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Abstract

The focus of this thesis lies on the study of Calabi-Yau moduli spaces of string
compactifications. For this purpose results of supersymmetric localisation in
anN = 2 supersymmetric gauge theory in two dimensions, called gauged linear
sigma model (GLSM), are used. This approach allows to examine the mod-
uli space in regions which do not have an obvious geometric interpretation.
Different regions correspond to different vacuum configurations of the GLSM,
termed phases. In these phases the low energy physics of the GLSM is often
described by models which exhibit a so-called hybrid or pseudo-hybrid be-
haviour. The analysis of these areas in the moduli space is not only of interest
for physics, but also for mathematics, especially for the branch of enumerative
geometry.

We will first review concepts from string theory and string compactifica-
tions. Then we will introduce extended supersymmetry in two dimension and
define GLSMs. We summarize the supersymmetric localisation results relevant
for this thesis. Abelian one-parameter GLSMs are discussed in detail, because
they play the main role in this thesis. We will use the introduced concepts
to evaluate the sphere partition function in various phases of the abelian one-
parameter GLSMs. Thereby we find a general structure, valid in all phases of
the abelian one-parameter GLSMs. We will describe the building blocks enter-
ing the general form of the sphere partition function and draw connections to
results known in physics and mathematics. The GLSM and supersymmetric
localisation also provide a way to study questions related to the swampland
program. After discussing swampland conjectures relevant for this thesis, we
show that the refined swampland distance conjecture holds for Kaluza-Klein
states in pseudo-hybrid phases of abelian one-parameter GLSMs. In the last
part of the thesis we propose a relation between the swampland distance con-
jecture and the de Sitter conjectures. This relation allows to motivate a lower
bound on a parameter appearing in the swampland distance conjecture.
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Zusammenfassung

Der Fokus dieser Doktorarbeit liegt in der Untersuchung von Parameterräumen
von Calabi-Yau Kompaktifizierungen. Um diese Räume zu studieren, werden
Resultate aus der supersymmetrischen Lokalisierung von N = 2 supersym-
metrischen Eichtheorien in zwei Dimensionen verwendet. Im Speziellen wur-
den geeichte lineare Sigmamodelle (“Gauged Linear Sigma Models”-GLSMs)
studiert. Der Zugang über GLSMs erlaubt die Untersuchung der Param-
eterräume in Regionen, wo keine offensichtliche geometrische Interpretation
vorhanden ist. Unterschiedliche Regionen in den Parameterräumen korre-
spondieren zu unterschiedlichen Vakuum-Konfigurationen des GLSMs. Diese
Konfigurationen werden Phasen genannt. Oft sind in solchen Phasen die
Niedrigenergiebeschreibungen des GLSM durch sogenannt Hybrid- oder Pseu-
dohybridmodelle gegeben. Die Untersuchung dieser Regionen ist nicht nur
vom physikalischem Standpunkt interessant, sondern auch vom mathematis-
chen, vor allem für das Teilgebiet der enumerativen Geometrie.

Die Arbeit beginnt mit einer Wiederholung der Grundlagen der Stringtheo-
rie und der Kompaktifizierung. Nach dieser Einführung wird die erweiterte Su-
persymmetrie in zwei Dimensionen erläutert und GLSMs werden definiert. Die
für diese Arbeit relevanten Resultate der supersymmetrischen Lokalisierung
werden zusammengefasst. Der Klasse der abelschen Einparameter-GLSMs ist
ein eigenes Kapitel gewidmet, da auf diesen das Hauptaugenmerk der Dok-
torarbeit liegt. Die eingeführten Grundlagen werden dann dazu verwendet,
um die sogenannt Sphere Partition Function in den verschiedenen Phasen
der abelschen Einparameter-GLSMs auszuwerten. Es wird gezeigt, dass die
Sphere Partition Function eine Struktur annimmt welche in allen Phasen gültig
ist. Diese spezielle Form besteht aus einzelnen Teilbeiträgen, welche genauer
beschrieben werden und in Verbindung mit Resultaten aus der Mathematik ge-
bracht werden. Der Zugang über GLSMs und supersymmetrische Lokalisierung
erlaubt es auch Fragen im Rahmen des Swampland Programmes zu unter-
suchen. Dazu werden die Swampland Vermutungen (Conjectures) diskutiert,
welche für die Arbeit von Bedeutung sind. Danach wird gezeigt, dass die Re-
fined Swampland Distance Conjecture für Kaluza-Klein Zustände in pseudo-
hybrid Phasen der abelschen ein-Parameter GLSMs erfüllt ist. Im letzten Teil
der Doktorarbeit wird ein möglicher Zusammenhang zwischen der Swampland
Distance Conjecture und der de Sitter Conjecture motiviert. Dieser Zusam-
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Zusammenfassung

menhang kann verwendet werden, um eine untere Grenze für einen Parameter
in der Swampland Distance Conjecture zu erhalten.
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Chapter 1

Introduction

String theory was first invented to describe phenomena related to strong in-
teractions, but was soon found to be a valuable candidate for an unification
of quantum field theories of particle physics and gravity. In order to achieve a
consistent quantisation, superstring theory requires 10 spacetime dimensions.
To extract 4 dimensional physics, a concept called compactification is applied.
In compactification the extra dimensions are “curled up” on an internal space.
These internal spaces have to have certain properties dictated by current ob-
servable physics and expected extensions thereof. Candidates for such internal
spaces are Calabi-Yau manifolds. Nowadays experiments do not reach suffi-
cient energy scales to resolve the presence of these internal dimensions. There
is not just a single choice for the internal space and the set of possible spaces
is called the string landscape. In view of this obstacle, the question if string
theory describes our universe is still open and highly debated. An interesting
approach to those phenomena is given by the swampland program. This ap-
proach uses string theory constructions to derive properties which an effective
theory should have in order to have an ultra-violet completion to a theory of
quantum gravity.

However, string theory is much more than a candidate for unification, es-
pecially regarding the connections to mathematics. A prime example is that
it lead to the discovery of mirror symmetry. Today there are many definitions
of mirror symmetry (see e.g. [1, 2, 3, 4]), but maybe the best known is the
formulation in terms of a duality between type IIA string theory on a Calabi-
Yau threefold and type IIB string theory on the mirror Calabi-Yau threefold.
Mirror symmetry also provided insights into enumerative geometry which were
set off by the work [5].

In light of the insights it has delivered, string theory is a valuable tool to
study mathematical questions. This thesis studies such a topic at the interface
of mathematics and physics: the Calabi-Yau moduli spaces.

These moduli spaces arise in the process of compactification and param-
eterize the families of worldsheet conformal field theories (CFTs). Different
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1. Introduction

loci in the moduli spaces correspond to a different worldsheet CFT realiza-
tions. The best studied regions in these moduli spaces are loci where one has
a geometric intuition of the spacetime physics. At these loci of the moduli
space tools from algebraic geometry can typically be applied. Further, the
low-energy physics is given in terms of a non-linear sigma model. At these loci
the parameters of the CFT correspond to the moduli of the Calabi-Yau, which
parameterize the size and the shape of the manifold. In order to move away
from these loci one has to take into account instanton corrections and these
corrections make an analysis hard. In addition, the concrete CFT realization
at a specific locus is often not known.

A tool for studying a certain subset of the moduli space, namely the stringy
Kähler moduli spaceMK , is given by the gauged linear sigma model (GLSM)
[6]. The GLSM provides a common UV description for the CFTs encountered
in MK . In the GLSM the parameters are realized as certain coupling pa-
rameters. Different values of these parameters result in different low-energy
configurations of the GLSM, called phases. The low energy effective theory
given in a phase corresponds to the worldsheet CFT in this locus of the moduli
space. Correlators and partition functions of the GLSM correspond to geomet-
ric quantities on the moduli space. The difficulty of instanton-corrections in
the calculation of these quantities is overcome by techniques from supersym-
metric localisation in the GLSM. One important result from these techniques,
which takes a main role in this thesis, is the so called sphere partition function
[7, 8].

One main result of this thesis is, that we were able to show for the class
of one-parameter abelian and certain two parameter abelian GLSMs that the
sphere partition function evaluated in a specific phase takes a specific form
valid in certain limiting regions. A preprint of these results is given by

[9] : D. Erkinger and J. Knapp, Sphere partition function of Calabi-Yau
GLSMs, 2008.03089

and these are further discussed in Chapter 6.
Many of the swampland conjectures are motivated in the geometric regimes.

The GLSM and the sphere partition function provide a way to study swamp-
land conjectures away from the geometric regimes. In this thesis we studied
the refined swampland distance conjecture in so called pseudo-hybrid phases
of certain one-parameter GLSMs. The outcome of this analysis is published in

[10] : D. Erkinger and J. Knapp, Refined swampland distance conjecture and
exotic hybrid Calabi-Yaus, JHEP 07 (2019) 029 [1905.05225]

and more details can be found in Chapter 8.
In the course of this thesis we further draw a connection between the

swampland distance conjecture and the de Sitter conjectures. This was done by

2



1.1. Outline of this Thesis

considering various examples of string compactifications and no-go theorems
in classical de Sitter supergravity solutions. The results appeared in

[11] : D. Andriot, N. Cribiori and D. Erkinger, The web of swampland
conjectures and the TCC bound, JHEP 07 (2020) 162 [2004.00030]

and are summarized in Chapter 9.

1.1 Outline of this Thesis

In Chapter 2 we introduce basic concepts of string theory. The focus is to show
the necessity of extra dimensions, due to the presence of the so called confor-
mal anomaly. In Chapter 3 we describe the concept of compactification and
introduce Calabi-Yau spaces and their parameter spaces. We discuss extended
supersymmetry in 2 dimensions in Chapter 4 and introduce the GLSM. We
further provide some background on supersymmetric localisation. Chapter 5 is
devoted to abelian one-parameter GLSMs. These models are the most studied
objects in this thesis. In Chapter 6 we show that the sphere partition func-
tion of abelian one-parameter GLSMs has a universal structure in the different
phases of the GLSMs. After the introduction of some swampland conjectures
in Chapter 7 the sphere partition function in GLSMs with a pseudo-hybrid
phase is used in Chapter 8 to show that the refined swampland distance con-
jecture holds for Kaluza-Klein states in these models. Chapter 9 motivates on
an example basis a relation between the swampland distance conjecture and
the de Sitter conjectures. Thereby a lower bound on the order one parameter
appearing in the swampland distance conjecture is produced.
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Chapter 2

Basics of String Theory

In this chapter we want to introduce the basic concepts of string theory. The
focus lies not on the spectrum of the theory, but on worldsheet features and the
reason why we encounter extra dimensions in string theory. We will briefly talk
about the bosonic string and move then on to superstring theory. Afterwards
we perform the path integral which gives us the gauged fixed superstring action.
We introduce certain concepts of superconformal field theory, which will be
used to see that only in certain dimensions the superstring is anomaly free.
Most of the following material is taken from [12] and [13]. Our discussion will
be focused on key concepts and we will not give detailed calculations. These
can be found in the mentioned literature. We will stick with the notation of
[12] so the interested reader can easily look up further details.

2.1 The Classic Superstring

The basic idea of string theory is to replace the point particle by an extended
one-dimensional object, the string. As a consequence the worldline of a particle
becomes the worldsheet Σ of a string. Similar to the case of the particle, where
the action is given by the length of the worldline in d dimensional Minkowski
space, the action of the string is given by the area of Σ

SNG = −T
∫

Σ
dA,

= −T
∫

Σ
d2σ

(
−det

(
∂Xµ

∂σα
∂Xν

∂σβ
ηµν

)) 1
2

, (2.1)

where σα = (τ, σ) are coordinates on the worldsheet, with τi < τ < τf and
0 ≤ σ ≤ l. The functions Xµ(τ, σ), µ = 0, 1, . . . , d − 1 are embedding the
worldsheet into d dimensional Minkowski space, with Minkowski metric ηµν =
diag(−1, 1, . . . , 1), which is usually called spacetime. The expression

∂Xµ

∂σα
∂Xν

∂σβ
ηµν , (2.2)

5



2. Basics of String Theory

is the induced, or pulled-back, metric on the worldsheet from the embedding
space. The subscript in SNG stands for Nambu-Goto who studied this action
first. T is called the string tension and is of mass dimension two [T ] = [Mass]2.
Related to the tension is the parameter α′:

α′ =
1

2πT
, (2.3)

with [α′] = [Length]2. Further derived quantities are the string length scale:

ls = 2π
√
α′, (2.4)

and the string mass scale:

Ms =
(
α′
)− 1

2 . (2.5)

In string theory we have two possibilities regarding the boundary behaviour of
the worldsheet. We can either study worldsheets with boundaries, which gives
open strings or worldsheets with no boundaries which results in closed strings.
We will focus on the closed strings, because open strings play no role in this
thesis. For closed strings we have:

Xµ(τ, σ + l) = Xµ(τ, σ). (2.6)

A classically equivalent action to SNG is given by the Polyakov action:

SP = −T
2

∫
Σ

d2σ
√
−hhαβ∂αXµ∂βX

νηµν . (2.7)

In this action an additional field hαβ(τ, σ) is introduced, with h = det(hαβ).
hαβ(τ, σ) is a metric on the worldsheet with signature (−,+). SP is the ac-
tion of d massless bosons coupled to gravity in two dimensions. The local
supersymmetric extension of (2.7) is given by:

S = − 1

8π

∫
d2σe

(
2

α′
hαβ∂αX

µ∂βXµ + 2iψ
µ
ρα∂αψµ

−iχαρβραψµ
(√

2

α′
∂βXµ −

i

4
χβψµ

))
, (2.8)

where the ψµ are the superpartners of theXµ. Further ρβ are the 2-dimensional
Dirac matrices in curved space and χα is the gravitino.

Symmetries of the Action

The action (2.8) has a huge number of local symmetries. Next we state these
symmetries and use the convention that not stated fields are invariant under

6



2.1. The Classic Superstring

the respective transformation. We begin with local supersymmetry:√
2

α′
δεX

µ = iεψµ, δεψ
µ =

1

2
ρα

(√
2

α′
∂αX

µ − i

2
χαψ

µ

)
ε,

δεe
a
α =

i

2
ερaχα, δεχα = 2Dαε, (2.9)

with ε = ε(τ, σ) a Majorana spinor and Dα is a covariant derivative with
torsion. The action is also invariant under Weyl transformations:

δΛψ
µ = −1

2
Λψµ, δΛe

a
α = Λeaα, δΛχα =

1

2
Λχα, (2.10)

with Λ = Λ(τ, σ). There is also invariance with respect to super-Weyl trans-
formations:

δηχα = ραη, (2.11)

with η = η(τ, σ) a Majorana spinor. A further symmetry is local Lorentz
invariance in two dimensions given by

δlψ
µ = −1

2
lρψµ, δle

a
α = lεabe

b
α, δlχα = −1

2
lρχα, (2.12)

with l = l(τ, σ) as parameter. Of course reparameterizations are also part of
the symmetries:

δξX
µ = −ξβ∂βXµ, δξψ

µ = −ξβ∂βψµ, (2.13)

δξe
a
α = −ξβ∂βeaα − eaβ∂αξβ, δξχα = −ξβ∂βχα − χβ∂αξβ, (2.14)

and ξ = ξ(τ, σ). These local symmetries are accompanied by global spacetime
Poincaré transformations.

Superconformal Gauge

It is always possible to choose locally the so-called superconformal gauge:

eaα = eφδaα, χα = ραλ, (2.15)

by application of a supersymmetry transformation, a reparameterization and
a local Lorentz transformations. λ is a spinor. Classically one can completely
gauge away the above degrees of freedom by application of a Weyl and super-
Weyl rescaling, but these symmetries are anomalous in the quantum theory
and can only be restored under certain conditions as we will discuss in Section
2.3. Another question is if the superconformal gauge can be reached globally.
If yes there exists a globally defined spinor ε and a vector field ξα with

(Πε)α =
1

2
ρβραDβε = τα,

(Pξ)αβ = ∇αξβ +∇βξα −∇γξγhαβ = tαβ,
(2.16)

7



2. Basics of String Theory

where tαβ is an arbitrary tensor and τα a spin 3/2 spinor, with the properties:

ρατα = 0, tαβ = tβα, tββ = 0. (2.17)

These conditions are equivalent to the absence of zero modes of the adjoint
operators Π† and P †, with respect to the metric on the space of infinitesimal
deformations. The zero modes are called moduli and supermoduli:

# moduli = dim kerP †, (2.18)

# supermoduli = dim ker Π†. (2.19)

The zero modes of P and Π are called conformal Killing vectors and conformal
Killing spinors. They are a sign that the gauge fixing is not complete.

Equations of Motion and Conserved Charges

We will work in the superconformal gauge (2.15), where the action simplifies
to

S = − 1

8π

∫
d2σ

(
2

α′
∂αX

µ∂αXµ + 2iψ
µ
ρα∂αψµ

)
. (2.20)

This action is still invariant under local reparameterizations and supersymme-
try transformations with parameters

Pξ = 0, Πε = 0, (2.21)

where P and Π are given in (2.16). The equations of motion are given by

∂α∂
αXµ = 0, (2.22)

ρα∂αψ
µ = 0. (2.23)

Although we have fixed eaα and χα, we still need to take into account their equa-
tions of motion, evaluated in the chosen gauge, as constraints. The variation
of the action with respect to eaα gives the energy-momentum tensor:

Tαβ =
2π

e

δS

δeβa
eαa. (2.24)

By varying the action with respect to χα we get the supercurrent:

TFα =
2π

e

δS

iδχα
, (2.25)

where F is just an additional label. The constraints are given by:

Tαβ = 0, TFα = 0. (2.26)

8



2.1. The Classic Superstring

They also fulfil

Tαα = 0, ραTFα = 0. (2.27)

It is convenient to change worldsheet coordinates to light-cone coordinates
given by:

σ± = τ ± σ, (2.28)

with

∂+ =
∂

∂σ+
=

1

2

(
∂

∂τ
+

∂

∂σ

)
, ∂− =

∂

∂σ−
=

1

2

(
∂

∂τ
− ∂

∂σ

)
. (2.29)

The equations of motion simplify to

∂+∂−X
µ = 0, (2.30)

∂−ψ
µ
+ = ∂+ψ

µ
− = 0. (2.31)

Spinor components are denoted by ±. We see that we can split the Xµ into a
left- and right-moving part

Xµ(σ±) = Xµ
L(σ+) +Xµ

R(σ−), (2.32)

and also

ψµ+ = ψµ+(σ+), ψµ− = ψµ−(σ−). (2.33)

To solve the above equations we must specify boundary conditions. We are
interested in the closed string and so we additionally demand

Xµ(τ, σ) = Xµ(τ, σ + l). (2.34)

The fermions allow for periodic and anti-periodic boundary conditions, which
can be imposed independently on both spinor components:

ψ+(τ, σ) = ±ψµ+(τ, σ + l), ψ−(τ, σ) = ±ψµ−(τ, σ + l). (2.35)

Periodic boundary conditions are called Ramond (R) boundary conditions and
anti-periodic ones are called Neveu-Schwarz (NS). The action (2.20) takes the
following form in light-cone coordinates:

S =
1

2π

∫
d2σ

(
2

α′
∂+X · ∂−X + i (ψ+ · ∂−ψ+ + ψ− · ∂+ψ−)

)
. (2.36)

Let us also study (2.24) and (2.25) in light-cone coordinates. One finds for the
energy-momentum tensor:

T++ = − 1

α′
∂+X

µ∂+Xµ −
i

2
ψµ+∂+ψ+µ,

T−− = − 1

α′
∂−X

µ∂−Xµ −
i

2
ψµ−∂−ψ−µ,

T+− = T−+ = 0.

(2.37)

9



2. Basics of String Theory

For the supercurrent, as consequence of (2.27), only two of the four components
are non-vanishing and these are denoted by:

TF± = −1

2

√
2

α′
ψµ±∂±Xµ. (2.38)

In the coordinates σ± the conservation of the energy-momentum current and
the supercurrent is given by:

∂−T++ = ∂+T−− = 0, (2.39)
∂−TF+ = ∂+TF− = 0. (2.40)

We see the appearance of an infinite number of conserved charges, because
(super)currents of the form

f(σ±)T±±, ε±(σ±)TF±, (2.41)

are also conserved. By choosing a basis of functions respecting the peri-
odic boundary conditions of the system we get the following conserved (su-
per)charges at τ = 0:

Ln = − l

4π2

∫ l

0
dσ−

2π
l
inσT−−(σ), (2.42)

Gr = − 1

π

√
l

2π

∫ l

0
dσe−

2π
l
irσTF−(σ). (2.43)

The Dirac brackets1 of these charges give the centerless super-Virasoro algebra:

{Lm, Ln} = −i(m− n)Lm+n,

{Lm, Gr} = −i
(

1

2
m− r

)
Gm+r,

{Gr, Gs} = −2iLr+s.

(2.44)

We only gave the right-moving part, but there is also a similar left-moving
part, which can be obtained by simply replacing the oscillators by the bared
oscillators. The algebra (2.44) is modified in the process of quantization. This
gives rise to the so-called Weyl anomaly. This is best understood by discussing
super-conformal field theories, which will be done in Section 2.3, but before
we will use the Faddeev-Popov method to obtain the gauge fixed action.

1It is necessary to use Dirac brackets, because second class constraints appear.
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2.2. Quantization of the Superstring

2.2 Quantization of the Superstring

We will right away discuss path integral quantization. Our goal is to obtain the
gauge fixed action. There are other ways to quantize the superstring, namely
canonical quantization and light-cone quantization. As usual in the process of
canonical quantization one replaces Poisson-brackets by commutators. In ad-
dition, the quantum analogues of the constraints (2.26) have to be imposed on
the spectrum. In light-cone quantization one chooses a specific gauge, in which
the constraints are automatically fulfilled. For details on these approaches see
[12].

Path Integral Quantization

We start from the path integral and use the Faddeev-Popov method to gauge
fix the action. We start from the path integral of the form

Z =

∫
DhDχDXDΨeiS , (2.45)

where S is given by (2.8). The above expression should be taken with a grain of
salt, because it is plagued by an overcounting of gauge equivalent functions. We
do not want to go into details, but heuristically the procedure works as follows.
The general idea is to consider a fixed configuration ĥαβ and χ̂α and integrate
over the gauge parameters and divide by the volume of the gauge group. In this
process a change of variables occurs and as for ordinary integrals determinants
of Jacobians appear. These determinants can be written as functional integrals
over ghost-fields. After this change of variables the integral over the symmetry
parameters factors out2

and can be taken out of the path integral. For the superstring one gets the
following ghost action

Sgh = − i

2π

∫
dσ2

√
−ĥ
{
bαβ∇̂αcβ + β

α∇̂αγ

− iχ̂α
[
cβ∇̂ββα +

3

2
ββ∇̂αcβ −

i

4
bαβρβγ

]}
. (2.46)

∇̂α is the torsion-free connection with respect to ĥαβ and in the superconformal
gauge the part proportional to χ̂α is absent. bα,β , cα are anti-commuting spin
2 and spin 1 fields and βα, γ are commuting spin 3/2 and spin 1/2 fields
respectively. bαβ is symmetric traceless and βα is ρ traceless. The ghost
system (2.46) is also a superconformal field theory and we will discuss in the
next section the ghost contribution to the super-Virasoro algebra and anomaly
cancelation in the critical dimension.

2This is true as long as we do not encounter anomalies. See [12, 13] for comments on
this issue.
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2. Basics of String Theory

2.3 N = 1 Superconformal Symmetry

In the previous sections we discussed the fermionic string and the correspond-
ing ghost fields. All of these theories are theories with a N = 1 superconformal
symmetry. We will call such theories N = 1 SCFTs and discuss some general
aspects of these theories. We consider a theory in the complex plane, with
(anti-)holomorphic coordinate z (z̄). We are interested in a supersymmetric
theory and this is most easily described in superspace. We are considering
N = 1 superspace and extend the bosonic coordinate z by a Grassmann one
θ:

z = (z, θ)
(
z̄ = (z̄, θ̄)

)
, (2.47)

with the property θ2
(
θ̄2
)

= 0. In Section 4.1 we will introduce N = 2 super-
space. The Grassmann property results in a finite Taylor series for superfields:

Φ(z, z̄) = φ0(z, z̄) + θφ1(z, z̄) + θ̄φ1(z, z̄) + θθ̄φ2(z, z̄). (2.48)

We introduce super-derivatives

D = ∂θ + θ∂z, D = ∂θ̄ + θ̄∂z̄. (2.49)

From now one we focus on the holomorphic part (z = (z, θ)). The anti-
holomorphic part follows by a similar discussion. If we impose DΦ = 0 on a
general superfield (2.48) we obtain a chiral superfield

Φ(z) = φ0(z) + θφ1(z). (2.50)

Superconformal transformations in superspace are given by the following trans-
formations:

z = (z, θ)→ z′ = (z′(z, θ), θ′(z, θ)), (2.51)

such that

D =
(
Dθ′

)
D′. (2.52)

The transformation behaviour (2.52) restricts the possible transformations and
we refer to [12] were the form of the superconformal transformations is dis-
cussed in more detail3.

The counterpart of conformal chiral primary fields are holomorphic super-
conformal primary fields, which transform under a superconfromal transfor-
mation by:

Φ(z) =
(
Dθ′

)2h
Φ′(z′). (2.53)

3See also [14] where the form of superconformal transformations is obtained by starting
from a supersymmetric line element.
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2.3. N = 1 Superconformal Symmetry

In the next step we introduce an infinite set of generators, which encode the
infinitesimal superconformal transformations on the component fields (2.50):

δξφ(z) = − [Tζ , φ(z)] ,

δεφ(z) = − [TFε , φ(z)] ,
(2.54)

where ξ(z) parameterises conformal transformations and ε(z) supersymmetry
transformations. The generators are given by

Tξ =

∮
dz

2πi
ξ(z)T (z),

TFε =

∮
dz

2πi
ε(z)TF (z),

(2.55)

where T (z) is the conserved current associated to conformal transformations
(energy-momentum tensor) and TF is the conserved current under supersym-
metry transformations (supercurrent). We next consider the quantum theory
and we use operator product expansions (OPEs) to study the behaviour of the
quantum superconformal theory. Of central interest are the following OPEs,
which encode the superconformal algebra. In our case we only have one su-
percurrent and in this case we encounter the N = 1 superconformal algebra:

T (z)T (w) =
c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . ,

T (z)TF (w) =
3
2TF (w)

(z − w)2
+
∂TF (w)

z − w
+ . . . ,

TF (z)TF (w) =
c
6

(z − w)3
+

1
2T (w)

(z − w)
+ · · · ,

(2.56)

where c is the central charge. We expand the conserved currents in modes:

T (z) =
∑
n∈Z

z−n−2Ln, Ln =

∮
dz

2πi
zn+1T (z),

TF (z) =
1

2

∑
r∈Z+a

z−
3
2
−rGr, Gr = 2

∮
dz

2πi
TF (z)zr+

1
2 .

(2.57)

The generators fulfil the following Hermiticity relations:

L†n = L−n, G†r = G−r. (2.58)

In (2.57) the parameter a distinguishes between R (a = 0) and NS (a = 1
2)

sector. Let us mention that on the complex plane the situation of periodic
(NS sector) and anti-periodic (R sector) fermions is reversed compared to the
situation on the cylinder in Section 2.1. We can now use (2.56) to write down

13



2. Basics of String Theory

the algebra of the modes, which results in the N = 1 super-Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12

(
m3 −m

)
δm+n,

[Lm, Gr] =

(
1

2
m− r

)
Gm+r,

{Gr, Gs} = 2Lr+s +
c

3

(
r2 − 1

4

)
δr+s.

(2.59)

The Super-Virasoro Algebra of the Superstring

In (2.44) we obtained the Poisson brackets of the classical conserved charges in
the superstring. In the previous section we gave in (2.59) the quantum result
in a general N = 1 superconformal theory. Let us now comment on the central
charge of the superstring.

In addition to the fields Xµ and ψµ we also have the ghost fields from the
gauge fixing (2.46). To obtain c in these theories we would have to calculate
the OPE of the energy-momentum tensor T (z) with itself. We skip this and
refer to [12] for details. The results for the central charges are

Xµ, ψµ b, c β, γ

c 3
2d −26 11

, (2.60)

where d is the spacetime dimension. We can now combine the results of (2.60)
and find that for a vanishing central charge we need

d = 10. (2.61)

A discussion why the vanishing of the central charges implies the absence of
the Weyl anomaly can be found in [13, 12] and [15]. Let us also mention
that not all contributions to c = 15, which cancel the contribution from the
ghost systems, must be a free field theory. If we are interested in describing a
theory with a 4-dimensional spacetime, we get a contribution of c = 6 from the
Xµ, ψµ system and have a leftover c = 9 which can be described by a different
superconformal theory. We will comment on this in the next section.
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Chapter 3

String Compactifications and
Calabi-Yau Manifolds

In Section 2.3 we saw that anomaly freedom of superstring theory requires to
study a superconformal field theory with central charge c = 15. In order to
make contact with currently observable physics in four spacetime dimensions
we split this into an external theory with c = 6 and an internal theory with
c = 9. The choice of the internal theory influences the physics observable in
the external theory. The process of obtaining four dimensional physics out of
string theory is called compactification.

The choice of the external theory is more or less fixed, because we want
a theory which describes four dimensional Minkowski space. This can be
achieved by using the free theory of Xµ, ψµ, µ = 0, . . . , 3.

In the choice of the internal theory there is no such principle which would
single out a specific theory. Only certain requirements on the observable space-
time theory reduce the set of possible theories. A requirement is N = 1 su-
persymmetry. It was show in e.g. [16] that this requires N = 2 worldsheet
supersymmetry1.

A detailed discussion on the relation between properties of the spacetime
theory and the internal conformal field theory can be found in [12].

A possible choice is to take for the c = 9 theory the same free theory as for
the c = 6 part. This gives a theory in 10 dimensional Minkowski spacetime.
The six extra dimensions are taken to be a compact space, with typical length
scale which is small compared to current observable limits. The internal space
is restricted by consistency conditions, which lead to Calabi-Yau manifolds.
We will give more details on this procedure below.

It is not necessary to choose a compactification which has an obvious ge-
ometric interpretation as in the Calabi-Yau setup. A possibility would be
N = 2 supersymmetric Landau-Ginzburg models, which have at a first glance
no geometrical interpretation. However we will see in Section 5.2 that the

1We will denote worlsheet supersymmetry by N and target space supersymmetry by N .
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3. String Compactifications and Calabi-Yau Manifolds

Landau-Ginzburg and Calabi-Yau setting occure as low energy descriptions of
one model.

A more detailed discussion of the situation can be found in section 1.3 of
[17].

3.1 N = 2 Superconformal Theories

Let us here discuss the features of a theory with N = 2 superconformal sym-
metry in 2 dimensions. As mentioned, the internal CFT needs this symmetry
in order to obtain spacetime supersymmetry, but let us mention that in con-
trast to the N = 1 superconformal symmetry, discussed in Section 2.3, this
symmetry is not the remnant of a local symmetry. Similar to Section 2.3
we call such theories N = 2 SCFTs. Our discussion follows [12, 18, 17, 19].
Remember that two dimensional theories have a holomorphic and an anti-
holomorphic sector. The subsequently described structure can appear in ei-
ther of these sectors. Therefore it is more convenient to denote such theories
by N = (2, 2), (0, 2), (2, 0), depending in which sector we find the N = 2 su-
perconformal symmetry. We focus on the holomorphic part and denote the
anti-holomorphic quantities by bared operators.

An N = 2 SCFT has, compared to an N = 1 SCFT, a second supercurrent
T−F and a conserved U(1) current J(z). We will focus on an algebraic approach.
Extended superspace will be introduced in Section 4.1. Let us start from the
operator product expansions of the conserved currents:

T (z)T (w) =
c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . ,

T (z)T±F (w) =
3
2T
±
F (w)

(z − w)2
+
∂T±F (w)

z − w
+ . . . ,

T (z)J(w) =
J(w)

(z − w)2
+
∂J(w)

z − w
+ . . . ,

J(z)J(w) =
c
3

(z − w)2
+ . . . ,

J(z)T±F (w) = ±
T±F (w)

(z − w)
+ . . . ,

T+
F (z)T−F (w) =

2c
3

(z − w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂J(w)

z − w
+ . . . ,

T±F (z)T±F (w) = finite.

(3.1)

AnN = 1 superconformal sub-algebra is spanned by T and TF = 1
2
√

2

(
T+
F + T−F

)
.

We can again perform a mode expansion and obtain the N = 2 super-Virasoro
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3.1. N = 2 Superconformal Theories

algebra

[Lm, Ln] = (m− n)Lm+n +
c

12

(
m3 −m

)
δm+n,[

Lm, G
±
n±a
]

=

(
1

2
m− n∓ a

)
G±m+n+±a,

[Lm, Jn] = −nJm+n,

[Jm, Jn] =
c

3
mδm+n,[

Jm, G
±
n±a
]

= ±G±m+n±a,{
G+
m+a, G

−
n−a
}

= 2Lm+n + (m− n+ 2a)Jm+n

+
c

3

[
(m+ a)2 − 1

4

]
δm+n,{

G+
m+a, G

+
n+a

}
=
{
G−m−a, G

−
n−a
}

= 0,

(3.2)

where Jn are the modes of J(z) and G±n are the modes of T±(z). The modes
fulfil the following Hermiticity conditions

L†n = L−n,
(
G+
n+a

)†
= G−n−n−a, J†n = J−n. (3.3)

The real parameter a encodes the boundary condition on fermions:

a ∈

{
Z R-sector, anti-periodic,
Z + 1

2 NS-sector, periodic,
(3.4)

and lies in the range 0 ≤ a < 1, as algebras for a and a+1 are isomorphic. We
see from (3.2) that L0 and J0 form the maximal commuting subalgebra and so
each state |φ〉 in the Hilbert space is characterised by two quantum numbers
(h, q):

L0|φ〉 = h|φ〉, J0|φ〉 = q|φ〉. (3.5)

To construct a highest weight representation we further separate the generators
into raising and lowering operators. The lowering operators are given by

Ln, Jm, G
±
r , n,m, r > 0. (3.6)

A highest weight state |φ〉 has the property

G±r |φ〉 = Lm|φ〉 = Jn|φ〉 = 0 n,m, r > 0.

L0|φ〉 = hφ|φ〉, J0|φ〉 = qφ|φ〉.
(3.7)

By the operator-state correspondence to any highest weight state (3.7) corre-
sponds a so-called primary field φ(h,q). If we focus on the NS sector and require
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3. String Compactifications and Calabi-Yau Manifolds

unitarity of the representation we find that:

0 ≤
∣∣∣G∓−1/2|φ〉

∣∣∣2 +
∣∣∣G±1/2|φ〉∣∣∣2 = 〈φ|

{
G∓−1/2, G

±
1/2

}
|φ〉,

= 2

(
h± 1

2
q

)
〈φ|φ〉,

⇒h ≥ 1

2
|q|.

(3.8)

Of particular interest are states which saturate the bound (3.8). The corre-
sponding fields are called:

h =

{
q
2 φ( q

2
,q) chiral-primary,

− q
2 φ(− q

2
,q) anti-chiral-primary.

(3.9)

For a chiral-primary state |φ〉 we further find

0 ≤
∣∣∣G+
−3/2|φ〉

∣∣∣2 +
∣∣∣G−3/2|φ〉∣∣∣2 = 〈φ|

{
G+
−3/2, G

−
3/2

}
|φ〉,

= 〈φ|
(

2L0 − 3J0 +
2

3
c

)
|φ〉,

=

(
−4h+

2

3
c

)
〈φ|φ〉,

⇒h ≤ c

6
.

(3.10)

We can deduce from (3.8) that a chiral primary must fulfil

G+
−1/2|φ〉 = G−1/2|φ〉 = 0. (3.11)

In a similar way, from (3.8) if follows that an anti-chiral primary satisfies

G−−1/2|φ〉 = G+
1/2|φ〉 = 0. (3.12)

The conditions (3.11), (3.12) for the anti-holomorphic part follow simply by
the replacement G→ G. Observe that G+

−1/2 and G+
−1/2 give globally defined

supercharges:

G±−1/2 =

∮
dz

2πi
T±F (z). (3.13)

If we now consider a state |φ〉 with (h, q) in the R-sector we find:

0 ≤
∣∣G+

0 |φ〉
∣∣2 +

∣∣G−0 |φ〉∣∣2 = 〈φ|
{
G+

0 , G
−
0

}
|φ〉,

= 2
(
h− c

24

)
|φ〉,

⇒h ≥ c

24
.

(3.14)
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Chiral Rings

If one studies the operator product of two chiral primary fields one finds that
it only contains regular terms. This fact allows the point-wise multiplication
of chiral primaries with the product operation given by:

(φi · φj) (w) ≡ lim
z→w

φi(z)φj(w) =
∑
k

Ckijφk(w), (3.15)

where one the righthand-side only chiral primaries appear. In this way chiral
primaries generate a ring. A similar ring structure, with multiplication given
by (3.15), is found for the anti-chiral primaries. For an N = (2, 2) theory four
ring structures can be formed:

(c, c), (a, c), (c, a), (a, a), (3.16)

with c = chiral and a = anti-chiral. Two of the rings are always (charge)
conjugate to each other: (c, c) to (a, a) and (a, c) to (c, a). A detailed analysis
of the ring structure can be found in [20].

Spectral Flow

In the N = 2 super-Virasoro algebra (3.2) the additional parameter a appears.
Different as define different algebras, but these algebras are all isomorphic.
This can be shown by replacing a = η + 1

2 in (3.2) and with the definitions:

Lηn = UηLnU
−1
η = Ln + ηJn +

c

6
η2δn,

Gη±n±a = UηG
±
n+aU

−1
η = G±n±(a+η),

Jηn = UηJnU
−1
η = Jn +

c

3
ηδn,

(3.17)

where we introduced a one-parameter isomorphism Uη relating the different
algebras. The operator Uη allows us to obtain the transformed states:

|φη〉 = Uη|φ〉. (3.18)

The operator Uη is called spectral flow operator. From (3.2) we see that η
does not modify the operators Ln and Jn and therefore we can act with them
on the states in the new algebra. Of particular interest are:

L0|φη〉 = hη|φη〉, J0|φη〉 = qη|φη〉. (3.19)

On the other hand we can also act with the transformed operators (3.17):

h|φη〉 = UηL0|φ〉 = Lη0|φη〉

=
(
L0 + ηJ0 +

c

6
η2
)
|φη〉 =

(
hη + ηqη +

c

6
η2
)
|φη〉, (3.20)

q|φη〉 = UηJ0|φ〉 = Jη0 |φη〉 =
(
J0 +

c

3
η
)
|φη〉 =

(
qη +

c

3
η
)
|φη〉, (3.21)
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3. String Compactifications and Calabi-Yau Manifolds

where h and q are the conformal weight and U(1) charge of the state before
the spectral flow. It follows that:

hη = h− ηq +
c

6
η2,

qη = q − c

3
η.

(3.22)

Let us next study how chiral primary states in the NS sector behave under
spectral flow by η = 1

2 . We clearly end up in the R sector under such a flow.
We find by using (3.22):∣∣∣q

2
, q
〉
NS

η= 1
2−→
∣∣∣h 1

2
=

c

24
, q 1

2
= q − c

6

〉
R
, (3.23)

and by considering (3.14) we find that we get a ground state in the R sector.
We see that there is a one-to-one correspondence between NS sector chiral
primaries and ground states in the R sector. In a similar way we can show
that there is a one-to-one correspondence between anti-chiral primaries and R
ground states (flow by η = −1

2).
Next we consider spectral flow by η = 1. We again start in the NS sector

and we end up in the NS sector. If we consider the behaviour of a chiral
primary field, we find∣∣∣q

2
, q
〉
NS

η=1−→
∣∣∣h1 = −q1

2
, q1 = q − c

3

〉
NS
, (3.24)

and see that we end up with an anti-chiral primary. Of particular interest is
the behaviour of the NS vacuum |0, 0〉NS under the flow:

|0, 0〉NS
η=1−→ | c

6
,− c

3
〉NS. (3.25)

This is the charge conjugate of the unique state in the chiral ring saturating
(3.10). We see that such a chiral primary state with h = c

6 must always exist
in the theory.

Let us mention that we only discussed spectral flow in one sector. Of
course it is possible to simultaneously apply a flow in both sectors. The first
appearance of spectral flow was in [21].

Deformations

Let us consider operators of holomorphic/anti-holomorphic conformal weight
(h, h). There are three kinds of possible deformations:

1. h+ h > 2, Irrelevant operators: A deformation by such an operator will
not have an effect on the theory at its infrared fix point.

2. h+ h < 2, Relevant operators: Such an operator has direct influence at
the infrared behaviour.
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3. h+h = 2, Marginal operators: These operators can be used to deform a
conformal theory to a nearby conformal theory. The central charge stays
the same.

We focus on deformations of the third kind, in particular to operators with
(h, h) = (1, 1). In fact we need to focus on (1, 1) operators which are still
(1, 1) after the deformation of the theory by any of the (1, 1) operators. These
operators are called truly marginal. We can construct such operators in the
following way. We start from φ in the (c, c) ring with h = h = 1/2 and
q = q = 1 and define

φ̂ =

∮
dzT−F (z)φ(w,w). (3.26)

The operator φ̂ has h = 1, h = 1/2 and q = 0, q = 1. Next we introduce

Φ(1,1)(w,w) =

∮
dzT

−
F (z)φ̂(w,w), (3.27)

with conformal weight h = 1, h = 1 and q = q = 0. In a similar way we can
start from an operator φ in the (a, c) ring with h = h = 1/2 and −q = q = 1
and construct

φ̂(w,w) =

∮
dzT

−
F (z)φ(w,w), (3.28)

Φ−1,1 =

∮
dzT+

F (z)φ̂(w,w), (3.29)

with Φ−1,1 of conformal weight h = h = 1 and q = q = 0. Both of the
operators Φ(1,1) and Φ(−1,1) are truly marginal as shown in [22, 23].

These truly marginal operators span the moduli space of the superconfor-
mal theory. In this moduli space each point corresponds to a superconformal
theory and by the truly marginal operators we can deform one theory to an-
other. A metric on the moduli space is given by the Zamolodchikov metric
[24]. The metric is block diagonal in the deformations2 Φ(1,1) and Φ(−1,1). So
locally the moduli space is a product of the space of deformations of type Φ(1,1)

and of the space of deformations of type Φ(−1,1).

3.2 Compactifications and Strings on curved
Backgrounds

This section is based on [15, 12]. We talked previously about the possibility
of compactifying the superstring on a target space with structure

M4 ×K6, (3.30)

2A discussion from a sigma model perspective can be found in e.g. [25].
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3. String Compactifications and Calabi-Yau Manifolds

whereM4 is 4 dimensional Minkowski space andK6 is a compact six-dimensional
space. The main consistency requirement is that we do not break conformal in-
variance. To study this requirement we must consider string theory on a curved
background. Up to now we have considered string theory on Minkowski space.
The extension to a non-trivial background is given by starting from (2.7) and
replacing ηµν by Gµν(X)

SP = − 1

4πα′

∫
Σ

d2σ
√
−hhαβGµν(X)∂αX

µ∂βX
ν . (3.31)

In contrast to (2.7), (3.31) is an interacting theory and called non-linear sigma
model. Let us also comment more on the form of (3.31). The massless excita-
tions of the string contain a graviton field and if one expands Gµν(X) around
fluctuations

Gµν(X) = ηµν + gµν(X), (3.32)

the non-trivial background can be interpreted as a coherent-state of gravitons.
An expansion around a classical string solution reveals that one can trust a
perturbative analysis of (3.31) as long as

√
α′

L
=
ls
L
� 1, (3.33)

where L is a typical length scale of the background geometry. The spectrum
of the string contains further massless fields, namely the dilaton φ and an
anti-symmetric tensorfield the B-field. The string can also be coupled to these
fields, but for our discussion it is sufficient to focus on (3.31).

The action (3.31) is classically conformally invariant. In the process of
quantization and renormalization the coupling constants of our theory become
dependent on the scale µ. This breaks conformal invariance unless the β-
functions of the couplings vanish. In our theory the coupling is given by Gµν
and it can be shown [15, 13] that at one loop order:

βµν(G) = α′Rµν + . . . . (3.34)

We see that conformal invariance requires a Ricci-flat target space.
A further requirement on the compactification space K6 is, that it has co-

variant constant spinors. This condition ensures, that some supersymmetry
is preserved in 4 dimensions. The requirement of covariant constant spinors
restricts the allowed holonomy H of the manifold. Of particular interest for
phenomenology are manifolds with H = SU(3). This can be seen by con-
sidering the compactification of the low energy effective actions of the super-
string as done for example in [12]. Ricci-flatness ensures that the holonomy
H ⊆ SU(N).

