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Abstract

Our current understanding of the Universe is based on the assumption that dark
matter outweighs baryonic matter by a factor of 5, leading to the development
of a multitude of theories to explain this “missing mass”. Nowadays, the ΛCDM
model has been established as the Standard Model of Cosmology due to its
ability to correctly describe the Universe on large scales. Despite its success,
backed by observations and simulations, it is unable to accurately describe
structure on the scale of dwarf galaxies; these deviations are usually denoted
as the small-scale problems. In recent years, scalar field dark matter (SFDM,
also Bose-Einstein condensed dark matter (BECDM) or ψDM) has been widely
studied as a possible solution of these problems. In this work we investigate the
evolution of SFDM halo density and circular velocity profiles through adiabatic
contraction (AC), as has been studied before for standard (collisionless) CDM.
We provide a thorough calculation for several key quantities based on the
foundation of the Gross-Pitaevskii-Poisson equations, followed by calculations
of the action integrals in the Quantum-Hamilton-Jacobi framework of such
systems. These actions are then solved numerically, to verify the validity of
the assumptions going into AC. We test AC for SFDM haloes in the “strongly
repulsive” self-interacting limit, known as the Thomas-Fermi regime, with a
wide range of core radii, RTF = 0.1− 4 kpc, typically found in dwarf galaxies.
We show that the inclusion of baryons exacerbates the small-scale problems for
typical cusp-core haloes of M200 ∼ 1011M⊙ when small core radii are considered.
However, kpc-sized cores lead to rotation curves in accordance with observations
even when including baryons, which is not the case for CDM or fuzzy dark
matter (FDM), the non-interacting limit of SFDM. Considering recent research
on the Thomas-Fermi regime that favours sub-kpc cores, our findings may
imply severe constraints for the parameter range of core sizes in the SFDM
model.
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Zusammenfassung

Unser derzeitiges Verständnis des Universums basiert auf der Annahme, dass
dunkle Materie die baryonische Materie um einen Faktor 5 überwiegt, was zur
Entwicklung einer Vielzahl von Theorien zur Erklärung dieser “fehlenden Masse”
führte. Heutzutage hat sich das ΛCDM-Modell aufgrund seiner Fähigkeit, das
Universum auf großen Skalen korrekt zu beschreiben, als das Standardmodell der
Kosmologie etabliert. Trotz seines Erfolgs, gestützt sowohl durch Beobachtun-
gen als auch Simulationen, ist es nicht in der Lage, die Struktur auf Skalen von
Zwerggalaxien genau zu beschreiben; diese Abweichungen werden üblicherweise
als “small-scale problems” bezeichnet. Als mögliche Lösung dieser Probleme
kam in den letzten Jahren die sogenannte Skalarfeld-Dunkle Materie (SFDM,
auch Bose-Einstein-kondensierte Dunkle Materie (BECDM) oder ψDM genannt)
immer mehr in den Fokus. In dieser Arbeit untersuchen wir die Entwicklung
der SFDM-Halodichte und der dazugehörigen Geschwindigkeitsprofile als Folge
der adiabatischen Kontraktion (AC), wie sie zuvor für die im Standardmodell
beschriebene (d.h. stoßfreie) dunkle Materie untersucht wurden. Wir bieten
eine gründliche Berechnung mehrerer wichtiger physikalischer Größen basier-
end auf der Grundlage der Gross-Pitaevskii-Poisson-Gleichungen, gefolgt von
Berechnungen der Wirkungsintegrale im Rahmen der Quanten-Hamilton-Jacobi-
Gleichung solcher Systeme. Diese Wirkungen werden anschließend numerisch
gelöst, um die Gültigkeit der Annahmen zu überprüfen, die für adiabatische
Kontraktion benötigt werden. Wir testen diese Kontraktion für SFDM-Halos im
Thomas-Fermi Regime, in dem es zu “stark abstoßenden” Wechselwirkungen der
Teilchen kommt, und für einen großen Bereich von Kernradien, RTF = 0.1− 4
kpc, welche typischerweise in Zwerggalaxien gefunden werden. Wir zeigen,
dass die Berücksichtigung von Baryonen die “small-scale problems” für typis-
che “cusp-core”-Halos mit M200 ∼ 1011M⊙ verschärft, wenn letztere kleine
Kernradien aufweisen. Im Gegensatz dazu führen jedoch Halos mit Kernradien
im kpc-Bereich zu Rotationskurven die sich mit Beobachtungen decken, selbst
wenn Baryonen einbezogen werden. Dies ist weder für das Standardmodell der
dunklen Materie, noch for Fuzzy Dark Matter (FDM), dem wechselwirkungs-
freien Regime von SFDM, der Fall. In Anbetracht der neuesten Erkenntnisse
zum Thomas-Fermi Regime, welche zeigen, dass sub-kpc-Halokerne bevorzugt
werden, könnten unsere Ergebnisse schwerwiegende Einschränkungen für den
Parameterbereich der Kernradien im SFDM-Modell implizieren.
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Chapter 1

Introduction

Controversial ideas, often in complete contradiction to the knowledge at that
time, have repeatedly turned out to be a better fit to observations than foregoing
concepts, such as Einstein’s theories of special and general relativity (Einstein
(1905) and Einstein (1916), respectively) or Hubble’s discovery of an expanding
Universe (Hubble, 1929), among others. The theory of a non-baryonic, dark
matter component as part of the total energy content in the Universe extends
this list further, owing to the fact that, to this day, no dark matter particle
has ever been observed directly. First mentions of dark matter are attributed
to Poincaré (1906)1, Kapteyn (1922) and, most importantly, the famous work
by Zwicky (1933), with his redshift studies of extragalactic nebulae such as
the Coma, Perseus and Virgo clusters. Since then, physicists endeavoured to
decipher the mystery that is dark matter.

Over the years a variety of models have emerged, with particle velocities
ranging from the non-relativistic to the fully relativistic limit, and their masses
spanning over several magnitudes. Others have tried to modify Newtonian
laws of gravity (known as MOND, see Milgrom (1983)) to account for the
gravitational effects identified in observations, which we will not discuss further.
Dark matter models base their assumptions on the existence of hypothetical
particles such as the axion (Peccei and Quinn (1977), Weinberg (1978), Wilczek
(1978)), supersymmetric and weakly interacting massive particles (WIMPs, see
Goldberg (1983), Ellis et al. (1984) for early work, and Jungman et al. (1996)
for a comprehensive review), ultralight bosons and many others. Although
dark matter in form of an elementary particle is favoured nowadays, it was
further proposed that primordial black holes (PBHs) could contribute to the
total amount of dark matter in the Universe (see, e.g., Carr and Kühnel (2020)
for a recent review). For an extensive review on the history of dark matter we
refer to Bertone and Hooper (2018), a summary of dark matter models from a
particle physics’ point of view is further given in Bertone et al. (2005).

While experimentalists aim to ultimately detect dark matter particles
through construction and usage of detectors with ever-growing precision, it is

1In his original work, written in French, he used the term matière obscure.
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the task of theorists to conceive and to narrow down the possible parameter
space for the numerous proposed candidates. This work aims to examine the
response of dark matter particles due to baryonic infall in galactic haloes in a
theoretical manner, based on early work by Blumenthal et al. (1986) (see also,
e.g., Barnes and White (1984), Ryden and Gunn (1987), Gnedin et al. (2004)).
However, while this so-called adiabatic contraction model has been applied
extensively in the context of the ΛCDM paradigm (see Section 1.2), it shall
now be extended to scalar field dark matter (SFDM) cosmologies, including
a thorough analysis of the underlying Quantum-Hamilton-Jacobi framework
appropriate for SFDM, and the notion of orbits, in order to verify the validity
of the assumptions usually required for adiabatic contraction.

The remainder of this chapter is dedicated to motivate the study of dark
matter, i.e. it covers various independent evidence for its existence, followed by
an introduction into today’s Standard Model of Cosmology, the aforementioned
ΛCDM model, and its ongoing small-scale crisis. The chapter then concludes
with a brief introduction to four nowadays popular dark matter models, each in
stark contrast to the others, and to structure formation. Chapter 2 covers the
analytical calculation of individual important quantities for the SFDM model.
The calculation of orbits in this model, expressed in action-angle variables,
and their visualization, achieved through numerical calculation, are presented
in Chapter 3. Chapter 4 introduces the framework and results for adiabatic
contraction in SFDM, and Chapter 5 finally summarises and discusses the
findings.

1.1 Evidence for dark matter

While there is much observational evidence for dark matter, discussing all of it
would exceed the scope of this thesis. Thus, from the three examples presented
here, each represents evidence on a different physical scale. Following Bertone
et al. (2005), we shall commence with the galactic scale and then subsequently
examine larger cluster and cosmological scales.

Rotation curves of spiral galaxies Rubin and Ford (1970) were among
the first publications dedicated to the study of these rotation curves. They
analyzed spectra of 67 HII regions from M31’s nucleus and found rotation curves
that are rapidly rising in the inner parts of the galaxy, but flatten at larger
distances from the center. Rogstad and Shostak (1972) further investigated
HI surface densities and rotation curves of five Scd galaxies. A comparison
of those quantities revealed that, although the bulk of neutral hydrogen gas
is located in the inner regions of the galaxies, the rotation curves again rise
rapidly and then flatten in the outer regions. A third, concurrent study by
Roberts and Rots (1973) observed the same phenomenon, although comparing
spiral galaxies of different types (i.e. Sb, Scd and Sab), thus confirming this
picture.

2



Newtonian dynamics teaches us that the (circular) velocity for an object
situated in a gravitational field follows

vcirc(r) =

√︃
GM(r)

r
, (1.1)

where G is the gravitational constant and M(r) is the enclosed mass at radius
r. Applying this equation to baryonic matter, i.e. stars, gas and dust, in spiral
galaxies, we were to expect an initial peak followed by a drop-off in velocity
for increasing radius - in contradiction to the observations described above.
However, if a surrounding dark matter halo is considered, with the galaxy
located in its center, equation (1.1) reproduces the characteristic flat rotation
curve, as visualized for several NGC galaxies in Begeman et al. (1991).

Gravitational lensing Based on Einstein’s theory of general relativity
we know that light bends, or more precisely, that photons travel through
warped space-time when passing a gravitational well, e.g. that of our Sun, a
galaxy or even massive galaxy clusters. His findings were first observed during
a total solar eclipse in 1919, which allowed astronomers to observe light from
stars near the Sun which were slightly out of position compared to the case
without light bending (Dyson et al., 1920). Since then, gravitational lensing has
been used extensively to study distant galaxies lying directly or partly behind,
for example, clusters. This effect is called strong lensing, since it requires
massive amounts of matter as lensing object; these high masses can thus result
in distortions like arcs, Einstein rings or even multiple images of the lensed
galaxy. A review of this phenomenon is given in Treu (2010). However, the
extent of these distortions can not be fully accounted for by the amount of
luminous matter alone, hinting once more to the existence of dark matter.

Apart from strong lensing, there is an additional, statistical effect, denoted
as weak lensing. Recently, the Dark Energy Survey (DES)2 has used this effect
to reconstruct a map of all matter for a large portion of the sky. Because it
is believed that dark matter outweighs baryonic matter by a factor of 5 (see
Section 1.2), this map shows the distribution of dark matter and can be used
for comparison to optical galaxy surveys for further studies (DES Collaboration,
2021).

Cosmic Microwave Background (CMB) The last example is one with
arguably the most considerable consequences. As a remnant of an early stage of
the Universe, originated approximately 380,000 years after the Big Bang in an
epoch of recombination, the CMB allows physicists to infer information about
content, geometry and evolution of the cosmos. It was first measured by Penzias
and Wilson (1965) as an excess temperature of 3.5±1 K; follow-up observations
by satellites like COBE, WMAP and Planck narrowed this temperature down
to 2.72548± 0.00057 K (see, e.g., Fixsen (2009), Planck Collaboration (2020)).

2https://www.darkenergysurvey.org/
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Figure 1.1: CMB temperature power spectrum (TT) as a function of mode number l,
reproduced with help of the CLASS code (Lesgourgues (2011), Blas et al. (2011)) and based
on Planck Collaboration (2020) data. The positions and heights of the various peaks, absolute
and relative to each other, provide remarkably accurate information about history and nature
of the Universe.

The mathematical framework behind CMB data is not trivial and beyond the
scope of this thesis, the reader is therefore referred to Planck Collaboration
(2020), and references therein, for a deeper dive into this topic. However,
publicly available codes like CLASS3 enable researchers to easily examine the
Planck data and experiment with other cosmological parameters (see, e.g.,
Rindler-Daller (2020)). Figure 1.1 shows the CMB TT temperature power
spectrum based on parameters from Planck Collaboration (2020) and obtained
through

Cl =
1

2l + 1

l∑︂
m=−l

⟨|alm|2⟩,

with multipole mode number l and expansion coefficients alm. From this, one
can deduce, for example, the energy content of the Universe as we know it
today, with matter densities Ωch

2 = 0.1200 ± 0.0012 for dark matter and
Ωbh

2 = 0.02237± 0.00015 for baryonic matter.

3https://lesgourg.github.io/class_public/class.html

4

https://lesgourg.github.io/class_public/class.html


1.2 The Standard Model and its small-scale problems

As mentioned above, there is a variety of dark matter models available today.
The earliest attempts attributed the missing mass to heavy neutrinos with
m ∼ 30 eV (see, e.g., Zel’dovich et al. (1982), Shandarin et al. (1983)), nowadays
called hot dark matter. Although promising at first, the theory was later more
or less discarded due to its inability to correctly describe observations - in hot
dark matter cosmologies structure would form slowly and “top down”, i.e. large
structures form first, followed by smaller structures. In reality, hierarchical
structure formation prevails, where small structures like galaxies form earlier
than larger ones like galaxy clusters, in a “bottom up” manner. One theory is
able to reproduce these observations, among numerous others, exceptionally
well - cold dark matter 4. In this theory the dark matter particles are described
as a collisionless, non-relativistic and non-baryonic gas. Accompanied with the
cosmological constant Λ, the model grants us the best description of the Universe
we have today - the Standard Model of Cosmology, or ΛCDM model. Assuming
a flat space-time geometry, the model yields the matter components as described
in the previous section; furthermore, the power-spectrum of primordial density
fluctuations is almost scale-invariant and pressureless cold dark matter collapses
under its own gravity, thus creating the gravitational wells into which baryons
can fall to form galaxies, clusters and the cosmic web.

Although the ΛCDM model is particularly successful in the description of
objects on large scales, the question of which particle dark matter consists
of is still an unsolved riddle. The Standard Model of Particle Physics does
not provide candidates for dark matter. This ultimately led to the theory
of weakly interacting massive particles (WIMPs) with masses in the range of
m ∼ 10 − 1000 GeV, which were tested by Peebles (1982) in the context of
large-scale anisotropy of the CMB. Another promising option would be the
QCD (quantum chromodynamics) axion with m ∼ 10−5 − 10−3 eV, postulated
as a solution to the strong CP problem (Peccei, 2008). While the quest for dark
matter particle detection persists, simulations further revealed discrepancies on
small scales between observations and predictions. Aptly termed small-scale
crisis of cosmology, these problems are subject of current research and shall be
presented in the following.

