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Chapter 1

Introduction

Cities offer plenty mobility opportunities - from an extensive public transportation
system to car-sharing and bikes or scooters. People’s preferences to use a city’s mobility
are as diverse as its range - some prefer taxi, others always take the bike, yet others
combine various modes of transport (MOT). We can see that people make use of a city’s
multimodal nature. While the mobility offers are increasing, the time spent thinking
about getting from A to B is decreasing. People rather set only cornerstones of their
travel (e.g., time and location), and rely on information systems embedded in holistic
mobility concepts to provide an assignment of MOTs to their travel requests. In such
mobility systems the “sharing economy”, which captures the societal movement away
from owning towards sharing, is deeply anchored – we are facing a change from “owning
cars” towards “being mobile”. Moreover, sustainability considerations are indispensable
when drafting future mobility. As the transport sector is one of the biggest issuer of
emissions worldwide [65], decreasing the carbon footprint is crucial. Thus, urban mobility
is a key topic for a sustainable future, focusing on environmentally friendly MOTs and
holistic concepts.

The individually driven car is diminishing in its importance. Taking Vienna as an
example, we see that the modal split of cars dropped from 31% to 25% in the last
decade. Cars were the prevailing mode of transport ten years ago – today, most daily
travels are covered by using public transportation in Vienna. The modal split of public
transportation increased from 30% in 2010 to currently 38%, walking reaches a modal
split of 30%. Moreover, even though Vienna is not considered as a prominent cycling
city, already 7% of daily trips are covered by bikes [150, 151]. Besides the “traditional”
modes of transport, people increasingly use sharing systems [145]. These changes and
shifts to other (more environmentally friendly) MOTs come, indeed, with thought-out
ideas, concepts and incentives: To start with an example, the city of Vienna reduced the
price of the annual ticket for public transportation to be 1 Euro per day. This motivated
more people to switch from cars to public transportation. Today, in Vienna, more people
hold an annual ticket for public transportation than a car [152] and only recently the
city announced that the inner city will be car-free [10]. Moreover, there is an increase in
investments into bike roads, having also pop-up roads throughout the city for a further
shift from cars to bikes. With this we can clearly see, that the aim is to reduce the
amount of cars in the city, preferring different, environmentally friendly, MOTs. We can
see ambitious and prominent mobility concepts not only in Vienna but in many cities all
over the globe. The joint idea of such projects is to reduce the carbon footprint, keep the
personal cars outside the cities in order to give back space to citizens, have a combined
and integrated use of various modes of transport and profound sharing concepts.

By using car-sharing, resources can be employed more efficiently, it saves space and
also reduces emissions. Only in Vienna, 44 million kilometer driven by car can be saved.
This adds up to about 7,000 tons of CO2 per year [102]. Studies show that only a very
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small part of the privately owned cars would be needed to cover all trips taken by a car.
For example, in Austria at maximum 10% of all owned cars are simultaneously driving
on the roads [145] and it may vacate up to 95% of parking space [145].

Such concepts and a shift towards a “smarter” mobility is not only increasingly
important in private mobility, but crucial in a corporate context too. This thesis started
as a part of an applied research project, addressing these issues in a corporate context.
Moreover, the latest Austrian government agreement [157] repeatedly mentions the
enforcement of (shared) mobility concepts, also in a corporate context. The aim is
to ecologize corporate mobility, and boost shared mobility in companies. Increasingly,
companies are trying to change their view on their corporate mobility by switching
from individually assigned and underutilized cars towards using sustainable and flexible
mobility concepts including car pools, bike sharing, taxis, and/or public transportation
services. Companies strive to have an overall green and sustainable profile and employees
are aware of the importance to contribute to a greener world, even if their travel time of
a trip might increase. Instead of supporting further developments in corporate mobility
privileging a few selected users, we are aiming at providing sustainable corporate mobility
concepts.

This thesis focuses on modeling and implementing new mobility concepts. We tackle
mobility used within a closed group of users where the set of users and their mobility
requests are known in advance. In our setting this closed group of users is a company with
its employees but can also be, e.g., a residential area where mobility is mutually used.
The aim of this thesis is to formulate relevant problem settings by means of mathematical
programming, detect efficient solution techniques and develop algorithms for solving the
models. Thus, we aim to tackle a multitude of questions: How can a sharing concept for a
closed community be modeled? What are the important decisions, what can be taken as
a given? What is an appropriate objective function to be considered? What are practical
and useful extensions? How can users be incorporated in such optimization problems?
What are appropriate methods to solve such problems? Can the chosen methods be
of practical use? To answer these questions, we will make use of advanced modeling
techniques, decomposition approaches, and mainly exact state-of-the-art algorithms. In
order to obtain a realistic idea of the problems, all models are tested using generated
data based on gathered statistics regarding Viennese work patterns.

1.1 Methodology

In this thesis we discuss relevant problem settings in order to support decision making
for shared (corporate) mobility system. We formulate optimization problems using
quantitative methods and models, and develop efficient solution techniques. In general,
we distinguish between exact methods and heuristics. The latter approximates a solution
whereas it is not guaranteed that the optimal solution will be found. These algorithms are
usually very efficient in terms of computational effort and can find good and acceptable
solutions. Exact algorithms solve the respective problem always to proven optimality,
however, can be very slow.

Even though heuristics can be very powerful, we mainly focus on exact solution
techniques, or a combination of exact and heuristic approaches. In order to assess the
real potential of a model, one needs optimal solutions. Yet, in order to be able to solve



1.1. Methodology 3

real-sized and practical instances, simplifications on the modeling side as well as advanced
solution techniques are required.

In the following, we shortly outline the techniques used in this thesis. We start by giv-
ing an introduction into mathematical modelling, then summarize the exact approaches
used in Chapter 3 and 4, that is column generation and branch-and-cut.

1.1.1 Mathematical programming

The following paragraphs in this section are based on Dantzig [48] as well as Hillier
and Lieberman [83], where also further and more detailed information can be found.

Mathematical programming methods have proven to be a powerful technique. In this
case, programming derives from scheduling and means a structure that is represented
as a mathematical model. In such a mathematical model we aim to depict a real-world
environment using mathematical terms and concepts. If all the relationships in the
model are linear and if all variables are continuous, we call it a linear programming (LP)
model. If some or all of the decision variables are integer, we are working on (mixed)
integer programs ((M)IP). Note that in this thesis we only formulate and solve programs
with linear relationships. Computational effort is then used in order to find an optimal
“program”, i.e., optimal solution, of given alternatives. When formulating a mathematical
model it is crucial to thoroughly understand the actual problem and to know what the
purpose of the study should be. There has to be a well-defined problem statement,
determining the appropriate objectives, restricting constraints and interrelationships.
The steps of the problem definition greatly affects the relevant conclusions.

Thus, a mathematical model is an abstract representation of a problem. The essence
of the problem is formulated with parameters and constraints that limit and define the
model, as well as variables which represent the decisions to be made. We maximize
or minimize an objective function, e.g., cost minimization or profit maximization. Yet,
models are not always restricted to one objective only, but may state multiple ones as we
will see in Chapter 4. The modeling approach has a great impact on the efficiency of the
problem. One has to decide what to explicitly model, which information is needed, what
may be simplified. Complicated constraints can be omitted with advanced modeling
techniques, as we will see in Chapter 3.

Many powerful tools exist to solve mathematical programs. A well-known commercial
solver is CPLEX, that is used to solve all models in this thesis. Even though these solvers
can already tackle challenging models, they reach their limits. For this, advanced solution
techniques are needed. As mentioned before, in this thesis we mainly rely on two exact
algorithms, shortly outlined in the following.

1.1.2 Column generation

Many works can be found on column generation. The following paragraphs are based
on Lübbecke [101], where also further information can be found.

Usually, only a fraction of all variables in a LP is needed to prove optimality. Consid-
ering a problem with binary variables, at the end, many variables will take on the value
0. Column generation is a classical algorithm to solve large-sized problems by iteratively
adding variables to the model. Basically, the technique exchanges information between
a so called (restricted) master problem and the pricing problem.
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The master problem (MP) is the to-be solved linear program including all variables
and constraints. Typically, the size of variables is exponential. To start the column
generation algorithm, we consider a restricted master problem (RMP), considering only
a subset of variables. After solving the RMP, the optimal solution is obtained and the
optimal dual solution is passed on to the pricing problem, where a variable with negative
reduced cost (minimization problem) is sought. If a variable with negative reduced cost
is found, we add it to the RMP. Note that at each iteration the algorithm might find, and
consecutively add, multiple variables with negative reduced cost. The RMP is re-solved,
the values of the optimal dual variables again handed over to the pricing problem, which
is recurrently solved, aiming to detect new variables with negative reduced cost. This
process is repeated until no further improving variables can be found. If so, the current
solution of the RMP is the optimal solution for the MP, i.e., the linear program. Note
that, considering a (mixed) integer program, this gives the lower bound of a minimization
problem. If one aims to solve the program to proven integer optimality, a branch-and-
price algorithm is then (usually) needed. The column generation algorithm solves the
linear relaxation in each node of the branch-and-bound tree. However, in this thesis,
even though we work on integer programs, we do not implement a full fledged branch-
and-price algorithm but solve the integer program on the initially generated columns
only, which does not necessarily give the optimal solution to the integer program.

1.1.3 Branch-and-cut

Branch-and-cut algorithms have been proven to be very powerful when solving
(mixed) integer linear programs. Note that commercial solvers, such as CPLEX, use the
branch-and-cut algorithm for solving models. In what follows, we shortly outline the
algorithm. We refer to Mitchell [110] for more detailed annotation and information.

The algorithm is a combination of the well-known branch-and-bound algorithm and
the cutting plane method. The basic idea of cutting planes is to improve the lower bound
of the relaxed integer problem (assuming a minimization problem) by iteratively adding
omitted constraints, which are usually either complicated constraints or of exponential
size, and/or valid inequalities. Valid inequalities are constraints that do not eliminate
feasible solutions but are not in the initial set of constraints. These inequalities are used
to strengthen formulations of difficult integer problems.

The brach-and-cut algorithm iteratively solves the underlying model and adds violated
constraints in a cutting-plane manner. To detect whether constraints are violated,
separation algorithms (or routines) are called. In our algorithm in Chapter 4, we eliminate
timing constraints of trips and routes, and add them as infeasible path constraints [11].
These are then separated by checking user/car routes for timing restrictions, and added
as a cut if infeasible routes are detected. Afterwards, the model is resolved again and
further cuts are sought. This is repeated until no further cuts can be added to the model.

Note that cuts may be added after a relaxed solution is found or only on incumbent
ones. We follow the latter strategy. In latest works, depending on the problem, this
has shown to be a very efficient approach [13]. The linear relaxation of our problem is
enhanced by adding strong valid inequalities to the root node at the beginning of the
algorithm to the model.
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Introduction

The vehicle-sharing
problem (VShP)

The multimodal car-
and ride-sharing

problem (MMCRP)

The bi-objective
multimodal car-sharing
problem (BiO-MMCP)

Conclusion

Figure 1.1: Thesis outline.

1.2 Outline and contribution

This thesis consists of three papers that have either been accepted for publication,
are under review or have been submitted to a scientific journal. All papers contribute to
the literature of optimization problems for shared mobility systems considering a known
and closed group of users. The chapters introduce efficient modeling and algorithms to
solve complex problems.

Figure 1.1 gives an overview of the thesis. We started by giving a short introduction in
Chapter 1. Chapter 2 introduces “The vehicle-sharing problem (VShP)”. The consecutive
Chapters 3 and 4 are extensions of the first one, and tackle, additionally to car-sharing,
ride-sharing as well as the incorporation of user preferences and time-dependent travel
times. Lastly, we provide a conclusion in Chapter 5. All of the models and problem
settings are inspired by the project “Seamless”, the last model also incorporates ideas
from the FWF project “MOMIP: Multi-objective (mixed) integer programming”.

In the following, the individual parts of the thesis are shortly outlined and the
contribution of the authors to the respective papers are stated.

Modeling and solving a vehicle-sharing problem

In Chapter 2, we study the vehicle-sharing problem in a company, having one or
more offices, from which the employees (= users) have to visit various customers during
office hours, e.g., for business meetings (= tasks). The time of such a task as well as the
user joining the task are known in advance. This gives us fixed sequences, thus we do
not determine tours but focus on the vehicle assignment. The company has a pool of
shared vehicles and has access to other MOTs, such as public transportation, to cover all
demanded trips. We maximize the savings obtained when using a shared vehicle instead
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of any other MOT. The cost of transportation do not only include distance cost, but
hourly wages of employees in order to properly reflect the trade-off between fast (but
expensive) and slow (but cheap) modes of transportation. We model the problem where
only one type of vehicles can be shared as the maximization equivalent of a minimum
cost flow problem. The case where different vehicle types, e.g., bikes, cars and electric
vehicles, are shared, the formulation is based on the multi-commodity flow problem.
Even though these two problems are proven to be NP-hard, state-of-the-art solvers are
able to solve the models within seconds, even for real-world sized instances. The chapter
shows an efficient modeling of such sharing systems and provides a thorough analysis of
savings potentials within a corporate setting.

This chapter is based on the paper “Modeling and solving a vehicle-sharing problem”
submitted to the “EURO Journal of Transportation”. This paper is a joint work with
Prof. David Pisinger and my supervisior Prof. Sophie N. Parragh. The initial modeling
idea is the output of a discussion with Prof. Pisinger. I implemented the models,
conducted the literature review and the computational experiments and wrote most
parts of the manuscript. This work was accompanied with advice and guidance from my
co-authors regarding every part of the process.

Modeling and solving the multimodal car- and ride-sharing problem

In Chapter 3 we extend the idea of vehicle-sharing by allowing colleagues to co-ride in
cars between meetings with each other, introducing the multimodal car- and ride-sharing
problem. Ride-sharing is considered to have a good environmental footprint as it saves
resources, such as cars and energy. In the US, on average only around 1.7 out of four
seats in a car are occupied. This number even reduces to 1.2 for work-based trips [107].
The increasing number of underutilized seats in cars and an increasing number of users
asking for rides, imply motivation to elaborate a sophisticated ride-sharing system. The
underlying problem setting is similar to the one in Chapter 2. In addition to only sharing
cars, employees may now also share rides. This will be beneficial if meetings are visited
together, or different meetings are closeby or lie on the colleague’s path. Moreover,
the employees may now exclude some MOTs, having only a subset of MOTs available
for each user. The objective is to achieve further savings by sharing cars and rides in
the best possible way, thus introducing more mobility options, whilst ensuring that all
customers are visited at the right time by the right employee. We enumerate all possible
trips, including ride-sharing, and model them as arcs in a directed acyclic graph. Vehicle
routes consist of one or more trips, whereas the driver of these trips may change at the
depot. Due to the numerous possibilities, the underlying graph may be of exponential
size. In order to find vehicle routes, we apply a column generation approach to solve
the LP-relaxation and produce an integer solution with the generated columns, showing
near-optimal solutions.

This work is published in the “European Journal of Operational Research” and is
a joint work with Prof. Sophie N. Parragh, Prof. David Pisinger, and Dr. Matthias
Prandtstetter. The initial motivation was provided by my co-authors with whom I
specified the problem and developed the model. I implemented the master problem, the
arc formulation, and the extension of the pricing strategies (different exact and heuristic
approaches). I conducted all computational experiments and the literature review. The
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majority of the manuscripts was also written by me. My co-authors gave advice, guidance
and feedback for every part of the process.

The bi-objective multimodal car-sharing problem

In Chapter 4 we again only consider car/vehicle-sharing, but extend it by incorpo-
rating the “human factor” in a second objective. Previously, only monetary parameter
were taken into account. However, when studying mobility, traveler experience is key
to success and can decide on the “win or lose” of a system. Thus, convenience and user
preferences are crucial. This is increasingly important as usually cost-efficiency is in
conflict with a MOT’s convenience. This “convenience” is difficult to measure and must
be considered on an individual user level. Therefore, it is vital to tackle the trade-off
between minimizing cost and enhancing the individual satisfaction of a user in a mobility
system. Combining these parameters and providing the decision maker with a set of
efficient solutions will lead to an enhanced acceptance of such a system. Therefore,
we present the bi-objective multimodal car-sharing problem. We optimize towards two
objectives, namely cost minimization and user-preference enhancement. Again, we have
a set of users covering meetings. However, in this chapter we additionally study different
variants where we include time-dependencies as well as not predetermined sequences
of tasks and user trips. We present a branch-and-cut algorithm embedded into two
bi-objective frameworks. We also also provide various heuristic solutions which, however,
are not part of the submitted manuscript and are therefore presented in Appendix A.3.1.

This work has been accepted for publication at the “OR Spectrum” and is a joint work
with my supervisor Prof. Sophie N. Parragh and Prof. Jakob Puchinger. I developed the
models, implemented the solution algorithm, conducted the computational experiments
as well as the literature review and wrote most parts of the manuscript with advice and
guidance from my co-authors regarding every part of the process.

Contribution

The proposed PhD-thesis covers a variety of topics, using exact methods, efficient
and new modeling approaches and incorporates single and multiple objectives. The
contribution of the thesis is manifold:
In the first part, the vehicle-sharing problem is formulated as the maximization equivalent
of a minimum-cost flow, as well as a multi-commodity flow problem and an extensive
computational study giving managerial insights is conducted. In the second part, we
introduce the novel MMCRP derived from a real-world-application, formulated as an
extended vehicle sharing problem. We propose a two-layer decomposition approach,
where the first layer is solved through enumeration and for the second layer we present
an efficient column generation approach. With the modeling approach, we are able to
hide complicated ride-sharing constraints. We show that with the proposed approach we
can solve real-world sized instances to near-optimality. The computational times make
it possible for a daily planning of multimodal car- and ride-sharing systems. The third
and last part includes the human factor by adding a second objective function. Doing so,
we can get closer to real-world requirements. We present four variants of the problem,
discussing increased flexibility of the timing of the visits and time-dependent travel times
and preferences. We propose a branch-and-cut algorithm, where we show that by passing
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over information to subsequent iterations comes with an enhancement in computational
effort.

For all chapters that correspond to already published work, I have obtained the rights
to include the submitted version in my thesis. The only changes made, and the only
differences to the published versions concern formatting, structural changes (renumbering
of sections), and updates to cited references.



Chapter 2

Modeling and solving a
vehicle-sharing problem

Submitted to: EURO Journal on Transportation and Logistics
July 22, 2020.
M. Enzi, S.N. Parragh & D. Pisinger.

Abstract Motivated by the change in mobility patterns, we present a scheduling
approach for a vehicle-sharing problem from a company viewpoint with centralized
planning. We consider vehicle-sharing in a company having one or more depots and
a fixed number of users, i.e. employees. The users have appointments with a fixed
location and fixed start and end times. A vehicle must be used for a full trip of a user
from depot to depot. We aim at assigning vehicles to user-trips so as to maximize
savings compared to other modes of transport.
We first consider that only one type of vehicles is used, and second that multiple
vehicle types can be shared. For the first case we show that the vehicle-sharing
problem can be formulated as a minimum-cost flow problem. Secondly, if multiple
types of vehicles are available for sharing then the problem can be formulated as a
multi-commodity flow problem. These formulations make the problem applicable in
daily operations due to efficient solution methods.

We provide a comprehensive computational study for both cases using realistic
instances based on demographic, spatial, and economic data of Vienna. We show
that our formulations for this problem solve our instances in a few seconds, which
makes them usable in an online booking system. In the analysis we discuss real-life
cases, where we study an optimal composition of a shared fleet, restricted sets of
modes of transport, and variations of the objective function.

Keywords— shared mobility, vehicle-sharing, car-sharing, transportation

2.1 Introduction

Mobility – how we use it and see it – is changing. People tend to be mobile rather than
owning cars. ”Mobility as a Service” (MaaS) [113] has emerged as a widely known and
used term. This change is supported by novel mobility concepts, not only in the private
sector but also in the area of corporate mobility. Companies are trying to change their
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view on their corporate mobility by switching from individually assigned cars towards
MaaS for their employees, and give incentives to use (a combination of) ”greener” modes
of transport to avoid pollution and congestion problems. Having shared mobility within
a company (or any other closed group of users such as, e.g., home communities) will be
increasingly important in future mobility settings.

In this work we study a real-life problem, and report results for relevant cases derived
from an applied research project with several company partners (http://www.seamless-
project.at). It is a vehicle-sharing problem in a company, having one or more offices
(depots), from which the employees (users) have to visit various customers during office
hours (e.g. for business meetings). Each visit (task) involves one specific user and has
a fixed time, which gives us a fixed sequence of tasks. A trip covers the fixed sequence
of tasks of one user, starting at a depot and terminating at the same location or in
another depot of the company. Thus a trip contains several stops and it starts and ends
at a predefined (but possibly different) depot. The company operates a pool of shared
vehicles of a fixed size and provides possibilities to use other modes of transport (MOT),
such as bikes, taxis or walk. Different to most other vehicle-sharing problems, we study
the problem from a company viewpoint with centralized planning. Thus, we minimize a
company’s expenses and do not focus on individual goals.

The aim is to assign user-trips to the available vehicles, e.g., shared cars so as to
maximize the savings obtained when using a vehicle instead of any other MOT. The costs
of transportation do not only include distance cost, but also hourly wages of employees
in order to properly reflect the trade-off between fast (but expensive) and possibly slower
(but cheaper) modes of transport, such as public transportation or bikes. We note that
cars may not always be the fastest (or cheapest) MOT. Furthermore, we also include
emission cost to strengthen the use of environmental friendly MOTs.

Many formulations studying car-sharing systems are based on time-space networks
such as, e.g., de Almeida Correia and Antunes [50], considering depot locations in the
context of one-way car-sharing. Brandstätter et al. [36] model the movement of cars in a
electric car-sharing system as a multi-commodity flow problem. Zhang et al. [154] work
on vehicle-to-trips assignment and relay decisions in one-way car-sharing systems with
electric vehicles. They model the problem in a single-commodity network flow model
and develop a heuristic thereof. In Enzi et al. [62] both car-sharing and ride-sharing are
considered simultaneously. The first step of the auxiliary graph transformation of Enzi
et al. [62] is similar to the presented graph in this work. However, they extend the graph
by duplicating trips including ride-sharing and solve the car- and ride-sharing problem
by a kind of column generation algorithm, assigning cars to trips. Detailed surveys on
car-sharing are provided by Jorge and Correia [88], Brandstätter et al. [34] and Laporte
et al. [98].

In our paper, we rely on the modeling of two well-known network problems, namely the
minimum-cost flow problem and the multi-commodity flow problem. Even though similar
modeling approaches have been applied, we give a theoretical contribution outlining that
such a shared system within a company incorporating either a single shared vehicle type
or multiple shared vehicles, can be modeled using these well-known formulations. We
formulate the case where only one type of vehicle is shared as a minimum-cost flow
problem [4]. If more than one type of vehicles is shared, we base the formulation on the
multi-commodity flow problem [18]. Note that, even though we will mainly base our
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examples and results on cars, this problem can easily incorporate other shared vehicles,
such as bikes or scooters.

Contribution and outline The contributions of this paper are as follows: we intro-
duce and model a corporate vehicle-sharing problem with predetermined trips, using
the well-known minimum-cost flow and multi-commodity flow formulation, which can be
solved efficiently and thus used in an online operational setting within a company with
centralized planning. Furthermore, we provide a detailed analysis with respect to the
impact of using different kinds of shared vehicles, and provide insights into optimal fleet
composition in a shared system. We also analyze the number of trips per vehicle during
a day and the disadvantage (from a cost-perspective) when giving the opportunity to
restrict the set of available MOTs per user/trip. We compare the case where no sharing
is allowed with our introduced sharing systems. Finally, we compare the outcomes of
different objective functions, whereas we once use a combination of operational distance
cost and cost of time, and then considering time only.

The paper is organized as follows: We start by introducing our vehicle-sharing problem
in Section 2.2. We first introduce the model with a single shared vehicle type, formulated
as a minimum-cost flow problem in Section 2.2.1, followed by the model with multiple
shared vehicle types formulated as a multi-commodity flow problem in Section 2.2.2.
In Section 2.3 we summarize our analysis based on an extensive computational study
and give managerial implications using instances based on demographic, spatial, and
economic data of Vienna, Austria. We conclude this paper in Section 2.4.

2.2 A vehicle-sharing problem

Formally, our vehicle-sharing problem can be formulated as follows:
We have a set of users P that have to visit meetings (tasks). Each task is associated

with a different location and has an associated fixed start time and duration. The user-
to-task assignment is not interchangeable, resulting in a fixed sequence of tasks per user.
Every user p ∈ P covers one or more trips π. A trip has an origin oπ and destination eπ
whilst covering in between a fixed set of tasks. Moreover, we consider a set of modes
of transport K such as walk, bikes, public transportation (bus, train, metro), taxis and
cars, where at least one MOT k has a restricted capacity that is shared, e.g., cars. If a
trip is started with one mode of transport, then it should be used for the full trip.

Let us assume a task q and its fixed successor q′. We know the driving time between
the two tasks (q,q′) using mode of transport k, and the cost of driving between two tasks
(q,q′) using mode of transport k. Since the trips follow a fixed sequence, we can calculate
cost and travel time for each trip π and each MOT k.

For each trip π let mink∈K\{1}Ckπ be the cost of the cheapest mobility types excluding
cars k= 1 (assuming that we are sharing cars). Let C1

π be the cost of riding the same trip
π by car k = 1. We then calculate the savings sπ =C

K\{1}
π −C1

π of using a car compared
to using the cheapest possible other mobility type. Note that if traveling with a certain
MOT is not possible, we impose a penalty and set Ck =∞.
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Finally, we aim at assigning user-trips to the shared vehicles in the best possible way
whilst maximizing savings obtained when using a car compared to the cheapest other
mobility type.

We model the problems on a directed acyclic graph (DAG). Since a MOT must be
used for the full trip, we do not model the tasks covered by a trip in the graph, and only
consider nodes oπ and eπ for each trip π, which represent starting and ending points of
a trip. The savings of the arc (oπ,eπ) is sπ, as explained above. In order to connect the
trips we insert additional arcs (eπ,oπ′) if trip ππ has the same destination as trip ππ′ has
origin, and the trip π finishes before the trip π′. The savings of such an arc is 0.

In the following, we introduce the modeling of the two cases presented in this paper.
First, we introduce the modeling approach for the case where only one type of vehicles
is shared and then solved as a minimum-cost flow problem. Second, we present the
formulation where multiple shared vehicle types can be employed. This is then modeled
and solved as a multi-commodity flow problem.

2.2.1 The vehicle-sharing problem with a single type of shared vehicle
(VShP-1T)

For the vehicle-sharing problem with a single type of shared vehicle (VShP-1T ) we
create a node Ad for each depot d ∈ D with a supply δd representing the number of
available vehicles. Depots represent locations where the shared vehicles start and end,
e.g. a company’s offices. For each depot d where the vehicles must be parked in the
evening, we create a node A′d with a demand δ′d equal to the number of requested vehicles
at the end of the planning horizon. Every node Ad is connected to all nodes oπ if trip
π starts in depot d. Every node eπ is connected to node A′d if the trip π ends in depot
d. We add extra arcs (Ad,A′d) with infinite capacity and zero savings, to represent the
case where a vehicle is not used and stays in the depot. Finally, we draw the nodes
in a time-space network, where the x-axis represents the time of day, and the y-axis
represents the depots.

Figure 2.1 shows a simple example in which we have two depots, and five trips. We
assume that the first depot has two vehicles available in the morning, and two vehicles
(not necessarily the same) should be returned to the depot in the evening. Note that we
indicate the savings and capacity for each arc in the form (savings, capacity).

Let V be the set of all nodes and let sij be the savings of a trip going from node i
to j (in our auxiliary graph eπ, oπ). Furthermore, let δi be the demand at the depots,
being 0 for eπ and oπ. Parameter uij gives the capacity of an arc, which is 1 for all arcs.
Finally, the binary decision variables xij take on value 1 if connection (i, j) is chosen,
and 0 otherwise.

With this, we show that the vehicle-sharing problem considering one single type of
shared vehicle (VShP-1T ) can be modeled as the maximization equivalent to a minimum-
cost flow problem, formulated in model (2.1)-(2.4).

max
∑

(i,j)∈V
sijxij (2.1)

s.t
∑
j∈V

xji−
∑
j∈V

xij = δi ∀i ∈ V (2.2)
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Figure 2.1: The underlying graph of the minimum-cost flow formulation of the vehicle-sharing
problem with one shared vehicle type, five trips, and two depots. Nodes Ad,A′d represent depots
where the available vehicles are stored at the beginning and end of the time horizon. In our
example we have δ1 = 2 vehicles available at A1 and δ2 = 1 car at A2, the same amount of
vehicles has to be returned in the evening to A′1 and A′2. Nodes oπ and eπ give start and end
points of a trip π. Finally, each arc represents a trip π with a given saving sπ and capacity. The
x-axis represents the time of day, and the y-axis represents the depots.

xij ≤ uij ∀i, j ∈ V (2.3)
xij ≥ 0 ∀i, j ∈ V (2.4)

The objective function (2.1) maximizes savings. Constraint (2.2) restricts the out/ingoing
vehicles at the beginning/end of the day. Further it assures flow conservation in nodes
i ∈ V \{D}. Constraint (2.3) makes sure that at most one vehicle is covering a certain
connection (i, j).

We will solve our model as a mixed integer program (MIP) since state-of-the-art
solvers are already capable of handling these kinds of problems very efficiently. Never-
theless, we shortly review some of the algorithms that have been widely applied. Ford
and Fulkerson [68] were first to introduce a combinatorial algorithm for the problem. Ed-
monds and Karp [57] proposed the scaling resulting in the first weakly polynomial-time
algorithm. Tardos [138] introduced the minimum cost circulation algorithm which was
the first strongly polynomial method. In the consecutive years many solution approaches
evolved. Scaling techniques have shown to be promising [57, 75, 74, 40]. Polynomial
in time are also cycle cancelling algorithms [93, 73] or cut cancelling algorithms [63].
Furthermore, the network simplex method was efficiently applied to the maximum flow
problem [49, 92, 100] or adaptions of the successive shortest path algorithm [37]. Kovács
[96] provides a survey of various algorithms and present an overview of their respective
complexity.

2.2.2 The vehicle-sharing problem with multiple types of shared vehi-
cles (VShP-xT)

In what follows, we do not only consider one type of shared vehicle but multiple ones.
Note that shared vehicles can be different types of cars but also bikes or any other MOT.
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Figure 2.2: The underlying graph of the multi-commodity flow formulation of the vehicle-sharing
problem with two shared types of vehicles, five trips π, and two depots d. Nodes Mk,M ′k

represent supra-nodes where the available shared vehicles are stored at the beginning and end of
the time horizon and then distributed to the respective depot nodes Akd,A′kd . We have 3 vehicles
of type 1 available and 7 vehicles of type 2; 2 and 1 of type 1 are distributed to depot 1 and 2,
respectively; 3 and 4 of type 2 vehicles to depot 1 and 2, respectively. Nodes oπ and eπ give start
and end points of a trip π. Finally, each arc gives its respective savings and capacity. The x-axis
represents the time of day, and the y-axis represents the depots.

We start with the previously described graph. To model the vehicle-sharing problem
with multiple types of shared vehicles (VShP-xT ), we duplicate the sources and sinks
since we have different MOT options and supra-nodes where the MOTs start/end. We
model a supra-source Mk for each k ∈K ′ where K ′ ∈K denote the set of shared vehicles.
In our example we have M1 for one type of cars, and a supra-source M2 for another type.
In a similar way we add supra-sinks M ′k. The set of all supra-nodes, thus Mk ∪M ′k, is
denoted as M . We then construct start and end depot nodes Akd,A′kd to where we connect
the respective Mk and all origins oπ and end nodes eπ of a trip π, respectively. We assign
savings s and capacity to each trip, i.e. arc. Drawing the nodes in a time-space network,
Figure 2.2 shows a simple case where we have two shared types of vehicle.

