∇∂tψ(t, ·)
∣∣∣2
ḡ

+ a(t)−2|∆ψ(t, ·)|2 volM .

Then, we obtain for any warped product spacetime (M, g) as in Proposition 6.1.1 and
for any wave ψ:

a(t)6E
(
t,∇ψ

)
≤ a(t0)6E

(
t0,∇ψ

)
As previously, these estimates still hold when replacing ∇ψ by ∇∆Nψ.
Proof. As is by now almost routine, we use integration by parts and Corollary 4.3.3 to
calculate the following:

∂tE
(
t,∇ψ

)
= 2

∫
M

[
ḡ
(
∇∂2

t ψ(t, ·),∇∂tψ(t·)
)

+ a(t)−2∆∂tψ(t, ·) ·∆ψ(t, ·)

− ȧ(t)
a(t)a(t)−2|∆ψ(t, ·)|2

]
volM

=
∫
M

[
−2∂2

t ψ(t, ·) ·∆∂tψ(t, ·) + 2a(t)−2∆∂tψ(t, ·) ·∆ψ(t, ·)

−2 ȧ(t)
a(t)a(t)−2|∆ψ(t, ·)|2

]
volM

=
∫
M

[
6 ȧ(t)
a(t)∂tψ(t, ·)∆∂tψ(t, ·)− 2 ȧ(t)

a(t)a(t)−2|∆ψ(t, ·)|2
]
volM

≥ −6 ȧ(t)
a(t)E(t,∇ψ)
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The statement now follows from the Gronwall lemma as in Proposition 6.1.1.

Obviously, to control the H1-norm of ∂tψ, no further argument needed now, so we
directly turn our attention to the next order, after quickly introducing some notation:

Definition A.2.2. For a Riemannian manifold
(
M, ḡ

)
and k ∈ N, we call

‖ϕ‖Ḣk(M) =
√∫

M

∣∣∣∇kϕ∣∣∣2
ḡ
volM

the homogeneous (L2-)Sobolev norm of order k of ϕ ∈ C∞
(
M
)
.

Lemma A.2.3. Assume that ϕ ∈ C∞
(
M
)
and that there exist some c1, c2 ∈ R such

that −c1ḡ ≥ Ric ≥ −c2ḡ. Then, we have

‖∆ϕ‖2
L2(M) + c1‖ϕ‖2Ḣ1(M) ≤ ‖ϕ‖

2
Ḣ2(M) ≤ ‖∆ϕ‖

2
L2(M) + c2‖ϕ‖2Ḣ1(M) .

In particular, if M is a (three dimensional) manifold of constant sectional curvature κ,
equality holds with c1 = c2 = −2κ.

Proof. Recall that, for any tensor Tk1...km of order m, one has

[∇a,∇b]Tk1...km = −Rlk1abTlk2...km − · · · −RlkmabTk1...km−1l (39)

For the upper estimate, we calculate (using integration by parts and commuting deriva-
tives with according error terms):∫

M
ḡi1j1 ḡi2j2∇i1∇i2ϕ∇j1∇j2ϕ volM

=−
∫
M
ḡi1j1 ḡi2j2∇j1∇i1∇i2ϕ∇j2ϕ volM

=−
∫
M
ḡi1j1 ḡi2j2∇j1∇i2∇i1ϕ∇j2ϕ volM

(39)= −
∫
M
ḡi1j1 ḡi2j2

(
∇i2∇j1∇i1ϕ−Rki1j1i2∇kϕ

)
∇j2ϕ volM

=
∫
M
ḡi1j1 ḡi2j2∇j1∇i1ϕ∇i2∇j2ϕ volM

−
∫
M
ḡi2j2 ḡklRicki2∇lϕ∇j2ϕ volM

≤
∫
M
|∆ϕ|2 volM + c2

∫
M
ḡi2j2 ḡklḡki2∇lϕ∇j2ϕ volM

=
∫
M
|∆ϕ|2 volM + c2

∫
M
ḡlj2∇lϕ∇j2ϕ volM

The lower estimate obviously follows by inserting the upper Ricci bound instead of the
lower one in the penultimate line. The final statement is also immediate since Ric = 2κḡ
holds by Example A.1.7.
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A.2. An alternative approach to energies

For the next order, we will restrict ourselves to constant sectional curvature entirely and
only show the necessary estimate for the intended argument:

Lemma A.2.4. Let
(
M, ḡ

)
be a three-dimensional Riemannian manifold of constant

sectional curvature κ. Then, for any ϕ ∈ C∞
(
M
)
, the following holds:

‖ϕ‖2
Ḣ3(M) ≤

(
1 + 2|κ|+ 4κ2

)(
‖ϕ‖2

Ḣ1(M) + ‖∆ϕ‖2
H1(M)

