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Introduction

It was Gottfried Leibniz who first considered partitions of integers in a letter of 1674
to Jacob Bernoulli asking about the number of partitions of integers. Although he
was the first one who mentioned partitions, the deeper theory of partitions began
with another famous name in mathematics: Leonhard Euler. He became interested
in partitions after receiving a letter from Philip Naudé in 1740. Euler was asked how
many partitions there are of 50 into 7 distinct parts. He solved this question using
generating functions and became interested in a more fundamental question: What
is the total number of partitions of n? At this point the theory of partitions began.
After Euler’s work with generating functions, the next milestone was set by James
Joseph Sylvester by representing partitions graphically. This was more than 100 years
after Euler’s starting point. Without a doubt the Rogers-Ramanujan identities are
one of the most beautiful results in the history of partitions. They are called after
the American mathematician Leonard James Rogers, who was hardly recognized from
other mathematicians at this time, and the Indian genius Srinivasa Ramanujan. The
story behind them is quite curious and without Godfrey Harold Hardy we perhaps
would not know them today.
This thesis will be a journey through the history of partitions. Starting with the work of
Euler and Sylvester, we go on with hypergeometric series and Jacobi’s triple product
identity and end up with the Rogers-Ramanujan identities and a generalization of
them.
I would like to thank my supervisor Prof. Markus Fulmek, for encouraging me to
discover the world of partitions, giving me the freedom to write about topics I am
interested in and for answering my questions. Furthermore, I would like to thank my
friends and colleagues, we spent a lot of time together, helped each other and had
so much fun together. Without them it would have been much more difficult. Last,
but not least, I would like to thank my family, who made it possible for me to study,
although it took a while.
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1 Partitions

Definition 1.1. A partition λ of a positive integer n is a finite non-increasing sequence
of positive integers (λ1, λ2, . . . , λl), such that

l∑
i=1

λi = n. The λi are called the parts of
λ and l is the number of parts or the length of the partition.
One can also use the notation (1f12f23f3 . . .) for a partition λ, where fj is the multi-
plicity of j in λ and only finitely many of them are non-zero. Therefore,∑
j≥1

fj · j = n.

Moreover, we will denote the number of partitions of n by the function p(n) and call
it partition function. We define p(0) := 1 and the only partition that is either of a
non-positive integer or has a non-positive number of parts is the empty partition of 0.

Example.

p(1) = 1 1 (1)
p(2) = 2 2, 1 + 1 (2), (1, 1)
p(3) = 3 3, 2 + 1, 1 + 1 + 1 (3), (2, 1), (1, 1, 1)
p(4) = 5 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1 (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

The partition function increases quite rapidly. For example p(50) = 204226 and
p(100) = 190569292.

In the following let λ always be a partition of a positive integer n. We will also
restrict partitions to some specific properties. For example, we might consider all
parts of λ to be odd or distinct from each other. For these cases we want to adapt our
partition function.

Definition 1.2. Let P be the set of all partitions. For a subset P ⊆ P we denote by
p(P, n) the number of partitions of n which belong to P .

Example. Let O be the set of all partitions with odd parts and D the set of all parti-
tions with distinct parts and take a look at the corresponding partition functions:
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p(O, 1) = 1 1 (1)
p(O, 2) = 1 1 + 1 (1, 1)
p(O, 3) = 2 3, 1 + 1 + 1 (3), (1, 1, 1)
p(O, 4) = 2 3 + 1, 1 + 1 + 1 + 1 (3, 1), (1, 1, 1, 1)
p(O, 5) = 3 5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1 (5), (3, 1, 1), (1, 1, 1, 1, 1)

p(D, 1) = 1 1 (1)
p(D, 2) = 1 2 (2)
p(D, 3) = 2 3, 2 + 1 (3), (2, 1)
p(D, 4) = 2 4, 3 + 1 (4), (3, 1)
p(D, 5) = 3 5, 4 + 1, 3 + 2 (5), (4, 1), (3, 2)

We see that p(O, n) = p(D, n) for n ≤ 5. This is not by accident, we will proof
the corresponding theorem, which shows that this is true for all positive integer n, soon.

1.1 Generating functions
We are now going into the world of generating functions for the different types of
partitions. We begin with the generating function for p(n). Therefore we consider the
product

1
1− q ·

1
1− q2 .

If we expand each factor of the product as a geometric series we get

(1 + q1 + q1+1 + q1+1+1 + . . .) · (1 + q2 + q2+2 + q2+2+2 + . . .).

This is the same as

1 + q1 + (q2 + q1+1) + (q2+1 + q1+1+1) + (q2+2 + q2+1+1 + q1+1+1+1) + . . .

What we see is, that all possible partitions employing only 1s and 2s as parts are
generated in the exponent of the indeterminate q. This implies, that the coefficient of
qn is the number of partitions of n where only parts equal to one or two are allowed.
For the same reason we get

∞∑
n=0

pm(n)qn =
m∏
n=1

1
1− qn , (1.1)

where pm(n) denotes the number of partitions of n into parts no greater than m. If
we let m→∞ we obtain the generating function for the partition function p(n):

2



CHAPTER 1. PARTITIONS

∞∑
n=0

p(n)qn =
∞∏
n=1

1
1− qn (1.2)

As mentioned before, we now want to prove that the number of partitions of n into
odd parts is the same as the number of partitions of n into distinct parts. This is a
theorem by Euler, he proved it in 1748 in the same we as we do now.
Theorem 1.3 (Euler). p(O, n) = p(D, n) for all positive integer n.
Proof. First we want to know the generating functions of these objects.
If we take a look at (1.2), we can write the infinite product on the right hand side as
follows: (

1 + q1 + q1+1 + q1+1+1 + . . .
)
·
(
1 + q2 + q2+2 + q2+2+2 + . . .

)
·
(
1 + q3 + q3+3 + q3+3+3 + . . .

)
·
(
1 + q4 + q4+4 + q4+4+4 + . . .

)
· · ·

(1.3)

If we restrict the infinite sums to their first two parts, we get(
1 + q1

)
·
(
1 + q2

)
·
(
1 + q3

)
·
(
1 + q4

)
· · · =

∞∏
n=1

(1 + qn) , (1.4)

where we see, that each positive integer only appears once and therefore this is the
generating function for partitions of n into distinct parts.
We now do the same, but we cancel every other infinite sum of (1.3) and get(

1 + q1 + q1+1 + q1+1+1 + . . .
)
·
(
1 + q3 + q3+3 + q3+3+3 + . . .

)
·

·
(
1 + q5 + q5+5 + q5+5+5 + . . .

)
· · · =

∞∏
n=1

1
1− q2n−1 ,

where we see, that only those parts with odd positive integers remain and therefore
this is the generating function for partitions of n into odd parts.

Now we want to show that ∑
n≥0

p(D, n)qn = ∑
n≥0

p(O, n)qn:

∑
n≥0

p(D, n)qn =
∏
n≥1

(1 + qn)

=
∏
n≥1

(1 + qn) (1− qn)
(1− qn)

=
∏
n≥1

1− q2n

1− qn

=
∏
n≥1

1− q2n

(1− q2n−1) (1− q2n)

=
∏
n≥1

1
1− q2n−1

=
∑
n≥0

p(O, n)qn

3
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This proof shows perfectly an elegant method of proving partition identities. Every
time we can find an equality of infinite products or sums and interpret them as a
generating function for certain partitions, we have a partition identity. For example:

∞∏
n=0

(
1 + q3n+1

) (
1 + q3n+2

)
=
∞∏
n=0

(1− q6n+2) (1− q6n+4)
(1− q3n+1) (1− q3n+2)

=
∞∏
n=0

(1− q6n+2) (1− q6n+4)
(1− q6n+1) (1− q6n+2) (1− q6n+4) (1− q6n+5)

=
∞∏
n=0

1
(1− q6n+1) (1− q6n+5)

Next we observe that

∞∏
n=0

(
1 + q2n+1 + q(2n+1)+(2n+1)

)
=
∞∏
n=0

(
1 + q2n+1 + q4n+2

)
=
∞∏
n=0

(
1 + q2n+1 + q4n+2

) 1− q2n+1

1− q2n+1

=
∞∏
n=0

1− q6n+3

1− q2n+1

=
∞∏
n=0

1− q6n+3

(1− q6n+1) (1− q6n+3) (1− q6n+5)

=
∞∏
n=0

1
(1− q6n+1) (1− q6n+5)

So we get
∞∏
n=0

(
1 + q3n+1

) (
1 + q3n+2

)
=
∞∏
n=0

(
1 + q2n+1 + q(2n+1)+(2n+1)

)
=
∞∏
n=0

1
(1− q6n+1) (1− q6n+5)

Using the method of Euler’s proof, we have proven the following theorem:

Theorem 1.4. The number of partitions of n into distinct non-multiples of 3 equals
the number of partitions of n into odd parts, where no part appears more than twice
and this is the same as the number of partitions of n into parts congruent to 1 or 5
modulo 6.

4
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1.2 Graphical representation of partitions
The next big achievement in the theory of partitions was reached more than 100 years
after Euler’s beginnings. It was in the 1880s, when James Joseph Sylvester worked
with some of his students on a new approach to visualize partitions. The result was
the so-called "Ferrers diagram", named after Norman Macleod Ferrers.
The idea is to represent a partition λ of n of length l in a Ferrers diagram with a total
of n dots in l left-justified rows where the number of dots in row i is λi.

Example. Consider the partition (5,5,4,2,1,1,1). The corresponding Ferrers diagram
looks as follows:

There are several ways to represent a partition graphically. For example one can draw
unit squares instead of dots:

Another way is to turn the diagram upside down:

In this thesis we will only use the first notation.

Definition 1.5. The Durfee square of a partition λ is the largest square of dots in the
upper left corner of the Ferrers diagram of λ. We denote the side length of the Durfee
square by d(λ), which is given by the number of parts λi such that λi ≥ i.

5
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Example. For λ=(5,5,4,2,1,1,1), d(λ)=3.

Definition 1.6. The conjugate of a partition λ is denoted by λ′ = (λ′1, λ′2, . . . , λ′m),
where m = λ1 and λ′i is the number of parts of λ that are ≥ i.
In terms of Ferrers diagrams, the conjugate is the partition obtained from λ by re-
flecting its Ferrers diagram along its main diagonal. (This is the same operation as
the transposition of a matrix.)
Note, that λ and λ′ are two partitions of the same integer.

Example. To understand the formal definition we will give an example for the con-
jugate of (5,5,4,2,1,1,1) which is (7,4,3,3,2).

−→

Definition 1.7. A partition λ is called self-conjugate if λ′ = λ.

We see that the number of rows of λ is the number of its parts and this is the
same as the number of columns of λ′ and therefore this is the largest part of λ′. The
number of columns of λ is the largest part of λ and this is the same as the number of
rows of λ′ and therefore this is the number of parts of λ′. Moreover, the conjugate of
the conjugate of λ is again λ.

1.3 Some partition identities
Theorem 1.8. The number of partitions of n with m parts equals the number of
partitions of n with largest part m.

Proof. Mapping a partition to its conjugate is obviously a bijection between the two
classes of partitions.

Remark 1.9. For the same reasons we can rewrite the theorem by writing ’at most’
in front of m. So the number of partitions of n with at most m parts is the same as
the number of partitions of n with largest part at most m, which we denoted in (1.1)
by pm(n).