We show that the problem can then be solved as an integer multi-commodity flow
problem, where arc savings skij depend on the commodity transported k. In our example
commodities correspond to different shared vehicles. We now consider a demand ∆k

per MOT k and define with the capacity parameter uij how many MOTs are available
between two nodes i and j. Let xkij be 1 if connection between (i, j) is covered by MOT
k, 0 otherwise. This problem has the formulation:

max
∑
k∈K

∑
i∈V

∑
j∈V

skijx
k
ij (2.5)

s.t
∑
i∈V

xkij−
∑
i∈V

xkji = 0 ∀k ∈K,j ∈ V \{M} (2.6)
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∑
j∈V

xki,j−
∑
j∈V

xkj,i = ∆k ∀i ∈Mk,k ∈K (2.7)

∑
i∈V

xki,j−
∑
i∈V

xkj,i = ∆k ∀j ∈M ′k,k ∈K (2.8)
∑
k∈K

xkij ≤ uij ∀i, j ∈ V (2.9)

xkij ≥ 0 ∀k ∈K,i,j ∈ V (2.10)

Objective function (2.5) maximizes the savings. Equation (2.6) gives the flow conservation
constraints for all nodes except the sources and sinks. Constraints (2.7) and (2.8) restrict
the number of shared MOTs. Constraint (2.9) gives the capacity restriction on the arcs.
Finally, constraint (2.10) assures positive numbers.

The formulation above is polynomial in the size of the constraints, having |K| · |E|
variables, where |E| is the number of arcs, and |E|+ |K| · |V | constraints. However, large-
scale problems may be challenging to be solved. Therefore, efficient solution algorithm
have been applied such as Lagrangian relaxation [124, 12], adapted branch-and-bound
algorithms [17], Dantzig-Wolfe decomposition [90] and column generation algorithms
[139, 16]. Nevertheless, we will solve the models as a MIP as state-of-the art commercial
solvers are able to solve problems of limited size (like in our case) within seconds.

2.3 Computational results

We provide computational results using the above presented models for the vehicle-
sharing problem. The models are implemented in C++ and solved with CPLEX 12.9.
Tests are carried out using one core of an Intel Xeon Processor E5-2670 v2 machine with
2.50 GHz running Linux CentOS 6.5. Tests are conducted on a number of generated
instances varying in size and complexity.

In the following, we give a short introduction to the instance set. Afterwards we
provide the results of our computational study for the VShP-1T and VShP-xT . We
further present results of varying objective functions and restricted sets of MOTs for
individual users. Lastly, we comment on the results and give some managerial insights.

2.3.1 Test instances

We generate realistic benchmark instances based on available demographic, spatial
and economic data of the city of Vienna, Austria. Five different MOTs are considered:
cars (combustion engine vehicles and electric vehicles), walk, bike, public transportation
and taxi. In the following results we name the combustion engine car ’car-type1’, the
electric vehicles ’car-type2’. For each mode of transport k ∈K we define distances, time
and cost between all nodes. We calculate the Aerial distance between two locations which
are then multiplied by a constant sloping factor for each MOT k in order to account
for longer/shorter distances of the respective mode of transport. Moreover, we have
emissions per distance unit, average speed, cost per distance and cost per time as well
as additional time needed for, e.g., parking the car, for each k ∈K. The cost of time is a
fixed value based on the average gross salary including additional costs for employers in
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Austria. The objective function results from these values. The values of the parameters
are given in the Appendix A.1 Table A1.

Each generated instance represents a distinct company operating two offices and
consisting of a predefined set of users, i.e. employees, p ∈ P . The locations of the offices
(depots) are based on statistical data of office locations in Vienna placed in the geometric
centers of all 250 registration districts.

Companies are defined by a fixed number of users u. Note that one person may have
more than one trip assigned. Therefore, the number of users u does not equal the number
of trips (arcs) in the graph. In Table 2.1 we provide an overview on the average number
of trips per user. As we can see, on average each user takes about 1.5 trips during the
planning horizon.

The number of meetings and their time and location, are randomly generated based
on historic statistical data. We define a time horizon of one day where each user
has an assigned set of meetings distributed over the day. We calculate savings based
on the cheapest other MOT, whereas we always use publicly available MOTs (public
transportation, bike, taxi) to be the cheapest other possible alternative.

We solve 10 instances per instance group.

Table 2.1: Average number of trips for each instance group with u users.

u 20 50 100 150 200 250 300
trips 31 76 147 218 287 358 427
trips / u 1.54 1.52 1.47 1.45 1.44 1.43 1.42

A more detailed instance description can be found in Enzi et al. [62]. Knopp et al. [95]
base their instance generation on the same idea, and provide a detailed description at the
end of their paper. Instance sets are made publicly available at https://github.com/
dts-ait/seamless.

2.3.2 Results for the vehicle-sharing problem with a single type of
shared vehicle (VShP-1T)

We start by showing the results obtained for the VShP-1T , represented by model
(1)-(4). We assume one type of shared vehicle: in VShP-1T:car these are combustion
engine cars (car-type1), in VShP-1T:ecar we consider electric cars (car-type2) as our
shared resource. The results are obtained for an increasing number of users u, and
a varying number of shared cars m. Walk, bike, public transportation, and taxi are
assumed to have no capacity restriction. The considered cars are equally spread over the
two depots.

Figure 2.3 illustrates the average total cost as a sum of the cost of the shared cars
and other MOTs as well as savings for users u = 20,150,300 and number of cars cars
m = 4,8,20,40. Note that the savings are given in the opposite direction (negative
numbers) for a better distinction between savings and cost. With an increase in the
number of shared cars m we see a decrease in the overall costs, clearly visible by the
declining bars in each group. For smaller instances (u= 20) we can observe that the cost
of the cars is higher than the cost of the other MOTs. This is not surprising as the model
is able to assign the shared cars to all beneficial trips. Figure 2.3(a) shows the values for

https://github.com/dts-ait/seamless
https://github.com/dts-ait/seamless
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(a) VShP-1T:car

(b) VShP-1T:ecar

Figure 2.3: Total cost split into cost of MOTs and cost of cars, respectively for car-type1
(=combustion engine cars) and car-type2 (=electric cars) as well as savings (negative bars) for
an increasing number of u= 20,150,300 and cars m= 4,8,20,40.

VShP-1T:car , Figure 2.3(b) the VShP-1T:ecar . As can be seen, the general impression
as well as the total overall cost are about the same. In Figure 2.3(b), thus for the case
where electric vehicles are shared, we have slightly less total cost and less car cost. More
detailed information and further results on, e.g., savings, and the composition of the
total cost regarding cars and other MOTs, can be found in Appendix A.1 Table A2 and
Table A3.

Tables 2.2 and 2.3 summarize the average number of trips for VShP-1T:car and
VShP-1T:ecar and increasing number of cars m and users u. We observe that with
an increasing number of users u the average number of trips for a car is also raising.
This is because the model aims to cover as many trips by car as possible. With an
increasing number of users but the same number of cars in the system, the model will
try to situate more trips on one of the few cars available. The average number of trips is
higher when fewer cars are available. We observe this for both variants, the VShP-1T:car
and VShP-1T:ecar . Overall VShP-1T:ecar shows a higher average of trips per car.
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Table 2.2: Average number of trips per car for an increasing number of users u and cars m for
VShP-1T:car .

m u= 20 50 100 150 200 250 300

4 1.5 2.1 2.1 2.2 2.3 2.5 2.3
8 1.4 1.9 2.1 2.1 2.2 2.3 2.1
20 1.3 1.6 1.9 1.9 1.9 2.1 2.0
40 1.4 1.4 1.6 1.7 1.8 1.9 1.9

Table 2.3: Average number of trips per car for an increasing number of users u and cars m for
VShP-1T:ecar .

m u= 20 50 100 150 200 250 300

4 1.6 2.1 2.2 2.3 2.4 2.7 2.4
8 1.5 2.0 2.2 2.2 2.2 2.4 2.2

20 1.3 1.7 2.0 1.9 2.0 2.2 2.1
40 1.4 1.4 1.8 1.8 1.9 2.0 2.0

In Appendix A.1 Table A5 we give an overview of the solution times for VShP-1T:car
and VShP-1T:ecar . For an increasing number of users u, we observe an increase in the
times used to solve the models. However, we always stay below 8 seconds of solution
time.

2.3.3 Results for the vehicle-sharing problem with multiple types of
shared vehicles (VShP-xT)

In the following, we present the results obtained by solving the VShP-xT , given in
model (5)-(10). We now assume different types of shared vehicles in one model. For our
tests we use combustion engine cars (car-type1) and electric vehicles (car-type2). Note
that this can be easily extended/changed in order to include, e.g., bikes or e-scooters. We
are given an equal number of each car type, denoted as mk respectively. Thus if mk = 2,
then two cars of each type are available. These are then again equally assigned to the
depots. In our example, since we assume 2 depots, this would give us one combustion
engine car (car-type1) and one electric vehicle (car-type2) at each depot. Again, the
model is tested on a number of instances for a varying number of users u and shared
cars m.

Figure 2.4 plots the total cost as a result of the cost of the two car types, and cost of
the other MOTs, as well as savings which are given in the opposite direction as negative
numbers. Note that we observe a similar picture as in Figure 2.3. We increase the cost
of cars (car-type1 and car-type2) by adding more available cars m to the system whilst
reducing total cost. The share of the car-type2 cost are constantly higher than the cost
of car-type1. This means, as e-cars (= car-type2) are usually cheaper, that more electric
cars are assigned. Note that for the smallest instances (u= 20) the cost of the car-type1
is diminishing, meaning that almost all of the trips are covered by car-type2. Table A4
in the Appendix A.1 shows more details on the cost as well as the breakdown of the total
cost into cost of the respective car types and other MOTs.
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Figure 2.4: Total cost split into cost of MOTs, cost of car-type1 (=combustion engine cars), and
cost of car-type2 (=electric cars) as well as savings (negative bars) comparison for u= 20,150,300
and cars m= 4,8,20,40 for VShP-xT .

Table 2.4 shows the average number of trips a car is taking for an increasing number
of users u and cars m. The results are split into values for the different car types. We
can see that the average number of trips per car-type2 (= electric car) is always greater
than the number of trips for the other type. This means, that if possible, the model aims
to assign more trips to e-cars. In the extremest case (u= 20,m= 40) almost no trip is
covered by a conventional car (car-type1). Moreover, we can again observe an increase
in the average number of trips per car for a higher number of users u as well as smaller
number of cars m.

Table 2.4: Average number of trips per car for an increasing number of users u and cars m for
VShP-xT . Car-type1 are combustion engine cars, car-type2 electric cars.

m u= 20 50 100 150 200 250 300

4 car-type1 1.5 1.7 1.7 1.9 2.1 2.1 1.9
car-type2 1.8 2.5 2.6 2.6 2.6 3.0 2.8

8 car-type1 1.3 1.6 1.7 1.6 1.8 1.8 1.7
car-type2 1.6 2.3 2.6 2.6 2.7 2.8 2.6

20 car-type1 0.4 1.2 1.6 1.4 1.4 1.6 1.5
car-type2 1.5 2.1 2.4 2.4 2.5 2.7 2.5

40 car-type1 0.1 0.7 1.3 1.3 1.4 1.4 1.4
car-type2 1.3 1.7 2.1 2.1 2.3 2.5 2.4

All instances can be solved in less than 17 seconds of solution time (see Appendix
A.1 Table A5).

2.3.4 Comparison of VShP-1T:car, VShP-1T:ecar, VShP-xT and the
case where all trips are covered by one vehicle/MOT

Now we compare the models VShP-1T:car , VShP-1T:ecar , and VShP-xT regarding
cost for an increasing number of users u and vehicles m.
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(a) u = 20 (b) u = 100

(c) u = 300

Figure 2.5: Total cost comparison where all trips are either covered by electric cars (car-type2),
combustion engine cars (car-type1) or not by cars at all, and the introduced models (VShP-
1T:car , VShP-1T:ecar , VShP-xT ). The restricted fleet (given on the x-axis, m = 4,8,20,40) is
only applicable to the cases where vehicles are shared (VShP-1T:car , VShP-1T:ecar , VShP-xT )
as otherwise all trips are covered by the respective MOT.

Figure 2.5 shows the cost of the different cases for u = 20,100,300 and increasing
m. The respective lines give the cost of the following cases: no trip is covered by
a car, every trip is covered by a combustion engine vehicle (car-type1), all trips are
covered by electric vehicles (car-type2), VShP-1T:car , VShP-1T:ecar and VShP-xT .
Note that the fleet restrictions only apply for VShP-1T:car , VShP-1T:ecar and VShP-
xT . We can see that it is always most expensive if no trip is covered by a car. In
all three figures, the line representing cost of using only car-type2, which are electric
vehicles, lies below the line showing cost when using car-type1, thus combustion engine
vehicles, only. When considering u = 20, VShP-1T:car , VShP-1T:ecar , and VShP-xT
are always cheaper than employing conventional cars only. For u= 100 and u= 300 the
cost curves of the three models (VShP-1T:car , VShP-1T:ecar , VShP-xT ) start above the
conventional car cost, however break even after m = 8 for u = 100 and around m = 20
for u = 300. In Figure 2.5(a) the cost of the three models cross the line representing
the cost if all trips are covered by car-type2. For u= 100 (Figure 2.5(b)) the cost line
representing VShP-1T:ecar crosses the line where only electric cars are employed at
around m= 40. For u= 20 the VShP-xT merges at some point with VShP-1T:ecar , as
there are enough electric vehicles to cover all beneficial trips. Overall, VShP-1T:ecar is
always the cheapest option. The cost line of VShP-1T:car is always above VShP-xT and
VShP-1T:ecar . Thus, considering the three sharing options, employing a shared system
with only combustion engine cars (VShP-1T:car) is most expensive.
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Table 2.5 compares the cost of the three models VShP-1T:car , VShP-xT , and VShP-
1T:ecar , whereas the latter is taken as the base. We show the averages over m= 4,8,20,40
for an increasing number of users u. VShP-1T:ecar is the cheapest, as we have already
seen in the previously discussed figure. VShP-xT shows on average slightly higher cost.
Lastly, as expected, the case where only combustion engine cars are employed in a pool
of shared vehicles, is the most expensive alternative, ranging up to 1.05 times the cost
of VShP-1T:ecar .

Table 2.5: Total cost comparison split for an increasing u and averaged over all m for VShP-
1T:car , VShP-1T:ecar , and VShP-xT . Column ’cost’ gives the absolute cost of the respective
model, ’comp.’ compares the cost to VShP-1T:ecar where it is set as (cost of the model / cost of
VShP-1T:car).

VShP-1T:ecar VShP-xT VShP-1T:car
u cost cost comp. cost comp.

20 509 514 1.01 533 1.05
50 1,541 1,558 1.01 1,599 1.04
100 3,152 3,184 1.01 3,235 1.03
150 5,091 5,127 1.01 5,184 1.02
200 6,962 7,003 1.01 7,065 1.01
250 8,909 8,954 1.00 9,022 1.01
300 9,822 9,866 1.00 9,932 1.01

2.3.5 Including user preferences as a restricted subset

We assume that every user p has a set Kp ⊆K of possible modes of transport that
can be used, reflecting her preferences. Depending on the user that is covering a trip π,
we can then define a set of modes of transport possible to be assigned for a trip Kπ ⊆K.
Note that if a MOT is not in the respective set Kπ we impose a penalty and set Ck =∞.
We define seven different cases aiming to represent differences in preference distribution.

For the first case, prefVar0, we make use of available statistical data representing
the working population of Vienna. For this we define different combinations of possible
accepted MOTs in the instance generation: generic, motorised only, no public trans-
portation, no motorised, cars only, public transportation only and bike only. For each of
them we have a probability for female and male users, where we have [0.19, 0.03, 0.01,
0.04, 0.18, 0.42, 0.13] and [0.18, 0.03, 0.02, 0.03, 0.26, 0.35, 0.13], respectively [132]. We
assume that 53% of the working population is male, and 47% female [134]. Further, we
incorporate the probability that 87% of them have a driving license and 13% are not
allowed to drive a car [27]. The combinations are then chosen randomly based on the
set probability distribution. We assume that if a user includes a combustion engine car
in her set of MOTs, then she will also have the electric car and vice versa. For the other
cases, naming prefVar1-prefVar6, we adopt more straightforward strategies to represent
the preferences of the users. Depending on the variant, we define a fixed percentage of
users with a given setting. We say this may either be mixed (= accepting all MOTs),
cars only or other MOTs except cars (= no cars). Let us assume an instance with 20
users and 40% mixed, 40% cars only and 20% other MOTs only. Then users 1-8 accept
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Table 2.6: Categorization of the different preference variants. Percentage of the users with the
respective set of accepted MOTs, where (1) all: no restricted set is applied, user takes all MOTs,
(2) cars only: the user only wants to drive by car, (3) no cars: no cars are given in the restricted
set, only other MOTs are accepted.

variant all cars only no cars

prefVar0 see text
prefVar1 40% 40% 20%
prefVar2 10% 10% 80%
prefVar3 25% 25% 50%
prefVar4 0% 80% 20%
prefVar5 0% 20% 80%
prefVar6 0% 50% 50%

all MOTs, users 9-16 only cars and users 17-20 anything but cars. Table 2.6 shows the
setting of each of the applied variants.

Figure 2.6 shows the total cost divided into cost of cars and other MOTs for VShP-
1T:car for an increasing number of users u= 20,150,300 and cars m= 40 for the different
preference settings, namely prefVar0-prefVar6. The first bar in every subfigure gives the
respective cost of the base case where no restricted set of preferred MOTs is given, which
is VShP-1T:car . For u= 20 in Figure 2.6(a) we can still see a substantial difference in
the composition of the cost of the different settings, yet similar total cost. It is clearly
visible, that VShP-1T:car without any restricted set of MOTs, outputs the least cost,
however, have the highest cost for operating cars. The cost for cars take up about 60% of
the total cost. The lowest share of cost for cars is used in prefVar3, only having 27% of
car cost compared to total cost. The difference between the cheapest and most expensive
variant is about 13%. We cannot observe a big difference for giving mixed preference
setting and restricting to cars only (comparing prefVar1 and prefVar4, prefVar2 and
prefVar5, prefVar4 and prefVar6). Similar pictures are given for u = 150 and u = 300
in Figures 2.6(b)(c). For u= 150 we see a difference in total cost between the cheapest
and most expensive one, which is about 15%, and for u= 300 the difference between the
extremes in terms of total cost is 15%. The most expensive variant in both instances is
prefVar0. The lowest/highest share of car cost is 13/43% for u = 150 and 12/26% for
u= 300.

In Table 2.7 we compare the cost of each variant with the VShP-1T:car . For each
variant (prefVar0-prefVar6) we show the average cost of using conventional cars (car-
type1), cost used for all other MOTs and in total for u= 300 and m= 40. We also have a
second column for each variant, stated as ”comp.”, where we compare the cost to the base
case calculated as (cost of the variant / cost of VShP-1T:car). We see that our base case
is the most expensive regarding car usage. In prefVar2, where most of the users prefer
all MOTs except cars, we only use 0.59 times the cost of cars compared to the VShP-
1T:car . Conversely, regarding other MOTs, the simple VShP-1T:car is the cheapest
variant, where prevVar0 uses 1.39 times more the cost on average. This comparably
big difference in cost is mainly attributable to the more subtle differentiation of the
preference settings. As in prefVar0 we also distinguish whether a person would, e.g., only
take public transportation. In total we confirm the picture from above, that VShP-1T:car
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(a) u = 20 (b) u = 150

(c) u = 300

Figure 2.6: Total cost split into cost of MOTs and cost of cars (car-type1) for u = 20,150,300
and m= 40 for different variants of MOT-preference settings and VShP-1T:car .

without any restriction, is the cheapest setting, however prefVar1 or prefVar3 only have
1.03 times the cost. Further results can be found in Table A6 in the Appendix A.1.

Table 2.7: Total cost comparison split into cost of car-type1 (=combustion engine cars) and other
MOTs for u= 300 and m= 40 for different variants of MOT-preference settings and VShP-1T:car .
Column ’cost’ gives the absolute cost of the respective variant, ’comp.’ compares the cost to
VShP-1T:car where it is set as (cost of the variant / cost of VShP-1T:car).

VShP-1T:car prefVar0 prefVar1 prefVar2 prefVar3 prefVar4 prefVar5 prefVar6
cost cost comp. cost comp. cost comp. cost comp. cost comp. cost comp. cost comp.

car-type1 1,227 872 0.71 1,169 0.95 722 0.59 1,030 0.84 1,188 0.97 747 0.61 1,045 0.85
other MOTs 8,704 12,093 1.39 9,014 1.04 9,669 1.11 9,231 1.06 9,220 1.06 9,682 1.11 9,337 1.07
total 9,932 12,964 1.3110,184 1.0310,391 1.0510,261 1.0310,408 1.0510,429 1.0510,382 1.05

Figure 2.7 shows the differences in cost of the different preference settings when solving
VShP-xT . Figure 2.7(a) gives the averages for u = 20, Figure 2.7(b) for u = 150 and
Figure 2.7(c) represents u= 300. The number of shared cars is always set to m= 40. We
again observe structural differences between the variants, however now also between the
similar variants (prefVar1 and prefVar4, prefVar2 and prefVar5, prefVar4 and prefVar6).
In Figure 2.7(a) the base case and prefVar0 are covered by electric cars (car-type2) and
other MOTs only. The other variants employ a mix of conventional cars and electric
cars. This is then also visible for VShP-xT and prefVar0 in Figure 2.7(b)(c).

Table 2.8 summarizes the average cost of the basic setting (VShP-xT ), and prefVar0-
prefVar6 partitioned into cost for combustion engine cars (car-type1), electric cars (car-
type2), other MOTs and in total for u = 300 and m = 40. For each variant we again
show the cost and the comparison (comp.) to the VShP-xT calculated as (cost of the
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(a) u = 20 (b) u = 150

(c) u = 300

Figure 2.7: Total cost split into cost of MOTs and cost of car-type1 and car-type2 (both com-
bustion engine and electric cars) for u= 20,150,300 and m= 40 for different variants of MOT-
preference setting and VShP-xT .

variant / cost of VShP-xT ). Here we have a somewhat different picture than above.
VShP-xT is still the most cost efficient in total, with prefVar0 using up to 1.31 times the
cost. Again, this comparably big difference in cost is mainly attributable to the more
subtle differentiation of the preference settings. For car-type2, which is electric cars,
the base case where no preferences are taken, is the most expensive one, as can be seen
that all numbers of the ’comp.’ columns are below 1. Comparing the cost of car-type1,
this differentiates. For some cases (prefVar1, prefVar3, prefVar4, prefVar6) the cost are
higher or equal to VShP-xT . For the others the results show lower cost, e.g., prefVar0
only 0.69 of total cost. Further results can be found in Table A7 in the Appendix A.1.

Table 2.8: Total cost comparison split into cost of cost car-type1 and car-type2 (=combustion
engine car and electric car), and other MOTs for u = 300 and m = 40 for different variants of
MOT-preference settings and VShP-xT . Column ’cost’ gives the absolute cost of the respective
variant, ’comp.’ compares the cost to VShP-xT where it is set as (cost of the variant / cost of
VShP-xT ).

VShP-xT prefVar0 prefVar1 prefVar2 prefVar3 prefVar4 prefVar5 prefVar6
cost cost comp. cost comp. cost comp. cost comp. cost comp. cost comp. cost comp.

car-type1 491 339 0.69 558 1.14 348 0.71 491 1.00 593 1.21 383 0.78 515 1.05
car-type2 683 505 0.74 573 0.84 371 0.54 505 0.74 595 0.87 361 0.53 531 0.78
other MOTs 8,692 12,075 1.39 9,010 1.04 9,646 1.11 9,227 1.06 9,220 1.06 9,685 1.11 9,337 1.07
total 9,866 12,919 1.3110,141 1.0310,365 1.0510,222 1.0410,408 1.0610,429 1.0610,382 1.05
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(a) u = 20 (b) u = 150

(c) u = 300

Figure 2.8: Total cost split into cost of MOTs and cost of car-type1 (=combustion engine cars) for
u= 20,150,300 and m= 40 and different objective function for VShP-1T:car . OF:base shows the
result with the previously introduced objective function, OF:time only considers the time part.
Note that we solve the models with the different objective functions, but afterwards calculate
the total cost to make them comparable.

2.3.6 Comparing objective functions

In the following, we compare two objective functions: (1) we take the objective
function as presented above, consisting of operational distance cost including cost of time
(OF: base), and (2) only incorporating the time factor (OF: time). Again, we show the
results for both VShP-1T:car and VShP-xT as our base cases. With this we aim to see
the main driver of our outputs. Note that for the following results we solve the models
with the different objective functions, but afterwards calculate the total cost to make
them comparable.

Figure 2.8 shows the composition of the total cost for VShP-1T:car having a number
of users u = 20,150,300 and cars m = 40. We show the cost share of cars and other
MOTs. In all three cases we observe a higher cost of the cars when using OF:time as the
objective. However, the total cost is only slightly higher for OF:time, resulting in less
cost for other MOTs when taking time components as the objective only.

In Table 2.9 we confirm the above figures with numbers. The table is decomposed
into results for OF:base, OF:time and the comparison of the two, where we assume
(OF:time/OF:base). The first two are given in absolute numbers, the latter as a ratio
of the two. Each partition gives the results of the combustion engine cars (car-type1),
other MOTs and in total. The numbers are given on average over all instances and all
sizes of m. We can see, that using time only as an objective function gives slightly higher
overall cost. The smallest difference can be observed for u= 50,100, and ranging around
1.01-1.04 times the cost for all instances. Moreover, we can see that this difference is
mainly driven by the higher cost of cars for most of the cases. The OF:time has higher
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car cost for all the stated averages in Table 2.9. More detailed information for different
sizes of the car fleet (m) can be found in Table A8 in the Appendix A.1.

Table 2.9: Total cost for OF:base and OF:time and their comparison calculated as
(OF:time/OF:base), split into cost of MOTs and cost of car-type1 (=combustion engine cars) for
an increasing u and averaged over all m. OF:base shows the result for the previously introduced
objective function, OF:time only considers the time part. Note we solve the models with the
different objective functions, but afterwards calculate the total cost to make them comparable.

u 20 50 100 150 200 250 300

O
F

:t
im

e car-type1 333 747 1,004 1,089 1,185 1,283 1,277
other MOTs 208 873 2,267 4,270 6,100 8,130 8,871
total 541 1,620 3,271 5,359 7,285 9,413 10,147

O
F

:b
as

e car-type1 258 656 955 1,052 1,148 1,255 1,227
other MOTs 275 942 2,281 5,917 4,132 7,767 8,704
total 533 1,599 3,235 5,184 7,065 9,022 9,932

O
F

:t
im

e
/

O
F

:b
as

e car-type1 1.29 1.14 1.05 1.04 1.03 1.02 1.04
other MOTs 0.76 0.93 0.99 1.03 1.03 1.05 1.02
total 1.02 1.01 1.01 1.03 1.03 1.04 1.02

Figure 2.9 plots the composition of the total cost for u = 20,150,300 and m = 40
solving VShP-xT and different objective functions. The costs are divided into cost for
combustion engine cars (car-type1), electric cars (car-type2) and other MOTs. Again,
having the actual objective function, leads to lower overall cost and lower cost of cars.
Note that for the time function there is no difference between the two car types, as the
differences are only in the operational cost. As previously, the VShP-xT prefers electric
vehicles, as they have lower cost not related to time.

Table 2.10 summarizes the cost for OF:base and OF:time, and gives the respective
ratio of them, calculated as (OF:time/OF:base), for VShP-xT . We again give the re-
spective values for the car types, other MOTs and in total. We observe, that if only
optimizing towards savings in time, we end up with higher overall cost. We have between
1.01 and 1.03 times the cost compared to our basic objective function. Results separated
for each m= 4,8,20,40 can be found in Table A9 in the Appendix A.1.

Finally, we compare the average number of trips per car in Tables 2.11 and 2.12 for
VShP-1T:car and VShP-xT , solving each with the different objective functions. For
VShP-1T:car we observe an increase in trips per car, where we have 1.1 more trips on
average for all user groups (u). For VShP-xT we detect a different picture. We can see
a bigger increase in average trips per combustion engine car, and a decrease of trips for
electric vehicles. This is because when considering OF:time the two vehicle types do not
make any difference. The difference between the two only concerns the operational cost
in this case.



2.3. Computational results 27

(a) u = 20 (b) u = 150

(c) u = 300

Figure 2.9: Total cost split into cost of MOTs and cost of car-type1 and car-type2 (= combustion
engine and electric cars) for u = 20,150,300 and m = 40 and different objective functions for
VShP-xT . OF:base shows the results for the previously introduced objective function, OF:time
only considers the time part. Note we solve the models with the different objective functions,
but afterwards calculate the total cost to make them comparable.

Table 2.10: Total cost for OF:base and OF:time and their comparison calculated as
(OF:time/OF:base), split into cost of MOTs and cost of car-type1 and car-type2 (= combustion
engine and electric cars) for an increasing u and averaged over all m. OF:base shows the results
with the previously introduced objective function, OF:time only considers the time part. Note
that we solve the models with the different objective functions, but afterwards calculate the total
cost to make them comparable.

u 20 50 100 150 200 250 300

O
F

:t
im

e

car-type1 177 390 507 539 603 650 636
car-type2 141 326 455 503 533 577 585
other MOTs 211 874 2,267 4,270 6,099 8,130 8,871
total 528 1,590 3,229 5,312 7,234 9,358 10,092

O
F

:b
as

e

car-type1 50 193 365 417 463 496 491
car-type2 225 446 545 589 638 704 683
other MOTs 239 919 2,273 4,121 7,003 7,754 8,692
total 514 1,558 3,184 5,127 7,003 8,954 9,866

O
F

:t
im

e
/

O
F

:b
as

e car-type1 3.51 2.02 1.39 1.29 1.30 1.31 1.30
car-type2 0.63 0.73 0.83 0.85 0.83 0.82 0.86
other MOTs 0.88 0.95 1.00 1.04 0.87 1.05 1.02
total 1.03 1.02 1.01 1.04 1.03 1.05 1.02
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Table 2.11: Average number of trips per car when solving OF:base and OF:time and their
comparison stated as OF:time / OF:base for an increasing u and averaged over all m for VShP-
1T:car .

u = 20 50 100 150 200 250 300

OF:time 1.6 1.9 2.1 2.2 2.3 2.4 2.3
OF:base 1.4 1.8 2.0 2.0 2.0 2.2 2.1
OF:time / OF:base 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Table 2.12: Average number of trips per car when solving OF:base and OF:time and their
comparison stated as OF:time / OF:base for an increasing u and averaged over all m for VShP-
xT .

u = 20 50 100 150 200 250 300

OF:time car-type1 1.5 1.9 2.1 2.2 2.3 2.5 2.3
car-type2 1.5 1.9 2.1 2.2 2.3 2.4 2.3

OF:base car-type1 0.8 1.3 1.5 1.5 1.6 1.7 1.6
car-type2 1.5 2.1 2.4 2.4 2.5 2.7 2.6

OF:time / OF:base car-type1 1.8 1.5 1.4 1.4 1.4 1.4 1.4
car-type2 1.0 0.9 0.9 0.9 0.9 0.9 0.9

2.3.7 Managerial implications and discussion

We have seen in all our results, that with a higher number of cars (combustion engine
or electric car), we enforce lower total cost. This is true, even though cars are the most
expensive MOT from an operational cost point of view. However, they are in many cases
fast MOTs. Therefore, if possible, the trips are covered by a car. Also, whenever possible,
electric vehicles are preferred as they have even lower cost but the same speed as the
conventional ones. This holds for the case where only one kind of car is shared. A mixed
fleet is slightly more expensive compared to when only electric vehicles are employed.
However, if a fleet of combustion engine cars is available, one can gradually expand the
fleet or replace the conventional cars with the electric vehicles. Having a shared pool
of only combustion engine vehicles is the most expensive case of the discussed sharing
concepts and the least environmental friendly, and thus not recommendable.

Employing no cars at all, is most expensive. If one decides to go with any (of the
presented) sharing concepts, it is advisable that the number of cars in the fleet should
be at least 20%-25% of the number of users. E.g. for 20 users this would be 4-5 cars.
From there it starts to be cost efficient to have shared vehicles, and additionally cover
trips with other MOTs such as public transportation or bike. The use of electric vehicles
- either exclusively or in combination with conventional cars - is highly recommendable
due to their lower operational cost and same time needed for trips.

Using operational cost information and time in the objective function is crucial. As
the cost of time depends on the distance too (we assume different distances for different
MOTs), not all of the trips are covered by the fastest MOT, which would be a car. So
the shortcuts that can be taken by different MOTs sometimes outperform the benefits
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given by fast cars. As our instance companies are based on a city, this makes sense. For
longer trips, the results would lead to different trade-offs.

If enough cars are available to cover the beneficial trips without handing over the
cars at the depots, then this will be done so and is also recommendable. A profound
sharing concept is only advisable if the car is a restricted resource (however, not too
much as discussed above). Yet, we saw in our results, that with a constant number of
users but a smaller fleet, the trips per car are rising above the average number of trips a
user is taking. Also, the average number of trips per car is higher for electric vehicles.