Cusp-core problem Observations of gas-rich dwarf galaxies and Low Sur-
face Brightness galaxies (LSBs) suggest dark matter density profiles with
approximately constant value in the central parts of the galaxies - so-called
cored profiles. However, Navarro et al. (1996) carried out N -body simulations
of CDM and identified cuspy density profiles for haloes and their subhaloes,
thus resulting in an overprediction of cold dark matter at small radii. Figure

4The terms “hot” and “cold” refer here to the velocities of dark matter particles, i.e. hot particles travel
with roughly the speed of light c, while cold particles are non-relativistic. Note that intermediate particle
velocities are denoted as “warm”, which are also studied as potential dark matter theories (Bond et al. (1982),
Blumenthal et al. (1982))

5



2.1 visualizes this universal NFW profile (see also equation (4.5)),

ρ(r) =
ρs

r
rs

(︂
1 + r

rs

)︂2 , (1.2)

with reference density ρs = 1 and scale radius rs = 1, alongside the cored
profile of an (n = 1)-polytrope, thus displaying the essence of the problem. A
comprehensive overview thereof is given in de Blok (2010).

Missing satellites problem The close to scale-invariant matter power
spectrum gives rise to a high amount of substructure in the low-mass regime,
the aforementioned subhaloes, which collapse prior to their more massive hosts
but still preserve their identities when falling into larger systems (Weinberg
et al., 2015). Given the role these subhaloes play in the formation of baryonic
structures, one would expect an almost equal amount of satellite galaxies around
larger ones, e.g. the Milky Way. According to Klypin et al. (1999), systems
with masses comparable to our host galaxy are predicted to be surrounded by
roughly 50 satellites, while (at the time the paper was published) only about
a dozen have been observed around the Milky Way. They further conclude
an even larger discrepancy when considering the observed satellites in the
Local Group. However, Weinberg et al. (2015) argue that this problem should
be solved comparatively easily by baryonic physics, i.e. suppression of gas
accretion onto haloes through the ultraviolet photoionizing background or gas
outflow due to supernovae and stellar winds.

Too big to fail problem This issue also concerns satellite galaxies, al-
beit concentrated on the brightest ones. Boylan-Kolchin et al. (2012) found
a disagreement between subhaloes in the Aquarius simulations and the most
luminous dwarf spheroidal galaxies around the Milky Way. In order to match
the luminosity function of our galaxy, dark matter subhaloes of these dwarf
spheroidals with masses ∼ 5 times larger than observed are necessary. Moreover,
ΛCDM underpredicts infall masses of these galaxies based on their luminosities;
this further implies star formation efficiencies that are not compatible with
that obtained from more massive galaxies. More recent studies like Kaplinghat
et al. (2019) were able to utilize Gaia5 data of satellite spheroidals to reassess
the too big to fail problem. They found an anticorrelation between central dark
matter densities of these galaxies and their orbital perimeter distances and
were not able to resolve the problem, but instead constrain proposed solutions.

1.3 Alternatives to the ΛCDM paradigm

Extensive research and effort is required in the future in order to unravel the
questions raised by dark matter - however, a variety of approaches are available

5https://sci.esa.int/web/gaia
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for astrophysicists to solve this mystery. Many people aim to further develop
the ΛCDM model to tackle the small-scale problems via baryonic feedback
(Bullock and Boylan-Kolchin, 2017). Others, on the other hand, attempt differ-
ent approaches to find better descriptions of the Universe - the development of
new theories. While some of these provide promising dark matter candidates,
or at least could describe a portion of it, these newer theories must withstand
exact scrutiny in order to possibly dethrone ΛCDM as the Standard Model.
Thus, they must correctly reproduce observations already described by ΛCDM,
while simultaneously give accurate predictions where the Standard Model is
unable to. We briefly present four alternative, fundamentally different models
currently researched.

Primordial Black Holes (PBHs) Earliest work on this topic was done
by Zel’dovich and Novikov (1967), who argued that objects with radii shorter
than the Schwarzschild radius,

rS =
2GM

c2
,

would lead to strong accretion of radiation if occurring at early stages of
expansion. Depending on the time of formation, these black holes could have
masses in the range of the Planck mass, mP =

√︁
ℏc/G = 2.176434 · 10−5 g, if

formed at the Planck time (∼ 10−43 s), or around 105M⊙ if formed just one
second after the Big Bang (Carr and Kühnel, 2020). Although these black holes
still belong to the family of cold dark matter theories, their lower mass limit of

MPBH > 10−18M⊙ > 1039 GeV

would be substantially heavier than any potential WIMP particle - by a factor of
1036 for even the heaviest WIMP (Frampton, 2016). There are numerous ways
PBHs could have formed, as summarized in Carr and Kühnel (2020), ranging
from the most natural possibility, primordial inhomogeneities, to inflationary
fluctuations or cosmic loops (Hawking, 1989). Current research is dedicated to
constraints for PBHs; these constraints may come from evaporation, lensing,
dynamics and others.

Self-interacting dark matter (SIDM) Another possibility to resolve
the cusp-core and missing satellite problems was proposed by Spergel and
Steinhardt (2000). In contrast to collisionless cold dark matter, here they
assume a substantial scattering cross-section but negligible dissipation and
annihilation, thus allowing the dark matter particles to self-interact with each
other. With an estimated range for this cross-section of

σ

m
= 0.45− 450 cm2 g−1,

it was possible to predict promising properties of galaxies, such as cored, spher-
ical halo centers and fewer dwarf galaxies in groups compared to standard CDM.

7



More recently, Egana-Ugrinovic et al. (2021) studied the evolution of dark mat-
ter perturbations in SIDM cosmologies, yielding matter power spectra for a
range of possible cross-sections. While bounds on SIDM velocity-dependent
cross sections are yet to be explored through strong lensing, stellar streams or
counts of Milky Way satellites, they highlight Lyman-α bounds as the most
important probe for future research in this field.

Modified Newtonian dynamics (MOND) The basic principle of this
theory is the modification of Newton’s second law, F = ma, describing the
force, F, as mass times acceleration, a. When introducing the acceleration
constant a0, which describes the transition from Newtonian to MOND regimes,
as well as the interpolating function µ(x), the adapted force equation reads

F = mµ

(︃
a

a0

)︃
a.

Evidently, µ(x) → 1 is necessary for x ≫ 1 in order to restore Newtonian
dynamics, while µ(x) → x for x≪ 1 must hold for observations on astronom-
ical scales. Famaey and Binney (2005) tested different analytical interpolating
functions to produce Milky Way’s rotation curve, though only numerically
specified functions were able to create circular velocities of vcirc(R0) = 220
km s−1 at the Sun’s galactocentric radius, R0. Interestingly, Hossenfelder and
Mistele (2019) showed that so-called superfluid dark matter is able to create
an additional force, resulting in similar effects as MOND.

Scalar field dark matter (SFDM) Here it is assumed that dark matter is
comprised of scalar bosons, thus spin-0 particles, which possibly experience self-
interaction (Li et al., 2014). A prominent candidate for this kind of dark matter
is the QCD axion with weak attractive self-interaction. Current astronomical
observational constraints allow an axion mass of around ∼ 10−5 eV, which would
result in structure formation comparable to that of standard CDM, including
the small-scale problems as well. However, extensions to the Standard Model of
Particle Physics also predict ultra-light axions (also axion-like particles, ALPs),
with a lower mass bound of m > 10−33 eV (Li et al., 2017). The upper limit is
set by the particles’ de Broglie wavelength, which determines the scale below
which structure formation is restrained. For example, for non-interacting ALPs,
a mass of 10−18 eV makes them indistinguishable from CDM with regard to the
CMB. The bosons of SFDM either form haloes by Bose-Einstein condensation
of the scalar field (Magaña and Matos, 2012), or are initially in a Bose-Einstein
condensate (Li et al., 2017). For the remainder of this thesis we will focus our
attention on this dark matter theory, with Chapter 2 giving a more detailed
analysis of the topic.

8



1.4 Structure formation

As mentioned above, the ΛCDM model suggests that structure forms hier-
archically. Starting from the initial perturbations in the early Universe, small
density fluctuations create the seeds for subsequent structure formation. This
process depends strongly on the amount of dark matter in the Universe, i.e.
other distributions of the total energy content would alter the positions, and
absolute and relative heights of the peaks in Figure 1.1. In areas with slight
overdensities, compared to the mean, more particles accumulate and form
gravitational wells. Under the influence of gravity these wells then evolve into
the dark matter haloes which can be observed and simulated today. In turn,
their gravitational influence also acts on baryons, dragging them to their very
centers to create galaxies. While large-scale cosmological simulations use the
N -body approach to investigate these interactions, there are also more simple
(in regard to baryon physics), approximate models like adiabatic contraction.
Based on the conservation of angular momentum, this model calculates the
response of dissipationless dark matter particles inside a halo to the presence
of baryonic matter situated in the center of the halo. In the light of Milky
Way data, Cautun et al. (2020) discuss that most studies ignore this effect
despite a change in density in the inner 10 kpc, essentially leading to flawed
mass estimates of our Galaxy. However, as this thesis is focused on SFDM
and especially on the small-scale problems, we shall investigate in Chapter 4
the effects of adiabatic contraction on SFDM dark matter halo densities and
rotational velocities on the scale of dwarf galaxies.

9
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Chapter 2

Scalar field dark matter

Alongside the above discussed alternatives to the ΛCDM paradigm stands
another theory, namely scalar field dark matter. As it forms the core of this
thesis, it deserves a whole chapter, which will be dedicated to its underlying
framework and its resulting consequences. Early work on this topic was done
by Baldeschi et al. (1983), who considered galactic haloes consisting of massive
fermions and bosons, the latter having a mass in the range of 10−24 − 10
eV. Further studies, for example by Hu et al. (2000), have investigated the
wave properties of this dark matter candidate composed of ultra-light scalar
particles. More precisely, these bosons with masses of m ∼ 10−22 eV behave in
a comparable way to standard CDM on large scales, while suppressing structure
formation on small, subgalactic scales. This is due to their small mass and their
non-relativistic velocity v, resulting in the particles’ de Broglie wavelength,

λdeB =
h

mv
,

becoming relevant on astronomical scales,

λdeB = 12.06

(︃
10−22 eV

m

)︃(︃
10 km s−1

v

)︃
kpc.

Ultra-light bosons are able to undergo a phase transition in the early Universe
to a Bose-Einstein condensate (BEC), thus occupying a single macroscopic
quantum state, the ground state, and ultimately leading to self-gravitating
Bose-Einstein condensed haloes (see, e.g., Rindler-Daller and Shapiro (2012)
and references therein)1.

Since its proposal as potential dark matter candidate, great effort has been
made in order to narrow down the range of the boson mass, e.g. through Lyman-
α forest constraints (Amendola and Barbieri, 2006), or from reionization and
UV-luminosity function comparisons at high redshift (Schive et al., 2016).
Others inferred the mass from dwarf galaxy rotation curves inside the Local

1Because of its wave-like nature and description as a Bose-Einstein condensate, scalar field dark matter is
also called wave dark matter or BEC dark matter in the literature.
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Group (Robles and Matos, 2013) and performed cosmological simulations to
study turbulence and relaxation of BEC haloes as well as cosmic filaments (Mocz
et al. (2017), Mocz et al. (2020)). While many of these works neglected self-
interaction between particles, recent studies shed more light on the regime with
strong repulsive self-interaction, specifically in the context of the small-scale
problems (Dawoodbhoy et al., 2021). In order to obtain a better understanding
of SFDM, the subsequent sections will provide step-by-step calculations based
upon a few key assumptions.

2.1 Fundamental equations

In this theory the behaviour of self-gravitating BEC haloes can be formulated
through a non-linear Schrödinger equation,

iℏ
∂ψ(r, t)

∂t
= − ℏ2

2m
∆ψ(r, t) +

(︁
mΦ(r, t) + g|ψ(r, t)|2

)︁
ψ(r, t), (2.1)

where m is the boson mass. This equation describes the evolution of the scalar
field ψ(r, t) in an external potential, in this case a time-dependent gravitational
potential Φ(r, t), while simultaneously experiencing two-body interactions
between the particles. The strength of this self-interaction is characterized
by the coupling constant g, which can be either repulsive or attractive. Since
attractive self-interaction does not suppress small-scale structure it will not be
considered in this thesis. In order to be repulsive, the coupling constant must
satisfy

g =
4πℏ2as
m

> 0, (2.2)

where as represents the s-wave scattering wave length (Rindler-Daller and Sha-
piro, 2012). The original form of equation (2.1) was developed independently by
Gross (1961) and Pitaevskii (1961) and is thus suitably called Gross-Pitaevskii
equation (see, e.g., also Pitaevskii and Stringari (2003) for a thorough and more
general overview of Bose-Einstein condensation). The repulsive interaction
gives rise to a “self-interaction pressure”

Psi = Kρρ
1+1/n =

gρ2

2m2
, (2.3)

which takes the form of a polytropic equation of state with n = 1 and where
Kρ = g/2m2 is the polytropic constant. Furthermore, the Newtonian gravita-
tional potential obeys the Poisson equation,

∆Φ(r, t) = 4πGρ(r, t), (2.4)

with ρ(r, t) = m|ψ|2 being the dark matter halo mass density; together with
equation (2.1) this set is sometimes referred to as the Gross-Pitaevskii-Poisson
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(GPP) equations. In order to obtain a closed system of bosons that form a
Bose-Einstein condensate, the wave function requires a normalization such that∫︂

V

|ψ|2 = N

is true for the total number of particles N inside the halo volume V .
It is possible to rewrite the GP equation (2.1) as hydrodynamic equations

similar to the classical case, i.e. a continuity equation and an (Euler) momentum
equation. Though, due to the bosons’ quantum-mechanical nature, they are
also more aptly called equations of “quantum hydrodynamics” (QHD). This
can be accomplished through decomposition of the wave function into its phase
function and its amplitude, yielding the so-called Madelung representation
(Madelung, 1927) in polar form,

ψ(r, t) = |ψ(r, t)|eiS(r,t)/ℏ =
√︃
ρ(r, t)

m
eiS(r,t)/ℏ, (2.5)

in which S(r, t) represents the action function. Inserting this expression into
the GP equation leads to

iℏ
∂

∂t
|ψ|eiS/ℏ = − ℏ2

2m
∆|ψ|eiS/ℏ +

(︁
mΦ + g|ψ|2

)︁
|ψ|eiS/ℏ.

