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Abstract

I provide evidence that successful startup patents lead to temporary increases in the

unemployment rate, adding to the literature studying the effect of innovation on the labor

market. Aggregating the instrumental variable approach of Farre-Mensa et al. (2020), which

utilizes differences between randomly allocated patent examiners, at the US-county level, I

run various dynamic panel specifications. By using data ranging from 2001 to 2014, I add to

the literature, which typically focuses on theoretical insights or empirical results from the

20th century. I find that a single granted startup patent causes temporary increases between

0.04 and 0.42 percentage points in the county unemployment rates, but the cumulative

effect on employment returns to 0 within five years. Finding no increases in mean county

personal income per capita within five years, my results suggest potential welfare losses due

to startup patents.

In meiner Arbeit präsentiere ich Ergebnisse, denen zufolge erfolgreiche Startup-Patentanmel-

dungen zu einem vorübergehenden Ansteigen der Arbeitslosigkeitsrate führt und ergänze

damit die Literatur, die den Effekt von Innovationen auf den Arbeitsmarkt behandelt. Dafür

aggregiere ich die Identifikationsstrategie von Farre-Mensa et al. (2020), die Differenzen zwis-

chen zufällig ausgewählten Patentprüfenden ausnutzt, auf US-Bezirksebene und präsentiere

die Ergebnisse verschiedener dynamischer Panelspezifikationen. Weil die verwendeten Daten

aus den Jahren 2001 bis 2014 stammen, ergänze ich die Literatur, die ansonsten weitgehend

aus theoretischen oder auf dem 20. Jahrhundert beruhenden Ergebnissen besteht, um ein

aktuelles Ergebnis. Meinen Resultaten zufolge führt ein Startup-Patent zu einer vorüberge-

henden Erhöhung der Arbeitslosigkeitsrate in einem Bezirk um 0.04 bis 0.42 Prozentpunkte.

Innerhalb von fünf Jahren fällt der kumulative Effekt auf die Beschäftigung aber wieder

auf 0. Weil ich innerhalb desselben Zeitraumes keine Erhöhung des Bezirks-Durschnitts an

Pro-Kopf-Einkommen finde, legen meine Ergebnisse Wohlfahrtsverluste nahe.
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1. Introduction

At least since Solow (1956), technological progress lies at the center of long-run economic growth.

While the innovative process is more of a black box in the Solow model itself, endogenous growth

models since Romer (1986) try to shed light on this process and its effect. At the same time,

innovation and its effect on the labor market have been used as an explanation of rising inequality

in the form of skill-biased technical change (Katz and Murphy, 1992). Since then, both technical

change as well as trade - increases in trade and the so-called "China shock" being another

potential explanation of rising inequality - have been at the center of economist’s interests.

I add to the existing literature on the impact of innovation on the labor market by estimating the

causal effect of innovation in the form of patents on unemployment rates in a macro perspective.

While Autor and Salomons (2018, p. 6) note "[directly estimating effects at the macro level]

often suffers from underidentification and low statistical power", aggregating the identification

strategy of Farre-Mensa et al. (2020) and their use of so-called "judge fixed effects" allows me to

tackle this criticism of a macro approach on this question. Thereby, I am also adding a different

identification strategy into the mix, as the effect of innovation on the labor market is either

studied on industry level using shift-share instruments1 (Autor et al., 2015) or relying on a

combination of industry and country differences paired with timing considerations (Dao, Das,

and Koczan, 2020; Autor and Salomons, 2018) or on a macro level using historically identified

shocks and/or timing considerations (Shea, 1998; Baptista and Preto, 2007; Audretsch, Thurik,

Stel, and Carree, 2008; Faria, Cuestas, and Mourelle, 2010; Alexopoulos, 2011; Bonnet, Aubry,

and Renou-Maissant, 2015; Halicioglu and Yolaç, 2015; Alexopoulos and Cohen, 2016).

However, due to data availability, my thesis adds another twist to this topic: As publicly

available patent data does not come with all the information needed for my analysis, I rely on the

data made available by Farre-Mensa et al. (2020) with their replication files. Since Farre-Mensa

et al. (2020) focus on startups, I have to limit my analysis to the same case. This leads to two

interesting attributes of my analysis: First, the focus on new firms creates a link to theoretical

arguments regarding labor market search and matching focusing on new matches (Aghion and
1In the literature they are also referred to as "Bartik" instruments, for a discussion of their use see e.g.

Goldsmith-Pinkham et al. (2020).
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Howitt, 1994), in turn relating to Schumpeter (1939)’s creative destruction. Secondly, using parts

of the data of an existing study, my results can serve as a comparison of the effects of the US

patent system on new firms (as studied by Farre-Mensa et al. (2020)) and on the labor market.

Then, turning towards public policy, attempts by cities and regions to emulate the success of

the Silicon Valley, attracting startups and becoming the "next Silicon Valley"2 can be discussed

following the main question my thesis asks: What is the effect of innovative startups on regional

unemployment rates?

Performing my analysis with monthly US county data between 2001 and 2014, I find short- and

medium-run increases in the unemployment rate following a single successful patent application.

Depending on the specification I use, I find these temporary job losses to be between 900 and up

to 18,000 people for the average US county. However, these job losses remain temporary and

within five years after the initial patent shock, the unemployment rates are statistically indifferent

from their initial level. Studying the effect of mean county per capita personal income following

a successful patent application in a less reliable - due to having to change the time period of

the analysis from monthly to yearly - setting, I find no effects within five years. While my

analysis does not allow me to look into distributional effects, these results suggest the potential

for aggregate welfare losses, depending on the weighting of gains for the innovative startups and

losses in employment.

The further structure of this thesis is as follows: In the subsequent literature review, I discuss

theoretical considerations and existing empirical results, further motivating my research idea.

Then, I discuss the data used, in particular the use of patent data, and my identification

strategy, before turning to presenting my first stage and arguments regarding the validity of my

instrumental variable strategy. I continue with the main empirical results of my thesis, describing

various specifications to estimate cumulative impulse response functions. After a brief look at

income data and showing the robustness of two decisions regarding my data, I conclude.

2Hospers et al. (2008) give an overview of prominent political visitors to the Silicon Valley as well as cities and
regions trying to emulate the Silicon Valley.
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2. Literature review

The work in this thesis is influenced by three strands of the economic literature that are respectively

concerned with the effects of innovation on the labor market, the effects of entrepreneurship

on the labor market, and the literature on local labor markets and spatial equilibria. In the

following section, I will briefly discuss each of them and attempt to tie them together.

The effects of innovation on the labor market have been a hot topic in economic research at

least since the observed changes in relative wages in the USA in the ’70s and ’80s as described by

Katz and Murphy (1992). Since then, innovation and its effects on employment and wages have

been attributed as one of the main causes of increasing inequality in the last fifty years. A major

explanation of the increasing higher education wage premium has been so-called skill-biased

technological change - improvements in technology that lead to increasing demand for high-skilled

labor (Berman, Bound, and Machin, 1998). More recently this literature has been surveyed by

Acemoglu and Autor (2011), summarizing the - what they call - canonical supply-demand-model

of skills including two imperfectly substitutable skill groups and generalizing this framework

to account for further stylized facts. These stylized facts include for example the so-called job

polarization, describing job growth in low- and high-skill relative to middle-skill areas.