Finally, we introduced a set of restricted MOTs based on individual user preferences.
As expected, the case where all MOTs are always available for all trips, and thus for
all users, is the one with the least cost as it is the least restricted case. However, for
some of the cases we observed only a modest increase in cost. Yet, by giving the users
a restricted set of MOTs we might achieve a higher satisfaction and acceptance of the
system and therefore it can be beneficial in a non-monetary way.

2.4 Conclusion

Inspired by the change of mobility and vehicle-sharing systems we proposed two
modeling approaches for a vehicle-sharing problem. In our problem we assume a set of
users that have to cover certain trips on a fixed time schedule. These trips are then
covered by a certain mode of transport. We assume a restricted available set of shared
vehicles, e.g. a pool of cars, which the users may use. Other modes of transport are
incorporated without any capacity limits. We aim to assign the restricted resources in
the best possible way such that savings (using e.g., a car instead of any other mobility
type) are maximized. Note that our initial framework considers a sharing system within
a company, however the models can be applied to any community with a closed group
of users.

We used two well-known formulations from the literature, namely the maximization
equivalent of the minimum-cost flow problem and the multi-commodity flow problem. If
we assume only one shared MOT, e.g. cars, we base our formulation on the minimum-cost
flow problem. We extend the problem by introducing another type of shared vehicle,
and we formulate it as a multi-commodity flow problem where the commodities are the
shared vehicles. Note that a shared resource may also be a bike or another MOT.

We further provide managerial insights for a company incorporating combustion
engine vehicles and electric cars as our shared vehicles. We show that a shared fleet of
electric vehicles contributes most to our objective function. Instances with up to 300
users are solved in less than 20 seconds of computing time. With this we can show that
our models can be used on a daily operational basis.

Besides the analysis, the present paper aims to give a theoretical foundation to future
vehicle-sharing problems. As the models are well studied in the literature, many efficient
algorithms exist and even bigger instances can be solved to optimality within seconds.
Future work might look into adapting the structure of the trips. Now we assume a fixed
sequence, however optimizing the trips as a small-sized traveling salesman problem may
achieve even better results.
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Abstract We introduce the multimodal car- and ride-sharing problem (MMCRP),
in which a pool of cars is used to cover a set of ride requests while uncovered requests
are assigned to other modes of transport (MOT). A car’s route consists of one or
more trips. Each trip must have a specific but non-predetermined driver, start in
a depot and finish in a (possibly different) depot. Ride-sharing between users is
allowed, even when two rides do not have the same origin and/or destination. A user
has always the option of using other modes of transport according to an individual
list of preferences.
The problem can be formulated as a vehicle scheduling problem. In order to solve
the problem, an auxiliary graph is constructed in which each trip starting and ending
in a depot, and covering possible ride-shares, is modeled as an arc in a time-space
graph. We propose a two-layer decomposition algorithm based on column gener-
ation, where the master problem ensures that each request can only be covered
at most once, and the pricing problem generates new promising routes by solving
a kind of shortest-path problem in a time-space network. Computational experi-
ments based on realistic instances are reported. The benchmark instances are based
on demographic, spatial, and economic data of Vienna, Austria. We solve large
instances with the column generation based approach to near optimality in reason-
able time, and we further investigate various exact and heuristic pricing schemes.

Keywords— transportation, car-sharing, ride-sharing, vehicle scheduling problem,
column generation

3.1 Introduction

Studying the development of mobility during the last decades, one can easily observe
that we are facing a strong wind of change. While some years ago the main developments
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were related to technological improvements, the introduction of e-mobility was a first
step towards an ongoing kind of revolution. From there, a new understanding of mobility
developed and we are now facing a future where “owning cars” is replaced by “being
mobile”. Users preferably only specify cornerstones of their travel — such as origins and
destinations, latest arrival times or preferable modes of transport (MOT) — and rely on
an information system to provide an (optimal) assignment of modes of transport to their
demands. This attitude is supported by mobility concepts like vehicle sharing (car and
bike), easy access to mobility via mobility cards, and Mobility as a Service [113]. We
observe these developments not only in the private sector but also in the area of corporate
mobility. Increasingly, companies are trying to change their view on their corporate
mobility by switching from individually assigned cars towards Mobility as a Service for
their employees. Companies strive to have an overall green and sustainable profile and
employees are aware of the importance to contribute to a greener world, even if their travel
time of a trip might increase. Instead of supporting further developments in corporate
mobility privileging a few selected users, we are aiming at providing sustainable corporate
mobility concepts that ensure at least the same level of mobility, while increasing positive
impacts (e.g., cost reduction, ecological sustainability, and employee satisfaction).

This work is part of an applied research project SEAMLESS (http://www.seamless-
project.at), in which the project partners are implementing the discussed ideas including
the supporting algorithms in their companies. The major goal of the project is the
development of novel corporate mobility concepts aiming at providing mobility to the
company (and its employees) instead of only providing cars. This includes the intro-
duction of car pools that can be used by the employees on a smart assignment strategy.
Additional modes of transport are incorporated like bikes, (public) bike- and car-sharing,
public transport and users can co-ride with each other. Ride-sharing saves resources,
such as cars and energy, it is considered to have a good environmental footprint and
can solve congestion problems. Masoud and Jayakrishnan [107] report that for private
cars in the US with four seats, only around 1.7 seats are actually used on average. This
number decreases to only 1.2 for work-based trips, which shows the underutilization of
cars, especially company cars. The increasing number of empty seats in cars and an
increasing number of users asking for rides, imply motivation to elaborate a sophisticated
ride-sharing system. Furthermore, not only the sharing economy is increasing but also
a combined and integrated use of various modes of transport. To avoid pollution and
congestion problems, various cities give incentives to use (a combination of) ”greener”
modes of transport [133, 46]. As transportation is one of the biggest producers of emis-
sions [65], it is vital to consider sustainability aspects, shift to more sustainable modes
and enhance the environmental footprint.

The package of mobility offers can be seen as an extended car pool. It is crucial
to assign the right vehicle to the right mobility need — e.g., if someone is aiming to
travel a short distance in the city, public transport is better suited than a conventionally
driven minivan. In return, the minivan is the right choice if an employee has to transport
some special equipment to a meeting at a location about 300 kilometers away. This
implies that it is necessary to estimate the mobility demand, allowing the user to specify
preferred modes of transport, and to determine the number (and types) of cars to be
owned in the car pool as well as the mobility offers provided to the employees like
mobility cards or access to public vehicle sharing systems. Although sharing reduces
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costs and environmental impact, the complexity in fleet management increases. This
directly implies that computational support is necessary to be able to efficiently handle
the fleet.

We study the multimodal car- and ride-sharing problem in a company having one
or more offices from where the employees have to visit various customers during office
hours (e.g., for business meetings). We consider a fixed and unique employee-to-meeting
assignment and a fixed latest arrival time. This results in a fixed sequence of tasks
(also referred to as trip) for every employee with several stops, starting and ending at
predefined (but possibly different) depots. A pool of vehicles is provided to the employees
(also referred to as users) who can jointly use them (car-sharing). Furthermore, up to
two users may co-ride on specific legs or routes with each other (ride-sharing).

We model the trips as arcs in a directed acyclic graph. Vehicle routes consist of one
or more trips, whereas the driver of these trips may change at the depot. Similar to the
vehicle scheduling problem, the available vehicles cover the scheduled trips resulting in
vehicle routes. As the pool of cars is restricted, only a subset of the trips will be covered
by the shared vehicles. In order to cover all mobility requests in the best possible way,
further MOTs such as bikes or public transport are used. If a trip is not covered by car,
the cheapest other MOT will be used.

This paper and the project objectives focus on adapting future mobility considerations
to a corporate setting. However, the results can easily be adapted for different closed
groups with a predefined set of users, such as home communities, suburban areas, or
simply a network of users with predefined locations where the cars must be picked-up
at and returned to. Furthermore, the model can easily be adapted to bikes, segways,
cargobikes, (electric) scooters, and other sharing offers.

As the problem is modeled as an extended vehicle scheduling problem (VSP) with
multiple depots, we contribute to the body of this specific problem too. The VSP assigns
a set of vehicles to a set of scheduled trips, such that costs are minimized and each
trip is covered by exactly one vehicle [14]. There are three main differences between
the vehicle scheduling problem and the MMCRP. First, in our case not all trips need
to be covered. Second, the multi-depot VSP assumes that all vehicles return to their
original depot. We allow for different, but predetermined, start and end points. Third,
we have to avoid that users co-ride in parallel on different trips. Hence we add a tailored
ride-sharing constraint to the model. The MMCRP can be transformed into a kind
of vehicle scheduling problem by having infinite cost for all other modes of transport,
forcing the solution to cover all trips and allowing for different start and end depots.
The MMCRP can also be formulated as a VSP with profits, which only - related to the
idea of the vehicle routing problem (VRP) with profits - covers trips that are profitable.

The contributions of this paper are as follows:

• We introduce the novel MMCRP derived from a real-world application, and formu-
late it as an extended vehicle scheduling problem. To the best of our knowledge, it
is one of the first models including both car- and ride-sharing. We show that this
real-world application can be efficiently solved with well-known methods.

• We present a two-layer decomposition of the problem. In the first layer, trips start-
ing and ending at a depot are enumerated. The trips also take care of enumerating
all possible ride-sharing possibilities. With this we are able to hide complicated
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constraints considering ride-sharing and make it usable for practical purpose. The
framework is flexible and allows the introduction of additional constraints like de-
tour constraints, co-riding preferences, and driving time constraints. In the second
layer, the trips are combined into vehicle-routes. The second-layer decomposition
is solved through a column generation based algorithm. We present an efficient
algorithm for solving the pricing problem using a label setting algorithm on a
directed acyclic graph (DAG). Several different pricing strategies are presented
and compared. These include adding more columns in each iteration, and various
heuristics in combination with an exact approach for solving the pricing problem.

• Computational results confirm that large instances can be solved to near-optimality
in reasonable time using a column generation based approach, making it possible to
use the algorithm for daily planning of multimodal car- and ride-sharing systems.
We also show that the gap between the LP-bound found through column generation
and the integer solution obtained on the same columns is very small.

The paper is organized as follows: First, in Section 3.2, we discuss related work
focusing on car- and ride-sharing as well as the VSP. Then, we provide a detailed problem
description of the MMCRP in Section 3.3. The solution approach and the auxiliary graph
that is used in our algorithm are described in Section 3.4. Based on the auxiliary graph we
present a direct formulation of the MMCRP in Section 3.4.1. In Section 3.4.2, we present
a path formulation of the problem and show how its linear relaxation can be solved
through delayed column generation in Section 3.4.3. In Section 3.4.4 we explain how
the pricing problem can be solved through dynamic programming and propose various
heuristics for improving the computational effort. Section 3.5 presents the computational
experiments. The paper is concluded in Section 3.6 by summing up the achieved results,
and proposing ideas for future research.

3.2 Related work

Recently, car- and ride-sharing have received considerable attention, and several
variants of the problem have been studied. Mourad et al. [111] provide a thorough
overview on models and algorithms for optimizing shared mobility. In the following
section, we review closely related problems, including car-sharing, ride-sharing, and the
vehicle scheduling problem focusing on column generation based approaches.

3.2.1 Car-sharing

Car-sharing systems involve a pool of cars that are shared among a set of users, who
are usually known in advance (in public car-sharing systems these would be subscribers, in
our case employees). The MMCRP without ride-sharing reduces to a car-sharing problem.
Jorge and Correia [88] and Brandstätter et al. [34] review car-sharing optimization
problems in detail. Most optimization studies consider publicly available systems and
focus on rather strategic problems. In our setting we consider a car-sharing system
available to a closed community only and focus on planning the daily operations. Many
studies focus on public car-sharing systems and tackle problems such as charging station
placement [32, 35] or relocation of cars between stations [91, 32]. Latest works increasingly
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also tackle the operational characteristics of car-sharing systems such as the effect of
temporal and spatial flexibility on the performance of one-way electric car-sharing systems
[31], integrating pickups and deliveries on shared vehicle routes [23], or dynamic relocation
policies [123].

3.2.2 Ride-sharing

Ride-sharing describes co-riding of one or more users between an origin and a des-
tination or sub-paths of it. This is also the main idea of the MMCRP, where we do
not only exploit the various MOTs in the best possible way, but try to merge rides by
allowing ride-sharing if it is beneficial. In the following we review some related studies
addressing ride-sharing.

Dial-a-ride problems (DARP) or the closely related pick-up-and delivery problem
(PDP) are often used to formulate ride-sharing activities [85, 99]. Related to the MMCRP
is also PDP with transfer [108, 121, 47]. An exhaustive review of these problems can be
found in Ho et al. [84].

Masoud and Jayakrishnan [107] propose a decomposition algorithm to solve a many-
to-many ride-matching problem to optimality in a time-expanded network. Participants
only provide the origin, destination and latest/earliest times, which is similar to our
problem statement. In contrast to our problem, they strictly split riders and drivers.
Huang et al. [86] formulate a two-stage problem minimizing total cost for long-term car-
pooling. Drivers are selected, passengers assigned, and for each driver a traveling salesman
problem (TSP) is solved considering constraints regarding fairness and preferences. Bit-
Monnot et al. [26] compute a driver’s and passenger’s individual paths including the
mutual sub-path between two (to be determined and synchronized) points. Mutual trips
are followed by their individual paths towards the driver’s and passenger’s destination.
As in our work, they also include public transport and walking before/after ride-sharing,
however the focus of the work is to determine the optimal pick-up and drop-off locations
for requests.

A number of works study commuter trips [15, 94, 122], whereas we focus on trips
during working hours from/to meetings with customers. Chen et al. [44] aim at minimiz-
ing the cost of commuters and business traffic of a company, which consists of the cost
incurred from vehicle miles and the costs of penalizing the efficiency losses (arriving too
late at meetings, waiting time for transfers, inconvenience and risk with transfers). A
constructive heuristic based on savings in miles driven and cars used is introduced. The
problem definition is closely related to ours, as not only commuting trips are considered
but also business traffic, i.e., travels between meetings. Moreover, they also employ
savings as a objective but only use a heuristic approach to solve the problem.

Contrary to other papers, we model our compact problem as a kind of vehicle schedul-
ing problem defined on an acyclic time-space graph, where we do not model pick-ups and
deliveries explicitly, but enumerate all possible ride-shares in an auxiliary graph which
is used as input to the second stage model.

3.2.3 Vehicle scheduling problem

The VSP received increasing attention in the early 80s [28, 29], and is mainly applied
to time-tabled trips of public transport or crew scheduling. In the following we give a
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short overview on recent works on the multi-depot variant of the problem (MDVSP)
using column generation based approaches to solve it. Further works elaborate the idea
of the MDVSP by introducing alternative-fuel vehicles [3] or considering a heterogeneous
fleet of vehicles [79]. An overview of basic vehicle scheduling models is given in Bunte
and Kliewer [39]. The MMCRP can be seen as a MDVSP with profits. The literature
on the VRP with profits or closely related Orienteering Problem is vast [130, 81]. We
could not find any publications on the VSP with profits.

The MDVSP was proven to be NP-hard by Bertossi et al. [24]. Column generation was
first applied to the MDVSP by Ribeiro and Soumis [125] and extended by Hadjar et al.
[82] and Groiez et al. [78]. Note that these algorithms focus on proven integer optimality
of the entire problem, which is not the case in our work. Pepin et al. [120] compare five
heuristic for the MDVSP and conclude that the column generation heuristic performs best
assuming enough computational time is available and stability is required. Guedes et al.
[80] propose a simple and efficient heuristic approach for the MDVSP. The heuristic first
applies state space reductions to reduce complexity and thereafter a truncated column
generation approach. Kulkarni et al. [97] present a new inventory formulation for the
MDVSP and a column generation based heuristic proposing a novel decomposition. The
multi-depot vehicle scheduling with controlled trip shifting [54] is closely related to the
MMCRP. The generalization of the MDVSP allows for slight modification of one trip
scheduled time. Trips are multiplied, representing each trip for different starting times.
The aim is to find a set of bus schedules that covers every trip exactly once by satisfying
vehicle availability and minimize costs. The work introduces a two-phase matheuristic
where column generation solving the linear relaxation is embedded in a diving heuristic
to derive an integer solution. The sequence of trips is fixed in the first phase by the
column generation approach and thereafter the copies of a trip are chosen using a mixed
integer program.

Note that all of the above works use either variable fixing or rounding strategies in
their approaches. We solve the linear relaxation to optimality by column generation
and find the integer solution by solving the original model using the obtained columns.
Furthermore, we do not tackle the standard VSP but a kind of MDVSP with profits in
which only beneficial arcs are covered by a vehicle. The study by Oukil et al. [117] is
structurally similar to ours, but having some important differences. Oukil et al. [117]
focus on the comparison of the standard and the stabilized column generation approach,
and discuss the impact of different time horizons. Both, the stabilization of the column
generation and different time horizons, are not subject to our study. They emphasize on
the methodological contribution. We combine a theoretical and practical contribution
and apply the standard column generation approach, extended by heuristic approaches,
to solve the LP-relaxation. Moreover, the underlying graphs differ. As we model ride-
sharing directly into the graph we have multiple possibilities to cover tasks and trips.
Therefore, we have to make sure that a user is not driving in parallel. Moreover, we allow
the vehicle routes to start and end in different depots, which is not the case in Oukil
et al. [117]. Similar to Desfontaines and Desaulniers [54], we work on a multi-graph in
which copies of links represent the same connection at different times and, in our case
also involving different ride-sharing activities.
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3.3 Problem description

We study the multimodal car- and ride-sharing problem in a company having one or
more offices from where the employees have to visit various customers during office hours
(e.g., for business meetings). Assuming that a company operates different offices (also
referred to as depots), an employee might work in any depot. We note that even though
the cases where employees switch their work place are rather rare, we included them
because they were mentioned by our company partners. Therefore, it is not necessary
that the employee returns to the starting depot after her meeting with a customer. Each
customer visit involves one specific employee. We consider fixed and unique employee-to-
meeting assignments and a fixed latest arrival time. As we consider business meetings at
the customer locations, we assume that even if the employee arrives earlier, the starting
time of the meetings will not change. Knowing the fixed starting time of the meeting
as well as the length of it, we can calculate in advance the earliest departure time of
each ride and do not have to explicitly consider the time of the meeting. This results in
a fixed sequence of tasks for every employee with several stops, starting and ending at
predefined (but possibly different) depots. We call such a fixed sequence of nodes a trip.

The company operates a finite number of vehicles at each depot and provides pos-
sibilities to use other modes of transport such as public transport, bikes, taxis or walk.
We assume no start-up cost is associated with vehicles, and depots must have a specific
number of vehicles at the beginning and end of the day. With this we assume that we
do not have to account for relocations of cars. The employee specifies which modes
can be used, since e.g., a person without a driving license cannot be the driver of a
car. Moreover, the cars are only interchanged at the depots. This restriction is given
from the project partners as changing cars at customer locations would imply too much
inconvenience and they reported limited acceptance for handing over cars during a trip.
For example, as the meetings of different users are usually not at the same location
and/or time, one would need additional meeting points and/or times for the hand-over
of the car. Further we consider ride-sharing, which is allowed between users, even when
two rides do not have the same origin and/or destination. Ride-sharing may at most
involve one co-rider. For further details on users, trips and MOTs see Section 3.3.1.
Ride-sharing is described in more detail in Section 3.3.2.

The MMCRP aims at determining the optimal MOT-assignment for each trip and
to schedule the routes of the cars, maximizing savings when using a car including ride-
sharing compared to any other mobility type whilst ensuring that all customers are
visited at the right time by the right employee. The cost for the savings calculations does
not only include distance cost but also cost of time (as hourly wages of employees) in
order to properly reflect the trade-off between fast (but expensive) and slow (but cheap)
MOTs. The savings calculation is outlined in Section 3.3.3. A vehicle route depicts a
route of a vehicle during the day encompassing one or more drivers, handing over the
vehicle at a depot including possible ride-sharing activities. Note that for our problem
it is sufficient to only explicitly model car routes, as we only schedule the trips for the
limited resource (i.e., cars). The remaining trips are assigned to the cheapest other
MOT a user is willing to choose. This relies on the realistic assumption that users will
rationally choose the next cheapest possibility to travel, if a car is not available. For a
better understanding of the problem, an illustrative example is given in Section 3.3.4.
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3.3.1 Users, trips and modes of transport

We have u users and n tasks given. Each user p has a sequence of tasks Qp =
(q1
p, q

2
p, . . . , q

np
p ) that need to be covered. User p starts at depot ap and finishes at a

(possibly different) depot bp according to the user’s wishes. A trip π denotes the sequence
of nodes of user p starting at ap and ending at bp. Each task qip is associated with a
latest arrival time and earliest departure time. As we assume a fixed starting time of the
task (i.e., the latest arrival time) we also know the earliest departure time by adding the
duration of the task to it. Doing so, we do not have to explicitly consider the duration.
The driving time between two tasks (qip, qjp) using mode of transport k is tk

qip,q
j
p
, while the

cost is ck
qip,q

j
p
. We consider a set of modes of transport K = {car,walk,bike,public, taxi}.

Every user p has a set Kp ⊆K of possible modes of transport that can be used. We
assume that a pool Wd of shared cars is available at depot d ∈D at the beginning of the
day, and that W d cars should be returned to the depot at the end of the day. Depots
d ∈D reflect the depots where the cars are parked and the trips start and end. Note
that all start and end nodes of a trip ap, bp are connected to the depots d. The demand
at the end of a day will typically reflect the forecasted cars needed at the depot on the
following day. For the other mobility types (car, walk, bike, taxi), we assume that there
is infinite capacity.

If a trip π is started by a car, then the car should be used for the full trip. However,
ride-sharing can take place between any two nodes of a trip driven by the car. If the co-
riding user does not follow the driver for the full trip, then we assume that the cheapest
other MOT is used for the rest of the trip. We assume that if a user does not use a car
on her own or is not co-riding, then she will take the cheapest other MOT included in
her set of MOTs in order to conduct her trip.

3.3.2 Ride-sharing

Employees can share a ride if it is beneficial. Usually this applies if meetings are
visited together or different meetings are nearby or lie on the colleague’s trip. We
distinguish between three ride-sharing types: (1) co-riding users share the same origin
and destination, (2) they have the same origin and distinct destinations or vice versa,
(3) they have different origins and destinations. In the following some representative
examples are provided.

Each user p has to cover a set of tasks Qp = (q1
p, q

2
p, . . . , q

np
p ). We are considering

ride-sharing between two users p= 1 and p= 2 on a leg between two tasks (qip, qjp), thus
going from q1

1 to q2
1 for user p = 1 and another leg going from q1

2 to q2
2 for user p = 2.

Although our framework can easily be generalized to multi-user ride-sharing, we only
consider two user ride-sharing to ensure user satisfaction. By allowing multiple users to
share a ride, a user might end up using a disproportional part of the time as a driver for
others.

The simplest ride-sharing case occurs when users p= 1 and p= 2 have the same origin
and destination, as shown in Figure 3.1(a). In this case both users can be served on the
ride.

We can also have the case in which only the source or destination is shared. Starting
with the case where the end destination is shared we have the case shown in Figure
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(a) Two rides with same origin
and destination in time-space
representation.

(b) Two rides with shared
destination in time-space
representation.

(c) Two rides with distinct origin
and destination in time-space
representation.

Figure 3.1: Three examples of ride-sharing illustrated in a time-space network. User p = 1 is
going from q1

1 to q2
1 while user p= 2 is going from q1

2 to q2
2 .

3.1(b). In this case, user p= 1 has to drive from q1
1 to q1

2 to pick up user p= 2, and then
both drive to the shared end destination where q2

1 = q2
2. Provided that all time limits

are satisfied, the cost of the ride can be calculated as the sum of the individual legs. The
case where the origin is shared is handled in a symmetric way. Obviously, this shared
ride is only beneficial if the detour for p= 1 is not too large.

In general, both origin and destination can be distinct as illustrated in Figure 3.1(c).
In this case user p= 1 has to drive from q1

1 to q1
2 to pick up user p= 2, drive this user

to her destination q2
2 and then drive to her own destination q2

1. Provided that all time
limits are satisfied, the cost of the ride can be calculated as the sum of the individual
legs. Please note that the end destination of the driver (q2

1) must always lie after an
intermediate point (e.g., q2

2) as we do not allow to change drivers on the trip.

3.3.3 Savings calculation

We calculate cost and travel time for each trip. In order to reach the best choice
of MOT combination we aim to obtain savings when using a car including ride-sharing
compared to any other mobility type rather than focusing on minimizing costs only.
Saving γπ of a trip π is the sum over all savings γqip of included tasks q on trip π.
We consider costs of subsequent tasks (qip, qjp) and obtain the savings calculation by
considering detouring for ride-sharing. Note that the obtained savings might also be
negative. This will occur if the cheapest MOT for a trip is not the car.

In a first step let us compute the savings obtained when no ride-sharing between two
subsequent tasks (qip, qjp) is considered. The savings of tasks qip and its fixed successor qjp
can be calculated as the difference between cost of using the cheapest other MOT ck

(qip,q
j
p)

and cost of using the car ccar
(qip,q

j
p)

, such that:

γqip = min
k∈K\{car}

{ck(qip,qjp)− c
car
(qip,q

j
p)} (3.1)

Next, let us assume two users p= 1 and p= 2 whereas ride-sharing is demanded between
two tasks (i, j) of user p = 2, (qi2, q

j
2). We add detour costs to go to/from these tasks.

We have to account for additional costs of going from the driver’s (p = 1) task qi1 to
the starting point of the demanded ride-sharing qi2 as well as additional cost from the
ride-sharing drop-off point qj2 to the driver’s original task qj1. This gives us an additional
detouring cost between (qi1, qi2) as well as (qj2, q

j
1) for which we only take into account the

cost of using the car. We do not change the fixed sequence of a user’s trip, however, we
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must keep track of whether ride-sharing is conducted between two trips in order to take
into account additional detouring cost. Hence for not traversing the original link (qi1, q

j
1)

we save ck
(qi1,q

j
1)

and additionally save costs by allowing for ride-sharing between ck
(qi2,q

j
2)

.
Therefore, for each task qi1 including subsequent ride-sharing we compute the savings γqi1
as follows:

γqi1
= min
k∈K\{car}

{(ck(qi1,qj1) + ck(qi2,q
j
2))− (ccar(qi2,q

j
2) + ccar(qi1,qi2) + ccar(qj2,q

j
1))} (3.2)

assuming qj1 is its fixed successor and ride-sharing is employed for tasks (qi2, q
j
2) between

the original sequence (qi1, q
j
1). The saving of trip π is then calculated as γπ =∑

q∈π γq.
In order to provide a more understandable overview, let us assume a trip π of user

p = 1 considering three tasks to be visited, q1
1, q2

1 and q3
1. The trip starts at a1 and

ends at b1. The user’s trip would then be a1 - q1
1 - q2

1 - q3
1 - b1. The corresponding

savings calculation for trip π and without considering ride-sharing is as follows: γπ =
mink∈K\{car}{(ck(a1,q1

1) - ccar(a1,q1
1)) + (ck(q1

1 ,q
2
1) - ccar(q1

1 ,q
2
1)) + (ck(q2

1 ,q
3
1) - ccar(q2

1 ,q
3
1)) + (ck(q3

1 ,b1) -
ccar(q3

1 ,b1))}. In a next step, assume that user p = 1 takes a detour between q2
1 and q3

1 in
order to ride-share with user p= 2 between q1

2 and q2
2. Now the sequence would be a1 -

q1
1 - q2

1 - q1
2 - q2

2 - q3
1 - b1 whereas the fixed successors for our calculations do not change,

as described above. We get the respective savings of the above presented trip π: γπ =
mink∈K\{car}{(ck(a1,q1

1) - ccar(a1,q1
1)) + (ck(q1

1 ,q
2
1) - ccar(q1

1 ,q
2
1)) + (ck(q2

1 ,q
3
1) + ck(q1

2 ,q
2
2) - ccar(q1

2 ,q
2
2) - ccar(q2

1 ,q
1
2)

- ccar(q2
2 ,q

3
1)) + (ck(q3

1 ,b1) - ccar(q3
1 ,b1))}. We make these calculations for every variant of trip π

representing all possible ride-sharing trips.
Please note that the same task qip can be on different trips and have different savings

as they represent different rides. Moreover, for the cases where the driver p and rider p′
share their origin and/or destination we do not account for all detouring cost such that
ccar(qip,qip′ )

= 0 and/or ccar
(qj
p′ ,q

j
p)

= 0, respectively.

3.3.4 Illustrative example

To better illustrate the problem, a possible schedule is shown in Figure 3.2. We have
4 users (p= 1,p= 2,p= 3,p= 4), 2 cars, and 2 depots (d1 and d2). Each user’s schedule
is depicted by one horizontal line connecting depots d and meetings qip. User p= 1 visits
q1

1,q2
1 and q3

1, user p = 2 is assigned to q1
2, user p = 3 visits q1

3 and q2
3 whilst returning

in between to depot d1 and lastly user p = 4 drives to tasks q1
4 and q2

4. Background
rectangles with lines depict duration of a meeting, dots indicate the user is traveling.
If the background is not colored, the user is traveling with the cheapest other MOT,
purple denotes travel by car, yellow ride-sharing. The arrows illustrate the traveling of
the two cars. Figure 3.2(a) shows a possible solution without sharing, Figure 3.2(b) gives
an adapted solution with car- and ride-sharing. User p= 4 uses in both figures one car
for the whole trip and does not share any rides. In Figure 3.2(a) the second car is used
by user p = 1 for the whole trip. Differently in Figure 3.2(b) where one of the cars is
handed over from user p= 2 to user p= 3 at depot d1. Furthermore, both drivers of the
car take on user p = 1 for some legs of her required trip, shown in yellow. Otherwise,
user p= 1 uses the cheapest other MOT.
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(a) Example solution without sharing.
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(b) Example solution with car- and ride-sharing.

car
task depot work travel ride-share car cheapest other MOT

Figure 3.2: Examples without sharing as well as car- and ride-sharing. We have two offices
(depots) d1 and d2 and four users p = 1, p = 2, p = 3 and p = 4; tasks are denoted as qip.
Background rectangles with lines depict duration of a meeting, dots mean the user is traveling. If
the background is not colored, the user is traveling with the cheapest other MOT, purple depicts
travel by car, yellow ride-sharing. The arrows illustrate the routes of the two cars.

3.4 Solution approach

In order to simplify the problem, we reformulate it using a time-space network, in
which all possible ride-sharing trips are represented by arcs. We introduce a graph
G(V,E), where vertices are given by their time-space coordinates (i.e., time and depot).

Figures 3.3(a) and (b) show the first step of the graph transformation. We start by
modeling the depots d at the start and end of the planning horizon where all trips are
connected to and cars are located, as well as ap and bp denoting the start and end points
of a trip π, and user tasks q ∈Qp depicted as qip. Solid lines denote trips, dotted ones
indicate waiting arcs in the set E′ denoting that the car is not moving. Hence, we start by
considering all trips of all users starting at ap and ending at bp including tasks q through
the whole planning horizon, which then start and end at depot d. In Figure 3.3(a) we
show the starting point of the graph construction whereas user tasks q ∈Qp are still in
the graph. From this graph, we transform all ap, bp connections (i.e., all trips) to the
arcs as represented in Figure 3.3(b). As can be seen, we do not explicitly consider the
tasks in the graph any more but save all relevant information on the arcs. For each user
p ∈ P we enumerate all possible trips from the user’s start depot ap to the user’s end
depot bp, including possible ride-sharing as described in Section 3.3. Figure 3.3(c) gives
two possible ride-sharing trips. Figure 3.3(d) then shows the extension in the trip-based
arc representation of Figure 3.3(a). As can be seen, this gives us multiple arcs between
nodes ap and bp each depicting a possible way how the trip can be conducted. Due to
ride-sharing, the start time of two rides may be different even if they consider the same
user p starting at the same depot a. A similar observation holds for the end times of two
rides for user p.

Every possible trip π ∈ Rp of user p including any number of co-ride possibilities
(including 0) results in a tuple {(aπp , bπp ,gπp ,hπp ,sπp , `πp )}. Here we have that aπp is the start
depot of the ride trip π, bπp is the end depot of trip π, gπp is the departure time at start
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depot aπp , hπp is the arrival time at end depot bπp , sπp is the saving of the ride, and `πp is a
list of visits covered, both for the driver and possible co-rider(s).