6



CHAPTER 1. PARTITIONS

Definition 1.10. For a shorter notation of a few equations we define the so-called
q-Pochhammer symbol or q-shifted factorial:

(a)n = (a; q)n := (1− a)(1− aq) · · · (1− aqn−1)
(a)∞ = (a; q)∞ := lim

n→∞
(a; q)n

(a)0 := 1.

Using Theorem 1.8 and Remark 1.9 we can prove the following identity:

Theorem 1.11. ∞∑
n=0

p(n)qn =
∞∏
n=1

1
(1− qn) =

∞∑
m=0

qm

(q; q)m
(1.5)

Proof. As already mentioned in Remark 1.9, we know that pm(n) also denotes the
number of partitions of n into at mostm parts. The corresponding generating function
is ∞∑

n=0
pm(n)qn = 1

(1− q) · · · (1− qm) .

So pm(n)− pm−1(n) denotes the number of partitions of n into exactly m parts, which
we denote by p(m,n). Let us take a look at the corresponding generating functions:

1
(1− q) · · · (1− qm)−

1
(1− q) · · · (1− qm−1) = 1− (1− qm)

(1− q) · · · (1− qm) = qm

(1− q) · · · (1− qm)

So we proved
∞∑
n=0

p(m,n)qn = qm

(1− q) · · · (1− qm) = qm

(q; q)m
.

If we now sum over the length, we get
∞∑
n=0

p(n)qn =
∞∏
n=1

1
(1− qn) =

∞∑
m=0

qm

(q; q)m
.

The next theorem shows another identity including the partition generating func-
tion.

Theorem 1.12.
∞∑
n=0

p(n)qn =
∞∏
n=1

1
(1− qn) =

∞∑
m=0

qm
2

(q; q)2
m

(1.6)

Proof. We take an arbitrary partition of n with a Durfee square of size m. The square
dissects the Ferrers diagram into three parts, the square, a partition into at most m
parts to the right of it and a partition with largest part at most m below it. For these
two parts we know that the generating function is

1
(1− q) · · · (1− qm) .

7



CHAPTER 1. PARTITIONS

So the number of partitions of n with Durfee square of size m is the coefficient of qn−m2

in (
1

(1− q) · · · (1− qm)

)2

,

which is the same as the coefficient of qn in

qm
2

(1− q)2 · · · (1− qm)2 = qm
2

(q; q)2
m

.

If we sum over all sizes of the Durfee square we get the generating function for all
partitions and so

∞∑
n=0

p(n)qn =
∞∏
n=1

1
(1− qn) =

∞∑
m=0

qm
2

(q; q)2
m

.

Theorem 1.13. The number of partitions of n into odd and distinct parts is equal
to the number of self-conjugate partitions of n. If we take a look at the generating
functions of these subjects, this means that

∞∏
n=1

(1 + q2n−1) =
∞∑
m=0

qm
2

(q2; q2)m
.

Proof. We see from (1.4), that the generating function for partitions into odd and
distinct parts is

∞∏
n=1

(1 + q2n−1).

Moreover, there exists a bijection between partitions into odd and distinct parts and
self-conjugate partitions. Consider this in an example for n = 15. 15 = 11 + 3 + 1 =
9 + 5 + 1 = 7 + 5 + 3 are the 4 partitions of 15 into odd and distinct parts and
8 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 6 + 3 + 3 + 1 + 1 + 1 = 5 + 4 + 3 + 2 + 1 = 4 + 4 + 4 + 3
are the 4 self-conjugate partitions. A self-conjugate partition, can be transformed into
a partition into odd and distinct parts as follows: take the corner of the first line of
its Ferrers diagram and consider it as the middle point by adding everything below
this point to the left and continue this procedure for all corner points. In the other
direction, we take the dot in the middle of each part and see it as the corner of the
bent line. It is easy to see what is going on graphically.

8
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We are done, if we can show that
∞∑
m=0

qm
2

(q2; q2)m

is the generating function for self-conjugate partitions.
A self-conjugate partition of n can be dissected into its Durfee square of say m2 dots
and two partitions of 1

2(n − m2), each of them is the conjugate of the other. The
partition to the right of the Durfee square is one with at most m parts, where the one
below the Durfee square is a partition with largest part at most m.
By Remark 1.9, we know that the numbers of those types of partitions are equal. So
what we want is the coefficient of q 1

2 (n−m2) in the generating function for partitions
with at most m parts, which is

1
(1− q)(1− q2) · · · (1− qm) ,

but this is the same as the coefficient of qn in the expression

qm
2

(q2; q2)m
.

Summing over all m gives us the generating function for the self-conjugate partitions
of n

∞∑
m=0

qm
2

(q2; q2)m
.

9



2 A famous theorem of Euler

2.1 Euler’s pentagonal number theorem
Let us proceed with a very famous and important theorem of Euler. He was interested
in the reciprocal of the generating function for partitions, which is

∞∏
n=1

(1− qn).

Expanding this product by direct multiplication, one gets:

∞∏
n=1

(1− qn) = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − ..., (2.1)

which led Euler to the conjecture of the famous pentagonal number theorem, which
he proved a few years later.

Theorem 2.1.
∞∏
n=1

(1− qn) =
∞∑

n=−∞
(−1)nq 1

2n(3n−1).

For the original proof of Euler the interested reader is referenced to [4]. We will give
the combinatorial proof of Fabian Franklin, who earned his Ph.D. under J.J. Sylvester
in 1880.
The pentagonal numbers are given by n(3n−1)

2 for n ≥ 1. The n-th pentagonal num-
ber counts the dots of a pentagon, where each side consists of n dots. If we let
n = 0,+1,−1,+2,−2,+3,−3, ... we get the series 0,1,2,5,7,12,15,..., which are the
generalized pentagonal numbers. We see that these are the exponents of q in (2.1).
To connect equation (2.1) with partitions, let us again multiply the terms of the left
hand side of (2.1) step by step.

(1− q)(1− q2)(1− q3)(1− q4)(1− q5) · · · =
1− q − q2 − q3 + q1+2 − q4 + q1+3 − q5 + q1+4 + q2+3 − q6 − q1+2+3 + q2+4 + q1+5 + · · ·
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n=1 n=2 n=3 n=4

Figure 2.1: Pentagonal numbers for n=1,...,4

The following observation is due to Legendre. We see that in the exponent of q we
have partitions into distinct parts, the coefficient of qn is +1 if the number of parts of
the partition of n is even and -1 if the number is odd. So if the number of partitions
of n into distinct parts of even number is the same as the number of partitions of n
into distinct parts of odd number, there is no qn left and as we see in (2.1) the only
exponents of q which remains are generalized pentagonal numbers. So we want to
prove the following theorem.
Theorem 2.2. Denote by pe(D, n), respectively po(D, n), the number of partitions of
n with an even, respectively odd, number of distinct parts. Then

pe(D, n)− po(D, n) =

(−1)m if n = 1
2m(3m± 1) for some m ∈ N

0 otherwise.

Proof (Franklin 1881). Let λ = (λ1, ..., λl) be a partition with l distinct parts. We
define s(λ) := λl and σ(λ) to be the length of the largest sequence of consecutive
integers appearing in λ beginning with λ1, or the maximal j such that λj = λ1− j+1.
Let us describe this definitions graphically for λ = (9, 8, 7, 5, 2)

σ(λ) = 3

s(λ) = 2

Our goal is finding a one-to-one correspondence between the number of parti-
tions into distinct parts with odd and even number, but as stated in the theorem,
this will not be possible for all partitions.
With these notations we distinguish four cases and transform the partitions as follows:

11
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Case 1: s(λ) ≤ σ(λ)
In this case we add 1 to the first s(λ) parts and delete the smallest part. Graphically we
move the bottom row in the Ferrers diagram to its rightmost diagonal. For example,
if λ is like before we do the following:

(9,8,7,5,2) (10,9,7,5)

Case 2: s(λ) > σ(λ)
In this case we subtract 1 of the first σ(λ) parts and add a new smallest part of the size
σ(λ). Graphically we move the first σ(λ) diagonal dots to the bottom of the Ferrers
diagram.

(10,9,7,5) (9,8,7,5,2)

We see that in both cases this procedure changes the parity of the number of
parts. If we do the transformation twice, we come back to the original partition, so it
looks like we found a bijection and pe(D, n)−po(D, n) is almost always zero, but there
are two cases left where neither case 1 nor case 2 is applicable, though the conditions
are satisfied.

Exceptional case 1: s(λ) = σ(λ) = l
In this case we cannot do the transformation required in case 1, because this would
not give the Ferrers diagram of a partition. The number being partitioned is
l + (l + 1) + ...+ (2l − 1) = 1

2 l(3l − 1).

12
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σ(λ) = 4

s(λ) = 4

Exceptional case 1

σ(λ) = 3

s(λ) = 4

Exceptional case 2

Exceptional case 2: s(λ) = l + 1, σ(λ) = l
In this case the procedure of case 2 would not give a partition into distinct parts. The
number being partitioned is (l + 1) + (l + 2) + ...+ 2l = 1

2 l(3l + 1).
So we see, if n is not a generalized pentagonal number, pe(D, n) = po(D, n), otherwise
pe(D, n)− po(D, n) = (−1)l for n = 1

2 l(3l ± 1).

Using Theorem 2.2, we can now easily prove Euler’s pentagonal number theorem.

Proof of Theorem 2.1. Recall that we want to prove:
∞∏
n=1

(1− qn) =
∞∑

n=−∞
(−1)nq 1

2n(3n−1).

We start with the right-hand side of the equation:

∞∑
n=−∞

(−1)nq 1
2n(3n−1) = 1 +

∞∑
n=1

(−1)nq 1
2n(3n−1) +

−∞∑
n=−1

(−1)nq 1
2n(3n−1)

= 1 +
∞∑
n=1

(−1)nq 1
2n(3n−1) +

∞∑
n=1

(−1)nq 1
2n(3n+1)

= 1 +
∞∑
n=1

(−1)nq 1
2n(3n−1)(1 + qn)

= 1 +
∞∑
n=1

(pe(D, n)− po(D, n))qn.

We see that the exponents of q are only generalized pentagonal numbers and therefore
the last equation holds because of Theorem 2.2. It remains to show that

∞∏
n=1

(1− qn) = 1 +
∞∑
n=1

(pe(D, n)− po(D, n))qn.

Since in the product the exponents of q are all partitions with distinct parts and the
coefficients are +1 whenever the partition has an even number of parts and -1 whenever
the partition has an odd number of parts, we conclude:

13
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∞∏
n=1

(1− qn) =
1∑

a1=0

1∑
a2=0

1∑
a3=0
· · · (−1)a1+a2+a3+···qa1·1+a2·2+a3·3+···

= 1 +
∞∑
n=1

(pe(D, n)− po(D, n))qn

After the proof of Euler’s pentagonal number theorem, I want to present a theorem of
N.J. Fine, which he stated without a proof in [10], in a slightly different notation as
Fine did. It was found more than 118 years after Legendre’s observation.

Theorem 2.3. Let pE(D, n), respectively pO(D, n), denote the number of partitions
of n with distinct parts and the largest part is even, respectively odd. Then

pE(D, n)− pO(D, n) =


1 if n = 1

2m(3m+ 1) for some m ∈ N
−1 if n = 1

2m(3m− 1) for some m ∈ N
0 otherwise.

In [10, p. 617] Fine remarked:

"[The theorem] bears some resemblance to the famous pentagonal number theorem
of Euler, but we have not been able to establish any real connection between the two
theorems."