More theoretically, these observations have also led to frameworks modeling the incentives of

firms to invest in research and development (R&D) based on the distribution of skills and wage

levels they are confronted with (Acemoglu, 1998, 2010; Stiglitz, 2014). Particularly noteworthy for

the scope of this paper is the argument made by Acemoglu (1999) that job polarization due to a

larger supply of skilled workers or skill-biased technological change leads to higher unemployment

for both high- and low-skilled groups due to increasingly difficult employer-employee-matching.

This argument is similar in notion to what is discussed in the literature on Schumpeterian growth

theory. As for example, Aghion et al. (2014, p. 120) note in their overview of the literature:

"Although each GPT [general-purpose technology, author’s note] raises output in

the long run, it can also cause cyclical fluctuations while the economy adjusts to it.

[...] GPTs like [...] the computer require costly restructuring and adjustment to take

place, and there is no reason to expect this process to proceed smoothly over time.
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Thus, contrary to the predictions of real-business cycle theory, the initial effect of a

’positive technology shock’ may not be to raise output, productivity, and employment

but to reduce them."

This disruptive effect of innovation, Schumpeter (1939)’s creative destruction, combined with

skill-biased technological change is the central mechanism that I set out to study in this thesis.

Looking at the literature on search and matching in labor models including frictional markets,

following the discussion by Hornstein et al. (2005), the concentration of my empirical approach on

startups and their disruptive effects is in line with the theoretical literature initiated by Aghion

and Howitt (1994). Aghion and Howitt (1994) focus on innovation which needs labor reallocation

to be effective, thereby leading to new employer-employee matches. Thus, innovation leads to an

increase in unemployment.

A question that is more directly applicable to this thesis has been of interest in the strand

of literature empirically concerned with entrepreneurship and small businesses. This literature

links unemployment to self-employment and dates itself back to at least Oxenfeldt (1943).

More recently, in discussing the relation between unemployment and entrepreneurship, this

literature covered the question of the direction of causality: Does unemployment cause self-

employment/entrepreneurship ("refugee effect") or does entrepreneurship cause employment,

respectively reduce unemployment? (Baptista and Preto, 2007; Audretsch, Thurik, Stel, and

Carree, 2008; Faria, Cuestas, and Mourelle, 2010; Bonnet, Aubry, and Renou-Maissant, 2015;

Halicioglu and Yolaç, 2015). While this literature is aware of the problem of reverse causality,

the research does not rely on natural experiments or instrumental variable approaches, but relies

on Granger causality and finds no consistent results.

Similarly, papers that assess the impact of technology shocks on aggregate economic indicators

rely on narratively identified shocks, e.g. using historical patent data and timing assumptions in

the form of Cholesky decompositions in structural vector autoregressions. Whether narrative

time series’ in general actually describe exogenous shocks is questionable, with e.g. Ramey (2016)

arguing for cautious interpretation. Existing works focusing on narratively identified technology

shocks and their effects have been carried out by Shea (1998) on the effect of technology shocks

on industry inputs and total factor productivity, Alexopoulos (2011) on the effect on total
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factor productivity, investment and employment, Alexopoulos and Cohen (2016) on the effect on

employment and Kogan, Papanikolaou, Seru, and Stoffman (2017) on the effect of innovation on

GDP growth and total factor productivity. Shea (1998), Alexopoulos (2011) and Alexopoulos and

Cohen (2016) using their historical accounts, spanning almost all of the 20th century between

their three papers, find that positive technology shocks lead to increases in employment.

The literature discussed so far focuses on the effects in a single market and therefore does

not consider differences between regions. Let me very briefly summarize some insights into

the relationship between innovation and agglomeration before turning to local labor markets.

While population and economic activity, in general, are spatially concentrated, both innovation

(Audretsch and Feldman, 1996) and R&D activity (Carlino, Carr, Hunt, and Smith, 2010) are

more spatially concentrated than employment, highlighting the importance of considering spatial

equilibria in this setting.

Discussing the literature on local labor markets also leads to discussing welfare considerations:

Moretti (2011) builds on the Rosen-Roback framework of spatial equilibrium based on the works

of Rosen (1979) and Roback (1982) trying to describe a more general model of local labor

markets. For simplicity, this model rules out involuntary unemployment, implying that all

adjustments to labor supply following a shock to labor demand are due to migration - be it

domestic or from another country. However, given different mobility costs between high- and

low- skilled workers (Topel, 1986; Blanchard and Katz, 1992; Bound and Holzer, 2000) including

involuntary unemployment raises the question of who will be newly employed following a positive

labor demand shock (e.g. due to an increase in productivity): residents or movers? Empirical

investigations of this question are not in agreement (Bartik, 1991; Kniesner, 1994; Bartik, 2002;

Renkow, 2003, 2007; Partridge, Rickman, and Li, 2009), but further raise the point of welfare

considerations of innovation. Or, as Moretti (2011) formulates it:

"This issue [who ends up getting the job] is particularly important when thinking

about policies aimed at increasing local employment, like local development policies.

Implementing a local development policy that increases employment in an area

and benefits only migrants from outside the area is quite different politically from

implementing a local development policy that benefits residents."
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This welfare consideration leads me to the main point of my paper, which differs from the work

discussed above. I am not studying the effect of innovation on residents and movers or between

different groups along the distribution of education. I am looking at the effect of innovation

on employment on a different level of aggregation than an already existing study - the work

of Farre-Mensa et al. (2020), which is part of the corporate finance literature and studies the

effect of patents on startup outcomes. Using the random assignment of patent examiners in the

application process with the United States Patent and Trademark Office (USPTO) to estimate the

local average treatment effect of a successful patent application on firm outcomes, Farre-Mensa

et al. (2020) compare marginal patents that had the outcome of the review process affected by

the draw of the examiner. These marginal patents are called compliers in the causal inference

literature. They find that successful patent applications due to a more lenient examiner led to

55% higher employment growth of the firm five years later. I take the same data - patents filed for

application between 2001 and mid-2014 - to the county level to estimate the effect of a successful

patent application on local unemployment. Thereby, I also end up providing a comparison of the

effects of innovation on firm- and area-level.

As Stiglitz (2014, p. 3) notes:

"While increases in productivity could in principle make everyone better off — the

production possibilities curve moves out — in practice, there are always winners and

losers."

The question this quote raises in the setting of Farre-Mensa et al. (2020) then is, whether the

finding of a gain in employment of individual firms after a successful patent application is also

reflected in a gain in employment in the county where the firm is located. In other words, I end up

borrowing one-half of the research question of the entrepreneurship literature - does (innovative)

entrepreneurship lead to employment? - and contrast it with the perspective discussed by Aghion

et al. (2014) regarding creative destruction, in the form of Aghion and Howitt (1994) or Acemoglu

(1999) - does (skill-biased) innovation lead to unemployment? - and look at it at an aggregate

level to arrive at the question: How do innovative startups affect the unemployment rate in the

county they are located in?

Thematically, this question is related to the growing literature in macroeconomics that uses
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cross-regional variation to estimate effects of interest. This strand of literature is discussed in

Guren, McKay, Nakamura, and Steinsson (2020). In a broader sense, my thesis adds to the

existing literature studying non-policy shocks, which was started by Kydland and Prescott (1982).

3. Data and methodology

3.1. The use of judge fixed effects

The instrumental variable strategy of Farre-Mensa et al. (2020) described above builds on prior

research regarding institutional details of the US patent application process. Cockburn et al.

