

MASTERARBEIT / MASTER'S THESIS

Titel der Masterarbeit / Title of the Master's Thesis

"Die Bären der Vypustek-Höhle bei Kiritein (Křtiny, Mährischer Karst, Tschechien)"

verfasst von / submitted by Matthias Achatz

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc)

Wien, 2021 / Vienna 2021

Studienkennzahl It. Studienblatt / degree programme code as it appears on the student record sheet:

Studienrichtung It. Studienblatt / degree programme as it appears on the student record sheet:

Betreut von / Supervisor:

UA 066 815

Masterstudium Erdwissenschaften

emer. o. Univ.-Prof. Mag. Dr. Gernot Rabeder

Inhaltsverzeichnis

1.	Zusammenfassung3
2.	Abstract 3
3.	Einleitung4
1	. Geologisches Setting 4
2	. Geschichte der Höhle5
3	. Biologische Übersicht
4	. Verwandtschaftsverhältnisse und Evolution
5	. Aussterben9
6	. Geographischen Verbreitung9
4.	Material und Methoden 10
1	. Inventarisierung und Vermessung10
2	. Metapodien
3	. Eckzähne 11
4	. Schneidezähne11
5	. Backenzähne11
6	. Geschlechterbestimmung 11
7	. Standardisierung11
5.	Ergebnisse12
1	. Schneidezähne12
2	. Eckzähne 17
3	. Prämolaren 20
4	. Molaren 22
5	. Metapodia
6	. Metacapalia
7	. Metatarsalia
6.	Vergleiche
1	. Vergleiche mit der Referenzfauna Gamssulzenhöhle
2	. Höhenabhängige Vergleiche 41
3	. Vergleich mit der Slouper-Höhle
7.	Diskussion
1	. Taxonomische Zuordnung
2	. Sexualdimorphismus
3	. Vergleich mit der Slouper-Höhle
8.	Conclusio
9.	Literaturverzeichnis

10.	Abbildungsverzeichnis	. 59
11.	Tabellenverzeichnis	61
12.	Anhang – Maßtabellen Zähne	63
13.	Anhang - Maßtabellen Metapodien	86

1. Zusammenfassung

Die Vypustek-Höhle nahe der tschechischen Ortschaft Křtiny ist eine der zahlreichen Höhlen im mährischen Karst. In einer großangelegten Grabung in den 1880er Jahren unter Leitung von Hofrat Ferdinand von Hochstetter im Auftrag der k. u. k. Akademie der Wissenschaften wurden mehrere tausend Knochen und Zähen von Höhlenbären zu Tage gefördert.

Diese wurden beinahe 140 Jahre im Naturhistorischem Museum Wien gelagert und ein Teil dieser wurden nun im Zuge dieser Arbeit erstmals inventarisiert, vermessen und morphologisch untersucht. Die Werte wurden mit jenen der Gamssulzenhöhle standardisiert und anschließend wurden metrische und morphologische Indices mit denen anderer Höhlenbärenfaunen verglichen.

Durch diesen Vergleich mit anderen Höhlenbärenfaunen konnten die Bären der Vypustekhöhle der Art *Ursus ingressus* zugeordnet werden. Dies ist vor allem aus der Kombination aus der LDH-Korrelation und dem m2-Enthypoconidindex zu schließen.

Auffallend und für die Art eher untypisch ist der geringe Sexualdimorphismusindex und die niedrig entwickelten Prämolaren. Besonders hervorzuheben sind diese Eigenschaften, da sich die Bären von denen der nahegelegenen Slouperhöhle in diesen Aspekten deutlich unterscheiden.

2. Abstract

The Vypustek cave near the Czech village of Křtiny is one of the numerous caves of the Moravian Karst. In a comprehensive excavation during the 1880's under the supervision of Hofrat Ferdinand von Hochstetter on behalf of the k. u. k. Academy of Science, several thousand bones and teeth of cave bears were excavated.

After being stored in the Natural History Museum Vienna for 140 years, they were inventoried, measured, and morphologically examined. The obtained values where standardized using those from Gamssulzen cave. Subsequently, the metric and morphological indices were compared to those of other cave bear faunas.

Through comparison with other cave bear faunas the bears of Vypustek cave could be identified as *Ursus ingressus*. Instrumental for this decision were the combination of the LDH-correlation and m2-Enthypoconidindex.

Extraordinary and rather untypical for the species is the low sexual-dimorphism-index and the underdeveloped premolars. Those attributes are of particular interest because it separates the bears from the ones found in the nearby Slouper cave.

3. Einleitung

1. Geologisches Setting

Die Vypustek-Höhle liegt bei Křtiny (Kiritein), ungefähr 15 Kilometer nordöstlich von Brünn. Der heutige Haupteingang liegt auf einer Seehöhe von 410 Metern. Sie ist eine der zahlreichen Höhlen des Mährischen Karstes, einem ausgedehnten Karstgebietes in der Tschechischen Republik. Es handelt sich um einen Streifen von Devonischem und Karbonischem Kalkstein, der um die 25 Kilometer in seiner Nord-Süd Ausdehnung misst und zwischen drei und fünf Kilometern breit ist. Die Sedimentgesteine der Umgebung Křtinys wurden vorwiegend im frühen und mittleren Frasnium (Oberdevon) auf dem Granit der heutigen Böhmischen Masse abgelagert. Sie wurden infolge der Variszischen Gebirgsbildung verformt und ein Teil des damaligen Hochgebirges. Später überlagerte Sedimente sind bis auf wenige Reste wieder erodiert worden. Die Flüsse, die diese Karstlandschaft formen, entspringen im Norden und Osten und durchfließen das Karstgebiet in Richtung Südwesten. Den größten Teil ihres Weges legen sie dabei unterirdisch zurück und formen so die Höhlensysteme der Region (Kadlec et al., 2001).

Abbildung 1: Lage der Vypustekhöhle bei Křtiny nordöstlich von Brünn. Verändert nach © OpenStreetMap-Mitwirkende. Lizenz: CC-BY-SA 2.0, siehe: <u>https://www.openstreetmap.org/copyright</u>.

2. Geschichte der Höhle

Erstmals erwähnt wurde sie in einer Beschreibung der Umgebung Vallis Baptismi seu Kiriteinensis des Mönches Martin Vigsius 1663. Im achtzehnten Jahrhundert stieg das Interesse an der Höhle, so wurde auf Befehl Fürst Alois I. von und zu Liechtenstein der Eingang erweitert und im Inneren ein leicht begehbarer Weg und eine Treppe angelegt. Die weitreichendste Veränderung war die Sprengung einer 10 Meter dicken Felswand. Auch Altgraf Hugo zu Salm besuchte die Grotte und ließ einen seiner Meinung nach gefährlichen Teil zumauern. Dieser Bereich wurde bei nachfolgenden Untersuchungen aber nicht mehr aufgefunden. Bei diesen Umbauarbeiten wurden zwar schon Knochen und auch Tonscherben gefunden, aber nur achtlos beiseite geworfen. In den ersten wissenschaftlichen Untersuchungen der Höhle konnte Friedrich Kolenati in den Jahren 1850/51 zahlreiche Knochen von Höhlenbären belegen. In den folgenden Jahrzehnten wurde Vypustek, zusammen mit vielen anderen Höhlen der Gegend, eingehend von Heinrich Wankel untersucht und seine Erkenntnisse in "Bilder aus der Mährischen Schweiz und ihrer Vergangenheit" im Jahr 1888 veröffentlicht. Die bisherigen Ausführungen zu Geschichte der Höhle stammen aus seinem Buch. Im Jahr 1880 begann Hofrat Ferdinand von Hochstetter mit Ausgrabungen im Auftrag der Akademie der Wissenschaften. Eine Übersicht der Fauna lieferte Liebe 1879, eine detailreiche Beschreibung und Vermessung der Höhle sowie Faunenübersicht stammt von Kritz aus dem Jahr 1893, bis mindestens ein Jahr vorher wurden Ausgrabung und Planierung des Höhlenboden fortgesetzt.

Abbildung 2: Übersichtsplan der Vypustekhöhle, verändert nach Kritz 1893

In den 1920ern wurden die phosphatreichen Ablagerungen abgetragen, um wie vielerorts den Düngerengpässen in der Landwirtschaft entgegenzuwirken. Im Zuge dieser Arbeiten wurden Gänge und Hallen erweitert, stellenweise wurden bis zu 4 Meter Sediment abgetragen. Weitaus mehr in Mitleidenschaft gezogen wurden die Höhle durch die nachfolgende militärische Nutzung. Die Tschechoslowakische Armee verwendete sie ab 1936 als Munitionslager und baute die natürlichen Gänge und Räume komplett um. 1944 zog die deutsche Wehrmacht ein und richtete dort eine Produktionsstätte für Flugzeugmotoren ein, die beim Rückzug aus dem Gebiet zerstört wurde. Nach beinahe zwei Jahrzehnten militärischem Desinteresse erfolgte der Bau eines geheimen Kommandoposten und Atombunkers in die bereits bestehende Anlage (Tschechien Online, 2016). 2001 wurde die unzeitgemäße Einrichtung schließlich aufgegeben und die Höhle 2005 dem tschechischen Umweltschutzministerium übergeben, dass es Schritt für Schritt für Besucher freigab (Mährischer Karst Touristeninformation, o. D.). Heute kann ein Teil der Höhle und ehemaligen Militäreinrichtung im Zuge bezahlter Führungen besucht werden (Höhlenverwaltung der Tschechischen Republik, 2020).

Abbildung 3: Moderner Höhlenplan der Höhlenverwaltung der Tschechischen Republik

3. Biologische Übersicht

Der Höhlenbär war mit einer Schulterhöhe von bis zu 170 cm, einer Länge von 350 cm und einem Gewicht von bis zu 1500 kg eines der größten Raubtiere (*Carnivora*) des Spätpleistozäns Europas (Rabeder, pers. Überlieferung). Diese Maximalmaße beziehen sich allerdings nur auf große Männchen, da es, wie bei den rezenten Bärenarten, starke Unterschiede zwischen Weibchen und Männchen gibt. Die Unterschiede zwischen den Geschlechtern beschränken sich nicht nur auf die Größenunterschiede zwischen diesen, sondern sind auch in der Morphologie des Schädels ersichtlich. Im Vergleich weisen Schädel männlicher Individuen einen robusteren Occipitalbereich und Scheitelkamm durch eine starke Vergrößerung der Stirnhöhlen auf. Diese Flächen dienen als Ansatzbereich für eine stärkere Kaumuskulatur, welche die Männchen benötigen, um genug Nahrung aufnehmen und ihr höheres Körpergewicht halten zu können (Grandal-d'Anglade und López González, 2005).

Diese Nahrung bestand aus pflanzlichem Material. Im Vergleich der Verhältnisse der stabilen Isotopen von Kohlenstoff (δ^{13} C) und Stickstoff (δ^{15} N) zeigen Höhlenbären einen niedrigen δ^{15} N-Wert, ähnlich wie andere Herbivoren, und deutlich unterschiedlich im Vergleich zu Omnivoren und Carnivoren, wie *U. arctos* oder *Panthera leo spelaea* (Bocherens et al., 2011). Allerdings zeigen einige Populationen von Höhlenbären hohe δ^{15} N-Werte, welche als Zeichen von Omnivorie interpretiert werden (Richards et al., 2008).

Die herbivore Ernährung lässt sich neben der ausgeprägten Kaumuskulatur auch am Gebiss erkennen. Die Evolutionslinien der Höhlenbären sind von einer Vergrößerung und Komplexierung der Molaren und der letzten Prämolaren sowie von der zunehmenden Reduktion der ersten drei Prämolaren gekennzeichnet. Bei den meisten Höhlenbären ist der einzige Prämolar sowohl im Oberals auch im Unterkiefer der P4 (Pacher, 2017).

4. Verwandtschaftsverhältnisse und Evolution

Die nächsten lebenden Verwandten des Höhlenbären sind der Braunbär und der Eisbär. Der letzte gemeinsame Vorfahre dieser, *Ursus etruscus*, lebte von vor 5 Millionen Jahren bis vor 1 Millionen Jahren in gesamt Eurasien. Die Entwicklungslinien von Braunbären und Höhlenbären trennten sich nach Loreille et al. (2001) vor 1,2 Millionen Jahren, laut Krause et al. (2008) aber deutlich früher im Bereich von 3,1 bis 2,4 Millionen Jahren vor heute. Beide Studien untersuchten die Verwandtschaftsverhältnisse mithilfe von mitochondrialer DNA. Untersuchungen der Kern-DNA ergaben, dass es auch zu Hybridisierungen zwischen Höhlenbären und Braunbären kam, mit Genfluss in beide Richtungen. Demnach stammen je nach Population zwischen 0,9 und 2,4% des Genoms des Braunbären vom Höhlenbären (Barlow et al., 2018).

Intraspezifische Variabilität bei den Arten des Genus *Ursus* nicht ungewöhnlich, so hat der Braunbär (*Ursus arctos*) eine Vielzahl von Unterarten, deren Anzahl und Validität jedoch umstritten sind. Bei Analysen der Mitochondrial-DNA erscheint der Braunbär eine paraphyletische Art zu sein, da die Population der ABC-Inseln vor der Küste Alaskas scheinbar näher mit dem Eisbären (*Ursus maritimus*) verwandt ist als mit allen anderen Braunbären (Cronin et al, 1991). Neure Analysen der Kern-DNA zeigen hingegen, dass die Nähe der ABC-Insel-Braunbären und Eisbären auf Hybridisierungsevents zurückzuführen ist (Hailer et al., 2012; Cahill et al., 2013).

Diese Variabilität zeigt sich auch beim direkten Vorfahren der Höhlenbären, *Ursus deningeri*. Die mittelpleistozäne Art war bereits an eine herbivore Lebensweise angepasst (van Heteren et al., 2018). Die Unterschiede zwischen *U. deningeri* und *U. spelaeus* sind eher gering, so dass sie von manchen Autoren auch als dieselbe Spezies angesehen werden (Mazza & Rustioni, 1994; Grandal-D'Anglade & Lopez-Gonzalez, 2004).

Die Aufspaltung der spätpleistozäne Höhlenbärenlinien wird bereits im mittleren Pleistozän, zwischen 274000 und 814000 Jahren vor heute für *U. kudarensis* und *U. spelaeus sensu lato*, und zwischen 173000 und 414000 Jahren vor heute für *U. spelaeus* und *U. ingressus* (Knapp et al., 2009; Stiller et al., 2013), angesetzt.

Da der Übergang zwischen *U. deningeri* und *U. spelaeus* graduell vor sich ging, ist ein genaues Datum des Erstauftreten kaum zu bestimmen. Grandal-D'Anglade & Lopez-Gonzalez (2004) kommen in ihrer Analyse zu dem Schluss, dass dieser Übergang in den geographisch isolierten Populationen unabhängig voneinander mit unterschiedlicher Geschwindigkeit vor sich ging.

Eine Art, *Ursus kudarensis*, findet sich im Kaukasus bis weit östlich in Sibirien. Diese lässt sich sowohl morphologisch als auch genetisch deutlich von den europäischen Höhlenbären unterscheiden (Barishnikov, 1998; Knapp et al., 2009). Er erreichte beinahe die Größe des europäischen Höhlenbären, zeigt aber eine primitivere Bezahnung. Barishnikov (2000) spekuliert, dass günstige Umweltverhältnisse die Evolutionsrate im Vergleich zu den europäischen Höhlenbären negativ beeinflusst haben. Während die bereits erwähnten Autoren diesen Bären als Unterart von *U. deningeri* einstuften, wird sie von Stiller et al. (2013) als eigene Art angesehen.

Lange Zeit wurde davon ausgegangen, alle spätpleistozänen Höhlenbären gehören *Ursus spelaeus* an. Erste Zweifel an der Einheit der Höhlenbären kamen auf, als Kurt Ehrenberg die Bären der hochalpinen Schreiberwandhöhle mit jenen der Drachenhöhle bei Mixnitz verglich (Ehrenberg & Sickenberg, 1929). Dabei fiel nicht nur deren geringere Größe auf, sondern auch ihre deutlich weniger entwickelten Zähne. Die von ihm sogenannte "hochalpine Kleinform" wurde darauf zurückgeführt, dass es in höheren Lagen weniger lange Vegetationsphasen gibt und der Pflanzenfresser deswegen weniger Nahrung zu sich nehmen kann. Diese Hypothese erklärt zwar die kleineren Dimensionen, allerdings nicht das primitivere Evolutionsniveau der Zähne. Obwohl er die "hochalpine Kleinform" noch in der Salzofenhöhle vorfand blieb es bei der bisherigen Taxonomie (Rabeder, 2007).

Erst Jahrzehnte später konnten die Ausgrabungen in der Ramesch-Knochenhöhle und der Gamssulzenhöhle Licht in die Verhältnisse zwischen den unterschiedlichen Bären bringen. Die beiden Höhlen liegen im oberösterreichischen Teil des Toten Gebirges nur wenige Kilometer Luftlinie und um die 700 Höhenmeter voneinander entfernt. Während in der höhergelegenen Ramesch-Knochenhöhle die kleinere Höhlenbärenvariante gefunden wurde, war es in der tiefergelegenen Gamssulzenhöhle eine große, hochentwickelte Form des Höhlenbären. Beide lebten über 15000 Jahre nebeneinander im selben Gebiet (Raberder, 2007). In der in den Dolomiten gelegenen Conturineshöhle wurde ebenfalls eine Kleinform gefunden. Nach einem umfassenden Vergleich der metrischen und morphodynamischen Indices der Zähne und Metapodien und der mitochondrialen DNA mit den Bären der Typuslokalität Zoolithenhöhle wurde von Rabeder et al. (2004) der Höhlenbär in zwei Arten aufgeteilt. Zum einen wurde eine neue Art, *Ursus ingressus*, aufgestellt, dessen Fossilien aus der Gamssulzenhöhle stammen. Außerdem wurden zwei neue, von der nominalen zu unterscheidende, Unterarten aufgestellt: *Ursus spelaeus eremus*, Typuslokalität Ramesch-Knochenhöhle, und *Ursus spelaeus ladinicus*, Typuslokalität Conturineshöhle. (Rabeder et al., 2004)

5. Aussterben

Lange wurde davon ausgegangen, dass der Höhlenbär zusammen mit vielen anderen großen pleistozänen Säugetieren am Ende der letzten Eiszeit ausgestorben ist (z.B. Musil, 1981). Mit der höher gewordenen Messgenauigkeit und besseren Kalibrierung der Radiokarbonmethode konnten die jüngeren Daten, wie zum Beispiel die als Refugium angesehene Schwäbische Alb (Münzel et al., 2011), allerdings revidiert werden. Einige Datierungen sind auch aufgrund von Kontaminierung der Proben oder ungenauer Artzuordnung zu verwerfen (Pacher & Stuart. 2009). Die nun bestätigten jüngsten Funde von Höhlenbären sind um die 25000 Jahre alt (Pacher & Stuart, 2009; Münzel et al., 2011; Baca et al., 2016; Mackiewicz et al., 2017). Das Aussterben des Höhlenbären fand also schon vor dem Letzten Glazialen Maximum statt. Neben den Verwandtschaftsverhältnissen lässt sich mittels Analyse der mtDNA auch die Populationsgröße abschätzen. So begann die genetische Diversität in den beiden europäischen Arten (U. spelaeus und U. ingressus) vor 50000 Jahren abzunehmen (Stiller et al., 2010). Das Aussterben der europäischen Höhlenbären war demnach ein Prozess, der sich über einen Zeitraum von 25000 Jahren zog. Dabei verdrängte U. ingressus bei seiner Wanderung westwärts den ansässigen U. spelaeus, was zum lokalen Aussterben dieser Art geführt hat (Münzel et al., 2011). Das hat zur Folge, dass U. ingressus in tieferen Lagen durchschnittlich beinahe 1000 Jahre länger existierte als U. spelaeus (Mackiewicz et al, 2017). In den höher gelegenen Höhlen der Alpen starb hingegen U. ingressus deutlich vor U. s. eremus aus. Letzterer zog sich in Höhlen zwischen 1500 m und 1700 m Seehöhe zurück. Grund dafür war die generelle Abkühlung des Klimas hin zum Letzten Glazialen Maximum, was zu einer Versteppung in niedrigeren Lagen führte. In den Südalpen dürfte diese Klimaveränderung nicht zu einer so starken Veränderung der Niederschlagsmengen und damit einem Verlust an brauchbarer Nahrung geführt haben und die dortigen Höhlenbären haben länger überlebt (Döppes et al., 2018).

6. Geographischen Verbreitung

Das Verbreitungsgebiet von *Ursus spelaeus s.l.* erstreckt sich über weite Teile Eurasiens. Die nominale Unterart *Ursus spelaeus spelaeus* hatte das westlichste Verbreitungsgebiet, er lebte im Norden Spaniens, in Frankreich, Belgien und Deutschland. Im Alpenraum überschneiden sich die Verbreitungsgebiete von *Ursus spelaeus ladinicicus* und *Ursus spelaeus eremus*, sowie das von *Ursus* *ingressus. U. s. ladinicus* bevorzugte hochalpine Höhlen im Gebiet der Schweiz, Italien, Österreich sowie einige tiefergelegene Höhlen in Slowenien (Rabeder & Hofreiter, 2004). In mtDNA-Stammbäumen sind auch einige Individuen aus Frankreich und Belgien näher mit dem Conturinesbär verwandt als mit allen anderen Höhlenbären (Knapp et al., 2009). *U. s. eremus* ist nur aus den österreichischen Ostalpen bekannt, aber in die mtDNA der Höhlenbären aus zwei Fundstellen im Altaigebirge im Südwesten Sibiriens zeigt eine vergleichsweise enge Verwandtschaft zwischen den durch eine große geographische Distanz getrennten Populationen (Knapp et al., 2009). Im Osten Europas findet sich ausschließlich *U. ingressus*, er kommt im Ural und in der Ukraine vor (Knapp et al., 2009), im Süden drang er bis nach Griechenland vor (Rabeder et al., 2006), im Norden erreichte er die Sudeten (Baca et al., 2014) und im Westen die Schwäbische Alb (Münzel et al., 2011) und die Westalpen (Frischauf & Rabeder 2017). Dabei wanderte er von seinem in Osteuropa vermuteten Ursprungsgebiet nach Westen, erreichte vor 50000 Jahren die Alpen und die Dinariden (Rabeder & Hofreiter, 2004), und schließlich die Schwäbische Alb vor 36000 Jahren (Münzel et al., 2011) Das größte Verbreitungsgebiet der Höhlenbärengruppe weist *U. kudarensis* auf, vom Kaukasus bis nach Sibirien (Knapp et al., 2009).

Auf dem Gebiet der Tschechischen Republik gibt es Fundstellen von pleistozänen Bären in den Höhlen des Mährischen Karsts nördlich von Brünn und den Höhlen des Böhmischen Karsts südwestlich von Prag. Weiter östlich wurden in Karsthöhlen der mährisch-schlesischen Beskiden und der Oderberge ebenfalls Fossilien von Höhlenbären gefunden (Wagner, 2001). Neben den typischen Karsthöhlen wurden aber auch vereinzelte Höhlenbärenknochen in Lössablagerungen um Prag herum gefunden. Diese könnten von Hyänen (*Crocuta crocuta spelea*) angehäuft worden sein, wie die Fraßspuren an zahlreichen Knochen anderer Tiere suggerieren (Diedrich, 2006).

4. Material und Methoden

1. Inventarisierung und Vermessung

Das fossile Material der Vypustek-Höhle des Naturhistorischen Museums Wien wurde in drei Komplexen angekauft. Am 29. Mai 1878 wurde der Komplex 1878A von Herrn Stenitzka aus Brünn für 30 Kronen gekauft, welcher im Februar 1879 eine zweite Sammlung an Fossilien um 150 Kronen verkaufte. Der größte Teil des Materials stammt aus der ab dem Jahr 1880 durchgeführten Ausgrabungen unter der Leitung von Hofrat Ferdinand von Hochstetter im Auftrag der prähistorischen Kommission der Akademie der Wissenschaften und wurde durch Fürst Johann zu Lichtenstein finanziert (Aufzeichnungen des Naturhistorischen Museum Wien, bereitgestellt durch Dr. Ursula Göhlich).

Die Elemente wurden im Naturhistorischen Museum Wien mit einer Inventarnummer versehen, gleichzeitig bestimmt und mit einer Schiebelehre vermessen. Die Inventarnummer besteht aus dem Jahr, in dem die Aufnahme begann (2019), der Hauptnummer, die für die Höhlenbären der Vypustekhöhle steht, und einer vierstelligen Zahl als Identifikationsnummer für jedes Element. Diese wurden nach Möglichkeit gesamt auf das jeweilige Fossil geschrieben. Bei besonders kleinen Elementen (z.B. i1 inf) wurde nur die Identifikationsnummer aufgetragen. Die Bestimmung wurde durch die bestehende Sortierung erleichtert, diese war aber stellenweise nicht korrekt.

2. Metapodien

Bei den Metapodien wurde die Länge (L) und die Breite (B) der distalen Epiphyse gemessen und aus diesen der Plumpheitsindex (=B/L*100) berechnet.

3. Eckzähne

Bei allen Zähnen wurde die Länge und Breite der Zahnkrone gemessen, bei den Canini nach Möglichkeit auch die gesamte Höhe. Bei den Canini wurde neben den Längen und Breiten der Krone je nach Möglichkeit auch die der Wurzeln vermessen. Bei einigen Eckzähnen konnte nur die Wurzel vermessen werden. Um bei Bedarf (Errechnung des Sex-Index) darauf zurückgreifen zu können wurden von einigen Eckzähnen auch nur Wurzelmaße aufgenommen.

4. Schneidezähne

Die Unterscheidung zwischen dem ersten und zweiten oberen Schneidezahn ist aufgrund ihrer starken morphologischen Ähnlichkeit kaum möglich. Da sich aufgrund des Geschlechtsdimorphismus die Dimensionen der männlichen I1 sup mit denen der weiblichen I2 sup überschneiden, lassen sich diese zwei Zähne auch nicht aufgrund ihrer Größe unterscheiden.

Die Morphotypen dieser Zähne werden anhand des Vorhandenseins einer Lingualkante, der Fossa lunaris und der Anzahl der Höcker des Cingulums unterschieden (Rabeder, 1999).

Am dritten Oberkieferschneidezahn wurden keine morphologischen Untersuchungen durchgeführt.

Weil wegen der geringen Anzahl der i1 inf von nur fünf Stück keine aussagekräftigen Ergebnisse zu erwarten waren, wurde keine Morphotypenbestimmung vorgenommen.

Auch beim zweiten Unterkieferschneidezahn wurde die Morphologie nicht ausgewertet, da alle Zähne dem gleichen Morphotyp (Typ spelaeus) angehören (n. Rabeder, 1999).

Die Morphotypen des dritten Unterkieferschneidezahn werden durch die Ausprägung der Sulcus mesialis unterschieden (Rabeder, 1999).