Let us take a look at an example for Legendre’s observation and Fine’s theorem:

Example. The partitions of n = 12 with distinct parts are:
12, 11+1, 10+2, 9+3, 9+2+1, 8+4, 8+3+1, 7+5, 7+4+1, 7+3+2, 6+5+1, 6+4+2,
6+3+2+1, 5+4+3, 5+4+2+1. Let us write the different numbers in a table:

pe(D, 12)
11+1
10+2
9+3
8+4
7+5

6+3+2+1
5+4+2+1

po(D, 12)
12

9+2+1
8+3+2
7+4+1
7+3+2
6+5+1
6+4+2
5+4+3

pE(D, 12)
12

10+2
8+4

8+3+1
6+5+1
6+4+2

6+3+2+1

pO(D, 12)
11+1
9+3

9+2+1
7+5

7+4+1
7+3+2
5+4+3

5+4+2+1

So we get: pe(D, 12)− po(D, 12) = 7− 8 = −1 and pE(D, 12)− pO(D, 12) = 7− 8 = 1
as it should be by our theorems. To point out the difference between the two theorems
we take a look at n = 15:
pe(D, 15)− po(D, 15) = 13− 14 = −1 and pE(D, 15)− pO(D, 15) = 14− 13 = 1.

14
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2.2 Euler’s recurrence formula
Using the pentagonal number theorem and the partition generating function, it is
possible to get an efficient algorithm for computing values of p(n).

Theorem 2.4. For n > 0,

p(n) =p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15) + ...

+ (−1)m−1p
(
n− 1

2m(3m− 1)
)

+ (−1)m−1p
(
n− 1

2m(3m+ 1)
)

+ ...

Proof. From the fact that
∞∑
n=0

p(n)qn =
∞∏
n=1

1
1− qn

and ∞∑
m=−∞

(−1)mq 1
2m(3m−1) =

∞∏
n=1

(1− qn) ,

we get ( ∞∑
n=0

p(n)qn
)( ∞∑

m=−∞
(−1)mq 1

2m(3m−1)
)

= 1.

Thus, ( ∞∑
n=0

p(n)qn
)

(1− q − q2 + q5 + q7 − q12 − q15 + ...) = 1,

or by multiplying,
∞∑
n=0

p(n)qn −
∞∑
n=0

p(n)qn+1 −
∞∑
n=0

p(n)qn+2 +
∞∑
n=0

p(n)qn+5 +
∞∑
n=0

p(n)qn+7 − ... = 1.

If we now shift the indices and recall that p(n) = 0 for n < 0, we get:
∞∑
n=0

(p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− ...) qn = 1

Comparing the coefficients of qn gives the result.

15



3 Generating functions in two vari-
ables

After the first results of some generating functions, we extend this concept by another
variable. Let us consider p(P,m, n), the number of partitions of n into exactly m parts
that lie in a subset P ⊆ P . This leads us to the two-variable generating function

∞∑
m=0

∞∑
n=0

p(P,m, n)zmqn =
∑
λ∈P

zl(λ)qs(λ),

where λ = (λ1, ..., λr), l(λ) = r denotes the length of the partition and
s(λ) = λ1 + ... + λr. Moreover, we prove many corollaries to prepare the proof of
the famous triple product identity of Jacobi. Finally, we will present two proofs of a
theorem from Sylvester. Let us start with the generating function for partitions of n
into m parts.

Theorem 3.1. ∞∑
m=0

∞∑
n=0

p(P ,m, n)zmqn =
∞∏
n=1

1
(1− zqn) (3.1)

Proof. We can write the product as follows:

1
1− zq ·

1
1− zq2 ·

1
1− zq3 ·

1
1− zq4 · · · =

(1 + zq + z2q2 + z3q3 + ...) · (1 + zq2 + z2q4 + z2q6 + ...)·
(1 + zq3 + z2q6 + z3q9 + ...) · (1 + zq4 + z2q8 + z3q12 + ...) · · · =

=(1 + zq + z2q1+1 + z3q1+1+1 + ...)(1 + zq2 + z2q2+2 + z3q2+2+2 + ...)·
(1 + zq3 + z2q3+3 + z3q3+3+3 + ...)(1 + zq4 + z2q4+4 + z3q4+4+4 + ...) · · ·

We see that this is the required generating function.

3.1 Basic hypergeometric series
In this section there will be many identities including basic hypergeometric series and
many identities related to partitions, more or less one corollary after the other. We
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start with the q-binomial theorem, which is an example for a basic hypergeometric
series.

Theorem 3.2 (q-binomial series). For |q| < 1, |z| < 1,

∞∑
n=0

(a; q)n
(q; q)n

zn =
∞∏
n=0

(1− azqn)
(1− zqn) = (az; q)∞

(z; q)∞
. (3.2)

Proof. Let

F (z) := (az; q)∞
(z; q)∞

=
∞∑
n=0

Anz
n.

We see that

(1− z)F (z) = (1− az) ·
∞∏
n=1

(1− azqn)
(1− zqn)

= (1− az) ·
∞∏
n=0

(1− azqn+1)
(1− zqn+1)

= (1− az)F (zq)

Therefore we get:

(1− z)
∞∑
n=0

Anz
n = (1− az)

∞∑
n=0

Anq
nzn

∞∑
n=0

Anz
n −

∞∑
n=1

An−1z
n =

∞∑
n=0

Anq
nzn −

∞∑
n=1

An−1aq
n−1zn

By comparing coefficients of zn, we get:

An − An−1 = qnAn − aqn−1An−1,

being equivalent to

An = (1− aqn−1)
(1− qn) An−1.

Iterating this gives us

An = (1− aqn−1)(1− aqn−2) · · · (1− a)
(1− qn)(1− qn−1) · · · (1− q) A0.

Starting with A0 = 1, we get

An = (a; q)n
(q; q)n

,

which proves the theorem.

Let us consider two special cases of this theorem, which will be useful later.

17
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Corollary 3.3. For |q| < 1, |z| < 1,
∞∑
n=0

zn

(q; q)n
=
∞∏
n=0

1
(1− zqn) , (3.3)

∞∑
n=0

znq
n(n−1)

2

(q; q)n
=
∞∏
n=0

(1 + zqn). (3.4)

Proof. We obtain (3.3) by setting a = 0 in equation (3.2).
For equation (3.4) we set z = − z

a
in (3.2) to get

∞∑
n=0

(a; q)n
(q; q)n

·
(
−z
a

)n
= (−z; q)∞(
− z
a
; q
)
∞

∞∑
n=0

(
− z
a

+ z
) (
− z
a

+ zq
)
· · ·

(
− z
a

+ zqn−1
)

(q; q)n
= (−z; q)∞(
− z
a
; q
)
∞

.

For a→∞ we get

∞∑
n=0

z · zq · · · zqn−1

(q; q)n
=
∞∑
n=0

znq
n(n−1)

2

(q; q)n
= (−z; q)∞ =

∞∏
n=0

(1 + zqn).

Remark 3.4. If we set z = q in equation (3.3) we get
∞∑
n=0

qn

(q; q)n
=
∞∏
n=1

1
(1− qn) ,

which is exactly the same as equation (1.5).

Now we take a look at these two identities, when we set z = zq. Let us start with
equation (3.3):

∞∑
n=0

znqn

(q; q)n
=
∞∏
n=0

1
(1− zqn+1) =

∞∏
n=1

1
(1− zqn) ,

where the last product is the same as in Theorem 3.1. So what we proved is
∞∑
n=0

znqn

(q; q)n
=

∞∑
m=0

∞∑
n=0

p(P ,m, n)zmqn =
∞∏
n=1

1
(1− zqn)

Now we do the same for equation (3.4) and get

∞∑
n=0

znq
n(n+1)

2

(q; q)n
=
∞∏
n=0

(1 + zqn+1) =
∞∏
n=1

(1 + zqn)

The last product can be written as (1 + zq1) (1 + zq2) (1 + zq3) · · · , where we see, that
a typical term looks like (zqi1) (zqi2) · · · (zqij ) = zjqi1+i2+···+ij , which arises from the

18
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partition i1 + · · ·+ ij with j distinct parts. So what we proved is, that the generating
function for partitions of n into m distinct parts is given by:

∞∑
m=0

∞∑
n=0

p(D,m, n)zmqn =
∞∏
n=1

(1 + zqn) =
∞∑
n=0

znq
n(n+1)

2

(q; q)n

At this point we come back to the very beginning, to the question of Naudé stated to
Euler: How many partitions are there of 50 into 7 distinct parts. We are now able to
answer the question in the same way as Euler did, compute the coefficient of z7q50 in
the above equation and we see that there are 522 such partitions.

For our next interesting result, we have to do some preparations.

Corollary 3.5.

∞∑
n=0

(a; q)n(b; q)nzn
(q; q)n(c; q)n

= (b; q)∞(az; q)∞
(c; q)∞(z; q)∞

∞∑
n=0

(
c
b
; q
)
n

(z; q)nbn

(q; q)n(az; q)n

Proof.
∞∑
n=0

(a; q)n(b; q)nzn
(q; q)n(c; q)n

= (b; q)∞
(c; q)∞

∞∑
n=0

(a; q)nzn
(q; q)n

(cqn; q)∞
(bqn; q)∞

, (3.5)

since
(b; q)n = (b; q)∞

(bqn; q)∞
.

We now apply Theorem 3.2 twice. First, we set z = bqn and a = c
b
, to see that

(cqn; q)∞
(bqn; q)∞

=
∞∑
m=0

(
c
b
; q
)
m
bmqnm

(q; q)m

and equation (3.5) becomes

∞∑
n=0

(a; q)n(b; q)nzn
(q; q)n(c; q)n

= (b; q)∞
(c; q)∞

∞∑
n=0

∞∑
m=0

(a; q)nzn
(q; q)n

(
c
b
; q
)
m
bmqnm

(q; q)m
(3.6)

Then we apply Theorem 3.2, with z = zqm, to see that
∞∑
n=0

(a; q)n(zqm)n
(q; q)n

= (azqm; q)∞
(zqm; q)∞

and equation (3.6) becomes

∞∑
n=0

(a; q)n(b; q)nzn
(q; q)n(c; q)n

= (b; q)∞
(c; q)∞

∞∑
m=0

(
c
b
; q
)
m
bm

(q; q)m
(azqm; q)∞
(zqm; q)∞

. (3.7)
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For the last step, we notice that (azqm; q)∞ = (az;q)∞
(az;q)m

and the same holds for (zqm; q)∞,
so equation (3.7) becomes

∞∑
n=0

(a; q)n(b; q)nzn
(q; q)n(c; q)n

= (b; q)∞(az; q)∞
(c; q)∞(z; q)∞

∞∑
m=0

(
c
b
; q
)
m

(z; q)mbm

(q; q)m(az; q)m

This result allows us to prove the following two corollaries.

Corollary 3.6.

∞∑
n=0

(a; q)n(b; q)n
(
− q
b

)n
(q; q)n

(
aq
b

; q
)
n

=
(aq; q2)∞(−q; q)∞

(
aq2

b2 ; q2
)
∞(

aq
b

; q
)
∞

(
− q
b
; q
)
∞

Proof. Interchanging a and b in Corollary 3.5, set z = − q
b
and c = aq

b
gives

∞∑
n=0

(b; q)n(a; q)n
(
− q
b

)n
(q; q)n

(
aq
b

; q
)
n

= (a; q)∞(−q; q)∞(
aq
b

; q
)
∞

(
− q
b
; q
)
∞

·
∞∑
n=0

(
q
b
; q
)
n

(
− q
b
; q
)
n
· an

(q; q)n(−q; q)n

= (a; q)∞(−q; q)∞(
aq
b

; q
)
∞

(
− q
b
; q
)
∞

·
∞∑
n=0

(
q2

b2 ; q2
)
n
· an

(q2; q2)n

Thm
3.2=

(a; q)∞(−q; q)∞
(
aq2

b2 ; q2
)
∞(

aq
b

; q
)
∞

(
− q
b
; q
)
∞

(a; q2)∞

=
(aq; q2)∞(−q; q)∞

(
aq2

b2 ; q2
)
∞(

aq
b

; q
)
∞

(
− q
b
; q
)
∞

,

where the last equality holds because
(a; q)∞
(a; q2)∞

=
(
aq; q2

)
∞
.