(2002) found for a small data set consisting of 182 patent applications that examiners differ

in - what Cockburn et al. (2002) call - "their ’generosity’" and that examiners matter for the

final outcome of a patent application. Similarly, Lemley and Sampat (2012) found that more

experienced examiners are more likely to accept an application. Sampat and Williams (2019)

use the random allocation of examiners to patent applications to assess their causal effect on

follow-up innovation and find no impact for gene sequences.

The use of random assignment to a judge or, in the case of patents, an examiner and their

leniencies as an instrumental variable has been first introduced by Kling (2006), studying the

effect of incarceration length on future labor market outcomes. Since then, this instrumental

variable has been referred to as "judge fixed effects" design and used in a variety of settings (for

a summary, see Frandsen, Lefgren, and Leslie (2019)).

3.2. What do patents measure?

While I have briefly summarized the literature of the patent instrumental variable above, applying

this instrument to a setting that I am relating to the literature on skill-biased technical change

makes it necessary to discuss the implications of using patent data as a measurement for
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innovation. As Carlino and Kerr (2015, p. 353) note by referencing Schumpeter (1939), invention

and innovation differ:

"For Schumpeter, invention is the creation of a new product, service, or process,

whereas innovation is the commercialization or introduction of that product or service

into the market. Many inventions are patented, but most patents never reach the

point of commercialization, and some that do often require a long gestation period.

On the other hand, innovations are closely linked to commercialization and often do

not require corresponding invention or patents."

Then, using patents as a measure of innovation has the advantage that it is an outcome of the

inventive process (and thereby differs to e.g. R&D spending), but the differences between the

inventive and the innovative process may still lead to bias when using patents as a measurement

of innovation. Comparing Jaffe (1989) and Acs, Audretsch, and Feldman (1994), respectively

Feldman (1994), Feldman and Kogler (2010) conclude that innovation is more concentrated than

invention and that "[s]tudies that draw inferences about innovation by focusing on invention

should be interpreted with caution".

The innovative impact of patents is controversial, to say the least, with Boldrin and Levine

(2013) going so far as to claim that patents are uncorrelated to increases in productivity unless

productivity itself is measured by patents. This critique has some interesting influence on the

scope of this paper: Whether startups - or young firms in general - are innovative is not the

question I am trying to answer, but their effect on aggregate local employment. Whether patents

in this case really measure innovation or rather act as a device to reduce information frictions

does not matter for the econometric analysis, but the theoretical background and potential

interpretations of the results. If patents measure innovation, I could argue that the shock in this

analysis is a shock to technology. Given that the instrument of Farre-Mensa et al. (2020) measures

the local average treatment effect of drawing a more lenient examiner, the instrument disentangles

the value of the underlying innovation and the value of the patent granting, measuring the latter.

In the aggregate setting, the instrument then allows measuring a shock to available capital for

innovative firms and not a shock to technology.

However, despite not measuring a shock to technology, the analysis can still be framed in the
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context of skill-biased technical change: Skill-biased technical change and job polarization imply

that high-skilled labor and physical capital, respectively human capital and physical capital, are

complements. The fact that young, skilled workers are disproportionately employed by young

firms (Ouimet and Zarutskie, 2014) provides some evidence of the demand for high-skilled labor

of young firms. In the aggregate setting, the instrument of Farre-Mensa et al. (2020) then does

not allow to directly measure the effect of innovation on aggregate employment, but to measure

the effect of an increase in demand for high-skilled labor, caused by the influx of funding due to

an accepted patent application.

3.3. Patent data

The data of Farre-Mensa et al. (2020) differs from otherwise publicly available patent databases

(e.g. the databases provided by the NBER or Harvard Business School1) by not only including

accepted patent applications but also rejected ones. This data availability is a necessity for the

identification strategy of judge fixed effects. As the authors note, this was possible due to gaining

access to the internal database of the USPTO. While this means that they were technically able to

study all patent applications received by the USPTO, Farre-Mensa et al. (2020) study the effect of

patents on startups and therefore only chose a sub-sample of all available applications. To arrive

at their sub-sample of US startups they used a list of filtering steps: First, only US-incorporated

and for-profit applicants, second manually removing applications that have been a subsidiary of

another firm or have been stock market listed, and finally firms with no prior applications and

firms that qualify for reduced filing fees under the condition of being a small business.

Timewise, the sample has natural restrictions: Only beginning in 2001 the USPTO recorded

names of rejected applications, which, again, is essential for the identification of judge-fixed

effects. The first patent application in the original data set happened in April 2001. On the other

end, Farre-Mensa et al. (2020) limit the sample to applications with the final decision carried out

by late 2013 to allow for the analysis of five-year effects. Thereby, the original authors limit their

sample to 32,215 patent applications. Since the data set provided by Farre-Mensa et al. (2020)

also includes over 100 patent applications that only received issuance in the first half of 2014

1See NBER and HBS for more information.
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and I see no reason to exclude this data, my sample of patent applications is slightly larger with

34,422 patent applications between April 2001 and, inclusive, June 2014.

Figure 3.1.: Spatial distribution of patent applications in the sample across US counties.

As the spatial distribution of patents was not of interest in the data set’s original use but is

in my analysis, I now turn to my original work on the patent data. Audretsch and Feldman

(1996); Carlino et al. (2010); Moretti (2011) highlight that innovative activity generally is heavily

concentrated, which is also applicable to the sample in question. I plot the concentration of the

total number of patents in each county in the sample in Figure 3.1.

In Figure 3.1, the number of twenty patents is chosen as an arbitrary cut-off to illustrate some

of the regional distribution. The very extent of the concentration is highlighted in Figure 3.2,

showing that 75% of all counties had three or fewer patent applications filed by startups, while

1356 applications happened in Los Angeles County alone.

While the identification strategy using examiner leniencies is only possible for the sample of

startup patent applications of Farre-Mensa et al. (2020), given the concentration of innovative

activity, only including patents of this subsample in the estimation would likely lead to an

omitted variable bias. Take a highly stylized scenario for example: A new key invention of a

large, older firm leads to automation and closure of a large plant. The resulting unemployment

could be attributed to a startup patent in the same time frame and thereby biasing the estimates.
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Figure 3.2.: Distribution of patent applications in the sample.

Therefore, I also add general patent data provided by De Rassenfosse, Kozak, and Seliger (2019)2

which includes more than three million successful patent filings in the USA in the sample.

3.4. Labor market and housing data

To study the effect of innovative startups on unemployment I combine the sample of patent

applications described above with monthly county labor market data provided by the US Bureau of

Labor Statistics (BLS)3. The variables of interest from this data source are the unemployment rate

and, to control for the population size of different counties, the labor force. The BLS provides both

statistics without seasonal adjustment at the county level. Following the information provided

by the BLS4 I use a similar ARIMA decomposition to seasonally adjust both unemployment

rates and the size of the labor force for each county individually, as well as detrending the labor

force data to guarantee stationarity of the time series. I give more details on this procedure in

Appendix A.