While the left-hand side of this equation can be rewritten as

iℏ
∂

∂t
|ψ|eiS/ℏ = iℏ

(︃
eiS/ℏ

∂

∂t
|ψ|+ |ψ| ∂

∂t
eiS/ℏ

)︃
= iℏeiS/ℏ

(︃
∂|ψ|
∂t

+
i|ψ|
ℏ
∂S

∂t

)︃
,

rearrangement of the first term on the right-hand side results in

− ℏ2

2m
∆|ψ|eiS/ℏ = − ℏ2

2m

(︁
|ψ|∆eiS/ℏ + 2∇|ψ|∇eiS/ℏ + eiS/ℏ∆|ψ|

)︁
= − ℏ2

2m
eiS/ℏ

(︃
|ψ|
[︃
i

ℏ
∆S − 1

ℏ2
(∇S)2

]︃
+

2i

ℏ
∇|ψ|∇S +∆|ψ|

)︃
.

Evidently, the exponentials on both sides cancel out, effectively leading to

iℏ
∂|ψ|
∂t

− |ψ|∂S
∂t

= − ℏ2

2m
|ψ|
(︃
i

ℏ
∆S − 1

ℏ2
(∇S)2

)︃
− iℏ
m
∇|ψ|∇S − ℏ2

2m
∆|ψ|

+ |ψ|
(︁
mΦ + g|ψ|2

)︁
.
(2.6)

This equation can be further decoupled into real and imaginary part; both
must equal zero in order to satisfy the equation globally. The imaginary part
multiplied by 2|ψ|/iℏ then reads

2|ψ|∂|ψ|
∂t

+
1

m
|ψ|2∆S +

2

m
|ψ|∇|ψ|∇S = 0,
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which, by making use of product and chain rules, finally yields

∂|ψ|2
∂t

+∇
(︃

1

m
|ψ|2∇S

)︃
= 0. (2.7)

It is useful here to define the bulk velocity (i.e. the average flow velocity) of
the halo as

v =
1

m
∇S, (2.8)

with which expression (2.7) can be brought into the form of the desired con-
tinuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (2.9)

Furthermore, the real part of equation (2.6) can be multiplied by |ψ|, resulting
in

−|ψ|2∂S
∂t

+
ℏ2

2m
|ψ|∆|ψ| − 1

2m
|ψ|2(∇S)2 −mΦ|ψ|2 − g|ψ|4 = 0,

or, in terms of the dark matter halo density,

− ρ

m

∂S

∂t
+

ℏ2

2m

√︃
ρ

m
∆

√︃
ρ

m
− ρ

2m2
(∇S)2 − ρΦ− gρ2

2m2
= 0.

The second term in this expression can be identified as the so-called quantum
potential (Bohm, 1952), causing a “quantum pressure” that emerges from the
quantum-mechanical uncertainty principle; it is defined as

Q = − ℏ2

2m2

∆
√
ρ

√
ρ
. (2.10)

Applying ∇, dividing by ρ and making use of bulk velocity, eq. (2.8), and
self-interaction pressure, eq. (2.3), the final result yields the Euler-like equation
of motion

∂v

∂t
+ (v · ∇)v = −∇Q−∇Φ− 1

ρ
∇Psi. (2.11)

Equations (2.9) and (2.11) represent a system of quantum-mechanical hydro-
dynamic equations and are helpful to compare SFDM to other candidates for
dark matter, notably standard CDM, which is based upon the collisionless
Boltzmann equation (also Vlasov equation) that leads to the Jeans equations.
Unlike CDM without self-interactions, the set of QHD equations reveals fluid-
like properties for haloes consisting of Bose-Einstein condensate (Rindler-Daller
and Shapiro, 2012). The remainder of this chapter is dedicated to the study of
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static systems, thus ∂/∂t = 0 and v = 0, in spherical symmetry. Hence, the
left-hand side of the Euler equation vanishes and therefore reduces to

∇Q+
1

ρ
∇Psi = −∇Φ, (2.12)

showing that the combination of quantum potential and self-interaction pressure
act against the gravitational potential. SFDM allows two regimes serving as
limiting cases, one being the so-called Thomas-Fermi regime, in which self-
interaction pressure exceeds the pressure of the quantum potential (Psi ≫ Q),
the other one denoted as fuzzy dark matter (FDM) in the literature, where
self-interactions are negligible and Q is the dominant factor against gravity
(Psi ≪ Q). Both have been researched extensively in recent years and shall
thus be presented hereafter, with a thorough calculation of key quantities.

2.2 Thomas-Fermi regime

Let us start with the Thomas-Fermi (TF) approximation, where repulsion of
the bosons balances gravitational attraction, since this is the regime of interest
in this thesis.

Setting Q = 0 further reduces equation (2.12) to

1

ρ
∇Psi = −∇Φ, (2.13)

an equivalent to the Lane-Emden equation, as will be shown in the forthcoming.

Density profile Multiplying by r2 and taking the derivative with respect
to r yields

d
dr

(︃
r2

ρ

d
dr
Psi

)︃
=

d
dr

(︃
r2

ρ

d
dr

g

2m2
ρ2
)︃

= −r2∆Φ,

which enables the use of Poisson’s equation (2.4), leading to

1

r2
d
dr

(︃
r2

g

m2

dρ
dr

)︃
= −4πGρ. (2.14)

This can be solved using the substitutions

r = αz, dr = αdz, where α =

(︃
n+ 1

4πG
Kρρ

1
n
−1

0

)︃1/2

=

(︃
Kρ

2πG

)︃1/2

for the radius, and

ρ(r) = ρ0θ
n(z) = ρ0θ(z)

for the density. As mentioned earlier the self-interaction pressure takes the
form of an (n = 1)-polytropic equation of state, hence the simplifications in
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both substitutions. Furthermore, the central density of the halo is denoted by
ρ(0) = ρ0. Inserting these expressions above then returns

2Kρρ0
α2z2

d
dz

(︃
z2

dθ
dz

)︃
= −4πGρ0θ ⇐⇒ 1

z2
d
dz

(︃
z2

dθ
dz

)︃
+ θ = 0,

taking the form of the aforementioned Lane-Emden equation. The associated
boundary conditions assure a finite central density and read θ(0) = 1 and
θ′(0) = 0. Another substitution,

ξ(z) = zθ,
dθ
dz

=
ξ′z − ξ

z2
,

leads to

d
dz

(︃
z2
ξ′z − ξ

z2

)︃
= −zξ ⇐⇒ ξ′′ + ξ = 0,

which can now be solved easily. The general solution to this differential equation
is given by

θ(z) = a
sin(z)

z
+ b

cos(z)

z
,

with the constants a and b still to be determined. To satisfy the boundary
conditions, the constants need to be chosen accordingly,

lim
z→0

θ(z)
!
= 1 = lim

z→0

[︃
a
sin(z)

z
+ b

cos(z)

z

]︃
,

which can be solved by making use of the rule of L’Hôspital. This results in

lim
z→0

sin(z)

z
= lim

z→0

cos(z)

1
= 1 ⇒ a = 1

and

lim
z→0

cos(z)

z
= ∞ ⇒ b = 0.

The second condition is then automatically fulfilled,

θ′(0) = lim
z→0

z cos(z)− sin(z)

z
= lim

z→0

−z sin(z)
2z

= − lim
z→0

sin(z)

2
= 0,

which is again solved through the usage of L’Hôspital’s rule. The solution is
therefore of the form θ(z) = sin(z)/z, or, after backward substitution,

ρ(r) = ρ0
sin (πr/RTF)

πr/RTF
, (2.15)
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Figure 2.1: The density profile for an (n = 1)-polytrope is a typical cored profile, i.e. it
becomes flat at small radii. In contrast, the NFW profile represents the class of cuspy dark
matter profiles with increasing density in the inner regions. Note the steep decline of the
polytrope density once it approaches the Thomas-Fermi radius.

where the radius of the Thomas-Fermi polytrope, at which the density first
vanishes (i.e. at the first zero), is defined as

RTF = π

√︃
Kρ

2πG
= π

√︃
g

4πGm2
. (2.16)

It is remarkable that this radius does not depend on the polytrope’s total
mass, but only on the fundamental dark matter particle parameters of this
theory. Figure 2.1 shows the density profile corresponding to equation (2.15)
in comparison to a NFW profile, see equation (1.2), with RTF as its scale
radius, visualizing the sharp density drop-off at this radius. While these sharp
drop-offs are not observed in the Universe, they give a good description for the
core regions of dark matter haloes. In fact, as will be shown in Section 2.3,
observed and simulated density profiles can be reproduced exceptionally well
when embedding these cores in a surrounding envelope.

Gravitational potential Given the density profile, it is now possible to
again make use of the Poisson equation to derive the gravitational potential of
BEC halo cores in the Thomas-Fermi regime. Thus, inserting equation (2.15)
into equation (2.4) gives

∆Φ(r) = 4πGρ(r) = 4πGρ0
sin(πr/RTF)

πr/RTF
,
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or, with the Laplacian in spherical symmetry,
d
dr

(︃
r2

d
dr

)︃
Φ =

4πGρ0r sin(πr/RTF)

π/RTF
.

Performing simple partial integration leads to
dΦ
dr

=
4Gρ0RTF

r2

(︃
sin(πr/RTF)− πr/RTF cos(πr/RTF)

π2/R2
TF

+ c1

)︃
, (2.17)

which needs to be integrated further, though by substitution, to result in

Φ(r) =
4Gρ0R

3
TF

π2

(︃
−sin(πr/RTF)

r
− c1π

2/R2
TF

r
+ c2

)︃
. (2.18)

In order to specify the two integration constants c1 and c2 it is necessary to
accompany the equation with two boundary conditions. The first condition
usually is chosen so that no forces act in the center, thus ∇Φ(r = 0) = 0. From
expression (2.17) it is evident to use L’Hospital’s rule again on the first two
terms in the brackets; since both equal zero for r → 0, the necessary condition
for the first constant is c1 = 0. The second boundary condition is chosen as
Φ(r) = −1/r for r → ∞, i.e. it should resemble a Kepler potential for large
radii. Equation (2.18) then reads

−1

r
= −4Gρ0R

3
TF

π2

(︃
sin(πr/RTF)

r
− c2

)︃
,

where

−4Gρ0R
3
TF

π2

sin(πr/RTF)

r
≈ −const.

r
for r → ∞.

For the second condition to be satisfied c2 = 0 is thus required, and the
gravitational potential of an (n = 1)-polytrope in the Thomas-Fermi regime
reads

Φ(r) = −4Gρ0R
3
TF

π2

sin(πr/RTF)

r
. (2.19)

Enclosed mass & circular velocity For the purpose of this thesis it is
also useful to derive the analytic solutions of enclosed mass and rotational
velocity of such haloes. Given the already known density profile from equation
(2.15), the derivation of these quantities is straightforward. For the enclosed
mass an integration suffices to obtain

M(r) =

∫︂ r

0

4πr′2ρ(r′)dr′ = 4RTFρ0

∫︂ r

0

r′ sin(πr′/RTF)dr′

= 4RTFρ0

[︃
R2

TF sin(πr
′/RTF)− πRTFr

′ cos(πr′/RTF)

π2

]︃r
0

=
4R3

TFρ0
π2

(︃
sin(πr/RTF)−

πr

RTF
cos(πr/RTF)

)︃
, (2.20)

18



0.0 0.2 0.4 0.6 0.8 1.0

r/RTF

0.0

0.2

0.4

0.6

0.8

1.0

m
(r

)/
M

n = 1 polytrope

NFW

Figure 2.2: Normalized enclosed mass profile of the (n = 1)-polytrope, compared to the
NFW profile.

which can be seen in Figure 2.2. From this expression the circular velocity can
be calculated, resulting in

v(r) =

√︃
GM(r)

r
=

√︄
4GR2

TFρ0
π

(︃
RTF

πr
sin(πr/RTF)− cos(πr/RTF)

)︃
(2.21)

and shown in Figure 2.3.

2.3 Double-polytropes: Thomas-Fermi core plus envel-
ope

After deriving quantities concerning the cores of gravitationally bound BEC
haloes it is now time to complete the physical picture by embedding them into
envelopes modeled by isothermal spheres; this effectively leads to a double-
polytrope for the pressure (Dawoodbhoy et al., 2021). The assumption made
here is an additional velocity dispersion,

σ2 =
Pσ
ρ

= const., (2.22)

resulting in another polytropic pressure with n = ∞ and Kρ = σ2. This
assumption is consistent with observations of rotation curves of galaxies within
virialized CDM haloes which are close to isothermal. Equation (2.13) is then
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Figure 2.3: Circular velocity curve of the polytrope, obtained by equation (2.21), compared
to the NFW profile. Note that for the polytrope, the maximum vmax is reached at ∼ 0.85RTF,
while the NFW profile has its maximum value at rmax ≃ 2.163RTF (which depends on the
profile’s concentration parameter c; here c = 1 is considered).

extended by this pressure and reads

1

ρ
∇ (Pσ + Psi) =

1

ρ

d
dr

(︂
σ2ρ+

g

2m2
ρ2
)︂
= σ2d ln ρ

dr
+

g

m2

dρ
dr

= −∇Φ.

As above for the core only, multiplication by r2 is required, followed by taking
the derivative in order to use Poisson’s equation for the gravitational potential,

d
dr

(︃
σ2r2

d ln ρ

dr
+

g

m2
r2

dρ
dr

)︃
= −4πGr2ρ. (2.23)

Evidently, here one can again identify two limiting cases: In the core regions the
pressure from particle self-interactions is predominant, the velocity dispersion
can therefore be assumed to vanish, σ2 = 0, and the remaining equation is
consistent with eq. (2.14) and thus corresponds to the Thomas-Fermi regime,
appropriate for the central regions of the halo. In contrast, in the surrounding
envelope the velocity dispersion prevails and g = 0 can be adopted. This
solution corresponds to an isothermal sphere, hence eq. (2.23) reads as

d
dr

(︃
r2

d ln ρ

dr

)︃
= −4πGr2ρ

σ2
.

The density profile obtained by solving this equation yields

ρ(r) =
σ2

2πGr2
, (2.24)
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while its characteristic radius is given by

r0 =

(︃
σ2

4πGρ0

)︃1/2

.

The profile in equation (2.24) describes the halo envelope around the core and
corresponds to a flat rotation curve, thus being in agreement with observations.
Although there exist analytic solutions for each of the limiting cases of the
differential equation (2.23), in general, it can be only solved numerically. This
will be done with two different methods, as discussed below, which differ in the
way the equation gets non-dimensionalized.

Method 1 To proceed with the calculations it is necessary to introduce two
substitutions,

ρ̃ =
ρ

ρ0
, and ζ =

r

RTF
, dr = RTFdζ,

with the definition of the Thomas-Fermi radius from equation (2.16). Again,
the density in the center of the core is given by ρ(0) = ρ0. Furthermore, the
particles’ circular velocity at RTF,

v2(RTF) = v2c =
GMc

RTF
,

will be used, where the enclosed mass Mc at this radius reads

M(RTF) =Mc =
4ρ0R

3
TF

π
.

The validity of these two expressions can be checked by setting r = RTF in
equations (2.20) and (2.21). At last, a variable which determines the relative
strength of the two polytropic regimes can be defined,

κ =
σ2

v2c
.

