
 
 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

Analysis of Several Derivative-Free Methods                   
for Local Optimization 

 

verfasst von / submitted by 

Stefan Scheer, BSc 
 

angestrebter akademischer Grad / in partial fulfillment of the requirements for the degree of 

Master of Science (MSc) 

Wien, 2021 / Vienna 2021  

Studienkennzahl lt. Studienblatt / 
degree program code as it appears on 
the student record sheet: 

A 066 821 

Studienrichtung  lt. Studienblatt / 
degree program as it appears on 
the student record sheet: 

   Masterstudium Mathematik 

Betreut von / Supervisor: 

 

 

ao. Univ.-Prof. Dipl.-Ing. Dr. Hermann Schichl 

 

  

 
 



This page intentionally left blank.



Dedicated to my daughter.



Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor
Professor Hermann Schichl. His superb introductory lecture to Higher Mathematics
was the main reason why I chose this career path. I want to thank him for all the
inspiration, insight and guidance he has given me during the course of my studies.

My biggest thanks go to my family Theresa and Paulina, whose love seems endless.
Being with them fills me with joy and warmth. Theresa, thank you for always
supporting me, for listening to all my troubles and for standing by me in hard times.

Next on the list to thank are my older brothers, as they can always be counted on.
I also appreciate my fellow students, especially Arved Bartuska, with whom I discussed
almost every topic covered on our master’s program. There was always a fun and
positive atmosphere in my basketball team, which has helped me a lot along the way.

Last but not least, I want to thank Doris and Johannes for regularly taking care of
my child, my parents, and Herta and Friedrich for providing me a room to write
during the pandemic.

IV



Abstract

In this thesis, we examine a total of five algorithms for unconstrained local opti-
mization. Problems where the objective function is in the nonlinear least squares
sense are very common in applications such as data fitting and regression analysis.
The presented Gauss-Newton and Levenberg-Marquardt algorithms are among the
most popular solvers for these problems. They benefit from the special structure of
the Hessian matrix of such objective functions, which allows them to omit the costly
computation of second-order derivatives. However, it can still be very challenging or
numerically expensive to obtain the required Jacobian matrix in each iterative step
of the respective procedure. Therefore, we analyze three derivative-free methods
which may be used instead. The finite difference analogues of the Gauss-Newton and
Levenberg-Marquardt algorithms by Brown and Dennis use forward differences to
approximate the Jacobians. We prove local convergence of the methods and show that
quadratic convergence can be guaranteed for functions that are zero at the minimum.
The DUD algorithm by Ralston and Jennrich is a secant method that makes efficient
use of function evaluations. As with the other depicted procedures, a linear least
square problem has to be solved in each iteration. But instead of invoking a method
for normal equations, DUD employs a stepwise regression procedure that is based
on the Gauss-Jordan algorithm. DUD’s optional line search does not increase the
algorithmic reliability, but can be activated to enable alternative solution paths.
The results of computer experiments show how the mentioned methods differ in
terms of efficiency and reliability. We conclude that our derivative-free optimization
algorithms are mostly superior to the two established gradient methods when it
comes to solving low-dimensional problems with medium relative accuracy.
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Zusammenfassung

In dieser Arbeit untersuchen wir insgesamt fünf Algorithmen zur unbeschränk-
ten lokalen Optimierung. Probleme, bei denen die Zielfunktion das Normquadrat
einer vektorwertigen Funktion ist, kommen sehr häufig in Anwendungen wie zum
Beispiel der Datenanpassung und der Regressionsanalyse vor. Wir beschreiben zwei
der populärsten Löser für diese Probleme, das Gauß-Newton-Verfahren und den
Levenberg-Marquardt-Algorithmus. Diese Methoden profitieren von der speziellen
Struktur der Hesse-Matrix solcher Zielfunktionen, die es ihnen erlaubt die aufwendige
Berechnung von Ableitungen zweiter Ordnung zu unterlassen. Dennoch kann es sehr
herausfordernd oder numerisch teuer sein, die erforderliche Jacobi-Matrix in jedem
iterativen Schritt des jeweiligen Verfahrens zu erhalten. Daher analysieren wir drei
ableitungsfreie Methoden, die stattdessen verwendet werden können. Die Finite-
Differenzen-Analoga des Gauß-Newton-Verfahrens und des Levenberg-Marquardt-
Algorithmus von Brown und Dennis verwenden Vorwärts-Differenzenquotienten
als Approximation der Jacobi-Matrizen. Wir beweisen die lokale Konvergenz der
Methoden und zeigen, dass für Funktionen, deren Wert am Minimum Null ist,
quadratische Konvergenz garantiert werden kann. Der DUD-Algorithmus von Ral-
ston und Jennrich ist ein Sekantenverfahren, das Funktionsauswertungen effizient
nutzt. Wie bei den anderen vorgestellten Algorithmen muss in jeder Iteration ein
lineares Kleinste-Quadrate-Problem gelöst werden. Aber anstelle der Methode der
Normalengleichungen verwendet DUD ein Verfahren zur schrittweisen Regression,
welches auf dem Gauß-Jordan-Algorithmus basiert. Das optionale Liniensuchver-
fahren von DUD erhöht zwar nicht die algorithmische Zuverlässigkeit, kann aber
aktiviert werden, um alternative Lösungspfade zu ermöglichen.
Ergebnisse von Computerexperimenten zeigen, wie sich die angeführten Methoden in
Bezug auf Effizienz und Zuverlässigkeit unterscheiden. Wir kommen zum Schluss,
dass unsere ableitungsfreien Optimierungsverfahren zur Lösung niedrigdimensionaler
Probleme mit mittlerer relativer Genauigkeit meist besser geeignet sind als die beiden
etablierten Gradientenmethoden.
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1. INTRODUCTION

1 Introduction

The main goal of this thesis is to analyze, to implement and to test several derivative-
free optimization algorithms for finding the zeros of systems of nonlinear equations.
We will also discuss the basic concepts of optimization, give an overview of common
techniques and investigate least square problems.

1.1 Outline

This section continues with a motivation to emphasize the importance of optimiza-
tion in today’s world and to provide some context for this work.
We will introduce basic definitions, classify optimization problems and distin-
guish different local optimization techniques in Section 2.
In Section 3, we demonstrate how crucial nonlinear least squares problems are
for this thesis and how they are applied to data fitting and regression.
The main part consists of Sections 4 and 5, where several unconstrained optimization
algorithms are thoroughly discussed and benchmarked on a test set. We present
the numerical results in various forms and analyze the performance of our methods.
Finally, we conclude our findings in Section 6.
Required but well known mathematical concepts can be looked up in Appendix A.
The MATLAB source code of the programs and test functions, implemented in
MATLAB version R2016a by the author Stefan Scheer, can be found in Appendix C.

1.2 Motivation

Optimization is a tool for determining the “best” solution from all feasible solutions
to certain mathematically defined problems, which are often models that represent
the physical reality. It is widely used in science, engineering, economics, commerce,
and industry and its area of application is still growing. So basically, optimization
techniques are utilized in almost every discipline where numerical information is
processed. Some examples where optimization problems occur are:

• Profit maximization, e.g., designing a portfolio of investments to maximize the
expected return while maintaining a certain level of risk

• Optimal production

• Logistics

• Structural design, e.g., buildings and bridges

• Aero-engine and aero-frame design, e.g., computing the optimal shape of an
aircraft component

• Chemical reactor design

• Protein design

1



1. INTRODUCTION Motivation

• Robotics, e.g., finding the optimal trajectory for a robot arm

• Machine scheduling problems

• Other branches of numerical mathematics, e.g., data fitting, nonlinear equations
in ODE’s and variational principles in PDE’s

When we want to optimize a given system, we must first identify an objective,
a measure of performance. The objective depends on certain characteristics of the
system, called unknowns or variables. An optimization problem begins with a set of
independent variables and often includes restrictions that define acceptable values of
the unknowns, so called constraints. The goal is then to find feasible values of the
variables that optimize the objective. The solution of an optimization problem needs
not to be unique, nor is it generally guaranteed that it exists at all.
In mathematics, optimization is done by minimizing or maximizing an objective
function subject to certain constraints on its variables. For example, companies
may strive to minimize their expenses or to maximize production. If multiple
objectives arise, they are often reformulated as a single function by forming a
weighted combination of different goals or by treating some of them as constraints.
In unconstrained optimization, the optimum is sought of an objective function of
many variables, without any constraints. Additional complication of the different
types of constraint functions arise in constrained optimization. For example, there
could be budgetary constraints in economics or shape restrictions in a design problem.
The process of identifying the objective function, the variables and the constraints
for a given problem is known as modeling. Optimization algorithms can be used to
find the solution of a formulated model. They are implemented as programs, i.e., the
calculations are nowadays solely carried out on computers. There is no universal
algorithm for optimization. Each particular type of problem demands an individual
approach. The choice of a proper algorithm is crucial, as it determines whether a
solution can be found, and if so, whether the problem is solved rapidly or slowly.
It is not always clear if an optimization algorithm succeeded in its task of finding a
solution. In many subfields of optimization there are optimality conditions, which
can be applied to check if the current set of variables is indeed a solution of the
problem. This is generally not the case for derivative-free optimization, where
derivative information is not available, ignored or just approximated. Here, optimality
guarantees can usually not be given. However, for some derivative-free methods it is
possible to prove that optima can be found.
When we are trying to find the right optimization technique, it is important to know
the structure of a system. It is advantageous to determine special characteristics
of some given problem so that it can be solved more efficiently by an optimization
algorithm. For example, it may be possible to omit tests and computations for
situations that do not occur or to exploit specific properties of a function. That is,
an adequate solution method may only be found when the properties of the model
are properly classified. Not every distinction made impacts a proposed program
significantly, and no set of categories is ideal for every circumstance. But an obvious
and reasonable good choice for classification according to algorithmic efficiency are
the properties of the objective and constraint functions.

2



Motivation 1. INTRODUCTION

The following scheme has been proposed in [14]. It categorizes an optimization
model based on the characteristics of the problem’s functions such that significant
algorithmic advantage can be gained.

Properties of the objective function:

• Univariate function

• Linear function

• Sum of squares of linear functions

• Quadratic function

• Sum of squares of nonlinear functions

• Smooth nonlinear function

• Sparse nonlinear function

• Nonsmooth nonlinear function

• Convex function

Properties of the constraint functions:

• No constraints

• Simple bounds

• Linear functions

• Sparse linear functions

• Smooth nonlinear functions

• Sparse nonlinear functions

• Nonsmooth nonlinear functions

Other features of an optimization problem are also to be taken into consideration.
The size of a model affects both the program’s storage and the amount of com-
putational effort required to obtain a solution. Also, the computable information
available to an algorithm is of particular interest. For instance, the derivatives of a
function may be provided by the user or are easily obtainable by analytic calculation.
However, most of the time derivative information is unavailable or impractical to
obtain and only function evaluations are accessible.
A real-world problem is often modeled as a system of nonlinear equations, where
each equation represents a different real-life situation affecting the objective. Such
a nonlinear system can be stated in terms of a vector-valued function whose zeros
are the solutions (if they exist). The resulting root finding problem may then be
reformulated as an optimization problem where the sum of squares of nonlinear
functions is to be minimized.

3



1. INTRODUCTION Notation and Conventions

The topic of this work is unconstrained local optimization. With respect to the
demonstrated classification scheme, our algorithms are specifically tailored for opti-
mization problems with no constraints and an objective function which is the sum of
squares of nonlinear functions. The involved functions are assumed to be differen-
tiable but the presented algorithms forgo computing exact derivatives. There exists a
large class of important smooth problems where it is expensive and difficult to access
derivative information. If the gradient of such a differentiable function is not given,
a gradient-based program would have to compute the derivatives numerically, which
is very costly and error-prone. In such situations, and especially when the objective
function is noisy and inaccurate, gradient-based methods are often outperformed by
derivative-free algorithms. This motivation is partly based on the books [11, 14, 40].

1.3 Notation and Conventions

Throughout this thesis, all vectors x are considered as column vectors. Correspond-
ingly, transposed vectors xT are treated as row vectors. For vectors x, y ∈ R

n we
denote by xTy the Euclidean inner product, i.e.,

xTy =
n
∑

i=1

xiyi,

where xi, yi ∈ R are the i-th entries of the vectors x and y, respectively. Inequalities
between vectors are always interpreted component-wise, e.g., x ≥ y if and only if
xi ≥ yi for all i. Depending on the context, elements of a matrix A = (aij) in row i
and column j are denoted by aij or Aij. The latter notation may also be used for
submatrices; in particular, Ai: denotes the i-th row and A:j the j-th column of A.
We write In for the n× n identity matrix or just I if the dimension is secondarily.
The size of an employed zero matrix 0 should be easily traceable.
The gradient of a continuously differentiable function f : Rn → R at x ∈ R

n is always
written as g(x) := ∇f(x). If f is twice continuously differentiable, we denote the

Hessian at x by the symmetric matrix G(x) := ∇2f(x). That is,

gi =
∂f

∂xi

and Gi,j =
∂2f

∂xi∂xj

.

Function arguments are omitted in cases where variables are arbitrary or where it is
clear which variable is being used.
Differences are indicated by ∆ and are defined situational. The Laplace operator is
not needed in this thesis, so there is no overlap in notation with ∇2 and ∆.
In order to distinguish a sequence of vectors from vector components, we write the
iteration index l as superscript, i.e., xl ∈ R

n as opposed to xi ∈ R. For scalars and
matrices it is instead a subscript to avoid confusion with powers. Thus, to improve
the readability of formulas with iteration indices, we shall simply write

fl := f(xl), gl := g(xl) and Gl := G(xl).

4



Notation and Conventions 1. INTRODUCTION

The Landau symbol O is primarily used for work and storage counts. It describes an
unspecified number an = O(wn) with the property

∣

∣an
∣

∣ < Mwn for some constant M > 0 as n→∞.

The big-O notation can also stand for an unspecific remainder term r(s) = O
(

φ(s)
)

with the property

r(0) = 0 if φ(0) = 0 and
∣

∣r(s)
∣

∣ < Mφ(s) for some constant M > 0 as s→∞.

The little-o notation is used for an unspecific remainder term r(s) = o
(

φ(s)
)

with the property

r(0) = 0 if φ(0) = 0 and
r(s)

φ(s)
→ 0 as s→∞.

5



This page intentionally left blank.



2. MATHEMATICAL FORMULATION

2 Mathematical Formulation

Optimization is the minimization or maximization of a function subject to constraints
on its variables. But this definition is very vague. If we want to mathematically solve
a given problem, we need to be more precise and we must have proper knowledge
about the basic concepts. We want to be able to classify a model and to find a
fitting and efficient solution method for it. Therefore, it is important to provide
basic definitions and to discuss the most prominent topics covered in optimization.
This section is inspired by the works [14, 38, 40]. There are many applications for
different optimization techniques. Some of the concepts and methods are discussed
in detail, others are skipped for the sake of readability or simply because they are
not relevant for this thesis. But the reader is invited to look up further information
in the recommended references.

2.1 Basic Definitions

Definition 2.1. An optimization problem or mathematical program has the form

minimize
x

f(x)

subject to ci(x) = 0, i ∈ I,
ci(x) ≥ 0, i ∈ J ,

(2.1)

where f : Rn → R is referred to as the objective function and x ∈ R
n is the vector of

variables, also denoted as unknowns or parameters. The functions ci : R
n → R are

called constraints. In particular, they are named equality constraints or inequality
constraints if their indices correspond to the index set I or J , respectively.

Definition 2.2. Any point x̂ ∈ R
n that satisfies all the constraints in (2.1) is said

to be feasible. The set of all feasible points is termed feasible domain or feasible re-
gion. An optimization problem for which no feasible points exist is called inconsistent.

Definition 2.3. If I = J = ∅ in (2.1), we call the optimization problem uncon-
strained, otherwise constrained. It is bound constrained if all constraints have the
form of simple bounds xi ≥ li or xi ≤ ui on the variables. If all constraints are linear,
it is referred to as linearly constrained, otherwise nonlinearly constrained.

Remark. For unconstrained optimization problems, every point x ∈ R
n is feasible.

Definition 2.4. Let C ⊆ R
n be the feasible domain of the optimization problem (2.1).

A point x∗ ∈ R
n is called a local solution of (2.1) or a local minimizer of f in C if

f(x∗) ≤ f(x) (2.2)

for all x ∈ C in some neighborhood of x∗. It is a global solution of (2.1) or a global
minimizer of f in C if (2.2) holds for all x ∈ C.

7



2. MATHEMATICAL FORMULATION Classification of Optimization Problems

Remark. If the strict inequality in Definition 2.4 holds, a local (global) solution is
referred to as strict local (global) minimizer of f , respectively.

In terms of money it is almost always optimal to maximize profit. So it often
makes more sense of thinking of an optimization problem as a maximization problem.
Definition 2.1 can be trivially reformulated as

maximize
x

− f(x)

subject to ci(x) = 0, i ∈ I,
ci(x) ≥ 0, i ∈ J .

(2.3)

That is, minimizing −f is the same as maximizing f .

Remark. A local (global) solution of a maximization problem is defined analogously
to Definition 2.4, only with a reversed inequality sign.

Definition 2.5. The function value at a local (global) minimizer or maximizer is
called a local (global) minimum or maximum, respectively.

Remark. From now on we omit maximization problems in this work, since, according
to (2.3), they can be stated in terms of minimization anyway.

Definition 2.6. An optimization problem is called smooth if the objective function
and all constraints are continuously differentiable, otherwise it is said to be nonsmooth.

2.2 Classification of Optimization Problems

The majority of mathematical programs can be expressed in the form (2.1). Although
this representation is used universally, it is important to determine special character-
istics that allow a problem to be solved in an efficient way. Therefore, it is important
to distinguish between different optimization problems. A classification scheme with
respect to the problem functions is already listed in Section 1.2. But the following
basic concepts in optimization provide a better overview of the main distinctions in
the nature of problems. These notions are so significant in optimization that each of
them can be viewed as own discipline.

Linear and nonlinear optimization

A constrained optimization problem where the objective function and all constraints
are linear is called a linear optimization problem or linear program (LP). That is,
(2.1) is specified as

minimize
x

cTx

subject to Ax = b,

x ≥ 0,

(2.4)

where c ∈ R
n, x ∈ R

n, b ∈ R
m and A ∈ R

m×n.

8



Classification of Optimization Problems 2. MATHEMATICAL FORMULATION

If an optimization problem is not linear, it is termed nonlinear. A nonlinear program
(NLP) can take on various forms. For example, a quadratic program (QP) can be
written as follows:

minimize
x

cTx+
1

2
xTQx

subject to Ax ≥ b,

(2.5)

where c ∈ R
n, x ∈ R

n, b ∈ R
m, A ∈ R

m×n and Q ∈ R
n×n is symmetric. If the

variables in (2.5) are quadratically constrained, the problem is known as quadratically
constrained quadratic program (QCQP). Another type in nonlinear programming
are polynomial programs (PP), where the objective function and the constraints are
polynomials.

Global and local optimization

In global optimization a global solution is to be found. Global minimizers are often
difficult to recognize and it may be even harder to locate them. General nonlinear
problems may possess local solutions that are not global solutions. In most cases
it is easier to find such local minimizers, which is the subject of local optimization.
Strictly speaking, an optimization problem is solved only when a global solution is
found, but in practice, we often have to be satisfied with finding local solutions.
It should be noted that for some problems it is sufficient to find a feasible point only.
They are called constraint satisfaction problems (CSP) and correspond to a constant
objective function.

Constrained and unconstrained optimization

It is important to distinguish between problems that have constraints on the variables
and those that do not, see Definition 2.3. Constrained optimization deals with
problems that arise from systems in which restrictions play an essential role. These
constraints may be simple bounds such as l ≤ x ≤ u on the unknown x, or more
general, linear or nonlinear constraints. Problems with complex restrictions are
usually hard to solve. In unconstrained optimization all possible values of the
variables are accepted. Many problems do not have restrictions on the unknowns
and in some cases it might be safe to neglect natural constraints which do not affect
the solution of a system. Unconstrained problems are generally considered easier
to solve which is why they often arise as reformulations of constrained optimization
problems. Such a transformed problem then has a penalizing term added to its
objective function in order to counteract the constraint violation.
Optimality conditions exist for both constrained and unconstrained optimization.
For instance, under certain regularity and convexity assumptions, the Karush-John
conditions provide first-order derivative tests to check if a solution of a constrained
problem is a candidate for an optimal solution. For more information on this matter,
see [38, 45]. But in this thesis we are particularly interested in the optimality
conditions for unconstrained optimization. They are stated as Theorems 2.8, 2.9,
and 2.10 in Section 2.
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Bound constrained optimization

An important special case in constrained optimization are bound constrained problems,
see Definition 2.3. They find application in systems where the variables are quantities
which are restricted to a given range. Furthermore, bound constrained optimization
techniques are often involved in the development of algorithms for more general
constraint problems.

Remark. We can convert a mathematical program (2.1) with inequality constraints
to a problem with equality and bound constraints by introducing slack variables si
and replacing the inequalities ci(x) ≥ 0, i ∈ J , by

ci(x)− si = 0, si ≥ 0, for all i ∈ J .
Bound constraints l ≤ x ≤ u need not to be converted since there exist good
techniques on how to handle them. Hence, we can reformulate (2.1) as

minimize
x

f(x)

subject to ci(x) = 0, i ∈ I ∪ J ,
l ≤ x ≤ u, l, u ∈ R

n .

(2.6)

Convex optimization

Many practical problems are modeled in terms of convex functions and convex sets.
Because of its handy nature, convexity is exploited thoroughly by many algorithms.
A convex program (CVXP) is a special case of a general constrained optimization
problem (2.1) in which the objective function is convex, the equality constraints
are linear and the inequality constraints are convex, that is ci(x) ≤ 0 for convex
functions ci, i ∈ J . For convex programs, any local solution is a global solution
and there exists at most one optimum if the objective function is strictly convex.
Linear programs are always convex. The basics of convex optimization can be looked
up in [45].

Continuous and discrete optimization

Sometimes the variables make sense only if they take integer values, e.g., when they
describe a number of entities. In such cases, the mathematical formulation (2.1)
includes integer constraints, which have the form xi ∈ Z, or binary constraints, which
have the form xi ∈ {0, 1}. Problems of this type are called integer programs (IP).
They are a type of discrete optimization, where only finite discrete sets of values are
considered. Combinatorial optimization problems, which often deal with permutations
and graph structures, also fall into this category. If some of the variables are not
restricted to be integer or binary, we call a problem mixed integer program (MIP).
In particular, mixed integer nonlinear programs (MINLP) are proven to be powerful
tools for modeling. They address nonlinear problems with continuous and integer
variables. In continuous optimization the variables are required to be continuous,
that is they take any values in R

n permitted by the constraints.
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Stochastic and deterministic optimization

Sometimes, a problem cannot be fully specified because it depends on quantities that
are unknown at the time of formulation. Such uncertainties arise in many types of
systems and are subject of stochastic optimization. Instead of simply using a “best”
guess for an unknown quantity, algorithms incorporate estimates of probabilities and
try to produce solutions that optimize the expected performance of a model. Related
disciplines, which also deal with uncertainties, are robust and chance-constrained
optimization. Stochastic algorithms are not part of this work but it should be
noted that they are often solved by various deterministic subproblems. We focus on
deterministic optimization, where the model is completely known.

Smooth, nonsmooth and derivative-free optimization

Smooth optimization deals with problems stated with functions whose derivatives
exist and are continuous, cf. Definition 2.6. That is, if a function is evaluated at one
point, we can infer information about the function at neighboring points. For example,
descent directions for many line search techniques are gradient based. Or if a function
is twice differentiable, methods can extract curvature information from the Hessian.
Such practices are generally not possible in nonsmooth optimization, where functions
are not continuously differentiable or even discontinuous. That is, the behavior of
a function is not predictable near a point of nonsmoothness. Furthermore, it is
often impossible to identify a minimizer. Therefore, solving nonsmooth optimization
problems is considered much harder than solving smooth ones. For example, in the
nonconvex case, finding a descent direction is not easily possible. There are however
reasonable good and established solution methods for nondifferentiable problems
such as subgradient and bundle methods, see [1].
Nonsmooth optimization is not to be confused with derivative-free optimization, which
includes problems that are to be solved by methods that do not access derivative
information. Derivative-free algorithms are often heuristic methods which rely heavily
on function evaluations; or they aim to mimic the gradient, or in some cases even
the Hessian of a function by finite difference approximation. Programs of this type
are subject of this thesis. They find application in both nonsmooth and smooth
problems. The reasons for choosing such algorithms over a gradient based method
are situational and are described in [38] as follows:

• Function evaluation is so cheap that there is no point in spending effort on
working out derivatives.

• Function evaluation involves lengthy intermediate calculations or a significant
number of branches, so that automatic differentiation1 is either very storage
intensive or inaccurate.

• Function values are obtained from experiments and not from computer programs.
In this case there is usually no way to get derivatives except approximately by
comparing function values.

1Automatic differentiation is a chain rule-based technique for evaluating derivatives, see [18].
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2.3 Classification of Optimization Methods

In order to efficiently find solutions of a particular problem, different methods have to
be considered. In practice, optimization algorithms proceed iteratively by generating
a sequence of vectors which are designed to converge to a sought optimum. Basically,
there are two techniques for obtaining the next iteration point, a line search and
a trust region approach. They are explained in Section 2.4. In general, the terms
direct, indirect or stochastic are commonly used to classify optimization methods.
The following information is extracted from [38, 39].

Direct methods

Direct (search) methods are deterministic but make no model assumption. Hence,
they have no access to derivative information at all. Such algorithms sample the
objective function at a finite number of points at each iteration and decide which
actions to take next solely based on the function evaluations and the corresponding
pattern.
Examples are:

• Nonlinear simplex method

• Pattern search

• Generating set search

Indirect methods

Indirect (search) methods are deterministic and model-based. Usually, search direc-
tions can be determined and often mathematically rigorous convergence analysis can
be performed. Nevertheless, heuristic-based methods are also common.
Examples are:

• Methods using quadratic fits

• Trust region methods based on model updates

• Response surface methods

• Surrogate function methods

• Lipschitz constant based methods

• Implicit filtering

• Multilevel coordinate search

12
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Stochastic methods

Stochastic methods use random choices in their strategy.
Examples are:

• Simulated annealing

• Genetic algorithms

• Stochastic clustering algorithms

• Particle swarm methods

• Ant colony optimization

• Hit-and-run algorithms

• Tabu search

Remark. Most of the above examples mainly have motivational character and we will
not further investigate them in this work. But some essential optimization techniques
are explained in more detail in the upcoming section. Also, we note that there
exist various hybrid methods, e.g., direct stochastic approaches. However, all of the
algorithms treated in Section 4 are considered indirect methods.

Optimization methods can either be feasible-point methods, where all iterates are
feasible, or infeasible-point methods, where feasibility is achieved only in the limit.
It is important to account for the amount of storage needed by an algorithm and for the
amount of derivative information needed for computing. Therefore, a distinction can
be made between low storage, medium storage and high storage methods depending
on the number of memory locations. If n is the maximum of the number of variables
and the number of constraints appearing in a problem, O(n) storage locations are

considered low, whereas O(n2) locations mark medium storage and O(n3) or more
locations are quantified as high storage. Derivative-free, first-order and second-order
methods use function values only, function values and gradients, and function values,
gradients and Hessians, respectively. The terms no-derivative, first-derivative and
second-derivative are also commonly used for the respective methods.
As already mentioned in Section 2.2, derivative-free algorithms usually also assume
differentiability and work well under certain conditions. But in general gradient-based
algorithms are more reliable and perform faster. Also, the computation of the Hessian
is mostly not worth the high programming effort since it increases the performance
of an algorithm only slightly. Thus, the most frequently used algorithms in practice
are first-order methods.
Let us recall the function-based classification scheme from Section 1.2. Algorithms
can perform significantly better if they fit the nature of the problem functions. We
therefore distinguish between optimization methods according to their ability to
exploit the structure of a system. For example, methods for large, sparse problems
take advantage of the location of nonzeros in the Hessian; or methods for nonlinear
least squares problems assume that the objective function is a sum of squares of
nonlinear functions and there are no constraints or simple bounds only. Methods for
unstructured problems assume no structural knowledge of the functions involved.
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2.4 Local Optimization Techniques

The advantage of global optimization over local optimization is obvious. Instead of
searching for a locally unimprovable feasible point, the globally best point in the
feasible domain is sought. But global methods are the hardest part of nonlinear
programming and are associated with major drawbacks, such as high computational
cost, problem-specific parameter tuning and limited problem size. Furthermore, if
no global information is available, e.g., if the objective of an optimization problem is
a black-box function2 where only function values are accessible, a globally best point
might not be identifiable. Often, finding the global optima of a problem is desirable
but not essential. In many practical applications, any sufficient good feasible point is
useful and a possible improvement over what is available without optimization. This
motivates the need for local methods in derivative-free optimization. In this section
we introduce commonly used basic local optimization techniques by following
the works [11, 14, 37, 38, 40]. Some of these routines are also part of many global
methods. The most popular global optimization techniques can be looked after
in [36]. This reference is an excellent survey of global optimization as it presents
algorithms and theory in sufficient detail.
Most basic local optimization algorithms are gradient-based. In this section, we
assume that the objective function f : Rn → R is twice continuously differentiable at
all points of interest. The gradient of f at x ∈ R

n is then denoted by g(x) := ∇f(x)
and G(x) := ∇2f(x) is the symmetric Hessian at x.
The strategies of local optimization algorithms largely depend on whether constraints
are involved or not. Introduced methods are therefore split up into constrained and
unconstrained optimization techniques. Derivative-free methods are often
modified versions of such techniques. But we start this segment with two essential
concepts in iterative methods for obtaining the next iteration point, the line search

and the trust region.

2.4.1 Line search and trust region methods

The basic iterative approach for finding a minimum of the objective function f of a
nonlinear program is to construct a descent sequence for f . This is a sequence of
feasible points xl satisfying

f(xl+1) < f(xl) (2.7)

in each iteration. Ideally, liml→∞ xl should then be an optimum.
Line search methods choose the next iteration point along promising search directions
or on suitable search paths. Trust region methods, also called restricted-step methods,
work in a different manner. There, the next iteration point is chosen by minimizing
a model function within a region in which it is believed to approximate the objective
function. If the approximation within such a so called trust region is adequate, the
region is expanded. Otherwise, if the approximation is poor, the region is contracted.

2A black-box function is a function f : Rn → R for which the analytic form is not known.
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Line search

Although we expect the objective function to be smooth, there also exist line search
algorithms in nonsmooth optimization. But performance is degraded for the latter.
We usually construct descent sequences iteratively by choosing in every step a search
path x(α), α ≥ 0, and a search direction pl. Most of the time a linear search path is

chosen, i.e., for a feasible iteration point xl,

x(α) := xl + αpl,

x(0) = xl,

x′(0) = pl.

For the following we write

x := xl, x̄ := xl+1 and p := pl.

The next step is to determine the stepsize parameter α such that

f(x+ αp) < f(x). (2.8)

The choice of α is called the line search. Then

x̄ := x+ αp

and s := x̄− x is called the step. The norm ‖s‖ is called the step size or step length.

Remark. The above procedure describes a straight line search. If the search path x(α)
is piecewise linear, the line search is called bent, otherwise curved. Newton-like
methods are a prime example for algorithms which use straight line searches. Bent
line searches are a very useful tool in bound constraint optimization.

Most line search algorithms require p to be a descent direction, i.e., it must hold that

g(x)Tp < 0. (2.9)

The success of a line search method depends on effective choices of both the direction p
and the stepsize parameter α. We face a trade-off when computing α in (2.8). Descent

should be enough so that convergence3 can be guaranteed. But at the same time,
α should be big enough so that x(α) is significantly different from x. The Goldstein
quotient, defined by

µ(α) :=
f
(

x(α)
)

− f(x)

αg(x)Tp
for α > 0,

is used to find regions of sufficient descent. The function µ can be continuously
extended to [0,∞[ by µ(0) := 1. The most useful sufficient descent condition is then

µ(α)
∣

∣µ(α)− 1
∣

∣ ≥ β for fixed β > 0. (2.10)

It yields that f
(

x(α)
)

is sufficiently smaller than f(x) since µ(α) cannot be too

small; and µ(α) cannot be too close to 1, so α has to be sufficiently positive.

3Definitions for various kinds of convergence are stated in Appendix A.3.
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Definition 2.7. We call a line search efficient if it always produces steps satisfying

inf
l≥0

(fl − fl+1)‖sl‖2
(

(gl)Tsl
)2 > 0,

where fk := f(xk), sk := xk+1 − xk and gk := ∇f(xk) for an iteration index k.

Remark. An exact line search is a straight line search where α is chosen as the

(global) minimizer of f
(

x(α)
)

. Exact line searches are efficient.

Trust region

The basic idea of trust region methods is to accept the minimum of a model function
only as long as the model reflects the behavior of the objective function f . Nonlinear
constraints are usually approximated too. Mostly, the model is quadratic:
If we truncate the Taylor series expansion

f(x+ s) = f(x) + g(x)Ts+
1

2
sTG(x)s+ o

(

‖s‖2
)

(2.11)

after the second order term, we see that f(x+ s) is locally well approximated by the
quadratic function

q(x+ s) = f(x) + g(x)Ts+
1

2
sTG(x)s.

The exact Hessian G is often not accessible and replaced by a symmetric Hessian
approximation B. The quadratic model has then the form

q(x+ s) = f(x) + g(x)Ts+
1

2
sTB(x)s. (2.12)

The difference between q(x+ s) and f(x+ s) is o
(

‖s‖2
)

, which is small when ‖s‖ is
small.
First, a region around the current iterate is defined in which the quadratic function q
is trusted to be an adequate representation of f . Then, the approximate minimizer
of q in the trust region is chosen as step. Technically, the direction and the length of
the step are determined simultaneously. The decision as to whether the model is
acceptable is based on the norm of the step. If it is not acceptable, the trust region
radius is reduced and a new minimizer is computed. On the other hand, if the model
is appropriate, a new iteration point is determined and the radius is enlarged.
So at each iteration point xl ∈ R

n a constrained subproblem of the form

minimize
p ∈ R

n
ql(p) := fl + glTp+

1

2
pTBlp

subject to ‖p‖ ≤ δl

(2.13)

is solved, where δl > 0 is the current trust region radius, Bl := B(xl) and ‖ · ‖ is

usually the Euclidean norm. That is, the minimizer pl of (2.13) lies in the ball of

radius δl. The next iteration point is then chosen as xl+1 = xl + pl, provided that
the model is accepted.
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A crucial part of every trust region algorithm is the strategy for choosing the radius δl
at each iteration. The typical procedure is to base this choice on the ratio of the
actual reduction in f to the predicted reduction in f by q. That is, given an iteration
point xl and the corresponding minimizer, i.e., the trial step pl,

ρl :=
f(xl)− f(xl + pl)

ql(0)− ql(pl)
.

The denominator is always nonnegative since pl is obtained by minimizing over a
region that contains p = 0, see (2.13). Hence, if ρl is negative, we find

f(xl + pl) > f(xl)

which is not acceptable, see (2.7). Consequently, the step must be rejected. In this
case, or if ρl is close to zero, we shrink the trust region by reducing δl at the next
iteration. The trust region is not altered if ρl is positive but significantly smaller
than 1. It gets expanded if ρl is close to 1 because this corresponds to a good
agreement between f and q over the step.

Remark. Various realizations of line search and trust-region algorithms exist for
both constrained and unconstrained optimization problems. A combination of the
two techniques is also possible. For example, Nocedal and Yuan proposed such an
algorithm for nonlinear programming in [41]. The Levenberg-Marquardt algorithm
in Section 4.2 can be viewed as a trust region method.

2.4.2 Unconstrained optimization techniques

We will now give an overview of the most common local techniques in unconstrained
optimization. Usually, we lack a global perspective on the objective function f . Often,
all we know are some function values of f and derivatives at specific points. In such
cases, especially when function evaluation is expensive, gradient-based algorithms
are reliable and the most used local methods in practice. The underlying theory for
such solvers are the following optimality conditions for unconstrained optimization,
which are proven in [40, p. 14–15].

Theorem 2.8 (First order necessary condition). Suppose that f is continuously
differentiable in an open neighborhood of x∗ ∈ R

n. If x∗ is a local minimizer of f ,
then g(x∗) = 0.

Theorem 2.9 (Second order necessary condition). Suppose that f is twice continu-
ously differentiable in an open neighborhood of x∗ ∈ R

n. If x∗ is a local minimizer
of f , then g(x∗) = 0 and G(x∗) is positive semidefinite.

Theorem 2.10 (Second order sufficient condition). Suppose that f is twice continu-
ously differentiable in an open neighborhood of x∗. If g(x∗) = 0 and G(x∗) is positive
definite, then x∗ is a strict local minimizer of f .

It is easily verified that condition (2.9) actually defines a direction p of descent. Since

f(x+ αp) = f(x) + αg(x)Tp+ o(α)

and g(x)Tp < 0, we find that f(x+αp) < f(x) for sufficient small α and thus (2.7) is
satisfied. The particular choice of the search direction p describes different methods.

17



2. MATHEMATICAL FORMULATION Local Optimization Techniques

Method of steepest descent

The method of steepest descent, also known as gradient descent, is a line search that
moves along the direction in which f decreases most rapidly local to the iteration
point xl. That is, the steepest descent direction pl = −gl is chosen in every step.
The advantage of gradient descent is its low computational demand as it requires
no calculation of second derivatives. Unfortunately, in practice, this method often
exhibits oscillatory behavior termed zigzagging. Under assumptions, local convergence
can be proven but comes with an arbitrarily slow rate of linear convergence, see [38].

Line search methods may use search directions other than the steepest descent
direction. This feature is utilized by Newton-like methods, which generally perform
better than gradient descent.

Newton-like methods

They are based on local quadratic models of the objective function f , which have
the form (2.12). As previously mentioned, second derivatives in G are usually not
computed but an approximation B ≈ G. That is, a local minimizer of the quadratic
function q is computed as an approximation of a local minimizer of f . For numerical
reasons, q is needed to be strongly convex, i.e., B has to be positive definite. In this
case, q has a unique minimizer which has the form s∗ = −B−1g, since (cf. (2.12))

∇sq(x+ s) = g +Bs = 0.

Hence, we suspect the minimizer of f to lie close to s∗ or at least in direction s∗.
The matrix B is invertible and its inverse is positive definite, see Theorem A.10 in
Appendix A. Thus, Newton-like methods perform a line search along the Newton
direction, which is defined as

p := −B−1g. (2.14)

This is a descent direction, see (2.9), since gTp = − gTB−1g

> 0

< 0 unless g = 0.

If B happens to be the identity matrix, (2.14) simply is the steepest descent direction.

Proposition 2.11. If B is positive definite, then the search direction p := −B−1g
satisfies for g 6= 0 the angle condition

gTp

‖g‖2‖p‖2
≤ −1
√

κ2(B)
.

Remark. The notation κ2 stands for the condition number of a matrix in terms of
the matrix 2-norm, see Definition A.14 in Appendix A.

The above angle condition is exploited by various algorithms. The vectors −g and p
are bounded away from 90◦ since the ratio on the left hand side is the cosine of the
angle between g and p. An easy proof of Proposition 2.11 is given in [38].
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In iteration l, a typical Newton-like method

1. computes an approximation Bl ≈ ∇2f(xl) at the iterate xl,

2. solves Blq
l = −gl and corrects ql to get a pl satisfying the angle condition,

3. performs an efficient line search along xl + αpl to compute a stepsize αl

4. and sets xl+1 := xl + αlp
l as the next iteration point.

The way of computing Bl distinguishes different Newton-like methods.

Newton methods choose in in each iteration Bl as the exact Hessian at the
current point xl, i.e., Bl = ∇2f(xl). A Cholesky decomposition Bl = LlLl

T, where
Ll is lower triangular, is computed in order to solve

Blq
l = −gl. (2.15)

Efficient line searches in damped Newton methods will usually choose α < 1. In
undamped Newton methods, α = 1 in every iteration. Computing the Hessian is
a large amount of work. A numerical approximation is usually not very accurate.
Basically, just analytic Hessians are useful which is why such techniques are usually
only used if second order derivative information is known.

Modified Newton methods are used to safeguard positive definiteness. It may
happen that Gl = ∇2f(xl) becomes indefinite or negative definite or even singular.

Then pl might no longer be a descent direction. Modified Cholesky decompositions

Gl + El = LlLl
T

are computed, where El is a positive semidefinite and usually diagonal correction
matrix. Then, the matrix Bl := LlLl

T is positive definite and can be used in the local
quadratic model.

Discrete Newton methods approximate the Hessian Gl at the iterate. In par-
ticular, Bl is computed by finite differences, which are explained in more detail in

Section 2.4.4. A finite difference approximation G̃l of Gl is in general not symmetric.

But symmetry is guaranteed by setting B̃l :=
1
2

(

G̃l + G̃l
T
)

. A modified Cholesky

decomposition is computed as well in order to correct B̃l to a positive definite ma-
trix Bl and to solve (2.15).

Quasi-Newton methods avoid the computation of the Hessian by performing
an update procedure. They are based on the idea of building up curvature informa-
tion as the iterations proceed. The Quasi-Newton equation

Bl(x
l − xl−1) = gl − gl−1 (2.16)

originates from a multidimensional generalization of the secant method for root-
finding. Quasi-Newton methods enforce this equation for Hessian approximations
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in each iteration in order to solve ∇f(x) = 0. The matrix Bl in (2.16) reflects the

change in the gradient ȳ := gl − gl−1 with respect to the step s̄ := xl − xl−1. It is
required to be positive definite. Hence, we can rewrite (2.16) as

s̄ = Hȳ, (2.17)

where H := B−1
l . This representation has the huge advantage that in each iteration

equation (2.15) can be solved without the need for inversion. The computed search
direction has then the form

ql = −Hgl.

During a single iteration, new information about the curvature of the function f is
obtained along one search direction. Therefore, it is expected that H differs from
the previous approximation H̄ := B−1

l−1 only by a matrix of low rank.

Thus, after the iteration point xl has been found by a line search, Quasi-Newton
methods do not compute the Hessian at the new iterate but simply use an update
(here in the sense of inverse Hessian approximation)

H = H̄ + U, (2.18)

for some update matrix U .

Remark. The initial matrix B0 is often a finite difference approximation of the Hessian
at the starting point x0 or the identity matrix if no additional information is given.
With the latter choice, the first iteration is equivalent to gradient descent. Newton’s
method spends O(n3) operations for the Cholesky decomposition of Bl in each

iteration. A Quasi-Newton method needs only O(n2) operations for solving (2.15) in
every step.

Formula (2.18) is often understood as rank-one update

H = H̄ + uvT, (2.19)

for some vectors u, v ∈ R
n. The reformulated Quasi-Newton equation (2.17) yields

s̄ =
(

H̄ + uvT
)

ȳ = Hȳ, or u
(

vTȳ
)

= s̄− H̄ȳ.

We assume that s̄ is not equal to H̄ȳ and v is a vector such that vTȳ is nonzero.
Then the vector u is given by

u =
s̄− H̄ȳ

vTȳ

and H takes the form

H = H̄ +
(s̄− H̄ȳ)vT

vTȳ
. (2.20)

In the Symmetric Rank 1 (SR1) update, v is chosen as a multiple of u in order to
maintain the symmetry of the Hessian approximation in the iteration process. In
this case, the rank-one update (2.20) becomes

H = H̄ +
(s̄− H̄ȳ)(s̄− H̄ȳ)T

(s̄− H̄ȳ)Tȳ
.
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The SR1 update possesses a nice feature, a finite termination property for quadratic
functions. If n linearly independent iterates are taken, then the Hessian approximation
converges to the exact Hessian of the quadratic function after at most n updates.
Hence, the solution can be reached in at most n+ 1 steps. A precise statement and
its proof are given in [38].
Any rank-two correction in regard to the update formula (2.18) can can be written as

H = H̄ + uuT−vvT,

for some vectors u, v ∈ R
n with uTv = 0.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is such a rank-two correction
and is widely considered to be the most effective update formula in unconstrained
optimization. It is accurately described in [11] and [14] and has the form

H =

(

I − s̄ȳT

ȳTs̄

)

H̄

(

I − ȳs̄T

ȳTs̄

)

+
s̄s̄T

ȳTs̄
,

where I ∈ R
n×n is the identity matrix. Using the Sherman-Morrison-Woodbury

formula [15, p. 65] we can transform it into the direct update

B = B̄ − B̄s̄s̄TB̄

s̄TB̄s̄
+

ȳȳT

ȳTs̄
,

for B := Bl and B̄ := Bl−1.

Remark. The SR1 and BFGS updates ensure that all (inverse) Hessian approximations
remain positive definite, provided that the respective update directions fulfill the
Wolfe condition [38, p. 71]. However, in practice rounding errors may cause the
updated matrix to become singular or indefinite. This can be avoided by updating
the Cholesky decomposition of an approximate Hessian itself. According to Gill [14],
if the Cholesky factors of B are available, equation (2.15) can be solved with similar

cost as in inverse Hessian updating , i.e., by using O(n2) operations only. The updates
of the Cholesky factors of B and the update of H are obtained in a comparable
number of operations.

For smooth medium size problems without special structure, Quasi-Newton methods
are considered to be the most efficient methods in unconstrained optimization.
Usually, they exhibit locally superlinear convergence. Newton methods can even
achieve quadratic convergence rates but are far more restrictive, as their performance
relies heavily on available information. Precise convergence proofs for Newton and
Quasi-Newton methods can be found in [40].
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Nonlinear conjugate gradient method

Linear conjugate gradient methods are among the most useful techniques for solving
large linear systems of equations of the form

Ax = b (2.21)

for the vector x ∈ R
n, where b ∈ R

n is known and A ∈ R
n×n is symmetric positive

definite. The quadratic function

q(x) :=
1

2
xTAx− bTx

is convex and thus the quadratic program

minimize
x ∈ R

n
q(x)

has a unique minimizer x∗ and is equivalent to solving (2.21), since ∇q(x⋆) = 0.
Fletcher and Reeves [12] showed how to extend the linear conjugate gradient method
by Hestenes and Stiefel [20] to general unconstrained nonlinear optimization problems.
The proposed algorithm and its resulting modifications are known as nonlinear
conjugate gradient methods.
In contrast to Newton-like methods, conjugate gradient (CG) algorithms do not need
to store any matrices. A quadratic function is not explicitly modeled, so Hessian
approximations are not needed and only gradients are used.
In the l-th iteration of a CG method, the new iteration point xl+1 is determined as

xl+1 = xl + αlp
l,

where xl is the current iterate and αl > 0 is the stepsize parameter found by a line
search along the search direction

pl :=

{

−gl if l = 0,

−gl + βl−1p
l−1 if l ≥ 1.