Housing data, more specifically monthly data on new housing building permits and their

respective values by counties, is provided by the US Census Bureau5. Using the number of
2The data is available online via the Harvard Dataverse.
3The data is available online.
4BLS information on their seasonal adjustment methodology is available online.
5The data is available online.
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Table 3.1.: Descriptive statistics of the sample
Unemployment Rate Labor Force Patents Value per Building Permit

Count 509,913 509,913 509,913 509,913
Mean 6.87 47,319.98 6.33 40,977.43 $
St. D. 3.18 153,284.78 59.05 87,381.73 $
Min. -0.44 34.81 0.00 0.00
25% 4.61 5,187.43 0.00 0.00
50% 6.14 11,889.70 0.00 0.00
75% 8.43 31,059.69 0.00 0.00
Max. 30.39 4,982,596.46 4,897.00 7,500,000.00 $

Startup Granted Patents Startup Abandoned Patents Startup Total Patents Startup Granted Rate
Count 509,913 509,913 509,913 509,913
Mean 0.04 0.02 0.06 0.02
St. D. 0.33 0.22 0.48 0.15
Min. 0.00 0.00 0.00 0.00
25% 0.00 0.00 0.00 0.00
50% 0.00 0.00 0.00 0.00
75% 0.00 0.00 0.00 0.00
Max. 16.00 13.00 27.00 1.00

building permits and their values I construct a variable describing the value per new unit. I use

the data as a proxy to control for price levels and migration.

Finally, combining all data sources and discarding some missing data, I arrive at a panel

consisting of 3,207 US counties over 159 months, resulting in 509,913 observations. Table 3.1

reports summary statistics of the sample.

3.5. Identification strategy

While I have already discussed the identification strategy of Farre-Mensa et al. (2020), it is

necessary to discuss my own identification strategy in larger detail due to two issues: First, while

I use the same idea and instrument for identification, I study different units of observation and

therefore also run a different first-stage regression. Secondly, Farre-Mensa et al. (2020) only

mention the monotonicity assumption, which is crucial in the LATE framework (Imbens and

Angrist, 1994), in a footnote and claim that it is not likely to be violated.

The baseline dynamic panel specification I propose to study takes the following form:

uc,t =
S∑︂

s=0

(βspc,t−s + γsuc,t−s−1 +X
′
c,t−sηs) + αc + δt + ϵc,t (3.1)

Here, uc,t is the unemployment rate in county c in month t, pc,t is the number of patents
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accepted in county c in month t, X is a vector of control variables including the size of the

labor force and housing data, αc denotes county fixed effects and δt time fixed effects. The

parameters of interest are βs, measuring the effect of one additional granted patent on the

unemployment rate. Using the notation of treatment effects, the "immediate treatment effect" is

β0 = E[∆u0c,t(1)−∆u0c,t(0)|pc,t > 0, pc,t−1 = 0] = β0, where ∆usc,t(p) = usc,t(p)− uc,t−1 describes

the change in the unemployment rate from time t-1 to time t+s due to an accepted patent p at

time t. Following equation (3.1), the effect at a given time horizon s is recursively determined

by βs = βs +
∑︁J

j=1 γjβ
s−j , which can be used to describe an impulse response function. The

cumulative impulse response function at time s then is
∑︁s

0 β
s and the cumulative long-run effect

is ∑︁S
s=0 βs

1−
∑︁S

s=0 γs
. (3.2)

Making the conventional assumption of conditional sequential exogeneity (3.3) implies that the

past unemployment rate, the accepted patents, and the control variables are orthogonal to the

contemporaneous and future shocks to the unemployment rate and the error terms to be serially

uncorrelated.

E(ϵc,t|uc,t−1, ..., uc,t0 , pc,t, ..., pc,t0 , Xc,t, ..., Xc,t0 , αc, δt) = 0

∀uc,t−1, ..., uc,t0 , pc,t, ..., pc,t0 , Xc,t, ..., Xc,t0 , αc, δt, c and t ≥ t0

(3.3)

Since the inventive process of patents is highly unlikely to be endogenous, the conditional

sequential exogeneity assumption is likely violated in (3.1). Instead, I modify (3.1) by treating

accepted patents as exogenous and instrumenting them with the examiner leniencies estimated

by Farre-Mensa et al. (2020). The 2SLS specification then takes the following form:

uc,t =
S∑︂

s=0

(βspc,t−s + γsuc,t−s−1 +X
′
c,t−sηs) + αc + δt + ϵc,t

pc,t = L
′
c,tϕ+ κc + θt + ωc,t

(3.4)

The first equation in (3.4) is identical to (3.1). The second equation describes the first stage

regression of the vector of leniencies of accepted patents Lc,t on the number of accepted patents

pc,t, while κc and θt represent, respectively, county and time fixed effects. The length of Lc,t is 16,
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the maximum number of patents accepted in a county in a month in the sample. Alternatively,

Lc,t can be thought of as the vector of interactions between the estimated leniencies and a dummy,

indicating acceptance of a patent with 1 and rejection with 0. The exclusion restriction, in this

case, can be written as (3.5).

E(ϵc,t|uc,t−1, ..., uc,t0 , pc,t, ..., pc,t0 , Xc,t, ..., Xc,t0 , αc, δt) = 0

∀uc,t−1, ..., uc,t0 , L
′
c,t, ..., L

′
c,t0 , pc,t, ..., pc,t0 , Xc,t, ..., Xc,t0 , αc, δt, c and t ≥ t0

(3.5)

The exclusion restriction imposes that, conditional on lags of unemployment, contemporaneous

and lagged controls, as well as county and time fixed effects, the leniency instruments have no

direct effect on unemployment. The monotonicity assumption implies that - given examiner A is

less lenient than examiner B - if examiner A grants a patent, examiner B would have granted it

as well.

Following the notation of Frandsen, Lefgren, and Leslie (2019) monotonicity formally implies:

∀j, w ∈ {0, ..., J} :Di(j) ≥ Di(w)∀i or

Di(j) ≤ Di(w)∀i
(3.6)

Here, j, w describe two judges in the space of all judges J and Di notes the treatment status D -

acceptance or rejection - for patent i.

Frandsen et al. (2019) discuss this assumption and provide a test for the monotonicity

assumption based on first-stage residuals. However, for their testing procedure the treatment

variable - in my case, the number of patents granted at a given observation - has to be binary.

This is not the case and therefore not applicable. Instead, it is possible to test the weaker average

monotonicity assumption. Average monotonicity implies that the estimated coefficients of the

first stage regression should be non-negative across all subsamples.

An alternative to the above described recursive computation of (cumulative) impulse responses is

the local projection method of Jordà (2005), regressing individual leads uc,t+h of the unemployment

rate for each h ∈ o, ...,H on the right hand side of the first equation in (3.4). Following Jordà

et al. (2015), the cumulative impulse response function is estimated by subtracting uc,t−1 from

each uc,t+h, leading to the estimation of (3.7), which includes the same first stage regression as
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in (3.4).

∆uc,t+h =uc,t+h − uc,t−1 =

S∑︂
s=0

(βspc,t−s + γsuc,t−s−1 +X
′
c,t−sηs) + αc + δt + ϵc,t

pc,t = L
′
c,tϕ+ κc + θt + ωc,t

(3.7)

Here, the impulse response at each horizon is equal to β0. There is no equivalent to the

long-run effect that can be recursively computed in (3.4).

4. Results

4.1. First stage results

While Farre-Mensa et al. (2020) argue for the validity of their instrument in case of their firm-level

analysis, given the aggregation in my analysis I need further arguments to justify the validity,

which I begin by investigating the first stage regression described in (4). The results of this

regression, omitting the coefficients belonging to the fixed effects, are reported in Table 4.1.