Inserting these terms into eq. (2.23) leads to

d
dζ

(︃
σ2ζ2R2

TF

R2
TF

d ln ρ̃ρ0
dζ

+
g

m2

ρ0ζ
2R2

TF

R2
TF

dρ̃
dζ

)︃
= −4πGζ2R2

TFρ̃ρ0

d
dζ

(︃
σ2ζ2

d ln ρ̃

dζ
+

g

m2
ζ2ρ0

dρ̃
dζ

)︃
= −4πGζ2R2

TFρ̃ρ0

d
dζ

(︃
κζ2

d ln ρ̃

dζ
+ ζ2

dρ̃
dζ

)︃
= −π2ζ2ρ̃. (2.25)

Together with the boundary conditions ρ̃(0) = 1 and ρ̃′(0) = 0 this second
order differential equation can be solved numerically upon rewriting it in terms
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Figure 2.4: Numerical solutions to equation (2.25) with different values for κ. A vertical line
at RTF was added for reference. For κ → 0, the density profile approaches the solution of
the (n = 1)-polytrope, equation (2.15).

of a system of first order differential equations. Figure 2.4 shows solutions for
five different values of κ.

Method 2 The second method is based upon the substitutions

ρ = ρ0e
−ψ and ξ =

r

r0
, dr = r0dξ,

as was done in Chavanis (2019)2. Moreover, using the characteristic radius of
the isothermal sphere and the Thomas-Fermi radius, one can define

χ =

(︃
RTF

πr0

)︃2

=
π2gρ0
mkBT

=
1

κ
.

With these definitions equation (2.23) can be written as

d
dξ

(︃
σ2r20ξ

2

r20

d ln ρ0e
−ψ

dξ
+

g

m2

r20ξ
2ρ0
r20

de−ψ

dξ

)︃
= −4πGr20ξ

2ρ0e
−ψ

− d
dξ

(︃
σ2ξ2

dψ
dξ

+
g

m2
ξ2ρ0e

−ψ dψ
dξ

)︃
= −4πGr20ξ

2ρ0e
−ψ

1

ξ2
d
dξ

(︃
ξ2

dψ
dξ

+ χξ2e−ψ
dψ
dξ

)︃
= e−ψ, (2.26)

2Note that ψ describes only an auxiliary variable here and should not be confused with the bosonic wave
function from Section 2.1.
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Figure 2.5: Numerical solutions to equation (2.26) with different values for χ. A vertical
line at RTF was added for reference. For χ → ∞, the density profile approaches the solution
of the (n = 1)-polytrope, equation (2.15). For χ → 0, the solution becomes that of an
isothermal sphere.

complemented with the boundary conditions ψ(0) = ψ′(0) = 0. The solution
is obtained in the same way as for Method 1, using a numerical solver, and
visualized for different χ in Figure 2.5.

A comparison of both methods reveals identical results. However, for very
small κ (and thus large χ), Method 1 diverges from the true solution due to
numerical instabilities. Although these small values for κ do not represent
realistic halo structures due to their sharp density drop-off, this is something to
keep in mind with respect to the implementation in further numerical routines
(see Chapter 4 and Appendix B).

2.4 Fuzzy dark matter

In the second regime, called fuzzy dark matter (FDM), self-interactions are
neglected and only the quantum potential counteracts gravity. This non-
interacting limit has been studied extensively in the context of halo formation
through collisions of individual, so-called solitonic cores (see, e.g., Schive et al.
(2014), Schwabe et al. (2016), Mocz et al. (2017)), which result in similar,
extended density profiles as calculated in the previous section. However, since
this regime is not the focus of this thesis, this section will not provide calculations
as thorough as before and the reader is referred to the references therein, as
well as a recent review on the topic by Hui et al. (2017).

Here, the self-interaction pressure in equation (2.12) vanishes and the res-
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Figure 2.6: Density profiles for the fuzzy regime obtained from the analytic expressions in
equations (2.28) and (2.30). They are compared to the (n = 1)-polytrope of the Thomas-
Fermi regime. For all three cases RTF is used as core (or scale) radius.

ulting equation reads

∇Q = −∇Φ. (2.27)

This equation gives rise to the solitonic cores - stable, minimum-energy solutions
for self-gravitating FDM haloes - with constant central density, comparable to
the cores in the Thomas-Fermi regime, hence also being a viable option to solve
the small-scale problems. However, eq. (2.27) poses an eigenvalue problem and
an exact solution can only be obtained numerically (see, e.g., Chavanis (2019)).
Nevertheless, over the years several analytical approximations for the density
profiles have been published, of which two are shown in Figure 2.6. Schive et al.
(2014) introduced a density profile of the form3

ρ(r) =
ρ0[︁

1 + (r/rs)
2]︁8 , (2.28)

with central density ρ0 and scale radius rs. Furthermore, these solitonic cores
are embedded in a NFW-like host halo, with a core-halo mass relation

Mc ∝ a−1/2M
1/3
200 , (2.29)

which depends on the redshift; here a(t) describes the cosmic scale factor.
3The original work included a factor of 0.091 in the denominator. However, this factor can also be

accounted for in the scale radius rs.
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Another approximation is given by the Gaussian profile,

ρ(r) = ρ0 exp

(︃
−r

2

r2s

)︃
, (2.30)

where the notation from Chavanis (2019) is used4. Figure 2.6 shows both
profiles compared to a (n = 1)-polytrope with RTF as scale radius for all three
cases. Evidently, both profiles resemble the inner regions of the cored polytrope
profile with constant central density. However, the density decrease around
the core radius happens earlier for eq. (2.28) and is not as abrupt as for the
(n = 1)-polytrope or the Gaussian profile. Moreover, Chavanis (2019) and
Schobesberger et al. (2021) have shown that the (n = 2)-polytrope is another
good fit, provided that the polytropic constant reads

K =

√︃
2πGℏ2
9m2

.

The density profile is then given by

ρ(r) = ρ0θ(ξ)
2, ξ = r

(︃
ℏ2

8πGm2ρ0

)︃−1/4

,

with θ(ξ) as the solution to the Lane-Emden equation for n = 2, which needs
to be solved numerically.

4Others, like Schobesberger et al. (2021), used the factor 2σ instead of the scale radius rs, where σ is the
standard deviation of the distribution.
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Chapter 3

Quantum-Hamilton-Jacobi
framework

Another important and useful formulation for BEC dark matter haloes is
given by the Quantum-Hamilton-Jacobi equation (QHJE). It is an equivalent
description to the GP equation (2.1) and the quantum-hydrodynamic Euler
equation (2.11). Based on the calculation of the latter, it is an easy task to
set up an equation for the Hamiltonian of the system. This is accomplished
through division of the real part of equation (2.6) by |ψ|, leading to

−∂S
∂t

+
ℏ2

2m

1

|ψ|∆|ψ| − 1

2m
(∇S)2 −mΦ− g|ψ|2 = 0.

Making use of the definitions for the quantum potential (2.10) and bulk velocity
(2.8), this equation can be rewritten as

−∂S
∂t

=
mv2

2
+mQ+mΦ +

gρ

m
= H, (3.1)

which represents the total energy of the BEC halo. Here, the action function
S(r, t) takes the place of a so-called generating function1; the goal of setting
up a (Quantum-)Hamilton-Jacobi equation is to determine this function.

Although two limiting cases have been introduced in the previous chapter,
the calculation of this generating function shall be done in the most general
way, thus including quantum potential as well as self-interactions. Based on
the Hamiltonian, the subsequent section then provides numerical results for
the Thomas-Fermi regime.

3.1 Action-angle variables for SFDM

Before calculating the QHJE it is necessary to define the underlying framework
of the method. The Hamiltonian in equation (3.1) will be used in spherical

1In Hamiltonian mechanics there are, in general, four different generating functions. Their name owes to
the fact that their derivatives generate differential equations that determine the dynamics of the system in
question.
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coordinates (r, ϑ, φ). Furthermore, canonical transformations to more suitable,
generalized coordinates will be made - the so-called action-angle variables.
These action-angle variables generally arise from Hamilton-Jacobi equations
and are especially useful when the latter are completely separable. To calculate
the QHJE of the system it is of benefit to use momentum instead of velocity,
hence equation (3.1) translates to2

p2

2m
+mQ(r) +mΦ(r) +

gρ(r)

m
= −∂S(r, t)

∂t
. (3.2)

The left-hand side of this equation, the Hamiltonian, can then be written as

H(r,p, t) =
p2

2m
+mQ+mΦ +

gρ

m

=
1

2m

(︃
p2r +

p2ϑ
r2

+
p2φ

r2 sin2 ϑ

)︃
+mQ+mΦ +

gρ

m
, (3.3)

or, as it will be used later, in matrix notation,

H(r,p, t) =
(︁
pr pϑ pφ

)︁⎛⎝1/m 0 0
0 1/mr2 0
0 0 1/mr2 sin2 ϑ

⎞⎠⎛⎝prpϑ
pφ

⎞⎠
+mQ+mΦ +

gρ

m
. (3.4)

In this context the generating function S is called Hamilton’s principle function.
Its key role is to enable the canonical transformations

p =
∂S(r, t)

∂r
⇒ pr =

∂S

∂r
, pϑ =

∂S

∂ϑ
, pφ =

∂S

∂φ
,

which, after inserting these expressions into the Hamiltonian in eq. (3.2),
effectively yields a new Hamiltonian K,

K
(︃
r,
∂S

∂r
, t

)︃
=

1

2m

(︃
∂S

∂r

)︃2

+mQ+mΦ +
gρ

m
+

1

2mr2

(︃
∂S

∂ϑ

)︃2

+
1

2mr2 sin2 ϑ

(︃
∂S

∂φ

)︃2

+
∂S

∂t
= 0.

(3.5)

This equation is the desired Hamilton-Jacobi equation. Due to the quantum
potential Q appearing in it, this form is often more precisely referred to as
Quantum-Hamilton-Jacobi equation (Wyatt, 2005). Its main advantage is
that, since it is zero, the generalized coordinates, as well as the canonically
conjugated momenta, are constants and thus conserved quantities. However,

2Since spherical symmetry is assumed for the density ρ, the same is done for quantum potential Q and
gravitational potential Φ; hence the dependence on r only.
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solving this partial differential equation is not trivial and is usually only done
when separation of variables can be applied to Hamilton’s principle function.
Whether the Hamilton-Jacobi equation separates depends on both the physical
problem and the chosen coordinate system3. Although there is no general way
of finding out if separability is feasible, conveniently for orthogonal coordinate
systems there are the so-called Stäckel conditions (developed by Stäckel (1891),
see also Goldstein et al. (2001), Boccaletti and Pucacco (2004)) in order to
determine if separation is possible. These five conditions read:

1. The Hamiltonian is conserved.

2. The Hamiltonian can be written in the form

H =
1

2

(︁
p⊤ − a⊤)︁ T −1(p− a) + V (q) (3.6)

with the vector a depending linearly on the generalized momenta and
a square matrix T , whose elements depend on the chosen coordinate
system.

3. The elements of vector a only depend on the corresponding coordinate,
i.e. ai = ai(qi).

4. The potential can be written in the form

V (q) =
∑︂
i

Vi(qi)

Tii
. (3.7)

5. There exists a matrix ϕ with an inverse ϕ−1, where the diagonal
elements of both matrices only depend on the corresponding coordinate
or are constants. According to Greenwood (1997), the elements of ϕ
can be determined through

ϕij =
∂Wi

∂qi

∂2Wi

∂qi∂αj
. (3.8)

Hereafter, the Stäckel conditions shall be worked out in order to verify if this
solution approach can be applied to our system.

First, whenever a Hamilton-Jacobi equation does not depend explicitly on
time, the principle function can be written in the form

S(r, t) = W (r)− αtt, (3.9)

3For example, the Kepler problem can be separated in plane polar coordinates (r, ϕ), but not in Cartesian
coordinates (x, y, z).
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with W now called Hamilton’s characteristic function and an integration con-
stant αt. This poses the question whether the same procedure can be applied
again, and if, under which circumstances? We are therefore looking for a
solution that reads

W = Wj(qj, α) +W ′(qi, α),

where W ′ depends on all generalized coordinates qi except qj, and where α
represents some constant. Whenever this is the case, the Hamilton-Jacobi
equation takes the form

H
(︃
qi,
∂W ′

∂qi
, f

(︃
qj,

∂Wj

∂qj

)︃)︃
= α1, (3.10)

with α1 representing a constant. The equation can then be inverted and solved
for the function f , leading to

f

(︃
qj,

∂Wj

∂qj

)︃
= g

(︃
qi,
∂W ′

∂qi
, α1

)︃
.

Since the left-hand side of this equation depends only on the coordinates qj,
whereas the right-hand side depends on the other qi, it can exclusively be
satisfied when both sides are equal to the same constant. The equation can
thus be written as

f

(︃
qj,

∂Wj

∂qj

)︃
= αj = g

(︃
qi,
∂W ′

∂qi

)︃
and another potential variable separation has been carried out. To continue
with the Stäckel conditions, it is evident that inserting equation (3.9) into the
QHJE (3.5) yields

H = αt = E,

the constant αt is thus identified as the total energy of the system. Furthermore,
the Hamiltonian is conserved and the first Stäckel condition is automatically
satisfied. The Quantum-Hamilton-Jacobi equation then reads

1

2m

(︃
∂W

∂r

)︃2

+mQ+mΦ +
gρ

m
+

1

2mr2

(︃
∂W

∂ϑ

)︃2

+
1

2mr2 sin2 ϑ

(︃
∂W

∂φ

)︃2

= E.

(3.11)

For the second condition a comparison between the expressions (3.4) and (3.6)
reveals that a = 0 in this system. Moreover, the 3 × 3 matrix T −1 can be
identified as

T −1 =

⎛⎝1/m 0 0
0 1/mr2 0
0 0 1/mr2 sin2 ϑ

⎞⎠ ,
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with its inverse

T =

⎛⎝m 0 0
0 mr2 0
0 0 mr2 sin2 ϑ

⎞⎠ .

Now, the potential V (q) is the sum of gravitational potential, quantum potential
and the self-interaction term,

V (q) = V (r) = mΦ(r) +mQ(r) +
gρ(r)

m
, (3.12)

and therefore the second condition is met. Since the Hamiltonian does not
depend linearly on the generalized momenta and thus a = 0, condition three
is again automatically satisfied. The fourth Stäckel condition also imposes
constraints on the potential. From eq. (3.7) one can see that the most general
form of a potential for a single-particle system can be written as

V (q) = Vr(r) +
Vϑ(ϑ)

r2
+

Vφ(φ)

r2 sin2 ϑ
.

Given that spherical symmetry is assumed and thus Vϑ(ϑ) = Vφ(φ) = 0, the
equation reduces exactly to eq. (3.12), hence this condition is fulfilled. Finally,
the arguably most bewildering condition demands the existence of the matrices
ϕ and ϕ−1. Equation (3.8) is used to determine the elements of ϕ, and then
obtain the elements of ϕ−1 by simply performing matrix inversion. This can be
accomplished by assuming a separation approach for Hamilton’s characteristic
function, i.e.