(2.22)

The choice of the formula for the conjugate gradient parameter βl−1 ∈ R defines
different CG algorithms. For example, Fletcher and Reeves used the parameter

βl−1 :=

∥

∥gl
∥

∥

2
∥

∥gl−1
∥

∥

2

.

However, CG methods of this form impose strong restrictions on the line search
technique used and convergence analysis is rather involved. A modified CG algorithm
which requires only an efficient line search and that reduces the likelihood for zigzag-
ging by preconditioning is explained in [37]. Zigzagging can be avoided by choosing
the search direction p as close as possible to the previous search direction pold ∈ R

n

with respect to the ellipsoidal norm4. The following statement holds for a fixed
positive definite preconditioner B ∈ R

n×n and is proven in [37].

4The ellipsoidal norm is introduced in Appendix A, see Definition A.13.
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Theorem 2.12. For all p ∈ R
n with gTp < 0, the distance

∥

∥p− pold
∥

∥

2

P
:= (p− pold)

TP (p− pold)

is minimal for

p = pold − λP−1g, where λ :=
gTpold − gTp

gTP−1g
.

If an efficient line search is used, convergence analysis [37] shows that pl is either
parallel to the Newton direction (2.14) or certain conditions [37, p. 19–21] are
satisfied. If the latter do not hold in an iteration step, the preconditioned CG
algorithm consequently chooses the Newton direction in order to preserve local
linear convergence. This is called a restart since the method initially starts with a
line search along this direction (unlike algorithms without preconditioning, cf. (2.22)).

In iteration l, the preconditioned nonlinear conjugate gradient method

1. computes the gradient gl = ∇f(xl) at the iterate xl,

2. chooses either the search direction pl = pl−1 − λlP
−1gl or makes a restart, i.e.,

pl = −P−1gl,

3. performs an efficient line search along xl + αpl to compute a stepsize αl

4. and sets xl+1 := xl + αlp
l as the next iteration point.

The preconditioned CG method can be transformed into a traditional CG method by
setting P = I and by scaling the corresponding vectors and parameters. Similar to
the SR1 update, a finite termination property for quadratic functions can be proven,
see [37]. If such a CG algorithm is applied to a quadratic function, it stops after at
most n iterations with a minimizer or with a direction of infinite descent, where n is
the number of variables.

Remark. Conjugate gradient algorithms use very little memory and can therefore be
used for large-scale problems where other methods fail because involved matrices are
too large or too dense. But the saving in storage typically results in an increased
number of iterations. In general, convergence is much slower than in Newton or
Quasi-Newton methods.

The preceding methods are the most important local techniques for unconstrained
optimization. In practice however, it is often the case that not all possible values of
the variables are acceptable. We will now briefly discuss basic techniques used for
solving such constrained problems.
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2.4.3 Constrained optimization techniques

A mathematical program of type (2.6) demands special strategies in order to handle
its constraint functions. This constrained optimization problem (COP) can be
equivalently formulated as

minimize
x

f(x)

subject to c(x) = 0, x ∈ x,
(2.23)

where

x := [x, x] := {x ∈ R
n | x ≤ x ≤ x}

is a bounded or unbounded box in R
n describing the bounds on the variables. In

this part, the objective function f : x→ R and the constraint function c : x→ R
r

are assumed to be continuously differentiable. A bound constrained optimization
problem (BOPT) then takes the form

minimize
x

f(x)

subject to x ∈ x.
(2.24)

That is, its feasible region is simply the box x.

Active set methods are among the most effective techniques for solving a bound

constrained optimization problem (2.24). We will only explain the basic idea
behind such solvers. There are many different strategies associated with the iteration
procedure which is why we do not give a model algorithm. However, adequate
theory such as optimality conditions for bound constraint optimization, as well as
a pseudocode of a BOPT algorithm can be found in [37, p. 24–30]. In [23], even
a derivative-free modification of this algorithm is presented, the limited memory
method for bound constrained optimization (LMBOPT). Active set algorithms for
bound constrained optimization are based on the following Definition 2.13. The
appropriate definition regarding general constrained optimization problems (2.23) is
stated in [40, p. 308].

Definition 2.13. Let x̂ ∈ x for a box x = [x, x] in R
n. An index i ∈ {1, . . . , n} is

active for x̂ ∈ R
n if x̂i = xi or x̂i = x̄i. The component x̂i which corresponds to

an active index is also called active. If an index (or component) is not active, it is
nonactive or free. An element for which all indices are active is termed corner of x.

Given a feasible point x ∈ x and its gradient g, such algorithms try to find the
optimum without leaving the box. If gi 6= 0 for a nonactive component xi, a reduction
in the objective function f can be obtained by slightly changing xi. The direction
chosen by a line search depends on whether gi > 0 or gi < 0. However, if xi is active,
only points along one direction are feasible. The value of f can can then be reduced
by moving slightly in this feasible direction only when

{

gi < 0 if xi = xi,

gi > 0 if xi = xi.
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Performing a classical line search along a ray may lead to infeasible points because
of the bound constraints. In order to stay in the feasible region, the search path
must have the ability to be bent. This is achieved by projecting the ray into the box
with the use of feasible projections.

Definition 2.14. Let x = [x, x] be a box in R
n and x ∈ R

n. The feasible projection
π of x onto x is defined as

π[x]i := max
(

xi,min(xi, xi)
)

=















xi if xi < xi,

xi if xi > xi,

xi otherwise.

Remark. We note that for x ∈ x we have π[x] = x. Conversely, if π[x] = x, we find
that x ∈ x and hence π[Rn] = x.

Thus, active set methods for bound-constrained optimization find new iteration
points by performing a line search along the bent search path

x(α) := π[x+ αp],

where p is the search direction, x ∈ x and α is the stepsize parameter. The bent search
path is piecewise linear and has breakpoints at the α > 0 with xi + αpi ∈ {xi, xi}.
In each iteration, the active components remain unchanged and only a subset of
the nonactive ones is changed. To account for this, algorithms use a working set
W ⊂ {1, . . . , n} and require pi = 0 for i /∈ W . The sensible choice of the working set
is crucial for the performance of such methods, see [37].

According to Neumaier and Schichl [38], there are basically four successful classes of
algorithms for solving a constrained optimization problem (2.23), namely

• penalty methods,

• augmented Lagrangian methods,

• barrier methods,

• and reduced gradient methods.

In bound constrained optimization, the clever choice of a line search technique
along a bent search path guarantees feasibility of a generated sequence of iterates.
Thus, only the objective function needs to be considered in determining whether an
improvement has occurred. In problems where nonlinear constraint functions are
involved, feasibility cannot be easily maintained. In such cases, it is not clear if a
new iterate xl+1 is better than the old point xl. It is necessary to add a penalizing
term to the objective function in order to account for possible constraint violations.
The resulting new objective is referred to as merit or penalty function.
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Penalty methods transform constrained problems of the form (2.23) into uncon-
strained problems by adding penalties to the objective function. They are classified
as infeasible methods since, most of the time, the iteration points xl are infeasible.
The condition c(x) = 0 is only achieved in the limit. Thus, the penalty function is

fσ(x) := f(x) + σφ
(

‖c(x)‖
)

, (2.25)

for some penalty parameter σ > 0 and a continuously differentiable penalizing
functional φ : R+ → R+ with φ(0) = 0. The functional needs to be monotone
increasing and must grow at least as fast as f at points far away from the constraint
surface. The behavior of the unconstrained penalty problem

minimize
x ∈ R

n
fσ(x) (2.26)

strongly depends on the particular choice of the parameter σ and the function φ.
Usually, φ is fixed and σ is adapted accordingly. A penalty function is called exact if
the unconstrained minimization points of the resulting penalty problem are also the
solution of the constrained problem, otherwise inexact. In order to solve (2.26), an
algorithm has to find a good search direction. But the function fσ can be nonsmooth,
i.e., the gradient of fσ is no viable option. A way to find acceptable directions
in every iteration is to replace the objective function with a quadratic model and
approximately solve convex quadratic subprograms before each line search. The
resulting method is called sequential quadratic programming (SQP).

Augmented Lagrangian methods also penalize the objective function to coun-
teract constraint violation. They are known as methods of multipliers since explicit
Lagrangian multipliers are successively estimated. If z ∈ R

r is a fixed vector, then
the problem

minimize
x

f(x)− zTc(x)

subject to c(x) = 0, x ∈ x,
(2.27)

is equivalent to (2.23). The objective function Lz(x) := f(x)−zTc(x) of this problem
is the Lagrangian of the constrained optimization problem (2.23) and z is referred to
as Lagrange multiplier. As in (2.25), we add a penalizing term to the objective and
get the merit function

fσ,z(x) := f(x)− zTc(x) + σφ
(

‖c(x)‖
)

,

yielding the unconstrained minimization problem

minimize
x ∈ R

n
fσ,z(x).

Remark. The particular choice of the parameter σ can be difficult for penalty methods.
If σ is large, then fσ in (2.25) is dominated by the penalty term (unless infeasibility
is small). Geometrically, this corresponds to a steep valley with narrow grooves in
which line search techniques can only take tiny steps. So for numerical reasons, we
want to keep σ reasonable small. Augmented Lagrangian methods achieve this by
reducing the slope of the valley with clever choices for the multiplier z. That is, z is
taken such that the gradient of Lz is small.
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In practice, often a solution of only limited accuracy is satisfactory. A disadvantage
of infeasible methods is that if the iteration process is terminated prematurely, the
final iterate may not be feasible and hence not usable. This is not the case for the
following feasible methods, where feasibility of all iteration points is enforced.

Barrier methods use an analogous idea to that of penalty methods, i.e., a term is
added to the objective function f such that the constrained optimization problem
transforms into a unconstrained one. But instead of merely adding a penalty for
feasibility, points are simply not allowed to become infeasible. If the unconstrained
minimum of f exists, it will most likely occur at an infeasible point. Thus, a modified
objective function is designed to create a barrier which prevents iterates from leaving
the feasible region. This is why barrier methods are also known as interior point
methods. The optimization problem is now required to be of the form (cf. (2.23))

minimize
x

f(x)

subject to c(x) ≥ 0, x ∈ x.
(2.28)

The initial starting point x0 ∈ x needs to be strictly feasible, i.e., c(x0) ∈ S with
S := {x ∈ x | c(x) > 0}. A barrier function ϕ : S → R+ with the property

ϕ(x)→∞ as x→ ∂S

is added to the objective function. That is, the modified objective has the form

fµ(x) := f(x) + µϕ(x),

where µ > 0 is some barrier parameter. The unconstrained problem to be solved is

minimize
x ∈ R

n
fµ(x). (2.29)

Algorithms fix the barrier function ϕ and adapt µ accordingly. Two popular choices
for ϕ are the log-barrier function

ϕ(x) := −
r
∑

i=1

log
(

ci(x)
)

and the inverse barrier function

ϕ(x) :=
r
∑

i=1

1

ci(x)
.

Remark. We observe that both the log-barrier and inverse barrier functions yield
very large values for points close to boundary of the feasible region, i.e., points x
with ci(x) ≈ 0 for some i. Feasible points which lie away from the boundary
correspond to small function values. But the solution to an inequality-constrained
optimization problem (2.28) is often found at the boundary where the barrier function
blows up. In such a case the barrier term in (2.29) needs to be removed. This is the
reason why proper algorithms gradually reduce the barrier parameter µ (which may
initially be chosen large) towards zero.

27



2. MATHEMATICAL FORMULATION Local Optimization Techniques

Reduced-gradient methods for solving constrained optimization problems of the
form (2.23) are based on extending methods for linear constraints to the nonlinear
case. The basic idea is to stay on a subset of the variables for which the nonlinear
constraints hold while reducing the objective function. The requirement of satisfying
the constraints usually reduces the dimensionality of the optimization. Feasibility
is maintained in every iteration due to the clever choice of an active set strategy
and the determination of suitable search directions. In fact, reduced-gradient-type
algorithms for nonlinear constrained problems mostly differ in the technique used for
achieving feasibility and reducing the objective function. But they are all based on
the following underlying principle.

We consider the COP (2.23), i.e., c(x) represents r nonlinear equality constraints

for x ∈ R
n. At iteration l of an algorithm the current iterate xl ∈ R

n is feasible,
meaning that c(xl) = 0. The next point xl+1 must satisfy c(xl+1) = 0 and f(xl+1)

has to be sufficiently smaller than f(xl). The desired result is the iteration step

sl := xl+1 − xl.

A typical iteration starts with enforcing the constraints for the new iterate by ensuring
that

c(xl+1) = c(xl + sl) = 0. (2.30)

In order to accomplish this we linearly approximate c by applying its Taylor series
expansion about xl, i.e.,

c(xl + sl) ≈ c(xl) +∇c(xl)sl, (2.31)

where ∇c(xl) ∈ R
r×n is the Jacobian of c evaluated at xl (cf. (3.4)). From (2.30)

and (2.31) and the fact that xl is feasible, we see that a vector pl ∈ R
n which

approximates sl satisfies

∇c(xl)pl = 0. (2.32)

This is a set of r linear equality constraints in terms of pl. We can now exploit the
following property of methods for linear constraints, which is shown in [14, p. 68].
The step from any feasible point to any other feasible point must be orthogonal to the
rows of the matrix ∇c(xl).

So, if Ml ∈ R
n×(n−r) denotes a matrix whose columns form a basis for the set of

vectors orthogonal to the rows of ∇c(xl), then any pl that satisfies (2.32) must be a
linear combination of the columns of Ml. Hence, we find that

pl = MlpM (2.33)

for some vector pM ∈ R
n−r. The vector pl lies entirely in the null space of ∇c(xl).

Hence, the reduction to n− r degrees of freedom is represented by pM . Such a pM
can be determined by minimizing an approximation to the objective function, solely
expressed in terms of pM .

Remark. A possible choice for pM is the the vector pM = −Ml
Tgl, where gl = ∇f(xl).

If it is possible to define pM in terms of second-order information, an improved rate
of convergence can be achieved.
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Reduced-gradient methods do not perform a line search along the classical search
direction xl + αpl, α ≥ 0. In order to restore feasibility, they take as approach that
sl has the form

sl = αpl + YlpY ,

where Yl ∈ R
n×r is a matrix whose columns form a basis for the column space of

∇c(xl)T. The vector PY ∈ R
r can be understood as adjustment of the search to

the nonlinear constraints. Two adaptive subproblems need to be solved for finding
a value for α and a corresponding pY such that (2.30) holds. Furthermore, α is
required to yield

f(xl + sl) < f(xl)

with sufficient decrease in objective value. More details can be found in [14, p. 222].

The generalized reduced-gradient (GRG) method is an example of a reduced-gradient-
type method. It is based on a particular form of the matrix Ml which arises from
partitioning the Jacobian ∇c(xl). Assuming that the Jacobian is nonsingular and
that its first r columns are linearly independent, we can partition it as

∇c(xl) =
[

B N
]

, (2.34)

with nonsingular B ∈ R
r×r and N ∈ R

r×(n−r). Using a variable-reduction method,
which is explained in [14, p. 163], the matrix Ml takes the form of

Ml =

[

−B−1N

In−r

]

. (2.35)

Now let pl be partitioned according to the columns of (2.34), i.e.,

pl =

(

pB

pN

)

,

where pB ∈ R
r is the vector of dependent or basic variables and pN ∈ R

n−r the vector
of independent or nonbasic variables. The constraints (2.30) imply that the r basic
variables pB can be expressed in terms of the n− r nonbasic variables pN . That is,
pM = pN and thus the original variables of the problem correspond to the reduction
in dimensionality to n− r. The term Ml

Tgl with Ml as in (2.35) is given the name
reduced gradient.

Remark. Reduced-gradient methods ensure that the nonlinear constraints remain
satisfied at every iteration, which mostly comes with high computational cost. But
they can perform well with problems where the constraints are almost linear.
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2.4.4 Derivative-free methods

A rule of thumb for choosing a solution method for an optimization problem is to
make use of as much derivative information as can reasonably be provided [14, p. 285].
So, if we face an optimization problem where only function values are available, it is
essential to determine whether the objective function of a problem is smooth, even
though its derivatives may not be computable. Derivative-free methods are often
designed to accumulate curvature information by approximating the gradient or even
the Hessian with finite differences. In fact, an obvious strategy is to use an established
gradient-method and replace its exact gradient with a finite difference approximation,
as it is done within this thesis. Finite difference analogues of the Gauss-Newton and
Levenberg-Marquardt method are presented in Section 4. However, if the approxi-
mation of derivatives is unreliable or comes with high computational cost, one might
prefer methods using heuristics which are aimed to find a good solution in reasonable
time.

Finite difference approximations in derivative-free algorithms for the i-th com-
ponent gi of the gradient g of f are usually realized by using forward differences

gi(x) ≈
f(x+ hei)− f(x)

h
(2.36)

or central differences

gi(x) ≈
f(x+ hei)− f(x− hei)

2h
, (2.37)

where x ∈ R
n, h > 0 is sufficiently small and ei ∈ R

n is defined as the coordinate
vector

ei :=





























0
...

0

1

0
...

0





























← i-th position.

The errors of the finite difference approximations for smooth functions can be easily
determined. For the forward differences, rearranging the Taylor series expansion

f(x+ h) = f(x) + hg(x) +O(h2)

yields
f(x+ h)− f(x)

h
− g(x) = O(h).

And by combining the Taylor series expansions of f(x+ h) and f(x− h) we find

f(x+ h)− f(x− h)

2h
− g(x) = O(h2)

for the central differences, where we truncated after the second derivative terms.
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If we let h→ 0, we see that the central differences yield a more accurate approximation
to the gradient. However, they require O(2n) additional function evaluations instead
of just O(n) additional evaluations in forward differences. Hence, central differences

are usually not used unless the relative error5 in the forward-difference approximation
is unacceptable. Such an unacceptable error may occur when the difference in function
values is small relative to h. For example, forward-difference approximations may
perform badly during the last few iterations of an algorithm where ‖g(x)‖ is small.
That means that the approximation can be unreliable, even for well scaled problems.
In such cases, one may switch to central differences. Nevertheless, we should try to
return to forward differences in the case that a central-difference approximation was
needed at some point far from the optimum.
Backward differences evaluate the function f at x and x−h instead of x+h and x in
forward differences. Higher order finite differences are based on the previous formulas
(2.36) and (2.37) and are constructed recursively.

Direct search methods (cf. Section 2.3) do not approximate derivatives numeri-
cally. In fact, they do not even attempt to approximate f(x) in a neighborhood of x
by a smooth function [47, p. 615]. For example, the DUD algorithm in Section 4.3
forgoes computing gradients and finite differences but does linear approximations to
involved functions and is therefore not considered a direct method. Instead, direct
optimization algorithms solely rely upon the comparison of function values. That is,
in each iteration, they simply aim to find points for which a reduction in the objective
is achieved. That is, such methods work directly with values of the objective function
in the search for an optimum.
Direct search methods perform well in certain cases but their general usefulness is
limited. For smooth functions, they are usually outperformed by gradient methods
and derivative-free methods using finite difference approximations both in reliability
and convergence speed [2, p. 120]. Due to the heuristic nature of direct algorithms,
it is often the case that a large number of parameters is demanded. A successful
optimization might therefore heavily depend on the choice of those parameters. In
[14, p. 63] it is recommended that such methods should be used only for nonsmooth
problems or if no other suitable alternative method is available .

Remark. The nonlinear simplex algorithm [35] by Nelder and Mead is an example
of a direct search method. It is based on a simplex, which is the generalization of
the notion of a triangle to n dimensions. In attempting to find a minimizer, the
simplex moves, expands, contracts, and distorts its shape. This algorithm performs
well in two dimensions. However, as the dimension of the problem grows it becomes
inefficient and is therefore not part of this work.

Line searches without gradients use a concept different than that discussed in
Section 2.4.1. It is not possible to compute the classical sufficient descent conditions
and it is not even clear if a search direction is a descent direction when the gradient
is not available. Hence, such line searches techniques must search along the full path
instead of in one direction only. An appropriate algorithm and the theory which
comes along with it is described in [38, p. 121–128].

5The relative error is defined in Appendix A, Definition A.19.
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3. NONLINEAR EQUATIONS AND LEAST SQUARES

3 Nonlinear Equations and Least Squares

The derivative-free optimization algorithms in this thesis aim to solve problems of
the following classes:

(i) Systems of nonlinear equations: F (x) = 0, F : Rn → R
m

(ii) Nonlinear programs: minx f(x), f : Rn → R

(iii) Nonlinear least squares problems: minx
1
2
‖F (x)‖22, F : Rn → R

m

We can turn the nonlinear system (i) into a nonlinear least squares problem (iii)
by observing that F (x) = 0 if and only if ‖F (x)‖22 = 0. And it is easy to see
that the nonlinear least squares problem (iii) is a special case of the unconstrained
optimization problem (ii) as we simply minimize the function f : Rn → R defined by
f(x) := 1

2
‖F (x)‖22.

Nonlinear programs have been thoroughly discussed in Section 2. In the following,
systems of nonlinear equations are explained in more detail. Our algorithms
try to solve them by minimizing nonlinear least squares problems. Often, solu-
tions to linear least squares subproblems are computed in the iterative process.
Additionally, least squares methods are particularly powerful in data fitting and
regression, which is why we provide some insight into these topics as well. The
references used for this section are [2, 8, 11, 13, 14, 15, 19, 40, 47, 49].

3.1 Systems of Nonlinear Equations

A system of nonlinear equations can be written in terms of a vector valued function
F : Rn → R

m, resulting in the representation

F (x) = 0. (3.1)

That is, F has the form

F (x) =















f1(x)

f2(x)
...

fm(x)















, (3.2)

where the functions fi : R
n → R, i = 1, 2, . . . ,m, are assumed to be continuously

differentiable and often interpreted as residuals. At least one of the fi’s is nonlinear.
A vector x∗ ∈ R

n which satisfies the system (3.1) is called a solution or root of the
nonlinear equations. Methods which aim to solve (3.1) are therefore often referred to
as root-finding algorithms. In general, the system (3.1) may have no solution, a unique
solution or many solutions. Standard solvers for nonlinear equations aim to find exact
solutions of well-determined systems, i.e., systems for which the number of variables n
and the number of equations m are the same. If m < n, (3.1) is underdetermined and
may have infinitely many solutions and if m > n, the system is overdetermined and
may have no non-trivial solution. So, it is usually not possible to obtain a solution
for an overdetermined system which satisfies all equations. However, in optimization,
methods for least squares can be employed to approximately solve such a system.
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3.2 Nonlinear Least Squares

Numerous optimization algorithms are designed to iteratively seek a solution of the
nonlinear least squares (NLLS) problem

minimize
x ∈ R

n
f(x) =

1

2

m
∑

i=1

fi(x)
2 =

1

2
F TF, (3.3)

where F = F (x) is as in (3.2) and m ≥ n. A minimizer x∗ ∈ R
n of (3.3) is called a

least squares solution.

Nonlinear least square problems are easier to solve than most general unconstrained
optimization problems. The special form of the objective function and its derivatives
allow for efficient algorithms. The least squares solution x∗ is contained among the
zeros of the gradient ∇f(x) of f , which can be expressed in terms of the Jacobian.

Let J ∈ R
m×n be the Jacobian matrix of F , defined for x ∈ R

n by

J(x) =

[

∂fi
∂xj

(x)

]

i = 1, . . . ,m

j = 1, . . . , n

=















∇f1(x)T
∇f2(x)T

...

∇fm(x)T















, (3.4)

where ∇fi(x) is the gradient of fi, i = 1, 2, . . . ,m. Thus, the gradient of f is

∇f(x) =
m
∑

i=1

fi(x)∇fi(x) = J(x)TF (x). (3.5)

If the fi, i = 1, . . . ,m, are twice continuously differentiable, then the Hessian of f is

∇2f(x) =
m
∑

i=1

∇fi(x)∇fi(x)T+
m
∑

i=1

fi(x)∇2fi(x)

= J(x)TJ(x) +
m
∑

i=1

fi(x)∇2fi(x). (3.6)

In practice, the computation of the residuals fi, i = 1, . . . ,m, is often relatively easy or
inexpensive. Hence, the gradient of f can be efficiently obtained by using formula (3.5).
But the distinctive feature of least squares problems is found in representation (3.6).

The first term JTJ comes practically “for free” as the Jacobian J = J(x) is usually

already stored from a preceding calculation of the gradient JTF . Second order
information is only processed in the summation term. It is negligible when the
residuals fi are expected to be small or almost linear near the solution, implying
that ∇2fi(x) is small. Therefore, in such cases, we find that

∇2f(x) ≈ J(x)TJ(x). (3.7)

Most methods for nonlinear least squares problems exploit these structural properties
of the gradient and the Hessian. For example, the finite differences analogues
of the Gauss-Newton and Levenberg-Marquardt algorithms, which are discussed
in Section 4, use Jacobian approximations in their routines in order to employ
formulas (3.5) and (3.7).
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Remark. We did not exclude the case where m = n in the NLLS problem (3.3). Even
if a nonlinear system of equations is well-determined, an exact solution may not
exist. We can choose a NLLS method instead of an algorithm specifically designed
for nonlinear equations. This is advisable when inaccuracies in the definition of F
prevent the system (3.1) from having a solution. However, if the Jacobian J(x) of F
is singular, convergence to a point that is not a solution of (3.1) is possible. This is

due to the fact that the gradient J(x)TF (x) may vanish even if F (x) does not.

3.2.1 Linear least squares

A special case of the nonlinear least squares problem (3.3) is the linear least
squares (LLS) problem

minimize
x ∈ R

n

1

2

∥

∥Ax− b
∥

∥

2

2
, (3.8)

where A ∈ R
m×n, b ∈ R

m and m ≥ n. That is, F (x) = Ax− b and each residual is
a linear function fi(x) = Ai:x− bi, i = 1, . . . ,m, where Ai: denotes the i-th row of
the matrix A.
We note that f(x) = 1

2
‖Ax− b‖22 is a differentiable function of x ∈ R

n. Hence, the
minimizers of f satisfy

∇f(x) = AT(Ax− b) = 0,

yielding the normal equations

ATAx = ATb. (3.9)

Solving (3.9) for x is the classical way to solve the LLS problem. The following
statement is well known and its proof can be found in [15, p. 260] or [49, p. 81].

Theorem 3.1. Let A ∈ R
m×n, b ∈ R

m and m ≥ n. The solution to the LLS
problem (3.8) is the set of points

{

x∗ ∈ R
n | AT(Ax∗ − b) = 0

}

.

If A has full rank, i.e., if the columns of A are linearly independent, then x∗ is unique,
ATA is nonsingular and

x∗ =
(

ATA
)−1

ATb.

If we have a matrix A ∈ R
m×n (m ≥ n) with full column rank n, then it is easy to

see that ATA ∈ R
n×n is symmetric and positive definite. Hence, a typical algorithm

for solving the normal equations (3.9) performs a Cholesky decomposition of ATA:

1. Compute the matrix ATA and the vector ATb.

2. Compute the Cholesky decomposition ATA = LLT.

3. Solve the lower-triangular system Ly = ATb for y (forward substitution).

4. Solve the upper-triangular system LTx = y for x (back substitution).
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Remark. Such a procedure can be easily executed in MATLAB by using the backslash
operator \ explained in [30, p. 7811–7819]. Assuming that C = ATA and d = ATb
have already been computed, we can solve the normal equations (3.9) simply by
entering C\d. MATLAB then selects an implemented Cholesky Solver [29, p. 196–

197] which precisely follows the steps 2–4 of the preceding page. Furthermore, if ATA
is neither positive nor negative definite, an LDL solver [29, p. 828–829] is invoked
which may be still able to find a non-unique solution to the normal equations but
needs to solve an additional system for the diagonal matrix D.

The computational work of a method for normal equations is O
(

mn2 + n3

3

)

,

where O(mn2) operations are needed for the matrix multiplication ATA and O
(

n3

3

)

for the Cholesky decomposition. The compression of the input data A ∈ R
m×n to

the matrix ATA ∈ R
n×n is attractive for the user since m≫ n in most applications.

Consequently, these algorithms are considered very fast and are frequently used in
practice. However, care has to be taken after ATA has been formed. Since ATA is
symmetric and positive definite, it is invertible and we find for its condition number

κ2(A
TA) =

∥

∥ATA
∥

∥

2
·
∥

∥(ATA)−1
∥

∥

2
=

σ2
max(A)

σ2
min(A)

= κ2
2(A), (3.10)

where σmax(A) is the largest and σmin(A) the smallest singular value of A. Equa-
tion (3.10) is justified by (A.1.3) in Appendix A and the fact that the singular values

of ATA are the squared singular values of A [15, p. 77]. Hence, we find that the
relative error in the computed solution is proportional to the square of the condition
number of A [15, p. 263]. Furthermore, rounding errors which appear due to bad
conditioning may cause the Cholesky factorization process to break down. Thus,
algorithms for solving the normal equations are numerically unstable and should not
be used if involved matrices are expected to be ill-conditioned.
Popular methods for solving the LLS problem (3.8) which avoid the squaring of
the condition number are either based on reduced QR decomposition or on singular
value decomposition (SVD).
A method for least squares via QR decomposition usually uses a modified
Gram-Schmidt (MGS) [15, p. 255] or Householder [15, p. 249] orthogonalization in

order to compute a reduced QR factorization of A ∈ R
m×n (m ≥ n) with full rank n.

That is

A = QR =
[

Q1, Q2

]

[

R1

0

]

= Q1R1, (3.11)

where R ∈ R
m×n is a matrix whose submatrix R1 ∈ R

n×n is upper triangular with
positive diagonal elements, and Q ∈ R

m×m is an orthogonal matrix which has been

partitioned into submatrices Q1 ∈ R
m×n and Q2 ∈ R

m×(n−m) containing the first n
and the last m−n columns of Q, respectively. Once these factors have been computed,
relationship (3.11) can already be used to solve the LLS problem (3.8). We find that

∥

∥Ax− b
∥

∥

2

2
=
∥

∥QRx− b
∥

∥

2

2
=
∥

∥Rx−QTb
∥

∥

2

2
=
∥

∥R1x−Q1
Tb
∥

∥

2

2
+
∥

∥Q2
Tb
∥

∥

2

2
,

which is minimal when x = R−1
1 Q1

Tb. By Theorem 3.1, this minimizer is unique and

algorithms can simply acquire it by computing Q1
Tb and by back substitution.
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The associated cost is dominated by the computation of the QR decomposition.

It is O(2mn) for MGS [15, p. 255] and O
(

2mn2 − 2
3
n3
)

if Householder reflections

are used [15, p. 264]. Compared to these efforts, the O(mn) operations of the

matrix-vector product and the O(n2) operations need for the back substitution
are not significant. In the case of Householder transformations, we find that the
relative error in the computed solution is proportional to the condition number
of A [49, p. 199]. A similarly good result can be achieved for MGS if it is applied to
the augmented matrix [A | b], see [15, p. 265]. Hence, methods for least squares via
QR decomposition do not degrade the conditioning of the problem and are generally
numerically stable. Nevertheless, if A is close to being rank-deficient6, algorithms
may break down during their back substitution phase. The big disadvantage of these
methods clearly is their speed. If m≫ n, about twice as much arithmetic operations
as in the normal equations approach are needed. Furthermore, in most scenarios
more memory is required since Q1 ∈ Rm×n needs more storage than the compressed
matrix ATA, which is only of size n× n. So, basically, we face a trade-off between
numerical stability and efficiency in the choice of a proper algorithm for LLS.
Another approach for solving the LLS problem (3.8) is based on the singular value
decomposition (SVD) of A, which is also applicable in the rank-deficient case and
thus typically applied when we do not know the rank of the matrix. The basic idea
behind such solvers can be found in [8, p. 64–66] and an appropriate algorithm is
given in [49, p. 83–84]. A typical estimate of the cost associated with the SVD

is O(2mn2 + 11n3). Hence, methods for least squares via SVD are generally more
expensive than those that have been discussed.

Remark. The backslash operator \ can also be used to directly compute a solution of a
LLS problem of the form (3.8) by simply entering A\b. If A is rectangular, MATLAB
invokes a QR-Solver [29, p. 1133–1134] which is based on QR decomposition with
column pivoting. Such a solver can handle rank-deficient matrices as well but can be
quite costly, see [15, p. 276–280].

Nonlinear least squares problems have no closed form solution and are generally solved
by iterative refinement. Often, linear least squares problems arise as subproblems in
each iteration, i.e., they are solved in order to approximate the nonlinear system.
In fact, all of the algorithms for NLLS discussed in Section 4 utilize LLS at some
point in their iteration process.
Least squares problems may be the largest source of unconstrained optimization
problems. The main application of NLLS is data fitting, which is described in
the following section. LLS methods are not only powerful tools for solving NLLS
problems but are also quite impressive by themselves. They are frequently used as
they are a standard approach (alongside maximum likelihood estimation) in linear
regression, see Section 3.4.1.

6A matrix is said to be rank-deficient if it does not have full rank.
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3. NONLINEAR EQUATIONS AND LEAST SQUARES Data Fitting

3.3 Data Fitting

Least squares problems occur in data fitting, where we are attempting to fit model
functions to data. A typically fuzzy set is given by data (ti, yi), i = 1, . . .m, where
the data values yi have been sampled for ti of some independent variable t. The
observations yi may be subject to experimental error. We want to describe and
idealize the data set by a smooth curve with few parameters. Hence, it is desired
to choose a nonlinear model function φ(t, x) with n adjustable parameters x which
best fits the data. Usually, n is much smaller than the number of data points m.
If this were not the case, an arbitrary model could give a close but not necessarily
good fit. The most intuitive fitting is based on minimizing the sum of squares of
the residuals fi(x) := yi − φ(ti, x), i = 1, . . . ,m. That is, a least squares solution is
sought in the sense of minimizing f(x) in (3.3). The model function φ is valid if x∗

can be found such that f(x∗) is small.
So, the xi, i = 1, . . . n, are interpreted as parameters that need to be manipulated
in order to adjust φ to the data. We note that the nonlinearity in φ(t, x) refers to
nonlinearity in x. The above optimization problem therefore basically is a nonlinear
parameter estimation problem.
In practice, φ is a smooth function that can be formed from common basic functions.
Popular choices include low-degree polynomials, exponential functions, trigonometric
functions and linear functions.

Remark. The Euclidean norm ‖ · ‖2 as measure of the discrepancy between the model
and the observed data is justified by statistical considerations [2]. However, it may
happen that outliers in data may dominate the whole optimization problem. In
such cases, methods for nonlinear least squares become inefficient since they are
based on the premise that the residuals are small near the solution, see (3.6). There
are various other reasonable choices as how to minimize the fi(x). Most notable
are the applications of the 1-norm ‖ · ‖1 and the maximum norm ‖ · ‖∞, resulting
in nonsmooth least absolute value and least maximum value (minimax) problems,
respectively [14, p. 96–97]. These problems are not within the scope of this thesis.

The discussed least squares fitting is perhaps the most used technique by data
analysts, engineers and scientists to fit a function to data without any assumptions
about probability distributions. Because of its interdisciplinary popularity, one may
encounter different notations for the same problem. Many data fitting problems are
stated in the convention used by statisticians, with n being the sample size and p the
number of parameters. That is, we want to find a parameter vector θ ∈ R

p, p≪ n,
such that the residual sum of squares (RSS)

Q(θ) :=
n
∑

i=1

(

yi − fi(θ)
)2

(3.12)

is minimal. We denote the n given data points by (xi, yi), xi ∈ R
m, yi ∈ R, m ≥ 1,

where the xi and the yi are components of the explanatory vector x and the observed
data vector y, respectively. The model f : Rp → R

n is called response function and
we write fi(θ) = f(xi, θ) for the i-th component of the vector f(x, θ). Once f is
chosen, the residuals ri := yi − fi(θ) are functions of θ only.
In data analysis, regression models are often used to express the relationship between
dependent variables and independent variables.
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3.4 Regression

In many applications, some subset of variables may be characterized as dependent on
some other subset of independent variables. Often, a complete data set is given by a
single data vector y ∈ R

n and we seek to understand its dependence on the other
variables. In regression, dependence refers to a stochastic relationship, i.e., we assume
that at least one of the variables yi ∈ R is random, being subject to unexplained
fluctuations or measurement error. The independent variables xi ∈ R

m, m ≥ 1,
usually called regressors, features, predictors or explanatory variables, are used to
explain or predict the behavior of the dependent variable yi, also known as response
or outcome variable. A regression model aims to express this relationship by some
function F , i.e.,

yi ≈ F (xi) (3.13)

with desirable small data error, also referred to as noise,

εi := yi − F (xi).

The explanatory variables xi can be random or fixed, e.g., controlled by the ex-
perimenter. Hence, using the regression function F on the xi, the response yi can
then be predicted or measured. The task in regression is to find a function F for
which (3.13) holds as closely as possible. Sometimes, the mathematical form of the
functional relation is known, except for some unknown parameters. Then (3.13) can
be written as

yi = F (xi, θ) + εi,

where F is entirely known but the parameters θ = (θ1, θ2, . . . , θp)
T, p ≤ n, are

unknown and need to be estimated. For n data points (xi, yi) we thus find the model

y = F (X, θ) + ε, (3.14)

where y ∈ R
n, X ∈ R

n×m is a design matrix 7 of n predictors xi ∈ R
m, θ ∈ R

p and
ε ∈ R

n represents the error term consisting of n data errors εi ∈ R. The errors εi are
random variables which may or may not be uncorrelated and normally distributed
with zero mean and constant variance. If the regression function F is nonlinear in
the parameters θ, relationship (3.14) is called nonlinear regression model.
Typically, we have little or no idea about the underlying data generating process; but
we always assume that a true relationship in the sense of (3.14) exists, i.e., that y
can be perfectly fitted by some regression function F with a true parameter vector θ∗.
Thus, finding a proper regression model often reduces to estimating the parameters.

In general, there exist no explicit formulas for the computation of the unknown θ
in (3.14), i.e., usually iterative procedures are required. Least squares fitting is
perhaps the most popular method for the estimation of these parameters. That
is, the RSS (3.12) is minimized subject to θ, with f being the known regression

function F or a fitting model. The minimizer θ̂, i.e., the estimated parameter vector
which gives the best fit to the data, is known as least squares estimator.

7A design matrix X is defined such that Xij represents the value of the j-th variable associated
with the i-th object.

39



3. NONLINEAR EQUATIONS AND LEAST SQUARES Regression

Remark. Suppose that we want to fit data according to the regression model (3.13), i.e.,

yi = F (xi) + εi.

The choice of the model function f for least squares fitting depends on the observed
data and the precise goal of the experimenter. Often, f is an approximation to, or
equal to, the regression function F ; but it may also be chosen arbitrarily to allow for
different approaches or numerically stable computations. If we take a closer look at
the residuals for a given function f , we find for i = 1, . . . , n that

ri = yi − f(xi, θ)

=
(

yi − F (xi)
)

+
(

F (xi)− f(xi, θ)
)

= εi +
(

F (xi)− f(xi, θ)
)

.

The approximation error F (xi)−f(xi, θ) represents the discrepancy between F and f
at xi. Hence, f(x, θ) is considered to be a good fitting model if the approximation
errors and the noise terms εi are about the same size.
Furthermore, it is important to note that even if F (x) and f(x, θ) have the same
form, there is no guarantee that the estimated parameters θ used in f(x, θ) will be
identical to those underlying the regression function F (x) [19, p. 5].

The error term in regression models is often assumed to be normally distributed
because many physical phenomena follow a normal distribution. A constant variance
implies a constant spread of errors; whereas uncorrelated εi with zero mean ensure
that the generated noise is purely random. Least squares fitting generally works well
with data following a normal distribution. This is because the occurrence of large
noise terms is rather exceptional and, as we have seen on page 34, the strength of
methods for least squares are problems with small residuals.

3.4.1 Linear regression

In linear regression, the relationship between the variables is expressed as

yi ≈ β1xi1 + β2xi2 + · · ·+ βpxip, (3.15)

where now θ = (β1, β2, . . . , βp)
T and xij denotes the j-th independent variable of

the i-th observation xi ∈ R
p, i.e., m = p. Here, the important requirement is

linearity in the parameters, not the regressors. That is, the xi might include powers
or transformations of the original measurements, e.g., xij = z2 or xij = log(z).
If xi1 = 1, i = 1, . . . , n, then we call the corresponding coefficient β1 the regression
intercept.
For a given set of n observations (xi, yi), a linear regression model can be written as

y = Xβ + ε, (3.16)

where y ∈ R
n, X ∈ R

n×p is a design matrix of n predictors xi ∈ R
p, β ∈ R

p is the
vector of coefficients β1, . . . βp and ε ∈ R

n is a random vector representing the noise.
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The most familiar linear regression model assumes that n > p and that ε is uncorre-
lated and normally distributed with zero mean and constant variance.
Estimating the unknown coefficients β of (3.16) by the use of a least squares fitting
is widely known as ordinary least squares (OLS). The problem takes the form

minimize
β ∈ R

p

∥

∥y −Xβ
∥

∥

2

2
, (3.17)

cf. (3.12). The minimizer β̂ of (3.17) is then called OLS estimator for β.
If n > p, we can express the linear relationship (3.15) for a complete data set as the
overdetermined system of equations

Xβ ≈ y.

The corresponding standard LLS problem (see Section 3.2.1) is equivalent to the
least squares fit (3.17). Hence, any OLS estimator must satisfy the normal equations

XTXβ = XTy. (3.18)

Furthermore, if X has full rank, (3.18) may be solved directly by a method for normal

equations. Because then, according to Theorem 3.1, the matrix XTX is invertible

and the unique OLS estimator β̂ for β can be computed as

β̂ = (XTX)−1XTy. (3.19)

Remark. The ordinary least squares method is a special case of the generalized
least squares (GLS) method, which can be applied to regression models with a
certain degree of correlation between distinct errors. GLS and maximum likelihood
estimation (MLE) are well explained in [47, p. 27–42].

Remark. The Gauss-Markov Theorem, e.g., stated and proven in [17, p. 115–116],
theoretically constitutes the need for least squares fitting in linear regression. If the
errors in (3.16) are uncorrelated with zero mean and constant variance and if the
matrix X is of full rank, it says that the OLS estimator (3.19) defined by the normal
equations is the best linear unbiased estimator (BLUE). Here, “best” is in the sense

of minimum variance of linear combinations aTβ̂, “linear” refers to the form of the

estimator β̂ = Ay and “unbiased” means that the expectation of the estimator is

that of the quantity to be estimated, i.e., E(β̂) = β.8 However, we point out that
under the same assumptions there exist biased estimators with smaller variance.

In this section, the importance of least square methods in nonlinear optimization
has been depicted, theoretical background has been given and a very prominent field
of application, data fitting, has been described. We will now proceed to the main
part of this thesis, where we study particular derivative-free techniques for solving
NLLS problems, i.e., for finding the roots of overdetermined (and well-determined)
systems of nonlinear equations.

8
E(X) denotes the expected value of the random variable X.
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4. ALGORITHMS

4 Algorithms

Two of the most popular techniques for unconstrained optimization of an objective
function in the nonlinear least squares sense (3.3) are the Gauss-Newton method

and the Levenberg-Marquardt algorithm. In this section, we present derivative-
free versions of these gradient-methods. The so called finite difference analogues

of the Gauss-Newton method and the Levenberg-Marquardt algorithm [6]
omit the computation of derivatives by using finite difference approximations instead.
Furthermore, we discuss a derivative-free procedure which does not even apply a
numerical approximation procedure for the derivatives. The DUD algorithm [44]
is a secant method that was specifically designed for data fitting applications
where the evaluation of the response function is rather expensive; e.g., for cases
where the response is determined by numerical integration over a defining system.
DUD (for Doesn’t Use Derivatives) can be understood as Gauss-Newton-like method
that makes efficient use of function evaluations.

This section is basically structured as follows:

• In each subsection, a method is introduced.

• First, the respective procedure is described.

• Then, additional information and mathematical theory is provided.

• Lastly, at the end of each subsection, implementation details are given.

The demonstrated algorithms are followed by pseudocodes, which essentially summa-
rize the key principles and omit programming language specific details. We note that
encountered loops may be replaced by more efficient techniques (e.g., vectorization)
in an actual computer program. In Appendix C, one can find full length MATLAB
implementations which relate to the depicted pseudocodes. Numerical results for the
considered algorithms are presented in Section 5. The literature sources for this part
of the work are [2, 6, 8, 9, 14, 22, 26, 40, 44, 46, 47, 50].
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4.1 Gauss-Newton Method

We consider the NLLS problem (3.3) and suppose that the components of F are
twice continuously differentiable functions. That is, we want to find x ∈ R

n such that

f(x) =
1

2

∥

∥F (x)
∥

∥

2

2
(4.1)

is minimal. The classical Newton method for unconstrained optimization (discussed
in Section 2 on page 19) seeks such a least squares solution along the Newton
direction (2.14) in each step. Hence, at iteration l of the algorithm, the point

xl+1 = xl − B−1
l gl (4.2)

is computed, where Bl = ∇2f(xl) is the Hessian and gl = ∇f(xl) the gradient at xl.
The particular form of f allows to rewrite (4.2) in terms of (3.5) and (3.6) as

xl+1 = xl −
[

J(xl)TJ(xl) +
m
∑

i=1

fi(x
l)∇2fi(x

l)
]−1

J(xl)TF (xl), (4.3)

where J denotes the Jacobian of F . We obtain the Gauss-Newton (GN) method by
simply ignoring the summation term in (4.3). That is, the Gauss-Newton step

xl+1 = xl −
[

J(xl)TJ(xl)
]−1

J(xl)TF (xl) (4.4)

does not contain any second order derivatives. The GN algorithm is therefore a
modification of the classical Newton method which replaces the Hessian in (4.2)

with Bl = Jl
TJl, where Jl = J(xl).

The GN method is the prime example of NLLS optimization algorithms as it takes
direct advantage of the special structure of the problems, as depicted in (3.7).