Corollary 3.7.
∞∑
n=0

(a; q)n(b; q)n
(
c
ab

)n
(q; q)n(c; q)n

=

(
c
a
; q
)
∞

(
c
b
; q
)
∞

(c; q)∞
(
c
ab

; q
)
∞

Proof. Let us set z = c
ab

in Corollary 3.5 to get

∞∑
n=0

(a; q)n(b; q)n
(
c
ab

)n
(q; q)n(c; q)n

=
(b; q)∞

(
c
b
; q
)
∞

(c; q)∞
(
c
ab

; q
)
∞

∞∑
n=0

(
c
b
; q
)
n

(
c
ab

; q
)
n
bn

(q; q)n
(
c
b
; q
)
n

=
(b; q)∞

(
c
b
; q
)
∞

(c; q)∞
(
c
ab

; q
)
∞

∞∑
n=0

(
c
ab

; q
)
n
bn

(q; q)n
.
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Then we use Theorem 3.2 with z = b and a = c
ab

to get

∞∑
n=0

(
c
ab

; q
)
n
bn

(q; q)n
=

(
c
a
; q
)
∞

(c; q)∞
All together we get

∞∑
n=0

(a; q)n(b; q)n
(
c
ab

)n
(q; q)n(c; q)n

=
(b; q)∞

(
c
b
; q
)
∞

(c; q)∞
(
c
ab

; q
)
∞

(
c
a
; q
)
∞

(b; q)∞
=

(
c
a
; q
)
∞

(
c
b
; q
)
∞

(c; q)∞
(
c
ab

; q
)
∞

Now we can easily prove the next corollary.
Corollary 3.8.

∞∑
n=0

qn
2−nzn

(q; q)n(z; q)n
=
∞∏
n=0

1
1− zqn (3.8)

Proof. If we set a = α−1, b = β−1 and c = z in Corollary 3.7, we get
(zα; q)∞(zβ; q)∞
(z; q)∞(zαβ; q)∞

=
∞∑
n=0

(α−1; q)n (β−1; q)n (αβz)n

(q; q)n(z; q)n

=
∞∑
n=0

(1− α−1) · · · (1− α−1qn−1) (1− β−1) · · · (1− β−1qn−1) (αβz)n
(q; q)n(z; q)n

=
∞∑
n=0

(α− 1)(α− q) · · · (α− qn−1)(β − 1)(β − q) · · · (β − qn−1)zn
(q; q)n(z; q)n

.

If we set α = β = 0, this identity becomes

1
(z; q)∞

=
∞∏
n=0

1
1− zqn =

∞∑
n=0

qn
2−nzn

(q; q)n(z; q)n

Corollary 3.9.
∞∑
n=0

(a; q)n · q
n(n+1)

2

(q; q)n
=
(
aq; q2

)
∞

(−q; q)∞

Proof. Set b = β−1 in Corollary 3.6:
∞∑
n=0

(a; q)n · (β − 1)(β − q) · · · (β − qn−1) · (−q)n
(q; q)n(aβq; q)n

= (aq; q2)∞(−q; q)∞(aβ2q2; q2)∞
(−qβ; q)∞(aβq; q)∞

Now we set β = 0 and we get the equation.
Remark 3.10. 1. If we take z = q in (3.8) we get (1.6).

2. If we take a look at (3.3) and (3.8) we see that we have shown
∞∑
n=0

zn

(q; q)n
=
∞∏
n=0

1
(1− zqn) =

∞∑
n=0

qn
2−nzn

(q; q)n(z; q)n
.
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3.2 Jacobi’s triple product identity
Now we are able to prove the famous triple product identity of Jacobi, which is a
consequence of Corollary 3.3, in a more or less simple way. The identity was proven
and published by Jacobi in 1829 in his book Fundamenta nova theoriae functionum
ellipticarum. It is the key to the proofs of many other identities, e.g. the Rogers-
Ramanujan identities.

Theorem 3.11.
∞∑

n=−∞
znqn

2 =
∞∏
n=0

(
1− q2n+2

) (
1 + zq2n+1

) (
1 + z−1q2n+1

)
(3.9)

Proof. First we set z = zq and q = q2 in (3.4) to get
∞∏
n=0

(
1 + zq2n+1

)
=
∞∑
n=0

znqn
2

(q2; q2)n

= 1
(q2; q2)∞

∞∑
n=0

znqn
2 (
q2n+2; q2

)
∞

= 1
(q2; q2)∞

∞∑
n=−∞

znqn
2 (
q2n+2; q2

)
∞
, (3.10)

where the second equation holds because

1
(q2; q2)n

= (q2n+2; q2)∞
(q2; q2)∞

and the last equation holds because (q2n+2; q2)∞ = 0 for negative n.
Again we take a look at Corollary 3.3 and set z = −q2n+2 and q = q2 in (3.4) to get

∞∑
j=0

(−q2n+2)j qj(j−1)

(q2; q2)j
=
∞∏
j=0

(
1− q2n+2

(
q2
)j)

.

We can rewrite this equation as follows
∞∑
j=0

(−1)jqj2+2nj+j

(q2; q2)j
=
(
q2n+2; q2

)
∞
.

If we substitute this result into equation (3.10) we get

1
(q2; q2)∞

∞∑
n=−∞

znqn
2 (
q2n+2; q2

)
∞

= 1
(q2; q2)∞

∞∑
n=−∞

znqn
2
∞∑
j=0

(−1)jqj2+2nj+j

(q2; q2)j

= 1
(q2; q2)∞

∞∑
j=0

(−1)jz−jqj
(q2; q2)j

∞∑
n=−∞

q(n+j)2
zn+j

n+j=n= 1
(q2; q2)∞

∞∑
j=0

(− q
z
)j

(q2; q2)j

∞∑
n=−∞

qn
2
zn. (3.11)
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For the next step we take a look at equation (3.3) and set z = − q
z
and q = q2. We get

∞∑
j=0

(− q
z
)j

(q2; q2)j
=
∞∏
n=0

1
1 + q

z
(q2)n =

∞∏
n=0

1
1 + q2n+1

z

= 1
(− q

z
; q2)∞

. (3.12)

Combining (3.10), (3.11) and (3.12) we finally get
∞∏
n=0

(
1 + zq2n+1

) (3.10)= 1
(q2; q2)∞

∞∑
n=−∞

znqn
2 (
q2n+2; q2

)
∞

(3.11)= 1
(q2; q2)∞

∞∑
j=0

(− q
z
)j

(q2; q2)j

∞∑
n=−∞

qn
2
zn

(3.12)= 1
(q2; q2)∞

(
− q
z
; q2
)
∞

∞∑
n=−∞

qn
2
zn.

Hence,
∞∑

n=−∞
znqn

2 =
∞∏
n=0

(
1− q2n+2

) (
1 + zq2n+1

) (
1 + z−1q2n+1

)
,

which completes the proof.

Remark 3.12. Euler’s pentagonal number theorem is a special case of Jacobi’s triple
product identity. If we replace q by q 3

2 and z by −q 1
2 , we get

∞∑
n=−∞

(−1)nq
n(3n+1)

2 =
∞∏
n=0

(
1− q3n+3

) (
1− q3n+2

) (
1− q3n+1

)
=
∞∏
n=1

(1− qn).

Corollary 3.13.
∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in
(
1− q(2n+1)i

)
=

∞∑
n=−∞

(−1)nq(2k+1)n(n+1)/2−in

=
∞∏
n=0

(
1− q(2k+1)(n+1)

) (
1− q(2k+1)n+i

) (
1− q(2k+1)(n+1)−i

)
.

Proof. The second equation follows immediately from Jacobi’s triple product identity
(3.9) by replacing q by qk+ 1

2 and z by −qk+ 1
2−i. It remains to show the first equation:

∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in
(
1− q(2n+1)i

)
=
∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in +
∞∑
n=1

(−1)nq(2k+1)n(n−1)/2+in

=
∞∑
n=0

(−1)nq(2k+1)n(n+1)/2−in +
−∞∑
n=−1

(−1)nq(2k+1)n(n+1)/2−in

=
∞∑

n=−∞
(−1)nq(2k+1)n(n+1)/2−in.
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Corollary 3.14.
∞∑

n=−∞
(−1)nqn2 =

∞∏
n=1

(1− qn)
(1 + qn) ,

∞∑
n=0

qn(n+1)/2 =
∞∏
n=1

(1− q2n)
(1− q2n−1) .

Proof. We set z = −1 in (3.9) and get
∞∑

n=−∞
(−1)nqn2 =

∞∏
n=0

(
1− q2n+2

) (
1− q2n+1

) (
1− q2n+1

)
=
∞∏
n=1

(1− qn)
(
1− q2n+1

)
=
∞∏
n=1

(1− qn)
(1 + qn) ,

where the last equation holds, because we have seen in Theorem 1.3, that
∞∏
n=1

(1 + qn) =
∞∏
n=1

1
(1− q2n−1) ,

which is equivalent to
∞∏
n=1

1
(1 + qn) =

∞∏
n=1

(
1− q2n−1

)
. (F)

For the second equation, we observe that
∞∑
n=0

qn(n+1)/2 = 1
2

∞∑
n=−∞

qn(n+1)/2.

Now we set z and q equal to q 1
2 in (3.9) and get

1
2

∞∑
n=−∞

qn(n+1)/2 = 1
2

∞∏
n=0

(
1− qn+1

) (
1 + qn+1

)
(1 + qn) .

Since
1
2

∞∏
n=0

(1 + qn) =
∞∏
n=1

(1 + qn)

and ∞∏
n=0

(
1− qn+1

) (
1 + qn+1

)
=
∞∏
n=1

(
1− q2n

)
we get

1
2

∞∏
n=0

(
1− qn+1

) (
1 + qn+1

)
(1 + qn) =

∞∏
n=1

(1 + qn)
(
1− q2n

)
.

Using the same argument (F) as for the first equation we get
∞∏
n=1

(1 + qn)(1− q2n) =
∞∏
n=1

(1− q2n)
(1− q2n−1) .
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3.3 A partition theorem by Sylvester
Next, we will present two proofs for a theorem by J.J. Sylvester. The first proof was
given by Sylvester in [18], here we will give two other proofs, the first being due to
Hansraj Gupta in [12] and the second using generating functions.

Theorem 3.15. Let Ak(n) denote the number of partitions of n into odd parts with
exactly k different parts, where repetitions are allowed. Let Bk(n) denote the num-
ber of partitions of n into distinct parts such that exactly k maximal subsequences of
consecutive integers appear. Then for each k and n, Ak(n) = Bk(n).

Proof 1. We will give an algorithm where we transform bijectively a partition of one
type into a partition of the other type. This algorithm will be illustrated by an
example.
We start with a partition of 77, which belongs to A5(77):

19, 19, 11, 5, 5, 5, 5, 3, 3, 1, 1

The algorithm starts with the biggest part of the given partition by splitting it into
two consecutive integers. This is possible, because we deal with odd numbers. Our
biggest part is 19, so we split it into

10, 9.