W (r) = W (r, ϑ, φ) = Wr(r) +Wϑ(ϑ) +Wφ(φ).

Evidently, when inserting this expression into equation (3.11), it does not
depend explicitly on the coordinate φ; φ is therefore a cyclic coordinate. When
this is the case,

pφ =
∂Wφ

∂φ
= αφ, (3.13)

with αφ being another integration constant (just like αt earlier). With this
result the remaining equation reads

1

2m

(︃
∂Wr

∂r

)︃2

+mQ+mΦ +
gρ

m
+

1

2mr2

[︄(︃
∂Wϑ

∂ϑ

)︃2

+
α2
φ

sin2 ϑ

]︄
= E. (3.14)

Only the terms in square brackets of equation (3.14) depend upon the coordinate
ϑ (and only upon ϑ). Thus, the Hamiltonian takes exactly the form of eq.
(3.10) and it can be inferred that these terms must be constant as well,(︃

∂Wϑ

∂ϑ

)︃2

+
α2
φ

sin2 ϑ
= α2

ϑ, (3.15)
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from which follows that

pϑ =
∂Wϑ

∂ϑ
=

√︃
α2
ϑ −

α2
φ

sin2 ϑ
.

Inserting this expression into eq. (3.14) yields(︃
∂Wr

∂r

)︃2

+
α2
ϑ

r2
= 2m

(︂
E −mΦ−mQ− gρ

m

)︂
,

which solely depends on the coordinate r and allows for the momentum to be
calculated,

pr =
∂Wr

∂r
=

√︃
2m
(︂
E −mΦ−mQ− gρ

m

)︂
− α2

ϑ

r2
.

Finally, the matrix ϕ can be constructed by using equation (3.8). Their
individual elements read

ϕ11 =
∂Wr

∂r

∂2Wr

∂r∂αt
= m ϕ12 =

∂Wr

∂r

∂2Wr

∂r∂αϑ
= −αϑ

r2
ϕ13 =

∂Wr

∂r

∂2Wr

∂r∂αφ
= 0

ϕ21 =
∂Wϑ

∂ϑ

∂2Wϑ

∂ϑ∂αt
= 0 ϕ22 =

∂Wϑ

∂ϑ

∂2Wϑ

∂ϑ∂αϑ
= αϑ ϕ23 =

∂Wϑ

∂ϑ

∂2Wϑ

∂ϑ∂αφ
=

−αφ
sin2 ϑ

ϕ31 =
∂Wφ

∂φ

∂2Wφ

∂φ∂αt
= 0 ϕ32 =

∂Wφ

∂φ

∂2Wφ

∂φ∂αϑ
= 0 ϕ33 =

∂Wφ

∂φ

∂2Wφ

∂φ∂αφ
= αφ,

which gives ϕ as

ϕ =

⎛⎝m −αϑ/r2 0
0 αϑ −αφ/ sin2 ϑ
0 0 αφ

⎞⎠
and its inverse ϕ−1 as

ϕ−1 =

⎛⎝1/m 1/mr2 1/mr2 sin2 ϑ
0 1/αϑ 1/αφ sin

2 ϑ
0 0 1/αφ

⎞⎠ .

The diagonal elements of both matrices depend only on constants and thus the
fifth Stäckel condition is satisfied. The Quantum-Hamilton-Jacobi equation
(3.5) is therefore completely separable.

Before proceeding with the calculation of action-angle variables, it is helpful
to take a closer look at the integration constants αφ and αϑ emerging here.
From equation (3.13), the former can be identified as the angular momentum
component in z-direction, αφ = Lz, as described in Binney and Tremaine
(2008). Furthermore, when rewriting eq. (3.15) as

p2ϑ +
p2φ

sin2 ϑ
= α2

ϑ,
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one can see that αϑ = |L| = L is the magnitude of the angular momentum
vector. Thus, together with the constant αt = E, these three constants represent
the conservation of energy, of the magnitude of angular momentum and of its
component Lz. With this knowledge Hamilton’s principle function S can now
be fully expressed and takes the form

S(r, t) = W (r)− Et = Wr(r) +Wϑ(ϑ) +Wφ(φ)− Et

=

∫︂
dr

√︃
2m
(︂
E −mΦ−mQ− gρ

m

)︂
− L2

r2
+

∫︂
dϑ

√︃
L2 − L2

z

sin2 ϑ

+

∫︂
dφLz − Et.

Finally, the last task is to calculate the action-angle variables. The generalized
momenta, the actions, are defined as

Ji =
1

2π

∮︂
pidqi =

1

2π

∮︂
∂Sqi
∂qi

dqi, (3.16)

with the old coordinates qi and momenta pi, while the respective coordinates,
called angles, can be calculated by

θ̇i =
∂H
∂Ji

= Ωi. (3.17)

This new set of variables defines an invariant three-torus, as schematically
depicted in Figure 3.1 for two dimensions, with the actions Jr, Jϑ and their
corresponding angles Ωr,Ωϑ. The resulting action integrals for spherical SFDM
haloes read

Jφ =
1

2π

∫︂
dφLz = Lz, (3.18)

Jϑ =
1

2π

∫︂
dϑ

√︃
L2 − L2

z

sin2 ϑ
, (3.19)

Jr =
1

2π

∫︂
dr

√︃
2m
(︂
E −mΦ−mQ− gρ

m

)︂
− L2

r2
. (3.20)

Computing these actions analytically is only possible for few cases, even if the
quantum potential and self-interaction are disregarded. One special case is
the isochrone potential (Henon (1959a), Henon (1959b)) which includes the
homogeneous sphere and Kepler potential as limiting cases. A derivation of
the analytical solutions of this particular potential is given in Appendix A.

3.2 Orbits in the Thomas-Fermi regime

With the actions calculated for SFDM, it is now possible to investigate them
further in the Thomas-Fermi approximation. While equations (3.18) and (3.19)
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Jr

Jϑ

Ωr

Ωϑ

Figure 3.1: Invariant two-torus for a two-dimensional potential. The actions Jr and Jϑ
define the size of the torus, while the angles Ωr and Ωϑ define the particle position, i.e. its
trajectory on the torus. Note that both angles repeat periodically with 2π.

do not change in this regime, the radial action (3.20) gets simplified by dropping
the Q-term and thus reads

Jr =
1

2π

∫︂
dr

√︃
2m
(︂
E −mΦ− gρ

m

)︂
− L2

r2
.

The complete expression is then given when inserting the gravitational potential
of the TF regime (2.19) into this equation.

To visualize the constant actions, a numerical calculation is required. The
Python package of choice to accomplish this is gala4, developed for performing
common tasks associated with galactic dynamics5 (Price-Whelan, 2017). gala
allows to define miscellaneous potentials, if not pre-defined already, and is
able to calculate stellar (or, in this case, dark matter particle) orbits and their
corresponding action-angle variables. While orbit integration is implemented
straightforward and can be done with multiple integrators (e.g. the Dormand-
Prince method, Leapfrog integration, fifth-order Runge-Kutta, and others),
the transformation to action-angles is based on work by Sanders and Binney
(2014). The formalism described therein relies on torus mapping, a method
which provides orbits with specified actions instead of orbits with specified
initial conditions. This way it is possible to derive actions and angles (and
thus frequencies) for a series of phase-space coordinates (xi, vi), evolved along
an orbit for several timesteps 0 ≤ ti ≤ T , where T specifies the total time

4http://gala.adrian.pw/en/latest/
5Another available module would be galpy (Bovy, 2015). However, this package only allows orbit

integration for already defined potentials; the (n = 1)-polytrope potential is not included.
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span for integration. With this series it is possible to create a generating
function that maps a toy torus of a simple toy potential into the desired torus
describing the particle’s orbit. These toy potentials can be divided into two
categories: A triaxial harmonic oscillator is used for box orbits, while loop
orbits are described by the isochrone potential. As the (n = 1)-polytrope
potential considered here is part of the latter family, the isochrone potential is
the toy potential of choice6.

With the potential defined and the Hamiltonian of the Thomas-Fermi regime,

H =
1

2m

(︃
p2r +

p2ϑ
r2

+
p2φ

r2 sin2 ϑ

)︃
+mΦ +

gρ

m
,

implemented, gala integrates the orbit for a number of specified timesteps
and calculates from them the actions and angles. Figure 3.2 visualizes the
derived orbits in the Thomas-Fermi core-region of a BEC halo in Cartesian
coordinates (x, y, z) with arbitrarily chosen initial conditions of [1, 1, 0] kpc for
the positions, [0, 50, 30] km s−1 for the particle velocities and a total of 4000
timesteps, which translate to 2 Gyr. It is important to note that, for realistic
particle positions and velocities, the gravitational potential enables (almost)
circular orbits, which is an important underlying assumption in Chapter 4.

Furthermore, the associated actions Jr, Jϑ and Jφ are presented in Figure 3.3.
Evidently, all three actions show almost constant behaviour, with variations
only in the range of 10−10. Shorter integration times reveal a minor sinusoidal
superimposition in all three actions. Although this does not affect the overall
“constant” nature of the actions, it might stem from the choice of gravitational
potential - the sinus in equation (2.19).

6Generally speaking, box orbits are observed in triaxial systems, while loop orbits occur in systems with
spherical or axisymmetric symmetry.
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Figure 3.2: Particle orbits in Cartesian coordinates (x, y, z) for a SFDM halo in the self-
interacting Thomas-Fermi regime with core radius RTF = 4 kpc obtained with gala. The
initial conditions were chosen arbitrarily as xi ∈ [1, 1, 0] kpc for positions and vi ∈ [0, 50, 30]
km s−1 for velocities.
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Figure 3.3: Corresponding actions Ji for the orbits in Figure 3.2. The top panel shows all
three actions plotted together; the variations are so small that, at this scale, the graphs look
completely constant. The bottom three panels show zoomed-in versions for Jφ, Jϑ and Jr,
respectively. For each of the panels the numbers on the upper left corner indicate a base and
an offset. Only at these scales the variations are clearly visible. This stability thus enables
the actions to create the surface of a three-dimensional invariant torus as depicted in Figure
3.1 for two dimensions.
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Chapter 4

Adiabatic contraction

Chapters 2 and 3 were dedicated to the calculation of several physical quant-
ities associated with Bose-Einstein condensed SFDM haloes. However, these
calculations were performed while neglecting the presence of baryonic matter
and thus were focused solely on the dark matter component. This chapter will
present a model to study the gravitational response of dark matter particles
due to baryonic accumulations in the center of haloes, applied to SFDM. When
gravitational potentials undergo slow variations compared to the typical orbital
frequency, these changes are called adiabatic and their associated action integ-
rals

∫︁
pdq, as calculated in equations (3.18) - (3.20), remain constant during the

variation. These actions are therefore often referred to as adiabatic invariants,
while the model is suitably called adiabatic contraction (AC), referring to the
inward pull of dark matter due to baryons.

Among the first to consider these adiabatic invariants in order to gain
information about the dynamics in contracting galaxies were Eggen et al.
(1962). In the context of planetary orbits around a star, they calculated
the radial action in an isochrone potential, equation (A.10), as presented in
Appendix A. Zel’dovich et al. (1980) later used the approach of collapsing
matter dragging weakly interacting leptons inwards to infer mass bounds of
these heavy, stable and neutral leptons, which ultimately led to the preclusion
of such leptons to account for the missing mass in galaxies and clusters. Then,
a few years later, Barnes and White (1984) further used this model in a
collisionless N -body code to determine the response of a proto-bulge to the
gravitational influence of an exponential disk located in the center of the bulge.
However, the most influential publications on this topic are Blumenthal et al.
(1986), who first named it adiabatic contraction, and Ryden and Gunn (1987),
whose studies were carried out concurrently. While the former presented the
analytic framework for the adiabatic invariants of dissipationless particle orbits
specifically for galactic haloes with an emphasis on the Milky Way, the latter
embedded the theory on a much larger scale, starting from small perturbations
in the initial density of a CDM Universe, which served as seeds for subsequent
contraction. Both studies, however, were able to create flat rotation curves
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as observed in the Universe, effectively achieved through the gravitational
contraction due to infalling baryons.

Following Blumenthal et al. (1986), we can exploit the discussed properties
of adiabatic invariants. For the basic presumption that a dark matter particle
moves along a circular orbit at radius r inside a spherically symmetric mass
distribution M(r), the quantity rM(r) remains constant. This expression
represents the squared angular momentum in spherical potentials, occuring in
equations (3.18), (3.19) and (3.20) for the actions. Equations (3.18) and (3.19)
can be evaluated readily, just like equations (A.3) and (A.4), see Appendix
A. The condition L2 = rM(r) = const. can then be used to calculate the
response of dark matter particles to baryonic particles inside a halo, where
the fraction of baryonic matter is determined by f =Mb(rf)/Mtot. Given an
initially spherically symmetric mass distribution Mi(ri), the baryons inside such
a halo fall inwards onto a final baryonic mass distribution Mb(rf), dragging
with them the surrounding dark matter particles. From the particle orbits’
adiabatic invariant one can then deduce

rf [Mdm(rf ) +Mb(rf )] = riMi(ri) = ri
Mdm(rf )

1− f
, (4.1)

where Mdm(rf ) describes the dark matter mass profile after contraction. Equa-
tion (4.1) needs to be solved iteratively for Mdm(rf ) in order to remain constant.
To study the contraction, Blumenthal et al. (1986) assumed a pseudo-isothermal
sphere as initial distribution for the (dissipationless) dark matter component,
whose mass profile is described by

Mpis(r) =
4πρ0r

2
h

9

(︄
3r −

√
3rh arctan

[︄√
3r

rh

]︄)︄
, (4.2)

with central density ρ0 and core radius rh, which they chose to be 42% of
the outer halo radius. Combined with the baryonic mass distribution of an
exponential disk,

Mb(r) ∝ 1−
(︂
1 +

r

b

)︂
exp

(︂
−r
b

)︂
, (4.3)

where b represents the associated scale length, they investigated contractions
for various configurations, i.e. high or low baryon fractions, and a small or
large exponential disk. Their considerations provided an opportunity to verify
the correctness of the Python code written for this method1, which is shown
in Appendix B, and effectively made it possible to recreate Figure 1 and 2
of the original publication. The velocity profiles in Figure 4.1 best show the
response of the dark matter particles to the embedded exponential disk; e.g.

1The core concept of the code, the contraction based on equation (4.1), was taken from the implementation
by Freese et al. (2009). Although applied there on a much smaller scale, namely that of dark stars, the
iterative process to solve the equation is identical. Some alterations had to be implemented to fit the
environment considered for our purpose.
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Figure 4.1: Circular velocities based on equation (1.1) for several baryon fractions f and
scale lengths b of the baryon mass profile in equation (4.3), with normalization such that
v(1) = 1. These results are obtained from the adiabatic invariant condition in equation (4.1)
and show the effect baryons have on the initial, underlying dark matter mass profile in eq.
(4.2) (black dotted line). This plot may be compared to Figure 1 in Blumenthal et al. (1986).
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Figure 4.2: Corresponding densities ρ to the velocities in Figure 4.1, with identical cases
shown. Additionally, the open circles show the baryonic density profile for f = 0.1 and
b = 0.07. As in Blumenthal et al. (1986), the density is normalized such that M(1) = 1. This
plot may be compared to Figure 2 in Blumenthal et al. (1986).