Based on the reported F-statistic, the null hypothesis of irrelevant or weak instruments can be

rejected. For the exclusion restriction, I have to rely on a similar argument as Farre-Mensa et al.

(2020, p. 652) do - who note that the restriction "is likely plausible satisfied [...] - it is difficult to

see how an examiner’s past leniency would affect a startup’s future success directly". Similarly,

it is hard to argue that an examiner’s leniency could directly influence the unemployment rate in

a given county. Regarding the test for the weaker, average monotonicity assumption proposed by

Frandsen et al. (2019) regarding the positive coefficients of the first stage across subsamples, an

obvious group of subsamples to use in this setting are states. I report the results of the state-wise

first stages in Appendix B. The coefficients of all instruments across all states for which patent
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Table 4.1.: First stage results
Leniency 1 1.4348*** Leniency 9 1.5019***

(0.0044) (0.0997)
Leniency 2 1.4707*** Leniency 10 1.5424***

(0.011) (0.1266)
Leniency 3 1.5247*** Leniency 11 1.5483***

(0.0221) (0.1864)
Leniency 4 1.4819*** Leniency 12 1.4211***

(0.0398) (0.2030)
Leniency 5 1.4106*** Leniency 13 2.0411***

(0.0566) (0.3135)
Leniency 6 1.5107*** Leniency 14 0.7242***

(0.0445) (0.2320)
Leniency 7 1.6122*** Leniency 15 1.8004***

(0.0838) (0.1931)
Leniency 8 1.2965*** Leniency 16 0.5788***

(0.0815) (0.1832)
F-statistic 417825 N. of obs. 509,913

Note: The table reports the result of the first stage regression of patent examiner leniencies on the number
of accepted patents in a given county in a given month as described in equation (3.4). Heteroskedasticity
robust standard errors clustered on counties are reported in parentheses (* p<.10, ** p<.05, *** p<.01).

applications are included in the sample are positive. Thereby, I also have a justification for the

average monotonicity assumption. Combining the arguments in this section, I provide evidence

for the validity of the instrumental variable strategy at hand. Having addressed the issue of

validity, I now turn to the second stage results.

4.2. The effect of one additional patent on the unemployment

rate

4.2.1. Baseline results

I estimate equations (3.4) and (3.7), setting the number of lags to control for to 241. These

estimations form my baseline results. I report the cumulative impulse response functions based

on these estimations on the next page. For the recursively computed cumulative impulse response

function of the fixed-effect dynamic panel model (within estimator) in Panel A in Figure 4.1, the

1I justify the choice of lag length in Appendix C.
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Figure 4.1.: The estimated cumulative impulse response functions of unemployment due to a shock in
the form of a successful patent application of a startup. Panel A displays the recursively
computed impulse response function based on the estimation of equation (3.4). The shaded
area displays the 95% confidence interval based on 200 bootstrap samples. Panel B displays
the impulse response function estimated by equation (3.7). The shaded area displays the
95% confidence interval based on heteroskedasticity robust standard errors clustered on
counties.

impulse responses start to become positive and statistically significant at the 95% significance

level at the 23rd month after the initial shock. The impulse response function then remains

positive and statistically significant throughout the estimated horizons and converges towards

the cumulative long-run effect described in (3.2). This effect is estimated at 0.27 percentage
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points and also statistically significant at the 95% significance level.

This vastly differs from the impulse response function estimated by (3.7) displayed in Panel

B. Using local projections, the cumulative impulse response function becomes positive and

statistically significant after 21 months and remains like this until the 31st month after the initial

shock.

There are several problems with the two estimation processes that can explain some of these

differences. Apart from a general difference between recursively calculated and directly estimated

impulse response functions, the panel data setting leads to further problems in the estimation

process. I am discussing these issues in detail in the next section.

Table 4.2.: Second stage results
Horizon
(months)

Recursive IRF
(within estimator) Local Projection

0 0.0040 0.0011
(0.0031) (0.0020)

12 0.0233 0.0052
(0.0334) (0.0068)

24 0.0911** 0.0263***
(0.0495) (0.0077)

36 0.1815*** 0.0117
(0.0643) (0.0090)

48 0.2357*** 0.0014
(0.0748) (0.0078)

60 0.2598*** -0.0057
(0.0796) (0.0065)

long-run 0.2734*** -
(0.0862) -

Note: The table reports the result of the second stage using equations (3.4) and (3.7). For the within
estimator, standard errors based on 200 bootstrap2samples are reported in parentheses (* p<.10, ** p<.05,
*** p<.01). For the local projection, heteroskedasticity robust standard errors clustered on counties are
reported in parentheses (* p<.10, ** p<.05, *** p<.01).

While I need to consider various adjustments of the estimation processes to consolidate the

different shapes of the two impulse response functions forming my baseline results, in particular

regarding the long-run cumulative effect, I can already discuss the short- and medium-run
2I am reporting bootstrap confidence interval due to the transformation of the regression results. The confidence

intervals are calculated using bootstrap standard errors, which are obtained using model-based resampling
of the residuals and recursive calculation of the cumulative impulse response function from the bootstrap
regressions results. The bootstrap algorithm used is the cluster wild bootstrap suggested by Cameron, Gelbach,
and Miller (2008).

18



cumulative effects to some extent. While the immediate and short-run impact of one additional

startup being granted a patent is not statistically significant across specifications, the cumulative

increase of the unemployment rate due to one additional patent is statistically significant in

both specifications after 24 months between 0.02 and 0.09 percentage points. The results in

tabular form are reported in Table 4.2 below. Given the biases discussed above, the estimate of

the recursively computed impulse response function likely represents an upper bound and the

impulse response estimated by local projections a lower bound of the real effect. Looking at the

average county labor force in the sample, this effect implies a cumulative increase of 950 to 4300

additional unemployed over a horizon of two years caused by a startup getting their first patent

approved. In comparison, the findings of Farre-Mensa et al. (2020) imply additional cumulative

16 employees for the average startup in their sample.

This surprisingly large number in my aggregate analysis may be, at least in part, explained by

a weakness in the empirical approach: As Farre-Mensa et al. (2020) discuss, their estimates give

evidence of the importance of the US patent system for some startups to gain access to external

funding, as a successful patent application reveals some information about the innovativeness

of a startup. This channel is of particular importance for startups that are hard to evaluate

for investors. the same group of startups is likely the most affected by the draw of the patent

examiner, i.e. these startups form the majority of the compliers in this setting, as these startups

will exhibit the most leeway in the interpretation of the novelty of their patent application.

Therefore, the LATE of an accepted patent for an individual startup of Farre-Mensa et al. (2020)

is very likely larger than for an average firm or even an average startup. Similarly, the effect of

such a patent on the labor market is also likely to be larger.

Comparing the shape of the impulse response function to the existing literature that relies

on Granger causality gives further insights. Following the summary provided by Fritsch (2008),

the consensus in this literature is an s-shape impact of startups on employment. In the case of

this study, this would imply a negative impact on the unemployment within the first year, an

increase in the unemployment rate between years one to five, before finally going back to negative

afterward. My baseline estimates display a small, positive, although statistically insignificant,

immediate impact. The medium-run effect returns to zero for the local projection estimation,

but not for the dynamic panel and the years afterward are beyond the scope of these estimations.
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However, as discussed above, these differences may be, at least in part, due to the selection of

the sample, i.e. only a subgroup of startups. Not necessarily all startups file for patents and it is

very likely that startups that file and do not file for patents significantly differ.