That is, the exorbitant cost of providing the full Hessian of f is avoided since JTJ is
considered to be a good approximation whenever the components of F , namely fi,
i = 1, . . . , m, are small or close to being linear. In the zero residual case, the
GN algorithm can keep up with the quadratic convergence of Newton’s method, see
Section 4.1.2. Hence, GN is just as good as Newton’s method near a solution of (3.3).
But it has the big advantage that it needs not to calculate second derivatives, which
results in less function evaluations and saves computational cost. So, the GN method
performs exceptionally well in most data fitting applications, where the residuals are
usually small and where function evaluation is often rather expensive.
However, the procedure has major drawbacks in efficiency and robustness for problems
with large residuals, rank-deficient or ill-conditioned design matrices; or for bad
choices of starting points. In general, we must expect linear convergence for GN,
see Section 4.1.2. Global convergence can only be proven under a uniform full rank
assumption on the Jacobian, meaning that Jl has full rank for every l in the region
of interest, see [40, p. 256]. So, if a program starts with a bad initial approximation,
it will be very slow and may not find a solution at all. If the residuals are large, the
Jacobian term no longer dominates the second order term in (3.6), i.e., the procedure
loses a big amount of derivative information and will thus likely fail to converge.
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A more natural way of deriving the GN method is based on Taylor Series expansion.
That is, we can find a tangent hyperplane approximation of the function F (x) at the

iteration point xl that has the form

F (x) ≈ F (xl) + J(xl)p, (4.5)

where p := x− xl. Hence, minimizing (4.1) corresponds to solving the LLS problem

minimize
p ∈ R

n

1

2

∥

∥

∥
J(xl)p+ F (xl)

∥

∥

∥

2

2
. (4.6)

This problem can be solved explicitly and its solution pl is given by the normal
equations (cf. (3.9))

J(xl)TJ(xl)pl = −J(xl)TF (xl), (4.7)

i.e.,

pl = −
[

J(xl)TJ(xl)
]−1

J(xl)TF (xl). (4.8)

Thus, the minimizer pl on the plane corresponds to the Gauss-Newton search direction.
Solving the GN step (4.4) is thereby the same as solving a LLS problem, so applying
the GN method is in effect applying a sequence of LLS fits to a nonlinear function.
If we assume that Jl = J(xl) has full rank, Jl

TJl is positive definite and, according

to Theorem 3.1, the GN direction pl is unique. Moreover, unless f(xl) is a stationary
point, it is a descent direction (see (2.9)). This immediately follows from the positive

definiteness of the inverse of Jl
TJl, as we find for gl = ∇f(xl) and F l = F (xl) that

gl
Tpl =

(

Jl
TF l
)

Tpl = −
(

Jl
TF l
)

T
(

Jl
TJl
)−1

Jl
TF l

> 0

< 0. (4.9)

Otherwise, if Jl does not have full rank, the GN step (4.4) is undefined and con-
dition (4.9) needs not hold. So, the sum of squares of the residuals (4.1) may not
decrease at every iteration. Furthermore, the solution of the normal equations (4.7)
is not unique and its computation is expensive as we cannot apply the standard
solvers, namely the method for normal equations or the method for least squares via
QR decomposition, discussed in Section 3.2.1.
If Jl is ill-conditioned, there are numerical problems in solving (4.6). Typically,

the matrix Jl
TJl has then very small eigenvalues. This may lead to extremely slow

convergence [47, p. 622–623] or even local divergence, as the strict lower bound
criteria for the spectrum in Theorem 4.4 of Section 4.2.2 cannot be met.
So, if rank-deficiency or ill-conditioning of the Jacobian is to be expected, one should
aim for a different optimization method; for example, the Levenberg-Marquardt
algorithm from Section 4.2, which is basically a more robust version of GN.

Remark. We notice that the standard GN method uses as stepsize α = 1. This
simplest form of GN works well for a large class of problems. However, as in Newton
methods, the damped Gauss-Newton algorithm uses an efficient line search procedure
which computes a stepsize parameter 0 < α < 1 in each step. Typically, α is
chosen such that it satisfies the sufficient descent condition (2.10). In fact, many
modifications of GN exist, most of which use different ways to compute α or aim to
improve the accuracy of the approximated Hessian.
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In practice, typically only the Jacobian J(x0) of the initial point x0 is known.
Analytic derivatives are unavailable and implementations of the Gauss-Newton
method require a procedure for the computation of J(x) in step 4 of the following
example Algorithm 1.

Algorithm 1 Gauss-Newton (GN)

Input: function F (x), Jacobian J(x) of F (x), initial approximation x0,
termination parameters tol, maxit

Output: approximate solution of NLLS problem (3.3)
Require: maxit ∈ N, 0 < tol ≪ 1
1: initialize x = x0;
2: for k = 1 to maxit do

3: evaluate F = F (x);
4: compute J = J(x);

5: solve JTJp = −JTF for p; ⊲ normal equations of minp

∥

∥Jp+ F
∥

∥

2

2
6: if ‖p‖ < tol then

7: break; ⊲ stop iteration if the stepsize is too small
8: end if

9: set x = x+ p;
10: end for

11: return x;

4.1.1 Finite difference analogue

The finite difference analogue of the Gauss-Newton method (FDGN) by Brown and
Dennis [6] uses finite differences to approximate the Jacobian in each iteration. More
precisely, it approximates J(x) by the corresponding matrix of difference quotients

∆F (x, h)

h
, (4.10)

where h ∈ R and ∆F (x, h) denotes the matrix whose ij-th component is given by

fi
(

x+ hej
)

− fi (x) ,

and ej is the vector with unity in the j-th position and zeros elsewhere. That is,
equation (4.4) transforms into the FDGN step

xl+1 = xl −
[

∆F (xl, hl)
T∆F (xl, hl)

h2
l

]−1
∆F (xl, hl)

T

hl

· F (xl), (4.11)

where hl ∈ R denotes the increment in iteration l. If h−1
l ∆F (xl, hl) has full rank and

unless f(xl) is a stationary point, step (4.11) is heading in a descent direction, cf. (4.9).
We will see that the employment of finite differences does not jeopardize the commonly
known convergence properties held by GN. The GN step (4.4) can be considered as
the special case of the FDGN step (4.11) with hl = 0, since it holds that

lim
hl→0

∆F (xl, hl)

hl

= J(xl). (4.12)
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Remark. (Forward differences) In Section 2.4.4, we have mentioned that it is a common
strategy to replace the gradient of a scalar function with forward differences (2.36),
yielding a truncation error that is O(h). So, since F : Rn → R

m is vector-valued, it is
reasonable to use the same idea to approximate the ij-th element Jij of J = J(x) by

Aij =
fi(x+ hej)− fi(x)

h
,

or equivalently, to approximate the j-th column J:j by

A:j =
F (x+ hej)− F (x)

h
. (4.13)

We can still expect a similar approximation error, as it is proven in [8, p. 78] that

∥

∥A:j − J:j
∥

∥ = O(h)

for sufficiently small h and an arbitrary vector norm. This ultimately gives the error

∥

∥A− J
∥

∥

1
= O(h),

where A := h−1∆F (x, h). This equality holds because the matrix 1-norm is the
maximum of the 1-norms of the columns of A− J .
Forward differences are prone to cancellation and rounding errors. Whereas rounding
errors are generally negligible [14, p. 128], cancellation errors need to be examined

closer. Hence, let us denote the computed function values of F by F̂ and assume that

F̂ (x) = F (x) + ǫ and F̂ (x+ hej) = F (x+ hej) + ǫh,

where ǫ and ǫh are the absolute errors in F at x and x+ hej , respectively. So, if the
inexact values are used in the difference quotient (4.13), we find

F̂ (x)− F̂ (x+ hej)

h
= A:j +

ǫ− ǫh
h

,

where (ǫ− ǫh)/h describes the cancellation error. Therefore, decreasing h will reduce
the truncation error but, unfortunately, will increase the cancellation error.
Furthermore, we notice that we require an additional evaluation of F in (4.13). That
is, we need n additional function evaluations for the approximation of the Jacobian.

The FDGN copes with the discrepancy concerning the truncation and cancellation
errors by decreasing the increment just enough so that the truncation error is reduced
to an acceptable level. In fact, the convergence theory for the FDGN (Theorem 4.6
in Section 4.2.2) dictates the choice for the finite-difference intervals in the iteration

process. More precisely, hl should be chosen as O
(

‖F (xl)‖
)

in iteration l, where ‖ · ‖
denotes an arbitrary vector norm.
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Algorithm 2 replaces the exact computation of the Jacobian J(x) in Algorithm 1 (GN)
with a forward difference approximation, whose implementation is explained in
Section 4.1.3.

Algorithm 2 Finite difference analogue of Gauss-Newton (FDGN)

Input: function F (x), initial approximation x0, termination parameters tol, maxit
Output: approximate solution of NLLS problem (3.3)
Require: maxit ∈ N, 0 < tol ≪ 1
Ensure: h is sufficiently small in each iteration - ideally |h| is O

(

‖F (x)‖
)

but δ is
used as safeguard to prevent absurd choices of h relative to the iterate x

1: initialize x = x0;
2: n← dim. of x;
3: m← dim. of F (x);
4: h, δ ← n-dim. zero vector;
5: J ← m× n zero matrix;
6: for k = 1 to maxit do

7: evaluate F = F (x);
⊲ finite difference approximation J = J(x) of the Jacobian of F (x)

8: for i = 1 to m do

9: for j = 1 to n do

10: if |xj| < 10 · √eps then

11: δj = 10−2 · √eps;
12: else

13: δj = 10−3 · |xj|;
14: end if

15: hj = min
(

‖F‖, δj
)

;
16: ej ← the j-th unit vector of dim. n;
17: compute the forward difference approximation

Jij =
Fi(x+ hjej)− Fi(x)

hj

;

18: end for

19: end for

20: solve JTJp = −JTF for p; ⊲ normal equations of minp

∥

∥Jp+ F
∥

∥

2

2
21: if ‖p‖ < tol then

22: break; ⊲ stop iteration if the stepsize is too small
23: end if

24: set x = x+ p;
25: end for

26: return x;
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4.1.2 Convergence analysis

The convergence analysis for the GN method and the FDGN is contained within
the theory of the Levenberg-Marquardt algorithm in Section 4.2.2. In particular,
Theorems 4.4 and 4.6 hold also for the FDGN, whereas Corollaries 4.5 and 4.7
correspond to GN. In short, it is shown that both converge locally with order at
least one. And whenever

|hl| = O
(

‖F (xl)‖
)

and
∥

∥F (xl)
∥

∥→ 0 as l →∞,

the FDGN is quadratically convergent. And, since the GN step is the special case of
the FDGN step with hl = 0 for every l, the GN method is quadratically convergent
whenever

∥

∥F (xl)
∥

∥→ 0 as l →∞.

A global convergence statement cannot be given, as both methods cannot guarantee
that all steps are taken in a descent direction, see page 45.

4.1.3 Implementation details

According to Theorem 4.6 on page 62, the increment hl should be chosen as

O
(

‖F (xl)‖
)

in each iteration l. However, this choice must be regulated in the

actual implementation of the FDGN algorithm to prevent absurd values of hl relative
to xl; e.g., suppose that ‖x0‖ = 0.001 and ‖F (x0)‖ = 1000. Therefore, we need to
implement the ij-th component of the matrix of difference quotients for step (4.11) as

fi
(

xl + (hl)jej
)

− fi(x
l)

(hl)j
,

where now hl ∈ R
n. This enables us to adjust the incremental change for each column

of the matrix. We let δl ∈ R
n and determine the j-th entry of hl by

(hl)j = min
(

‖F (xl)‖, δlj
)

, (4.14)

where

δlj =

{

10−2 · √eps if
∣

∣xl
j

∣

∣ < 10 · √eps,
10−3 ·

∣

∣xl
j

∣

∣ if
∣

∣xl
j

∣

∣ ≥ 10 · √eps. (4.15)

This definition of the (hl)j guarantees that the conditions of Theorem 4.6 will be
met as the algorithm approaches F (x∗) = 0. Although the theorem states that ‖ · ‖
in (4.14) can be taken as an arbitrary norm, we found that FDGN performs best for
the 2-norm. The number eps denotes the machine epsilon which in our case, using
double precision arithmetic and MATLAB, corresponds to

eps = 2−52 ≈ 2.22 · 10−16.

The value
√
eps has been found to be the optimal compromise for the truncation

and cancellation error dilemma in forward differences, see [43, p. 230].
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Therefore, (4.15) is just a slight, but noticeable modification of the initially proposed
rule by Brown and Dennis [6], who used (also for a double precision format)

δlj =

{

10−9 if
∣

∣xl
j

∣

∣ < 10−6,

10−3 ·
∣

∣xl
j

∣

∣ if
∣

∣xl
j

∣

∣ ≥ 10−6.

MATLAB offers a convenient way for solving the normal equations in step 5 of
Algorithm 1 and step 20 of Algorithm 2. As discussed in Section 3.2.1, the backslash

operator \ invokes an efficient Cholesky or LDL solver. That is, O(mn2 + n3

3
) opera-

tions are needed in order to solve the LLS problem. If JTJ does not have full rank,
the computation is performed regardless. However, a warning message is displayed
when the matrix is ill-conditioned or nearly singular. If that is the case and if the
procedure has not yet converged, it will most likely fail to do so.
The total cost of the GN method and the FDGN is usually dominated by the effort
spent on the calculation of the Jacobian and the finite difference approximation,
respectively. Computing the forward differences requires O(mn) operations but
also n+ 1 evaluations of F , which are typically quite expensive. Both algorithms
demand a user-supplied analytic Jacobian as input. But one would usually invoke a
backward-mode automatic differentiation procedure which needs O(1) evaluations
of F for computing J .
We found the value 10−5 to be satisfying for the step tolerance tol, as taking smaller
steps typically only results in marginal gain in accuracy for an immoderate expense.
Also, it is beneficial to implement an additional stopping criterion that terminates
the algorithm when a sufficiently good minimization (specified by the user) has been
achieved. Other practical ways to stop the methods include predefined limits for the
number of function evaluations and the algorithmic time.
The actual code of the MATLAB programs can be found as C.1 (GN) and C.2 (FDGN)
in Appendix C. In C.2, we got rid of the outer for-loop for the finite difference approx-
imation (see step 8 of Algorithm 2) by using vectorization. Both programs terminate
when the objective function is minimized or some user-defined maximum number of
function evaluations is reached.
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4.2 Levenberg-Marquardt Algorithm

The Gauss-Newton method and its finite difference analogue do not always converge
reliably. Often, problems are encountered when the second-order term in (3.6) is
significant or when the Jacobian or its finite difference approximation is rank deficient.
A method that eliminates these flaws is the Levenberg-Marquardt (LM) algorithm.
The LM step is basically a regularized version of the GN step (4.4). It has the form

xl+1 = xl −
[

µlI + J(xl)TJ(xl)
]−1

J(xl)TF (xl), (4.16)

where µl ∈ R is nonnegative and commonly known as damping parameter in the
literature. The idea of adding a regularization term to the diagonal of Jl

TJl was
initially proposed by Levenberg [27] and was later rediscovered by Marquardt [28].
The diagonal matrix µlI can be perceived as compensation for the lost information

m
∑

i=1

fi(x
l)∇2fi(x

l) (4.17)

in the Hessian approximation of the GN method, cf. (3.6) and (3.7). That is, the

LM algorithm is superior to GN when the residual F (xl) is large and not close to being

linear, because we can account for the omitted part (4.17) of the Hessian ∇2f(xl).

Furthermore, since Jl
TJl is at least positive semidefinite, the damping term µlI

causes the eigenvalues of µlI + Jl
TJl to be at least µl. So, whenever µl > 0, the

matrix µlI + Jl
TJl is positive definite and thus nonsingular. Hence, increasing

the damping parameter adds regularity to the matrix, making it arbitrarily well-
conditioned for sufficiently large µl. Accordingly, the LM algorithm can handle both
rank-deficient and ill-conditioned Jl

TJl, i.e., it is more robust than GN.
Performing the LM step (4.16) in iteration l of an algorithm is equivalent to solving

[

µlI + J(xl)TJ(xl)
]

p = −J(xl)TF (xl)

for p := xl+1 − xl. It is easy to see that these are the normal equations of the
LLS problem

minimize
p ∈ R

n

1

2

∥

∥

∥

∥

∥

∥

[√
µlI

J(xl)

]

p+

[

0

F (xl)

]

∥

∥

∥

∥

∥

∥

2

2

. (4.18)

If µl = 0, step (4.16) is simply the GN step and we refer to the discussion on page 45.

If µl > 0, the matrix µlI + Jl
TJl has full rank and, according to Theorem 3.1,

problem (4.18) has the unique solution

pl = −
[

µlI + J(xl)TJ(xl)
]−1

J(xl)TF (xl). (4.19)

Unless xl is a stationary point, pl is a descent direction. Due to the positive
definiteness of the inverse of µlI+Jl

TJl, we have for gl = ∇f(xl) and F l = F (xl) that

gl
Tpl =

(

Jl
TF l
)

Tpl = −
(

Jl
TF l
)

T
(

µlI + Jl
TJl
)−1

Jl
TF l

> 0

< 0. (4.20)
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The relationship (4.19) can also be expressed as
[

I +
1

µl

J(xl)TJ(xl)

]

pl = − 1

µl

J(xl)TF (xl).

If µl →∞, we see that the matrix on the LHS approximates the identity. Hence, for
very large µl we get

pl ≈ − 1

µl

∇f(xl),

which is the steepest descent direction with arbitrarily small stepsize 1/µl, see

page 18. Conversely, if µl → 0, the vector pl approaches the GN direction (4.8). The
LM algorithm can therefore be viewed as compromise between the method of steepest
descent and GN, i.e., linear local convergence is expected but it can be quadratic
near a solution, see Section 4.2.2. The behavior of the LM procedure heavily depends
on the particular choice of the damping parameter in each iteration, whose influence
may be summarized as follows:

• The regularization term µlI improves the reliability of the algorithm. It accounts
for the second order information of the Hessian ∇f(xl) and adds regularity to

the matrix Jl
TJl.

• A positive µl guarantees that the LM step is well defined and that pl is a
descent direction.

• If µl = 0, the LM algorithm performs a GN step which computes a direction
which may not be unique or a descent direction.

• So, changing µl changes the search direction pl, which interpolates between the
GN direction and the steepest descent direction.

• Changing µl also changes the step length ‖pl‖. As µl →∞, the step length tends

to zero. Thus, by choosing µl large enough, we can reduce the objective f(xl).

• However, values of µl which are too large, can lead to arbitrary slow linear
convergence.

Many different implementations of the LM algorithm exist. Various more or less
heuristic arguments for the choice of the damping parameters have been proposed.
A common practice is to adjust µl in every iteration by a rule which is based on the
past behavior of the algorithm. Typically, we want to choose a large value for µl

when we are far away from the minimum. As we get closer to a solution, the Hessian
tends to become positive definite, i.e., less regularization is necessary and we can
decrease µl.
Marquardt [28] presented the following strategy. We start with a small value for the

damping parameter, e.g., µl = 10−2. If, the computed search direction (4.19) leads to

f(xl + pl) < f(xl), (4.21)

we move on to the next iteration with xl+1 = xl + pl and set µl+1 = µl/ν for

some ν > 1. And if f(xl) does not decrease in iteration l, we gradually increase µl

by some factor, e.g., µl ← νµl, and recompute the direction pl until (4.21) holds.
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In this thesis, we aim to implement the LM algorithm with as few function calls as
possible. Marquardt’s strategy has the disadvantage that it may need additional
function evaluations per iteration in order to ensure that condition (4.21) holds. We
want to forgo this testing for descent in our implementation. Thus, it is desirable to
determine a proper value for µl a priori in each iteration. One way to do this is to adapt
the damping parameter to the magnitude of the current function value, i.e., by setting

µl = O
(

‖F (xl)‖
)

(4.22)

in iteration l. That is, when ‖F (xl)‖ is large, the method takes a small step in the

steepest descent direction. As the procedure nears a solution, ‖F (xl)‖ is usually
small and the method takes a large step in the GN direction. This effect can be
strengthened by fine-tuning the damping parameters, i.e., by multiplying µl with a
small or large factor when ‖F (xl)‖ is small or large, respectively. Consequently, it is

very likely that the iterates xl will form a descent sequence.
The choice (4.22) is not purely heuristic, as it is supported by theoretical arguments.
Brown and Dennis showed in [6] that (4.22) can guarantee local quadratic convergence
of the algorithm, see also Theorem 4.6 in Section 4.2.2.
The implementation details of the resulting Algorithm 3 are given in Section 4.1.3.

Algorithm 3 Levenberg-Marquardt (LM)

Input: function F (x), Jacobian J(x) of F (x), initial approximation x0,
termination parameters tol, maxit

Output: approximate solution of NLLS problem (3.3)
Require: maxit ∈ N, 0 < tol ≪ 1
Ensure: the damping parameter µ is O

(

‖F (x)‖
)

and 0 ≤ µ <∞ in each iteration
1: initialize x = x0;
2: n← dim. of x;
3: I ← n× n identity matrix;
4: for k = 1 to maxit do

5: evaluate F = F (x);
6: compute J = J(x);
7: if ‖F‖∞ ≥ 10 then ⊲ µ large → method of steepest descent
8: c = 10;
9: else if ‖F‖∞ ≤ 1 then ⊲ µ = 0→ Gauss-Newton method

10: c = 10−3;
11: else

12: c = 10−1;
13: end if

14: µ = c · ‖F‖∞;
15: solve (µI + JTJ)p = −JTF for p; ⊲ normal equations of (4.18)
16: if ‖p‖ < tol then

17: break; ⊲ stop iteration if the stepsize is too small
18: end if

19: set x = x+ p;
20: end for

21: return x;
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We note that Algorithm 3 may still generate iterates that do not fulfill the descent
condition (4.21). This can be fixed by incorporating a line search technique into LM.

That is, if pl is a solution of (4.18), we can determine a stepsize parameter αl ≥ 0 with

xl+1 = xl − αlp
l

such that (4.21) is guaranteed. This is particularly interesting when we want to
enforce the global convergence property of the algorithm, which is discussed on
page 62. However, searching for a proper αl results in additional function evaluations.
Thus, implementing a line search is somewhat counterproductive to our initial goal
of reducing function calls. And Algorithm 3 is very robust anyway, see Section 5.

Remark (Scaling). Alternative updating strategies for the LM algorithm often include
replacing the stabilizer matrix I in (4.16) with a diagonal matrix Dl. The idea behind
it is to introduce parameter dependence on the step direction. Each component of
the gradient can be scaled so that the method may take larger steps along directions
where the gradient is small, avoiding slow convergence. Marquardt [28] suggested

the choice Dl = diag(Jl
TJl), which makes the algorithm invariant to scaling. This

means that if the parameters xi of the problem were replaced by the parameters
x̃i = λixi for some scaling factors λi ∈ R, then the algorithm would generate the
same sequence of iterates of the values of f . Parameter scaling can be very useful,
however, it prevents the researcher from imposing the proper scale of measurements.
In addition, a parameter whose corresponding entry on the diagonal of Dl is small
decreases the damping effect, making the algorithm less robust.

Remark (LM as trust region method). The Levenberg-Marquardt algorithm can
also be implemented as trust region method, see page 16 or Moré [32]. In fact, this
technique was first described before the notion of a trust region did even exist.
For a spherical trust region, the subproblem to be solved at iteration l is

minimize
p ∈ R

n

1

2

∥

∥

∥
J(xl)p+ F (xl)

∥

∥

∥

2

2

subject to ‖p‖2 ≤ δl,

(4.23)

where δl > 0 is the trust region radius. That is, the quadratic model (cf. (2.13)) is

ql(p) =
1

2

∥

∥F (xl)
∥

∥

2

2

= f(xl)

+ pTJ(xl)TF (xl) +
1

2
pTJ(xl)TJ(xl)p,

i.e., Jl
TJl is used as Hessian approximation. The minimizer of (4.23) is characterized

as follows. When the solution pl of the GN normal equations (4.7) lies strictly inside

the ball of radius δl, i.e., when ‖pl‖ < δl, then it also solves the problem (4.23).

Otherwise, there exists a µ > 0 such that the minimum p̂l of (4.23) satisfies ‖p̂l‖ = δl
and

[

µlI + J(xl)TJ(xl)
]

p̂l = −J(xl)TF (xl).

The proof of this claim can be found in [40, p. 258–259]. Provided that the model is

accepted, the next iteration point is then chosen as xl+1 = xl + p̂l.
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The LM algorithm performs well in practice and has become a standard for the
optimization of medium-sized NLLS problems. Due to its robustness, it may find a
solution even when it starts very far from the minimum. However, for well-behaved
functions and for reasonable good starting parameters, the LM procedure usually
tends to be a bit slower than the GN method.
On large-residual problems, the linear convergence of the LM algorithm can be very
slow. Furthermore, if the residuals are large near a solution, both the LM and GN
methods will perform poorly, since then JTJ is a bad model of the Hessian. In such
a case, if applicable, a Newton or quasi-Newton method would be a better choice.
In terms of data fitting, the LM algorithm is especially useful when the data is not
well approximated by a model function. However, if the residuals are too large, the
function is probably a poor fit to the data and should be replaced by a better model.

4.2.1 Finite difference analogue

The finite difference analogue of the Levenberg-Marquardt algorithm (FDLM) follows
the same principle as the FDGN from Section 4.1.1. That is, contrary to the
LM algorithm, the FDLM uses forward differences to approximate the Jacobian in
each iteration. Hence, relationship (4.16) transforms into the FDLM step

xl+1 = xl −
[

µlI +
∆F (xl, hl)

T∆F (xl, hl)

h2
l

]−1
∆F (xl, hl)

T

hl

· F (xl), (4.24)

where
∆F (xl, hl)

hl

, hl ∈ R,

denotes the matrix of difference quotients (4.10) in iteration l. If µl = 0, equa-
tion (4.24) is simply the FDGN step (4.11). Whenever µl > 0, the matrix

µlI +
∆F (xl, hl)

T∆F (xl, hl)

h2
l

is positive definite and thus, unless f(xl) is a stationary point, step (4.24) is heading
in a descent direction, cf. (4.20). Because of (4.12), the LM step (4.16) can be
understood as the special case of the FDLM step (4.24) with hl = 0.

We refer to the discussion on page 47 for more information regarding the forward
difference approximation. Analogously to the FDGN, we set

hl = O
(

‖F (xl)‖
)

in iteration l of the FDLM, as this is in agreement with Theorem 4.6, which is
stated in the following Section 4.2.2. Furthermore, the same theorem indicates that
we should take the damping parameter as in the LM algorithm implementation,
namely as

µl = O
(

‖F (xl)‖
)

.

There is also an intuitive explanation for this choice, see page 53. Thus, Algorithm 4
basically incorporates the forward difference approximation from Algorithm 2 (FDGN)
and the damping strategy from Algorithm 3 (LM), see Section 4.2.3 for details.
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Algorithm 4 Finite difference Levenberg-Marquardt (FDLM)

Input: function F (x), initial approximation x0, termination parameters tol, maxit
Output: approximate solution of NLLS problem (3.3)
Require: maxit ∈ N, 0 < tol ≪ 1
Ensure: the damping parameter µ is O(‖F (x)‖) and 0 ≤ µ <∞ in each iteration,

h is sufficiently small in each iteration - ideally |h| is O
(

‖F (x)‖
)

but δ is used
as safeguard to prevent absurd choices of h relative to the iterate x

1: initialize x = x0;
2: n← dim. of x;
3: m← dim. of F (x);
4: h, δ ← n-dim. zero vector;
5: J ← m× n zero matrix;
6: for k = 1 to maxit do

7: evaluate F = F (x);
8: if ‖F‖∞ ≥ 10 then ⊲ µ large → method of steepest descent
9: c = 10;

10: else if ‖F‖∞ ≤ 1 then ⊲ µ = 0→ Gauss-Newton method
11: c = 10−3;
12: else

13: c = 10−1;
14: end if

15: µ = c · ‖F‖∞;
⊲ finite difference approximation J = J(x) of the Jacobian of F (x)

16: for i = 1 to m do

17: for j = 1 to n do

18: if |xj| < 10 · √eps then

19: δj = 10−2 · √eps;
20: else

21: δj = 10−3 · |xj|;
22: end if

23: hj = min(‖F‖, δj);
24: ej ← the j-th unit vector of dim. n;
25: compute the forward difference approximation

Jij =
Fi(x+ hjej)− Fi(x)

hj

;

26: end for

27: end for

28: solve (µI + JTJ)p = −JTF for p; ⊲ normal equations of (4.18)
29: if ‖p‖ < tol then

30: break; ⊲ stop iteration if the stepsize is too small
31: end if

32: set x = x+ p;
33: end for

34: return x;
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4.2.2 Convergence analysis

We are following [6] for the convergence analysis of the FDLM. The statements and
proofs also hold for the FDGN by merely setting the damping parameter µl to zero
whenever it occurs. We obtain the convergence properties of the LM and the GN
methods as immediate consequences.

In the following, we assume that ∆F (x,h)
h
→ J(x) as h→ 0. Hence, we may use the

notational convention ∆F (x,0)
0
≡ J(x) for the limit.

Lemma 4.1. Let F : Rn → R
m be continuously differentiable on some open and

convex set C ⊂ R
n. Then, for every x, y ∈ C it holds that

F (y)− F (x) =

∫ 1

0

J
(

x+ t(y − x)
)

(y − x) dt =

∫ y

x

J(z) dz.

Lemma 4.2. Let G : C ⊂ R
n → R

m×n, where C ⊂ R
n is an open and convex set

and let x, y ∈ C. Then, if G is integrable on the interval [x, y], it holds that

∥

∥

∥

∥

∫ 1

0

G
(

x+ t(y − x)
)

(y − x)dt

∥

∥

∥

∥

≤
∫ 1

0

∥

∥G
(

x+ t(y − x)
)

(y − x)
∥

∥ dt.

These two basic properties of the integral are verified in [8, p. 74–75] and we only
need them to prove the following statement.

Lemma 4.3. Let the Jacobian J of F be Lipschitz continuous on some open and
convex set C ⊂ R

n, i.e., there exists a constant L ≥ 0 such that

∥

∥J(x)− J(y)
∥

∥

2
≤ L

∥

∥x− y
∥

∥

2
, ∀x, y ∈ C. (4.25)

Then, for every x, y ∈ C it holds that

(i)
∥

∥J(x)T−J(y)T
∥

∥

2
≤ L

∥

∥x− y
∥

∥

2
,

(ii) there exist constants C, C̃ ≥ 0 such that

∥

∥J(x)− J(y)
∥

∥

1
≤ CL

∥

∥x− y
∥

∥

1
(4.26)

and ‖A‖2 ≤ C̃‖A‖1, where A ∈ R
m×n is some rectangular matrix, and

(iii)
∥

∥F (x)− F (y)− J(y)(x− y)
∥

∥

1
≤ CL

2

∥

∥x− y
∥

∥

2

1
.

Proof. (i) We show that the nonzero eigenvalues of AB and BA are the same for

matrices A ∈ R
m×n and B ∈ R

n×m. Let us suppose that v ∈ R
m is an eigenvector

of AB corresponding to some eigenvalue λ 6= 0. Then ABv = λv, Bv 6= 0 and

(BA)Bv = B(ABv) = λBv,
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so Bv is an eigenvector of BA corresponding to the same eigenvalue. Hence, by
setting B = AT we see that the matrices ATA and AAT have the same nonzero
eigenvalues. It is easy to show that ATA and AAT are positive semidefinite and thus

∥

∥A
∥

∥

2
=
√

λmax(ATA) =
√

λmax(AAT) =
∥

∥AT
∥

∥

2
, (4.27)

where λmax denotes the largest eigenvalue (see equation (A.1.1) in Appendix A). So,

∥

∥J(x)T−J(y)T
∥

∥

2
=
∥

∥J(x)− J(y)
∥

∥

2
, ∀x, y ∈ C.

(ii) Since the norms ‖·‖1 and ‖·‖2 are equivalent, we can find constants c̃, C̃ ≥ 0 with

c̃ ‖A‖1 ≤ ‖A‖2 ≤ C̃ ‖A‖1 , A ∈ R
m×n .

Moreover, we have for C ′, C ′′ ≥ 0 and by the Lipschitz continuity (4.25) of J that

∥

∥J(x)−J(y)
∥

∥

1
≤ C ′

∥

∥J(x)−J(y)
∥

∥

2
≤ C ′L

∥

∥x− y
∥

∥

2
≤ C ′′C ′

=: C

L
∥

∥x− y
∥

∥

1
, ∀x, y ∈ C.

(iii) In order to prove the inequality, we let x, y ∈ C and utilize the two auxiliary
results Lemma 4.1 and Lemma 4.2. Now, since J is Lipschitz on C, it is integrable
on the interval [x, y] and we find

∥

∥F (x)− F (y)− J(y)(x− y)
∥

∥

1
=

∥

∥

∥

∥

∫ x

y

J(z) dz − J(y)(x− y)

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∫ x

y

J(z)− J(y) dz

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∫ 1

0

[

J
(

y + t(x− y)
)

− J(y)
]

(x− y) dt

∥

∥

∥

∥

1

≤
∫ 1

0

∥

∥J
(

y + t(x− y)
)

− J(y)
∥

∥

1
·
∥

∥x− y
∥

∥

1
dt

(4.26)

≤ CL
∥

∥x− y
∥

∥

2

1

∫ 1

0

t dt

=
CL

2

∥

∥x− y
∥

∥

2

1
.

Theorem 4.4. Let the Jacobian J of F be Lipschitz continuous on some open and
convex set C ⊂ R

n, i.e., there exists a constant L ≥ 0 such that

∥

∥J(x)− J(y)
∥

∥

2
≤ L

∥

∥x− y
∥

∥

2
, ∀x, y ∈ C.

Furthermore, let

∇f(x∗) = J(x∗)TF (x∗) = 0

for some x∗ ∈ C. If L‖F (x∗)‖2 is a strict lower bound for the spectrum of J(x∗)TJ(x∗)
and µl is any bounded nonnegative sequence in R, then there exists a constant M > 0
such that if every |hl| ≤M and hl → 0 as l →∞, the FDLM converges locally to x∗.

Proof. For each x ∈ C, let λmin(x, h) denote the smallest eigenvalue of

∆F (x, h)T∆F (x, h)

h2
.

58



Levenberg-Marquardt Algorithm 4. ALGORITHMS

That is, we may identify the least eigenvalue of J(x∗)TJ(x∗) with λmin(x
∗, 0). By

assumption, we have

λmin(x
∗, 0) > L

∥

∥F (x∗)
∥

∥

2
≥ 0.

Hence, we can find an open, convex neighborhood S of x∗ with S ⊂ C and M ′ > 0

such that for all x ∈ S and |h| ≤M ′ :

λmin(x, h) ≥ λ :=
λmin(x

∗, 0) + L
∥

∥F (x∗)
∥

∥

2

2
.

Thus, λmin is a nonnegative and jointly continuous function of x ∈ S and h ∈ [−M ′,M ′].
By continuity, there exists a uniform bound B ≥ 0 with

∥

∥

∥

∥

∆F (x, h)T

h

∥

∥

∥

∥

2

≤ B, x ∈ S, |h| ≤M ′.

We consider the FDLM step (4.24) for |hl| ≤M ′ and define the absolute error in the

current iterate xl ∈ S as

ǫl :=
∥

∥xl − x∗
∥

∥

2
.

If we set

Rl := µlI +
∆F (xl, hl)

T∆F (xl, hl)

h2
l

,

we notice that the smallest eigenvalue of the square matrix Rl is

µl + λmin

(

xl, hl

)

≥ µl + λ > 0.

This implies that Rl is positive definite and thus invertible. The eigenvalues of the
inverse R−1

l are the reciprocals of the eigenvalues of Rl. And, since R−1
l is also

positive definite, its singular values coincide with its eigenvalues (see Appendix A).
Hence, we can bound its 2-norm:

1

µl + λmin(xl, hl)

(A.1.1)
=

∥

∥R−1
l

∥

∥

2
≤ 1

µl + λ
.

Moreover, the nonsingularity of Rl guarantees the existence of xl+1, the next iterate

obtained from (4.24). The line segment passing through the points
(

x∗, F (x∗)
)

and
(

xl, F (xl)
)

can be represented by the point-slope form

F (x∗)− F (xl) = J
(

xl − t(x∗ − xl)
)

(x∗ − xl),

where t ∈ (0, 1). Accordingly, the error ǫl+1 :=
∥

∥xl+1−x∗
∥

∥

2
can be bounded as follows:
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ǫl+1 =
∥

∥

∥
xl −R−1

l h−1
l ∆F (xl, hl)

TF (xl)− x∗
∥

∥

∥

2

=
∥

∥

∥
xl − x∗ −R−1

l h−1
l ∆F (xl, hl)

T

[

F (x∗) + J
(

xl − t(x∗ − xl)
)

(xl − x∗)
]∥

∥

∥

2

≤
∥

∥

∥

[

I −R−1
l h−1

l ∆F (xl, hl)
TJ
(

xl − t(x∗ − xl)
)

]

(xl − x∗)
∥

∥

∥

2

+
∥

∥

∥
−R−1

l h−1
l ∆F (xl, hl)

TF (x∗)
∥

∥

∥

2

≤
∥

∥R−1
l

∥

∥

2
·
∥

∥

∥Rl − h−1
l ∆F (xl, hl)

TJ
(

xl − t(x∗ − xl)
)

∥

∥

∥

2
·
∥

∥

∥
xl − x∗

∥

∥

∥

2

+
∥

∥R−1
l

∥

∥

2
·
∥

∥

∥
J(x∗)TF (x∗)

= 0

−h−1
l ∆F (xl, hl)

TF (x∗)
∥

∥

∥

2

≤ (µl + λ)−1

{

∥

∥

∥
Rl − h−1

l ∆F (xl, hl)
TJ
(

xl + t(x∗ − xl)
)

∥

∥

∥

2
· ǫl

+
∥

∥

∥
J(x∗)− h−1

l ∆F (xl, hl)
∥

∥

∥

2
·
∥

∥F (x∗)
∥

∥

2

}

= (µl + λ)−1

{

∥

∥

∥µlI + h−2
l ∆F (xl, hl)

Th−1
l ∆F (xl, hl)

− h−1
l ∆F (xl, hl)

T

[

J(xl)− J(xl)− J
(

xl + t(x∗ − xl)
)

]∥

∥

∥

2
· ǫl

+
∥

∥

∥
J(x∗)− J(xl) + J(xl)− h−1

l ∆F (xl, hl)
∥

∥

∥

2
·
∥

∥F (x∗)
∥

∥

2

}

≤ (µl + λ)−1

{

[

µl +B
∥

∥

∥
h−1
l ∆F (xl, hl)− J(xl)

∥

∥

∥

2

+B
∥

∥

∥
J(xl)− J

(

xl + t(x∗ − xl)
)

∥

∥

∥

2

]

· ǫl

+
[∥

∥

∥
J(x∗)− J(xl)

∥

∥

∥

2
+
∥

∥

∥
J(xl)− h−1

l ∆F (xl, hl)
∥

∥

∥

2

]

·
∥

∥F (x∗)
∥

∥

2

}

.

We note that we used the submultiplicative property of the induced matrix 2-norm,
relationship (4.27), ‖I‖2 = 1 and the preceding boundaries for the above estimation.
Furthermore, according to Lemma 4.3 (iii), we observe that

∥

∥

∥
∆F (xl, hl)− J(xl)hl

∥

∥

∥

1
≤ CL

2
|hl|2 .

Hence, if we also apply Lemma 4.3 (ii) and consider the Lipschitz continuity of J ,
we get for the error

ǫl+1 ≤ (µl + λ)−1

{

[

µl + 2−1BC̃CL |hl|+BL
∥

∥t(x∗ − xl)
∥

∥

2

]

ǫl

+
[

L
∥

∥xl − x∗
∥

∥

2
+ 2−1C̃CL |hl|

]

·
∥

∥F (x∗)
∥

∥

2

}

≤ (µl + λ)−1
[

µl + 2−1BC̃CL |hl|+BLǫl + L
∥

∥F (x∗)
∥

∥

2

]

ǫl (4.28)

+ 2−1(µl + λ)−1C̃CL|hl| ·
∥

∥F (x∗)
∥

∥

2
.
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Now, we select an even smaller neighborhood of x∗, namely N (x∗, r) ⊂ S with r > 0,
and M ′′ > 0 with M ′′ < M ′ such that

λmin(x
∗, 0)− L

∥

∥F (x∗)
∥

∥

2
> BC̃CLM ′′ + 2BLr.

Then
λ > 2−1BC̃CLM ′′ +BLr + L

∥

∥F (x∗)
∥

∥

2
,

which ensures that 0 ≤ δ < 1, where

δ := sup
l

(µl + λ)−1
[

µl + 2−1BC̃CLM ′′ +BLr + L
∥

∥F (x∗)
∥

∥

2

]

.

Let us choose M > 0 with M < M ′′ such that

M ≤ 2λ(1− δ)r

C̃CL
∥

∥F (x∗)
∥

∥

2

, for
∥

∥F (x∗)
∥

∥

2
6= 0, (4.29)

or

M ≤ 2(λ− BLr)

BC̃CL
, if

∥

∥F (x∗)
∥

∥

2
= 0. (4.30)

Finally, let us assume that we have ǫl ≤ r and |hl| ≤ M for l ≥ 0. From the
estimate (4.28), we obtain for the choice (4.29) that

ǫl+1 ≤ δǫl + (µl + λ)−1λ(1− δ)r ≤ δǫl + (1− δ)r,

and (4.30) yields

ǫl+1 ≤ (µl + λ)−1 [µl + λ− BLr +BLr] r = r.

That is, the error satisfies

ǫl+1 ≤ δǫl + (1− δ)r ≤ r,

which shows that the FDLM is locally well-defined. The convergence of xl to x∗, as
long as hl → 0, is explained as follows. We observe that the FDLM step (4.24) can
be rewritten as the first order linear difference equation

xl+1 − xl = −hl

[

h2
l µlI +∆F (xl, hl)

T∆F (xl, hl)
]−1

∆F (xl, hl)
TF (xl),

where the inhomogeneous part (the RHS) is a sequence converging to zero as l → ∞.
It is shown in [48] that the homogeneous part (the LHS) of the difference equation
must then converge to zero as well.

Corollary 4.5. Under the assumptions of Theorem 4.4, the LM algorithm converges
locally for any bounded nonnegative sequence µl in R and the order of convergence is
at least one.

Proof. The LM step (4.16) is the special case of the FDLM step (4.24) with hl = 0.
Consequently, M can be set to zero in Theorem 4.4 and thus (4.28) yields

ǫl+1 ≤ δǫl, 0 ≤ δ < 1,

where M ′′ = 0 in the definition of δ. Hence, the convergence is at least linear.
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Theorem 4.6. Let the Jacobian J of F be Lipschitz continuous with constant L ≥ 0
on some open and convex set C ⊂ R

n and let x∗ ∈ C with F (x∗) = 0. If µl is a
bounded nonnegative sequence in R, then there exists a constant M > 0 such that
if every |hl| ≤ M and hl → 0 as l → ∞, the FDLM converges locally to x∗. If µl

and |hl| are additionally O
(

‖F (xl)‖
)

, then the method is quadratically convergent.

Proof. The course of action is as in the proof of Theorem 4.4 until inequality (4.28).
Since x∗ is a zero of F , the estimate (4.28) reduces to

ǫl+1 ≤ (µl + λ)−1
[

µl + 2−1BC̃CL|hl|+BLǫl
]

ǫl. (4.31)

The local convergence is shown analogously by choosing M > 0 as in (4.30). In order

to see that the convergence is quadratic, we consider
∥

∥F (xl)
∥

∥

2
for xl ∈ N (x∗, r).

According to Taylor’s Theorem, we have

F (xl)− F (x∗) ≈ J(x∗)(xl − x∗),

and since there is a uniform upper bound on ‖J(x∗)‖2 for ‖x− x∗‖2 ≤ r, we find

∥

∥F (xl)
∥

∥

2
=
∥

∥F (xl)−F (x∗)

= 0

∥

∥

2

≤ sup
x

∥

∥J(x)
∥

∥

2

∥

∥xl − x∗
∥

∥

2

= ǫl

,
(4.32)

where x ∈ [xl, x∗] ⊂ N (x∗, r). By assumption, µl and |hl| are O
(

‖F (xl)‖
)

with

arbitrary vector norm ‖ · ‖. Hence, relationship (4.32) and the equivalence of norms

yield that they are also O(ǫl). So, it is easy to see from (4.31) that ǫl+1 = O(ǫ2l ).

Corollary 4.7. Under the assumptions of Theorem 4.6, the LM algorithm converges
quadratically.

Remark (Global convergence). For positive damping parameters, the LM algorithm
and the FDLM produce steps that are taken in directions of descent, see condi-
tion (4.20). The generated sequence of the xl may be descending if we are careful in
the choice of the nonnegative sequence µl. Furthermore, we can find a local solution
of the optimization problem by requiring that for C ⊂ R

n open and convex, x0 ∈ C,
the level set

C0 := {x ∈ C | f(x) ≤ f(x0)}
is in int C and bounded, see condition (A.3.3) from Theorem A.23 in Appendix A.

Now, if the xl form a descent sequence in C0 (which can be enforced by the imple-
mentation of a line search in LM or FDLM), then some subsequence is convergent to
a stationary point x∗ ∈ C0 of f by Proposition A.26 (i). If the respective algorithm
is locally convergent, then, as soon as some term of the convergent subsequence gets
sufficiently close to x∗, the entire sequence xl will converge to it.
This does generally not apply for the GN method and the FDGN because the
generation of a descent direction in each iteration cannot be guaranteed, see page 45.
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4.2.3 Implementation details

The LM algorithm, like the GN method, demands an user-supplied analytic Jacobian
as input. The forward difference approximation in each iteration of the FDLM is
implemented in the exact same way as for the FDGN, see Section 4.1.3.
In what follows, we describe the incorporation of the damping strategy from page 53
for the LM algorithm and the FDLM. The damping parameter µl needs to be

O
(

‖F (xl)‖
)

in iteration l of the respective method. This can be realized by choosing
a constant c > 0 such that

µl = c ·
∥

∥F (xl)
∥

∥.