In conclusion the above requirements of Ricci flatness and SU(3) holonomy
lead to Calabi-Yau manifolds, which will be discussed in the next section.
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3.3. Calabi-Yau Manifolds

3.3 Calabi-Yau Manifolds

We follow [17, 12, 26]. Calabi-Yau (CY) manifolds M of complex dimension
n are Kähler manifolds with vanishing first Chern class c1(M) = 0. Kähler
manifolds are manifolds which have a Hermitian metric with a closed Kähler
form J . By Yau’s Theorem [27] vanishing of the first Chern class is equivalent
to the vanishing of the Ricci-tensor R. It can be shown that vanishing of the
Ricci-tensor implies that the holonomy group of the manifold is a subgroup
of SU(n). As in the literature, we will take CY manifolds to have holonomy
group exactly SU(n). A further consequence of the vanishing of the first Chern
class is, that the canonical line bundle K(M) =

∧n T ∗1,0M is topologically
trivial. This implies the existence of a nowhere vanishing unique global sec-
tion. For K(M) this section is given by a globally defined nowhere vanishing
holomorphic n-form on M : Ω. It is possible to show that Ω is unique. Next
we study the cohomology groups of CY manifolds as these encode topologi-
cal properties of the manifold. We start be recalling the relation between the
deRahm cohomology groups Hk(M,C) and the Dolbeault cohomology groups
Hp,q

∂
(M):

Hk(M,C) =
⊕
p+q=k

Hp,q

∂
(M). (3.35)

The Hodge numbers hp,q are given by

hp,q(M) = dimC

(
Hp,q

∂
(M)

)
. (3.36)

These numbers are related to the Betti-Numbers br = dim
(
Hk(M)

)
on a

Kähler manifold by:

br =
∑
p+q=r

hp,q. (3.37)

The Hodge numbers are usually represented in a Hodge diamond. The Hodge
numbers of a manifold fulfil certain relations, like Hodge duality and complex
conjugation, which are reflected in the form of the Hodge diamond. For more
details on these relations see e.g. [12]. We will provide the Hodge diamond for
CY manifolds with n = 3, so called CY threefolds (3-folds). This is the right
dimension for superstring theory compactifications to 4 dimensions. In these
manifolds we find:

h0,0 = 1
h1,0 = 0 h0,1 = 0

h2,0 = 0 h1,1 h0,2 = 0
h3,0 = 1 h2,1 h1,2 = h2,1 h0,3 = 1

h3,1 = 0 h2,2 = h1,1 h1,3 = 0
h3,2 = 0 h2,3 = 0

h3,3 = 1

(3.38)
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3. String Compactifications and Calabi-Yau Manifolds

The only independent Hodge numbers of a CY 3-fold are h1,1 and h2,1.
These will be important in the next section when we consider the moduli
space. Further we can conclude from (3.38) and (3.37) that the Euler number
of a CY 3-fold is

χ(M) = 2
(
h1,1(M)− h1,2(M)

)
. (3.39)

Moduli Space of Calabi-Yau Manifolds

Next we ask ourselves if it is possible to deform the Ricci tensor such that the
CY stays Ricci-flat. In our discussion we follow [28, 12]. We can formalize our
question in the following way: Let g be a Ricci-flat metric on M and consider
gµν + δgµν . The question is now what infinitesimal deformations δg fulfil:

Rµν(g) = 0 ⇒ Rµν (g + δg) = 0. (3.40)

Of course every diffeomorphism of g has this property. Therefore these have
to be excluded. This can be achieved by a procedure, similar to gauge fixing.
We set:

∇µδgµν = 0. (3.41)

In this gauge the expansion of the righthand side of (3.40) to first order in δg
results in:

∇ρ∇ρδgµν + 2Rµ
ρ
ν
σδgρσ = 0. (3.42)

This equation is called Lichnerowicz equation. On a Kähler manifold (M,J)
the components of mixed type δgµν̄ and of pure type δgµν , δgµ̄ν̄ separately
solve (3.42). The variation of mixed type can be interpreted as components of
a real (1, 1)-form:

iδgµν̄dxµ ∧ dx̄ν̄ . (3.43)

This (1, 1) form is harmonic for solutions of (3.42). Also we can associate a
complex (2, 1) form to the components of pure type

Ωκλ
νδgµ̄ν̄dxκ ∧ dxλ ∧ dx̄µ̄, (3.44)

where Ω is the holomorphic (3, 0) form introduced in Section 3.3. This is again
a harmonic form on solutions of (3.42).

The above findings can be summarized in the statement that there is a one-
to-one correspondence between solutions of (3.42) and elements of H(1,1)(M)
and H(2,1)(M). The Kähler form J of M is itself a closed (1, 1)-form:

J = igµν̄dxµ ∧ dx̄ν̄ , (3.45)
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3.3. Calabi-Yau Manifolds

and it is clear that deformations of mixed type correspond to deformations of
the Kähler class. We can expand the δgµν̄ in a basis of real harmonic (1, 1)
forms:

δgµν̄ =
h1,1∑
α=1

ζαbαµν̄ , ζα ∈ R, (3.46)

where h1,1 = dim
(
H

(1,1)

∂̄
(M)

)
. The parameters ζα are called Kähler mod-

uli. It is important to note that the moduli have to be chosen such that the
deformed metric stays positive definite. This is equivalent to the conditions:∫

C
J > 0,

∫
S
J2 > 0,

∫
M
J3 > 0, (3.47)

for all curves C and surfaces S on M . The parameters fulfilling (3.47) form
a subset of Rh1,1 called Kähler cone. The pure type deformations can be
expanded into a basis of harmonic (2, 1) forms:

Ωijkδg
k
l̄ =

h2,1∑
α=1

zαbαijl̄, zα ∈ C, (3.48)

with h(2,1) = dim
(
H(2,1)(M)

)
The parameters zα are called complex structure

moduli and as the name suggest correspond to deformations of the complex
structure3.

In total there are h1,1 + 2h2,1 real deformation parameters. These param-
eters form the moduli spaceM of the CY. Up to now we have not taken into
account string theory. In string theory we have an additional massless anti-
symmetric tensor field B. Excitations of the B-field correspond to harmonic
two-forms on the CY manifold. This allows to combine the B-filed excitations
with the Kähler deformations:

(iδgµν̄ + δBµν̄) dxµ ∧ dx̄ν̄ =

h1,1∑
α=1

tαbα, tα ∈ C. (3.49)

Nevertheless the imaginary part of the tα must still fulfil (3.47). This process
is called complexification of the Kähler cone.

As discussed in [28] the metric onM is locally block diagonal and therefore
the moduli space looks locally like

M =MCS ×MKS , (3.50)

where MCS is the space of complex structure deformations and MKS is the
space of Kähler deformations. Both spaces are special Kähler, which means

3See [12] for an explanation of this correspondence.
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that their Kähler potentials

KCS = − log

∫
M

Ω ∧ Ω, (3.51)

KKS = − log κ(J, J, J), (3.52)

can be obtained from pre-potentials. Pre-potentials are certain holomorphic
functions on the moduli space. More details on them and their geometry can
be found in [28, 29]. In (3.52) we introduced

κ(ρ, σ, τ) =

∫
M
ρ ∧ σ ∧ τ, (3.53)

with ρ, σ and τ in H(1,1)(M). Further, (3.52) is just the classical expression
and the Kähler potential onMKS receives perturbative and non-perturbative
corrections in α′. This will be evident in Chapter 6.

Strings on Calabi-Yau Manifolds

Let us come back to the physical description of a string on a Calabi-Yau
manifold. As mentioned in Section 3.2, a string propagating on a non-trivial
background is given by a 2 dimensional non-linear sigma model and in the case
of the superstring by the supersymmetric version thereof4.

We will follow [30, 31] to discuss some aspects of the supersymmetric non-
linear sigma model (NLSM). In general terms, a NLSM describes maps Φ from
a Riemann surface Σ to a target space M :

Φ : Σ→M. (3.54)

To obtain anN = (2, 2) supersymmetric NLSM,M must be a Kähler manifold.
By a similar reasoning as in Section 3.2 for a CY target space the model has
N = (2, 2) superconformal invariance, which gives the required N = (2, 2)
superconformal symmetry on the worldsheet. The action is given by, with
notation as in [30]:

S =
1

4π

∫
Σ

d2z
(
gī
(
∂zφ

i∂z̄φ̄
̄ + ∂z̄φ

i∂zφ̄
̄
)

+Bī
(
∂zφ

i∂z̄φ̄
̄ − ∂z̄φi∂zφ̄̄

)
+ igīψ

iDzψ
̄ + igīχ

iDz̄χ
̄ +Rik̄jl̄ψ

iψk̄χjχl̄
)
. (3.55)

The explicit action can be derived from the results in Section 4.1 by using
superspace techniques. The scalar fields φi are complex coordinates of the map
Φ to M (3.54) and φ̄ı̄ = φi are the complex conjugated ones. The fermionic

4In order to describe string theory we would need to couple the non-linear sigma model
to two dimensional gravity. However we can discuss certain aspects without taking gravity
into account.
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degrees of freedom are given by ψ and χ, which are left-moving and right-
moving respectively. The fermions can be seen as sections of the following
bundles:

ψi ∈ Γ
(
K1/2 ⊗ φ∗T (1,0)M

)
, ψı̄ ∈ Γ

(
K1/2 ⊗ φ∗T (0,1)M

)
,

χi ∈ Γ
(
K

1/2 ⊗ φ∗T (1,0)M
)
, χı̄ ∈ Γ

(
K

1/2 ⊗ φ∗T (0,1)M
)
,

(3.56)

where K is the canonical bundle (holomorphic cotangent bundle) on Σ and
φ∗T (−,−)M is the pullback of the (anti)-holomorphic tangentbundle on M . In
(3.55) D is a covariant derivative on the respective bundle (3.56) and R is the
Riemann tensor of M . We also introduced a B-field on M . The action (3.55)
is invariant under the following supersymmetry transformations:

δφi = iε−ψi + iε−χi, δφ̄ı̄ = iε+ψı̄ + iε+χı̄,

δψi = −ε+∂φi − iε−χjΓijkψk, δψı̄ = −ε−∂φ̄ı̄ − iε+χ̄Γı̄̄k̄ψ
k̄,

δχi = −ε+∂φi − iε−ψjΓijkχk, δχı̄ = −ε−∂φ̄ı̄ − iε+ψ̄Γı̄̄k̄χ
k̄,

(3.57)

with ε± are sections of K−1/2 and ε± are sections of K−1/2. In (3.57) Γ is the
Levi-Cevita connection on M .

Next we want to study the geometric interpretation of the (c, c) and (a, c)
rings. This is best done in the topological version of the NLSM. In the topolog-
ical version we have a Grassmann scalar symmetry operator Q. The operator
Q is nilpotent and physical sates correspond to the cohomology classes of Q.
In the literature the operator Q is called BRST operator. Further, in a topo-
logical theory the energy momentum tensor T is Q exact:

Tµν = {Q,Gµν}. (3.58)

For our purposes we want to build an operator which annihilates states
in the (c, c)/(a, c) ring. We can construct such operators if we look back at
(3.13):

QA = G−−1/2 +G
+
−1/2, (a, c),

QB = G+
−1/2 +G

+
−1/2, (c, c).

(3.59)

Both operators are nilpotent, but they are fermionic and not scalar. Also it
can be shown that the energy momentum tensor is not QA/B exact. To obtain
a topological theory a so-called topological twist has to be performed. In order
to twist the theory, the energy momentum tensor has to be modified. In our
case there are two possibilities called A-twist and B-twist:

T → T +
1

2
∂J,

T → T − 1

2
∂J,

A-twist,
T → T − 1

2
∂J,

T → T − 1

2
∂J,

B-twist. (3.60)
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If we apply the A-twist, the operator QA becomes scalar. This can be derived
from (3.1). The physical states are given by the (a, c) states. In the B-twisted
model the BRST operator is QB and physical states are given by (c, c) states.
After the twist the topological NLSM is referred to as A-model or B-model
respectively. A second motivation for the topological twist is, that we now
have a globally defined BRST operator on an arbitrary Riemann surface. This
is important when gravity is coupled to the NLSM.

A-Model

The A-twist (3.60) affects the bundle structure (3.56) in the following way

ψi ∈ Γ
(
φ∗T (1,0)M

)
, ψı̄z ∈ Γ

(
K ⊗ φ∗T (0,1)M

)
,

χiz̄ ∈ Γ
(
K ⊗ φ∗T (1,0)M

)
, χı̄ ∈ Γ

(
φ∗T (0,1)M

)
.

(3.61)

The fermions ψi, χı̄ became worldheet scalars. The transformation of the fields
under the operator QA is obtained by setting ε− = ε+ = ε and ε+ = ε− = 0 in
(3.57). The so obtained transformations lead to the identifications:

ψi ↔ dφi, χı̄ ↔ dφ̄ı̄, QA ↔ d = ∂ + ∂, (3.62)

where d is the de Rham operator onM . As further discussed in [30, 31] the op-
erators constructed out of worldsheet scalars are in one-to-one correspondence
with the de Rham cohomology of M :

w(φ)i1,...,ip ,̄ı1,...,̄ıqψ
i1 · · ·ψipχı̄1 · · ·χı̄q

l
w(φ)i1,...,ip ,̄ı1,...,̄ıqdφ

i1 · · · dφipdφ̄ı̄1 · · · dφ̄ı̄q
, (3.63)

with w totally anti-symmetric. The action can be rewritten into

S = i

∫
Σ
{QA,D} − 2π

∫
Σ
φ∗ (B + iJ) , (3.64)

where J is the Kähler form on M and

D = 2πgī

(
ψ̄∂φi + ∂φ

̄
χi
)
. (3.65)

Observe that the second term in (3.64) depends only on the class β = φ∗(Σ) ∈
H2 (M,Z). We introduce:

tβ =

∫
Σ
φ∗ (B + iJ) , φ∗(Σ) ∈ β. (3.66)

As argued for example in [31] the partition function:

Z =
∑
β∈H2

e−2πitβ

∫
φ∗(Σ)∈β

DφDψDχe−i
∫
{QA,D}, (3.67)
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localises5 to maps φ with D = 0.
These are holomorphic maps:

∂φ = 0. (3.68)

From a physics standpoint the sum over the holomorphic maps corresponds to
a sum over different worldsheet instanton sectors.

B-Model

The effect of the B-twist (3.60) is the following shift in the bundles (3.56):

ψiz ∈ Γ
(
K ⊗ φ∗T (1,0)M

)
, ψı̄ ∈ Γ

(
φ∗T (0,1)M

)
,

χiz̄ ∈ Γ
(
K ⊗ φ∗T (1,0)M

)
, χı̄ ∈ Γ

(
φ∗T (0,1)M

)
.

(3.69)

In the study of the B-model it is convenient to group the worldsheet scalars
ψı̄, χı̄ into

ηı̄ = ψı̄ + χı̄, θj = gı̄j
(
ψı̄ − χı̄

)
. (3.70)

In addition the one-form ρi is introduced with (1, 0) component given by ψiz
and (0, 1) component χiz. The relevant cohomology is the one of the operator
QB which can be studied by setting ε+ = ε+ = ε and ε− = ε− = 0 in (3.57).
The supersymmetry transformations suggest the identifications:

ηı̄ ↔ dφ̄ı̄, θi ↔
∂

∂φi
, QB ↔ ∂. (3.71)

The scalar operators of the theory are in one-to-one correspondence [31]
with (0, q) forms on M with values in

∧p T (1,0)M :

w(φ)
i1,...,ip
ı̄1,...,̄ıqη

ı̄1 · · · ηı̄qθi1 · · · θip
l

w(φ)
i1,...,ip
ı̄1,...,̄ıqdφ̄ı̄1 · · · dφ̄ı̄q ∂

∂φi1
· · · ∂

∂φip

, (3.72)

with w anti-symmetric in i and ı̄. These (0, q) forms can be related to (3−p, q)
forms by using the holomorphic (3, 0) form Ω of the CY. If we introduce

D = gjk̄

(
ρjz∂φ

k̄
+ ρjz̄∂φ

k̄
)
, (3.73)

U =

∫
Σ

(
−θjDρj −

i

2
Rj̄kk̄ρ

j ∧ ρkη̄θlglk̄
)
, (3.74)

5The localisation argument for supersymmetric field theories will be discussed in Section
4.3.
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the action can be written in the form:

S = i

∫
Σ
{QB,D}+ U. (3.75)

Similar to the A-model it can be argued that the path integral and correlation
functions localize to (see Section 4.3 and [31]) the loci where D = 0. For the
B-model these loci are given by constant maps:

∂φ̄k̄ = ∂φ̄k̄ = 0. (3.76)

The worldsheet gets mapped to a point in M and in the B-model we do not
get instanton corrections.

Comparison of A- and B-Model.

The first point we want to mention is that the A-model (3.64) only depends
on the Kähler structure of the target space and does not get influenced by
the complex structure of M . For the B-model the situation is reversed. This
is also consistent if we consider deformations of the theory. As discussed in
Section 3.1, truly marginal deformations can be constructed from operators
in the (c, c)/(a, c) ring with U(1) charges (1, 1)/(−1, 1) respectively. In the
A-model the operators with U(1) charges (−1, 1) correspond to elements of
H1,1(M), which coincide, as discussed in Section 3.3, with deformations of
the Kähler structure of M . The same argument is possible in the B-model,
where the operators of charge (1, 1) correspond to (0, 1) forms with values in
T (1,0). As mentioned, these forms correspond to (2, 1) forms via the unique
holomorphic (3, 0) form Ω. These forms parameterise the deformations of the
complex structure of M . The final point we want to make concerns the parti-
tion function. The A-model partition function localises to holomorphic maps
and the path integral can be rewritten into an integral over the moduli space
of such maps. Further we encountered instanton corrections. An interesting
aspect of the partition function in the A-model is that it encodes enumerative
invariants, so-called Gromov-Witten invariants, which describe certain inter-
section numbers in the target space M . These invariants are of interest for
mathematicians as well. Unfortunately the partition function in the A-model
is hard to compute. One way to calculate the partition function uses results
from supersymmetric localisation in the gauged linear sigma model. We will
come back to such techniques in Chapter 6. Another way is given by mirror
symmetry which uses that in the B-model the partition function localises to
constant maps and the remaining integral is relatively easy to compute. We
comment on this in Section 3.4.

3.4 Mirror Symmetry

Nowadays there are various definitions of mirror symmetry. An overview of the
developments can be found in the introductory chapter of [3]. We will focus
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on the following definition, namely that the operator algebra of the A-model
on a CY M is isomorphic to the B-model operator algebra on the CY M̃ . M
and M̃ are called mirror pair. For CY threefolds this results in

hp,q(M) = h3−p,q(M̃). (3.77)

As we saw in Section 3.3, the A-model depends on the Kähler structure and the
B-Model on the complex structure. It follows that mirror symmetry must map
the moduli space of Kähler structures of M to the moduli space of complex
structure of M̃ . This map is called mirror map, because mirror CY threefolds
M,M̃ have a “mirrored” Hodge diamond (3.38):

h1,1
M ↔ h2,1

M̃
h2,1
M ↔ h1,1

M̃
. (3.78)

This definition of mirror symmetry goes back to the following observation.
Form the standpoint of the N = 2 superconformal symmetry it is just conven-
tion which ring we call (c, c) or (a, c) as it is just a relative sign of the U(1)
charges. This point was first raised in [23] and further elaborated on in [20].
They used the fact that the number hp,q of (c, c)-ring elements with U(1)L/R
charges (p, q) coincides with the Hodge numbers of a CY manifold M . By
spectral flow it follows that the number of (a, c) elements with charge (−p, q)
is given by h

c
3
−p,q. They concluded that there must exist a CY manifold M̃

with dim
(
H(p,q)

(
M̃
))

= h3−p,q. Since this observation various algorithms
have been developed to construct mirror manifolds, see e.g. [32, 33].
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Chapter 4

The GLSM and
Supersymmetric Localisation

We start this chapter by first formulating N = (2, 2) supersymmetry in terms
of transformations on superspace. The superspace formalism allows us to write
down supersymmetric Lagrangians in a straightforward manner. Afterwards
we will discuss the gauged linear sigma model (GLSM). We describe the basic
idea behind the GLSM and discuss renormalization and quantum effects in
this model. We introduce the basics of supersymmetric localisation and give
results from this technique related to the GLSM.

4.1 N = (2, 2) Supersymmetry in 2 Dimensions

In this section we follow [3] and we will use the same notation as in this
reference.

Superspace

We start from a 2-dimensional Minkowski-space with coordinates x0, x1 and
metric

η =

(
−1 0
0 1

)
. (4.1)

The starting point of the superspace formalism is to extend the coordinates
by fermionic coordinates. We are interested in N = (2, 2) supersymmetry and
for that purpose we need 4 additional fermionic coordinates

θ±, θ
±
. (4.2)

These fermionic coordinates are complex and related by(
θ±
)∗

= θ
±
. (4.3)
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By ± we denote the spin/chirality under 2-dimensional Lorentz transforma-
tions. In detail these transformations read(

x0

x1

)
→
(

cosh γ sinh γ
sinh γ cosh γ

)(
x0

x1

)
, (4.4)

θ± → e±
γ
2 θ±, θ

± → e±
γ
2 θ
±
, (4.5)

where γ is the rapidity. The fermionic coordinates mutually anti-commute
and their fermionic nature renders them nilpotent. To summarize the above
discussion we repeat the coordinates of the superspace:

x0, x1, θ±, θ
±
. (4.6)

Functions on superspace are called superfields and can be Taylor expanded
in terms of θ±, θ±:

F(x0, x1, θ+, θ−, θ
+
, θ
−

) = f(x0, x1) + θ+f+(x0, x1)

+ θ−f−(x0, x1) + θ
+
f ′+(x0, x1)

+ θ
−
f ′−(x0, x1) + θ+θ−f+−(x0, x1) + . . .

(4.7)

The nilpotency of the fermionic coordinates lets us conclude, that there can
be at most 24 = 16 components. A superfield F is called bosonic (fermionic) if
[θα,F ] = 0({θα,F} = 0). In the superspace formalism supersymmetry trans-
formations are encoded in differential operators, which act on the superfields.
To write down these operators we first introduce:

x± = x0 ± x1, ∂± =
∂

∂x±
=

1

2

(
∂

∂x0
± ∂

∂x1

)
. (4.8)

The operators on superspace are given by

Q± =
∂

∂θ±
+ iθ

±
∂±, Q± = − ∂

∂θ
± − iθ

±∂±,{
Q±,Q±

}
= −2i∂±.

(4.9)

The following operators are useful in writing down Lagrangians and provide a
way to reduce the components of a superfield, as we will discuss later:

D± =
∂

∂θ±
− iθ±∂±, D± = − ∂

∂θ
± + iθ±∂±

{D±, D±} = 2i∂±

(4.10)

The operators (4.10) anti-commute with the operators (4.9). Further opera-
tions on superfields are the vector and axial R-rotation given by

eiαFV : F(xµ, θ±, θ
±

) 7→ eiαqV F(xµ, e−iαθ±, eiαθ
±

),

eiβFA : F(xµ, θ±, θ
±

) 7→ eiβqAF(xµ, e∓iβθ±, e±iβθ
±

),
(4.11)
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4.1. N = (2, 2) Supersymmetry in 2 Dimensions

with qV , qA called vector or axial R-charge, respectively. These R-symmetries
can be combined into left- and right moving R-symmetries:

JL =
1

2
(FV − FA) ,

JR =
1

2
(FV + FA) .

(4.12)

From (4.11) the transformations for the component fields of F can be read off.
To reduce the component fields of a general superfield (4.7) the operators (4.10)
can be used to impose constraints. The first example for such a constraint is
given by

D±Φ = 0. (4.13)

A superfield Φ which fulfills (4.10) is called chiral superfield. To construct the
component expansion of a chiral superfield we introduce new coordinates:

y± = x± − iθ±θ±, θ̃± = θ±, θ̃
±

= θ
±
. (4.14)

The derivatives transform in the following way:

∂

∂x±
=

∂

∂y±
,

∂

∂θ±
= −iθ̃

± ∂

∂y±
+

∂

∂θ̃±
,

∂

∂θ
± = iθ̃±

∂

∂y±
+

∂

∂θ̃
± . (4.15)

The previous result let us conclude, that in the new coordinates (4.14)

D± = − ∂

∂θ̃
± . (4.16)

This leads to a simplification of the constraint (4.13) and we can write down
a chiral superfield in components

Φ(xµ, θ±, θ
±

) = φ(y±) + θαψα(y±) + θ+θ−F (y±). (4.17)

We also see from (4.13) that a sum and a product of chiral fields is again
chiral. The complex conjugate of a chiral field Φ is called an anti-chiral field
and fulfils

D±Φ = 0. (4.18)

The second type of constrained superfield we introduce is the twisted-chiral
superfield U . A twisted-chiral superfield obeys:

D+U = D−U = 0. (4.19)

As in the case of the chiral field, the expansion in component fields of U is
done by first introducing new coordinates:

ỹ± = x± ∓ iθ±θ±, θ̃± = θ±, θ̃
±

= θ
±
. (4.20)
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This choice of coordinates gives the following simplifications:

D+ = − ∂

∂θ̃
+ , D− =

∂

∂θ̃−
. (4.21)

The above results lead to the following expansion of U :

U(xµ, θ±, θ
±

) = u(ỹ±) + θ+χ+(ỹ±) + θ
−
χ−(ỹ±) + θ+θ

−
E(ỹ±). (4.22)

The complex conjugate U is called twisted anti-chiral superfield and satisfies

D+U = D−U = 0. (4.23)

We now write down supersymmetric actions. These actions are invariant
under the transformation

δ = ε+Q− − ε−Q+ − ε+Q− + ε−Q+. (4.24)

Given an arbitrary differentiable function K of some superfields Fi one can
show that the following functional is invariant under (4.24):∫

d2xd4θK(Fi) =

∫
d2xdθ+dθ−dθ

−
dθ

+
K(Fi). (4.25)

The invariance of (4.25) follows from the representation of the supersymme-
try operators (4.9) and remembering that the integral over d4θ picks out the
prefactor of θ+θ−θ

+
θ
−. A term of the form (4.25) is called D-term. For chiral

superfields Φi we can write down the following supersymmetric functional∫
d2xd2θW (Φi) =

∫
d2xdθ−dθ+W (Φi)

∣∣∣∣
θ
±

=0

. (4.26)

W (Φi) is holomorphic in the Φis. A functional of the form (4.26) is called F-
term. In the case of twisted-chiral fields Ui the following functional is invariant
under (4.24): ∫

d2xd2θ̃W̃ (Ui) =

∫
d2xdθ

−
dθ+W̃ (Ui)

∣∣∣∣
θ
+

=θ−=0

, (4.27)

and called twisted F-term.

Quantum Field Theory Aspects

Let us now study a N = (2, 2) supersymmetric quantum field theory. We start
from a classical N = (2, 2) supersymmetric, Poincaré invariant field theory. In
such a theory there a four conserved supercharges:

Q+, Q−, Q+, Q−, (4.28)
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4.1. N = (2, 2) Supersymmetry in 2 Dimensions

and from energy, momentum and angular momentum invariance we get the
Hamiltonian, the momentum and the angular momentum charges:

H,P,M. (4.29)

We assume that the theory is invariant under both vector and axial R-symmetries
and denote the conserved charges by:

FV , FA. (4.30)

In the quantum theory the above conserved charges correspond to operators
which generate the respective symmetry transformations. The supercharges
(4.28) generate the supersymmetry transformations δ by:

δO =
[
δ̂,O

]
, (4.31)

with

δ̂ := iε+Q− − iε−Q+ − iε+Q− + iε−Q+, (4.32)

and O is an operator on the Hilbert space of the quantum theory. Note that
Q± = Q†±. We assume that all symmetries of the classical action are non-
anomalous. In that case we have the following operator algebra:

Q2
+ = Q2

− = Q
2
+ = Q

2
+ = 0,{

Q±, Q±
}

= H ± P,{
Q+, Q−

}
= {Q+, Q−} = 0,{

Q−, Q+

}
=
{
Q+, Q−

}
= 0,

[iM,Q±] = ∓Q±,
[
iM,Q±

]
= ∓Q±,

[iFV , Q±] = −iQ±,
[
iFV , Q±

]
= iQ±,

[iFA, Q±] = ∓iQ±,
[
iFA, Q±

]
= ±iQ±.

(4.33)

The extension of the above algebra by central charges is discussed in [3]. Su-
perfields furnish a representation of the algebra (4.33). The components of
a chiral superfield (φ, ψ±, F ), see (4.17), span a representation called chiral
multiplet. The lowest component φ fulfils[

Q±, φ
]

= 0. (4.34)

On the other hand, if we have an operator φ, which obeys (4.34) a chiral
multiplet can be constructed by:

ψ± := [iQ±, φ] , F := {Q+, [Q−, φ]} . (4.35)
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4. The GLSM and Supersymmetric Localisation

The components of the twisted-chiral superfield (4.22) give a twisted-chiral
multiplet. The lowest component satisfies[

Q+, v
]

= [Q−, v] = 0. (4.36)

A twisted-chiral multiplet can be constructed starting from an operator which
fulfils (4.36):

χ+ := [iQ+, v] , χ− := −
[
iQ−, v

]
,

E := −
{
Q+,

[
Q−, v

]}
. (4.37)

A further interesting aspect is, that the algebra (4.33) has an outer auto-
morphism:

Q− ↔ Q−, FV ↔ FA. (4.38)

The remaining operators are unchanged. Two N = (2, 2) supersymmetric
field theories which are equivalent as quantum field theories and for which
the isomorphism of the Hilbert spaces transforms the operators as in (4.38)
are called mirror. The isomorphism exchanges chiral multiplets with twisted
chiral multiplets and an unbroken (broken) axial R-symmetry gets exchanged
with an unbroken (broken) vector R-symmetry. However it is pure convention
which operator is called Q− or Q−. We follow the convention of [3] and set the
holomorphic variables of a non-linear sigma model or Landau-Ginzburg model
(see Section 4.1) as lowest components of a chiral superfield. This convention
could also be exchanged and we could view the variables as lowest component
of a twisted-chiral superfield.

Non-Linear Sigma Models and Landau-Ginzburg Models

Let us consider n chiral mulitplets Φi i = 1, . . . , n and a real functionK
(

Φi,Φ
ı
)
.

In order to construct a Lagrangian we further assume that

gi = ∂i∂K
(

Φi,Φ
ı
)
, (4.39)

is positive definite. A supersymmetric Lagrangian density is given by:

Lkin =

∫
d4θK

(
Φi,Φ

ı
)

(4.40)

The positive definite property guarantees a non-degenerate kinetic term for
the component fields. In addition this property allows us to view (4.39) as
Kähler metric on Cn = {(z1, . . . , zn)}:

ds2 = gidz
idz. (4.41)
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The Levi-Civita connection on TCn is given by:

Γijk = gi∂jgk (4.42)

The component action of (4.40) is covariant under holomorphic coordinate
changes up to equations of motion. A further invariance of the action is given
by the following transformation:

K
(

Φi,Φ
ı
)
7→ K

(
Φi,Φ

ı
)

+ f
(
Φi
)

+ f
(

Φ
ı
)
, (4.43)

where f
(
Φi
)
is holomorphic in the Φis. This transformation does not change

the metric (4.39) and has the form of a Kähler-transformation known from
complex manifolds. The above results show that the given construction can
be applied for each coordinate patch of a Kähler manifold M and then the
different patches can be glued together. In this setting (4.40) gives an action
for maps from the worldsheet Σ to M :

φ : Σ→M, (4.44)

where φ = (φi) are the lowest components of the Φis. The fermions are spinors
with values in the pull-back of the tangent bundle φ∗TM :

ψi± ∈ Γ
(

Σ, φ∗TM (1,0) ⊗ S±
)
,

ψ
ı
± ∈ Γ

(
Σ, φ∗TM (0,1) ⊗ S±

)
,

(4.45)

where S± are the positive and negative spinor bundles on the worldsheet.
These bundles are the square root of the (anit-)canonical bundleK (see (3.56)).
The above construction gives the supersymmetric non-linear sigma model on
a Kähler manifold M with metric g, but this is not a global formulation and
only valid patchwise. Supersymmetry must be checked patch by patch. The
Lagrangian for the non-linear sigma model in components was already given
in Section 3.3.

Next we consider the following F-term:

LW =
1

2

(∫
d2θW

(
Φi
)

+ c.c.

)
, (4.46)

where c.c. stands for complex conjugate. W
(
Φi
)
is a holomorphic function of

Φi, i = 1, . . . , n and called superpotential. W is holomorphic on M in the
case of a sigma model and so can only be non-trivial ifM is non-compact. The
total Lagrangian density is given by:

L =

∫
d4θK

(
Φi,Φ


)

+
1

2

(∫
d2θW

(
Φi
)

+ c.c.

)
. (4.47)
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4. The GLSM and Supersymmetric Localisation

We will call a model with a non-trivial potential Landau-Ginzburg model
and use the name non-linear sigma model for models without a potential.

Let us also consider the vector and axial R-symmetry of (4.47). We will
give only the main points and refer to [3] for a more detailed discussion. The
action on the chiral fields is given by (4.11) and can be interpreted as the
action of the group U(1)V ×U(1)A. We treat first the classical (non-quantum)
case. The U(1)A symmetry can always be made a symmetry classically (e.g. by
assigning axial R-charge 0 to all fields). In order for U(1)V to be a symmetry
classically the superpotential W

(
Φi
)
, see (4.46), must be quasi-homogeneous

such that

W
(
λqiΦi

)
= λ2W

(
Φi
)
, (4.48)

and also the Kähler potential (4.40) must be invariant up to a Kähler trans-
formation (4.43). It is also possible that not all U(1)s are preserved and only
smaller subgroups are a symmetry. In the quantum theory the U(1)V symme-
try remains a symmetry. The U(1)A symmetry is in general anomalous and
gets broken to a smaller subgroup. In the case c1(M) = 0 the U(1)A symmetry
is unbroken, where c1(M) is the first Chern class of the tangent bundle of M .

Supersymmetric Gauge Theories

We focus here on the simplest case of a U(1) gauge group and give only some
details on the non-Abelian case. In Section 4.2 we will talk again about the
non-Abelian case, but with applications to the gauged linear sigma model in
mind. We can motivate the construction of supersymmetric gauge theories by
starting with the following simple Lagrangian:

L =

∫
d4θΦΦ, (4.49)

where Φ is a chiral superfield. It is obvious that (4.49) is invariant under a
constant phase rotation

Φ→ e−iαΦ. (4.50)

In order to gauge this symmetry we first replace the constant α by a chiral
field A(xµ, θ±, θ

±
). Next we apply

Φ→ eiAΦ, (4.51)

to

ΦΦ→ Φe−i(A−A)Φ, (4.52)

and see that (4.49) is not invariant. In order to fix this we use the same method
as in the gauging of non-supersymmetric theories: We introduce an additional
superfield V (xµ, θ±, θ

±
). V is a real superfield and transforms by:

V → V + i(A−A). (4.53)

40
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The gauge invariant extension of (4.49) is given by:

L =

∫
d4θΦeV Φ, (4.54)

which is invariant under (4.51) and (4.53). A field V (xµ, θ±, θ
±

) with transfor-
mation behaviour (4.53) is called vector superfield. This field has the following
component expansion

V (xµ, θ±, θ
±

) = θ−θ
+

(v0 − v1) + θ+θ
+

(v0 + v1)

− θ−θ+
σ − θ+θ

−
σ

iθ−θ+
(
θ
−
θ− + θ

+
λ+

)
+ iθ

+
θ
− (
θ−λ− + θ+λ+

)
θ−θ+θ

+
θ
−
D.

(4.55)

The expansion (4.55) is only valid in a special gauge called Wess-Zumino gauge.
The components v0, v1 define a one-form field, σ is a complex scalar field, λ±,
λ± give a Dirac fermion and D is a real scalar field. In the Wess-Zumino gauge
the following residual gauge symmetry remains:

vµ(x)→ vµ(x)− ∂µα(x), (4.56)

with the other fields invariant. This transformation does not spoil the expan-
sion (4.55). A supersymmetry transformation is implemented by:

δ := ε+Q− − ε−Q+ − ε+Q− + ε−Q+. (4.57)

The operators Q±, Q± were introduced in (4.9). In order to stay in Wess-
Zumino gauge a supersymmetry transformation must be augmented by a gauge
transformation. We refer to [3] where the transformations of the superfield
components are given. A further superfield we introduce is:

Σ = D+D−V, (4.58)

which is invariant under gauge transformations V → V + i(A − A). The
operators D+ and D− are given in (4.10). Σ is a twisted chiral superfield (see
(4.19)). In components (4.58) reads

Σ(ỹ) = σ(ỹ) + iθ+λ+(ỹ)− iθ−λ−(ỹ)

θ+θ
−

[D(ỹ)− iv01(ỹ)] , (4.59)

with ỹ± introduced in (4.20) and

v01 = ∂0v1 − ∂1v0. (4.60)
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4. The GLSM and Supersymmetric Localisation

v01 is the field strength of vµ and Σ is called super-field strength of V . Let
us also comment on the necessary modifications in the case of a non-abelian
gauge symmetry G . The vector field V takes now values in the Lie algebra g
of G:

V = V ataR, (4.61)

where taR are the generators of g in the representation R. The transformation
of V and Φ have to be modified, compared to the abelian case (4.53), (4.51):

eV → eiAeV e−iA,

Φ→ eiAΦ Φ→ Φe−iA.
(4.62)

where A = AataR is a chiral superfield. The Lagrangian given in (4.54) is
invariant under (4.62). It remains to adjust the superfield strength Σ (4.58).
In the non-abelian case we have:

Σ =
1

2

{
D+,D−

}
,

D± = e−VD±e
V D± = eVD±e

−V .
(4.63)

The superfield strength Σ is still a twisted chiral superfield.

4.2 Gauged Linear Sigma Models

In this section we will write down the Lagrangian for the gauged linear sigma
model, or GLSM for short. The GLSM is a supersymmetric model. This
model resembles some features seen in the supersymmetric non-linear sigma
models and the Landau-Ginzburg models discussed in Section 4.1, but has
an additional gauge theory. The subsequent discussion mostly follows [3, 6,
34]. The GLSM was first introduced in [6] in order to give a field theoretic
realization of the Landau-Ginzburg/Calabi-Yau correspondence, which we will
discuss in Section 5.2.

Abelian Models

The GLSMs of most significance in this thesis are those with a gauge group
U(1)k =

∏k
a=1 U(1)a and N chiral matter fields Φi, i = 1, . . . , N . The field

Φi carries charge Qia under U(1)a:

Φi → eiQiaAaΦi. (4.64)
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A general Lagrangian is given by:

L =

∫
d4θ

 N∑
i=1

Φie
QiaVaΦi −

k∑
a,b=1

1

2e2
a,b

ΣaΣb


+

(∫
d2θW (Φi) + c.c.

)
+

1

2

(∫
d2θ̃W̃ (Σa) + c.c

)
.

(4.65)

The first line in (4.65) contains the kinetic terms of Φi and Va. In the second
line a superpotential (F-term) is added (see (4.26)) and in the last line a
twisted F-term is shown (see (4.27)). In order to preserve the gauge symmetry
the superpotential W (Φi) in (4.65) must be gauge invariant. To preserve
U(1)A × U(1)V R-symmetry W (Φi) must be quasi-homogeneous and W̃ (Σa)
must be linear (see the discussion in Section 4.1). We set:

W̃ (Σa) =

k∑
a=1

(−taΣa) , (4.66)

with ta = ζa − iθa. The term (4.66) is called Fayet-Iliopoulos θ-term (see [6]).
The auxiliary field Da of the vector superfield Va (4.55) and Fi of the chiral
superfield Φi (4.17) can be eliminated from (4.65). After this elimination the
following potential for the scalar fields can be read off from (4.65):

U =
k∑
a=1

N∑
i=1

|Qiaσa|2 |φi|2

+

N∑
i,j=1

k∑
a,b=1

(
ea,b
)2

2

(
Qia |φi|2 − ζa

)(
Qjb |φj |2 − ζb

)

+
N∑
i=1

∣∣∣∣∂W∂φi
∣∣∣∣2 .

(4.67)

(
ea,b
)2 is the inverse matrix of 1

e2a,b
. (4.67) determines the structure of the

vacuum manifold, which we will study in greater detail in Section 4.2.

General Terminology and Non-Abelian Models

In Section 4.2 we considered the special case of a U(1)k gauge symmetry. Here
we reformulate the above statements in more general terms, which also apply
to theories with non-abelian gauge symmetry. A further advantage of the
following terminology is to make the connection to the mathematics literature
(see e.g. [35]) more apparent. The subsequent discussion follows [34].

To construct a GLSM we need to choose:

43



4. The GLSM and Supersymmetric Localisation

• A gauge group G, assumed to be a compact Lie group

• Matter representations ρVi with representation spaces Vi

• A superpotential W

• A twisted superpotential W̃

We assume that the homomorphisms ρVi :

ρVi : G→ GL(Vi), (4.68)

give a faithful complex representation. The chiral superfields Φi i = 1, . . . , N
take values in Vi. The scalar component of Φi is denoted by φi. The superpo-
tential W is a G-invariant polynomial in the Φis. We denote the total space
of the chiral fields by V =

⊕N
i=1 Vi. In addition we have a vector superfield V ,

taking values in gC. The scalar component of V is denoted by σ. gC is the com-
plexified Lie-algebra of G. We denote the corresponding superfield strength by
Σ. The twisted chiral superpotential W̃ is G-invariant and polynomial in the
Σs. It is possible to preserve the vector and axial U(1)V ×U(1)A R-symmetries
with integral charges under the following conditions: U(1)V is preserved when
it is possible to assign R-charges to Φi such that W (Φ) has R-charge 2. The
vector R-charge operators RVi are elements of End(Vi). Charge integrality is
given if eiπRVi = ρVi(J) for some J ∈ G. For U(1)A to exist classically σ must
have axial R-charge 2 and W̃ (σ) must be linear. U(1)A is anomaly free under
the Calabi-Yau condition:

ρV : G→ SL(V). (4.69)

The twisted superpotential is given by:

W̃ (σ) = −t(σ), (4.70)

with t ∈ g∗C, t = ζ − iθ. ζ and θ are the FI-θ parameters introduced in Section
4.2. These terms are only possible if the gauge group has U(1) subgroups.
Next we write down the scalar potential and we focus on gauge groups of the
following form:

G = U(1)k × G̃, (4.71)

where G̃ is a simple Lie group with Lie algebra g̃. Similar to the abelian models
(Section 4.2) the auxiliary Fi and D fields can be replaced by their equations
of motion. After these fields have been integrated out the potential for the
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scalar fields reads:

U =
1

8e2
Tr
(

[σ, σ]2
)

+
1

2

N∑
i=1

(
φ†i {σVi , σVi}φi

)

+
e2
a

2

k∑
a=1

(
N∑
i=1

Qi,a|φi|2 − ζa

)2

+
g2

2

dim(g̃)∑
k=1

(
N∑
i=1

φ†i t
k
Viφi

)2

+

N∑
i=1

∣∣∣∣∂W (φ)

∂φi

∣∣∣∣2 .
, (4.72)

where σVi = σat
a
Vi , t

a
Vi are the generators of g̃ in the representation ρVi and g

is the coupling constant of the gauge field. We want to highlight the following
terms of (4.72):(

N∑
i=1

Qi,a|φi|2 − ζa

)
= µa(φ)− ζa,(

N∑
i=1

φit
k
Viφi

)
= µk(φ),


D-terms,

∂W (φ)

∂φi
F-terms.

(4.73)

We rewrote the D-terms in such a way to emphasise their interpretation as
moment maps:

µa : V → ig∗, (4.74)

on the symplectic quotient which determines the vacuum manifold. These
terms will be important in the study of the structure of the vacuum manifold
in Section 4.2.

Let us close this section by making the connection with the abelian model
with gauge group U(1)k discussed in Section 4.2. We set1

(ea,b)2 = δa,b(ea)
2, (4.75)

which gives for the potential (4.67):

U =

k∑
a=1

N∑
i=1

|Qiaσa|2 |φi|2

+

k∑
a=1

(ea)
2

2

(
N∑
i=1

Qia |φi|2 − ζa

)2

+

N∑
i=1

∣∣∣∣∂W∂φi
∣∣∣∣2 .

(4.76)

1We focus on this specific case, because all models studied in this thesis are of this kind.
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We now compare (4.76) and (4.72). If we look at the first term in the first line
of (4.72) we do not find a matching term in (4.76). This is expected, because
we have an abelian gauge group and so all commutators vanish. The second
term in (4.72) corresponds to the first line of (4.76). The remaining terms in
(4.76) can be identified with:

N∑
i=1

(
Qia |φi|2

)
− ζa D-terms, (4.77)

∂W

∂φi
F-terms. (4.78)

Structure of the Vacuum Manifold and Phases

In this section we analyse the structure of the vacuum manifold of a given
GLSM. Our discussion follows [34, 3]. To obtain a Lorentz invariant vacuum
the vacuum expectation values (VEVs) of spinors and vector fields have to
be zero, but scalar fields can develop a non-zero VEV. In a general GLSM
the scalar fields have a non-zero potential U (4.72). U is manifestly positive
and therefore a vacuum is obtained, if U vanishes. Due to the structure of U
(see (4.72)) each term of U has to vanish on its own. Therefore we first focus
on the D- and F-term equations (4.73). The crucial feature of the D-term is
that, depending on the value of ζ, certain φi are forced to be non-zero to get
a vanishing D-term.