Then we take the next part, from this we allot 1 to each of the parts of the new
partition and split the rest into two consecutive integers and write them to the right:

11, 10, 9, 8.

We do the same with the next part:

12, 11, 10, 9, 4, 3

In general, one does this up to the point, where the next part of the given partition
is smaller than the number of parts of the new one. In our example, we are at this
point, because the next part we have to deal with is 5 and we already have six parts.
So we just add 1 to the first five parts:

13, 12, 11, 10, 5, 3.

We do this also for the remaining 5’s:

16, 15, 14, 13, 8, 3.

We do the same for the two 3’s:

18, 17, 16, 13, 8, 3.
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Finally, the two 1’s get added to the first part:

20, 17, 16, 13, 8, 3.

We should obtain 5 sequences of consecutive integers and indeed we find the 5
subsequences (20), (17,16), (13), (8),(3). So our new partition belongs to B5(77).

It remains to show the inverse of the algorithm. For this we take the partition
obtained above: 20,17,16,13,8,3.
If the first two parts do not form a sequence, subtract a suitable number from the first
part, such that afterwards it will be equal to the second part plus 1. Then subtract a
suitable number from the first three parts, such that afterwards the third part will be
one more than the fourth. Then from the first five parts such that the fifth part will be
one more than the sixth and so on till the process cannot be applied any more. If the
number of parts is odd, then at the last step we subtract the last element itself, such
that we are left with an even number of parts. The subtracted numbers give us parts of
the new partition. Let us take a look what this means by executing it on our partition.

20 17 16 13 8 3
- 2 (two 1’s)

18 17 16 13 8 3
- 2 2 2 (two 3’s)

16 15 14 13 8 3
- 4 4 4 4 4 (four 5’s)

12 11 10 9 4 3

Now the first part cannot be applied any more. In the second part we subtract 1
from each of the parts except the last two. Adding these 1’s to the sum of the last
two parts, we get a part of our required partition into odd parts. We do this until the
last parts disappeared.

12 11 10 9 4 3
- 1 1 1 1 4 3 (11)

11 10 9 8
- 1 1 9 8 (19)

10 9
- 10 9 (19)

So as we expected our generated partition is 19,19,11,5,5,5,5,3,3,1,1. It is easy to see,
that this gives a bijection between the two considered types of partitions.
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Proof 2. The generating function for Ak(n) is given by
∞∑
k=0

∞∑
n=0

Ak(n)zkqn =
∞∏
j=1

(
1 + zq2j−1 + zq2(2j−1) + zq3(2j−1) + ...

)
.

Since

zq2j−1 + zq2(2j−1) + zq3(2j−1) + ... = zq2(j−1)(1 + q2j−1 + (q2j−1)2 + (q2j−1)3 + ...

= zq2j−1 · 1
1− q2j−1 ,

we can write
∞∏
j=1

(
1 + zq2j−1 + zq2(2j−1) + zq3(2j−1) + ...

)
=
∞∏
j=1

(
1 + zq2j−1

1− q2j−1

)

=
∞∏
j=1

1− (1− z)q2j−1

1− q2j−1

= ((1− z)q; q2)∞
(q; q2)∞

Cor
1.3=
(
(1− z)q; q2

)
∞

(−q; q)∞.

In the next step we want to show that the generating function for Bk(n) is given by:
∞∑
k=0

∞∑
n=0

Bk(n)zkqn =
∞∑
j=1

z
(
q + zq2 + zq3 + ...

) (
q2 + zq4 + zq6 + ...

)
· · ·

· · ·
(
qj−1 + zq2(j−1) + zq3(j−1) + ...

) (
qj + q2j + q3j + ...

)
.

(3.13)

Let us therefore consider the m-th term of this, for some m ≥ k,

z
(
q + zq2 + zq3 + ...

) (
q2 + zq4 + zq6 + ...

)
· · ·

· · ·
(
qm−1 + zq2(m−1) + zq3(m−1) + ...

) (
qm + q2m + q3m + ...

)
and expand it in terms of z and q. A term zkqn occurs in this expansion when

n = 1 · p1 + 2 · p2 + ...+m · pm,

where the pi are positive integers and exactly k − 1 are greater than 1. Of course, we
interpret this expression of n as a partition, where every integer from 1 to m occurs
at least once.
Let pi1 , ..., pik−1 be the pi’s greater than 1. We see that a maximal sequence of consec-
utive integers ends, when it reaches one ij (1 ≤ j ≤ k− 1) and the last sequence ends
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at m, which gives us in total k sequences.
Therefore the parts of the conjugate partition are distinct and the number of sequences
stays the same. So the coefficient of zkqn enumerates all partitions of n into distinct
parts with k sequences of consecutive integers and this is Bk(n).
Let us take a look at an example, where k = 4, m = 8 and n = 72. For the
partition (8,8,8,7,6,5,5,5,5,4,3,2,2,2,1,1) we get: p1 = 2, p2 = 3, p5 = 4, p8 = 3,
p3 = p4 = p6 = p7 = 1. We also take a look at its Ferrers diagram and mark the
sequences there, which are 4 sequences (1), (2), (3,4,5), (6,7,8).

We see that the first sequence of the partition ends at i1 = 1, the second at i2 = 2,
the third at i3 = 5 and the last at m = 8. The conjugate partition is

(16, 14, 11, 10, 9, 5, 4, 3),

which also has 4 sequences and therefore belongs to B4(72).
It remains to show that

∞∑
k=0

∞∑
n=0

Ak(n)zkqn =
∞∑
k=0

∞∑
n=0

Bk(n)zkqn.

Therefore we take a look at (3.13):

∞∑
k=0

∞∑
n=0

Bk(n)zkqn =
∞∑
j=1

z(q + zq2 + zq3 + ...)(q2 + zq4 + zq6 + ...) · · ·

· · · (qj−1 + zq2(j−1) + zq3(j−1) + ...)(qj + q2j + q3j + ...)

=
∞∑
j=1

q
j(j+1)

2 · z · (1 + zq + zq2 + ...) · · ·

· · · (1 + zqj−1 + zq2(j−1) + ...)(1 + qj + q2j + ...).
(3.14)
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We can write
1 + zqs + zq2s + ... = 1 + zqs

1− qs = 1 + (z − 1)qs
1− qs .

Thus (3.14) becomes

1 +
∞∑
j=1

q
j(j+1)

2 · z · ((1− z)q; q)j−1

(q; q)j

=
∞∑
j=0

((1− z); q)jq
j(j+1)

2

(q; q)j
Cor
3.9=
(
(1− z)q; q2

)
∞

(−q; q)∞

=
∞∑
k=0

∞∑
n=0

Ak(n)zkqn.
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4 Gaussian polynomial

Next we are going to take a look at the q-binomial coefficient, often called the Gaussian
polynomial. Not only the coefficient itself, but also its connection to partitions will be
part of this chapter.

Definition 4.1. The Gaussian polynomial, denoted by
[
n
m

]
, is defined by

[
n
m

]
=


(q;q)n

(q;q)m(q;q)n−m
if 0 ≤ m ≤ n,

0 otherwise.

Let us prove some properties of this polynomial.

Theorem 4.2. Let 0 ≤ m ≤ n be integers. The Gaussian polynomial
[
n
m

]
is a

polynomial of degree m(n−m) in q and satisfies the following relations:[
n
0

]
=
[
n
n

]
= 1;[

n
m

]
=
[

n
n−m

]
;[

n
m

]
=
[
n− 1
m

]
+ qn−m

[
n− 1
m− 1

]
; (4.1)[

n
m

]
=
[
n− 1
m− 1

]
+ qm

[
n− 1
m

]
; (4.2)

lim
q→1

[
n
m

]
= n!
m!(n−m)! =

(
n

m

)
. (4.3)
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Proof. The first two equations follow directly from the definition, so let us start with
(4.1).

[
n
m

]
−
[
n− 1
m

]
= (q; q)n

(q; q)m(q; q)n−m
− (q; q)n−1

(q; q)m(q; q)n−m−1

= (q; q)n−1

(q; q)m(q; q)n−m

(
1− qn − (1− qn−m)

)
= qn−m

(q; q)n−1

(q; q)m−1(q; q)n−m

= qn−m
[
n− 1
m− 1

]
.

Equation (4.2) follows by replacing m by n − m in equation (4.1) and using the
symmetry property.

[
n

n−m

]
=
[
n− 1
n−m

]
+ qn−(n−m)

[
n− 1

n−m− 1

]
[
n
m

]
=
[
n− 1
m− 1

]
+ qm

[
n− 1
m

]

Now we take a look a the last property:

lim
q→1

[
n
m

]
= lim

q→1

1− qn
1− qm ·

1− qn−1

1− qm−1 · · ·
1− qn−m+1

1− q

= lim
q→1

1− qn

1− q
1− qm

1− q

·

1− qn−1

1− q
1− qm−1

1− q

· · ·

1− qn−m+1

1− q
1− q
1− q

= lim
q→1

1 + q + ...+ qn−1

1 + q + ...+ qm−1 ·
1 + q + ...+ qn−2

1 + q + ...+ qm−2 · · ·
1 + q + ...+ qn−m

1

= n

m
· n− 1
m− 1 · · ·

n−m+ 1
1

= n!
m!(n−m)! =

(
n

m

)
.

The fact that
[
n
m

]
is a polynomial of degree m(n − m) follows by induction on n

and using (4.2).
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4.1 The q-binomial theorem

Theorem 4.3 (q-binomial theorem).

(z; q)n =
n∑
j=0

[
n
j

]
(−1)jzjq

j(j−1)
2 ; (4.4)

1
(z; q)n

=
∞∑
j=0

[
n+ j − 1

j

]
zj.

Proof. This is an immediate consequence of Theorem 3.2. For the first equation we
set z = zqn and a = q−n in (3.2) to get

(z; q)n = (z; q)∞
(zqn; q)∞

Thm
3.2=
∞∑
j=0

(q−n; q)jzjqnj
(q; q)j

=
∞∑
j=0

(1− q−n) (1− q−n+1) · · · (1− q−n+j−1) zjqnj
(q; q)j

=
n∑
j=0

(1− q−n) (1− q−n+1) · · · (1− q−n+j−1) zjqnj
(q; q)j

=
n∑
j=0

(1− q−n) · q (q−1 − q−n) · · · qj−1 (q−j+1 − q−n) zjqnj
(q; q)j

=
n∑
j=0

q
j(j−1)

2 (1− q−n) (q−1 − q−n) · · · (q−j+1 − q−n) zjqnj
(q; q)j

=
n∑
j=0

q
j(j−1)

2 q−n (qn − 1) · q−n (qn−1 − 1) · · · q−n (qn−j+1 − 1) zjqnj
(q; q)j

=
n∑
j=0

q
j(j−1)

2 −nj (qn − 1) (qn−1 − 1) · · · (qn−j+1 − 1) zjqnj
(q; q)j

=
n∑
j=0

(−1)jq
j(j−1)

2 −nj (1− qn) (1− qn−1) · · · (1− qn−j+1) zjqnj
(q; q)j

=
n∑
j=0

(q; q)n
(q; q)j(q; q)n−j

(−1)jzjq
j(j−1)

2

=
n∑
j=0

[
n
j

]
(−1)jzjq

j(j−1)
2 .

For the second equation we set a = qn in Theorem 3.2 to get
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1
(z; q)n

= (zqn; q)∞
(z; q)∞

Thm 3.2=
∞∑
j=0

(qn; q)j zj

(q; q)j

=
∞∑
j=0

(q; q)n+j−1

(q; q)j(q; q)n−1
zj

=
∞∑
j=0

[
n+ j − 1

j

]
zj.