)

Proof. We note that spaces of constant sectional curvature are locally symmetric (see
Corollary A.1.9), so we can simply pull all Riemannian curvature tensors that appear
during the calculation past covariant derivative acting upon then. Now, one calculates:∫

M
ḡi1j1 ḡi2j2 ḡi3j3∇i1∇i2∇i3ϕ∇j1∇j2∇j3ϕ volM

= −
∫
M
ḡi1j1 ḡi2j2 ḡi3j3∇j1∇i1∇i2∇i3ϕ∇j2∇j3ϕ volM

(39)= −
∫
M
ḡi1j1 ḡi2j2 ḡi3j3∇j1∇i2∇i1∇i3ϕ∇j2∇j3ϕ volM

+
∫
M
ḡi1j1 ḡi2j2 ḡi3j3∇j1

(
Rli3i1i2∇lϕ

)
∇j2∇j3ϕ volM

(39)= −
∫
M
ḡi1j1 ḡi2j2 ḡi3j3∇i2∇j1∇i1∇i3ϕ∇j2∇j3ϕ volM

+
∫
M
ḡi1j1 ḡi2j2 ḡi3j3Rli1j1i2∇l∇i3ϕ∇j2∇j3ϕ volM

+
∫
M
ḡi1j1 ḡi2j2 ḡi3j3Rli3j1i2∇i1∇lϕ∇j2∇j3ϕ volM

+
∫
M
ḡi1j1 ḡi2j2 ḡi3j3Rli3i1i2∇j1∇lϕ∇j2∇j3ϕ volM

=
∫
M
ḡi1j1 ḡi2j2 ḡi3j3∇j1∇i1∇i3ϕ∇i2∇j2∇j3ϕ volM∫

M

(
−ḡi2j2 ḡi3j3Ricli2∇l∇i3ϕ∇j2∇j3ϕ+ 2Rli1i2i3∇i1∇lϕ∇i2∇i3ϕ

)
volM

In particular, by Example A.1.7, we observe Rickl = ḡkm · 2κḡml = 2κδkl and estimate
the first term as follows:∫

M
ḡi1j1 ḡi2j2 ḡi3j3∇j1∇i1∇i3ϕ∇i2∇j2∇j3ϕ volM

=
∫
M
ḡi1j1 ḡi2j2 ḡi3j3∇j1∇i3∇i1ϕ∇i2∇j3∇j2ϕ volM

=
∫
M
ḡi1j1 ḡi2j2 ḡi3j3

(
∇i3∇j1∇i1ϕ−Rlj1i1i3∇lϕ

) (
∇j3∇i2∇j2ϕ−Rkj2i2j3∇kϕ

)
volM
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A. Appendix

=
∫
M

(∣∣∣∇∆ϕ
∣∣∣2
ḡ

+ ḡi3j3Ricli3∇lϕ∇j3∆ϕ

+ḡi3j3Rickj3∇i3∆ϕ∇kϕ+ ḡi3j3Ricli3Ric
k
j3∇kϕ∇lϕ

)
volM

=
∫
M

(∣∣∣∇∆ϕ
∣∣∣2
ḡ

+ 4|κ|ḡi3j3∇i3∆ϕ∇j3ϕ+ 4κ2ḡkl∇kϕ∇lϕ
)

volM

≤
∫
M

(∣∣∣∇∆ϕ
∣∣∣2
ḡ

+
(
2|κ|+ 4κ2

) ∣∣∣∇ϕ∣∣∣2
ḡ

+ 2|κ|
∣∣∣∇∆ϕ

∣∣∣2
ḡ

)
volM ,

with the last step by applying the Cauchy-Schwarz inequality to the second and third
summand. For the remaining terms, we finally compute∫

M
−ḡi2j2 ḡi3j3Ricli2∇l∇i3ϕ∇j2∇j3ϕ volM

=
∫
M

2|κ|ḡi2j2 ḡi3j3∇i2∇i3ϕ∇j2∇j3ϕ volM = 2|κ|‖∆ϕ‖2
L2(M)

and ∫
M

2Rli1i2i3∇i1∇lϕ∇i2∇i3ϕ volM = 0

since Rli1i2i3 is antisymmetric in l and i1 while ∇i1∇lϕ is symmetric in l and i1 for any
ϕ ∈ C∞

(
M
)
.