5. Backenzähne

Für die Bestimmung der Art bzw. Unterart sind die Evolutionsniveaus der Molaren und der Prämolaren wichtige Indikatoren.

Die Morphotypen des vierten Prämolars unterscheiden sich sowohl im Ober- als auch im Unterkiefer durch die Anzahl ihrer zusätzlichen Kauelemente. Es werden zwischen acht Morphotypen für den oberen und sechs für den unteren Prämolaren unterschieden (Rabeder, 1999).

Für die Bestimmung des Morphotyps des zweiten unteren Molaren wird die Gestalt des Enthypoconids herangezogen. Es gibt vier Morphotypen (Rabeder, 1999), mit drei Zwischentypen.

An den beiden Molaren des Oberkiefers und dem ersten und dritten Molaren des Unterkiefers wurden keine morphologischen Untersuchungen durchgeführt.

6. Geschlechterbestimmung

Das Geschlechterverhältnis kann bei Höhlenbären anhand der Dimensionen der Eckzähne bestimmt werden. Die beiden Geschlechter bilden in einem Länge/Breite-Diagramm meist gut unterscheidbare Cluster (Rabeder et al. 2008).

7. Standardisierung

Die gemessenen Werte und Indices wurden zum einfacheren Vergleich standardisiert, als Referenzfauna dienten dabei die Mittelwerte der Gamsulzenhöhle (Rabeder, 1995), der Typuslokalität von *Ursus ingressus*.

5. Ergebnisse

Im Rahmen dieser Arbeit wurden insgesamt 1063 fossile Elemente vermessen und inventarisiert. Davon entfallen 565 auf Zähne und 498 auf Metapodien, die Verteilung auf die einzelnen Elemente ist den Tabellen 1 und 2 zu entnehmen.

Tabelle 1: Anzahl der gemessenen Metapodien von *Ursus* aus der Vypustekhöhle Mc ... Metacarpale, mt ... Metatarsale

Element	Mc1	Mc2	Mc3	Mc4	Mc5	mt1	mt2	mt3	mt4	mt5	Summe
Anzahl	87	34	46	40	45	38	60	59	38	51	498

Tabelle 2: Anzahl der gemessenen Zähne von Ursus aus der Vypustekhöhle

Element	11, 2	13	i1	i2	i3	Canini	Canini	P4	M1	M2	p4	m1	m2	m3	Summe
	sup	sup	inf	inf	inf	Krone	Wurzel	sup	sup	sup	inf	inf	inf	inf	
Anzahl	32	89	5	16	45	68	42	23	41	35	35	37	59	38	565

1. Schneidezähne

Erster und zweiter Oberkieferschneidezahn

Tabelle 3: Messwerte (in mm) der I1,2 sup von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp I1,2 sup	Länge	Breite
Mittelwert	10,52	11,87
Anzahl	31	31
Max	12,32	13,83
Min	8,93	10,41
Standardabweichung	0,88	0,80
Standardabweichung %	8,33	6,72
Gamssulzen-Standard	9,98	11,38
Standardisiert	105,39	104,29

Abbildung 4: Längen-Breiten-Diagramm der 1. und 2. Oberkieferincisivi (I1,2 sup) von Ursus aus der Vypustekhöhle

Von den 31 inventarisierten und gemessenen I1,2 sup konnten 25 für die morphologische Untersuchung herangenommen werden, die anderen 6 waren für diesen Zweck zu stark abgenutzt. Für eine statistisch verwertbare Aussage wäre eine Menge von über 40 Stück nötig gewesen.

Tabelle 4: Morphotypen	der I1,2 sup von	Ursus aus der Vypustekhöhle	(n. Rabeder 1999)
------------------------	------------------	-----------------------------	-------------------

Morphotyp	d	р0	p1	p2	r0	r1	r2	s0	s1	s2	Index	Stand.	Anzahl
Faktor	0	1	2	3	1,5	2,5	3,5	2	3	4			
Vyp	-	5	11	1	1	1	1	1	1	3	218	68,19	25
GS											319,7	100,00	56

Der Gesamtindex der 11,2 sup liegt deutlich unter dem der Gamssulzenhöhle, die Ausprägung der Fossa lunaris, der Cingulumteilung und die Anzahl der Cingulumhöcker liegen allesamt deutlich unter dem Niveau dieser.

Dritter Oberkieferschneidezahn

Tabelle 5: Messwerte (in mm) der I3 sup von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp I3 sup	Länge	Breite
Mittelwert	17,93	15,49
Anzahl	88	88
Max	21,29	18,48
Min	13,58	11,67
Standardabweichung	1,78	1,50
Standardabweichung %	9,92	9,70
Gamssulzen-Standard	18,72	14,76
Standardisiert	95,76	104,92

Abbildung 4: Längen-Breiten-Diagramm der 3. Oberkieferincisivi (13 sup) von Ursus aus der Vypustekhöhle

Erster Unterkieferschneidezahn

Tabelle 6: Messwerte (in mm) der i1 inf von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp i1 inf	Länge	Breite
Mittelwert	7,00	9,46
Anzahl	5	5
Max	7,61	10,4
Min	6,54	8,47
Standardabweichung	0,43	0,81
Standardabweichung %	6,13	8,56
Gamssulzen-Standard	6,56	8,78
Standardisiert	106,65	107,70

Die wenigen ersten Unterkieferschneidezähne sind deutlich größer als die der Referenzfauna. Von den 5 Zähnen waren 4 zu stark usiert, um den Morphotyp zu bestimmen.

Abbildung 5: Längen/Breiten Diagramm der 1. Unterkieferincisivi (i1 inf) von Ursus aus der Vypustekhöhle

Zweiter Unterkieferschneidezahn

Tabelle 7: Messwerte (in mm) der i2 inf von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp i2 inf	Länge	Breite
Mittelwert	10,50	12,09
Anzahl	16	16
Max	12,31	13,71
Min	9,42	10,39
Standardabweichung	0,77	0,80
Standardabweichung %	7,29	6,63
Gamssulzen-Standard	9,58	10,86
Standardisiert	109,62	111,31

Abbildung 6: Längen/Breiten Diagramm der 2. Unterkieferincisivi (i2 inf) von Ursus aus der Vypustekhöhle

Dritter Unterkieferschneidezahn

Tabelle 8: Messwerte (in mm) der i3 inf von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp i3 inf	Länge	Breite
Mittelwert	13,27	12,07
Anzahl	50	50
Max	15,40	14,51
Min	10,37	8,71
Standardabweichung	1,06	1,14
Standardabweichung %	8,02	9,47
Gamssulzen-Standard	13,00	12,20
Standardisiert	102,09	98,92

Abbildung 7: Längen/Breiten Diagramm der 3. Unterkieferincisivi (i3 inf) von Ursus aus der Vypustekhöhle

Morphotyp	А	В	С	C/D	D	D/E	Index	Stand.	Anzahl
Faktor	0	1	2	2,5	3	3,5			
Vур	-	1	15	-	20	1	255,41	99,53	37
GS	-	-	19	8	26	-	256,6	100,00	53

Tabelle 9: Morphotypenhäufigkeiten der i3 inf von Ursus aus der Vypustekhöhle (n. Rabeder 1999)

Die dritten Unterkieferschneidezähne wiesen alle samt einen mehr oder minder ausgeprägten Sulcus mesialis auf. Sie sind auf der gleichen Entwicklungsstufe wie die Zähne der Gamssulzenhöhle. Eine Besonderheit stellt der Zahn mit dem Morphotyp D/E dar, er besitzt einen zusätzlichen kleinen Höcker am Protoconid.

2. Eckzähne

Tabelle 10: Messwerte (in mm) der gesamten Canini: Länge und Breite der Krone, Gesamthöhe von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp C Krone gesamt	Länge	Breite	Höhe
Mittelwert	24,11	18,17	100,15
Anzahl	70	70	35
Max	32,65	24,43	122,33
Min	17,65	13,61	80,50
Standardabweichung	3,15	2,72	11,74
Standardabweichung %	13,05	14,97	11,72
Gamssulzen-Standard	23,90	17,68	
Standardisiert	100,86	102,77	

Vyp C Krone weiblich	Länge	Breite	Höhe
Mittelwert	21,39	15,73	92,36
Anzahl	33	33	19
Max	24,41	17,94	114,55
Min	17,65	13,61	80,50
Standardabweichung	1,41	0,98	7,22
Standardabweichung %	6,58	6,22	7,82
Gamssulzen-Standard	21,13	15,36	
Standardisiert	101,24	102,40	

Tabelle 11: Messwerte (in mm) der weiblichen Canini von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Tabelle 12: Messwerte (in mm) der männlichen Canini von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp C Krone männlich	Länge	Breite	Höhe
Mittelwert	26,52	20,35	109,41
Anzahl	37	37	16
Max	32,65	24,43	122,33
Min	22,22	16,86	81,98
Standardabweichung	2,13	1,76	9,03
Standardabweichung %	8,03	8,64	8,26
Gamssulzen-Standard	26,45	19,63	
Standardisiert	100,28	103,65	

Abbildung 8: Längen/Breiten Diagramm der gesamten Caninus-Kronenwerte von Ursus aus der Vypustekhöhle

Die Trennung zwischen männlichen und weiblichen Eckzähnen im Diagramm (Abb. 9) ist nicht eindeutig. Auch eine Gegenüberstellung von Zahnbreite zur Zahnfläche (L*B) ergab keine eindeutige Zuordnung.

Tabelle 13: Errechnete Sex Ratio, Sex Index und Sexdimorphismus-Index der Canini

Sex ratio	Sex Index	Sdi Länge	Sdi Breite
89,19	47,14	123,99	129,36

Das Geschlechterverhältnis ist bei den Bären der Vypustekhöhle ausgeglichen. Die Unterschiede zwischen den Geschlechtern sind dagegen vergleichsweise gering.

Tabelle 14: Messwerte (in mm) der Caniniwurzeln von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp C Wurzel	Länge	Breite
Mittelwert	28,78	19,82
Anzahl	42	42
Max	42,83	27,19
Min	18,76	13,11
Standardabweichung	5,70	3,70
Standardabweichung %	19,81	18,69
Gamssulzen-Standard	27,01	18,70
Standardisiert	106,54	105,99

Abbildung 9: Längen/Breiten Diagramm der Caniniwurzeln von Ursus aus der Vypustekhöhle

Die Trennung der Geschlechter ist bei den Wurzelmaßen deutlicher zu erkennen als bei den Kronenmaßen. Auch das Geschlechterverhältnis unterscheidet sich, es dominieren Weibchen bei einer Sex Ratio von 147,06.

3. Prämolaren

Vierter Oberkieferprämolar

Tabelle 15: Messwerte (in mm) der P4 sup von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

P4 sup	Länge	Breite
Mittelwert	20,41	14,55
Anzahl	23	23
Max	22,38	16,57
Min	18,60	12,29
Standardabweichung	1,03	0,94
Standardabweichung %	5,02	6,44
Gamssulzen-Standard	20,13	14,21
Standardisiert	101,40	102,43

Abbildung 10: Längen/Breiten Diagramm der 4. Oberkieferprämolars (P4 sup) von Ursus aus der Vypustekhöhle

Tabelle 16: Morphotypenfrequenzer	n des P4 sup von <i>Ursus</i> aus der	Vypustekhöhle (n. Rabeder 1999)
-----------------------------------	---------------------------------------	---------------------------------

Morphotyp	А	В	B/D	С	D	Index	Stand.	Anzahl
Faktor	0	1	1,5	2	2			
Vyp	12	4	1	2	2	64,29	25,14	21
GS						255,7	100	123

Der P4-Index liegt deutlich unter dem der Referenzfauna. Die meisten Zähne wurden dem ursprünglichsten Morphotyp A zugeteilt, aber die 21 auswertbaren Zähne reichen für eine bedeutende Aussage nicht aus.

Vierter Unterkieferprämolar

Tabelle 17: Messwerte (in mm) der p4 inf von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

p4 inf	Länge	Breite
Mittelwert	15,77	10,04
Anzahl	35	35
Max	19,09	11,82
Min	12,03	8,50
Standardabweichung	1,51	0,78
Standardabweichung %	9,57	7,80
Gamssulzen-Standard	15,24	10,32
Standardisiert	103,45	97,25

Abbildung 11: Längen/Breiten Diagramm der 4. Unterkieferprämolaren (p4 inf) von Ursus aus der Vypustekhöhle

Morphotyp	B1	C1	C1/D1	D1	C2	Index	Stand.	Anzahl
Faktor	0,5	1	1,25	1,5	2			
Vур	1	22	3	6	2	115,44	58,24	34
GS						198,2	100	97

Tabelle 18: Morphotypen der p4 inf von Ursus aus der Vypustekhöhle (n. Rabeder 1999)

Der untere Prämolar ist weniger hoch entwickelt als bei der Referenzfauna, aber bei 34 untersuchten Zähnen ist das Ergebnis statistisch robust.

4. Molaren

Erster Oberkiefermolar

Tabelle 19: Messwerte (in mm) der M1 sup von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

M1 sup	Länge	Breite
Mittelwert	28,77	20,04
Anzahl	40	40
Max	32,28	24,58
Min	24,87	15,21
Standardabweichung	1,80	1,64
Standardabweichung %	6,25	8,17
Gamssulzen-Standard	28,73	19,75
Standardisiert	100,84	101,45

Abbildung 12: Längen/Breiten der 1. Oberkiefermolaren (M1 sup) von Ursus aus der Vypustekhöhle

Zweiter Oberkiefermolar

Tabelle 20: Messwerte (in mm) der M2 sup von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

M2 sup	Länge	Breite
Mittelwert	45,18	22,78
Anzahl	36	36
Max	52,04	25,89
Min	36,11	20,57
Standardabweichung	3,33	1,19
Standardabweichung %	7,37	5,24
Gamssulzen-Standard	44,40	22,55
Standardisiert	101,76	101,02

Abbildung 13: Längen/Breiten Diagramm der 2. Oberkiefermolaren (M2 sup) von Ursus aus der Vypustekhöhle

Erster Unterkiefermolar

Tabelle 21: Messwerte in (mm) der m1 inf von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

m1 inf	Länge	Breite
Mittelwert	29,68	14,31
Anzahl	37	37
Max	34,98	18,77
Min	25,93	12,79
Standardabweichung	1,78	1,18
Standardabweichung %	6,01	8,23
Gamssulzen-Standard	30,22	14,50
Standardisiert	98,20	98,67

Abbildung 14: Längen/Breiten Diagramm der 1. Unterkiefermolaren (m1 inf) von Ursus aus der Vypustekhöhle

Zweiter Unterkiefermolar

Tabelle 22: Messwerte (in mm) der m2 inf von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

m2 inf	Länge	Breite
Mittelwert	30,01	17,68
Anzahl	59	59
Max	35,80	20,56
Min	25,43	15,13
Standardabweichung	1,94	1,17
Standardabweichung %	6,48	6,63
Gamssulzen-Standard	30,62	18,25
Standardisiert	98,00	96,89

Abbildung 15: Längen/Breiten Diagramm der 2. Unterkiefermolaren (m2 inf) von Ursus aus der Vypustekhöhle

Morphotyp	В	B/C	С	C/D	D	Index	Stand.	Anzahl
Faktor	1	1,5	2	2,5	3			

2

6

4

1

170,0

185,3

91,74

100

30

119

Tabelle 23 Morphotypen der m2 inf von Ursus aus der Vypustekhöhle (n. Rabeder 1999)

10

41

0

28

Der m2-Enthypoconidindex ist nur unwesentlich niedriger als jener der Referenzfauna der Gamssulzenhöhle. Mit 30 auswertbaren Zähnen konnte die statistische Relevanz knapp erreicht werden.

Dritter Unterkiefermolar

14

23

Vyp

GS

Tabelle 24: Messwerte (in mm) der m3 inf von *Ursus* aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

m3 inf	Länge	Breite
Mittelwert	26,32	19,32
Anzahl	38	38
Max	30,26	22,71
Min	22,36	15,94
Standardabweichung	2,04	1,44
Standardabweichung %	7,74	7,44
Gamssulzen-Standard	27,56	19,11
Standardisiert	95,50	101,09

Abbildung 16: Längen/Breiten Diagramm der 3. Unterkiefermolaren (m3 inf) von Ursus aus der Vypustekhöhle

5. Metapodia

Metrik nach Withalm (2001)

6. Metacapalia

Erster Mittelhandknochen

Tabelle 25: Messwerte (in mm) der Mc1 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Уур Мс1	Länge	Breite	Plumpheitsindex
Mittelwert	66,78	19,42	29,08
Anzahl	87	87	87
Max	93,95	23,43	33,72
Min	52,76	14,94	20,73
Standardabweichung	6,47	1,83	2,09
Standardabweichung %	9,68	9,43	7,18
Gamssulzen-Standard	63,5	19,3	30,39
Standardisiert	105,16	100,60	95,68

Abbildung 17: Längen/Breiten Diagramm des 1. Mittelhandknochens (Mc1) von Ursus der Vypustekhöhle

Zweiter Mittelhandknochen

Tabelle 26: Messwerte (in mm) der Mc2 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp Mc2	Länge	Breite	Plumpheitsindex
Mittelwert	78,86	25,68	32,56
Anzahl	34	34	34
Max	91,03	29,96	35,73
Min	63,63	20,75	28,88
Standardabweichung	7,12	2,51	1,47
Standardabweichung %	9,03	9,77	4,52
Gamssulzen-Standard	73,7	25,3	34,33
Standardisiert	107,00	101,50	94,86

Abbildung 18: Längen/Breiten Diagramm des 2. Mittelhandknochens (Mc2) von Ursus aus der Vypustekhöhle

Dritter Mittelhandknochen

Tabelle 27: Messwerte (in mm) der Mc3 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Уур МсЗ	Länge	Breite	Plumpheitsindex
Mittelwert	81,77	25,40	31,06
Anzahl	46	46	46
Max	95,23	30,17	35,18
Min	67,52	19,40	26,17
Standardabweichung	6,88	2,42	1,50
Standardabweichung %	8,42	9,54	4,84
Gamssulzen-Standard	79,8	26,5	33,21
Standardisiert	102,47	95,85	93,53

Abbildung 19: Längen/Breiten Diagramm des 3. Mittelhandknochens (Mc3) von Ursus aus der Vypustekhöhle

Vierter Mittelhandknochen

Tabelle 28: Messwerte (in mm) der Mc4 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp Mc4	Länge	Breite	Plumpheitsindex
Mittelwert	85,97	28,27	32,88
Anzahl	40	40	40
Max	100,91	35,26	36,42
Min	65,89	21,61	29,76
Standardabweichung	8,59	3,18	1,56
Standardabweichung %	9,99	11,24	4,75
Gamssulzen-Standard	83,6	28,0	33,49
Standardisiert	102,83	100,95	98,18

Abbildung 20: Längen/Breiten Diagramm des 4. Mittelhandknochens (Mc4) von Ursus aus der Vypustekhöhle

Fünfter Mittelhandknochen

Tabelle 29: Messwerte (in mm) der Mc5 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp Mc5	Länge	Breite	Plumpheitsindex
Mittelwert	85,32	29,50	34,57
Anzahl	45	45	45
Max	98,04	36,23	40,59
Min	66,37	23,76	29,57
Standardabweichung	7,50	3,04	1,93
Standardabweichung %	8,79	10,30	5,59
Gamssulzen-Standard	82,5	29,2	35,39
Standardisiert	103,41	101,01	97,68

Abbildung 21: Längen/Breiten Diagramm des 5. Mittelhandknochens (Mc5) von Ursus aus der Vypustekhöhle

7. Metatarsalia

Erster Mittelfußknochen

Tabelle 30: Messwerte (in mm) der mt1 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp mt1	Länge	Breite	Plumpheitsindex
Mittelwert	56,55	17,08	30,20
Anzahl	38	38	38
Max	68,37	21,40	39,31
Min	42,66	12,10	21,57
Standardabweichung	4,82	2,21	2,87
Standardabweichung %	8,53	12,94	9,51
Gamssulzen-Standard	53,1	17,7	33,33
Standardisiert	106,51	96,48	90,60

Abbildung 22: Längen/Breiten Diagramm des 1. Mittelfußknochens (mt1) von Ursus aus der Vypustekhöhle

Zweiter Mittelfußknochen

Tabelle 31: Messwerte (in mm) der mt2 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp mt2	Länge	Breite	Plumpheitsindex
Mittelwert	70,35	20,96	29,79
Anzahl	60	60	60
Max	81,12	24,55	36,41
Min	53,26	16,68	25,88
Standardabweichung	5,42	1,97	2,10
Standardabweichung %	7,71	9,42	7,05
Gamssulzen-Standard	67,3	21,3	31,65
Standardisiert	104,54	98,38	94,11

Abbildung 23: Längen/Breiten Diagramm des 2. Mittelfußknochens (mt2) von Ursus aus der Vypustekhöhle

Dritter Mittelfußknochen

Tabelle 32: Messwerte (in mm) der mt3 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp mt3	Länge	Breite	Plumpheitsindex
Mittelwert	81,05	22,79	28,11
Anzahl	59	59	59
Max	95,45	27,43	32,05
Min	70,51	18,62	22,06
Standardabweichung	6,44	2,13	2,19
Standardabweichung %	7,95	9,33	7,80
Gamssulzen-Standard	77,3	23,4	30,27
Standardisiert	104,86	97,38	92,88

Abbildung 24: Längen/Breiten Diagramm des 3. Mittelfußknochens (mt3) von Ursus aus der Vypustekhöhle

Vierter Mittelfußknochen

Tabelle 33: Messwerte (in mm) der mt4 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp mt4	Länge	Breite	Plumpheitsindex
Mittelwert	90,49	25,29	27,94
Anzahl	38	38	38
Max	103,65	29,33	31,79
Min	75,27	20,67	24,57
Standardabweichung	7,49	2,32	1,49
Standardabweichung %	8,27	9,19	5,32
Gamssulzen-Standard	84,3	24,5	29,06
Standardisiert	107,35	103,21	96,15

Abbildung 25: Längen/Breiten Diagramm des 4. Mittelfußknochens (mt4) von Ursus aus der Vypustekhöhle

Fünfter Mittelfußknochen

Tabelle 34: Messwerte (in mm) der mt5 von Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

Vyp mt5	Länge	Breite	Plumpheitsindex
Mittelwert	89,04	24,30	27,29
Anzahl	50	50	50
Max	110,50	29,83	32,27
Min	71,95	19,06	22,79
Standardabweichung	7,48	2,57	2,17
Standardabweichung %	8,40	10,58	7,97
Gamssulzen-Standard	85,7	24,4	28,47
Standardisiert	103,90	99,60	95,87

Abbildung 26: Längen/Breiten Diagramm des 5. Mittelfußknochens (mt5) von Ursus aus der Vypustekhöhle

Tabelle 35: Standardisierten Mittelwerte aller Metapodien (Standardwert der Gamssulzenhöhle n. Rabeder 1995)

	Standardisierte Länge	Standardisierte Breite	Standardisierter
			Plumpheitsindex
Metacarpalia	104,18	99,98	95,99
Metatarsalia	105,43	99,01	93,92
Metapodien gesamt	104,80	99,50	94,95

6. Vergleiche

1. Vergleiche mit der Referenzfauna Gamssulzenhöhle

Die standardisierten Mittelwerte der Zahnlängen und -breiten, der errechneten Indices der Zähne sowie die Länge, Breite und Plumpheitsindex der Metapodien wurden mit denen der Referenzfauna der Gamssulzenhöhle verglichen. Die Werte der Elemente, die in nicht ausreichender Menge (weniger als 20 Stück, 40 für i1,2 sup) vorhanden waren, wurden für den Vergleich nicht verwendet. Dies betrifft die beiden inneren Schneidezähne im Ober- sowie im Unterkiefer.

Abbildung 27: Mittelwerte der standardisierten Zahnlängen um Vergleich mit denen der Gamssulzenhöhle

Die Werte für des i1 inf, i2 inf und der i1, 2 sup sind aufgrund der geringen Stückzahlen statistisch nicht aussagekräftig. Der I3 sup ist deutlich kürzer die der Referenzfauna. Die Länge der Eckzähne ist mit denen der Bären aus der Gamssulzenhöhle beinahe identisch, die Wurzeln sind dafür aber merklich größer. Der i3 inf und die Oberkieferbackenzähne sind nur unwesentlich größer als die der Referenzfauna. Der p4 inf ist um 3% länger, die Unterkiefermolaren sind dafür aber merklich kürzer.

Abbildung 28: Mittelwerte der standartisierten Zahnbreiten im Vergleich mit denen der Gamssulzenhöhle

Der dritte Oberkieferschneidezahn ist in dieser Dimension im Vergleich im selben Maße breiter als er kürzer ist. Sein Pendant im Unterkiefer ist nur minimal kleiner. Der Caninus ist an der Krone etwas breiter, die Wurzel ist ähnlich größer als bei der Länge. Die Oberkieferbackenzähne sind allesamt ein wenig breiter als die der Vergleichsfauna. Die Backenzähne des Unterkiefers sind, mit der Ausnahme des m3 inf, ein wenig schmaler.

Abbildung 29: Vergleich der standardisierten morphologischen Indices der Zähne aus der Vypustekhöhle und der Gamssulzenhöhle

Die beiden ermittelten metrischen Indices, der M1 B/L und der m3/m2 Index unterscheiden sich kaum von denen der Gamssulzenhöhle. Beim Vergleich der morphologischen Indices fallen vor allem die starken Unterschiede zwischen diesen auf. Während die i3 inf Sulcus-Indices beinahe ident sind, ist das morphologische Niveau des I1,2 sup Gesamtindex aber bedeutend geringer. Der P4 sup erreicht nur ein Viertel des Evolutionslevels der Gamssulzenbären, mit 21 Stück ist dieser Wert aber auch nicht von statistischer Relevanz und wurde nicht weiterverwendet. Der p4 inf Index ist zwar ebenfalls niedrig, aber im der Höhenlage entsprechendem Bereich (Abb. 34). Der m2-Enthypoconidindex hingegen liegt nahe an dem Referenzwert.

Vergleich der Metapodienlängen

Abbildung 30: Vergleich der standardisierten Metapodienlängen mit der Gamssulzenhöhle

Alle Mittelwerte der Metapodienlängen liegen über den Werten der Referenzfauna, wobei die Metatarsen im Vergleich ein wenig länger sind.

Vergleich der Metapodienbreiten

Abbildung 31: Mittelwerte der standardisierten Metapodienbeiten im Vergleich mit der Gamssulzenhöhle

Im Gegensatz zu den Längen variiert die standardisierte Breite der Metapodien mehr. Bis auf Mc3, dessen Wert weit unter dem Referenzwert liegt, sind die Metacarpalia ein wenig breiter als die der Gamssulzenhöhle. Bei den Metatarsalia verhält es sich umgekehrt, hier ist nur der Mt4 breiter, alle anderen liegen unter den Werten der Referenzfauna.