Remark 4.4. A very interesting fact about the q-binomial theorem is, that Jacobi’s
triple product identity is in fact a corollary of it. To see this, we first rewrite our
version (3.9) of the triple product identity,

∞∑
n=−∞

znqn
2 =

∞∏
n=0

(
1− q2n+2

) (
1 + zq2n+1

) (
1 + z−1q2n+1

)
.

The right hand side can be rewritten as

(
q2; q2

)
∞

(
−zq; q2

)
∞

(
−q
z

; q2
)
∞
.

Now we set z = − z
q
,

∞∑
n=−∞

(−1)nznqn(n−1) =
(
q2; q2

)
∞

(
z; q2

)
∞

(
q2

z
; q2
)
∞
.

In the last step we set q = q
1
2 and get another version of Jacobi’s triple product

identity:
∞∑

n=−∞
(−1)nznq

n(n−1)
2 = (q; q)∞(z; q)∞

(
q

z
; q
)
∞
. (4.5)

We now can easily show, that Jacobi’s triple product identity is a consequence of the
q-binomial theorem by setting n = 2m and k = j −m in (4.4) to get

(z; q)2m =
m∑

k=−m

[
2m
k +m

]
(−1)k+mzk+mq

(k+m)(k+m−1)
2 . (4.6)

Substituting z by zq−m and rewriting (zq−m; q)2m as (zq−m; q)m (z; q)m we can make
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the following observation:(
zq−m; q

)
m

=
(
1− zq−m

) (
1− zq−m+1

)
· · ·

(
1− zq−1

)
= (−1)m

(
zq−m − 1

) (
zqm−1 − 1

)
· · ·

(
zq−1 − 1

)
= (−1)mzm

(
q−m − 1

z

)(
q−m+1 − 1

z

)
· · ·

(
q−1 − 1

z

)
= (−1)mzmq−m2

(
1− qm

z

)(
q − qm

z

)
· · ·

(
qm−1 − qm

z

)
= (−1)mzmq−m2

q
m(m−1)

2

(
1− qm

z

)(
1− qm−1

z

)
· · ·

(
1− q

z

)
= (−1)mzmq−m2+ m(m−1)

2

(
q

z
; q
)
m
.

Hence, equation (4.6) becomes

(zq−m; q)m(z; q)m = (−1)mzmq−m2+ m(m−1)
2

(
q

z
; q
)
m

(z; q)m

=
m∑

k=−m

[
2m
k +m

]
(−1)k+mzk+mq

(k+m)(k+m−1)
2 −m(k+m).

Therefore we get

(
q

z
; q
)
m

(z; q)m =
m∑

k=−m

(q; q)2m(−1)kzkq
k(k−1)

2

(q; q)m+k(q; q)m−k
.

Jacobi’s triple product identity (4.5) follows when we let m→∞.

Remark 4.5. Clearly, there is a connection between the q-binomial theorem and the
ordinary binomial theorem,

n∑
j=0

(
n

j

)
xjyn−j = (x+ y)n.

If we set z = −x
y
in (4.4), we get

(
−x
y

; q
)
n

=
n∑
j=0

[
n
j

]
(−1)j

(
−x
y

)j
q

j(j−1)
2 .

We then multiply both sides by yn to get

(y + x)(y + xq) · · ·
(
y + xqn−1

)
=

n∑
j=0

[
n
j

]
xjyn−jq

j(j−1)
2 .

For q → 1 we obtain the ordinary binomial theorem (see (4.3)).
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4.2 Connection with partitions
One may now ask how this polynomial is related to partitions and their generating
functions. Although we mentioned many different types of partitions, there is one we
did not deal with yet, namely partitions of n into at most l parts, each at most k and
denote the number of these with pk,l(n). Two conditions are quite obvious, namely

pk,l(n) = 0 if n > kl

pk,l(kl) = 1.

Hence its generating function, denoted by

G(k, l; q) =
∑
n≥0

pk,l(n)qn,

is a polynomial of degree kl.

Theorem 4.6. Let k, l ≥ 0 be fixed, then

G(k, l; q) =

(
1− qk+l

) (
1− qk+l−1

)
· · ·

(
1− ql+1

)
(1− qk) (1− qk−1) · · · (1− q) = (q; q)k+l

(q; q)k(q; q)l
=
[
k + l
k

]

Proof. Let

g(k, l; q) = (q; q)k+l

(q; q)k(q; q)l
,

then
g(k, 0; q) = g(0, l; q) = 1.

Moreover,

g(k, l; q)− g(k, l − 1; q) = (q; q)k+l

(q; q)k(q; q)l
− (q; q)k+l−1

(q; q)k(q; q)l−1

= (q; q)k+l

(q; q)k(q; q)l
− (q; q)k+l−1(1− ql)

(q; q)k(q; q)l

= (q; q)k+l−1

(q; q)k(q; q)l

(
1− qk+l −

(
1− ql

))
= (q; q)k+l−1

(q; q)k(q; q)l

(
ql − qk+l

)
= (q; q)k+l−1

(q; q)k(q; q)l
ql
(
1− qk

)
= ql

(q; q)k+l−1

(q; q)k−1(q; q)l
= qlg(k − 1, l; q).
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These two conditions uniquely define g(k, l; q) for all non-negative integers k and l.
Notice that the following holds:

pk,0(n) = p0,l(n) =

1 if k = l = n = 0
0 otherwise.

Therefore we get
G(k, 0; q) = G(0, l; q) = 1.

Furthermore, pk,l(n) − pk,l−1(n) denotes the number of partitions of n into exactly l
parts, each less or equal than k.
We subtract 1 from each part to get a partition of n− l into at most l parts, each less
or equal than k − 1. This procedure is reversible for given n, k and l and therefore
establishes a bijection between partitions enumerated by pk,l(n)− pk,l−1(n) and those
enumerated by pk−1,l(n− l). Therefore

pk,l(n)− pk,l−1(n) = pk−1,l(n− l).

Translating this into a generating function identity, we obtain

G(k, l; q)−G(k, l − 1; q) = qlG(k − 1, l; q)

On the one hand, g(k, l; q) and G(k, l; q) satisfy the same initial conditions, on the
other hand, they satisfy the same defining recurrence, so they must be identical, i.e.

G(k, l; q) = g(k, l; q) = (q; q)k+l

(q; q)k(q; q)l
=
[
k + l
k

]
.
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5 The Rogers-Ramanujan identi-
ties

After the study of partitions, generating functions, q-series and some famous identi-
ties, like Euler’s pentagonal number theorem and Jacobi’s triple product identity, we
now come to the next very famous and interesting identities, the Rogers-Ramanujan
identities, given by

∞∑
n=0

qn
2

(q; q)n
= 1

(q; q5)∞(q4; q5)∞
, (5.1)

∞∑
n=0

qn
2+n

(q; q)n
= 1

(q2; q5)∞(q3; q5)∞
. (5.2)

Before we go to the history of the Rogers-Ramanujan identities, let us take a look at
equation (1.5), to recall, this was

∞∑
n=0

qn

(q; q)n
=
∞∏
n=1

1
(1− qn) . (1.5)

This identity is due to Euler and although it is similar to the Rogers-Ramanujan iden-
tities, it was discovered about 150 years before them.
We are going to prove the identities analytically first, then we will show their combi-
natorial interpretation and at the end we will prove a generalization by Gordon.

5.1 The indian genius Srinivasa Ramanujan
The following summary of the life of Srinivasa Ramanujan is due to G.H. Hardy and
can be found in detail in [13, Ch. 1].
He was born in 1887, near Kumbakonam, into a very poor family. He was recognized
as a quite abnormal boy at the age of twelve or thirteen. A curious story about
him is for example, soon after he began to study trigonometry, he discovered "Euler’s
theorems for the sine and cosine" by himself and was disappointed when he found out
that they where known already. In 1904 he won the Subrahmanyam scholarship and
joined the Government College of Kumbakonam, but due to his permanently study of
mathematics, even during other courses, he lost his scholarship. In 1913 he wrote a
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letter to G.H. Hardy, which contained about 120 theorems, mostly formal identities
extracted from his notebooks and stated without proofs. About three of them Hardy
wrote in [13, p. 9]:
"[These formulas] defeated me completely; I had never seen anything in the least like
them before. A single look at them is enough to show that they could only be written
down by a mathematician of the highest class. They must be true because, if they were
not true, no one would have had the imagination to invent them."
Hardy managed it to bring him to England one year later. He was not the first person
who recognized Ramanujan’s genius, but the first who gave him the chance to work in
an good environment. Unfortunately Ramanujan became ill in 1917 and never really
recovered, though he continued to work until his death in 1920.

5.2 The curious story behind the identities
Before we come to the proof of the Rogers-Ramanujan identities, a few words about
the discovery of them. The interested reader can look the following up in detail in [13,
p. 91]. The Rogers-Ramanujan identities were first discovered and proven by Rogers
in 1894. He was a mathematician who was hardly known and so no one realized his
remarkable discovery. In 1913 Ramanujan stated the identities without proof, he knew
that he had none and none of the mathematicians who tried to find one were able to
prove them. A few years later Ramanujan managed to find one, Hardy writes about
this discovery in [13, p. 91]:
"The mystery was solved, trebly, in 1917. In that year Ramanujan, looking through
old volumes of the Proceedings of the London Mathematical Society, came accidentally
across Rogers’s paper. I can remember very well his surprise, and the admiration
which he expressed for Rogers’s work."
About the same time Issai Schur, who was cut off from England by the war, rediscov-
ered them again. One of the two proofs he published, is a combinatorial one and quite
different than any other one known at this time.

5.3 Proof of the Rogers-Ramanujan identities
Let us prove the Rogers-Ramanujan identities. We prepare the proof by two Lemmas,
from which both identities follow immediately. The proof follows the one in [9, 299
ff.]. We start with the definition of Ramanujan’s theta function.

Definition 5.1. Ramanujan’s theta function is given by

f(a, b) =
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 .

Remark 5.2. Using this definition we can rewrite Jacobi’s triple product identity as
follows:

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (5.3)
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Notice that we get this identity by setting q = ab and z = −a in (4.5).

Remark 5.3. Replacing a and b by −q respectively −q2 in (5.3) we easily see that

f
(
−q,−q2

)
=
(
q; q3

)
∞

(
q2; q3

)
∞

(
q3; q3

)
∞

= (q; q)∞.

Moreover, by the definition we immediately get

f
(
−q,−q2

)
=

∞∑
n=−∞

(−1)nq
n(3n−1)

2 .

Combining those two results we got another proof of Euler’s pentagonal number the-
orem

(q; q)∞ =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 .

Another consequence of (5.3) are the following two identities, where we first replace a
and b by −q2 respectively −q3 and second replace them by −q respectively −q4.

f
(
−q2,−q3

)
=
(
q2; q5

)
∞

(
q3; q5

)
∞

(
q5; q5

)
∞
, (5.4)

f
(
−q,−q4

)
=
(
q; q5

)
∞

(
q4; q5

)
∞

(
q5; q5

)
∞
. (5.5)

If we divide these two equations by (q; q)∞ we get

f (−q2,−q3)
(q; q)∞

= (q2; q5)∞ (q3; q5)∞ (q5; q5)∞
(q; q)∞

= 1
(q; q5)∞ (q4; q5)∞

,

f (−q,−q4)
(q; q)∞

= (q; q5)∞ (q4; q5)∞ (q5; q5)∞
(q; q)∞

= 1
(q2; q5)∞ (q3; q5)∞

.