These non-zero values break the gauge group. We see from the first term of
U that σ must take values in the Cartan subalgebra of gC. It follows from the
second term in the first line of (4.72) that the σ components corresponding to
broken generators (taViφi 6= 0) have to vanish. The symmetry breaking patterns
divide the FI-θ parameter space into different chambers. These chambers are
called phases of the GLSM. Different phases show different low energy physics.

We next analyse a phase in which the gauge group is broken to a finite
subgroup. All σ components must be zero. The continuous part of the gauge
group is completely Higgsed. In such a phase the low energy physics can
be analysed classically. The space of D-term solutions modulo gauge group
actions is the symplectic quotient:

µ−1 (ζ) /G, (4.79)

and is either a smooth manifold or an orbifold. The symplectic quotient is
equivalently described by a complex quotient:

µ−1 (ζ) /G ' (V − Fζ) /GC, (4.80)

see also [6] where this aspect is discussed in more detail. Fζ ⊂ V is called
deleted set and corresponds to the φ ∈ V whose gauge orbit does not intersect

46



4.2. Gauged Linear Sigma Models

µ−1(ζ). The superpotential W gives a holomorphic function Wζ on (4.80).
Classical vacua form the critical locus of Wζ :

dW−1(0) ∩ µ−1(ζ)/G = Crit(Wζ). (4.81)

If all modes transverse to Crit(Wζ) are massive the low energy physics is given
by a non-linear sigma-model with target space Crit(Wζ) after the massive
modes have been integrated out. The target space is in that case a CY manifold
or orbifold. If Wζ has an isolated critical point the low energy description
is given by a Landau-Ginzburg orbifold model. If none of the above holds(
µ−1 (ζ) /G,Wζ

)
describes a hybrid phase.

Between two phases some of the solutions φi to the D- and F-term equations
(4.73) can leave a continuous subgroup unbroken. If this happens σ can take
arbitrary values in the Cartan subalgebra of the unbroken gauge group. These
non-compact flat directions in the effective target space are called Coulomb
branch. As mentioned in [34] if some of the gauge group is broken it would be
more precise to call such a direction mixed Coulomb-Higgs branch. To get the
exact location of the Coulomb branch quantum effects have to be taken into
account. We will study this situation in more detail in Section 4.2.

It is also possible that in a phase some solutions of (4.73) leave a continuous
group unbroken and the values of σ for the unbroken gauge group are still
constrained. These phases are strongly coupled and the classical analysis is
not applicable. Such phases were analysed in [36] and a duality between a
strongly coupled phase of one model and a weakly coupled of another model
was given in [37]. We refer to these for further details on strongly coupled
phases.

Quantum Corrections and Renormalization

In the analysis of the various phases of a gauged linear sigma model we are
interested in the low energy physics. Therefore we have to take into account
the renormalization of the parameters in the theory. We focus on the case
of an abelian gauge group U(1)k =

∏k
a=1 U(1)a, because models of this kind

will play a main role in this thesis. The Lagrangian is given in (4.65) and
the twisted superpotential has the form (4.66). In the models of interest the
only parameters which receive quantum corrections are the FI-parameters ζa.
The corrections are not higher than one-loop order. The other parameters
do not receive corrections. This is a consequence of supersymmetric non-
renormalization theorems (see e.g. [38]). A detailed calculation is given in [3]
and we will only state the outcome of the analysis. The crucial result is that
the ζa values do not get renormalized if:

N∑
i=1

Qia = 0 ∀a. (4.82)
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4. The GLSM and Supersymmetric Localisation

This is the Calabi-Yau condition introduced in (4.69) to obtain an anomaly
free U(1)A symmetry. It follows that if the ζa values are not renormalized also
U(1)A is non-anomalous. In the following discussion we assume that ζa is not
renormalized.

Let us come back to the analysis of the Coulomb branches between the
different phases. We first focus on the non-Abelian case. Such branches appear
for certain FI-θ parameters ta values. At such values the first term in the first
line of (4.72) breaks the gauge theory to a maximal torus T of G. σ can take
arbitrary large values in tC = Lie(T )C. The matter fields charged under T are
heavy as one can see by looking at the second term in the first line of (4.72).
To obtain the effective theory these heavy fields have to be integrated out. In
that process an effective twisted superpotential for σ is obtained (see [34]):

W̃eff (σ) = W̃ (σ) + πi
∑
α>0

〈α, σ〉 −
∑
Q

〈Q, σ〉 (log 〈Q, σ〉 − 1) . (4.83)

The sums run over the positive roots α of g and over the weights Q of the
representations Vi, i = 1, . . . , N . From (4.83) the effective FI-θ parameter
teff,a(σ) can be obtained by:

teff,a(σ) = −
∂W̃eff (σ)

∂σa
. (4.84)

The parameters (4.84) enter into the effective potential [34, 6, 39]:

Ueff = min
n∈P

e2
eff

2

∑
a

|teff,a(σ) + 2πin|2 , (4.85)

where P is the weight lattice of T . From (4.85) we see that the vacuum is at

teff,a(σ) ≡ 0 modulo 2πiP ∀a. (4.86)

The Coulomb branch is then parameterized by (4.86). For the discussion of
mixed Coulomb-Higgs-branches we refer the interested reader to [34].

Let us close this section by specializing (4.83) to the abelian model with
U(1)k symmetry discussed previously. In this case we do not have positive
roots and the weights are given by the charges Qia. This results in

W̃eff (σ) = −
k∑
a=1

taσa −
k∑
a=1

N∑
i=1

Qiaσa

(
log

(
k∑
b=1

Qibσb

)
− 1

)
. (4.87)

We next use (4.84) to calculate the effective FI-θ parameters:

teff,a(σ) = ta +
N∑
i=1

Qia log

(
k∑
b=1

Qibσb

)
. (4.88)
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4.3. Supersymmetric Localisation

The Coulomb branch location is then parameterized by:

e−ta =
N∏
i=1

(
k∑
b=1

Qibσb

)Qia
a = 1, . . . , k. (4.89)

4.3 Supersymmetric Localisation

In this section we will first outline the procedure to study supersymmetry on
curved backgrounds. Afterwards we state the localisation argument, which
makes it possible to get fully quantum corrected results in supersymmetric
theories. We close the section by providing localisation results in GLSMs. An
extensive review on supersymmetric localisation in quantum field theory is
given in [40]. In our discussion we follow certain contributions of [40].

Supersymmetry in Curved Backgrounds

We follow [41, 42], where additional details and references to the original lit-
erature can be found. We start from a supersymmetric field theory with La-
grangian L in a flat spacetime, with metric η. We denote the infinitesimal
supersymmetry transformations by δ. These transformations generate the su-
persymmetry algebra. Invariance of the action under δ requires:

δL = ∂µ (. . . )µ . (4.90)

To define the above theory on a curved manifold with metric gµν two paths
can be followed. The first is a trial and error procedure. In a first step we
make the replacement:

ηµν → gµν ,

∂µ → ∇µ,
(4.91)

where ∇µ is a covariant derivative with respect to gµν . Invariance under su-
persymmetry is given when

δL = ∇µ (. . . )µ , (4.92)

but this is in general not the case. It is necessary to amend the original
transformation δ and L with additional terms to achieve (4.92). The drawback
of the above procedure is that it has to be done on a case by case basis. Further
it is not guaranteed that the above process leads to a closed supersymmetry
algebra.

A second procedure was outlined in [43]. The supersymmetric theory is first
coupled to supergravity and afterwards the rigid limit is taken. In this limit the
supergravity gets non-dynamical and the metric gµν is set to a fixed background
metric. In the rigid limit the equations of motion for the auxiliary fields in
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4. The GLSM and Supersymmetric Localisation

the supergravity multiplet do not need to be imposed. However we require
Poincaré invariance and a supersymmetric background. This sets the fermionic
fields in the supergravity multiplet and their supersymmetric variation δ to
zero:

δFi = 0, (4.93)

where by Fi we collectively denote the fermionic components of the super-
gravity multiplet. The left hand side of (4.93) is an expression in the bosonic
components of the multiplet and the spinor parameter of the supersymmet-
ric transformation δ. Supersymmetric backgrounds correspond to solutions of
(4.93). Equations on the spinorial parameter are often referred to as general-
ized Killing spinor equations in this context.

Supersymmetric Localisation Argument

The main resources for this section are [44, 42, 45]. Supersymmetric localisa-
tion formulas can be seen as an extension of the localisation formulas known
in mathematics like the Atiyah-Bott-Berline-Vergne localisation formula. This
relation is discussed in [42], where also the main ideas behind the Atiyah-Bott
formula are explained. We focus on a supersymmetric theory with Lagrangian
L. Let Q be a generator of a fermionic symmetry of the theory, which squares
to a bosonic generator B:

Q2 = B. (4.94)

B can be a generator of a linear combination of any bosonic symmetry of our
theory. The Euclidean path integral is given by:

Z =

∫
DXe−S[X], (4.95)

where X stands collectively for the fields in the theory. We deform (4.95) by:

Zt =

∫
DXe−S[X]−tQV [X]., (4.96)

with

Q2V = BV = 0. (4.97)

This does not alter the path integral result, because (4.96) is independent of
t:

∂

∂t
Zt = −

∫
DX(QV [X])e−S[X]−tQV [X],

= −
∫
DXQ

(
V [X])e−S[X]−tQV [X]

)
,

= 0.

(4.98)
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4.3. Supersymmetric Localisation

In the last line of (4.98) we integrated by parts in field space and assumed
that the integral converges sufficiently fast so that boundary terms can be
neglected. The result (4.98) makes it possible to calculate the path integral in
the limit t→∞: ∫

DXe−S[X] = lim
t→∞

∫
DXe−S[X]−tQV [X] (4.99)

We assume that QV [X] is positive semi-definite and so (4.99) localises to the
saddle points of QV [X]. The term

QV [X], (4.100)

is called localisation action. Next we expand (4.99) around a saddle point X0

of (4.100):

X = X0 +
1√
t
X̃, (4.101)

where the t-prefactor was chosen such that the kinetic term is canonically
normalized. We next expand the exponent of (4.99) around (4.101):

S[X0] +
1

2

∫∫
δ2 (QV )

δX2

∣∣∣∣
X=X0

X̃2 + · · · . (4.102)

In the limit t → ∞ we can neglect the higher terms of (4.102), because these
are weighted by negative powers of t. The fluctuations X̃ can be integrated
out and the path integral (4.95) results in:

Z =

∫
Vloc
DX0e

−S[X0] 1

SDet
(
δ2(QV )
δX2

)∣∣∣
X=X0

, (4.103)

where Vloc is the localisation locus and SDet is the superdeterminant. The
remaining integration is a path-integral over a lower dimensional field theory.
The most favourable case is, if the remaining integral is over a zero-dimensional
field theory, which gives an ordinary integral.

Let us mention that (4.103) also holds if we insert a BPS operator O:

〈O〉 =

∫
Vloc
DX0O(X0)e−S[X0] 1

SDet
(
δ2(QV )
δX2

)∣∣∣
X=X0

, (4.104)

with

QO = 0. (4.105)

We want to emphasise that the result of (4.103) does not depend on the
chosen localisation action (4.100), because we deformed the path-integral by
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4. The GLSM and Supersymmetric Localisation

a Q-exact term. This follows from a similar argument as in (4.98). The
localisation locus Vloc can be shown to be always a BPS configuration:

QFi = 0, (4.106)

where Fi stands collectively for the fermionic fields. If we would integrate over
a non-trivial Q orbit the path integral would vanish over the non-commuting
coordinates of the orbit2.

On the other hand we showed above that only the saddle points of the
localisation action contribute in the limit t→∞. We can conclude that only
Q- invariant saddle points give a non-zero path integral. We see that, the
path integral is taken over the intersection of saddle points with Q-invariant
configurations. The remaining integral is then over the moduli space of (4.106).

4.4 Sphere Partition Function of the GLSM

In this section we will present the results from supersymmetric localisation for
the partition function in a GLSM on a sphere S2 (see [7, 8]) and therefore
called sphere partition function. Let us also mention that the GLSM was
further localised on a hemisphere D2 ( [46, 47, 48]), whereby in [46] also the
localisation on an annulus was performed. A further result is the elliptic genus
obtained in [49, 50], which is given by supersymmetric localisation on a torus
T 2. We refer to the literature for details on these results.

As mentioned in Section 4.3, in the process of supersymmetric localisation
one has to choose a supercharge and a localisation action and those choices
are not unique. Although in the end they must give the same result. For the
GLSM on S2 two possible ways were analysed. In both approaches the chosen
supercharge for the localisation is the same and they differ by the applied
localisation action. These two different choices are called Coulomb- and Higgs-
branch localisation. We do not give the details of these computations and just
state the result for ZS2 for the Coulomb branch localisation:

ZS2 =
1

|W|
∑
m

∫ ∏
j

dσj
2π

Zclass (σ,m)Zgauge (σ,m)

·
∏
Φi

ZΦi (σ,m) ,

(4.107)

where we have chosen the notation in accordance with [7]. The rightmost prod-
uct in (4.107) runs over the different matter fields and the different components

2This argument was first given in [31].
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4.4. Sphere Partition Function of the GLSM

read

Zgauge = (−1)
1
2

∑
α>0 α(m)

∏
α>0

(
α(m)2

4
+ α(σ)2

)
, (4.108)

ZΦi =
∏
w∈ρVi

Γ
(
R[Φi]

2 − iw(σ)− w(m)
2

)
Γ
(

1− R[Φi]
2 + iw(σ)− w(m)

2

) , (4.109)

Zclass = e−4πiζ Tr(σ)−iθTr(m), (4.110)

where α are the roots of the Lie algebra g and α > 0 restricts the sum to
the positive ones. In (4.107) |W| denotes the order of the Weyl-group of
G. By w we denote a weight in the representation ρVi . In the process of
localisation, σ which is the real part of the vector multiplet scalar, is forced to
take values in the Cartan subalgebra of g. Also m lies in the Cartan subalgebra
and parameterises the gauge flux on S2. The gauge flux is GNO quantized
[51], which means for any representation ρVi and for any weight w of this
representation:

w (m) ∈ Z. (4.111)

R[Φi] gives the vector R-charge of the chiral superfield Φi. The alternating sign
in (4.108) was not given in [7, 8], but later found in [46, 48]. A more general
result compared to (4.107) can be found in [7, 8], for example we neglected
twisted mass terms, but the displayed form is the most relevant for this thesis.
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Chapter 5

Abelian one Parameter Models

In this chapter we describe a certain class of GLSMs, namely models with a
G = U(1) gauge group which fulfil the Calabi-Yau condition (see Section 4.2).
The discussion follows [6, 10, 9].

The models of interest have the following field content1

p1 p21,...,2k x1,...,5−n−j+k xα1,...,αn xβ1,...,βj FI

U(1) −d1 −d2 1 α β ζ

U(1)V 2− 2d1q 2− 2d2q 2q 2αq 2βq

(5.1)

where

0 ≤ k ≤ 3, 0 ≤ n ≤ 2, 0 ≤ j ≤ 2. (5.2)

In addition we have:

d1, d2, α, β ∈ Z≥0. (5.3)

In all models the Calabi-Yau condition is fulfilled:

5 + k − n− j + αn+ jβ = d1 + kd2. (5.4)

The U(1)V charges are positive and so it follows that

0 ≤ q ≤ 1

max[d1, d2]
. (5.5)

The superpotential takes the form

W = p1Gd1(xn) +
k∑
i=1

p2iGi,d2(xn), (5.6)
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5. Abelian one Parameter Models

model-data IR-description

label αn βj d1 dk2 ζ � 0 ζ � 0

F-type

F1 - - 5 - P15 [5] LG orbifold
F2 - 2 6 - P14,2[6] LG orbifold
F3 - 4 8 - P14,4[8] LG orbifold
F4 2 5 10 - P13,2,5[10] LG orbifold
F5 - 2 4 3 P15,2[4, 3] Pseudo-Hybrid
F6 22 3 6 4 P13,22,3[6, 4] Pseudo-Hybrid
F7 4 6 12 2 P14,4,6[12, 2] Pseudo-Hybrid

C-type

C1 - - 4 2 P16 [4, 2] Pseudo-Hybrid
C2 - 3 6 2 P15,3[6, 2] Pseudo-Hybrid
C3 - - 3 22 P17 [3, 2, 2] Pseudo-Hybrid

K-type

K1 - - 3 3 P16 [3, 3] Hybrid
K2 - 22 4 4 P14,22 [4, 4] Hybrid
K3 22 32 6 6 P12,22,32 [6, 6] Hybrid

M-type

M1 - - 2 23 P18 [2, 2, 2, 2] Non-linear σ

Table 5.1: Model data of one-parameter abelian GLSMs.

with Gd1(Gi,d2) a weighted homogeneous polynomial of degree d1(d2) in the
x-fields. In total there are 14 different abelian-one parameter models, with
parameter values as given in Table 5.1.

Depending on whether ζ ≶ 0 we encounter a different low energy descrip-
tion, called phases (see Section 4.2). We can identify ζ with the real part of
the Kähler parameter of a Calabi-Yau manifold. We denote the Kähler mod-
uli space byMK . In the modelsMK decomposes into two chambers/phases.
A the boundary between these two phases a Coulomb branch appears. The
location of the Coulomb branch is determined by the zeros of (4.88):

t = −
N∑
i=1

Qi log (Qiσ) . (5.7)

1In this section an abuse of notation is taking place, we denote the superfields and their
scalar components by the same lowercase letter, which interpretation is valid should be
obvious from the context.
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For the models of interest we find singular points which are located at:

(ζ, θ) =

(
1

2π
log

(
dd1

1 d
kd2
2

αnαβjβ

)
, (d1 + kd2)π + 2πZ

)
. (5.8)

Observe that it is a matter of convention if a factor of 1
2π appears in front

of the ζ value in (5.8). In this thesis we use the convention t = 2πζ − iθ,
which gives the prefactor. In addition to the singular points each phase con-
tains a limiting point, which is either at a finite or infinite distance in MK .
The nature of these special points can be encoded into the local exponents
a = (a1, a2, a3, a4), ai ∈ Q at each point. The local exponents can be ob-
tained from the Picard-Fuchs operator L(z) associated to the mirror Calabi-
Yau of interest. z is a local coordinate in the complex structure moduli space
of the mirror. Nevertheless it is meaningful to associate a Picard-Fuchs oper-
ator to the phases of a GLSM, because the sphere and hemisphere partition
function of the GLSM fulfil GKZ and Picard-Fuchs equations [52, 53, 54]. The
a are determined by the solutions of the indicial equation of the Picard-Fuchs
differential operator at the respective special point. The different labels corre-
spond to different monodromy behaviours of the solutions of the Picard-Fuchs
equation around the singular points. These Picard-Fuchs operators can also
be found in [55]. In Table 5.2 we give a list of possible local exponents for the
one-parameter models.

The assignment of the different points in MK to the labels F, C, K and
M as been chosen in accordance with [55, 56]. The point at ζ � 0 is always a
M-point and this phase is called geometric phase. For ζ � 0 we encounter M-,
F-, K- and C-type limiting points. The finite distance points in the moduli
space are given by C- and F-type points. C-type points occur at the boundary
of the phases, but can also be encountered as limiting points in a phase. In the
latter case they have been studied in [57, 58], where they where named pseudo-
hybrids (see Section 5.4). At F-type points the low energy description is given
in terms of Landau-Ginzburg orbifold theories, which are describe in Section
5.2, but also pseudo-hybrids are possible for these points. K-type points have
low energy descriptions in terms of so-called hybrid models (see Section 5.3),
which are Landau-Ginzburg orbifolds fibred over a base manifold.

To study the low energy configuration in a phase we need to solve the D-
and F-term equations (4.73). If we insert the characteristics of the models
(5.1) in these equations we find:

−d1|p1|2 − d2

k∑
i=1

|p2i |2 +

5−n−j+k∑
i=1

|xi|2

+ α

n∑
i=1

|xαi |2 + β

j∑
i=1

|xβi |
2 = ζ, D-term, (5.9)
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5. Abelian one Parameter Models

type a distance onM description
F (a, b, c, d) finite Landau-Ginzburg, pseudo-hybrid
C (a, b, b, c) finite (mirror of) conifold, pseudo-hybrid
K (a, a, b, b) infinite hybrid
M (a, a, a, a) infinite geometric

Table 5.2: F -, C-, K-, and M -points of one-parameter models.

and

Gd1(xn) = 0, Gi,d2(xn) = 0, i = 1, . . . , k

G′l(xn) = p1
∂Gd1

∂xl
+

k∑
i=1

p2k

∂Gi,d2

∂xl
= 0

F-terms, (5.10)

with

l ∈ {1, . . . , 5− n− j + k, α1, . . . , αn, β1, . . . , βj}. (5.11)

We also assume that the G′k(xn) are transverse in the following sense:

G′l(xn) = 0 ∀l ⇐⇒ xn = 0 ∀n. (5.12)

We subsequently perform an analysis along the lines of Section 4.2 to describe
the different possible solutions to (5.9) and (5.10). In Table 5.1 we give an
overview of the low energy description in the respective phase.

Certain subsets of these abelian one parameter models have been studied
in [59, 60] and a full classification has been given in [61] (see also [56] for the
full list of models).

5.1 Geometric Phase

In this case we see from (5.9) that not all xn can simultaneously vanish. This
gives the deleted set:

Fζ�0 = {xi = 0 ∀i}. (5.13)

As consequence of the F-term equations G′l(xn) (5.10) and (5.12) in a vacuum
configuration:

p1 = p2i = 0 ∀i. (5.14)

Next we need to take into account the first line of the F-term equations in
(5.10), which gives the constraints:

Gd1(xn) = Gi,d2(xn) = 0, i = 1, . . . , k. (5.15)
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5.2. Landau Ginzburg Phase

We reinsert (5.14) into the D-term (5.9):

5−n−j+k∑
i=1

|xi|2 + α
n∑
i=1

|xαi |2 + β

j∑
i=1

|xβi |
2 = ζ, (5.16)

and see that this is the defining equation of a sphere S2(5+k)−1. If we take
into account the U(1) action and (5.15), we can conclude that the vacuum
configuration is a complete intersection in weighted projective space:

P5+k−1
15+k−n−jαnβj

[d1, d2, . . . , d2︸ ︷︷ ︸
k-times

], (5.17)

where the dimension is denoted by superscript and the weights by subscript.
The weighted homogeneous degree of the defining equations is given by the
number in the bracket. If we expand around the vacuum we see that the
gauge group gets completely broken. All modes transverse to the vacuum are
massive. The low energy effective theory is given by a non-linear sigma model
with target (5.17). Due to (5.4) the target space is a complete intersection
Calabi-Yau.

5.2 Landau Ginzburg Phase

Such phases are realized in the models F1, F2, F3 and F4. In all of these
models we only have a single p-field, namely p1. Becasue ζ is negative we see
from (5.9) that p1 cannot vanish and so the deleted set is

Fζ�0 = {p1 = 0}. (5.18)

The second line of the F-term equations (5.10) and the transversality condition
(5.12) forces the xis to vanish. As consequence Gd1(xn) = 0 has to be satisfied.
If we now set the xis to zero in (5.9), we see that pd1 gets a VEV:

|pd1 | =

√
|ζ|
d1
. (5.19)

We can apply a gauge transformation to set the phase of (5.19) to zero and
obtain a unique vacuum configuration. The choice of a vacuum breaks the
U(1) symmetry to Zd1 . An expansion around the vacuum reveals that the xi
are massless, as long as, the fields appear with exponents ≥ 3 in Gd1 . The
massless fields interact via an effective superpotential, which is obtained by
setting pd1 to its VEV in (5.6). This effective superpotential has a degenerate
critical point at the origin. A model with such a superpotential and a Zd1

symmetry is called Landau-Ginzburg orbifold model.
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Landau-Ginzburg/Calabi Yau Correspondence

This correspondence is the observation that certain N = 2 supersymmetric
Landau-Ginzburg orbifold models and certain N = 2 supersymmetric non-
linear sigma models with Calabi-Yau targetspace flow to isomorphic conformal
field theories in the infrared. This goes back to the work [62, 63], in which a
relation between minimal models and Calabi-Yau manifolds was described, and
further arguments in favour of the correspondence were given in [64, 65, 66, 20].
The work of Witten [6] showed that the two theories are really two phases of an
underlying GLSM2. This can be seen, by combining the results from Section
5.1 and Section 5.2. This correspondence was also extended to hybrid models
(see [68, 69] and Chapter 6).

5.3 Hybrid Phases

Hybrid phases bear some similarities to Landau-Ginzburg orbifold phases.
However in sharp contrast the vacuum manifold is no longer a single point, as
we will see in the subsequent analysis.

K-Type Hybrid Phase

From Table 5.1 we can read off that there are 3 models of this kind: K1, K2
and K3. In these models k = 1 and d1 = d21 . We start our analysis by looking
at the D-term (5.9) in these models. If we take into account that ζ � 0, we
see that the deleted set is:

Fζ�0 = {p1 = p21 = 0}. (5.20)

In a vacuum configuration the F-terms (5.10) require xi = 0, ∀i. This result
can be reinserted into (5.9) and gives

|p1|2 + |p21 |2 =
|ζ|
d1
. (5.21)

By the U(1) action this describes a P1
d1d1

. The choice of a specific vacuum
breaks the U(1) gauge symmetry to Zd1 . By expanding around a chosen vac-
uum we see that the xi are massless. We get an effective superpotential and
the low energy dynamics is described in terms of a Landau-Ginzburg orbifold.
Observe that we now have a Landau-Ginzburg orbifold model for every point
of P1

d1d1
. Therefore the Landau-Ginzburg orbifold is actually fibred over P1

d1d1
.

M-Type Hybrid Phase

For the abelian one parameter models we only have one instance, in which
such a phase is realized in the ζ � 0 phase namely in the M1 model (Table

2See [67] were a similar result was obtained by using mirror symmetry.
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(5.1)). The deleted set is

Fζ�0 = {p1 = p21 = p22 = p23 = 0}. (5.22)

and the D-term equation for a vacuum configuration reads:

|p1|2 + |p21 |2 + |p22 |2 + |p23 |2 =
|ζ|
2
. (5.23)

In this case the vacuum manifold is a P3
2222. The non-minimal charges of the

p-fields require a special treatment. This was done in [70], where it was found
that the Calabi-Yaus related to the two phases of this model are not birational.
It was shown that the ζ � 0 phase is the non-commutative resolution of a
singular branched double cover over P3 with branching locus detA = 0. A
originates from a remodelling of the superpotentialW . In this model a generic
superpotential W is given by

W = p1G2(xn) +
3∑
i=1

p2iGi,2(xn), (5.24)

where G2(xn) and the Gi,2(xn)s are quadratic polynomials in the xi. W can
be rewritten into

W =
8∑
i=1

xiA
ij(p)xj , (5.25)

where A is a symmetric matrix with linear entries in the pis.
Although this phase has many features similar to a geometric phase, we

will see in Chapter 6 that this phase is more hybrid like from a sphere partition
function standpoint. Also the state space of the low energy theory is hybrid
like [68].

5.4 Pseudo-Hybrid Phases

Pseudo-hybrid phases are the last possibility of phases we encounter for ζ � 0.
The characteristic feature of these models is that the phase decomposes into
several components, or stated otherwise the vacuum equations of the GLSM al-
low for multiple solutions. These components show different symmetry break-
ing patterns. This characteristic makes a unique R-charge assignment in the
IR-theory impossible. The low energy description for pseudo-hybrid models is
currently not fully understood. In [57] arguments where given that the asso-
ciated conformal field theories are singular. From Table 5.1 we see that in the
C-type and for certain F-type models we encounter a pseudo-hybrid behaviour.
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F-Type

There are 3 F-type examples with a pseudo-hybrid phase, F5, F6 and F7 (see
Table 5.1) . These models have been previously studied in [60, 71, 72, 73, 56].
From the D-term equation (5.9) we deduce that the deleted set is

Fζ�0 = {p1 = p21 = 0}, (5.26)

and vanishing of (5.10) requires xi = 0. We see that a generic vacuum is
given for (p1, p21) ∈ P1

d1d21
and the gauge group is completely broken. But

at the point (p1, p21) = (1, 0) there is an unbroken Zd1 and the low energy
description is given in terms of a Landau-Ginzburg orbifold model with R-
charge assignment q = 1

d1
. A second Landau-Ginzburg orbifold description

with Zd2i
is encountered at the point (p1, p21) = (0, 1).

C-Type

We see from Table 5.1 that there are 3 instances of this phase. In contrast to
the pseudo hybrid F-type models the C-Type models will also have vacuum
branches which are not point like and where a subgroup of G is unbroken.
As these models play a prominent role in Chapter 8, we will discuss each
realization separately.

C3

This model was analysed in [57] and we repeat the analysis from the GLSM
viewpoint here. By the D-term equation (5.9) the deleted set is

Fζ�0 = {p1 = p21 = p22 = 0} (5.27)

and it follows from the F-terms (5.10) that x1 = . . . = x7 = 0. The classical
vacuum is a P2

322. The next step is to consider fluctuations of the xi and we
see that for a generic point in P2

322 we do not find proper vacua. In such
cases the gauge group is completely broken. Due to quadratic terms in the
superpotential the xi are all massive and they give a zero contribution to
the central charge. It follows that these vacua are not Calabi-Yau. The R-
symmetry is completely broken, because the non-zero VEVs of the pi require
that they have zero R-charge. In this case it is not possible to find a R-charge
assignment for the xi fields such that the Landau-Ginzburg potential has R-
charge two.

The interesting feature is that there are two special points where the vac-
uum manifold has a different behaviour. First at the point (p1, p21 , p22) =
(1, 0, 0) the gauge group gets broken to a Z3. We recover a Landau-Ginzburg
orbifold with superpotential WLG = Gd1 in C7/Z3. The superpotential does
not contain quadratic terms and all xi are massless. It is possible to preserve
the R-symmetry, by assigning the charge 2

3 to all xi. This choice of R-charge
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assignment implies that we set q = 1
3 in (5.1). The central charge of this

Landau-Ginzburg model is ĉ = 7
3 . This implies that we do not get a supercon-

formal field theory of Calabi-Yau type and hints that this Landau-Ginzburg
model alone cannot describe the theory at low energies.

Another vacuum branch is given by the curve C = (0, p21 , p22). The pre-
served symmetry group is a Z2. The R-symmetry is preserved by the assign-
ment of R-charge 1 (set q = 1

2 ) to the xis. The Z2 Landau-Ginzburg orbifold
fibred over C has a quadratic superpotential and at a first glance we would
expect that we only have massive degrees of freedom. But it is possible to
write the superpotential in the form

W =

7∑
i,j=1

xiA
ij(p)xj , (5.28)

where Aij is a generic 7×7 matrix. The matrix A has entries linear in p21,22 . In
the case when the rank of A(p) drops (i.e. detA(p) = 0) there will be massless
degrees of freedom. In [74, 70] situations similar to the above described where
discussed.

We saw that in the ζ � 0 phase we found two branches where the gauge
symmetry is broken to a Z2 and a Z3 respectively, whereby the former corre-
sponds to a hybrid-type and the latter to a Landau-Ginzburg orbifold.

C1

The zero of the scalar potential is given by (p1, p21) ∈ P1
42 and xi = 0. A

generic point (p1, p21) does not lead to a well-defined vacuum, but a the point
(p1, p21) = (1, 0) we find a Landau-Ginzburg orbifold with WLG = G4 in
C6/Z4. To obtain the R-charge assignment we set q = 1

4 in the Table (5.1).
The central charge of the IR CFT is given by ĉ = 3. Another branch is located
at p21 6= 0. At this branch a Z2 is unbroken and the R-charges are given by
setting q = 1

2 . This theory is massive. Again it is tempting to argue that this
massive theory does not contribute in the IR, but we see some effects of this
branch in the sphere partition function (see Section 6.3).

C2

The zeros of the classical potential are at (p1, p21) ∈ P1
62 and xi = 0. At

(p1, p21) = (1, 0) we find a Landau-Ginzburg orbifold model in C7/Z6 and
potential WLG = G6. The x6 field is massive and the R-charge assignment is
given by q = 1

6 . The central charge of the IR CFT is ĉ = 10
3 , which is higher

than the value for the Calabi-Yau case. A second branch sits at p21 6= 0. In
this branch a Z2 is unbroken and the R-charges can be read off from Table
(5.1) by setting q = 1

2 .
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Chapter 6

The Structure of the Sphere
Partition Function

In Section 4.4 we have introduced the sphere partition function of the gauged
linear sigma model and described its dependence on the moduli of the under-
lying Calabi-Yau manifold. In this chapter we want to make the connection
to known structures on the Calabi-Yau moduli space and conjecture a uni-
versal form of the sphere partition function, whereby universal we mean valid
throughout the moduli space.

In [75] it was shown that the sphere partition function gives the fully quan-
tum corrected exponentiated Kähler potential on the moduli space. This was
checked by mirror symmetry in the geometric regime. The results of [76, 77, 78]
suggest that this relation to the Kähler potential is valid away from the geo-
metric regime. In view of these results and the common UV origin in terms of
the GLSM it is natural to expect a general structure of the sphere partition
function.

We begin by introducing universal structures on the moduli space and finish
by matching the conjectured form for a class of abelian one parameter models
and certain abelian two parameter models. For that purpose we evaluate the
sphere partition function in the different phases of the respective GLSM and
identify the structures introduced before. This chapter is based on the author’s
work [9].

6.1 Universal Structures on Calabi-Yau Moduli
Spaces

In this section we will introduce two structures which appear on the moduli
space of Calabi-Yau compactifications. The first is tt∗ geometry as first studied
in [79] and Givental’s I and J functions (e.g. [80]).
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tt∗ Geometry

We will introduce the basic aspects of tt∗ geometry and follow in our discussion
the papers [79, 81, 30, 3] and [82]. In contrast to the original paper [79] we
focus right away to N = (2, 2) supersymmetric conformal theories (SCFT)
with central charge c. We introduced the N = 2 SCFT algebra in Section 3.1.
We focus on the NS-NS sector and on the R-R sector which we will call simply
NS- and Ramond-sectors subsequently. These SCFTs have four supercharges,
Q±, Q±, which can be combined into four nilpotent operators:

QA = Q+ +Q−,

QB = Q− +Q+,
(6.1)

and their complex conjugates. In the NS-sector the operator QA (QB) anni-
hilates states in the (a, c)((c, c))-ring (see Section 3.1). In a similar manner
Q†A

(
Q†B

)
annihilates states in the (c, a)((a, a))-ring. The Ramond ground

states are defined by the states which are annihilated by an operator (6.1)
and the complex conjugate thereof. The operators (6.1) are not defined on a
general Riemann surface due to their spinorial origin. To make the discussion
valid on a generic Riemann surface a topological twist has to be performed.
For the twist there are different possibilities and each possibility results in a
different operator in (6.1), or their complex conjugate, becoming scalar. The
twisting procedure was discussed for non-linear sigma models with a CY target
in Section 3.3. This choice also singles out a ring structure, which provides
the physical operators. In the following we will assume that we have taken
one choice. This theory is subsequently called topological theory and the com-
plex conjugate twisted theory will by called anti-topological. We discussed in
Section 3.1 that a certain subset of these rings can be used to construct per-
turbations of the theory and we will denote the parameters describing these
deformations by ti, ti. The ring structure is encoded in the structure constants
(see Section 3.1):

φiφj = Ckijφk, (6.2)

where C lik
(
C
k
ij

)
depends on ti

(
t
i
)
. As shown in Section 3.1 the different

sectors are related by spectral flow. By spectral flow we can get a Ramond
ground state from a state in the NS-sector. In the NS-sector we can identify
a unique vacuum state |0〉NS, namely the state with lowest energy and left-
right-charge (qL, qR) = (0, 0). Ground states in the Ramond sector can then
by obtained by acting with a ring element φi on the NS vacuum: φi|0〉NS, and
afterwards performing a spectral flow. We will denote the obtained state in
the Ramond sector by |i〉. Its now possible to realize the ring structure (6.2)
directly on the ground states by

φi|j〉 = φiφj |0〉 = Ckijφk|0〉 = Ckij |k〉. (6.3)
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where |0〉 is the ground state in the Ramond sector obtained under spectral flow
from the NS sector vacuum state. It is important to note, that we introduced
the relation between the states using spectral flow as defined in a N = (2, 2)
superconformal theory. We refer to [79] for a detailed discussion of the case
with only N = (2, 2) supersymmetry available.

Let us now consider a change of the parameters ti, ti. Such a change results
in a variation of the ground states in the full Hilbert space of the theory. Note
that the full Hilbert space is unchanged. The ground states can be viewed
as sections |i(t, t)〉 of the ground state bundle V over the parameter spaceM
spanned by ti, ti. We introduce a covariant derivative with a connection, such
that non-orthogonal variations of the ground states are projected out. The
defining property is

〈a(t, t)|Di|b(t, t)〉 = 〈a(t, t)| ∂
∂ti
−Ai|b(t, t)〉 ≡ 0, (6.4)

〈a(t, t)|Di|b(t, t)〉 = 〈a(t, t)| ∂
∂t̄i
−Ai|b(t, t)〉 ≡ 0. (6.5)

It follows

Aiab = 〈a(t, t)| ∂
∂ti
|b(t, t)〉, Aiab = 〈a(t, t)| ∂

∂t̄i
|b(t, t)〉. (6.6)

The above discussion is also valid for the anti-topological theory, with the
appropriate notational adjustments. We denote the ground states in the anti-
topologically twisted theory by |b(t, t)〉 and the singled out ground state by
|0〉. But these are the same Ramond ground states as before and therefore
the conjugate twisted theory provides only a different basis of these states.
Therefore they must be related to the basis given by the twisted theory:

|a〉 = M b
a|b〉. (6.7)

By the CPT operation, which changes |a〉 to |a〉, it follows that

MM∗ = 1. (6.8)

The topologically twisted theory provides a holomorphic basis in which

(Ai)
l
k = 0, (6.9)

and similarly the anti-topological twist results in an anti-holomorphic basis
with (Ai)

l
k

= 0. The paring on the ground state bundle is either given by the
pairing of the Ramond ground states:

ηij = 〈j|i〉, (6.10)

or by

gi = 〈|i〉, (6.11)
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which gives a Hermitian metric. A crucial observation in [79] was, that the
connection on V, introduced above, fulfils the so called tt∗- equations:

[Di, Dj ] = 0,
[
Di, Dj

]
= 0, (6.12)

[Di, Cj ] = [Dj , Ci] ,
[
Di, Cj

]
=
[
Dj , Ci

]
, (6.13)[

Di, Dj

]
= −

[
Ci, Cj

]
, (6.14)

where Cj = (Cj)
k
l are the structure constants introduced in eqn. 6.2. From

the tt∗- equations it follows that

∇i = Di − Ci, (6.15)

and ∇ı have vanishing curvature on V.
The flatness of the connection allows to identify the fibres of V with a fixed

fibre V at a chosen point by parallel transport. Chose V to be the vector
space of ground states. ∇i,∇ı reduce to the ordinary derivatives ∂

∂ti
, ∂

∂t
i in

this setup. CPT provides a real structure on V, by declaring CPT invariant
states as real.

We now focus on a subring generated by operators of conformal dimension
(1

2 ,
1
2). This ring is called deformation ring in [30] and [82]. The generators of

the ring correspond to marginal deformations of the SCFT and in Section 3.1
we gave a procedure on how to construct these deformations. We will denote
this ring by Hdef . We assume that we have m such elements. A basis of Hdef
is given by {

|0〉, |a1〉, |a2〉, . . . , |am〉, |a1〉, |a2〉, . . . |am〉, |Ω〉
}
, (6.16)

|ai〉 are the dual states with respect to (6.10) and |Ω〉 originates from the
unique state in the NS sector with conformal dimension ( c6 ,

c
6) (see Section

3.1). We see that Hdef has dimension 2m + 2. In the case of a SCFT with
c = 9 the bundle V decomposes into

V = L ⊕ (TM⊗L)⊕ (TM⊗L)⊕ L. (6.17)

L is the line bundle corresponding to the state |0〉. The fibres of (TM⊗M)
are spanned by the |αi〉, where TM is the holomorphic tangent space ofM.
The conjugate bundles are spanned by the states:

|aı〉 = gık|ak〉, |0〉 = g00|0〉, (6.18)

gi is given in (6.11). By restricting the indices i, j to the marginal deformations
we can introduce the metric

Gi =
gi

〈0|0〉
. (6.19)
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G is the Zamolodchikov metric [24] as shown in [79]. Further by the tt∗ -
equations it follows that

Gi = −∂i∂j log〈0|0〉, (6.20)

and so

〈0|0〉 = e−K(t,t), (6.21)

K(t, t) is the Kähler potential of Gij .
We have now all the ingredients to make the connection to the sphere parti-

tion function of the GLSM. In [75] it was conjectured and tested by examples,
that

Zphase
S2 (t, t) = e−K(t,t) = 〈0|0〉, (6.22)

where the last equality follows from tt∗- geometry and phase means evaluation
of the sphere partition function in a certain phase of the GLSM. The authors of
[78] verified the conjecture by using tt∗-geometry arguments. Observe that the
t are the FI-theta parameters of the GLSM (6.71) and not the flat coordinates
t, related to the marginal deformations. To extract enumerative invariants
from the result of the GLSM we first need to change the coordinates from t
to t. The procedure on how to extract this coordinate change in geometric
and Landau-Ginzburg phases was given in [75] and [82]. The change coincides
with the mirror map.

Givental’s I and J Function

Let us first mention that our discussion will be heuristic, because the back-
ground material to fully understand the approach is vast and for our approach
we only need certain aspects. This section follows the approach and notation
of [83, 84]. See also [85, 86].

On of the main aspects of Givental’s approach is that the genus zero invari-
ants 1 are encoded in certain subspaces L•. These subspaces are Lagrangian
cones in a symplectic vector space (V•,Ω•), where Ω• denotes the symplectic
form.

The vector space V• consists of Laurent series with values in the state space
H•:

V• = H• ⊗ C((z−1)). (6.23)

Observe that we did not explicitly state the nature of the state space H•, be-
cause it depends on the theory of interest. In Gromov-Witten (GW) theory

1We are here not very specify about the nature and definition of the term invariant. The
exact nature of the invariants is highly dependent on the theory we study (e.g. Gromov-
Witten invariants, FJRW invariants)
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it would correspond to a subset of the cohomology of the Calabi-Yau hyper-
surface X and in FJRW theory it would be given by the FJRW theory state
space and in hybrid theory by the appropriate state space of this theory. We
denote this by •.

We can introduce a basis of H•: Φ0, . . . ,Φk and Φ0 = 1• is the unique iden-
tity element of the respective theory. The dual basis is denoted by Φ0, . . . ,Φk.
The symplectic form is given by

Ω•(f1, f2) = Resz=0 〈f1(−z), f2(z)〉• , (6.24)

where 〈·, ·〉• is a pairing on the state space H•.
The invariants of these theories describe certain intersection numbers in

a moduli space of genus g curves. The attributes of the moduli space, the
curves it parameterizes and the intersection numbers depend on the theory.
We will not give details on the construction of the invariants and we denote
the invariants of these theories collectively by

〈τa1(Φi1), . . . , τan(Φin)〉•g,n,δ , (6.25)

g gives the genus of the curve and n the number of insertions. δ is a label which
need not be present in all possible theories. For example in FJRW theory all
δ > 0 invariants are set to zero and in GW theory it labels the homology class
δ ∈ H2(X,Z). The genus g invariants can be collected in a generating function

F g• =
∑

a1,...,an
h1,...,hn

∑
δ≥0

〈τa1(Φh1), . . . , τan(Φhn)〉•g,n,δ
th1
a1
· · · thnan
n!

, (6.26)

thiai are formal variables associated to τai(Φhi). As mentioned in the beginning
the invariants are encoded in a subspace L• ⊂ V•. This subspace is constructed
out of (6.26). Every point of L• can be written in the form

−zΦ0 +
∑

0≤h≤k
a≥0

thaΦhz
a

+
∑
n≥0
δ≥0

∑
0≤h1,...,hn≤k
a1,...,an≥0

∑
0≤ε≤k
l≥0

th1
a1
· · · thnan

n!(−z)l+1

· 〈τa1(Φh1), . . . , τan(Φhn), τl(Φε)〉•g,n+1,δ Φε. (6.27)

It is possible to focus on points with a = ai = 0:

J•(t, z) = −zΦ0 +
∑

0≤h≤k
th0Φh

+
∑
n≥0
δ≥0

∑
0≤h1,...,hn≤k

∑
0≤ε≤k
l≥0

th1
0 · · · t

hn
0

n!(−z)l+1

· 〈τ0(Φh1), . . . , τ0(Φhn), τl(Φε)〉•g,n+1,δ Φε. (6.28)
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because the other points of L• follow uniquely from these points (see e.g. [87]
for details on this relation). The J-function is then given by

t =
k∑

h=0

th0Φh 7→ J•(t, z), (6.29)

which maps form the state spaceH• to V•. The J(t, z) function can be obtained
from a function usually called I-function. For example in the setting of GW
theory for a Calabi-Yau threefold X the I-function is a solution of the Picard-
Fuchs equation of the mirror X∨.