For every user p let Vp = {(aπp ,gπp )}π∈Rp∪{(bπp ,hπp )}π∈Rp be the set of nodes associated
with p as driver of the car. Let the set of ride arcs be Ep = {

(
(aπp ,gπp ),(bπp ,hπp )

)
}π∈Rp .

The saving of a ride arc sπp .
If we assume that σ is the first possible time, and τ is the last possible time in the

planning horizon, then for every depot we construct nodes (d,σ) and (d,τ). The set of
nodes can now be defined as

V = {Vp}p∈P ∪{(d,σ)}d∈D ∪{(d,τ)}d∈D

Finally we need to introduce the set E′ of waiting arcs. A waiting arc is inserted between
nodes (d,h′),(d,h′′) ∈ V in the graph if they correspond to the same depot d and h′′

comes immediately after h′ (i.e., no other node (d,h) with h′ < h < h′′ exist). Now, the
set of arcs can be defined as

E = {Ep}p∈P ∪E′

Due to the possibly exponential number of ride-sharing combinations, we can have an
exponential number of arcs. However, in practice, the number of possible trips π for
each user p is quite limited.

Note that the problem is modeled as a kind of a vehicle scheduling problem with
multiple depots. In the vehicle scheduling problem with multiple depots we have a set Z
of trips. A trip z has an associated start time lz and end time l′z. Two trips z and z′ can
be run in sequence (i.e., they are compatible) if there is sufficient time to get from z to
z′. Moreover, we have multiple depots, each depot d having a capacity Wd. Every trip
has to be run by one vehicle, minimizing the driving costs. A major difference between
the vehicle scheduling problem and the MMCRP is that in our case not all trips need to
be covered. However, the vehicle scheduling problem can either be transformed into the
MMCRP by having infinite cost for all other modes of transport, forcing the solution
to cover all trips or we it can be seen as an extended vehicle scheduling problem with
profits.
Complexity: As elaborated, the problem is modeled as a kind of a vehicle scheduling
problem. Therefore, it is easy to show that the MMCRP is NP-hard if the number of
depots is at least two. We prove the complexity by reduction from the vehicle scheduling
problem with 2 depots which was proven to be NP-hard by Bertossi et al. [24]. Notice
that, since the vehicle scheduling problem does not consider ride-sharing, the MMCRP
with at least 2 depots is NP-hard even without ride-sharing.

3.4.1 Arc formulation

We first introduce a direct formulation of the MMCRP based on the auxiliary
graph G = (V,E) presented in Section 3.3. For every node v ∈ V we have the set
of outgoing arcs E+

v and ingoing arcs E−v . Let V ′ be the set of intermediate nodes
V ′ = V \ {(d,σ),(d,τ)}d∈D. The set Eq denotes all arcs e that cover task q, including
co-riding visits. Q denotes the set of all tasks. Finally let γe denote the savings of arc e.
The binary decision variable xe takes on value 1 if arc e is selected in the solution and 0
otherwise.
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(a) First step of the graph construction: graph
including information on tasks.

(b) Second step of the graph construction: modeling
the trips as arcs.

(c) Graph with two ride-sharing trips. (d) Extended graph with trips as arcs, where two ride-
sharing trips are added to the graph in (b).

Figure 3.3: Illustration of the auxiliary graph in a time-space network.
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max ∑
e∈E

γexe (3.3)

s.t ∑
e∈E−v

xe = ∑
e∈E+

v

xe ∀v ∈ V ′ (3.4)∑
e∈E+

(d,σ)

xe =Wd ∀d ∈D (3.5)

∑
e∈E−(d,τ)

xe =W d ∀d ∈D (3.6)

∑
e∈Eq

xe ≤ 1 ∀q ∈Q (3.7)

xe ∈ {0,1} ∀e ∈ E (3.8)

The objective (3.3) maximizes total savings over all arcs. Constraints (3.4) ensure flow
conservation at intermediate nodes v ∈ V ′. Constraints (3.5) and (3.6) ensure that there
is a correct number of vehicles Wd,W d at start and end of the time horizon for each
depot d ∈D. Constraints (3.7) make sure that each task q ∈Q is covered at most once.
If a given task is not covered, the assigned user will reach the task using the cheapest
other MOT.

The model has O(E) variables, and O(V +D) constraints. Hence it is polynomial in
the size of the graph. However, the graph G= (V,E) may be large (exponential in the
original input size) due to the number of possible co-rides.

Despite the compact arc formulation, but due to the size of the graph, we will see in
the computational experiments that only relatively small problems can be solved using
this model. We will therefore introduce a stronger but larger formulation based on a
path formulation.

3.4.2 Path formulation

In order to introduce a path formulation of the MMCRP, we assume that all possible
routes ρ of all vehicles are enumerated in the set R. Each route ρ must start in node
(d,σ) and finish in a node (d,τ), traversing arcs E in the auxiliary graph G = (V,E).
The start and end depots d may be different.

Let γρ be the savings of route ρ calculated as the saving by using a car compared
to the cheapest other MOT for all arcs on the respective route. Furthermore, let the
binary matrix Fρq be 1 if route ρ will service task q. Finally, let Gρd = 1 if route ρ starts
in depot d, and Hρd = 1 if route ρ ends in depot d and 0 otherwise. The values Wd and
W d state the number of vehicles that are available at depot d ∈D at the beginning and
end of the planning horizon. The binary decision variable xρ takes on value 1 if route ρ
is chosen, and 0 otherwise.
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We can now formulate the MMCRP as follows:

max ∑
ρ∈R

γρxρ (3.9)

s.t ∑
ρ∈R

Fρqxρ ≤ 1 q ∈Q (3.10)∑
ρ∈R

Gρdxρ =Wd d ∈D (3.11)∑
ρ∈R

Hρdxρ =W d d ∈D (3.12)

xρ ∈ {0,1} ρ ∈R (3.13)

The objective function (3.9) maximizes the sum of the savings of the selected routes. Con-
straints (3.10) make sure that each task q ∈Q is covered at most once. Constraints (3.11)
make sure that exactly Wd vehicles leave depot d at the start of the planning horizon,
and constraints (3.12) make sure that exactly W d vehicles return to depot d at the end
of the planning horizon. Since not all vehicles have to be used, we add the necessary
dummy routes to the set R. Finally, constraints (3.13) define the decision variables xρ
to be binary.

3.4.3 Delayed column generation

Since the number of routes R in model (3.9)-(3.13) may be very large we solve its
LP-relaxation through column generation.

The restricted master problem considers a subset of routes R′ ⊆ R of all possible
routes. In every iteration a pricing problem is solved to find a new route with positive
reduced savings. The process is repeated until no more routes with positive reduced
savings can be found. When the process terminates, we have solved the LP-relaxation
of (3.9)-(3.13) and hence have an upper bound on the solution to the MMCRP.

The pricing problem is searching for a route through the auxiliary graph G= (V,E)
maximizing the reduced savings. The problem becomes a kind of (time constrained)
shortest-path problem in G where we aim at finding the paths with the largest savings.
Since G is a time-space network, the time constraints are implicitly handled by graph
construction. Moreover, we note that G is a DAG, and hence no cycles can occur.

Let yq be the dual variable corresponding to task covering constraint (3.10), ud be
the dual variable corresponding to depot start-inventory constraint (3.11), and ud be
the dual variable corresponding to depot end-inventory constraint (3.12). The reduced
savings of a route ρ starting at depot d and ending at depot d can be calculated as
follows:

∑
q∈ρ

(γq−yq)−ud−ud (3.14)

The function sums all savings γq of tasks q covered by route ρ subtracted by the dual
variables yq. Finally the dual variables ud,ud corresponding to the depot inventory
constraints are subtracted.
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3.4.4 Pricing problem

The pricing problem generates new promising routes by finding a path with the
maximum reduced savings in the time-space network G= (V,E). We find the path using
a label setting algorithm.

The pricing problem is solved for each combination of start depot d ∈ D and end
depot d ∈D. Promising routes with positive reduced savings are added to the master
problem until no more routes with positive reduced savings can be found.

Dynamic programming

We solve the pricing problem for every pair of start and end depot, using auxiliary
graph G= (V,E). We use a label setting algorithm adapted to a DAG. For every node
v ∈ V , we have an associated value fv denoting the path with the so far largest savings
to v. Initially fv = −∞ for all nodes v ∈ V except the source node, and gradually the
value of fv is increased as paths with higher savings are encountered.

A dynamic program is solved for each pair of depots. However, for each start depot,
the dynamic programming algorithm will actually solve the problem for all destination
depots. So, we only need to call the dynamic programming algorithm |D| times, resulting
in the overall time complexity O(|D|× |E|) for solving all pricing problems.

Since we have one value fv for every node, the space complexity of the dynamic
programming algorithm is O(|V |). This is clearly overshadowed by the size of the graph.

Notice that when the dynamic programming algorithm terminates we may have
several distinct solutions ending at depot d, for different arrival times h. The algorithm
may easily be modified to return all these distinct solutions.

Stopping criterion and columns added

In the basic pricing algorithm we run the pricing for each combination of depots such
that the column with the most positive reduced savings is added. We denote this strategy
as best. Alternatively, we also evaluate the following strategies: first, firstdep, and
multiple. In first we stop as soon as a column with positive reduced savings has been
found and add this column to the master problem. Again, in each iteration only one
column is added. Next, we extend first for every depot combination, and we iterate
until the first column with positive reduced savings is found for each combination and
terminate thereafter. This means that, when considering two depots and combining
each of them, we have at most 4 columns added in each iteration. This is denoted as
firstdep. Lastly, in multiple we include all columns with positive reduced savings.
Note that we also tried to restrict the number of columns added. However, we did not
see a remarkable difference to the non-restricted case.

Heuristic pricing algorithm

Although the pricing problem is solvable in polynomial time in the size of the graph
G= (V,E), the number of arcs E may be very large, and we will see in the computational
experiments that the pricing problem takes up most of the solution time. We therefore
introduce a number of heuristic pricing algorithms, namely statespace, heurprun and
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heurarcs. When employing one of the heuristic pricing strategies, we search for columns
with positive reduced savings and afterwards finish with one of the exact pricing schemes.

statespace: In this method, we reduce the auxiliary graph by merging nodes with
similar time in the time-space graph. The time-horizon is discretized in intervals of
10 minutes. If two nodes, corresponding to the same depot, end up in the same time
interval, they are merged. After the merging, there may be multiple arcs between each
pair of nodes, so we select the arc with highest savings, and ignore the rest.

heurprun: In this method, we use an aggressive reduction of the graph, by only
keeping the savings and not the time. Hence, for every set of ride arcs Ep = {((aπp ,gπp ),
(bπp ,hπp ))}π∈R we merge start and end times, gπp and hπp , into one common artificial time
g′p and h′p for each user’s start and end depot ap and bp such that, to start with, we only
keep track of the ride with largest savings π ∈R for each user p.

heurarcs: In the original algorithm we construct an auxiliary graph G = (V,E) in
which we may have arcs e ∈ E with both positive and negative savings γe. Arcs having
a negative saving will only be used if they can be combined with arcs having a positive
saving. The heuristic pricing algorithm removes all arcs e with negative savings γe < 0
before running the label setting algorithm. This reduces the size of the auxiliary graph.

3.5 Computational study

The algorithms are implemented in C/C++ and for the solution of the master problem
CPLEX 12.6.2 together with Concert Technology 2.9 is used. Tests are carried out using
one core of an Intel Xeon 2643 machine with 3.3 GHz and 16 GB RAM running Linux
CentOS 6.5. The algorithms are tested on a number of generated instances of increasing
size and complexity. Various pricing schemes are compared, and the efficiency of all parts
of the code is evaluated. Most of the reported computation times include the generation
of the auxiliary graph. The exception is the comparison of the arc formulation to the
column generation approach, where only the time to solve the models is stated.

To start the column generation we provide an initial set of dummy columns by
inserting route variables xρ such that the master problem is feasible without considering
any valid route construction. These dummy variables are leaving and entering a depot
(constraints (3.11)-(3.12)), but do not cover any tasks. We first solve the linear relaxation
of the master problem and thereafter we solve the restricted master problem to integer
optimality, using only routes generated in R′, containing a subset of all routes R with
positive reduced savings. In this way we get an upper bound from the column generation
based approach, and a lower bound from solving the IP model. Although we cannot
guarantee an optimal solution to the original MMCRP in this way, the results will show
that in most cases the gap is very small, and the solution quality is more than sufficient
for practical applications.

In the following, we first introduce the test instances in Section 3.5.1. In Section 3.5.2
we compare the pricing schemes introduced in Section 3.4.4 and afterwards conduct
algorithmic tests in Section 3.5.3. Finally, we discuss socio-economic aspects in Sec-
tion 3.5.4. For a better understanding of the problem we provide a sample solution in
the Appendix A.2.

We show in our results that the column generation approach is an efficient choice
to solve the MMCRP. We can solve the biggest instances with 300 users and 40 ve-
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hicles within less than one hour on average. Pricing strategy multiple turns out to
be the most efficient of the exact methods. The heuristic approaches (statespace,
heurprun, heurarcs) do not come with a significant improvement in solution time or
quality. Finally, we compare our results to those of the direct formulation presented in
Section 3.4.1.

3.5.1 Test instances

We generate realistic benchmark instances based on available demographic, spatial
and economic data of the city of Vienna, Austria. Five different MOTs are considered:
car, walk, bike, public transport, and taxi. Walk, bike, public transport, and taxi are
assumed to have an unrestricted capacity mk = ∞, while there is a limited number
mcar <∞ of shared cars. For each mode of transport k ∈K we define a set of properties,
described in the following. Information of the car is based on available data (PKW-Mittel
Diesel in Beermann et al. [19]). Distance dkij , time wkij and cost ckij are calculated between
all nodes i and j for all modes of transport k ∈K. Average travel speed per transport
mode are as follows (in km/h): car = 30, walk = 5, bike = 16, public transport = 20,
taxi = 30.

Emissions εkij are translated into costs and, together with distance cost ckij and cost
of time w′kij , included into the overall cost calculations. Costs per emitted ton of CO2
is 5e and average gross salary in Austria including additional costs for the employer is
19.42e/hour. Variable cost per distance ckij of the car is taken from the available car
information in Beermann et al. [19] and is 0.188e/km. For taxi we take on a value of
1.2e/km. As we only consider distance cost that are variable and no fixed charges, we
assume for all other MOTs costs ckij of 0. Additional time ξk is added to denote extra
time needed for a certain MOT k, such as additional 10 minutes for cars to account for
walking distances from/to the parking lot. This we specify as follows (in seconds): ξcar
= 600, ξwalk = 0, ξbike = 120, ξpublic = 300, ξtaxi = 300. Distances are based on aerial
distances and multiplied by a constant sloping factor ζk for each mode k in order to
account for shortcuts/detours usually associated with certain modes of transport. These
we define as ζcar = 1.3, ζwalk = 1.1, ζbike = 1.3, ζpublic = 1.5, and ζtaxi = 1.3.

Each generated instance represents a distinct company consisting of one or more
depots d ∈D and users, i.e., employees, p ∈ P . The locations of the depots are based on
statistical data of office locations in Vienna. The set of possible locations is based on
geometric centers of all 250 registration districts of Vienna.

Companies are defined by a fixed number of users u and depots |D|. The number of
customer visits, i.e., meetings, and their time and location, are then randomly generated
based on historic statistical data.

To each user p we associate a subset of MOTs Kp ⊆ K. We assume penalties for
constraint violations such as choosing a mode of transport that is not in the user’s choice
or for too late arrival. The penalty cost per violation is determined to be 10,000 and
directly included into the cost function.

For our calculations, we depict one day only. Each user p has an assigned set of
tasks Qp distributed over the day. For the smallest instances on average 95 nodes
(comprising meetings/tasks q and start and end depots a,b) and 33 tasks are generated.
For the largest instances we have on average 463 tasks. Further information is given in
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Section 5.4 in Table 3.7. This leads to about 4-5 assigned nodes per user (including their
start and end depots of the trips). The ordered list of tasks Qp for a working day per
user p is generated with the following attributes for each task q: latest arrival, earliest
departure, service duration, all given in minutes. We already account for ride-sharing in
the instance generation where we enforce the proximity of various tasks of different users.
First, a predefined sequence of tasks is generated per user p which is then partitioned
into separate sets of tasks with newly assigned artificial user p′ ∈ P if a user returns to
the depot more than once during a day. If a user p has more than one simple trip, buffer
time at the depot is set to 60 minutes in order to account for, e.g., changing of cars or
additional time needed if the previous route was not covered by car. We assume that
the maximum distance between two nodes is one hour.

Instances are named as E u I, where u is the number of users, and the instance
number I is between 0 and 9. For example, the first instance in the set of instances with
20 users (u= 20) is denoted E 20 0. For each combination of u and m we solve a set of
10 instances (E u 0 to E u 9) and report the average values.

Instance sets and the source code of the instance generators are made publicly
available at https://github.com/dts-ait/seamless.

3.5.2 Comparison of the different pricing schemes

In this part, we compare different pricing schemes and study heuristic pricing algo-
rithms. We compare four different variants of how and when to add columns to the master
problem (described in Section 3.4.4) and three heuristic approaches, as described in Sec-
tion 3.4.4. We provide insights into different parts of the algorithm and finally choose
the variants having the best trade-off between solution time and solution quality. We
compare results based on an increasing number of users u= 20,50,100,150,200,250,300
and vehicles m= 2,4,10,20,40. In our experiments the number of depots is two except
for Table 3.6 where we study instances with more depots. The vehicles are equally split
over all depots.

To start with, we study the solution time and solution quality of the different exact
pricing schemes described in Section 3.4.4. Notice that all pricing schemes return the
same LP-bound, but the IP-solution may be different because a different set of columns
may be generated.

In Table 3.1 we report computational times in seconds and the average gap in per-
centages between the integer and LP solution for the respective set of instances. The gap
between the two solutions is calculated as: (Savings LP−Savings IP)/Savings IP. We
split the table into combinations of pricing scheme (best, first, firstdep, multiple),
number of vehicles (m = 2,4,10,20,40) and users (u = 150,200,250). Note that for
multiple we add a row for u = 300 as this is the only exact scheme that was able to
solve all instances within the stated time limit of two hours. As it may be seen, we are
able to find near optimal solutions with a gap close to 0. For the case with m= 2, which
means one vehicle for each depot, we can close the gap for all instances given in the table.
The gap increases slightly when more vehicles are added, however only up to a certain
point. For instances with more cars (m= 10,20,40) we cannot see a significant difference
in the gap anymore. All approaches return solutions of approximately equally good
quality. However, strategy multiple gives slightly better gaps than the other schemes.

https://github.com/dts-ait/seamless
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In schemes best, first, and firstdep only a very restricted subset of columns is added
to the problem in each iteration. However, they might not be the most beneficial for
the integer solution. With multiple we add all found columns with positive reduced
savings which helps us to identify an integer solution. Given this situation and also for
practical reasons, we decided to refrain from implementing a full fledged branch-and-price
algorithm. In terms of computational time, for instances with a small number of cars
(m= 2,4) and up to 150 users (u= 150) it does not make a difference which scheme is
used. By increasing the number of users and keeping a small fleet we can gradually see
a difference. Pricing scheme best performs worst and pricing scheme multiple is, by
far, the most efficient in terms of computation time. For the largest comparable instance
which can be solved by all schemes (m= 40 and u= 250), computation times differ by
a factor of 7: the average run time of pricing scheme multiple amounts to 843 seconds
and to 6,145 seconds with pricing scheme best. The biggest instances (u= 300,m= 40)
can be solved within less than one hour on average. We can observe in our computational
results that the time spent on solving the master problem is usually very small, below
three minutes on average, with the exception of instance class u= 100 and m= 10, where
we obtain an average value of 1,296 seconds, using pricing scheme first. Most of the
computation time is spent on solving the pricing problem. Observing this, we try to
decrease computation times by studying three different heuristics to accelerate pricing,
namely heurarcs, heurprun, statespace (see Section 3.4.4).

Table 3.1: Average computation time in seconds and average gap in percentages (%) between the
LP solution and the integer solution for the exact pricing schemes for an increasing number of
users (u) and vehicles (m). The gap is calculated as: (Savings LP−Savings IP)/Savings IP.

m = 2 m = 4 m = 10 m = 20 m = 40
u time % time % time % time % time %

best
150 4.7 0.00 17.3 0.46 97.1 1.08 421.9 0.25 845.6 0.14
200 9.1 0.00 37.1 0.21 328.2 0.45 2797.6 0.18 2805.8 0.23
250 18.9 0.00 83.4 0.07 1799.7 1.05 2738.6 1.07 6145.4 0.18

first
150 4.1 0.00 12.1 0.46 58.8 0.83 254.4 0.23 582.6 0.08
200 7.6 0.00 28.9 0.21 355.3 0.43 1396.7 0.22 2058.1 0.15
250 16.5 0.00 61.7 0.07 1321.7 0.79 3512.2 1.11 4506.4 0.15

firstdep
150 4.4 0.00 14.6 0.47 86.7 0.98 242.2 0.26 518.5 0.11
200 7.7 0.00 28.4 0.21 277.8 0.49 1307.4 0.22 1690.5 0.18
250 16.9 0.00 64.3 0.07 625.6 0.98 1677.9 1.18 3303.6 0.16

multiple

150 4.0 0.00 9.3 0.46 28.3 0.63 72.2 0.24 114.6 0.04
200 8.3 0.00 20.4 0.21 108.3 0.44 270.7 0.23 362.6 0.10
250 17.7 0.00 42.3 0.07 222.1 0.57 493.7 0.75 842.7 0.12
300 50.1 0.00 156.4 0.70 631.5 0.59 1734.4 0.11 2994.6 0.16

All heuristic approaches use pricing scheme multiple as it turned out to be the
most efficient of the introduced exact pricing algorithms. The heuristic pricing schemes
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are employed as follows: We use the heuristic as long as columns with positive reduced
savings can be found. Thereafter, we continue with the chosen exact pricing procedure.

Table 3.2 gives the average gap between the upper bound and solving the original
IP on the same set of columns, and the average computation times in seconds for the
heuristic pricing schemes heurarcs, heurprun, statespace, and scheme multiple for
the larger instance classes defined by u = 150,200,250,300 and m = 2,4,10,20,40. We
see for all schemes a gap below 1%, and similar computational times. Thus, none of the
presented schemes significantly stands out in terms of running times or solution quality.

Table 3.2: Average computation time in seconds and average gap in percentages (%) between
the LP solution and the integer solution for the heuristic pricing schemes and scheme multiple
for u = 150,200,250,300 and an increasing number of vehicles m. The gap is calculated as
(Savings LP−Savings IP)/Savings IP and reported for increasing number of vehicles (m).

m = 2 m = 4 m =10 m = 20 m = 40
time % time % time % time % time %

multiple 20.0 0.00 57.1 0.59 247.5 0.45 642.8 0.21 1078.6 0.10
heurarcs 18.4 0.00 48.5 0.21 218.7 0.53 571.1 0.44 1075.2 0.10
heurprun 22.2 0.00 52.3 0.20 229.4 0.57 616.6 0.50 1036.7 0.09
statespace 19.1 0.00 47.6 0.23 224.9 0.57 571.9 0.43 1060.7 0.11

In Table 3.3, we present the total number of columns generated when running the
respective pricing algorithm over all instances with m= 2,4,10,20,40. We observe that,
as expected, by only adding one column in each iteration (best, first) and one for each
depot combination (firstdep) we generate fewer columns than with scheme multiple,
which adds all columns with positive reduced savings.

Table 3.3: Total number of columns generated by the different pricing schemes over all instance
classes with a given number of vehicles (m).

m = 2 m = 4 m = 10 m = 20 m = 40

best 28 149 855 2,771 4,993
first 30 163 13,903 3,883 6,606
firstdep 29 154 857 2,585 4,710
multiple 263 645 2,751 6,797 12,865

The solutions gained when solving the arc formulation and the integer solutions
obtained by the column generation algorithm are compared in Table 3.4. We run the
arc formulation on a set of small instances (u= 20,50,100 and m= 4) already showing
the benefits of the decomposition algorithm. In the first row (computation time (s)) the
average computation times to solve the arc formulation (AF), and the column generation
algorithm (CG) are given. The stated numbers encompass only the computation times in
seconds to solve the respective formulation, thus the enumeration of the trips is excluded.
We observe that for the smallest instances the arc formulation is faster. However, for the
bigger instances (u= 50,100), we need a multiple of the time of the column generation
algorithm. The gap (gap (%)) between the solution of the arc formulation and the
respective integer solution is very low, less than 0.11% for all instances on average.
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With the column generation approach we are able to solve 9 out of 10 instances of the
respective instance group to optimality (# opt.)

As we assumed and also show in Table 3.7, the number of arcs generated, and thus
the underlying graph, becomes very large and therefore this formulation cannot be used
efficiently in a direct formulation. Note that we also tried to run the arc formulation
by increasing the relative MIP gap (e.g., to 1%). This, however, did not lead to any
improvements as solving the root relaxation takes most of the computational time.

Table 3.4: Average time in seconds for solving the arc formulation and the column generation
based algorithm, average gap in percentages between the solution of the arc formulation (AF)
and integer solution of the column generation based algorithm (CG), and number of instances
solved to optimality with the column generation based algorithm for instances with an increasing
number of users u= 20,50,100 and number of vehicles m= 4.

u= 20 50 100

AF CG AF CG AF CG

computation time (s) 0.1 0.6 23.1 0.8 1,615.9 1.2
gap (%) 0.00 0.06 0.00 0.11 0.00 0.03
#opt. 10/10 9/10 10/10 9/10 10/10 9/10

3.5.3 Algorithmic tests

In the following we use configuration statespace to study how the column generation
evolves, the impact of early termination of the column generation and different numbers
of depots.

In terms of convergence of the algorithm, we observe the common picture of a steep
increase in the objective value during the first iterations and then a long tail until
optimality of the LP relaxation has been proven. This means that we are able to find
good solutions close to the optimal objective function value in a relatively few iterations.
However, the column generation then needs quite a number of iterations in order to find
the optimal value. This effect can be exploited for practical applications: the column
generation process can be terminated early without loosing much in terms of solution
quality. Figures 4(a), (b), (c) and (d) in the Appendix A.2 plot the convergence of the
column generation algorithm. The number of iterations is shown on the x-axis and the
objective function value on the y-axis. We report results for u= 150 users (a), u= 200
user (b), u= 250 users (c), and u= 300 users (d). Each curve represents the outcome of
one instance.

In Table 3.5 the impact of early termination after about one third of the iterations on
the quality of the obtained objective value is shown. As the number of iterations needed
to find the optimal solution does not vary much between instances of different size, we
assume a common termination criterion for all. Observing that usually about 140-160
iterations are needed to terminate the algorithm, we study early termination after 50
iterations and solve the integer problem on the columns generated so far. Table 3.5
gives the gap in percentages between the integer and LP solution for each instance with
u= 300. The row ”time (s)” shows the average run time in seconds. We observe that we
are still able to find good solutions after only one third of the iterations. The computed
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gap between the original upper bound and solving the IP on the restricted set of columns,
using early termination, is at most 6.6% and 2.5% on average, which is good enough
for practical applications. Since the algorithm is stopped after about one third of the
previously necessary iterations, run times are reduced accordingly.

Table 3.5: Impact of early termination of the column generation algorithm after 50 iterations for
u= 300 and m= 40. Comparison between original upper bound and obtained integer solution
after early termination. Gap in percentages and time in seconds are given for the case of early
termination (terminate) and the original values obtained from statespace.

E 300 0 E 300 1 E 300 2 E 300 3 E 300 4 E 300 5 E 300 6 E 300 7 E 300 8 E 300 9 average

gap (%)
terminate 6.45 2.56 2.29 0.19 2.70 2.82 0.16 1.80 4.52 2.55 2.60
original 0.00 0.76 0,78 0.00 0.72 0.00 0.00 0.61 0.00 0.06 0.16

time (s)
terminate 637.9 506.3 101.1 958.2 1,193.0 119.7 905.7 69.8 1,325.3 1,101.3 691.8
original 5,533.2 3,198.1 424.8 1,043.4 5,430.3 402.5 1,051.5 328.2 7,340.5 5,194.0 2,994.6

In Table 3.6 we show the impact of increasing the number of depots on the run time
of the algorithm. In all previous experiments, two depots were used. We now use 1, 3,
and 4 depots. Within the project, the case of 1 depot is chosen as currently a company
usually operates one main office (or at maximum two) with shared cars. However, as we
are investigating the future sharing economy and different settings of companies we also
analyse if our algorithm is capable of dealing with more depots. The number of vehicles
is shown as the number of vehicles per depot to allow for a fair comparison. This means
that, to obtain the actual total number of vehicles, this number must be multiplied by
the number of depots. As expected, computation times increase with rising number of
depots, however only to a certain factor and not exponentially. As the pricing algorithm
is solved for each pair of depots we are increasing the number of subproblems the pricing
algorithm is able to handle. However, as only a few trips start and end at different
depots, we can provide reasonable solution times even for the case of four depots. In
Table 3.6 the respective values are provided.

Table 3.6: Average computation times in seconds for 1, 2, 3 and 4 depots for users u =
20,50,100,150,200,250,300 and vehicle per depot (m′).

m’ = 1 m’ = 2 m’ = 5 m’ = 10 m’ = 20

1 depot 8.4 15.0 62.4 134.3 372.3
2 depots 12.3 33.7 143.4 370.0 619.2
3 depots 15.6 54.9 208.5 586.7 652.2
4 depots 35.9 143.2 554.2 1105.2 1601.6

3.5.4 Socio-economic tests

In this section, we summarize the results of our socio-economic tests. All results
are obtained using the version of our algorithm with the smallest LP-IP gap, which is
multiple. We study savings by ride-sharing, savings by car-sharing and give insights
into the instances and strategic decisions regarding the optimal size of the car pool.
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Table 3.7 gives the average number of all trips for each instance class and the average
number of simple trips. Simple trips are the arcs without any ride-sharing activities
going from start node a to end node b. As we can see, the number is always slightly
higher than the number of users, indicating that a set of users return to the depot during
the day and start another sequence of nodes in the observed planning horizon. Column
”tasks incl. start/end” gives the average number of nodes, i.e., tasks and start/end
depots of a user’s trip, of the instance set. Each user covers about 4-5 nodes, each trip
includes on average 3.3 nodes. The column ”tasks” gives the average number of tasks for
each instance set. This number ranges from 33 (u = 20) to 463 (u = 250), which gives
approximately 1-2 tasks per trip. In the last four columns we give the percentage of tasks
and start/end depots covered by a car. Naturally, with a low number of cars (m = 4)
and a high number of users (u = 250), only a small subset of tasks will be covered by
car. The coverage ranges from 4% to 45%.

Table 3.7: Number of simple trips, number of all trips, and tasks in the auxiliary graph for an
increasing number of users u. The columns on the right give the percentage of nodes including
tasks, start and end depots, covered by car for m= 4,8,20,40.

u simple trips all trips tasks incl. start/end tasks m= 4 8 20 40

20 31 240 95 33 30% 38% 41% 41%
50 76 7,403 242 90 13% 25% 42% 43%

100 147 71,726 476 183 9% 15% 35% 45%
150 218 551,936 714 279 6% 11% 25% 43%
200 287 1,497,545 951 381 5% 9% 20% 37%
250 358 2,317,145 1,179 463 4% 7% 16% 30%

In Table 3.8, the results obtained from solving the MMCRP are compared to only
car-sharing (ratio (1)) and user-dependent car assignment (ratio (2)). The value is given
as the savings ratio of MMCRP : car-/ride-sharing.

User dependent car-assignment means that if a user has an assigned car, the selected
user will have the car for the whole day and use it for all trips. Moreover, no other user
is allowed to use this car and ride-sharing is not possible. If only car-sharing is employed
users may hand over the cars during the planning horizon so that a car will have different
drivers assigned, however, no ride-sharing is allowed. All tests are run for an increasing
number of vehicles (m= 2,4,10,20) and users (u= 20,50). Instance specific results are
reported and summed up in the row ”average”.

By allowing car- and ride-sharing and thus having a more flexible usage of the car
pool rather than a restricted usage during a day, we can have up to 1.7 times higher
savings in the planning horizon. This is already shown for small-sized instances. As
expected, the more flexible the usage of the cars, the more savings are achieved. Please
note that instances E 20 4, E 20 7, E 20 8, and E 50 1 are not in the table, meaning
that these are not included in the average calculations as they would give a somewhat
misleading outcome. This is due to the fact that we assumed penalties for constraint
violations such as choosing a mode of transport that is not in the user’s choice or for
too late arrival. The penalty cost per violation is determined to be 10,000 and directly
included into the cost function. Therefore we obtain for some instances very high savings
which is mainly due to these penalties included in the objective function. Note that we
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also excluded values for m = 20 and u = 20 as this setting means that more cars than
users are provided.