Vergleich der Plumpheitindizes

Abbildung 32: Vergleich der standardisierten Plumpheitsindices der Metapodien aus der Vypustekhöhle und der Gamssulzenhöhle

Nachdem alle standardisierten Breitenwerte für jedes Element kleiner sind als die standardisierten Längenwerte, liegen erwartungsgemäß auch die standardisierten Plumpheitsindices unter denen der Referenzfauna.

2. Höhenabhängige Vergleiche

In den folgenden Diagrammen werden die bestimmten Maße und die metrischen und morphologischen Indices mit denen anderer Höhlen verglichen und gegen die Meereshöhe des Höhleneingangs aufgetragen. Die Vergleichswerte wurden aus den Arbeiten von Knaus (2017) und Schopf (2017) übernommen und um die Daten von Laughlan (2012), Kavcik-Graumann et al. (2016) und Grabmayer (2019) ergänzt.

Prämolaren Index

Abbildung 33: Die standardisierten Werte des p4 inf-Index von mittelwürmzeitlichen Ursus-Faunen aus alpinen und außeralpinen Bärenhöhlen in Relation zur Altitude der Eingänge. Werte nach Knaus et al. 2018

Von den morphodynamischen Indices der Zähne ist der P4/4-Index (=geometrisches Mittel des P4 sup- und des p4 inf-Index) meistens am aussagekräftigsten. Im vorliegenden Material aus der Vypustekhöhle ist die Anzahl der verwertbaren P4 sup mit nur 21 Stück statistisch nicht relevant, so dass dem relativ sehr niedrigen Wert des P4 sup-Index bzw. dem P4/4-Index keine große Bedeutung zukommen dürfte.

Vom p4 inf ist dagegen eine ausreichende Menge an verwertbaren Exemplaren überliefert und der Indexwert des p4 inf mit 115,44 (bzw. standardisiert: 58,24) entspricht beim Vergleich mit anderen Bärenfaunen dem allgemeinen Trend, dass die Werte der morphodynamischen Indices eine positive Korrelation mit der Höhenlage der Bärenhöhlen zeigen (Abb. 34). Mit anderen Worten: je höher die Fundstelle liegt, desto höher sind die Indexwerte. Dieser Trend zeigt sich bei *U. ingressus* am stärksten, auch das Bestimmtheitsmaß R² ist hier am größten; bei *U. s. ladinicus* ist er deutlich kleiner und das R² ist geringer, während bei der *U. s. eremus*-Gruppe dieser Trend nicht erkennbar ist.

Nach dem p4 inf-Index allein könnte die Fauna der Vypustekhöhle sowohl dem Cluster von Ursus ingressus als auch dem Cluster von Ursus s. ladinicus angehören (Abb. 34)

m2 Enthypoconidindex

Abbildung 34: Die standardisierten Werte des m2-Enthypoconidindex in Relation zur Höhenlage. Werte nach Knaus 2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019

Alle drei Höhlenbärentaxa zeigen einen Zusammenhang zwischen der Höhenlage und des evolutiven Niveaus (Abb. 35), am stärksten bei *U. s. ladinicus*, und bei *U. s. eremus* und *U. ingressus* geringer und in etwa gleich stark ausgeprägt. Der Wert der Vypustekhöhle lässt sich eindeutig *Ursus ingressus* zuordnen (Abb. 35).

Abbildung 35: Mittelwerte der standardisierten Molarenlängen in Abhängigkeit von der Seehöhe. Werte nach Knaus 2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019

Bei der Molarenlänge zeigen *U. s. eremus* und *U. s. ladnicus* einen negativen Trend zwischen Höhenlage und der Länge der Molaren auf (Abb. 36), wobei dieser bei letzterem viel stärker ausgeprägt ist. Bei *U. ingressus*, in dessen Streuungsbereich auch das Material aus Vypustek fällt, zeigt sich hingegen kein Zusammenhang zwischen der Höhe und der Molarenlänge (Abb. 36).

Abbildung 36: standardisierte relative Breite der M1 sup in Relation zur Seehöhe. Werte nach Knaus 2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019

Die relative Breite des ersten Oberkiefermolars zeigt bei *U. ingressus* keinen Zusammenhang mit der Seehöhe (Abb. 37). Eine leicht negative Korrelation weisen *U. s. eremus* und *U. s. ladinicus* auf (Abb. 37), aber sie ist bei keiner der beiden Unterarten besonders stark.

Abbildung 37: Verhältnis zwischen der Länge der m3 inf und m2 inf in Abhängigkeit von der Höhenlage. Werte nach Knaus 2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019

U. s. ladinicus zeigt beim Längenverhältnis von m3 und m2 eine leicht negative Korrelation mit der Meereshöhe (Abb. 38). Bei *U. ingressus* und *U. s. eremus* streuen die Werte kaum und lassen daher keinen eindeutigen Trend erkennen (Abb. 38).

Abbildung 38: Sexualdimorphismusindex der Caninus-Länge in Abhängigkeit von der Höhenlage der Höhle. Werte nach Knaus 2017, Laughlan 2012, Grabmayer 2019

Abbildung 39: Sexualdimorphismusindex der Caninus-Breite in Abhängigkeit von der Höhe der Höhle. Werte nach Knaus 2017, Laughlan 2012, Grabmayer 2019

Die SDI der Canini verhalten sich bei Länge und Breite ähnlich. Bei *U. s. eremus* und *U. ingressus* lässt sich kein Zusammenhang feststellen, bei *U. s. ladinicus* ist der Größenunterschied zwischen Männchen und Weibchen in tieferen Lagen stärker ausgeprägt (Abb. 39 & Abb. 40). Während der SDI der Caninus-Breite für die Vypusteker Fauna im normalen Bereich von *U. ingressus* liegt (Abb. 40) gehört der SDI der Caninus-Länge zu den niedrigsten aller verglichenen Höhlenbärenfaunen (Abb. 39).

Abbildung 40: Mittelwerte der standardisierten Metapodienlängen im Zusammenhang mit der Seehöhe. Werte nach Schopf 2017, Grabmayer 2019

Bei allen drei Höhlenbärentaxa nimmt die Länge der Metapodien mit zunehmender Seehöhe ab, auch wenn der Zusammenhang bei *U. ingressus* nicht besonders stark ist (Abb. 41).

Zwischen Metacarpalia und Metatarsalia besteht kein signifikanter Unterschied, auch die einzelnen Elemente folgen dem allgemeinen Trend.

Abbildung 41: Mittelwerte der standardisierten distalen Epiphysenbreiten in Relation zur Seehöhe. Werte nach Schopf 2017

Die distale Epiphysenbreite verhält sich bei *U. s. ladinicus* und *U. s. eremus* ähnlich wie die Metapodienlänge, in tieferen Lagen sind sie breiter (Abb. 42). Bei *U. ingressus* hingegen werden sie in höheren Lagen breiter, aber das Bestimmtheitsmaß ist wie bei der Länge gering (Abb. 42).

Bei *U.s. eremus* ist bei dem Metacarpale 5 und den Metatarsalia 4 und 5 kein Zusammenhang zwischen deren Breite und der Seehöhe zu erkennen.

Abbildung 42: Mittelwerte der standardisierten Mittelwerte der Plumpheitsindices in Abhängigkeit zur Höhenlage. Werte nach Schopf 2017

Bei den Mittelwerten der Plumpheitsindices aller Metapodien zeigt sich für *U. s. ladinicus* und *U. s. eremus* erwartungsgemäß keine Korrelation zur Höhe, da die Längen und Breiten der Knochen gleichmäßig mit der Höhe abnehmen (Abb. 43). Bei *U. ingressus* lässt sich ein signifikanter Zusammenhang zwischen Plumpheitsindices und Höhenlage feststellen (Abb. 42).

Die Höhenkorrelation der Plumpheitsindices ist beim Gamssulzenbären bei allen Elementen konstant positiv, während sie bei den beiden *U. spelaeus* Unterarten stellenweise stark schwankt. Bei den Metacarpalia zeigen sowohl *U. s. ladinicus* als auch *U. s. eremus* bei den Mittelwerten keinerlei Korrelation, das Bestimmtheitsmaß ist bei beiden fast null. *U. s. ladinicus* zeigt bei Metacarpale 1 allerdings eine positive, bei Metacarpale 3 einen negativen Zusammenhang. Bei den Metatarsalia zeigen beide im Durchschnitt eine positive Höhenkorrelation, die einzige Ausnahme dieses Trends stellt Metatarsale 4 von *U. s. ladinicus* dar, wo der Plumpheitsindex mit der Höhe abnimmt.

Abbildung 43: LDH-Korrelation. Werte nach Knaus et al. 2018, Kavcik-Graumann et al. 2016, Grabmayer 2019

Im Locomotion vs Dietary Habits Diagramm (LDH Diagramm) werden die Mittelwerte der standardisierten Metapodienlängen und der standardisierten Backenzahnlängen einander gegenübergestellt. Es eignet sich gut, um Braunbären von Höhlenbären zu unterscheiden (Rabeder et al., 2011). Auch innerhalb der Höhlenbärengruppe kann so zwischen den *U. spelaeus* Unterarten und *U. ingressus* differenziert werden, da letzterer sich durch seine langen Backenzähne von den anderen abhebt. Die Bären der Vypustekhöhle fallen dabei in den Bereich von *U. ingressus* (Abb. 43).

3. Vergleich mit der Slouper-Höhle

Die im Naturhistorischen Museum in Wien aufbewahrten Höhlenbärenreste der Slouperhöhle wurden 2019 von Georg Grabmayer untersucht und sind aufgrund der geringen Distanz von nur knapp über 13km Luftlinie, einem Höhenunterschied von lediglich 70m und keiner natürlichen Barriere zwischen den Lokalitäten für einen Vergleich besonders interessant.

Die Eckzähne aus der Slouperhöhle sind im Durchschnitt etwas größer als die aus der Vypustekhöhle. Die weiblichen Canini sind dabei ungefähr gleich groß, die männlichen sind aber deutlich größer. Dadurch ergibt sich auch die extreme Differenz in beiden Sexdimorphismus-Indices, bei denen die Slouper Bären die größten Unterschiede zwischen den Geschlechtern innerhalb der verglichenen *U. ingressus* Faunen aufweisen.

Die Werte der Backenzähne verhalten sich allgemein ähnlich. So sind die Unterkiefermolaren bei beiden Faunen kürzer als die der Gamssulzenhöhle, die Oberkiefermolaren aber länger, die Ausmaße der Slouper M2 sup bleiben aber vom Vypusteker Bären unerreicht. Der Oberkieferprämolar liegt im vorliegenden Material über dem Referenzwert, im Slouper Material unterhalb. Auch die Dimensionen des Unterkieferprämolaren unterscheiden sich, hier sind die der Slouperhöhle breiter als die der Referenzfauna, die der Vypustekhöhle schmäler. Der Mittelwert der standardisierten Molarenlängen ist beinahe identisch und innerhalb eines Prozents im Vergleich zu Gamssulzenfauna. Große Unterschiede werden sowohl bei der relativen Breite des ersten Oberkiefermolars sowie dem Längenverhältnis des zweiten und dritten Unterkiefermolares zueinander erkenntlich. Beide Werte liegen am jeweils anderen Ende des *U. ingressus* Clusters, bei M1 B/L ist der Wert aus der Vypustekhöhle hoch und der aus Slouperhöhle niedrig (Abb. 37), beim m3/m2 Längenverhältnis verhält es sich umgekehrt (Abb. 38).

Bei den morphologischen Indices werden unerwartet große Unterschiede ersichtlich. Der sehr niedrige P4-Index der Vypustekbären fällt sofort ins Auge, wenngleich dieser auch durch die geringe Stückzahl irrelevant ist. Aber auch der p4-Index ist deutlich niedriger. Daraus ergibt sich folgegemäß auch der niedrige P4/4 Index, der für die Slouperhöhle im der Höhenlage entsprechendem Bereich liegt. Beim m2-Enthypoconidindex dreht sich das Verhältnis um, hier sind die Zähne aus der Vypustekhöhle höher entwickelt. Dieser Unterschied kann aber auf die geringe Anzahl der morphologisch auswertbaren Zähne im Slouper Material von nur 10 Stück zurückgeführt werden.

Im LDH-Diagramm (Abb. 43) liegen die beiden sehr nah beieinander, die Metapodien der Slouperhöhle sind im Durchschnitt um nur 1% kürzer als die aus Vypustek.

7. Diskussion

Da das Material aus der Vypustekhöhle sehr umfangreich ist wurde im Rahmen dieser Arbeit nur ein Teil davon bearbeitet. Bei drei Elementen (i1 inf, i2 inf und P4 sup) konnte dennoch nicht die erforderliche Anzahl für eine robuste statistische Aussage erreicht werden (> 30n).

Das Material enthält in keiner Kategorie Ausreißer, die auf die Anwesenheit einer anderen Art schließen lassen würden. Da nicht das gesamte Material untersucht wurde, kann das Vorhandensein einer anderen Bärenart aber nicht ausgeschlossen werden.

1. Taxonomische Zuordnung

Die ermittelten metrischen und morphologischen Werte wurden für die Artbestimmung verwendet. im Vergleich mit anderen Höhlenbärenfaunen konnten die Vypustek-Bären als *Ursus ingressus* identifiziert werden. Dazu wurden die ermittelten morphodynamischen und metrischen Indices herangezogen und mit denen anderer Höhlen verglichen.

Im Vergleich mit der Referenzfauna der Gamssulzenhöhle sind die Schneidezähne, mit Ausnahme der Länge des I3 sup und knapp der Breite des i3 inf, in beiden Dimensionen größer (Abb. 28 & 29). Während die Oberkieferbackenzähne nur minimal größer sind, ist der p4 inf länger, aber schmäler als jener der Gamssulzenbären, und die Unterkiefermolaren merklich kürzer als ihr Pendant in der Referenzfauna (Abb. 28 & 29). Die Mittelwerte aller Metapodienlängen liegen allesamt über dem Vergleichswert (Abb. 31), dafür sind sie verhältnismäßig schlanker (Abb. 32) und daher liegen auch die Plumpheitsindices unter den Referenzwerten (Abb. 33).

In den meisten höhenabhängigen Vergleichsdiagrammen finden sich die bestimmten Werte im Streuungsbereich von *Ursus ingressus*. Ausnahme hierbei bildet der SDI der Canini-Länge (Abb. 39).

Mit dem niedrigen m2-Enthypoconidindex kann ausgeschlossen werden, dass es sich um *U. s. ladinicus* handelt, die Trennung von *U. ingressus* und *U. s. eremus* ist aufgrund dieses Index aber nicht möglich (Abb. 35). Der niedrige Wert des p4-Index könnte sowohl zu *U. ingressus* als auch zu *U. ladinicus* passen (Abb. 34). Die Kombination dieser Indices spricht für *U. ingressus*, auch die

Mittelwerte der Molarenlängen (Abb. 36) befinden sich in dessen Bereich. Ausschlaggebend für die eindeutige Zuordnung ist das Locomotion vs. Dietary Habits Diagramm (Abb. 43), in welchem die Kombination aus hoher Molarenlänge und hoher Metapodienlänge nur die Klassifizierung als *Ursus ingressus* zulässt.

2. Sexualdimorphismus

Der SDI der Breite liegt mit 129,36 im normalen Bereich, die Differenz zwischen der Länge der weiblichen und männlichen Canini ist mit 23% sehr gering. Auch hier ist der Wert der niedrigste aller *U. ingressus* Faunen.

Für diesen außergewöhnlich niedrigen Wert gibt es mehrere Erklärungen.

- Bei vielen der Eckzähne kann es schwer sein, die Schmelzkante, an der gemessen wird, zu erkennen. Da der SDI der Wurzelmaße deutlich höher ist, wo solche Fehler nicht passieren können, scheint dies durchaus möglich. Obwohl solche Fehler zwar nicht kategorisch ausgeschlossen werden können, ist diese Erklärung unzureichend, da der Sexualdimorphismus bei der Breite im normalen Bereich liegt. Dafür spricht wiederum, dass der SDI der Wurzelmaße sehr hoch ist.
- Der Sexualdimorphismus ist bei den Bären der Vypustekhöhle nicht stark ausgeprägt, was ein anderes Paarungsverhalten vermuten lässt. Eine stärkere Tendenz zur Paarbildung führt zu verminderter intrasexueller Konkurrenz und in Folge zu weniger ausgeprägtem Sexualdimorphismus (Fassl, 2013).
- Die vermessenen Canini stellen nur einen Teil der im Material vorhandenen dar. Da es bereits teilweise vorsortiert war ist es durchaus vorstellbar, dass es nicht gelungen ist, eine möglichst zufällige Auswahl zu treffen.
- Auch eine Vorsortierung des Materials bereits während der Grabung ist denkbar, auch wenn Kriz in seiner Abhandlung von 1893 sich dagegen ausspricht. Ebenfalls waren die Ausgrabungen ab 1880 zwar umfangreich, aber die größte Masse an Fossilien wurde während des Abbaus des Phosphatlehms zu Tage gefördert und ist so für die Wissenschaft verloren gegangen.

Das Geschlechterverhältnis ist dabei äußerst ausgeglichen, mit 33 weiblichen und 37 männlichen Eckzähnen.

3. Vergleich mit der Slouper-Höhle

Die Unterschiede zwischen den beiden Höhlen sind bei den metrischen Daten eher gering und verhalten sich im Vergleich mit der Gamssulzenfauna sehr ähnlich. Bei den morphodynamischen Indices aber sind erhebliche Unterschiede festzustellen. Sowohl beim P4-Index als auch beim m2-Enthypoconidindex liegt das an der geringen Stückzahl von ersterem im Material der Vypustekhöhle, zweiterer in dem der Slouperhöhle. Der Wert des p4-Index ist bei beiden durch in ausreichenden Mengen vorhandenen Zähnen statistisch robust, hier stellen sich die Vypustekbären als weniger hoch entwickelt heraus. Der niedrige Sexualdimorphismusindex ist neben den oben genannten Erklärungen möglicherweise auch auf eine stärkere Konkurrenz unter Männchen, die für die Slouperhöhle herrschte, zurückzuführen. Die größeren und somit stärkeren Individuen bevorzugten sie und die Anderen wichen auf die Vypustekhöhle aus. Bei diesem Fall wäre aber ein Unterschied im Geschlechterverhältnis zu erwarten, da die kleineren Weibchen ebenfalls dann die Vypustekhöhle aufgesucht hätten.

8. Conclusio

Die Höhlenbärenfossilien aus der Vypustekhöhle gehören der Art *Ursus ingressus* an, mit keinerlei Hinweis auf eine andere Art von Höhlenbären oder andere Bärenarten im untersuchten Material, da keine Ausreißer vorhanden sind.

Aufgrund der geringen Anzahl der P4 sup ist der P4/4-Index als nicht aussagekräftig anzusehen. Der p4-Index ist der niedrigste aller verglichenen *Ursus ingressus* Faunen, liegt aber im für die Höhenlage zu erwarteten Bereich.

Der Sexualdimorphismus ist ebenfalls sehr gering, besonders bei der Caninuslänge, bei der die Geschlechterdifferenz nur 23% beträgt. Da er bei den Wurzelmaßen aber sehr hoch ist, könnte es beim Vermessen zu Fehlern gekommen sein, da die Schmelzkante oft nicht gut zu erkennen war.

Trotz der geringen Distanz und dem Fehlen von geographischen Barrieren bestehen in einigen Belangen zwischen den Bären der Vypustekhöhle und der Slouperhöhle große Unterschiede. Der Sexualdimorphismus ist bei den Vypusteker Bären deutlich geringer ausgeprägt, beide Prämolaren, Ober- sowie Unterkiefer, sind erheblich weniger hoch evolviert, beim m2-Enthypoconidindex verhält es sich umgekehrt.

9. Literaturverzeichnis

- Baca, Mateusz; Mackiewicz, Pawel; Stankovic, Anna; Popovic, Danijela; Stefaniak, Krzysztof; Czarnogórska, Kinga; Nadachowski, Adam; Gasiorowski, Michal; Hercman, Helena; Weglenski, Piotr 2014. Ancient DNA and dating of cave bear remains from Niedzzwiedzia Cave suggest early appearance of Ursus ingressus in Sudetes. – Quaternary International Volumes 339-340: 217-223
- Baca, Mateusz; Popović, Danijela: Stefaniak, Krzysztof; Marciszak, Adrian; Urbanowski,
 Mikolaj; Nadachowski, Adam; Mackiewicz, Pawel. 2016. Retreat and extinction of the Late
 Pleistocene cave bear (*Ursus spelaeus* sensu lato). Sci Nat 103: 92
- Barlow, Axel; Cahill, James A.; Hartmann, Stefanie; Theunert, Christoph; Xenikoudakis, Georgios; Fortes, Gloria G.; Paijmans, Johanna L. A.; Rabeder, Gernot; Frischauf, Christine; Grandal-d'Anglade, Aurora; García-Vázquez, Ana; Murtskhvaladze, Marine; Saarma, Urmas; Anijalg, Peeter; Skrbinšek, Tomaž; Bertorelle, Giorgio; Gasparian, Boris; Bar-Oz, Guy; Pinhasi, Ron; Slatkin, Montgomery; Dalén, Love; Shapiro, Beth und Hofreiter, Michael. 2018. Partial genomic survival of cave bears in living brown bears. Nature Ecology & Evolution. Vol 2: 1563-1570
- Baryshnikov, Gennady. 2000. Late Pleistocene cave bear (*Ursus deningeri kudarensis*) from the Akhstyrskaya Cave in the Caucasus (Russia). — Beitr. Palaont. 25: 145-152, Wien.
- Bocherens, Hervé; Stiller, Mathias; Hobson, Keith; Pacher, Martina; Rabeder, Gernot; Burns, James; Tütken, Thomas; Hofreiter, Michael. 2011. Niche partitioning between two sympatric

genetically distinct cave bears (*Ursus spelaeus* and *Ursus ingressus*) and brown bear (*Ursus arctos*) from Austria: Isotopic evidence from fossil bones. – Quaternary International. 245: 238-248.

- Cahill, James A.; Green, Richard E.: Fulton, Tara L.; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St. John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth.
 2013. Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution. – PLoS Genet 9(3): e1003345
- Calvignac, Sebastien; Hughes, Sandrine; Tougard, Christelle; Michaux, Jacques; Thevenot, Michel; Philippe, Michel; Hamdine, Watik; Hänni, Catherine. 2008. Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times. – Molecular Ecology, 17: 1962-1970
- Dabney, Jesse; Knapp, Michael; Glocke, Michael; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. – Proceedings of the National Academy of Sciences Sep 2013, 110 (39): 15758-15763
- Diedrich, Cajus G.; Žák, Karel. 2006. Prey deposits and den sites of the Upper Pleistocene hyena *Crocuta crocuta spelaea* (Goldfuss, 1823) in horizontal and vertical caves of the Bohemian Karst (Czech Republic). – Bulletin of Geosciences 81 (4): 237–276 (25 figures). Czech Geological Survey, Prague
- Diedrich, Cajus. 2006. Cave bear open air site remains and den caves from the upper Pleistocene of central Bohemia (Czech Republic). Scientific Annals, School of Geology Aristotle University of Thessaloniki. – Special Volume 98: 187-192. Thessaloniki
- Döppes, Doris; Rabeder, Gernot; Frischauf, Christine; Kavicik-Graumann, Nadja; Kromer, Bernd; Lindauer, Susanne; Friedrich, Ronny; Rosendahl, Wilfried. 2018. Extinction pattern of Alpine cave bears – new data and climatological interpretation. – Historical Biology 31:4: 422-428
- Ehrenberg, Kurt; Sickenberg, Otto. 1929. Eine plistozäne Höhlenfauna aus der Hochgebirgsregion der Ostalpen. – Palaeobiologica, Band 11: 303-364
- Fassl, Stephanie; Rabeder, Gernot. 2015. Die Höhlenbären der Arzberghöhle (1741/4) bei Wildalpen – Neue Daten und Forschungsergebnisse von Ursus ingressus. – Mitteilungen des Vereines für Höhlenkunde in Obersteier 32-34: 248-254, Bad Mitterndorf, Austria
- Fassl, Stephanie. 2013. Die fossile Fauna der Arzberghöhle im Hochschwabgebiet (Steirmark).
 Diplomarbeit Universität Wien
- Frischauf, Christine; Liedl, Pia Maria; Rabeder, Gernot. 2014. Revision der fossilen Bären der Drachenhöhle (Mixnitz, Stmk). – Die Höhle / 65. Jg. / Heft 1–4: 47-55
- Frischauf, Christine; Nielsen, Ebbe; Rabeder, Gernot. 2017. The cave bears (Ursidae, Mammalia) from Steigelfadbalm near Vitznau (Canton of Lucerne, Switzerland). – Acta Zoologica Cracoviensia. 60: 35-57. 10.3409/azc.60_2.35.
- García, Nuria; Arsuaga, Juan Luis. 2001. Ursus dolinensis: a new species of Early Pleistocene ursid from Trinchera Dolina, Atapuerca (Spain). – Comptes Rendus de l'Académie des Sciences - Series IIA – Earth and Planetary Science, Volume 332, Issue 11: 717-725

- Grandal-d'Anglade, Aurora; López-González, Fernando. 2004. A study of the evolution of the Pleistocene cave bears by a morphometric analysis of the lower carnassial. – Oryctos Volume 5: 83-94
- Grandal-d'Anglade, Aurora; López-González, Fernando. 2005. Sexual dimorphism and ontogenetic variation in the skull of the cave bear (*Ursus spelaeus*, Rosenmüller) of the European Upper Pleistocene. – Geobios 38: 325-337
- Gretzinger, Joscha; Molak, Martyna; Reiter, Ella; Pfrengle, Saskia; Urban, Christian; Neukamm, Judith; Blant, Michel; Conard, Nicholas J.; Cupillard, Christophe; Dimitrijević, Vesna; Drucker, Dorothée G.; Hofman-Kamińska, Emilia; Kowalcyk, Rafal; Krajcarz, Malciej T.; Krajcarz, Magdalena; Münzel, Susanne C.; Peresani, Marco; Romandini, Matteo; Rufí, Isaac; Soler, Joaquim; Terlato, Gabriele; Krause, Johannes, Bocherens, Hervé. 2019. Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. – Sci Rep 9, 10700
- Hailer, Frank; Kutschera, Verena E.; Hallström, Björn M.; Klassert, Denise; Fain, Steven R.; Leonard, Jennifer A.; Arnason, Ulfur; Janke, Axel. 2012. Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. – Science Vol 336: 345-348
- Hofreiter, Michael; Capelli, Cristian; Krings, Matthias; Waits, Lisette; Conard, Nicholas; Münzel, Susanne; Rabeder, Gernot; Nagel, Doris; Paunovic, Maja; Jambresić, Gordana; Meyer, Sonja; Weiss, Gunter; Pääbo, Svante. 2002. Ancient DNA Analyses Reveal High Mitochondrial DNA Sequence Diversity and Parallel Morphological Evolution of Late Pleistocene Cave Bears. – Molecular Biology and Evolution, Volume 19, Issue 8: 1244–1250
- Hofreiter, Michael; Rabeder, Gernot; Jaenicke-Després, Viviane; Withalm, Gerhard; Nagel, Doris; Paunovic, Maja; Jambrěsić, Gordana; Pääbo, Svante. 2004 Evidence for Reproductive Isolation between Cave Bear Populations. – Current Biology. Volume 14, Issue 1: 40-43
- Höhlenverwaltung der Tschechischen Republik. Výpustek Höhle. 2020. <u>https://visit.caves.cz/de/cave/jeskyne-vypustek</u> abgerufen am: 27.9.2020
- Kadlec, Jaroslav; Hercman, Helena; Beneš, Vojtěch; Šroubek, Pavel; Diehl, Jimmy F.; Granger, Darryl. 2001. Cenozoic History of the Moravian Karst (Northern Segment): Cave Sediments and Karst Morphology. – Acta Mus. Moraviae, Sci. geol. 86: 111-160
- Kavcik-Graumann, Nadja; Nagel, Doris; Rabeder, Gernot; Ridush, Bogdan; Withalm, Gerhard.
 2016. The Bears of Illinka cave near Odessa (Ukraine). Cranium. 33. 18-25.
- Knapp, Michael; Rohland, Nadine; Weinstock, Jacobo; Baryshnikov, Gennady; Sher, Andrei; Nagel, Doris; Rabeder, Gernot; Pinhasi, Ron; Schmidt, Heiko A.; Hofreiter, Michael. 2009. First DNA sequences from Asian cave bear fossils reveal deep divergences and complex phylogeographic patterns. – Molecular Ecology 18: 1225-1238
- Knaus, Tatjana. 2017. Die fossilen Bären der Schlenken-Durchgangshöhlebei Bad Vigaun, Teil
 1: Bezahung. Diplomarbeit Universität Wien
- Knaus, Tatjana; Schopf, Bernd; Frischauf, Christine; Rabeder, Gernot. 2018. Die fossilen Bären der Schlenkendurchgangshöhle bei Bad Vigaun (Osterhorngruppe, Salzburg). Die Höhle / 69. Jg. / Heft 1-4: 100-108