The relation between I and J is given by the mirror map. See also the dis-
cussion in the Section 3.4. The Landau-Ginzburg/Calabi-Yau correspondence
(see Section 5.2) can be described in this setting by a symplectic transforma-
tion

ULG-CY : VFJRW → VGW, (6.30)

with ULG-CY(LFJRW) = LGW. We again refer to [83] for more details.

6.2 Universal Structure of the ZS2 in Phases of the
GLSM

In [9] the following form of the ZS2 in a phase which is a Landau-Ginzburg
orbifold, with orbifold group G, fibred over the manifold B was conjectured:

Zphase
S2 (t, t) = C

∑
δ∈G

∫
B

(−1)Gr Γ̂δ(H)

Γ̂∗δ(H)
Iδ(u(t), H)Iδ(u(t), H),

= 〈I, I〉. (6.31)

The sum δ runs over certain twisted sectors in the orbifold group G called
narrow sectors, which will be described in detail below. Gr is the eigenvalue of
a grading operator on the narrow state space and by abuse of notation Gr in
the above integral stands for the eigenvalue of a state in the respective sector.
Γ̂δ, Γ̂

∗
δ denote the component of the Gamma class and its conjugate in the

sector δ. Iδ(u(t), H) represents the component of Givental’s I-function in the
sector δ. By H we denote the generator of the Kähler cone in H2(B). C is a
normalization constant.

Let us also explain the meaning of the second line in eqn. 6.31. For
this purpose we expand the I function in a basis er of a subspace of the
physical state space. The subspace will be denoted by Hdef . We will clarify
the nature of this subspace below, when we discuss specific phases and justify
the label def , which is similar to the label introduced in Section 6.1 for the
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subring generated by the marginal deformation operators. We expand |I〉 in
the following form:

|I〉 =
∑
r

Irer. (6.32)

In order to expand 〈I| in a basis we need a notion of complex conjugation.
The results of [88] in geometric phases suggest the following definition

〈I| =
∑
r

Ire
∗
r , I(u) = (−1)Gr Γ̂

Γ̂∗
I(u), (6.33)

where e∗r is the dual of er such that 〈e∗r′ , er〉 = c · δr,r′ . c is a normalization
constant. This definition is also suggested by the results in the phases studied
below. It seams natural to identify the paring 〈·, ·〉 with the pairing given in
(6.10). A comparison of (6.33) and of (6.11) suggest to interpret (6.33) as
implementing the action of the matrix M (6.7). Further the basis expansion
allows us to write the sphere partition function in another form namely

Zphase
S2 = IMI, (6.34)

where I and I are interpreted as dimHdef column and row vectors respectively.
The dimHdef × dimHdef matrix M represents the action of (−1)Gr Γ̂

Γ̂∗
. The

decomposition of the I function in a basis of Hdef allows the extraction of the
coordinate transformation to flat coordinates. For that purpose one focuses
on the component of the I-function in the direction of the unique ground
state |0〉, denoted by I0 and the components in the direction of the marginal
deformations, denoted by Ij . The flat coordinates are given by

tj(u) =
Ij
I0
, (6.35)

and the J-function follows from

J(t(u)) =
I

I0
. (6.36)

This transformation is realized in the sphere partition function by a change of
normalization

Z̃phases
S2 (t, t) = C

∑
δ∈G

∫
B

(−1)Gr Γ̂δ(H)

Γ̂∗δ(H)

Iδ(u(t), H)Iδ(u(t), H)

I0(u(t))I0(u(t))
,

= 〈J, J〉. (6.37)
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Landau-Ginzburg Orbifold Phases and FJRW Theory

In Landau-Ginzburg orbifold models the conjectured form of the sphere parti-
tion function can be explicitly tested, because for certain examples expression
for the I-function and Gamma class are known from FJRW theory ([89, 90]).
The authors of [82] showed how to obtain this quantities directly form the
Landau-Ginzburg data. We will follow their discussion and refer to their pa-
per for more details.

We consider a Landau-Ginzburg model with an orbifold group G. The
model comes with N fields xi and with a holomorphic quasi-homogeneous G
invariant superpotential W . The potential has the property dW−1(0) = {0}.
The left-R-charge qi of the xis is chosen such that that W has left-R-charge
1: W (λqixi) = λW (xi). The vector R-charge of W is 2. Let W be of (quasi-
homogenous) degree d. It follows that there exists an Zd orbifold action 〈J〉,
with J =

(
e2πiq1 , . . . , e2πiqN

)
. Our focus lies on models with G = 〈J〉, but the

following statements are valid in a more general setup (see [82]). As shown in
[91, 92] the state space consists of γ-twisted sectors

H =
∑
γ∈G
Hγ . (6.38)

The different Hγ are spanned by fields that satisfy untwisted boundary con-
ditions in the γ-twisted sectors. In our case of interest we have γ = J l (l =
0, . . . , d−1). In this setup the untwisted boundary conditions read xi(e2πiz) =
e2πiqilxi(z) qil ∈ Z. These fields serve as building blocks for G-invariant
states. Among the constructed states of H we can single out the ground-
states |0〉(c,c)γ , |0〉(a,c)γ and |0〉Rγ of the (c, c)-, (a, c)-ring and the Ramond sector
respectively. The spectral flow operation provides an isomorphism between
these states [20]:

U(− 1
2
,− 1

2)|0〉
(c,c)
γ = |0〉Rγ , U(−1,0)|0〉(c,c)γ = |0〉(a,c)γJ . (6.39)

U(r,r) is the spectral flow operator with R-charges (ĉr, ĉr) and ĉ =
∑N

i=1(1 −
2qi). The states in the (c, c) ring can be expressed in terms of G-invariant
monomials of the Jacobi ring of Wγ = W |Fix γ . The other states can be
obtained via spectral flow. The eigenvalue of the vacuum states under the
action of the generators FL/R of the left and right moving R-symmetries give
their left and right R charges (q, q):

FL|0〉γ =

age(γ)− N

2
+
∑

j:`qj∈Z
qj +

ĉ

2

 |0〉γ (6.40)

FR|0〉γ =

−age(γ) +
N

2
− nγ +

∑
j:`qj∈Z

qj +
ĉ

2

 |0〉γ , (6.41)
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6. The Structure of the Sphere Partition Function

with
age(γ) =

∑
j

qj , nγ = dim(Fix(γ)). (6.42)

We can further subdivide the sectors of the (c, c)-ring (and their images
under spectral flow) into narrow and broad. Narrow sectors contain only the
vacuum as a ground state. We label the one dimensional narrow-sectors by
φδ, with δ ∈ G. The paring on the (c, c)-ring is defined by

〈φδ, φδ′〉 =
1

|G|
δδ,δ′−1 . (6.43)

By the use of spectral flow (6.39) we can get the pairing in the (a, c) ring. The
definition of the
I-function and Gamma class requires to take into account marginal defor-
mations. For our cases of interest the marginal deformations correspond to
elements of the (a, c) ring with left/right R-charges (−1, 1). The information
of the marginal deformations can be encoded into a h × (h + N) matrix q,
given a h dimensional space of marginal deformations. q can be calculated
from the defining data of the Landau-Ginzburg orbifold [82]. In our case we
start from a GLSM with gauge group U(1)h and a Landau-Ginzburg phase,
the matrix q can be read off from the GLSM data. We start from the matrix C
of GLSM gauge charges and split it into blocks C = (L, S), where L is a h× h
matrix containing the charges of the fields with non-zero VEV in the Landau-
Ginzburg phase. The matrix q is then given by q = L−1C. The matrix L and
q can also be obtained without a GLSM description, see [82]. The matrix q is
used to define the I-function and the Gamma class. The Gamma class and the
I-function are expandable in terms of basis elements e(a,c)

δ of the (a, c) ring,
but the labelling of the different components in terms of FJRW-theory is more
convenient. The FJRW labelling is closer to the labelling of the (c, c)-ring and
we can relate the different labelling conventions by

e
(a,c)
Jδ = e

(c,c)
δ = eδ−1 , (6.44)

where the last equality is the FJRW basis. We chose the label for our cases to
be given by el, because in our examples δ = J l, l = 0, . . . , d− 1. In [82] the
I-function for Landau-Ginzburg orbifolds is defined by

I`(u) = −
∑

k1,...,kh≥0
k′≡` mod d

uk∏h
a=1 Γ(ka + 1)

·
N∏
j=1

(−1)〈−
∑h
a=1 kaqa,h+j+qj〉Γ(〈

∑h
a=1 kaqa,h+j − qj〉)

Γ(1 +
∑h

a=1 kaqa,h+j − qj)
, (6.45)

where 〈x〉 = x − bxc and uk =
∏
i u

ki
i . The integers ki have periodicities

encoded in the matrix L associated to the action of the orbifold group G:

k ∼ k + LTm ∀m ∈ Zh. (6.46)
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6.2. Universal Structure of the ZS2 in Phases of the GLSM

The matrix L encodes the embedding of the Landau-Ginzburg orbifold group
into the GLSM gauge group and by this one can relate different values of k
to different sectors labelled by l. A systematic way to obtain this relation was
provided in [82]. The Landau-Ginzburg I-function can now be written as:

ILG(u) =
∑
δ∈G

Iδ(u)e
(a,c)
δ . (6.47)

The information used to write down the Gamma class is also encoded in the q
matrix. The Gamma class is given by [82]:

Γ̂LGe
(a,c)
γ = Γ̂γe

(a,c)
γ Γ̂δ =

N∏
j=1

Γ

(
1−

〈
h∑
a=1

kaqa,h+j − qj

〉)
. (6.48)

One sees that the Gamma class acts diagonally on H(a,c). Observe that Γ̂l =
Γ̂δ−1J . The conjugate expression is given by

Γ̂∗LGe
(a,c)
γ = Γ̂∗γe

(a,c)
γ Γ̂∗δ =

N∏
j=1

Γ

(〈
h∑
a=1

kaqa,h+j − qj

〉)
. (6.49)

We also introduce

Gr =

N∑
j=1

〈
−

h∑
a=1

kaqa,h+j + qj

〉
, (6.50)

which coincides with the eigenvalues of the grading operator defined on the
FJRW state space. The sphere partition function is then given by

ZLGS2 (t, t) =
1

|G|
∑
δ

(−1)Gr Γ̂δ

Γ̂∗δ
Iδ(u(t))Iδ(u(t)) = 〈ILG(u(t)), ILG(u(t))〉,

(6.51)
with pairing (6.43) and

〈ILG(u(t)| =
∑
δ

(−1)Gr Γ̂δ

Γ̂∗δ
Iδ(u(t))eδ−1 . (6.52)

To determine the J-function and the flat coordinates ta, we start from the
element I0 (associated to the basis element e(a,c)

0 ). This element is the unique
element with left/right R-charges (q, q) = (0, 0). Next we identify the elements
Iδa (a = 1, . . . , h) of charges (q, q) = (−1, 1) corresponding to the marginal
deformations. Then the flat coordinates are

ta =
Iδa
I0
. (6.53)

The definition of the J-function then reads

JLG(t) =
ILG(u(t))

I0(u(t))
. (6.54)
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6. The Structure of the Sphere Partition Function

Geometric Phases

In order to evaluate (6.31) in geometric phases, we can turn to the literature,
because these phases are well studied. The relation between the I-function and
the sphere partition function in geometric phases of abelian and non-abelian
GLSM has been noted in [93, 94, 95, 54, 96, 97].

We focus on nef complete intersection Calabi-Yaus in smooth toric varieties,
for which a general expression for the I-function has been given in [98, 1]. Our
discussion follows [1], where also the result for the degree 8 two-parameter
example has been discussed (see Section 6.4). We start from a smooth toric
variety XΣ, defined by a fan Σ. By L1, . . . ,Ll we denote the line bundles of
XΣ generated by the global sections. To the toric variety XΣ we associate
an (N−)lattice polytope ∆∗. Next we consider a smooth Calabi-Yau complete
intersection X ⊂ XΣ, defined by a the global section of V = ⊕li=1Li. Let Dρ be
the divisor associated to the one dimensional cone ρ ∈ Σ(1) of Σ. By an abuse
of notation we denote the cohomology class of a divisor Dρ by Dρ ∈ H2(XΣ).
We use an integral basis H1, . . . ,Hh of H2(XΣ,Z), which lies in the closure
of the Kähler cone. We introduce δ =

∑h
i=1 tiHi. Let β ∈ H2(XΣ,Z) and we

define Li(β) =
∫
β c1(Li) and Dρ(β) =

∫
β Dρ. Then the I-function IX is given

by

IX(u,H) =
∏
i

uHii
∑

β∈M(XΣ)

h∏
i=1

u

∫
β Hi
i

(∏`
i=1

∏Li(β)
m=−∞ (c1(Li)−m)∏`

i=1

∏0
m=−∞ (c1(Li)−m)

·
∏
ρ

∏0
m=−∞(Dρ −m)∏

ρ

∏Dρ(β)
m=−∞(Dρ −m)

 (6.55)

whereM(XΣ) is the Mori cone. If we have a GLSM description, the generators
of the Mori cone can be obtained from the row vectors of the matrix of GLSM
charges C. The column vectors span the secondary fan ofXΣ. The components
of IX can be obtained by an expansion in H1, . . . ,Hh. The Gamma class of X
and its conjugate can be written as

Γ̂X(H) =

∏
ρ Γ (1−Dρ)∏`

i=1 Γ (1− c1(Li))
, Γ̂∗X(H) =

∏
ρ Γ (1 +Dρ)∏`

i=1 Γ (1 + c1(Li))
(6.56)

where H collectively denotes H1, . . . ,Hh. Note that in the literature the defi-
nition of Γ̂X(H) and Γ̂∗X(H) might be exchanged. We follow the convention of
[46]. The Gamma class is invertible as one can see by expansion into a power
series in H. Therefore it is reasonable to write down expressions like Γ̂

Γ̂∗
. The

relevant pairing 〈·, ·〉 is given by the Mukai pairing [99, 88]:

〈α, β〉 =

∫
X
α∨ ∧ β, (6.57)
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6.2. Universal Structure of the ZS2 in Phases of the GLSM

where α, β ∈ Heven(X,C). In the Calabi-Yau case α∨ = (−1)Grα. The grading
operator Gr acts as follows on Heven(X,C):

Grα = k α, for α ∈ H2k(X,C). (6.58)

This coincides with the definition in [100]. We next focus on the cohomology of
the Calabi-Yau, which descends from the cohomology of the ambient space Xσ

and neglect the cohomology associated to divisors on X without a counterpart
in the ambient geometry (primitive cohomology). This restriction replicates
the restriction to the narrow sectors seen in the Landau-Ginzburg setting. We
can now adjust (6.31) to the geometric setting and find

Zgeom
S2 (t, t) =

∫
X

Γ̂X(H)

Γ̂∗X(H)
IX(u(t), H)IX(u(t), H) = 〈IX , IX〉 (6.59)

The pairing is evaluated using the intersection ring of X.
The authors of [88] recognized the relation of the Gamma class to per-

turbative corrections and also the quotient Γ̂

Γ̂∗
has been first observed by the

authors. They linked the quotient to complex conjugation via K-theory argu-
ments. The main point relies on the isomorphism between Heven(X,C) and
Khol(X)⊗C, whereKhol(X) is holomorphicK-theory [101]. This isomorphism
involves the Gamma class [102, 103, 104, 105]:

µ : [E ] 7→ ch(E) ∧ Γ̂X . (6.60)

It was then argued, that complex conjugation for w ∈ Heven(X,C) is given by
the following procedure:

w 7→ ch−1

(
w

Γ̂X

)
7→ ch−1

(
w

Γ̂∗X

)
7→ w

Γ̂X

Γ̂∗X
, (6.61)

where the map in the middle is complex conjugation in Khol(X).
Observe that in our approach via the sphere partition function we have

some ambiguity in identifying the pairing and complex conjugation operation.
This comes form the fact that the grading operator Gr that acts on the state
space appears twice: once in the definition of the Mukai pairing and once in
(−1)Gr Γ̂

Γ̂∗
in (6.33)). As consequence, the signs coming from (−1)Gr cancel and

we could, at least from the point of view of the sphere partition function, use
a pairing 〈α, β〉 =

∫
X α ∧ β instead of the Mukai pairing and define complex

conjugation via Γ̂

Γ̂∗
instead of (6.33).

To specify the flat coordinates and the J-function we focus on distinguished
components in the cohomology, namely: Hdefmarg = H2(X,C) and H0(X,C).
The flat coordinates are defined by the corresponding components Ii (i =
1, . . . , h) and I0 of the I-function:

ti(u) =
Ii
I0
, (6.62)
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6. The Structure of the Sphere Partition Function

and the J-function is defined by

JX(t) =
IX(u(t))

I0(u(t))
. (6.63)

Hybrid Phases

We also tested our proposal (6.31) in hybrid phases. The low energy description
is given by models which are fibrations of Landau-Ginzburg orbifolds over a
base manifold B. Such models have been studied in e.g. [106, 107, 108].
For a certain class of one-parameter hybrids a mathematical description has
been given in [109, 110, 111, 69, 112] by generalising FJRW theory. By our
sphere partition function approach we recover results from mathematics for the
I-functions and the Gamma class in the one-parameter case and conjecture
expressions for the two-parameter examples discussed below. In (6.31) we
integrate over a non Calabi-Yau base manifold B. In the discussed examples
we often used the following identities between the characteristic classes of a
algebraic variety B:

Td(B) = e
c1(B)

2 Â(B) = e
c1(B)

2 Γ̂BΓ̂∗B, (6.64)

where Td is the Todd class, c1 is the first Chern class, Â is the A-roof genus,
and Γ̂ is the Gamma class to bring the sphere partition function into the form of
(6.31). Similar to the geometric phase our approach does not allow to identify
the correct definition of the pairing. By following the arguments of [99, 88]
we can interpret the integral over B as an artefact of the Mukai pairing. This
requires to modify the definition of α∨ in (6.57) to be α∨ = (−1)Gre

c1(B)
2 α.

The results from the sphere partition function would then further suggest that
(−1)Gr Γ̂

Γ̂∗
in the conjugation operation (6.33) would have to be modified to

(−1)Gre−
c1(B)

2
Γ̂

Γ̂∗
.

Pseudo-Hybrid Phases

In pseudo-hybrid phases we do not have a unique R-charge assignment. This is
related to the fact that no enumerative problem, like FJRW, is known for these
phases, but a general state space isomorphism between general hybrid models
and CY complete intersections has been given in [112]. The corresponding
CFTs are singular. Some properties of the low-energy physics have been stud-
ied in [57] and it is also possible to evaluate the sphere partition function in
such a phase. The vacuum equations in these models have several components,
as one can see from the D- and F-term equations and this is also visible in the
structure of the sphere partition function. The different components of the
sphere partition function show a factorizations similar to (6.31) as one can see
in the examples discussed below.
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6.3. Abelian One-Parameter Models

6.3 Abelian One-Parameter Models

The abelian GLSMs with gauge group G = U(1) and one Kähler parameter,
studied in Chapter 5, provide a class of models in which we can test the
proposed formula (6.31).

Evaluation of the Sphere Partition Function

In the models listed in Table 5.1 the sphere partition function takes the fol-
lowing form, after the shift σ → −iq + σ:

ZS2 =
e−4πζq

2π

∑
m∈Z

∫ ∞+iq

−∞+iq
dσZp1Z

k
p2
Z5+k−n−j

1 ZnαZ
j
β

· e(−2πζ−iθ)(iσ+m
2 )e(−2πζ+iθ)(iσ−m2 ), (6.65)

with

Zp1 =
Γ
(

1
2(m+ 2iσ)d1 + 1

)
Γ
(

1
2(m− 2iσ)d1

) , Zp2 =
Γ
(

1
2(m+ 2iσ)d2 + 1

)
Γ
(

1
2(m− 2iσ)d2

) ,

Z1 =
Γ
(
−m

2 − iσ
)

Γ
(
−m

2 + iσ + 1
) , Zα =

Γ
(
−1

2α(m+ 2iσ)
)

Γ
(
iσα− mα

2 + 1
) ,

Zβ =
Γ
(
−1

2β(m+ 2iσ)
)

Γ
(
iσβ − mβ

2 + 1
) .

(6.66)

The result of the evaluation of the sphere partition function depends on the
phase. In the following we give only an overview and refer for details to the
Appendix A. The steps in the evaluation of the sphere partition function are :

1. Apply the residue theorem to rewrite (6.65) as sum over poles. The
contributing poles depend on the phase.

2. Center the integration around the location of the poles by the variable
transformation

σ → ε+ const (6.67)

so that the poles are now at ε = 0.

3. The next step is to simplify the sums over the magnetic charge lattice
(parametrized by m) and the sum over the different poles.

4. The integrand is simplified by application of the identity

Γ(x)Γ(1− x) =
π

sin(πx)
. (6.68)
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By applying the above steps we can bring the sphere partition function
(6.65) in the form

ZS2 =
∑
i

ZS2,i (6.69)

where

ZS2,i = − 1

2π

∑
finite

(−1)sgn
∮

dεZi,sing(ε)|Zi,reg(t, ε)|2. (6.70)

Zi,sing contains all the singular terms and so has poles and Zi,reg is regular in
the sense that it has no poles. We also introduced:

t = 2πζ − iθ. (6.71)

The form (6.70) is valid in all phases. Let us give the following definitions

gcd(β, α) = κ1,
α

κ1
= τα,

β

κ1
= τβ,

gcd(d1, d2) = κ2,
d1

κ2
= τd1 ,

d2

κ2
= τd2 .

(6.72)

which we will use later to write down results for certain subsets of models.
Subsequently we will discuss the explicit form of the contributing terms.

ζ � 0 Phase

In the large volume phase the poles of Z1, Zα and Zβ give a contribution, but,
as shown in the Appendix A, it is sufficient to sum only over the poles of Zβ .
After application of the above steps we arrive at:

Zζ�0
S2 = − 1

2π

∮
0

dεZ1,sing(ε)|Z1,reg(ε, t)|2, (6.73)

with

Z1,reg(ε) =

∞∑
a=0

(−1)a(5+k−n−j+αn+jβ)e−t(iε+a+q)

· Γ (ad1 + iεd1 + 1)

Γ (a+ iε+ 1)5+k−n−j Γ (aα+ iεα+ 1)n

· Γ (ad2 + iεd2 + 1)k

Γ(aβ + iεβ + 1)j
,

(6.74)

and

Z1,sing(ε) =
π4 sin (π (iεd1)) sin (π (iεd2))k

sin (π (iε))5+k−n−j sin (π (iεα))n sin (π (iεβ))j
. (6.75)
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F1 F2 F3 F4

δ 1 2 3 4 1 2 4 5 1 3 5 7 1 3 7 9
pole order 1 1 1 1

K1 K2 K3 M1

δ 1 2 1 3 1 5 1
pole order 2 2 2 4

Table 6.1: Pole order and contributing sectors for Landau-Ginzburg and hybrid
models.

ζ � 0 Phase

We found that in this phase the sphere partition function is given by two
contributions

Zζ�0
S2 = Zζ�0

S2,1
+ Zζ�0

S2,2
, (6.76)

where the first contribution comes from the poles of Zp1 and the second term
picks the remaining poles of Zp2 which have not been accounted for in the
first part. The second part only contributes in pseudo-hybrid models. For the
next steps we focus on Landau-Ginzburg and hybrid phases. In these phases
d1 = d2 and therefore we can further simplify Zζ�0

S2,1
. A characteristic of these

phases is that Zζ�0
S2,1

splits into a sum of different contributions. We label these
contributions by δ, with 0 < δ < d1, δ ∈ Z>0. The dependence on δ is such
that a contribution, labelled by δ, are zero unless:

〈
δ

d1

〉
6= 0,

〈
α
δ

d1

〉
6= 0,

〈
α
β

d1

〉
6= 0. (6.77)

The set of non-zero contributing δ values, will be called narrow. This is in
accordance with the narrow sectors introduced in Section 6.2, which also fulfil
(6.77). The contributing sectors and the pole orders are given in Table 6.1.

As shown in Appendix A Zζ�0
S2,1

takes the form

Zζ�0
S2,1

=
1

2πid1

∑
δ∈narrow

∮
0

dε
(−1)Gr

εk+1

Γ̂δ(ε)

Γ̂∗δ(ε)
|Iζ�0
δ (t, ε)|2, (6.78)
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with

Iζ�0
δ (t, ε) =

∞∑
a=0

e
t( ε
d1

+a+ δ
d1
−q)

(−1)a(5+k−n−j+αn+jβ)

·
Γ (1 + ε)k+1 Γ

(
a+ ε

d1
+ δ

d1

)5+k−n−j

Γ
(
ε
d1

+
〈
δ
d1

〉)5+k−n−j
Γ
(
α ε
d1

+
〈
α δ
d1

〉)n
·

Γ
(
aα+ α ε

d1
+ α

d1
δ
)n

Γ
(
aβ + β ε

d1
+ β

d1
δ
)j

Γ
(
β ε
d1

+
〈
β δ
d1

〉)j
Γ (δ + ad1 + ε)k+1

,

(6.79)

and

(−1)Gr = (−1)δ(k+1)(−1)
(5+k−n−j)

⌊
δ
d1

⌋
(−1)

n
⌊
α δ
d1

⌋
(−1)

j
⌊
β δ
d1

⌋
. (6.80)

Γ̂δ(ε) is given by

Γ̂δ(ε) = Γ (1− ε)k+1Γ

(
ε

d1
+

〈
δ

d1

〉)5+k−n−j

· Γ
(
α
ε

d1
+

〈
α
δ

d1

〉)n
Γ

(
β
ε

d1
+

〈
β
δ

d1

〉)j
. (6.81)

and

Γ̂∗δ(ε) = Γ̂d−δ(−ε). (6.82)

In the following we will focus on specific phases and show that (6.79), (6.81) and
(6.82) match the expression known from FJRW theory in Landau-Ginzburg
and hybrid models. Let us also give the following expression, which we will
use in subsequent sections:

γδ(H) = (−1)Gr Γ̂δ(H)

Γ̂∗δ(H)
. (6.83)

Landau-Ginzburg Phases

For the abelian one parameter models the models F1, F2, F3 and F4 in Table
5.1 have a Landau-Ginzburg phase (see Section 5.2). We first extract the q
matrix from the GLSM data by dividing the GLSM charge vectors by the
charge of the p-field

q =
(

1 − 1
d1
− 1
d1
− 1
d1
− α
d1
− β
d1

)
. (6.84)
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The matrix q allows us now to calculate the Γ̂-function and the I-functions
from the results given in Section 6.2. We insert (6.84) into (6.45), (6.48), (6.49)
and (6.50) as given in Section 6.2. We find for (6.48):

Γ̂δ = Γ

(
1−

〈
−k
d
− 1

d

〉)3

Γ

(
1−

〈
−kα
d
− α

d

〉)
· Γ
(

1−
〈
−kβ
d
− β

d

〉)
.

(6.85)

and application of (6.84) in (6.47) gives

ILG(u) = −
∑
k≥0

uk

Γ (k + 1)
(−1)3〈 k+1

d 〉+〈α k+1
d 〉+〈β k+1

d 〉

·
Γ
(〈
−k
d −

1
d

〉)3
Γ
(〈
−kα

d −
α
d

〉)
Γ
(〈
−kβ

d −
β
d

〉)
Γ
(
1− k

d −
1
d

)3
Γ
(
1− kα

d −
α
d

)
Γ
(

1− kβ
d −

β
d

) . (6.86)

A shift of the k summation and a simplification of the fractional parts gives

Γ̂δ = Γ

(〈
k

d

〉)3

Γ

(〈
kα

d

〉)
Γ

(〈
kβ

d

〉)
, (6.87)

ILG(u) = −
d−1∑
δ=1

∑
n≥0

udn+δ−1

Γ (dn+ δ)

(−1)3〈 δd〉+〈αδd 〉+〈βδd 〉Γ
(
1−

〈
δ
d

〉)3
Γ
(
1− n− δ

d

)3
Γ
(
1− αn− αδ

d

)
·

Γ
(
1−

〈
αδ
d

〉)
Γ
(

1−
〈
βδ
d

〉)
Γ
(

1− βn− βδ
d

) (6.88)

The identity

3

〈
δ

d

〉
+

〈
αδ

d

〉
+

〈
βδ

d

〉
= δ − 3

⌊
δ

d

⌋
−
⌊
αδ

d

⌋
−
⌊
βδ

d

⌋
, (6.89)

and the Gamma function reflexion formula (6.68) can be used to obtain

ILG(u) = −
d−1∑
δ=1

∑
n≥0

(−1)δ(−1)dn
udn+δ−1

Γ (dn+ δ)

·
Γ
(
n+ δ

d

)3
Γ
(
αn+ αδ

d

)
Γ
(
βn+ βδ

d

)
Γ
(〈

δ
d

〉)3
Γ
(〈

αδ
d

〉) ,

=

d−1∑
δ=1

Iδ(u).

(6.90)
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In a similar way we obtain the expressions for (6.48) and (6.50):

Gr = δ −
(

3

⌊
δ

d

⌋
+

⌊
α
δ

d

⌋
+

⌊
β
δ

d

⌋)
, (6.91)

Γ̂∗δ = Γ

(〈
d− k
d

〉)3

Γ

(〈
α
d− k
d

〉)
Γ

(〈
β
d− k
d

〉)
. (6.92)

The above results can now be inserted into the postulated formula (6.51):

ZLGS2 =
∑
δ,δ′

(−1)δ+3b δdc+bα δdc+bβ δdcIδ(u(t))Iδ′(u(t)) 〈eδ−1 , eδ′〉

·
Γ
(〈

δ
d

〉)3
Γ
(〈

δα
d

〉)
Γ
(〈

δβ
d

〉)
Γ
(〈

d−δ
d

〉)3
Γ
(〈
αd−δd

〉)
Γ
(〈
β d−δd

〉)
=

1

d

∑
δ

(−1)δ+3b δdc+bα δdc+bβ δdcIδ(u(t))Iδ(u(t))

·
Γ
(〈

δ
d

〉)3
Γ
(〈

δα
d

〉)
Γ
(〈

δβ
d

〉)
Γ
(〈

d−δ
d

〉)3
Γ
(〈
αd−δd

〉)
Γ
(〈
β d−δd

〉) . (6.93)

We evaluated the pairing, as given in (6.43).
To test the result (6.93) we evaluate (6.78) further, now focusing on Landau-

Ginzburg phases. In Landau-Ginzburg phases we have only first order poles,
as one can see from Table 6.1 and therefore we can evaluate (6.78) in a straight
forward way to get:

Zζ�0
S2 =

1

d1

∑
δ∈narrow

(−1)Gr Γ̂δ(0)

Γ̂∗δ(0)

∣∣∣Iζ�0
δ (t, 0)

∣∣∣2 . (6.94)

The next important observation is, that the given δ values in Table 6.1 coincide
with the narrow sectors introduced in Section 6.2.
Evaluation of (6.81) and (6.82) gives:

Γ̂δ(0) = Γ

(〈
δ

d1

〉)3

Γ

(〈
α
δ

d1

〉)
Γ

(〈
β
δ

d1

〉)
, (6.95)

Γ̂∗δ(0) = Γ

(〈
d1 − δ
d1

〉)3

Γ

(〈
α
d1 − δ
d1

〉)
Γ

(〈
β
d1 − δ
d1

〉)
, (6.96)

and (6.79) results into

Iζ�0
δ (t, 0) =

∞∑
a=0

e
t(a+ δ

d1
−q)

(−1)a(3+α+β)

Γ
(〈

δ
d1

〉)3
Γ
(〈
α δ
d1

〉)
Γ
(〈
β δ
d1

〉)
·

Γ
(
a+ δ

d1

)3
Γ
(
aα+ α

d1
δ
)

Γ
(
aβ + β

d1
δ
)

Γ (δ + ad1)
.

(6.97)

84



6.3. Abelian One-Parameter Models

We can now compare (6.93) with the GLSM calculation (6.94) and find a
match.

The final task we perform is to read of the matrix M introduced in (6.34),
therefore we expand (6.94) in terms of δ and get

M =


γδ1 (0)

d1
0 0 0

0
γδ2 (0)

d1
0 0

0 0 − 1
d1γδ2 (0) 0

0 0 0 − 1
d1γδ1 (0)

 . (6.98)

γδ was introduced in (6.83).

Geometry

For an analysis of the vacuum structure see Section 5.1. In the ζ � 0 phase we
can follow the steps outlined in [46] in the context of the hemisphere partition
function to find a match with the expression introduced in Section 6.3. We
start from (6.73) and after a variable transformation we introduce

Γ̂(H) =
Γ
(
1− H

2πi

)5−n−j+k
Γ
(
1− α H

2πi

)n
Γ
(
1− β H

2πi

)j
Γ
(
1− d1

H
2πi

)
Γ
(
1− d2

H
2πi

)k . (6.99)

The conjugate Γ̂∗ is obtained from Γ̂ by the replacement i → −i. The next
identification we make is

Iζ�0(t, H) = Γ̂(H)∗Z1,reg

(
−H
2π

)
=

Γ
(
1 + H

2πi

)5−n−j+k
Γ
(
1 + α H

2πi

)n
Γ
(
1 + β H

2πi

)j
Γ
(
1 + d1

H
2πi

)
Γ
(
1 + d2

H
2πi

)k
·
∞∑
a=0

(−1)a(5+k−n−j+αn+jβ)u(t)( H
2πi

+a+q)

·
Γ
(
1 + ad1 + d1

H
2πi

)
Γ
(
1 + a+ H

2πi

)5+k−n−j
Γ
(
1 + aα+ α H

2πi

)n
·

Γ
(
1 + ad2 + d2

H
2πi

)k
Γ
(
1 + aβ + β H

2πi

)j ,

(6.100)

with u(t) = e−t and Z1,reg was given in (6.74). Eqn. (6.73) can, by the above
results, be rewritten into

Zζ�0
S2 = (2πi)3 d

k
2d1

αnβj

∮
0

dH

2πi

1

H4

Γ̂(H)

Γ̂∗(H)
Iζ�0(u(t), H)Iζ�0(u(t), H). (6.101)
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The next step is to use the fact that the one-parameter abelian models in
the phase ζ � 0 are described by a non-linear sigma model with Calabi-Yau
target space X of the form (5.17). We identify H with the hyperplane class
of the ambient projective space XΣ and lift the integration in (6.101) into a
geometric setting. For that purpose we need the top Chern class of the normal
bundle ξ of X. We state the total Chern class of ξ:

c(ξ) = (1 + d1H)(1 + d2H)k. (6.102)

In our models of interest the normal bundle χ has rank k + 1 and the top
Chern class ξ evaluates to:

ck+1(ξ) = d1d
k
2H

k+1. (6.103)

The top Chern class of the normal bundle can be used to pull back integrations
on X to the embedding space:∫

X
g(H) =

∫
XΣ

ck+1(ξ) ∧ g(H)

=
d1d

k
2

3!

∂3

∂H3
g(H)|H=0 = d1d

k
2

∮
dz

2πi

1

z4
g(z). (6.104)

We can now rewrite (6.101) by applying (6.104) into

Zζ�0
S2 =

(2πi)3

αnβj

∫
X

Γ̂X(H)

Γ̂∗X(H)
Iζ�0(u(t), H)Iζ�0(u(t), H). (6.105)

We see that the above result matches the form of the proposed formula in
geometric regimes (6.59). Next we expand the components in the integrant
(6.104) in powers of H and extract the H3 component to read of the matrix
M introduced in (6.34):

M

8π3
=


χ(X)ζ(3)

4π3 0 0 −iκ
0 0 −iκ 0
0 −iκ 0 0
−iκ 0 0 0

 , (6.106)

with κ =
d1dk2
αnβj

the triple intersection number and χ(X) the Euler number of
the Calabi-Yau (X). The normalization by 8π3 is chosen to obtain a canonical
normalized ζ(3) term, see also [75] and [113].

K-Type Hybrid Models

We focus on the models K1, K2 and K3 (see Table 5.1, Section 5.3) which
describe a Landau-Ginzburg orbifold, with orbifold groups G = Z3,Z4,Z6
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respectively, fibred over P1 in the phase ζ � 0. After setting k = 1 and a
variable transformation (6.78) can be brought into the following form:

Zζ�0
S2,1

=
2πi

d1

∑
δ∈Narrow

∮
dH

2πi

1

H2
(−1)Gr Γδ(H)

Γ∗δ(H)
Iζ�0
δ (t, H)Iζ�0

δ (̄t, H), (6.107)

with

Γδ(H) = Γ

(
1− H

2πi

)2

Γ

(
H

2πid1
+

〈
δ

d1

〉)6−n−j

· Γ
(
α

H

2πid1
+

〈
α
δ

d1

〉)n
Γ

(
β

H

2πid1
+

〈
β
δ

d1

〉)j
,

(6.108)

Γ∗δ(H) = Γ

(
1 +

H

2πi

)2

Γ

(
− H

2πid1
+

〈
d1 − δ
d1

〉)6−n−j

· Γ
(
−α H

2πid1
+

〈
α
d1 − δ
d1

〉)n
· Γ
(
−β H

2πid1
+

〈
β
d1 − δ
d1

〉)j
,

(6.109)

and

Iζ�0
δ (t, H) =

∞∑
a=0

e
t( H

2πid1
+a+ δ

d1
−q)

(−1)a(6−n−j+αn+jβ)

·
Γ
(
1 + H

2πi

)2
Γ
(
a+ H

2πid1
+ δ

d1

)6−n−j

Γ
(

H
2πid1

+
〈
δ
d1

〉)6−n−j
Γ
(
α H

2πid1
+
〈
α δ
d1

〉)n
·

Γ
(
aα+ α H

2πid1
+ α

d1
δ
)n

Γ
(
aβ + β H

2πid1
+ β

d1
δ
)j

Γ
(
β H

2πid1
+
〈
β δ
d1

〉)j
Γ
(
δ + ad1 + H

2πi

)2
(6.110)

As in the geometric phase we want to rewrite the residue integral into an
integral over the vacuum manifold, which is for the K-type hybrids a P1. We
apply (6.104) and get

Zζ�0
S2,1

=
2πi

d1

∑
δ∈Narrow

∫
P1

(−1)Gr Γδ(H)

Γ∗δ(H)
Iζ�0
δ (t, H)Iζ�0

δ (̄t, H). (6.111)

Similar to the models discussed before we next extract the matrix M (see
(6.34)) and as expected the procedure is a mixture of the Landau-Ginzburg
orbifold phases and the geometric phase. We first expand all δ components
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and perform a series expansion in H. To get the matrix M we read of the
coefficients of H1. We find:

M =


− ν
d2

1
γδ1(0) 2πi 1

d1
γδ1(0) 0 0

2πi 1
d1
γδ1(0) 0 0 0

0 0 − ν
d2

1

1
γδ1 (0) 2πi 1

d1

1
γδ1 (0)

0 0 2πi 1
d1

1
γδ1 (0) 0

 . (6.112)

with

K1 K2 K3

ν log 318 log 240 log
(
232318

) . (6.113)

We can match our results to known results in mathematics and therefore
focus on the K1 model. This model was studied in [68, 69]. In [68], using
techniques from FJRW theory, the following I function was found

Ihyb = z
∑
d>0

d6≡−1 mod 3

e

(
d+1+H(d+1)

z

)
t
z−6〈 d

3
〉

·
Γ
(
H(d+1)

3z + d
3 + 1

3

)6

Γ
(
H(d+1)

3z + 〈d3〉+ 1
3

)6

Γ
(
H(d+1)

z + 1
)2

Γ
(
H(d+1)

z + d+ 1
)2 ,

(6.114)

with t not being the flat coordinate. We will give the relation between t and
t subsequently. The sum can by simplified by the replacement d = 3n + δ,
with δ = 0, 1. After this replacement one sees that the 〈·〉 operation can be
dropped. By noting that H(3n+δ) = H(δ), because the exponent (3n + δ) is
defined modulo 3 and shifting the δ summation we can write

Ihyb = z
2∑
δ=1

∞∑
n=0

e

(
3n+δ+H(δ)

z

)
t
z−2(δ−1)

·
Γ
(
H(δ)

3z + δ
3 + n

)6

Γ
(
H(δ)

3z + δ
3

)6

Γ
(
H(δ)

z + 1
)2

Γ
(
H(δ)

z + 3n+ δ
)2 .

(6.115)

We give the result (6.110) for the K1 model:

Iζ�0
δ (t, H) =

Γ
(
1 + H

2πi

)2
Γ
(

H
3·2πi + δ

3

)6
·
∞∑
a=0

et(
H

3·2πi+a+ δ
3
−q)(−1)6aΓ6

(
a+ H

3·2πi + δ
3

)
Γ2
(
δ + 3a+ H

2πi

) , (6.116)
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and see that we can find a match with (6.115) if we identify

q = 0, H(δ) =
H

2πi
, z = 1, e3t = et. (6.117)

Observe that the superscript of H(δ) in (6.115) labels the sector of the narrow
state space. From the sphere partition function we cannot directly extract this
label, because the paring is partially evaluated. Also the choice of z = 1 solely
by comparison with the sphere partition function is not unique also z = −1
would be possible, because also under this identification the sphere partition
function would stay invariant. A further analysis of the J function and the
enumerative invariants would be necessary to fix z unambiguously.

M-Type Model

This model was also analysed in [114], where the sphere partition function and
Gromov-Witten invariants have been computed. Despite similar features to a
geometric phase the evaluation of the sphere partition function is more along
the lines of the K-type hybrids. The vacuum manifold is a P3 (see Section 5.3)
and (6.78) can be brought into the following form

Zζ�0
S2,1

=
(2πi)3

2

∫
P3

(−1)Gr Γ1(H)

Γ∗1(H)
|Iζ�0

1 (t, H)|2, (6.118)

with (6.79):

Iζ�0
1 (t, H) =

Γ
(
1 + H

2πi

)4
Γ
(

H
2·2πi + 1

2

)8
·
∞∑
a=0

et(
H

2·2πi+a+ 1
2
−q)(−1)8aΓ

(
a+ H

2·2πi + 1
2

)8
Γ
(
1 + 2a+ H

2πi

)4 ,
(6.119)

and (6.81), (6.82) are given by:

Γ1(H) = Γ

(
1− H

2πi

)4

Γ

(
1

2
+

H

2 · 2πi

)8

, (6.120)

Γ∗1(H) = Γ

(
1 +

H

2πi

)4

Γ

(
1

2
− H

2 · 2πi

)8

. (6.121)

We can extract the M matrix as in the K-type hybrids and obtain

M =


− τ3

12 − ζ(3) iπ τ
2

2 2π2τ −4iπ3

iπ τ
2

2 2π2τ −4iπ3 0
2π2τ −4iπ3 0 0
−4iπ3 0 0 0

 , (6.122)
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with

τ = log 216. (6.123)

A comparison of (6.122) with the result for the M matrix in geometric phases
(6.106) shows different structures, although both results correspond to a point
of maximal unipotent monodromy.

In mathematics the model was also studied in [68] along the lines of FJRW
theory. The following I-function was given

Ihyb(t) =
∑
d>0

d6≡−1 mod 2

ze(d+1+H(d+1)

z
)t

28b d
2
c

∏
1≤b≤d

b≡d+1 mod 2

(
H(d+1) + bz

)8
∏

1≤b≤d

(
H(d+1) + bz

)4 . (6.124)

We rewrite the above result into the form

Ihyb(t) =
Γ
(

1 + H(1)

z

)4

Γ
(

1
2 + H(1)

2z

)8

∞∑
n=0

ze(2n+1+H(1)

z
)t

Γ
(

1
2 + H(1)

2z + n
)8

Γ
(

1 + H(1)

z + 2n
)4 , (6.125)

by application of the identity

zl
Γ
(
1 + x

z + l
)

Γ
(
1 + x

z

) =
l∏

k=1

(x+ kz) . (6.126)

Similar to the K-type hybrids we can match the above results with (6.119) by
identifying:

q = 0, H(1) =
H

2πi
, z = 1, e2t = et. (6.127)

Pseudo-Hybrid-Models

This phases of the GLSM were analysed in Section 5.4. The pseudo-hybrid
phase of these models have also been studied in [10].

As seen in Table 5.1 we need to analyse certain F-type models and all of the
C-type models. In C-type models the sphere partition function decomposes
into components with first order pole and second order pole contributions,
where in the F-type models we only have first order pole contributions.