Table 3.8: Increase in savings when comparing car-sharing (without ride-sharing), user-dependent
car-sharing (i.e., car-sharing without ride-sharing and a user has a car for the whole day) and
MMCRP. Ratio (1) reports the factor of improvement in savings in comparison to car-sharing,
ratio (2) reports the enhancement when comparing to the user-dependent car-sharing.

m = 2 m = 4 m = 10 m = 20
ratio (1) ratio (2) ratio (1) ratio (2) ratio (1) ratio (2) ratio (1) ratio (2)

u= 20 1.2 1.4 1.2 1.4 1.3 1.3 - -
u= 50 1.3 1.6 1.5 1.6 1.6 1.7 1.7 1.7

When analyzing fleet size, we see initially big savings when adding more vehicles yet
the impact diminishes quite fast. For instances with 20 users fewer than 5 vehicles suffice,
for 50 users fewer than 10 are certainly enough and when we consider 100 users the break-
ing point is somewhere between 20 and 30. For larger instances (u= 150,200,250,300),
the ideal number of vehicles would be between 20 and 50. Figure 5 in the Appendix A.2
provides illustrative insights into the optimal fleet size for an increasing number of users
employed (u = 20,50,100,150,200,250,300). The x-axis represents number of vehicles,
the y-axis the objective function value and each line represents a distinct instance of our
experiments, whereas the thicker black line in each subfigure shows the average.

Finally, we analyse the average number of arcs and ride-shares in our results. Table 3.9
summarizes the average number of trips per vehicle route and average ride-sharing
activities per arc (ride-sharing per ride). This is shown for the cases of 20 and 50 users
and increasing number of vehicles (m= 2,4,10,20 respectively). The average number of
trips on a vehicle route gives us an idea of the amount of car-sharing activities. With an
increasing number of cars the number of trips on a vehicle route is decreasing. The very
small numbers, for example 0.9 for u= 20 and m= 10, are mainly due to unused arcs,
meaning that not all of the available cars are used. Moreover, we have on average 1.5-1.7
ride-sharing activities per arc, which is considered to be very high and supports our goal
of having a good utilization of the pool of cars. Note that we again exclude values for
m= 20 and u= 20 as this setting would mean that more cars than users are provided.

Table 3.9: Average number of trips per car, and average number of ride-shares per trip.

u= 20 u= 50

trips per car ride-sharings trips per car ride-sharings
m per trip per trip

2 2.0 1.5 2.1 1.6
4 1.6 1.5 1.9 1.5

10 0.9 1.2 1.7 1.7
20 - - 1.1 1.7
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3.6 Conclusion

Inspired by the concept of sharing economy and future mobility systems, we intro-
duced the multimodal car- and ride-sharing problem (MMCRP) that assigns different
modes of transport to ride requests. We aimed at deploying a pool of shared cars as
efficiently as possible, join ride requests by offering ride-sharing and by assigning different
modes of transport to the remaining requests.

We introduced the novel MMCRP and showed that the problem is NP-hard if the
number of depots is at least two. The problem remains NP-hard even if ride-sharing is not
allowed. In order to circumvent the complexity of modeling ride-shares and additionally
assigning further modes of transport, we constructed an auxiliary graph in which all
possible ride-sharing rides are enumerated. Ride requests not covered by a car or ride-
share are appointed to take the cheapest other MOT. This made it possible to formulate
a compact model for the problem as a kind of vehicle scheduling problem. We extend
the vehicle sharing problem by allowing for different start and end depots. Moreover,
due to the modeling of ride-sharing into the graph, we may have multiple possibilities to
cover a trip and have to make sure that a user is not riding in parallel, i.e., that a user
is not driving in multiple cars at the same time. Note that the auxiliary graph can be
exponential in the original input size. Due to the size of the auxiliary graph, the compact
model is also quite complex to solve, hence we proposed a path-based formulation. To
solve the path-based formulation we introduced an efficient two-stage decomposition
algorithm and relied on well-studied approaches to solve the real-world problem. In
the first stage of the decomposition approach, trips were enumerated and afterwards, in
the second stage, solved through a column generation approach. The master problem
keeps track of the requests and depot balance constraints, while the pricing problem
generates improving paths. We showed that the pricing problem can be solved through
dynamic programming in polynomial time, measured in the size of the auxiliary graph.
The computational results confirmed that large instances can be solved in reasonable
time, making it possible to use the algorithm for daily planning of multimodal car- and
ride-sharing problems even in a large-scale setup. The two-level decomposition makes it
easy to implement additional constraints on co-riding to make it more attractive: This
could be limits on detour or driving time, or co-rider preferences. Also the framework
can easily be generalized to handle more than one co-rider, which should also be done in
future work.

The introduced model targets corporate mobility services. However, it can easily be
applied to any specific network with a predefined set of users in a closed community and is
therefore of high importance in current and future concepts of shared mobility systems.
Moreover, the MMCRP can be extended to electric cars, where the algorithm must
ensure that sufficient time is available at the depot for recharging the cars. Furthermore,
the model can be extended to consider several shared modes of transport. This could
be electric as well as conventional cars and bikes that are pooled to satisfy the needs
of transportation for one or more companies. Bikes might need to be embedded in a
rebalancing system, ensuring that the right number of bikes is at the right locations at
the beginning and end of the day. Bikes can thus be implemented in a unified model
with other shared MOTs considering specific limitations as they cannot be available
for ride-sharing. However, as we are considering urban mobility, we can assume that
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there are shared bikes provided from different independent providers, and therefore this
mode of transport is always available for the users and the company does not have to
plan the rebalancing on their own. Furthermore, the current model is restricted to a
predetermined fixed sequence of tasks. This was considered as given from our practical
partners. However, this restricts the model and prevents possible further savings that
might benefit from this flexibility. Moreover, the model might profit from allowing
changes of drivers on a trip. We note that this restriction was introduced based on
information from our industry partners. They reported that there was very limited
acceptance for handing over cars during a trip. However, in our future work we plan to
address this aspect as well as more flexibility in the timing of user tasks. Lastly, another
interesting aspect could be the consideration of uncertain and varying travel times. While
time-dependent travel times would not require major changes to our approach, since we
already work on a time expanded network, the consideration of uncertainty would require
major changes in the design of the solution approach. Furthermore, an unexpected delay
of the driver at any point would affect any later co-rider on the route, requiring changes
in the schedule during the day, which should also be addressed in future work.
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Abstract The aim of the bi-objective multimodal car-sharing problem (BiO-
MMCP) is to determine the optimal mode of transport assignment for trips and to
schedule the routes of available cars and users whilst minimizing cost and maximizing
user satisfaction. We investigate the BiO-MMCP from a user-centred point of view.
As user satisfaction is a crucial aspect in shared mobility systems, we consider user
preferences in a second objective. Users may choose and rank their preferred modes
of transport for different times of the day. In this way we account for, e.g., different
traffic conditions throughout the planning horizon.

We study different variants of the problem. In the base problem, the sequence of
tasks a user has to fulfill is fixed in advance and travel times as well as preferences are
constant over the planning horizon. In variant 2, time-dependent travel times and
preferences are introduced. In variant 3, we examine the challenges when allowing
additional routing decisions. Variant 4 integrates variants 2 and 3. For this last
variant, we develop a branch-and-cut algorithm which is embedded in two bi-objective
frameworks, namely the ε-constraint method and a weighting binary search method.
Computational experiments show that the branch-and cut algorithm outperforms
the MIP formulation and we discuss changing solutions along the Pareto frontier.

Keywords— car-sharing, mobility, transportation, bi-objective, branch-and-cut

4.1 Introduction

Today, most of the world’s population lives in urban environments and cities continue
to grow [144]. Urban mobility is therefore a key topic for a sustainable future. When
considering a city’s infrastructure, the available mobility offers are plentiful. Public
transportation provides efficient connections, some commuters use their car, others
prefer bikes, scooters or even taxi. Besides, a trend towards sharing is clearly visible in
mobility (DriveNow, Uber, ...). In short, mobility as we use it and see it is changing.
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This comes with a whole new stream of optimization problems. Only recently Mourad
et al. [112] provided a survey on the vast topic of optimizing shared mobility.

The (privately owned) car is diminishing as the prevailing mode of transport in urban
areas [145]. In Vienna (Austria), the number of cars per capita is constantly decreasing
[105, 135]. People prefer other modes of transport (MOT). The modal split of cars
shrank from 31% to 25% within the last decade. Within the same time period, bikes,
public transportation and walking increased their modal split by 2 percentage points
to 7%, 38%, and 30%, respectively [150, 151]. Thus, people move to alternative, more
environmentally friendly MOTs.

Additionally, citizens increasingly use sharing systems [145]. In Germany, the number
of shared cars has increased fivefold within ten years, there are almost twelve times more
users than a decade ago [38]. In Vienna (Austria), one shared car eliminates the need
of five privately owned ones [102]. At maximum 10% of the cars in Austrian households
simultaneously drive on the roads. Many car owners use their vehicles only a couple of
times per year. In Lisbon (Portugal), only 3% of the cars will be needed if all trips are
covered by car- and ride-sharing. 95% parking space can be freed up [145]. Moreover,
car-sharing saves up to 44 million car-kilometers in Vienna annually. This equals to
approximately 7,000 tons of CO2 [102]. Hence, by using car-sharing, resources can be
employed more efficiently, it is more environmentally friendly, and newly available space
can be gained as, e.g., green space in urban areas [145].

The importance of rethinking mobility is clearly visible in the presence of prominent
concepts in various cities. Vienna targets a split of 80:20 where 20% of the trips are
covered by cars, the others by public transportation, bikes or walking. The idea is to
extend the mobility offers with profound sharing concepts and to move towards the vision
of a ’Smart City’ [133]. Madrid is aiming to establish a holistic ’Mobility as a Service’
concept offering real-time information and including over 30 shared mobility options [46].
Within novel mobility concepts, bikes are receiving exceptional attention. Vienna almost
doubled the cycling network in the last decade, and accomplished a similar increase in
kilometers driven on specific legs [66, 103]. Paris presents the ’Plan Vélo’ where the
target is to emerge to the world’s bike capital. The ambition is to minimize the space
for cars and make space for bike usage and pedestrians [118].

Novel mobility concepts and reconsidering mobility plays an important role not only
in a private environment, but also in a corporate setting. Companies increasingly aim to
provide mobility concepts for their employees. This work is part of an applied research
project SEAMLESS (http://www.seamless-project.at), in which project partners, such
as the Austrian Post AG or T-Systems Austria GesmbH, strive for the implementation
of the discussed ideas. The target is to reduce a one-to-one assignment of company
cars, employ more environmentally friendly MOTs and strive for shared mobility where
each employee gets her preference. This goes hand in hand with companies aiming for a
greener carbon footprint and enhancing employee satisfaction [127].

Traveler experience needs to be taken into account in the design of novel mobility
systems and is key to its success with users [5]. Thus, when studying mobility, convenience
and user preferences are crucial. However, from an operator perspective the cost-factor
plays an important role as well and usually cost-efficiency is in conflict with a MOT’s
convenience. This ’convenience’ is difficult to measure and must be tackled on an
individual user level. As we observe, and also other authors studying mobility have
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outlined [67], including user preferences can decide on the ’win or lose’ of a system.
Therefore, we investigate the trade-off between minimizing cost and enhancing the
individual satisfaction of a user in a mobility system. Combining these parameters
and providing the decision maker with a set of efficient solutions will lead to an enhanced
acceptance of such a system.

Motivated by this, we study the bi-objective multimodal car-sharing problem where
we assign MOTs to trips and find car and, depending on the variant, also user routes
throughout a day. We formulate two objectives to minimize cost and maximize user
satisfaction. We further take into account the possibility of variation of user preferences
and travel times throughout the day, becoming time dependent input parameters. We
refer to car-sharing throughout the paper as to where a group of users is mutually using
a pool of cars. Note that the output aims to provide an optimal assignment of MOTs
throughout a day using time-dependent travel times.

Our main contributions are:

• We introduce the bi-objective multimodal car-sharing problem (BiO-MMCP). We
present four variants of the problem, discussing increased flexibility of the timings
of the visits: we present the model (i) with fixed task sequences and without time-
dependent travel times and user preferences, (ii) with fixed time sequences and
including time-dependent travel times and user preferences, (iii) no fixed sequences
and no time-dependent travel times or preferences, and lastly (iv) open sequences
of tasks and time-dependent travel times and user preferences.

• We propose a branch-and-cut algorithm for the most complex problem variant
examined in this paper. The algorithm is embedded into two bi-objective frame-
works, namely the ε-constraint method and a weighting binary search method. We
show that for both frameworks it is highly beneficial to add cuts in the form of
constraints from prior iterations to the following iterations.

• We provide a thorough analysis where we (i) compare different solution approaches
for the models, and (ii) give insights into the trade-offs between cost-minimization
and enhancing user-centred MOT preferences.

The paper is organized as follows: In Section 4.2 we review related work. Section 4.3
introduces the BiO-MMCP where Section 4.3.1 gives a problem formulation, followed by
the formal description in Section 4.3.2 for all four variants. In Section 4.4 we describe
the implemented solution approach. As most of the variants are solved as a mixed
integer program (MIP) with the generic MIP solver CPLEX, we focus on the branch-
and-cut developed for the last variant of the model, described in Section 4.4.2. Moreover,
we introduce a set of valid inequalities in Section 4.4.1 and describe the bi-objective
frameworks used in this paper in Section 4.4.3. Section 4.5 summarizes our computational
study. Finally, we draw conclusions and we give an outlook to future work in Section 4.6.

4.2 Related work

Research addressing the design and implementation of car-sharing systems has risen
over the past years. Many existing papers focus on strategic decision making, such
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as the design of services, infrastructure (e.g. design/location of facilities or charging
stations) or fleet management. Nevertheless, various papers stress the importance of
integrating the user related attributes in optimization problems tackling sharing systems.
A comprehensive literature review has been presented by Ferrero et al. [67].

A large amount of research has been performed on data collection, data analysis and
simulation based studies in order to assess the potential impacts of car-sharing systems.
Most of these studies have been conducted on city-wide public systems. Demand for
car-sharing systems and impacts on mobility behaviour are typically assessed through
questionnaires [155, 129]. The potential and effects of such systems are then often de-
termined through simulation based approaches [45]. From an operational perspective
problems considered in the car-sharing related literature are mainly concerned with relo-
cating, recharging and servicing vehicles [51, 114, 149]. The problem we are introducing
in this article however, is an operational problem for planning trips and allocating means
of transport in a closed system where travel demand is known in advance. Embedding
car-sharing in a multimodal system and especially treating it in a bi-objective formulation
is a novel way of addressing car-sharing from a user-centered perspective.

In a different line of research, ride-sharing has attracted an increased amount of
interest in the last years. Major research efforts have been made in analyzing and
designing such services. Strategic and tactical decisions as well as the development of new
algorithms for daily operations have also been in focus of recent work. A comprehensive
survey on such approaches can be found in Mourad et al. [112]. A large number of
case studies mainly based on simulation and data analysis have been published on
the potential impact and feasibility of various sharing schemes with a focus on ride-
sharing [41, 56, 104, 137].

For the first two variants of our proposed problem, where the task sequence is fixed,
we refer to the Fixed Sequence Arc Selection Problem (FSASP) which was introduced
by Garaix et al. [69] and proven to be NP-hard. The FSASP considers a fixed sequence
of nodes that are linked by multiple arcs. Choosing an arc between two nodes is the
subject of determination. This problem applies to the first two variants of our problem
in this paper. Note that only recently Huang et al. [87] shortly stressed that this research
direction can be a good basis for further algorithmic work, naming home appliance
delivery companies as an example. As we additionally determine the sequence of visited
nodes, we can detect similarities to the VRP [141, 60] in our work. Our paper introduces
a kind of multi-trip VRP [43] with heterogeneous vehicles and multiple depots on a
multi graph. Garaix et al. [69] were among the first who studied VRPs with alternative
arcs between each pair of nodes. VRPs with multiple attributes [69] or multi-graphs in
the VRP stream have gained increasing attention in the past years [55, 20, 21, 22, 87],
whereas, of course, mutlimodality significantly enlarges the set of possible solutions [42].
Research considering various attributes on arcs is fairly recent, yet highly important
to consider as one connection of nodes usually implies specific trade-offs (usually time
vs. cost) which are not considered on a classical graph. We consider the characteristics
of different modes of transport as well as time-dependent preferences and costs jointly
on one arc. We refer to Gendreau et al. [70], for a review on time-dependent routing
problems. However, we could not find any work introducing time-dependent preferences
on modes of transport in a car-sharing context.
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Integrating customer-oriented aspects into optimization problems, or more specific
vehicle routing problems, is a topic of increasing interest. In Vidal et al. [146] a detailed
analysis through VRP variants also tackling customer-centred objectives is provided. As
an example, the cumulative VRP [115, 128] replaces the classical minimum cost objective
function with the minimization of individual customer arrival times. Mart́ınez-Salazar
et al. [106] introduce a customer-centric multi-trip VRP with a single vehicle minimizing
the sum of customer waiting times to receive a specific service. On a somewhat different
but related topic, Braekers et al. [33] introduce a bi-objective routing and scheduling
problem for home care where the second objective minimizes client inconvenience. In our
work, we optimize user preferences for MOTs as a second objective function. Jozefowiez
et al. [89] review numerous papers tackling multiple objectives in the context of VRPs.
They name the most common objectives to be cost, length of the tour, balance or problem
specific objectives. Since then, various papers have been published. Recently it seems
that there is a vast amount of published research with environmental [1, 6, 8, 53, 64, 71,
140, 143, 76, 7, 77] or external social criteria [71, 76, 116, 7, 77] as alternative objectives.

Multi-objective optimization gives a deeper insight into the solution pool of a prob-
lem. However, there might exist a large number of trade-off solutions. The target is
to find an efficient set of solutions that cannot be optimized in one objective without
worsening another one. Those efficient solutions are then called Pareto optimal solutions.
There is a vast amount of works on exact as well as heuristic approaches to solve for
multicriteria optimization problems. Prevailing metaheuristics in this field are evolution-
ary algorithms such as the NSGA-II [52] or the SPEA-II [72]. However, only recently
Matl et al. [109] have shown that single-objective VRP heuristics can be efficiently used
in an ε-constrained-based method. The ε-constraint method [153, 131] is one of the
prevailing methods to solve multi-objective optimization problems. It repeatedly solves
a single-objective optimization problem by considering the other objectives in terms of
constraints. Further widely applied frameworks to solve multi-objective problems are the
two-phase method [148], the weighted sum approach [9] or, more recently, the balanced
box method [30] and the weighting binary search method [126]. These so called crite-
rion space methods, embed a single-objective optimization problem and systematically
enumerate the Pareto frontier. However, recent works focus on adapting the branch-and-
bound algorithm to solve the multi-objective case in a single run [136, 147, 119, 2]. A
recent overview of exact methods for multi-objective optimization is provided in Ehrgott
et al. [59]. A detailed overview of general multi-objective combinatorial optimization
is provided by Ehrgott and Gandibleux [58]. For our study we choose the ε-constraint
method as well as a weighting binary search as they are relatively simple to implement
and have shown to be very efficient. The latter one is based on the algorithm proposed
by Riera-Ledesma and Salazar-González [126], who developed a weighting method and
conduct a binary search in the objective space. Moreover, similar to Bérubé et al. [25], we
use a branch-and-cut approach relying on previous information for subsequent problems
by adding cuts to the subproblem. Similarly in Riera-Ledesma and Salazar-González
[126] cuts from prior iterations are added to the cut pool for further iterations. Contrary
to Riera-Ledesma and Salazar-González [126] and Bérubé et al. [25], we add detected
cuts as hard constraints, showing better results for our problem setting.
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4.3 The bi-objective multimodal car-sharing problem

In the following we describe the BiO-MMCP and give a formal description of the
variants of the problem studied in this paper.

4.3.1 Problem description

The BiO-MMCP aims to assign modes of transport to user trips and determining car
routes during a day while minimizing cost and maximizing user satisfaction by accounting
for MOT preferences.

Each user trip starts in a depot, covers a set of tasks and ends in a depot again. A
user may have more than one trip during a day. A route is a sequence of trips during a
day. Note that we introduce car routes and user routes: A car route schedules the trips
covered by one car during a day, whereas the car is handed over at the depot from one
user to another. A user route consists of all the trips assigned to one user during a day,
whereas the user may change MOTs between trips (i.e. at the depot).

We consider a closed group of users and a set of possible MOTs. A pool of cars is
given and all other MOTs are considered to have infinite capacity. With this assumption
we are able to cover all demanded trips. This also has practical implications as, e.g.,
there is usually no spatial or temporal limit on the availability of public transport in a
city during a day. This also holds for bikes, as due to several bike-sharing offers, we can
assume that bikes are available at any time in a city. Each user may give preference scores
to the available MOTs where we assume the lower the score the better the MOT is rated
(scale 1-10 where 1 is best). Moreover, depending on the variant of the problem, users
may determine preferences for different times of the day, resulting in time-dependent
user-based MOT preferences. Furthermore, we introduce time-dependent travel times as,
e.g., the car drive will take longer through rush-hour than at noon. As our cost function
also comprises cost of time, the adapted travel times will have an impact on the cost
function. Note that even though travel times may be stochastic, we can plan within a
deterministic setting as we use time-dependent travel times for all modes of transport.

The goal of the BiO-MMCP is to cover a set of trips for a given planning horizon
by assigning MOTs to trips and determine car routes (optionally also user routes) for
a closed community. The locations of the start and end points as well as the tasks of
a trip are fixed. This means, it is known in advance which user will visit which task.
Depending on the considered variant of the problem, the sequence of the tasks may vary.

We investigate four variants of the introduced problem:

Model 1 (m1) In the first variant we assume that each user follows a fixed sequence
of tasks, starting and ending at a fixed (but possibly different) depot. Preferences are
given for each MOT for each user. We aim to find the best MOT to trip assignment and
to determine the car routes. The objectives are to minimize costs and MOT preferences.
In this variant, user routes are assumed to be given.

Model 2 (m2) In this variant we assume the same setting as in model m1 but include
time-dependent MOT preferences and travel times. The target is to find the best MOT
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to trip assignment and schedule the car routes from a pool of cars whilst minimizing
time-dependent costs and user preferences. Again, user routes are input to the problem.

Model 3 (m3) In the third variant we consider a fixed user to tasks assignment, and
start and end locations. However, the sequence of tasks within a trip as well as the
sequence of user trips are subject of determination. This means that we have to, in
addition to car routes, find user routes throughout a day. The objectives are again to
minimize costs and user preferences.

Model 4 (m4) This model is a combination of model m2 and m3: we consider time-
dependent user preferences and travel times as well as variable task and trip sequences.
Thus, we intend to determine the MOT assignment, schedule car as well as user routes
whilst minimizing both time-dependent MOT preferences of users and costs.

4.3.2 Formal description

We now formally introduce the different variants and their respective mathematical
formulations, using the following notation (also summarized in Table 4.1):

Given is a set of users P and a set of trips R, where each trip r ∈ R has a set of
tasks Qr assigned. A trip starts in a depot ar, ends in depot br and covers in between
one or more tasks q. We store all nodes assigned to a trip r in the set Gr, where
r = {ar, qr1, qr2, ..., br}. Note that a user p might cover more than one trip during a day.
The set of tasks Qr is known in advance whereas each task q is unique and may only
be in one set Qr ⊆Q, where Q denotes the set of all tasks. We model the connections
between two subsequent tasks as a leg l.

Furthermore, we consider a set of depots D, which are artificial nodes representing
start/end points of car routes during a day, i.e. each route starts and ends here. The
start depot d is connected to all starting nodes a, and conversely each end node b is
connected to the end depot d′.

We consider a set of modes of transportK = {car,public,bike}, where public comprises
public transportation including walking. If a trip starts by a MOT, then the MOT will
be used for the full trip. We assume at each depot d ∈D an available number of MOTs k
at the beginning and end of the planning horizon, denoted as Wdk and W d′k, respectively.

We denote the set of all nodes by V and V ′ be the set of nodes without the set D,
such that V ′ = V \D. For every node v ∈ V we have the set of outgoing legs L+

vk and
ingoing legs L−vk by MOT k. All legs are stored in the set of all legs L. We store any
relevant information on the legs.

Each user p assigns a preference value σpk to each of the given modes of transport
k ∈K. Note that, as we also minimize the preference objective, we assume that the lower
the score, the better the user values the mode of transport. As a leg l refers to exactly
one mode of transport k and one user p, we assign the value σpk to the respective leg l,
denoted as θl. The cost value cl of a leg l consists of variable distance cost, cost of time
and cost of emissions. For more information, we refer to Section 4.5.1.

For time-dependent user preferences we define a set of time periods t ∈ T during the
day. A time period replicates, e.g., rush-hours. Each user p determines a preference
value σtpk for each of the given time periods t and MOT k. In the case when a leg l
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Table 4.1: Mathematical notation used in the formal description of the BiO-MMCP.

Sets and nodes
P set of users
R set of trips

Qr ⊆Q set of tasks of trip r

as a subset of the set of tasks
ar start node of a trip r

br end node of a trip r

Gr set of nodes on a trip r

D set of depots
K set of modes of transport
L set of legs

L−,L+ set of ingoing/outgoing legs
L−v ,L

+
v set of ingoing/outgoing legs

of node v
L−d ,L

+
d set of ingoing/outgoing legs

of depot d
Lp set of legs assigned to user p
Lr set of legs on a trip r

Lvp set of legs of a user p going
in/out of a node v

L−vk,L
+
vk set of ingoing/outgoing legs

of node v by MOT k

L−vp,L
+
vp set of ingoing/outgoing legs

of node v by user p
T set of time periods
S subset of the set of nodes Gr

of a trip r

Ap ⊆A set of trip start nodes of a user p
as a subset of the set of trip
start nodes

Bp ⊆B set of trip end nodes of a user p
as a subset of the set of trip
end nodes

V set of all nodes
V ′ set of nodes without depots, V \ D
T set of time periods
R set of infeasible paths

Rcar set of infeasible car routes
Rp set of infeasible user routes
γp start node of person p

φp end node of person p

Input parameter
Wdk,W dk number of MOTs k in

depot d at beginning/ end
of the planning horizon

σpk,σ
t
pk preference value of a person p

for MOT k (for time period t)
θl preference of leg l
yl origin of leg l
zl end of leg l
cl cost of leg l
ul user of leg l
ml MOT of leg l
h maximal waiting time
H end of planning horizon
M big M
tl driving time of leg l
sv service time at node v
ol interval start of leg l
el interval end of leg l
W accumulated waiting time
∆ value stating how much a

route can be moved forward
F forward slack, F =W+ ∆

Decision variables
xl 1 if leg l is chosen, 0 otherwise
τl departure time of leg l
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a bq0 q1
(10,2)

(12,3)

(15,4,)
(20,2)

(40,3)

(30,4)
(10,2)

(12,3)

(15,4)

(a) Trip r with its associated legs l, and the respective cost and preference values
given as (cl,θl).

a bq0 q1

t0 t1 t2

([14,12,10],[2,1,1])

([8,10,8],[3,4,4])

([16,13,15],[4,3,5])
([23,22,20],[2,1,1])

([33,35,33],[3,4,4])

([31,28,30],[4,3,5])
([14,12,10],[2,1,1])

([8,10,8],[3,4,4])

([16,13,15],[4,3,5])

(b) Trip r with its associated legs l, and the respective time-dependent cost and
user-preferences for each time period t given as ([ct0l , c

t1
l , c

t2
l ]), [θt0l ,θ

t1
l ,θ

t2
l ].

car public transp. bike

Figure 4.1: Example of one trip with its associated legs l starting in node a, visiting tasks q0,
q1 and ending in node b. Between the nodes we insert different legs for each mode of transport,
which are car, public transportation and bike in our case. A label of a leg is defined with two
attributes: cost and preferences. Figure (a) shows a simple trip, where no time-dependencies are
considered. Figure (b) includes time-dependent information for the respective periods t.

completely lies within a period t the preference value of the leg θl equals σtpk. In the
case where the leg covers more than one period, we calculate a weighted average of
the preference values. As our cost also depends on time, we also adapt the cost term
considering time-dependencies in the same way.

Figure 4.1(a) shows an example of a simple trip r. It starts in node a and ends
in b whilst visiting q0 and q1. We insert legs for each mode of transport (denoted by
different lines) between each node and assign the respective cost and preference value,
given in brackets as (cl,θl). We do not consider time-dependent travel times or user
preferences here. Figure 4.1(b) shows the same trip as Figure 4.1(a), but considers time-
dependencies. Therefore, three time periods are indicated as t0, t1, t2. For each leg we
have cost and preference values for each of the respective periods. The legs between q0
and q1 lie completely within one time period and can therefore be taken as they are. For
the others, we compute the share of each time period on the leg and get the respective
preference value and cost by computing the weighted average.

Model 1 (m1)

In model m1 the sequence of tasks is fixed, resulting in predetermined trips r ∈ R.
We connect each a with its fixed successor q, each task q with its fixed successor q′ or,
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if the trip only covers one task, the trip end node b. For every pair of end and start
nodes (b,a) where a is ahead in time, we insert an additional artificial leg with costs and
preferences 0, in order to allow for the connection of car routes covering more than one
trip throughout the day.

Each leg in the graph results in a tuple {(ul,yl,zl,ml, cl,θl)} where ul is the assigned
user, yl and zl are the origin and end of the leg, ml the assigned MOT, cl the cost and
θl the preference value.

The introduced binary decision variable xl takes on value 1 if leg l is chosen and 0
otherwise.

With this, we can introduce a compact formulation for the first version of the BiO-
MMCP.

min ∑
l∈L

clxl (4.1)

min ∑
l∈L

θlxl (4.2)

s.t ∑
k∈K

∑
l∈L+

vk

xl = 1 ∀v ∈ V ′ (4.3)

∑
l∈L−

vk

xl = ∑
l∈L+

vk

xl ∀v ∈ V ′,k ∈K (4.4)

∑
l∈L+

dk

xl ≤Wdk ∀d ∈D,k ∈K (4.5)

∑
l∈L−

d′k

xl ≤W d′k ∀d′ ∈D,k ∈K (4.6)

xl ∈ {0,1} ∀l ∈ L (4.7)

The objective (4.1) minimizes total cost and objective (4.2) minimizes user-centred MOT
preferences. Constraints (4.3) make sure that each node v is covered by exactly one
leg l. Constraints (4.4) ensure flow conservation at nodes v ∈ V ′ for every MOT k.
Constraints (4.5) and (4.6) restrict the number of available MOTs Wdk,W d′k at the
start and end of the time horizon. Constraints (4.7) define the domains of the decision
variables.

Model 2 (m2)

We extend the previous model by introducing time-dependent MOT preferences and
costs. We assume fixed times of tasks q. With this, and as we know the driving time of a
leg, we can exactly determine start and end times of the leg and thus assign a preference
value.

As we store all relevant information directly on the leg l, we do not have to model
time explicitly. This results in the same tuple {(ul,yl,zl,ml, cl,θl)} as before, with a
modified value of θl and cl. As we only have a change in the data, but the model remains
unchanged, we use model m1 again.
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Model 3 (m3)

In model m3 we have to determine the sequence of tasks per user (ensuring no
subtours) as well as consider the scheduling of trips each user is taking. Therefore, the
underlying graph has to be adapted. We again consider the set of all nodes V , the set of
intermediate nodes V ′, the set of depots D, the set of MOTs K, the set of legs L, and
the set of users P . We define sets Ap and Bp containing all start nodes a and end nodes
b of a user p, respectively. These sets will consist of exactly one node, if a user is taking
only one trip, two if the user has two trips, etc. Previously, to assure car routes, we only
connected an end node b of a trip to a start node a of another trip if a was ahead in
time of b. As we are not considering any fixed times/sequences anymore, we connect
every b to every a if they are in the same physical depot. Similarly we connect all nodes
belonging to one set Gr, yet not changing the predetermined start and end nodes of one
trip. For now, we do not consider time-dependent preferences on legs. Note that the
tasks lying on a specific trip are fixed, meaning that if a user previously had two trips,
the user will again cover two trips.

In order to prevent parallel trips of one user, the user routes are modeled into the
graph. Doing so, we add new artificial nodes γp and φp for each user p where the user
starts and ends the respective route during a day (similar to the idea of the d ∈D where
all MOT flows start). We connect the respective γp to all start nodes a ∈Ap of one user
p and conversely the respective φp to all b ∈Bp. We connect user trips by inserting a leg
l between b,a of the same user. Note that, instead of modifying the underlying graph,
we also used additional constraints in the model. However, this formulation turned out
to be very weak.