4.2.2. Adjusted results

The baseline results presented in the previous section suffer from various shortcomings. Foremost,

local projections (LP) and vector autoregressions (VAR) - the dynamic panel specification in

(3.4) corresponds to the first equation in a VAR and the impulse response function is computed

recursively as it is done with a VAR - give approximately similar results of impulse response

functions for short horizons, but may largely differ for long horizons (Plagborg-Møller and Wolf,

2021). Plagborg-Møller and Wolf (2021) in particular discuss that, while VAR and LP estimate

the same impulse responses over short and medium horizons, the differences over long horizons

take the form of a bias-variance trade-off that may explain some of the differences in this case.

Here, the distinction between short and medium horizons and long horizons is defined by the

number of lags: The long horizon is equal to the forecast horizons exceeding the number of lags in

the model as this is the starting point of recursion in the recursive impulse response estimation.

However, due to the dynamic nature of the specifications, further problems arise due to the

Nickell bias (Nickell, 1981) when estimating a fixed-effects specification like (3.4) via OLS. The

direction of the bias depends on the relation between the instrumented patent applications

and the unemployment rate, implying a likely upwards bias of the fixed-effects estimator in

this setting. Therefore, I estimate (3.4) using the Arellano and Bond (1991) or "difference"

generalized method of moments estimator while keeping the size of the instrument matrix in

check by "collapsing" it, as for example suggested by Roodman (2009).

The work on biases in dynamic panel settings has made further advances in recent years, for

example, the sample splitting suggestion by Chen, Chernozhukov, and Fernández-Val (2019),

which I consider as a further adjustment on top of the Arellano and Bond (1991) estimator. I

adapt the relatively easiest form of sample splitting suggested, which here takes the following

form: First, I split the original sample, which I use for the estimation of the Arellano-Bond

estimator and denote as AB, into two subsamples denoted as AB1 and AB2. I then run the

same procedure on the split samples as on the original. This leaves me with three series’ of
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estimates of impulse responses βs: βs
AB, βs

AB1 and βs
AB2. The debiased Arellano-Bond impulse

response at horizon s then is:

βs
DAB = 2βs

AB −
βs
AB1 + βs

AB2

2
(4.1)

Similarly, Teulings and Zubanov (2014) show that local projections in a panel data setting

suffer from a bias that increases with time horizon h. As the distance between t and t + h

increases, more and more shocks are happening within the estimation horizon that are not

included in the estimation. Teulings and Zubanov (2014) show that the direction of this bias is

downwards and can be easily tackled by including shocks happening between t and t+ h into the

regressions. Apart from their suggestion regarding the bias concerning excluded shocks, they

also provide an alternative solution to the Arellano-Bond estimator for the Nickell-bias in local

projections. However, both of these suggestions fall short in my setting: Due to the persistence

of the accepted startup patents, including further shocks leads to unstable solutions due to

multicollinearity. And their suggested solution for the Nickell bias relies on including more lags

than horizons, which then leads to a problematically short time dimension in my setting.

Instead, I am using the small-sample bias correction proposed by Herbst and Johannsen (2020)

on the local projection estimates presented in Table 4.2. Herbst and Johannsen (2020) show

that local projections generally lead to biased estimates of impulse response functions if the time

dimension is smaller than in the original examples by Jordà (2005), who used a minimum of 300

observations in the time dimension for his Monte Carlo simulations. This bias persists in panel

data settings. Herbst and Johannsen (2020) provide a fairly simple to implement bias-corrected

estimator using an adjustment matrix based on the time dimension and the maximum number of

estimated horizons, which can eliminate the bias for short-horizons in their simulations for panel

data. Importantly, their adjustment only tackles the bias in the point estimates, but given this

bias, the associated standard errors are likely also problematic, even when routine robustness

measures, for example for heteroskedasticity, are applied.

I present the results of the adjusted second stage in Table 4.3 and in Figure 4.2. While, again,

the size of the effects differs to some degree, their direction and the shape of the impulse response

functions tend to agree. Most importantly, the adjusted methods shed light on the long-run
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effect: The adjusted methods suggest a long-run effect, respectively an effect after five years, that

is statistically not different from zero. While the adjusted results provide evidence of the biases

discussed in the previous section and their suspected direction, recursive and direct impulse

response functions still do not coincide fully, in particular for short horizons. Generally, one can

note that the impulse responses estimated via Arellano-Bond and calculated recursively are more

volatile than the directly estimated impulse response function.

Table 4.3.: Adjusted second stage results
Horizon
(months)

Recursive IRF
(Arellano-Bond)

Adjusted Local Projection
(Herbst & Johannsen)

Recursive IRF
(Debiased Arellano-Bond)

0 0.0271 0.0096*** -0.0958
(0.0328) (0.0020) (0.0697)

12 0.2453*** 0.0139** 0.0184
(0.0657) (0.0068) (0.1369)

24 0.0177 0.0349*** 0.0241
(0.0514) (0.0077) (0.1381)

36 -0.1852*** 0.0204** -0.2806
(0.0615) (0.0090) (0.1818)

48 -0.2494*** 0.0097 -0.3638**
(0.0630) (0.0078) (0.1571)

60 -0.1514*** 0.0002 0.1427
(0.0551) (0.0065) (0.2330)

long-run 0.0249 - 0.0539
(0.0242) - (0.0310)

Note: The table reports the result of the second stage for the adjusted estimation techniques. For the
recursive impulse response functions, standard errors based on 200 bootstrap samples are reported in
parentheses (* p<.10, ** p<.05, *** p<.01). For the local projection, heteroskedasticity robust standard
errors clustered on counties are reported in parentheses (* p<.10, ** p<.05, *** p<.01).

While both of the recursively calculated cumulative impulse responses imply no statistical

significant immediate impact, one month after the initial shock they both suggest an increase in

the unemployment rate larger than 0.2%, which implies around 9.500 unemployed people caused

by a single patent, the immediate impact estimated via local projections again is smaller, around

0.01%, which implies more than 400 unemployed. However, while estimating larger effects, the

recursively calculated cumulative impulse response functions also are statistically indifferent

from zero earlier: The impulse response function estimated via Arellano-Bond is statistically

not different from zero 22 months after the initial shock, becomes negative and statistically
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Figure 4.2.: The effect of one additional patent on the unemployment rate for the adjusted methods. Panel
A displays the recursively computed impulse response function based on the estimation of
equation (3.4) via the Arellano-Bond estimator. The shaded area displays the 95% confidence
interval based on 200 bootstrap samples. Panel B displays the impulse response function
estimated by equation (3.7) and adjusted with the procedure of Herbst and Johannsen
(2020). The shaded area displays the 95% confidence interval based on heteroskedasticity
robust standard errors clustered on counties. Panel C displays the recursively computed
impulse response function based on the estimation of equation (3.4) via the debiased (Chen
et al., 2019) Arellano-Bond estimator. The shaded area displays the 95% confidence interval
based on 200 bootstrap samples.
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significant at the 5% level 31 months after the initial shock and remains as such for the estimated

60 horizons.

The cumulative impulse response function estimated via debiased Arellano-Bond is positive

and statistically significant for the impact one month after and between months 15 and 20 after

the initial shock. Here, the cumulative impulse responses also turn negative and statistically

significant between month 40 and 50 after the initial shock. In both cases of recursive calculation,

the long-run effect is estimated to be not statistically different from zero.