Although the norm ‖ · ‖ can be chosen arbitrarily in order to satisfy the requirement
of Theorem 4.6, we found that the algorithms performed best for the maximum
norm ‖ · ‖∞. From a heuristic point of view this makes sense, since it yields a
smaller value for µl than the p-norms but µl is usually still large enough to ensure
a well-conditioned matrix µlI + Jl

TJl. That is, by choosing µl sufficiently but not
overly large we produce a more sensitive regularization. We recall that we aim to
use a relatively large value of µl when we are far from a solution, and then decrease

it significantly when we are close to it. This behavior is predefined by
∥

∥F (xl)
∥

∥

∞
,

but it turns out that we can speed up the convergence of the algorithms by properly
adjusting the factor c. Brown and Dennis [6] initially proposed the adaptive choice

c =















10 whenever 10 ≤
∥

∥F (xl)
∥

∥

∞
,

1 whenever 1 <
∥

∥F (xl)
∥

∥

∞
< 10,

10−1 whenever
∥

∥F (xl)
∥

∥

∞
≤ 1,

for double precision arithmetic. However, we could drastically increase the efficiency
of our MATLAB implementations by setting

c =















10 whenever 10 ≤
∥

∥F (xl)
∥

∥

∞
,

10−1 whenever 1 <
∥

∥F (xl)
∥

∥

∞
< 10,

10−3 whenever
∥

∥F (xl)
∥

∥

∞
≤ 1.

This slight adjustment tremendously impacts the overall performance of our pro-
grams. We tested the LM algorithm and the FDLM on the 35 test functions from
Section 5 with different starting points and, apart from a few exceptions, observed a
significant decrease in the number of iterations and function evaluations needed for
the minimization.
The normal equations in step 15 of Algorithm 3 and step 28 of Algorithm 4 are

solved by applying the backslash operator \ and require O(mn2 + n3

3
) operations,

see page 36. The FDLM needs O(mn) additional operations and n+ 1 evaluations
of F for the computation of the forward differences. The amount of extra work for
the LM algorithm depends on the invoked numerical differentiation procedure.
The actual code of the MATLAB implementations can be found as C.3 (LM) and
C.4 (FDLM) in Appendix C. In C.4, we got rid of the outer for-loop for the fi-
nite difference approximation (see step 16 of Algorithm 4) by using vectorization.
Both programs terminate when the objective function is minimized or some user-
defined maximum number of function evaluations is reached.
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4.3 DUD Algorithm

The algorithm DUD (for Doesn’t Use Derivatives), by Ralston and Jennrich [44],
was specifically designed for data fitting. That is, for problems where one seeks a
parameter vector θ ∈ R

p, p≪ n, such that the RSS (3.12), in vector notation

Q(θ) =
∥

∥y − f(θ)
∥

∥

2

2
, (4.33)

is minimal. We recall that y ∈ R
n represents the observed data and that f : Rp → R

n

is the response function whose components fi : R
p → R are the model predictions

corresponding to the i-th data point yi.
DUD can be thought of as a Gauss-Newton-like method, in the sense that it minimizes
the RSS (4.33) by solving a sequence of linear least square problems. However, instead
of approximating the nonlinear function f by its tangent function, DUD uses an
affine function for the linearization. More precisely, in iteration l of the GN method
the response f(θ), for θ close to the iterate θl, is approximated by the linear function

ℓ̃(θ) := f(θl) + J(θl)(θ − θl), (4.34)

cf. (4.5), where J now denotes the Jacobian of f . This equation describes the tangent

hyperplane to the surface f(θ) at θl. The next parameter θl+1 is then chosen to

minimize
∥

∥y − ℓ̃(θ)
∥

∥

2

2
, i.e., it is the point on the tangent hyperplane closest to y.

In contrast, DUD approximates the response f(θ) by a linear function ℓ that agrees
with f(θ) at p + 1 points. This describes a secant hyperplane to the surface f(θ).
The exact definition of the function ℓ : Rp → R

n is given in the following description
of iteration l of DUD, where we suppress the iteration index to improve the readability.

DUD maintains a current set of p+ 1 approximations to the estimator θ̂ ∈ R
p, the

minimizer of the RSS (4.33). These parameters, denoted by θ1, . . . , θp+1 ∈ R
p, have

been computed in previous iterations and are so that they span the parameter space.
The order of subscripts is from the oldest to the youngest, i.e., θ1 is the oldest member
of the current set, meaning that it has gone through the largest number of iterations of
the algorithm. DUD approximates f(θ) by a linear function ℓ(θ) that is equal to f(θ)
at θ1, . . . , θp+1. The parameter θnew ∈ R

p, which ideally reduces the RSS (4.33), is
determined by minimizing the distance between ℓ(θ) and y. Then, in order to obtain
the parameter set for the next iteration, one of the old members (if possible the old-
est) gets replaced by θnew (or optionally by a point on the line between θnew and θp+1).

Before we discuss the initialization of the parameter set and its detailed updating
strategy, we take a closer look at the computation of θnew in the current iteration.
Since θ1, . . . , θp+1 span the p-dimensional parameter space, it can be shown that the
vectors θi − θp+1, i = 1, . . . , p, are linearly independent and thus form a basis for Rp.
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Hence, any θ ∈ R
p can be expressed as

θ = θp+1 + θ − θp+1

∈ R
p

= θp+1 +

p
∑

i=1

αi(θi − θp+1)

= θp+1 +∆Θα, (4.35)

where α ∈ R
p and ∆Θ ∈ R

p×p is the matrix with i-th column θi − θp+1, i = 1, . . . , p.
Now, let

ℓ(θ) := f(θp+1) + ∆Fα, (4.36)

where ∆F ∈ R
n×p is the matrix with i-th column f(θi) − f(θp+1), i = 1, . . . , p.

Since θi, i = 1, . . . , p, can be expressed by choosing α in (4.35) as the i-th unit
vector. We observe that ℓ(θp+1) = f(θp+1) for α = 0 and if α is the i-th unit vector,
i.e., α = ei for i ∈ {1, . . . , p}, then

ℓ(θi) = f(θi).

Furthermore, by using (4.35) and the fact that ∆Θ is nonsingular by definition, we
can write (4.36) as

ℓ(θ) = f(θp+1) + ∆F∆Θ−1(θ − θp+1),

the secant hyperplane which passes through the points
(

θi, f(θi)
)

, i = 1, . . . , p+ 1.

That is, DUD basically replaces the Jacobian of the GN method by ∆F∆Θ−1,
cf. (4.34). In effect, DUD’s linear approximation (4.36) is written as the function
ℓ(α) dependent on α and the corresponding LLS problem of minimizing the distance

Q̃(α) =
∥

∥y − ℓ(α)
∥

∥

2

2

is solved. It is easy to see that this yields the normal equations (c.f. (3.9))

∆F T∆Fα = ∆F T
(

y − f(θp+1)
)

, (4.37)

whose solution is given by the linear least squares estimator

α̂ =
(

∆F T∆F
)−1

∆F T
(

y − f(θp+1)
)

. (4.38)

The parameter θnew is then obtained by setting α = α̂ in (4.35), i.e.,

θnew = θp+1 +∆Θα̂.

We can solve (4.37) by a method for normal equations, as explained in Section 3.2.1.

However, the matrix ∆F T∆F may not be positive definite. Ralston and Jennrich [44]
suggested computing (4.38) directly by employing Gauss-Jordan elimination with
pivoting as described in [22]. This method uses pivot tolerance in order to prevent a

full inversion of ∆F T∆F if the matrix is essentially singular. The order of pivoting is
determined by stepwise regression, which is described in more detail in Section 4.3.2.
This approach may produce a plausible estimate of α̂ even when ∆F T∆F is singular.
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Ideally, θnew reduces the RSS, i.e., it holds that

Q(θnew) < Q(θp+1), (4.39)

where θp+1 is the estimate computed in the previous iteration and thus the youngest
member of the parameter set. But similar to the GN method, condition (4.39) may
not be achieved without the employment of a line search. In fact, since derivatives
are not used, there is no guarantee that θnew even lies in a descent direction from θp+1.
DUD can attempt to find a new estimate which decreases the RSS by invoking a step
shortening procedure. A technique that has a good chance to find a better estimate
is to search the line between θnew and θp+1 in opposed directions. That is, we select

θnew = dθnew + (1− d)θp+1,

where d is the first member of the sequence

di =

{

1 for i = 0,

−(−1
2
)i for i = 1, . . . ,m,

(4.40)

in order that (4.39) is satisfied. If there is no such di, we keep the last found estimate,
i.e., the θnew which corresponds to d = dm. So if there is no improvement, this allows
us to take different optimization paths by varying the user supplied input m ∈ N.

Remark. With each additional iteration i a point on the line closer to θp+1 is chosen.
We observe that m not only determines the size and the direction of the partial step,
but also the number of additional function calls. If Q(θnew) > Q(θp+1), the RSS
needs to be computed for every new estimate found by the line search. However,
DUD was primarily intended for problems in which the cost of evaluating the response
function f , and hence the RSS, is exorbitant. If this is the case, the step shortening
procedure has to be used sparingly, i.e., it should only be invoked when the algorithm
would otherwise fail to converge.

DUD only demands a single user supplied starting parameter θp+1 ∈ R
p for the

initialization of the parameter set. For i = 1, . . . , p, the estimate θi is obtained
from θp+1 by displacing its i-th component by a user-definable nonzero number hi ∈ R

times the corresponding component of θp+1. This type of parameter generation
enables the user to construct p additional linearly independent initial vectors. Then,
the algorithm proceeds by computing the response f(θi) and subsequently the residual
sum of squares Q(θi) for each θi, i = 1, . . . , p + 1. Finally, the subscripts of these
vectors are relabeled according to the cost of the estimates, i.e., so that

Q(θ1) ≥ · · · ≥ Q(θp+1). (4.41)

That is, the initial parameter set is ordered from the worst to the best estimate.

Remark. We mentioned earlier that the order of subscripts is from the oldest to the
youngest in an iteration of DUD. That is, in subsequent iterations, the parameters are
not reordered in the sense of (4.41). Usually, the oldest parameter θ1 gets replaced
by θnew, which is then relabeled as θp+1. The subscripts of the remaining parameters
are simply reduced by one, which consequently defines the new parameter set.
We recall that θnew ideally does but needs not reduce the RSS. Hence, we notice that
relationship (4.41) may not hold in an arbitrary iteration of the algorithm.
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We now elaborate the exact updating strategy for the parameter set. The parameter
vector differences θi − θp+1, i = 1, . . . , p, used in (4.35) must be linearly independent
in order to ensure that the search does not collapse into a subplane of the parameter
space. Ralston and Jennrich [44] argue that, “Theoretically, if the current set of
parameter vector differences span the parameter space, then the new set will span it
also, if and only if the component of α corresponding to the discarded parameter
vector is nonzero.”
Most of the time, θnew replaces the oldest estimate θ1. However, if the component
of α corresponding to θ1 is close to being zero, two parameters of the set are replaced.
More precisely, if |α1| < 10−5 we first replace θi by θnew, where i is the first subscript

for which |αi| ≥ 10−5. Secondly, old members of the set are not retained indefinitely,
so θ1 is replaced by the estimate (θ1 + θnew)/2.

DUD repeats its iterations until a stopping criterion is satisfied, e.g., until the cost
function Q(θnew) is sufficiently small. We can summarize the algorithm as follows:

1. Generate p more vectors θ1, . . . , θp from the initial parameter θp+1.

2. Relabel the subscripts of these estimates so that Q(θ1) ≥ · · · ≥ Q(θp+1).

3. Generate the matrices ∆F and ∆Θ by computing

∆F:i = f(θi)− f(θp+1) and ∆Θ:i = θi − θp+1, i = 1, . . . , p.

4. Compute α =
(

∆F T∆F
)−1

∆F T
(

y − f(θp+1)
)

. Use a stepwise regression
modification of the Gauss-Jordan algorithm for matrix inversion in order to
prevent a full inversion of the matrix ∆F T∆F if it is essentially singular.

5. Set θnew = θp+1 +∆Θα. Optionally, if Q(θnew) ≥ Q(θp+1), attempt to find a
better estimate for θnew by employing the described line search.

6. Terminate the algorithm if a stopping criterion is met. Else, replace the oldest
estimate θ1 by θnew, relabel the parameters according to their age and go to 3.
Exception: If |α1| < 10−5, first replace θi by θnew, where i is the first index

with |αi| ≥ 10−5, and secondly replace θ1 by (θ1 + θnew)/2.

This is just a very rough outline of the procedure. The following pseudocode provides
a better insight on how to realize the implementation of DUD. Further important
notes can be found in Section 4.3.3, where the implementation details are given.

Algorithm 5 (DUD) treats the current parameter set simply as matrix Θ ∈ R
p×(p+1)

whose p+ 1 columns represent the parameter vectors θ1, . . . , θp+1. Accordingly, the
corresponding p + 1 function evaluations are then also stored in the columns of a

matrix, namely F ∈ R
n×(p+1). Step 21 of Algorithm 5 refers to Algorithm 7, which

is presented in Section 4.3.2. The step shortening procedure (steps 29–34) is only
executed if the user enters a positive integer, which determines the possible number
of searches (and thus iterations). The algorithm terminates if convergence occurs or
if a user specified maximum number of iterations is reached. DUD can also be used
to solve standard NLLS problems of the form (3.3) by simply observing that (4.33) is

Q(θ) =
∥

∥f(θ)
∥

∥

2

2

when no data is given.
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Algorithm 5 DUD

Input: function f(x, θ), initial parameter θp+1, vectors x and y given by the set of
data (xi, yi), i = 1, . . . , n, maximal number m of line searches per iteration,
vector h for additional parameter generation, termination parameters tol, maxit

Output: approximate solution of data fitting problem, i.e., minimizer of RSS of
the form (3.12); or, if no data (x, y) has been entered, approximate solution of
standard NLLS problem

Require: θp+1 ∈ R
p, h ∈ R

p, hi ∈ R \{0} ∀i, m ∈ N0, maxit ∈ N0, 0 < tol ≪ 1
Ensure: prevent full inversion of the matrix ∆F T∆F if it is essentially singular,

the parameters span the parameter space and should not remain indefinitely in
the parameter set - discard the oldest member in each iteration

1: p← dim. of θp+1;
2: n← dim. of f(x, θ);
3: Q← (p+ 1)-dim. zero vector; ⊲ storage for . . . ⊲ . . . different RSS
4: F ← n× (p+ 1) zero matrix; ⊲ . . . function evaluation
5: ∆F ← n× p zero matrix; ⊲ . . . function differences
6: ∆Θ← p× p zero matrix; ⊲ . . . parameter differences
7: Θ← p× (p+ 1) matrix where each column is θp+1;

⊲ generate p more initial parameters by displacing the i-th component of θp+1

8: for i = 1 to p do

9: Θii = Θii + hi; ⊲
10: end for

⊲ columns of Θ are the p+ 1 parameter vectors needed for starting
⊲ columns of F get the p+ 1 function evaluations needed for starting

11: for i = 1 to p+ 1 do

12: evaluate F:i = f(x,Θ:i);
13: compute Qi = ‖y − F:i‖22; ⊲ RSS for Θ:i is stored in Qi

14: end for

15: sort the entries of Q such that Q1 ≥ · · · ≥ Qp+1;
16: rearrange the columns of Θ and F according to the sorting order for Q;

⊲ the parameters Θ:i, i = 1, . . . , p + 1, are now arranged from worst to best,
i.e., so that Θ:1 corresponds to the highest RSS and Θ:p+1 to the lowest

17: θp+1 = Θ:p+1;
⊲ generate the matrix ∆F of function differences

18: for i = 1 to p do

19: ∆F:i = F:i − F:p+1;
20: end for

21: invoke Algorithm 7 to compute α =
(

∆F T∆F
)−1

∆F T(y − F:p+1);
⊲ the stepwise regression procedure prevents the inversion of the matrix ∆F T∆F
if it is essentially singular and computes an estimate of α
⊲ generate the matrix ∆Θ of parameter differences

22: for i = 1 to p do

23: ∆Θ:i = Θ:i − θp+1;
24: end for

25: compute θnew = θp+1 +∆Θα; ⊲ new parameter estimate
26: evaluate Fnew = f(x, θnew);
27: compute Qnew = ‖y − Fnew‖22;
28: l = 1;
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Algorithm 5 DUD

29: if Qnew ≥ Qp+1 and m ≥ l then ⊲ line search (requires m 6= 0)
30: d = −(−1/2)l;
31: θnew = dθnew + (1− d)θp+1;
32: perform steps 26 and 27;
33: l = l + 1;
34: end if

35: k = 1;
⊲ the algorithm stops now if convergence has been achieved, i.e., if Qnew < tol
⊲ the minimum number of function evaluations at this point is p+ 2

36: while k ≤ maxit and Qnew ≥ tol do

⊲ update the parameter matrix Θ (columns are numbered by age with Θ:p+1

being the newest member of the parameter set)
37: if |α1| ≥ 10−5 then ⊲ replace oldest member of Θ
38: Θ:1 = θnew;
39: F:1 = Fnew;
40: Q1 = Qnew;
41: else

42: find first index s with |αs| ≥ 10−5;
43: if no such s exists then ⊲ replace oldest member of Θ
44: compute Θ:1 = (Θ:1 + θnew)/2;
45: evaluate F:1 = f(x,Θ:1);
46: compute Q1 = ‖y − F:1‖22;
47: else ⊲ replace two members of Θ:
48: Θ:s = θnew; ⊲ first at column s . . .
49: F:s = Fnew;
50: Qs = Qnew;
51: shift columns as follows: Θ:p+1 ← Θ:s and Θ:i ← Θ:i+1 for i = s, . . . , p;
52: rearrange F and Q according to the shift;
53: perform steps 44–46; ⊲ . . . and then the oldest
54: end if

55: end if

56: shift columns as follows: Θ:p+1 ← Θ:1 and Θ:i ← Θ:i+1 for i = 1, . . . , p;
57: rearrange F and Q according to the shift;
58: perform steps 17–34; ⊲ compute estimate θnew
59: k = k + 1;
60: end while

61: return θnew;
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4.3.1 Gauss-Jordan inversion

Before we introduce the stepwise regression procedure [22] employed by DUD, we
need to understand the underlying Gauss-Jordan algorithm for matrix inversion.
If we want to invert a square matrix A with the classical Gauss-Jordan elimination
method, we have to augment A with the identity matrix I. This is not efficient since
additional storage is required and the computations must be performed on both
matrices. Here, we present an algorithm that simply overwrites A with A−1, which
we call in place or in situ matrix inversion. Because no augmentation is needed,
both memory and arithmetic operations can be saved.

Let A = (aij) ∈ R
n×n, b ∈ R

n and suppose that we want to solve the linear system

Ax = b (4.42)

for x ∈ R
n. If a11 6= 0, then we can solve the first equation of (4.42) for x1 and insert

the result into the remaining equations. This yields the linear system

ã11b1 + ã12x2 + · · ·+ ã1nxn = x1

ã21b1 + ã22x2 + · · ·+ ã2nxn = b2

...

ãn1b1 + ãn2x2 + · · ·+ ãnnxn = bn,

(4.43)

where

ã11 = 1/a11, ã1j = −a1j/a11, ãi1 = ai1/a11,

ãij = aij − ai1a1j/a11, i, j = 2, . . . , n.
(4.44)

In the next step, provided that ã22 6= 0, we can solve the second equation in (4.43)
for x2, which enables us to exchange the variables x2 and b2 in the other equations.
If we perform n such steps, we are left with the linear system

Āb = x,

where Ā denotes the transformed matrix. But this ultimately means that Ā = A−1,
i.e., the entries of the inverse matrix can be computed by performing n steps of the
form (4.44). This motivates the following definition, where (i, j) refers to the entry
in the i-th row and j-th column of some matrix.

Definition 4.8 (Gauss-Jordan pivot). Suppose that A = (aij) is a square matrix with
nonzero k-th diagonal element, i.e., akk 6= 0. Then, performing a Gauss-Jordan pivot,

or simply pivoting on akk or (k, k) results in a matrix Ã whose ij-th element is given by

ãij =























1/akk i = k, j = k

−aik/akk i 6= k, j = k

akj/akk i = k, j 6= k

aij − aikakj/akk i 6= k, j 6= k

.

The element akk of the matrix A before pivoting is referred to as the pivot.
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Remark. Definition 4.8 can be easily generalized so that performing a Gauss-Jordan
pivot on any nonzero entry of some arbitrary matrix is possible, see [2, p. 296].
However, this is not needed for our purpose. The Gauss-Jordan pivot applied to the
main diagonal (Definition 4.8) enjoys practicability in regression (see Section 4.3.2)
and is commonly known as sweep operator [3] in statistics. Pivoting on (k, k) is
therefore also referred to as pivoting or sweeping row k. However, we note that the
definition of the sweep operator is not consistent in the literature. Variations and
extensions of it can be found in [16].

The following two properties can be easily verified with Definition 4.8:

• A Gauss-Jordan pivot is its own inverse, i.e., pivoting on (k, k) twice leaves
the matrix unchanged.

• Gauss-Jordan pivots commute, i.e., provided that i 6= j, pivoting first on (i, i)
and then on (j, j) produces the same matrix as pivoting first on (j, j) and then
on (i, i).

For further analysis of Gauss-Jordan pivoting, we provide statements that are similar
to those of the slightly different exposition of the sweep operator in [26, pp. 96–98].

Proposition 4.9. Suppose that V = UA, where A ∈ R
n×n and U, V ∈ R

m×n. Then

V̂ = ÛÃ

after performing a Gauss-Jordan pivot on the k-th diagonal element of A, where

(i) Û coincides with U except that its k-th column Û:k is V:k,

(ii) V̂ coincides with V except that its k-th column V̂:k is U:k.

Proof. By assumption, the entries of V have the form

vjl =
n
∑

i=1

ujiail,

where j = 1, . . . ,m and l = 1, . . . , n. In particular, we find for the k-th column that

vjk = ujkakk +
∑

i 6=k

ujiaik.

After pivoting on akk,

v̂jk
(ii)
= ujk

=
1

akk

(

vjk −
∑

i 6=k

ujiaik

)

(i)
= ûjkãkk +

∑

i 6=k

ûjiãik

=
n
∑

i=1

ûjiãik.
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And for l 6= k,

v̂jl
(ii)
= vjl

= ujkakl +
∑

i 6=k

ujiail

=
1

akk

(

vjk −
∑

i 6=k

ujiaik

)

akl +
∑

i 6=k

ujiail

= vjk
akl
akk

+
∑

i 6=k

ujiail −
∑

i 6=k

ujiaik
akl
akk

(i)
= ûjkãkl +

∑

i 6=k

ûjiãil

=
n
∑

i=1

ûjiãil.

Hence, it holds that V̂ = ÛÃ.

Remark. We observe that if we pivot twice on (k, k), then again V = UA.

In the following, we denote by Ā the matrix which results from pivoting on a number
of diagonal entries of some original matrix A.

Proposition 4.10. Let the matrix A ∈ R
n×n be partitioned as

A =

[

A11 A12

A21 A22

]

,

where A11 ∈ R
m×m, m < n. If it is possible to pivot on all diagonal entries of A11

(meaning that no zeros are encountered), then the matrix A11 is nonsingular and the
result of pivoting on all of its diagonal entries is given by

Ā =

[

A−1
11 A−1

11 A12

−A21A
−1
11 A22 − A21A

−1
11 A12

]

.

In particular, if a matrix is pivoted on all of its diagonal entries, the result is its
inverse.

Proof. Pivoting on each diagonal entry of A11 once corresponds to repeatedly
(in fact m times) applying Proposition 4.9 to the matrix identity

[

A11 A12

A21 A22

]

V

=

[

I11 012

021 I22

]

U

[

A11 A12

A21 A22

]

A

,

which leads to
[

I11 A12

021 A22

]

=

[

A11 012

A21 I22

][

Ā11 Ā12

Ā21 Ā22

]

Ā

.
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This implies the equations

I11 = A11Ā11,

A12 = A11Ā12,

012 = A21Ā11 + Ā21,

A22 = A21Ā12 + Ā22.

Now, solving for the submatrices yields the claimed result

[

Ā11 Ā12

Ā21 Ā22

]

=

[

A−1
11 A−1

11 A12

−A21A
−1
11 A22 − A21A

−1
11 A12

]

.

Remark. Proposition 4.10 shows that pivoting on a matrix in block form follows the
same rules as pivoting on the matrix elementwise (cf. Definition 4.8). Furthermore,
if a matrix is singular, then for any order of pivoting at least one diagonal entry
becomes zero before all diagonal entries have been used as pivots.

The Gauss-Jordan in-place matrix inversion algorithm may be written as follows.
Let A ∈ R

n×n be the matrix to be inverted. For each pivot row k = 1, . . . , n repeat:

1. Let a = akk be the k-th diagonal element.

2. Divide the k-th row by a.

3. For every other row i 6= k, let b = aik be the i-th element of the k-th column.
Subtract b× row k from row i. Then set aik = −b/a.

4. Set akk = 1/a.

An important issue in Gauss-Jordan elimination is the nonzero requirement of the
current pivot. If it were zero, carrying out steps 2–4 of the algorithm would cause
the procedure to fail. If the pivot is nonzero but very small, then performing the
divisions usually results in significant rounding error which prevents the inversion
from being successful. In order to cope with this problem, we may use some strategy
for changing the pivoting order of the algorithm. Problematic pivots can be detected
by checking the diagonal elements of a matrix for their tolerance, see Definition 4.11.

Definition 4.11. Let A ∈ R
n×n and denote by ākk the value of the k-th diagonal

entry of the matrix after pivoting on a number of other diagonal entries. We call the
ratio ākk/akk the tolerance of the k-th diagonal element at this state.

Remark. The tolerance of the k-th diagonal element, in a sense, measures its precision
since ākk is obtained from akk by a sequence of operations. The precision of the
entire matrix may be destroyed if an element with low tolerance is chosen as pivot.
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Since Gauss-Jordan pivots commute, we can change the order of pivoting to increase
the stability of the algorithm. If we select pivots with larger tolerance first, the
numerical precision of the matrix may be conserved throughout the process.

Algorithm 6 employs the partial pivoting strategy. That is, in each iteration the
pivot is selected as the diagonal element that has the largest absolute value among
all unpivoted diagonal elements. Even though this increases the numerical stability,
the algorithm is clearly not capable of handling matrices whose diagonal is zero.
Nevertheless, it performs well for diagonally dominant, positive definite and negative
definite matrices.

Algorithm 6 Gauss-Jordan in-place matrix inversion

Input: square matrix A
Output: inverse of A
Require: A is nonsingular and its diagonal contains nonzero entries,

the condition number of A must not be large, e.g., κ(A) < 1/
√
eps

Ensure: select the unpivoted diagonal entry that has largest absolute value as pivot
1: n← number of rows/columns of A;
2: R ← {1, . . . , n} ⊲ set of indices for unpivoted rows
3: for j = 1 to n do

4: k ← index that corresponds to maxr∈R |Arr|;
5: remove index k from R;
6: a = Akk;
7: Ak: = Ak:/a; ⊲ divide row k by Akk

8: for i = 1 to n do

9: if i 6= k then ⊲ for every row i 6= k
10: b = Aik;
11: Ai: = Ai: − b · Ak:; ⊲ subtract Aik × row k from row i
12: Aik = −b/a; ⊲ set Aik = −Aik/Akk

13: end if

14: end for

15: Akk = Akk/a; ⊲ set Akk = 1/Akk

16: end for

17: return A; ⊲ A is now A−1

This algorithm performs n Gauss-Jordan pivots, each of which requires O(2n2) arith-

metic operations. That is, the total associated work is O
(

2n3
)

. Hence, it performs

roughly 4/3 times faster than Gaussian elimination with augmentation and backward

substitution, which costs approximately O
(

8
3
n3
)

, see [5, p. 183]. And we recall that
it just requires a single matrix for storing both the coefficient matrix and its inverse.

Remark. Bauer and Reinsch [50, p. 45–49] provided an efficient in situ Gauss-Jordan
algorithm for the inversion of positive definite matrices. It exploits the symmetry of
the matrix by operating only on its lower triangular part, which is stored row by
row in a separate working vector. Hence, it requires approximately only one-half of
the work of Algorithm 6. However, it fails when it encounters pivot zeros and has a
predefined pivoting order. Therefore, it is not suited as basis for stepwise regression.
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The matrix ∆F T∆F in equation (4.38) of an iteration of DUD is positive semidefinite
per construction but may not be positive definite, i.e., not invertible. Furthermore,
we recall equation (3.10) and note that the condition number of ∆F T∆F is the
square of the condition of ∆F , so any ill-conditioning is exacerbated. However, if
∆F T∆F is singular or ill-conditioned, we still want to be able to provide an estimate
for α̂ in (4.38). This can be achieved by modifying Algorithm 6 so that the pivoting
follows the order given by stepwise regression and by letting elements with low
tolerance remain unpivoted, which consequently prevents the matrix from being fully
inverted.

4.3.2 Stepwise regression

In this section, we present stepwise regression based on Gauss-Jordan elimination
as proposed in [22]. Suppose that we are given a linear regression model of the

form (3.16) with n > p. That is, y ∈ R
n denotes the dependent variable and X ∈ R

n×p

is a design matrix whose columns X:i are the independent variables xi, i = 1, . . . , n.
Then, regressing on y on the set of variables x1, . . . , xp refers to the linear relationship

y ≈ β1x1 + β2x2 + . . . βpxp,

where β ∈ R
p (cf. (3.15)). The goal is to find an estimate for the β which minimizes

∥

∥y −Xβ
∥

∥

2

2
, (4.45)

the residual sum of squares. For this purpose, let us form the (p+1)× (p+1) matrix

C :=

[

XTX XTy

yTX yTy

]

. (4.46)

If we assume that X has full column rank, XTX is nonsingular and, according to
Proposition 4.10, pivoting on each of its diagonal entries results in the matrix

C̄ =

[

(XTX)−1 (XTX)−1XTy

−yTX(XTX)−1 yTy − yTX(XTX)−1XTy

]

. (4.47)

Hence, apart from calculating the inverse of the matrix of cross products XTX,
pivoting allows for the simultaneous computation of the unique OLS estimator of β,

β̂ = (XTX)−1XTy,

and its corresponding RSS, as
∥

∥y −Xβ̂
∥

∥

2

2
= (y −Xβ̂)T(y −Xβ̂)

= (y −X(XTX)−1XTy)T(y −X(XTX)−1XTy)

= yTy − yTX(XTX)−1XTy − yTX(XTX)−1XTy

+ yTX(XTX)−1 XTX(XTX)−1

= I

XTy

= yTy − yTX(XTX)−1XTy.

(4.48)
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Furthermore, we observe that the term in the lower left part of the matrix C̄ is −β̂T.

Remark. We emphasize that, after pivoting on all diagonal entries of XTX, the vector

β̂ contains the regression coefficients β̂i for the variables xi, i = 1, . . . , p. That is, we
find the linear regression model

ŷ = β̂1x1 + · · ·+ β̂pxp

and
∥

∥y − ŷ
∥

∥

2

2
=
∥

∥y −Xβ̂
∥

∥

2

2

is the residual sum of squares which results from regressing y on all the x-variables.

Now, if XTX is singular (or ill-conditioned), it cannot be converted (with satisfactory
numerical accuracy) but we may still be able to find an adequate estimate for β
through pivoting. We simply utilize the fact that we do not need to regress y on the
whole set of x-variables, namely X, in order to achieve a satisfying regression fit.
In stepwise regression we select one variable at a time from the set of x-variables X
to add to (or remove from) the regression model. The Gauss-Jordan algorithm
is particularly well-suited for this technique since pivoting on the i-th diagonal
entry of XTX corresponds to adding the variable xi, i = 1, . . . , p, to the regression.
Hence, since a Gauss-Jordan pivot is its own inverse, pivoting again on the i-th
diagonal entry removes the corresponding predictor from the model. Let us illustrate
this principle with the following example.

Example. Suppose that we have 2 independent variables x1 and x2, i.e., X ∈ R
n×2,

and that x1
Tx1 6= 0. We start by forming the matrix









x1
Tx1 x1

Tx2 x1
Ty

x2
Tx1 x2

Tx2 x2
Ty

yTx1 yTx2 yTy









and want to regress the dependent variable y on x1. This can be achieved by
performing a Gauss-Jordan pivot on the first diagonal entry (1, 1), which results in
the matrix








(x1
Tx1)

−1 (x1
Tx1)

−1x1
Tx2 (x1

Tx1)
−1x1

Ty

−x2
Tx1(x1

Tx1)
−1 x2

Tx2 − x2
Tx1(x1

Tx1)
−1x1

Tx2 x2
Ty − x2

Tx1(x1
Tx1)

−1x1
Ty

−yTx1(x1
Tx1)

−1 yTx2 − yTx1(x1
Tx1)

−1x1
Tx2 yTy − yTx1(x1

Tx1)
−1x1

Ty









.

If we treat x2, the variable that is not added to the regression, as dependent variable,
then this matrix may be rewritten as









(x1
Tx1)

−1 β̂x2|x1
β̂y|x1

−β̂T
x2|x1

‖x2 − x̂2‖22 (x2 − x̂2)
T(y − ŷ)

−β̂T
y|x1

(y − ŷ)T(x2 − x̂2) ‖y − ŷ‖22









, (4.49)

where, for example, β̂y|x1
= (x1

Tx1)
−1x1

Ty and ŷ = x1β̂y|x1
= x1(x1

Tx1)
−1x1

Ty,
which shows that we regressed y on the variable x1. We may now also add x2 to
the model in order to expand the regression to y ≈ x1β1 + x2β2. Provided that X is
nonsingular, pivoting on the corresponding entry (2, 2) of the above matrix yields
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







[

x1
Tx1 x1

Tx2

x2
Tx1 x2

Tx2

]−1

β̂y|x1x2

−β̂T
y|x1x2

‖y − ŷ‖2









,

which is of the form (4.47) and where ŷ = Xβ̂y|x1x2
is now the expanded model.

If X were singular, the diagonal entry (2, 2) of the matrix (4.49) would be zero and,
consequently, we could not add x2 to the regression.

Remark. This example shows that it makes sense to consider all independent variables
that are not currently in the regression equation as dependent variables. Furthermore,
at each step, the current regression coefficients and the corresponding residual sum
of squares are immediately available. A step is easily reversed by pivoting again.

For our goal, we start with the matrix C (4.46) and proceed by adding variables to the
regression only, which is called forward selection. In backward elimination, one would
start with the matrix C̄ (4.47), which corresponds to the model with all predictors,
and would proceed by successively removing the variables from the regression.

In the first step of the stepwise regression procedure, we choose the independent
variable for which we want to start the regression with, say xk. That is, we pivot on

the k-th diagonal element of the matrix C which results in the matrix C̃, where

c̃ij =























1/ckk i = k, j = k

−cik/ckk i 6= k, j = k

ckj/ckk i = k, j 6= k

cij − cikckj/ckk i 6= k, j 6= k

.

The elements c̃k,p+1 and c̃p+1,p+1 are the regression coefficient and the RSS for pre-
dicting the dependent variable y from xk, respectively.
In step two, we choose a different independent variable xl, l 6= k, and pivot on the l-th

diagonal element of C̃. At this stage, the entry (p+1, p+1) of the new matrix contains
the RSS from regressing y on both the variables xk and xl; the entries (k, p + 1)
and (l, p+1) are the regression coefficients for predicting y from xk and xl, respectively.

At an arbitrary step, we suppose that Gauss-Jordan pivots have been performed for
the variables x1, . . . , xr. That is, according to Proposition 4.10, we find the matrix

C̄ =

[

A B

−BT S

]

(4.50)

with A ∈ R
r×r, B ∈ R

r×q and S ∈ R
q×q, where q = p− r + 1. More precisely:

• A is the inverse of the cross products matrix of the variables that have been
added to the regression.
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• B contains the regression coefficients for predicting the variables xr+1, . . . , xp

and y from the independent variables x1, . . . , xr. That is, B has the form

B =
[

β̂xr+1|x1...xr
. . . β̂xp|x1...xr

β̂y|x1...xr

]

,

where, for example, the vector β̂y|x1...xr
contains the r coefficients for regressing

the dependent variable y on the first r variables.

• S is the sum of squares and of cross products (SSCP) matrix of residuals for
the unpivoted variables regressed on the variables that have been pivoted, i.e.,

S=















(xr+1 − x̂r+1)T(xr+1 − x̂r+1) . . . (xr+1 − x̂r+1)T(xp − x̂p) (xr+1 − x̂r+1)T(y − ŷ)

.

.

.
. . .

.

.

.
.
.
.

(xp − x̂p)T(xr+1 − x̂r+1) . . . (xp − x̂p)T(xp − x̂p) (xp − x̂p)T(y − ŷ)

(y − ŷ)T(xr+1 − x̂r+1) . . . (y − ŷ)T(xp − x̂p) (y − ŷ)T(y − ŷ)















.

The diagonal of S contains the current RSS for each such unpivoted variable.
In particular, the last diagonal element is the RSS of the dependent variable y
with

ŷ =
[

x1 . . . xr

]

β̂y|x1...xr
. (4.51)

We want to add the independent variable to the regression that provides the most
good for the prediction of y. This may be achieved by selecting the variable that
provides the greatest possible reduction in the RSS of y at the current stage.
The new regression model that would ensue if we add the independent variable xk,
k ∈ {r + 1, . . . , p}, to the current prediction (4.51) of y may be written as

ŷnew = ŷ + (xk − x̂k)β̂new,

where β̂new =
(

(xk− x̂k)
T(xk− x̂k)

)−1
(xk− x̂k)

T(y− ŷ) arises after pivoting and consti-

tutes the last entry of the vector of new regression coefficients β̂y|x1...xrxk
∈ R

r+1. Then

∥

∥y − ŷnew
∥

∥

2

2
=
∥

∥y − (ŷ + (xk − x̂k)β̂new)
∥

∥

2

2

=
∥

∥(y − ŷ)− (xk − x̂k)β̂new

∥

∥

2

2

cf. (4.48)
= (y − ŷ)T(y − ŷ)

− (y − ŷ)T(xk − x̂k)
(

(xk − x̂k)
T(xk − x̂k)

)−1
(xk − x̂k)

T(y − ŷ)

=
∥

∥y − ŷ
∥

∥

2

2
− (xk − x̂k)

T(y − ŷ)
(

∥

∥xk − x̂k

∥

∥

2

2

)−1

(xk − x̂k)
T(y − ŷ).

Hence, the reduction in the RSS
∥

∥y − ŷ
∥

∥

2

2
from entering the variable xk is the ratio

(

(xk − x̂k)
T(y − ŷ)

)2

∥

∥xk − x̂k

∥

∥

2

2

.
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Now, for i = r + 1, . . . , p, the diagonal element c̄ii of the matrix C̄ (4.50) is the RSS
which results from regressing xi on the variables x1, . . . , xr. The RSS for y at this
stage is c̄p+1,p+1 and we observe that its reduction from entering the variable xi is

c̄2i,p+1

c̄ii
, i = r + 1, . . . , p. (4.52)

We choose the independent variable that gives the greatest reduction in the residual
sum of squares of the dependent variable y. That is, we pivot on the i-th diagonal
element of C̄ whose index is the i which maximizes (4.52) among all the unpivoted c̄ii.
This constitutes the pivoting order for the whole stepwise regression procedure.

In each step of the process, the selected variable is only added to the regression if
the tolerance of the corresponding pivot (see Definition 4.11) is above a specified
threshold value. If the tolerance is low, it is very unlikely that the independent
variable in question contributes significantly to the prediction of y. Hence, diagonal
entries that violate the tolerance limit remain unpivoted. The process ends when no
pivot among the unpivoted diagonal entries satisfies the tolerance criterion. In effect,
this prevents the singular (or ill-conditioned) matrix XTX from being fully inverted.

Summarized, adding one independent variable at a time to the regression, the
variables are selected in the order that improves the prediction most, provided that
their entry does not do too much damage to the numerical precision of the results.
The current regression coefficients and the corresponding residual sum of squares are
readily available at each stage of the procedure.
Additional information on stepwise regression can be found in [46, p. 413–420].

Remark. Stepwise regression based on the Gauss-Jordan algorithm can also be applied
to multivariate regression problems, where the data vector y is replaced by a matrix
Y ∈ R

n×q whose q columns form a set of dependent variables, see Jennrich [22].

Algorithm 7 is aimed for finding an estimate of the coefficient vector for which (4.45)
is minimal. It employs the discussed stepwise regression procedure, i.e., it demands
as input some (p+1)× (p+1) matrix C of the form (4.46). Pivoting on the diagonal

entries of XTX adds variables to the regression model. Hence, after running the
program, the output vector β ∈ R

p contains the model coefficients of the variables
regressed upon. If the k-th diagonal entry (k ∈ {1, . . . , p}) has remained unpivoted
due to low tolerance, the independent variable xk is not in the final regression equation.
The algorithm accounts for this fact by setting βk = 0, which is realized as follows:

Let R denote the set of indices of the unpivoted rows and S the set of indices of
the pivoted rows (excluding row p+ 1). At any stage of the process, C̄ represents
the transformed input matrix C. The reduction in the RSS of y that would ensue if
row r were to be pivoted, i.e., if the variable xr were to be added to the regression, is

tr :=
c̄2r,p+1

c̄rr
, r ∈ R.

The tolerance of the pivot c̄rr at this stage is given by

tolr :=
c̄rr
crr

, r ∈ R.
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The matrix XTX is nonnegative, i.e., its diagonal elements are nonnegative and
they remain so after any number of pivoting by Definition 4.8. Hence, tolr is also
nonnegative. The output vector β is then obtained by performing the following steps:

1. Choose a small positive number T as threshold for the pivot tolerance.

2. Let R = {1, . . . , p} and let S be the empty set.

3. Among all indices r ∈ R, find the one, say r∗, for which tr is maximal and
tolr ≥ T is satisfied. Pivot on the r∗-th diagonal and transfer r∗ from R to S.

4. Repeat step 3 until there is no index r ∈ R with tolr ≥ T left. Finally, set

βi =

{

c̄i,p+1 for i ∈ S
0 for i ∈ R .

DUD employs the stepwise regression procedure in order to directly compute (4.38).
Suppose that we are given the assumptions made for DUD. Let us form the matrix

C(θ) :=

[

∆F T∆F ∆F T
(

y − f(θ)
)

(

y − f(θ)
)

T∆F
(

y − f(θ)
)

T
(

y − f(θ)
)

]

. (4.53)

Pivoting on all p diagonal entries of ∆F T∆F transforms the (p + 1)-th column
(excluding the last entry) of C(θ) into

(

∆F T∆F
)−1

∆F T
(

y − f(θ)
)

,

which, for θ = θp+1, is the linear least squares estimator α̂, the solution of (4.37).

If ∆F T∆F is essentially singular, the procedure prevents the matrix from being fully
inverted. Let C̄(θ) denote the matrix which results from performing Gauss-Jordan

pivots on the diagonal of ∆F T∆F in the order specified by stepwise regression. Then,
the program computes the vector α ∈ R

p whose components are given by

αi =

{

c̄i,p+1 if ∆F T∆F has been pivoted on its i-th diagonal element

0 otherwise
.

For θ = θp+1, this is an approximation of α̂ in (4.38). Thus, the invocation of
Algorithm 7 in step 21 of Algorithm 5 is carried out with the input matrix C(θp+1).
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Algorithm 7 Stepwise regression based on Gauss-Jordan pivots

Input: matrix C of the form (4.46), tolerance threshold T
Output: coefficient vector β
Require: 0 < T ≪ 1
Ensure: provided that the tolerance criterion is met, select the unpivoted diagonal

element that gives the greatest reduction in the current RSS of y as pivot
1: d← number of rows/columns of C;
2: p = d− 1;
3: β ← p-dim. zero vector ⊲ storage for regression coefficients
4: v ← first p diagonal values of C; ⊲ initial diagonal for pivot tolerance
5: R ← {1, . . . , p}
6: S ← empty set
7: for j = 1 to p do

8: for r in R do ⊲ compute the reduction(s) in the RSS of y
9: tr = C2

rd/Crr;
10: end for

11: k ← index that corresponds to maxr∈R(tr);
12: remove index k from R;
13: a = Ckk;
14: tol = a/vk;
15: if tol < T then ⊲ tolerance criterion
16: continue;
17: end if

18: Ck: = Ck:/a; ⊲ divide row k by Ckk

19: Ckk = Ckk/a; ⊲ set Ckk = 1/Ckk

20: for i = 1 to d do

21: if i 6= k then ⊲ for every row i 6= k
22: b = Cik;
23: Ci: = Ci: − b · Ck:; ⊲ subtract Cik times row k from row i
24: Cik = −b/a; ⊲ set Cik = −Cik/Ckk

25: end if

26: end for

27: add index k to S; ⊲ the k-th row has been pivoted
28: end for

29: for s in S do

30: βs = Csd; ⊲ β gets the coefficients of the variables in the regression
31: end for

32: return β; ⊲ β is approximate OLS solution

4.3.3 Implementation details

This section is concerned with the implementation of DUD (Algorithm 5), which
we programmed in MATLAB and can be found as C.5 in Appendix C. The invoked
stepwise regression procedure (Algorithm 7) is written as subfunction of DUD and
has been placed at the end of C.5.
We have also provided the MATLAB code for the Gauss-Jordan in-place matrix
inversion (Algorithm 6), see C.6 in Appendix C.
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The implementation details of DUD given by Ralston and Jennrich in [44] are vague.
Some information on how the original program was developed can be found in [9].
It was initially written in FORTRAN and has been used for the analysis of insulin
data. However, no explicit source code of the program is traceable and we found some
inconsistencies between [9] and [44]. For example, the parameter update described
in [9, p. 813] allows for the replacement of more than two members of the old
parameter set. Also, the authors did not further elaborate on the applied stepwise
regression procedure based on the Gauss-Jordan algorithm. So, apart from using a
different programming language, it is very likely that our implementation of DUD
varies widely from the original version.