- Krause, Johannes; Unger, Tina; Nocon, Aline; Malaspinas, Anna-Sapfo: Kolokotronis, Sergios-Orestis; Stiller, Mathias; Soibelzon, Leopoldo; Spriggs, Helen; Dear, Paul H.; Briggs, Adrian & Bray, Sarah; O'Brien, Stephen; Rabeder, Gernot; Matheus, Paul; Cooper, Alan; Slatkin, Montgomery; Pääbo, Svante; Hofreiter, Michael. 2008. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC evolutionary biology. 8. 220. 10.1186/1471-2148-8-220.
- Kriz, Martin. 1893. Die Fauna der bei Kiritein in M\u00e4hren gelegenen Vypustekh\u00f6hle mit osteologischen Bemerkungen. – Verhandlungen des naturforschenden Vereines in Br\u00fcnn 32. Band: 90-144
- Laughlan, Lana. 2012. Metrik und Evolutionsniveau der Höhlenbärenzähne aus der Medvedia-Höhle im Slovenský raj (Slowakei). Diplomarbeit Universität Wien
- Liebe, Karl Theodor. 1879. Die fossile Fauna der Vypustek in M\u00e4hren nebst Bemerkungen betreffs einiger Knochenreste aus der Kreuzbergh\u00f6hle in Krain. – Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 79: 472-490
- Loreille, Odile; Orlando, Ludovic; Patou-Mathis, Marylène; Philippe, Michel; Taberlet, Pierre.
 2001. Ancient DNA analysis reveals divergence of the cave bear. Current Biology 11: 200-203
- Mackiewicz, Pawel; Baca, Mateusz; Popoviæ, Danijela; Socha, Pawel; Stefaniak, Krzystof; Marciszak, AAdrian; Nadachowski, Adam. 2017. Estimating the extinction time of two cave bears, Ursus spelaeus and U. ingressus. – Acta zoologica cracoviensia,60(2): 1-14. Krakau
- Mährischer Karst Touristeninformation. Die Výpustek-Höhle. o. D.
 http://www.moravskykras.net/de/vypustek-hohle.html abgerufen am: 27.9.2020
- Mazza, Paul und Rustioni, Marco. 1994. On the phylogeny of eurasian bears. –
 Palaeontographica Abt. A. 230. Lfg. 1-3. P.1-38. Stuttgart
- Münzel, Susanne C.; Stiller, Mathias; Hofreiter, Michael; Mittnik, Alissa; Conard, Nicholas J.; Bocherens, Hervé. 2011. Pleistocene bears in the Swabian Jura (Germany): Genetic replacement, ecological displacement, extinctions and survival. – Quaternary International, Volume 245, Issue 2, 2011, p.225-237
- Münzel, Susanne; Athen, Kerstin. 2015. Correlating Genetic Results with Biometric Analysis on Metapodial Bones. – Slovensky Kras Acta Carsologica Slovaca 47: 47-56
- Musil, Rudolf. 1981. Ursus spelaeus Der Höhlenbär. Weimarer Monographien zu Ur- und Frühgeschichte. Landesamt für Denkmalpflege und Archäologie, Dienstelle Weimar; Museum für Ur- und Frühgeschichte Thüringens. Weimar.
- Nagel, Doris, Pronin, Konstantin, Rabeder, Gernot, Hofreiter, Michael, Huijer, Wolfgang, Kavcik, Nadja, Urbanek, Christoph, Withalm, Gerhard; Orlov, Nikolai. 2005. Nerubajskoe, a New Cave Bear Site in the Old Nordmann Territory. — Mitt. Komm. Quartärforsch. Österr. Akad. Wiss., 14: 123–134, Wien
- Pacher, Martina. 2017. Anterior premolar variability in Pleistocene cave and brown bears and its significance in species determination. – Fossil Imprint, 73(3-4): 482–494, Praha.

- Pacher, Martina; Stuart, Anthony J.. 2009. Extinction chronology and palaeobiology of the cave bear (*Ursus spelaeus*). – Boreas, 38: 189-206.
- Rabeder, Gernot; Tsoukala, Evangelia. 1990. Morphodynamic analysis of some cave-bear teeth from Petralona cave (Chalkidiki, North-Greece). Beitr. Palaont. Osterr. 16: 103 109. Wien.
- Rabeder, Gernot. 1995. Die Gamssulzenhöhle im Toten Gerbirge. Mitt. Komm.
 Quatärforsch. Österr. Akad. Wiss. 9: 1-133. Wien.
- Rabeder, Gernot. 1999. Die Evolution des Höhlenbärengebisses. Mitt. Quartärkomm.
 Österr. Akad. Wiss. 11: 1-102, Wien.
- Rabeder, Gernot, Hofreiter, Michael.; Withalm, Gerhard. 2004. The Systematic Position of the Cave Bear from Potočka zijalka (Slovenia). Mitt. Komm. Quartärforsch. Österr. Akad. Wiss., 13: 197–200. Wien.
- Rabeder, Gernot. 1989. Modus und Geschwindigkeit der Höhlenbären-Evolution. –
 Schriftenreihe des Vereins zur Verbreitung naturwissenschaftlicher Kenntnisse in Wien 127: 105-126. Wien.
- Rabeder, Gernot. 2007. Evolution, Migration und Klimageschichte in den Alpen am Beispiel der Bären (Ursidae, Mammalia). – Denisa 20. Neue Serie 66: 745-752
- Rabeder, Gernot; Debeljak, Irena; Hofreiter Michael; Withalm, Gerhard. 2008. Morphological responses of cave bears (Ursus spelaeus group) to high-alpine habitats. – Die Höhle 59 Jg. Heft 1-4: 59-72
- Rabeder, Gernot; Hofreiter, Michael; Withalm, Gerhard; Nagel, Doris. 2004. New Taxa of Alpine Cave Bears (Ursidae, Carnivora). – In: *Cahiers scientifiques du Muséum d'histoire naturelle de Lyon. Hors-série*, tome 2: 49-67
- Rabeder, Gernot; Pacher, Martina; Withalm, Gerhard. 2011. Die altpleistozänen Bären von Deutsch-Altenburg (Niederösterreich). – Mitt. Quartärkomm. Österr. Akad. Wiss. 17: 1-135, Wien
- Rabeder, Gernot; Hofreiter, Michael. 2004. Der neue Stammbaum der alpinen Höhlenbären.
 Die Höhle, v.55: 58-77
- Richards, Michael P.; Pacher, Martina; Stiller, Mathis; Quilès, Jerome; Hofreiter, Michael; Constantin, Silviu; Zilhão, João; Trinkaus, Erik. 2008. Isotopic evidence for omnivory among European cave bears Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. – Proceedings of the National Academy of Sciences of the United States of America, 105(2): 600–604.
- Roblíčková, Martina; Káňa, Vlastislav; Fišáková, Nývltová. 2017. The mammalian fauna of Barová Cave (Moravian Karst, the Czech Republic). – Fossil Imprint, 73(3-4): 515-532
- Sabol, Martin. 2005. Bear assemblage from the Za Hajovnou Cave in Moravia (Czech Republic): sex ratios and age structure. – Naturhist. Gesellschaft Nürnberg, Abhandlung Band 45/2005 Neue Forschungen zu Höhlenbären in Europa: 215-224. Nürnberg
- Schopf, Bernd. 2017. Die fossilen Bären der Schlenken-Durchgangshöhle bei Bad Vigaun, Teil
 2: Metapodien. Diplomarbeit Universität Wien

- Stiller, Mathias; Baryshnikov, Gennady; Bocherens, Hervé; Grandal d'Anglade, Aurora;
 Hilpert, Brigitte; Münzel, Susanne C.; Pinhasi, Ron; Rabeder, Gernot; Rosendahl, Wilfried;
 Trinkaus, Erik; Hofreiter, Michael; Knapp, Michael. Witherin. 2010. g Away—25,000 Years of
 Genetic Decline Preceded Cave Bear Extinction. Molecular Biology and Evolution, Volume
 27, Issue 5: 975–978
- Stiller, Mathias; Molak, Martyna; Prost, Stefan; Rabeder, Gernot; Baryshnikov, Gennady; Rosendahl, Wilfried; Münzel, Susanne; Bocherens, Hervé; Grandal-d'Anglade, Aurora; Hilpert, Brigitte; Germonpré, Mietje; Stasyk, Oleh; Pinhasi, Ron; Tintori, Andrea; Rohland, Nadin; Mohandesan, Elmira; Ho, Simon; Hofreiter, Michael; Knapp, Michael. 2014. Mitochondrial DNA diversity and evolution of the Pleistocene cave bear complex. – Quaternary International 339-340: 224-231
- Tschechien Online Resort Reise. 2016. Výpustek-Höhle: Unterschlupf für Höhlenbären, Nazis und Atomkrieger. <u>https://www.tschechien-online.org/reise/vypustek-hoehle-</u> <u>24102015-13571</u> abgerufen am: 27.9.2020
- van Heteren, Anneke; Arlegi, Mikel; Santos, Elena; Arsuaga, Juan-Luis und Gómez-Olivencia, Asier. 2018. Cranial and mandibular morphology of Middle Pleistocene cave bears (*Ursus deningeri*): implications for diet and evolution. – Historical Biology Volume 31: 485-499
- van Heteren, Anneke; MacLarnon, Ann; Soligo, Christophe und Rae, Todd. 2015. Functional morphology of the cave bear (*Ursus spelaeus*) mandible: a 3D geometric morphometric analysis. – Organisms Diversity & Evolution Organisms Diversity & Evolution 16: 299-314
- Wagner, Jan. 2001. The updated record of cave bear and other members of the genus Ursus on the territory of Czech Republic. – Candernos Lab. Xeoloxica de Laxe. Coruna. 2001. Vol. 26: 447-455
- Wagner, Jan. 2004. A taxonomic revision of bears from selected Biharian localities of the Czech Republic. A preliminary report: I. C 718, Chlum I, Chlum IV. – Departement du Rhone. Museum Lyon. Hors serie n2: 139-144
- Waits, Lisette; Paetkau, David; Strobeck, Curtis. 1999. Chapter 3 Genetics of Bears of the World. – In: Bears: status survey and conservation action plan. IUCN/SSC Action Plans for the Conservation of Biological Diversity: 25-32
- Wankel, Heinrich. 1882. Bilder aus der M\u00e4hrischen Schweiz und ihrer Vergangenheit. Holzhausen. Wien
- Withalm, Gerhard. 2001. Die Evolution der Metapodien in der Höhlenbären-Gruppe (Ursidae, Mammalia). — Beitr. Paläont.,26: 169-249

10. Abbildungsverzeichnis

OpenStreetMap-Mitwirkende. Lizenz: CC-BY-SA 2.0, siehe:	
https://www.openstreetmap.org/copyright	4
Abbildung 2: Übersichtsplan der Vypustekhöhle, verändert nach Kritz 1893	6
Abbildung 3: Moderner Höhlenplan der Höhlenverwaltung der Tschechischen Republik	7
Abbildung 5: Längen-Breiten-Diagramm der 3. Oberkieferincisivi (13 sup) von Ursus aus der	
Vypustekhöhle1	.4

Abbildung 6: Längen/Breiten Diagramm der 1. Unterkieferincisivi (i1 inf) von Ursus aus der Vypustekhöble	15
Abbildung 7: Längen/Breiten Diagramm der 2. Unterkieferincisivi (i2 inf) von Ursus aus der Wenustekhöhle	16
Abbildung 8: Längen/Breiten Diagramm der 3. Unterkieferincisivi (i3 inf) von Ursus aus der	. 10
Abbildung 9: Längen/Breiten Diagramm der gesamten Caninus-Kronenwerte von Ursus aus der	. 17
Abbildung 10: Längen / Breiten Diagramm der Caniniwurzeln von Ursus aus der Wenustekhöhle	. 18 10
Abbildung 10. Längen/Breiten Diagramm der 4. Oberkiefernrämolars (P4 sun) von Ursus aus der	. 19
Vynustekhöhle	20
Abbildung 12: Längen/Breiten Diagramm der 4. Unterkiefernrämolaren (n4 inf) von Ursus aus der	. 20
Vopustekhöhle.	. 21
Abbildung 13: Längen/Breiten der 1. Oberkiefermolaren (M1 sup) von Ursus aus der Vypustekhöhl	le
Abbildung 14: Längen/Breiten Diagramm der 2. Oberkiefermolaren (M2 sup) von Ursus aus der	. 22
Vypustekhöhle	. 23
Abbildung 15: Längen/Breiten Diagramm der 1. Unterkiefermolaren (m1 inf) von Ursus aus der Vypustekhöhle	. 24
Abbildung 16: Längen/Breiten Diagramm der 2. Unterkiefermolaren (m2 inf) von Ursus aus der	25
Abbildung 17: Längen/Breiten Diagramm der 3. Unterkiefermolaren (m3 inf) von Ursus aus der	. 25
Vypustekhöhle	26
Abbildung 18: Längen/Breiten Diagramm des 1. Mittelhandknochens (Mc1) von Ursus der	0
Vvpustekhöhle	. 27
Abbildung 19: Längen/Breiten Diagramm des 2. Mittelhandknochens (Mc2) von Ursus aus der	
Vypustekhöhle	. 28
Abbildung 20: Längen/Breiten Diagramm des 3. Mittelhandknochens (Mc3) von Ursus aus der	
Vypustekhöhle	. 29
Abbildung 21: Längen/Breiten Diagramm des 4. Mittelhandknochens (Mc4) von Ursus aus der	
Vypustekhöhle	. 30
Abbildung 22: Längen/Breiten Diagramm des 5. Mittelhandknochens (Mc5) von Ursus aus der	
Vypustekhöhle	. 31
Abbildung 23: Längen/Breiten Diagramm des 1. Mittelfußknochens (mt1) von Ursus aus der	
Vypustekhöhle	. 32
Abbildung 24: Längen/Breiten Diagramm des 2. Mittelfußknochens (mt2) von Ursus aus der	
Vypustekhöhle	. 33
Abbildung 25: Längen/Breiten Diagramm des 3. Mittelfußknochens (mt3) von Ursus aus der	
Vypustekhöhle	. 34
Abbildung 26: Längen/Breiten Diagramm des 4. Mittelfußknochens (mt4) von Ursus aus der	
Vypustekhöhle	. 35
Abbildung 27: Langen/Breiten Diagramm des 5. Mittelfußknochens (mt5) von Ursus aus der	26
Vypusteknonie	. 36
Abbildung Zo. Witterwerte der standardisierten Zannlangen um Vergielch mit deneh der	27
Odifissuizerinionie	. 3/
Gamssulzenhöhle	20
Abhildung 30: Vergleich der standardisierten mornhologischen Indices der Zähne aus der	. 50
Vypustekhöhle und der Gamssulzenhöhle	.39
11	

Abbildung 31: Vergleich der standardisierten Metapodienlängen mit der Gamssulzenhöhle Abbildung 32: Mittelwerte der standardisierten Metapodienbeiten im Vergleich mit der	40
Gamssulzenhöhle	40
Abbildung 33: Vergleich der standardisierten Plumpheitsindices der Metapodien aus der	
Vypustekhöhle und der Gamssulzenhöhle	41
Abbildung 34: Die standardisierten Werte des p4 inf-Index von mittelwürmzeitlichen Ursus-Faunen	
aus alpinen und außeralpinen Bärenhöhlen in Relation zur Altitude der Eingänge. Werte nach Knaus	5
et al. 2018	42
Abbildung 35: Die standardisierten Werte des m2-Enthypoconidindex in Relation zur Höhenlage.	
Werte nach Knaus 2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019	43
Abbildung 36: Mittelwerte der standardisierten Molarenlängen in Abhängigkeit von der Seehöhe.	
Werte nach Knaus 2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019	44
Abbildung 37: standardisierte relative Breite der M1 sup in Relation zur Seehöhe. Werte nach Knaus	S
2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019 4	45
Abbildung 38: Verhältnis zwischen der Länge der m3 inf und m2 inf in Abhängigkeit von der	
Höhenlage. Werte nach Knaus 2017, Laughlan 2012, Kavcik-Graumann et al. 2016, Grabmayer 2019)
	46
Abbildung 39: Sexualdimorphismusindex der Caninus-Länge in Abhängigkeit von der Höhenlage der	•
ا Höhle. Werte nach Knaus 2017, Laughlan 2012, Grabmayer 2019	47
Abbildung 40: Sexualdimorphismusindex der Caninus-Breite in Abhängigkeit von der Höhe der Höhl	e.
Werte nach Knaus 2017, Laughlan 2012, Grabmayer 2019	47
Abbildung 41: Mittelwerte der standardisierten Metapodienlängen im Zusammenhang mit der	
Seehöhe. Werte nach Schopf 2017, Grabmayer 2019	48
Abbildung 42: Mittelwerte der standardisierten distalen Epiphysenbreiten in Relation zur Seehöhe.	
Werte nach Schopf 2017	49
Abbildung 43: Mittelwerte der standardisierten Mittelwerte der Plumpheitsindices in Abhängigkeit	
zur Höhenlage. Werte nach Schopf 2017	50
Abbildung 43: LDH-Korrelation. Werte nach Knaus et al. 2018, Kavcik-Graumann et al. 2016,	
Grabmayer 2019	51

11. Tabellenverzeichnis

Tabelle 1: Anzahl der gemessenen Metapodien von Ursus aus der Vypustekhöhle	. 12
Tabelle 2: Anzahl der gemessenen Zähne von Ursus aus der Vypustekhöhle	. 12
Tabelle 3: Messwerte (in mm) der I1,2 sup von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 12
Tabelle 4: Morphotypen der I1,2 sup von Ursus aus der Vypustekhöhle (n. Rabeder 1999)	. 13
Tabelle 5: Messwerte (in mm) der 13 sup von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 13
Tabelle 6: Messwerte (in mm) der i1 inf von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 14
Tabelle 7: Messwerte (in mm) der i2 inf von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 15
Tabelle 8: Messwerte (in mm) der i3 inf von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 16
Tabelle 9: Morphotypenhäufigkeiten der i3 inf von Ursus aus der Vypustekhöhle (n. Rabeder 1999) 17
Tabelle 10: Messwerte (in mm) der gesamten Canini: Länge und Breite der Krone, Gesamthöhe vo	n
Ursus aus der Vypustekhöhle. (Standardwert der Gamssulzenhöhle n. Rabeder 1995)	. 17

Tabelle 11: Messwerte (in mm) der weiblichen Canini von Ursus aus der Vypustekhöhle.	
(Standardwert der Gamssulzenhöhle n. Rabeder 1995)	. 18
Tabelle 12: Messwerte (in mm) der männlichen Canini von Ursus aus der Vypustekhöhle.	
(Standardwert der Gamssulzenhöhle n. Rabeder 1995)	. 18
Tabelle 13: Errechnete Sex Ratio, Sex Index und Sexdimorphismus-Index der Canini	. 19
Tabelle 14: Messwerte (in mm) der Caniniwurzeln von Ursus aus der Vypustekhöhle. (Standardwer	rt
der Gamssulzenhöhle n. Rabeder 1995)	. 19
Tabelle 15: Messwerte (in mm) der P4 sup von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 20
Tabelle 16: Morphotypenfrequenzen des P4 sup von Ursus aus der Vypustekhöhle (n. Rabeder 199) 9)
Tabelle 17: Messwerte (in mm) der p4 inf von Ursus aus der Vypustekhöhle. (Standardwert der	. 20
Gamssulzenhöhle n. Rabeder 1995)	. 21
Tabelle 18: Morphotypen der p4 inf von Ursus aus der Vypustekhöhle (n. Rabeder 1999)	. 21
Tabelle 19: Messwerte (in mm) der M1 sup von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 22
Tabelle 20: Messwerte (in mm) der M2 sup von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 22
Tabelle 21: Messwerte in (mm) der m1 inf von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 23
Tabelle 22: Messwerte (in mm) der m2 inf von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 24
Tabelle 23 Morphotypen der m2 inf von Ursus aus der Vypustekhöhle (n. Rabeder 1999)	. 25
Tabelle 24: Messwerte (in mm) der m3 inf von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 25
Tabelle 25: Messwerte (in mm) der Mc1 von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 26
Tabelle 26: Messwerte (in mm) der Mc2 von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 27
Tabelle 27: Messwerte (in mm) der Mc3 von Ursus aus der Vypustekhöhle. (Standardwert der	
Gamssulzenhöhle n. Rabeder 1995)	. 28
Tabelle 28: Messwerte (in mm) der Mc4 von Ursus aus der Vypustekhohle. (Standardwert der	~ ~
Gamssulzenhohle n. Rabeder 1995)	. 29
Tabelle 29: Messwerte (in mm) der Mc5 von Ursus aus der Vypustekhohle. (Standardwert der	20
Gamssulzennonie n. Rabeder 1995)	. 30
Tabelle 30: Messwerte (in mm) der mt1 von Ursus aus der Vypusteknonie. (Standardwert der	24
Gamssulzennonie n. Rabeder 1995)	. 31
Tabelle 31: Messwerte (in mm) der mt2 von Ursus aus der Vypusteknonie. (Standardwert der	22
Gamssulzennonie n. Rabeder 1995)	. 32
Comsculaenhähle n. Beheder 1005)	22
Gamssulzennonie n. Rabeder 1995)	. 33
Gamssulannhöhle n. Raheder 1995)	24
Tabelle 34: Messwerte (in mm) der mt5 von Ursus aus der Wenustekhöhle. (Standardwort der	. 54
Gamssulzenhöhle n. Raheder 1995)	25
Tahelle 35: Standardisierten Mittelwerte aller Metanodien (Standardwert der Gamssulzenhöhle n	
Rabeder 1995)	36
Tabelle 36: Messwerte der i1.2 sup	. 63
Tabelle 37: Messwerte der i1 inf	. 64

Tabelle 38: Messwerte der i2 inf	65
Tabelle 39: Messwerte der i3 sup	65
Tabelle 40: Messwerte der i3 inf	69
Tabelle 41: Messwerte der Kronen der Canini	71
Tabelle 42: Messwerte der Canini Wurzeln	73
Tabelle 43: Messwerte der P4 sup	75
Tabelle 44: Messwerte der p4 inf	76
Tabelle 45: Messwerte der M1 sup	78
Tabelle 46: Messwerte der M2 sup	79
Tabelle 47: Messwerte der m1 inf	81
Tabelle 48: Messwerte der m2 inf	82
Tabelle 49: Messwerte der m3 inf	84
Tabelle 50: Messwerte der Mc1	86
Tabelle 51: Messwerte der Mc2	89
Tabelle 52: Messwerte der Mc3	91
Tabelle 53: Messwerte der Mc4	93
Tabelle 54: Messwerte der Mc5	94
Tabelle 55: Messwerte der mt1	
Tabelle 56: Messwerte der mt2	
Tabelle 57: Messwerte der mt3	100
Tabelle 58: Messwerte der mt4	102
Tabelle 59: Messwerte der mt5	104

12. Anhang – Maßtabellen Zähne

Tabelle 36: Messwerte der i1,2 sup

Inventarnummer	Element	Körperseite	Länge	Breite	Morphotyp	Jahr
NHMW	i1.2 sup	•	11.75	13.32	. ,.	1881
2019/0011/0483	, 1-		, -	- / -		
NHMW	i1,2 sup	dex	11,68	13,83	s1	1881
2019/0011/0484	dex					
NHMW	i1,2 sup		10,79	11,77		
2019/0011/0485						
NHMW	i1,2 sup	dex	10,2	11,27	p1	
2019/0011/0489	dex					
NHMW	i1,2 sup		9,81	12,54		
2019/0011/0490						
NHMW	i1,2 sup		8,93	11,93		1882
2019/0011/0491						
NHMW	i1,2 sup	sin	10,49	13,09	p0	1880
2019/0011/0828	sin				_	
NHMW	i1,2 sup	dex	10,77	11,54	p0	
2019/0011/0829	dex			10.00		
NHMW	11,2 sup	dex	10,88	12,22	s2	1882
2019/0011/0830	dex		44.00			
NHMW	11,2 sup	sin	11,03	11,42		
2019/0011/0831	sin	-1	10 55	11.2	1	
NHIVIW	11,2 sup	sin	10,55	11,2	рт	
2019/0011/0832	SIN 1. 2 ours	dav	10.02	10.04		
NHIVIW	11,2 sup	aex	10,02	10,84	ро	