41



the blue dot-dashed line, which describes a small baryonic disk concentrated
in the center of the halo, leads to a sharp peak in the inner regions of the
halo, while the green dot-dashed line shows a more outspread disk, resulting in
significantly less qualitative changes of the velocity profile. This can be further
seen in Figure 4.2 for the density profiles, where the slope of the final curve for
the case of f = 0.1, b = 0.07 (orange dot-dashed line) increases slightly in the
regions where the baryonic density (open circles) gets significant enough. The
central density of this case thus rises by more than one order of magnitude.

Although this adiabatic contraction model has been used extensively to
calculate the effect of baryons on dark matter particles in haloes, its assumption
of purely circular orbits is merely an approximation. This led Gnedin et al.
(2004) to publish a modification of the model that accounts for highly eccentric
orbits. This is achieved through the usage of an orbit-averaged radius r̄ that is
defined as

r̄ = Arw,

with halo-to-halo variations of the parameters A and w. With mean values of
A ≈ 0.85± 0.05 and w ≈ 0.8± 0.02, the conserved quantity of the Blumenthal
model is adjusted such that rM(r̄) is constant instead. This modification
further resolves the general overprediction of the contraction of the Blumenthal
method in the inner parts of haloes, r/rvir ≲ 0.1, where rvir is the virial radius of
the halo (see, e.g., Duffy et al. (2010), Cautun et al. (2020)). Compared to high-
resolution cosmological simulations, the modified model results in deviations of
only ≲ 10%, while also avoiding systematic over- and underpredictions of the
resulting density.

Furthermore, Cautun et al. (2020) recently studied the mass profile of the
Milky Way as inferred from fitting models to the galactic rotation curve with
Gaia data. They argued that adiabatic contraction models have rarely been
used in the context of the Milky Way, and that the contraction is mostly ignored.
However, omitting the change in the dark matter density, which plays a crucial
role in determining its mass profile, leads to systematic biases, especially in
the central parts of the Galaxy. This provides a motivation for the study of
adiabatic contraction, even more so because it has thus far not been tested in
SFDM cosmologies.

4.1 Adiabatic contraction in the Thomas-Fermi regime

Using the results of the previous sections, we can study now the gravitational
contraction of SFDM haloes due to baryonic matter. In order to make comparis-
ons to observables in the Universe and to previous literature as straightforwardly
as possible, various parameters have to be chosen accordingly.

• Initial dark matter profile Since the goal is to study haloes in the
Thomas-Fermi regime and in the presence of baryons, the profile of choice
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is that obtained in Section 2.3, i.e. an (n = 1)-polytropic core surrounded
by an isothermal envelope. Due to numerical instabilities of Method 1, it is
favourable to use the differential equation (2.26) of Method 2 to calculate
the density profile. With a realistic value of χ = 1, the enclosed mass at
each initial radius ri can then be determined. In addition, core radii in
the range of RTF ∈ [0.1, 4] kpc are used.

• Final baryon profile With the small-scale problems of CDM in mind,
it is especially interesting to study adiabatic contraction on the scale of
dwarf galaxies. The Hernquist profile (Hernquist, 1990) has been used
frequently in the literature to model the baryon component of dwarf
galaxies, so it is applied here, as well. It allows for an analytic description
of the baryon density profile and reads

ρ(r) =
ρs

r
b

(︁
1 + r

b

)︁3 ,
where ρs again is a reference density and b specifies the scale radius2, and
gives a good approximation for dwarf spheroidals. Although considering
much smaller scales, we will follow Blumenthal et al. (1986) and test three
scale lengths; b = 0.03 will describe a small spheroidal, b = 0.07 is used for
the intermediate case and b = 0.2 accounts for a more extended galaxy.

• Baryon fraction This parameter can vary greatly, with some dwarf
galaxies almost completely lacking dark matter and thus a baryon fraction
of nearly unity (van Dokkum et al., 2018). However, such galaxies are
rare and most dwarfs are highly dark-matter-dominated, in fact. Most
literature uses fractions of the order of the cosmic mean, f = 0.157.
Duffy et al. (2010) showed that baryonic feedback, e.g. due to AGN or
supernovae, leads to a decrease of this value from z = 2 to z = 0. Given
the uncertainties, we choose baryon fractions as f = 0.07, 0.10, 0.13, 0.15
in order to cover a wide range of parameters.

• Halo parameters Finally, it is possible to define the virial mass and
radius of a dark matter halo in order to calculate the velocity dispersion,

σ2 =
GM200

R200

= const.,

where the subscript 200 indicates the radius at which the density is 200
times the critical density of the Universe, which translates approximately
to the virial mass and radius. The constancy of the velocity dispersion
effectively guarantees the pressure to be isothermal, as seen in equation
(2.22), which is appropriate for the halo envelope in the Thomas-Fermi

2Although much of the literature uses rs to describe the scale radius, Hernquist used the variable a,
instead, in his original work. Moreover, in order to avoid confusion, it is important to note that in the code
this scale radius is specified as b, as motivated by Blumenthal et al. (1986).
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regime. However, sometimes it is favourable to define the central density
ρ0 instead, leading to the free choice of either {RTF, σ

2} or {RTF, ρ0}; this
approach was also implemented in Dawoodbhoy et al. (2021).

So far, simulations including the baryonic component are rare for SFDM
cosmologies. Unfortunately, the few simulations available in the literature are
focused solely on FDM, while there are none for the Thomas-Fermi regime.
Thus, in order to put our results into context, we proceed with a comparison
to a recently published study by Mocz et al. (2020) for FDM. In this work
they performed cosmological simulations of ultra-light bosons with mass m =
2.5 · 10−22 eV in the fuzzy regime3, thus neglecting particle self-interactions.
Starting from initial conditions, they simulate the evolution of a FDM Universe
from z = 63 to z = 5.5, from which they identify three haloes with different
mass, radius and baryon fractions. Focusing on the largest of FDM haloes, halo
1 with M200 = 8.2 · 109M⊙ and R200 = 42 kpc, they show its density profile for
a run involving full baryon physics and one with dark matter only, see Figure
4 in Mocz et al. (2020). The implemented baryon physics includes supernova
feedback through kinetic winds, primordial cooling, metal-line cooling to also
account for heavier elements, and (stochastic) star formation. They further
approximate reionization to occur uniformly and instantaneous at a redshift
of z ∼ 6. Although some small variations between the runs with and without
baryons are visible at ∼ 5 kpc h−1 (with h being the reduced Hubble constant,
h = H0/100), the profiles essentially follow the same decline, which is roughly
proportional to r−2. Based upon their equation (14), the soliton core radius of
this halo at the redshift of z = 6 amounts to xc = 1 kpc.

Figure 4.3 now shows the results of our calculations for the same halo in
the Thomas-Fermi regime; the top panel displays velocities, the bottom panel
shows densities. While our analysis is much more simplistic with regard to
the baryon physics than that in Mocz et al. (2020), the considered adiabatic
contraction model allows to resolve very small scales, i.e. the very halo centers,
unlike cosmological simulations. In order to obtain similar central densities of
ρ0 ∼ 109M⊙ kpc−3, the Thomas-Fermi regime requires a core radius larger by
a factor of at least four, thus RTF ≥ 4 kpc, when compared to the FDM case.
Furthermore, it is evident that the baryonic spheroidal in the core affects the
dark matter particles in the envelope outside of RTF (indicated by a vertical
dotted line) comparatively little. This changes drastically from roughly 0.5 kpc
inwards, where the baryons are concentrated. Here, they are able to compress
the core further, leading to an increase in the dark matter density by more than
two orders of magnitude. This increase then also leads to a boost in velocity
at these radii. Although not shown, the cases b = 0.03 and b = 0.2 follow the
same general trend but with slightly steeper or shallower density slopes in the
core regions, respectively.

Robles et al. (2019) conducted a study of the fuzzy regime in the light of
3Note that, despite simulating only the FDM regime, they use the terms “fuzzy dark matter” and

“Bose-Einstein-condensed dark matter” synonymously.
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Figure 4.3: Adiabatically contracted SFDM halo in the Thomas-Fermi regime for a halo
virial mass of M = 8.2 · 109M⊙ and a core radius of RTF = 4 kpc. The vertical dotted line
indicates this radius, where the transition from polytropic core to isothermal envelope occurs.
Top panel : Velocity profiles. The outer part of the initial rotation curve (dotted line, f = 0)
changes little during the contraction, while the baryons cause an increase of the velocity
in the core regions. Bottom panel : Corresponding density profiles (same legend as above).
Again, the density of the envelope remains almost unchanged and looks similar to the FDM
case in Mocz et al. (2020) for this halo mass, while the core region experiences compression
and thus a density increase of more than two orders of magnitude. This plot for the density
profile may be compared with Figure 4 in Mocz et al. (2020).
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the small-scale problems of cosmology. More precisely, they compared circular
velocities of typical too-big-to-fail haloes with masses M200 = 109.5 − 1010M⊙
for CDM and FDM to observational data for dwarf galaxies; i.e. isolated field
galaxies and members of the Local Group that are, however, not satellites.
Their results show an (expected) overprediction for the CDM case, while the
FDM haloes fit the data well. Taking the same approach to further study
typical cusp-core haloes with M200 ∼ 1011M⊙, they compared circular velocities
for CDM and FDM to those of galaxies from the SPARC database4 for two
different boson masses, m22 = 0.8 and m22 = 2.5, where m22 is defined as

m22 =
m

10−22 eV
.

Their results reveal an exacerbation of the cusp-core problem for both FDM
boson masses. This is because, when assuming isothermality, the mass-radius
ratio of the soliton core should be approximately equal to that of the whole
halo,

Mc

λdeB
≈ M200

R200

∝M
2/3
200 ,

Mc ∼M
1/3
200 ,

resulting in the central density scaling as

ρ0 ∝
Mc

λ3deB
∝M4

c ∼M
4/3
200 ,

where Mc denotes the core mass of the halo, leading to the cored density profiles
visible in Figure 2.6, which produce the correct slopes for haloes in that mass
range. However, their amplitudes are too high to an extent that even CDM
predictions are a better match to the observational data. Dawoodbhoy et al.
(2021) performed a similar analysis focused on the Thomas-Fermi regime instead,
again for halo masses in the range of M200 = 1010 − 1011.15M⊙. They showed
that, when adjusting parameters in order to fit the smaller too-big-to-fail haloes,
the circular velocity is overpredicted for small radii, both in CDM and FDM,
when simulating high-mass dwarf galaxies. In contrast, the Thomas-Fermi
regime with a core radius of RTF = 4 kpc matches the observational data for
both halo mass ranges. However, the two studies were focused solely on the
dark matter component and neglected possible baryonic effects in the core
regions.

Our Figures 4.4 and 4.5 extend this work by also considering baryons and
the gravitational effect they exert on the dark matter; the former shows our
results using the Blumenthal method with constant rM(r), whereas the latter
shows our results applying the modification by Gnedin with constant rM(r̄).
From the density plots in the right panels of Figure 4.4 it is evident that

4http://astroweb.cwru.edu/SPARC/
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Figure 4.4: Adiabatic contraction with the Blumenthal method in the Thomas-Fermi regime
for typical cusp-core haloes of 1011M⊙. From top to bottom the chosen core radii are
RTF = 0.1, 0.5, 1, 4 kpc. Left panels: Circular velocities for all four cases. One can see that
small core radii lead to velocities vcirc > 200 km s−1, not compatible with observations of
dwarf galaxies, while RTF = 4 kpc results in maximum velocities of vcirc ∼ 100 km s−1.
Right panels: Corresponding density profiles for all cases.
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Figure 4.5: Adiabatic contraction with the modification by Gnedin in the Thomas-Fermi
regime for the same cases as in Figure 4.4. Left panels again show circular velocities, right
panels show their density profiles. The change of the adiabatic invariant to rM(r̄) leads to
a general density decrease of factor ≈ 2 in the innermost parts of the haloes, resulting in
a corresponding decrease of circular velocities at these radii, compared to the Blumenthal
method, as expected.
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smaller core radii lead to much denser initial cores (e.g. the uppermost case
with RTF = 0.1 kpc), which get compressed even further through adiabatic
contraction. Assuming isothermality in the Thomas-Fermi regime, we have

Mc

RTF
≈ M200

R200

∝M
2/3
200 ,

Mc ∼M
2/3
200 .

The central density therefore increases with decreasing RTF as

ρ0 ∝
Mc

R3
TF

∝Mc ∼M
2/3
200 , (4.4)

while holding core and halo mass constant (Dawoodbhoy et al., 2021). This
increase in density subsequently leads to an increase in circular velocity, as
depicted in the left panels. The inclusion of baryons enhances the velocities to
values higher than 200 km s−1 for the most extreme case, which is not observed
in dwarf galaxies in the Universe. On the other hand, larger core radii of
4 kpc show velocity curves consistent with observations and aforementioned
publications; despite the contraction in the innermost ∼ 200 pc, the velocity at
these radii does not exceed values of 15 km s−1. The applied modification by
Gnedin shown in Figure 4.5 confirms this picture with similar results. However,
the adjustment for eccentric orbits leads to a general decrease in density around
the core radius by a factor of ≈ 2, which is in agreement with Gnedin et al.
(2004). This, in turn, causes the velocity to drop more sharply, which then
again flattens out for the innermost regions. Like for the Blumenthal method,
larger core radii can reproduce observed rotation curves of dwarf galaxies, while
small cores lead to velocities exceeding even that of the Milky Way.

For the sake of comparison, Figure 4.6 shows our results for adiabatic
contraction of a CDM halo with an NFW profile,

ρNFW(r) =
δNFWρcrit

(cr/R200) (1 + cr/R200)
2 , (4.5)

where c = 10 is the halo concentration parameter, suitable for a halo mass
of M = 1011M⊙ according to the mass-concentration relation by Klypin et al.
(2016), ρcrit = 3H2

0/8πG is the current critical background density and with

δNFW =
∆crit

3

c3

ln(1 + c)− c/(1 + c)
. (4.6)

∆crit = 200 describes the mean overdensity of a halo compared to ρcrit, and the
Hubble parameter is chosen as H0 = 70 km s−1 Mpc−1. The initial rotation
curve reaches its maximum of vcirc ∼ 90 km s−1 at a radius of r ∼ 23 kpc.
Because the NFW profile is a cuspy profile rather than the cored one of the
Thomas-Fermi regime, the central regions of the halo are naturally denser even
in the absence of baryons, leading to higher initial rotational velocites at these
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Figure 4.6: Adiabatic contraction with the Blumenthal method for a CDM halo with an
initial NFW profile (dotted line), M200 = 1011M⊙ and concentration parameter c = 10. Top
panel shows circular velocities, bottom panel shows the corresponding density profiles. The
cuspy nature of the initial dark matter profile leads in general to an overprediction of circular
velocities in the inner regions even without baryons. The inclusion of the latter worsens
this effect substantially, resulting in velocities that exceed 200 km s−1, comparable to the
Thomas-Fermi regime with RTF = 0.1 kpc (shown in the uppermost panels of Figures 4.4
and 4.5).
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radii. The gravitational effect of the baryons enhances the density by at least
three orders of magnitude for radii r ≲ 0.1 kpc. The resulting circular velocity
curve is similar to that obtained for the Thomas-Fermi regime with core radius
RTF = 0.1 kpc, with velocities exceeding the observed values at these radii by
at least 100 km s−1, leading to an aggravation of the cusp-core problem.