Initialization

DUD demands a single user supplied starting parameter θp+1 ∈ R
p. The p additional

initial parameters θi are then generated by displacing the i-th component of θp+1,
i = 1, . . . , p. In [9, p. 812], this displacement is simply described as the sum of the
i-th component of the starting vector and some input value. For their numerical
tests, Ralston and Jennrich [44] predominantly used some small number times the
corresponding entry of θp+1 for that value. However, we observe that if θp+1 had
a component that is zero, this would lead to the duplication of the parameter.
The authors did not further specify on how they handled occurring zeros in θp+1.
We generate the additional starting parameters θi ∈ R

p, i = 1, . . . , p, as follows.
Let us consider the user-supplied vectors θp+1 ∈ R

p and h ∈ R
p with hi ∈ R \{0} for

i = 1, . . . , p. Then, the θi are obtained from θp+1 by computing their components as

(θi)j = (θp+1)j + δijhi, j = 1, . . . , p, (4.54)

where δij denotes the Kronecker delta. That is, the θi only differ in their i-th entry
from θp+1 and the hi determine whether the generated set of initial vectors is
linearly independent or not. Furthermore, the whole parameter set is actively
involved in the minimization process performed by DUD. So, choosing proper input
vectors θp+1 and h is crucial for the performance of the algorithm.
Inspired by [44], we found that the following choice for h works exceptionally well for
the problems we looked at with different starting vectors. We compute h by setting

hi =

{

(θp+1)i · 0.1 if (θp+1)i 6= 0

0.01 if (θp+1)i = 0
, i = 1, . . . , p. (4.55)

This rule seems to be reasonably robust and we decided to implement it in our
MATLAB program C.5. The purely heuristic value 0.01 accounts for the displacement
of possible zero components of θp+1. We observed that significantly smaller values

tend to destroy the numerical precision of the matrix ∆F T∆F . The factor 0.1
in (4.55) is satisfactory for the starting values of most problems. However, we note
that the user can almost always find slightly better values for the hi at a particular
problem. This is why it is important to also allow for arbitrary inputs of h in C.5,
cf. Algorithm 5.
MATLAB offers an efficient way for the implementation of the displacement (4.54).
The for-loop in Algorithm 5 (steps 8–10) can be replaced by creating a logical mask
with which we can directly operate on the diagonal of the matrix Θ, see line 182 of C.5.
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As an example for the generation of the initial set of parameters in DUD we look at
the case p = 3. By employing the equations (4.54) and (4.55) we find that

θp+1 :=









0

10

1









=⇒ θ1 =









0.01

10

1









, θ2 =









0

1

1









and θ3 =









0

10

0.1









.

DUD requires p+ 1 function calls for starting. In C.5, the evaluations of the input
function f and the computations of the corresponding residual sum of squares are
exactly performed as in the steps 11–14 of Algorithm 5, i.e., within a for-loop.
The MATLAB routine sort [30, p. 11208–11215] is invoked to sort the vector Q of
residual sum of squares in descending order and vectorization is used to rearrange
the parameters and their function evaluations accordingly. Then, θp+1 is assigned
the last column of the matrix Θ, the newly arranged parameter set.

Main program

The MATLAB routine bsxfun [30, p. 906–910] allows for elementwise subtraction.
That is, the computations of both the matrices ∆Θ and ∆F in program C.5 are
performed without employing for-loops as in the steps 18–20 and 22–24 of Algorithm 5.
Then, the residual r = y − f(θp+1) is computed and the (p+ 1)× (p+ 1) matrix

C =

[

∆F T

rT

]

[

∆F r
]

=

[

∆F T∆F ∆F Tr

rT∆F rTr

]

(4.56)

(cf. matrix (4.53)) is formed by matrix multiplication, which requires O(np2) arith-
metic operations. The stepwise regression procedure, which is implemented as
subfunction in C.5, is invoked in order to compute α, an approximation of α̂ (4.38).

Performing Gauss-Jordan pivots on the submatrix ∆F T∆F of C dominates the com-
putational cost of the stepwise regression procedure, i.e., it needs O(2p3) operations.

Remark. For nonsingular ∆F , the normal equations (4.37) could be efficiently solved
in MATLAB with the use of the backslash operator \ (see the remark on page 36).
However, we chose not to do so because of the following reason. We would need
to ensure beforehand that the matrix ∆F T∆F is well-conditioned. Clearly, matrix
inversion has to be avoided in the calculation of the condition number. That is,
we would compute the 2-norm condition number of ∆F T∆F , as it is simply the
ratio of the largest singular value of the matrix to the smallest singular value, see
relationship (A.1.3) in Appendix A. This can be realized by invoking the MATLAB
routine cond [30, p. 1651–1654], which employs a singular value decomposition for the

computation. But just performing the SVD on ∆F T∆F would already result in higher
computational cost than a straightforward application of the stepwise regression
procedure on C. Furthermore, we did not observe any difference in the accuracy of
the computed solution α when we compared the method for normal equations with
the stepwise regression procedure for matrices ∆F T∆F with condition number

κ2

(

∆F T∆F
)

<
1√
eps

.
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Diagonal elements of ∆F T∆F with low tolerance are not used as pivots. Jennrich [22]

proposed a value of 10−5 for the tolerance threshold T on an 8 decimal place computer.
Using a double precision floating-point format, we found that T =

√
eps seems to be

the optimal choice in the sense that smaller threshold values would result in rounding
errors that harm the precision of the entire matrix. In program C.5, the two inner
for-loops of Algorithm 7 for computing the current reduction in the residual sum of
squares and performing the Gauss-Jordan pivots are replaced by vectorization.
After θnew = θp+1 +∆Θα, f(θnew) and Q(θnew) have been computed, DUD checks
whether the user has entered an integer m > 0 and Q(θnew) > Q(θp+1) holds.
If so, the program attempts to find a point that decreases Q(θ) by performing the
line search (steps 29–34 of Algorithm 5), which is implemented as subfunction in C.5.
That is, maximal m line searches with θnew are carried out, each of which requiring
a function call. The input m also determines the members of the sequence (4.40).

We found that replacing 1
2

by 1
3

in the definition of the di in (4.40), i = 1, . . .m,
improves the performance of the step shortening procedure for certain problems.
However, overall the program tends to need less line searches for finding an estimate
that reduces the RSS when the sequence (4.40) is left unchanged. If no such estimate
is found, DUD simply keeps the parameter computed in the last line search.
Let us with θ∗new denote the newly determined parameter in some iteration of DUD.
It is possible that the numerical value of f(θ∗new) is larger than 1.797 · 10308, which
cannot be represented in 64 bits on the computer. If the algorithm proceeds with this
parameter, it automatically fails since the resulting matrix of function differences ∆F
is not representable. In the case that at least one line search was performed, it
might be possible to choose a valid estimate instead. This is why we implemented
a safeguard (the lines 452–469 in program C.5) that aims to prevent DUD from
keeping such unacceptable parameters. When it activates, out of the newly found
estimates the one with the lowest RSS is kept. If this parameter is also unacceptable,
program C.5 simply keeps the estimate from the linear approximation.
DUD updates the set of parameter vectors at the start of the next iteration as de-
scribed on page 67. Program C.5 uses the MATLAB routine find [30, p. 3522–3530]

in order to determine the first subscript i for which |αi| > 10−5. We did not notice

an increase in algorithmic performance when using smaller values than 10−5. In
fact, quite the opposite occurred, as DUD performed worse when we replaced 10−5

by 10−8. The circshift routine [30, p. 1334–1337] allows for the rearrangement of
the parameters in the updated set according to their age (from oldest to newest),
i.e., allows for the implementation of the steps 51–52 and 56–58 of Algorithm 5.
Our implementation of DUD requires O(np2 + 2p3) arithmetic operations and, when
the step shortening procedure is not used, one function evaluation per iteration.
Simply reaching the maximum number of iterations (or function evaluations) is not
enough as stopping criterion for the algorithm. If the minimum has already been
found, DUD tends to over-optimize. Hence, we highly recommend ending the process
when a sufficiently good minimization is achieved. Thus, our MATLAB program C.5
terminates when the objective function is minimized or some user-defined maximum
number of function evaluations is reached. In addition, as suggested by Ralston and
Jennrich in [44], we did account for cases where the relative change in the RSS is
small. That is, program C.5 also stops when it holds that for 5 successive iterations

|Q(θnew)−Q(θp+1)|
Q(θp+1)

≤ 10−5.
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5 Benchmarking

In this section, we compare the performances of GN, LM, FDGN, FDLM and DUD
by using the Moré-Garbow-Hillstrom collection of test functions, see [33]. We wrote
MATLAB programs for all 35 test functions from [33] and appended their code in C.7.
For each such MATLAB function, we used the recommended standard starting point.
Also, we selected 9 randomly generated points from boxes of different size surrounding
the respective initial point. Hence, in total 10 starting points were used per function.
That is, we tested every algorithm on 350 optimization problems. Since we used
DUD both with and without its optional line search, in reality 6 procedures were
compared and thus 2100 different algorithmic runs were performed.
The benchmarking is based on the number of equivalent function evaluations and
the average wall-clock times of the successful minimizations. In-depth information
on how to benchmark optimization algorithms can be found in [4].

5.1 Test Set

The Moré-Garbow-Hillstrom collection [33] is the standard test set for low-dimensional
problems in the local optimization community. All of its 35 functions are represented
as nonlinear least squares problems of the form (3.3) and include standard starting
points that are not too close to the known global minima. Some of these problems
also have local solutions. In fact, Kuntsevich [25] pointed out that there appear to
be more local minima than originally stated in [33]. Thus, we have added the data
collected by Kuntsevich to our test set, which is shown in Table 1.
Using this relatively large number of functions for benchmarking required a lot of
coding (see Appendix C.7); however, it makes the whole experiment more meaningful.
The test set contains easy to hard to solve problems of various types, which render
specific parameter tuning irrelevant and reveal the real strengths and weaknesses of
the compared procedures. This means that the algorithms were not only measured
for their efficiency, but also for their robustness. The result reliability was further
increased by repeating tests on the same functions with a variety of starting points.

5.1.1 Starting points

The choice of the initial guesses is crucial for the success of the optimization methods.
It can spell the difference between slow and rapid convergence to the solution.
Hillstrom described the need to test optimization software at nonstandard starting
points in [21]. Therefore, we created additional points by introducing random
perturbations of different magnitude to the given starting points, see page 87.
For a fair and unbiased evaluation of the experiment, each procedure was provided
the same ten initial points per optimization problem. The approximate generated
starting points used for each test function can be looked up in Table 5 of Appendix B.
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Table 1: Used test functions and their known global/local minima.

No. Function Name n m Global Min. Local Min.

1 Rosenbrock 2 2 0.00000e+00 -

2 Freudenstein and Roth 2 2 0.00000e+00 4.89843e+01

3 Powell badly scaled 2 2 0.00000e+00 -

4 Brown badly scaled 2 3 0.00000e+00 -

5 Beale 2 3 0.00000e+00 -

6 Jennrich and Sampson 2 10 1.24362e+02 2.59580e+02

7 Helical Valley 3 3 0.00000e+00 -

8 Bard 3 15 8.21487e−03 1.74286e+01

9 Gaussian 3 15 1.12793e−08 -

10 Meyer 3 16 8.79458e+01 -

11
Gulf research and
development

3 10 0.00000e+00 3.80000e−02

12 Box three-dimensional 3 10 0.00000e+00 -

13 Powell singular 4 4 0.00000e+00 -

14 Wood 4 6 0.00000e+00 -

15 Kowalik and Osborne 4 11 3.07506e−04
1.02734e−03
1.79454e−03

16 Brown and Dennis 4 20 8.58222e+04 -

17 Osborne 1 5 33 5.46489e−05 -

18 Biggs EXP6 6 13 0.00000e+00
5.65565e−03
3.06367e−01

19 Osborne 2 11 65 4.01377e−02
1.78981e+00
2.63057e+01

20 Watson 9 31 1.39976e−06 -

21 Extended Rosenbrock 10 10 0.00000e+00 -

22 Extended Powell singular 12 12 0.00000e+00 -

23 Penalty I 4 5 2.24997e−05 -

24 Penalty II 4 8 9.37629e−06 -

25 Variably dimensioned 10 12 0.00000e+00 -

26 Trigonometric 10 10 0.00000e+00 2.79506e−05

27 Brown almost-linear 10 10 0.00000e+00 1.00000e+00

28 Discrete boundary value 10 10 0.00000e+00 -

29 Discrete Integral equation 10 10 0.00000e+00 -

30 Broyden tridiagonal 10 10 0.00000e+00

1.36026e+00
1.02865e+00
1.05123e+00
7.12606e−01
3.97373e−01

31 Broyden banded 10 10 0.00000e+00
3.05728e+00
2.68022e+00

32 Linear - full rank 10 20 1.00000e+01 -

33 Linear - rank 1 10 20 4.63415e+00 -

34
Linear - rank 1 with zero
columns and rows

10 20 6.13514e+00 -

35 Chebyquad 9 9 0.00000e+00 -
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Remark (New starting points). If x0 ∈ R
n denotes the standard starting point of

some function from the test set, then another initial point x̂0 was created by setting

x̂0 = x0 + αp,

where α ∈ R+ and p ∈ R
n \{0} is a vector of uniformly distributed random numbers in

the interval (−1, 1). That is, the scalar α controls the magnitude of the perturbation.
We used the MATLAB routine rand [30, p. 10017–10023] to generate 3 such vectors p
for each problem dimension n from our test set, see Table 1. Then, 3 different scaling
factors α were applied per vector, which ultimately resulted in 9 new starting points
for each test function. Typically, α ∈ {1, 10, 100} in order to grasp the ability of the
algorithms to reach close, medium and far ahead solutions. However, the nature of
some problems does only allow for minor deviations from the standard starting point,
so smaller scaling (e.g., α ∈ {0.01, 0.1, 1}) was also used, cf. Table 5 in Appendix B.

5.2 Testing Framework

We evaluated all the competing algorithms on the same 350 test problems using the
same performance measures, parameter tuning and stopping conditions.
According to [40, p. 8–9], good algorithms should possess the following properties:

• Robustness. They should perform well on a wide variety of problems in their
class, for all reasonable values of starting points.

• Efficiency. They should not require excessive computer time or storage.

• Accuracy. They should be able to identify a solution with precision, without
being overly sensitive to errors in the data or to arithmetic rounding errors
that occur when the algorithm is implemented on a computer.

Typically, the researcher has to face a trade-off between robustness and efficiency
when choosing an optimization method. In the following, we describe how the
performance of our procedures was measured with regard to the above attributes.

5.2.1 Robustness

The Moré-Garbow-Hillstrom collection was specifically produced for testing the
reliability and robustness of unconstrained optimization software, see [33, p. 1–2].
In Section 5.1.1, we described how we added suitable starting points for its broad range
of test functions. Considering each pair consisting of function and initial point as
separate optimization problem in algorithmic runs has helped us to track and extract
the data. Since we benchmark deterministic methods, each run was only performed
once (except for determining the average running times). Hence, the reliability can
be easily grasped by counting the number of test problems that were successfully
solved by the respective algorithm. That is, we can report reliability as success rate.
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5.2.2 Efficiency

The efficiency of an optimization method basically refers to the computational effort re-
quired to obtain a feasible solution. It can be gauged by several performance measures,
with the number of function evaluations and the algorithmic running time

being the most popular ones. A less common measure, which we did not include in
our benchmark, is memory usage.

Number of function evaluations. It is not always clear how the total number
of function evaluations is obtained in numerical experiments. In our benchmark,
every single function evaluation executed by an algorithm was counted, i.e., we also
included the calls needed for starting and for the final evaluation at the minimum.
This is important for us, as DUD already needs several function calls to generate its
initial parameter set. Furthermore, in order to guarantee a fair comparison between
gradient and derivative-free methods, we have to account for the user-supplied
Jacobian matrices used by GN and LM. This can be achieved by combining the
number of function calls and Jacobian matrix computations into one statistic, the
number of equivalent function evaluations. We followed the exposition of Hillstrom
in [21, p. 309], where equivalent function evaluations are determined as follows:

(i) The n-variable objective or composite function evaluation is assigned a weight
of 1 per call.

(ii) The gradient computation is assigned a weight of n per call.

(iii) The vector-valued function computation required by least squares solvers is
assigned weights of 1/n or 1 depending upon whether one component or the
total vector is evaluated per call.

(iv) The Jacobian matrix computations are assigned weights of n per call.

In fact, only (iii) and (iv) applied to our algorithmic runs. We recall that the Jacobian
of some vector-valued function is the matrix of all its first-order partial derivatives,
see (3.4) in Section 3. A typical numerical differentiation procedure would evaluate
this vector-valued function n times for the calculation of the partial derivatives.
Backward-mode automatic differentiation would only need O(1) evaluations for the
Jacobian computation, but often cannot be applied for problems where derivative-free
methods are used, see page 11. Therefore, it is justified that we utilized (iv) for the
user-supplied Jacobians.
The advantage of this performance measure is that it indicates the effort on problems
for which function and derivative evaluation is expensive. However, it is unreasonable
when function calls are cheap or when they do not dominate the internal workings of
the respective procedure. This is why we also measured the computation times.

Running time. We determined the wall-clock times of our algorithmic runs.
Wall-clock time contains CPU time but is tied a specific hardware and software
configuration, with ours being listed at the beginning of Section 5. In addition, it is
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heavily influenced by background computer operations, resulting in variable time
measurements. Consequently, we shut down all unnecessary processes and programs
when performing the experiments.
In order to obtain accurate running time estimates, each optimization problem from
our test set (see Section 5.1) was executed 1000 times by the respective procedure.
The elapsed times were then used to calculate the average wall-clock time of each
successful algorithmic run, which is reported in seconds.
So, the average wall-clock time of a run indicates how long it actually takes for an
algorithm to solve a problem. The downside of this performance measure is that
we cannot compensate for user-supplied Jacobians. Such computationally cheap
derivative information is usually not available in practice. That is, the comparison
between our gradient and derivative-free methods in terms of running time should be
treated with caution. All computations were done in MATLAB R2016a on an AMD
Ryzen 5 PRO 3500U CPU with 16 GB of RAM and a 64-bit version of Windows 10.

5.2.3 Accuracy

We already know the minima of the given test functions, see Table 1. Hence, we
employed the fixed-target method for measuring the quality of our algorithmic outputs.
In the fixed-target method, the required time (here function calls or wall-clock time)
to find a solution at an accuracy target is evaluated [4, p. 10]. The algorithms may
not be able to solve certain test problems, i.e., their termination criterion cannot be
solely based on accuracy. Hence, we used additional stopping conditions, given in
the upcoming Section 5.2.4, for our runs. We decided to target an accuracy of 10−5.
In derivative-free optimization, this level of accuracy is common and considered
reasonably high. However, it is mild compared to classical convergence tests based
on the gradient [34, p. 15]. In our context, a classification as medium accuracy is
appropriate, cf. [39, p. 7].

5.2.4 Parameter tuning and stopping conditions

In principle, all of our methods were benchmarked with their default configuration.
That is, the specifics can be looked up in Section 4 and in Appendix C. However,
since we employed the fixed-target approach, we deactivated all occurring stopping
conditions and used (5.1), (5.2) and (5.3) instead. Thus, all test problems were
handled by the same set of parameters and termination criteria.

Let x∗ ∈ R
n be a known minimizer of some NLLS objective function f(x), see (3.3).

We decided to terminate the algorithms whenever a point x̄ ∈ R
n with

∣

∣f(x̄)− f(x∗)
∣

∣ < 10−5, for f(x∗) < eps, (5.1)

or
∣

∣f(x̄)− f(x∗)
∣

∣

f(x∗)
< 10−5, for f(x∗) ≥ eps, (5.2)

where eps is the machine epsilon, is found. That is, x̄ is an approximation to the
solution within the accuracy target and thus acceptable.
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Remark (Local solutions). It is important to note that the solution x∗ does not have
to be global. Some of our test functions have one or more local minima, see Table 1.

The stopping conditions (5.3) have been added as safeguard to end the execution of
algorithmic runs that do not convergence within a maximal computational budget.
If convergence had not yet occurred, our runs were continued as long as

nef < 1000

t < 0.5 s,
(5.3)

where nef denotes the acquired number of equivalent function evaluations and t the
elapsed wall-clock time in seconds.
If an algorithm reached the desired accuracy without violating (5.3), then the
respective run was counted as success and the nef and t values were reported.
If an algorithm terminated before reaching the desired accuracy, it was considered
unsuccessful in solving the respective test problem.

Remark (Upper bounds). Limiting the computational budget was absolutely manda-
tory, since, including the repetitions, we performed a total of 2.1 million test runs.
An upper bound of 1000 function calls is a reasonable value for benchmarking and was
also used by the authors of our test set, see [33, p. 31]. The tolerance of 0.5 seconds is
generous enough to capture slower runs (with a high nef value), which has ultimately
led to a better understanding of the robustness of our algorithms. Furthermore, runs
with very slow convergence were stopped and thus considered unsuccessful. This is
wanted, since they would have greatly affected the average results, leading to wrong
conclusions about algorithmic efficiency.

5.3 Numerical Results

We compare the performances of GN, LM, FDGN, FDLM, DUD m=0 and DUD m=5.
The results of our numerical experiments are presented in three categories, namely
tables, convergence plots and performance plots. Details on the underlying
test set and testing framework were given in the previous Sections 5.1 and 5.2.

Remark (DUD setting). The suffixes “m=0” and “m=5” simply indicate the input
values for m ∈ N0 of Algorithm 5 from Section 4.3. That is, we tested DUD
with both disabled and enabled line search option. We have found that values of
m greater than 5 typically result in significantly higher numerical cost with little or
no improvement in solution quality. The internal initial parameter set was always
computed by setting h as in (4.55), see Section 4.3.3.

5.3.1 Tables

Each table presented contains summarized information obtained from the algorithmic
runs on the respective 10 optimization problems per test function. More precisely,
for each pair consisting of algorithm and test function, Table 2 shows the numbers
of successes, Table 3 the average numbers of equivalent function evaluations and
Table 4 the average solving times in seconds.
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Table 2: Numbers of successful runs.

No. Function Name GN LM FDGN FDLM
DUD
m = 0

DUD
m = 5

1 Rosenbrock 10 9 10 9 10 10

2 Freudenstein and Roth 10 8 (6)† 10 8 (6) 4 3

3 Powell badly scaled 9 10 9 10 8 8

4 Brown badly scaled 10 0 10 0 10 1

5 Beale 9 5 9 4 3 5

6 Jennrich and Sampson 0 3 (3) 0 2 (2) 0 0

7 Helical Valley 6 10 10 10 8 10

8 Bard 4 4 4 4 9 (5) 9 (5)

9 Gaussian 6 6 6 6 6 6

10 Meyer 1 0 0 0 0 2

11
Gulf research and
development

0 9 0 9 0 1

12 Box three-dimensional 6 8 6 8 6 6

13 Powell singular 10 8 10 8 10 10

14 Wood 10 9 10 9 10 10

15 Kowalik and Osborne 2 (1) 2 1 3 0 3

16 Brown and Dennis 0 10 0 10 0 0

17 Osborne 1 4 6 4 6 4 9

18 Biggs EXP6 0 9 (1) 0 9 0 0

19 Osborne 2 0 0 0 0 5 8

20 Watson 10 7 10 7 10 10

21 Extended Rosenbrock 10 7 10 7 10 8

22 Extended Powell singular 10 7 10 7 8 7

23 Penalty I 0 0 1 1 10 0

24 Penalty II 0 0 0 10 0 0

25 Variably dimensioned 10 7 10 7 10 9

26 Trigonometric 2 5 2 4 0 0

27 Brown almost-linear 2 (2) 10 2 (2) 10 5 (2) 3 (2)

28 Discrete boundary value 10 10 10 10 9 10

29 Discrete Integral equation 10 7 10 7 7 10

30 Broyden tridiagonal 10 10 10 10 10 10

31 Broyden banded 10 10 10 10 3 3

32 Linear - full rank 10 7 10 7 10 10

33 Linear - rank 1 0 10 10 10 10 10

34
Linear - rank 1 with zero
columns and rows

0 10 0 10 10 10

35 Chebyquad 0 7 0 8 0 0

Successes (out of 350 runs) 191 (3) 230 (10) 204 (2) 240 (8) 205 (7) 201 (7)

Success Rate (%) 54.6 65.7 58.3 68.6 58.6 57.4

† Numbers in brackets highlight how often convergence to a local minimum occurred
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Table 3: Average numbers of equivalent function evaluations of the successes.

No. Function Name GN LM FDGN FDLM
DUD
m = 0

DUD
m = 5

1 Rosenbrock 7 93 7 93 6 36

2 Freudenstein and Roth 44 65 61 65 20 20

3 Powell badly scaled 87 76 95 76 39 70

4 Brown badly scaled 21 F† 21 F 113 742

5 Beale 242 36 105 22 44 284

6 Jennrich and Sampson F 198 F 174 F F

7 Helical Valley 21 156 38 156 114 107

8 Bard 15 15 15 15 12 26

9 Gaussian 15 15 15 15 13 19

10 Meyer 61 F F F F 633

11
Gulf research and
development

F 58 F 58 F 34

12 Box three-dimensional 11 190 11 190 7 7

13 Powell singular 45 105 45 105 22 37

14 Wood 77 274 77 274 22 90

15 Kowalik and Osborne 234 76 66 151 F 144

16 Brown and Dennis F 96 F 105 F F

17 Osborne 1 28 38 28 38 29 141

18 Biggs EXP6 F 55 F 65 F F

19 Osborne 2 F F F F 181 234

20 Watson 70 364 208 357 65 180

21 Extended Rosenbrock 23 135 23 135 65 168

22 Extended Powell singular 126 166 127 166 79 206

23 Penalty I F F 26 26 163 F

24 Penalty II F F F 111 F F

25 Variably dimensioned 92 78 93 80 110 101

26 Trigonometric 260 353 414 540 F F

27 Brown almost-linear 23 76 23 76 358 44

28 Discrete boundary value 51 346 51 346 27 118

29 Discrete Integral equation 52 65 52 65 17 79

30 Broyden tridiagonal 37 37 37 37 17 21

31 Broyden banded 251 253 190 131 118 103

32 Linear - full rank 12 43 12 45 12 12

33 Linear - rank 1 F 30 12 30 12 12

34
Linear - rank 1 with zero
columns and rows

F 27 F 27 12 12

35 Chebyquad F 520 F 542 F F

Average (over all successes) 71 134 67 133 59 96

† F means that the algorithm failed to converge for all 10 starting points
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Table 4: Average wall-clock times [s] of the successes.

No. Function Name GN LM FDGN FDLM
DUD
m = 0

DUD
m = 5

1 Rosenbrock 1.189e−04 7.128e−04 9.597e−05 8.881e−04 3.352e−04 1.089e−03

2 Freudenstein and Roth 4.762e−04 7.271e−04 7.557e−04 8.543e−04 1.649e−03 1.199e−03

3 Powell badly scaled 1.977e−02 1.576e−02 2.686e−02 1.728e−02 3.572e−03 3.337e−03

4 Brown badly scaled 2.147e−04 F† 2.233e−04 F 8.226e−03 2.435e−02

5 Beale 6.062e−03 3.934e−04 1.236e−03 3.313e−04 3.857e−03 7.296e−03

6 Jennrich and Sampson F 5.016e−02 F 3.705e−02 F F

7 Helical Valley 1.801e−04 8.934e−04 3.560e−04 1.404e−03 1.060e−02 4.346e−03

8 Bard 2.293e−04 1.999e−04 2.293e−04 2.351e−04 1.147e−03 1.287e−03

9 Gaussian 1.347e−04 1.188e−04 1.615e−04 1.660e−04 1.126e−03 1.169e−03

10 Meyer 4.276e−04 F F F F 2.475e−02

11
Gulf research and

development
F 9.413e−04 F 1.531e−03 F 1.321e−03

12 Box three-dimensional 1.399e−04 1.363e−03 1.654e−04 2.722e−03 4.749e−04 4.152e−04

13 Powell singular 2.356e−04 4.965e−04 3.511e−04 8.140e−04 2.187e−03 2.254e−03

14 Wood 4.801e−04 1.380e−03 6.259e−04 2.181e−03 2.476e−03 4.324e−03

15 Kowalik and Osborne 5.175e−02 9.104e−04 8.441e−04 2.161e−03 F 8.290e−03

16 Brown and Dennis F 1.332e−03 F 1.611e−03 F F

17 Osborne 1 2.751e−04 3.858e−04 4.136e−04 6.846e−04 4.174e−03 7.518e−03

18 Biggs EXP6 F 6.667e−04 F 1.630e−03 F F

19 Osborne 2 F F F F 5.752e−02 2.268e−02

20 Watson 1.901e−03 8.661e−03 1.831e−02 3.150e−02 1.945e−02 2.785e−02

21 Extended Rosenbrock 1.391e−04 7.493e−04 2.687e−04 1.418e−03 1.422e−02 1.690e−02

22 Extended Powell singular 3.763e−04 4.423e−04 9.055e−04 1.235e−03 1.615e−02 1.409e−02

23 Penalty I F F 3.019e−04 2.989e−04 1.896e−02 F

24 Penalty II F F F 2.321e−03 F F

25 Variably dimensioned 3.435e−04 2.740e−04 8.140e−04 7.236e−04 1.726e−02 1.227e−02

26 Trigonometric 1.242e−03 2.521e−03 4.942e−03 6.598e−03 F F

27 Brown almost-linear 1.882e−04 4.120e−04 2.513e−04 9.036e−04 5.450e−02 3.913e−03

28 Discrete boundary value 4.806e−04 2.494e−03 7.279e−04 4.813e−03 4.033e−03 8.177e−03

29 Discrete Integral equation 4.525e−04 5.272e−04 2.544e−03 3.245e−03 2.232e−03 8.699e−03

30 Broyden tridiagonal 4.319e−04 3.955e−04 5.300e−04 5.351e−04 1.755e−03 1.974e−03

31 Broyden banded 2.131e−03 2.204e−03 1.034e−02 7.158e−03 2.851e−02 1.243e−02

32 Linear - full rank 3.550e−04 2.334e−04 1.665e−04 5.591e−04 4.369e−04 3.856e−04

33 Linear - rank 1 F 2.125e−04 8.613e−04 4.250e−04 3.845e−04 3.048e−04

34
Linear - rank 1 with zero

columns and rows
F 4.433e−04 F 6.807e−04 5.518e−04 4.591e−04

35 Chebyquad F 2.703e−03 F 6.712e−03 F F

Average (over all successes) 2.227e−03 2.440e−03 3.175e−03 3.757e−03 9.059e−03 7.108e−03

†
F means that the algorithm failed to converge for all 10 starting points
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Table 2 gives us a good impression of the robustness of our algorithms. First of all,
we can clearly see the difference in difficulty of the test functions. For example,
all the procedures were able to solve the 10 problems associated with Broyden’s
tridiagonal function (30), but only FDLM could handle the penalty function II (24).
Furthermore, every tested method severely struggled in minimizing both Jennrich’s
and Sampson’s (6) and Meyer’s (10) function. Interestingly, only DUD (and not LM
or FDLM) has found solutions to problems associated with Osborne’s 2 function (19).
We can clearly see that FDLM and LM are the most reliable methods in our
benchmark. That outcome was to be expected, as they are aimed to be reliable
by design, see the theory from Section 4.2. Actually, FDLM has solved 10 more
test problems than LM which shows how well the derivative-free analogue behaves.
However, the difference in success rate of just under 3% is marginal and is expected
to be even smaller when benchmarking at a higher accuracy level such as 10−8.
The success rate of FDGN is also higher than that of its gradient counterpart GN
and is similar to that of DUD m=0 and DUD m=5.
To our surprise, the enabled line search does not improve the reliability of DUD.
This is in contrast to the findings of Ralston and Jennrich in [44], where the results
on Box’s two and three-dimensional functions suggest that DUD is more successful
with m = 5, i.e., when its step shortening procedure is on.
The bracketed numbers in Table 2 indicate that none of our solvers exhibits a
noticeable tendency towards convergence to local minima.

Table 3 must be read with caution, as the individual entries depend heavily on
the values in Table 2. For example, the 742 function calls used by DUD m=5 for
minimizing Brown’s badly scaled function correspond to a single problem, whereas
the significantly smaller values for GN, FDGN and DUD m=0 associated with this
function are averages over 10 test runs. That is, each algorithm requires a significant
number of successful runs to enable a somewhat meaningful comparison in terms
of efficiency. Hence, the averages over all successes provide the best comparable
figures for us. However, it should be clear that these values are still suboptimal
for benchmarking. For instance, suppose that the test problems associated with
Chebyquad’s function (35) were not considered. Then both LM and FDLM would
have significantly better numbers on average function calls while still having a higher
success rate than the other methods. Then again, removing the results for Brown’s
and Dennis’ (16) or Biggs’ EXP6 (18) function from consideration would lead to a
worse perception of LM and FDLM. This suggests that all data must be evaluated
without artificial changes.
The average numbers of equivalent function evaluations over all successes show
that GN and FDGN only need a little more than half of the function calls of
LM and FDLM, respectively. Here, the gradient methods are on par with their
derivative-free analogues, which is not surprising, since the user-supplied Jacobians
have been weighted the same number of function evaluations as the finite difference
approximations. DUD m=0 is indeed the best method when it comes to make
efficient use of function evaluations. However, DUD m=5 uses additional function
calls for the line search in each iteration and is therefore considered to be less efficient
than GN and FDGN.
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Table 4 is also based on the number of successful runs, see Table 2. Analogous to the
previous description of Table 3, the average wall-clock times of all successes provide
the best comparable figures for our benchmark.
We observe that the higher reliability of LM and FDLM compared to GN and FDGN,
respectively, comes at the expense of slower solving times. The two gradient methods,
GN and LM, clearly outperform all the derivative-free competitors in terms of speed.
This is due to the fact that they had access to the analytic Jacobians of the test
functions, i.e., that outcome was to be expected and is not very representative for
practical applications. Although DUD m=0 uses function evaluations efficiently,
FDGN performed almost three times as fast as DUD m=0. In fact, this difference
in average solving times is so obvious because of the cheap evaluation of our test
functions and the rather involved iterations of DUD. We can see that, on average,
DUD m=5 was also faster than DUD m=0, even though more function calls were
required in most cases, see Table 3. This is because the employed line search usually
finds points closer to the solution, which can ultimately result in fewer iterations
needed by the procedure.

All of our tables display an abundance of numerical results in a very condensed format.
Graphics enable us to incorporate additional information and techniques for an even
better understanding of the obtained data.

5.3.2 Convergence plots

The convergence plot is a particularly useful specialized graphic representation of the
data for optimization benchmarking. We use it to visualize the performance of the
different algorithms by plotting the best objective function values found against either
the number of equivalent function evaluations or the wall-clock time in seconds.
A typical convergence plot only represents the results for a single problem, see
[4, p. 14]. Since we want to evaluate the overall performance of the procedures, we
aggregated the data from all of our runs and created two average convergence plots.
That is, Figures 1 and 2 are both based on the average performances of each
algorithm on the 350 test problems. For plotting, we extracted the currently best
objective function value and the corresponding performance measures from every
iteration of the successful algorithmic runs. Because of different-sized test problems,
these data had to be inter- and extrapolated (with the MATLAB routine interp1

[30, p. 6186–6200]) in order to calculate averages. This is the reason why the final
average values illustrated in Figure 1 and Figure 2 can slightly deviate from the
exact results in Table 3 and Table 4, respectively.
Figures 1 and 2 show that all algorithms exhibit quadratic convergence only in the
end phase of their solution process. This is in accordance with Theorem 4.6 for
FDGN and FDLM, and Corollary 4.7 for the GN and LM methods, see Section 4.2.2.
The (arbitrarily slow) linear convergence of these procedures before reaching the final
stage agrees with Theorem 4.4 and Corollary 4.5, respectively. Apart from solving
speed, the two gradient methods and their derivative-free counterparts exhibit an
almost identical convergence behavior. DUD needs several function calls for starting,
i.e., its first objective function evaluation is somewhat delayed compared to the other
methods. DUD m=5 exhibits (slow) linear convergence and DUD m=0 even shows
phases of sublinear convergence rates before the quadratic convergence takes effect.
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Figure 1: Convergence plot 1 (equivalent function evaluations).
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Figure 2: Convergence plot 2 (average wall-clock times).
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5.3.3 Performance profiles

Performance profiles were developed by Dolan and Moré [10] and have the primary
advantage that they include both convergence speed and success rate in a graphically
compact form. Here, the ratio of the running time (number of function evaluations)
of the respective algorithm versus the best time (number of function evaluations) of
all the procedures in the benchmark is used as performance metric.
Let us denote by P and S the sets of our test problems and optimization solvers,
respectively. For each problem p ∈ P and solver s ∈ S, we define tp,s as the
running time required to solve problem p by solver s. Then tbest := min{tp,s | s ∈ S}
is the minimum running time used by all solvers and

rp,s :=

{

tp,s
tbest

if the run is counted as success

∞ otherwise

the performance ratio of solver s for problem p. The performance profile for solver s
is then defined as

ρs(τ) =
1

|P|
∣

∣

∣

{

p ∈ P | rp,s ≤ τ
}

∣

∣

∣
,

where τ ∈ R and | · | denotes the set cardinality (i.e., |P| = 350). That is, ρs(τ)
is the probability for solver s that rp,s is within a factor τ of the best possible
performance ratio. In fact, the function ρs is the cumulative distribution function for
the performance ratio [10, p. 203]. The measure is easily changed from running time
to the number of function evaluations by setting tp,s accordingly.

Remark. We observe that ρs(1) is the percentage of test problems for which solver s
has the best performance among all other the procedures; and for sufficiently large τ ,
ps(τ ) gives the percentage of problems that can be successfully minimized by solver s,
i.e., its overall success rate, cf. Table 2.

The MATLAB file perf.m retrieved from [31] was used and customized in order to
create the performance profiles. If an algorithm was unsuccessful on a given problem,
its corresponding performance measures were simply set to NaN. Figures 3, 4, 5 and 6
were all plotted in logarithmic scale with base 2. Their non-logarithmic versions can
be found as Figure 7 in Appendix B. The disadvantage of the profiles is that they
only show performance with respect to the best algorithm [4, p. 17]. That is, for a
comparison of the other solvers with each other, a different profile without the best
method has to be drawn. This is the reason why we only consider four procedures
(instead of six) in Figures 4 and 6.
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Figure 3: Performance profile 1 (equivalent function evaluations).
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Figure 5: Performance profile 3 (average wall-clock times).
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Figure 6: Performance profile 4 (average wall-clock times).
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The performance profile 1 (see Figure 3) compares all six methods in terms of
numbers of equivalent function evaluations on our test set of 350 problems. We can
see that DUD m=0 has the best performance for 47% of the problems. That is, in
order to solve 47% of the problems, DUD m=0 needs just as many or fewer function
calls than the other five procedures. Although DUD m=5 solves approximately 26%
of the problems with just as many or fewer function calls than its competitors, its
performance never comes close to DUD m=0 as we increase τ . So, if we are interested
in the algorithm that can solve about 50% of the problems with greatest efficiency,
then DUD m=0 really stands out. However, if our scope of interest lies within a
factor of τ = 8 (i.e., log2(τ) = 3) of the best solver, FDGN and FDLM become
quite competitive. The method of choice for solving more than 58% of the problems
with the least possible amount of function evaluations is FDLM. Given large enough τ ,
we note that the percentages of the probabilities ρs(τ ) coincide with the success rates
from Table 2.

Profile 2 (see Figure 4) depicts the differences in performance between the two
gradient methods and their derivative-free counterparts. We can observe a slight
advantage of FDGN and FDLM over the GN and LM algorithms, respectively.
The GN method is able solve about 46% of the problems with just as many or fewer
function evaluations than the other procedures, whereas FDGN does even better
with 48% wins. As in Figure 3, the FDLM can not compete in terms of wins but
dominates the LM algorithm when it comes to reliable solving.

Performance profile 3 (see Figure 5) illustrates the complete comparison in terms
running times. Since we provided analytic Jacobians, it is no surprise that the
gradient methods are the frontrunners. The LM algorithm is able to solve 41% as fast
or faster than the other procedures. Here, its only real competitor is the GN method,
which has almost 30% of the wins. However, if the solving time is relaxed to be
within a factor of τ = 16 (i.e., log2(τ ) = 4), we can clearly see that LM performs best.
FDLM is slower but can roughly solve 3% more problems than the LM algorithm.

In profile 4 (see Figure 6), the fast gradient-based algorithms are excluded (due
to their unfair advantage of user-supplied Jacobians), i.e., only the derivative-free
methods are plotted. In terms of running times, both DUD m=0 and DUD m=5
stand no chance versus FDGN or FDLM. The FDGN has the best performance for
48% of the problems. In comparison, the FDLM is only on about 30% of the problems
as fast or faster than its competitors but challenges FDGN if performance ratios are
allowed up to to a factor of τ = 4, i.e., log2(τ) = 2. And if τ > 16, i.e., log2(τ) > 4,
it can approximately solve 10% more problems from the test set than FDGN.
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6 Summary and Conclusion

The benchmark of our procedures reveals that, for low dimensional problems,
FDGN and FDLM can be used without hesitation instead of the GN and LM
algorithms, respectively. Only a slight difference in the qualitative results is to be
expected. In fact, for medium accuracy, both FDGN and FDLM even show better
performance than their gradient counterparts in terms of number of function calls
and reliability. However, the GN and LM algorithms are expected to be better suited
for problems of higher dimensions and for high accuracy levels.
Since we conducted experiments on 350 test problems of varying degrees of difficulty,
the acquired success rates are quite representative for the algorithmic reliability.
This means that LM and FDLM are the clear choices if the researcher values robust
methods the most; FDLM is to be preferred when derivatives are not easily accessible.

When efficiency is valued over robustness and function evaluation is expensive, the
DUD algorithm (with turned-off line search option) is the best choice. Ralston and
Jennrich [44, p. 13] used only small residual problems for their tests, so they warned
us that DUD could look artificially good. But its performance on our relatively
large test set has exceeded our expectations. DUD beats both the GN method and
FDGN in terms of efficient use of function evaluations and reliability. However, we
learned that enabling DUD’s optional line search results in additional function calls
but does not lead to a higher success rate or faster convergence. Nevertheless, if the
step shortening procedure is activated, alternative solution paths may be found.
Occasionally, different choices of m lead to different solutions. Since DUD’s iteration
process is more involved than that of GN or FDGN, it might perform worse than
these methods on small residual problems, provided that function evaluation is cheap.
While the overall success rate of DUD is slightly better than that of GN or FDGN,
the algorithm has similar types of difficulty when minimizing large residual problems.

The stepwise regression procedure employed by DUD performs satisfactorily. However,
we note that the underlying Gauss-Jordan algorithm could be more efficient. The
number of arithmetic operations can be reduced by almost one half by exploiting
the symmetry of the positive definite input matrix. But we decided to go with
Algorithm 6 from Section 4.3.1, since MATLAB offers the possibility to vectorize the
inner loops of the program, yielding an efficient implementation.

Ralston and Jennrich mentioned that an updating procedure could be used to reduce
the number of arithmetic operations of DUD, see [44, p.8].
Brown and Dennis [6, p. 290] pointed out that Powell [42] replaces the classical
LM step (4.16) from Section 4.2 with a technique in which Broyden’s single rank
update [7] is used to approximate the Jacobian at each iteration point. The resulting
algorithm is thus very similar to LM and is known as Powell’s hybrid method.
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A. PREREQUISITES

Appendix A Prerequisites

The following mathematical concepts are well known and therefore, for the most part,
stated without proofs and further explanation. Full details and extra information
can be found in [14, p. 24–29] and [15, p. 63–88, 159–160].

A.1 Matrix Analysis

Definition A.1. The transpose of a matrix A ∈ R
m×n is the matrix AT ∈ R

n×m

defined by
(

AT
)

ij
=
(

A
)

ji
.

Definition A.2. A square matrix A ∈ R
n×n is called symmetric if A = AT.

Proposition A.3. If a matrix A ∈ R
n×n is symmetric, then its singular values are

the absolute values of its nonzero eigenvalues.

Definition A.4. A symmetric matrix A ∈ R
n×n is called positive definite if

xTAx > 0 for all x ∈ R
n, x 6= 0,

and negative definite if

xTAx < 0 for all x ∈ R
n, x 6= 0.

It is called positive semidefinite if

xTAx ≥ 0 for all x ∈ R
n

and negative semidefinite if

xTAx ≤ 0 for all x ∈ R
n .

A matrix which is neither positive or negative semidefinite is called indefinite. If the
matrix A is positive definite, negative definite, positive semidefinite or negative
semidefinite, its eigenvalues of are positive, negative, nonnegative or nonpositive,
respectively. An indefinite matrix has both positive and negative eigenvalues.

Definition A.5. A principal submatrix of a square matrix A ∈ R
n×n is any square

submatrix sharing some diagonal elements of A.

Proposition A.6. If a matrix A ∈ R
n×n is positive definite, then all its principal

submatrices are positive definite. In particular, all diagonal entries are positive.

Proposition A.7. If a matrix A ∈ R
n×n is positive semidefinite, then all its prin-

cipal submatrices are positive semidefinite. In particular, all diagonal entries are
nonnegative.
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Definition A.8. An inverse of a square matrix A ∈ R
n×n is a matrix A−1 ∈ R

n×n

such that
AA−1 = A−1A = I,

where I ∈ R
n×n is the identity matrix. If a matrix has an inverse it is called invertible

or nonsingular. Otherwise, it is called singular.

Proposition A.9. If a matrix A ∈ R
n×n is invertible, all its eigenvalues are nonzero,

and the eigenvalues of the inverse A−1 are the reciprocals of the eigenvalues of A.

Theorem A.10. If a matrix A ∈ R
n×n is positive definite, then A is invertible and

A−1 is positive definite.

Definition A.11. A vector norm on R
n is a function ‖ · ‖ : Rn → R such that

(i) ‖x‖ ≥ 0, x ∈ R
n, and ‖x‖ = 0 if and only if x = 0,

(ii) ‖αx‖ = |α| · ‖x‖, α ∈ R, x ∈ R
n,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ R
n .

Definition A.12. The p-norm of x ∈ R
n is defined by

‖x‖p =
(

n
∑

i=1

|xi|p
) 1

p

, p ∈ R, 1 ≤ p <∞,

and the infinity or maximum norm of x is

‖x‖∞ = max
1≤i≤n

|xi|.

Definition A.13. Let P ∈ R
n×n be a symmetric positive definite matrix. For a

vector x ∈ R
n, the ellipsoidal (vector) norm associated to P is defined by

‖x‖P :=
√
xTPx.