2019/0011/0833	dex					
NHMW	i1,2 sup	dex	9,54	10,9	p0	1881
2019/0011/0834	dex					
NHMW	i1,2 sup	sin	10,55	11,55	p1	1881
2019/0011/0835	sin				•	
NHMW	i1,2 sup	sin	10,38	11,72	p2	1880
2019/0011/0836	sin					
NHMW	i1,2 sup	dex	9,57	10,41	p0	1880
2019/0011/0837	sex					
NHMW	i1,2 sup	sin	10,88	12,44	sO	1880
2019/0011/0838	sin					
NHMW	i1,2 sup	dex	11,11	12,34	p1	1880
2019/0011/0839	dex					
NHMW	i1,2 sup	dex	9,32	11,15	p1	1880
2019/0011/0840	dex				-	
NHMW	i1,2 sup	dex	11,04	11,78		
2019/0011/0841	dex					
NHMW	i1,2 sup	dex	10,84	12,01	p1	
2019/0011/0842	dex					
NHMW	i1,2 sup	dex	10,88	12,17	s2	
2019/0011/0843	dex					
NHMW	i1,2 sup	dex	11,5	11,31	p1	1880
2019/0011/0844	dex					
NHMW	i1,2 sup	dex	9,58	11,69	p1	1882
2019/0011/0845	dex					
NHMW	i1,2 sup	dex	11,65	12,65	p1	1880
2019/0011/0846	dex					
NHMW	i1,2 sup	dex	11,21	11,38	r2	
2019/0011/0847	dex					
NHMW	i1,2 sup	dex	9,22	11,81	r1	1880
2019/0011/0848	dex					
NHMW	i1,2 sup	dex	9,42	11,38	r0	
2019/0011/0849	dex					
NHMW	i1,2 sup	dex	8,93	10,92	p1	
2019/0011/0850	dex					
NHMW	i1,2 sup	dex	12,32	13,54	s2	
2019/0011/0851	dex					
NHMW	i1,2 sup	dex	11,2	11,79	p1	
2019/0011/1015	dex					

Tabelle 37: Messwerte der i1 inf

Inventarnummer	Element	Körperseite	Länge	Breite	Jahr
NHMW	i1 inf		7,61	10,4	1881
2019/0011/0487					
NHMW	i1 inf		6,54	8,47	1881
2019/0011/0488					
NHMW	i1 inf	dex	6,7	8,5	
2019/0011/0811	dex				
NHMW	i1 inf	dex	7,41	9,98	
2019/0011/0812	dex				
NHMW	i1 inf sin	sin	6,72	9,93	1880

2019/0011/0813

Tabelle 38: Messwerte der i2 inf

Inventarnummer	Element	Körperseite	Länge	Breite	Jahr
NHMW	i2 inf		9,49	13,71	1881
2019/0011/0492					
NHMW	i2 inf		9,91	12,63	1882
2019/0011/0514					
NHMW	i2 inf	dex	9,42	12,75	1880
2019/0011/0814	dex				
NHMW	i2 inf	dex	10,16	10,39	
2019/0011/0815	dex				
NHMW	i2 inf	dex	11,04	11,14	1881
2019/0011/0816	dex				
NHMW	i2 inf	dex	10,33	11,56	1881
2019/0011/0817	dex				
NHMW	i2 inf	dex	10,81	12,46	
2019/0011/0818	dex				
NHMW	i2 inf	dex	12,31	12,88	1881
2019/0011/0819	dex				
NHMW	i2 inf	dex	10,32	12,06	
2019/0011/0820	dex				
NHMW	i2 inf	dex	10,39	11,85	
2019/0011/0821	dex				
NHMW	i2 inf	dex	9,75	11,46	1882
2019/0011/0822	dex				
NHMW	i2 inf sin	sin	11,21	12,9	1880
2019/0011/0823					
NHMW	i2 inf sin	sin	10,07	11,87	1881
2019/0011/0824					
NHMW	i2 inf sin	sin	10,23	11,21	1880
2019/0011/0825					
NHMW	i2 inf sin	sin	11,74	12,5	1880
2019/0011/0826					
NHMW	i2 inf sin	sin	10,85	12,05	
2019/0011/0827					

Tabelle 39: Messwerte der i3 sup

	Inventarnummer	Element	Körperseite	Länge	Breite	Jahr
ſ	NHMW	13 sup	dex	20,8	15,77	
	2019/0011/0428	dex				
	NHMW	l3 sup	dex	17,68	15,02	
	2019/0011/0429	dex				
	NHMW	l3 sup	dex	16,58	15,26	
	2019/0011/0430	dex				
	NHMW	13 sup	dex	17,58	14,98	
	2019/0011/0431	dex				
	NHMW	13 sup	dex	17,02	16,47	
	2019/0011/0432	dex				
	NHMW	i3 sup	dex	15,82	13,92	

2019/0011/0479	dex				
NHMW	i3 sup	dex	16,41	15,2	
2019/0011/0497	dex		,		
NHMW	i3 sup	sin	17.98	13.78	1880
2019/0011/0498	sin		,	-, -	
NHMW	i3 sup	sin	18.46	16.38	1880
2019/0011/0499	sin	•	_0).0	_0,00	
NHMW	i3 sun	sin	17.06	15 64	
2019/0011/0500	sin	5111	17,00	13,04	
NHMW/	i3 sun	sin	13 58	11 67	
2010/0011/0501	sin	5111	13,30	11,07	
	i2 cup	sin	15 05	16.2	
	is sup	5111	13,35	10,2	
	3111	cin	17 69	11 12	1000
	13 sup	SIN	17,08	14,43	1002
2019/0011/0503	SIN 12 avra		10.24	45.67	
	13 sup	sin	18,34	15,67	
2019/0011/0504	sin		47.00	10.00	4004
NHMW	13 sup	dex	17,99	16,96	1881
2019/0011/0505	dex				
NHMW	i3 sup	dex	17,65	15,39	
2019/0011/0506	dex				
NHMW	i3 sup	sin	16,6	14,19	1881
2019/0011/0507	sin				
NHMW	i3 sup	dex	19,45	14,82	1881
2019/0011/0508	dex				
NHMW	i3 sup	sin	16,75	15,04	1880
2019/0011/0509	sin				
NHMW	i3 sup	dex	14,71	13,61	1882
2019/0011/0510	dex				
NHMW	i3 sup	sin	17,11	14,63	1881
2019/0011/0515	sin				
NHMW	i3 sup	sin	20,9	17,65	
2019/0011/0516	sin				
NHMW	i3 sup	dex	19,97	17,31	1880
2019/0011/0517	dex				
NHMW	i3 sup	sin	21,14	17,38	
2019/0011/0518	sin				
NHMW	i3 sup	sin	21,29	17,6	1880
2019/0011/0519	sin .		,		
NHMW	i3 sup	dex	16,9	14,41	1881
2019/0011/0520	dex .		,		
NHMW	i3 sup	dex	15.03	17.54	1880
2019/0011/0521	dex		- /	7-	
NHMW	i3 sup	sin	15.88	18.34	1882
2019/0011/0522	sin	•			
NHMW	i3 sup	sin	16.09	15.44	
2019/0011/0523	sin	•	_0,00	_0,	
NHMW	i3 sun	sin	17 24	14 7	1881
2019/0011/0524	sin	5	<i>_,,_</i> ,	<u> </u>	1001
NHMW/	i3 sun	sin	18 44	16 62	1882
2019/0011/0525	sin		<u> </u>	10,02	1002
NHMW/	j3 sun	dex	20 53	18 23	1881
2019/0011/0526	dex	uc.	20,00	10,20	1001
	ach				

NHMW	i3 sup	sin	20,52	16,69	
2019/0011/0527	sin				
NHMW	i3 sup	sin	19,15	16,1	
2019/0011/0528	sin				
NHMW	i3 sup	dex	19,07	16,38	1880
2019/0011/0529	dex				
NHMW	i3 sup	sin	18,88	15,25	1880
2019/0011/0530	sin				
NHMW	i3 sup	dex	18,5	16,26	
2019/0011/0531	dex				
NHMW	i3 sup	sin	16,79	14,41	
2019/0011/0532	sin				
NHMW	i3 sup	sin	19,86	15,58	1882
2019/0011/0533	sin				
NHMW	i3 sup	sin	16,11	12,59	1882
2019/0011/0534	sin				
NHMW	i3 sup	dex	17,41	14,65	
2019/0011/0889	dex				
NHMW	i3 sup	dex	20,4	16,53	
2019/0011/0890	dex				
NHMW	i3 sup	dex	17,22	16,48	1880
2019/0011/0891	dex				
NHMW	i3 sup	dex	16,58	13,39	1881
2019/0011/0892	dex				
NHMW	i3 sup	dex	20,7	17,58	1882
2019/0011/0893	dex				
NHMW	i3 sup	dex	18,79	13,89	1882
2019/0011/0894	dex				
NHMW	i3 sup	dex	19,97	15,47	1880
2019/0011/0895	dex				
NHMW	i3 sup	dex	19,06	17,51	1882
2019/0011/0896	dex				
NHMW	i3 sup	sin	20,82	17,17	
2019/0011/0897	sin				
NHMW	i3 sup	sin	19,28	12	
2019/0011/0898	sin				
NHMW	i3 sup	sin	18,63	16,7	1882
2019/0011/0899	sin				
NHMW	i3 sup	sin	18,19	15,81	1881
2019/0011/0900	sin				
NHMW	i3 sup	sin	19,61	16,14	
2019/0011/0901	sin				
NHMW	i3 sup	sin	14,09	13,79	
2019/0011/0902	sin				
NHMW	i3 sup	sin	16,13	14,77	
2019/0011/0903	sin				
NHMW	i3 sup	sin	16,94	15,3	
2019/0011/0904	sin				
NHMW	i3 sup	sin	16,9	15,02	
2019/0011/0905	sin				
NHMW	i3 sup	sin	15,19	13,67	
2019/0011/0906	sin				
NHMW	i3 sup	sin	17,2	13,57	1881

2019/0011/0907	sin				
NHMW	i3 sup	sin	19,13	16,36	
2019/0011/0908	sin				
NHMW	i3 sup	sin	15,08	13,33	1880
2019/0011/0909	sin		-,	-,	
NHMW	i3 sup	sin	17.94	14.7	1880
2019/0011/0910	sin			,.	
NHMW	i3 sup	sin	18.55	16.03	1881
2019/0011/0911	sin		,	,	
NHMW	i3 sup	sin	21,11	16,8	
2019/0011/0912	sin		,	- / -	
NHMW	i3 sup	sin	20,2	17,04	1880
2019/0011/0913	sin				
NHMW	i3 sup	sin	17,23	13,92	1882
2019/0011/0914	sin		,	,	
NHMW	i3 sup	sin	15,71	13,98	1880
2019/0011/0915	sin		,	,	
NHMW	i3 sup	sin	18,43	16,3	1882
2019/0011/0916	sin				
NHMW	i3 sup	sin	19,09	15,92	
2019/0011/0917	sin				
NHMW	i3 sup	sin	16,69	12,69	
2019/0011/0918	sin				
NHMW	i3 sup	sin	19,38	15,59	
2019/0011/0919	sin				
NHMW	i3 sup	sin	17,27	13,79	1880
2019/0011/0920	sin				
NHMW	i3 sup	sin	16,06	13,58	1880
2019/0011/0921	sin				
NHMW	i3 sup	sin	17,43	17,35	1880
2019/0011/0922	sin				
NHMW	i3 sup	sin	19,61	15,86	1882
2019/0011/0923	sin				
NHMW	i3 sup	sin	15,28	12,38	1880
2019/0011/0924	sin				
NHMW	i3 sup	sin	16,78	15,12	1882
2019/0011/0925	sin				
NHMW	i3 sup	dex	17,98	16,29	
2019/0011/0926	dex				
NHMW	i3 sup	dex	20,31	17,5	
2019/0011/0927	dex				
NHMW	i3 sup	dex	15,79	13,45	
2019/0011/0928	dex				
NHMW	i3 sup	dex	16,95	15,15	
2019/0011/0929	dex				
NHMW	i3 sup	dex	20,93	18,48	
2019/0011/0930	dex				
NHMW	i3 sup	dex	17,86	16,21	
2019/0011/0931	dex				
NHMW	i3 sup	dex	16,25	15,92	1880
2019/0011/0932	dex				
NHMW	i3 sup	dex	19,55	17,07	
2019/0011/0933	dex				

NHMW	i3 sup	dex	18,11	16,85	
2019/0011/0934	dex				
NHMW	i3 sup	dex	17,58	15,67	
2019/0011/0935	dex				
NHMW	i3 sup	dex	18,66	16,56	1882
2019/0011/0936	dex				

Tabelle 40: Messwerte der i3 inf

Inventarnummer	Element	Körperseite	Länge	Breite	Morphotyp	Jahr
NHMW	i3 inf	dex	14,64	14,13		
2019/0011/0480	dex					
NHMW	i3 inf		12,96	12,6		1881
2019/0011/0481						
NHMW	i3 inf		10,37	8,71		1881
2019/0011/0482						
NHMW	i3 inf		13,2	14,38		1882
2019/0011/0493						
NHMW	i3 inf		12,26	12,1		
2019/0011/0494						
NHMW	i3 inf		14,74	13,33		
2019/0011/0495						
NHMW	i3 inf		14,26	12,62	d	
2019/0011/0496						
NHMW	i3 inf		11,48	10,81		1881
2019/0011/0511						
NHMW	i3 inf		12,75	12,5		
2019/0011/0512						
NHMW	i3 inf		14,22	13,44		
2019/0011/0513						
NHMW	i3 inf	dex	11,71	10,92	С	
2019/0011/0852	dex					
NHMW	i3 inf	dex	12,51	11,76	С	1882
2019/0011/0853	dex					
NHMW	i3 inf	dex	15,35	13,68	d	
2019/0011/0854	dex					
NHMW	i3 inf	dex	13,32	11,96	d	1881
2019/0011/0855	dex		10.00			
NHMW	13 inf	dex	13,26	11,15	С	
2019/0011/0856	dex		10.01	44 70		4004
	13 INT	dex	12,61	11,78	С	1881
2019/0011/085/	dex	dav	12.40	11 20		1000
		dex	13,48	11,30		1880
2019/0011/0858	il inf	dav	12.22	12.22		
		uex	13,32	12,32	C	
	uex i2 inf	dov	12 62	11 0		
	13 III dov	uex	12,03	11,3		
	i2 inf	dev	12 25	11 27	d	1001
10 2010/0011/0061	dov	uex	12,22	11,27	u	1001
2019/0011/0801	uex					

NHMW	i3 inf	dex	12,6	10,21	С	1882
2019/0011/0862	dex					
NHMW	i3 inf	dex	15,09	12,75	С	
2019/0011/0863	dex	dov	1.4	10 F	-	
NHIVIVV 2010/0011/0964	13 INT dox	dex	14	10,5	C	
2019/0011/0604	i2 inf	dov	15 /	10 75	6	
2010/0011/0265	dov	uex	13,4	12,75	L	
NHM\/	i3 inf	dev	12 29	11 32	Ч	1887
2019/0011/0866	dex	ucx	12,25	11,52	u	1002
NHMW	i3 inf	dex	13 51	13 42	d	1880
2019/0011/0867	dex	uck	10,01	10,12	u	1000
NHMW	i3 inf	dex	13.35	12.72	d	1880
2019/0011/0868	dex	ück	10)00	,, _	ŭ	1000
NHMW	i3 inf sin	sin	12.34	11.98	с	1880
2019/0011/0869			7 -	y = =		
NHMW	i3 inf sin	sin	14,03	12,17	d	
2019/0011/0870			,	,		
NHMW	i3 inf sin	sin	12,94	11,38	b	
2019/0011/0871			,	,		
NHMW	i3 inf sin	sin	12,15	10,7	С	
2019/0011/0872						
NHMW	i3 inf sin	sin	12,5	11,02	d	1881
2019/0011/0873						
NHMW	i3 inf sin	sin	14,07	12,62	С	1882
2019/0011/0874						
NHMW	i3 inf sin	sin	11,91	11,05	d	1882
2019/0011/0875						
NHMW	i3 inf sin	sin	12,07	11,34	С	
2019/0011/0876						
NHMW	i3 inf sin	sin	12,9	12,8	d	
2019/0011/0877						
NHMW	i3 inf sin	sin	14,54	13,07	С	1880
2019/0011/0878						
NHMW	i3 inf sin	sin	13,19	11,4	d/e	
2019/0011/0879						
NHMW	i3 inf sin	sin	12,89	10,6	d	1881
2019/0011/0880						
NHMW	i3 inf sin	sin	13,42	12,92	d	
2019/0011/0881						
NHMW	13 inf sin	sin	13,27	12,26	d	
2019/0011/0882	:0::f.:		12.22	12.00		1000
NHIVIVV 2010/0011/0882	13 INT SIN	sin	13,33	12,89		1880
	i2 inf cin	cin	12 10	17.75		
	12 1111 2111	5111	15,10	12,25		
2019/0011/0664	i2 inf cin	cin	12 05	12 16	Ч	1000
2010/0011/0225	12 111 211	5111	13,85	13,10	u	1002
NHMW	i3 inf sin	sin	13.9	11 89	Ч	1880
2019/0011/0886	15 111 511	5	10,0	11,00	4	1000
NHMW	j3 inf sin	sin	15.21	13.51	d	
2019/0011/0887			,	,•_	-	
NHMW	i3 inf sin	sin	15,11	14,51	d	1880

2019/0011/0888						
NHMW	i3 inf	dex	12,8	10,91	С	
2019/0011/1016	dex					
NHMW	i3 inf	dex	11,78	11,23	d	
2019/0011/1017	dex					
NHMW	i3 inf	dex	13,55	11,96	d	1880
2019/0011/1018	dex					

Tabelle 41: Messwerte der Kronen der Canini

Inventarnummer	Element	Länge	Breite	Höhe	Geschlecht	Jahr
NHMW	c inf	26,38	19,02		m	
2019/0011/0419	dex					
NHMW	С	25,21	19,99		m	1882
2019/0011/0433						
NHMW	С	24,61	16,86		m	1882
2019/0011/0434						
NHMW	С	19,51	17	80,5	f	1882
2019/0011/0435						
NHMW	С	25	17,15	81,98	m	1882
2019/0011/0436						
NHMW	С	22,7	16,54		f	?
2019/0011/0437						-
NHMW	С	22,61	14,7		f	188?
2019/0011/0438		10.00			<i>c</i>	1005
NHMW	С	19,68	15,25	87,4	t	1882
2019/0011/0439	-				<i>.</i>	
NHMW	С	19,63	16,13		t	
2019/0011/0440	-					
NHMW	С	25,78	20,19	107,32	m	
2019/0011/0447	<u> </u>	24.27	4		c	
NHMW	C	21,37	15,53	98,8	t	
2019/0011/0448	<u> </u>	20 54	24.22	400.00		
NHMW	C	28,51	21,23	108,89	m	
2019/0011/0449	<u> </u>	24.40	4470	05 50	c	
NHMW	L	21,49	14,76	85,59	T	
2019/0011/0450	C	22 5	10.01	00 1 4	ſ	
	L	22,5	10,81	90,14	I	
	C	24.41	14.00	02.00	£	
	L	24,41	14,98	83,08	I	
	C	21.02	1 5 5	00.69	£	
	L	21,03	15,5	90,68	I	
	C	22 65	21 77	116 0	m	1070
	L	52,05	21,//	110,0	111	10/9
	C	25 11	10 / 2		m	1970
	C	20,44	19,43		111	10/3
NHMM/	C	25 70	18 20	112 01	m	
	C	23,13	10,32	113,91		
NHMW/	C	22 11	15 20	96 1 8	f	
2019/0011/05/0			10,00	50,10		
	C	23 1⊑	16 52		f	1870
	C	23,13	10,52		I	10/3

2019/0011/0550						
NHMW	С	22,3	16,73		f	
2019/0011/0551			,			
NHMW	С	22.36	15.9		f	
2019/0011/0552		,	,			
NHMW	C	21 74	15.2		f	
2019/0011/0553	C	21,71	10,2		•	
	C	20 52	15 22		f	
	C	20,52	13,22		I	
	C	21 42	15 00		f	
	C	21,42	13,00		1	
	<u> </u>	21.02	10.01		£	
	L	21,93	16,91		T	
2019/0011/0556	~	07 7 <i>6</i>	22.00			
NHMW	C	27,76	22,99		m	
2019/0011/055/	_					
NHMW	С	28,35	20,47		m	
2019/0011/0558						
NHMW	С	28,58	20,37	107,68	m	
2019/0011/0559						
NHMW	С	28,31	21,01		m	
2019/0011/0561						
NHMW	С	24,95	22,86		m	
2019/0011/0562						
NHMW	С	22,8	19,79		m	1879
2019/0011/0563						
NHMW	С	23,99	19,18		m	
2019/0011/0564						
NHMW	С	27.17	21.21		m	
2019/0011/0565	-	,	,			
NHMW	C	21.31	16.01		f	
2019/0011/0566	•	,	_0,0_			
NHMW	C	20.8	15 22		f	
2019/0011/0567	C	20,0	13,22			
	C	21 80	1/1 2 1		f	
2010/0011/0568	C	21,05	14,21		1	
	C	<u></u>	10 42		~	
	C	22,22	19,42		111	
2019/0011/05/0	6	17.05	14.10		£	1001
	L	17,05	14,18		T	1881
2019/0011/05/3	6	22.25	10.20			1001
	L	23,35	18,39		m	1881
2019/0011/05//						
NHMW	C	25,57	19,85		m	1894
2019/0011/0579						
NHMW	С	27,79	24,16		m	1881
2019/0011/0580						
NHMW	С	27,43	24,43		m	1881
2019/0011/0580						
NHMW	С	28,45	20,69	105,04	m	
2019/0011/0585						
NHMW	С	27,51	20,77		m	
2019/0011/0589						
NHMW	С	26,29	19,81		m	1880
2019/0011/0590						
NHMW	С	24,34	17,54	108,18	m	1879
---------------------------	---	----------------	------------	--------	---	------
2019/0011/0937						
NHMW	С	27,75	19,96	122,33	m	1879
2019/0011/0938	6	10.24	12.64	00.70	ſ	4000
NHMW	L	19,21	13,61	92,76	Ť	1882
2019/0011/0939	C	10.44	15 50	00.00	٢	1000
NHIVIVV 2010/0011/0040	L	19,44	15,52	99,89	T	1880
2019/0011/0940 NHM/M	C	25.2	17 81	11/ /2	m	1870
2019/0011/0941	C	23,2	17,01	114,42		1075
NHMW	C	24 37	20.04		m	1880
2019/0011/0942	C	21,07	20,01			1000
NHMW	С	30.45	22.34		m	
2019/0011/0943		, -	7 -			
NHMW	С	25,66	19,01	105,4	m	1879
2019/0011/0944						
NHMW	С	27,69	20,72	107,26	m	1879
2019/0011/0945						
NHMW	С	26,4	22,22	119,3	m	1879
2019/0011/0946						
NHMW	С	21,88	15,41	91,37	f	
2019/0011/0947						
NHMW	С	21,9	17,94	91,12	f	1882
2019/0011/0948	_					
NHMW	С	27,69	21,51	107,45	m	1880
2019/0011/0949	6	20.00	4 4 4 0	02.05	ſ	
NHIVIW	L	20,86	14,49	93,85	T	
2019/0011/0950	C	10.40	1 4 7 2	00 1 4	£	1007
	L	19,40	14,72	90,14	I	1002
	C	22.27	16.9/	03 71	f	
2019/0011/0952	C	23,27	10,54	55,71	1	
NHMW	С	21.36	16.32	94.4	f	
2019/0011/0953	-	,	,	, .		
NHMW	С	20,82	15,42	85,63	f	
2019/0011/0954						
NHMW	С	23,12	16,56	89,07	f	
2019/0011/0955						
NHMW	С	22,5	17,03	114,55	f	1879
2019/0011/0956						
NHMW	С	25 <i>,</i> 02	21,75	120	m	1880
2019/0011/0957						
NHMW	С	27,25	19,15		m	1881
2019/0011/0961	_					
NHMW	С	29,7	21,34	104,59	m	1881
2019/0011/0967						

Tabelle 42: Messwerte der Canini Wurzeln

Inventarnummer	Element	Länge	Breite	Geschlecht	Jahr
NHMW	С	33,02	22,09	m	
2019/0011/0560					

NHMW	С	35,27	24,11	m	
2019/0011/0569					
NHMW	С	23,54	16,49	f	
2019/0011/0591					
NHMW	С	37,47	26,41	m	1880
2019/0011/0958					
NHMW	С	29,55	21,85	f	1878
2019/0011/0959					
NHMW	С	27,68	18,75	f	1881
2019/0011/0960					
NHMW	С	33,11	20,41	m	
2019/0011/0962					
NHMW	С	34,9	23,32	m	1878
2019/0011/0963					
NHMW	С	26,81	20,3	f	
2019/0011/0964					
NHMW	С	32,97	21,46	m	
2019/0011/0965					
NHMW	С	33,28	24,6	m	
2019/0011/0966					
NHMW	С	42,83	25,16	m	1881
2019/0011/0968					
NHMW	С	34,35	22,23	m	
2019/0011/0969					
NHMW	С	32,41	23,71	m	
2019/0011/0970					
NHMW	С	33,51	22,77	m	
2019/0011/0971					
NHMW	С	35,93	25,26	m	
2019/0011/0972					
NHMW	С	20,62	13,11	f	
2019/0011/0973					
NHMW	С	25,78	18,08	f	1882
2019/0011/0974					
NHMW	С	28,56	20,42	f	
2019/0011/0975					
NHMW	С	26,35	16,43	f	
2019/0011/0976					
NHMW	С	23,52	15,43	f	1880
2019/0011/0977					
NHMW	С	27,08	18,34	f	1882
2019/0011/0978					
NHMW	С	23,32	16,09	f	1882
2019/0011/0979					
NHMW	С	18,76	13,83	f	1882
2019/0011/0980					
NHMW	С	24,71	16,14	f	1882
2019/0011/0981					
NHMW	С	23,75	17,33	f	
2019/0011/0982					
NHMW	С	35,41	23,61	m	1882
2019/0011/0983					
NHMW	С	35,26	21,78	m	

2019/0011/0984					
NHMW	С	25,75	18,76	f	1882
2019/0011/0985					
NHMW	С	36,16	26,63	m	1879
2019/0011/0986					
NHMW	С	26,64	19,56	f	1882
2019/0011/0987					
NHMW	С	24,03	17,12	f	
2019/0011/0988					
NHMW	С	23,55	17,56	f	1882
2019/0011/0989					
NHMW	С	24,39	16,41	f	1882
2019/0011/0990					
NHMW	С	22,72	16,74	f	1882
2019/0011/0991					
NHMW	С	20,87	14,95	f	
2019/0011/0992					
NHMW	С	21,7	16,5	f	
2019/0011/0993					
NHMW	С	33,54	20,77	m	
2019/0011/0994					
NHMW	С	35,92	27,19	m	1882
2019/0011/0995					
NHMW	С	25,21	17,39	f	1882
2019/0011/0996					
NHMW	С	25,03	16,04	f	
2019/0011/0997					
NHMW	С	23,33	17,29	f	
2019/0011/0998					