Combining the last two lemmas, this shows that one can control the H3-norm of
ϕ ∈ C∞

(
M
)
by only considering L2-norms of ϕ, ∇ϕ, ∆ϕ and ∇∆ϕ. Going back to

the start, this shows that ‖∂tψ(t, ·)‖2
H3(M) is controlled by

∑
N=0,1 (EN (t, ψ) + EN (t, ψ))

(up to κ-dependent constant). One could extend this argumentation to arbitrarily high
order tensors, again simply using (39) to rearrange derivatives, then ∇R = 0 to pull all
curvature terms to the front, and finally treating the resulting terms just like above.

Thus, in “true” FLRW spacetimes, one could also circumvent using ellipticity properties
since there exist energies that can control arbitrarily high Sobolev norms of ∂tψ to yield
arbitrarily high regularity, in particular once considering the limit t → 0 as in Chapter
7.
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Abstract

Friedman-Lemaître-Robertson-Walker (FLRW) spacetimes play a central role within cos-
mology since they are believed to roughly describe the observable universe at large scales.
Ultimately, one would like to understand whether the Big Bang formation these space-
times exhibit is stable when perturbing around them within the Einstein Scalar-Field
and Stiff-Fluid equations. As a first step approaching this complicated issue, this thesis
is concerned with the blow-up behaviour of scalar waves towards the Big Bang singu-
larity on a fixed FLRW background with zero or negative spatial sectional curvature.

To this end, energy estimates adapted to the respective geometries will be developed that,
along with some Sobolev space and ellipticity theory on Riemannian manifolds, allow for
uniform pointwise bounds on (rescaled) waves that extend to the Big Bang hypersurface.
In particular, this will enable us to extract a smooth limit of the wave rescaled by its
suspected leading order. Finally, for FLRW spacetimes governed by an ideal fluid that
isn’t stiff, sufficient conditions will be established such that blow-up of precisely this order
can be achieved if the L2-initial data is sufficiently dominated by velocity terms for a
hypersurface close enough to the singularity. The analysis conceptually often parallels
the methods and ideas first presented in [1], but significantly generalizes them not only
by additionally analyzing the case of negative sectional curvature instead of only κ = 0
as well as that stiff fluids as far as possible, but also since a wider class of Lorentzian ma-
nifolds is considered where any curvature and homogeneity assumptions on the spatial
geometry are dropped.
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Zusammenfassung

Friedman-Lemaître-Robertson-Walker (FLRW) Raumzeiten spielen eine zentrale Rolle
in der Kosmologie, da sie das beobachtbare Universum auf großen Skalen annähernd
beschreiben. Schlussendlich würde man gerne verstehen, ob die Art und Weise, wie in
diesen Zeiten ein Urknall auftritt, unter Störung innerhalb der Einstein Gleichungen
stabil ist in Anwesenheit von Materie, z.B. modelliert durch ein Skalarfeld oder in Form
einer steifen Flüssigkeit. Als erster Schritt in Richtung dieser Problematik beschäftigt
sich diese Arbeit mit dem Blow-up-Verhalten von skalaren Wellen in Richtung des Ur-
knalls auf einem fixierten FLRW Hintergrund bei nicht-positiver räumlicher sektionaler
Krümmung.

Hierfür werden Energieabschätzungen entwickelt, die an die jeweiligen Geometrien an-
gepasst sind. Zusammen mit etwas Sobolev- und Elliptizitätstheorie auf Riemannschen
Mannigfaltigkeiten ermöglichen sie es, gleichmäßige punktweise obere Schranken für
(reskalierte) Wellen zu finden, die zur Urknall-Hyperfläche fortgesetzt werden können.
Insbesondere erlaubt das, einen glatten Grenzwert für die um die (vermutete) führende
Ordnung reskalierte Welle zu extrahieren. Zuguterletzt werden für FLRW Raumzeiten,
deren Expansion von einer idealen, aber nicht steifen Flüssigkeit angetrieben wird, hin-
reichende Bedingungen aufgestellt, die Blow-up von genau dieser führenden Ordnung
sicherstellen, falls die L2-Anfangsdaten auf einer raumartigen Hyperfläche nahe der
Singularität ausreichend von geschwindigkeitsartigen Termen dominiert werden. Diese
Analyse läuft konzeptuell oft parallel zu den Methoden und Ideen, die zuerst in [1]
präsentiert wurden, aber verallgemeinert sie nicht nur signifikant durch die zusätzliche
Betrachtung von κ = −1 anstatt nur κ = 0 sowie die teilweise Ausweitung der Analyse
auf steife Flüssigkeiten, sondern auch dadurch, dass eine größere Klasse von Lorentz-
Mannigfaltigkeiten betrachtet wird, die zwar ähnlich zu FLRW Raumzeiten sind, aber
keine zusätzlichen Bedinungen an die Geometrie der zugrundeliegenden räumlichen Rie-
mannschen Mannigfaltigkeit stellen.
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