Remark. Since Rm×n is isomorphic to R
mn, a matrix norm ‖·‖ : Rm×n → R is defined

analogous to Definition A.11. It should be clear within the context if a vector norm
or a matrix norm is used.

A matrix norm can also be defined in terms of a vector norm. Let ‖ · ‖ be a vector

norm and consider ‖Ax‖ for a matrix A ∈ R
m×n and for all vectors x ∈ R

n with
‖x‖ = 1. Then the matrix norm induced by the vector norm is given by

‖A‖ = max
‖x‖=1

‖Ax‖.

Thus, the induced matrix p-norms are

‖A‖p = max
‖x‖p=1

‖Ax‖p.

In particular, it is a fact that the matrix 2-norm of A ∈ R
m×n can be expressed as

‖A‖2 =
√

λmax(ATA) = σmax(A), (A.1.1)
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where λmax is the the largest eigenvalue of ATA and σmax(A) is the largest singular
value of A. If m ≥ n and A has full column rank n, it can also be shown that

‖A†‖2 =
1

σmin(A)
, (A.1.2)

where A† := (ATA)−1AT denotes the pseudo-inverse of A and σmin(A) is the smallest

singular value of A. We observe that A† = A−1 for invertible A ∈ R
n×n.

There exist linear systems Ax = b whose solutions are not stable under small
perturbations of either A or b. The condition number of A indicates the maximum
effect of perturbations in A or b on the exact solution x. For an ill-conditioned
problem the solution of a perturbed problem may be very different to the exact
solution. That is, small changes in the input (the matrix A and b) can cause a large
change in the output (the solution of Ax = b).

Remark. The solution of a linear system Ax = b may be poor if the coefficient matrix
A is close to being singular.

Definition A.14. The condition number κ(A) of a nonsingular square matrix

A ∈ R
n×n is defined by

κ(A) = ‖A‖ · ‖A−1‖,
where the convention κ(A) =∞ is used for singular A.

Definition A.15. The condition number κ(A) of a rectangular matrix A ∈ R
m×n

(m ≥ n) of full column rank n, is defined by

κ(A) = ‖A‖ · ‖A†‖.
Remark. The notation κi, i ∈ {1, . . . ,∞}, is used to stress the associated norm.

Definition A.16. A matrix is said to be ill-conditioned if its condition number is
large and well-conditioned if its condition number is small.

The notion of the terms “large” and “small” strongly depends on the underlying
problem. Due to equations (A.1.1) and (A.1.2), the condition number of a matrix

A ∈ R
m×n (m ≥ n) with column rank n is given in terms of the matrix 2-norm by

κ2(A) = ‖A‖2 · ‖A†‖2 =
σmax(A)

σmin(A)
. (A.1.3)

Remark. The larger the condition number of a matrix is, the more sensitive the
matrix is to inverse calculation.

Proposition A.17. For any induced matrix norm ‖ · ‖ it holds that

‖AB‖ ≤ ‖A‖ · ‖B‖, A ∈ R
m×n, B ∈ R

n×q .

Remark. This inequality is known as submultiplicative property. It describes in fact a
relationship between three different matrix norms since they act on three different
spaces.

Corollary A.18. For any induced matrix norm it holds that

κ(A) ≥ 1,

where A ∈ R
m×n (m ≥ n) has column rank n.
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A.2 Error Analysis

Definition A.19. Suppose that x̂ ∈ R
n is an approximation to x ∈ R

n. Then

x̂− x

is said to be the error in x̂ . For a given vector norm ‖ · ‖, the non-negative number

‖x̂− x‖
is denoted as the absolute error in x̂. If x 6= 0, the relative error in x̂ is defined as

‖x̂− x‖
‖x‖ .

Remark. The relative error is undefined for x = 0. If the exact value x is close to 0,
the measure

‖x̂− x‖
1 + ‖x‖

should be used instead of the relative error.

Number representation on computers and error analysis of algorithms are well
described in [14, p. 7–14].

A.3 Convergence

Definition A.20. A sequence of vectors xl ∈ R
n converges to x ∈ R

n if

lim
l→∞

∥

∥xl − x
∥

∥ = 0

for a given vector norm ‖ · ‖. This is also denoted by

lim
l→∞

xl = x or xl → x for l →∞.

Remark. All norms on R
n are equivalent. Therefore, convergence in any particular

norm implies convergence in all norms.

Definition A.21. A sequence of vectors xl ∈ R
n converges with order q to x ∈ R

n

if q is the largest number such that

0 ≤ lim
l→∞

∥

∥xl+1 − x
∥

∥

∥

∥xl − x
∥

∥

q <∞.

The power q is also known as asymptotic rate of convergence. The sequence is said to
have linear convergence if q = 1, quadratic convergence if q = 2 and cubic convergence
if q = 3. If the sequence has order of convergence q, the limit

γ = lim
l→∞

∥

∥xl+1 − x
∥

∥

∥

∥xl − x
∥

∥

q

is called the asymptotic error constant. Convergence is called superlinear when q = 1
and γ = 0 and sublinear when q = 1 and γ = 1.
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When q = 1, convergence only occurs if γ < 1. Also, if a sequence of vectors converges
with order q > 1, superlinear convergence is implied.

Remark. An asymptotic rate of convergence q is not necessarily integer.

Definition A.22. A function F : D ⊂ R
n → R

m is Lipschitz continuous on some
set N ⊂ D if there is a constant L ≥ 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ N . (A.3.1)

L is called the Lipschitz constant. The function F is locally Lipschitz continuous at
a point x̂ ∈ intD if (A.3.1) holds for some neighborhood N ⊂ D of x̂.

The following theorem is crucial for continuous optimization. It provides information
about the existence of solutions for problems. Iterative methods construct sequences
that are aimed for convergence to such solutions.

Theorem A.23 (Existence of solutions). Suppose we have a problem of the form

minimize
x

f(x)

subject to x ∈ C,
(A.3.2)

where f : D ⊂ R
n → R

n is continuous on C ⊂ D.

(i) If C is nonempty and compact, then the optimization problem (A.3.2) has a
global solution.

(ii) Let C0 ⊂ C be compact with nonempty interior. If there is a vector x0 ∈ C0
such that

f(x) > f(x0), ∀x ∈ ∂C0, (A.3.3)

then (A.3.2) has a local solution.

Proof. This proof is extracted from [38, p. 16]. Statement (i) holds since any
continuous function attains its infimum on every nonempty compact set.
(ii) Since C0 is compact, the function f attains its minimum in C0 at some x∗ ∈ C0.
Condition (A.3.3) implies that x∗ ∈ int C0. Therefore, C0 contains a neighborhood
of x∗ such that (A.3.2) holds.

Remark. A standard requirement for (A.3.3) to hold is that the level set

C0 := {x ∈ C | f(x) ≤ f(x0)}

is in int C and bounded (and hence compact).

Definition A.24. An iterative method is called locally convergent if it produces a
sequence of vectors xl ∈ R

n which converges towards a minimizer x∗ ∈ R
n provided a

close enough starting approximation. It is called globally convergent if the sequence xl

converges towards x∗ provided any starting approximation.

Remark. The point x∗ may be a local or global minimum. Hence, it is important to
note that global convergence does not imply convergence towards a global minimizer.
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Having a descent sequence (see (2.7) on page 14) in an iterative method does not
need to imply convergence to a local minimizer. In fact, it does not even need to
imply convergence to a stationary point. The following two general statements about
descent sequences are from [38, p. 74–77].

Proposition A.25. Let f : D ⊂ R
n → R be continuous. Then, for any descent

sequence xl ∈ D, one of the following holds:

(i) There is a subsequence xlη (l0 < l1 < . . . ) with ‖xlη‖ → ∞ as η →∞.

(ii) There is a subsequence which converges to a limit /∈ D.

(iii) It holds that

inf
l≥0

f(xl) =: f̄ <∞

and the level set {x ∈ D | f(x) = f̄} contains a sequence x̄l such that

‖xl − x̄l‖ → 0 as l →∞.

Remark. Conditions (i) and (ii) are not true if the level set {x ∈ D | f(x) ≤ f(x0)}
is compact. The infimum in (iii) needs not to be a minimum of f in D. We need to
impose stronger conditions in order to guarantee convergence to a stationary point.

Proposition A.26. Let f : D ⊂ R
n → R be continuously differentiable on the

compact set C ⊂ D and let xl be a descent sequence in C.

(i) If any two stationary points x, x̄ ∈ C with x 6= x̄ satisfy f(x) 6= f(x̄), and if

for a subsequence xlη

lim
η→∞

∥

∥∇f(xlη)
∥

∥ = 0,

then xlη converges to a stationary point in C.

(ii) If f̄ ≤ f(x0), if the set of stationary points x̄ ∈ C with f(x̄) = f̄ is finite, and if

lim
l→∞

∥

∥∇f(xl)
∥

∥ = lim
l→∞

∥

∥xl+1 − xl
∥

∥ = 0,

then xl converges to a stationary point in C.

(iii) If the global minimizer x∗ is the unique stationary point in C, and if

inf
l≥0

∥

∥∇f(xl)
∥

∥ = 0,

then xl converges to x∗.
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Appendix B Test Suite
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Figure 7: Non-logarithmic performance profiles.
The non-log versions of Figures 3, 4, 5 and 6, respectively.
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Table 5: Approximate starting points used for each test function.

1 Rosenbrock

1 2 3 4 5

−1.20000e+00 −5.70553e−01 −1.94603e+00 −9.35282e−01 5.09447e+00

1.00000e+00 1.81158e+00 1.82675e+00 1.95081e−01 9.11584e+00

6 7 8 9 10

−8.66026e+00 1.44719e+00 6.17447e+01 −7.58026e+01 2.52719e+01

9.26752e+00 −7.04919e+00 8.21584e+01 8.36752e+01 −7.94919e+01

2 Freudenstein and Roth

1 2 3 4 5

5.00000e−01 1.12945e+00 −2.46026e−01 7.64719e−01 6.79447e+00

−2.00000e+00 −1.18842e+00 −1.17325e+00 −2.80492e+00 6.11584e+00

6 7 8 9 10

−6.96026e+00 3.14719e+00 6.34447e+01 −7.41026e+01 2.69719e+01

6.26752e+00 −1.00492e+01 7.91584e+01 8.06752e+01 −8.24919e+01

3 Powell badly scaled

1 2 3 4 5

0.00000e+00 6.29447e−01 −7.46026e−01 2.64719e−01 6.29447e+00

1.00000e+00 1.81158e+00 1.82675e+00 1.95081e−01 9.11584e+00

6 7 8 9 10

−7.46026e+00 2.64719e+00 6.29447e+01 −7.46026e+01 2.64719e+01

9.26752e+00 −7.04919e+00 8.21584e+01 8.36752e+01 −7.94919e+01

4 Brown badly scaled

5 Beale

1 2 3 4 5

1.00000e+00 1.62945e+00 2.53974e−01 1.26472e+00 7.29447e+00

1.00000e+00 1.81158e+00 1.82675e+00 1.95081e−01 9.11584e+00

6 7 8 9 10

−6.46026e+00 3.64719e+00 6.39447e+01 −7.36026e+01 2.74719e+01

9.26752e+00 −7.04919e+00 8.21584e+01 8.36752e+01 −7.94919e+01

6 Jennrich and Sampson

1 2 3 4 5

3.00000e−01 9.29447e−01 −4.46026e−01 5.64719e−01 6.59447e+00

4.00000e−01 1.21158e+00 1.22675e+00 −4.04919e−01 8.51584e+00

6 7 8 9 10

−7.16026e+00 2.94719e+00 6.32447e+01 −7.43026e+01 2.67719e+01

8.66752e+00 −7.64919e+00 8.15584e+01 8.30752e+01 −8.00919e+01
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7 Helical Valley

1 2 3 4 5

−1.00000e+00 −1.44300e+00 −7.02229e−02 −8.56661e−02 −5.43004e+00

0.00000e+00 9.37630e−02 −6.84774e−01 −2.92487e−02 9.37630e−01

0.00000e+00 9.15014e−01 9.41186e−01 6.00561e−01 9.15014e+00

6 7 8 9 10

8.29777e+00 8.14334e+00 −4.53004e+01 9.19777e+01 9.04334e+01

−6.84774e+00 −2.92487e−01 9.37630e+00 −6.84774e+01 −2.92487e+00

9.41186e+00 6.00561e+00 9.15014e+01 9.41186e+01 6.00561e+01

8 Bard

1 2 3 4 5

1.00000e+00 5.56996e−01 1.92978e+00 1.91433e+00 −3.43004e+00

1.00000e+00 1.09376e+00 3.15226e−01 9.70751e−01 1.93763e+00

1.00000e+00 1.91501e+00 1.94119e+00 1.60056e+00 1.01501e+01

6 7 8 9 10

1.02978e+01 1.01433e+01 −4.33004e+01 9.39777e+01 9.24334e+01

−5.84774e+00 7.07513e−01 1.03763e+01 −6.74774e+01 −1.92487e+00

1.04119e+01 7.00561e+00 9.25014e+01 9.51186e+01 6.10561e+01

9 Gaussian

1 2 3 4 5

4.00000e−01 3.55700e−01 4.92978e−01 4.91433e−01 −4.30036e−02

1.00000e+00 1.00938e+00 9.31523e−01 9.97075e−01 1.09376e+00

0.00000e+00 9.15014e−02 9.41186e−02 6.00561e−02 9.15014e−01

6 7 8 9 10

1.32978e+00 1.31433e+00 −4.03004e+00 9.69777e+00 9.54334e+00

3.15226e−01 9.70751e−01 1.93763e+00 −5.84774e+00 7.07513e−01

9.41186e−01 6.00561e−01 9.15014e+00 9.41186e+00 6.00561e+00

10 Meyer

1 2 3 4 5

2.00000e−02 −4.23004e−01 9.49777e−01 9.34334e−01 −4.41004e+00

4.00000e+03 4.00009e+03 3.99932e+03 3.99997e+03 4.00094e+03

2.50000e+02 2.50915e+02 2.50941e+02 2.50601e+02 2.59150e+02

6 7 8 9 10

9.31777e+00 9.16334e+00 −4.42804e+01 9.29977e+01 9.14534e+01

3.99315e+03 3.99971e+03 4.00938e+03 3.93152e+03 3.99708e+03

2.59412e+02 2.56006e+02 3.41501e+02 3.44119e+02 3.10056e+02

112



B. TEST SUITE

11 Gulf research and development

1 2 3 4 5

5.00000e+00 4.99557e+00 5.00930e+00 5.00914e+00 4.95570e+00

2.50000e+00 2.50094e+00 2.49315e+00 2.49971e+00 2.50938e+00

1.50000e−01 1.59150e−01 1.59412e−01 1.56006e−01 2.41501e−01

6 7 8 9 10

5.09298e+00 5.09143e+00 4.55700e+00 5.92978e+00 5.91433e+00

2.43152e+00 2.49708e+00 2.59376e+00 1.81523e+00 2.47075e+00

2.44119e−01 2.10056e−01 1.06501e+00 1.09119e+00 7.50561e−01

12 Box three-dimensional

1 2 3 4 5

0.00000e+00 −4.43004e−01 9.29777e−01 9.14334e−01 −4.43004e+00

1.00000e+01 1.00938e+01 9.31523e+00 9.97075e+00 1.09376e+01

2.00000e+01 2.09150e+01 2.09412e+01 2.06006e+01 2.91501e+01

6 7 8 9 10

9.29777e+00 9.14334e+00 −4.43004e+01 9.29777e+01 9.14334e+01

3.15226e+00 9.70751e+00 1.93763e+01 −5.84774e+01 7.07513e+00

2.94119e+01 2.60056e+01 1.11501e+02 1.14119e+02 8.00561e+01

13 Powell singular

1 2 3 4 5

3.00000e+00 2.28377e+00 3.91899e+00 3.86799e+00 −4.16227e+00

−1.00000e+00 −1.15648e+00 −6.88519e−01 −6.42530e−01 −2.56477e+00

0.00000e+00 8.31471e−01 −9.28577e−01 5.15480e−01 8.31471e+00

1.00000e+00 1.58442e+00 1.69826e+00 1.48627e+00 6.84415e+00

6 7 8 9 10

1.21899e+01 1.16799e+01 −6.86227e+01 9.48985e+01 8.97987e+01

2.11481e+00 2.57470e+00 −1.66477e+01 3.01481e+01 3.47470e+01

−9.28577e+00 5.15480e+00 8.31471e+01 −9.28577e+01 5.15480e+01

7.98259e+00 5.86265e+00 5.94415e+01 7.08259e+01 4.96265e+01

14 Wood

1 2 3 4 5

−3.00000e+00 −3.71623e+00 −2.08102e+00 −2.13201e+00 −1.01623e+01

−1.00000e+00 −1.15648e+00 −6.88519e−01 −6.42530e−01 −2.56477e+00

−3.00000e+00 −2.16853e+00 −3.92858e+00 −2.48452e+00 5.31471e+00

−1.00000e+00 −4.15585e−01 −3.01741e−01 −5.13735e−01 4.84415e+00

6 7 8 9 10

6.18985e+00 5.67987e+00 −7.46227e+01 8.88985e+01 8.37987e+01

2.11481e+00 2.57470e+00 −1.66477e+01 3.01481e+01 3.47470e+01

−1.22858e+01 2.15480e+00 8.01471e+01 −9.58577e+01 4.85480e+01

5.98259e+00 3.86265e+00 5.74415e+01 6.88259e+01 4.76265e+01
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15 Kowalik and Osborne

1 2 3 4 5

2.50000e−01 1.78377e−01 3.41899e−01 3.36799e−01 −4.66227e−01

3.90000e−01 3.74352e−01 4.21148e−01 4.25747e−01 2.33523e−01

4.15000e−01 4.98147e−01 3.22142e−01 4.66548e−01 1.24647e+00

3.90000e−01 4.48442e−01 4.59826e−01 4.38627e−01 9.74415e−01

6 7 8 9 10

1.16899e+00 1.11799e+00 −6.91227e+00 9.43985e+00 8.92987e+00

7.01481e−01 7.47470e−01 −1.17477e+00 3.50481e+00 3.96470e+00

−5.13577e−01 9.30480e−01 8.72971e+00 −8.87077e+00 5.56980e+00

1.08826e+00 8.76265e−01 6.23415e+00 7.37259e+00 5.25265e+00

16 Brown and Dennis

1 2 3 4 5

2.50000e+01 2.42838e+01 2.59190e+01 2.58680e+01 1.78377e+01

5.00000e+00 4.84352e+00 5.31148e+00 5.35747e+00 3.43523e+00

−5.00000e+00 −4.16853e+00 −5.92858e+00 −4.48452e+00 3.31471e+00

−1.00000e+00 −4.15585e−01 −3.01741e−01 −5.13735e−01 4.84415e+00

6 7 8 9 10

3.41899e+01 3.36799e+01 −4.66227e+01 1.16899e+02 1.11799e+02

8.11481e+00 8.57470e+00 −1.06477e+01 3.61481e+01 4.07470e+01

−1.42858e+01 1.54803e−01 7.81471e+01 −9.78577e+01 4.65480e+01

5.98259e+00 3.86265e+00 5.74415e+01 6.88259e+01 4.76265e+01

17 Osborne 1

1 2 3 4 5

5.00000e−01 4.99785e−01 4.99554e−01 4.99634e−01 4.97845e−01

1.50000e+00 1.50031e+00 1.49909e+00 1.50090e+00 1.50311e+00

−1.00000e+00 −1.00066e+00 −1.00081e+00 −1.00093e+00 −1.00658e+00

1.00000e−02 1.04121e−02 1.06469e−02 9.87749e−03 1.41209e−02

2.00000e−02 1.90637e−02 2.03897e−02 1.97631e−02 1.06367e−02

6 7 8 9 10

4.95539e−01 4.96342e−01 4.78445e−01 4.55385e−01 4.63420e−01

1.49092e+00 1.50900e+00 1.53110e+00 1.40923e+00 1.59004e+00

−1.00806e+00 −1.00931e+00 −1.06576e+00 −1.08057e+00 −1.09311e+00

1.64692e−02 8.77489e−03 5.12092e−02 7.46916e−02 −2.25113e−03

2.38966e−02 1.76312e−02 −7.36334e−02 5.89657e−02 −3.68831e−03
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18 Biggs EXP6

1 2 3 4 5

1.00000e+00 1.05310e+00 1.04187e+00 9.23800e−01 1.53103e+00

2.00000e+00 2.05904e+00 2.05094e+00 1.99967e+00 2.59040e+00

1.00000e+00 9.37375e−01 9.55205e−01 1.09195e+00 3.73745e−01

1.00000e+00 9.97953e−01 1.03594e+00 9.68077e−01 9.79529e−01

1.00000e+00 9.89117e−01 1.03102e+00 1.01705e+00 8.91172e−01

1.00000e+00 1.02926e+00 9.32522e−01 9.44762e−01 1.29263e+00

6 7 8 9 10

1.41873e+00 2.37995e−01 6.31034e+00 5.18730e+00 −6.62005e+00

2.50937e+00 1.99673e+00 7.90400e+00 7.09373e+00 1.96728e+00

5.52050e−01 1.91950e+00 −5.26255e+00 −3.47950e+00 1.01949e+01

1.35941e+00 6.80772e−01 7.95288e−01 4.59405e+00 −2.19229e+00

1.31020e+00 1.17054e+00 −8.82760e−02 4.10196e+00 2.70536e+00

3.25224e−01 4.47624e−01 3.92626e+00 −5.74777e+00 −4.52376e+00

19 Osborne 2

1 2 3 4 5

1.30000e+00 1.30992e+00 1.29520e+00 1.29290e+00 1.39923e+00

6.50000e−01 6.41564e−01 6.56001e−01 6.57061e−01 5.65635e−01

6.50000e−01 6.48854e−01 6.48628e−01 6.52441e−01 6.38536e−01

7.00000e−01 6.92133e−01 7.08213e−01 6.97019e−01 6.21331e−01

6.00000e−01 6.09238e−01 5.93637e−01 6.00265e−01 6.92380e−01

3.00000e+00 2.99009e+00 2.99528e+00 2.99804e+00 2.90093e+00

5.00000e+00 5.00550e+00 4.99291e+00 4.99152e+00 5.05498e+00

7.00000e+00 7.00635e+00 6.99272e+00 6.99480e+00 7.06346e+00

2.00000e+00 2.00737e+00 2.00739e+00 1.99247e+00 2.07374e+00

4.50000e+00 4.49169e+00 4.50159e+00 4.49368e+00 4.41689e+00

5.50000e+00 5.49800e+00 5.50100e+00 5.49480e+00 5.47996e+00

6 7 8 9 10

1.25197e+00 1.22899e+00 2.29227e+00 8.19741e−01 5.89910e−01

7.10014e−01 7.20606e−01 −1.93649e−01 1.25014e+00 1.35606e+00

6.36283e−01 6.74411e−01 5.35357e−01 5.12828e−01 8.94110e−01

7.82130e−01 6.70191e−01 −8.66945e−02 1.52130e+00 4.01905e−01

5.36369e−01 6.02650e−01 1.52380e+00 −3.63059e−02 6.26499e−01

2.95276e+00 2.98036e+00 2.00927e+00 2.52761e+00 2.80362e+00

4.92911e+00 4.91519e+00 5.54982e+00 4.29108e+00 4.15193e+00

6.92721e+00 6.94798e+00 7.63461e+00 6.27214e+00 6.47983e+00

2.07386e+00 1.92466e+00 2.73739e+00 2.73858e+00 1.24664e+00

4.51594e+00 4.43678e+00 3.66887e+00 4.65941e+00 3.86782e+00

5.50997e+00 5.44799e+00 5.29957e+00 5.59972e+00 4.97991e+00

115



B. TEST SUITE

20 Watson

1 2 3 4 5

0.00000e+00 5.02534e−01 −4.84984e−01 2.32089e−01 5.02534e+00

0.00000e+00 −4.89810e−01 6.81435e−01 −5.34223e−02 −4.89810e+00

0.00000e+00 1.19141e−02 −4.91436e−01 −2.96681e−01 1.19141e−01

0.00000e+00 3.98153e−01 6.28570e−01 6.61657e−01 3.98153e+00

0.00000e+00 7.81807e−01 −5.12950e−01 1.70528e−01 7.81807e+00

0.00000e+00 9.18583e−01 8.58527e−01 9.94472e−02 9.18583e+00

0.00000e+00 9.44311e−02 −3.00033e−01 8.34387e−01 9.44311e−01

0.00000e+00 −7.22751e−01 −6.06810e−01 −4.28322e−01 −7.22751e+00

0.00000e+00 −7.01412e−01 −4.97832e−01 5.14401e−01 −7.01412e+00

6 7 8 9 10

−4.84984e+00 2.32089e+00 5.02534e+01 −4.84984e+01 2.32089e+01

6.81435e+00 −5.34223e−01 −4.89810e+01 6.81435e+01 −5.34223e+00

−4.91436e+00 −2.96681e+00 1.19141e+00 −4.91436e+01 −2.96681e+01

6.28570e+00 6.61657e+00 3.98153e+01 6.28570e+01 6.61657e+01

−5.12950e+00 1.70528e+00 7.81807e+01 −5.12950e+01 1.70528e+01

8.58527e+00 9.94472e−01 9.18583e+01 8.58527e+01 9.94472e+00

−3.00033e+00 8.34387e+00 9.44311e+00 −3.00033e+01 8.34387e+01

−6.06810e+00 −4.28322e+00 −7.22751e+01 −6.06810e+01 −4.28322e+01

−4.97832e+00 5.14401e+00 −7.01412e+01 −4.97832e+01 5.14401e+01

21 Extended Rosenbrock

1 2 3 4 5

−1.20000e+00 −6.92542e−01 −1.26122e+00 −8.91842e−01 3.87458e+00

1.00000e+00 7.60892e−01 2.38041e−02 1.37843e+00 −1.39108e+00

−1.20000e+00 −1.06436e+00 −1.52576e+00 −7.03697e−01 1.56433e−01

1.00000e+00 1.51709e−01 3.24365e−01 9.01083e−01 −7.48291e+00

−1.20000e+00 −2.09210e+00 −6.11431e−01 −2.03236e+00 −1.01210e+01

1.00000e+00 1.06160e+00 6.22430e−01 4.57954e−01 1.61595e+00

−1.20000e+00 −6.41666e−01 −1.14293e+00 −3.73325e−01 4.38335e+00

1.00000e+00 1.86802e+00 3.31298e−01 3.04756e−01 9.68021e+00

−1.20000e+00 −1.94019e+00 −9.96036e−01 −5.48366e−01 −8.60188e+00

1.00000e+00 1.13765e+00 5.25943e−01 1.07669e+00 2.37647e+00

6 7 8 9 10

−1.81219e+00 1.88158e+00 4.95458e+01 −7.32187e+00 2.96158e+01

−8.76196e+00 4.78429e+00 −2.29108e+01 −9.66196e+01 3.88429e+01

−4.45755e+00 3.76303e+00 1.23643e+01 −3.37755e+01 4.84303e+01

−5.75635e+00 1.08320e−02 −8.38291e+01 −6.65635e+01 −8.89168e+00

4.68569e+00 −9.52357e+00 −9.04100e+01 5.76569e+01 −8.44357e+01

−2.77570e+00 −4.42046e+00 7.15951e+00 −3.67570e+01 −5.32046e+01

−6.29337e−01 7.06675e+00 5.46335e+01 4.50663e+00 8.14675e+01

−5.68703e+00 −5.95244e+00 8.78021e+01 −6.58703e+01 −6.85244e+01

8.39639e−01 5.31634e+00 −7.52188e+01 1.91964e+01 6.39634e+01

−3.74057e+00 1.76685e+00 1.47647e+01 −4.64057e+01 8.66849e+00
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22 Extended Powell singular

1 2 3 4 5

3.00000e+00 2.83453e+00 2.48338e+00 2.08605e+00 1.34534e+00

−1.00000e+00 −1.90069e+00 −1.19218e+00 −1.66202e+00 −1.00069e+01

0.00000e+00 8.05432e−01 −8.07091e−01 2.98231e−01 8.05432e+00

1.00000e+00 1.88957e+00 2.63947e−01 1.46345e+00 9.89574e+00

3.00000e+00 2.98173e+00 3.88410e+00 3.29549e+00 2.81728e+00

−1.00000e+00 −1.02150e+00 −8.77309e−02 −1.09815e+00 −1.21495e+00

0.00000e+00 −3.24561e−01 1.50417e−01 9.40178e−02 −3.24561e+00

1.00000e+00 1.80011e+00 1.19559e−01 5.92642e−01 9.00108e+00

3.00000e+00 2.73849e+00 2.46956e+00 3.48939e+00 3.84936e−01

−1.00000e+00 −1.77759e+00 −1.29368e+00 −1.62209e+00 −8.77595e+00

0.00000e+00 5.60504e−01 6.42388e−01 3.73551e−01 5.60504e+00

1.00000e+00 7.79478e−01 3.08069e−02 3.67022e−01 −1.20522e+00

6 7 8 9 10

−2.16617e+00 −6.13952e+00 −1.35466e+01 −4.86617e+01 −8.83952e+01

−2.92176e+00 −7.62020e+00 −9.10691e+01 −2.02176e+01 −6.72020e+01

−8.07091e+00 2.98231e+00 8.05432e+01 −8.07091e+01 2.98231e+01

−6.36053e+00 5.63445e+00 8.99574e+01 −7.26053e+01 4.73445e+01

1.18410e+01 5.95492e+00 1.17282e+00 9.14101e+01 3.25492e+01

8.12269e+00 −1.98153e+00 −3.14947e+00 9.02269e+01 −1.08153e+01

1.50417e+00 9.40178e−01 −3.24561e+01 1.50417e+01 9.40178e+00

−7.80441e+00 −3.07358e+00 8.10108e+01 −8.70441e+01 −3.97358e+01

−2.30440e+00 7.89386e+00 −2.31506e+01 −5.00440e+01 5.19386e+01

−3.93683e+00 −7.22090e+00 −7.87595e+01 −3.03683e+01 −6.32090e+01

6.42388e+00 3.73551e+00 5.60504e+01 6.42388e+01 3.73551e+01

−8.69193e+00 −5.32978e+00 −2.10522e+01 −9.59193e+01 −6.22978e+01

23 Penalty I

1 2 3 4 5

1.00000e+00 2.83773e−01 1.91899e+00 1.86799e+00 −6.16227e+00

1.00000e+00 8.43523e−01 1.31148e+00 1.35747e+00 −5.64774e−01

1.00000e+00 1.83147e+00 7.14234e−02 1.51548e+00 9.31471e+00

1.00000e+00 1.58442e+00 1.69826e+00 1.48627e+00 6.84415e+00

6 7 8 9 10

1.01899e+01 9.67987e+00 −7.06227e+01 9.28985e+01 8.77987e+01

4.11481e+00 4.57470e+00 −1.46477e+01 3.21481e+01 3.67470e+01

−8.28577e+00 6.15480e+00 8.41471e+01 −9.18577e+01 5.25480e+01

7.98259e+00 5.86265e+00 5.94415e+01 7.08259e+01 4.96265e+01

24 Penalty II

1 2 3 4 5

5.00000e−01 −2.16227e−01 1.41899e+00 1.36799e+00 −6.66227e+00

5.00000e−01 3.43523e−01 8.11481e−01 8.57470e−01 −1.06477e+00

5.00000e−01 1.33147e+00 −4.28577e−01 1.01548e+00 8.81471e+00

5.00000e−01 1.08442e+00 1.19826e+00 9.86265e−01 6.34415e+00

6 7 8 9 10

9.68985e+00 9.17987e+00 −7.11227e+01 9.23985e+01 8.72987e+01

3.61481e+00 4.07470e+00 −1.51477e+01 3.16481e+01 3.62470e+01

−8.78577e+00 5.65480e+00 8.36471e+01 −9.23577e+01 5.20480e+01

7.48259e+00 5.36265e+00 5.89415e+01 7.03259e+01 4.91265e+01
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25 Variably dimensioned

1 2 3 4 5

9.00000e−01 1.40746e+00 8.38781e−01 1.20816e+00 5.97458e+00

9.00000e−01 6.60892e−01 −7.61959e−02 1.27843e+00 −1.49108e+00

9.00000e−01 1.03564e+00 5.74245e−01 1.39630e+00 2.25643e+00

9.00000e−01 5.17086e−02 2.24365e−01 8.01083e−01 −7.58291e+00

9.00000e−01 7.90024e−03 1.48857e+00 6.76428e−02 −8.02100e+00

9.00000e−01 9.61595e−01 5.22430e−01 3.57954e−01 1.51595e+00

9.00000e−01 1.45833e+00 9.57066e−01 1.72668e+00 6.48335e+00

9.00000e−01 1.76802e+00 2.31298e−01 2.04756e−01 9.58021e+00

9.00000e−01 1.59812e−01 1.10396e+00 1.55163e+00 −6.50188e+00

9.00000e−01 1.03765e+00 4.25943e−01 9.76685e−01 2.27647e+00

6 7 8 9 10

2.87813e−01 3.98158e+00 5.16458e+01 −5.22187e+00 3.17158e+01

−8.86196e+00 4.68429e+00 −2.30108e+01 −9.67196e+01 3.87429e+01

−2.35755e+00 5.86303e+00 1.44643e+01 −3.16755e+01 5.05303e+01

−5.85635e+00 −8.91680e−02 −8.39291e+01 −6.66635e+01 −8.99168e+00

6.78569e+00 -7.42357e+00 −8.83100e+01 5.97569e+01 −8.23357e+01

−2.87570e+00 −4.52046e+00 7.05951e+00 −3.68570e+01 −5.33046e+01

1.47066e+00 9.16675e+00 5.67335e+01 6.60663e+00 8.35675e+01

−5.78703e+00 −6.05244e+00 8.77021e+01 −6.59703e+01 −6.86244e+01

2.93964e+00 7.41634e+00 −7.31188e+01 2.12964e+01 6.60634e+01

−3.84057e+00 1.66685e+00 1.46647e+01 −4.65057e+01 8.56849e+00

26 Trigonometric

1 2 3 4 5

1.00000e−01 6.07458e−01 3.87813e−02 4.08158e−01 5.17458e+00

1.00000e−01 −1.39108e−01 −8.76196e−01 4.78429e−01 −2.29108e+00

1.00000e−01 2.35643e−01 −2.25755e−01 5.96303e−01 1.45643e+00

1.00000e−01 −7.48291e−01 −5.75635e−01 1.08320e−03 −8.38291e+00

1.00000e−01 −7.92100e−01 6.88569e−01 −7.32357e−01 −8.82100e+00

1.00000e−01 1.61595e−01 −2.77570e−01 −4.42046e−01 7.15951e−01

1.00000e−01 6.58335e−01 1.57066e−01 9.26675e−01 5.68335e+00

1.00000e−01 9.68021e−01 −5.68703e−01 −5.95244e−01 8.78021e+00

1.00000e−01 −6.40188e−01 3.03964e−01 7.51634e−01 −7.30188e+00

1.00000e−01 2.37647e−01 −3.74057e−01 1.76685e−01 1.47647e+00

6 7 8 9 10

−5.12187e−01 3.18158e+00 5.08458e+01 −6.02187e+00 3.09158e+01

−9.66196e+00 3.88429e+00 −2.38108e+01 −9.75196e+01 3.79429e+01

−3.15755e+00 5.06303e+00 1.36643e+01 −3.24755e+01 4.97303e+01

−6.65635e+00 −8.89168e−01 −8.47291e+01 −6.74635e+01 −9.79168e+00

5.98569e+00 −8.22357e+00 −8.91100e+01 5.89569e+01 −8.31357e+01

−3.67570e+00 −5.32046e+00 6.25951e+00 −3.76570e+01 −5.41046e+01

6.70663e−01 8.36675e+00 5.59335e+01 5.80663e+00 8.27675e+01

−6.58703e+00 −6.85244e+00 8.69021e+01 −6.67703e+01 −6.94244e+01

2.13964e+00 6.61634e+00 −7.39188e+01 2.04964e+01 6.52634e+01

−4.64057e+00 8.66849e−01 1.38647e+01 −4.73057e+01 7.76849e+00
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27 Brown almost-linear

1 2 3 4 5

5.00000e−01 5.50746e−01 4.93878e−01 5.30816e−01 1.00746e+00

5.00000e−01 4.76089e−01 4.02380e−01 5.37843e−01 2.60892e−01

5.00000e−01 5.13564e−01 4.67425e−01 5.49630e−01 6.35643e−01

5.00000e−01 4.15171e−01 4.32437e−01 4.90108e−01 −3.48291e−01

5.00000e−01 4.10790e−01 5.58857e−01 4.16764e−01 −3.92100e−01

5.00000e−01 5.06160e−01 4.62243e−01 4.45795e−01 5.61595e−01

5.00000e−01 5.55833e−01 5.05707e−01 5.82668e−01 1.05833e+00

5.00000e−01 5.86802e−01 4.33130e−01 4.30476e−01 1.36802e+00

5.00000e−01 4.25981e−01 5.20396e−01 5.65163e−01 −2.40188e−01

5.00000e−01 5.13765e−01 4.52594e−01 5.07669e−01 6.37647e−01

6 7 8 9 10

4.38781e−01 8.08158e−01 5.57458e+00 −1.12187e−01 3.58158e+00

−4.76196e−01 8.78429e−01 −1.89108e+00 −9.26196e+00 4.28429e+00

1.74245e−01 9.96303e−01 1.85643e+00 −2.75755e+00 5.46303e+00

−1.75635e−01 4.01083e−01 −7.98291e+00 −6.25635e+00 −4.89168e−01

1.08857e+00 −3.32357e−01 −8.42100e+00 6.38569e+00 −7.82357e+00

1.22430e−01 −4.20461e−02 1.11595e+00 −3.27570e+00 −4.92046e+00

5.57066e−01 1.32668e+00 6.08335e+00 1.07066e+00 8.76675e+00

−1.68703e−01 −1.95244e−01 9.18021e+00 −6.18703e+00 −6.45244e+00

7.03964e−01 1.15163e+00 −6.90188e+00 2.53964e+00 7.01634e+00

2.59426e−02 5.76685e−01 1.87647e+00 −4.24057e+00 1.26685e+00

28 Discrete boundary value

29 Discrete Integral equation

1 2 3 4 5

−8.26446e−02 4.24814e−01 −1.43863e−01 2.25514e−01 4.99194e+00

−1.48760e−01 −3.87869e−01 −1.12496e+00 2.29669e−01 −2.53984e+00

−1.98347e−01 −6.27038e−02 −5.24102e−01 2.97956e−01 1.15809e+00

−2.31405e−01 −1.07970e+00 −9.07040e−01 −3.30322e−01 −8.71432e+00

−2.47934e−01 −1.14003e+00 3.40635e−01 −1.08029e+00 −9.16893e+00

−2.47934e−01 −1.86339e−01 −6.25504e−01 −7.89980e−01 3.68017e−01

−2.31405e−01 3.26930e−01 −1.74339e−01 5.95270e−01 5.35194e+00

−1.98347e−01 6.69674e−01 −8.67050e−01 −8.93591e−01 8.48187e+00

−1.48760e−01 −8.88948e−01 5.52036e−02 5.02874e−01 −7.55064e+00

−8.26446e−02 5.50027e−02 −5.56702e−01 −5.95976e−03 1.29383e+00

6 7 8 9 10

−6.94832e−01 2.99894e+00 5.06632e+01 −6.20452e+00 3.07332e+01

−9.91072e+00 3.63553e+00 −2.40596e+01 −9.77684e+01 3.76941e+01

−3.45589e+00 4.76469e+00 1.33660e+01 −3.27738e+01 4.94320e+01

−6.98776e+00 −1.22057e+00 −8.50606e+01 −6.77949e+01 −1.01231e+01

5.63776e+00 −8.57151e+00 −8.94579e+01 5.86090e+01 −8.34837e+01

−4.02363e+00 −5.66840e+00 5.91158e+00 −3.80049e+01 −5.44525e+01

3.39258e−01 8.03534e+00 5.56020e+01 5.47522e+00 8.24361e+01

−6.88537e+00 −7.15079e+00 8.66038e+01 −6.70686e+01 −6.97227e+01

1.89088e+00 6.36758e+00 −7.41675e+01 2.02476e+01 6.50146e+01

−4.82322e+00 6.84204e−01 1.36821e+01 −4.74884e+01 7.58584e+00
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30 Broyden tridiagonal

1 2 3 4 5

−1.00000e+00 −9.94925e−01 −1.00061e+00 −9.96918e−01 −9.49254e−01

−1.00000e+00 −1.00239e+00 −1.00976e+00 −9.96216e−01 −1.02391e+00

−1.00000e+00 −9.98644e−01 −1.00326e+00 −9.95037e−01 −9.86436e−01

−1.00000e+00 −1.00848e+00 −1.00676e+00 −1.00099e+00 −1.08483e+00

−1.00000e+00 −1.00892e+00 −9.94114e−01 −1.00832e+00 −1.08921e+00

−1.00000e+00 −9.99384e−01 −1.00378e+00 −1.00542e+00 −9.93841e−01

−1.00000e+00 −9.94417e−01 −9.99429e−01 −9.91733e−01 −9.44167e−01

−1.00000e+00 −9.91320e−01 −1.00669e+00 −1.00695e+00 −9.13198e−01

−1.00000e+00 −1.00740e+00 −9.97960e−01 −9.93484e−01 −1.07402e+00

−1.00000e+00 −9.98624e−01 −1.00474e+00 −9.99233e−01 −9.86235e−01

6 7 8 9 10

−1.00612e+00 −9.69184e−01 −4.92542e−01 −1.06122e+00 −6.91842e−01

−1.09762e+00 −9.62157e−01 −1.23911e+00 −1.97620e+00 −6.21571e−01

−1.03258e+00 −9.50370e−01 −8.64357e−01 −1.32576e+00 −5.03697e−01

−1.06756e+00 −1.00989e+00 −1.84829e+00 −1.67564e+00 −1.09892e+00

−9.41143e−01 −1.08324e+00 −1.89210e+00 −4.11431e−01 −1.83236e+00

−1.03776e+00 −1.05421e+00 −9.38405e−01 −1.37757e+00 −1.54205e+00

−9.94293e−01 −9.17333e−01 −4.41666e−01 −9.42934e−01 −1.73325e−01

−1.06687e+00 −1.06952e+00 −1.31979e−01 −1.66870e+00 −1.69524e+00

−9.79604e−01 −9.34837e−01 −1.74019e+00 −7.96036e−01 −3.48366e−01

−1.04741e+00 −9.92332e−01 −8.62353e−01 −1.47406e+00 −9.23315e−01

31 Broyden banded

1 2 3 4 5

−1.00000e+00 −4.92542e−01 −1.06122e+00 −6.91842e−01 4.07458e+00

−1.00000e+00 −1.23911e+00 −1.97620e+00 −6.21571e−01 −3.39108e+00

−1.00000e+00 −8.64357e−01 −1.32576e+00 −5.03697e−01 3.56433e−01

−1.00000e+00 −1.84829e+00 −1.67564e+00 −1.09892e+00 −9.48291e+00

−1.00000e+00 −1.89210e+00 −4.11431e−01 −1.83236e+00 −9.92100e+00

−1.00000e+00 −9.38405e−01 −1.37757e+00 −1.54205e+00 −3.84049e−01

−1.00000e+00 −4.41666e−01 −9.42934e−01 −1.73325e−01 4.58335e+00

−1.00000e+00 −1.31979e−01 −1.66870e+00 −1.69524e+00 7.68021e+00

−1.00000e+00 −1.74019e+00 −7.96036e−01 −3.48366e−01 −8.40188e+00

−1.00000e+00 −8.62353e−01 −1.47406e+00 −9.23315e−01 3.76473e−01

6 7 8 9 10

−1.61219e+00 2.08158e+00 4.97458e+01 −7.12187e+00 2.98158e+01

−1.07620e+01 2.78429e+00 −2.49108e+01 −9.86196e+01 3.68429e+01

−4.25755e+00 3.96303e+00 1.25643e+01 −3.35755e+01 4.86303e+01

−7.75635e+00 −1.98917e+00 −8.58291e+01 −6.85635e+01 −1.08917e+01

4.88569e+00 −9.32357e+00 −9.02100e+01 5.78569e+01 −8.42357e+01

−4.77570e+00 −6.42046e+00 5.15951e+00 −3.87570e+01 −5.52046e+01

−4.29337e−01 7.26675e+00 5.48335e+01 4.70663e+00 8.16675e+01

−7.68703e+00 −7.95244e+00 8.58021e+01 −6.78703e+01 −7.05244e+01

1.03964e+00 5.51634e+00 −7.50188e+01 1.93964e+01 6.41634e+01

−5.74057e+00 −2.33151e−01 1.27647e+01 −4.84057e+01 6.66849e+00
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32 Linear - full rank

33 Linear - rank 1

34 Linear - rank 1 with zero columns and rows

1 2 3 4 5

1.00000e+00 1.50746e+00 9.38781e−01 1.30816e+00 6.07458e+00

1.00000e+00 7.60892e−01 2.38041e−02 1.37843e+00 −1.39108e+00

1.00000e+00 1.13564e+00 6.74245e−01 1.49630e+00 2.35643e+00

1.00000e+00 1.51709e−01 3.24365e−01 9.01083e−01 −7.48291e+00

1.00000e+00 1.07900e−01 1.58857e+00 1.67643e−01 −7.92100e+00

1.00000e+00 1.06160e+00 6.22430e−01 4.57954e−01 1.61595e+00

1.00000e+00 1.55833e+00 1.05707e+00 1.82668e+00 6.58335e+00

1.00000e+00 1.86802e+00 3.31298e−01 3.04756e−01 9.68021e+00

1.00000e+00 2.59812e−01 1.20396e+00 1.65163e+00 −6.40188e+00

1.00000e+00 1.13765e+00 5.25943e−01 1.07669e+00 2.37647e+00

6 7 8 9 10

3.87813e−01 4.08158e+00 5.17458e+01 −5.12187e+00 3.18158e+01

−8.76196e+00 4.78429e+00 −2.29108e+01 −9.66196e+01 3.88429e+01

−2.25755e+00 5.96303e+00 1.45643e+01 −3.15755e+01 5.06303e+01

−5.75635e+00 1.08320e−02 −8.38291e+01 −6.65635e+01 −8.89168e+00

6.88569e+00 −7.32357e+00 −8.82100e+01 5.98569e+01 −8.22357e+01

−2.77570e+00 −4.42046e+00 7.15951e+00 −3.67570e+01 −5.32046e+01

1.57066e+00 9.26675e+00 5.68335e+01 6.70663e+00 8.36675e+01

−5.68703e+00 −5.95244e+00 8.78021e+01 −6.58703e+01 −6.85244e+01

3.03964e+00 7.51634e+00 −7.30188e+01 2.13964e+01 6.61634e+01

−3.74057e+00 1.76685e+00 1.47647e+01 −4.64057e+01 8.66849e+00

35 Chebyquad

1 2 3 4 5

1.00000e−01 1.50253e−01 5.15017e−02 1.23209e−01 6.02534e−01

1.00000e−01 5.10190e−02 1.68144e−01 9.46578e−02 −3.89810e−01

1.00000e−01 1.01191e−01 5.08564e−02 7.03319e−02 1.11914e−01

1.00000e−01 1.39815e−01 1.62857e−01 1.66166e−01 4.98153e−01

1.00000e−01 1.78181e−01 4.87050e−02 1.17053e−01 8.81807e−01

1.00000e−01 1.91858e−01 1.85853e−01 1.09945e−01 1.01858e+00

1.00000e−01 1.09443e−01 6.99968e−02 1.83439e−01 1.94431e−01

1.00000e−01 2.77249e−02 3.93191e−02 5.71678e−02 −6.22751e−01

1.00000e−01 2.98588e−02 5.02168e−02 1.51440e−01 −6.01412e−01

6 7 8 9 10

−3.84984e−01 3.32089e−01 5.12534e+00 −4.74984e+00 2.42089e+00

7.81435e−01 4.65777e−02 −4.79810e+00 6.91435e+00 −4.34223e−01

−3.91436e−01 −1.96681e−01 2.19141e−01 −4.81436e+00 −2.86681e+00

7.28570e−01 7.61657e−01 4.08153e+00 6.38570e+00 6.71657e+00

−4.12950e−01 2.70528e−01 7.91807e+00 −5.02950e+00 1.80528e+00

9.58527e−01 1.99447e−01 9.28583e+00 8.68527e+00 1.09447e+00

−2.00033e−01 9.34387e−01 1.04431e+00 −2.90033e+00 8.44387e+00

−5.06810e−01 −3.28322e−01 −7.12751e+00 −5.96810e+00 −4.18322e+00

−3.97832e−01 6.14401e−01 −6.91412e+00 −4.87832e+00 5.24401e+00
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Appendix C MATLAB Source Code

This appendix contains the MATLAB implementations C.1, C.2, C.3, C.4 and C.5 of
the algorithms discussed in the thesis. Their benchmarking was performed with test
functions from [33]. We provide the MATLAB code for all these functions in C.7.
Program C.6 runs on its own but was initially written to understand and to test the
stepwise regression procedure in C.5. The M-code LaTeX Package [24] was used for
the representation of the MATLAB files.