F-Type Models

The pseudo-hybrid phase in these models has two different Landau-Ginzburg
orbifold components, with orbifold groups Zd1 and Zd2 (see also [10], Section
5.4). As expected for Landau-Ginzburg phases we only encounter first order
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poles and a split into various twisted sectors. Evaluation of the sphere partition
function results into

Zζ�0
S2 =

1

d1

d1−1∑
δ=1

(−1)Gr Γ̂δ(0)

Γ̂∗δ(0)
Iδ(t, 0)Iδ (̄t, 0)

+
1

d2

τd2−1∑
δ=1

κ2−1∑
γ=0

(−1)G̃r
˜̂
Γδ(0)˜̂
Γ
∗
δ(0)

Ĩδ,γ(t, 0)Ĩδ,γ (̄t, 0).

(6.128)

The above parameters are given in (6.72). We used

Γ̂δ(0) = Γ

(〈
τd2

τd1 − δ
τd1

〉)k
Γ

(〈
δ

d1

〉)5+k−n−j

· Γ
(〈

α
δ

d1

〉)n
Γ

(〈
β
δ

d1

〉)j
,

(6.129)

(−1)Gr = (−1)δ(−1)
k

⌊
τd2

δ
τd1

⌋
(−1)

(5+k−n−j)
⌊
δ
d1

⌋

· (−1)
n
⌊
α δ
d1

⌋
(−1)

j
⌊
β δ
d1

⌋
,

(6.130)

and

˜̂
Γδ(0) = Γ

(〈
τd1

τd2 − δ
τd2

〉)
Γ

(〈
δ + τd2γ

d2

〉)6−n−j

· Γ
(〈

α
δ + τd2γ

d2

〉)n
Γ

(〈
β
δ + τd2γ

d2

〉)j
,

(6.131)

(−1)G̃r = (−1)δ(−1)γ(τd2+τd1 )(−1)

⌊
d2
d1
δ
⌋
(−1)

(6−n−j)
⌊
δ+τd2

γ

d2

⌋

· (−1)
n

⌊
α
δ+τd2

γ

d2

⌋
(−1)

j

⌊
β
δ+τd2

γ

d2

⌋
,

(6.132)

where γ is introduced to rewrite the sum over the poles. The I-functions are
given by:

Iδ(t, 0) =
Γ
(〈

τd2
τd1
δ
〉)k

Γ
(〈
τd2

τd1−δ
τd1

〉)k
Γ̂δ(0)

·
∞∑
a=0

e
t(a+ δ

d1
−q)

(−1)a(5+k−n−j+αn+jβ)

·
Γ
(
a+ δ

d1

)5+k−n−j
Γ
(
aα+ α

d1
δ
)n

Γ
(
aβ + β

d1
δ
)j

Γ (δ + ad1) Γ
(
ad2 +

τd2
τd1
δ
)k ,

(6.133)
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and

Ĩδ(t, 0) =
Γ
(〈
τd1

δ
τd2

〉)
Γ
(〈
τd1

τd2−δ
τd2

〉)
˜̂
Γδ(0)

·
∞∑
a=0

(−1)a(6−n−j+αn+jβ)e
t(a+

τd2
γ+δ

d2
−q)

·
Γ
(
a+

τd2γ+δ

d2

)6−n−j
Γ
(
aα+ α

τd2γ+δ

d2

)n
Γ
(
τd1
τd2
δ + d1a+ τd1γ

)
·

Γ
(
aβ + β

τd2γ+δ

d2

)j
Γ (δ + d2a+ τd2γ)

(6.134)

We can compare (6.128) to the results in the Landau-Ginzburg phases
(6.94)) and see that the structure is similar to the Landau-Ginzburg case,
except that we now have two contributions. We can also compare (6.129) and
(6.131), which would provide valid candidates for an identification as Gamma
classes, and see that they have an extra term in contrast to the results in
the Landau-Ginzburg phases (see (6.95) and (6.96)). The structure of the I-
function is more along the lines of hybrid models (6.110). In the F7 model
the second contribution is absent, which results from the fact that the greatest
common divisor of the p-field charges coincides with the charge of the second
p-field (see also Appendix A.3). This is expected because one of the Landau-
Ginzburg model components is massive.

C-Type Models

In contrast to the F-type pseudo-hybrids the C-type models have a base mani-
fold B of non-zero dimension. In all C-type models we see a contribution with
a one-dimensional B and a Landau-Ginzburg component. We first discuss the
C1 and C2 models and afterwards the C3 model, because the different compo-
nents of the sphere partition function arise in different ways in these models.
Again these models have been studied in [10] and have been summarized in
Section 5.4, where more details can be found.

C1 and C2 In these models, by a similar reason as for the F7 model, the
contribution Zζ�0

S2,2
= 0 (see (6.76)). But in contrast to the previously studied

models Zζ�0
S2,1

now splits into a contribution with first order poles and one with
a second order pole. The second order poles are encountered for δ = τd1 and
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we can write Zζ�0
S2,1

in the following form

Zζ�0
S2,1

=
1

d1

∑
δ

∣∣∣∣∣
δ 6=τd1

(−1)Gr Γ̂δ(0)

Γ̂∗δ(0)
Iδ(t, 0)Iδ (̄t, 0)

+
2πi

d2

∮
dε

2πi

(−1)G̃r

ε2

˜̂
Γ(ε)˜̂
Γ
∗
(ε)

Ĩ(t, ε)Ĩ (̄t, ε).

(6.135)

The quantities (−1)Gr, the Γ̂δ(0), Γ̂∗δ(0) functions and Iδ(t, 0) resemble the F-
type results (see (6.130), (6.129) and (6.133) respectively). In the second line
we introduced:

˜̂
Γ(ε) = Γ

(
1− ε

2πi

)
Γ

(
1− τd2

τd1

ε

2πi

)
Γ

(
ε

2πid1
+

〈
1

k2

〉)6−n−j

· Γ
(
α

ε

2πid1
+

〈
α

1

k2

〉)n
Γ

(
β

ε

2πid1
+

〈
β

1

k2

〉)j
,

(6.136)

(−1)G̃r = (−1)τd1 (−1)τd2 (−1)
6−n−j

⌊
1
k2

⌋
(−1)

n
⌊
α
k2

⌋
(−1)

j
⌊
β
k2

⌋
, (6.137)

where one can obtain the conjugate expressions by using (6.82) and

Ĩ(t, ε) =
Γ
(
1− ε

2πi

)
Γ
(
1 + ε

2πi

)
Γ
(

1− τd2
τd1

ε
2πi

)
Γ
(

1 +
τd2
τd1

ε
2πi

)
˜̂
Γ(ε)

·
∞∑
a=0

e
t( ε

2πid1
+a+ 1

κ2
−q)

(−1)a(6−n−j+αn+jβ)

·
Γ
(
a+ ε

2πid1
+ 1

κ2

)6−n−j
Γ
(
aα+ α ε

2πid1
+ α

κ2

)n
Γ
(
τd2 + ad1 + ε

2πi

)
·

Γ
(
aβ + β ε

2πid1
+ β

κ2

)j
Γ
(
ad2 + τd2

ε
2πiτd1

+ τd1

) .

(6.138)

The first line in (6.135) is similar to the result obtained in the Landau-Ginzburg
case (6.94) and the second line matches the results found in the hybrid models
(6.111) .

C3 This is the only model of the class of interest in which Zζ�0
S2,2
6= 0 and has

a second order pole. Zζ�0
S2,1

has only first order poles and so we can write the

93



6. The Structure of the Sphere Partition Function

sphere partition function in the following way

Zζ�0
S2 =

1

d1

∑
δ

(−1)Gr Γ̂δ(0)

Γ̂∗δ(0)
Iδ(t, 0)Iδ (̄t, 0)

+
2πi

d2

∮
dε

2πi

(−1)G̃r

ε2

˜̂
Γ(ε)˜̂
Γ
∗
(ε)

Ĩ(t, ε)I (̄t, ε).

(6.139)

In the above expression the (−1)Gr, the Γ̂δ(0), Γ̂∗δ(0) functions and Iδ(t, 0) are
as in the C1 and C2 model given by the F-type expressions (6.130), (6.129),
and (6.133), respectively. For the second contribution we introduce

˜̂
Γ(ε) = Γ

(
1− ε

2πi

)2
Γ

(
−τd1

ε

2πiτd2

+

〈
τd1

τd2 − 1

τd2

〉)
· Γ
(

ε

2πid2
+

〈
1

d2

〉)7−n−j
Γ

(
α

ε

2πid2
+

〈
α

d2

〉)n
· Γ
(
β

ε

2πid2
+

〈
β

d2

〉)j
,

(6.140)

(−1)G̃r = (−1)

⌊
d2
d1

⌋
(−1)

(7−n−j)
⌊

1
d2

⌋
(−1)

n
⌊
α
d2

⌋
(−1)

j
⌊
β
d2

⌋
, (6.141)

and

Ĩ(ε, t) =
Γ
(
1− ε

2πi

)2
Γ
(
1 + ε

2πi

)2
Γ
(
−τd1

ε
2πiτd2

+
〈
τd1

τd2−1

τd2

〉)
˜̂
Γ(ε)

· Γ
(
τd1

ε

2πiτd2

+

〈
τd1

1

τd2

〉)
·
∞∑
a=0

(−1)a(7−n−j+αn+jβ)e
t( ε

2πid2
+a+ 1

d2
−q)

·
Γ
(
a+ ε

2πid2
+ 1

d2

)7−n−j
Γ
(
aα+ α ε

2πid2
+ α

d2

)n
Γ
(
τd1
τd2

+ d1a+ τd1
ε

2πiτd2

)
·

Γ
(
aβ + β ε

2πid2
+ β

d2

)j
Γ
(
1 + d2a+ ε

2πi

)2

(6.142)

As in the previous pseudo-hybrid models we see in (6.139) a part which re-
sembles the result known from the Landau-Ginzburg phases and a part which
looks similar to the result in hybrid phases.
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6.4 Two-Parameter Examples

Next we show that the proposed formula also holds in examples with two
Kähler parameters. We study the model with gauge group G = U(1)2 and
field content

p x6 x3 x4 x5 x1 x2 FI

U(1)1 −4 1 1 1 1 0 0 ζ1

U(1)2 0 −2 0 0 0 1 1 ζ2

U(1)V 2− 8q1 2q1 − 4q2 2q1 2q1 2q1 2q2 2q2,

(6.143)

and 0 ≤ q1 ≤ 1
4 and 0 ≤ q2 ≤ 1

8 . In this model the superpotential has the form
W = pG(4,0)(x1, . . . , x6). This model is one of the standard examples for the
two parameter case (see [115],[116]).

The sphere partition function is given by

ZS2 =
1

(2π)2

∑
m∈Z2

∫ ∞
−∞

d2σZpZ6Z
3
5Z

2
1e
−4πi(ζ1σ1+ζ2σ2)−i(θ1m1+θ2m2), (6.144)

where

Zp =
Γ
(
4(iσ1 − q1 + 1

4) + 4m1
2

)
Γ
(
1− 4(iσ1 − q1 + 1

4) + 4m1
2

) ,
Z6 =

Γ
(
− ((iσ1 − q1)− 2(iσ2 − q2))− m1−2m2

2

)
Γ
(
1 + ((iσ1 − q1)− 2(iσ2 − q2))− m1−2m2

2

) ,
Z5 =

Γ
(
−(iσ1 − q1)− m1

2

)
Γ
(
1 + (iσ1 − q1)− m1

2

) ,
Z1 =

Γ
(
−(iσ2 − q2)− m2

2

)
Γ
(
1 + (iσ2 − q2)− m2

2

) .
(6.145)

The phase structure of this model is a follows

• I: Geometric phase (ζ1 � 0, ζ2 � 0): hypersurfaceG(4,0)(x1, . . . , x6) = 0
in the toric ambient space defined by the U(1)2-charges of x1, . . . , x6

• II: Orbifold phase (2ζ1 + ζ2 � 0, ζ2 � 0): this is a singular hypersur-
face G(4,0)(x1, . . . , x5, 1) in the ambient space spanned by the charges of
x1, . . . , x5 under 2U(1)1 + U(1)2

• III: Landau-Ginzburg orbifold phase (2ζ1 + ζ2 � 0, ζ2 � 0): Orbifold
group G = Z8 and WLG = G(4,0)(x1, . . . , x5, 1)

• IV: Hybrid phase (ζ1 � 0, ζ2 � 0): this is a fibration of a Landau-
Ginzburg orbifold with G = Z4 over B = P1.
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6. The Structure of the Sphere Partition Function

We will focus on the Landau-Ginzburg, geometric and hybrid phase in
the following. Similar to the one-parameter phases the goal is to use the
residue theorem to evaluate the sphere partition function. Note that aspects
from supersymmetric localisation for this model have also been studied in
[113, 49, 117]. In the evaluation of the sphere partition function we follow the
approach given in [118]. More details on the approach and certain steps in the
evaluation are given in Appendix B.

Phase I: Geometric phase

Aspects related to the sphere partition function of this phase were also studied
in [113]. As discussed in Appendix B in the geometric phase we can focus on
the poles coming from Z1 and Z5. We next choose q1 = q2 = 0 in order to get
R-charges compatible with the non-linear sigma model. The transformations
given in Appendix B.1 lead to:

Zgeom
S2 =

1

(2π)2

∑
n5,n1,n′5,n

′
1≥0

∮
d2εZpZ6Z

3
5Z

2
1e
−4π(ζ1ε1+ζ2ε2),

· e(−2πζ1−iθ1)n5+(−2πζ2−iθ2)n1e(−2πζ1+iθ1)n′5+(−2πζ2+iθ2)n′1

(6.146)

where

Zp =
Γ (1 + 4n5 + 4ε1)

Γ (−4n′5 − 4ε1)

Z6 =
Γ (−n5 + 2n1 − ε1 + 2ε2)

Γ (1 + n′5 − 2n′1 + ε1 − 2ε2)

Z5 =
Γ (−n5 − ε1)

Γ (1 + n′5 + ε1)

Z1 =
Γ (−n1 − ε2)

Γ (1 + n′1 + ε2)
.

(6.147)

Similar to the one-parameter geometric phases we want to rewrite the integral
into expression known from geometry and therefore we define εi = Hi

2πi (i = 1, 2)
with Hi ∈ H2(X,C). We use the identity (6.68) multiple times and introduce

IX(t, H) =
∑

n5,n1≥0

e−t1n5e−t2n1e−t1
H1
2πi e−t2

H2
2πi

·
Γ
(
1 + H1

2πi

)3
Γ
(
1 + H2

2πi

)2
Γ
(
1 + 4n5 + 4H1

2πi

)
Γ
(
1 + 4H1

2πi

)
Γ
(
1 + n5 + H1

2πi

)3
Γ
(
1 + n1 + H2

2πi

)2
·

Γ
(
1 + H1

2πi − 2H2
2πi

)
Γ
(
1 + n5 − 2n1 + H1

2πi − 2H2
2πi

)
(6.148)
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and write the sphere partition function in the following form:

Zgeom
S2 = −(2πi)5

(2π)2

∮
d2H

(2πi)2

4H1

H3
1H

2
2 (H1 − 2H2)

Γ̂

Γ̂∗
IX(t, H)IX(t, H), (6.149)

with

Γ̂ =
Γ
(
1− H1

2πi

)3
Γ
(
1− H2

2πi

)2
Γ
(
1− H1

2πi + 2H2
2πi

)
Γ
(
1− 4H1

2πi

) , (6.150)

the Gamma-class of the CY hypersurface X. The final step is to rewrite the
integration as integration over the Calabi-YauX and therefore we first consider
a powers series of the quantity h(H1, H2) =

∑
i,j≤0 ai,jH

i
1H

j
2 . An integral of

this quantity over X can be written in the following form∫
X
h(H1, H2) = 8a3,0 + 4a2,1 =

∫
XΣ

(4H1)h(H1, H2)

=

∮
0

d2H

(2πi)2

[
8

H4
1H2

+
4

H3
1H

2
2

]
h(H1, H2), (6.151)

where the result follows by taking into account the non-zero triple intersection
numbers of X:

H3
1 = 8, H2

1H2 = 4. (6.152)

To transform the sphere partition function into such a form, we first re-
member the transformation formula for multivariate residues (see [119]). Let
{f1(zi), . . . , fn(zi)} and {g1(zi), . . . , gn(zi)} be holomorphic functions in the n
variables z1, . . . , zn satisfying

gk(zi) = Tkjfj(zi), (6.153)

where T is a holomorphic matrix. Then

Res

(
h(zi)dz1 ∧ . . . ∧ dzn
f1(zi) · . . . · fn(zi)

)
= Res

(
detT

h(zi)dz1 ∧ . . . ∧ dzn
g1(zi) · . . . · gn(zi)

)
. (6.154)

Applied to our case we find(
H2

2

H5
1

)
=

(
1 0

4H3
1 H1 + 2H2

)
︸ ︷︷ ︸

T

(
H2

2

H3
1 (H1 − 2H2)

)
(6.155)

and consequently

detT = H1 + 2H2. (6.156)

By the above result we can bring the sphere partition function into the form

Zgeom
S2 = −(2πi)5

(2π)2

∮ [
8

H4
1H2

+
4

H3
1H

2
2

]
Γ̂

Γ̂∗
I(t)I(t)

= (2πi)3

∫
X

Γ̂

Γ̂∗
I(t)I(t). (6.157)
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We can write Zgeom
S2 in the following form

ZS2

8π3
= I

ᵀ
MI, (6.158)

with

M =


−168ζ(3)

4π3 0 0 0 0 −4i
0 0 0 0 −4i 0
0 0 0 −4i −8i 0
0 0 −4i 0 0 0
0 −4i −8i 0 0 0
−4i 0 0 0 0 0

 , (6.159)

and

I =



I(0,0)

I(0,1)

I(1,0)

I(1,1)

I(2,0)

I(2,1) + 2I(3,0)


, I =

(
I

(0,0)

...

)
. (6.160)

The I(i,j) are the coefficients of H i
1H

j
2 in the expansion of the I-function with

respect to H1, H2. We see that The I-function and the Gamma class match
with (6.55) and (6.56). Another consistency check is given by acting with the
Picard-Fuchs operators [116]

L1 = θ2
1(θ1 − 2θ2)− 4z1(4θ1 + 3)(4θ1 + 2)(4θ1 + 1)

L2 = θ2
2 − z2(2θ2 − θ1 + 1)(2θ1 − θ1), (6.161)

where zi = e−ti and θi = zi
∂i
∂zi

on the components of the I-function appearing
in (6.159). As expected the components are annihilated by the operators
L1,L2.

Phase III: Landau-Ginzburg Phase

Note that in [82] the hemisphere partition function of this phase was stud-
ied. In this phase the gauge group gets broken to G = Z8 and typical for
Landau-Ginzburg orbifold models we encounter different sectors in the state
space, which we will label by γ ∈ {0, . . . , 8}. The sectors γ = 0, 4 are broad.
Subsequently we show how the narrow sectors, now labelled by δ, arise in the
evaluation of the sphere partition function. But first we need to determine the
location of the poles. This is done in Appendix B, where we show that only
the poles coming from Zp and Z6 contribute. The necessary transformations
applied to (6.144) are given in Appendix B.1.
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As outlined in Appendix B.1 the sums appearing in the sphere partition
function need to be simplified. This is not straight forward and we will apply
a two step procedure. First we introduce

a = np + 4n6 + 8m2, c = np + 4n6, b = 4m1 + np, d = np. (6.162)

We must be careful, because the new summation variables need to fulfil the
following constraints

a− c ∈ 8Z, b− d ∈ 4Z, c− d ∈ 4Z≥0, a− b ∈ 4Z≥0. (6.163)

These equations can be obtained by inserting the definitions (6.162) and tak-
ing into account that np, n6,m1,m2 ∈ Z. With the constraints in mind we
introduce in a second step the following summation variables

a = 8l + δ1 c = 8k + δ1 δ1 = 0, 1, . . . , 7,

b = 4p+ δ2 d = 4q + δ2 δ2 = 0, 1, . . . , 3.
(6.164)

To fulfil the constraints (6.163) we restrict to the following δ1, δ2 combinations:

δ1 0 1 2 3 4 5 6 7

δ2 0 1 2 3 0 1 2 3

κ = δ1 − δ2 0 0 0 0 4 4 4 4.

(6.165)

This restriction on the δ values suggests to set δ1 = δ2 + κ. We will now set
δ2 ≡ δ and write the sphere partition function in the following form:

ZLGS2 = − 1

8(2πi)2

∑
κ∈{0,4}

(
3∑
δ=0

∮
(0,0)

d2ε
1

π3

·
sin
(
π
(
δ+1

4 + ε1
4

))3
sin
(
π
(
δ+1+κ

8 + ε1+4ε2
8

))2
sin (πε1) sin

(
π
(
κ
4 + ε2

))
·

∣∣∣∣∣∣et1 ε14 et2 ε1+4ε2
8

∞∑
l=0

2l+κ
4∑

p=0

(−1)pe
t1
4

(4p+δ)e
t2
8

(8l+δ+κ)

2

·
Γ
(
p+ δ+1

4 + ε1
4

)3
Γ
(
l + δ+1+κ

8 + ε1+4ε2
8

)2
Γ (1 + 4p+ δ + ε1) Γ

(
1 + 2l − p+ κ

4 + ε2

)∣∣∣∣∣
2
 .

(6.166)

As expected only first order poles appear. δ = 3 gives no contribution in ac-
cordance with the expectation, because it would correspond to a broad sector.
Next we evaluate the integral and apply the transformations κ → 4κ, and
δ → δ − 1. We introduce

(−1)Grκ = (−1)δ(−1)κ(−1)3b δ4c(−1)2b δ+4κ
8 c,

Γ̂δ,κ(0) = Γ

(〈
δ

4

〉)3

Γ

(〈
δ + 4κ

8

〉)2

,
(6.167)
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and define the following I function

Iδ,κ(t1, t2, 0) =
∞∑
l=0

∞∑
p=0

(−1)pe
t1
4

(4p+δ−1)e
t2
8

(8l+δ−1+4κ)

Γ
(〈

δ
4

〉)3
Γ
(〈

δ+4κ
8

〉)2
·

Γ
(
p+ δ

4

)3
Γ
(
l + δ+4κ

8

)2
Γ (4p+ δ) Γ (1 + 2l − p+ κ)

,

(6.168)

to write ZLGS2 in the following way:

ZLGS2 =
1

8

3∑
δ=1

(
(−1)Gr0

Γ̂δ,0(0)

Γ̂∗δ,0(0)
Iδ,0(t1, t2, 0)Iδ,0(t1, t2, 0)

+ (−1)Gr1
Γ̂δ,1(0)

Γ̂∗δ,1(0)
Iδ,1(t1, t2, 0)Iδ,1(t1.t2, 0)

)
.

(6.169)

From the previous expression we can read off the M matrix

M =



γ1(0)
8 0 0 0 0 0

0 γ2(0)
8 0 0 0 0

0 0 γ3(0)
8 0 0 0

0 0 0 − 1
8γ3(0) 0 0

0 0 0 0 − 1
8γ2(0) 0

0 0 0 0 0 − 1
8γ1(0)


, (6.170)

where γδ is given by (6.83) with (6.167) at κ = 0 inserted. (6.167) at κ = 1
is not needed in the expression for M . Let us now match the result for the
Landau-Ginzburg phase to the proposal given in (6.51). We first introduce the
q-matrix

q =

(
1 0 −1

4 −1
4 −1

4 −1
8 −1

8
0 1 0 0 0 −1

2 −1
2

)
(6.171)

and use the result of [82] that (6.47) can be rewritten in the following form:

ILG(u) =
3∑
r=1

[
1

Γ
(
r
4

)3
Γ
(
r
8

)2 $̂ev
r er +

1

Γ
(
r
4

)3
Γ
(
r
8 + 1

2

)2 $̂od
r er+4

]
, (6.172)
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with

$̂ev
r = (−1)r+1

∑
n∈2Z≥0

Γ
(
n+ r

4

)4
Γ (4n+ r)

(
−212ψ4

)n+ r−1
4

·
∑
m

Γ
(
m+ n

2 + r
8

)2
Γ
(
n+ r

4

)
Γ (2m+ 1)

(2φ)2m

+ (−1)r
∑

n∈2Z≥0+1

Γ
(
n+ r

4

)4
Γ (4n+ r)

(
−212ψ4

)n+ r−1
4

·
∑
m

Γ
(
m+ n

2 + r
8 + 1

2

)2
Γ
(
n+ r

4

)
Γ (2m+ 2)

(2φ)2m+1 ,

(6.173)

and

$̂odd
r = (−1)r+1

∑
n∈2Z≥0+1

Γ
(
n+ r

4

)4
Γ (4n+ r)

(
−212ψ4

)n+ r−1
4

·
∑
m

Γ
(
m+ n

2 + r
8

)2
Γ
(
n+ r

4

)
Γ (2m+ 1)

(2φ)2m

+ (−1)r
∑

n∈2Z≥0

Γ
(
n+ r

4

)4
Γ (4n+ r)

(
−212ψ4

)n+ r−1
4

·
∑
m

Γ
(
m+ n

2 + r
8 + 1

2

)2
Γ
(
n+ r

4

)
Γ (2m+ 2)

(2φ)2m+1 .

(6.174)

The next step is given by the following transformations

(6.173)

{
k = m+ n

2 n ∈ 2Z
k = m+ n+1

2 n ∈ 2Z + 1
,

(6.174)

{
k = m+ n

2 n ∈ 2Z
k = m+ n−1

2 n ∈ 2Z + 1
,

(6.175)

which do not affect the limits of the summation, because we applied an integer
shift. We identify

et1 = −211ψ4φ−1 (6.176)

et2 = 22φ2, (6.177)

and rewrite (6.172) into

ILG(u) =

3∑
δ=1

[
(−1)δ+1eδIδ,0(t1, t2) + (−1)δeδ+4Iδ,1(t1, t2)

]
, (6.178)
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where (6.168) was inserted. The Gamma function (6.48) in this model is given
by:

Γ̂δ = Γ

(
1−

〈
−k1 + 1

4

〉)3

Γ

(
1−

〈
−k1 + 1

8
− k2

2

〉)2

. (6.179)

After the reparameterization

k1 = 4n+ r − 1 r = 1, . . . , 4 k2 = 2m+ s s = 0, 1, (6.180)

given in [82] we get

Γ̂δ = Γ
(

1−
〈
−r

4

〉)3
Γ

(
1−

〈
−n+ s

2
− r

8

〉)2

, (6.181)

where we dropped integer shifts from 〈·〉. We will now split the above formula
into two contributions with either n+ s ∈ 2Z or not:

Γ̂δ =

{
Γ
(
1−

〈
− r

4

〉)3
Γ
(
1−

〈
− r

8

〉)2
n+ s ∈ 2Z

Γ
(
1−

〈
− r

4

〉)3
Γ
(
1−

〈
−1

2 −
r
8

〉)2
n+ s ∈ 2Z + 1

. (6.182)

Our interest lies in the narrow sector, in which〈r
4

〉
6= 0,

〈r
8

〉
6= 0,

〈r
2

+
r

8

〉
6= 0, (6.183)

and it follows that

Γ̂δ =

{
Γ
(〈

r
4

〉)3
Γ
(〈

r
8

〉)2
n+ s ∈ 2Z

Γ
(〈

r
4

〉)3
Γ
(〈

4+r
8

〉)2
n+ s ∈ 2Z + 1

. (6.184)

Eqn. (6.49) can be rewritten by the same steps which result in

Γ̂∗δ =

{
Γ
(〈

4−r
4

〉)3
Γ
(〈

8−r
8

〉)2
n+ s ∈ 2Z

Γ
(〈

4−r
4

〉)3
Γ
(〈

4−r
8

〉)2
n+ s ∈ 2Z + 1

. (6.185)

The grading operator (6.50) is given by

Gr =

{
r − 3

⌊
r
4

⌋
− 2

⌊
r
8

⌋
n+ s ∈ 2Z

r + 1− 3
⌊
r
4

⌋
− 2

⌊
4+r

8

⌋
n+ s ∈ 2Z + 1

. (6.186)
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We insert (6.178), (6.184), (6.185) and (6.186) into (6.51) and find

ZLGS2 =
3∑

δ,δ′=1

(
(−1)δ−3b δ4c−2b δ8c Γ

(〈
δ
4

〉)3
Γ
(〈

δ
8

〉)2
Γ
(〈

4−δ
4

〉)3
Γ
(〈

8−δ
8

〉)2
· (−1)δ+1Iδ,0(t̄1, t̄2) 〈eδ−1 |

+ (−1)δ+1−3b δ4c−2b 4+δ
8 c Γ

(〈
δ
4

〉)3
Γ
(〈

4+δ
8

〉)2
Γ
(〈

4−δ
4

〉)3
Γ
(〈

4−δ
8

〉)2
· (−1)δIδ,1(t̄1, t̄2)

〈
e(δ+4)−1

∣∣)
·
(

(−1)δ
′+1Iδ′,0(t1, t2) |eδ′〉+ (−1)δ

′
Iδ′,1(t1, t2)

∣∣e(δ′+4)

〉)
.

(6.187)

If we evaluate the pairing (6.43) we find for the proposed form of the sphere
partition function:

ZLGS2 =
1

8

3∑
δ=1

(
(−1)δ−3b δ4c−2b δ8c Γ

(〈
δ
4

〉)3
Γ
(〈

δ
8

〉)2
Γ
(〈

4−δ
4

〉)3
Γ
(〈

8−δ
8

〉)2 Iδ,0(t̄1, t̄2)Iδ,0(t1, t2)

+(−1)δ+1−3b δ4c−2b 4+δ
8 c Γ

(〈
δ
4

〉)3
Γ
(〈

4+δ
8

〉)2
Γ
(〈

4−δ
4

〉)3
Γ
(〈

4−δ
8

〉)2 Iδ,1(t̄1, t̄2)Iδ,1(t1, t2)

)

=
1

8

1∑
κ=0

3∑
δ=1

(
(−1)δ+κ−3b δ4c−2b 4κ+δ

8 c Γ
(〈

δ
4

〉)3
Γ
(〈

4κ+δ
8

〉)2
Γ
(〈

4−δ
4

〉)3
Γ
(〈

8−4κ−δ
8

〉)2
· Iδ,κ(t̄1, t̄2)Iδ,κ(t1, t2)

)
. (6.188)

We see that (6.188) coincides with the GLSM result (6.169).

Phase IV: Hybrid Phase

The final phase we will consider is the hybrid phase. We start by analysing
the phase structure. The D-terms are given by

−4|p|2 + |x6|2 +
5∑
i=3

|xi|2 = ζ1

−2|x6|2 + |x1|2 + |x2| = ζ2. (6.189)

and for ζ1 � 0, ζ2 � 0 we find for the vacuum:

p =

√
−ζ1

4
, |x1|2 + |x2|2 = ζ2. (6.190)
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The non zero vacuum values break U(1)2 completely and U(1)1 is broken to
Z4. The vacuum manifold is a P1 and the low energy description is given
by a Z4 Landau-Ginzburg orbifold fibred over P1. In this phase we choose
q1 = 1

4 , q2 = 0. A discussion which poles contribute can again be found in
Appendix B. The upshot is that in this phase only the poles of the contributions
Z1 and Zp have to be taken into account. This is also expected, because these
are the contributions corresponding to the fields with a non-zero VEV in this
phase. After the transformations given in Appendix B.1 the sphere partition
function becomes

ZS2 = − 1

4(2π)2

∞∑
ni,n′i=0

∮
d2εeπζ1ε1e−4πζ2ε2

Γ (−np − ε1)

Γ
(
1 + n′p + ε1

)
·

Γ
(

1
4 +

np
4 + ε1

4 + 2n1 + 2ε2

)
Γ
(

1− 1
4 −

n′p
4 −

ε1
4 − 2n′1 − 2ε2

)
·

 Γ
(

1
4 +

np
4 + ε1

4

)
Γ
(

1− 1
4 −

n′p
4 −

ε1
4

)
3 [

Γ (−n1 − ε2)

Γ (1 + n′1 + ε2)

]2

· e
2πζ1+iθ1

4
npe

2πζ1−iθ1
4

n′pe−(2πζ2+iθ2)n1e−(2πζ2−iθ2)n′1 .

(6.191)

We see, in the ε1 contribution only first order poles appear and so this integral
can be easily evaluated:

ZS2 = − 2πi

4(2π)2

∑
a,b,n1,n′1

4∑
δ=1

∮
dε2(−1)δ

1

π2

sinπ
(
δ
4 + 2ε2

)
sin3 π δ4

sin2 πε2

·
Γ
(
a+ δ

4 + 2n1 + 2ε2

)
Γ
(
b+ δ

4 + 2n′1 + 2ε2

)
Γ (4a+ δ) Γ (4b+ δ) Γ (1 + n1 + ε2)2

·
Γ
(
a+ δ

4

)3
Γ
(
b+ δ

4

)3
Γ (1 + n′1 + ε2)2 e−(2πζ2+iθ2)n1e−(2πζ2−iθ2)n′1e−4πζ2ε2

· e
2πζ1+iθ1

4
(4a+δ−1)e

2πζ1−iθ1
4

(4b+δ−1),

(6.192)

with

np + 1 = 4a+ δ, n′p + 1 = 4b+ δ, a, b ∈ Z≥0, δ = 1, 2, 3, 4. (6.193)

We set ε2 = H
2πi and note that the contribution for δ = 4 vanishes, which leads

to the hypothesis that δ = 4 might correspond to a broad sector. After further
manipulations the integral can be brought into the following form

ZS2 =
2πi

4

3∑
δ=1

∫
P1

(−1)δ
Γ
(
δ
4 + H

πi

)
Γ
(
δ
4

)3
Γ
(
1− H

2πi

)2
Γ
(
1− δ

4 −
H
πi

)
Γ
(
1− δ

4

)3
Γ
(
1 + H

2πi

)2
· Iδ(t1, t2, H)Iδ(t1, t2, H),

(6.194)
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with

Iδ(t1, t2, H) =
Γ
(
1 + H

2πi

)2
Γ
(
δ
4 + H

πi

)
Γ
(
δ
4

)3 e−t2 H
2πi

∑
a,n≥0

e
t1
4

(4a+δ−1)e−t2n

·
Γ
(
a+ δ

4 + 2n+ 2 H
2πi

)
Γ
(
a+ δ

4

)3
Γ (4a+ δ) Γ

(
1 + n+ H

2πi

)2
(6.195)

The structure of (6.194) suggests the following definitions

Γ̂δ(H) = Γ

(
δ

4
+
H

πi

)
Γ

(
δ

4

)3

Γ

(
1− H

2πi

)2

Γ̂∗δ(H) = Γ

(
1− δ

4
− H

πi

)
Γ

(
1− δ

4

)3

Γ

(
1 +

H

2πi

)2

. (6.196)

The factor of (−1)δ can be identified with (−1)Gr. Again we extract the M
matrix:

M =



γ1(0) log 23 − iπ
2
γ1(0) 0 0 0 0

− iπ
2
γ1(0) 0 0 0 0 0

0 0 γ2(0) log 22 − iπ
2
γ2(0) 0 0

0 0 − iπ
2
γ2(0) 0 0 0

0 0 0 0 1
γ1(0)

log 23 − iπ
2

1
γ1(0)

0 0 0 0 − iπ
2

1
γ1(0)

0


, (6.197)

where γδ(0) follows from (6.83) with (6.196) inserted. Also in this phase
we can test our proposed I-function by application of the Picard-Fuchs system
(6.161) onto the I components, but first we need to transform the equation to
local coordinates by the transformation

y1 = z
− 1

4
1 , y2 = z2. (6.198)

The Picard-Fuchs operators now read

L1 = 4(θ1 − 1)(θ1 − 2)(θ1 − 3)− y4
1

64
θ2

1(θ1 + 8θ2)

L2 = θ2
2 −

y2

16
(θ1 + 8θ2)(θ1 + 8θ2 + 4). (6.199)

We identify
e−t1 = y−4

1 , e−t2 = y2, (6.200)

and expand the I-function into a power series in H. The I-function encodes six
periods, where the H0 coefficients provide three power series %0,δ, δ = 1, 2, 3.
The remaining periods are given by the coefficients of H1: %1,δ, which involve
logarithms in y2. These periods are all annihilated by the Picard-Fuchs system.
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A further Hybrid Example

In all the above discussed hybrid models we have a base manifold of the from
P1. We will now consider a model with a hybrid phase, which has a different
base manifold. Again we consider a GLSM with gauge group U(1)2 and the
following field content

p x6 x4 x5 x1 x2 x3 FI

U(1)1 −6 1 2 3 0 0 0 ζ1

U(1)2 0 −3 0 0 1 1 1 ζ2

U(1)V 2− 12q1 2q1 − 6q2 4q1 6q1 2q2 2q2 2q2,

(6.201)

with superpotential W = pG6,0(x1, . . . , x6). The hybrid phase is at ζ1 �
0, ζ2 � 0. By considering the D- and F-term equations we find for the vacuum
equations

p =

√
−ζ1

6
, |x1|2 + |x2|2 + |x3|2 = ζ2 (6.202)

and see the appearance of a P2 vacuum manifold. The gauge group U(1)1

gets broken to Z6 and U(1)2 is completely broken. The low energy description
is given in terms of a Z6 Landau-Ginzburg orbifold fibred over P2. We can
evaluate the sphere partition function along the lines of the previous example
and the contributing poles come from the Z1 and Zp contributions. In this
phase a consistent choice of the R-charge is given by q1 = 1

6 , q2 = 0. Some
steps in the process of rewriting the integral as integral over the residues are
given in Appendix B.2. We find that one integration variable gives only first
order poles and we can easily evaluate that integration. In the end we find the
following expression:

Zhyb
S2 (t1, t2) =

1

6

(2πi)4

(2π)2

∑
δ∈{1,5}

∮
d
H

2πi

(−1)Gr

H3

Γ̂δ(H)

Γ̂∗δ(H)

· |IHY Bδ (H, t1, t2)|2,

(6.203)

with

IHY Bδ (H, t1, t2) =
∑
a,b≥0

(−1)b
et1(a+ δ−1

6
)e−t2(b+ H

2πi
)Γ(1 + H

2πi)
3

Γ
(〈

δ
6

〉
+ 3 H

2πi

)
Γ
(〈

2 δ6
〉)

Γ
(〈

3 δ6
〉)

·
Γ
(
δ
6 + a+ 3b+ 3 H

2πi

)
Γ
(
δ
3 + 2a

)
Γ
(
δ
2 + 3a

)
Γ (δ + 6a) Γ

(
1 + b+ H

2πi

)3 ,

(6.204)

and

(−1)Gr = (−1)b
δ
6c+b2 δ6c+b3 δ6c+δ,

Γ̂δ(H) = Γ

(
1− H

2πi

)3

Γ

(〈
δ

6

〉
+ 3

H

2πi

)
Γ

(〈
2
δ

6

〉)
Γ

(〈
3
δ

6

〉)
,

Γ̂∗δ(H) = Γ̂6−δ(−H).

(6.205)
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By a series expansion in H and writing out all δ components we can read off
the following M matrix

M =



− 3
4
γ1(0)

(
ν2 + η

)
−γ1(0)iπν 2

3
π2γ1(0) 0 0 0

−γ1(0)iπν 2
3
π2γ1(0) 0 0 0 0

2
3
π2γ1(0) 0 0 0 0 0

0 0 0 3
4

1
γ1(0)

(
ν2 − η

)
1

γ1(0)
iπν − 2

3
π2 1

γ1(0)

0 0 0 1
γ1(0)

iπν − 2
3
π2 1

γ1(0)
0

0 0 0 − 2
3
π2 1

γ1(0)
0 0


,

(6.206)

with

ν = 4 log 2 + 3 log 3 η = ψ1(
1

6
)− ψ1(

5

6
). (6.207)

ψ1(x) is the polygamma function and γ1(0) is given in (6.83), with operators
taken from (6.205).
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Chapter 7

A Selection of Swampland
Conjectures

In this chapter we will review the swampland conjectures which played a key
role in the papers [10] and [11]. These papers will be discussed in subsequent
chapters. The swampland program is an approach to classify effective field
theories. The main idea is to split effective field theories into two groups [120]:

1. Effective theories which look semi-classically consistent but which cannot
be embedded into a quantum gravity theory in the UV (the Swampland).

2. Effective theories which can be coupled to quantum gravity in the UV
(the Landscape).

The boundary between these two classes is defined by several swampland
criteria. These are properties which an effective field theory must have in order
to have a consistent completion in the UV to a quantum gravity theory. Up to
now most of the proposed criteria are conjectures and many are motivated from
string theory constructions. In the following we will focus on the conjectures
important for our discussion. We will follow the review [121] and the lecture
notes [122].

7.1 (Refined) Swampland Distance Conjecture

This conjecture was first given in [123] and further refined in [124, 125]. In
the following discussion we have in mind a theory coupled to gravity. This
theory has a moduli space, which is parameterized by expectation values of
some scalar fields. These scalar fields have no potential. The first statement
of the conjecture is that given an arbitrary point in the scalar moduli space,
there exists another point at an arbitrarily large geodesic distance D. The
conjecture further states that by approaching D → ∞ an infinite tower of
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states appears with mass-scale

m(ϕ) ≈ mie
−λD for D →∞, λ ∼ O(1), (7.1)

where all the quantities are given in Planckian units. mi = m(ϕi) is the initial
mass-scale. The assessment λ ∼ O(1) is part of the refined distance conjecture,
which says that the tower appears for super-Planckian distances D.

7.2 de Sitter Conjectures

In [126] the difficulties in constructing de Sitter-like vacua in string theory
motivated the proposal of a conjecture, which places de Sitter-like vacua in
the swampland. The conjecture applies to a d-dimensional theory, d > 2, of
scalar fields ϕi coupled to gravity, of the form

S =

∫
ddx
√
|gd|

(
M2
p

2
Rd −

1

2
gij∂µϕ

i∂µϕj − V (ϕ)

)
, (7.2)

with Mp the Planck mass, µ the d-dimensional indices, gij the field space
metric and V (ϕ) the scalar potential. In order for (7.2) to be a low energy
effective theory of string theory the potential V (ϕ) must obey the following
condition [126]:

|∇V | ≥ c V , c ∼ O(1) , (7.3)

where |∇V | =
√
gij∂iV ∂jV , where the statement is given in Planckian units.

This conjecture excludes de-Sitter extrema as one can see by looking at an
extremum of the potential ∇V = 0. In this case (7.2) gives:

Rd =
V

2d(d− 2)
. (7.4)

From (7.3) the absence of de Sitter solutions follows. Away from extrema
the conjecture restricts the slope of the potential, which is of consequence for
cosmological models. Further studies of the implications of the proposal lead
to the refinement of the conjecture in [127] (see [11] for further references),
because it was argued that the original conjecture was too strong. In [127] it
was argued that (7.3) is only valid in asymptotic regions of field space. In
[128] the Trans-Planckian Censorship conjecture (TCC) was put forward and
used to provide a physical motivation for the refined de Sitter conjecture and
a bound on the value c. This was done by using physical arguments regarding
quantum fluctuations. The analysis of [128] resulted in the following conditions
on the scalar potential:

0 < V (ϕ) < V0 e
−c0D ⇒

〈
|V ′|
V

〉
D→∞

≥ c0 =
2√

(d− 1)(d− 2)
. (7.5)
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V0, ϕi are constants. D(P,Q), is the geodesic distance in field space between
two arbitrary points P,Q in field space. For a canonically normalised field ϕ
this can be written in the form D = |ϕ−ϕi|. The ratio |V ′|/V is averaged over
an interval in field space and is considered here in the limit of large distances.
Here the conjecture is considered for a single field, but it was extended in [128]
to the multi-field case. From (7.5) a lower bound for the value of c in (7.3),
can be read off and for d = 4 it follows:

TCC bound: c ≥
√

2

3
≈ 0, 8165. (7.6)
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Chapter 8

The Refined Swampland
Distance Conjecture in Exotic
Calabi Yaus

This chapter is based on the paper [10]. We will use GLSM techniques to test
the RSDC (see Section 7.1). This conjecture was tested before in [129, 130].
We will extend the discussion to more exotic Calabi-Yau phases.

The scalar moduli space, mentioned in the definition of the RSDC (see
Section 7.1), which can be probed by GLSM techniques is the Kähler moduli
spaceMK of the Calabi-Yau. In order to test the RSDC we have to calculate
the length of geodesics in MK . This is a delicate task, because the Kähler
moduli space decomposes into different chambers and paths in the moduli
space will cross the boundaries between these chambers. This requires to
calculate geodesics in different chambers and to match them at the boundary.
If the predictions of the RSDC are true, then all these components of the
geodesic have to be of order O(1) in Planckian units.