As the sequence of tasks of a trip is not fixed we determine the departure time τl of a
leg l. By assuring increasing times of legs, we also avoid subtours. Additionally, in order
to avoid unrealistic long waiting times at nodes, we assume that a user can wait for a
maximum amount of time before she continues her trip, e.g. 30 minutes, denoted as h.

Model m3 can now be stated as follows, where decision variables τl give the departure
time of leg l, H depicts the end of the planning horizon, M denotes a big M, tl is the
travel time of a leg l and sv the duration of the task.

min (4.1)
min (4.2)

s.t (4.3)− (4.7)
τl+ tl+sv− τn ≤M(2−xl−xn) ∀l ∈ L−vk,n ∈ L

+
vk,

v ∈ V ′,k ∈K (4.8)∑
l∈L−v

(τl+ tlxl) +sv ≥
∑
l∈L+

v

τl−h ∀v ∈ V ′ (4.9)

τl ≤Hxl ∀l ∈ L (4.10)∑
l∈L+

γp

xl = 1 ∀p ∈ P (4.11)

∑
l∈L−

φp

xl = 1 ∀p ∈ P (4.12)



70 Chapter 4. The bi-objective multimodal car-sharing problem

∑
l∈L−vp

xl = ∑
l∈L+

v

xl ∀v ∈Ap,p ∈ P (4.13)

∑
l∈L−v

xl = ∑
l∈L+

vp

xl ∀v ∈Bp,p ∈ P (4.14)

τl+ tl+sv− τn ≤M(2−xl−xn) ∀l ∈ L−vp,n ∈ L+
vp,

v ∈ V ′∪{γp,φp},p ∈ P (4.15)
τl ≥ 0 ∀l ∈ L (4.16)

Constraints (4.8) set the time variables and take care of subtour elimination within
trips. Constraints (4.9) ensure that a user is leaving at the latest h minutes after the
end of the task. Constraints (4.10) restrict the latest departure time at any task to be
at the end of the time horizon. Constraints (4.11) and (4.12) make sure that each user
is starting her route in node γp and ending in node φp. Constraints (4.13) and (4.14)
balance the flows of start and end nodes of user p. Constraints (4.15) eliminate parallel
trips. Finally, constraints (4.16) make sure that decision variables τ are non-negative.

Model 4 (m4)

Lastly, in addition to a flexible sequence of tasks, in model m4 we add time-dependent
MOT preferences to the model. This is mainly done by adapting the graph and by adding
one constraint to the model m3.

We discretize time in intervals of α minutes and duplicate each leg l ∈ L for each
interval. Note that time-dependent MOT preferences are derived from the user preference
values σtpk.

We extend the leg information by adding the start and end times of the interval lying
on the leg, this results in the tuple {(ul,yl,zl,ml, cl,θl,ol,el)} where ol gives the start
time and el the respective end time of the interval.

Finally, we append the following constraints to model m3:

olxl ≤ τl ≤ el ∀l ∈ L (4.17)

Constraints (4.17) make sure that τl of leg l lies within the predetermined times.
The resulting model relies on both binary and continuous variables. We adapt this
and use a re-formulation that is of exponential size but relies on binary variables only.
We replace constraints (4.8), (4.9), (4.10), (4.15), (4.16), and (4.17) by infeasible path
constraints [11] (for car routes and user routes), and subtour elimination constraints.

Let Rcar denote the set of infeasible car routes, and Rp be the set of infeasible user
routes. V (S) gives the nodes of the set S, where S is a subset of the set of nodes on a
trip Gr. Legs of an infeasible path ρ are denoted as L(ρ). Model m4b can be stated as
follows:
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min (4.1)
min (4.2)

s.t (4.3)− (4.7),(4.11)− (4.14)∑
l∈L(ρ)

xl ≤ |L(ρ)|−1 ∀ρ ∈Rcar (4.18)∑
l∈L(ρ)

xl ≤ |L(ρ)|−1 ∀ρ ∈Rp (4.19)∑
l∈L(S)

xl ≤ |S|−1 ∀S ⊆Gr, r ∈R,S 6= ∅ (4.20)

Constraints (4.18)-(4.19) eliminate the infeasible paths of cars and users. We sum
over all legs l of the respective infeasible path ρ, and set it infeasible by denoting that
at least one leg cannot be on the route. Constraints (4.20) are subtour elimination
constraints. We set the constraints for all trips r where we store the nodes of each trip
in the set Gr.

4.4 Solution approach

In the following, we first introduce valid inequalities in Section 4.4.1. By embedding
the models into bi-objective optimization frameworks, described in Section 4.4.3, the
scalarized models m1, m2 and m3 are solved with CPLEX. We can solve real-world sized
instances within seconds, as we will show in our computational results. However, as
expected, m4 is more challenging to solve. Therefore, we develop a branch-and-cut
algorithm in Section 4.4.2 for model m4b.

4.4.1 Valid inequalities

In order to strengthen the models m3, m4, and m4b, the following set of valid inequal-
ities is used.
We know that all legs of a trip must be covered by a single MOT. Therefore, we can say
that either MOT k is going into node v, or any other MOT g 6= k out of a node v, but
not both. Assuming that the ingoing legs of a node v are stored in the set L−vg and all
outgoing legs of a node v are stored in the set L+

vk, we can state:

∑
l∈L+

vk

xl+
∑

g∈K:g 6=k

∑
l∈L−vg

xl = 1 ∀v ∈ V ′,k ∈K (4.21)

In m3, m4, and m4b, we only require that the sum over all outgoing legs of a node must
be equal to 1. In the following valid inequality the sum over all ingoing legs l ∈L−vk using
MOTs k of a node v has to be equal to 1:

∑
k∈K

∑
l∈L−

vk

xl = 1 ∀v ∈ V ′ (4.22)
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Since a car may cover more than one trip, but has to take at least one if it departs from
the depot d, the number of trips started with a car (leaving from any node a ∈A) has to
be greater or equal to the sum of cars leaving any depot d ∈D. Ingoing legs of the start
nodes a using MOT k are given in the set L−ak, outgoing legs of the depot d are given in
the set L+

dk. The constraint is valid for cars only. Thus, we sum over all the ingoing legs
of any node a, which then has to be greater or equal to the sum over all outgoing legs of
any depot d:

∑
a∈A

∑
l∈L−

ak

xl ≥
∑
d∈D

∑
g∈L+

dk

xg with k = car (4.23)

Assuming that a user p has been assigned a single task only, then a full user route will be:
γp−ap− q− bp−φp. This means, the shortest possible user route consists of four legs.
Assuming that all legs assigned to a user p are stored in the set Lp, we can formulate:

∑
l∈Lp

xl ≥ 4 ∀p ∈ P (4.24)

Assuming that a trip has at least one task, then each trip will consist of at least three
nodes (a− q− b), and thus two legs. The sum over all legs of a trip r is at least the
number of nodes assigned to the respective trip, given in the set Gr, minus 1. :

∑
l∈L−v :v∈Gr

xl ≥ |Gr|−1 ∀r ∈R (4.25)

As we know the number of tasks a person is covering, we also know the number of legs
the person will cover in the solution. Therefore, we can introduce the following constraint
where Lp is the set of legs of a person p and Vp gives the nodes assigned to person p:

∑
l∈Lp

xl = |Vp|−1 ∀p ∈ P (4.26)

We add cycle constraints, meaning that we can only go either from v to v′ or from v′ to
v, but not both. We store all legs that start in v and end in v′ in the set L(v,v′) and vice
versa in L(v′,v). With this we formulate the following valid inequality:

∑
l∈L(v,v′)

xl+
∑

l∈L(v′,v)

xl ≤ 1 ∀(v,v′) ∈ L (4.27)

The above valid inequalities are used to strengthen m3, m4, and m4b. We now propose
additional valid inequalities which are used to strengthen only m4 and m4b.
Let us consider a node v, a leg l leaving the node v, and an ingoing leg g. As described
in Section 3.2.4, for the time-dependent setting of the model, the legs contain intervals
with the possible start and end time information (o,e). With this, we know that the
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start and end times of the outgoing leg l has to be greater than the times of the ingoing
leg g. Therefore, if the start and end times of the ingoing leg g are greater than the
times of the outgoing leg l, meaning that the ingoing leg would happen later in time,
only one of them can be used:

ol < og∧el < eg ⇐⇒ xl+xg ≤ 1 ∀l ∈ L+
v ,g ∈ L−v ,v ∈ V ′ (4.28)

As any outgoing leg of a node v has to be later than the ingoing leg of the respective
node, we can further eliminate all outgoing legs of a node v that are timed before a
chosen ingoing leg of the respective node. Therefore, we adapt equation (4.28), where
we assume an ingoing leg g ∈ L−v of a node v and sum over all outgoing legs l ∈ L+

v

with smaller start and end times as the ingoing leg, thus ol < og and el < eg. Then at
most one of the respective legs can be chosen. Conversely, considering an outgoing leg l
and summing over all ingoing legs g ∈ L−v with an interval greater than the one of the
outgoing leg (og > ol,eg > el), we can again say that at most one leg can be chosen. Both
valid inequalities can be formulated as follows:

xg +
∑

l∈L+
v :ol<og∧el<eg

xl ≤ 1 ∀g ∈ L−v ,v ∈ V ′ (4.29)

xl+
∑

g∈L−v :og>ol∧eg>el

xg ≤ 1 ∀l ∈ L+
v ,v ∈ V ′ (4.30)

If the beginning of the interval ol of the outgoing leg l is greater than the end of the
interval eg of the ingoing leg g plus the time of the ingoing leg tg plus the service time
at the node sv plus the maximum waiting time h, then these legs are not compatible in
time. Again, considering a node v with outgoing legs L+

v and ingoing legs L−v , we can
state the following valid inequalities:

xg +
∑

l∈L+
v :ol>eg+tg+sv+h

xl ≤ 1 ∀g ∈ L−v ,v ∈ V ′ (4.31)

xl+
∑

g∈L−v :ol>eg+tg+sv+h

xg ≤ 1 ∀l ∈ L+
v ,v ∈ V ′ (4.32)

If the beginning interval og of the ingoing leg g plus the travel time of the ingoing leg
tg plus the service time of the node sv is greater than the end of the interval el of the
outgoing leg l, then these legs cannot be used together. We can again put this into two
valid inequaities as follows:

xg +
∑

l∈L+
v :og+tg+sv>el

xl ≤ 1 ∀g ∈ L−v ,v ∈ V ′ (4.33)

xl+
∑

g∈L−v :og+tg+sv>el

xg ≤ 1 ∀l ∈ L+
v ,v ∈ V ′ (4.34)
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4.4.2 Branch-and-cut for m4b

In order to solve model m4b, we develop a branch-and-cut algorithm. Branch-and-cut
algorithms make use of a subset of constraints and iteratively add further constraints
in a cutting-plane fashion. Usually, constraint sets of exponential size are excluded
which reduces the model to a reasonable size. In our case, we separate the infeasible path
constraints (4.18)-(4.19) but we enumerate all subtour elimination constraints, since trips
are usually very short. Separation algorithms are then called to determine whether the
current solution is feasible by checking the omitted constraints. Note that the separation
algorithms can be called on any relaxed solution or only on incumbent ones. Our strategy
is based on the latter case, where we only call the algorithms if a new incumbent solution
is found. If the separation algorithm detects a violation, the respective constraint is
added as a cut to the model and the model is consecutively resolved. This is repeated
until no violating constraints are detected and an optimal solution is found.

In our model a route (path) may be infeasible due to (i) user related constraints,
(ii) shared cars related constraints, and (iii) synchronization requirements between user
and car routes. Therefore, we first check if all user routes are feasible, then if all car
routes are feasible and finally if they are both simultaneously feasible. The respective
separation procedures are described in the following.

Separation of infeasible user routes

We separate infeasible user routes for each user p ∈ P . Let x denote the solution at
the current node in the branch-and-bound tree. We start the construction of the route
ρ at node γp. We denote the currently considered node as node v. From the starting
point, we append the outgoing leg l at node v (v.outgoing) if xl = 1 to the route ρ, and
update v to be the end node of leg l (l.endNode). We do this until we hit the user end
depot φp.

In the following, we consider a forward slack F , consisting of an accumulated waiting
time W and a value stating how much we could move the whole route such that the
solution would still be feasible, given as ∆, and F =W+ ∆. The current time stamp is
given as τ . Before checking the route ρ for time feasibility, we initialize F , W, τ to 0,
and ∆ =∞.

We iterate through the route as long as all time constraints are respected. We start
by checking the second leg l on route ρ and systematically take the consecutive one.
Thus, considering the current leg l leaving node v, we set τ = τ + sv + tl−1 and update
W and ∆. The accumulated waiting time is calculated as the current waiting time plus
either the maximum possible waiting time h or the remaining time to the end of the
interval el, such that W =W+min{max{0,el− τ},h}. We can further push the whole
route to the end of the given interval el or by the previously stored ∆. We update
∆ =min{∆,max{0,el− (τ +W)}} and compose F =W+∆. If the current time τ lies
within the respective interval of leg l (ol,el), we can proceed to the next leg. If not, we
try to push the route to the starting interval ol of the current leg l, but at maximum by
adding F , such that τ = τ+min{max{0,ol−τ},F}. If the adapted τ violates the timing
restrictions, the corresponding infeasible path constraint is generated. If τ is feasible
(ol ≤ τ < el), we can update W and ∆, and proceed with the next leg. To update the
values, we have to deduct the respective time used up of the forward slack. For this, we
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first adapt ∆ by stating ∆ = ∆+min{W− (τ −τ ′),0}, where τ ′ denotes the time stamp
before adding the time slack F . The waiting time is updated asW =max{W−(τ−τ ′),0}.
The pseudocode is outlined in the Appendix A.3 in Algorithm 1.

Separation of infeasible car routes

We further aim to detect infeasible paths regarding cars violating time constraints.
We adopt the same idea as above, except following car routes. Starting depots of cars
are d ∈D. Note that, as we might have more than one trip originating from one node d,
we slightly adapt the construction of the route ρ by considering node d multiple times
as a starting node for the construction of the route ρ. We store the outgoing leg l of
node v with xl = 1 and the MOT k = car in the route ρ. While constructing, we save the
number of trips on the current route, as we only consider routes with more than one trip.
Timing restrictions for a single trip are already covered in the user route separation. If
the route ρ consists of multiple trips, we follow the same steps as previously described
in the separation algorithm of user routes. The pseudocode is given in Algorithm 2 in
the Appendix A.3.

Synchronization of routes

It is not sufficient to check user and car routes separately for infeasibility. We also
have to check if the user and car routes are synchronized, i.e. if the user who has taken
over a car is at the depot at the respective time. In order to do so, we consider the whole
solution and we store the used legs in the subset L′, and obtain the sets L′−vk,L

′+
vk,L

′−
vp,L

′+
vp

(xl = 1 in the current solution), and we solve the following small LP derived from
constraints (4.8), (4.9) and (4.15):

τl+ tl+sv ≤ τn ∀l ∈ L′−vk,n ∈ L
′+
vk,v ∈ V

′,k ∈K (4.35)
τl+ tl+sv ≤ τn ∀l ∈ L′−vp,n ∈ L′+vp,v ∈ V ′∪U,p ∈ P (4.36)

τl+ tl+sv ≥ τn−h ∀l ∈ L′−vk,n ∈ L
′+
vk,v ∈ V

′,k ∈K (4.37)

Constraints (4.35) and (4.36) synchronize the car and user route with the decision
variable τ . Furthermore constraints (4.37) make sure that the waiting time at a node is
not exceeded.

The above constraints are infeasible if the respective user and car are not at the
same time at the same place. Therefore we can assume that either a car trip or an arc
connecting the user trips is infeasible. Thus, we insert into the set L′′ all legs from the set
L′ that are taken by car or are connecting user trips in the current incumbent solution,
and we add the following constraint:

∑
l∈L′′

xl ≤ |L′′|−1 (4.38)
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Strengthened infeasible path constraints

The infeasible paths introduced before in the form of constraint (4.18) and con-
straint (4.19) are very weak. We strengthen them as follows:

∑
l∈ρ

xl+
∑
l∈L′

xl+
∑
l∈L′′

xl ≤ |ρ|−1 (4.39)

Let L′ contain all legs with the same start node y, end node z and MOT k but earlier
or later intervals (o,e) than the last checked leg of the separation algorithm, i.e., where
the infeasiblity was detected. Let l′ be the last checked leg, and τ the current departure
time. If τ > el′ , meaning that we have jumped over the interval, then the set L′ contains
all legs with the same respective y,z,k but o < ol′ . This means that if we missed the
interval, then also all prior ones will be too early. Conversely, if the interval of leg l′

could not be reached, thus τ < ol′ , we put all legs with the same y,z,k as leg l′ but o > ol′
into the set L′. Hence, if we were not able to reach the respective interval, then also all
later legs will not be reachable.

The set L′′ also depends on whether we are not able to reach the leg’s interval or we
miss it. We consider all legs on the route ρ except the last checked leg l′, denoted as ρ′.
Considering τ < ol′ , thus the time stamp lies before the start of the interval, then the set
L′′ contains the respective counterparts of all legs in ρ′ with the same y,z,k but with an
interval that lies behind the last saved τ . If we miss the interval of l′, such that τ > el′ ,
we assume that we cannot push any prior leg any further. In this case, we detect the
respective duplications of the legs in ρ′ with a higher interval such that the interval of
any leg l is greater than ol′′ , where l′′ depicts the leg assigned to ρ.

Moreover, we store all checked legs to the vector ρshort. We know that the last leg is
incompatible with the prior ones, and can therefore add the following constraint:

∑
l∈ρshort

xl+
∑
l∈L′

xl+
∑
l∈L′′

xl ≤ |ρshort|−1 (4.40)

4.4.3 Bi-objective frameworks

We embed our models into two bi-objective frameworks. For m1, m2, and m3 we use
the ε-constraint method. The branch-and-cut algorithm to solve m4b is embedded into
both frameworks, namely the ε-constraint method and a weighting binary search method.

The ε-constraint method

The ε-constraint method iteratively solves single-objective problems where one objec-
tive is kept in the objective function and the other one is moved to the set of constraints.
After each iteration the respective constraint in the constraint set is reduced by a certain
ε. As we only consider integer variables and coefficients we define the ε-value to be 1. For
example, let us consider the cost function (4.1) as the main objective, and the preferences
objective (4.2) is moved to the constraint as: ∑l∈L θlxl ≤Ω− ε. Ω is iteratively adapted,
inserting the preference value from the previous subproblem and is initially set to ∞.
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We solve the problems in a lexicographic order, meaning that in each iteration two MIPs
are solved. The algorithm stops once the second extreme point of the Pareto frontier
(with the minimal second objective) is reached.

A weighting binary search method

As a second framework we use a binary search in the objective space that is based
on the algorithm introduced by Riera-Ledesma and Salazar-González [126]. The idea is
to use a weighting method and iteratively enumerate the Pareto frontier. To start the
algorithm the extreme points of the Pareto frontier are calculated and stored as (f (1)

1 ,f
(1)
2 )

and (f (2)
1 ,f

(2)
2 ). f (1)

1 and f (2)
1 give the first, e.g. cost, solutions, of the respective extreme

points and conversely f (1)
2 and f

(2)
2 give the value of the second objectives, in our case:

preferences. Thus, the objective value is set as ωf∗1 + (1−ω)f∗2 , where f∗ denotes the
cost and preference function of the new solution. The weight ω is calculated as α

α+1 ,
where α= f2

2−f
1
2

f1
1−f

2
1

. At each iteration we add three constraints: (1) f∗1 < f2
1 , (2) f∗2 < f1

2 ,

and (3) ωf∗1 + (1−ω)f∗2 ≤ ωf
(1)
1 + (1−ω)f (2)

2 −1. The latter one makes sure that only
non-dominated points are generated. The values of the new solutions are then used
for the following iterations where the next weights will be calculated with the values
(f (1)

1 ,f
(1)
2 ) and (f∗1 ,f∗2 ), as well as with (f∗1 ,f∗2 ) and (f (2)

1 ,f
(2)
2 ). The algorithm terminates

once no more values can be taken to calculate new weights.

Enhancements For both methods we seize the bi-objective characteristics of our
problem: we store the cuts generated in the prior iterations and add them as constraints
to the next models. Considering the ε-constraint method, we do this within one iteration
(the min cost problem receives the cuts from the min preference model), as well as from
one iteration to another. As for the binary search, we only solve one MIP with the
respective objective function within each iteration. Therefore, we only pass on cuts from
one solution to another.

4.5 Computational study

The models and the branch-and-cut algorithm are implemented in C++ and solved
with CPLEX 12.9. Tests are carried out using one core of an Intel Xeon Processor
E5-2670 v2 machine with 2.50 GHz running Linux CentOS 6.5. Unless otherwise stated
a time limit of 12 hours is used.

4.5.1 Test instances

For our computational study we use realistic benchmark instances based on available
demographic, spatial and economic data of Vienna, Austria. They are based on those
used in Enzi et al. [61] and Enzi et al. [62]. Note that the instances represent a company
within a city, thus the data does not aim to replicate the population of the whole city.

One instance set represents a distinct company consisting of one or more offices (or
depots) D and users, i.e. employees, P . The number of tasks and their location are
randomly generated.
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In the original instances, each user may use a subset of the available MOTs Kp ⊆K.
Based on this binary assignment of MOTs to users, we generate preference scores on a
scale from 1-10, where 1 is best and 10 is worst. For example, if a user has cars in her
set of MOTs but no public transportation, then this user will get a lower (better) score
on cars and a higher (worse) one on public transportation. The detailed assignments
used for the following study is included in Table C10 in the Appendix A.3. In the time-
dependent setting, we consider seven different time periods t: pre-rush-hour, rush-hour,
after rush-hour, normal day-time traffic, pre-rush-hour, rush-hour and after rush-hour.
Here we deduct/add for each preference score a certain number (see Table C11 in the
Appendix A.3). Furthermore, we implement an increase/decrease in cost and time for
the respective time periods (see Table C11 in the Appendix A.3). For this we assume
a factor β which is then multiplied with the base cost. For example, we assume that
taking the car during rush-hour takes longer than at noon. We assume β = 1.4, which is
then multiplied with the base cost, e.g. 5. This gives us cost of 7 for the rush-hour for
the respective leg. Naturally also the driving times of the legs are adapted accordingly.
We calculate a weighted average of cost and preferences if a leg covers more than one
periods.

Three different MOTs are considered: car, public transportation including walk, and
bike. For our study we assume that all MOTs have an unrestricted capacity. Note that
the original setting assumes a limited and fixed pool of cars, which is reasonable for
the discussed problem. However, for our first results for the BiO-MMCP we decided
to let the number of cars be unlimited, to explore the computational efficiency without
restricting the number of shared cars. Distances, time and cost are calculated between all
nodes for all modes of transport. Emissions are translated into costs and, together with
variable distance cost and cost of time, included into the overall cost calculations and
summarized in cl. The respective preference value θl is taken from the above presented
values.

Instances are named as E |P | I, where |P | is the number of users, and the instance
number I is between 0 and 9. For example, the first instance in the set of instances with
20 users (|P |= 20) is denoted E 20 0. For instance group with |P | users, we solve a set
of 10 instances (E u 0 to E u 9) and report the average values.

4.5.2 Enhancements and preprocessing

In the following paragraphs we shortly list the enhancements and preprocessing that
we conducted.

Relative MIP-gap In our first tests, CPLEX provided weakly dominated solutions
or skipped some of the solutions from the Pareto set due to the default relative MIP-gap.
Therefore we put a strict MIP-gap tolerance of 0.0000. We compared the output with
different tolerances regarding computational efficiency and could not notice a remarkable
difference. Therefore, unless otherwise stated, the computational results are based on a
MIP-gap tolerance of 0.0000.

Warm start For models m3 and m4, we provide CPLEX with a starting solution. The
starting solution is constructed by simply reading the sequence of the tasks as given in
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Table 4.2: Average number of nodes (|V ′|), trips (|R|) and legs (|L|) for models m1, m2, m3, m4,
m4b and an increasing number of users |P | = 20, 50, 100, 150, 200, 250, 300. Row ’m4,m4b+GR’
gives the average number of legs after the graph reduction.

|P |= 20 50 100 150 200 250 300

|V ′| 95 242 476 714 951 1,179 1,422
|R| 31 76 147 218 287 358 427

|L|
m1, m2 416 1,188 2,612 4,340 6,315 8,734 11,038
m3 947 4,190 13,394 27,756 46,503 70,492 99,462
m4,m4b 13,479 41,077 93,079 150,877 216,989 276,626 356,713
m4,m4b+GR 3,984 13,995 34,780 61,310 92,790 127,155 167,645

the instance file. For model m4, we also track the according times and make sure that
the times and intervals match. In the starting solution, public transportation is used on
all trips. Moreover, after each iteration we store the solution and provide CPLEX with
a MIP start. The MIP start will be infeasible but values can be stored for a possible
repair.

Graph reduction Initially for model m4, we duplicate each leg every α minutes.
Assuming that we have a planning horizon of 12 hours and discretize time in steps of 15
minutes, we end up with 48 duplicates of one leg. However, these legs are very similar
to each other or even equal as the time periods t may cover various hours. Therefore, in
order to reduce the size of the graph, we merge legs with equal weights.

Table 4.2 gives an overview of the size of the graphs. The table gives information on
the introduced models for an increasing number of users (|P | = 20, 50, 100, 150, 200, 250,
300). For m1 and m2 the underlying graph has the same size as only the preference and
cost values on the legs are changing. Row ’|V ′|’ gives the average number of nodes, ’|R|’
the average number of trips, and row ’|L|’ the average number of legs in the respective
graphs. We observe that the underlying graphs of the first two models have a moderate
number of legs as the sequences are predetermined. In models m3, m4, and m4b the
sequence is subject of determination which leads to an increasing number of connecting
legs, which is increased even further when time-dependency is considered in models m4
and m4b. Row ’m4,m4b+GR’ shows the number of the legs in the graph after the graph
reduction.

4.5.3 Algorithmic tests

In this section we study the computational efficiency of the introduced variants of
the model. We start by comparing the four models (m1, m2, m3, m4) in their basic form,
i.e., without adding valid inequalities or using the branch-and-cut algorithm. Afterwards
we analyze the impact of valid inequalities on model m3. Finally, we focus on solving
the most challenging model m4. We compare the reformulation of m4 to m4b, i.e., if the
branch-and-cut algorithm comes with any improvements in computational efficiency. We
aim to detect the enhancements by adding valid inequalities, using the branch-and-cut
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Table 4.3: Average computational times in seconds for models m1, m2, m3, m3-VI, m4,
m4bVIBnCBiOand an increasing number of users |P | = 20, 50, 100, 150, 200, 250, 300 for both
directions (cost, pref) in the ε-constraint method. m3-VI gives results for the respective model
with valid inequalities. m4bVIBnCBiOshows results for the model m4b solved by branch-and-cut
and passing cuts to subsequent iterations.

|P |= 20 50 100 150 200 250 300

m1
cost 0.3 3.0 15.8 45.2 88.1 163.4 247.3
pref 0.3 3.0 15.8 43.6 85.1 160.9 238.5

m2
cost 0.7 5.5 35.4 92.0 188.2 319.8 428.5
pref 0.5 4.4 29.8 79.8 165.3 288.2 399.9

m3
cost 7.4 498.5 17,707.6 - - - -
pref 7.7 1,037.3 - - - - -

m3-VI
cost 8.0 480.4 5,743.2 - - - -
pref 8.5 874.5 5,577.5 - - - -

m4
cost - - - - - - -
pref - - - - - - -

m4bVIBnCBiO
cost 3,511.9 - - - - - -
pref 2,730.7 - - - - - -

algorithm and choose the best framework (out of the two introduced) to solve model
m4b.

Comparison of models m1, m2, m3, and m4

In a first step, we compare the four models regarding their run times. Table 4.3 shows
the average computational time in seconds needed to solve an instance group. We first
look into results without any valid inequalities or cut generation, given in the rows m1,
m2, m3, and m4. The models are embedded in the ε-constraint method and enumerated
by setting either the cost function as the objective (cost) or the user preferences as the
objective (pref). Results are given for instance sets for which we were able to solve all
10 instances. Run times for m1 and m2 are very short. We can solve real-world sized
instances with 300 users in less than 5 minutes. For m1 the direction of the ε-constraint
method has no impact. In the case of m2 setting pref as first objective results in shorter
run times. Models m3 and m4 are ’harder’ to solve. For model m3 we can see a significant
increase in the average run times for the instance group with |P | = 50. The largest
instance set we can solve comprises 100 users in the case of m3. Adding valid inequalities
reduces computational times by a factor of 3 for this instance size (m3-VI) and |P |= 100.
With m4 we cannot solve any complete instance set. We will go into more detail on m4,
its possible extensions and the respective results later. Using the best setting of the
proposed branch-and-cut based algorithm, we are able to enumerate the whole Pareto
frontier within about 3,000 seconds, on average.

Table 4.4 summarizes the average number of Pareto optimal solutions per instance set.
The number of solutions is moderately increasing with number of users |P |. Comparing
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Table 4.4: Average number of Pareto optimal solutions for models m1, m2, m3, m4 for an increasing
number of users |P |= 20,50,100,150,200,250,300.

|P |= 20 50 100 150 200 250 300

m1 18 73 159 250 349 464 518
m2 34 164 346 555 767 993 1,073
m3 18 72 158 - - - -
m4 141 - - - - - -

m1 and m3 we see almost the same number of Pareto optimal solutions on average per
instance set. If we compare the increased cost in computational complexity coming with
m3, we could argue that dissolving the sequences where no time-dependent information
is given, is not worthwile. We will investigate the shape of the Parento frontiers in a
subsequent section in order to obtain a better understaning of the resulting solutions.
Comparing m1 with m2 we can see a distinct increase of optimal solutions on the frontier,
even though we only introduced time-dependent cost and preferences. Finally, m4 gives
by far the highest number of optimal solutions for the small instance set of |P |= 20.

Introducing valid inequalities for model m3

We now analyze the impact of the proposed valid inequalities (VI) in more detail.
Table 4.5 presents the computational times in seconds solving m3 without additional
information (m3) and by adding valid inequalities (4.21) - (4.27) as well as subtour elimi-
nation constraints (4.20) as user cuts (m3-VI). We use both, costs (cost) and preferences
(pref) respectively as the ’main’ objective function in the ε-constraint method. Results
are given for |P | = 100,150 and listed for each instance. Row ’# solved’ shows the
number of instances solved with the respective model. We can observe that for some
of the instances, e.g. E 100 8, for both cost and pref, the execution time is higher
with the valid inequalities than without them. However, on average adding additional
information in the form of valid inequalities improves computation times by a factor of
approximately 4. Even for instance E 100 2, where we were not able to enumerate the
whole Pareto frontier within 12 hours with the base model, we are now able to get the
frontiers from either side in less than 3 hours. For the case where |P | = 150 and pref
we are able to solve all but two instances, however all with relatively long computational
times. Direction cost shows longer run times for all solved instances, whereas for two
more cases, in total four, the total Pareto frontier cannot be enumerated. None of the
instances with |P |= 150 has been solved without the valid inequalities. Furthermore, we
were not able to solve any of the instances with |P |= 200 using m3 or m3-VI.