C.1 Gauss-Newton Algorithm

1 function [ x, phi, fcount, tcount, icount ] = gn( f, v, n, T, ...

fevals, tol )

2 %% GAUSS-NEWTON method

3 % for nonlinear least squares approximation

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % K.M. Brown and J.E. Dennis. "Derivative Free Analogues of the

7 % Levenberg-Marquardt and Gauss Algorithms for Nonlinear Least

8 % Squares Approximation". In: Numer. Math. 18 (1971), pp. 289-297.

9 %

10 %% INPUT:

11 % f - function in the NLLS problem "minimize phi(x) = f(x)'f(x)",

12 % [F, J] = f(v) where F is the function evaluation and

13 % J is the Jacobian/gradient of F

14 % v - vector containing the initial approximation x0

15 % and function parameters par (optional),

16 % i.e., v = [x0; par] for column vectors x0 and par7

17 % n - positive integer, dimension of the domain of the function f

18 % T - positive scalar for the termination criteria 'phi < T'

19 % (optional, default = realmin)

20 % fevals - nonnegative integer, maximum number of function

21 % evaluations (optional, default = 1000)

22 % tol - positive scalar, step tolerance (optional, default = 1e-5)

23 %

24 %% OUTPUT:

25 % x - n-dimensional vector, approximate solution of the NLLS problem

26 % phi - minimized squared 2-norm of f (often a residual vector)

27 % fcount - number of function evaluations

28 % tcount - elapsed time to minimize NLLS problem

29 % icount - number of iterations

30 %

31 %% EXAMPLE1:

32 % x0 = [-1.2;1];

33 % [x, phi, fcount] = gn( @rosenbrock2D, x0, 2 )

34 %

35 %% EXAMPLE2:

36 % v = [[0;20;20]; (0.1:0.1:1)'];

37 % [x, phi, fcount, tcount, icount] = gn( @box3D, v, 3, 1e-5 )

38

39 tic; % start timer

40

41
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42 %% Ensuring correct input

43 % ensure that the number of input arguments is correct

44 % and that the arguments 4-6 are scalars/integers

45 if nargin == 3

46 T = realmin;

47 fevals = 1e3;

48 tol = 1e-5;

49 elseif nargin == 4

50 fevals = 1e3;

51 tol = 1e-5;

52 if length(T) ~= 1 || T <= 0

53 error('T must be a positive scalar.')

54 end

55 elseif nargin == 5

56 tol = 1e-5;

57 if length(T) ~= 1 || T <= 0

58 error('T must be a positive scalar.')

59 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

60 error('maxit must be a nonnegative integer.')

61 end

62 elseif nargin == 6

63 if length(T) ~= 1 || T <= 0

64 error('T must be a positive scalar.')

65 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

66 error('maxit must be a nonnegative integer.')

67 elseif length(tol) ~= 1 || tol <= 0

68 error('tol must be a positive scalar.')

69 end

70 else

71 error('Not enough input arguments.');

72 end

73 % ensure that the input arguments 1-3 are also correct

74 if ~isa(f,'function_handle')

75 error('Enter function handle.')

76 elseif isvector(v) ~= 1

77 error('v must be a vector.')

78 elseif length(n) ~= 1 || mod(n,1) ~= 0 || n <= 0

79 error('n must be a positive integer.')

80 end

81 % ensure that the program works with a column vector

82 [lv, u] = size(v);

83 if u ~= 1

84 v = v';

85 lv = u; % length of v

86 end

87

88 %% Initialization

89 x = v(1:n);

90 if lv-n == 0 % no additional function parameters given

91 par = [];

92 else

93 par = v(n+1:end);

94 end

95 fcount = 0;

96 [F, J] = f([x; par]); fcount = fcount + 1;

97 phi = norm(F)^2; % squared 2-norm for inital approximation

98 icount = 0; % iteration counter

99
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100 %% Main procedure

101 while fcount < fevals && phi >= T

102 icount = icount+1;

103 p = J'*J \ -J'*F; % solve LLS problem norm(J*p+F) = min for p

104 if norm(p) <= tol

105 break % stop iteration if stepsize is too small

106 end

107 x = x + p; % new approximation

108 [F, J] = f([x; par]); fcount = fcount + 1 + n;

109 phi = norm(F)^2; % squared 2-norm of F at the minimum

110 end

111 tcount = toc; % end timer

112 end

C.2 Finite Difference Gauss-Newton Algorithm

1 function [ x, phi, fcount, tcount, icount ] = fdgn( f, v, n, T, ...

fevals, tol )

2 %% FINITE DIFFERENCE GAUSS-NEWTON method

3 % for nonlinear least squares approximation

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % K.M. Brown and J.E. Dennis. "Derivative Free Analogues of the

7 % Levenberg-Marquardt and Gauss Algorithms for Nonlinear Least

8 % Squares Approximation". In: Numer. Math. 18 (1971), pp. 289-297.

9 %

10 %% INPUT:1

11 % f - function in the NLLS problem "minimize phi(x) = f(x)'f(x)"

12 % v - vector containing the initial approximation x0

13 % and function parameters par (optional),

14 % i.e., v = [x0; par] for column vectors x0 and par

15 % n - positive integer, dimension of the domain of the function f

16 % T - positive scalar for the termination criteria 'phi < T'

17 % (optional, default = realmin)

18 % fevals - nonnegative integer, maximum number of function

19 % evaluations (optional, default = 1000)

20 % tol - positive scalar, step tolerance (optional, default = 1e-5)

21 %

22 %% OUTPUT:

23 % x - n-dimensional vector, approximate solution of the NLLS problem

24 % phi - minimized squared 2-norm of f (often a residual vector)

25 % fcount - number of function evaluations

26 % tcount - elapsed time to minimize NLLS problem

27 % icount - number of iterations

28 %

29 %% EXAMPLE1:

30 % x0 = [-1.2;1];

31 % [x, phi, fcount] = fdgn( @rosenbrock2D, x0, 2 )

32 %

33 %% EXAMPLE2:

34 % v = [[0;20;20]; (0.1:0.1:1)'];

35 % [x, phi, fcount, tcount, icount] = fdgn( @box2, v, 3, 1e-5 )

36

37 tic; % start timer
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38 %% Ensuring correct input

39 % ensure that the number of input arguments is correct and

40 % that the arguments 4-6 are scalars/integers

41 if nargin == 3

42 T = realmin;

43 fevals = 1e3;

44 tol = 1e-5;

45 elseif nargin == 4

46 fevals = 1e3;

47 tol = 1e-5;

48 if length(T) ~= 1 || T <= 0

49 error('T must be a positive scalar.')

50 end

51 elseif nargin == 5

52 tol = 1e-5;

53 if length(T) ~= 1 || T <= 0

54 error('T must be a positive scalar.')

55 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

56 error('maxit must be a nonnegative integer.')

57 end

58 elseif nargin == 6

59 if length(T) ~= 1 || T <= 0

60 error('T must be a positive scalar.')

61 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

62 error('maxit must be a nonnegative integer.')

63 elseif length(tol) ~= 1 || tol <= 0

64 error('tol must be a positive scalar.')

65 end

66 else

67 error('Not enough input arguments.');

68 end

69 % ensure that the input arguments 1-3 are also correct

70 if ~isa(f,'function_handle')

71 error('Enter function handle.')

72 elseif isvector(v) ~= 1

73 error('v must be a vector.')

74 elseif length(n) ~= 1 || mod(n,1) ~= 0 || n <= 0

75 error('n must be a positive integer.')

76 end

77 % ensure that the program works with a column vector

78 [lv, u] = size(v);

79 if u ~= 1

80 v = v';

81 lv = u; % length of v

82 end

83

84 %% Initialization

85 x = v(1:n);

86 if lv-n == 0 % no additional function parameters given

87 par = [];

88 else

89 par = v(n+1:end);

90 end

91 fcount = 0;

92 F = f([x; par]); fcount = fcount + 1;

93 Fnorm = norm(F);

94 phi = norm(F)^2; % squared 2-norm for inital approximation

95 n = length(x); % determine size
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96 m = length(F); % of the m x n matrix delta_F(x,h)

97 J = zeros(m,n); % h^{-1}*delta_F(x,h) -> J(x) as h -> 0

98 h = zeros(n,1); % h << 1 componentwise in the iteration

99 delta = zeros(n,1); % shall guarantee non-uniform h

100 I = eye(n); % needed for unit vector construction

101 icount = 0; % iteration counter

102

103 %% Main procedure

104 while fcount < fevals && phi >= T

105 icount = icount + 1;

106 % finite difference approximation of J

107 for j = 1:n

108 % convergence rule for choice of h

109 if abs(x(j)) < 10*sqrt(eps)

110 delta(j) = 1e-2*sqrt(eps);

111 else

112 delta(j) = 1e-3*abs(x(j));

113 end

114 h(j) = min(Fnorm, delta(j));

115 % construction of unit vector in each iteration

116 u = I(:,j); % j-th unit vector

117 Fh = f([x + h(j)*u; par]); fcount = fcount + 1;

118 J(:,j) = (Fh - F)/h(j); % difference quotient

119 end

120 p = J'*J \ -J'*F; % solve LLS problem norm(J*p+F) = min for p

121 if norm(p) <= tol

122 break % stop iteration if stepsize is too small

123 end

124 x = x + p; % new approximation

125 F = f([x; par]); fcount = fcount + 1;

126 Fnorm = norm(F);

127 phi = Fnorm^2; % squared 2-norm of F at the minimum

128 end

129 tcount = toc; % end timer

130 end
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C.3 Levenberg-Marquardt Algorithm

1 function [ x, phi, fcount, tcount, icount ] = lm( f, v, n, T, ...

fevals, tol )

2 %% LEVENBERG-MARQUARDT method

3 % for nonlinear least squares approximation

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % K.M. Brown and J.E. Dennis. "Derivative Free Analogues of the

7 % Levenberg-Marquardt and Gauss Algorithms for Nonlinear Least

8 % Squares Approximation". In: Numer. Math. 18 (1971), pp. 289-297.

9 %

10 %% INPUT:

11 % f - function in the NLLS problem "minimize phi(x) = f(x)'f(x)",

12 % [F, J] = f(v) where F is the function evaluation and

13 % J is the Jacobian/gradient of F

14 % v - vector containing the initial approximation x0

15 % and function parameters par (optional),

16 % i.e., v = [x0; par] for column vectors x0 and par

17 % n - positive integer, dimension of the domain of the function f

18 % T - positive scalar for the termination criteria 'phi < T'

19 % (optional, default = realmin)

20 % fevals - nonnegative integer, maximum number of function

21 % evaluations (optional, default = 1000)

22 % tol - positive scalar, step tolerance (optional, default = 1e-5)

23 %

24 %% OUTPUT:

25 % x - n-dimensional vector, approximate solution of the NLLS problem

26 % phi - minimized squared 2-norm of f (often a residual vector)

27 % fcount - number of function evaluations

28 % tcount - elapsed time to minimize NLLS problem

29 % icount - number of iterations

30 %

31 %% EXAMPLE1:

32 % x0 = [-1.2;1];

33 % [x, phi, fcount] = lm( @rosenbrock2D, x0, 2 )

34 %

35 %% EXAMPLE2:

36 % v = [[0;20;20]; (0.1:0.1:1)'];

37 % [x, phi, fcount, tcount, icount] = lm( @box2, v, 3, 1e-5 )

38

39 tic; % start timer

40

41 %% Ensuring correct input

42 % ensure that the number of input arguments is correct

43 % and that the arguments 4-6 are scalars/integers

44 if nargin == 3

45 T = realmin;

46 fevals = 1e3;

47 tol = 1e-5;

48 elseif nargin == 4

49 fevals = 1e3;

50 tol = 1e-5;

51 if length(T) ~= 1 || T <= 0

52 error('T must be a positive scalar.')

53 end

54 elseif nargin == 5
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55 tol = 1e-5;

56 if length(T) ~= 1 || T <= 0

57 error('T must be a positive scalar.')

58 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

59 error('maxit must be a nonnegative integer.')

60 end

61 elseif nargin == 6

62 if length(T) ~= 1 || T <= 0

63 error('T must be a positive scalar.')

64 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

65 error('maxit must be a nonnegative integer.')

66 elseif length(tol) ~= 1 || tol <= 0

67 error('tol must be a positive scalar.')

68 end

69 else

70 error('Not enough input arguments.');

71 end

72 % ensure that the input arguments 1-3 are also correct

73 if ~isa(f,'function_handle')

74 error('Enter function handle.')

75 elseif isvector(v) ~= 1

76 error('v must be a vector.')

77 elseif length(n) ~= 1 || mod(n,1) ~= 0 || n <= 0

78 error('n must be a positive integer.')

79 end

80 % ensure that the program works with a column vector

81 [lv, u] = size(v);

82 if u ~= 1

83 v = v';

84 lv = u; % length of v

85 end

86

87 %% Initialization

88 x = v(1:n);

89 if lv-n == 0 % no additional function parameters given

90 par = [];

91 else

92 par = v(n+1:end);

93 end

94 fcount = 0;

95 [F, J] = f([x; par]); fcount = fcount + 1;

96 phi = norm(F)^2; % squared 2-norm for inital approximation

97 I = eye(n); % needed for formula

98 icount = 0; % iteration counter

99

100 %% Main procedure

101 while fcount < fevals && phi >= T

102 icount = icount + 1;

103 % compute sup norm of F needed for convergence rule

104 Infnorm = norm(F, Inf);

105 % convergence rule for choice of mu

106 if Infnorm >= 10 % mu large -> method of steepest descent

107 c = 10;

108 elseif Infnorm <= 1 % mu = 0 -> Gauss-Newton method

109 c = 1e-3;

110 else

111 c = 1e-1;

112 end
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113 mu = c*Infnorm;

114 p = (mu*I + J'*J) \ -J'*F; % solve the "damped" normal equations

115 if norm(p) <= tol

116 break % stop iteration if stepsize is too small

117 end

118 x = x + p; % new approximation

119 [F, J] = f([x; par]); fcount = fcount + 1 + n;

120 phi = norm(F)^2; % squared 2-norm of F at the minimum

121 end

122 tcount = toc; % end timer

123 end

C.4 Finite Difference Levenberg-Marquardt Algorithm

1 function [ x, phi, fcount, tcount, icount ] = fdlm( f, v, n, T, ...

fevals, tol )

2 %% FINITE DIFFERENCE LEVENBERG-MARQUARDT ALGORITHM

3 % for nonlinear least squares approximation

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % K.M. Brown and J.E. Dennis. "Derivative Free Analogues of the

7 % Levenberg-Marquardt and Gauss Algorithms for Nonlinear Least

8 % Squares Approximation". In: Numer. Math. 18 (1971), pp. 289-297.

9 %

10 %% INPUT:

11 % f - function in the NLLS problem "minimize phi(x) = f(x)'f(x)"

12 % v - vector containing the initial approximation x0,

13 % and function parameters par (optional),

14 % i.e., v = [x0; par] for column vectors x0 and par

15 % n - positive integer, dimension of the domain of the function f

16 % T - positive scalar for the termination criteria 'phi < T'

17 % (optional, default = realmin)

18 % fevals - nonnegative integer, maximum number of function

19 % evaluations (optional, default = 1000)

20 % tol - positive scalar, step tolerance (optional, default = 1e-5)

21 %

22 %% OUTPUT:

23 % x - n-dimensional vector, approximate solution of the NLLS problem

24 % phi - minimized squared 2-norm of f (often a residual vector)

25 % fcount - number of function evaluations

26 % tcount - elapsed time to minimize NLLS problem

27 % icount - number of iterations

28 %

29 %% EXAMPLE1:

30 % x0 = [-1.2;1];

31 % [x, phi, fcount] = fdlm( @rosenbrock2D, x0, 2 )

32 %

33 %% EXAMPLE2:

34 % v = [[0;20;20]; (0.1:0.1:1)'];

35 % [x, phi, fcount, tcount, icount] = fdlm( @box2, v, 3, 1e-5 )

36

37 tic; % start timer

38

39
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40 %% Ensuring correct input

41 % ensure that the number of input arguments is correct

42 % and that the arguments 4-6 are scalars/integers

43 if nargin == 3

44 T = realmin;

45 fevals = 1e3;

46 tol = 1e-5;

47 elseif nargin == 4

48 fevals = 1e3;

49 tol = 1e-5;

50 if length(T) ~= 1 || T <= 0

51 error('T must be a positive scalar.')

52 end

53 elseif nargin == 5

54 tol = 1e-5;

55 if length(T) ~= 1 || T <= 0

56 error('T must be a positive scalar.')

57 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

58 error('maxit must be a nonnegative integer.')

59 end

60 elseif nargin == 6

61 if length(T) ~= 1 || T <= 0

62 error('T must be a positive scalar.')

63 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

64 error('maxit must be a nonnegative integer.')

65 elseif length(tol) ~= 1 || tol <= 0

66 error('tol must be a positive scalar.')

67 end

68 else

69 error('Not enough input arguments.');

70 end

71 % ensure that the input arguments 1-3 are also correct

72 if ~isa(f,'function_handle')

73 error('Enter function handle.')

74 elseif isvector(v) ~= 1

75 error('v must be a vector.')

76 elseif length(n) ~= 1 || mod(n,1) ~= 0 || n <= 0

77 error('n must be a positive integer.')

78 end

79 % ensure that the program works with a column vector

80 [lv, u] = size(v);

81 if u ~= 1

82 v = v';

83 lv = u; % length of v

84 end

85

86 %% Initialization

87 x = v(1:n);

88 if lv-n == 0 % no additional function parameters given

89 par = [];

90 else

91 par = v(n+1:end);

92 end

93 fcount = 0;

94 F = f([x; par]); fcount = fcount + 1;

95 Fnorm = norm(F);

96 phi = Fnorm^2; % squared 2-norm for inital approximation

97 n = length(x); % determine size
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98 m = length(F); % of the m x n matrix delta_F(x,h)

99 J = zeros(m,n); % h^{-1}*delta_F(x,h) -> J(x) as h -> 0

100 h = zeros(n,1); % h << 1 componentwise in the iteration

101 delta = zeros(n,1); % shall guarantee non-uniform h

102 I = eye(n); % needed for formula + unit vector construction

103 icount = 0; % iteration counter

104

105 %% Main procedure

106 while fcount < fevals && phi >= T

107 icount = icount + 1;

108 % compute sup norm of F needed for convergence rules

109 Infnorm = norm(F, Inf);

110 % convergence rule for choice of mu

111 if Infnorm >= 10 % mu large -> method of steepest descent

112 c = 10;

113 elseif Infnorm <= 1 % mu = 0 -> Gauss-Newton method

114 c = 1e-3;

115 else

116 c = 1e-1;

117 end

118 mu = c*Infnorm;

119 % finite difference approximation of J

120 for j = 1:n

121 % convergence rule for choice of h

122 if abs(x(j)) < 10*sqrt(eps)

123 delta(j) = 1e-2*sqrt(eps);

124 else

125 delta(j) = 1e-3*abs(x(j));

126 end

127 h(j) = min(Fnorm, delta(j));

128 % construction of unit vector in each iteration

129 u = I(:,j); % j-th unit vector

130 Fh = f([x + h(j)*u; par]); fcount = fcount + 1;

131 J(:,j) = (Fh - F)/h(j); % difference quotient

132 end

133 p = (mu*I + J'*J) \ -J'*F; % solve the "damped" normal equations

134 if norm(p) <= tol

135 break % stop iteration if stepsize is too small

136 end

137 x = x + p; % new approximation

138 F = f([x; par]); fcount = fcount + 1;

139 Fnorm = norm(F);

140 phi = Fnorm^2; % squared 2-norm of F at the minimum

141 end

142 tcount = toc; % end timer

143 end
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C.5 DUD Algorithm

1 function [ theta_new, Qnew, fcount, tcount, icount ] = dud( f, ...

v, dim, m, T, fevals, h )

2 %% DUD, a derivative-free algorithm

3 % for nonlinear least squares data fitting problems;

4 % DUD approximates the p-dimensional manifold spanned by the

5 % values of f(theta) by the secant plane through p+1 previous

6 % values of f(theta).

7 %% AUTHOR: Stefan Scheer

8 %% REFERENCE:

9 % M.L. Ralston and R.I. Jennrich. "Dud, A Derivative-Free Algorithm

10 % for Nonlinear Least Squares". In: Technometrics 20 (1978),

11 % pp. 7-14.

12 %

13 % R.I. Jennrich and P.F. Sampson. "Application of Stepwise

14 % Regression to Non-Linear Estimation". In: Technometrics 10.1

15 % (1968), pp. 63-72.

16 %

17 %% INPUT:

18 % f - function which takes as input the parameter vector theta

19 % and the explanatory vector x

20 % v - vector which contains the parameter vector theta

21 % and the explanatory vector x

22 % and the observed data vector y,

23 % i.e., v = [theta;x;y] for column vectors theta, x and y

24 % --> for standard NLLS problem enter v = theta only <--

25 % dim - two dimensional vector which contains the dimension of the

26 % domain and the dimension of the codomain of the function f,

27 % i.e., dim = [p;n] for positive integers p and n

28 % for data fitting: p is the dimension of the parameter space

29 % n is the sample size

30 % m - nonnegative integer, threshold for partial stepping procedure

31 % (optional, default = 0)

32 % handle carefully -> up to m line searches are performed per

33 % estimate and each line search requires a function evaluation

34 % T - positive scalar for the termination criteria 'RSS < T'

35 % (optional, default = realmin)

36 % fevals - nonnegative integer, maximum number of function

37 % evaluations (optional, default = 1000)

38 % h - scalar or p-dimensional vector (optional, default = theta*0.1)

39 % h must not be (or contain) zero(s)

40 % needed for the generation of p additional parameters theta_i,

41 % where the i-th component of theta is displaced by h (or h_i)

42 %

43 %% OUTPUT:

44 % theta_new - p-dimensional vector

45 % approximate solution of NLLS (data fitting) problem

46 % Qnew - minimized residual sum of squares

47 % fcount - number of function evaluations

48 % tcount - elapsed time to minimize NLLS (data fitting) problem

49 % icount - number of iterations

50 %

51 %% EXAMPLE1:

52 % v = [-1.2;1];

53 % [theta_new, Qnew, fcount] = dud(@rosenbrock2D, v, [2;2], 0, 10)

54 %
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55 %% EXAMPLE2:

56 % v = [[0;10;20]; (0.1:0.1:1)'; zeros(10,1)];

57 % [theta_new, Qnew, fcount, tcount, icount] = dud(@box3D, v, ...

[3;10], 5, 1e-5)

58

59 tic; % start timer

60

61 %% Ensuring correct input

62 % ensure that the number of input arguments is correct and that the

63 % arguments 4-6 are scalars/integers

64 if nargin == 3

65 m = 0;

66 T = realmin;

67 fevals = 1e3;

68 elseif nargin == 4

69 T = realmin;

70 fevals = 1e3;

71 if length(m) ~= 1 || mod(m,1) ~= 0 || m < 0

72 error('m must be a nonnegative integer.')

73 end

74 elseif nargin == 5

75 fevals = 1e3;

76 if length(m) ~= 1 || mod(m,1) ~= 0 || m < 0

77 error('m must be a nonnegative integer.')

78 elseif length(T) ~= 1

79 error('T must be scalar.')

80 end

81 elseif nargin == 6

82 if length(m) ~= 1 || mod(m,1) ~= 0 || m < 0

83 error('m must be a nonnegative integer.')

84 elseif length(T) ~= 1

85 error('T must be scalar.')

86 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

87 error('maxit must be a nonnegative integer.')

88 end

89 elseif nargin == 7

90 if length(m) ~= 1 || mod(m,1) ~= 0 || m < 0

91 error('m must be a nonnegative integer.')

92 elseif length(T) ~= 1

93 error('T must be scalar.')

94 elseif length(fevals) ~= 1 || mod(fevals,1) ~= 0 || fevals < 0

95 error('maxit must be a nonnegative integer.')

96 end

97 else

98 error('Not enough input arguments.');

99 end

100 % ensure that the input arguments 1-3 are correct

101 if ~isa(f,'function_handle')

102 error('Enter function handle.')

103 elseif isvector(v) ~= 1

104 error('v must be a vector.')

105 elseif length(dim) ~= 2 || isvector(dim) ~= 1

106 error('dim must be a two dimensional vector.')

107 end

108 % initialize dimensions

109 p = dim(1);

110 n = dim(2);

111 if mod(p,1) ~= 0 || p <= 0
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112 error('Domain dimension must be a positive integer.')

113 elseif mod(n,1) ~= 0 || n <= 0

114 error('Codomain dimension must be a positive integer.')

115 end

116 % if entered, 'h' must be either scalar or a column vector and must

117 % not be or contain zero(s) in order to avoid parameter duplicates

118 if nargin == 7

119 w = size(h);

120 if isvector(h) ~= 1 || (w(1) ~= 1 && w(1) ~= p) || (w(2) ~= ...

1 && w(2) ~= p)

121 error('h must be scalar or a p-dimensional vector.')

122 elseif ~all(h) == 1

123 error('h must not be (or contain) zero(s).')

124 elseif w(2) ~= 1

125 h = h';

126 end

127 end

128 % ensure that v is a column vector and determine its length

129 [lv, u] = size(v);

130 if u ~= 1

131 v = v';

132 lv = u; % length of v

133 end

134

135 %% Initialization

136 theta = v(1:p);

137 if lv-p == 0

138 % no data given -> standard nonlinear least squares problem

139 disp('solve STANDARD NLLS problem')

140 x = [];

141 y = zeros(n,1);

142 else

143 % data fitting problem

144 disp('solve DATA FITTING problem')

145 if lv ~= (p + 2*n)

146 error('Wrong parameter dimension or incorrect data set / ...

sample size.')

147 end

148 x = v(p+1:n+p);

149 y = v(n+p+1:end);

150 end

151 Q = zeros(1,p+1); % vector for storing residual sums of squares

152 F = zeros(n,p+1); % matrix for storing function evaluations

153 I = eye(p); % needed for the inversion of DeltaF'*DeltaF

154 diagonal = logical(I); % logical mask for diagonal of p-dim. matrix

155 fcount = 0; % counter for function evaluations

156 icount = 0; % iteration counter for main while loop

157 exitcount = 0; % counter for successive triggering of the

158 % exit condition

159

160 %% Start Routine

161 % p+1 starting values are required by DUD

162 % note: 'theta' always stands for theta_{p+1} in this code!

163 %% Construction of initial matrices 'Theta' and 'F'

164 % generate p more estimates from the starting guess 'theta'

165 % (= theta_{p+1}, the other parameters will be theta_1,...,theta_p)

166 % to do this generate px(p+1)-matrix where each column is 'theta'

167 Theta = theta * ones(1,p+1);
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168 % then displace the diagonal entries of 'Theta' (i.e., the i-th

169 % component of 'theta') by 'h' to genererate p more parameters

170 % theta_i, i=1,...,p

171 if nargin < 7

172 % if no 'h' has been entered, we compute 'h = theta*0.1'

173 % however, we need to account for possible zeros in 'theta' which

174 % would result in zeros in 'h' and thus in duplications of 'theta'

175 % we do this by simply replacing occuring zeros by a small value

176 thetaTemp = theta;

177 thetaZeros = logical(~theta); % logical mask for occuring zeros

178 thetaTemp(thetaZeros) = 1e-1; % replace zeros

179 h = thetaTemp*0.1; % 'h' contains no zeros

180 end

181 % generate the initial set of p+1 parameters

182 Theta(diagonal) = diag(Theta) + h;

183 % compute Q(theta_i) for all i and store function evaluations in 'F'

184 for i = 1:p+1;

185 % Dud requires p+1 function evaluations for starting

186 F(:,i) = f([Theta(:,i); x]); fcount = fcount +1;

187 Q(i) = norm( y - F(:,i) )^2;

188 end;

189 % we want to reorder the columns of 'Theta' and 'F' such that

190 % Q(theta_1) >= ... >= Q(theta_{p+1})

191 % sort Q(theta_i)'s in descending order

192 [Q,index] = sort(Q,'descend');

193 % 'index' is a vector containing the column indices of the

194 % corresponding vectors in 'Theta'

195 % reallocate vectors in 'Theta' in descending order according to the

196 % cost, i.e., such that the worst estimate is in the first column

197 % and the best estimate is in the last column

198 % consequently, the function evaluations 'F' must be rearranged

199 TTemp = Theta;

200 FTemp = F;

201 t = 1:p+1;

202 Theta = TTemp(:,index(t));

203 F = FTemp(:,index(t));

204 % now Q(theta_1) >= ... >= Q(theta_{p+1}) holds

205 theta = Theta(:,p+1); % assign theta_{p+1} the best estimate

206 % 'Theta' consists of p+1 ordered initial parameters

207 % the parameter yielding the highest cost, i.e., the first column

208 % of 'Theta' (theta_1) is declared the oldest member of the set of

209 % parameters 'Theta'

210 % theta_1 will be replaced by a better estimate 'theta_new' in the

211 % upcoming iteration if no convergence occurs

212 % 'theta_new' is the point between the linear approximation l

213 % and y calculated by the following procedure

214

215 %% Linear Approximation procedure

216 % the linear approximation of f is given by

217 % l(alpha) = f(theta_{p+1}) + deltaF * alpha

218 % display the currently best estimate for monitoring the behaviour

219 % of the upcoming approximation procedure

220 X = ['before approximation: Qold = ',num2str(Q(p+1))];

221 disp(X)

222 %% Generate function difference matrix 'DeltaF'

223 % 'DeltaF' is a nxp-matrix where the i-th column is given by

224 % f(theta_i) - f(theta_{p+1}), i = 1,...,p

225 DeltaF = bsxfun(@minus, F(:,1:p), F(:,p+1));
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226 %% Compute 'alpha'

227 % 'alpha' (a vector) is the minimizer of the LLS problem

228 % Q(alpha) = (y-l(alpha))'(y-l(alpha))

229 % compute residual vector for the currently best estimate 'theta'

230 r = y - F(:,p+1);

231 % generate the (p+1)x(p+1)-dimensional block matrix

232 C = [DeltaF r]' * [DeltaF r];

233 % invoke the stepwise regression procedure, which can compute an

234 % approximate solution of the LLS problem even when the matrix

235 % ' C(1:p,1:p) = DeltaF' * DeltaF ' is essentially singular

236 alpha = stepwise_reg(C, p, sqrt(eps));

237

238 %% Generate parameter difference matrix 'DeltaTheta'

239 % 'DeltaTheta' is a pxp-matrix where the i-th column is given by

240 % theta_i - theta_{p+1}, i = 1,...,p

241 DeltaTheta = bsxfun(@minus, Theta(:,1:p), theta);

242

243 %% Compute 'theta_new'

244 theta_new = theta + DeltaTheta * alpha;

245 f_new = f([theta_new; x]); fcount = fcount + 1;

246 Qnew = norm( y - f_new )^2;

247 X = ['linear approximation: Qnew = ', num2str(Qnew)];

248 disp(X)

249

250 %% Perform line search (optional)

251 % Q(theta_{p+1}) is stored in row vector 'Q'

252 if Qnew >= Q(p+1) && m > 0

253 % invoke partial stepping procedure (subfunction)

254 [theta_new, f_new, Qnew, fcount] = part_step(f, fcount, ...

theta_new, theta, F(:,p+1), x, y, p, n, Qnew, Q(p+1), m);

255 end

256 % the algorithm stops now if convergence has already been achieved

257 % the minimum number of function evaluations at this point is p+2

258 X = ['------> ',num2str(icount),'. iteration: Qnew = ', ...

num2str(Qnew)];

259 disp(X)

260

261 %% Main iteration

262 % if convergence has not been achieved the new estimate theta_new

263 % is passed on to the next generation of the parameter set

264 % reiterate until a desired exit criteria is reached

265 while fcount < fevals && Qnew >= T

266 icount = icount + 1;

267 % additional stopping criterion (not mandatory)

268 % relative change in the residual sum of squares

269 if abs(Qnew - Q(p+1)) / Q(p+1) <= 1e-5

270 exitcount = exitcount + 1;

271 if exitcount == 5;

272 disp('STOP: relative change in Qnew is smaller than ...

T for 5 successive iterations')

273 break

274 end

275 else

276 exitcount = 0;

277 end

278 %% Search: replace old parameter value(s) with new estimate(s)

279 % ensure that the search does not collapse into a subplane of

280 % the parameter space
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281 % the component of alpha corresponding to the discarded

282 % parameter must not be zero!

283 % component is nonzero -> replace one member

284 if abs(alpha(1)) >= 1e-5

285 % replace oldest guess theta_1 by the new parameter

286 Theta(:,1) = theta_new;

287 % and replace the corresponding function evaluation

288 F(:,1) = f_new;

289 % and the residual sum of squares

290 Q(1) = Qnew;

291 else % component is zero -> replace two members of the set

292 clear s

293 clear index

294 % first: replace first theta_i with alpha_i >= 1e-5

295 index = find(abs(alpha) >= 1e-5); % index is vector

296 if isempty(index)

297 disp('hint: alpha is or is close to being the zero ...

vector')

298 % old parameter values are not retained indefinitely

299 % replace oldest estimate theta_1 by a new parameter

300 theta_newone = (Theta(:,1) + theta_new) / 2;

301 Theta(:,1) = theta_newone;

302 % calculate Q and evaluate f for the new parameter

303 f_newone = f([theta_newone; x]); fcount = fcount + 1;

304 F(:,1) = f_newone;

305 Q(1) = norm( y - f_newone )^2;

306 else

307 s = index(1); % first index where alpha >= 1e-5

308 X = ['update rule: alpha(1) < 1e-5 -> 1. and ', ...

num2str(s), '. parameters are replaced'];

309 disp(X)

310 Theta(:,s) = theta_new;

311 F(:,s) = f_new;

312 Q(s) = Qnew;

313 % shift columns so that theta_new is the newest member of

314 % the parameter set, i.e., the (p+1)-th entry of 'Theta'

315 Theta(:,s:end) = circshift(Theta(:,s:end),[0 -1]);

316 F(:,s:end) = circshift(F(:,s:end),[0 -1]);

317 Q(s:end) = circshift(Q(s:end),[0 -1]);

318 % second: old parameter values are not retained indefinitely

319 % replace oldest guess theta_1 by a new parameter

320 theta_newone = (Theta(:,1) + theta_new) / 2;

321 Theta(:,1) = theta_newone;

322 % calculate Q and f for the new parameter

323 f_newone = f([theta_newone; x]); fcount = fcount + 1;

324 F(:,1) = f_newone;

325 Q(1) = norm( y - f_newone )^2;

326 end

327 end

328 % shift columns so that the oldest member gets the first entry

329 % and the newest member gets the (p+1)-th entry

330 Theta = circshift(Theta,[0 -1]);

331 F = circshift(F,[0 -1]);

332 Q = circshift(Q,[0 -1]);

333 theta = Theta(:,p+1); % theta_{p+1} is the new estimate

334 %% Linear Approximation procedure

335 % the linear approximation of f is given by

336 % l(alpha) = f(theta_{p+1}) + deltaF * alpha
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337 %% Generate new function difference matrix 'DeltaF'

338 % 'DeltaF' is a nxp-matrix where the i-th column is given by

339 % f(theta_i) - f(theta_{p+1}), i = 1,...,p

340 DeltaF = bsxfun(@minus, F(:,1:p), F(:,p+1));

341

342 %% Compute new minimizer 'alpha'

343 % every iteration consists of minimizing the LLS problem

344 % Q(alpha)= (y-l(alpha))'(y-l(alpha))

345 % residual vector for the currently best estimate 'theta':

346 r = y - F(:,p+1);

347 % generate (p+1)x(p+1)-dimensional block matrix

348 C = [DeltaF r]' * [DeltaF r];

349 % invoke the stepwise regression procedure, which can compute

350 % an approximate solution of the LLS problem even when

351 % ' C(1:p,1:p) = DeltaF' * DeltaF ' is essentially singular

352 alpha = stepwise_reg(C, p, sqrt(eps));

353

354 %% Generate new parameter difference matrix 'DeltaTheta'

355 % 'DeltaTheta' is a pxp-matrix where the i-th column is given

356 %by theta_i - theta_{p+1}, i = 1,...,p

357 DeltaTheta = bsxfun(@minus, Theta(:,1:p), theta);

358

359 %% Compute 'theta_new'

360 theta_new = theta + DeltaTheta * alpha;

361 f_new = f([theta_new; x]); fcount = fcount + 1;

362 Qnew = norm( y - f_new )^2;

363 X = ['linear approximation: Qnew = ', num2str(Qnew)];

364 disp(X)

365

366 %% Perform line search (optional)

367 % Q(theta_{p+1}) is stored in row vector 'Q'

368 if Qnew >= Q(p+1) && m > 0

369 % invoke partial stepping procedure (subfunction)

370 [theta_new, f_new, Qnew, fcount] = part_step(f, fcount, ...

theta_new, theta, F(:,p+1), x, y, p, n, Qnew, Q(p+1), m);

371 end

372

373 %% Align displayed arrow (unessential)

374 if icount < 1e1

375 X = ['------> ',num2str(icount),'. iteration: Qnew = ', ...

num2str(Qnew)];

376 disp(X)

377 elseif icount < 1e2

378 X = ['-----> ',num2str(icount),'. iteration: Qnew = ', ...

num2str(Qnew)];

379 disp(X)

380 else

381 X = ['----> ',num2str(icount),'. iteration: Qnew = ', ...

num2str(Qnew)];

382 disp(X)

383 end

384 end % end while (main iteration)

385 tcount = toc; % end timer

386 end % end DUD

387

388 %% DUD subfunctions part_step and stepwise_reg

389 %% Line search
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390 function [theta_new, f_new, Qnew, fcount] = part_step(f, fcount, ...

theta, theta_old, f_old, x, y, p, n, Q, Qold, m)

391 %% PARTIAL STEPPING procedure

392 % for finding better parameters estimates in DUD

393 % -> part_step picks points on the line between theta and theta_old

394 %

395 %% INPUT:

396 % f - response function which takes as input a parameter and the

397 % explanatory vector x

398 % fcount - current number of function evaluations

399 % theta - current parameter which needs replacement

400 % theta_old - old 'best' parameter

401 % f_old - function evaluation of theta_old

402 % x - the explanatory vector

403 % y - observed data vector

404 % p - dimension of parameter vectors theta and theta_old

405 % n - dimension of x and y

406 % Q - RSS for theta

407 % Qold - RSS for theta_old

408 % m - integer, maximal m line searches (iterations) may be performed

409 %

410 %% OUTPUT:

411 % theta_new - new 'best' parameter or last found parameter from

412 % iteration m if no improvement in RSS was achieved

413 % f_new - function evaluation at theta_new

414 % Q_new - RSS for theta_new

415

416 %% Initialization

417 l = 1; % iteration counter

418 % store new estimates (and their evaluation) found by the search

419 Tstor = zeros(p,m);

420 Fstor = zeros(n,m);

421 % and store the residual sum of squares for this estimates

422 Qstor = zeros(1,m);

423 Qnew = Q;

424

425 %% Main procedure

426 % find point 'theta_new' on the line between 'theta' and 'theta_old'

427 % that yields a smaller RSS than 'Qold'

428 while Qnew >= Qold && l <= m

429 % choose a point on the line between 'theta' and 'theta_old'

430 d = -(-1/2)^l;

431 theta_new = d * theta + (1 - d) * theta_old;

432 f_new = f([theta_new; x]); fcount = fcount + 1;

433 Qnew = norm(y - f_new)^2;

434 % store findings

435 Tstor(:,l) = theta_new;

436 Fstor(:,l) = f_new;

437 Qstor(l) = Qnew;

438 if l < 10 % display RSS

439 X = ['line search: m = ',num2str(l), ' Qnew = ', ...

num2str(Qnew)];

440 disp(X)

441 else % unessential (align displayed spacing)

442 X = ['line search: m = ',num2str(l), ' Qnew = ', ...

num2str(Qnew)];

443 disp(X)

444 end
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445 l = l + 1;

446 end

447 % if no reduction in the RSS has been achieved, the last found

448 % parameter 'theta_new' is kept

449 % exception: it might happen that the evaluation of this parameter

450 % blows up which would consequently yield NaN in the matrix 'DeltaF'

451 % if so, we choose the best found estimate by the search instead

452 if Qnew == Inf

453 if ismember(Inf,f_new)

454 [Qnew, index] = min(Qstor);

455 theta_new = Tstor(:,index);

456 f_new = Fstor(:,index);

457 if Qnew == Inf

458 if ismember(Inf,f_new) && ~ismember(Inf,f_old)

459 Qnew = Qold;

460 theta_new = theta_old;

461 f_new = f_old;

462 disp('line search: unsuccessful -> old parameter ...

is kept')

463 end

464 else

465 disp('line search: f_new contains Inf -> best found ...

parameter is kept')

466 end

467 end

468 end

469 end

470

471 %% Stepwise regression

472 function beta = stepwise_reg(C, p, T)

473 %% STEPWISE REGRESSION procedure using Gauss-Jordan elimination

474 % for approximately solving the normal equations X'X*beta = X'*y

475 % X'X may be ill-conditioned or singular (if X has no full rank)

476 % -> stepwise_reg uses an in-place Gauss-Jordan algorithm for matrix

477 % inversion, i.e., no augmentation with the identity is needed

478 % -> the order of pivoting is determined by stepwise regression

479 % -> problematic diagonal elements remain unpivoted for robusteness

480 %

481 %% INPUT:

482 % C - dxd-dimensional augmented matrix of the form [X y]' * [X y],

483 % where X is a nxp-matrix and y is a nx1-vector, i.e., d = p+1

484 % p - number of columns of X;

485 % each column x_i, i = 1,...,p, of X may be interpreted as an

486 % independent variable entering a linear regression equation

487 % T - threshold for the pivot tolerance 'tol', meaning that some

488 % diagonal element remains unpivoted if 'tol' < T

489 %

490 %% OUTPUT:

491 % beta - p-dimensional solution vector whose components can be

492 % understood as regression coefficients which result from

493 % linear regression of the dependent variable y on the

494 % columns of X (the independent variables)

495 % -> components of beta are set to zero if the corresponding

496 % diagonal elements of C are unpivoted by means of the

497 % Gauss-Jordan algorithm

498

499 %% Initialization

500 d = p+1;
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501 beta = zeros(p,1);

502 % only components of 'beta' corresponding to pivoted rows in 'C'

503 % get new values

504 initD = diag(C(1:p,1:p)); % initial diagonal values for tolerance

505 unpivoted = 1:p; % start with set of indices for unpivoted rows

506 pivoted = zeros(1,p); % empty storage for pivoted row indices

507 % pivot on the first p diagonal entries of the matrix 'C'

508 for i = 1:p % add variable x_k, k in {1,...,p}, to the regression

509 % among all the unpivoted diagonal entries pivot on the diagonal

510 % entry (k,k) whos reduction in the RSS of y 'red_RSS' from

511 % adding the variable x_k to the regression is maximal

512 red_RSS = C(unpivoted,d).^2 ./ diag(C(unpivoted,unpivoted));

513 % find the index k which corresponds to the greatest reduction

514 [~,k] = max(red_RSS);

515 k = unpivoted(k);

516 unpivoted(unpivoted==k) = []; % do not use this index again

517 % pivot tolerance is used to prevent a complete inversion of the

518 % matrix X'X if problematic pivots are encountered

519 a = C(k,k);

520 tol = a/initD(k);

521 if tol < T || isnan(tol) % tolerance criterion

522 X = ['GJ pivoting: row ' num2str(k) ' is not swept ...

(tolerance = ', num2str(tol), ')'];

523 disp(X)

524 continue

525 end

526 % in-place Gauss-Jordan elimination for matrix inversion

527 % computations for the k-th row

528 C(k,:) = C(k,:)/a;

529 C(k,k) = C(k,k)/a; % '1/C(k,k)' at pivot element

530 % computations for the remaining rows

531 t = 1:d;

532 t(k) = []; % exclude the k-th row from computations

533 b = C(t,k);

534 C(t,t) = C(t,t) - b * C(k,t);

535 C(t,k) = -b./a;

536 pivoted(i) = k; % add index to regressed rows

537 % ordinary least square estimate beta_k is stored in 'C(k,p+1)'

538 end

539 regressed = nonzeros(pivoted); % indices of variables in the

540 % regression model - 'beta' gets their corresponding coefficients

541 beta(regressed) = C(regressed, d);

542 % the remaining components of 'beta' are zero

543 end
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C.6 Modified Gauss-Jordan Algorithm

1 function [ Ainv, B, pivoted, tcount ] = gjinv( A )

2 %% GAUSS-JORDAN ELIMINATION with diagonal pivoting

3 % for computing the inverse of a square matrix;

4 % order of pivoting: picks diagonal entries with larger absolute

5 % value first

6 % caution: does not work for matrices with zero diagonal but is

7 % stable for positive/negative definite matrices

8 %% AUTHOR: Stefan Scheer

9 %% REFERENCE:

10 % R.I. Jennrich and P.F. Sampson. "Application of Stepwise

11 % Regression to Non-Linear Estimation". In: Technometrics 10.1

12 % (1968), pp. 63-72.