Tabelle 43: Messwerte der P4 sup

Inventarnummer	Element	Körperseite	Länge	Breite	Morphotyp	Jahr
NHMW	P4 sup	sin	19,98	14,08		1880
2019/0011/0416	sin					
NHMW	P4 sup	dex	19,12	13,92		1880
2019/0011/0416	dex					
NHMW	P4 sup	sin	20,03	14,57	А	1880
2019/0011/0417	sin					
NHMW	P4 sup	dex	19,75	14,43	А	1880
2019/0011/0417	dex					
NHMW	p4 sup	sin	20,15	15,68	С	1882
2019/0011/0545	sin					
NHMW	P4 sup	sin	20,85	14,86	А	1881
2019/0011/0580	sin					
NHMW	P4 sup	dex	21,49	16,22	A	1881
2019/0011/0580	dex					
NHMW	P4 sup	sin	19,13	13,86	A	
2019/0011/0582	sin					
NHMW	P4 sup	sin	20,63	14,97	В	
2019/0011/0664	sin				_	
NHMW	P4 sup	sin	20,02	14,22	D	1882

2019/0011/0665	sin					
NHMW	P4 sup	sin	22,38	14,3	D	
2019/0011/0666	sin					
NHMW	P4 sup	sin	21,86	14,81	А	
2019/0011/0667	sin					
NHMW	P4 sup	sin	19,1	13,32	B/D	1882
2019/0011/0668	sin					
NHMW	P4 sup	sin	21,45	13,37	В	1880
2019/0011/0669	sin					
NHMW	P4 sup	dex	18,97	14,77	A	
2019/0011/0670	dex					
NHMW	P4 sup	dex	21,12	14,89	А	1880
2019/0011/0671	dex					
NHMW	P4 sup	dex	21,75	14,28	А	1881
2019/0011/0672	dex					
NHMW	P4 sup	dex	21	15,74	А	
2019/0011/0673	dex					
	P4 sup	dex	21	15,13	A	
2019/0011/06/4	dex					
NHMW	P4 sup	dex	18,6	12,29	A	1881
2019/0011/06/5	dex		20.42	4 4 5 0	-	
NHMW	P4 sup	dex	20,42	14,59	В	
2019/0011/0999	dex		24.46	46 57	5	4070
NHMW	P4 sup	sin	21,16	16,57	В	1878
2019/0011/1000	sin		40 50	4.2.00	6	4070
NHIVIW	P4 sup	dex	19,52	13,89	C	18/8
2019/0011/1001	dex					

Tabelle 44: Messwerte der p4 inf

Inventarnummer	Element	Körperseite	Länge	Breite	Morphotyp	Jahr
NHMW	p4 inf	sin	19,09	10,88		
2019/0011/0443	sin					
NHMW	p4 inf	sin	15,36	9,89	c1	1881
2019/0011/0444	sin					
NHMW	p4 inf	sin	15,8	11,82	d1	1881
2019/0011/0445	sin					
NHMW	p4 inf	sin	16,76	10,21	c1	1880
2019/0011/0446	sin					
NHMW	p4 inf	dex	16,31	10,28	c2	1880
2019/0011/0451	dex					
NHMW	p4 inf	dex	16,39	9,48	d1	1881
2019/0011/0452	dex					
	p4 inf	dex	14,44	9,79	b1	1881
2019/0011/0453	dex		17.00			
	p4 inf	sin	17,99	11,19	C1	
2019/0011/0538	SIN		10.04	10.24	-1	1000
NHIVIVV 2010/0011/0520	p4 Inf	sin	16,64	10,24	CI	1882
	SIN n4 inf	dov	15 74	0 56	c1	1007
2010/0011/05/0	dov	uex	13,74	9,50	CT.	1002
NHMM	n/ inf	sin	15.06	10 27	c1	
	P4 III	5111	15,00	10,27		

2019/0011/0541	sin					
NHMW	p4 inf	sin	13,85	8,99	c1	
2019/0011/0542	sin					
NHMW	p4 inf	sin	15,9	10,04	c1	
2019/0011/0543	sin					
NHMW	p4 inf	sin	16,2	9,58	d1	1880
2019/0011/0544	sin					
NHMW	p4 inf	sin	15,81	10,19	d1	1882
2019/0011/0546	sin					
NHMW	p4 inf	dex	12,03	8,5	c1	1881
2019/0011/0575	dex					
NHMW	p4 inf	sin	13,59	8,86	d1	1881
2019/0011/0577	sin		,	,		
NHMW	p4 inf	sin	16,35	9,98	c1	1881
2019/0011/0578	sin					
NHMW	p4 inf	dex	15,66	10,5	c1	1894
2019/0011/0579	dex					
NHMW	p4 inf	sin	17,32	10,65	c2	
2019/0011/0584	sin					
NHMW	p4 inf	dex	17,32	10,64	c1	
2019/0011/0586	dex					
NHMW	p4 inf	sin	16,18	9,43	c1	
2019/0011/0587	sin					
NHMW	p4 inf	dex	14,5	10,41	d1	1878
2019/0011/1002	dex					
NHMW	p4 inf	dex	15,75	9,23	c1/d1	1879
2019/0011/1003	dex					
NHMW	p4 inf	sin	14,93	9,25	c1	1881
2019/0011/1004	sin					
NHMW	p4 inf	sin	17,99	11,16	c1	1881
2019/0011/1005	sin					
NHMW	p4 inf	dex	12,61	8,78	c1	
2019/0011/1006	dex					
NHMW	p4 inf	dex	16,55	10,9	c1	1881
2019/0011/1007	dex					
NHMW	p4 inf	sin	16,79	10,46	c1	1881
2019/0011/1008	sin					
NHMW	p4 inf	sin	16,39	10,87	c1	1881
2019/0011/1009	sin					
NHMW	p4 inf	sin	12,73	8,73	c1	1879
2019/0011/1010	sin					
NHMW	p4 inf	sin	16,26	10,08	c1/d1	1881
2019/0011/1011	sin					
NHMW	p4 inf	dex	16,75	11,11	c1	1881
2019/0011/1012	dex					
NHMW	p4 inf	sin	14,72	9,74	c1	1881
2019/0011/1013	sin					
NHMW	p4 inf	dex	16,05	9,56	c1/d1	1880
2019/0011/1014	dex					

ī

Tabelle 45: Messwerte der M1 sup

Inventarnummer	Element	Körperseite	Länge	Breite	Jahr
NHMW	M1 sup	sin	31,56	22,01	1880
2019/0011/0416	sin				
NHMW	M1 sup	dex	30,82	21,37	1880
2019/0011/0416	dex				
NHMW	M1 sup	sin	29,25	21,03	1880
2019/0011/0417	sin				
NHMW	M1 sup	dex	28,89	21,2	1880
2019/0011/0417	dex				
NHMW	M1 sup	dex	29,09	21,76	1879
2019/0011/0420	dex				
NHMW	M1 sup	dex	29,06	20,67	
2019/0011/0441	dex				
NHMW	M1 sup	dex	30,69	21,19	1881
2019/0011/0580	dex				
NHMW	M1 sup	sin	25,75	15,21	
2019/0011/0581	sin				
NHMW	M1 sup	dex	24,87	16,31	
2019/0011/0581	dex				
NHMW	M1 sup	sin	28,4	19,05	
2019/0011/0582	sin				
NHMW	M1 sup	sin	28,28	18,58	
2019/0011/0583	sin				
NHMW	M1 sup	sin	29,55	24,58	1881
2019/0011/0676	sin				
NHMW	M1 sup	sin	27,16	17,78	1881
2019/0011/0677	sin				
NHMW	M1 sup	sin	28,55	19,63	1880
2019/0011/0678	sin				
NHMW	M1 sup	sin	31,02	20,35	1881
2019/0011/0679	sin				
NHMW	M1 sup	sin	27,25	19,72	
2019/0011/0680	sin				
NHMW	M1 sup	sin	30,97	22,09	
2019/0011/0681	sin				
NHMW	M1 sup	sin	28,68	19,05	1881
2019/0011/0682	sin				
NHMW	M1 sup	sin	27,35	19,98	1881
2019/0011/0683	sin				
NHMW	M1 sup	sin	26,47	19,01	
2019/0011/0684	sin				
NHMW	M1 sup	sin	30,31	20,5	
2019/0011/0685	sin				
NHMW	M1 sup	sin	27,07	19,32	1881
2019/0011/0686	sin				
NHMW	M1 sup	sin	28,14	20,94	1882
2019/0011/0687	sin				
NHMW	M1 sup	sin	25,63	20,38	1880
2019/0011/0688	sin				
NHMW	M1 sup	sin	29,41	20,55	1880
2019/0011/0689	sin				

NHMW	M1 sup	sin	27,76	17,78	
2019/0011/0690	sin				
NHMW	M1 sup	dex	29,88	19,88	1882
2019/0011/0691	dex				
NHMW	M1 sup	dex	26,53	20,23	1881
2019/0011/0692	dex				
NHMW	M1 sup	dex	30,16	20,71	1881
2019/0011/0693	dex				
NHMW	M1 sup	dex	29,9	20,59	
2019/0011/0694	dex				
NHMW	M1 sup	dex	32,28	21,91	1881
2019/0011/0695	dex				
NHMW	M1 sup	dex	27,17	19,32	
2019/0011/0696	dex				
NHMW	M1 sup	dex	30,37	20,5	1881
2019/0011/0697	dex				
NHMW	M1 sup	dex	30,65	20,86	1880
2019/0011/0698	dex				
NHMW	M1 sup	dex	29,44	21,35	
2019/0011/0699	dex				
NHMW	M1 sup	dex	31,3	20,47	
2019/0011/0700	dex				
NHMW	M1 sup	dex	29,38	20	1882
2019/0011/0701	dex				
NHMW	M1 sup	dex	28,47	18,99	1881
2019/0011/0702	dex				
NHMW	M1 sup	dex	27,63	18,5	1882
2019/0011/0703	dex				
NHMW	M1 sup	dex	25,65	18,13	1882
2019/0011/0704	dex				

Tabelle 46: Messwerte der M2 sup

Inventarnummer	Element	Körperseite	Länge	Breite	Jahr
NHMW	M2 sup	sin	46,62	23,72	1880
2019/0011/0416	sin				
NHMW	M2 sup	dex	47,4	23,47	1880
2019/0011/0416	dex				
NHMW	M2 sup	sin	47 <i>,</i> 98	24,39	1880
2019/0011/0417	sin				
NHMW	M2 sup	dex	47,67	23,91	1880
2019/0011/0417	dex				
NHMW	M2 sup	dex	44,44	23,71	1879
2019/0011/0420	dex				
NHMW	M2 sup	dex	44,68	23,32	
2019/0011/0580	dex				
NHMW	M2 sup	sin	36,11	21,61	
2019/0011/0581	sin				
NHMW	M2 sup	dex	37,84	20,57	
2019/0011/0581	dex				
NHMW	M2 sup	sin	44,68	23,53	
2019/0011/0582	sin				

NHMW	M2 sup	sin	44,61	22,03	
2019/0011/0583	sin				
NHMW	M2 sup	sin	37,47	21,93	1881
2019/0011/0592	sin				
NHMW	M2 sup	dex	43,8	22,11	
2019/0011/0593	dex				
NHMW	M2 sup	sin	44,38	20,61	1881
2019/0011/0594	sin				
NHMW	M2 sup	sin	45,31	23,08	1880
2019/0011/0705	sin				
NHMW	M2 sup	sin	44,18	21,59	
2019/0011/0706	sin				
NHMW	M2 sup	sin	43,74	21,47	1881
2019/0011/0707	sin				
NHMW	M2 sup	sin	47,52	23,51	1880
2019/0011/0708	sin				
NHMW	M2 sup	sin	44,71	22,25	
2019/0011/0709	sin				
NHMW	M2 sup	sin	44,19	22,55	
2019/0011/0710	sin				
NHMW	M2 sup	sin	49,62	24,02	
2019/0011/0711	sin				
NHMW	M2 sup	sin	42,73	23,31	
2019/0011/0712	sin				
NHMW	M2 sup	sin	42,24	21,95	1881
2019/0011/0713	sin				
NHMW	M2 sup	dex	44,17	20,76	1881
2019/0011/0714	dex				
NHMW	M2 sup	dex	48,13	23,72	
2019/0011/0715	dex				
NHMW	M2 sup	dex	47,56	22,73	1881
2019/0011/0716	dex				
NHMW	M2 sup	dex	45,84	23,95	1880
2019/0011/0717	dex				
NHMW	M2 sup	dex	51,62	25,89	
2019/0011/0718	dex				
NHMW	M2 sup	dex	45,58	22,49	1881
2019/0011/0719	dex				
NHMW	M2 sup	dex	46,61	22,9	
2019/0011/0720	dex				
NHMW	M2 sup	dex	52 <i>,</i> 04	24,25	
2019/0011/0721	dex				
NHMW	M2 sup	dex	46,51	21,85	
2019/0011/0722	dex				
NHMW	M2 sup	dex	49,02	23,88	1881
2019/0011/0723	dex				
NHMW	M2 sup	dex	46,63	21,96	
2019/0011/0724	dex				
NHMW	M2 sup	dex	44,58	23,2	1880
2019/0011/0725	dex				
NHMW	M2 sup	dex	42,4	20,85	
2019/0011/0726	dex				
NHMW	M2 sup	dex	43,88	22,98	

2019/0011/0727 dex

Tabelle 47: Messwerte der m1 inf

Inventarnummer	Element	Körperseite	Länge	Breite	Jahr
NHMW	m1 inf	dex	28,62	14,19	1881
2019/0011/0415	dex				
NHMW	m1 inf	dex	28,43	18,77	
2019/0011/0419	dex				
NHMW	m1 inf	sin	26,95	15,26	
2019/0011/0422	sin				
NHMW	m1 inf	sin	27,67	13,21	
2019/0011/0424	sin				
NHMW	m1 inf	dex	27,84	13,09	
2019/0011/0426	dex				
NHMW	m1 inf	dex	29,83	13,84	
2019/0011/0427	dex				
NHMW	m1 inf	sin	31,66	14,49	
2019/0011/0454	sin				
NHMW	m1 inf	sin	30,83	14,81	
2019/0011/0455	sin				
NHMW	m1 inf	sin	28,65	13,37	1881
2019/0011/0456	sin				
NHMW	m1 inf	sin	30,15	13,09	
2019/0011/0457	sin				
NHMW	m1 inf	sin	31,91	15	
2019/0011/0458	sin				
NHMW	m1 inf	sin	28,85	14,04	1881
2019/0011/0459	sin				
NHMW	m1 inf	sin	27,97	13,52	1881
2019/0011/0460	sin				
NHMW	m1 inf	sin	33,26	15,82	1880
2019/0011/0461	sin				
NHMW	m1 inf	sin	30,23	13,77	
2019/0011/0462	sin				
NHMW	m1 inf	sin	29,92	13,11	
2019/0011/0463	sin				
NHMW	m1 inf	sin	29,16	13,91	
2019/0011/0464	sin				
NHMW	m1 inf	sin	28,77	14,94	
2019/0011/0465	sin				
NHMW	m1 inf	dex	28,78	14,22	
2019/0011/0466	dex				
NHMW	m1 inf	sin	28,77	13,6	1882
2019/0011/0467	sin				
NHMW	m1 inf	sin	29,16	14,63	
2019/0011/0468	sin				
NHMW	m1 inf	sin	31,44	15 <i>,</i> 36	1881
2019/0011/0469	sin				
NHMW	m1 inf	sin	30,15	13,43	1880
2019/0011/0470	sin				
NHMW	m1 inf	sin	31,33	14,4	

2019/0011/0471	sin				
NHMW	m1 inf	sin	31,02	14,92	1881
2019/0011/0472	sin				
NHMW	m1 inf	sin	31,71	16	1882
2019/0011/0473	sin				
NHMW	m1 inf	sin	27,45	13,61	1881
2019/0011/0474	sin				
NHMW	m1 inf	sin	34,98	16,9	
2019/0011/0475	sin				
NHMW	m1 inf	sin	30,46	14,45	1882
2019/0011/0476	sin				
NHMW	m1 inf	sin	29,36	14,68	1880
2019/0011/0477	sin				
NHMW	m1 inf	sin	25,93	13,2	1881
2019/0011/0571	sin				
NHMW	m1 inf	dex	29,38	14,29	1881
2019/0011/0575	dex				
NHMW	m1 inf	sin	30,1	13,49	
2019/0011/0576	sin				
NHMW	m1 inf	sin	27,17	12,79	1881
2019/0011/0577	sin				
NHMW	m1 inf	sin	31,17	14,07	1881
2019/0011/0578	sin				
NHMW	m1 inf	dex	29,43	14,13	1894
2019/0011/0579	dex				
NHMW	m1 inf	sin	29,49	12,96	
2019/0011/0587	sin				

Tabelle 48: Messwerte der m2 inf

Inventarnummer	Element	Körperseite	Länge	Breite	Morphotyp	Jahr
NHMW	m2 inf	dex	29,25	17,71		1881
2019/0011/0415	dex					
NHMW	m2 inf	dex	30,49	17,8		1881
2019/0011/0418	dex					
NHMW	m2 inf	dex	29,5	16,97		
2019/0011/0419	dex					
NHMW	m2 inf	dex	28,63	17,33		
2019/0011/0421	dex					
NHMW	m2 inf	dex	28	17,19		
2019/0011/0423	dex					
NHMW	m2 inf	sin	27,52	17,43		
2019/0011/0424	sin					
NHMW	m2 inf	sin	30,37	17,72		
2019/0011/0425	sin					
NHMW	m2 inf	dex	29,56	16,89		
2019/0011/0427	dex					
NHMW	m2 inf	sin	29,4	17,7		
2019/0011/0442	sin					
NHMW	m2 inf	sin	28,66	16,14	c/d	
2019/0011/0574	sin					
NHMW	m2 inf	sin	30,88	17,86		

2019/0011/0576	sin					
NHMW	m2 inf	sin	29,93	18,25		1881
2019/0011/0578	sin					
NHMW	m2 inf	dex	30.31	17.69		1894
2019/0011/0579	dex		,	,		
NHMW	m2 inf	sin	31,98	19,12		
2019/0011/0584	sin		,			
NHMW	m2 inf	dex	32,59	19,86		
2019/0011/0586	dex		,			
NHMW	m2 inf	sin	27,21	17,15		
2019/0011/0587	sin					
NHMW	m2 inf	sin	27,43	17,36		1881
2019/0011/0588	sin			·		
NHMW	m2 inf	dex	29,27	16,48	d	
2019/0011/0595	dex			·		
NHMW	m2 inf	dex	30,92	17,09		
2019/0011/0596	dex			·		
NHMW	m2 inf	dex	28,15	17,31	d	
2019/0011/0597	dex					
NHMW	m2 inf	dex	28,96	16,31	b	1881
2019/0011/0598	dex					
NHMW	m2 inf	dex	28,5	17,18	c/d	1881
2019/0011/0599	dex					
NHMW	m2 inf	dex	28,85	16,47	b	1881
2019/0011/0600	dex					
NHMW	m2 inf	dex	32	18,78		1880
2019/0011/0601	dex					
NHMW	m2 inf	dex	27,61	16,88	b	1881
2019/0011/0602	dex					
NHMW	m2 inf	dex	35,8	20,56	b	1880
2019/0011/0603	dex					
NHMW	m2 inf	dex	31,89	18,36		
2019/0011/0604	dex					
NHMW	m2 inf	dex	30,74	18,51		
2019/0011/0605	dex					
NHMW	m2 inf	dex	30,02	18,12	b	1882
2019/0011/0606	dex					
NHMW	m2 inf	dex	31,82	19,18	С	
2019/0011/0607	dex					
NHMW	m2 inf	dex	33,03	19,02		1880
2019/0011/0608	dex					
NHMW	m2 inf	dex	32,71	19,02	С	
2019/0011/0609	dex					
NHMW	m2 inf	sin	29,16	17,04		1882
2019/0011/0610	sin					
NHMW	m2 inf	sin	29,68	17,11		
2019/0011/0611	sin					
NHMW	m2 inf	sin	33,75	18,92	b	1880
2019/0011/0612	sin					
NHMW	m2 inf	sin	28,78	17,04	С	1882
2019/0011/0613	sin					
NHMW	m2 inf	sin	33,08	18,49	b	1880
2019/0011/0614	sin					

NHMW	m2 inf	sin	33,84	20,49		1881
2019/0011/0615	sin					
NHMW	m2 inf	sin	26,93	16,5	b	
2019/0011/0616	sin					
NHMW	m2 inf	sin	30,43	17,8	С	1881
2019/0011/0617	sin					
NHMW	m2 inf	sin	27,73	15,13	b	1881
2019/0011/0618	sin					
NHMW	m2 inf	sin	28,63	17,43	d	1881
2019/0011/0619	sin					
NHMW	m2 inf	sin	31,29	18,19	b	
2019/0011/0620	sin					
NHMW	m2 inf	sin	32,67	18,37	d	1880
2019/0011/0621	sin					
NHMW	m2 inf	sin	30,02	16,8	b	1881
2019/0011/0622	sin					
NHMW	m2 inf	sin	29,26	16,19	С	
2019/0011/0623	sin					
NHMW	m2 inf	sin	25,43	15,22	b	1881
2019/0011/0624	sin					
NHMW	m2 inf	sin	30,12	18,53		1882
2019/0011/0625	sin					
NHMW	m2 inf	sin	29,76	16,99	С	
2019/0011/0626	sin					
NHMW	m2 inf	sin	32,54	17,63	С	1881
2019/0011/0627	sin					
NHMW	m2 inf	sin	28,34	16,22	b	
2019/0011/0628	sin					
NHMW	m2 inf	sin	30,91	20,12		1881
2019/0011/0629	sin					
NHMW	m2 inf	sin	28,99	18,25		
2019/0011/0630	sin					
NHMW	m2 inf	sin	28,15	16,03	С	1880
2019/0011/0631	sin					
NHMW	m2 inf	sin	29,1	19,4		1881
2019/0011/0632	sin					
NHMW	m2 inf	sin	29,76	16,42		1882
2019/0011/0633	sin					
NHMW	m2 inf	sin	29,93	18,19	b	
2019/0011/0634	sin					
NHMW	m2 inf	sin	29,15	17,1	С	
2019/0011/0635	sin					
NHMW	m2 inf	sin	30,98	18,27	С	1880
2019/0011/0636	sin					

Tabelle 49: Messwerte der m3 inf

Inventarnummer	Element	Körperseite	Länge	Breite	Jahr
NHMW	m3 inf	dex	25,5	19,53	1881
2019/0011/0415	dex				
NHMW	m3 inf	dex	27,49	19,78	1881
2019/0011/0418	dex				

NHMW	m3 inf	dex	23,7	18,1	
2019/0011/0421	dex				
NHMW	m3 inf	dex	24,36	19,09	
2019/0011/0423	dex				
NHMW	m3 inf	sin	25,68	18,7	
2019/0011/0424	sin				
NHMW	m3 inf	sin	27,55	20,46	
2019/0011/0425	sin				
NHMW	m3 inf	dex	23,88	18,49	1881
2019/0011/0572	dex				
NHMW	m3 inf	sin	25,29	19,9	1881
2019/0011/0578	sin				
NHMW	m3 inf	sin	27,09	20,85	
2019/0011/0584	sin		/	-,	
NHMW	m3 inf	sin	25.57	17.77	
2019/0011/0587	sin		,	,	
NHMW	m3 inf	sin	23.25	18.58	1881
2019/0011/0588	sin		,	,	
NHMW	m3 inf	sin	28.69	22.38	1880
2019/0011/0637	sin		- /	,	
NHMW	m3 inf	sin	27,27	19,47	1881
2019/0011/0638	sin		,	,	
NHMW	m3 inf	sin	27,15	19,3	
2019/0011/0639	sin		,	,	
NHMW	m3 inf	sin	27,2	20,91	1880
2019/0011/0640	sin				
NHMW	m3 inf	sin	29,53	20,59	1881
2019/0011/0641	sin				
NHMW	m3 inf	sin	27,12	18,74	1881
2019/0011/0642	sin				
NHMW	m3 inf	sin	27,26	21,38	1881
2019/0011/0643	sin				
NHMW	m3 inf	sin	22,36	15,94	
2019/0011/0644	sin				
NHMW	m3 inf	sin	25,15	19,23	
2019/0011/0645	sin				
NHMW	m3 inf	sin	27,35	22,71	
2019/0011/0646	sin				
NHMW	m3 inf	sin	24,11	17,96	1880
2019/0011/0647	sin				
NHMW	m3 inf	dex	25,08	18,65	1881
2019/0011/0648	dex				
NHMW	m3 inf	dex	25,73	17,48	
2019/0011/0649	dex				
NHMW	m3 inf	dex	29,2	19,63	1880
2019/0011/0650	dex				
NHMW	m3 inf	dex	24,58	17,35	
2019/0011/0651	dex				
NHMW	m3 inf	dex	26,08	19,77	
2019/0011/0652	dex				
NHMW	m3 inf	dex	22,4	17,09	1882
2019/0011/0653	dex				
NHMW	m3 inf	dex	25,2	19,66	

2019/0011/0654	dex				
NHMW	m3 inf	dex	25,71	18,65	1881
2019/0011/0655	dex				
NHMW	m3 inf	dex	29,41	19,34	1882
2019/0011/0656	dex				
NHMW	m3 inf	dex	25,56	17,86	1880
2019/0011/0657	dex				
NHMW	m3 inf	dex	29,77	19,69	1881
2019/0011/0658	dex				
NHMW	m3 inf	dex	27,08	21,32	
2019/0011/0659	dex				
NHMW	m3 inf	dex	29,11	21,45	
2019/0011/0660	dex				
NHMW	m3 inf	dex	28	18,59	
2019/0011/0661	dex				
NHMW	m3 inf	dex	30,26	19,35	1882
2019/0011/0662	dex				
NHMW	m3 inf	dex	24,46	18,38	
2019/0011/0663	dex				

13. Anhang - Maßtabellen Metapodien

Tabelle 50: Messwerte der Mc1

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	Mc1 sin	sin	68,37	21,4	31,30	1881
2019/0011/0007						
NHMW	Mc1 dex	dex	52,76	17,41	33,00	1881
2019/0011/0040						
NHMW	Mc1 sin	sin	60,26	19,74	32,76	1881
2019/0011/0041						
NHMW	Mc1 dex	dex	55 <i>,</i> 69	15,05	27,02	
2019/0011/0042						
NHMW	Mc1 sin	sin	62,07	17,01	27,40	1882
2019/0011/0043						
NHMW	Mc1 sin	sin	55 <i>,</i> 95	18,64	33,32	1881
2019/0011/0044						
NHMW	Mc1 dex	dex	63 <i>,</i> 98	18,93	29,59	
2019/0011/0045						
NHMW	Mc1 sin	sin	/1,81	21,11	29,40	1881
2019/0011/0198			64.67	20.52	24 72	
NHIVIW	IVICT SIN	sin	64,67	20,52	31,73	
	Mc1 dov	dov	62.25	17 55	27.75	1001
	IVICT UEX	uex	05,25	17,55	27,75	1001
	Mc1 sin	sin	62.05	10.92	20.00	
2019/0011/0201	IVICE SIII	5111	03,33	15,62	30,33	
NHMW/	Mc1 dex	dex	66 38	19.05	28 70	
2019/0011/0202	WICT UCK	ucx	00,00	10,00	20,70	
NHMW	Mc1 sin	sin	70.41	20.56	29.20	
2019/0011/0203				_0,00	,	
NHMW	Mc1 sin	sin	61,41	16,99	27,67	1880
2019/0011/0204			,	,	,	