As for the baseline results, the estimation of impulse response functions via local projections

suggests lower effects of one additional startup successfully filing a patent. While the effect is the

smallest, the cumulative impulse response function remains positive and statistically significant

the longest - until 43 months after the initial shock and then remains statistically not different

from zero for the remainder of the estimated horizons. It is noteworthy that the adjusted local

projection provides evidence of the assumed direction of the bias in the baseline local projection.

Similarly, while the estimates for the cumulative impulse responses of the early horizons are larger

for the adjusted recursive estimations, they also highlight the bias in the baseline estimation for

longer horizons.

Overall, between them, the adjusted methods suggest a maximum cumulative increase in the

unemployment rate 0.42 percentage points or around 18,000 unemployed (17 months after the

initial shock for the debiased Arellano-Bond estimation) and 0.04 percentage points or around

1,800 unemployed (23 months after the initial shock for the adjusted local projection), but all

of the cumulative impulse response functions return to zero. These effects, in particular when

looking at the seemingly again increasing notion of the recursively estimated impulse response

functions towards the end of the estimation horizon, are in line with the "cyclical fluctuations"

of Aghion et al. (2014) or the s-shape impact of innovation on employment of Fritsch (2008).

However, given the surprisingly large immediate impact estimated via (debiased) Arellano-Bond,

one may favor the results obtained through local projections.
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4.3. The effect of one additional patent on income per capita

Throughout this thesis, despite not writing down a formal model or even a social welfare function,

welfare considerations were implicitly part of the analysis. It should be fairly obvious that the

increases in the unemployment rate may constitute (short-run) welfare losses if they are not

compensated for somewhere else. A potential candidate where these compensations could be

found is the mean per capita personal income of counties. The idea behind this argument is fairly

simple: Short-run adjustments of the labor market due to innovation are offset by aggregate

gains of income before both employment and income increase due to innovation in the long run.

The empirical adaption of this idea happens to be less straightforward: Data on mean per

capita personal income for US counties is only available at yearly frequency, diminishing the

precision of the estimation, as it reduces the time series factually to eight years. However, the

results still play an important role in framing the results of the main analysis regarding the

effects on employment. I report results of the two estimation techniques with the highest amount

of attempted bias corrections in Figure 4.3 and in Table D.2 in Appendix D. Despite changing

the frequency of the time dimension, I tried to make the analysis as comparable to the results of

the previous section as possible. Therefore, I controlled for two years of lags (thereby effectively

decreasing the length of the time series to six years) while including the same controls for patents,

the housing market, and the labor market.

It is noteworthy that the only effect in Figure 4.3 estimated to be statistically significant from

zero is the immediate impact in the adjusted local projection estimation, which happens to be

negative. Apart from that, although the point estimates show a small upwards hunch, none of

the effects are statistically different from zero at any standard levels of significance. If one would

take these results at face value, - which, again due to limited observations is questionable, at best

- they suggest temporary welfare losses due to one additional patent being accepted by a lenient

examiner. These temporary losses remain as long as the cumulative change in the unemployment

rate is statistically significant and positive, while the cumulative change of personal income per

capita remains indifferent from zero, so for around one and a half years up to three and a half

years, depending on the specification. While one would expect the cumulative effect on income

to grow over time, it is likely that the effect of a single patent, respectively a single new firm, is
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too small to distinguish it over a longer horizon.

Figure 4.3.: The effect of one additional patent on mean county personal income per capita for the
adjusted methods. Panel A displays the cumulative impulse response function estimated
of the type of Equation (3.7). The shaded area displays the 95% confidence interval based
on heteroskedasticity robust standard errors clustered on counties. Panel B displays the
recursively computed cumulative impulse response function based on the estimation similar
to Equation (3.4) via the debiased Arellano-Bond procedure. The shaded area displays the
95% confidence interval based on 200 bootstrap samples.

Again, it has to be stressed that the analysis focusing on income simply lacks power. Nonetheless,

the results may be interpreted as cause for concern: If the short-run disruptions of the labor

market are not compensated elsewhere in the same time frame, they imply certain welfare losses.
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As I control for the unemployment rate in the regressions underlying the reported cumulative

impulse response function, ceteris paribus they imply no changes in personal income. One would

expect that the successful patent applications make up for any losses due to unemployment over

a longer time horizon. Nonetheless, following the results I presented, the introductory quote

by Stiglitz (2014) holds some truth, insofar as the individual innovative startup gains from the

patent system, while aggregate employment takes a hit in the short run.

On the other hand, one may argue that the losses on the labor market are only temporary,

and - despite the analysis being underpowered - there are no apparent losses regarding personal

income. However, it has to be stressed again that the aggregate perspective I am looking at is

unable to follow individual paths of job and potential income losses and thereby excluding any

distributional effects from the analysis. Before turning to further discussion, in the following

section I am presenting robustness checks concerned with two choices I made regarding the

generation of the data set I used.

4.4. Robustness

4.4.1. Alternative seasonal adjustment

As I mentioned in Section 2.4 while describing the labor market data, respectively in further

detail in Appendix A, I seasonally adjusted the measurements of the unemployment rate and

the labor force. While I tried to do this as similar to the Bureau of Labor Statistics as possible,

the adjustment method chosen constitutes a rather naive method. As an alternative, I consider

an adjustment method based on local regression via locally estimated scatterplot smoothing

(LOESS) (Cleveland, Cleveland, McRae, and Terpenning, 1990), which consists of a sequence of

smoothing operations. Similar to the originally used adjustment method, I use the procedure by

Cleveland et al. (1990) to seasonally decompose both the time series of the unemployment rate

and of the size of the labor force to clean the data of seasonal effects.

For simplicity, I provide only the results of the adjusted local projection for the two different

seasonal adjustment procedures here. Table D.1 summarizing the cumulative impulse response

function using the alternative seasonal adjustment can be found in Appendix D. The results

shown in Figure 4.4 suggest that the procedure used to seasonally adjust the labor market data
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Figure 4.4.: The effect of one additional patent comparing the baseline seasonal adjustment for the labor
market data and an alternative. The shaded areas each display the 95% confidence interval
based on heteroskedasticity robust standard errors clustered on counties.

does not drive the results shown earlier.

4.4.2. Randomizing leniencies within counties

As described in sections 2.5 and 3.1, my first stage regression aggregates the first stage of

Farre-Mensa et al. (2020). In order to aggregate the data, I allocated each patent examiner’s

leniency within each county-month combination to one of 16 leniency instruments. While this

allocation happened randomly, theoretically it is still possible that this allocation leads to some

structure in the data that drives the result.

To check this possibility, I create another 100 random allocations of patent examiner leniencies

to the 16 instrumental variables. Due to the very small deviations, I only report the results of

the adjusted local projection of the two random allocations with the best and the worst first

stage fit in comparison to the original results reported in Table 4.3. I refrain from a graphical

presentation, as it is impossible to highlight the deviations there. The results reported in Table

4.4 suggest that the allocation of patent examiner leniencies to instrumental variables in the

aggregation process does not drive the results.
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Table 4.4.: Alternative leniency-instrumental variable allocation
Horizon
(months)

Adjusted Local Projection
(max. positive deviation)

Adjusted Local Projection
(max. negative deviation)

0 0.0095*** 0.0096***
(0.0020) (0.0020)

12 0.0136** 0.0137**
(0.0069) (0.0069)

24 0.0340*** 0.0347***
(0.0077) (0.0078)

36 0.0202** 0.0204**
(0.0091) (0.0093)

48 0.0097 0.0098
(0.0079) (0.0080)

60 0.0003 0.0004
(0.0064) (0.0065)

Note: The table reports the results of the second stage for two alternative first stage fits. Heteroskedasticity
robust standard errors clustered on counties are reported in parentheses (* p<.10, ** p<.05, *** p<.01).