13 %

14 %% INPUT

15 % A - nonsingular square matrix

16 %

17 %% OUTPUT

18 % Ainv - inverse of A obtained by pivoting on the diagonal elements

19 % B - test matrix B = Ainv * A, i.e., B should be the identity

20 % pivoted - row vector which demonstrates the order of pivoting

21 % tcount - elapsed time

22 %

23 %% EXAMPLE

24 % A = [1 3 -1; 2 -6 7; 5 3 8]; or A = [ 0 1 -3; 2 0 7; 0 3 6];

25 % [Ainv, used_rows, B, tcount]= gjinv( A )

26

27 tic; % start timer

28

29 %% Ensuring correct input

30 [n,m] = size(A);

31 if n ~= m || n == 1

32 error('enter square matrix')

33 end

34

35 %% Initialization

36 InitA = A;

37 unpivoted = 1:n; % indices of unpivoted rows

38 if nargout >= 3

39 pivoted = zeros(1,n); % storage for pivoted indices

40 end

41

42 %% Check for diagonal zeros

43 if ~any(diag(A)) == 1

44 error('inversion not possible due to zero diagonal')

45 elseif all(diag(A)) == 0

46 disp('caution: diagonal zero(s) encountered')

47 disp('-> check if computed inverse is accurate')

48 end

49

50 %% Check if the matrix is ill-conditioned/singular

51 if cond(A) >= 1/sqrt(eps)

52 disp('caution: matrix is ill-conditioned or singular')

53 disp('-> the computed inverse is not accurate')

54 end

55
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56 %% Main procedure

57 for i = 1:n

58 % among all unpivoted diagonal entries pivot on the diagonal

59 % entry (k,k) that has the largest absolute value

60 D = abs(diag(A(unpivoted,unpivoted)));

61 [~,k] = max(D); % find the index of largest diagonal value

62 k = unpivoted(k);

63 unpivoted(unpivoted==k) = []; % do not use this index again

64 % computations for the k-th row

65 a = A(k,k);

66 A(k,:) = A(k,:)/a;

67 A(k,k) = A(k,k)/a; % '1/A(k,k)' at pivot element

68 % computations for the remaining rows

69 t = 1:n;

70 t(k) = []; % exclude the k-th row from computations

71 b = A(t,k);

72 A(t,t) = A(t,t) - b*A(k,t);

73 A(t,k) = -b./a;

74 if nargout >= 3

75 pivoted(i) = k;

76 end

77 end

78 Ainv = A;

79 tcount = toc; % end timer

80 % test if Ainv is inverse (do not count time for this test)

81 if nargout >= 2

82 B = Ainv * InitA;

83 end

84 end
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C.7 Moré, Garbow and Hillstrom Collection

1 function [ F, J ] = rosenbrock2D( x )

2 %% ROSENBROCK function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (1) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - two-dimensional vector

13 %

14 %% OUTPUT:

15 % F - two-dimensional column vector

16 % J - 2x2-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [-1.2;1];

20 % [F, J] = rosenbrock2D(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 % ensure that dimension of vector is correct

27 elseif length(x) ~= 2

28 error('Enter two-dimensional vector.')

29 end

30

31 %% Main procedure

32 F = [10*(x(2)-x(1)^2); 1-x(1)];

33 if nargout > 1 % compute the Jacobian

34 J = [-20*x(1) 10; -1 0];

35 end

36 end

1 function [ F, J ] = freuden_roth( x )

2 %% FREUDENSTEIN AND ROTH function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (2) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - two-dimensional vector

13 %

14 %% OUTPUT:

15 % F - two-dimensional column vector

16 % J - 2x2-dimensional Jacobian matrix
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17 %% EXAMPLE:

18 % x = [.5; -2];

19 % [F, J] = freuden_roth(x)

20

21 %% Ensuring correct input

22 % ensure that vector is entered

23 if isvector(x) ~= 1

24 error('x must be a vector.')

25 % ensure that dimension of vector is correct

26 elseif length(x) ~= 2

27 error('Enter two-dimensional vector.')

28 end

29

30 %% Main procedure

31 F = [-13+x(1)+((5-x(2))*x(2)-2)*x(2); ...

-29+x(1)+((x(2)+1)*x(2)-14)*x(2)];

32 if nargout > 1 % compute the Jacobian

33 J = [1 10*x(2)-3*x(2)^2-2; 1 3*x(2)^2+2*x(2)-14];

34 end

35 end

1 function [ F, J ] = powell_badly( x )

2 %% POWELL BADLY SCALED function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (3) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - two-dimensional vector

13 %

14 %% OUTPUT:

15 % F - two-dimensional column vector

16 % J - 2x2-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [0; 1];

20 % [F, J] = powell_badly(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 % ensure that dimension of vector is correct

27 elseif length(x) ~= 2

28 error('Enter two-dimensional vector.')

29 end

30 %% Main procedure

31 F = [10^4*x(1)*x(2)-1; exp(-x(1))+exp(-x(2))-1.0001];

32 if nargout > 1 % compute the Jacobian

33 J = [10^4*x(2) 10^4*x(1); -exp(-x(1)) -exp(-x(2))];

34 end

35 end
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1 function [ F, J ] = brown_badly( x )

2 %% BROWN BADLY SCALED function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (4) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - two-dimensional vector

13 %

14 %% OUTPUT:

15 % F - three-dimensional column vector

16 % J - 3x2-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [1; 1];

20 % [F, J] = brown_badly(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 % ensure that dimension of vector is correct

27 elseif length(x) ~= 2

28 error('Enter two-dimensional vector.')

29 end

30 %% Main procedure

31 F = [x(1) - 10^6; x(2) - 2e-6; x(1)*x(2) - 2];

32 if nargout > 1 % compute the Jacobian

33 J = [1 0; 0 1; x(2) x(1)];

34 end

35 end

1 function [ F, J ] = beale( x )

2 %% BEALE function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (5) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - two-dimensional vector

13 %

14 %% OUTPUT:

15 % F - three-dimensional vector

16 % J - 3x2-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [1; 1];

20 % [y, J] = beale(x)
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21 %% Initialization

22 n = length(x); % input dimension

23

24 %% Ensuring correct input

25 % ensure that vector is entered

26 if isvector(x) ~= 1

27 error('x must be a vector.')

28 % ensure that dimension of vector is correct

29 elseif n ~= 2

30 error('Enter two-dimensional vector.')

31 end

32

33 %% Main procedure

34 z = [1.5, 2.25, 2.625]';

35 t = (1:3)';

36 F = z - x(1)*(1 - x(2).^t);

37 if nargout > 1 % compute the Jacobian

38 J = zeros(3,2);

39 J(:,1) = -1 + x(2).^t;

40 J(:,2) = x(1).*t.*x(2).^(t-1);

41 end

42 end

1 function [ F, J ] = jennrich_sampson( x )

2 %% JENNRICH AND SAMPSON function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (6) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - two-dimensional vector

13 %

14 %% OUTPUT:

15 % F - m-dimensional column vector, where m >= 2 (default m = 10)

16 % J - mx2-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [0.3; 0.4];

20 % [F, J] = jennrich_sampson(x)

21

22 %% Choosing output dimension

23 m = 10;

24

25 %% Ensuring correct input

26 % ensure that vector is entered

27 if isvector(x) ~= 1

28 error('x must be a vector.')

29 % ensure that dimension of vector is correct

30 elseif length(x) ~= 2

31 error('Enter two-dimensional vector.')

32 end

33

34 %% Main procedure
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35 t = (1:m)';

36 F = 2 + 2*t - (exp(t*x(1)) + exp(t*x(2)));

37 if nargout > 1 % compute the Jacobian

38 J = zeros(m,2);

39 J(:,1) = -t.*exp(t*x(1));

40 J(:,2) = -t.*exp(t*x(2));

41 end

42 end

1 function [ F, J ] = helical( x )

2 %% HELICAL VALLEY function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (7) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - three-dimensional vector

13 %

14 %% OUTPUT:

15 % F - three-dimensional column vector

16 % J - 3x3-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [-1; 0; 0];

20 % [F, J] = helical(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 % ensure that dimension of vector is correct

27 elseif length(x) ~= 3

28 error('Enter three-dimensional vector.')

29 end

30

31 %% Main procedure

32 F = zeros(3,1);

33 x2byx1 = x(2)/x(1);

34 x1squared = x(1)^2;

35 x2squared = x(2)^2;

36 if x(1) >= 0

37 if x(1) == 0

38 disp('caution: singularity in helical valley function ...

evaluation')

39 end

40 F(1) = 10*( x(3) - 10*( (1/(2*pi))*atan(x2byx1) ) );

41 else

42 F(1) = 10*( x(3) - 10*( (1/(2*pi))*atan(x2byx1) + .5 ) );

43 end

44 lengthx = sqrt(x1squared + x2squared);

45 F(2) = 10*(lengthx - 1);

46 F(3) = x(3);

47 if nargout > 1 % compute the Jacobian
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48 J = zeros(3,3);

49 fiftybypi = 50/pi;

50 oneplussquare = 1 + (x2byx1)^2;

51 tenbylengthx = 10/lengthx;

52 J(1,1) = fiftybypi*x2byx1^2/oneplussquare;

53 J(1,2) = (-fiftybypi/x(1))/oneplussquare;

54 J(1,3) = 10;

55 J(2,1) = x(1)*tenbylengthx;

56 J(2,2) = x(2)*tenbylengthx;

57 J(3,3) = 1;

58 end

59 end

1 function [ F, J ] = bard( x )

2 %% BARD function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (8) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - three-dimensional vector

13 %

14 %% OUTPUT:

15 % F - 15-dimensional vector

16 % J - 15x3-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [1; 1; 1];

20 % [F, J] = bard(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27

28 %% Initialization

29 n = length(x);

30 % ensure that dimension of vector is correct

31 if n ~= 3

32 error('Enter three-dimensional vector.')

33 end

34

35 %% Main procedure

36 u = (1:15)';

37 v = 16-u;

38 w = min(u,v);

39 y = [.14, .18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96, ...

1.34, 2.1, 4.39]';

40 z = v.*x(2) + w.* x(3);

41 F = y - (x(1) + u./z);

42 if nargout > 1 % compute the Jacobian

43 J = zeros(15,3);
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44 ubyzsquared = u.*z.^(-2);

45 J(:,1) = -1;

46 J(:,2) = v.*ubyzsquared;

47 J(:,3) = w.*ubyzsquared;

48 end

49 end

1 function [ F, J ] = gaussian( x )

2 %% GAUSSIAN function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (9) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - three-dimensional vector

13 %

14 %% OUTPUT:

15 % F - 15-dimensional vector

16 % J - 15x3-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [.4; 1; 0];

20 % [F, J] = gaussian(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27

28 %% Initialization

29 n = length(x);

30 % ensure that dimension of vector is correct

31 if n ~= 3

32 error('Enter three-dimensional vector.')

33 end

34

35 %% Main procedure

36 t = (8 - (1:15)')/2;

37 y = [.0009, .0044, .0175, .0540, .1295, .2420, .3521, .3989, ...

.3521, .2420, .1295, .0540, .0175, .0044, .0009]';

38 exponent = exp(-x(2)*(t - x(3)).^2/2);

39 F = x(1)*exponent - y;

40 if nargout > 1 % compute the Jacobian

41 J = zeros(15,3);

42 tminusx3 = t - x(3);

43 J(:,1) = exponent;

44 J(:,2) = x(1)*-tminusx3.^2/2.*exponent;

45 J(:,3) = x(1)*x(2)*tminusx3.*exponent;

46 end

47 end
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1 function [ F, J ] = meyer( x )

2 %% MEYER function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (10) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - three-dimensional vector

13 %

14 %% OUTPUT:

15 % F - 16-dimensional vector

16 % J - 16x3-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [.02; 4000; 250];

20 % [F, J] = meyer(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27

28 %% Initialization

29 n = length(x);

30 % ensure that dimension of vector is correct

31 if n ~= 3

32 error('Enter three-dimensional vector.')

33 end

34

35 %% Main procedure

36 s = (1:16)';

37 t = 45 + 5*s;

38 y = [34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744, ...

8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872]';

39 u = (t + x(3));

40 v = x(2)./u;

41 exponent = exp(v);

42 F = x(1)*exponent - y;

43 if nargout > 1 % compute the Jacobian

44 J = zeros(16,3);

45 w = x(1)./u;

46 J(:,1) = exponent;

47 J(:,2) = w.*exponent;

48 J(:,3) = -v.*w.*exponent;

49 end

50 end

1 function [ F, J ] = gulf( x )

2 %% GULF RESEARCH AND DEVELOPMENT function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer
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5 %% REFERENCE:

6 % Test function (11) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - three-dimensional vector

13 %

14 %% OUTPUT:

15 % F - m-dimensional vector, where n <= m =< 100 (default m = 10)

16 % J - mx3-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [5; 2.5; .15];

20 % [F, J] = gulf(x)

21

22 %% Determining output dimension

23 m = 10;

24

25 %% Ensuring correct input

26 % ensure that vector is entered

27 if isvector(x) ~= 1

28 error('x must be a vector.')

29 end

30 %% Initialization

31 n = length(x);

32 % ensure that dimension of vector is correct

33 if n ~= 3

34 error('Enter three-dimensional vector.')

35 end

36

37 %% Main procedure

38 t = (1:m)'/100;

39 y = 25 + (-50*log(t)).^(2/3);

40 yminusx2 = y - x(2);

41 absyminusx2 = abs(yminusx2);

42 u = absyminusx2.^x(3);

43 v = u/x(1);

44 if x(1) == 0

45 disp('caution: singularity in gulf research and development ...

function evaluation')

46 end

47 expminusv = exp(-v);

48 F = expminusv - t;

49 if nargout == 2 % compute the Jacobian

50 J = zeros(m,3);

51 w = v.*expminusv;

52 z = (x(3)/x(1))*(absyminusx2.^(x(3) - 1));

53 J(:,1) = w/x(1);

54 if (yminusx2 >= 0)

55 J(:,2) = z.*expminusv;

56 else

57 J(:,2) = -z.*expminusv;

58 end

59 J(:,3) = -log(absyminusx2).*w;

60 end

61 end
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1 function [ F, J ] = box3D( v )

2 %% BOX THREE-DIMENSIONAL function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (12) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % v - vector containing a three-dimensional parameter vector theta

13 % and a n-dimensional data vector x,

14 % i.e., v = [theta;x] for column vectors theta and x

15 %

16 %% OUTPUT:

17 % F - n-dimensional column vector

18 % J - nx3-dimensional Jacobian matrix

19 %

20 %% EXAMPLE:

21 % v = [[0; 10; 20]; (.1:.1:1)'];

22 % [F, J ] = box3D( v )

23

24 %% Ensuring correct input

25 % ensure that vector is entered

26 if isvector(v) ~= 1

27 error('v must be a vector.')

28 % ensure that parameter dimension is correct

29 elseif length(v) < 3

30 error('Enter three-dimensional parameter theta.')

31 end

32

33 %% Initialization

34 theta = v(1:3);

35 x = v(4:end);

36 n = length(x);

37

38 %% Ensuring that data is entered

39 if n == 0

40 error('Enter coefficients for Box''s function.')

41 end

42

43 %% Main procedure

44 u = -theta(1).*x;

45 v = -theta(2).*x;

46 w = exp(-x) - exp(-10.*x);

47 expu = exp(u);

48 expv = exp(v);

49 F = expu - expv - theta(3).*w;

50 if nargout > 1 % compute the Jacobian

51 J = zeros(n,3);

52 J(:,1) = -x.*expu;

53 J(:,2) = x.*expv;

54 J(:,3) = -w;

55 end
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1 function [ F, J ] = powell_singular( x )

2 %% POWELL SINGULAR FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (13) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - four-dimensional vector

13 %

14 %% OUTPUT:

15 % F - four-dimensional vector

16 % J - 4x4-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [3; -1; 0; 1];

20 % [F, J] = powell_singular(x)

21

22 %% Ensuring correct input

23 if isvector(x) ~= 1

24 error('x must be a vector.')

25 end

26

27 %% Initialization

28 n = length(x);

29 % ensure that dimension of vector is correct

30 if n ~= 4

31 error('Enter four-dimensional vector.')

32 end

33

34 %% Main procedure

35 a = 5^(1/2);

36 b = x(2) - 2*x(3);

37 c = x(1) - x(4);

38 d = 10^(1/2);

39 F = [x(1) + 10*x(2); a*(x(3) - x(4)); b^2; d*c^2];

40 if nargout > 1 % compute the Jacobian

41 J = zeros(n,n);

42 twodc = 2*d*c;

43 J(1,1) = 1;

44 J(1,2) = 10;

45 J(2,3) = a;

46 J(2,4) = -a;

47 J(3,2) = 2*b;

48 J(3,3) = -4*b;

49 J(4,1) = twodc;

50 J(4,4) = -twodc;

51 end

52 end
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1 function [ F, J ] = wood( x )

2 %% WOOD FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (14) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - four-dimensional vector

13 %

14 %% OUTPUT:

15 % F - six-dimensional vector

16 % J - 6x4-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [-3; -1; -3; -1];

20 % [F, J] = wood(x)

21

22 %% Ensuring correct input

23 if isvector(x) ~= 1

24 error('x must be a vector.')

25 end

26

27 %% Initialization

28 n = length(x);

29 % ensure that dimension of vector is correct

30 if n ~= 4

31 error('Enter four-dimensional vector.')

32 end

33

34 %% Main procedure

35 a = sqrt(90);

36 b = sqrt(10);

37 c = 1/b;

38 F = [10*(x(2)-x(1)^2); 1-x(1); a*(x(4)-x(3)^2); 1-x(3); ...

b*(x(2)+x(4)-2); c*(x(2)-x(4))];

39 if nargout > 1 % compute the Jacobian

40 J = zeros(6,n);

41 J(1,1) = -20*x(1);

42 J(1,2) = 10;

43 J(2,1) = -1;

44 J(3,3) = -2*a*x(3);

45 J(3,4) = a;

46 J(4,3) = -1;

47 J(5,2) = b;

48 J(5,4) = b;

49 J(6,2) = c;

50 J(6,4) = -c;

51 end

52 end
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1 function [ F, J ] = kowalik_osborne( x )

2 %% KOWALIK AND OSBORNE FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (15) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - four-dimensional vector

13 %

14 %% OUTPUT:

15 % F - 11-dimensional vector

16 % J - 11x4-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [.25; .39; .415; .39];

20 % [F, J] = kowalik_osborne(x)

21

22 %% Ensuring correct input

23 if isvector(x) ~= 1

24 error('x must be a vector.')

25 end

26

27 %% Initialization

28 n = length(x);

29 % ensure that dimension of vector is correct

30 if n ~= 4

31 error('Enter four-dimensional vector.')

32 end

33 y = [.1957; .1947; .1735; .1600; .0844; .0627; .0456; .0342; ...

.0323; .0235; .0246];

34 u = [4; 2; 1; .5; .25; .167; .1250; .1; .0833; .0714; .0625];

35

36 %% Main procedure

37 v = u.^2;

38 a = v + u.*x(2);

39 b = v + u.*x(3) + x(4);

40 c = x(1)*a;

41 F = y - c./b;

42 if nargout > 1 % compute the Jacobian

43 d = b.^(-2);

44 J = zeros(11,n);

45 J(:,1) = -a./b;

46 J(:,2) = -x(1)*u./b;

47 J(:,3) = c.*d.*u;

48 J(:,4) = c.*d;

49 end

50 end
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1 function [ F, J ] = brown_dennis( x )

2 %% BROWN AND DENNIS FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (16) in

7 % "Testing unconstrained optimization software",

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - four-dimensional vector

13 %

14 %% OUTPUT:

15 % F - m-dimensional vector, where m >= n (default m = 20)

16 % J - mx4-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [25; 5; -5; -1];

20 % [F, J] = brown_dennis(x)

21

22 %% Choosing output dimension

23 m = 20;

24

25 %% Ensuring correct input

26 if isvector(x) ~= 1

27 error('x must be a vector.')

28 end

29

30 %% Initialization

31 n = length(x);

32 % ensure that dimension of vector is correct

33 if n ~= 4

34 error('Enter four-dimensional vector.')

35 end

36

37 %% Main procedure

38 t = (1:m)'/5;

39 expt = exp(t);

40 sint = sin(t);

41 cost = cos(t);

42 u = x(1) + t*x(2) - expt;

43 v = x(3) + x(4)*sint - cost;

44 F = u.^2 + v.^2;

45 if nargout > 1 % compute the Jacobian

46 twou = 2*(x(1) + t*x(2) - expt);

47 twov = 2*(x(3) + x(4)*sint - cost);

48 J = zeros(m,n);

49 J(:,1) = twou;

50 J(:,2) = twou.*t;

51 J(:,3) = twov;

52 J(:,4) = twov.*sint;

53 end

54 end
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1 function [ F, J ] = osborne1( x )

2 %% OSBORNE 1 FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (17) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - five-dimensional vector

13 %

14 %% OUTPUT:

15 % F - 33-dimensional vector

16 % J - 33x5-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [.5; 1.5; -1; .01; .02];

20 % [F, J] = osborne1(x)

21

22 %% Ensuring correct input

23 if isvector(x) ~= 1

24 error('x must be a vector.')

25 end

26

27 %% Initialization

28 n = length(x);

29 % ensure that dimension of vector is correct

30 if n ~= 5

31 error('Enter four-dimensional vector.')

32 end

33 y = [.844; .908; .932; .936; .925; .908; .881; .850; .818; .784; ...

.751; .718; .685; .658; .628; .603; .580; .558; .538; .522; ...

.506; .490; .478; .467; .457; .448; .438; .431; .424; .420; ...

.414; .411; .406];

34 s = (1:33)';

35

36 %% Main procedure

37 t = 10*(s - 1);

38 e4 = exp(-t*x(4));

39 e5 = exp(-t*x(5));

40 u = x(2)*e4;

41 v = x(3)*e5;

42 F = x(1) + u + v - y;

43 if nargout > 1 % compute the Jacobian

44 J = zeros(33,n);

45 J(:,1) = 1;

46 J(:,2) = e4;

47 J(:,3) = e5;

48 J(:,4) = -t.*u;

49 J(:,5) = -t.*v;

50 end

51 end
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1 function [ F, J ] = biggs( x )

2 %% BIGGS EXP6 FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (18) in

7 % "Testing unconstrained optimization software",

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - six-dimensional vector

13 %

14 %% OUTPUT:

15 % F - m-dimensional vector, where m >= n (default m = 13)

16 % J - mx6-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [1; 2; 1; 1; 1; 1];

20 % [F, J] = biggs(x)

21

22 %% Choosing output dimension

23 m = 13;

24

25 %% Ensuring correct input

26 if isvector(x) ~= 1

27 error('x must be a vector.')

28 end

29

30 %% Initialization

31 n = length(x);

32 % ensure that dimension of vector is correct

33 if n ~= 6

34 error('Enter six-dimensional vector.')

35 end

36

37 %% Main procedure

38 t = (1:m)'/10;

39 y = exp(-t) - 5*exp(-10*t) + 3*exp(-4*t);

40 e1 = exp(-t*x(1));

41 e2 = exp(-t*x(2));

42 e5 = exp(-t*x(5));

43 x3e1 = x(3)*e1;

44 x4e2 = x(4)*e2;

45 x6e5 = x(6)*e5;

46 F = x3e1 - x4e2 + x6e5 - y;

47 if nargout == 2 % compute the Jacobian

48 J = zeros(m,n);

49 J(:,1) = -t.*x3e1;

50 J(:,2) = t.*x4e2;

51 J(:,3) = e1;

52 J(:,4) = -e2;

53 J(:,5) = -t.*x6e5;

54 J(:,6) = e5;

55 end

56 end
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1 function [ F, J ] = osborne2( x )

2 %% OSBORNE 2 FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (19) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - 11-dimensional vector

13 %

14 %% OUTPUT:

15 % F - 65-dimensional vector

16 % J - 65x11-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = [1.3; .65; .65; .7; .6; 3; 5; 7; 2; 4.5; 5.5];

20 % [F, J] = osborne2(x)

21

22 %% Ensuring correct input

23 if isvector(x) ~= 1

24 error('x must be a vector.')

25 end

26 %% Initialization

27 n = length(x);

28 % ensure that dimension of vector is correct

29 if n ~= 11

30 error('Enter 11-dimensional vector.')

31 end

32 y = [1.366; 1.191; 1.112; 1.013; .991; .885; .831; .847; .786; ...

.725; .746

33 .679; .608; .655; .616; .606; .602; .626; .651; .724; ...

.649; .649

34 .694; .644; .624; .661; .612; .558; .533; .495; .500; ...

.423; .395

35 .375; .372; .391; .396; .405; .428; .429; .523; .562; ...

.607; .653

36 .672; .708; .633; .668; .645; .632; .591; .559; .597; ...

.625; .739

37 .710; .729; .720; .636; .581; .428; .292; .162; .098; ...

.054];

38 s = (1:65)';

39 %% Main procedure

40 t = (s - 1)/10;

41 u9 = t - x(9);

42 u10= t - x(10);

43 u11= t - x(11);

44 v9= u9.^2;

45 v10= u10.^2;

46 v11= u11.^2;

47 e1 = exp(-t*x(5));

48 e2 = exp(-v9*x(6));

49 e3 = exp(-v10*x(7));

50 e4 = exp(-v11*x(8));

51 F = x(1)*e1 + x(2)*e2 + x(3)*e3 + x(4)*e4 - y;
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52 if nargout > 1 % compute the Jacobian

53 w2 = x(2)*e2;

54 w3 = x(3)*e3;

55 w4 = x(4)*e4;

56 J = zeros(65,n);

57 J(:,1) = e1;

58 J(:,2) = e2;

59 J(:,3) = e3;

60 J(:,4) = e4;

61 J(:,5) = -t*x(1).*e1;

62 J(:,6) = -v9.*w2;

63 J(:,7) = -v10.*w3;

64 J(:,8) = -v11.*w4;

65 J(:,9) = 2*u9*x(6).*w2;

66 J(:,10) = 2*u10*x(7).*w3;

67 J(:,11) = 2*u11*x(8).*w4;

68 end

69 end

1 function [ F, J ] = watson( x )

2 %% WATSON FUNCTION for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (20) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vectorm, where 2 <= n <= 31

13 %

14 %% OUTPUT:

15 % F - 31-dimensional vector

16 % J - 31xn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = zeros(12,1);

20 % [F, J] = watson(x)

21

22 %% Ensuring correct input

23 if isvector(x) ~= 1

24 error('x must be a vector.')

25 end

26

27 %% Initialization

28 n = length(x);

29 % ensure that dimension of vector is correct

30 if n < 2 || n > 31

31 error('Dimension n of input vector must satisfy 2 <= n <= 31.')

32 end

33 sum1 = 0;

34 sum2 = 0;

35

36 %% Main procedure

37 t = (1:29)'/29;

38 sum2 = sum2 + x(1)*ones(29,1);
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39 for j = 2:n

40 sum1 = sum1 + (j-1)*x(j)*t.^(j-2);

41 sum2 = sum2 + x(j)*(t.^(j-1));

42 end;

43 F = sum1 - sum2.^2 - 1;

44 F(30) = x(1);

45 F(31) = x(2) - x(1)^2 - 1;

46 if nargout > 1 % compute the Jacobian

47 J = zeros(31,n);

48 twosum2 = 2*sum2;

49 J(1:29,1) = -twosum2;

50 for j = 2:n

51 J(1:29,j) = (j-1)*(t.^(j-2)) - twosum2.*t.^(j-1);

52 end;

53 J(30,1) = 1;

54 J(31,1) = -2*x(1);

55 J(31,2) = 1;

56 end

57 end

1 function [ F, J ] = rosenbrockXT( x )

2 %% EXTENDED ROSENBROCK function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (21) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector, n must be even

13 %

14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % n = 16;

20 % x = zeros(n,1);

21 % maxit = n/2;

22 % for i = 1:maxit

23 % x(2*i-1) = -1.2;

24 % x(2*i) = 1;

25 % end

26 % [F, J] = rosenbrockXT(x)

27

28 %% Initialization

29 n = length(x); % input dimension

30 % check if dimension is even

31 if mod(n,2) ~= 0

32 error('Input dimension n must be even.')

33 end

34 % determine the maximum number of iterations

35 maxit = n/2;

36 F = zeros(n,1);

37
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38 %% Main procedure

39 for i = 1:maxit

40 F(2*i-1) = 10*(x(2*i) - x(2*i-1)^2);

41 F(2*i) = 1 - x(2*i-1);

42 end

43 if nargout > 1 % compute the Jacobian

44 J = zeros(n,n);

45 for i = 1:maxit

46 J(2*i-1,2*i-1) = -20*x(2*i-1);

47 J(2*i-1,2*i) = 10;

48 J(2*i,2*i-1) = -1;

49 end

50 end

51 end

1 function [ F, J ] = powell_singularXT( x )

2 %% EXTENDED POWELL SINGULAR function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (22) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector, n must be a multiple of 4

13 %

14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % n = 16;

20 % x = zeros(n,1);

21 % maxit = n/4;

22 % for i = 1:maxit

23 % x(4*i-3) = 3;

24 % x(4*i-2) = -1;

25 % x(4*i-1) = 0;

26 % x(4*i) = 1;

27 % end

28 % [F, J] = powell_singularXT(x)

29

30 %% Initialization

31 n = length(x);

32 % check if input dimension is a multiple of 4

33 if mod(n,4) ~= 0

34 error('Input dimension n must be a multiple of 4.')

35 end

36 % determine the maximum number of iterations

37 maxit = n/4;

38 F = zeros(n,1);

39

40 %% Main procedure

41 sqrt5 = sqrt(5);

42 sqrt10 = sqrt(10);
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43 for i = 1:maxit

44 F(4*i-3) = x(4*i-3) + 10*x(4*i-2);

45 F(4*i-2) = sqrt5*(x(4*i-1) - x(4*i));

46 F(4*i-1) = (x(4*i-2) - 2*x(4*i-1))^2;

47 F(4*i) = sqrt10*(x(4*i-3) - x(4*i))^2;

48 end

49 if nargout > 1 % compute the Jacobian

50 J = zeros(n,n);

51 for i = 1:maxit

52 J(4*i-3,4*i-3) = 1;

53 J(4*i-3,4*i-2) = 10;

54 J(4*i-2,4*i-1) = sqrt5;

55 J(4*i-2,4*i) = -sqrt5;

56 J(4*i-1,4*i-2) = 2*(x(4*i-2) - 2*x(4*i-1));

57 J(4*i-1,4*i-1) = -4*(x(4*i-2) - 2*x(4*i-1));

58 J(4*i,4*i-3) = sqrt10*2*(x(4*i-3) - x(4*i));

59 J(4*i,4*i) = sqrt10*(-2)*(x(4*i-3) - x(4*i));

60 end

61 end

62 end

1 function [ F, J ] = penalty1( x )

2 %% PENALTY I function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (23) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - (n+1)-dimensional vector

16 % J - (n+1)xn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = ones(10,1);

20 % [F, J] = penalty1(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27 %% Initialization

28 n = length(x);

29 m = n+1;

30

31 %% Main procedure

32 a = sqrt(1e-5);

33 F = a*(x - 1);

34 F(m) = sum(x.^2) - (1/4);

35 if nargout > 1 % compute the Jacobian

36 J = zeros(m,n);
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37 for j = 1:n

38 J(1:n,j) = a;

39 end;

40 J(n+1,:) = 2*x';

41 end

42 end

1 function [ F, J ] = penalty2( x )

2 %% PENALTY II function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (24) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - 2n-dimensional vector

16 % J - 2nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = ones(10,1)/2;

20 % [F, J] = penalty2(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27 %% Initialization

28 n = length(x);

29 m = 2*n;

30 F = zeros(m,1);

31 t = (1:n)';

32 s = n-t+1;

33

34 %% Main procedure

35 a = sqrt(1e-5);

36 F(1)= x(1) - 0.2;

37 if n > 1

38 nplus = n+1;

39 mminus = m-1;

40 onetenth = 1/10;

41 xtenth = x/10;

42 y = exp(t(2:n)/10) + exp((t(2:n)-1)/10);

43 e1 = exp(xtenth(1:(n-1)));

44 e2 = exp(xtenth(2:n));

45 F(2:n) = a*(e2 + e1 - y);

46 F(nplus:mminus) = a*(e2 - exp(-onetenth));

47 end

48 F(m)= sum(s.*x.^2) - 1;

49 if nargout > 1 % compute the Jacobian

50 J = zeros(m,n);
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51 J(1,1)= 1;

52 if n > 1

53 b = a*onetenth;

54 c = b*e1;

55 d = b*e2;

56 for j = 2:n

57 J(j,j) = d(j-1);

58 J(j,j-1) = c(j-1);

59 J(nplus:mminus,j) = d;

60 end;

61 end

62 J(m,:) = s'*2.*x';

63 end

1 function [ F, J ] = vardim( x )

2 %% VARIABLY DIMENSIONED function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (25) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - (n+2)-dimensional vector

16 % J - (n+2)xn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = ones(10,1) - 1/10;

20 % [F, J] = vardim(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27 %% Initialization

28 n = length(x);

29 nplus = n+1;

30 m = n+2;

31 t = (1:n)';

32

33 %% Main procedure

34 F = x - 1;

35 F(nplus) = sum(t.*(x-1));

36 F(m) = F(nplus)^2;

37 if nargout > 1 % compute the Jacobian

38 J = eye(m,n); % df_i/dx_i = 1 for i = 1,...,n

39 J(nplus,:) = t';

40 J(m,:) = 2*F(nplus)*t';

41 end

42 end
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1 function [ F, J ] = trigonometric( x )

2 %% TRIGONOMETRIC function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (26) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % n = 10;

20 % x = ones(n,1)/n;

21 % [F, J] = trigonometric(x)

22

23 %% Ensuring correct input

24 % ensure that vector is entered

25 if isvector(x) ~= 1

26 error('x must be a vector.')

27 end

28

29 %% Initialization

30 n = length(x); % input dimension

31 t = (1:n)';

32

33 %% Main procedure

34 cosx = cos(x);

35 sinx = sin(x);

36 F = n - sum(cosx) + t.*(1 - cosx) - sinx;

37 if nargout > 1 % compute the Jacobian

38 J = zeros(n,n);

39 for j = 1:n

40 J(:,j) = sinx(j)*ones(n,1);

41 J(j,j) = sinx(j) + j*sinx(j) - cosx(j);

42 end

43 end

44 end
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1 function [ F, J ] = brownAL( x )

2 %% BROWN ALMOST-LINEAR function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (27) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % n = 10;

20 % x = ones(n,1)/2;

21 % [F, J] = brownAL(x)

22

23 %% Ensuring correct input

24 % ensure that vector is entered

25 if isvector(x) ~= 1

26 error('x must be a vector.')

27 end

28

29 %% Initialization

30 n = length(x); % input dimension

31

32 %% Main procedure

33 F = x(1:(n-1)) + sum(x) - (n+1);

34 prodx = prod(x);

35 F(n) = prodx - 1;

36 if nargout > 1 % compute the Jacobian

37 J = ones(n,n); % df_i/dx_i = 1 except for diagonal and last row

38 diagonal = logical(eye(n));

39 J(diagonal) = 2;

40 J(n,:) = prodx./x';

41 end

42 end

1 function [ F, J ] = discreteBV( x )

2 %% DISCRETE BOUNDARY VALUE function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (28) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %
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14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % n = 10;

20 % h = 1/(n+1);

21 % t = (1:n)'*h;

22 % x = t.*(t-1);

23 % [F, J] = discreteBV(x)

24

25 %% Ensuring correct input

26 % ensure that vector is entered

27 if isvector(x) ~= 1

28 error('x must be a vector.')

29 end

30

31 %% Initialization

32 n = length(x); % input dimension

33

34 %% Main procedure

35 h = 1/(n+1);

36 t = (1:n)'*h;

37 F = 2*x - [0; x(1:(n-1))] - [x(2:n); 0] + h^2*((x + t + 1).^3)/2;

38 if nargout > 1 % compute the Jacobian (here a tridiagonal matrix)

39 offdiag = -ones(n,1);

40 maindiag = 2 + 3*h^2*((x + t + 1).^2)/2;

41 tridiag = spdiags([offdiag maindiag offdiag], -1:1 ,n, n);

42 J = full(tridiag);

43 end

44 end

1 function [ F, J ] = discreteIE( x )

2 %% DISCRETE INTEGRAL EQUATION function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (29) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % n = 10;

20 % h = 1/(n+1);

21 % t = (1:n)'*h;

22 % x = t.*(t-1);

23 % [F, J] = discreteIE(x)

24

25
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26 %% Ensuring correct input

27 % ensure that vector is entered

28 if isvector(x) ~= 1

29 error('x must be a vector.')

30 end

31

32 %% Initialization

33 n = length(x); % input dimension

34

35 %% Main procedure

36 h = 1/(n+1);

37 hhalf = h/2;

38 t = (1:n)'*h;

39 oneminust = 1-t;

40 u = x + t + 1;

41 ucubed = u.^3;

42 sum1 = zeros(n,1);

43 sum2 = zeros(n,1);

44 for i = 1:n

45 sum1(i) = sum(t(1:i).*ucubed(1:i));

46 sum2(i) = sum(oneminust(i+1:n).*ucubed(i+1:n));

47 end

48 F = x + hhalf*(oneminust.*sum1 + t.*sum2);

49 if nargout > 1 % compute the Jacobian

50 J = zeros(n,n);

51 temp1 = 3*hhalf*u.^2;

52 for i = 1:n

53 for j = 1:n

54 temp2 = min(t(i),t(j)) - t(i)*t(j);

55 J(i,j) = temp2*temp1(j);

56 end

57 J(i,i) = J(i,i) + 1;

58 end

59 end

60 end

1 function [ F, J ] = broyden_tridiagonal( x )

2 %% BROYDEN TRIDIAGONAL function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (30) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = -ones(10,1);

20 % [F, J] = broyden_tridiagonal(x)

21
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22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27

28 %% Initialization

29 n = length(x); % input dimension

30

31 %% Main procedure

32 F = (3 - 2*x).*x - [0; x(1:(n-1))] - 2*[x(2:n); 0] + 1;

33 if nargout > 1 % compute the Jacobian (here a tridiagonal matrix)

34 lowerdiag = -ones(n,1);

35 upperdiag = 2*lowerdiag;

36 maindiag = 3 - 4*x;

37 tridiag = spdiags([lowerdiag maindiag upperdiag], -1:1 ,n, n);

38 J = full(tridiag);

39 end

40 end

1 function [ F, J ] = broyden_banded( x )

2 %% BROYDEN BANDED function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (31) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - n-dimensional vector

16 % J - nxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = -ones(10,1);

20 % [F, J] = broyden_banded(x)

21

22 %% Ensuring correct input

23 % ensure that vector is entered

24 if isvector(x) ~= 1

25 error('x must be a vector.')

26 end

27

28 %% Initialization

29 n = length(x); % input dimension

30

31 %% Main procedure

32 ml = 5;

33 mu = 1;

34 sumJ = zeros(n,1);

35 for i=1:n

36 lb = max(1,i-ml);

37 ub = min(n,i+mu);
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38 for j = 1:n

39 if j ~= i && lb <= j && j <= ub

40 sumJ(j) = sum(x.*(1 + x));

41 end

42 end

43 end

44 F = x.*(2 + 5*x.^2) + 1 - sumJ;

45 if nargout > 1 % compute the Jacobian

46 J = zeros(n,n);

47 for i = 1:n

48 lb = max(1,i-ml);

49 ub = min(n,i+mu);

50 for j = 1:n

51 if i == j

52 J(i,j)= 2 + 15*x(i)^2;

53 elseif lb <= j && j <= ub

54 J(i,j) = -1 - 2*x(j);

55 end

56 end

57 end

58 end

59 end

1 function [ F, J ] = linear_fullrk( x )

2 %% LINEAR FULL RANK function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (32) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - m-dimensional vector, where m => n (default m = 20)

16 % J - mxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = ones(10,1);

20 % [F, J] = linear_fullrk(x)

21

22 %% Choosing output dimension

23 m = 20;

24

25 %% Ensuring correct input

26 % ensure that vector is entered

27 if isvector(x) ~= 1

28 error('x must be a vector.')

29 end

30

31 %% Initialization

32 n = length(x); % input dimension

33 F = zeros(m,1);

34
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35 %% Main procedure

36 sumx = sum(x);

37 a = 2/m;

38 F(1:n) = x - a*sumx - 1;

39 if m > n

40 F(n+1:m) = -a*sumx - 1;

41 end

42 if nargout > 1 % compute the Jacobian

43 J = eye(m,n) - a*ones(m,n);

44 end

45 end

1 function [ F, J ] = linear_rk1( x )

2 %% LINEAR RANK 1 function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (33) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - m-dimensional vector, where m => n (default m = 20)

16 % J - mxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = ones(10,1);

20 % [F, J] = linear_rk1(x)

21

22 %% Choosing output dimension

23 m = 20;

24

25 %% Ensuring correct input

26 % ensure that vector is entered

27 if isvector(x) ~= 1

28 error('x must be a vector.')

29 end

30

31 %% Initialization

32 n = length(x); % input dimension

33

34 %% Main procedure

35 t = (1:m)';

36 sumjx = sum(t(1:n).*x);

37 F = t.*sumjx - 1;

38 if nargout > 1 % compute the Jacobian

39 J=zeros(m,n);

40 for j= 1:n

41 J(:,j) = t*j;

42 end

43 end

44 end
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1 function [ F, J ] = linear_rk1zero( x )

2 %% LINEAR RANK 1 function WITH ZERO COLUMNS/ROWS for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (34) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.

10 %

11 %% INPUT:

12 % x - n-dimensional vector

13 %

14 %% OUTPUT:

15 % F - m-dimensional vector, where m => n (default m = 20)

16 % J - mxn-dimensional Jacobian matrix

17 %

18 %% EXAMPLE:

19 % x = ones(10,1);

20 % [F, J] = linear_rk1zero(x)

21

22 %% Choosing output dimension

23 m = 20;

24

25 %% Ensuring correct input

26 % ensure that vector is entered

27 if isvector(x) ~= 1

28 error('x must be a vector.')

29 end

30 %% Initialization

31 n = length(x); % input dimension

32 F = zeros(m,1);

33

34 %% Main procedure

35 t = (2:m-1)';

36 tminusone = t - 1;

37 F(1) = -1;

38 F(m) = -1;

39 F(t) = tminusone*sum(t(1:n-2).*x(2:n-1)) - 1;

40 if nargout > 1 % compute the Jacobian

41 J = zeros(m,n);

42 for j = 2:n-1

43 J(t,j) = tminusone*j;

44 end

45 end

46 end

1 function [ F, J ] = chebyquad( x )

2 %% CHEBYQUAD function for testing

3 % unconstrained optimization software

4 %% AUTHOR: Stefan Scheer

5 %% REFERENCE:

6 % Test function (35) in

7 % "Testing unconstrained optimization software"

8 % by J.J. More, B.S. Garbow, and K.E. Hillstrom,

9 % ACM Trans. Math. Softw., vol.7, pp. 17-41, Mar. 1981.
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10 %% INPUT:

11 % x - n-dimensional vector

12 %

13 %% OUTPUT:

14 % F - m-dimensional vector, where m => n (default m = 9)

15 % J - mxn-dimensional Jacobian matrix

16 %

17 %% EXAMPLE:

18 % n = 9;

19 % x = ones(n,1)/(n+1);

20 % [F, J] = chebyquad(x)

21

22 %% Choosing output dimension

23 m = 9;

24

25 %% Initialization

26 n = length(x); % input dimension

27 F = zeros(m,1);

28 if nargout > 1 % compute the Jacobian

29 J = zeros(m,n);

30 end

31

32 %% Main procedure

33 for j = 1:n % The Chebyshev polynomials are obtained from the

34 Tnminus = 1; % recurrence relation T_0(x) = 1, % T_1(x) = x,

35 Tn = x(j); % T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x).

36 if nargout > 1

37 dTnminusdx = 0;

38 dTndx = 1;

39 end

40 for i = 1:m

41 if nargout > 1

42 J(i,j) = dTndx;

43 dTnplusdx = 2*Tn + 2*dTndx*x(j) - dTnminusdx;

44 dTnminusdx = dTndx;

45 dTndx = dTnplusdx;

46 end

47 F(i) = F(i) + Tn;

48 Tnplus = 2*x(j)*Tn - Tnminus;

49 Tnminus = Tn;

50 Tn = Tnplus;

51 end

52 end

53 if nargout > 1

54 J = J/n;

55 end

56 F = F/n;

57 for i = 1:m

58 if mod(i,2) == 0

59 F(i) = F(i) + 1/(i^2 - 1);

60 end

61 end

62 end
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