NHMW	Mc1 sin	sin	93 <i>,</i> 95	19,48	20,73	
2019/0011/0205						
NHMW	Mc1 sin	sin	68,63	19,36	28,21	
2019/0011/0206						
NHMW	Mc1 dex	dex	67,65	22,36	33,05	
2019/0011/0207						
NHMW	Mc1 sin	sin	68,42	21,07	30,80	1880
2019/0011/0208			~ ~ ~ ~		~~ ~~	
NHMW	Mc1 dex	dex	67,23	19,98	29,72	
2019/0011/0209			ca aa	20.02	22.47	
NHIVIW	IVICT SIN	sin	62,23	20,02	32,17	
2019/0011/0210		o i e	C7 10	10.20	27.20	
NHIVIVV	IVICE SIN	SIN	67,19	18,38	27,30	
	Mc1 dox	dov	62.22	170	20 EC	
2010/0011/0212	IVICE UEX	uex	02,32	17,0	20,30	
NHMM/	Mc1 sin	sin	62 52	17 31	27 69	
2019/0011/0213	IVICE SIII	5111	02,52	17,51	27,05	
NHMW	Mc1 dex	dex	69.73	21.06	30.20	
2019/0011/0214	WICE GEX	ück	05,75	21,00	50,20	
NHMW	Mc1 sin	sin	73,66	20,27	27,52	
2019/0011/0215			,	,	,	
NHMW	Mc1 dex	dex	69,65	20,93	30,05	1879
2019/0011/0216						
NHMW	Mc1 dex	dex	70,95	20,91	29,47	
2019/0011/0217						
NHMW	Mc1 dex	dex	72,5	19,05	26,28	1879
2019/0011/0218						
NHMW	Mc1 dex	dex	59,88	18,01	30,08	1880
2019/0011/0219						
NHMW	Mc1 sin	sin	57,22	14,94	26,11	1881
2019/0011/0220			57.20	17.02	24.07	1001
NHIVIW	MC1 dex	dex	57,39	17,83	31,07	1881
	Ma1 day	dav	60.91	16.2	26.90	1000
	WICT UEX	uex	00,81	10,5	20,60	1002
2019/0011/0222 NHM/M	Mc1 day	dev	63 02	10 15	20.06	
2019/0011/0223	IVICE UEX	uex	03,52	19,19	25,50	
NHMW	Mc1 dex	dex	65.52	19.03	29.04	
2019/0011/0224			00,01	_0,00	_0,0 :	
NHMW	Mc1 sin	sin	77,24	22,95	29,71	1880
2019/0011/0225						
NHMW	Mc1 sin	sin	65,94	17,98	27,27	1880
2019/0011/0226						
NHMW	Mc1 sin	sin	71,36	22,17	31,07	1879
2019/0011/0227						
NHMW	Mc1 dex	dex	70,12	19,11	27,25	
2019/0011/0228						
NHMW	Mc1 dex	dex	65,05	21,58	33,17	
2019/0011/0229			70.44			1000
NHMW	Mc1 dex	dex	/0,11	23,43	33,42	1880
		cin	62.66	10 50	20.20	1000
	IVICE SIN	5111	03,00	19,29	29,20	τοου

2019/0011/0231						
NHMW	Mc1 dex	dex	63,01	18,03	28,61	1882
2019/0011/0232			·			
NHMW	Mc1 dex	dex	69,89	19,99	28,60	1881
2019/0011/0233						
NHMW	Mc1 sin	sin	71,35	19,86	27,83	
2019/0011/0234			,	-,	,	
NHMW	Mc1 sin	sin	66.35	17.95	27.05	
2019/0011/0235		••••	,			
NHMW	Mc1 dex	dex	62.52	21.08	33.72	1880
2019/0011/0236			/	,	,	
NHMW	Mc1 dex	dex	64.32	19.85	30.86	
2019/0011/0237			- ,-	-,	/	
NHMW	Mc1 dex	dex	73.01	20.9	28.63	1880
2019/0011/0238				,-	,	
NHMW	Mc1 dex	dex	62.86	17.12	27.24	
2019/0011/0239			,	,		
NHMW	Mc1 dex	dex	62.83	17.72	28.20	1881
2019/0011/0240			02,00	_,,, _	_0)_0	
NHMW	Mc1 dex	dex	59.41	17.06	28.72	1882
2019/0011/0241			00):=	_,,	_0)/ _	
NHMW	Mc1 dex	dex	66.52	20.33	30.56	
2019/0011/0242			,	,	,	
NHMW	Mc1 dex	dex	65.02	19.92	30.64	1880
2019/0011/0243			,	,	,-	
NHMW	Mc1 dex	dex	65.02	19.89	30.59	1880
2019/0011/0244			00)01	_0)00	00,00	
NHMW	Mc1 sin	sin	67.84	20.97	30.91	
2019/0011/0245				_ = , = :	,	
NHMW	Mc1 dex	dex	65.65	19.73	30.05	
2019/0011/0246			,	,	,	
NHMW	Mc1 dex	dex	72.7	22.08	30.37	1880
2019/0011/0247			,.	,	,	
NHMW	Mc1 sin	sin	66.13	17.98	27.19	
2019/0011/0248		-	, -	,	, -	
NHMW	Mc1 dex	dex	68.6	19.81	28.88	1880
2019/0011/0249			,	,	,	
NHMW	Mc1 dex	dex	59.09	18.72	31.68	
2019/0011/0250			,	-,	- /	
NHMW	Mc1 sin	sin	69,11	20,97	30,34	1881
2019/0011/0251						
NHMW	Mc1 sin	sin	72,45	22,02	30,39	1879
2019/0011/0252						
NHMW	Mc1 sin	sin	75,83	21,41	28,23	1880
2019/0011/0253			,	,	,	
NHMW	Mc1 sin	sin	59,55	17,99	30,21	1882
2019/0011/0254						
NHMW	Mc1 sin	sin	64,42	18,28	28,38	
2019/0011/0255						
NHMW	Mc1 dex	dex	67,55	20,45	30,27	
2019/0011/0256						
NHMW	Mc1 sin	sin	66,71	17,72	26,56	1879
2019/0011/0257				-	-	

NHMW	Mc1 dex	dex	76,2	21,58	28,32	1879
2019/0011/0258						
NHMW	Mc1 sin	sin	/4,89	22,15	29,58	
2019/0011/0259						
NHMW	Mc1 sin	sin	61,98	18,49	29,83	1882
2019/0011/0260						
NHMW	Mc1 dex	dex	71,43	19,86	27,80	1880
2019/0011/0261						
NHMW	Mc1 dex	dex	67,49	19,18	28,42	
2019/0011/0262						
NHMW	Mc1 dex	dex	54,1	16,22	29,98	1881
2019/0011/0263						
NHMW	Mc1 sin	sin	65,73	20,38	31,01	1881
2019/0011/0264						
NHMW	Mc1 dex	dex	63,43	18,29	28,83	
2019/0011/0265						
NHMW	Mc1 sin	sin	75,47	20,88	27,67	
2019/0011/0266						
NHMW	Mc1 dex	dex	65,57	19,1	29,13	1881
2019/0011/0267						
NHMW	Mc1 dex	dex	77,77	22,1	28,42	1881
2019/0011/0268						
NHMW	Mc1 dex	dex	67,58	18,27	27,03	1879
2019/0011/0269						
NHMW	Mc1 dex	dex	64,87	18,5	28,52	1882
2019/0011/0270						
NHMW	Mc1 sin	sin	64,04	18,26	28,51	1881
2019/0011/0271						
NHMW	Mc1 sin	sin	76,34	22,03	28,86	
2019/0011/0272						
NHMW	Mc1 sin	sin	60,75	16,93	27,87	1880
2019/0011/0273						
NHMW	Mc1 sin	sin	68,85	19,28	28,00	1879
2019/0011/0274						
NHMW	Mc1 sin	sin	61,26	16,75	27,34	1880
2019/0011/0275						
NHMW	Mc1 sin	sin	87,78	23,24	26,48	1880
2019/0011/0276			-	-	-	
NHMW	Mc1 dex	dex	70,39	17,08	24,26	
2019/0011/0277						

Tabelle 51: Messwerte der Mc2

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	Mc2 sin	sin	76,48	22,09	28,88	1882
2019/0011/0278						
NHMW	Mc2 sin	sin	71,24	22,01	30,90	
2019/0011/0279						
NHMW	Mc2 sin	sin	83,13	26,12	31,42	
2019/0011/0280						
NHMW	Mc2 sin	sin	78,21	26,47	33,84	
2019/0011/0281						

NHMW	Mc2 sin	sin	76,71	25,24	32,90	
2019/0011/0282						
NHMW	Mc2 sin	sin	69,02	21,32	30,89	1881
2019/0011/0283						
NHMW	Mc2 sin	sin	68,6	21,72	31,66	
2019/0011/0284						
NHMW	Mc2 sin	sin	73,05	24,4	33,40	1880
2019/0011/0285						
NHMW	Mc2 sin	sin	85,08	26,96	31,69	
2019/0011/0286						
NHMW	Mc2 sin	sin	83,28	25,83	31,02	1879
2019/0011/0287						
NHMW	Mc2 sin	sin	80,17	27,89	34,79	1880
2019/0011/0288						
NHMW	Mc2 sin	sin	63,63	20,75	32,61	1881
2019/0011/0289						
NHMW	Mc2 sin	sin	74,67	25,41	34,03	
2019/0011/0290						
NHMW	Mc2 sin	sin	89,71	29,65	33 <i>,</i> 05	
2019/0011/0291						
NHMW	Mc2 sin	sin	84,51	28,02	33,16	1880
2019/0011/0292						
NHMW	Mc2 sin	sin	75,79	25,61	33,79	1882
2019/0011/0293						
NHMW	Mc2 sin	sin	85,73	27,17	31,69	1881
2019/0011/0294						
NHMW	Mc2 sin	sin	68,9	24,62	35,73	
2019/0011/0295						
NHMW	Mc2 sin	sin	77,27	24,42	31,60	
2019/0011/0296						
NHMW	Mc2 sin	sin	77,26	26,46	34,25	
2019/0011/0297						
NHMW	Mc2 sin	sin	81,19	27,44	33,80	1881
2019/0011/0298						
NHMW	Mc2 sin	sin	69,96	22,46	32,10	1879
2019/0011/0299						
NHMW	Mc2 sin	sin	76,77	24,87	32,40	1882
2019/0011/0300						
NHMW	Mc2 sin	sin	/8,19	27,1	34,66	1881
2019/0011/0301			~~ ~~		~~	
NHMW	Mc2 sin	sin	90,43	27,81	30,75	1880
2019/0011/0302			04.70	20.70	22.05	4000
NHMW	Mc2 sin	sin	84,72	28,76	33,95	1880
2019/0011/0303			02.27	27.44	22.04	
NHMW	IVIC2 SIN	sin	83,37	27,44	32,91	
2019/0011/0304			07.44	20.00	24.26	4070
NHIVIW	IVICZ SIN	sin	87,44	29,96	34,26	1879
2019/0011/0305			74.00	24.04	22.05	
	IVICZ SIN	5111	74,92	24,UI	32,05	
		cin	70.45	22 45	22.20	1007
	IVICZ SIN	5111	70,45	23,45	33,29	τοςς
		cin	00 50	20 24	21 21	
	IVICZ SIN	5111	90,52	2ō,34	31,31	

2019/0011/0308						
NHMW	Mc2 sin	sin	91,03	29,01	31,87	1881
2019/0011/0309						
NHMW	Mc2 sin	sin	85,25	27,83	32,65	1881
2019/0011/0310						

Tabelle 52: Messwerte der Mc3

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	Mc3 sin	sin	88,32	28,48	32,25	1878
2019/0011/0312						
NHMW	Mc3 dex	dex	80,41	24,97	31,05	
2019/0011/0313						
NHMW	Mc3 sin	sin	76,65	24,81	32,37	1882
2019/0011/0314						
NHMW	Mc3 sin	sin	84,78	28,11	33,16	1881
2019/0011/0315						
NHMW	Mc3 dex	dex	82,22	25,77	31,34	
2019/0011/0316						
NHMW	Mc3 sin	sin	85,23	27,06	31,75	
2019/0011/0317						
NHMW	Mc3 dex	dex	87,26	27,13	31,09	1880
2019/0011/0318						
NHMW	Mc3 sin	sin	75,15	24,34	32,39	1882
2019/0011/0319						
NHMW	Mc3 sin	sin	78,09	23,74	30,40	1881
2019/0011/0320						
NHMW	Mc3 dex	dex	87,82	27,43	31,23	1882
2019/0011/0321						
NHMW	Mc3 sin	sin	79,36	26,53	33,43	1881
2019/0011/0322						
NHMW	Mc3 dex	dex	91,33	27,57	30,19	1881
2019/0011/0323			70 70	24.02	20.07	4000
NHMW	IVIC3 SIN	sin	/0,/8	21,92	30,97	1882
2019/0011/0324		o i e	04.00	25.52	20.02	
	IVIC3 SIN	SIN	84,99	25,52	30,03	
	Mc2 cin	sin	00 55	20	22.02	1070
2010/0011/0226		5111	90,33	29	52,05	10/0
2019/0011/0320 NHMM	Mc3 sin	sin	71 83	22/10	21 21	
2019/0011/0327		3111	/1,05	22,43	51,51	
NHMW	Mc3 dex	dex	79 88	24 24	30 35	1882
2019/0011/0328	WICD GEX	ück	, 9,00	21,21	30,33	1002
NHMW	Mc3 sin	sin	90.24	28.37	31.44	1880
2019/0011/0329		•		_0,07	u _) : :	
NHMW	Mc3 dex	dex	95.23	28.4	29.82	
2019/0011/0728			, -	,	, -	
NHMW	Mc3 sin	sin	88,43	23,14	26,17	
2019/0011/0729			-		-	
NHMW	Mc3 sin	sin	71,84	22,36	31,12	1882
2019/0011/0730						
NHMW	Mc3 Sin	sin	79,75	23,45	29,40	1879
1						

NHMW Mc3 Sin sin 81,9 25,06 30,60 2019/0011/0732 Mc3 Sin sin 75,89 23,57 31,06 1881 2019/0011/0733 Mc3 Sin sin 75,89 23,57 31,06 1881 2019/0011/0733 Mc3 Sin sin 89,77 28,79 32,07 1880 2019/0011/0734 Mc3 Sin sin 25,01 26,67 21,26	
2019/0011/0732 NHMW Mc3 Sin sin 75,89 23,57 31,06 1881 2019/0011/0733 Mc3 Sin sin 89,77 28,79 32,07 1880 2019/0011/0734	
NHMW Mc3 Sin sin 75,89 23,57 31,06 1881 2019/0011/0733 Mc3 Sin sin 89,77 28,79 32,07 1880 2019/0011/0734 Mc3 Sin sin 89,77 28,79 32,07 1880	
2019/0011/0733 NHMW Mc3 Sin sin 89,77 28,79 32,07 1880 2019/0011/0734	
NHMW Mc3 Sin sin 89,77 28,79 32,07 1880 2019/0011/0734	
2019/0011/0734	
NHMW Mc3 Sin sin 85,31 26,67 31,26	
2019/0011/0735	
NHMW Mc3 Sin sin 76,61 23,21 30,30 1879	
2019/0011/0736	
NHMW Mc3 Sin sin 68,85 21,89 31,79 1881	
2019/0011/0737	
NHMW Mc3 Sin sin 78,69 25,98 33,02	
2019/0011/0738	
NHMW Mc3 Sin sin 75,68 21,52 28,44	
2019/0011/0/39	
NHMW MC3 SIN SIN 87,92 27,39 31,15 1879	
2019/0011/0/40	
NTINIW INCS SIII SIII 64,27 25,55 50,50 2010/0011/0741	
NHMW Mc3 Sin sin 81.95 27.28 33.29	
2019/0011/0742	
NHMW Mc3 Sin sin 77 31 23 49 30 38	
2019/0011/0743	
NHMW Mc3 Sin sin 77,91 23,33 29,94 1882	
2019/0011/0744	
NHMW Mc3 Sin sin 72,75 22,18 30,49 1882	
2019/0011/0745	
NHMW Mc3 Sin sin 67,52 19,4 28,73 1881	
2019/0011/0746	
NHMW Mc3 Sin sin 83,69 26,17 31,27	
2019/0011/0747	
NHMW Mc3 Sin sin 84,68 24,85 29,35 1880	
2019/0011/0748	
NHMW Mc3 Sin sin 88,3 28,22 31,96	
2019/0011/0749	
NHMW Mc3 Sin sin 74,99 25,12 33,50	
2019/0011/0/50	
NTIMW IVILS SIII SIII 74,90 23,57 31,44 1881	
2019/0011/0751	
2010/0011/0752	
NHMW Mc3 Sin sin 79.81 24.08 30.17 1879	
2019/0011/0753	
NHMW Mc3 Sin sin 93.81 27.81 29.65 1879	
2019/0011/0754	
NHMW Mc3 Sin sin 85,77 30.17 35.18	
2019/0011/0755	

Tabelle 53: Messwerte der Mc4

NHMW Mc4 sin sin 93,88 32,26 34,36 1881 2019/0011/0330 Mc4 sin sin 73,47 23,96 32,61 1881 2019/0011/0331 Mc4 sin sin 73,47 23,96 32,61 1881 2019/0011/0331 Mc4 sin sin 82,26 26,91 32,71 2019/0011/0332 NHMW Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 1881 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex 87,47 29,26 33,45 1881
2019/0011/0330 NHMW Mc4 sin sin 73,47 23,96 32,61 1881 2019/0011/0331 NHMW Mc4 sin sin 82,26 26,91 32,71 2019/0011/0332 Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
NHMW Mc4 sin sin 73,47 23,96 32,61 1881 2019/0011/0331 NHMW Mc4 sin sin 82,26 26,91 32,71 2019/0011/0332 NHMW Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
2019/0011/0331 NHMW Mc4 sin sin 82,26 26,91 32,71 2019/0011/0332 NHMW Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
NHMW Mc4 sin sin 82,26 26,91 32,71 2019/0011/0332 NHMW Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NthWW Mc4 dex dex 87,47 29,26 33,45 1881
2019/0011/0332 NHMW Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
NHMW Mc4 sin sin 78,59 25,61 32,59 2019/0011/0333 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
2019/0011/0333 NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
NHMW Mc4 sin sin 80,1 26,92 33,61 1881 2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
2019/0011/0334 NHMW Mc4 dex dex 87,47 29,26 33,45 1881
NHMW Mc4 dex dex 87,47 29,26 33,45 1881
2019/0011/0335
NHMW Mc4 sin sin 65,89 21,61 32,80 1881
2019/0011/0336
NHMW Mc4 dex dex /8,6/ 26,16 33,25
2019/0011/0337
NHIVIW MIC4 SIN SIN 76,18 24,43 32,07 1882
2019/0011/0338
2019/0011/0339
NHMW/ Mc4 sin sin 100.91 35.26 34.94
2019/0011/0340
NHMW/ Mc4 sin sin 82.41 28.74 34.87
2019/0011/0341
NHMW Mc4 sin sin 75.18 26.14 34.77 1882
2019/0011/0342
NHMW Mc4 sin sin 83.86 29.33 34.97
2019/0011/0343
NHMW Mc4 sin sin 95,09 30,18 31,74
2019/0011/0344
NHMW Mc4 sin sin 93,94 31,46 33,49 1881
2019/0011/0345
NHMW Mc4 sin sin 91,68 31,75 34,63 1879
2019/0011/0346
NHMW Mc4 sin sin 93,92 30,14 32,09 1881
2019/0011/0347
NHMW Mc4 sin sin 95,39 29,81 31,25
2019/0011/0348
NHMW Mc4 sin sin 97,67 30,56 31,29
2019/0011/0349
NHMW Mc4 sin sin 81,58 24,28 29,76 1881
2019/0011/0350
NHIVIW MIC4 SIN SIN 90,98 31,82 34,97 1880
2019/0011/0351
NHMW/ Mc4 sin sin 02.45 20.24 22.26 1990
2019/0011/0353
NHMW Mc4 sin sin 94 09 31 71 33 70 1882
2019/0011/0354

NHMW	Mc4 sin	sin	76,36	27,81	36,42	1880
2019/0011/0355						
NHMW	Mc4 sin	sin	81,11	25,63	31,60	
2019/0011/0356						
NHMW	Mc4 dex	dex	97,33	32,73	33,63	
2019/0011/0357						
NHMW	Mc4 sin	sin	95,27	30,77	32,30	
2019/0011/0358						
NHMW	Mc4 sin	sin	88,69	28,37	31,99	
2019/0011/0359						
NHMW	Mc4 sin	sin	82,99	26,94	32,46	
2019/0011/0360						
NHMW	Mc4 sin	sin	69 <i>,</i> 88	22,51	32,21	1881
2019/0011/0361						
NHMW	Mc4 sin	sin	74	23,33	31,53	
2019/0011/0362						
NHMW	Mc4 sin	sin	85,01	26,53	31,21	1879
2019/0011/0363						
NHMW	Mc4 sin	sin	87,12	31,22	35,84	1879
2019/0011/0364						
NHMW	Mc4 sin	sin	96,95	31,52	32,51	
2019/0011/0365						
NHMW	Mc4 sin	sin	95,02	32,04	33,72	1881
2019/0011/0366						
NHMW	Mc4 sin	sin	79,95	24,63	30,81	1881
2019/0011/0367						
NHMW	Mc4 sin	sin	93,74	28,66	30,57	1879
2019/0011/0368						
NHMW	Mc4 sin	sin	83,67	25	29,88	1882
2019/0011/0369						

Tabelle 54: Messwerte der Mc5

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	Mc5 sin	sin	89,09	31,85	35,75	1879
2019/0011/0370						
NHMW	Mc5 sin	sin	98,04	35,62	36,33	1879
2019/0011/0371						
NHMW	Mc5 sin	sin	87,89	31,33	35,65	1881
2019/0011/03/2			00.47	22 55	25.00	
NHMW 2010/0011/0272	IVIC5 SIN	sin	90,47	32,55	35,98	
	Mc5 sin	sin	97 51	20.01	22 15	
2019/0011/0374		5111	87,51	29,01	55,15	
NHMW	Mc5 sin	sin	92.32	31.79	34.43	
2019/0011/0375			0_)0_	0_)/0	0 1) 10	
NHMW	Mc5 sin	sin	92,05	27,22	29,57	1879
2019/0011/0376						
NHMW	Mc5 sin	sin	86,91	31,41	36,14	1881
2019/0011/0377						
NHMW	Mc5 sin	sin	80,51	29,64	36,82	
2019/0011/0378						

NHMW	Mc5 sin	sin	88,54	32,29	36,47	1879
2019/0011/03/9	McE cip	cin	04.02	21 17	26.66	1001
2019/0011/0380		5111	94,0Z	54,47	30,00	1001
NHMW	Mc5 sin	sin	80.25	27.59	34.38	1880
2019/0011/0381		5111	00)20	27,000	0 1,00	1000
NHMW	Mc5 sin	sin	89,06	30,24	33,95	
2019/0011/0382				,		
NHMW	Mc5 sin	sin	93,09	31,21	33,53	1880
2019/0011/0383						
NHMW	Mc5 sin	sin	74,75	26,43	35,36	1881
2019/0011/0384						
NHMW	Mc5 sin	sin	91,6	30,35	33,13	
2019/0011/0385						
NHMW	Mc5 sin	sin	79,6	26,84	33,72	
2019/0011/0386						
NHMW	Mc5 sin	sin	93,83	32,97	35,14	1881
2019/0011/0387						
NHMW	Mc5 sin	sin	77,26	31,36	40,59	1881
2019/0011/0388			00 70	22.20	25 50	4000
NHIVIW	IVIC5 SIN	sin	90,72	32,29	35,59	1880
2019/0011/0389	McE cip	cin	01 20	20.62	26.20	
	IVICS SIII	SIII	81,39	29,62	30,39	
	Mc5 cin	cin	70 /	24 66	25 02	1001
2010/0011/0301		5111	70,4	24,00	33,03	1001
NHMW	Mc5 sin	sin	81 82	26 41	32.28	
2019/0011/0392		5111	01,02	20,11	52,20	
NHMW	Mc5 sin	sin	81.96	27.26	33.26	1882
2019/0011/0393		-	- ,	, -	, -	
NHMW	Mc5 sin	sin	66,37	23,81	35,87	1881
2019/0011/0394						
NHMW	Mc5 sin	sin	81,8	24,7	30,20	1881
2019/0011/0395						
NHMW	Mc5 dex	dex	85,27	28,11	32,97	
2019/0011/0396						
NHMW	Mc5 sin	sin	73,54	26,11	35,50	1881
2019/0011/0397						
NHMW	Mc5 sin	sin	82,23	26,77	32,56	
2019/0011/0398			00.50	20.65	22.40	4004
NHMW	Mc5 sin	sin	92,59	30,65	33,10	1881
2019/0011/0399			00.00	24.62	24 70	1070
NHIVIW	IVIC5 SIN	sin	90,88	31,62	34,79	1879
	McE dox	dov	77 96	26.05	24 61	1001
2019/0011/0/01		uex	77,80	20,95	34,01	1001
NHMW	Mc5 sin	sin	82 11	27 56	33 /3	1881
2019/0011/0402	IVICO SIII	5111	02,44	27,50	55,45	1001
NHMW	Mc5 sin	sin	94.06	31.02	32.98	1880
2019/0011/0403		-	- ,	- /	- ,	
NHMW	Mc5 sin	sin	82,12	26,94	32,81	1881
2019/0011/0404	-		,			
NHMW	Mc5 sin	sin	92,8	31,73	34,19	1881

2019/0011/0405						
NHMW	Mc5 sin	sin	86,68	31,42	36,25	1881
2019/0011/0406						
NHMW	Mc5 sin	sin	97,69	36,23	37,09	1881
2019/0011/0407						
NHMW	Mc5 sin	sin	93,12	31,28	33,59	1879
2019/0011/0408						
NHMW	Mc5 sin	sin	81,17	30,2	37,21	
2019/0011/0409						
NHMW	Mc5 sin	sin	81,03	27,16	33,52	1882
2019/0011/0410						
NHMW	Mc5 sin	sin	69,1	23,76	34,38	1879
2019/0011/0411						
NHMW	Mc5 sin	sin	81,75	26,65	32,60	1881
2019/0011/0412						
NHMW	Mc5 sin	sin	92,22	33,35	36,16	1878
2019/0011/0413						
NHMW	Mc5 sin	sin	81,53	26,85	32,93	1882
2019/0011/0414						