Solving model m4

We now compare the different approaches for solving m4. Table 4.6 shows the run
times for (i) model m4 (m4(ε)), (ii) m4 with valid inequalities (m4-VI(ε)), (iii) model m4b
with valid inequalities, and infeasible path constraints in the form of (4.39)-(4.40) added
through cut generation and embedded into the ε-constraint method (m4bVIBnC(ε)), (iv)
the bi-objective branch-and-cut, which is similar to the previous variant but we pass
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Table 4.5: Average computational times in seconds for |P | = 100,150 solving m3 without valid
inequalities (m3) and the same model including valid inequalities (m3-VI) and having either cost
(cost) or preferences (pref) set as the objective function in the ε-constraint method. ’# solved’
shows the number of instances solved. TO = time out.

cost pref cost pref
m3 m3-VI m3 m3-VI m3 m3-VI m3 m3-VI

E 100 0 2,419 2,852 3,212 2,628 E 150 0 TO TO TO TO
E 100 1 3,329 3,104 2,513 2,777 E 150 1 TO TO TO 39,507
E 100 2 35,758 7,275 TO 8,504 E 150 2 TO TO TO 41,675
E 100 3 3,382 3,544 3,281 3,892 E 150 3 TO 37,060 TO 20,507
E 100 4 24,162 4,177 25,159 4,553 E 150 4 TO TO TO TO
E 100 5 27,186 6,655 25,587 6,062 E 150 5 TO 19,766 TO 14,098
E 100 6 11,152 9,814 11,403 9,092 E 150 6 TO 18,352 TO 13,640
E 100 7 24,112 9,245 22,085 6,880 E 150 7 TO 38,193 TO 21,112
E 100 8 3,398 5,204 2,685 3,678 E 150 8 TO 30,083 TO 23,643
E 100 9 22,771 5,561 28,090 7,708 E 150 9 TO TO TO 35,617

# solved 10 10 9 10 0 5 0 8

the cuts generated as constraints from one solution to another (m4bVIBnCBiO(ε)), (v)
model m4b solved by branch-and-cut embedded in the weighting binary search method
(m4bVIBnC(ω)), and (vi) the branch-and-cut used to solve m4b using the weighting binary
search method and passing cuts to subsequent iterations (m4bVIBnCBiO(ω)). Again all
results are given for both directions, cost and pref in the case of the ε-constraint scheme.
In the case of the binary search, both objectives are combined in one weighting objective
function. Times are in seconds. Row ’# solved’ gives the number of instances solved.
Results are given for each instance for |P |= 20.

Using model m4(ε) and the direction cost, only one instance is solved, using pref as
the main objective, two instances can be solved within 12 hours of computation time.
Adding valid inequalities (m4-VI(ε)), we are able to increase the number of instances
solved to 6 for the direction cost and to 7 for the direction pref. Still for most of the
instances the run times exceed 10,000 seconds.

Moving from the model with the time variables (m4) to the entirely integer model
(m4b) with cut generation, we can improve run times considerably by at least a factor of
10 (column m4bVIBnC(ε)). Yet, we are still not able to enumerate the whole frontier for
instance E 20 9. By seizing the bi-objective character of the model and handing over de-
tected infeasible paths as constraints from one iteration of the ε-constraint scheme to the
next, we further increase in the algorithms’ computational efficiency (m4bVIBnCBiO(ε)).
Note that different to most works, we add the detected infeasible paths not to a cut pool
but explicitly to the set of constraints. All instances with |P | = 20 can now be solved
for m4. The last two columns of Table 4.6 show the results obtained by applying the
weighting method and conducting a binary search in the objective space. It is again
clearly visible, that the approach where cuts are passed on from iteration to another,
enhances computation times and thus seizing the bi-objective character of the models
is beneficial. Nevertheless, the run times are not comparable to ’m4bVIBnCBiO(ε)’. The
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Table 4.6: Average computational times in seconds for each instance of |P |= 20 solving m4 using
different approaches. The first four sets of results (m4(ε), m4-VI(ε), m4bVIBnC(ε), m4bVIBnCBiO(ε))
are solved using the ε-constraint method with either cost (cost) or preferences (pref) set as
the objective function. m4(ε) gives the results by solving m4 without any additional information,
m4-VI(ε) adds valid inequalities to the model, m4bVIBnC(ε) solves the integer model by branch-
and-cut, and m4bVIBnCBiO(ε) passes detected infeasible paths as constraints to next iteration.
Columns m4bVIBnC(ω) and m4bVIBnCBiO(ω) show the results received by the weighting binary
search. The latter one again passes former detected infeasible paths as constraints to next
subproblems. ’# solved’ shows the number of instances solved. TO = time out.

m4(ε) m4-VI(ε) m4bVIBnC(ε) m4bVIBnCBiO(ε) m4bVIBnC(ω) m4bVIBnCBiO(ω)
cost pref cost pref cost pref cost pref

E 20 0 TO 26,780 12,663 7,190 779 743 206 192 669 324
E 20 1 TO TO TO TO 2,957 2,099 455 407 1,823 621
E 20 2 TO 20,437 13,504 9,339 737 793 168 159 608 192
E 20 3 TO TO 29,772 18,012 856 890 192 189 711 294
E 20 4 TO TO TO 23,490 2,447 1,798 473 420 1,681 560
E 20 5 TO TO 19,823 10,810 743 781 327 190 712 322
E 20 6 TO TO 31,309 26,751 1,982 1,557 399 369 1,244 590
E 20 7 TO TO TO TO 3,383 2,436 628 496 2,555 716
E 20 8 TO TO 32,790 18,522 892 948 333 256 729 414
E 20 9 TO TO TO TO TO TO 31,937 24,629 TO TO

# solved 0 2 6 7 9 9 10 10 9 9

reason is that the binary search algorithm calls the solver approximately twice as often
as the ε-constraint.

As noted, instance E 20 9 requires significantly more time for computing the Pareto
frontier than all the others. The reason is that it is the only instance with |P |= 20 which
has one user with three trips. The total number of trips or average number of trips per
person are in line with the other instances. Thus, the maximum number of trips per user
has a significant impact.

Note that we add all found infeasible paths to the set of constraints instead of adding
them to a cut pool. As the number of cuts generated is relatively small, and is also
decreasing over time, the additional constraints are of a manageable size. However,
we have tried both approaches and computational times confirmed the efficiency of our
approach.

The above results show that ’m4bVIBnCBiO(ε)’ (with direction pref) is, for our prob-
lem setting, more efficient than ’m4bVIBnCBiO(ω)’. As discussed, this is mainly due to
the increase in the number of MIPs that have to be solved. Table 4.7 compares the run
times of the two approaches for |P |= 50. The table shows similar results as above. The
ε-constraint method is able to solve more instances and also, if the instance is solved by
both approaches, results in shorter computation times.

As we have seen, it is beneficial to exploit the bi-objective nature of the underlying
optimization problem by using previously generated cuts in subsequent iterations. In
Figure 4.2, we show the number of cuts added at each iteration for one chosen instance,
namely E 20 0. Figures 4.2(a) and (b) show the results for the ε-constraint method, first
without adding the cuts as constraints at each iteration and then by using the generated
cuts in the respective submodels. Figures 4.2(c) and (d) give the number of cuts added
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Table 4.7: Average computational times for each instance for |P |= 50 solving m4b by branch-and-
cut embedded in the ε-constraint method (m4bVIBnCBiO(ε)) and in the weighting binary search
algorithm (m4bVIBnCBiO(ω)). Both approaches add prior detected infeasible paths as constraints
to model.

m4bVIBnCBiO(ε) m4bVIBnCBiO(ω)

E 50 0 16,712 31,100
E 50 1 TO TO
E 50 2 TO TO
E 50 3 13,759 22,657
E 50 4 5,876 13,954
E 50 5 41,764 TO
E 50 6 TO TO
E 50 7 TO TO
E 50 8 4,746 7,907
E 50 9 TO TO

Table 4.8: Average number of cuts added at each iteration for instances with |P | = 20 solving
m4b by branch-and-cut embedded in the ε-constraint method (m4bVIBnC(ε)) or the weighting
binary search (m4bVIBnC(ω)), and by adding detected infeasible paths constraints to the model
(m4bVIBnCBiO(ε), m4bVIBnCBiO(ω))

|P |= 20 E 20 0 E 20 1 E 20 2 E 20 3 E 20 4 E 20 5 E 20 6 E 20 7 E 20 8 E 20 9

m4bVIBnC(ε) 120.0 205.1 180.2 223.0 227.5 179.1 208.3 189.8 179.8 1,694.9
m4bVIBnCBiO(ε) 1.3 3.3 2.1 5.2 7.6 6.8 7.9 4.3 3.2 70.2
m4bVIBnC(ω) 49.8 105.0 68.6 94.1 109.7 67.3 89.6 97.7 63.0 -
m4bVIBnCBiO(ω) 1.4 2.4 1.2 1.5 4.0 2.9 4.5 2.2 1.6 -

at each iteration for the weighting method conducting a binary search. As we can see,
solving each subproblem individually generates a much higher number of cuts at each
iteration, whereas in the other case, where we propagate cuts from iteration to iteration,
we drastically reduce the cuts added at each subproblem. This is valid for both methods.
Moreover, by comparing Figures 4.2(b) and (d), we see that the binary search method
actually produces fewer cuts in later iterations. The reason is that the binary search
method detects solutions, where infeasibility needs to be proven. This also results in
two times more iterations for this method. Nevertheless, we can clearly observe that
for either approach, the additional information from prior iterations has a remarkable
impact on cut generation iterations.

Table 4.8 gives the number of cuts added per iteration on average for both the ε-
constraint method as well as the binary search approach for each instance in the set with
|P |= 20. We show the case where each iteration is using only the current information
(m4bVIBnC(ε), m4bVIBnC(ω)) and where we use information in the form of cuts added
as constraints from prior iterations (m4bVIBnCBiO(ε), m4bVIBnCBiO(ω)). We can clearly
see that without additional information we use up to 100 times more cuts. As discussed
prior, the binary search method has a lower average number, but more iterations are
conducted.
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(a) m4bVIBnC(ε)

(b) m4bVIBnCBiO(ε)

(c) m4bVIBnC(ω)

(d) m4bVIBnCBiO(ω)

Figure 4.2: Number of cuts added at each iteration for instance E 20 0. m4bVIBnC(ε) solves model
m4b by branch-and-cut embedded in the ε-constraint method, and m4bVIBnCBiO(ε) additionally
stores the detected infeasible paths to the set of constraints. m4bVIBnC(ω) solves model m4b
by branch-and-cut and the weighting binary search method, and m4bVIBnCBiO(ω) additionally
passes infeasible path constraints to subsequent iterations.
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4.5.4 Managerial insights

We briefly discuss managerial implications. We start by looking at the respective
Pareto frontiers for a chosen set of instances. Then we continue by studying the different
MOT compositions when solving the different variants of the model. Note that the
models provide the decision maker with a range of trade-off solutions. Based on this
solution pool, the decision maker derives actions and takes the best solution fitting to
their requirements.

Comparison of Pareto frontiers for models m1, m2, m3, and m4

Figure 4.4 shows the Pareto frontiers for instances E 20 0 and E 20 9. The x-axis
represents preferences, y-axis cost. Note that for both instances only three frontiers
are visible. This is because the frontier of m1 is hidden behind m3. For these small
instances, the additional freedom to choose sequences of tasks and trips is not giving
any improvement to the model. Frontiers for m2 are similar in their shape for both
instances, however slightly differ in their relation to the other curves, especially to
m3(m1). Introducing time-dependent values for m2, lower (better) overall preferences but
higher cost are obtained, visible as a shift to the left on the x-axis and a shift upwards
on the y-axis. The increased cost come from the additional time needed during specific
day-times. Note that we usually have a β > 1, meaning that we rarely decrease the
driving time compared to the base scenario (except for public transportation, where
we assume shorter cycle times for, e.g., rush-hours). For m4, the length of the frontier
exceeds all the other curves. It is clearly visible, that with time-dependent preferences
and cost as well as flexible sequences, we have a greater set of Pareto optimal solutions.
Also, the curve is shifting to the left corner, meaning that we have better overall cost
as well as preferences. The average cost and preference values for instances with u= 20
are: 505 and 2,878 for m1, 548 and 2,272 for m2, 505 and 2,878 for m3, 476 and 1,591 for
m4, respectively. Concluding, we can say that time-dependencies do have a great impact
when solving the bi-objective multimodal car-sharing problem. Furthermore, we observe
that only dissolving the fixed sequence does not come with high improvements but in
combination with time-dependencies a greater amount of solutions as well as lower cost
and better user satisfaction is obtained.

MOT assignment for models m1, m2, m3, and m4

Finally, let us have a closer look at the MOTs assigned. We analyze the number of
trips covered by each MOT (car, bike, public transportation), for two instances, namely
E 20 0 and E 20 9, for all four models m1, m2, m3, m4. In Figure 4.5 we show the respective
Pareto frontier for the four models, and include the number of trips taken by each MOT
for the respective Pareto optimal solution. Note that the number of trips that are covered
by a car does not have to be equal to the number of cars used in total as a car might
take more than one trip during a day.

Starting with m4, we observe a similar development for both instances for all MOTs.
With increasing (worse) preferences, and decreasing cost, we gradually assign more cars
and less bikes. The number of trips taken by public transportation is more or less
constant. Thus, most cost-efficient, considering time-dependencies, are car trips, best
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(a) E 20 0

(b) E 20 9

(c) m4bVIBnC(ε)

Figure 4.4: Pareto frontiers for models m1, m2, m3, m4 solving instances E 20 0 and E 20 9. The
y-axis represents cost, preferences are on the x-axis.
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preferences give bike trips. A car is, in our instance set, the fastest mode of transport.
As we include time in the cost function, this also makes cars often the cheapest option.
Moreover, our study gives relatively good time-dependent preference scores to bikes, as
it is, e.g., good in rush-hours to avoid congestion or overcrowded public transportation.
This of course, has a great impact on the resulting tendencies in the final results.

For the other models, the picture is slightly different and instance-dependent. Gen-
erally, we can say for m1, m2, and m3 the number of trips taken by bike is decreasing
with lower cost and higher (worse) preferences. The number of trips taken by public
transportation are increasing with higher (worse) preferences and lower cost.

Comparing the extreme points of all Pareto frontiers for all models regarding their
composition we can conclude: for m1 and m3 we always assign more cars and public
transportation to the cost optimal solution (except for one instance for m3), the number
of trips taken by public transportation and cars decreases with higher cost but better
preferences. Bikes are preferred by the preference optimal solutions, and increase with
less cost. Also for m2 we can observe that the number of bikes assigned is decreasing
with increasing cost and lower (better) preferences. The opposite holds for public
transportation. We can figure an unchanged level of trips being assigned to public
transportation for m4. For m4 lower cost and higher (worse) preferences lead to more cars
assigned and, conversely, more bikes are assigned with an increase in cost, and decrease
in preferences.

Table 4.9 provides a better overview of the MOTs assigned to trips for each instance
set and model. The numbers are given as averages over all instances within an instance
set. Rows ’av’ provide the average of the average number of trips by the respective
MOT (car, bike, public). ’min’ gives the average of the minimum number of trips
conducted by the respective MOT, and ’max’ gives the average maximum number.
The results are organised by model (m1, m2, m3, m4), MOTs, and number of users
|P |= 20,50,100,150,200,250,300.

Generally, we observe that bikes are very often assigned and used for the highest
number of trips on average. m3 assigns about the same amount of cars and public trans-
portation. m2 always shows the highest number of trips taken by public transportation.
Thus, by having the choice between MOTs for a trip with a fixed sequence, public
transportation is preferred. m4 has a very high number of trips taken by bikes.

Note that the composition of the mobility offers varies a lot among the models.
Furthermore, the difference between the minimums and maximums of the assigned MOTs
is usually very high, which means that the solutions are changing considerably over the
course of the Pareto frontier. This means that, from a decision makers perspective,
considering the proposed trade-offs and variants of the problem has a big impact on the
MOTs used in a mobility system. Assigning different MOTs influences the user-centred
objective to a great extent. With this results we can confirm the relevance of this study
and conclude that it is highly beneficial to consider not only cost but also user-preferences
when operating a shared mobility system.

4.6 Conclusion and future work

Inspired by the change in mobility patterns we study the bi-objective multimodal
car-sharing problem where we assign modes of transport to trips as well as cars and user
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(a) E 20 0, m1 (b) E 20 9, m1

(c) E 20 0, m2 (d) E 20 9, m2

(e) E 20 0, m3 (f) E 20 9, m3

(g) E 20 0, m4 (h) E 20 9, m4

(i) m4bVIBnC(ε)

Figure 4.5: Number of trips assigned for each Pareto optimal solution by the respective mode of
transport (car, bike, public transportation) for models m1, m2, m3, m4 solving instances E 20 0
and E 20 9.
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Table 4.9: Average values of average number of MOT assigned to trips (av), minimum
(min) or maximum (max) for models m1, m2, m3, m4 for an increasing number of users
|P |= 20,50,100,150,200,250,300. Considered modes of transport are car, bike and public trans-
portation.

m1 m2 m3 m4
|P | car bike public car bike public car bike public car bike public

av
20

7.7 11.7 11.4 2.2 11.6 17.1 8.1 10.5 12.1 6.3 20.0 4.5
min 4.5 4.7 6.8 0.8 5.0 11.5 4.7 3.9 7.5 1.8 12.1 2.5
max 10.6 19.3 15.9 4.5 16.8 23.6 10.9 18.3 16.4 14.6 26.3 6.8

av
50

23.4 29.9 23.0 3.1 27.9 45.3 23.3 27.6 25.3 21.6 45.0 10.0
min 11.0 11.5 14.4 1.8 11.2 29.1 11.8 9.1 16.4 5.3 29.8 5.1
max 33.9 50.6 32.3 6.5 43.6 61.1 34.9 46.2 34.9 41.0 62.0 14.5

av
100

47.1 54.2 45.3 5.9 54.2 86.5 47.3 54.0 45.4 - - -
min 22.5 20.8 30.1 2.9 19.9 54.1 23.8 19.9 31.0 - - -
max 71.7 93.9 57.0 13.2 82.8 120.0 72.0 87.9 61.4 - - -

av
150

72.7 82.7 62.2 10.8 81.4 125.4 66.4 86.9 64.8 - - -
min 37.5 34.3 41.8 6.4 32.7 82.3 33.5 35.5 45.6 - - -
max 106.1 138.2 79.4 21.0 121.0 171.4 102.4 136.5 86.4 - - -

av
200

94.6 108.6 83.9 15.4 107.4 164.3 - - - - - -
min 48.5 39.5 55.1 10.3 40.1 105.4 - - - - - -
max 142.1 183.3 107.0 25.3 163.1 227.3 - - - - - -

av
250

120.0 137.0 101.2 20.9 137.1 200.3 - - - - - -
min 62.2 53.0 65.3 14.3 51.5 129.5 - - - - - -
max 177.7 230.4 130.4 37.7 201.8 279.6 - - - - - -

av
300

131.2 163.8 132.5 19.6 163.2 244.7 - - - - - -
min 70.3 62.7 88.4 13.8 57.8 158.5 - - - - - -
max 194.7 268.7 171.9 36.6 239.7 347.3 - - - - - -
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routes. As objectives we consider costs and user-centred preferences. Both objectives
are, depending on the variant of the model, studied with time dependencies. We model
different cost/times as well as preferences during a day, as people might want to avoid
driving through rush-hour by car. We introduce four different variants of the model
where we gradually dissolve a fixed sequence of tasks and trips as well as introduce the
effect of the time-dependent values. The increase in flexibility in the model comes with
an increase in the complexity as well as a an increase in the number of Pareto optimal
solutions. Therefore, we reformulate the last variant, without fixed sequences and time-
dependencies, to a purely integer model and propose a branch-and-cut algorithm. We
show that our branch-and-cut algorithm can enumerate the Pareto frontier for prior
non-tractable instances within seconds. We embed the algorithm into two bi-objective
frameworks, namely the ε-constraint method and a weighting binary search method. We
show that adding previously detected infeasible path constraints to subsequent iterations
reduces computational times considerably. In our computational study we observe that
only dissolving the fixed sequence does not come with high improvements. However, in
combination with time-dependencies a greater amount of solutions as well as lower cost
and better user satisfaction is obtained. Moreover, we observe that the solutions change
significantly along the Pareto frontier. This confirms the relevance of this study. We
conclude that it is highly beneficial to consider not only cost but also user-preferences
when operating a shared mobility system.

Even though we are able to show a significant enhancement in computational efficiency
for a set of instances, our approach has limitations. Enumerating the whole Pareto
frontier for instances with users having more than two trips throughout a day, seems
challenging. Thus, future work should tackle this issue by focusing on the development
of a separation algorithm adjusted to these specific characteristics. Moreover, specific
matheuristics where the relative MIP-gap is increased or the ε value adapted, may
lead to promising further improvement in run times. Furthermore, the development of
metaheuristics should enable an increase in computational efficiency for the proposed
problem. Finally, as this work only optimizes average scores of preferences, a min-max
approach is planned for future work in order to improve the integration of preferences
on a user level.
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Chapter 5

Conclusion

Inspired by the change in mobility, we studied shared mobility systems within a
closed group. We introduced efficient modeling approaches and solution techniques for
vehicle sharing and extended the idea by letting user co-ride with each other as well
as introducing the “human factor” into our optimization problem. We formulated the
problems using and extending well-known models, and applied state-of-the-art algorithms
to solve real-world sized instances. In our problem setting we assumed a company, and
a set of users covering meetings/tasks during the day. The user-to-task assignment was
always fixed, depending on the problem we also determined start times of the tasks. We
considered that the company has a fixed pool of cars available that can be shared, and
other modes of transport can be used too. Even though the initial framework of our
study depicted a corporate environment, it can easily be applied to any specific network
with a predefined set of users in a closed community, and is therefore of high importance
in current and future concepts of shared mobility systems. In the following we shortly
summarize the three parts of this thesis and outline some further extensions and research
directions.

In Chapter 2 we introduced the vehicle-sharing problem. We assumed fixed times of
the tasks, no interchangeable trips of users, and trips being covered by a certain mode
of transport. We assumed that either one vehicle type or multiple ones are shared.
The objective was to assign the shared vehicles to the trips such that savings by using,
e.g., a car instead of any other mobility type, are maximized. We assumed that if a
trip was not covered by a shared vehicle, the user would take the cheapest other MOT
for this trip. We formulated the case where only one type of vehicle is shared as the
maximization equivalent of the minimum-cost flow problem, and the case where multiple
types of vehicle may be shared as a maximum multi-commodity flow problem. Even
though these problems are proven to be NP-hard, state-of-the-art commercial solvers
are able to solve real-world sized instances. We provided a thorough analysis discussing
managerial implications. We gave insights into the different kinds of shared vehicles,
and the number of trips per car during a day; we analyzed the effect of sharing and no
sharing, included user preferences, and compared different objective function. To sum
up, we can say that, if possible, electric vehicles are preferred, a car takes 1.5 to 2.8 trips
per day, sharing is only beneficial if a big enough car pool is available, and it is crucial
to have operational cost and cost of time combined in the objective function.

In Chapter 3 we proposed the multimodal car- and ride-sharing problem where a
company is providing car/vehicle-sharing but also users may co-ride with each other.
We again considered fixed timing of the tasks, but now users would exclude MOTs from
their set of MOTs. We aimed to assign a pool of shared cars and joined rides, such that
savings were maximized when using a car instead of any other MOT. We again only
assigned cars and assumed that the trips not covered by a car, would be taken by the
cheapest other MOT calculated for this trip. We formulated the problem as an extended
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vehicle scheduling problem and introduced a two-stage decomposition approach. In
the first stage we enumerated all possible trips (including all ride-sharing possibility),
whereas in the second stage we found car routes through an efficient column generation
based approach. A car route may consist of several trips throughout the day. With
our approach we were able to circumvent the complexity of modeling ride-sharing and
solved real-world sized instances in reasonable time, making it possible to use it on a
daily basis. Nevertheless, the algorithm and the problem statement have its restriction.
To start with, we only considered one type of shared cars. This can be extended to
multiple ones. Furthermore, we considered fixed sequences and timings of tasks. To
ensure more flexibility and even greater gain, this can be dissolved and further savings
studied. Furthermore, future work might want to have changes of drivers outside of the
depots. Even though this restriction was given as inconvenient by project partners, it
can be worth a try to see if further enhancements are possible. Lastly, the stochasticiy
might be a crucial extension of the problem, as the tasks of drivers or co-riding persons
might be delayed, which then ruins the plan of trips.

In Chapter 4 we studied the bi-objective multimodal car-sharing problem. We in-
troduced user preferences in a second objective where the users would score the MOTs
on an individual level. The chapter introduced four different variants of the problem.
Depending on the variant, we also assumed time-dependent travel times as well as user
preferences, and assumed an increased level of flexibility of timings, i.e., not fixed times
of the tasks. In this chapter we not only assigned the shared cars/vehicles to the trips but
assigned all MOTs to trips and scheduled car and user routes. The increased flexibility
and time-dependent values came with an increase in the complexity as well as the number
of Pareto optimal solutions. For the most complex model we proposed a branch-and-
cut algorithm and embedded it in two bi-objective frameworks, namely the ε-constraint
method and a weighting binary search method. We showed that by handing over gener-
ated cuts as hard constraints to subsequent iterations, we can achieve an improvement in
computational efficiency. In the computational study we saw that the solutions change
significantly along the Pareto frontier. Nevertheless, we also detected some restrictions
in the chapter as solving instances with more than two trips per user was challenging.
Future work might want to focus on more advanced separation algorithms to circumvent
this problem. Moreover, we found a lot of Pareto optimal solutions for the case where we
had no fixed timing of tasks and assumed time-dependent preferences and travel times
/ cost. Thus, developing heuristics to enumerate parts of the frontier might help to
decrease the computational times.
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Appendix

A.1 Modeling and solving a vehicle-sharing problem

Table A1: Parameter value setting for the instances. The total cost are calculated as ((sloping
factor * cost per km) + (sloped distance * (1 / average speed) + setup time) * cost per time +
(cost of emissions * emissions per km)).

sloping factor: foot: 1.1
bike: 1.3
car: 1.3
public transportation: 1.5

CO2 emissions per km in gramm: foot: 0
bike: 0
combustion engine car: 200.9
electric car: 42.7
public transportation: 0

cost of CO2 emissions: 5 euro/t

average speed (km/h): foot: 5
bike: 16
car: 30
public transportation: 20

cost per km: foot: 0
bike: 0
combustion engine car: 0.188
electric car: 0.094
public transportation: 0
taxi: 1.2

cost per time: 19.42 euro per hour

setup time (in minutes): foot: 0
bike: 2
car: 10
public transportation: 5
taxi: 5
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Table A2: Comparison of total cost split into combustion engine cars (car-type1) and other
MOTs, and savings for increasing number of u and m for VShP-1T:car . Share of total cost of
the respective car and MOT costs given in ’car-type1 / total’ and ’other MOTs / total’.

u m car-type1 other MOTs total savings car-type1 / total other MOTs / total

20

4 155 401 555 - 49 0.28 0.72
8 243 294 537 - 68 0.45 0.55
20 316 204 520 - 85 0.61 0.39
40 318 202 520 - 85 0.61 0.39

50

4 264 1,423 1,686 - 122 0.16 0.84
8 467 1,160 1,626 - 182 0.29 0.71
20 846 704 1,550 - 258 0.55 0.45
40 1,050 482 1,532 - 276 0.69 0.31

100

4 291 3,090 3,381 - 178 0.09 0.91
8 553 2,735 3,288 - 270 0.17 0.83
20 1,155 2,008 3,163 - 395 0.37 0.63
40 1,820 1,289 3,109 - 449 0.59 0.41

150

4 320 5,146 5,466 - 221 0.06 0.94
8 575 4,752 5,327 - 360 0.11 0.89
20 1,235 3,832 5,067 - 619 0.24 0.76
40 2,079 2,797 4,875 - 811 0.43 0.57

200

4 338 7,087 7,424 - 241 0.05 0.95
8 624 6,635 7,260 - 406 0.09 0.91
20 1,320 5,608 6,928 - 738 0.19 0.81
40 2,310 4,339 6,648 - 1,017 0.35 0.65

250

4 373 9,063 9,436 - 289 0.04 0.96
8 670 8,567 9,238 - 487 0.07 0.93
20 1,470 7,391 8,861 - 864 0.17 0.83
40 2,506 6,048 8,555 - 1,170 0.29 0.71

300

4 350 9,966 10,316 - 247 0.03 0.97
8 638 9,486 10,124 - 439 0.06 0.94
20 1,427 8,348 9,775 - 789 0.15 0.85
40 2,495 7,017 9,512 - 1,051 0.26 0.74
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Table A3: Comparison of total cost split into electric cars (car-type2) and other MOTs, and
savings for increasing number of u and m for VShP-1T:ecar . Share of total cost of the respective
car and MOT costs given in ’car-type2 / total’ and ’other MOTs / total’.

u m car-type2 other MOTs total savings car-type2 / total other MOTs / total

20

4 162 379 541 - 64 0.30 0.70
8 271 243 514 - 91 0.53 0.47

20 348 143 491 - 114 0.71 0.29
40 352 138 491 - 114 0.72 0.28

50

4 243 1,420 1,663 - 145 0.15 0.85
8 430 1,155 1,588 - 220 0.27 0.73

20 850 625 1,475 - 333 0.58 0.42
40 1,098 340 1,438 - 370 0.76 0.24

100

4 266 3,089 3,355 - 204 0.08 0.92
8 509 2,731 3,239 - 319 0.16 0.84

20 1,084 1,977 3,062 - 497 0.35 0.65
40 1,776 1,175 2,951 - 608 0.60 0.40

150

4 298 5,139 5,437 - 250 0.05 0.95
8 539 4,736 5,275 - 412 0.10 0.90

20 1,150 3,808 4,957 - 729 0.23 0.77
40 1,960 2,733 4,693 - 993 0.42 0.58

200

4 310 7,083 7,393 - 272 0.04 0.96
8 577 6,625 7,202 - 463 0.08 0.92

20 1,237 5,572 6,809 - 857 0.18 0.82
40 2,165 4,279 6,444 - 1,222 0.34 0.66

250

4 351 9,050 9,401 - 324 0.04 0.96
8 625 8,551 9,176 - 549 0.07 0.93

20 1,371 7,357 8,728 - 997 0.16 0.84
40 2,338 5,994 8,332 - 1,393 0.28 0.72

300

4 322 9,962 10,284 - 280 0.03 0.97
8 596 9,470 10,066 - 497 0.06 0.94

20 1,332 8,315 9,646 - 917 0.14 0.86
40 2,339 6,952 9,291 - 1,272 0.25 0.75
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Table A4: Comparison of total cost split into combustion engine cars (car-type1), electric cars
(car-type2) and other MOTs, and savings for increasing number of u and m for VShP-xT . Share
of total cost of the respective car and MOT costs given in ’car-type / total’ and ’other MOTs /
total’.

u = m car-type1 car-type2 other MOTs total savings car-type1 car-type2 other MOTs
/total /total /total

20

4 64 91 392 547 - 58 0.12 0.17 0.72
8 88 163 272 522 - 82 0.17 0.31 0.52

20 48 298 149 495 - 110 0.10 0.60 0.30
40 2 347 142 491 - 114 0.00 0.71 0.29

50

4 112 139 1,421 1,673 - 135 0.07 0.08 0.85
8 194 249 1,159 1,603 - 205 0.12 0.16 0.72

20 270 536 694 1,500 - 308 0.18 0.36 0.46
40 196 859 401 1,456 - 352 0.13 0.59 0.28

100

4 124 152 3,090 3,366 - 193 0.04 0.05 0.92
8 235 291 2,734 3,260 - 299 0.07 0.09 0.84

20 468 637 1,998 3,102 - 456 0.15 0.21 0.64
40 634 1,102 1,270 3,006 - 552 0.21 0.37 0.42

150

4 142 161 5,146 5,450 - 237 0.03 0.03 0.94
8 234 314 4,748 5,296 - 391 0.04 0.06 0.90

20 490 691 3,820 5,000 - 686 0.10 0.14 0.76
40 800 1,191 2,771 4,762 - 925 0.17 0.25 0.58

200

4 155 168 7,085 7,408 - 258 0.02 0.02 0.96
8 267 331 6,628 7,226 - 439 0.04 0.05 0.92

20 530 740 5,586 6,856 - 810 0.08 0.11 0.81
40 902 1,314 4,306 6,522 - 1,144 0.14 0.20 0.66

250

4 161 193 9,063 9,417 - 308 0.02 0.02 0.96
8 281 363 8,558 9,202 - 523 0.03 0.04 0.93

20 587 818 7,376 8,781 - 944 0.07 0.09 0.84
40 956 1,442 6,018 8,416 - 1,309 0.11 0.17 0.72

300

4 154 179 9,964 10,298 - 265 0.01 0.02 0.97
8 271 337 9,482 10,091 - 473 0.03 0.03 0.94

20 570 790 8,338 9,698 - 866 0.06 0.08 0.86
40 969 1,424 6,983 9,376 - 1,187 0.10 0.15 0.74
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Table A5: Solution time in seconds for VShP-1T:car , VShP-1T:ecar , VShP-xT for an increasing
number of u and m.