To start our calculations we need to obtain a metric onMK . The Kähler
moduli space is a Kähler manifold and so the metric can be obtained from a
Kähler potential K(t, t):

gtt̄ = ∂t∂t̄K(t, t̄). (8.1)

We will us the sphere partition function to calculate the Kähler potential (see
also Chapter 6). Given the metric we can then calculate the distance between
two generic points p1, p2 inMK via

Θ(p1, p2) =

∫ τ2(p2)

τ1(p1)
dτ

√
2gtt̄(τ)

∂t

∂τ

∂t

∂τ
, (8.2)

where τ is an affine parameter. The geodesics can then be obtained by solving
the geodesic equations:

d2xρ

dτ2
+ Γρµν

dxµ

dτ

dxν

dτ
= 0. (8.3)
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Calabi Yaus

Due to quantum corrections we can solve (8.3) only numerically. In our case
we consider models with dimCMK = 1. We rewrite (8.3) into a radial and an
angular variable x(τ) = (r(τ), ϕ(τ)) and the geodesic equations become:

ϕ̈ =
1

2
gϕϕ∂ϕgrrṙ

2 − gϕϕ∂rgϕϕṙϕ̇−
1

2
gϕϕ∂ϕgϕϕϕ̇

2, (8.4)

r̈ = −1

2
grr∂rgrrṙ

2 − grr∂ϕgrrṙϕ̇+
1

2
grr∂rgϕϕϕ̇

2. (8.5)

We solve the geodesic equations and then evaluate (8.2) on the obtained so-
lution to get the length of the geodesic. We were able to solve the geodesic
equations numerically up to order O(r50). In our calculations we start from a
finite-distance point in a chamber ofMK and cross the boundary to approach
a point at infinite distance. In the second chamber the exponential drop-off
becomes significant after a path of length ≈ Θλ has been traversed, which
signalises the appearance of a tower of light states after that distance. Let Θ0

be the proper distance from the starting point to the chamber boundary, then
we can characterize the full length of the geodesic by [129]

Θc = Θ0 + Θλ = Θ0 +
1

λ
. (8.6)

By the RSDC this quantity should be of order O(1). Subsequently we will test
this assertion in examples.

Different to [10] we corrected a missing factor of
√

2 in the results. The
origin of this factor is explained in Section 9.2). Further we choose a different
naming convention for the models of interest compared to [10]. The naming is
chosen in accordance with Chapter 5.

8.1 Models with dimMK = 1

We have analysed these models in Chapter 5 and will here repeat features
which are important for our subsequent analysis. K-type points are at infinite
distance in the moduli space and in [56] it was argued that the tower of massless
states, as predicted by the SDC, is given in terms of D-brane states. The M -
points are at infinite distance and for the one-parameter models the RSDC
has been studied in [129] for geodesics from a Landau-Ginzburg point to a
M-point. Therefore the focus of our analysis lies on geodesics from C-points
and F-points not studied in [129] to M points. We will discuss all three models
C-types (see Table 5.1 and Table 8.1). The C3-type was previously studied in
[57] from a GLSM standpoint. We also study the F5 model which does not
correspond to a standard Landau-Ginzburg model. The last example we will
consider is a C-type pseudo hybrid phase in a non-abelian GLSM, which was
first given in [131].
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8.1. Models with dimMK = 1

label ζ � 0 h1,1 h2,1 a at ζ � 0

C3 P6[3, 2, 2] 1 73
(

1
3 ,

1
2 ,

1
2 ,

2
3

)
C1 P5[4, 2] 1 89

(
1
4 ,

1
2 ,

1
2 ,

3
4

)
C2 P5

153[6, 2] 1 129
(

1
6 ,

1
2 ,

1
2 ,

5
6

)
Table 8.1: C-type pseudo-hybrids from U(1) GLSMs.

C-Type Pseudo-Hybrid Examples from abelian GLSMs

We analysed the vacuum structures of these models in Section 5.4. and repeat
certain characteristics in Table 8.1 (see also [56]). We focus here on the location
of the singularity and the structure of the sphere partition function in these
models.

C3-Model

In our calculations of the geodesic we will cross the phase boundary and there-
fore we need to calculate the location of the singular points at the boundary.
These are located at (5.8):

e−t = − 1

432
⇒ ζ =

1

2π
log 2433, θ = π mod 2π. (8.7)

To calculate the metric we first need to calculate the sphere partition func-
tion in the respective phase. The general steps for this procedure have been
outlined in Section 6.3. We will simply give the results and refer to the original
paper [10] and Appendix A for more details. In the ζ � 0 phase only the poles
in the x-field contributions have to be accounted for and we find

Zζ�0
S2 = − (zz̄)q Resτ=0

(
(zz̄)τ π4 sin (2πτ)2 sin (3πτ)

sin (πτ)7 f [τ, z]

)
, (8.8)

where

f [τ, z] =

∣∣∣∣∣
∞∑
a=0

(−z)aΓ (1 + 2a+ 2τ)2 Γ (1 + 3a+ 3τ)

Γ (1 + a+ τ)

∣∣∣∣∣
2

, (8.9)

and
z =−2πζ+iθ≡ e−t. (8.10)

In the ζ � 0 phase we find that the poles coming from the p1 and p2 contri-
bution have to be taken into account. This was also observed in Section 6.3.
The sphere partition function is given by

Zζ�0
S2 = Zζ�0

S2,Zp1
+ Zζ�0

S2,Zp2
, (8.11)
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where

Zζ�0
S2,Zp1

=
2∑
δ=0

π−4(−1)δ (zz̄)q−
1+δ

3 Resτ=0

(
(zz̄)τ

·
sin
(
π
(

2−δ
3 + τ

))7
sin (3πτ) sin

(
π
(

1−2δ
3 + 2τ

))2 f1[τ, z, δ]

)
,

(8.12)

with

f1[τ, z, δ] =

∣∣∣∣∣
∞∑
a=0

(−z)−a
Γ
(

1+δ
3 + a− τ

)7
Γ (1 + 3a+ δ − 3τ) Γ

(
2+2δ

3 + 2a− 2τ
)2
∣∣∣∣∣
2

. (8.13)

Zζ�0
S2,Zp2

is given by

Zr�0
S2,Zp2

= (zz̄)q−
1
2 Resτ=0

(
π−4 (zz̄)τ

·

(
sin
(
π
(

1
2 − τ

))7
sin
(
π
(
−1

2 + 3τ
))

sin (2τπ)2 f2[τ, z, 0]

) (8.14)

with

f2[τ, z, δ] =

∣∣∣∣∣
∞∑
a=0

(−z)a
Γ
(

1+δ
2 + a− τ

)7
Γ (1 + 2a+ δ − 2τ)2 Γ

(
3+3δ

2 + 3a− 3τ
)∣∣∣∣∣

2

. (8.15)

C1-Model

The position of the singular points is at (5.8):

e−t =
1

1024
→ ζ =

1

2π
log 210, θ = 0 mod 2π. (8.16)

Again the evaluation of the sphere partition function follows the steps outlined
in the previous chapters and we simply give the results. In the ζ � 0 phase
we find

Zr�0
S2 = −(zz̄)qπ4 Resτ=0

(
sin 4πτ sin 2πτ

(sinπτ)6
(zz̄)τ |f [z, τ ]|2

)
, (8.17)

with

f [z, τ ] =
∞∑
n=0

zn
Γ (1 + 4n+ 4τ) Γ (1 + 2n+ 2τ)

Γ (1 + n+ τ)6 . (8.18)

In the phase ζ � 0 we find two contributions, which is similar to the C3
behaviour:

Zζ�0
S2 = Zζ�0

S2,Zp1
+ Zζ�0

S2,Zp2
. (8.19)
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In contrast to the C3-model we need to take care of a possible over-counting of
poles. This issue was analysed in detail in the appendix of [10] and Appendix
A. The upshot of the analysis is that the poles of the p2 contribution result in

Zζ�0
S2,Zp2

= (zz̄)q−
1
2 Resτ=0

(
−π−4

(
sin
((

1
2 + τ

)
π
))6

sin 4πτ sin 2πτ
(zz̄)τ

∣∣∣f̃1[z, τ ]
∣∣∣2) , (8.20)

with

f̃1[z, τ ] =

∞∑
a=0

z−a
Γ
(
a+ 1

2 − τ
)6

Γ (4a+ 2− 4τ) Γ (2a+ 1− 2τ)
. (8.21)

The poles of the p1 contribution give

Zζ�0
S2,Zp1

=
∑
δ=0,2

(zz̄)q−
δ+1

4 (−1)δ Resτ=0

(
π−4(zz̄)τ

·
sin
(
π
(

3−δ
4 + τ

))6
sin 4πτ sin

(
π
(

1−δ
2 + 2τ

)) ∣∣∣f̃2[z, τ, δ]
∣∣∣2) ,

(8.22)

with

f̃2[z, τ, δ] =

∞∑
a=0

z−a
Γ
(
a+ δ+1

4 − τ
)6

Γ (1 + 4a+ δ − 4τ) Γ
(
2a+ δ+1

2 − 2τ
) . (8.23)

C2-Model

The singular point is at

e−t =
1

6912
→ ζ =

1

2π
log 3328, θ = 0 mod 2π. (8.24)

In the ζ � 0 phase the sphere partition function evaluates to

Zζ�0
S2 = −(zz̄)q Resτ=0

(
π4(zz̄)τ

sin 6πτ sin 2πτ

(sinπτ)5 sin 3πτ
|f1[z, τ ]|2

)
, (8.25)

with

f1[z, τ ] =
∞∑
a=0

za
Γ (1 + 6a+ 6τ) Γ (1 + 2a+ 2τ)

Γ (1 + a+ τ)5 Γ (1 + 3a+ 3τ)
. (8.26)

In the ζ � 0 phase we see again two contributions:

Zζ�0
S2,Zp2

= (zz̄)q−
1
2 Resτ=0

(
π−4(zz̄)τ

·
(
sin
(
π
(

1
2 + τ

)))5
sin
(
π
(
−1

2 + 3τ
))

sin 6πτ sin 2πτ

∣∣∣f̃1[z, τ ]
∣∣∣2) , (8.27)
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label ζ � 0: P5
wi

[d1, d2] h1,1 h2,1 a at ζ � 0 µ (sing. at e−t = µ−1)
F5 P5

152
[4, 3] 1 79

(
1
4
, 1

3
, 2

3
, 3

4

)
−2633

F6 P5
13223

[6, 4] 1 79
(

1
6
, 1

4
, 3

4
, 5

6

)
21033

F7 P5
144,6

[12, 2] 1 243
(

1
12
, 5

12
, 7

12
, 11

12

)
2833

Table 8.2: F-type pseudo-hybrids from U(1) GLSMs.

with

f̃1[z, τ ] =

∞∑
a=0

z−a
Γ
(

1
2 + a− τ

)5
Γ
(

3
2 + 3a− 3τ

)
Γ (3 + 6a− 6τ) Γ (1 + 2a− 2τ)

, (8.28)

and

Zζ�0
S2,Zp1

=
∑

δ∈{0,1,3,4}

(zz̄)q−
1+δ

6 (−1)δ Resτ=0

(
π−4(zz̄)τ

·
(
sin
(
π
(

5−δ
6 + τ

)))5
sin
(
π
(

1−δ
2 + 3τ

))
sin 6πτ sin

(
π
(

1+δ
3 − 2τ

)) ∣∣∣f̃2[z, τ, δ]|
∣∣∣2) ,

(8.29)

with

f̃2[z, τ, δ] =
∞∑
a=0

z−a
Γ
(
δ+1

6 + a− τ
)5

Γ
(

1+δ
2 + 3a− 3τ

)
Γ (δ + 1 + 6a− 6τ) Γ

(
1+δ

3 + 2a− 2τ
) . (8.30)

A pole cancelation takes place for δ ∈ {0, 4} .

F-type Examples

We studied the F-type pseudo hybrids models previously in Section 5.4. The
relevant data for our analysis of these models is given in Table 8.2.

The position of the singular points can be read off from Table 8.2. Due to
the similar nature of the pseudo hybrid F-type models and the C-type models
we only compute the sphere partition function for the F5 model.

In the ζ � 0 phase the sphere partition function reads

Zζ�0
S2 = −(zz̄)q Resτ=0

(
(zz̄)τπ4 sin (4πτ) sin (3πτ)

sin (πτ)5 sin (2πτ)
|f [z, τ, 0]|2

)
, (8.31)

with

f [z, τ ] =

∞∑
a=0

(−1)aza
Γ (4a+ 4τ + 1) Γ (3a+ 3τ + 1)

Γ (a+ τ + 1)5 Γ (2a+ 2τ + 1)
. (8.32)

In the ζ � 0 phase we have again two contributions, but only first order poles
occur. This is in contrast to the C-type models. We find

Zζ�0
S2,Zp1

=
(zz̄)q−

3
4

(
|f1[z, 0, 0]|2

√
zz̄ − |f1[z, 0, 2]|2

)
16π5

, (8.33)
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with

f1[z, 0, 0] =
∞∑
a=0

(−z)−a
Γ
(
a+ 1

4

)5
Γ
(
2a+ 1

2

)
Γ (4a+ 1) Γ

(
3a+ 3

4

) . (8.34)

f1[z, 0, 2] =
∞∑
a=0

(−z)−a
Γ
(
a+ 3

4

)5
Γ
(
2a+ 3

2

)
Γ (4a+ 3) Γ

(
3a+ 9

4

) , (8.35)

and

Zζ�0
S2,Zp2

= −
3
√

3 (zz̄)q−
2
3

(
|f2[z, 0, 0]|2 3

√
zz̄ − |f2[z, 0, 1]|2

)
32π5

, (8.36)

with

f2[z, 0, 0] =
∞∑
a=0

(−z)−a
Γ
(
a+ 1

3

)5
Γ
(
2a+ 2

3

)
Γ
(
4a+ 4

3

)
Γ (3a+ 1)

, (8.37)

f2[z, 0, 1] =

∞∑
a=0

(−z)−a
Γ
(
a+ 2

3

)5
Γ
(
2a+ 4

3

)
Γ
(
4a+ 8

3

)
Γ (3a+ 2)

. (8.38)

For more details on the calculation and a discussion about the pole cancelation
see [10] and Appendix A.

8.2 Non-Abelian Example with a Pseudo-Hybrid
Phase

Due to the abelian nature of the previous GLSMs, these models can be realized
in terms of toric geometry. Nevertheless the applied methods can also be used
in non-abelian GLSMs and C-type pseudo-hybrid phases also occur for non-
abelian models. A first example of a one-parameter model with a pseudo-
hybrid phase was given in [131]. Additional examples with dimMK = 1 where
found in [132].

The non-abelian nature of the gauge group makes an analysis challenging.
Such models have in general a strongly coupled phase, where in the low-energy
effective theory a continuous subgroup of the GLSM gauge group is unbroken.
It is possible to calculate the sphere partition function for such phases, but
the result is not absolutely convergent and resummation techniques have to
be applied. This restricts practical calculations to the lowest orders in the
expansion. Also another difficulty is related to the fact that all known one-
parameter non-abelian GLSMs have more than one singularity at the phase
boundary. It is not clear if one should choose the metric for ζ � 0 or ζ � 0
between the singular points. Both show poor convergence properties there. In
addition the expression for the sphere partition function is more complicated
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which hampers the numerical calculations. A higher efficiency in the calcula-
tions can be obtained by a good choice of coordinates onMK . In [129] it was
demonstrated that for abelian examples a good choice is a coordinate ψ, with
the property that the singular point is at ψ = 1. In the case of multiple sin-
gular points at the phase boundary there is no obvious choice. The difficulties
outlined above, restricted our analysis to a specific region in the moduli space
and we could not analyse geodesics crossing the phase boundaries. We focused
on the weakly coupled pseudo-hybrid phase, where we were able to perform
explicit calculations.

We studied a GLSM with U(2) gauge group which has been discussed in
[131]. The field content reads

φ p1, . . . , p5 p6, p7 x1, x2 x3, . . . , x5

U(2) det−1 det−2 det⊗� �
R 4q 8q 1− 6q 1− 2q

, (8.39)

where � refers to the fundamental representation and det is the determinantal
representation of U(2). The superpotential is

W =
5∑

i,j=1

Aij(p)[xixj ], (8.40)

where [xixj ] = εabx
a
i x

b
j (a, b = 1, 2). The structure of the antisymmetric 5× 5

matrix A(p) is restricted by gauge invariance to the following form: The first
2×2 block is cubic in p1, . . . , p5 and bilinear in (p1,...,5, p6,7) and so transforms
in the det−3 representation. The lower 3 × 3 block has to be linear in p1,...,5

and transforms in the det−1 representation. The off-diagonal entries transfrom
by det−2 and must therefore be quadratic in p1,...,5 and linear in p6,7.

In the phase ζ � 0 the limiting point is of M -type. This is a strongly
coupled phase and a SU(2) subgroup of the gauge group remains unbroken.
The geometry of the vacuum manifold is a smooth Pfaffian Calabi-Yau in
weighted P7 [133]. The Calabi-Yau is characterised by the rankA(p) = 2
locus. For ζ � 0 we encounter a pseudo-hybrid phase of type C. The limiting
point is at finite distance in the moduli space. The model has two singular
points at

e−t± = (540± 312
√

3). (8.41)

These singularities are not at the same theta angle: θ+ = 0 and θ− = π
(mod 2π). In our discussion we calculate the length Θ0 of geodesics starting
at the pseudo-hybrid point and ending at the ζ-value of the nearest singular
point. In [131] the sphere partition function of this model has already been
computed. For our analysis we just need the sphere partition function in the
phase ζ � 0. We can bring the sphere partition function into the following
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form

ZS2 = − 1

8π

∫
γ+iR2

dτ1 ∧ dτ2, (Z1)5 (Z2)2 (Z3)2 (Z4)2

· (Z5)3 (Z6)3 ZGZclassical

(8.42)

with τi = −q − iσi (i = 1, 2) and γ = −q(1, 1)T . The different contributions
read

Z1 = Zp1,...,5 =
Γ
(
−τ1 − τ2 + 1

2(m1 +m2)
)

Γ(1 + τ1 + τ2 + 1
2(m1 +m2))

, (8.43)

Z2 = Zp6,7 =
Γ (−2τ1 − 2τ2 + (m1 +m2))

Γ(1 + 2τ1 + 2τ2 + (m1 +m2))
, (8.44)

Z3Z4 = Z1
x1,2

Z2
x1,2

=
Γ
(

1
2 + 2τ1 + τ2 − 1

2(2m1 +m2)
)

Γ(1
2 − 2τ1 − τ2 − 1

2(2m1 +m2))

·
Γ
(

1
2 + τ1 + 2τ2 − 1

2(m1 + 2m2)
)

Γ(1
2 − τ1 − 2τ2 − 1

2(m1 + 2m2))
, (8.45)

Z5Z6 = Z1
x3,4

Z2
x3,4

=
Γ
(

1
2 + τ1 − 1

2m1

)
Γ
(

1
2 − τ1 − 1

2m1

) Γ
(

1
2 + τ2 − 1

2m2

)
Γ
(

1
2 − τ2 − 1

2m2

) , (8.46)

ZG = (−1)m1−m2

(
1

4
(m1 −m2)2 − (τ1 − τ2)2

)
, (8.47)

ZClassical = e8πζqe4πr(τ1+τ2)−iθ(m1+m2). (8.48)

The evaluation of the sphere partition function in the pseudo-hybrid phase
results in

Zζ�0
S2 = Zζ�0

S2,1
+ 2Zζ�0

S2,2
, (8.49)

with

Zζ�0
S2,1

= −9
√

3 (zz̄)
1
3
−2q

256π7

(
3
√
zz̄∂2

x2
|f1[z, x1, x2, 1]|2 |(0,0)

−∂2
x2
|f1[z, x1, x2, 0]|2 |(0,0)

)
,

(8.50)

and

f1[z, x1,x2, δ] =
∞∑
l=0

(−z)l
3l+δ∑
b=0

(−1)b (−2b+ δ + 3l − x1 + x2)

·
Γ
(
l + δ+1

3 − x1 − x2

)5
Γ
(
2l + 2

3(δ + 1)− 2x1 − 2x2

)2
Γ (−b+ 3l + δ − 2x1 − x2 + 1)2 Γ (b− x1 − 2x2 + 1)2

·
Γ
(
−b+ l + δ

3 + x2 + 1
3

)3
Γ
(
−b+ 2l + 2+2δ

3 − x1

)3 .
(8.51)
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Zζ�0
S2,2

is given by

Zζ�0
S2,2

=
1

8
(zz̄)

1
2
−2q
(

3 |f2[z, 0, 0]|2 log (zz̄)

−4∂x2 |f2[z, x1, x2]|2 |(0,0) + ∂x1 |f2[z, x1, x2]|2 |(0,0)

)
,

(8.52)

where

f2[z, x1, x2] =

∞∑
a=0

za
2a∑
b=0

(
−2b+ a− x1 + x2 −

1

2

)

·
Γ
(
a− x1 − x2 + 1

2

)5
Γ (−b+ 2a− 2x1 − x2 + 1)2 Γ

(
b+ a− x1 − 2x2 + 3

2

)2
· Γ (2a− 2x1 − 2x2 + 1)2

Γ
(
−b+ a− x1 + 1

2

)3
Γ (b− x2 + 1)3

,

(8.53)

The main challenge in computing the sphere partition function is the appear-
ance of multi-dimensional residue. Procedures for the calculation of such in-
tegrals have been given in e.g. [134, 135, 118, 136]. Further details on the
calculation can be found in the appendix of [10]. In Appendix B we discuss
multidimensional residues for an abelian model. Extraction of the leading
behaviour of the sphere partition function results in [131]:

Zζ�0
S2 =

Γ
(

1
3

)10
(zz̄)−2q+ 1

3

2
√

3πΓ
(

2
3

)8 − (zz̄)−2q+ 1
2 (−3 log (zz̄)

+36 + 8 log(4)) + . . .

(8.54)

The displayed behaviour is expected for a pseudo-hybrid phase.

8.3 Testing the Refined Swampland Distance
Conjecture

We apply the results from Section 8.1 to calculate the length of geodesics.

C-Type Pseudo-Hybrid Examples from abelian GLSMs

C3

The sphere partition function of this model was discussed in Section 8.1 and
for the numerical calculations we make the following variable transformation

z = − 1

2433ψ7
. (8.55)
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Reψ

Imψ

gψ,ψ̄ Reψ

Imψ

gψ,ψ̄

Figure 8.1: Metrics for C3 (left) and the quintic (right).

In the next step we switch to polar coordinates:

ψ = reiϕ = − 1

(2433)1/7
z−1/7 ⇔

r =
1

(2433)1/7
e

2πζ
7 , ϕ = −θ + π

7
.

(8.56)

Note that we have chosen a parameterization ofMK in terms of the classical
Kähler parameter z = e−t with t = 2πζ − iθ. This parameterization is the
natural one from a GLSM perspective. The coordinate transformation, applied
above, places the pseudo-hybrid point at ψ = 0. The singular points at the
phase boundary are at (r, ϕ) = (1, 0 mod 2π

7 ). Near the limiting points of the
phases the metric displays the following leading behaviour:

gζ�0

ψψ̄
= − 2873

√
3π7

33Γ
(

1
6

)4
Γ
(

1
3

)10 r
1/3 log(r) + . . . ,

gζ�0

ψψ̄
=

3

4r2 log(r)2
+ . . . .

(8.57)

A plot of the metric is given in Figure 8.1 in which we additionally displayed
the metric of the quintic.

In both models the limiting point in the ζ � 0 phase is at finite distance.
However the logarithm leads to a different behaviour near the limiting point
and resembles the behaviour near the large volume point. Further approaching
the pseudo-hybrid point the polynomial behaviour wins over the logarithmic
dependence and renders the distance finite. This behaviour is best visible if we
plot the metric for fixed ϕ values as in Figure 8.2. Near the phase boundary we
only find a divergent behaviour if we directly approach the singularity (solid
line).

In Figure 8.2 we also see at which r value the ϕ dependence sets in.
Our goal is to calculate geodesics which start near the pseudo-hybrid point,

cross the phase boundary and approach the limiting point in the large volume
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7
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14

Figure 8.2: Metric for constant ϕ-values in the pseudo-hybrid phase of C3.

phase. In the following we will denote the distance in the ζ � 0 phase by Θ0.
Θ0 is given by the geodesic distance to the phase boundary. To approximate
the distance behaviour in the ζ � 0 phase we follow the approach given in
[129]. The idea is to look at the leading behaviour of the metric in the ζ � 0
phase and calculate the distance Θ for a path with fixed ϕ. This results in

Θ ≈ 1

λ
log(| log(|z|)|) +

α1

log(|z|)3
+ α0. (8.58)

If we change the coordinate from z to ψ we find:

Θ ≈ 1

λ
log(

1

2π
log(2433r7)) +

α1(
1

2π log(2433r7)
)3 + α0. (8.59)

In the next step we calculate geodesics and their lengths for different starting
values of ϕ. Due to numerical issues we cannot directly start from r = 0 and
therefore start from r = 10−6. We approximate the additional distance by a
straight line and find that it is negligible. In order to extract the quantities
introduced in (8.6) we fit the leading behaviour of the distance (8.59) to our
obtained results. The results are given in Table 8.3. Due to the symmetry of
the metric around ϕ = π

7 (see Figure 8.1) we calculate geodesics for the range
0 ≤ ϕ ≤ π

7 (In principle ϕ can take values up to 2π
7 ). We want to mention that

for small ϕ values the geodesics are rather short in the large volume phase.
Therefore they are not very useful for testing the conjecture. Nevertheless they
do not display any behaviour which would justify an exclusion for the study
in the small radius regime, which is the focus of our studies, and therefore we
keep them. Let us display the mean values for the fitted parameters

Θ0 ≈ 1, 2639, λ−1 ≈ 1, 3587, Θc ≈ 2, 6226. (8.60)

The results agree with the RSDC. If we look at the results for the quintic given
in [129], we see that our results for Θ0 are a factor 2 larger.
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ϕ(0)70
π α0 α1 λ−1 Θ0 Θc

1 1, 4408 −0, 0934 0, 9827 1, 3029 2, 2855
2 1, 2365 0, 1037 1, 6631 1, 2947 2, 9578
3 1, 1884 0, 1346 1, 6232 1, 2823 2, 9055
4 1, 1855 0, 1198 1, 4062 1, 2703 2, 6765
5 1, 17 0, 127 1, 4304 1, 2621 2, 6925
6 1, 1564 0, 1322 1, 3992 1, 2547 2, 654
7 1, 1534 0, 1259 1, 3055 1, 2476 2, 5531
8 1, 1578 0, 1179 1, 2928 1, 2439 2, 5366
9 1, 1549 0, 1175 1, 266 1, 2412 2, 5072
10 1, 1574 0, 1119 1, 2182 1, 2394 2, 4577

Table 8.3: Length parameters for C3.

Imψ

Reψ

gψ,ψ̄

Reψ

Imψ

gψ,ψ̄

Figure 8.3: Metrics for C1 (left) and C2 (right).

C1

The results of Section 8.1 imply

z =
1

1024ψ6
, (8.61)

and in angular coordinates

ψ = reiϕ =
1

(210)1/6
z−1/6 ⇔ r =

1

(210)1/6
e

2πζ
6 , ϕ = −θ

6
. (8.62)

The singularity is at (r, ϕ) = (1, 0 mod 2π
6 ). We expand the metric near the

limiting points and find

gζ�0

ψψ̄
= − 2733π6

Γ
(

1
4

)12 r log(r) + . . . , gζ�0

ψψ̄
=

3

4r2 log(r)2
+ . . . . (8.63)

The metric is visible in Figure 8.3.
In Figure 8.4 we can read off at which value of r the angle dependency sets

in.
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Figure 8.4: Metric for constant ϕ values in the pseudo-hybrid phase for C1
(left) and C2 (right).

ϕ(0)60
π α0 α1 λ−1 Θ0 Θc

1 0, 7749 −0, 1167 1, 0363 0, 7898 1, 8261
2 0, 4833 0, 1831 1, 6336 0, 7808 2, 4144
3 0, 5242 0, 1486 1, 3767 0, 7708 2, 1476
4 0, 4866 0, 1832 1, 4202 0, 7633 2, 1836
5 0, 4704 0, 1975 1, 4027 0, 7561 2, 1588
6 0, 4774 0, 1915 1, 3164 0, 7498 2, 0662
7 0, 4697 0, 1946 1, 325 0, 7454 2, 0704
8 0, 4795 0, 185 1, 262 0, 7417 2, 0037
9 0, 4706 0, 1933 1, 2729 0, 7397 2, 0126
10 0, 4699 0, 1937 1, 2749 0, 7393 2, 0142

Table 8.4: Length parameters for C1.

In the large volume phase the asymptotic behaviour is given by (8.58) and
adapted to our coordinates it reads:

Θ ≈ 1

λ
log(

1

2π
log(210r6)) +

α1(
1

2π log(210r6)
)3 + α0. (8.64)

The results of the fitting procedure are given in Table 8.4.
In this model we again used the symmetry of the metric to focus on the

region ϕ ≤ π
6 . For the same reasons as in the C3 case we started from r = 10−6.

The mean values of the fitted parameters are

Θ0 ≈ 0, 7577, λ−1 ≈ 1, 3321, Θc ≈ 2, 0898. (8.65)

We see that they are in the bounds of the RSDC.
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8.3. Testing the Refined Swampland Distance Conjecture

ϕ(0)60
π α0 α1 λ−1 Θ0 Θc

1 0, 1596 −0, 1831 0, 9593 0, 4216 1, 3808
2 −0, 2426 0, 401 1, 5029 0, 4152 1, 9181
3 −0, 146 0, 323 1, 2836 0, 409 1, 6926
4 −0, 2228 0, 4285 1, 3833 0, 4042 1, 7875
5 −0, 2102 0, 4345 1, 3251 0, 3993 1, 7244
6 −0, 2049 0, 4402 1, 2931 0, 3956 1, 6886
7 −0, 2164 0, 4567 1, 3003 0, 3926 1, 6929
8 −0, 2071 0, 4659 1, 259 0, 3903 1, 6493
9 −0, 2239 0, 4822 1, 2876 0, 3891 1, 6768
10 −0, 2069 0, 4687 1, 2506 0, 3885 1, 6391

Table 8.5: Length parameters for C2.

C2

From Section 8.1 we read off the position of the singularity and introduce

z =
1

6912ψ6
(8.66)

and

ψ = reiϕ =
1

(2833)1/6
z−1/6 ⇔ r =

1

(2833)1/6
e

2πζ
6 , ϕ = −θ

6
. (8.67)

This parameterization places the singularity at (r, ϕ) = (1, 0 mod 2π
6 ). The

leading behaviour of the metric near the limiting points reads

gζ�0

ψψ̄
= −

2535
√

3π3Γ
(

5
3

)2
Γ
(

1
6

)8 r2 log(r) + . . . , gζ�0

ψψ̄
=

3

4r2 log(r)2
+ . . . . (8.68)

We plotted the metric in Figure 8.3. In the ζ � 0 phase we calculate the
length of the geodesic numerically and in the ζ � 0 phase we fit the result
against the asymptotic behaviour. The starting point is again at r = 10−6 and
in the chosen parameterization the asymptotic behaviour reads

Θ ≈ 1

λ
log(

1

2π
log(2833r6)) +

α1(
1

2π log(2833r6)
)3 + α0. (8.69)

The mean values of the fitted parameters are

Θ0 ≈ 0, 4005 λ−1 ≈ 1, 2845 Θc ≈ 1, 685, (8.70)

and the single results are given in Table 8.5. We see that the results are in
agreement with the RSDC.
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Comparing C3, C1 and C2

We see from the results for Θ0 (8.60),(8.65), (8.70), that the values differ. The
variations of the results can be explained by studying the asymptotic expansion
of the metric in these phases1: (8.57), (8.63), (8.68).

In all three models the logarithmic behaviour is suppressed by the poly-
nomial contribution if we approach r = 0. In the C3 model we only have a
suppression by a factor of r1/3, which is weaker then in the C1 and C2 model
and explains why we obtain the longest distance Θ0 in the C3 model. The
dominance of the logarithmic behaviour in the C3 model in comparison to
the C1 and C2 model is visible in the Figures 8.3 and 8.1. Figures 8.2 and
8.4, in which the metric was plotted for various ϕ values, give an even better
impression of this behaviour.

Let us also compare our results to the results for the one parameter hy-
persurface examples in [129]. As the asymptotic behaviour of the metrics in
Landau-Ginzburg phases is different to the pseudo-hybrid phases we find big-
ger values for Θ0 in our models. The biggest deviation is seen in the C3 model,
but this is expected as we discussed in the previous paragraph. We see that
the specifics of the phase influence the value of Θ0. This could be used to
make more precise statements about the order one parameter in (7.1).

F-Type Example

Now we study geodesic in the model introduced in Section 8.1. We chose the
following parameterization

z = − 1

2633ψ6
, (8.71)

and so
r =

1

(2633)1/6
e

2πζ
6 , ϕ = −θ + π

6
. (8.72)

The leading order behaviour of the metric in the ζ � 0 phase is given by

gζ�0

ψψ̄
=

33πΓ
(

1
3

)6
Γ
(

3
4

)2
Γ
(

1
4

)10

1

r
+ . . . , (8.73)

and although the metric is singular at r = 0 the distance remains finite (this
can be seen by integrating

√
gζ�0

ψψ̄
using (8.2). A plot of the metric is given

in Figure 8.5, where we display the metric for certain fixed ϕ values in Figure
8.6.

The leading behaviour at the limiting point in the ζ � 0 phase is similar
to the previous models.

1The leading behaviour of the metric has also been studied in [56]. We match our results
to the results of [56] in the appendix of [10]
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Figure 8.5: Metric plot of F5.
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Figure 8.6: Metric for constant ϕ-values in the pseudo-hybrid phase of F5.

The symmetry of the metric in ϕ around ϕ = π
6 allows us to restrict the

analysis of geodesic to 0 ≤ ϕ ≤ π
6 . We start from r = 10−6. The reason for

this starting point is the same as in the previous models, but in contrast to
the cases above we add a distance of 7 · 10−5 to the result for2 Θ0.

The results for Θ0 and the fitted parameters of the asymptotic behaviour
in the large volume phase are given in Table 8.6. The mean values are

Θ0 ≈ 1, 1719, Θλ ≈ 1, 3072, Θc ≈ 2, 479. (8.74)

Let us compare these results to the models studied in the previous section.
In the F-type model we see that the Θ0 distance is larger as compared to the
C1 and C2 model, but the longest distance is still found in the C3 model. If
we look at Figure 8.7 we can gain an intuition why this behaviour is the case.
The F-type model metric diverges at r = 0, but soon drops below the value of
the C3 model.
We finally remark that the results are in accordance with the RSDC.

2This distance can be calculated by using (8.2) and considering a path from r = 0 to
the starting point, with fixed ϕ value.
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ϕ(0)60
π α0 α1 λ−1 Θ0 Θc

1 1, 1082 −0, 1444 1, 0416 1, 1999 2, 2415
2 0, 8185 0, 1879 1, 5171 1, 1911 2, 7082
3 0, 8683 0, 1486 1, 3166 1, 1831 2, 4997
4 0, 8017 0, 2175 1, 428 1, 1769 2, 6049
5 0, 8139 0, 2126 1, 3342 1, 1702 2, 5044
6 0, 8041 0, 2216 1, 3353 1, 1657 2, 501
7 0, 7973 0, 2301 1, 3199 1, 1614 2, 4813
8 0, 8072 0, 2246 1, 2661 1, 1583 2, 4244
9 0, 7921 0, 236 1, 3048 1, 1567 2, 4615
10 0, 8186 0, 2172 1, 208 1, 1552 2, 3632

Table 8.6: Length parameters for F5.
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Figure 8.7: Metric for the central ϕ-value in the ζ � 0-phases of C3, C1, C2
and F5.

Non-Abelian Example with a Pseudo-Hybrid Phase

We now apply the results given in Section 8.2 to compute Θ0 for geodesics
starting at the pseudo-hybrid point and ending at the ζ-value of the nearest
singular point. From (8.41), we calculate

ζ+ =
1

2π
log

1

540 + 312
√

3
≈ −6.99 (8.75)

ζ− =
1

2π
log

1

|540− 312
√

3|
≈ 0.92, (8.76)

and we conclude that t− is the closest singularity to the pseudo-hybrid phase.
We introduce a coordinate ψ, such that the pseudo-hybrid point is at ψ = 0
and the nearest singularity is at ψ = 1. The analysis of [133] suggests to set

z = (540− 312
√

3)ψ7. (8.77)
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8.3. Testing the Refined Swampland Distance Conjecture

Reψ

Imψ

gψψ̄

Figure 8.8: Metric for the non-abelian model from the pseudo-point (r = 0)
to the nearest singularity (r = 1).

ϕ(0)70
π 1 2 3 4 5

Θ0 0, 7646 0, 7603 0, 7557 0, 7523 0, 7493

ϕ(0)70
π 6 7 7 9 10

Θ0 0, 7464 0, 7443 0, 7429 0, 7419 0, 7415

Table 8.7: Length parameters for the non-abelian model.

We define polar coordinates in the following way

ψ = reiϕ, r =
e−

2π
7
ζ

|540− 312
√

3|
1
7

ϕ =
θ + π

7
. (8.78)

In these coordinates the nearest singularity is at (r, ϕ) = (1, 0 mod 2π). The
leading behaviour of the metric near the pseudo-hybrid point is

gψψ̄ =
2873

(
2−
√

3
)
π8

33Γ
(

1
6

)2
Γ
(

1
3

)14 r
1
3

(
− log(r) +

1

42
log

(
216(

540− 312
√

3
)6
))

+ . . .

= −α
73Γ

(
5
6

)9
2

8
3π

9
2

r
1
3 log(r) + . . . . (8.79)

We introduced

α =

(
2
√

3− 3

2
2
3

)
≈ 0, 292, (8.80)

and observe a similar leading behaviour as in the C3 model, except for the
prefactor α. This similarity can be used as an additional check. We expect
that the calculated distances are by a factor of

√
α smaller compared to the

C3 results.
The metric is depicted in Figure 8.8. The metric is symmetric around

ϕ = π
7 . Figure 8.9 shows at which point the ϕ dependency of the metric sets

in. In Table 8.7 we give the numerical results for the distances for various
starting values of ϕ.
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Figure 8.9: Metric constant ϕ-values of the non-abelian model.

The calculation of the mean value results in

Θ0 ≈ 0, 7499. (8.81)

This is in agreement with the RSDC. Next we compare the results to the
C3-model and find

Θ0√
α
≈ 1, 2711. (8.82)

As expected this lies close to the value of ΘC3
0 ≈ 1, 2639.

Θ0 can also be approximated by computing the integral (8.2) for the leading
term of the metric. This term is independent of ϕ. The distance integral
results in Θ0 ≈ 0, 6747, which is smaller than (8.81). This deviation can be
traced back to the fact that we are integrating up to the boundary of the
convergence radius at r = 1. Near r = 1 the subleading terms give larger
contributions. If we cut off the integrate, say at r = 0.9 the leading term is a
good approximation.
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Chapter 9

The Web of Swampland
Conjectures and the TCC
bound

In this chapter we discuss the results obtained in [11]. The goal of the paper
was to check the TCC bound (7.6) for ten de-Sitter no-go theorems and draw
a connection to the swampland distance conjecture. Further a lower bound on
the parameter λ, which appears in the swampland distance conjecture (Section
7.1) was proposed.

We will first recap the test of the TCC bound for the de-Sitter no-go
theorems. Afterwards we summarize results found in the literature for the
swampland distance conjecture. In the end of the chapter we discuss certain
relations between different swampland conjectures. We close the discussion by
proposing a generalization of the distance conjecture and a relation between
the generalized distance conjecture and the de-Sitter conjecture.

In the discussion our focus lies on the aspects mainly studied by the author
of this thesis and therefore some aspects of [11] will only be briefly summarized.

9.1 No-Go Theorems on classical de Sitter and c
Values

De Sitter string backgrounds are backgrounds in which the 10d space-time
splits into a 4d de Sitter manifold and a 6d compact manifold. The focus of the
analysis lies on classical string backgrounds. These backgrounds are solutions
of the 10d supergravity theory in a regime with low energy (α′ corrections
can be neglected) and small string coupling gs. In [11] de Sitter solutions
of 10d type II supergravities with Dp-branes and orientifold Op-planes were
considered. De Sitter solutions are difficult to construct and several no-go
theorems have been established. The goal is to check the TCC bound (7.6) for
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9. The Web of Swampland Conjectures and the TCC bound

ten no-go theorems. For this purpose the no-go theorems have to be rewritten
into a condition on the 4d scalar potential V . The no-go theorems studied can
always be brought into the form:

a V +
3∑
i=1

bi ∂ϕiV ≤ 0 , a > 0, (9.1)

where ϕi are scaler fields. (9.1) is true if certain assumptions are made. The
assumptions are exactly the respective no-go theorems. It is possible to extract
a value for c from (9.1). For that purpose (9.1) is rewriting into a form similar
to (7.3):

(9.1)→ cV + ∂ϕ2V ≤ 0. (9.2)

ϕ2 is a linear combination of the scalar fields entering (9.1). We skip the details
of the analysis and refer to section 2 of [11]. In this section a table of the no-go
theorems discussed is given and a detailed description of the procedure to turn
the no-go theorems into the form (9.1) is laid out. The outcome of the analysis
is that:

c ≥
√

2

3
. (9.3)

We see in (9.3) that the c-values of the no-go theorems analysed fulfil the
TCC bound (7.6). This is noteworthy, because the values were obtained by a
purely classical approach, with no quantum gravity arguments used. Let us
next comment on the asymptotic behaviour of the potential V if we send ϕ2

(9.2) to infinity. As show in section 4.3 of [11] for the no-go theorems studied
the potential takes the following asymptotic form:

V = Vie
−cD D →∞, (9.4)

with D = |φ2 − φi| and Vi, φi are constants. c conincides with the value
obtained from (9.2). The behaviour seen in (9.4) provides evidence for the
proposed relation between the distance conjecture and the de Sitter conjectures
as formulated in Section 9.3.

9.2 Distance Conjecture and λ Values

In this section we want to report on examples in the literature where different
λ values for the refined swampland distance conjecture have been calculated.
We harmonise conventions on the distance definition and compare the obtained
λ values. A test of the distance conjecture requires the identification of an
infinite tower of states with the described behaviour. The identification of an
appropriate tower is not straightforward and often not only one tower of states
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becomes massless. In [137, 129, 138, 139, 140, 56, 141, 142, 10, 143, 144] such
towers of states were studied. In [145, 146, 147, 148, 149, 150, 151, 152] the
relation between such towers and the weak gravity conjecture was investigated.

After a tower which becomes massless has been identified it remains to
check, if the tower shows the behaviour as claimed by the distance conjecture.
If a valid tower was found λ can be estimated. In the subsequent discussion
we analyse the results of papers which were focused on Kaluza-Klein states
[129, 10] or brane states [137, 142, 140, 138, 56, 144]. This analysis allows us
to give an estimate for λ in various infinite distance directions in the moduli
space and for different states.

Let us start our discussion by first clarifying the notion of distance D(P,Q)
from a point P to Q on a (field) space/manifold. In real coordinates xi we
express the metric by ds2 = gijdx

idxj and the distance along a curve γ from
P to Q is given by

D(P,Q) =

∫
γ

√
gij
∂xi

∂s

∂xj

∂s
ds, (9.5)

where s is an affine parameter along γ. Next we consider a complex manifold of
real dimension 2r and introduce complex holomorphic coordinates zα and anti-
holomorphic coordinates zα = zα, α = 1, . . . , r. The metric can be expanded
in this coordinates in the following way (see e.g. appendix A.2 of [153]):

ds2 = gijdx
idxj = 2gαβ̄dzαdz̄β̄ + gαβdzαdzβ + gᾱβ̄dz̄ᾱdz̄β̄. (9.6)

In the following we consider a Hermitian metric. A Hermitian metric fulfils
gαβ = gᾱβ̄ = 0. This property simplifies the line element to ds2 = 2gαβ̄dzαdz̄β̄

and the distance (9.5) then becomes

D(P,Q) =

∫
γ

√
2 gαβ̄

∂zα

∂s

∂z̄β̄

∂s
ds. (9.7)

The factor
√

2 appearing in the above definition was left out in [129, 10, 56,
121]. We will rescale the λ values obtained in these works by

√
2 subsequently.