Tabelle 55: Messwerte der mt1

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	mt1 sin	sin	56 <i>,</i> 95	17,7	31,08	1880
2019/0011/0001						
NHMW	mt1 sin	sin	60,53	19,5	32,22	1880
2019/0011/0002						
NHMW	mt1 sin	sin	51,44	15,78	30,68	1880
2019/0011/0003						
NHMW	mt1 sin	sin	52,83	15,76	29,83	
2019/0011/0004			~~ ~~			
NHMW	mt1 sin	sin	63,72	19,75	30,99	
2019/0011/0005			C1 1C	10.10	20.00	1001
NHIVIVV 2010/0011/0006	mti sin	sin	61,16	18,16	29,69	1881
	Mc1 cin	cin	60 27	21 /	21.20	1001
	IVICE SIT	5111	00,57	21,4	51,50	1001
NHMW	mt1 sin	sin	52 61	20.68	29 21	1881
2019/0011/0008	11112 5111	5111	52,01	20,00	55,51	1001
NHMW	mt1 sin	sin	42.66	13.89	32.56	1881
2019/0011/0009			,	,	,	
NHMW	mt1 sin	sin	52,82	15,85	30,01	1879
2019/0011/0010						
NHMW	mt1 sin	sin	54,67	14,92	27,29	
2019/0011/0011						
NHMW	mt1 sin	sin	51,32	16,59	32,33	
2019/0011/0012						
NHMW	mt1 sin	sin	54,53	17,41	31,93	
2019/0011/0013						
NHMW	mt1 sin	sin	56,1	12,1	21,57	1880
2019/0011/0014						
NHMW	mt1 dex	dex	52,04	14,72	28,29	

2019/0011/0015						
NHMW	mt1 sin	sin	53,91	14,26	26,45	
2019/0011/0016	mt1 sin	cin	64 78	20.8	27 11	
2019/0011/0017		5111	04,70	20,8	52,11	
NHMW	mt1 dex	dex	60,14	16,65	27,69	
2019/0011/0018 NHMW	mt1 dex	dex	56.02	16.66	29.74	1879
2019/0011/0019			, -	-,	- /	
NHMW	mt1 dex	dex	49,2	13,38	27,20	1881
2019/0011/0020 NHMW	mt1 sin	sin	60.32	18.75	31.08	
2019/0011/0021		•			,	
NHMW	mt1 dex	dex	56,25	16,88	30,01	
2019/0011/0022	mt1 dex	dex	56 63	19 7	34 79	1879
2019/0011/0023		ucx	50,05	13,7	54,75	1075
NHMW	mt1 dex	dex	55,02	15,59	28,34	1881
2019/0011/0024	mt1 sin	sin	51 2	14 5	28 32	
2019/0011/0025		5111	51,2	14,5	20,52	
NHMW	mt1 sin	sin	55,88	17,33	31,01	
2019/0011/0026	mt1 day	dev	56 26	17.01	20.18	1991
2019/0011/0027	IIILI UEX	uex	50,50	17,01	50,18	1001
NHMW	mt1 sin	sin	58,89	18,42	31,28	
2019/0011/0028	mt1 sin	cin	64.96	10.09	20.76	1990
2019/0011/0029		5111	04,90	19,98	30,70	1880
NHMW	mt1 sin	sin	60,3	16,24	26,93	1880
2019/0011/0030	mt1 sin	cin	50.8	17 07	30.05	
2019/0011/0031		311	55,6	17,57	50,05	
NHMW	mt1 sin	sin	56,37	17,32	30,73	
2019/0011/0032	mt1 sin	sin	60 79	16 75	27 55	
2019/0011/0033		5111	00,75	10,75	27,55	
NHMW	mt1 sin	sin	59,54	17,88	30,03	1880
2019/0011/0034	mt1 sin	cin	53 10	16.02	30 1 2	1887
2019/0011/0035		5111	55,15	10,02	50,12	1002
NHMW	mt1 dex	dex	54,52	15,14	27,77	1881
2019/0011/0036	mt1 cin	sin	51 71	16 25	20 27	1001
2019/0011/0038		5111	34,/4	10,33	23,01	1001
NHMW	mt1 sin	sin	58,49	21,13	36,13	1880
2019/0011/0039						

Tabelle 56: Messwerte der mt2

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	mt2 sin	sin	60,84	16,68	27,42	1879

2019/0011/0037						
NHMW	mt2 dex	dex	81,12	23,59	29,08	
2019/0011/0046						
NHMW	mt2 dex	dex	73,32	23,05	31,44	
2019/0011/0047						
NHMW	mt2 sin	sin	69,07	20,74	30,03	
2019/0011/0048						
NHMW	mt2 sin	sin	68,84	20,17	29,30	1881
2019/0011/0049						
NHMW	mt2 dex	dex	69 <i>,</i> 92	19,31	27,62	
2019/0011/0050						
NHMW	mt2 sin	sin	70,82	19,79	27,94	
2019/0011/0051						
NHMW	mt2 sin	sin	62,11	19,33	31,12	
2019/0011/0052						
NHMW	mt2 sin	sin	75 <i>,</i> 49	22,96	30,41	
2019/0011/0053						
NHMW	mt2 sin	sin	66,95	20,07	29,98	
2019/0011/0054						
NHMW	mt2 dex	dex	78,85	22,26	28,23	
2019/0011/0055						
NHMW	mt2 sin	sin	66,87	19,59	29,30	1881
2019/0011/0056						
NHMW	mt2 sin	sin	/5,85	19,99	26,35	1880
2019/0011/005/			72 50	40.50	26.64	4000
NHIVIW	mt2 sin	sin	/3,59	19,58	26,61	1880
2019/0011/0058	m+2 cin	cin	71 00	21.20	20.76	
	mile sin	SITI	/1,88	21,39	29,70	
2019/0011/0059	mt2 cin	sin	72 82	24 00	22.08	1001
2019/0011/0060	11112 3111	311	12,02	24,05	55,00	1001
NHMW/	mt2 sin	sin	77 16	22 75	29.48	
2019/0011/0061	1112 5111	511	,,,10	22,75	25,40	
NHMW	mt2 sin	sin	71.72	21.59	30.10	1881
2019/0011/0062		•	,		00)20	
NHMW	mt2 dex	dex	68,21	19,27	28,25	1881
2019/0011/0063					,	
NHMW	mt2 sin	sin	69,54	19,13	27,51	1880
2019/0011/0064						
NHMW	mt2 sin	sin	71,99	22,65	31,46	1881
2019/0011/0065						
NHMW	mt2 sin	sin	65	19,42	29,88	1881
2019/0011/0066						
NHMW	mt2 sin	sin	73 <i>,</i> 05	21,58	29,54	1879
2019/0011/0067						
NHMW	mt2 sin	sin	70,29	24,02	34,17	1879
2019/0011/0068	_					
NHMW	mt2 sin	sin	70,09	19,2	27,39	1880
2019/0011/0069			77 66	00 4 F		
	mt2 sin	sın	//,33	22,15	28,64	
2019/0011/00/0			CC 00	10.2	27.26	
NHIVIV	mtz sin	sin	66,89	18,3	27,36	
2019/0011/00/1						

NHMW	mt2 sin	sin	69,82	20,57	29 <i>,</i> 46	1879
2019/0011/0072	ant ain	- i	71 70	10.45	27 1 2	
NHIVIW 2010/0011/0072	mtz sin	SIN	/1,/3	19,45	27,12	
2019/0011/00/5	mt2 cin	cin	52.26	17 1 2	27 1/	1001
2019/0011/007/	11112 5111	5111	55,20	17,12	32,14	1001
NHMW	mt2 sin	sin	66.07	171	25.88	
2019/0011/0075		511	00,07	17,1	23,00	
NHMW	mt2 sin	sin	58 72	17 82	30 35	1881
2019/0011/0076	11112 5111	5111	50,72	17,02	50,55	1001
NHMW	mt2 sin	sin	66.24	19.79	29.88	
2019/0011/0077		5111	00,21	10,70	20,00	
NHMW	mt2 sin	sin	65.8	17.4	26.44	
2019/0011/0078			,-	,.	,	
NHMW	mt2 sin	sin	78,82	24,3	30,83	1880
2019/0011/0079			,	,	,	
NHMW	mt2 sin	sin	73,67	23,34	31,68	1880
2019/0011/0080						
NHMW	mt2 sin	sin	73,07	21,86	29,92	
2019/0011/0081						
NHMW	mt2 sin	sin	70,73	22,85	32,31	1879
2019/0011/0082						
NHMW	mt2 sin	sin	74,07	22,27	30,07	
2019/0011/0083						
NHMW	mt2 sin	sin	75,55	24,55	32,50	1880
2019/0011/0084						
NHMW	mt2 sin	sin	62,85	21,94	34,91	
2019/0011/0085						
NHMW	mt2 sin	sin	77,82	22,1	28,40	
2019/0011/0086						
NHMW	mt2 sin	sin	75,71	21,71	28,68	
2019/0011/0087						
NHMW	mt2 sin	sin	63,92	19,95	31,21	
2019/0011/0088						
NHMW	mt2 sin	sin	65,48	21,23	32,42	1881
2019/0011/0089				- · · ·		
NHMW	mt2 sin	sin	75,99	21,11	27,78	
2019/0011/0090		- i		22 5	20.70	1001
NHIVIW	mt2 sin	sin	76,4	23,5	30,76	1881
	m+2 cin	cin	62.01	22.22	26.41	1000
	IIILZ SIII	5111	05,91	25,27	50,41	1000
2019/0011/0092 NHMM	mt2 cin	cin	67 71	17 07	26 54	
2019/0011/0093	11112 5111	5111	07,71	17,57	20,34	
NHMW	mt2 sin	sin	75 31	22 64	30.06	1880
2019/0011/0094	11112 5111	5111	73,31	22,01	50,00	1000
NHMW	mt2 sin	sin	68.52	20.69	30.20	
2019/0011/0095		5111	00,02	20,00	00)20	
NHMW	mt2 sin	sin	61.91	18.6	30.04	1882
2019/0011/0096			- ,	- / -		
NHMW	mt2 sin	sin	76,68	23,61	30,79	
2019/0011/0097					-	
NHMW	mt2 sin	sin	65,12	20,25	31,10	

2019/0011/0098						
NHMW	mt2 sin	sin	73,42	21,76	29,64	
2019/0011/0099						
NHMW	mt2 sin	sin	74,44	22,81	30,64	1879
2019/0011/0100						
NHMW	mt2 sin	sin	67,31	21,27	31,60	
2019/0011/0101						
NHMW	mt2 sin	sin	72,52	20,62	28,43	
2019/0011/0102						
NHMW	mt2 sin	sin	68,13	19,5	28,62	1882
2019/0011/0103						
NHMW	mt2 sin	sin	70,82	21,72	30,67	1881
2019/0011/0104						

Tabelle 57: Messwerte der mt3

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	mt3 sin	sin	80,24	23,32	29,06	1880
2019/0011/0105						
NHMW	mt3 sin	sin	88,98	24,31	27,32	1881
2019/0011/0106						
NHMW	mt3 sin	sin	75,1	22,08	29,40	1880
2019/0011/0107						
NHMW	mt3 sin	sin	93,82	22,66	24,15	
2019/0011/0108						
NHMW	mt3 sin	sin	71,9	22,65	31,50	1881
2019/0011/0109						
NHMW	mt3 sin	sin	92,48	27,43	29,66	
2019/0011/0110						
NHMW	mt3 sin	sin	71,5	19,45	27,20	1879
2019/0011/0111						
NHMW	mt3 sin	sin	85,52	25,5	29,82	
2019/0011/0112						
NHMW	mt3 sin	sin	86,61	20,88	24,11	1880
2019/0011/0113						
NHMW	mt3 sin	sin	78,72	22,19	28,19	1880
2019/0011/0114		4.	72.04	10.00	27.22	4004
NHMW	mt3 dex	dex	72,04	19,68	27,32	1881
2019/0011/0115			04.6	40.50	22.02	4000
NHIVIVV 2010/0011/011C	mt3 sin	sin	81,6	19,53	23,93	1880
	m+2 day	dav	70 50	20 57	26.20	1070
NПIVIVV 2010/0011/0117	mus uex	uex	70,52	20,57	20,20	10/9
	mt2 day	dov	72 55	22.00	21.26	
2019/0011/0118	IIILS UEX	uex	13,33	22,99	51,20	
NHM/W	mt3 dev	dev	95 45	25 95	27 19	1881
2019/0011/0119	IIII UCX	ucx	55,45	23,33	27,15	1001
NHMW	mt3 sin	sin	86 81	22.98	26 47	
2019/0011/0120		5	00,01	22,00	_0,17	
NHMW	mt3 dex	dex	73.97	18.62	25.17	
2019/0011/0121		-	- /	-,	- / -	
NHMW	mt3 sin	sin	88,44	26,73	30,22	
			- /	-, -	- /	

2019/0011/0122						
NHMW	mt3 sin	sin	91,35	27,16	29,73	1880
2019/0011/0123						
NHMW	mt3 sin	sin	73,48	22,26	30,29	1881
2019/0011/0124			,	,	,	
NHMW	mt3 sin	sin	75.42	21.95	29.10	1881
2019/0011/0125		•		,	,	
NHMW/	mt3 sin	sin	90 41	26.13	28 90	1882
2010/0011/0126	1110 5111	5111	50,41	20,15	20,50	1002
201 <i>3</i> /0011/0120	mt2 cin	sin	Q5 /1	24 62	20 02	1001
	11113 3111	5111	05,41	24,02	20,05	1001
	m+2 cin	cin	20.7	22.00	26.60	1000
	11113 5111	SITI	89,7	23,80	20,00	1880
2019/0011/0128			07 70	22.00	27.04	
NHIVIW	mt3 sin	sin	87,72	23,69	27,01	
2019/0011/0129						
NHMW	mt3 sin	sin	94,86	20,93	22,06	
2019/0011/0130						
NHMW	mt3 sin	sin	78,25	22,04	28,17	1881
2019/0011/0131						
NHMW	mt3 sin	sin	80 <i>,</i> 68	25 <i>,</i> 86	32,05	1879
2019/0011/0132						
NHMW	mt3 sin	sin	84,05	22,69	27,00	1881
2019/0011/0133						
NHMW	mt3 sin	sin	77 <i>,</i> 03	22,02	28,59	1882
2019/0011/0134						
NHMW	mt3 sin	sin	81,89	23,1	28,21	1879
2019/0011/0135						
NHMW	mt3 sin	sin	85,74	22,25	25,95	1880
2019/0011/0136						
NHMW	mt3 sin	sin	87,85	24,54	27,93	
2019/0011/0137						
NHMW	mt3 sin	sin	76.21	21.59	28.33	
2019/0011/0138		-	- /	,	-,	
NHMW	mt3 sin	sin	79.41	22.94	28.89	
2019/0011/0139			,		,	
NHMW	mt3 sin	sin	83 74	26 54	31 69	1881
2019/0011/0140		5	00)/ 1	20,01	01,00	1001
NHMW	mt3 sin	sin	76.06	18 63	24 49	1879
2019/0011/0141		5111	,0,00	10,05	27,73	1075
NHMW/	mt3 sin	sin	80 92	22.3	27 56	
2010/0011/01/2	1110 5111	5111	00,52	22,5	27,50	
	mt2 cin	sin	74 86	21 12	28 21	
	11113 3111	5111	74,00	21,12	20,21	
	m+2 cin	cin	75.25	10.00	25.06	1001
	11113 5111	SITI	/5,55	10,00	25,00	1991
2019/0011/0144			72.00	22.2	20.00	1000
	mt3 sin	sin	/3,99	22,2	30,00	1880
2019/0011/0145			70 54	22.42	24.27	
NHMW	mt3 sin	sın	/0,51	22,12	31,37	
2019/0011/0146						
NHMW	mt3 sin	sin	75,18	22,09	29,38	
2019/0011/0147		_				
NHMW	mt3 sin	sin	78,58	24,75	31,50	
2019/0011/0148						

NHMW	mt3 sin	sin	74	21,2	28,65	1880
2019/0011/0149						
NHMW	mt3 sin	sin	81,58	22,31	27,35	
2019/0011/0150						
NHMW	mt3 sin	sin	81,91	23 <i>,</i> 55	28,75	
2019/0011/0151						
NHMW	mt3 sin	sin	75,7	19,86	26,24	
2019/0011/0152						
NHMW	mt3 sin	sin	79,73	21,3	26,72	1879
2019/0011/0153						
NHMW	mt3 sin	sin	84,56	26,69	31,56	1881
2019/0011/0154						
NHMW	mt3 sin	sin	73,69	21,08	28,61	
2019/0011/0155						
NHMW	mt3 sin	sin	80,55	23,74	29,47	
2019/0011/0156						
NHMW	mt3 sin	sin	73,56	22,41	30,46	
2019/0011/0157						
NHMW	mt3 sin	sin	86,27	21,95	25,44	
2019/0011/0158						
NHMW	mt3 sin	sin	85,07	22,35	26,27	1881
2019/0011/0159						
NHMW	mt3 sin	sin	83,35	23,87	28,64	
2019/0011/0160						
NHMW	mt3 sin	sin	79,82	22,13	27,72	
2019/0011/0161						
NHMW	mt3 sin	sin	83,12	25,07	30,16	1879
2019/0011/0162						
NHMW	mt3 sin	sin	75,43	23,16	30,70	
2019/0011/0163						

Tabelle 58: Messwerte der mt4

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	mt4 sin	sin	96,54	27,62	28,61	1879
2019/0011/0164						
NHMW	mt4 dex	dex	82,8	22,86	27,61	
2019/0011/0165						
NHMW	mt4 dex	dex	78,68	21,03	26,73	
2019/0011/0166					20.22	
NHIVIW	mt4 sin	sin	89,93	27,27	30,32	
	mt1 cin	cin	06 97	24 90	25 60	1970
2019/0011/0168	11114 5111	5111	90,87	24,05	23,09	10/9
NHMW	mt4 sin	sin	75.27	22.09	29.35	
2019/0011/0169		•		,	_0,00	
NHMW	mt4 dex	dex	82,93	21,36	25,76	1879
2019/0011/0170						
NHMW	mt4 dex	dex	92,07	26,99	29,31	1881
2019/0011/0171						
NHMW	mt4 dex	dex	96,19	23,63	24,57	
2019/0011/0172						

NHMW	mt4 sin	sin	94,26	27,19	28,85	1881
2019/0011/0173						
NHMW	mt4 sin	sin	83,91	26,01	31,00	1880
2019/0011/0174			400.00	20 50	27.62	4000
NHMW	mt4 dex	dex	103,03	28,53	27,69	1880
2019/0011/01/5			02 5	24.20	25.40	4004
NHMW	mt4 dex	dex	83,5	21,28	25,49	1881
2019/0011/01/6			102 52	20.22	20.64	
NHIVIW	mt4 sin	SIN	102,53	29,33	28,61	
2019/0011/01/7	mat 1 aim	a i a	02.12	25.5	27.20	1000
	mt4 sin	SIN	93,13	25,5	27,38	1880
2019/0011/01/8	mat 1 aire	a i a	00.70	25.02	27 50	1070
	mt4 Sm	SIN	90,76	25,03	27,58	18/9
	mt1 cin	cin	00.02	25 22	22 00	
	11114 5111	5111	90,85	23,33	27,09	
	mt1 dov	dov	07 17	27 71	21 70	
2010/0011/0756	IIII4 UEX	uex	87,17	27,71	51,75	
2019/0011/0750	mt/ dev	dev	96.81	26.83	27 71	1880
2019/0011/0757	IIIt4 UEX	uex	50,81	20,05	27,71	1000
NHMW	mt4 dex	dex	87 47	23.08	28.00	
2019/0011/0758	IIIt+ ucx	uck	02,42	23,00	20,00	
NHMW	mt4 dex	dex	90.96	26.06	28.65	1880
2019/0011/0759	inter dex	uck	50,50	20,00	20,00	1000
NHMW	mt4 dex	dex	79.99	22.33	27.92	1882
2019/0011/0760				,	_,,,,	
NHMW	mt4 dex	dex	95.09	25.88	27.22	1880
2019/0011/0761				-,	,	
NHMW	mt4 dex	dex	85,14	24,29	28,53	
2019/0011/0762						
NHMW	mt4 dex	dex	91,95	25,92	28,19	1882
2019/0011/0763						
NHMW	mt4 dex	dex	76,33	20,67	27,08	1880
2019/0011/0764						
NHMW	mt4 dex	dex	89,15	24,49	27,47	
2019/0011/0765						
NHMW	mt4 dex	dex	94,55	25,76	27,24	1881
2019/0011/0766						
NHMW	mt4 dex	dex	98,23	25,8	26,26	
2019/0011/0767						
NHMW	mt4 dex	dex	92,68	27,87	30,07	
2019/0011/0768						
NHMW	mt4 dex	dex	88,63	25,74	29,04	
2019/0011/0/69						
NHMW	mt4 dex	dex	99,03	27,64	27,91	1880
2019/0011/0//0			00.00	22 F	22.22	4000
NHMW	mt4 dex	dex	80,36	22,5	28,00	1882
2019/0011/07/1	mat 1 alou	مامير	102.05		26.61	
	mt4 dex	uex	103,05	۵۵, ۱۷	20,01	
	mt1 day	dox	07 77	72 7 <u>6</u>	20 20	
	mu4 uex	UEX	02,22	23,20	20,29	
	mt/ day	dov	05 82	25 15	26 56	1970
	IIII4 UEX	UCA	دەردو	20,40	20,50	10/9

2019/0011/0774					
NHMW	mt4 dex	dex	97,06	29,01	29,89
2019/0011/0775					
NHMW	mt4 dex	dex	98,27	27,05	27,53
2019/0011/0776					

Tabelle 59: Messwerte der mt5

Inventarnummer	Element	Körperseite	Länge	Breite	PI	Jahr
NHMW	mt5 dex	dex	83,31	25,88	31,06	
2019/0011/0181						
NHMW	mt5 dex	dex	100,53	27,09	26,95	1878
2019/0011/0182						
NHMW	mt5 dex	dex	82,09	20,35	24,79	1881
2019/0011/0183						
NHMW	mt5 sin	sin	85,94	24,73	28,78	1882
2019/0011/0184						
NHMW	mt5 sin	sin	85,35	21,32	24,98	1879
2019/0011/0185						
NHMW	mt5 sin	sin	96,54	28,17	29,18	1879
2019/0011/0186						
NHMW	mt5 sin	sin	85,44	26,66	31,20	
2019/0011/0187						
NHMW	mt5 sin	sin	89,64	21,57	24,06	
2019/0011/0188						
NHMW	mt5 sin	sin	110,5	27,55	24,93	
2019/0011/0189						
NHMW	mt5 sin	sin	101,62	26,47	26,05	1879
2019/0011/0190						
NHMW	mt5 dex	dex	94,58	26,44	27,96	
2019/0011/0191						
NHMW	mt5 dex	dex	71,95	20,39	28,34	1881
2019/0011/0192						
NHMW	mt5 sin	sin	80,65	21,33	26,45	1881
2019/0011/0193						
NHMW	mt5 sin	sin	96,59	26,54	27,48	1879
2019/0011/0194			107 12	26 70	24.04	4004
	mt5 dex	dex	107,43	26,79	24,94	1881
2019/0011/0195		dav		20.44	22.75	1001
NHIVIVV 2010/0011/0106	mts dex	dex	86,06	20,44	23,75	1881
	mtE day	dov	102.96	22 11	22.70	1070
NTIVIV 2010/0011/0107	mus uex	uex	102,60	25,44	22,79	10/9
	mt5 sin	sin	01 57	28.86	21 52	1870
2010/0011/0777	IIICJ SIII	5111	51,57	20,00	51,52	1075
	mt5 dev	dev	82.38	22 20	28 29	1879
2019/0011/0778			52,50	20,00	20,33	1075
NHMW	mt5 dex	dex	85.97	23.27	27.07	1879
2019/0011/0779		uch l	55,57	/	_,,,,,	10,5
NHMW	mt5 dex	dex	100.6	29.83	29.65	1882
2019/0011/0780		<i></i>	,-	,•••	,	
NHMW	mt5 dex	dex	89.23	25.01	28.03	1881
			,	,	,-•	

2019/0011/0781						
NHMW	mt5 dex	dex	87,36	20,66	23,65	1880
2019/0011/0782						
NHMW	mt5 dex	dex	82,64	23,46	28,39	1880
2019/0011/0783			- ,-	-, -	-,	
NHMW	mt5 dex	dex	88.88	25.25	28.41	1879
2019/0011/0784			00,00	_0,_0	_0) · _	2070
NHMW	mt5 dex	dex	93.4	26.81	28.70	1881
2019/0011/0785			,	_0,0_	_0)/ 0	
NHMW	mt5 dex	dex	84.58	22.33	26.40	1881
2019/0011/0786			- ,	,	-, -	
NHMW	mt5 dex	dex				1882
2019/0011/0787						
NHMW	mt5 dex	dex	84,11	21,51	25,57	1881
2019/0011/0788			,	,	,	
NHMW	mt5 dex	dex	93,46	27,66	29,60	1881
2019/0011/0789						
NHMW	mt5 dex	dex	84,37	22,01	26,09	1879
2019/0011/0790						
NHMW	mt5 dex	dex	81,71	22,19	27,16	1882
2019/0011/0791						
NHMW	mt5 dex	dex	86,57	27,94	32,27	1879
2019/0011/0792						
NHMW	mt5 dex	dex	81,19	19,06	23,48	1879
2019/0011/0793						
NHMW	mt5 dex	dex	96,66	26,51	27,43	1879
2019/0011/0794						
NHMW	mt5 dex	dex	82,84	25,87	31,23	
2019/0011/0795						
NHMW	mt5 dex	dex	89,79	23,54	26,22	1882
2019/0011/0796						
NHMW	mt5 dex	dex	91,52	21,88	23,91	1881
2019/0011/0797						
NHMW	mt5 dex	dex	84,46	22,31	26,41	1881
2019/0011/0798						
NHMW	mt5 dex	dex	94,23	25,74	27,32	1880
2019/0011/0799						
NHMW	mt5 dex	dex	80,66	21,69	26,89	
2019/0011/0800						
NHMW	mt5 dex	dex	91,55	24,55	26,82	1880
2019/0011/0801						
NHMW	mt5 dex	dex	79,62	21,15	26,56	1881
2019/0011/0802						
NHMW	mt5 dex	dex	93,12	25,9	27,81	1881
2019/0011/0803						
NHMW	mt5 dex	dex	84,75	23,61	27,86	1879
2019/0011/0804			07.24	24.25	27.04	
	mt5 dex	aex	87,21	24,25	27,81	
2019/0011/0805	معلم المع	dov	07 50	24 74	20.24	1070
	mts dex	uex	57,59	24,/1	Zō,ZI	1913
	m+E day	dov	96 F	35 31	20 14	
ΝΠΙΝΙΝΥ 2010/0011/0007	mus uex	UEX	00,5	23,21	23,14	

NHMW	mt5 dex	dex	89,94	25,03	27,83	1882
2019/0011/0808						
NHMW	mt5 dex	dex	90,61	26,34	29,07	1880
2019/0011/0809						
NHMW	mt5 dex	dex	81,76	22,45	27,46	
2019/0011/0810						