u m VShP-1T:ecar VShP-1T:car VShP-xT

20

4 0.0 0.0 0.1
8 0.0 0.0 0.1

20 0.0 0.0 0.0
40 0.0 0.0 0.1

50

4 0.1 0.2 0.4
8 0.1 0.2 0.4

20 0.2 0.2 0.4
40 0.1 0.2 0.4

100

4 0.7 0.7 1.6
8 0.7 0.7 1.6

20 0.7 0.7 1.6
40 0.7 0.7 1.6

150

4 1.6 1.6 3.7
8 1.6 1.6 3.6

20 1.6 1.6 3.7
40 1.6 1.6 3.6

200

4 3.0 3.1 7.0
8 3.1 3.1 6.8

20 3.1 3.1 6.7
40 3.0 3.0 6.9

250

4 5.0 4.9 11.0
8 4.8 5.0 10.8

20 4.9 4.9 11.0
40 4.8 5.0 10.9

300

4 7.3 7.4 16.3
8 7.2 7.6 17.1

20 7.3 7.4 16.8
40 7.4 7.4 16.8
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Table A6: Average cost for car-type1 (=combustion engine cars) and other MOTs, in total, and
average savings for VShP-1T:car and the different preference variants (prefVar0-prefVar6). The
values are given for an increasing number of u and averaged over m= 4,8,20,40.

u = 20 50 100 150 200 250 300

VShP-1T:car
car-type1 258 656 955 1,052 1,148 1,255 1,227
other MOTs 275 942 2,281 4,132 5,917 7,767 8,704
total 533 1,599 3,235 5,184 7,065 9,022 9,932
savings - 72 - 209 - 323 - 503 - 601 - 703 - 631

prefVar0
car-type1 180 429 624 783 825 902 872
other MOTs 424 1,495 3,361 5,930 8,302 10,854 12,093
total 604 1,925 3,985 6,713 9,127 11,757 12,964
savings - 215 - 595 - 1,119 - 1,682 - 1,939 - 2,109 - 2,264

prefVar1
car-type1 237 580 873 989 1,080 1,162 1,169
other MOTs 323 1,084 2,475 4,358 6,198 8,154 9,014
total 560 1,664 3,348 5,347 7,279 9,316 10,184
savings - 76 - 209 - 343 - 590 - 698 - 818 - 787

prefVar2
car-type1 42 200 359 510 618 726 722
other MOTs 558 1,570 3,150 5,047 6,893 8,783 9,669
total 600 1,770 3,509 5,558 7,511 9,509 10,391
savings - 11 - 56 - 74 - 196 - 213 - 310 - 252

prefVar3
car-type1 144 425 707 848 943 1,036 1,030
other MOTs 437 1,281 2,698 4,569 6,415 8,331 9,231
total 581 1,706 3,405 5,417 7,358 9,367 10,261
savings - 39 - 149 - 245 - 444 - 471 - 642 - 522

prefVar4
car-type1 245 605 901 1,003 1,101 1,187 1,188
other MOTs 325 1,084 2,496 4,475 6,327 8,375 9,220
total 571 1,689 3,397 5,478 7,429 9,562 10,408
savings - 84 - 251 - 409 - 713 - 811 - 981 - 910

prefVar5
car-type1 42 209 376 522 650 754 747
other MOTs 559 1,565 3,142 5,053 6,882 8,788 9,682
total 601 1,774 3,518 5,575 7,532 9,542 10,429
savings - 11 - 63 - 84 - 233 - 255 - 376 - 306

prefVar6
car-type1 148 442 732 868 963 1,059 1,045
other MOTs 439 1,278 2,700 4,622 6,474 8,445 9,337
total 587 1,720 3,432 5,489 7,437 9,504 10,382
savings - 45 - 170 - 278 - 533 - 551 - 755 - 615
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Table A7: Average cost for one car-type1 (combustion engine cars), car-type2 and other MOTs, in
total and average savings for VShP-xTand the different preference variants (prefVar0-prefVar6).
The values are given for an increasing number of u and averages over all m.

u = 20 50 100 150 200 250 300

VShP-xT
car-type1 50 193 365 417 463 496 491
car-type2 225 446 545 589 638 704 683
other MOTs 239 919 2273 4121 5901 7754 8692
total 514 1558 3184 5127 7003 8954 9866
savings -91 -250 -375 -560 -663 -771 -698

preVar0
car-type1 27 86 163 303 304 343 339
car-type2 147 295 387 455 477 518 505
other MOTs 418 1520 3401 5916 8303 10848 12075
total 593 1900 3951 6673 9084 11709 12919
savings -226 -620 -1153 -1722 -1982 -2156 -2309

preVar1
car-type1 110 253 413 471 510 534 558
car-type2 130 330 440 486 535 588 573
other MOTs 313 1058 2461 4354 6193 8150 9010
total 553 1641 3314 5311 7238 9272 10141
savings -83 -232 -377 -626 -738 -862 -829

prefVar2
car-type1 31 96 172 254 289 336 348
car-type2 13 114 191 246 324 376 371
other MOTs 555 1553 3133 5040 6874 8768 9646
total 599 1763 3496 5539 7488 9481 10365
savings -12 -63 -88 -214 -236 -338 -278

prefVar3
car-type1 64 180 330 398 451 483 491
car-type2 80 257 374 432 466 524 505
other MOTs 432 1252 2675 4554 6404 8323 9227
total 576 1689 3379 5384 7321 9329 10222
savings -44 -165 -271 -477 -508 -680 -560

prefVar4
car-type1 139 332 454 516 543 596 593
car-type2 106 270 447 487 558 592 595
other MOTs 325 1087 2496 4475 6327 8374 9220
total 571 1689 3397 5478 7429 9562 10408
savings -84 -251 -409 -713 -811 -981 -910

prefVar5
car-type1 41 139 260 323 363 399 383
car-type2 1 75 116 194 277 348 361
other MOTs 559 1560 3142 5057 6892 8795 9685
total 601 1774 3518 5575 7532 9542 10429
savings -11 -63 -84 -233 -255 -376 -306

prefVar6
car-type1 88 253 382 439 482 527 515
car-type2 59 192 353 428 481 532 531
other MOTs 439 1274 2698 4623 6473 8445 9337
total 587 1720 3432 5489 7437 9504 10382
savings -45 -170 -278 -533 -551 -755 -615
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Table A8: Total cost comparison for OF:time split into combustion engine cars (car-type1) and
other MOTs for an increasing number of u and m for VShP-1T:car .

u = 20 50 100 150 200 250 300

4
car-type1 186 275 293 323 341 374 355
other MOTs 383 1,455 3,176 5,473 7,479 9,691 10,380
total 569 1,730 3,469 5,796 7,820 10,065 10,735

8
car-type1 310 482 560 593 640 690 665
other MOTs 235 1,166 2,774 4,980 6,922 9,047 9,751
total 545 1,648 3,334 5,573 7,562 9,738 10,416

20
car-type1 418 954 1,192 1,279 1,370 1,482 1,482
other MOTs 108 602 1,973 3,891 5,702 7,656 8,405
total 526 1,556 3,165 5,169 7,071 9,138 9,887

40
car-type1 418 1,277 1,971 2,161 2,389 2,585 2,605
other MOTs 107 268 1,145 2,738 4,298 6,127 6,947
total 526 1,545 3,116 4,899 6,687 8,712 9,552

Table A9: Comparison of total cost for OF:time split into car-type1, car-type2 (= combustion
engine and electric cars) and other MOTs for an increasing number of u and m for VShP-xT .

u = 20 50 100 150 200 250 300

4

car-type1 98 140 144 157 174 195 184
car-type2 79 123 135 151 152 166 156
other MOTs 385 1,455 3,176 5,473 7,479 9,689 10,379
total 562 1,718 3,455 5,781 7,805 10,049 10,719

8

car-type1 158 249 274 284 318 357 321
car-type2 138 212 262 283 293 301 309
other MOTs 236 1,167 2,773 4,978 6,922 9,049 9,755
total 532 1,628 3,309 5,546 7,533 9,708 10,385

20

car-type1 204 482 605 643 694 745 743
car-type2 190 433 537 581 620 673 676
other MOTs 114 602 1,973 3,890 5,698 7,655 8,403
total 508 1,517 3,115 5,114 7,012 9,073 9,822

40

car-type1 248 689 1,003 1,072 1,224 1,305 1,296
car-type2 156 537 886 995 1,066 1,170 1,197
other MOTs 107 271 1,146 2,740 4,296 6,125 6,946
total 511 1,497 3,035 4,806 6,587 8,600 9,439
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A.2 Modeling and solving the multimodal car- and ride-
sharing problem

In the following we outline a sample solution in order to give the reader a better
idea of the proposed model and the resulting changes. We show the results for instance
E 20 0, m= 4 and two depots. We consider 20 users and 88 nodes (start/end nodes of
a trip and tasks), thus 4.4 nodes on average per user. The instance comprises 28 trips,
giving 1.4 trips per user. Figure A.1 shows the instance with its trips. As we see, many
trips go from the depot, to a meeting and back again. Assuming no ride-sharing but only
car-sharing, each trip will be covered either by car or the cheapest other MOT. However,
as we can see, there is a high potential of merging trips. As the task-to-user assignment
is fixed, the best option is to allow for ride-sharing.

Note that we have short and/or many ride-sharing activities on a route. This gives
unclear graphs. For the route of car 4, we give a more detailed explanation with the
figures below. This should give a good idea of the benefits of this model. But let us start
by shortly sketching car routes 1, 2 and 3 in words. The driver of car 1 is user 4, covering
both of her trips as a driver. Users 1, 3, 16, and 20 are co-riding for parts of their trips.
Car 2 is driven by user 7 and handed over to user 6 for a second trip. Users 9 and 13
are sharing the ride with user 7, user 15 is twice co-riding with user 6. The driver of car
3 is user 10 for two trips. The first trip is conducted without a person joining the ride,
on the second trip users 18 and 19 co-ride in the car.

Figure A.2 provides one out of the four car routes given in the solution of instance
E 20 0. Figure A.2(b) shows the route of car 4 after solving the MMCRP, Figure A.2(a)
shows the prior individual trips of the users. There are in total five trips of users 5, 10,
11 and 19. Note that user 5 has two trips in this example. The number next to the
nodes in Figure A.2(b) gives the sequence of the route. User 5 is the driver, the other
users are co-riding. The route starts in a depot (stop 1), brings user 11 to the meeting
(stop 2), and continues to the meeting of the driver (user 5, stop 3). After the meeting,
the driver picks up user 19 (stop 4) and takes the user to the next meeting (stop 5),
before returning to the depot (stop 6). After a break at the depot, user 5 drives to her
last meeting (stop 7) and returns to the depot again (stop 8). Note that the respective
users get/leave from their meetings with the cheapest other MOT, not included in this
visualization. Figure A.3 gives the solution in a time-space network.

Figure A.1: Instance E 20 0 showing the trips of the users without considering ride-sharing.
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(a) Trips of users that are (partially) merged to
one car route after solving the MMCRP.

(b) Route of car 4 after solving the MMCRP.

Figure A.2: Partial solution of instance E 20 0 before and after solving the MMCRP.

time

us
er

user 19:

user 11:

user 5:

d1

d1

d1

d1q1
5

d1q1
11

q1
19 q2

19 d1

d1q1
5

car
task depot work travel ride-share car cheapest other MOT

Figure A.3: Solution of instance E 20 0 after solving the MMCRP represented in a time-space
network. Depots are denoted in a diamond shape (d1), tasks are represented as circles and
denoted as qip. Background rectangles with lines depict duration of a meeting, dots mean the
user is traveling. If the background is not colored, the user is traveling with the cheapest other
MOT, purple depicts travel by car, yellow ride-sharing. The arrows show the routes of the car.
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(a) u= 150 (b) u= 200

(c) u= 250 (d) u= 300

Figure A.4: Convergence of the column generation algorithm for increasing number of users
(u). The y-axis shows the computational time in seconds, the x-axis represents the number of
iterations.



106 Chapter A. Appendix

(a) u= 20 (b) u= 50 (c) u= 100

(d) u= 150 (e) u= 200 (f) u= 250

(g) u= 300

Figure A.5: Optimal fleet size for increasing number of users u. The x-axis shows the number of
cars used, the y-axis represents the obtained savings.
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A.3 The bi-objective multimodal car-sharing problem

forall p ∈ P do
construct empty route vector ρ;
v = γp;
while v 6= φp do

forall l ∈ v.outgoing do
if(l.person = p & xl = 1) store leg l in vector ρ;
v = l.endNode;
break;

end
end
∆ =∞; τ = 0; W = 0; F = 0, l = 1;
forall l ≤ |ρl| do

if (l.startNode = trip start node a) ∆ =∞; F = 0; W = 0;
τ = τ + sv + tl−1;
W += min{max{0,el-τ},h};
∆ = min{∆, max{0,el-(τ+W)}};
F = W + ∆;
if ol ≤ τ ≤ el then

l++;
else

τ ′ = τ ;
τ += min{max{0,ol− τ}, F};
if ol ≤ τ ≤ el then

∆ += min{W - (τ − τ ′),0};
W = max{W - (τ − τ ′),0};
l++;

else
add Cut (see Section 4.4.2);

end
end

end
end

Algorithm 1: Separation of user routes.
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forall m ∈K :m= car do
trips = 0;
forall v ∈D do

forall l ∈ v.outgoing do
if (l.mot 6= m) continue;
construct empty vector ρ;
if(xl = 1) store leg l in vector ρ;
v = l.endNode;
while v 6= carEndNode do

forall l ∈ v.outgoing do
if (l.mot != m) continue;
if(xl = 1) store leg l in vector ρ;
v = l.endNode;
if (v = startNode) trips++;
break;

end
end
if (trips < 2) continue;
∆ =∞; τ = 0; W = 0; F = 0, l = 1;
forall l ≤ |ρl| do

if (l.startNode = trip start node a) ∆ =∞; F = 0; W = 0;
τ = τ + sl.startNode + tl−1;
W += min{max{0,el-τ},h};
∆ = min{∆, max{0,el-(τ+W)}};
F = W + ∆;
if ol ≤ τ ≤ el then

l++;
else

τ ′ = τ ;
τ += min{max{0,ol− τ}, F};
if ol ≤ τ ≤ el then

∆ += min{W - (τ − τ ′),0};
W = max{W - (τ − τ ′),0};
l++;

else
add Cut (see Section 4.4.2);

end
end

end
end

end
end

Algorithm 2: Separation of car routes.
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Table C10: Preference scores assigned based on the binary assignment from the instance genera-
tion.

binary assignment of MOTs preference scores
walk bike car e-car public walk/public bike car

1 0 0 0 0 4 6 7
0 1 0 0 0 6 4 7
0 0 0 0 1 4 6 7
0 0 1 0 0 6 7 4
0 0 0 1 0 6 7 5
1 1 0 0 0 4 4 7
0 1 0 0 1 4 4 7
0 0 1 0 1 4 5 4
0 0 1 1 0 7 7 4
1 0 0 0 1 4 6 7
0 1 1 0 0 6 4 4
0 0 0 1 1 4 7 5
1 0 1 0 0 4 5 4
0 1 0 1 0 6 5 6
1 1 0 0 1 4 4 7
1 0 0 1 0 4 7 5
0 1 1 0 1 4 4 4
0 0 1 1 1 7 7 4
1 1 1 0 1 4 4 4
0 1 1 1 1 7 4 4
1 0 1 1 1 4 7 4
1 1 1 1 0 4 4 4
1 1 0 1 1 4 4 7
1 1 1 1 1 4 4 4
0 0 0 0 0 4 5 5

Table C11: On the left: Adaption of the user preferences for the time-dependent values for each
time period t. The base values are taken from Table C10 and accordingly deducted/added. On
the right: β-values to multiply the respective cost and time value of the respective MOT for the
respective time periods t.

t walk/public bike car

0 -3 -2 +1
1 +2 -2 +3
2 -2 -1 -3
3 + 0 + 0 + 0
4 -2 -3 +1
5 +2 -2 +3
6 -1 +2 -2

car walk/public bike

1.2 1.1 1
1.4 0.8 1.1
1.3 0.9 1

1 1 1
1 .3 1 1
1.4 0.9 1.1
1.1 1.3 1
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A.3.1 Heuristic solutions for the BiO-MMCP

In Chapter 4.3 we have discussed the computational limits when solving the BiO-
MMCP to optimality. Even though we were able to reduce the computational times
applying advanced techniques, there were still some limitations, especially when con-
sidering m3-VI and m4bVIBnCBiO and an increased number of users. Therefore, in what
follows, we discuss results obtained from solving m3-VI(ε) and m4bVIBnCBiO(ε) heuris-
tically. Unless otherwise stated, we always take preferences as the main objective, and
put the cost function into the set of constraints. We will not use a purely heuristic
approach but a matheuristic, to seize the obtained enhancements in the Chapter 4.3.
The aim is to decrease computational times without losing too much of the solution
quality. In order to do so, we will increase the relative MIP-gap between the upper
and lower bound for the respective models, as introduced by [142]. As we solve each
subproblem in a lexicographic order, we have two models per iteration. For each of these
models a different gap can be applied. In the following the gap of the first model is given
as λ1, the gap of the second one as λ2.

Table C12 shows the run times for m3-VI(ε), |P |= 100 and the respective λ values.
The first column gives the respective instance name, the second one the computational
times for m4bVIBnCBiO(ε) with a gap of 0, the other columns give the respective run
times with gap λ. The best average run times shows the setting with λ1 = 0.1 and
λ2 = 0.01 with 2,001 seconds compared to 5,77 with the original MIP-gap. In order to
obtain an idea on the solution quality, we calculate the hypervolume indicator [156].
The hypervolume measures the volume (or if it a bi-objective optimization problem the
surface) of the obtained Pareto frontier bounded by a given reference point. With this,
frontiers can be compared with each other, and determine the proximity of herustically
obtained frontiers to its optimal counterpart.

Table C12: Computational times for m3-VI(ε) after increasing the relative MIP gap of the models,
where λ1 gives the gap for the first MIP within an iteration and λ2 the MIP-gap of the the second
one. Results are given for each instance with |P |= 100.

λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2

0.00,0.00 0.01,0.01 0.01,0.05 0.05,0.01 0.05,0.05 0.01,0.1 0.1,0.01

E 100 0 2,628 1,283 1,768 1,262 1,745 2,055 1,250
E 100 1 2,777 1,419 2,095 1,402 2,094 2,099 1,455
E 100 2 8,504 4,251 4,275 3,452 3,818 4,253 3,234
E 100 3 3,892 1,777 2,804 1,410 2,308 2,409 1,409
E 100 4 4,553 2,340 2,718 1,665 2,595 2,837 1,662
E 100 5 6,062 3,070 3,482 2,657 3,295 3,421 2,759
E 100 6 9,092 3,472 3,744 2,678 3,306 3,735 2,674
E 100 7 6,880 3,380 3,199 2,862 2,988 3,320 1,648
E 100 8 3,678 1,821 2,289 1,688 2,209 2,313 1,850
E 100 9 7,708 3,207 3,909 2,048 4,016 3,843 2,065

average 5,577 2,602 3,028 2,112 2,837 3,029 2,001

Table C13 gives the respective hypervolume per instance (hv) as well as how close
we are to the optimal solution, shown as a percentage (%) for all settings with different
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λ values. The last row shows the average over the presented instances. We see that
most of the solutions are very close to the optimal frontier, mostly showing 99% of
the hypervolume compared to the optimal solution. There are two exceptions, namely
settings λ1 = 0.05,λ2 = 0.01 and λ1 = 0.1,λ2 = 0.01 with less than 98%. As we saw
previously, the latter setting is the best regarding run times. Thus, for m3-VI the fastest
setting comes with a loss of solution quality.

Table C13: Hypervolume (hv) and comparison to the base case with a MIP-gap of 0 (%) solving
m3-VI for each instance with |P |= 100 with the respective MIP-gaps λ.

λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2

0.00,0.00 0.01,0.01 0.01,0.05 0.05,0.01 0.05,0.05 0.01,0.1 0.1,0.01
hv % % % % % %

E 100 0 346020 0.992 0.992 0.992 0.991 0.992 0.992
E 100 1 372720 0.992 0.992 0.992 0.993 0.992 0.992
E 100 2 963820 0.993 0.992 0.991 0.984 0.992 0.979
E 100 3 430480 0.992 0.992 0.961 0.987 0.992 0.961
E 100 4 448230 0.993 0.993 0.973 0.979 0.993 0.973
E 100 5 560360 0.991 0.990 0.988 0.987 0.991 0.989
E 100 6 626340 0.991 0.991 0.987 0.972 0.991 0.987
E 100 7 923260 0.993 0.993 0.991 0.985 0.993 0.937
E 100 8 442930 0.989 0.989 0.968 0.976 0.988 0.968
E 100 9 559250 0.992 0.992 0.953 0.957 0.992 0.953

average 567341 0.992 0.992 0.979 0.981 0.992 0.973

Table C14 shows the run times obtained with λ1 = λ2 = 0.01 for each instance with
|P | = 150,200. The given setting can solve almost all but one instance for |P | = 150
and one for |P | = 200 as well as decrease the computational times. Other λ-settings
might give better run times (see above), however would lead to a lower solution quality.
Therefore we refrain at this point from trying further settings of λ for m3-VI.

Table C14: Computational times for each instance with |P |= 150,200 for m3-VI and MIP-gap
λ1 = λ2 = 0.01.

|P |= 150 200

0 TO TO
1 17,294 TO
2 15,833 TO
3 8,253 28,796
4 20,813 TO
5 7,497 TO
6 8,968 TO
7 10,734 TO
8 9,145 TO
9 17,840 TO
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We try the same approach for our model m4bVIBnCBiO with the branch-and-cut and
adding cuts as constraints at each iteration. Table C15 summarizes the computational
times for each instance with |P |= 20 and the different λ configurations. Again, the last
row shows the averages over all listed instances. We reduce computational times with
all settings, whereas we have a low of 691 seconds compared to 2,731 seconds for the
base case. By looking at the above discussed most challenging instance E 20 9, we even
reduce from over 24,000 seconds to little above 5,000. However, as above, we have a
closer look at the respective hypervolumes to evaluate the quality of the Pareto frontiers.

Table C15: Computational times for m4bVIBnCBiO(ε) after increasing the relative MIP gap of
the models, where λ1 gives the gap for the first MIP within an iteration and λ2 the MIP-gap of
the the second one. Results are given for each instance with |P |= 100.

λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2

0.00,0.00 0.01,0.01 0.01,0.05 0.05,0.01 0.05,0.05 0.01,0.1 0.1,0.01

E 20 0 192 172 176 160 176 176 158
E 20 1 407 338 358 247 308 369 242
E 20 2 159 153 147 132 133 146 123
E 20 3 189 165 153 133 154 152 130
E 20 4 420 367 335 260 362 343 231
E 20 5 190 161 175 107 155 174 104
E 20 6 369 336 366 241 304 362 230
E 20 7 496 409 432 314 415 444 284
E 20 8 256 222 230 189 230 229 176
E 20 9 24,629 17,335 15,802 8,145 12,004 17,490 5,234

average 2,731 1,966 1,817 993 1,424 1,988 691

In Table C16 the respective hypervolumes and comparison to the optimal solution
(%) is given. As previously, we can observe a good approximation for all settings of λ.
Even the prior rather poor approximation of λ1 = 0.1 and λ2 = 0.01, shows better results
now. As this is at almost 99% of the optimal solution, we take this settings now for a
further analysis of bigger instances.

Table C17 presents the results for |P |= 50,100 with λ1 = 0.1 and λ2 = 0.01 solving
m4bVIBnCBiO(ε). All but one instance with |P | = 100 can be solved within the stated
time limit. Some of the instances can even be solved in reasonable time of less than one
hour. A further increase in the size of the instances (|P |= 100) is not efficiently solvable,
whereas only one can be solved within 12 hours. However, considering the first run times
obtained for m4bVIBnCBiO this is already an achievement.
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Table C16: Hypervolume (hv) and comparison to the base case with a MIP-gap of 0 (%) solving
m4bVIBnCBiO(ε) for each instance with |P |= 20 with the respective MIP-gaps λ.

λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2 λ1,λ2

0.0,0.00 0.01,0.01 0.01,0.05 0.05,0.01 0.05,0.05 0.01,0.1 0.1,0.01
hv % % % % % %

E 20 0 142545 0.998 0.998 0.995 0.996 0.998 0.995
E 20 1 234728 0.998 0.998 0.991 0.995 0.998 0.990
E 20 2 167284 0.999 0.998 0.995 0.996 0.998 0.991
E 20 3 164209 0.998 0.998 0.993 0.996 0.998 0.991
E 20 4 172932 0.998 0.998 0.988 0.992 0.998 0.982
E 20 5 147538 0.998 0.998 0.990 0.991 0.998 0.983
E 20 6 181043 0.997 0.998 0.989 0.993 0.998 0.987
E 20 7 304919 0.998 0.998 0.994 0.997 0.998 0.988
E 20 8 222476 0.998 0.998 0.993 0.996 0.998 0.992
E 20 9 361842 0.999 0.999 0.990 0.991 0.999 0.971

average 0.998 0.998 0.992 0.994 0.998 0.987

Table C17: Computational times for each instance with |P | = 150,200 for m4 and MIP gap
λ1 = 0.1,= λ2 = 0.01.

|P |= 50 100

0 4,488 TO
1 TO TO
2 11,149 TO
3 6,866 TO
4 1,384 TO
5 4,718 TO
6 5,956 40,383
7 37,265 TO
8 1,838 TO
9 4,512 TO
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[100] Löbel, A. (1996). Solving large-scale real-world minimum-cost flow problems by a
network simplex method. Technical Report SC-96-07, ZIB, Takustr. 7, 14195 Berlin.
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multi-objective model for the green capacitated location-routing problem considering
environmental impact. Computers & Industrial Engineering, 110:114 – 125.

[141] Toth, P. and Vigo, D. (2002). The Vehicle Routing Problem. Society for Industrial
and Applied Mathematics.

[142] Tricoire, F., Graf, A., and Gutjahr, W. J. (2012). The bi-objective stochastic
covering tour problem. Computers & Operations Research, 39(7):1582 – 1592.

[143] Tricoire, F. and Parragh, S. N. (2017). Investing in logistics facilities today to
reduce routing emissions tomorrow. Transportation Research Part B: Methodological,
103:56 – 67. Green Urban Transportation.

[144] United Nations - Department of Economic and Social Affairs (2018).
68% of the world population projected to live in urban areas by 2050,
says un. https://www.un.org/development/desa/en/news/population/2018-
revision-of-world-urbanization-prospects.html, Last accessed on 2020-05-28.
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Abstract

The way we use and see mobility is changing. Especially in urban areas, the people
tend to seize the multimodal character of a city. Some always take a bike, others prefer
public transportation, others prefer taxis or personal cars. Nevertheless, the latter one is
decreasing in its importance and as the prevailing mode of transport. Many users switch
to more environmentally friendly modes of transport and/or use sharing systems. We
can see that cities prominently state their mobility plans and concepts. This trend is not
only visible in our private lives but increasingly important in a corporate context. Thus,
companies aim to have an overall green and sustainable profile. Instead of supporting
further developments in corporate mobility privileging a few selected users, we aim at
providing sustainable corporate mobility concepts, inspired by the changes also seen in
our private environment.

In this thesis we model shared mobility systems for a closed group of users, and
propose efficient solution techniques to solve complex problems. We first introduce the
vehicle-sharing problem where one or multiple types of shared vehicles may be shared.
We model it as a minimum-cost flow problem and a multi-commodity flow problem. A
thorough discussion gives insights into managerial implications regarding the employment
of sharing systems in a company. Then, secondly, we extend the idea of vehicle-sharing
by allowing users to co-ride with each other and introduce the multimodal car- and
ride-sharing problem. We employ a two-layer decomposition approach, where the first
layer is solved by complete enumeration and the second layer by a column generation
approach to find car routes through a day. We solve realistic instances in reasonable
time, making a daily planning of such car- and ride-sharing system possible. Thirdly,
we introduce the bi-objective multimodal car-sharing problem where we include the user
preferences in a second objective. We study four variants of the problem and solve the
most challenging one with a branch-and-cut approach.

All models and algorithms are tested using generated data based on gathered statis-
tics considering Viennese work patterns. Throughout the thesis we provide holistic
algorithmic tests but also socio-economic insights and managerial implications.

127





Zusammenfassung

Das Mobilitätsverhalten - insbesondere in Städten - verändert sich. Während vor
wenigen Jahren das Privatauto das vorherrschende Verkehrsmittel war, wird heutzutage
die vielfältige Infrastruktur in Städten ausgiebig genutzt. Die Anbindung der öffentlichen
Verkehrsmittel wird zunehmend gerne genutzt, das Fahrrad wird dem Auto immer öfter
vorgezogen, oder es wird auf Sharing-Systeme in Kombination mit anderen Verkehrs-
mitteln zurückgegriffen. Der Wandel wird durch Großprojekte in diversen europäischen
Städten unterstützt. Dabei wird weitgehend auf “grüne” Verkehrsmittel gesetzt, Park-
plätze werden zu Nutzflächen für Stadtbewohnerinnen und Stadtbewohner. Die Entwick-
lungen wirken sich sowohl auf das private, wie auch auf das unternehmerische Mobi-
litätsverhalten und die angebotenen Möglichkeiten im jeweiligen Bereich aus.

Die vorliegende Dissertation beschäftigt sich mit der Modellierung von Shared-
Mobilitätssystemen in Firmen und führt effiziente Lösungsverfahren solch komplexer
Probleme ein. Es werden drei Modelle diskutiert: (1) das Vehicle-Sharing Problem, (2)
das Multimodal Car- and Ride-Sharing Problem, sowie (3) das Bi-Objective Multimodal
Car-Sharing Problem. Wir beginnen mit einem System, in dem Fahrzeuge gemeinschaft-
lich genutzt werden und zielen dabei auf optimale Ressourcennutzung ab. Das Vehicle-
Sharing Problem wird mittels bewährter und effizienter Formulierungen modelliert. Das
Konzept des reinen Car-Sharings wird mit der Idee einer Fahrgemeinschaft innerhalb ei-
nes Unternehmens im Multimodal Car- and Ride-Sharing Problem erweitert und mittels
Column Generation gelöst. Des Weiteren werden Präferenzen der User in einer zusätzliche
Zielfunktion berücksichtig und somit ein Zweiziel-Problem aufgebaut. Wir diskutieren
unterschiedliche Varianten des Bi-Objective Multimodal Car-Sharing Problems und neh-
men, zur Lösung der herausforderndsten Variante, einen Branch-And-Cut Algorithmus
zur Hand.

Die Modelle und Algorithmen werden mit realistischen Instanzen getestet. Die Daten
basieren auf Statistiken zum Arbeits- und Mobilitätsverhalten am Beispiel der Stadt
Wien. Die einzelnen Kapitel beinhalten nicht nur ausführliche algorithmische Tests,
sondern auch umfassende Diskussionen bezüglich unternehmerischer Auswirkungen und
gibt darüber hinaus sozio-ökonomische Einblicke.

129


	List of Figures
	List of Tables
	Introduction
	Methodology
	Mathematical programming
	Column generation
	Branch-and-cut

	Outline and contribution

	Modeling and solving a vehicle-sharing problem
	Introduction
	A vehicle-sharing problem
	The vehicle-sharing problem with a single type of shared vehicle (VShP-1T)
	The vehicle-sharing problem with multiple types of shared vehicles (VShP-xT)

	Computational results
	Test instances
	Results for the vehicle-sharing problem with a single type of shared vehicle (VShP-1T)
	Results for the vehicle-sharing problem with multiple types of shared vehicles (VShP-xT)
	Comparison of VShP-1T:car, VShP-1T:ecar, VShP-xT and the case where all trips are covered by one vehicle/MOT
	Including user preferences as a restricted subset
	Comparing objective functions
	Managerial implications and discussion

	Conclusion

	Modeling and solving the multimodal car- and ride-sharing problem
	Introduction
	Related work
	Car-sharing
	Ride-sharing
	Vehicle scheduling problem

	Problem description
	Users, trips and modes of transport
	Ride-sharing
	Savings calculation
	Illustrative example

	Solution approach
	Arc formulation
	Path formulation
	Delayed column generation
	Pricing problem

	Computational study
	Test instances
	Comparison of the different pricing schemes
	Algorithmic tests
	Socio-economic tests

	Conclusion

	The bi-objective multimodal car-sharing problem
	Introduction
	Related work
	The bi-objective multimodal car-sharing problem
	Problem description
	Formal description

	Solution approach
	Valid inequalities
	Branch-and-cut for m4b
	Bi-objective frameworks

	Computational study
	Test instances
	Enhancements and preprocessing
	Algorithmic tests
	Managerial insights

	Conclusion and future work

	Conclusion
	Appendix
	Modeling and solving a vehicle-sharing problem
	Modeling and solving the multimodal car- and ride-sharing problem
	The bi-objective multimodal car-sharing problem
	Heuristic solutions for the BiO-MMCP


	Bibliography
	Abstract
	Zusammenfassung