5. Conclusion

In this thesis, I set out to study the effect of one additional successful patent application in a US

county within a month on the county unemployment rate over time. I found sizeable temporary

increases in the unemployment rate, with maxima between 0.02 p.p. and 0.4 p.p., suggesting

an increase in unemployed between 900 and 18,000 people for the average county. However,

the cumulative effects on the unemployment rates return to zero within the estimated five-year

horizons. In an attempt to study whether these short-run losses are compensated by increases in

the mean county per capita personal income, I find no such effects, albeit in an underpowered

analysis. Despite not being able to look into distributional effects, these results suggest some

short-run welfare losses due to innovation.

Returning to the public policy considerations mentioned in the introduction and the case

against patents Boldrin and Levine (2013) mentioned in the paper, setting my results in the

context of the results of Farre-Mensa et al. (2020), leads to questions regarding the welfare effects

of the US patent system. Certainly, my results cannot be thought of to have answered this

question, but they should be able to raise some concern regarding the welfare-enhancing effect of
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this system. Furthermore, again relating the effect of innovation on the labor market to that

of trade, in particular in the form of the China shock, my results suggest a similar necessity of

similarly induced government transfers due to innovation, but only in the short run. The positive

message in this comparison is that, according to my analysis, labor markets, at least in the form

of the unemployment rate, recover quicker from an innovation shock than Autor et al. (2016)

find for trade shocks.
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A. Seasonal adjustment of labor market

data

The monthly labor market data provided by the US Bureau of Labor Statistics (BLS) on county

levels is not seasonally adjusted and therefore was adjusted by myself. While the BLS does not

provide exact documentation on how they adjusted each specific time series, they do provide

general information on their adjustment procedure describing the use of ARIMA models 1.

Following the information provided, I use a rather naive, additive decomposition model that

takes the following form:

Yt = Tt + St + ϵt

Here, Yt describes the original, unadjusted time series at time t, T represents the trend, S the

seasonal component and ϵ the residual. The trend component is estimated using a convolution

filter. The seasonal component is computed by removing the trend and taking the average for

each period (i.e. in this example for each month across all years in the sample). Finally, the

seasonally adjusted data is derived by subtracting the seasonal component from the original time

series.

B. Average monotonicity

Following the suggestion of Frandsen et al. (2019), I provide results of the first stage regression

across subsamples, in this case across all states. Instead of estimating the second equation in

(3.4) for the full sample leading to the results reported in Table 4.1, I run the same regression for

the counties of each state individually. The results are reported in Table B.1.

1See the online description of the BLS for more information.
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The positive coefficients across all regressions suggest that the weaker, average monotonicity

assumption holds in this setting and the instrumental variable estimates can be causally interpreted

as local average treatment effects.

C. Lag structure and unit root test

I performed various tests with common lag lengths of monthly data. I report the results in Table

C.1. The first four tests were used on fixed-effect estimations of the type of (3.4). The last test

was carried out after estimating (3.4) via the Arellano-Bond procedure.

Table C.1.: Tests for serial correlation
6 lags 12 lags 18 lags 24 lags

Inoue and Solon (2006) LM-test Statistic 1213.18 1209.31 1189.06 1174.19
p-value 0.00 0.00 0.00 0.00

Bias-corrected Born and Breitung (2016) LM-test Statistic 0.84 0.74 1.07 1.23
p-value 0.40 0.46 0.29 0.22

Heteroskedasticity-robust Born and Breitung (2016) HR-test Statistic 0.80 0.39 0.51 1.06
p-value 0.42 0.70 0.61 0.29

Arellano-Bond test for AR(1) Statistic -0.39 -1.85 0.43 1.64
p-value 0.69 0.06 0.66 0.10

Arellano-Bond test for AR(2) Statistic -7.83 0.40 1.73 0.48
p-value 0.00 0.69 0.08 0.63

Note: The table reports the result of various tests for serial correlation in panel settings. For the
Arellano-Bond test for AR(2) the null hypothesis is no serial correlation of order 2, as the errors of the
Arellano-Bond estimation by construction feature serial correlation of order 1. For all other tests the
null hypothesis is no serial correlation of order 1 after controlling for the number of lags identified by the
name of each column in (3.4).

Interestingly, while the Inoue and Solon (2006) test rejects the null of no serial correlation

of order 1 for all specifications, the tests by Born and Breitung (2016) do the exact opposite.

Instead, I turn to the test of Arellano and Bond (1991) in order to make a choice regarding the

lag length: The only specification in which both the test for serial correlation of order 1 in the

fixed-effects model and the test for serial correlation of order 2 after the Arellano-Bond estimation
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do not reject the null on all standard levels of statistical significance is the specification in which

I control for 24 lags.

In Table C.2, I further provide results of unit root tests. Based on the results of these tests,

I reject the existence of unit roots in the panel setting I studied and do not take them into

consideration for any of my estimation procedures.

Table C.2.: Unit root tests
Levin et al. (2002)
adjusted t Harris and Tzavalis (1999) Breitung (2001) Phillips-Perron modified inverse

chi-squared (Choi, 2001)
Statistic -21.07 1.00 -21.03 56.79
p-value 0.00 0.00 0.00 0.00

Note: The table reports the result of various unit root tests. The null hypothesis for each of these tests is
the existence of unit roots in the panel.

D. Additional tables
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Table D.1.: Adjusted second stage results for the alternative seasonal adjustment
Horizon
(months)

Adjusted Local Projection
(alternative seasonal adjustment)

0 0.0088***
(0.0015)

12 0.0129*
(0.0070)

24 0.0334***
(0.0077)

36 0.0196**
(0.0087)

48 0.0093
(0.0077)

60 -0.0010
0.0063

Note: Heteroskedasticity robust standard errors clustered on counties are reported in parentheses (*
p<.10, ** p<.05, ***p<.01).

Table D.2.: Income analysis using the adjusted methods
Horizon
(years) Adjusted Local Projection Recursive IRF

(Debiased Arellano-Bond)
0 -0.0010*** -0.0011

(0.0002) (0.0007)
1 0.0009 -0.0001

(0.0006) (0.0009)
2 -0.0001 -0.0002

(0.0005) (0.0005)
3 -0.0005 0.0001

(0.0004) (0.0002)
4 -0.0006 0.0000

(0.0005) (0.0001)
5 0.0001 -0.0000

(0.0004) (0.0001)

Note: The table reports the result of the second stage for the adjusted estimation techniques regarding
the analysis of mean per capita personal income of counties. For the recursive impulse response functions,
standard errors based on 200 bootstrap samples are reported in parentheses (* p<.10, ** p<.05, ***
p<.01). For the local projection, heteroskedasticity robust standard errors clustered on counties are
reported in parentheses (* p<.10, ** p<.05, *** p<.01).
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