Kaluza-Klein States

In [129, 10] trajectories in Kähler moduli space of CY hypersurfaces and com-
plete intersections were studied and λ values for a tower of Kaluza-Klein states
were obtained. In [129] these result were calculated by mirror symmetry and
in [10] a GLSM approach was used. The method of [10] is described in Chapter
8 of this thesis. The values are in the range

0.6013 ≤ λ ≤
√

2. (9.8)
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9. The Web of Swampland Conjectures and the TCC bound

As discussed above, we rescaled the original results by
√

2. In Table 9.1 we give
an overview of the individual λ values and in addition display the references
and report further details of the different models. If a range of λ values is
given for a certain model, then these values correspond to different field space
directions or different phases in which λ has been calculated. In contrast to
the original work, were Θλ = 1

λ was given, we directly give the λ value (divided
by
√

2).
The values for P5[3, 3],P5

1422 [4, 4] and P5
122232 [6, 6] are new results and have not

been calculated before. In the h1,1 = 2 model the calculations of geodesics is
a computationally intense task. Therefore the calculations in [129] were done
with an asymptotic expansion of the Kähler potential in the various phases.
The geodesics were studied deep in a phase. In Table 9.1 we simply state the
results obtained in different phases and refer to sections 5.1.3, 5.1.4 of [129]
for more details.

Brane States

In contrast to the previous Section 9.2 we will now study brane states and their
relation to the distance conjecture. In this section we focus on the complex
structure moduli spaceMcs of type IIB string theory compactified on a Calabi-
Yau threefold CY3 (see e.g.[28] for a review). Mcs is in general not smooth
and has singularities. A theorem by Schmid [154] was used in [137] to study
the singular points in Mcs through the monodromy behaviour around the
singular points. The theorem allows to derive an asymptotic form for the
Kähler potential K near the singular points inMcs:

e−K = P (Im t) +O(e2πit), (9.9)

where t is a coordinate onMcs such that the singular point is at t → i∞. P
is a polynomial in the imaginary part of t. The Weil-Peterson metric for the
one parameter case then takes the following asymptotic form

gtt̄ =
1

4

n

(Im t)2
+

#

(Im t)3
+ · · ·+O(e2πit). (9.10)

n is called the nilpotency index and reflects the nature of the singular point.
In addition n is the degree of the polynomial P (Im t). For more details we
refer to [137]. The universal structure of (9.10) allows to extract the leading
behaviour of the distance approaching a singularity:

D(P,Q) =

∫ Q

P

√
2gtt̄ |dt| ≈

√
n

2
ln

Im t|Q
Im t|P

→ ∞. (9.11)

The authors of [137] identified BPS states in N = 2 supergravity originat-
ing from wrapped D3-branes as possible candidate states to become massless.
Their approach allowed them to study the asymptotic behaviour of the mass
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Tower states Setting Reference λ

P4[5], h1,1 = 1 Table 3 of [129] 0.7168 ≤ λ ≤ 0.8168

P4
142

[6], h1,1 = 1 Table 4 of [129] 0.7389 ≤ λ ≤ 0.8165

P4
144

[8], h1,1 = 1 Table 5 of [129] 0.7579 ≤ λ ≤ 0.8175

P4
1325

[10], h1,1 = 1 Table 6 of [129] 0.7451 ≤ λ ≤ 0.8175

P6
17 [3, 2, 2], h1,1 = 1 Table 4 of [10] 0.6013 ≤ λ ≤ 1.0177

P5
16 [4, 2], h1,1 = 1 Table 5 of [10] 0.6121 ≤ λ ≤ 0.9650

P5
153

[6, 2], h1,1 = 1 Table 6 of [10] 0.6654 ≤ λ ≤ 1.0425

Kaluza–Klein P5
152

[4, 3], h1,1 = 1 Table 7 of [10] 0.6591 ≤ λ ≤ 0.9600

states P5[33], h1,1 = 1 new 0.7834 ≤ λ ≤ 0.8837

P5
1422 [4, 4], h1,1 = 1 new 0.7835 ≤ λ ≤ 0.9182

P5
122232 [6, 6], h1,1 = 1 new 0.7828 ≤ λ ≤ 0.9447

P4
1223 [8], h1,1 = 2, Hybrid-Orbifold Section 5.1.4 of [129]

√
2
3

P4
1223 [8], h1,1 = 2, Hybrid-P1 Section 5.1.4 of [129]

√
2

P4
12226

[12], h1,1 = 2, Hybrid-Orbifold Section 5.2 of [129]
√

2
3

P4
12226

[12], h1,1 = 2, Hybrid-P1 Section 5.2 of [129]
√

2

P4
1369

[18], h1,1 = 2, Hybrid-Orbifold Section 5.3 of [129]
√

2
3

P4
1369

[18], h1,1 = 2, Hybrid-P2 Section 5.3 of [129] 1

CY3, type IIB, n = 1 [137] 1
2

√
2

CY3, type IIB, n = 2 [137] 1

Brane CY3, type IIB, n = 3 [137] 1
2

√
2
3

states P5[c, c], large complex struct. point (6.5) of [56] 1
2

√
2
3

P5[c, c], small complex struct. point (6.22) of [56] 1
2

√
2

CY3 with orientifold, type IIB Section 4.2 of [144] 1
2

√
6, 1

2

√
2
3

Table 9.1: Values of λ in the distance conjecture 7.1 that were obtained in
the literature, as well as a few new ones. The states of the tower becoming
massless are either Kaluza–Klein states or brane states. For each value or
range of values, we give the setting in which it was obtained and the reference
in the literature. More details can be found in the main text.

of these states. For BPS states the mass is given by Mq = Zq, where Zq is
the central charge and q the charge vector. In [137] the following asymptotic
behaviour was obtained

Mq(Q)

Mq(P )
' (Im t)s|P

(Im t)s|Q
' e−λ D(P,Q) , (9.12)
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where the second equality is obtained from (9.11), with

λ = s

√
2

n
s =

{
1 if n mod 2 = 0
1
2 if n mod 2 6= 0

. (9.13)

The value of n is bounded by the complex dimension of the CY and in the
case of CY threefolds it can take values in n = {1, 2, 3}, which leads to the
following λ values

λ =

{
1

2

√
2 , 1 ,

1

2

√
2

3

}
, (9.14)

as also given in Table 9.1.
These general results were reproduced in [56] for concrete one parameter

examples. All the studied models in [56] have an infinite distance point in the
large complex structure point (LCS) and therefore we can focus on the result
for models of the type P5[c, c], which have an additional infinite distance point
at the small complex structure point (SCS). For all other models the small
complex structure point is at finite distance. In [56] the following λ values:

P5[c, c] : λLCS =
1√
6
, λSCS =

1√
2
, (9.15)

for D3-branes at the SCS point in the P5[3, 3] model and mirror D0-D2 bound
states at the LCS point were found. The behaviour of the D0 branes near the
LCS point is less dominant with λ =

√
3/2.

Having obtained massless states it remains to show that an infinite tower of
such states exits. The existence of such towers for different singularity types
was studied in [137] and [138] in a systematic way. Infinite distances and
massless states in the Kähler moduli space where studied in [140]. An analysis
of possible states in type IIA/IIB orientifold compactifications was done in
[142] and [144]. By studying O3/O7 on CY3 in type IIB the following λ values
where obtained in [144] for D3-branes: λ = 1/

√
6 and λ =

√
3/2. The results

for the λ values in the different models are summarized in Table 9.1.

Comments and λ Values

As one can see by studying Table 9.1 all λ values lie in the range

λ ≥ 1

2

√
2

3
≈ 1

2
0.8165 ≈ 0.4082. (9.16)

Observe that the general analysis of [137] on CY3 in type IIB with n = 3 gives
precisely this value. Note that the value of (9.16) is exactly half of the TCC
bound (7.6). This result is very interesting, because regarding the framework
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in which the λ values have been obtained, there is a priory no reason to expect
a relation to the TCC bound. In [11] further matching patterns in the λ values
and the c values for the no-go theorems where observed. A possible relation
between these setups will be discussed in the subsequent section.

9.3 The Web of Conjectures

We saw, that both order one parameters λ and c have a lower bound, see (9.16)
and (9.3) respectively. The bound on c is consistent with the TCC bound (7.6)
and the bound on λ is given by one-half of the TCC value. In [11] similar
patterns in the c values for the no-go theorems and the λ values (see Table
9.1) were observed. Further in both conjectures an exponential behaviour
can be identified, see (7.1) and (9.4). These results can be interpreted as a
relation in disguise between the two conjectures. The idea of a relation has
been considered before and we will summarize the various suggestions given
in the literature bellow. Afterwards we will present a generalization of the
distance conjecture and a new conjecture relating the de Sitter conjecture and
the distance conjecture.

Relating Conjectures in the Literature

An interesting aspect of the various swampland conjectures is, that they are
related. The rigour at which these connections are established varies and for a
more detailed account on possible relations we refer to [121]. For the de Sitter
swampland conjecture arguments for relations to the distance conjecture and
the weak gravity conjecture have been given before (see e.g. [127]) and with
the results of the previous sections in mind we want to make the connection
more precise.

We will start by looking at the settings in which these conjectures are
established. The distance conjecture is mostly checked in Calabi-Yau com-
pactifications and in contrast the de Sitter conjecture is typically verified in
compactifications on manifolds with fluxes and sources in order to generate a
non-trivial 4d potential V and a cosmological constant Λ. As one can see both
setups are rather different. Nevertheless the conjectures should hold in both
of them. Due to the different frameworks it is not clear if a relation between
the two conjectures can be given in any framework or even in a single setup. A
possibility is to view the relation between the conjectures as a map or duality
between two different settings or theories. Arguments in that direction were
given in [127]. If we view the conjectures in a single setup one could compare
the mass m(ϕ) entering the distance conjecture to the mass of ϕ related to
∂2
ϕV for a scalar potential V (ϕ). These masses are related to different states

and a relation between them is not evident. In the following arguments will
be given to rather relate m to V itself.
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9. The Web of Swampland Conjectures and the TCC bound

A guiding principle in relating the conjectures are the observed exponential
behaviours. An exponential behaviour typical appears in large field limits. As
argued in [127] these limits correspond to parametrically controlled regimes
in string theory and typically in such regimes a dual description is available.
This hints to view one conjecture valid on one side of the duality, which is
then mapped on the other side of the duality to a different conjecture. The
mapping is done by identifying the exponential behaviour of some quantity.
Similar ideas were used in [127] to identify in the large field limit the asymptotic
form of the scalar potential V with the exponential behaviour of m. Along
these arguments we deduce the possibility of having the following relation:

m

mi
≈
∣∣∣∣VVi
∣∣∣∣α ≈ e−λD when D →∞ , (9.17)

with some constants mi, Vi, α and D the geodesic field distance. In the case of
the de Sitter conjecture (Section 7.2) with exponential behaviour the following
equality can be read off

λ = α · c. (9.18)

The next swampland conjecture we want to consider is the scalar weak
gravity conjecture [155]. For a single scalar field ϕ with mass m the conjecture
can be written in the form

(∂ϕm)2 ≥ m2 . (9.19)

In the case when the equality is saturated an exponential behaviour is obtained.
We want to mention the similarity to the de Sitter conjecture (7.3). This will
be important in the following discussion. The scalar weak gravity conjecture
was generalized in [156] and named strong scalar weak gravity conjecture. In
the proposed extension an inequality similar to (9.19) is applied to the self-
interactions of a single scalar field ϕ given by a potential V (ϕ). The basic idea
is to replace m2 in (9.19) by the second derivative V ′′. The extension of the
conjecture as given in [156] reads

2
(V ′′′)2

V ′′
− V ′′′′ ≥ V ′′ ↔ (V ′′)2

(
1

V ′′

)′′
≥ V ′′. (9.20)

In the saturation case one again recovers an exponential behaviour(
1

V ′′

)′′
− 1

V ′′
= 0↔ V ′′ =

(
Aeϕ +Be−ϕ

)−1
, (9.21)

where A,B are constants of integration. We can rewrite (9.20) and exchange
V ′′ by m2 and recover a distance conjecture like behaviour

m2

(
1

m2

)′′
≥ 1. (9.22)
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A further generalization was put forward in the talk [157]. It was proposed to
replace m by the scalar potential of a de Sitter conjecture:

V = m2γ , (9.23)

whereby γ was not specified. This is the same relation as the first part of
(9.17).

Let us also look at a conjecture put forward in [158], in which the distance
conjecture was studied in an anti-de Sitter space-time. It was argued that
in the limit of a vanishing cosmological constant Λ → 0, a tower of states of
mass-scale m becomes light:

m ∼ |Λ|α for Λ→ 0, (9.24)

with α ≥ 1
2 . As argued by the authors of [158] in a supersymmetric vacuum

α = 1
2 (strong AdS distance conjecture). Further a relation to the de Sitter

conjecture adjusted to AdS space was discussed. Extending the conjecture
to quasi-de Sitter or de Sitter space-times by replacing Λ by V in (9.24) the
relation (9.17) is recovered in an asymptotic limit. Observe that in [158] the
tower of states and the cosmological constant Λ are in the same setup and we
argued for a map between different setups.

For references regarding further relations between the conjectures we refer
to [11].

Proposals

The arguments given in Section 9.3, the lower bounds on λ and c (see (9.16)
and (9.3)) and the appearing exponential behaviours, see (7.1) and (9.4), lead
to the subsequent conjectural statements.

Distance Conjecture

The goal is to relax the original distance conjecture (see Section 7.1) to a
weaker more general statement. The statement is inspired by the bound on
λ (9.16) and by the map to the potential V of the de Sitter conjecture. The
following statement, inspired by the structure of the TCC (7.5), was proposed
in [11]:

Consider a field space (e.g. a scalar moduli space) appearing in a d-
dimensional low energy effective theory of a quantum gravity and a geodesic
distance D in this field space. Whenever D → ∞, a tower of states becomes
light, with a typical mass scale m such that in Planckian units

0 < m ≤ m0 e
−λ0D, (9.25)

with positive constants m0, λ0, where

λ0 =
1√

(d− 1)(d− 2)
. (9.26)
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9. The Web of Swampland Conjectures and the TCC bound

Focusing on the cases of a single canonically normalized field ϕ, the distance
can be written D = |ϕ− ϕi|, where ϕ > ϕi is assumed. We next calculate the
average of the ratio ∂φm

m along a path in the moduli space:

−
〈
m′

m

〉
= − 1

ϕ− ϕi

∫ ϕ

ϕi

dϕ̃
∂ϕ̃m

m
= −

ln m(ϕ)
m(ϕi)

ϕ− ϕi
≥ −

ln m0
m(ϕi)

ϕ− ϕi
+ λ0, (9.27)

where in the last step (9.25) was used. Equation (9.27) further implies:〈
|m′|
m

〉
≥
∣∣∣∣〈m′m

〉∣∣∣∣ ≥ | ln m0
m(ϕi)

|
D

+ λ0, (9.28)

and in a large distance regime we can conclude

(9.25)⇒
〈
|m′|
m

〉
D→∞

≥ λ0. (9.29)

The previous derivation is modelled along the lines of the TCC (7.5) given in
[128]. The natural extension to the multi-field case is by replacing m′ = ∂ϕm
by ∇m. The standard distance conjecture (7.1) is a special case of (9.25).
In this case the mass-scale has an exponential behaviour in the large distance
limit D →∞ and from (9.25) or (9.29) one can obtain the following constraint:

m = mi e
−λD ⇒ λ ≥ λ0. (9.30)

(9.25) can be interpreted to allow an exponential behaviour of m in various
directions, but these exponentials are subdominant compared to the saturation
case of the inequality. This viewpoint leads to the bound

λ ≥ 1

2

√
2

3
in d = 4, (9.31)

which was verified in all the examples of Table 9.1 and in general for wrapped
D3 brane states in1 [137].

The mentioned examples motivate the value of λ0 (9.26) in d = 4 to be
half of the TCC value (7.5): λ0 = 1

2c0.
Let us mention, that different to the TCC (7.5), where the inequality on

the potential V was motivated by physical arguments, our approach does not
provide such arguments for (9.25).

Scalar Weak Gravity Conjecture

Let us repeat the result given in (9.29)〈
|∂ϕm|
m

〉
D→∞

≥ λ0, (9.32)

1In the meantime further evidence for the bound where found in [159] and [160] by
studying the distance conjecture in relation to the weak gravity conjecture.
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which resembles the form of a scalar weak gravity conjecture. Therefore the
scalar weak gravity conjecture inequality (9.19) can be extended to the more
general form (9.32). This makes the relation to the distance conjecture, as
discussed above, more suggestive. The formulation in terms of (9.32) allows
for behaviours different than exponential form. In the case where m is an
exponential (9.32) gives

(∂ϕm)2 ≥ λ2
0m

2. (9.33)

The extension to the multi-field case is given by the replacement (∂ϕm)2 →
(∇ϕm)2. If we compare (9.33) to the original scalar weak gravity conjecture
(9.19) we see the additional parameter λ0. The modified version (9.33) is valid
for all cases where the original conjecture holds, because λ0 < 1 in d = 4. The
modified version puts forward the possibility of other cases, in which the lower
bound λ0 is obtained.
The proposed form (9.32) also suggest to modify extensions of the scalar weak
gravity conjecture and we refer to [11] for further comments.

Relating the Distance and de Sitter Conjectures

In the Section 9.3 we discussed a possible relation between the distance and
de Sitter conjectures. We further highlighted a link between m and V . The
weaker version of the distance conjecture (9.25) makes the link, by looking at
the TCC (7.5), even more prominent.
The similar results for λ and c in the studied examples and the relation to the
TCC bound further suggest a possible link. In the examples studied before
the conjectures act on different compactification setups. This and the previous
points lead us to following proposal [11]:

We conjecture the existence of a map between two compactification setups
to d dimensions where, in each of them, a direction ϕk in field space is se-
lected: (setup1, ϕ1) ↔ (setup2, ϕ2). In the first setup, the generalized distance
conjecture (9.25) with mass m applies, and in the second one the de Sitter
conjecture in TCC form (7.5) applies. We denote generically by D the field
space geodesic distance along ϕk=1,2; it can on both sides be arbitrarily large.
The proposed map is then

m

mi
'
∣∣∣∣VVi
∣∣∣∣ 1

2

for D →∞ , (9.34)

for some constants mi, Vi. The symbol ' is understood as an equality of the
two functions m,V up to the exchange ϕ1 ↔ ϕ2.

If both m and V show an exponential behaviour in large field distances,
both sides of (9.34) are equal to e−λD. In that case (9.17) can be matched by
setting α = 1

2 and further

λ =
1

2
c ≥ λ0 =

1

2
c0. (9.35)
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9. The Web of Swampland Conjectures and the TCC bound

For further comments on the asymptotic (exponential) form of V see section
4.3 of [11]. In the case of a single field it follows from (9.34):

|m′|
mi
' 1

2

|V ′|
Vi

, (9.36)

in a large distance limit. (9.36) generalizes (9.35) to non-exponential be-
haviour.

Let us close the discussion by mentioning that, similar to the proposal given
for the distance conjecture, a fundamental principle underlying the proposed
map is at the moment unclear to us.
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Chapter 10

Summary / Outlook

In this thesis we were able to show that the sphere partition function of all
one-parameter abelian and certain two-parameter abelian GLSMs has the same
structure in certain phases of the GLSMs. An extension of our study would be
to consider non-abelian GLSMs and check if a similar structure appears in the
different phases of the respective GLSM. Promising results in that direction
have been given in e.g [93, 94, 95, 97], in which the appearance of the I function
in the sphere partition function of certain non-abelian GLSMs in phases with
a geometric interpretation was shown.

Our results for the hybrid models could provide a way to explicitly extract
FJRW invariants, along the lines of [75] where Gromov-Witten invariants were
extracted. The FJRW invariants, together with the mirror map, have been
defined in [68], but no invariants have been calculated. In view of our con-
jectural I- and J- functions for the two parameter hybrid phases studied in
this thesis, it would be interesting to check if they are compatible with FJRW
theory. Furthermore it could be insightful to reconcile the results from physics
for hybrid models e.g. [106, 108] with the results known in mathematics. Al-
though the focus of this thesis was on the sphere partition function similar
techniques can be applied to the hemisphere partition function of the GLSM
[46, 47, 48]. This could provide insights into brane states for hybrid models.
A related analysis was done for geometric and Landau-Ginzburg phases in
[82]. Some results for brane states in hybrid models were given in [69] and it
would be interesting to see how these fit into the setting of the GLSM and
supersymmetric localisation.

We also showed that the refined swampland distance conjecture holds for
pseudo-hybrid phases in the one-parameter abelian GLSMs and the pseudo-
hybrid phase of a non-abelian GLSM. Nevertheless a further study of non-
abelian GLSMs could provide further insights for this conjecture, because these
models provide a way to study CYs which are not complete intersections.
Another possible direction would be to study candidates for massless states
in infinite distance regions by GLSM techniques. Some preliminary results for
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K-type hybrid models have been given in [56] .
Further it would be interesting to see how GLSMs techniques relate to

results obtain from asymptotic Hodge theory. For example how the structure
of the sphere partition function fits into the classification of singularities given
in [137, 138] or the results found for the weak gravity conjecture in [160, 159].

In this thesis we also provided a conjecture for a lower bound on the order
one parameter appearing in the refined swampland distance conjecture and
outlined a possible relation between the swampland distance conjecture and
the de Sitter conjectures. In order to strengthen these conjectures a better
understanding of them away from the geometric regimes is needed. Especially
for the conjectured lower bound a deeper knowledge of the possible tower of
massless states has to be established. However it is nice that these directions
for further research overlap with the ones identified above treatable by GLSM
techniques.
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Appendix A

Evaluation of the Sphere
Partition Function - One
Parameter Abelian

In this appendix we give further details on the evaluation of the sphere partition
function for the models introduced in Chapter 5. In this class of models we
perform a single variable residue calculation. For the two parameter models
we need a more elaborate procedure, which we outline in Appendix B.

A.1 Form of the Sphere Partition Function

Our starting point is the sphere partition function as given in (6.65):

ZS2 =
(zz̄)q

2π

∑
m∈Z

∫ ∞+iq

−∞+iq
dσZp1(σ,m)Zkp2

(σ,m)Z5+k−n−j
1 (σ,m)

· Znα(σ,m)Zjβ(σ,m)z̄iσ+m
2 ziσ−

m
2

(A.1)
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with the following contributions:

Zp1 =
Γ
(

1
2(m+ 2iσ)d1 + 1

)
Γ
(

1
2(m− 2iσ)d1

) ,

Zp2 =
Γ
(

1
2(m+ 2iσ)d2 + 1

)
Γ
(

1
2(m− 2iσ)d2

) ,

Z1 =
Γ
(
−m

2 − iσ
)

Γ
(
−m

2 + iσ + 1
) ,

Zα =
Γ
(
−1

2α(m+ 2iσ)
)

Γ
(
iσα− mα

2 + 1
) ,

Zβ =
Γ
(
−1

2β(m+ 2iσ)
)

Γ
(
iσβ − mβ

2 + 1
) .

(A.2)

For later convenience we introduced:

z = e−2πζ+iθ, z̄ = e−2πζ−iθ. (A.3)

These are related to t (6.71) by:

z = e−t, z̄ = e−t̄. (A.4)

Our goal is to evaluate (A.1) by a residue calculation. For this purpose we
need to calculate the positions of the poles and choose a contour such that the
integral is convergent.

A.2 Situation of the Poles and Contour of
Integration

We see that for large ζ values the integrand is dominated by

e−4πiζσ = e−4πiζ Re(σ)e4πζ Im(σ),

and it follows that we have to close the contour such that it encloses:

• the positive imaginary axis for ζ � 0,

• the negative imaginary axis for ζ � 0.

The next task is to determine the positions of the poles. The Γ-function
has poles whenever its argument is a negative integer. In the integral poles
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can be cancelled by the Γ-functions in the denominators. From (A.2) we find
that the poles are at:

Zp1 : σ =
i (d1m+ 2n1 + 2)

2d1
n1 ≥ max[0,−d1m]

Zp2 : σ =
i (d2m+ 2n2 + 2)

2d2
n2 ≥ max[0,−d2m]

Z1 : σ =
1

2
i (m− 2n3) n3 ≥ max[0,m]

Zα : σ =
i (αm− 2nα)

2α
nα ≥ max[0, αm]

Zβ : σ =
i (βm− 2nβ)

2β
nβ ≥ max[0, βm].

(A.5)

To calculate the positions of the poles we use the following formula:

max(x, y) =
x+ y + |x− y|

2
. (A.6)

We find for the positions of the poles of Zp1 :

σ =
i (d1m+ 2n1 + 2)

2d1

≥ i(d1|m|+ 2)

2d1

≥ i |m|
2

+ i
1

d1

≥ i 1

d1
.

(A.7)

We see that the poles of Zp1 lie along the positive imaginary axis. The same
conclusion follows for Zp2 , because it is the same situation except that d1 is
replaced by d2. Next we study the poles of Zα:

σ =
i (αm− 2n4)

2α
,

≤ i(αm− αm− α|m|)
2α

,

≤ −i |m|
2
.

(A.8)

We conclude that the contributions of Zα lie along the negative imaginary axis.
This also holds for Z1 and Zβ .
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A.3 Double Counting of Poles

Next we study when poles coincide. The quantities given in (6.72) will be
repeatedly used in this analysis and therefore we repeat them here for conve-
nience:

gcd(β, α) = κ1,
α

κ1
= τα,

β

κ1
= τβ,

gcd(d1, d2) = κ2,
d1

κ2
= τd1 ,

d2

κ2
= τd2 .

(A.9)

We begin by studying possible intersections for the poles on the negative
imaginary axis (ζ � 0 phase). We study the intersections of poles of Zα and
Zβ :

i (αm− 2nα)

2α
=
i (βm− 2nβ)

2β
⇒ nβ = τβ

nα
τα
. (A.10)

Next we use the restrictions on the Zα poles given in (A.5) and find:

nβ ≥
τβ
τα

max[0, αm] =
τβ
τα

αm+ α|m|
2

=
βm+ |βm|

2
= max[0, βm].

(A.11)

In the above calculation we used formula (A.6). We see that the restrictions
on the Zβ poles given in (A.5) is fulfilled and so:

Zα ⊂ Zβ ⇔ nα = ταk k ∈ Z≥0. (A.12)

As similar calculation with Zβ and Z1 shows that if one sums over the poles
of Zβ one gets all poles of Z1. We can conclude that if we sum over all Zβ
poles we need in addition a summation over all Zα poles where the nα are of
the form:

nα = ταn+ δ δ = 1, . . . , τα − 1 n ∈ N≥0. (A.13)

At first, one might wonder if one hits poles of Z1 by doing the extra summation
over (A.13), but we know that in order for a Zα pole to be a pole of Z1 we
must have:

n1 =
nα
α
, n1 ∈ Z≥0. (A.14)
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This is never an integer for (A.13). For the poles on the positive imaginary axis
(ζ � 0 phase) the poles of Zp1 and Zp2 could possibly coincide. We calculate:

i (d2m+ 2n2 + 2)

2d2
=
i (d1m+ 2n1 + 2)

2d1
⇒

n1 =
τd1

τd2

(n2 + 1)− 1.
(A.15)

Let us next check the constraint on the poles of Zp1 :

n1 ≥
τd1

τd2

(max[0,−d2m] + 1)− 1,

≥ τd1

τd2

(
−d2m+ d2|m|

2
+ 1

)
− 1,

≥ max[0,−d1m] +
d1

d2
− 1,

> max[0,−d1m]− 1,

≥ max[0,−d1m].

(A.16)

Hence, we recover the constraint on poles of Zp1 given in (A.5). By the above
results we found for the poles:

Zp2 ⊂ Zp1 ⇔ n2 + 1 = τd2k k ∈ Z>0. (A.17)

As a result we can sum over the poles of Zp1 and in addition we need to sum
over the poles of Zp2 of the form:

n2 + 1 = τd2k + δ, δ = 1, . . . τd2 − 1, k ∈ Z≥0, (A.18)

which can be rewritten into:

n2 = τd2k + δ, δ = 0, . . . , τd2 − 2, k ∈ Z≥0. (A.19)

Let us also remark, that we have models where we only have a Z1 contri-
bution. Nevertheless our discussion is applicable by simply setting β = 1 and
j = 0 in the following. Of course, the sum is then over the Z1 poles.

A.4 ζ � 0 Contributions

We first sum over the poles of Zp1 and afterwards we focus on the remaining
poles of Zp2 given by (A.19).

Zp1 Contribution

We perform the shift:

σ → ε+
i (d1m+ 2n1 + 2)

2d1
, (A.20)

151



A. Evaluation of the Sphere Partition Function - One
Parameter Abelian

and write the integral as a sum over residue integrals:

Zζ�0
1,S2 =

(zz̄)q

2π

∞∑
n1=0

∑
−n1
d1
≤m

∮
dεZp1(ε, n1,m)Zkp2

(ε, n1,m)

· Z5+k−n−j
1 (ε, n1,m)Znα(ε, n1,m)Zjβ(ε, n1,m)

· z̄iε−
n1
d1
− 1
d1 z

iε−n1
d1
− 1
d1
−m

.

(A.21)

To simplify the sum over m we introduce:

l = d1m+ n1, (A.22)

and replace the sum over m by:

∑
−n1
d1
≤m

⇒
∞∑
l=0

. (A.23)

We need to be careful when using this transformation because m is an integer
and therefore:

m =
l − n1

d1
⇒ l = d1b+ δ, n1 = d1a+ δ, (A.24)

with δ = 0, . . . , d1 − 1 and a, b ∈ N≥0. We find for the integral

Zζ�0
1,S2 =

1

2π

d1−1∑
δ=0

∞∑
a=0

∞∑
b=0

∮
0

dεZp1(ε, a, b,m)Zkp2
(ε, a, b,m)

· Z5+k−n−j
1 (ε, a, b,m)Znα(ε, a, b,m)Zjβ(ε, a, b,m)

· z̄iε−a−
δ+1
d1

+q
z
iε−b− δ+1

d1
+q
.

(A.25)
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After the transformation (A.20) and the shift of the summation variables the
integral contributions can be brought into the following forms:

Zp1(ε, a, b,m) = (−1)δ(−1)ad1
π

sinπ (iεd1)

· 1

Γ (δ + bd1 − iεd1 + 1) Γ (δ + ad1 − iεd1 + 1)
,

Zp2(ε, a, b,m) = (−1)ad2
π

sinπ
(
−iεd2 + d2

d1
(δ + 1)

)
· 1

Γ
(
ad2 − iεd2 + d2

d1
(δ + 1)

)
· 1

Γ
(
bd2 − iεd2 + d2

d1
(δ + 1)

) ,
Z1(ε, a, b,m) = (−1)bΓ

(
a− iε+

δ + 1

d1

)
Γ

(
b− iε+

δ + 1

d1

)

·
sinπ

(
−iε+ δ+1

d1

)
π

,

Zα(ε, a, b,m) = (−1)αb
sinπ

(
−iεα+ α

d1
(δ + 1)

)
π

· Γ
(
aα− iεα+

α

d1
(δ + 1)

)
· Γ
(
bα− iεα+

α

d1
(δ + 1)

)
,

Zβ(ε, a, b,m) = (−1)βb
sinπ

(
−iεβ + β

d1
(δ + 1)

)
π

· Γ
(
aβ − iεβ +

β

d1
(δ + 1)

)
· Γ
(
bβ − iεβ +

β

d1
(δ + 1)

)
.

(A.26)

We next observe that by the Calabi-Yau condition (5.4) we can write

(−1)ad1(−1)akd2 = (−1)(5+k−n−j+αn+jβ)a. (A.27)
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This will be useful to write the integral in a compact form. We introduce:

Zζ�0
1,reg(ε, z, δ) =

∞∑
a=0

z
iε−a− δ+1

d1
+q

(−1)a(5+k−n−j+αn+jβ)

· Γ
(
a− iε+

δ + 1

d1

)5+k−n−j

·
Γ
(
aα− iεα+ α

d1
(δ + 1)

)n
Γ (δ + ad1 − iεd1 + 1)

·
Γ
(
aβ − iεβ + β

d1
(δ + 1)

)j
Γ
(
ad2 − iεd2 + d2

d1
(δ + 1)

)k ,

(A.28)

and

Zζ�0
1,sing(ε, δ) =

1

π4
sin

(
π

(
−iε+

δ + 1

d1

))5+k−n−j

·
sin
(
π
(
−iεα+ α

d1
(δ + 1)

))n
sinπ (iεd1)

·
sin
(
π
(
−iεβ + β

d1
(δ + 1)

))j
sin
(
π
(
−iεd2 + d2

d1
(δ + 1)

))k
(A.29)

The integral can now be written in a compact way:

Zζ�0
1,S2 =

1

2π

d1−1∑
δ=0

∮
dε(−1)δZζ�0

1,sing(ε, δ)|Z
ζ�0
1,reg(ε, z, δ)|

2. (A.30)

We see that it is convenient to make the following shift

δ + 1→ δ, (A.31)

to get:

Zζ�0
1,S2 = − 1

2π

d1∑
δ=1

∮
dε(−1)δZζ�0

1,sing(ε, δ)|Z
ζ�0
1,reg(ε, z, δ)|

2, (A.32)
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with

Zζ�0
1,reg(ε, z, δ) =

∞∑
a=0

z
iε−a− δ

d1
+q

(−1)a(5+k−n−j+αn+jβ)

· Γ
(
a− iε+

δ

d1

)5+k−n−j

·
Γ
(
aα− iεα+ α

d1
δ
)n

Γ
(
aβ − iεβ + β

d1
δ
)j

Γ (δ + ad1 − iεd1) Γ
(
ad2 − iεd2 + d2

d1
δ
)k ,

(A.33)

and

Zζ�0
1,sing(ε, δ) =

1

π4

sin
(
π
(
−iε+ δ

d1

))5+k−n−j
sin
(
π
(
−iεα+ α

d1
δ
))n

sinπ (iεd1)

·
sin
(
π
(
−iεβ + β

d1
δ
))j

sin
(
π
(
−iεd2 + d2

d1
δ
))k .

(A.34)

What we can immediately conclude is that δ = d1 will never give a pole,
because this pole gets cancelled. Therefore we can write

Zζ�0
1,S2 = − 1

2π

d1−1∑
δ=1

∮
dε(−1)δZζ�0

1,sing(ε, δ)|Z
ζ�0
1,reg(ε, z, δ)|

2. (A.35)

Before we further manipulate the integral we introduce the fractional part 〈x〉
of x:

〈x〉 = x− bxc. (A.36)

bxc is the floor operator which gives the minimum integer n with x ≥ n. One
can show that: 〈

α− αk
d

〉
= 1−

〈
α
k

d

〉
if
〈
α
k

d

〉
6= 0, (A.37)

with α, k, d ∈ N. This allows the following manipulations, for α, β, k, d ∈ N:

sin

(
π

(
iβσ + α

k

d

))
= sin

(
π

(
iβσ +

〈
α
k

d

〉
+

⌊
α
k

d

⌋))
,

= (−1)bα
k
dc sin

(
π

(
iβσ +

〈
α
k

d

〉))
,

=
(−1)bα

k
dcπ

Γ
(
iβσ +

〈
αkd
〉)

Γ
(
1− iβσ −

〈
αkd
〉) ,

=
(−1)bα

k
dcπ

Γ
(
iβσ +

〈
αkd
〉)

Γ
(
−iβσ +

〈
αd−kd

〉) ,
(A.38)
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where the last line follows from (A.37). A crucial observation is that (A.34)
only gives poles for δs such that:〈

δ

d1

〉
6= 0,

〈
α
δ

d1

〉
6= 0,

〈
α
β

d1

〉
6= 0. (A.39)

We will call such δ values narrow and the set of all such values narrow sector.
This notation is in accordance with the terminology introduced in 6.2 in FJRW
theory. In the narrow sectors we can use (A.37) and (A.38) to rewrite (A.34).
We apply the variable transformation:

ε→ iε

d1
, (A.40)

which gives an overall sign due to the change of orientation. It is then possible
to write (A.35) in the form:

Zζ�0
1,S2 =

1

2πid1

(
d1

d2

)k ∑
δ∈narrow
τd2
τd1

δ∈Z

∮
0
dε

(−1)Gr

εk+1

Γδ(ε)

Γ∗δ(ε)
|Iζ�0
δ (z, ε)|2,

+
1

d1

∑
δ∈narrow
τd2
τd1

δ 6∈Z

(−1)G̃r Γ̃δ(0)

Γ̃∗δ(0)
|Ĩζ�0
δ (z, 0)|2,

(A.41)

with

Iζ�0
δ (z, ε) =

∞∑
a=0

z
(− ε

d1
−a− δ

d1
+q)

(−1)a(5+k−n−j+αn+jβ)

·
Γ (1 + ε) Γ

(
1 +

τd2
τd1
ε
)k

Γ
(
ε
d1

+
〈
δ
d1

〉)5+k−n−j
Γ
(
α ε
d1

+
〈
α δ
d1

〉)n
·

Γ
(
a+ ε

d1
+ δ

d1

)5+k−n−j

Γ
(
β ε
d1

+
〈
β δ
d1

〉)j
·

Γ
(
aα+ α ε

d1
+ α

d1
δ
)n

Γj
(
aβ + β ε

d1
+ β

d1
δ
)

Γ (δ + ad1 + ε) Γ
(
τd2
τd1
δ + ad2 +

τd2
τd1
ε
)k ,

(A.42)

and

(−1)Gr = (−1)
δ

(
τd2
τd1

k+1

)
(−1)

(5+k−n−j)
⌊
δ
d1

⌋
(−1)

n
⌊
α δ
d1

⌋
(−1)

j
⌊
β δ
d1

⌋
. (A.43)
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We also introduced:

Γδ(ε) = Γ (1− ε) Γ

(
1− τd2

τd1

ε

)k
Γ

(
ε

d1
+

〈
δ

d1

〉)5+k−n−j

· Γ
(
α
ε

d1
+

〈
α
δ

d1

〉)n
Γ

(
β
ε

d1
+

〈
β
δ

d1

〉)j
,

(A.44)

and

Γ∗δ(ε) = Γ (1 + ε) Γ

(
1 +

τd2

τd1

ε

)k
Γ

(
− ε

d1
+

〈
d1 − δ
d1

〉)5+k−n−j

· Γ
(
−α ε

d1
+

〈
α
d1 − δ
d1

〉)n
Γ

(
−β ε

d1
+

〈
β
d1 − δ
d1

〉)j
.

(A.45)

In the second line in (A.41) we used the fact that for τd2
τd1
δ 6∈ Z we only get a

first order pole. We introduced:

Ĩζ�0
δ (z, 0) =

∞∑
a=0

z
(−a− δ

d1
+q)

(−1)a(5+k−n−j+αn+jβ)

·
Γ
(〈
τd2

δ
τd1

〉)k
Γ
(〈

δ
d1

〉)5+k−n−j
Γ
(〈
α δ
d1

〉)n
Γ
(〈
β δ
d1

〉)j
·

Γ5+k−n−j
(
a+ δ

d1

)
Γn
(
aα+ α

d1
δ
)

Γj
(
aβ + β

d1
δ
)

Γ (δ + ad1) Γ
(
τd2
τd1
δ + ad2

)k ,

(A.46)

(−1)G̃r = (−1)δ(−1)

⌊
τd2
τd1

δ

⌋
k
(−1)

(5+k−n−j)
⌊
δ
d1

⌋
(−1)

n
⌊
α δ
d1

⌋
(−1)

j
⌊
β δ
d1

⌋
, (A.47)

Γ̃δ(0) = Γ

(〈
τd2

τd1 − δ
τd1

〉)k
Γ

(〈
δ

d1

〉)5+k−n−j

· Γ
(〈

α
δ

d1

〉)n
Γ

(〈
β
δ

d1

〉)j
,

(A.48)

and

Γ̃∗δ(0) = Γ

(〈
τd2

δ

τd1

〉)k
Γ

(〈
d1 − δ
d1

〉)5+k−n−j

· Γ
(〈

α
d1 − δ
d1

〉)n
Γ

(〈
β
d1 − δ
d1

〉)j
.

(A.49)
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Zp2 Contribution

Here we must sum over the poles we missed previously. These are of the form
(A.19). Again we start by shifting the integration variable by

σ → ε+
i (d2m+ 2n2 + 2)

2d2
. (A.50)

After replacing n2 by (A.19), using now s as a summation variable, we get for
the integral:

Zζ�0
2,S2 =

(zz̄)q

2π

τd2−2∑
δ=0

∞∑
s=0

∑
−
τd2
d2

s− δ
d2
≤m

∮
dεZp1(ε, s, δ,m)Zkp2

(ε, s, δ,m)

· Z5+k−n−j
1 (ε, s, δ,m)Znα(ε, s, δ,m)Zjβ(ε, s, δ,m)

· z̄iε−
s
κ2
− δ+1

d2 z
iε− s

κ2
− δ+1

d2
−m

.

(A.51)

The next step is to simplify the sum over m. Note that δ
d2

is never integer and
so:

m ≥ −τd2

d2
s− δ

d2
⇒ m ≥ −τd2

d2
s = − s

κ2
. (A.52)

Because m needs to be integer we introduce:

l = κ2m+ s⇒ m =
l − s
κ2
⇒ l = κ2b+ γ s = κ2a+ γ, (A.53)

with γ = 0, 1, . . . , κ2 − 1. After the above transformations, the integral reads:

Zζ�0
2,S2 =

(zz̄)q

2π

τd2−2∑
δ=0

κ2−1∑
γ=0

∞∑
a=0

∞∑
b=0

∮
dεZp1(ε, a, b, γ, δ,m)

· Zkp2
(ε, a, b, γ, δ,m)Z5+k−n−j

1 (ε, a, b, γ, δ,m)

· Znα(ε, a, b, γ, δ,m)Zjβ(ε, a, b, γ, δ,m)z̄
iε−a− γ

κ2
− δ+1

d2

· ziε−b−
γ
κ2
− δ+1

d2 .

(A.54)
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We can transform the contributions under the integral to:

Zp1(ε, a, b, γ, δ,m) =
π(−1)d1a(−1)τd1γ

Γ
(
τd1
τd2

(δ + 1) + d1b− iεd1 + τd1γ
)

· 1

Γ
(
τd1
τd2

(δ + 1) + d1a− iεd1 + τd1γ
)

· 1

sinπ
(
τd1
τd2

(δ + 1)− iεd1

) ,
Zp2(ε, a, b, γ, δ,m) =

π(−1)δ(−1)d2a(−1)τd2γ

Γ (δ + d2b− iεd2 + τd2γ + 1)

· 1

Γ (δ + d2a− iεd2 + τd2γ + 1) sinπiεd2
,

(A.55)

and

Z1(ε, a, b, γ, δ,m) = (−1)b
Γ
(
a− iε+ δ+1

d2
+ γ

κ2

)
π

· Γ
(
b− iε+

δ + 1

d2
+

γ

κ2

)
· sinπ

(
−iε+

δ + 1

d2
+

γ

κ2

)
,

Zα(ε, a, b, γ, δ,m) = (−1)αbΓ

(
aα− iεα+

α

d2
(δ + 1) +

γα

κ2

)
· Γ
(
bα− iεα+

α

d2
(δ + 1) +

γα

κ2

)

·
sinπ

(
−iεα+ α

d2
(δ + 1) + γα

κ2

)
π

,

Zβ(ε, a, b, γ, δ,m) = (−1)βbΓ

(
aβ − iεβ +

β

d2
(δ + 1) +

γβ

κ2

)
· Γ
(
bβ − iεβ +

β

d2
(δ + 1) +

γβ

κ2

)

·
sinπ

(
−iεβ + β

d2
(δ + 1) + γβ

κ2

)
π

.

(A.56)
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As in the case of the Zp1 contribution we can shift δ + 1→ δ and introduce

Zζ�0
2,reg(ε, z, δ, γ) =

∞∑
a=0

(−1)a(5+k−n−j+αn+jβ)z
iε−a− γ

κ2
− δ
d2

+q

· Γ
(
a− iε+

δ

d2
+

γ

κ2

)5+k−n−j

·
Γ
(
aα− iεα+ α

d2
δ + γα

κ2

)n
Γ
(
τd1
τd2
δ + d1a− iεd1 + τd1γ

)
·

Γ
(
aβ − iεβ + β

d2
δ + γβ

κ2

)j
Γ (δ + d2a− iεd2 + τd2γ)k

,

(A.57)

and

Zζ�0
2,sing(ε, δ, γ) =

1

π4
sin

(
π

(
−iε+

δ

d2
+

γ

κ2

))5+k−n−j

·
sin
(
π
(
−iεα+ α

d2
δ + γα

κ2

))n
sin
(
π
(
τd1
τd2
δ − iεd1

))
·

sin
(
π
(
−iεβ + β

d2
δ + γβ

κ2

))j
sin (πiεd2)k

.

(A.58)

The integral can now be written in the following form:

Zζ�0
2,S2 = − 1

2π

τd2−1∑
δ=1

κ2−1∑
γ=0

(−1)kδ(−1)τd1γ(−1)kτd2γ

·
∮

dεZζ�0
2,sing(ε, δ, γ)|Zζ�0

2,reg(ε, z, δ, γ)|2.