Therefore we can write (5.1) and (5.2) as

∞∑
n=0

qn
2

(q; q)n
= f (−q2,−q3)

(q; q)∞
, (5.6)

∞∑
n=0

qn
2+n

(q; q)n
= f (−q,−q4)

(q; q)∞
. (5.7)

Moreover, if we set z = q2 (respectively z = q) and q = q5 in (4.5), we get

f
(
−q2,−q3

)
=

∞∑
n=−∞

(−1)nq
5n2−n

2

respectively

f
(
−q,−q4

)
=

∞∑
n=−∞

(−1)nq
5n2−3n

2 .
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Lemma 5.4. Let

G(z) = 1 +
∞∑
n=1

(−1)nq 5n2−n
2 z2n

(
1− zq2n

) (zq; q)n−1

(q; q)n
. (5.8)

Then
G(1) = f

(
−q2,−q3

) (5.4)=
(
q2; q5

)
∞

(
q3; q5

)
∞

(
q5; q5

)
∞

and
(1− q)G(q) = f

(
−q,−q4

) (5.5)=
(
q; q5

)
∞

(
q4; q5

)
∞

(
q5; q5

)
∞
.

Moreover, the following three-term functional equation holds:
G(z)

1− zq = G(zq) + zq
(
1− zq2

)
G
(
zq2

)
. (5.9)

Proof. The identity of G(1) and f(−q2,−q3) respectively (1− q)G(q) and f(−q,−q4)
is a straight-forward calculation:

G(1) = 1 +
∞∑
n=1

(−1)nq 5n2−n
2 (1− q2n)

1− qn = 1 +
∞∑
n=1

(−1)nq
5n2−n

2 (1 + qn)

=
∞∑

n=−∞
(−1)nq

5n2−n
2 = f

(
−q2,−q3

)
,

(1− q)G(q) = 1− q +
∞∑
n=1

(−1)nq 5n2−n
2 q2n (1− q2n+1) (q2; q)n−1

(q2; q)n−1

=
∞∑

n=−∞
(−1)nq

5n2−3n
2 = f

(
−q,−q4

)
.

For the second equality recall (5.4) and (5.5).
It remains to show the recurrence relation. Therefore we split the series by writing

1− zq2n = 1− qn + qn − zq2n = qn (1− zqn) + (1− qn)

to obtain

G(z) = 1 +
∞∑
n=1

(−1)nq
5n2−n

2 z2nqn
(zq; q)n
(q; q)n

+
∞∑
n=1

(−1)nq 5n2−n
2 z2n (zq; q)n−1

(q; q)n−1
.

By replacing n by n+ 1 in the second sum, we get

G(z) = 1 +
∞∑
n=1

(−1)nq 5n2−n
2 z2nqn

(zq; q)n
(q; q)n

−
∞∑
n=0

(−1)nq
5n2+9n+4

2 z2n+2 (zq; q)n
(q; q)n

= 1− z2q2 +
∞∑
n=1

(−1)nq
5n2+n

2 z2n
(
1− z2q4n+2

) (zq; q)n
(q; q)n

. (5.10)
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Now consider G(z)
1−zq −G(zq). Using (5.10) for G(z)

1−zq and (5.8) for G(zq), we obtain

G(z)
1− zq −G(zq) = 1 + zq +

∞∑
n=1

(−1)nq
5n2+n

2 z2n
(
1− z2q4n+2

) (zq2; q)n−1
(q; q)n

− 1−
∞∑
n=1

(−1)nq 5n2−n
2 q2nz2n

(
1− zq2n+1

) (zq2; q)n−1
(q; q)n

= zq +
∞∑
n=1

(−1)nq
5n2+n

2 z2n (zq2; q)n−1
(q; q)n

(
zq3n+1

(
1− zqn+1

)
+ (1− qn)

)
.

When we split the series again, according to the two terms within the braces, we get

G(z)
1− zq −G(zq) = zq +

∞∑
n=1

(−1)nq
5n2+7n+2

2 z2n+1 (zq2; q)n
(q; q)n

+
∞∑
n=1

(−1)nq
5n2+n

2 z2n (zq2; q)n−1
(q; q)n−1

.

We separate out the first term in the last sum and then replace n by n + 1 for the
remaining terms to obtain

G(z)
1− zq −G(zq) = zq +

∞∑
n=1

(−1)nq
5n2+7n+2

2 z2n+1 (zq2; q)n
(q; q)n

− z2q3

−
∞∑
n=1

(−1)nq
5n2+11n+6

2 z2n+2 (zq2; q)n
(q; q)n

= zq
(
1− zq2

)
+ zq

∞∑
n=1

(−1)nq
5n2+7n

2 z2n
(
1− zq2n+2

) (zq2; q)n
(q; q)n

= zq
(
1− zq2

)(
1 +

∞∑
n=1

(−1)nq 5n2−n
2 q4nz2n

(
1− zq2n+2

) (zq3; q)n−1
(q; q)n

)
= zq

(
1− zq2

)
G(zq2).

Lemma 5.5. For G(z) as defined in (5.8), we have

G(z) =
(

1 +
∞∑
n=1

znqn
2

(q; q)n

)
(zq; q)∞.

Proof. Let
H(z) = G(z)

(zq; q)∞
,

then the three-term functional equation in Lemma 5.4 implies

H(z) = H(zq) + zqH
(
zq2

)
,
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since

H(zq) + zqH(zq2) = G(zq)
(zq2; q)∞

+ zqG (zq2)
(zq3; q)∞

= (1− zq)G(zq)
(zq; q)∞

+ zq(1− zq) (1− zq2)G (zq2)
(zq; q)∞

= (1− zq) (G(zq) + zq (1− zq2)G (zq2))
(zq; q)∞

(5.9)= G(z)
(zq; q)∞

= H(z)

Consider the following expansion

H(z) =
∞∑
n=0

hnz
n,

then the coefficients satisfy the following recurrence relation

hn = qnhn + hn−1q
2n−1

= q2n−1

1− qnhn−1.

Solving this recurrence relation with h0 = 1 we get

hn = qn
2

(q; q)n
.

Since H(0) = 1, we get

H(z) = 1 +
∞∑
n=1

znqn
2

(q; q)n
.

With these lemmas it is easy to prove the identities (5.6) and (5.7).

Proof of the Rogers-Ramanujan identities. For the first identity we set z = 1 in
Lemma 5.5 to get

G(1) =
(

1 +
∞∑
n=1

qn
2

(q; q)n

)
(q; q)∞.

Recall that we already know from Lemma 5.4 that

G(1) = f(−q2,−q3).

Therefore we get (5.6)

∞∑
n=0

qn
2

(q; q)n
= f (−q2,−q3)

(q; q)∞
= 1

(q; q5)∞ (q4; q5)∞
.
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For the second identity we set z = q in Lemma 5.5 to get

G(q) =
(

1 +
∞∑
n=1

qn
2+n

(q; q)n

)(
q2; q

)
∞
.

Recall, that by Lemma 5.4

(1− q)G(q) = f(−q,−q4),

hence
∞∑
n=0

qn
2+n

(q; q)n
= f (−q,−q4)

(q; q)∞
= 1

(q2; q5)∞ (q3; q5)∞
,

which proves (5.7).

5.4 Combinatorial interpretation
Although the identities are analytic equations, they also have a combinatorial
interpretation as generating functions of special partitions. Neither Rogers nor
Ramanujan considered their combinatorial meaning, it was 1916 when Percy A.
MacMahon published the first partition theoretical interpretation of them in
[15, p. 33]. At this time the identities were not proven, MacMahon writes in [15, p. 33]:

"This most remarkable theorem has been verified as far as the coefficient of x89 by
actual expansion so that there is practically no reason to doubt its truth; but it has
not been established."

Taking a look at the right hand side of both identities we see, in the same way as we
got the generating function of n into distinct parts, that

1
(q; q5)∞ (q4; q5)∞

=
∞∏
n=0

1
(1− q5n+1) (1− q5n+4)

is the generating function for partitions of n into parts congruent to 1 or 4 modulo 5
and

1
(q2; q5)∞ (q3; q5)∞

=
∞∏
n=0

1
(1− q5n+2) (1− q5n+3)

is the generating function for partitions of n into parts congruent to 2 or 3 modulo 5.

For the left hand side of (5.1) we consider a partition of n into parts differing by at
least 2. If the partition has exactly m parts, the number being partitioned is at least
1 + 3 + ... + 2m − 1 = m2, these are the dots in the triangle in the following Ferrers
diagram for the partition (10, 7, 4, 2), where n = 23 and m = 4.
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Therefore a partition of n into m parts differing by at least 2 can be represented by
a triangle of m2 dots and a partition of n − m2 into at most m parts. As we know
already, the number of such partitions is the coefficient of qn−m2 in

1
(q; q)m

,

which is the same as the coefficient of qn in

qm
2

(q; q)m
.

If we sum over all m we get
∞∑
m=0

qm
2

(q; q)m
,

which is therefore the generating function for partitions of n into parts differing by at
least 2.
For the left hand side of (5.2) we consider a partition of n into parts differing by at
least 2 and 1 is excluded as a part. Such a partition with exactlym parts, must have at
least 2 + 4 + ...+ 2m = m2 +m dots, which now build a trapezoid instead of a triangle
in its Ferrers diagram. For the partition (12,10,7,5,2), where n = 36 and m = 5, it
looks like the following

Therefore, a partition of n into exactly m parts differing by at least 2 where 1 is
excluded as a part can be represented as a trapezoid of m2 + m dots and a partition
of n − (m2 +m) into at most m parts. Like before, the number of such partitions is
the coefficient of qn−(m2+m) in

1
(q; q)m

,

which is the same as the coefficient of qn in

qm
2+m

(q; q)m
.

If we again sum over all m we get
∞∑
m=0

qm
2+m

(q; q)m
,

which is therefore the generating function for partitions of n into parts differing by at
least 2 and 1 is excluded as a part.
We now can state the Rogers-Ramanujan identities using their combinatorial interpre-
tation.
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Theorem 5.6. (1) The number of partitions of n into parts differing by at least
2 is equal to the number of partitions of n into parts congruent to 1 or 4 modulo 5.

(2) The number of partitions of n into parts differing by at least 2 and 1 is excluded
as a part is equal to the number of partitions of n into parts congruent to 2 or 3
modulo 5.

5.5 Gordon’s generalization
A few years after the rediscovery of the Rogers-Ramanujan identities, many mathe-
maticians searched for generalizations of them. The first analytic generalization, which
was proved in 1954, is due to H. L. Alder [1], though he was not able to interpret this
identities partition theoretically. He proved the existence of polynomials Gk,n(q), such
that ∏

n≥1;
n6≡0,±k(mod 2k+1)

1
1− qn =

∞∑
n=0

Gk,n(q)
(q; q)n

and ∏
n≥1;

n6≡0,±1(mod 2k+1)

1
1− qn =

∞∑
n=0

Gk,n(q)qn
(q; q)n

,

where G2,n(q) = qn
2 and so these identities reduce to the Rogers-Ramanujan identities

for k = 2.
The first combinatorial generalization of the Rogers-Ramanujan identities was given
by B. Gordon [11] in 1961.
Theorem 5.7 (Gordon 1961). Let Ak,i(n) denote the number of partitions of n into
parts not congruent to 0 or ±i (mod 2k+1). Let Bk,i(n) denote the number of partitions
of n of the form (b1, b2, ..., bl), where bj − bj+k−1 ≥ 2 and at most i− 1 parts equal 1.
Then Ak,i(n) = Bk,i(n).
Remark 5.8. If we set k = i = 2 in Theorem 5.7, we get (1) in Theorem 5.6.
If we set k = 2 and i = 1 in Theorem 5.7, we get (2) in Theorem 5.6.
We are going to prove the theorem, by the help of a few Lemmas, in a similar way as
we proved the Rogers-Ramanujan identities.
Definition 5.9. We define

Hk,i(a, z, q) =
∞∑
n=0

zknqkn
2+n−inan (1− ziq2ni) (azqn+1; q)∞ (a−1; q)n

(q; q)n (zqn; q)∞
Jk,i(a, z, q) = Hk,i(a, zq, q)− zqaHk,i−1(a, zq, q),

where any value for a is admissible, even a = 0, since
an (a−1; q)∞ = (a − 1)(a − q) · · · (a− qn−1) is a polynomial in a whose value at 0 is
(−1)nq

n(n−1)
2 .
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Lemma 5.10.