Our findings now suggest that adiabatic contraction due to baryons requires
kpc-sized SFDM cores in order to be in accordance with observations of rotation
curves of dwarf galaxies. Furthermore, when baryons are included, small SFDM
cores in the Thomas-Fermi regime lead to central velocity profiles which are in
conflict with observations, for the velocities are comparable to those obtained
for initial NFW profiles in the CDM case, reaching values higher than 200 km
s−1 for both cases. The same issue may arise for FDM haloes, if their cores
are too small; this issue may be resolved in the future, when simulations are
able to resolve sub-kpc cores, which is not possible nowadays. Now, recent
work by Shapiro et al. (2021) strongly suggests that kpc-sized cores in the
Thomas-Fermi regime are disfavoured on the grounds that structure formation
of the corresponding haloes is suppressed, while haloes with small cores are not.
In conjunction with our results here, it therefore appears that the parameter
range of viable SFDM core sizes is severely restricted, implying potentially
severe constraints for the SFDM model. It remains to be seen whether more
accurate calculations and simulations in the future will confirm our conclusions,
and what that entails for SFDM as a candidate for dark matter.
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Chapter 5

Summary and conclusions

In this work, we have considered a promising alternative to standard cold
dark matter, that is scalar field dark matter (SFDM). In this theory, dark
matter consists of ultra-light bosons with masses of m ∼ 10−22 eV that form
gravitationally bound haloes. SFDM can suppress formation of structure on
subgalactic scales, while behaving like standard CDM on larger scales and thus
serving as probable solution to the small-scale problems of cosmology. Two
regimes are presented; the fuzzy regime, where a quantum potential acts against
gravity, and the Thomas-Fermi regime with strong repulsive self-interaction.
The focus of this thesis lies in the latter and therefore provides a thorough
calculation of analytical expressions for density, gravitational potential and
circular velocity in a static and spherically symmetric configuration. This
configuration represents the core regions of dark matter haloes comprised of
Bose-Einstein condensed bosons, with its characteristic core radius RTF, given
in equation (2.16), which is only dependent on the strength of self-interaction g,
and the particle mass m. For a complete physical picture and further analysis,
this core region is then embedded in an isothermal, CDM-like envelope.

Based upon the Gross-Pitaevskii equation (2.1), the fundamental equation of
this theory, it is possible to construct the Hamiltonian of such a system, which
further enables the calculation of action-angle variables, a set of generalized
coordinates and conjugate momenta useful for particles in rotational motion.
The actions, which represent the momenta, and their angles, the generalized
coordinates, define an invariant torus on which the particles move. This
new set of coordinates provides a twofold advantage; firstly they allow to
calculate orbits, and secondly the actions remain constant for variations in
the gravitational potential, as long as these variations are slow compared to
typical orbital frequencies - a characteristic that can be heavily exploited
for more detailed analysis. The former is achieved through the derivation of
a Quantum-Hamilton-Jacobi equation and subsequently solving it through
separation of variables of the action function S. It is shown that this separation
ansatz is feasible through verification that the so-called Stäckel conditions are
fulfilled; ensuing calculations then provide the solutions of the radial, polar
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and azimuthal actions, Jr, Jϑ, Jφ respectively. Numerical orbit calculation is
achieved using the Python package gala, which reveals almost circular orbits
for arbitrarily chosen, physically motivated initial conditions in the core regions
of haloes in the Thomas-Fermi regime with given radius RTF.

The second characteristic of the action-angle variables, the actions’ constancy
in slowly changing gravitational potentials, opens up the study of the so-called
adiabatic contraction. Developed by Blumenthal et al. (1986), it calculates the
response of dark matter particles to the presence of a baryonic accumulation
located in the center of a halo. It is based upon the assumption of circular
orbits within a spherically symmetric mass distribution M(r), an assumption
verified in the first part of the thesis to be appropriate in the context of the
Thomas-Fermi regime in SFDM cosmologies. The adiabatic invariant rM(r) of
a particle orbit in such a system then suggests that

rf [Mdm(rf ) +Mb(rf )] = riMi(ri) = ri
Mdm(rf )

1− f
,

with initial radius ri, final radius rf , initial (total) mass distribution Mi(ri) and
final mass distributions Mdm(rf ) and Mb(rf ), for the dark matter and baryon
components, respectively. This equation is solved iteratively with Python
and enables to calculate circular velocity and density profiles for a given halo
configuration. However, it is shown in the literature that dark matter particle
orbits are not limited to the circular case and highly eccentric orbits are also
possible. This fact is accounted for by the modification of Gnedin et al. (2004),
which changes the adiabatic invariant to rM(r̄), where r̄ represents an orbit-
averaged radius. With these two models it is possible to compare our results
to available literature on the topic, both for the fuzzy and self-interacting
regime. These previous studies are almost entirely focused on the dark matter
component and did mostly not factor in the gravitational effects of baryons.
Nevertheless, they provide evidence that SFDM as a whole is a viable option
in solving the small-scale problems.

Mocz et al. (2020) show the evolution of a fuzzy dark matter (FDM) Universe
down to a redshift of z = 5.5, in which they idenfity three dark matter haloes
with different size and mass; they show their density profiles at z = 6. We
simulated the largest of these haloes, halo 1 with M200 = 8.2 · 109M⊙, using
our adiabatic contraction code. In order to obtain comparable core densities
to the FDM case, the Thomas-Fermi regime requires core sizes substantially
larger than FDM, by even a factor of 4. The inclusion of baryons, however,
barely alters the density profile outside the cores. Only in the inner regions
this gravitational effect is significant and increases the density by at least two
orders of magnitude, implying enhanced circular velocities, though only by less
than 10 km s−1.

In the context of the small-scale problems, Robles et al. (2019) show that
FDM can describe rotational velocities of typical too-big-to-fail haloes (M200 ∼
1010M⊙) better than standard CDM. However, applying the same method to
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typical cusp-core haloes with M200 ∼ 1011M⊙ results in an overprediction for
the FDM case (as well as for CDM, as expected). Dawoodbhoy et al. (2021)
extend this work to the Thomas-Fermi regime by tuning parameters such that
the velocities provide a good match for this mass range, and subsequently
also analyze high-mass dwarf haloes, representative for the cusp-core problem.
They confirm the overprediction for CDM and FDM when shifting to these
higher masses, and show that the Thomas-Fermi regime produces good fits to
observational data on rotational velocities for dwarf galaxies of this mass for a
core radius of RTF = 4 kpc.

This thesis studies the addition of baryons and the effect they pose on the
dark matter particles with respect to the question of gravitational contraction.
Using the Blumenthal method, as well as the Gnedin modification, the findings
can be summarized as follows:

1. Adiabatic contraction due to baryons suggests core radii RTF ≳ 1 kpc
in order to produce rotational velocities comparable to observations of
dwarf galaxies. Smaller cores lead to higher initial density, which get
further increased through compression caused by the baryons; the resulting
velocities exceed even that of massive spiral galaxies like the Milky Way.
This issue may also arise for FDM with too small solitonic cores. However,
in order to verify this result with cosmological simulations, higher resolution
in these simulations will be required in the future.

2. In the CDM case for a typical cusp-core halo (M200 ∼ 1011M⊙), adiabatic
contraction worsens the cusp-core problem by increasing the already high
density at small radii even further, reaching values of ρ ∼ 1013M⊙ kpc−3

at r ≲ 100 pc. The resulting rotational velocities are comparable to the
SFDM case in the Thomas-Fermi regime with sub-kpc core radii, RTF = 0.1
kpc, not compatible with observations.

3. The baryon fraction, individual for each halo, has only small effects on the
outer final density and velocity profiles. Outside the core these profiles
resemble the initial curve, with most changes occuring inside the core.
However, the resulting density profiles with realistic baryon fractions of
f = 0.07− 0.15 almost lie on top of each other, causing velocity changes
of only a few km s−1 between the considered cases.

4. A comparison of the Blumenthal method with the modification by Gnedin
(Figures 4.4 and 4.5) for several core radii reveals the (expected) decrease
of the density by a factor of roughly 2 at a distance of around RTF from the
center for the latter, thus being in accordance with Gnedin et al. (2004).
Despite this quite substantial decrease in density, the velocity at these
radii only changes slightly and provides qualitatively the same results as
the Blumenthal method.

5. In contrast to the suggested kpc-sized Thomas-Fermi cores in item 1.,
recent studies favour sub-kpc cores on the basis of structure formation.
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This dichotomy leads to a severe restriction of the parameter range for
viable SFDM core sizes, further implying potentially strong constraints on
the SFDM model.
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Appendix A

Action-angles for the isochrone
potential

So far we have seen orbits and their corresponding actions for dark matter
particles in a (n = 1)-polytrope potential, eq. (2.19). As these actions were
integrals of motion, it was necessary to solve them numerically through orbit
integration and coordinate transformation. This section is now dedicated to
carry out the calculations for the isochrone potential (Henon (1959a), Henon
(1959b)),

Φ(r) = − GM

b+
√
b2 + r2

, (A.1)

one of the few potentials for which the whole procedure is possible analytically.
Here, b represents a (constant) scale factor, which defines the region where the
potential is similar to that of a homogeneous sphere. As mentioned previously,
one limiting case of the isochrone potential is the Kepler potential. This can be
seen when b→ 0, or equivalently, when r ≫ b. Equation (A.1) then reduces to

Φ(r) = −GM
r
.

On the other hand, when r/b→ 0, or b≫ r, equation (A.1) can be expanded
around r/b and reads

Φ(r) = − GM

b
(︂
1 +

√︁
(r/b)2 + 1

)︂ ≈ − GM

b
(︁
2 + 1

2
(r/b)2

)︁ =
GM

8b3
r2 + const.,

which represents the potential of a homogeneous sphere.
For the sake of completeness, let us start with the construction of the

Lagrangian. The most basic assumption is a single particle moving in a circular
orbit. Throughout this thesis spherical symmetry was assumed, thus a switch
to the more convenient spherical coordinate system makes sense, and this is
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accomplished through

x = r sinϑ cosφ,

y = r sinϑ sinφ,

z = r cosϑ.

The Lagrangian is defined as

L = T − U,

where T represents the kinetic energy and U stands for the potential energy,
which is connected to the gravitational potential Φ through

Φ =
U

m
. (A.2)

For a single-particle system,

T =
mv2

2
,

thus the velocity of the particle is required. Taking the derivatives of the
positions (with respect to time),

ẋ = ṙ sinϑ cosφ+ rϑ̇ cosϑ cosφ− rφ̇ sinϑ sinφ,

ẏ = ṙ sinϑ sinφ+ rϑ̇ cosϑ sinφ+ rφ̇ sinϑ cosφ,

ż = ṙ cosϑ− rφ̇ sinφ,

the velocity can be calculated in terms of the new coordinates. After some
algebra this results in

v2 = ẋ2 + ẏ2 + ż2 = ṙ2 + r2ϑ̇
2
+ r2φ̇ sin2 ϑ2,

and the Lagrangian reads

L =
m

2

(︂
ṙ2 + r2ϑ̇

2
+ r2φ̇2 sin2 ϑ

)︂
− U.

Next, the definition of the Hamiltonian of a system,

H =

(︄∑︂
i

piq̇i

)︄
− L,

is used, with the generalized coordinates qi and the corresponding generalized
momenta pi. These are defined as

pi =
∂L
∂q̇i

,
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thus the three generalized momenta for the system are

pr =
∂L
∂ṙ

= mṙ, pϑ =
∂L
∂ϑ̇

= mr2ϑ̇ and pφ =
∂L
∂φ̇

= mr2φ̇ sin2 ϑ.

Inserting these expressions into the Hamiltonian yields

H = prṙ + pϑϑ̇+ pφφ̇−
(︂m
2

[︂
ṙ2 + r2ϑ̇

2
+ r2φ̇2 sin2 ϑ

]︂
−mΦ

)︂
=

1

2m

(︃
p2r +

p2ϑ
r2

+
p2φ

r2 sin2 ϑ

)︃
+mΦ,

where additionally equation (A.2) is used. Comparing this expression to
the Hamiltonian in equation (3.3), one can see that the only difference is
the potential; here solely the gravitational potential is relevant. From this
it is evident that separation of variables is feasible, and, through the same
calculations as in Section 3, the actions yield

Jφ =
1

2π

∫︂
dφLz, (A.3)

Jϑ =
1

2π

∫︂
dϑ

√︃
L2 − L2

z

sin2 ϑ
, (A.4)

Jr =
1

2π

∫︂
dr

√︃
2m (E − Φ)− L2

r2
. (A.5)

To solve these three integrals it is necessary to figure out their limits, thus one
needs to know the relevant curve of each coordinate (Binney and Tremaine,
2008). Since a particle on a circular orbit is assumed, φ changes in the interval
[0, 2π] and therefore the azimuthal action, eq. (A.3), results in

Jφ =
1

2π

∫︂ 2π

0

dφLz = Lz.

Carrying on with the change of the polar angle, there is always a smallest value
that ϑ occupies during the orbit, ϑmin ≤ π/2, given by

sinϑmin =
|Lz|
L
.

The integrand reaches its maximum at this position and equals zero for π−ϑmin.
Since this equals an integration over only a quarter period of the integrand,
multiplication by 4 is needed. Thus the latitudinal action results in

Jϑ =
2

π

∫︂ π−ϑmin

π/2

dϑ

√︃
L2 − L2

z

sin2 ϑ
= L− |Lz|.

Lastly, the radial action is quite a bit more complicated to calculate, since here
the gravitational potential comes into play. Because the isochrone potential
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is chosen, one can make use of a fundamental property of it, namely that the
radial frequency being only dependent on its energy1, so that

∂H
∂Jr

=
∂E

∂Jr
= ωr(E). (A.6)

When the radial action, eq. (A.5), gets written in terms of the generalized
momentum pr, the equation can be rearranged to get an expression for the
radial period Tr,

Tr = 2

∫︂ rapo

rperi

dr√︁
2m(E − Φ)− L2/r2

, (A.7)

with the radii of apocenter and pericenter, respectively. To solve this integral,
an auxiliary variable is defined,

s = −GM
bΦ

=
b+

√
b2 + r2

b
= 1 +

√︃
1 +

r2

b2
⇐⇒ r2 = b2s2 − 2b2s,

and therefore

rdr = b2(s− 1)ds.