(A.59)

The next step is to study the pole structure of (A.58). It is evident that
potential poles can only come from the second factor in the denominator.
We also find, similar to the Zp1 case, that in the case of a non-vanishing
contribution: 〈

τd1

τd2

δ

〉
6= 0,〈

δ

d2
+

γ

κ2

〉
6= 0,

〈
α

(
δ

d2
+

γ

κ2

)〉
6= 0,

〈
β

(
δ

d2
+

γ

κ2

)〉
6= 0,

(A.60)

such values we again call narrow. By this observation we can apply (A.38) and
with the transformation:

ε→ iε

d2
, (A.61)
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and we can bring (A.59) in the form:

Zζ�0
2,S2 =

(−1)k+1

2πid2

∑
δ,γ∈narrow

∮
dε

(−1)Grδ,γ

εk
Γδ,γ(ε)

Γ∗δ,γ(ε)
|Iζ�0
δ,γ (z, ε)|2, (A.62)

with:

(−1)Grδ,γ = (−1)kδ(−1)τd1γ(−1)kτd2γ(−1)

⌊
τd1
τd2

δ

⌋

· (−1)
(5+k−n−j)

⌊
δ
d2

+ γ
κ2

⌋

· (−1)
n
⌊
α
(
δ
d2

+ γ
κ2

)⌋
(−1)

j
⌊
β
(
δ
d2

+ γ
κ2

)⌋
,

(A.63)

Γδ,γ(ε) = Γ (1− ε)k Γ

(
−τd1

τd2

ε+

〈
τd1

τd2 − δ
τd2

〉)
· Γ
(
ε

d2
+

〈
δ + τd2γ

d2

〉)5+k−n−j

· Γ
(
α
ε

d2
+

〈
α
δ + τd2γ

d2

〉)n
Γ

(
β
ε

d2
+

〈
β
δ + τd2γ

d2

〉)j
,

Γ∗δ,γ(ε) = Γ (1 + ε)k Γ

(
−τd1

τd2

ε+

〈
τd1

δ

τd2

〉)
· Γ
(
− ε

d2
+

〈
d2 − δ − τd2γ

d2

〉)5+k−n−j

· Γ
(
−α ε

d2
+

〈
α
d2 − δ − τd2γ

d2

〉)n
· Γ
(
−β ε

d2
+

〈
β
d2 − δ − τd2γ

d2

〉)j
,

(A.64)
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and

Iζ�0
δ,γ (z, ε) =

Γ(1 + ε)k

Γ
(
ε
d2

+
〈
δ+τd2γ

d2

〉)5+k−n−j
Γ
(
α ε
d2

+
〈
α
δ+τd2γ

d2

〉)n
·

Γ
(
τd1
τd2
ε+

〈
τd1

δ
τd2

〉)
Γ
(
β ε
d2

+
〈
β
δ+τd2γ

d2

〉)j
·
∞∑
a=0

(−1)a(5+k−n−j+αn+jβ)z
− ε
d2
−a− γ

κ2
− δ
d2

+q

·
Γ
(
a+ ε

d2
+ δ

d2
+ γ

κ2

)5+k−n−j

Γ
(
τd1
τd2
δ + d1a+

τd2
τd2
ε+ τd1γ

)
·

Γ
(
aα+ α ε

d2
+ α

d2
δ + γα

κ2

)n
Γ
(
aβ + β ε

d2
+ β

d2
δ + γβ

κ2

)j
Γ (δ + d2a+ ε+ τd2γ)k

,

(A.65)

A.5 ζ � 0 Contributions

In the ζ � 0 phase our strategy is to first sum over the poles of Zβ and
afterwards over the remaining poles of Zα (A.13).

Zβ Contribution

We start by performing the shift:

σ → ε+
i (βm− 2nβ)

2β
, (A.66)

and write (A.1) as sum over residues:

Zζ�0
1,S2 = −(zz̄)q

2π

∞∑
nβ=0

∑
m≤

nβ
β

∮
dεZp1(ε, nβ,m)Zkp2

(ε, nβ,m)

· Z5+k−n−j
1 (ε, nβ,m)Znα(ε, nβ,m)Zjβ(ε, nβ,m)

· z̄iε+
nβ
β z

iε+
nβ
β
−m

.

(A.67)

The overall minus sign is introduced because we close the path clockwise. The
sum over m can by simplified by the following transformation:

l = nβ − βm ≥ 0 m =
nβ − l
β

. (A.68)
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We know that m must be integer and therefore we set:

nβ = βa+ δ l = βb+ δ δ = 0, 1, . . . β − 1. (A.69)

By the above transformations we can bring (A.67) into the form:

Zζ�0
1,S2 = −(zz̄)q

2π

β−1∑
δ=0

∞∑
a=0

∞∑
b=0

∮
dεZp1(ε, a, b, δ)Zkp2

(ε, a, b, δ)

· Z5+k−n−j
1 (ε, a, b, δ)Znα(ε, a, b, δ)Zjβ(ε, a, b, δ)

· z̄iε+a+ δ
β z

iε+b+ δ
β .

(A.70)

The integral contributions are given by:

Zp1(ε, a, b, δ) = −(−1)bd1

sin
(
π
(
iεd1 + δd1

β

))
π

· Γ
(
ad1 +

δd1

β
+ iεd1 + 1

)
· Γ
(
bd1 +

δd1

β
+ iεd1 + 1

)
,

Zp2(ε, a, b, δ) = −(−1)bd2

sin
(
π
(
iεd2 + δd2

β

))
π

· Γ
(
ad2 +

δd2

β
+ iεd2 + 1

)
· Γ
(
bd2 +

δd2

β
+ iεd2 + 1

)
,

Z1(ε, a, b, δ) = −(−1)a
π

sin
(
π
(
iε− δ

β

))
· 1

Γ
(
a+ δ

β + iε+ 1
)

Γ
(
b+ δ

β + iε+ 1
) ,

Zα(ε, a, b, δ) = −(−1)aα
π

sin
(
π
(
iεα− δα

β

))
· 1

Γ
(
aα+ δα

β + iεα+ 1
)

Γ
(
bα+ δα

β + iεα+ 1
) ,

Zβ(ε, a, b, δ) = −(−1)aβ(−1)δ
π

sin (π (iεβ))

· 1

Γ(aβ + iεβ + δ + 1)Γ(bβ + iεβ + δ + 1)
.

(A.71)
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We introduce the following quantities:

Zζ�0
1,reg(ε, z, δ) =

∞∑
a=0

(−1)a(5+k−n−j+αn+jβ)z
iε+a+ δ

β
+q

·
Γ
(
ad1 + δd1

β + iεd1 + 1
)

Γ
(
a+ δ

β + iε+ 1
)5+k−n−j

Γ
(
aα+ δα

β + iεα+ 1
)n

·
Γ
(
ad2 + δd2

β + iεd2 + 1
)k

Γ (aβ + iεβ + δ + 1)j
,

(A.72)

Zζ�0
1,sing(ε, δ) =

π4 sin
(
π
(
iεd1 + δd1

β

))
sin
(
π
(
iε− δ

β

))5+k−n−j
sin
(
π
(
iεα− δτα

τβ

))n
·

sin
(
π
(
iεd2 + δd2

β

))k
sin (π (iεβ))j

(A.73)

and write the integral as

Zζ�0
1,S2 = − 1

2π

β−1∑
δ=0

(−1)jδ
∮

0
dεZζ�0

1,sing(ε, δ)|Z
ζ�0
1,reg(ε, z, δ)|

2. (A.74)

We want to remark that the minus signs in (A.71) add up to one:

(−1)5+k−n−j+n+j+k+1 = (−1)6+2k = 1. (A.75)

The next task is to study for which parameters we can hit a pole of (A.73).
The outcome of this analysis is, that we only get poles if δ = 0. In that case
we can further simplify (A.74) to

Zζ�0
1,S2 = − 1

2π

∮
0

dεZζ�0
1,sing(ε)|Z

ζ�0
1,reg(ε, z)|

2, (A.76)

with

Zζ�0
1,reg(ε, z) =

∞∑
a=0

(−1)a(5+k−n−j+αn+jβ)ziε+a+q

· Γ (ad1 + iεd1 + 1)

Γ (a+ iε+ 1)5+k−n−j Γ (aα+ iεα+ 1)n

· Γ (ad2 + iεd2 + 1)k

Γ(aβ + iεβ + 1)j

(A.77)
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and

Zζ�0
1,sing(ε) =

π4 sin (πiεd1) sin (πiεd2)k

sin (πiε)5+k−n−j sin (πiεα)n sin (πiεβ)j
. (A.78)

We can rewrite (A.78) into the form:

Zζ�0
1,sing(ε) =

d1d
k
2

αnβjε4

Γ (1 + iε)5+k−n−j Γ (1− iε)5+k−n−j

Γ (1 + iεd1) Γ (1− iεd1)

· Γ (1 + iεα)n Γ (1− iεα)n Γ (1 + iεβ)j Γ (1− iεβ)j

Γ (1 + iεd2)k Γ (1− iεd2)k
.

(A.79)

Next we make the following transformation:

ε→ − ε

2π
, (A.80)

and introduce

Γ(ε) =
Γ
(
1− ε

2πi

)5+k−n−j
Γ
(
1− ε

2πi

)5+k−n−j

Γ
(
1− d1

ε
2πi

)
·

Γ
(
1− α ε

2πi

)n
Γ
(
1− β ε

2πi

)j
Γ
(
1− d2

ε
2πi

)k ,

(A.81)

and

Iζ�0(ε, z) =
∞∑
a=0

(−1)a(5+k−n−j+αn+jβ)ziε+a+q

·
Γ
(
1 + ε

2πi

)5+k−n−j
Γ
(
1 + ε

2πi

)5+k−n−j
Γ
(
1 + α ε

2πi

)n
Γ
(
1 + d1

ε
2πi

)
·

Γ
(
1 + β ε

2πi

)j
Γ
(
1 + d2

ε
2πi

)k
·

Γ
(
ad1 + d1

ε
2πi + 1

)
Γ
(
a+ ε

2πi + 1
)5+k−n−j

Γ
(
aα+ α ε

2πi + 1
)n

·
Γ
(
ad2 + d2

ε
2πi + 1

)k
Γ
(
aβ + β ε

2πi + 1
)j .

(A.82)

By using the above quantities we can bring the integral in the following form:

Zζ�0
1,S2 = −(2π)2 d1d

k
2

αnβj

∮
0

dε
1

ε4

Γ(ε)

Γ∗(ε)
|Iζ�0(ε, z)|2, (A.83)

with

Γ∗(ε) = Γ(−ε). (A.84)
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Zα Contribution

As previously discussed, it is not enough to sum only over the poles of Zβ .
We miss the Zα poles of the form (A.13). We will now take into account these
remaining poles and again begin by shifting the integration variable by

σ → σ +
i (αm− 2n4)

2α
. (A.85)

Afterwards we replace n4 by (A.13). These transformations bring (A.1) into
the form:

Zζ�0
2,S2 = −(zz̄)q

2π

τα−1∑
δ=1

∞∑
s=0

∑
m≤ s

κ1
+ δ
α

∮
dσZp1(σ, s, δ,m)Zkp2

(σ, s, δ,m)

· Z5+k−n−j
1 (σ, s, δ,m)Znα(σ, s, δ,m)Zjβ(σ, s, δ,m)

· z̄iσ+ s
κ1

+ δ
α z

iσ+ s
κ1

+ δ
α
−m

.

(A.86)

The overall minus sign is due the orientation of the path. The next step is to
simplify the sum over m. We see that δ

α can never be an integer and therefore
it is valid to set

m ≤ s

κ1
. (A.87)

We introduce:

l = s− κ1m → m =
s− l
κ1

. (A.88)

Because m needs to be integer it follows that:

s = καβa+ γ, l = κ1b+ γ, γ = 0, . . . , κ1 − 1. (A.89)

We can now write the integral as

Zζ�0
2,S2 = −(zz̄)q

2π

τα−1∑
δ=1

κ1−1∑
γ=0

∞∑
a=0

∞∑
b=0

∮
dσZp1(σ, a, b, δ, γ)Zkp2

(σ, a, b, δ, γ)

· Z5+k−n−j
1 (σ, a, b, δ, γ)Znα(σ, a, b, δ, γ)Zjβ(σ, a, b, δ, γ)

· z̄iσ+a+ γ
κ1

+ δ
α z

iσ+b+ γ
κ1

+ δ
α ,

(A.90)
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with the following contributions

Zp1(σ, a, b, δ, γ) = −(−1)bd1

sin
(
π
(
δd1
α + iσd1 + γd1

κ1

))
π

· Γ
(
ad1 +

δd1

α
+ iσd1 +

γd1

κ1
+ 1

)
· Γ
(
bd1 +

δd1

α
+ iσd1 +

γd1

κ1
+ 1

)
,

Zp2(σ, a, b, δ, γ) = −(−1)bd2

sin
(
π
(
δd2
α + iσd2 + γd2

κ1

))
π

· Γ
(
ad2 +

δd2

α
+ iσd2 +

γd2

κ1
+ 1

)
· Γ
(
bd2 +

δd2

α
+ iσd2 +

γd2

κ1
+ 1

)
,

Z1(σ, a, b, δ, γ) = −(−1)a
π

sin
(
π
(
δ
α + iσ + γ

κ1

))
· 1

Γ
(
a+ δ

α + iσ + γ
κ1

+ 1
)

· 1

Γ
(
b+ δ

α + iσ + γ
κ1

+ 1
) ,

Zα(σ, a, b, δ, γ) = −(−1)aα(−1)δ(−1)γτα
π

sin (π (iσα))

· 1

Γ (aα+ iσα+ δ + γτα + 1)

· 1

Γ (bα+ iσα+ δ + γτα + 1)
,

Zβ(σ, a, b, δ, γ) = −(−1)aβ(−1)γτβ
π

sin
(
π
(
δτβ
τα

+ iσβ
))

· 1

Γ
(
aβ +

δτβ
τα

+ iσβ + γτβ + 1
)

· 1

Γ
(
bβ +

δτβ
τα

+ iσβ + γτβ + 1
)

(A.91)
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We introduce:

Zζ�0
2,reg(σ, z, δ, γ) =

∞∑
a=0

(−1)a(5+k−n−j+nα+jβ)z
iσ+a+ γ

κ1
+ δ
α

+q

·
Γ
(
ad1 + δd1

α + iσd1 + γd1

κ1
+ 1
)

Γ
(
a+ δ

α + iσ + γ
κ1

+ 1
)5+k−n−j

·
Γ
(
ad2 + δd2

α + iσd2 + γd2

κ1
+ 1
)k

Γ (aα+ iσα+ δ + γτα + 1)n

· 1

Γ
(
aβ +

δτβ
τα

+ iσβ + γτβ + 1
)j ,

(A.92)

and

Zζ�0
2,sing(σ, δ, γ) = π4

sin
(
π
(
δd1
α + iσd1 + γd1

κ1

))
sin
(
π
(
δ
α + iσ + γ

κ1

))5+k−n−j
sin (π (iσα))n

·
sin
(
π
(
δd2
α + iσd2 + γd2

κ1

))k
sin
(
π
(
δτβ
τα

+ iσβ
))j .

(A.93)

We collect all the minus signs appearing in (A.91) and find

(−1)1+k+5+k−n−j+n+j = (−1)6+2k = 1. (A.94)

The integral can now be written in the following compact form:

Zζ�0
2,S2 = − 1

2π

τα−1∑
δ=1

κ1−1∑
γ=0

(−1)nδ(−1)nγτα(−1)jγτβ

·
∮

dσZζ�0
2,sing(σ, δ, γ)|Zζ�0

2,reg(σ, z, δ, γ)|2.

(A.95)

The final task is to analyse the pole structure of (A.93). We find for our models
of interest, that (A.95) is always zero:

Zζ�0
2,S2 = 0. (A.96)
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Appendix B

Evaluation of the Sphere
Partition Function - Two
Parameter Abelian

In Appendix A we discussed the one-parameter abelian models. Here we con-
sider the two parameter models. In contrast to the previous discussion we
encounter multi-dimensional residues and we need a more sophisticated algo-
rithm to evaluate the sphere partition function. We use the procedure devel-
oped in [118], which extends the results of [134]. We will refer to the two U(1)2

models by their geometric phase, which is either P11222[8] or P11169[18]. In the
following, in order to get used to the algorithm of [118], we will describe key
features for an abstract two parameter model with field content:

p x6 x1 x2 x3 x4 x5 FI
U(1)1 −d 1 0 0 α3 α4 α5 ζ1
U(1)2 0 −β6 1 1 β3 0 0 ζ2
U(1)V 2− 2dq1 2q1 − 2β6q2 2q1 2q1 2α3q1 + 2β3q2 2α4q1 2α5q1

β6U(1)1 + U(2)2 −β6d 0 1 1 β6α3 + β3 β6α4 β6α5 β6ζ1 + ζ2

,

(B.1)

with

d, α3, α4, α5, β3, β6 ∈ Z≥0, (B.2)
(B.3)

and

α3 = d− 1− α4 − α5, β3 = β6 − 2. (B.4)

We further assume:

α5 ≥ α4. (B.5)
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For later convenience we introduce:

β1 = 1. (B.6)

Let us mention that in the models studied in this thesis:

(α3, β3) ∈ {(1, 0) , (0, 1)} (B.7)

The complete field content for the model P11222[8] and P11169[18] is given in
(6.143) and (6.201), respectively. The superpotential in these models is of the
form

W = pG(d,0)(xi), (B.8)

where G(d,0)(xi) is weighted homogenous polynomial of degree (d, 0) under the
U(1) actions. We suppose that G(d,0) is chosen such that

∂G(d,0)(xj)

∂xi
= 0 ∀i ⇔ xj = 0 ∀j. (B.9)

The columns in (B.1) which encode the U(1) charges are referred to as charge
vectors.

To study the phase structure of the model (B.1) we look at the D-term and
F-term equations, as done in Section 6.4. For our class of models it is enough
to focus on the D-terms to determine the phase boundaries and therefore we
can apply a method given in [161]. In this method one embeds the charge
lattice into the space spanned by the FI-theta parameters Rk in the case of k
different parameters. The phase boundaries encoded in the D-terms are given
by hypersurfaces in the positive linear span of (k−1) charge vectors of some of
the fields. For our models of interest the phase diagram is given in Figure B.1,
where the phase boundaries are given by the dotted grey half-lines. Observe,
that we drew charge vectors with label x3α and x3β , as x3 lies either on the
ζ1 > 0 line for (α3, β3) = (1, 0) or on the ζ2 > 0 line for (α3, β3) = (0, 1).

We identify the following phases

I : ζ1 > 0, ζ2 > 0, Geometric phase,
II : ζ2 < 0, β6ζ1 + ζ2 > 0, Orbifold phase,
III : ζ2 < 0, β6ζ1 + ζ2 < 0, Landau-Ginzburg orbifold phase,
IV : ζ1 < 0, ζ2 > 0, Hybrid phase.

(B.10)

The characteristics of the above phases are discussed in Section 6.4.
From Figure B.1 the deleted set for each phase can be determined following

the approach of [161]. For this purpose one draws a hyperplane through the
origin such that the phase of interest lies completely on one side. All fields,
whose charge vectors lie on the same side as the phase form a subset of the
deleted set. This procedure is repeated for every possible hyperplane such that
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II

I

III

IV

x3α

x3β

p

x6

x1 x2 x5

x4

ζ1

ζ2

Figure B.1: Phase diagramm of the two paramter models

the phase of interest lies on one side. The deleted set of the phase is then the
union of all obtained subsets. For our model the deleted sets are given by:

FI = {x1 = x2 = x3β = 0} ∪ {x3α = x4 = x5 = x6 = 0},
FII = {x1 = x2 = · · · = x4 = x5 = 0} ∪ {x6 = 0},
FIII = {p = 0} ∪ {x6 = 0},
FIV = {p = 0} ∪ {x1 = x2 = x3β = 0}.

(B.11)

Not all fields appearing in the deleted set are forced to have a non-zero vacuum
expectation value (VEV) in the respective phase. To decide which fields are
classically zero one has to take a look at the D- and F-term equations (see
4.2). For example in the phase II it is possible to set x1 = x2 = x3β = 0.

The sphere partition function of the model with field content (B.1) reads:

ZS2 =
1

(2π)2

∑
m1,m2

∫∫
R2

dσ2ZpZ6Z
2
1Z3

· Z4Z5e
−4πi(ζ1σ1+ζ2σ2)−i(θ1m1+θ2m2),

(B.12)
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with

Zp =
Γ
(
d(iσ1 − q1 + 1

d) + dm1
2

)
Γ
(

1− d(iσ1 − q1 + 1
d) + dm1

2

) ,
Z6 =

Γ
(
− ((iσ1 − q1)− β6(iσ2 − q2))− m1−β6m2

2

)
Γ
(

1 + ((iσ1 − q1)− β6(iσ2 − q2))− m1−β6m2

2

) ,
Z1 =

Γ
(
−(iσ2 − q2)− m2

2

)
Γ
(
1 + (iσ2 − q2)− m2

2

) ,
Z3 =

Γ
(
−α3(iσ1 − q1)− β3(iσ2 − q2)− α3m1+β3m2

2

)
Γ
(

1 + α3(iσ1 − q1) + β3(iσ2 − q2)− α3m1+β3m2

2

) ,
Z4 =

Γ
(
−α4(iσ1 − q1)− α4m1

2

)
Γ
(
1 + α4(iσ1 − q1)− α4m1

2

) ,
Z5 =

Γ
(
−α5(iσ1 − q1)− α5m1

2

)
Γ
(
1 + α5(iσ1 − q1)− α5m1

2

) .

(B.13)

Our goal is to evaluate (B.12) in the phases (B.10) by a residue integration.
In a first step we make the following transformation of variables:

σi = −ixi + qi, (B.14)

which results in

ZS2 =
1

(2π)2

∑
m1,m2

∫∫
iR2+γ

dx2ZpZ6Z
2
1Z3

· Z4Z5e
−p·x+p·γ−i(θ1m1+θ2m2),

(B.15)

with:

γ = −
(
q1

q2

)
, p = 4π

(
ζ1

ζ2

)
, x =

(
x1

x2

)
. (B.16)
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The different contributions of (B.15) read:

Zp =
Γ
(

1 + dx1 + dm1
2

)
Γ
(
−dx1 + dm1

2

) ,

Z6 =
Γ
(
− (x1 − β6x2)− m1−β6m2

2

)
Γ
(

1 + (x1 − β6x2)− m1−β6m2

2

) ,
Z5 =

Γ
(
−α5x1 − α5m1

2

)
Γ
(
1 + α5x1 − α5m1

2

) ,
Z4 =

Γ
(
−α4x1 − α4m1

2

)
Γ
(
1 + α4x1 − α4m1

2

) ,
Z3 =

Γ
(
−α3x1 − β3x2 − α3m1+β3m2

2

)
Γ
(

1 + α3x1 + β3x2 − α3m1+β3m2

2

) ,
Z1 =

Γ
(
−x2 − m2

2

)
Γ
(
1 + x2 − m2

2

) .

(B.17)

For later convenience we introduce

h(x) =
1

(2π)2
ZpZ6Z

2
1Z3Z4Z5Zclass, (B.18)

with

Zclass = e−p·x+p·γe−iθ1m1−iθ2m2 . (B.19)

Notice that in (B.16) we already started to introduce quantities used in the
procedure of [118]. To evaluate (B.15) we need to determine the location of the
poles and deform the integration contour. The location of the poles is governed
by hyperplanes, which are defined by the arguments of the Γ-functions. Similar
to [118] we refer to the hyperplanes as divisors. The contributing poles to the
integral are then given by the intersection of two such divisors. For our models
of interest we can determine the divisors, by taking into account the fact that
the poles come from the Γ functions in (B.17) whenever their argument is a
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negative integer:

Dp = 1 + dx1 +
dm1

2
+ np, np ≥ max[0,−dm1],

D6 = −(x1 − β6x2)− m1 − β6m2

2
+ n6, n6 ≥ max[0,m1 − β6m2],

D5 = −α5x1 −
α5m1

2
+ n5, n5 ≥ max[0, α5m1],

D4 = −α4x1 −
α4m1

2
+ n4, n4 ≥ max[0, α4m1],

D3 = −(α3x1 + β3x2)− α3m1 + β3m2

2
+ n3, n3 ≥ max[0, α3m1 + β3m2],

D1 = −x2 −
m2

2
+ n1, n1 ≥ max[0,m2],

(B.20)

where ni ∈ Z≥0 and the restrictions on them come from cancellations by poles
of the denominators in (B.17). If we draw the charge vectors of the fields in
R2 spanned by the real part of the xis, we see that the charge vectors of the
fields are orthogonal to the respective hyperplanes given by (B.20).

Next we need to determine a contour of integration. We found that the
poles are located at hyperplanes of R2. Further, the asymptotic behaviour of
(B.15) is governed by the exponential and for convergence we need to choose
a path such that

p · Re(x) > p · γ. (B.21)

In a similar way as [118] we introduce the halfspace H:

H = {x ∈ R2|p · x− p · γ > 0}, (B.22)

and its boundary:

∂H = {x ∈ R2|p · x− p · γ = 0}. (B.23)

The vector p is orthogonal to ∂H and points in the direction of the halfspace
H. We see that γ gives a point on ∂H which splits ∂H into two rays: ∂H±.
The ray ∂H+ is chosen such that (∂H+,p) has positive orientation with respect
to the standard basis of R2. The next task is to determine which ray ∂H± the
divisors (B.20) intersect. We define an ordering on the divisors:

Dp � D6 � D5 � D4 � D1. (B.24)

Afterwards we group the contributing intersection points into two sets:

Π± = {q ∈ R2|Di � Dj , Di ∩ ∂H ∈ ∂H±, Dj ∩ ∂H∓, Di ∩Dj ∈ H}.
(B.25)
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The residue integral is then given by

ZS2 = 2πi
∑
p∈Π+

Resp (h(x))− 2πi
∑
p∈Π−

Resp (h(x)) , (B.26)

with h(x) introduced in (B.18). We want to remark that we only gave the
procedure for the generic case. In principle certain complications can occur.
For example a divisor could be parallel to ∂H or a pole could lie on more than
2 divisors. How to proceed in such cases is explained in the appendix of [118].

Let us next determine the intersection points of the divisors (B.20) with
the hypersurface ∂H. The hypersurface ∂H can be parameterized by

x(t) = th + γ, (B.27)

with:

h =

(
ζ2

−ζ1

)
. (B.28)

Next, we determine the determinant of the change of basis matrix T from the
standard basis in R2 to (±h,p). We find

detT = ±4π
(
ζ2

1 + ζ2
2

)
. (B.29)

We see that (+h,p) forms a right-handed coordinate basis and so h gives the
direction of the positive ray ∂H+. Further, this choice of h guarantees that
we do not see an orientation flip if we consider different phases. In order to
determine which ray ∂H± a divisor intersects, we first calculate the intersection
point with ∂H and afterwards insert the result into the right hand side of
(B.27). We then solve for t. If t > 0 then the divisor intersects ∂H+ otherwise
the intersection point lies on the negative ray. We find for t:

Dp ∩ ∂H : t = −dm1 − 2dq1 + 2np + 2

2dζ2
,

D6 ∩ ∂H : t =
β6 (m2 − 2q2)−m1 + 2 (n6 + q1)

2 (β6ζ1 + ζ2)
,

D1 ∩ ∂H : t =
m2 − 2 (n1 + q2)

2ζ1
,

D3 ∩ ∂H : t =
α3 (m1 − 2q1) + β3 (m2 − 2q2)− 2n3

2β3ζ1 − 2α3ζ2
,

D4 ∩ ∂H : t =
2n4 − α4 (m1 − 2q1)

2α4ζ2
,

D5 ∩ ∂H : t =
2n5 − α5 (m1 − 2q1)

2α5ζ2
.

(B.30)
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Next, we use the restrictions on the nis given in (B.20) to determine if the
intersection point has t ≶ 0. We find

Dp ∩ ∂H ∈

{
∂H− ζ2 > 0,

∂H+ ζ2 < 0,
1− dq1 ≥ 0,

D6 ∩ ∂H ∈

{
∂H+ β6ζ1 + ζ2 > 0,

∂H− β6ζ1 + ζ2 < 0,
q1 − β6q2 ≥ 0,

D1 ∩ ∂H ∈

{
∂H− ζ1 > 0,

∂H+ ζ1 < 0,
q2 ≥ 0,

D3 ∩ ∂H ∈

{
∂H+ −β3ζ1 + α3ζ2 > 0,

∂H− −β3ζ1 + α3ζ2 < 0,
α3q1 + β3q2 ≥ 0.

D4, D5 ∩ ∂H ∈

{
∂H+ ζ2 > 0,

∂H− ζ2 < 0,
q1 ≥ 0.

(B.31)

The conditions on the intersection of D3 might look strange, but observe that
in the case (α3, β3) = (0, 1)/(1, 0) it boils down to the conditions on the inter-
section of D1/D4, D5 as expected. For the subsequent discussion we introduce
D3α/D3β which signals that we set (α3, β3) = (1, 0)/(0, 1). Let us next give
the position of the intersection with ∂H in the different phases under the
assumption that the conditions on the qi found in (B.31) are fulfilled. We find

Phase Dp D6 D5,4,3α D3β,1

I − + + −
II + + − −
III + − − +
IV − +/− + +

(B.32)

where ± stands for intersection point at ∂H±. Note that for D6 in the phase
IV we need to separately take into account the conditions found in (B.31).
Further, at first the divisor D6 looks like it could in principle be parallel to
∂H, but we are interested in the evaluation deep in a phase, where this is not
the case. The non-empty intersection points of the divisors are given by:

Di ∩Dj x1 x2

(Dp, D6) −dm1+2np+2
2d −β6dm2+2dn6+2np+2

2β6d

(Dp, D3β,1)
−dm1−2np−2

2d
2nl−βlm2

2βl
l ∈ {3, 1}

(D6, D5,4,3α) −αlm1−2nl
2αl

−αlβ6m2+2αln6−2nl
2αlβ6

l ∈ {5, 4, 3}
(D6, D3β,1) −βlm1−2βln6−2β6nl

2βl
−βlm2−2nl

2βl
l ∈ {3, 1}

(D5,4,3α, D3β,1) 2nk−αkm1
2αk

2nl−βlm2

2βl

k∈{5,4,3}
l∈{3,1} k 6= l

(B.33)
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By using (B.32) and (B.33) we can determine which divisor intersections con-
tribute in a chosen phase. For this purpose we insert the position of the
intersection point (B.33) into the halfspace equation (B.22) and check if it is
fulfilled. We first list the possible intersections in the different phases:

Phase (Dp, D6) (Dp, D3β,1) (D6, D5,4,3α) (D6, D3β,1) (D5,4,3α, D3β,1)

I − + +
II + + +
III + − −
IV −

β6ζ1+ζ2>0
− −

β6ζ1+ζ2<0
−

β6ζ1+ζ2<0

(B.34)

by ± we denote the overall sign, introduced in (B.26), of the residue contribu-
tion. We proceed by inserting the possible intersections into the left-hand side
of the halfspace equation (B.22). We denote this by H((Di, Dj)) and derive
an inequality by using the restrictions on the nis given in (B.20). We find:

Phase H((Dp, D6)) H((Dp, D3β,1))

I ≤ −4π
((

1
d
− q1

)
ζ1 +

(
1
dβ6
− q2

)
ζ2
)

II ≤ −4π
((

1
d
− q1

)
|ζ1|+ q2|ζ2|

)
III ≥ 4π

((
1
d
− q1

)
|ζ1|+

(
1
dβ6
− q2

)
|ζ2|
)

IV ≤ −4π
((
− 1
d

+ q1
)
|ζ1|+

(
1
dβ6
− q2

)
|ζ2|
)

≥ 4π
((

( 1
d
− q1

)
|ζ1|+ q2|ζ2|

)
, (B.35)

and for the remaining intersection points the conditions read:

Phase H((D6, D5,4,3α)) H((D6, D3β,1)) H((D5,4,3α, D3β,1))
I ≥ 4π(q1ζ1 + q2ζ2) ≥ 4π(q1ζ1 + q2ζ2)
II ≥ 4π(q1|ζ1| − q2|ζ2|) ≥ 4π(q1|ζ1| − q2|ζ2|)
III ≤ −4π(q1|ζ1|+ q2|ζ2|) ≤ −4π(q1|ζ1|+ q2|ζ2|)
IV ≤ −4π(q1|ζ1| − q2|ζ2|) ≤ −4π(q1|ζ1| − q2|ζ2|)

. (B.36)

We see that (B.35) and (B.36) single out sensible choices of q1 and q2 in
the respective phase. By sensible we mean choices for which all intersection
points coming from a single (Di, Dj) lie completely in a halfspace and do not
switch from the positive halfspace (B.22) to the negative halfspace (replace >
by < in (B.22)). The sensible q1 and q2 choices are compatible with (B.31). In
addition a sensible choice in the above sense is also obtained if we take q1 and
q2 such that fields with a non-zero VEV in a phase have zero U(1)V charge.
This is also the preferred choice from physics. In our model this choices are
given by

Phase q1 q2

I 0 0
II 0 0
III 1

d
1
dβ6

IV 1
d 0

. (B.37)

177



B. Evaluation of the Sphere Partition Function - Two
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If we insert the choices (B.37) into (B.35), (B.35) we find the following con-
tributing intersections:

I : +(D6, D3β,1) +(D5,4,3α, D3β,1)
II : +(D6, D5,4,3α) +(D6, D3β,1)
III : +(Dp, D6)
IV : −(Dp, D3β,1).

(B.38)

In the phases were we see multiple contributing intersections we need to check
for possible overlaps to avoid an overcounting. For this purpose we equate the
intersection point coordinates (B.20) for two different intersections and express
the nis of one contribution in terms of the njs of the other point. Afterwards
we need to show that the conditions on the dependent nis are fulfilled if we
use the conditions on the njs (B.33). If we take into account (B.7) we find
that:

• I: We first sum over the poles at (D5, D3β) and afterwards sum over the
poles at (D4, D3β) with n4 = τα4k + δ δ = 1, . . . , τα4 − 1 k ∈ Z≥0.

• II: Here we sum over the poles at (D6, D5) and after that we sum over
the poles at (D6, D4) with n4 = τα4k + δ δ = 1, . . . , τα4 − 1 k ∈ Z≥0.

• III: We have only one contributing intersection, so this phase is straight-
forward.

• IV: In this phase it is enough to sum over the poles at (Dp, D3β).

We introduced:

τα4 =
α4

GCD(α5, α4)
. (B.39)

Let us mention that in the case with β3 = 0 we make the following replacement
in the discussion above:

D3β → D1. (B.40)

It is interesting to note that in a phase the contributing intersections come
always from contributions Zi (B.13), whose corresponding fields have a non-
zero VEV in the phase under consideration. We have now gathered everything
to write (B.15) as sum over residue integrals:

ZS2 ≈
1

2π

∑
ni,nj

∑
m1,m2

∮
d2εh(ε1 + x̃1, ε2 + x̃2), (B.41)

where x̃i is one of the intersection points (B.33) contributing in the respective
phase. Further, the correct sign of the intersection (B.34) has to be taken into
account in (B.41). There is the possibility that in a phase there are multiple
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contributions to ZS2 of the same type as (B.41). For example this could happen
in the phase I, because we have two contributing intersections.

In the following we will in addition to Section 6.4 give some steps on how
to transform ZS2 into a form similar to (B.41) in the respective phases. Our
focus lies on the phases studied in Section 6.4 and different to the discussion
above we will focus on a specific model at a time.

B.1 The P11222[8] Model

In the model P11222[8] we have fewer different contributions than displayed in
(B.17), because:

Z5 = Z3 = Z4. (B.42)

It follows that (B.12) simplifies to

ZS2 =
1

(2π)2

∑
m1,m2

∫∫
R2

dσ2ZpZ6Z
2
1Z

3
5e
−4πi(ζ1σ1+ζ2σ2)−i(θ1m1+θ2m2). (B.43)

Phase I

In this phase the contributing intersections come from (D5, D1) We perform
the following shift:

x1 = ε1 +
−m1 + 2n5

2
, x2 = ε2 +

−m2 + 2n1

2
, (B.44)

and get for the unequal contributions (B.17):

Zp =
Γ (4n5 + 4ε1 + 1)

Γ (4m1 − 4n5 − 4ε1)
,

Z6 =
Γ (−n5 − ε1 + 2 (n1 + ε2))

Γ (−m1 + 2m2 − 2n1 + n5 + ε1 − 2ε2 + 1)
,

Z5 =
Γ (−n5 − ε1)

Γ (−m1 + n5 + ε1 + 1)
,

Z1 =
Γ (−n1 − ε2)

Γ (−m2 + n1 + ε2 + 1)
.

(B.45)

The next step is to simplify the sums over the nis and the mis appearing in
(B.41). We know from (B.20) that

n5 ≥ m1, n1 ≥ m2, (B.46)

and therefore we introduce

n′5 = n5 −m1 ≥ 0, n′1 = n1 −m2 ≥ 0. (B.47)

179



B. Evaluation of the Sphere Partition Function - Two
Parameter Abelian

This transformation simplifies the sums to∑
n5

∑
n1

∑
m1

∑
m2

→
∑

n5,n′5,n1,n′1≥0

. (B.48)

All the remaining steps are described in the main text Section 6.4. We further
comment on the transformation of the residue integral.
We start from (6.149), which is of the schematic form:

Zgeom
S2 ∼

∮
dH2 4H1f(H1, H2)

H2
2H

3
1 (H1 − 2H2)

. (B.49)

Due to the polynomial in the denominator of (B.49) the evaluation of the
residue integral is not straightforward. Our goal is to transform the residue in-
tegral in such a way, that we can evaluate it as a product of univariate residue
integrals. For this purpose we apply the transformation formula for multi-
variate residues (see [119]). Let {f1(zi), . . . , fn(zi)} and {g1(zi), . . . , gn(zi)} be
holomorphic functions in the n variables z1, . . . , zn such that

gk(zi) = Tkjfj(zi), (B.50)

where T is a holomorphic matrix. Then

Res

(
h(zi)dz1 ∧ . . . ∧ dzn
f1(zi) · . . . · fn(zi)

)
= Res

(
detT

h(zi)dz1 ∧ . . . ∧ dzn
g1(zi) · . . . · gn(zi)

)
. (B.51)

The question is how to choose the gk(zi) and how to identify the fj(zi)? We
follow the approach given in [136], who modelled their procedure after [162].
To apply their approach we need to have as many factors in the denominator as
we have integration variables, so we need to group the denominator of (B.49)
into two factors. In general this procedure is ambiguous. A discussion of the
origin of this ambiguity is given in [136]. In our case we choose the following
grouping:

f1(H2) = H2
2 , f2(H1, H2) = H3

1 (H1 − 2H2), (B.52)

which can be motivated by remembering how the contributing divisors inter-
sect:

(D6, D1) ⊂ (D5, D1), (B.53)

and how their resulting pole contributions looks:

D6 → (H1 − 2H2), D1 → H2
2 , D5 → H3

1 . (B.54)

We will find a further justification for the choice (B.52) a posteriori. To obtain
univariate polynomials gk(zi) we apply the following procedure. We calculate
a Gröbner basis for the polynomials {f1, f2} in lexicographic monomial order.
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B.1. The P11222[8] Model

If we specify the variable order by H1 > H2 the first element of the Gröbner
basis will depend only on H2. If we cycle the order of the variables and
extract always the first term of the obtained Gröbner basis, we can construct
the univariate gk(zi)s. For our case of interest we find:

g1(H2) = H2
2 g2(H1) = H5

1 . (B.55)

The transformation matrix T is then given by:(
1 0

4H3
1 H1 + 2H2

)
(B.56)

and

detT = H1 + 2H2. (B.57)

We can apply (B.51) to (B.49) and find

Zgeom
S2 ≈

∮
dH2

(
4

H3
1H

2
2

+
8

H4
1H2

)
f(H1, H2). (B.58)

This is exactly the result which we would expect from the triple-intersection
numbers (6.152) and gives a further justification of (B.52).

Phase III

In this phase we transform by:

x1 = ε1 +
1

8
(−4m1 − 2np − 2) , (B.59)

x2 = ε+
1

16
(−8m2 − 2np − 8n6 − 2) . (B.60)

In the next step we make the additional transformation:

ε1 → −
ε1

4
, ε2 → −

ε1 + 4ε2

8
, (B.61)

which gives a Jacobi-determinant of 1
8 . After the transformations the different

contributions (B.17) are given by:

Zp =
Γ (−np − ε1)

Γ (4m1 + np + ε1 + 1)
,

Z6 =
Γ (−n6 − ε2)

Γ (−m1 + 2m2 + n6 + ε2 + 1)
,

Z5 =
Γ
(

1
4 (np + ε1 + 1)

)
Γ
(

1
4 (−4m1 − np − ε1 + 3)

) ,
Z1 =

Γ
(

1
8 (4n6 + np + ε1 + 4ε2 + 1)

)
Γ
(

1
8 (−8m2 − 4n6 − np − ε1 − 4ε2 + 7)

) .
(B.62)
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In this phase we need to guarantee:

np ≥ −4m1, n6 ≥ m1 − 2m2, (B.63)

if we sum over the ni and mi. How to take this into account is discussed in
Section 6.4.

Phase IV

We transform by:

x1 = ε1 +
1

8
(−4m1 − 2np − 2) , x2 = ε2 +

1

2
(2n1 −m2) . (B.64)

The second transformation we apply in this phase is given by

ε1 → −
ε1

4
, ε2 → ε2. (B.65)

This transformation results in a Jacobi-determinant of 1
4 . After the above

transformations the integral contributions (B.17) have the form:

Zp =
Γ (−np − ε1)

Γ (4m1 + np + ε1 + 1)
,

Z6 =
Γ
(

1
4 (np + ε1 + 8 (n1 + ε2) + 1)

)
Γ
(

1
4 (−4m1 + 8m2 − 8n1 − np − ε1 − 8ε2 + 3)

) ,
Z5 =

Γ
(

1
4 (np + ε1 + 1)

)
Γ
(

1
4 (−4m1 − np − ε1 + 3)

) ,
Z1 =

Γ (−n1 − ε2)

Γ (−m2 + n1 + ε2 + 1)
.

(B.66)

The summations appearing in (B.41) have to fulfil

np ≥ −4m1, n1 ≥ m2. (B.67)

We introduce:

n′p = np + 4m1 ≥ 0, n′1 = n1 −m2, (B.68)

and the summations become:∑
np

∑
n1

∑
m1

∑
m2

→
∑

np,n′p,n1,n′1≥0

. (B.69)

After this change of summation variables we have to guarantee, that

m1 =
n′p − np

4
∈ Z. (B.70)

This is the reason for the second transformation given in (6.193) and the sum
over δ appearing in (6.192). The remaining steps are given in Section 6.4.
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B.2 The P11169[18] Model

In this model (B.12) is given by

ZS2 =
1

(2π)2

∑
m1,m2

∫∫
R2

dσ2ZpZ6Z
3
1

· Z5Z4e
−4πi(ζ1σ1+ζ2σ2)−i(θ1m1+θ2m2).

(B.71)

Phase IV

In this phase the contributing intersection is given by (Dp, D1). We perform
the following transformation:

x1 = ε1 +
1

12
(−6m1 − 2np − 2) , x2 = ε2 +

1

2
(2n1 −m2) . (B.72)

Another transformation we make is given by

ε1 → −
ε1

6
, ε2 → ε2, (B.73)

which gives a Jacobi-determinant of 1
6 . The above transformations result in

the following form of (B.17):

Zp =
Γ (−np − ε1)

Γ (6m1 + np + ε1 + 1)
,

Z6 =
Γ
(

1
6 (np + ε1 + 18 (n1 + ε2) + 1)

)
Γ
(
−m1 + 3m2 − 3n1 − 3ε2 − np

6 −
ε1
6 + 5

6

) ,
Z5 =

Γ
(

1
2 (np + ε1 + 1)

)
Γ
(

1
2 (−6m1 − np − ε1 + 1)

) ,
Z4 =

Γ
(

1
3 (np + ε1 + 1)

)
Γ
(

1
3 (−6m1 − np − ε1 + 2)

) ,
Z1 =

Γ (−n1 − ε2)

Γ (−m2 + n1 + ε2 + 1)
.

(B.74)

In the summations appearing in (B.41) we need to make sure that

np ≥ −6m1, n1 = m2. (B.75)

This motivates the following transformations of the summation variables:

n′p = np + 6m1 ≥ 0, n′1 = n1 −m2, (B.76)

which simplifies the summations to∑
np

∑
n1

∑
m1

∑
m2

→
∑

np,n′p,n1,n′1≥0

. (B.77)
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Similar to Section B.1 the requirement that

m1 =
n′p − np

6
∈ Z, (B.78)

leads to another transformation with:

n′p = 6k + δ, np = 6l + δ, δ = 1, . . . 5, k, l ∈ Z≥0. (B.79)

This further modifies the summations to

∑
np,n′p,n1,n′1≥0

→
5∑
δ=1

∑
k,l≥0

∑
n1,n′1≥0

. (B.80)

The remaining transformations are straightforward and the outcome is given
in Section 6.4.
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