Hk,i(a, z, q)−Hk,i−1(a, z, q) = zi−1Jk,k−i+1(a, z, q)

Proof. We first note that

q−in
(
1− ziq2ni

)
− q−(i−1)n

(
1− zi−1q2n(i−1)

)
= q−in(1− qn) + zi−1qn(i−1)(1− zqn).

Using this observation, we see that

Hk,i(a, z, q)−Hk,i−1(a, z, q) =
∞∑
n=0

zknqkn
2+nan (azqn+1; q)∞ (a−1; q)n

(q; q)n (zqn; q)∞
q−in(1− qn)

+
∞∑
n=0

zknqkn
2+nan (azqn+1; q)∞ (a−1; q)n

(q; q)n (zqn; q)∞
zi−1qn(i−1)(1− zqn)

=
∞∑
n=1

zknqkn
2+nan (azqn+1; q)∞ (a−1; q)n q−in

(q; q)n−1 (zqn; q)∞

+
∞∑
n=0

zknqkn
2+nan (azqn+1; q)∞ (a−1; q)n zi−1qn(i−1)

(q; q)n (zqn+1; q)∞

=
∞∑
n=0

zkn+kqkn
2+n+2kn+k+1an+1 (azqn+2; q)∞ (a−1; q)n+1 q

−in−i

(q; q)n (zqn+1; q)∞

+
∞∑
n=0

zknqkn
2+nan (azqn+1; q)∞ (a−1; q)n zi−1qn(i−1)

(q; q)n (zqn+1; q)∞

= zi−1
∞∑
n=0

zknqkn
2+inan (azqn+2; q)∞ (a−1; q)n

(q; q)n(zqn+1; q)∞

·
(
azk−i+1q2n(k−i)+n+k−i+1

(
1− qn

a

)
+ (1− azqn+1)

)

= zi−1
∞∑
n=0

zknqkn
2+inan (azqn+2; q)∞ (a−1; q)n

(q; q)n(zqn+1; q)∞
·
(
1− (zq)k−i+1q2n(k−i+1)

)
−zi−1

∞∑
n=0

zknqkn
2+inan (azqn+2; q)∞ (a−1; q)n

(q; q)n(zqn+1; q)∞
·

·
(
azqn+1

(
1− (zq)k−iq2n(k−i)

))
= zi−1 (Hk,k−i+1(a, zq, q)− azqHk,k−i(a, zq, q))
= zi−1Jk,k−i+1(a, z, q).
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Lemma 5.11.

Jk,i(a, z, q)− Jk,i−1(a, z, q) = (zq)i−1 (Jk,k−i+1(a, zq, q)− aJk,k−i+2(a, zq, q)) (5.11)

Proof.

Jk,i(a, z, q)− Jk,i−1(a, z, q) = (Hk,i(a, zq, q)−Hk,i−1(a, zq, q)
− azq(Hk,i−1(a, zq, q)−Hk,i−2(a, zq, q))
= (zq)i−1Jk,k−i+1(a, zq, q)− a(zq)i−1Jk,k−i+2(a, zq, q),

where the last equation follows from the previous Lemma.

Lemma 5.12.
Jk,i(0, 1, q) =

∏
n≥1;

n6≡0,±i(mod 2k+1)

1
1− qn . (5.12)

Proof. Notice that
1

(q; q)∞
= 1

(q; q)n (qn+1; q)∞
. (F)

By the definition of Jk,i(a, z, q) we get

Jk,i(0, 1, q) = Hk,i(0, q, q)
(F)= 1

(q; q)∞

∞∑
n=0

qkn
2+n(k−i+1)(−1)nq

n(n−1)
2

(
1− q(2n+1)i

)
= 1

(q; q)∞

∞∑
n=0

(−1)nq
(2k+1)n(n+1)

2 −in
(
1− q(2n+1)i

)
Cor
3.13= 1

(q; q)∞

∞∑
n=−∞

(−1)nq(2k+1)n(n+1)/2−in

Cor
3.13= 1

(q; q)∞

∞∏
n=0

(
1− q(2k+1)(n+1)

) (
1− q(2k+1)n+i

) (
1− q(2k+1)(n+1)−i

)
=

∏
n≥1;

n6≡0,±i(mod 2k+1)

1
1− qn

We now proceed with Gordon’s theorem and follow the proof in [7, 109 ff.].

Proof of Theorem 5.7. Let bk,i(m,n) denote the number of partitions of n of the form
(λ1, ..., λm) with exactly m parts, such that λj ≥ λj+1, λj − λj+k−1 ≥ 2 and at most
i− 1 of the λj equal 1. Then for 1 ≤ i ≤ k

bk,i(m,n) =

1 if m = n = 0
0 if m ≤ 0 or n ≤ 0 but (m,n) 6= (0, 0),

(5.13)

bk,0(m,n) = 0. (5.14)
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These conditions are obvious, since the only partition that is either of a non-positive
number or has a non-positive number of parts is the empty partition of 0.
Now we consider bk,i(m,n)− bk,i−1(m,n): This enumerates the same kind of partitions
of n as bk,i(m,n) does, except the condition, that exactly i − 1 parts are equal to 1.
We now transform this set of partitions. At first we delete the i − 1 ones and then
subtract 1 from each of the remaining parts. The resulting partitions (λ′1, ..., λ′m−i+1)
have m − i + 1 parts, they partition n − m and the parts satisfy λ′j − λ′j+k−1 ≥
2. Since originally 1 appeared i − 1 times and, because of the difference condition,
the total number of ones and twos can not exceed k − 1, we see that originally 2
appeared at most k − 1− (i− 1) times. Therefore after the transformation 1 appears
at most k − i times. This transformation establishes a one-to-one correspondence
between partitions enumerated by bk,i(m,n) − bk,i−1(m,n) and those enumerated by
bk,k−i+1(m− i+ 1, n−m), so the following holds

bk,i(m,n)− bk,i−1(m,n) = bk,k−i+1(m− i+ 1, n−m). (5.15)

We have to convince ourselves, that the bk,i(m,n) are uniquely determined for 0 ≤
i ≤ k by (5.13), (5.14) and (5.15). Equations (5.13) and (5.14) handle the case where
n,m ≤ 0, i > 0 and n > 0, i = 0. These are the starting points of our recursion (5.15),
which represents bk,i(m,n) as a sum of two terms, where the first term has a lower i
index and the second a lower n index, since we can assume m > 0, so the bk,i(m,n)
are uniquely determined. Now let us consider

Jk,i(0, z, q) =
∞∑
m=0

∞∑
n=0

ck,i(m,n)zmqn.

From the fact that for 1 ≤ i ≤ k

Jk,i(0, 0, q) = Jk,i(0, z, 0) = 1,

we see that for 1 ≤ i ≤ k

ck,i(m,n) =

1 if m = n = 0
0 if m ≤ 0 or n ≤ 0 but (m,n) 6= (0, 0).

From the fact that
Jk,0(0, z, q) = Hk,0(0, zq, q) = 0,

we see that
ck,0(m,n) = 0.

With this preparation we take a look at equation (5.11) for a = 0 we get

ck,i(m,n)− ck,i−1(m,n) = ck,k−i+1(m− i+ 1, n−m).

Hence ck,i(m,n) also satisfies equations (5.13)-(5.15) that uniquely define bk,i(m,n).
Therefore bk,i(m,n) = ck,i(m,n) for all m and n with 0 ≤ i ≤ k. Since

∞∑
m=0

bk,i(m,n) = Bk,i(n),
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we see that
∞∑
n=0

Bk,i(n)qn =
∞∑
m=0

∞∑
n=0

bk,i(m,n)qn

= Jk,i(0, 1, q)
Lemma

5.12=
∏
n≥1;

n6≡0,±i(mod 2k+1)

1
1− qn

=
∞∑
n=0

Ak,i(n)qn.

So we get Ak,i(n) = Bk,i(n).
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Appendix

Abstract
The theory of partitions started with the famous mathematician Leonhard Euler,
who was asked how many partitions there are of 50 into 7 distinct parts. He solved
this problem using generating functions and was then interested in the generating
functions for partitions of n, whose number of partitions is given by p(n). After that,
he studied the reciprocal of the generating function of p(n), the result was Euler’s
pentagonal number theorem. The next important mathematician in this topic was J.J.
Sylvester, his approach to consider partitions graphically was a huge innovation and
gave a new point of view. Using the theory of generating functions and the graphical
representation of partitions we prove several partition identities, for example that the
number of partitions of n into odd and distinct parts is equal to the number of self-
conjugate partitions of n. Considering partitions with some restrictions and properties
lead us to two variable generating functions, where we have to handle hypergeometric
functions and come across Gaussian polynomials and Jacobi’s triple product identity.
This identity will be the key for proving the major result of the last part; The Rogers-
Ramanujan identities. Finally we prove a generalization of them, which was the work
of Gordon.

Zusammenfassung
Die Theorie der Partitionen begann mit dem berühmten Mathematiker Leonhard Eu-
ler, der die Frage gestellt bekam, wie viele Partitionen es von 50 in 7 unterschiedliche
Teile gibt. Er löste dieses Problem mit erzeugenden Funktionen und war danach an der
erzeugenden Funktion für Partitionen von n, deren Anzahl mit p(n) angegeben wird,
interessiert. Danach untersuchte er die reziproke Funktion der erzeugenden Funktion
von p(n) und formulierte als Ergebnis den Pentagonalzahlensatz bekannt ist. Ein
weiterer wichtiger Mathematiker in diesem Gebiet war J.J. Sylvester, dessen Ansatz
Partitionen graphisch darzustellen eine große Innovation war und einen neuen Zugang
ermöglichte.
In dieser Arbeit beweisen wir mit erzeugenden Funktionen und der graphischen
Darstellung von Partitionen einige Identitäten von Partitionen, wie zum Beispiel, dass
die Anzahl der Partitionen von n in ungerade und verschiedene Teile gleich der An-
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zahl von selbstkonjugierten Partitionen von n ist. Beim Betrachten von Partitionen
mit unterschiedlichsten Einschränkungen und Eigenschaften nutzen wir erzeugenden
Funktionen mit zwei Variablen, arbeiten mit hypergeometrischen Funktionen und tr-
effen auf Gauß’sche Polynome und Jacobi’s Tripleprodukt Identität. Diese Identität
ist der Schlüssel um das Hauptthema des letzten Abschnittes zu beweisen; die Rogers-
Ramanujan Identitäten. Zum Schluss beweisen wir eine ihrer Verallgemeinerungen,
die auf Gordon zurückgeht.
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