With these expressions, equation (A.7) becomes

Tr = 2

∫︂ rapo

rperi

rdr√︁
2mr2(E − Φ)− L2

= 2

∫︂ s2

s1

b2(s− 1)ds√︁
2m(b2s2 − 2b2s)(E − Φ)− L2

= 2

∫︂ s2

s1

b(s− 1)ds√︁
2mEs2 − 2ms(2E + sΦ) + 4msΦ− L2/b2

= 2

∫︂ s2

s1

b(s− 1)ds√︁
2mEs2 − 2ms(2E −GM/b)− 4GMm/b− L2/b2

,

with s1 and s2 as new limits, within which the argument of the square root is
positive. They are defined as

s1 + s2 = 2− GM

Eb
and s1s2 = −L

2 + 4GMmb

2Eb2
.

These can be used to finally solve the integral,

Tr = 2

∫︂ s2

s1

b(s− 1)ds
2mE(s2 − s(s1 + s2) + s1s2)

=
2b√

−2mE

∫︂ s2

s1

(s− 1)ds
(s2 − s)(s− s1)

=
2b√

−2mE

(︃
s1 + s2

2
− 1

)︃
=

2πGM
3
√
−2mE

.

1However, there are alternative ways to solve this problem, e.g. making use of the integration of complex
analytic functions and the theorem of residues.
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With this expression, equation (A.6) for the radial frequency can now be
integrated,

Jr =

∫︂
dE
ωr(E)

+ f(L) =
GM√
−2mE

+ f(L), (A.8)

with f(L) being an unknown function depending only on the angular momentum
that still needs to be determined. To specify this function, one can make use
of the property of circular orbits, for which the action integral is zero, i.e.

vr = pr = 0 ⇒ Jr = 0.

Furthermore, there exists an equilibrium between gravitational and centrifugal
force (Boccaletti and Pucacco, 2004), represented by

v2c = v2ϑ + v2φ = r
dΦ
dr

= r
d
dr

(︃
− GM

b+
√
b2 + r2

)︃
=

GMr2
√
b2 + r2

(︁
b+

√
b2 + r2

)︁2 .
The energy of a circular orbit, Ec, is then simply

Ec =
1

2
mv2c +mΦ =

1

2

GMm(a2 − b2)

a (a+ b)2
− GMm

a+ b

=
GMm(a− b)− 2aGMm

2a(a+ b)
= −GMm

2a
,

with a =
√
b2 + r2, whereas its corresponding angular momentum results in

Lc = rvc =

√
GM(a2 − b2)√
a(a+ b)

=

√
GM(a− b)√

a
=

√
aGM√
GM

− b
√
GM√
a

=
GM√−2Ec

− b
√︁

−2Ec =
√
GMb

(︄√︃
−GM

2Ecb
−
√︃

−2Ecb

GM

)︄
. (A.9)

The goal is that Jr in equation (A.8) vanishes, thus f(L) must satisfy

f(L) = f(Lc) = − GM√−2Ec
= −

√︃
GMb

λ
,

where another auxiliary variable,

λ = −2Ecb

GM
, 0 ≤ λ ≤ 1,

is used. From the angular momentum for circular orbits, eq. (A.9), one can
see that

Lc√
GMb

=
(︁
λ−1/2 − λ1/2

)︁
=

1− λ√
λ
.
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Solving the quadratic equation for
√
λ yields

√
λ =

−L±
√
L2 + 4GMb

2
√
GMb

,

where only the solution with plus sign is physically relevant. Thus, the unknown
function f(L) is determined to be

f(L) = −
√︃
GMb

λ
=

2GMb

L−
√
L2 + 4GMb

= −1

2

(︂
L+

√
L2 + 4GMb

)︂
,

and the desired analytical solution for the radial action of the system finally
reads

Jr =
GM√
−2mE

− 1

2

(︂
L+

√
L2 + 4GMb

)︂
. (A.10)
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Appendix B

Adiabatic contraction Python code

Although the code is relatively short, this Appendix gives a step-by-step
explanation on subsequent excerpts of it. Starting with the import of necessary
Python modules, it is then necessary to define several functions; the first one
serves for solving the differential equation (2.26), the second and third define a
variety of dark matter and baryon mass profiles analytically.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.integrate import solve_ivp
4

5 #plt.rcParams.update ({
6 # "text.usetex ": True ,
7 # "font.family ": "DeJavu Serif",
8 # "font.sans -serif": [" Helvetica "]})
9 #plt.rcParams[’lines.linewidth ’] = 1

10

11 def dpsi_dxi(xi, psi): # ODE from Chavanis (2019) / Method 1
12 return [psi[1], (chi * psi [1]**2 + 1)/(chi + np.exp(psi [0])) - 2 * psi[1]

/ xi]
13

14 def M_dm(r, R, DM_PROFILE):
15 if DM_PROFILE == ’polytrope ’: # n=1 polytrope
16 return 4 * rho_dm * R**3 / np.pi**2 * (np.sin(np.pi * r / R) - np.pi *

r / R * np.cos(np.pi * r / R))
17 elif DM_PROFILE == ’pis’: # pseudo -isothermal sphere
18 return 4 * rho_dm * np.pi * R**2 / 9 * (3 * r - np.sqrt (3) * R * np.

arctan(np.sqrt (3) * r / R))
19 elif DM_PROFILE == ’nfw’: # nfw
20 return 4 * rho_dm * np.pi * R**3 * (np.log((R + r) / R) + R / (R + r)

- 1)
21 elif DM_PROFILE == ’nfwc’: # nfw with concentration parameter
22 return 4 * rho_dm * np.pi * R**3 * (np.log(1 + c * r) - c * r / (1 + c

* r))
23 elif DM_PROFILE == ’burkert ’: # burkert profile
24 return rho_dm * np.pi * R**3 * (2 * np.log(1 + r / R) + np.log(1 + r

**2 / R**2) - 2 * np.arctan(r / R))
25

26 def M_b(r, b, BARYON_PROFILE):
27 if BARYON_PROFILE == ’exp’: # exp. surface brightness profile
28 return (1 - (1 + r/b) * np.exp(- r/b)) * 2 * np.pi * b**2 * rho_b
29 elif BARYON_PROFILE == ’hernquist ’: # hernquist profile
30 return r**2 * (1 + b)**2 / (r + b)**2 * 2 * np.pi * b * rho_b
31 elif BARYON_PROFILE == ’jaffe’: # jaffe profile
32 return r / (r + b)
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33 elif BARYON_PROFILE == ’burkert ’: # burkert profile
34 return rho_b *np.pi * b**3 * (2 * np.log(1 + r / b) + np.log(1 + r**2

/ b**2) - 2 * np.arctan(r / b))

The next step is to choose which profiles should be examined as well as their
associated parameters, such as the baryonic scale length b or the halo mass
M200. Furthermore, it is necessary to define an initial radius ri on which the
contraction shall be calculated.

35 # available dm profiles: ’polytrope ’, ’pis ’, ’nfw ’, ’nfwc ’, ’burkert ’, ’
envelope ’

36 DM_PROFILE = ’envelope ’
37 # available baryon profiles: ’exp ’, ’hernquist ’, ’jaffe ’, ’burkert ’
38 BARYON_PROFILE = ’hernquist ’
39

40 b = 0.07 # scale factor for baryonic profile
41 c = 2 # concentration parameter for nfw profile
42 chi = 1
43

44 M200 = 1e11 # total halo mass in Msol
45 R200 = 96 # virial radius in kpc
46

47 R_TF = 4 # core radius in kpc
48 f = [0.07 , 0.1, 0.13, 0.15] # baryon fractions
49 pc = 3.0857 e16 # kpc in m for result conversion
50 G = 4.516e-30 # gravitational constant in pc^3 / Msol / s^2
51

52 rho_dm = np.pi / 4 * M200 * chi / (R200 * R_TF **2) / 1e9
53

54 #rho_dm = 0.2 # fixed central density of dwarf galaxy from burkert2015
55 # in Msol / pc^3
56 rho_b = rho_dm # baryon density
57

58 fig , axs = plt.subplots(2, 1, figsize = (6, 9), squeeze=False)
59 ri = np.logspace(-4, 6, 3000)
60 Minit = np.empty(len(ri))

Having everything defined, the following part ensures that, depending on the
initial dark matter profile chosen, the enclosed mass at each radius gets stored
into an array. When the keyword envelope is chosen, the program first solves
the differential equation for the Thomas-Fermi regime plus envelope using a
DOP853 solver (i.e. an explicit Runge-Kutta method of 8th order), otherwise
this step is not necessary.

61 if DM_PROFILE == ’envelope ’:
62 psis = solve_ivp(dpsi_dxi , [ri[0], ri[-1]], [0, 0], method=’DOP853 ’,

t_eval=ri)
63

64 ys = rho_dm * np.exp(-psis.y[0])
65 ri = np.logspace(-4, 6, 3000) * R_TF / np.sqrt(chi) / np.pi
66

67 Minit [0] = 4 * np.pi / 3 * ri [0]**3
68 for i in range(1, len(ri)):
69 Minit[i] = Minit[i-1] + 4 * np.pi / 3 * (ri[i]**3 - ri[i -1]**3) * ys[

i]
70 else:
71 for i in range(len(Minit)):
72 Minit[i] = M_dm(ri[i], R_TF , DM_PROFILE)

The ensuing part is the code’s centerpiece as it iterates through the initial
radius and compares the constant expression riM(ri) to the final mass profile,
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combined from dark matter and baryons, times the radius. In order to assure
a smooth curve, the steps of this iteration process become smaller and smaller.

73 for j in range(len(f)):
74 Mdm = np.empty(len(ri))
75 Mdm = (1 - f[j]) * Minit
76 rf = np.zeros(len(ri))
77 for i in range(len(ri)):
78 r = ri[i]
79 while (r * (Mdm[i] + f[j] * M_b(r, b, BARYON_PROFILE))) >= (ri[i] *

Minit[i]):
80 r = r*.9
81 r = r/.9
82 while (r * (Mdm[i] + f[j] * M_b(r, b, BARYON_PROFILE))) >= (ri[i] *

Minit[i]):
83 r = r*.99
84 r = r/.99
85 while (r * (Mdm[i] + f[j] * M_b(r, b, BARYON_PROFILE))) >= (ri[i] *

Minit[i]):
86 r = r*.999
87 r = r/.999
88 while (r * (Mdm[i] + f[j] * M_b(r, b, BARYON_PROFILE))) >= (ri[i] *

Minit[i]):
89 r = r*.9999
90 r = r/.9999
91 while (r * (Mdm[i] + f[j] * M_b(r, b, BARYON_PROFILE))) >= (ri[i] *

Minit[i]):
92 r = r*.99999
93 rf[i] = r/.999999

The last important part of the code is to choose whether the Blumenthal
method or the modification by Gnedin shall be used in order to compute the
final mass profile. From this profile the rotational velocities and densities are
calculated numerically. The rest of the code is then simply the plotting routine.

94 #rf = R200 * 0.85 * (rf / R200)**0.8 # for Gnedin04 version
95 Mbar = np.zeros(len(rf))
96 for i in range(len(rf)):
97 Mbar[i] = M_b(rf[i], b, BARYON_PROFILE) * f[j]
98

99 Mfin = Mdm + Mbar
100

101 densdm , densb , densfin = np.zeros(len(rf)), np.zeros(len(rf)), np.zeros(
len(rf))

102 densdm [0] = 3 * Mdm [0] / (4 * np.pi * rf [0]**3)
103 densb [0] = 3 * Mbar [0] / (4 * np.pi * rf [0]**3)
104 densfin [0] = 3 * Mfin [0] / (4 * np.pi * rf [0]**3)
105 for m in range(1, len(rf)):
106 densdm[m] = 3 * (Mdm[m] - Mdm[m-1]) / (4 * np.pi * (rf[m]**3 - rf[m

-1]**3))
107 densb[m] = 3 * (Mbar[m] - Mbar[m-1]) / (4 * np.pi * (rf[m]**3 - rf[m

-1]**3))
108 densfin[m] = 3 * (Mfin[m] - Mfin[m-1]) / (4 * np.pi * (rf[m]**3 - rf[m

-1]**3))
109

110 vdm , vbar , vfin = np.zeros(len(rf)), np.zeros(len(rf)), np.zeros(len(rf))
111 for m in range(len(ri)):
112 vdm[m] = (Mdm[m] * G / rf[m]) **0.5
113 vbar[m] = (Mbar[m] * G / rf[m])**0.5
114 vfin[m] = (vdm[m]**2 + vbar[m]**2) **0.5
115

116 axs [0][0]. plot(rf , vfin*pc, ’-.’, label = ’f = %.2f’ %f[j])
117 axs [1][0]. plot(rf , densfin *1e-1, ’-.’, label = ’f = %.2f’ %f[j])
118

65



119 if f[j] == 0.1: # can be changed to 0.05 or 0.20 if necessary
120 vbar2 , vdm2 = vbar , vdm
121 densb2 , densdm2 = densb , densdm
122

123 axs [0][0]. plot(rf , vbar2*pc, ’k-’, label = ’f = %.2f, baryons ’ %f[j])
124 axs [0][0]. plot(rf , vdm2*pc, ’k--’, label = ’f = %.2f, dm only’ %f[j])
125 axs [1][0]. plot(rf , densb2 *1e-1, ’k-’, label = ’f = %.2f, baryons ’ %f[j

])
126 axs [1][0]. plot(rf , densdm2 *1e-1, ’k--’, label = ’f = %.2f, dm only’ %f

[j])
127

128 densinit = np.empty(len(ri))
129 densinit [0] = 3 * Minit [0] / (4 * np.pi * ri [0]**3)
130 for m in range(1, len(ri)):
131 densinit[m] = 3 * (Minit[m] - Minit[m-1]) / (4 * np.pi * (ri[m]**3 - ri[m

-1]**3))
132

133 vinit = np.zeros(len(ri))
134 for i in range(len(ri)):
135 vinit[i] = (Minit[i] * G / ri[i]) **0.5
136

137 axs [0][0]. plot(ri , vinit*pc, ’k:’, label = ’f = 0, initial curve’)
138 axs [0][0]. axvline(R_TF , 0, 1, color = ’k’, linestyle = ’:’, linewidth = ’0.7’)
139 axs [0][0]. grid(False)
140 axs [0][0]. set_xlim (1e-2, 1e2), axs [0][0]. set_ylim (5e-1, 400)
141 axs [0][0]. set_xscale(’log’), axs [0][0]. set_yscale(’log’)
142 #axs [0][0]. set_title(’Rotation curves for scale length $b = %.2f$’ %b)
143 axs [0][0]. set_xlabel(r’$r$ [kpc]’), axs [0][0]. set_ylabel(r’$v$ [km s$^{-1}$]’)
144 axs [0][0]. set_yticks ([10, 20, 40, 60, 100, 200])
145 axs [0][0]. set_yticklabels ([’10’, ’20’, ’40’, ’60’, ’100’, ’200’])
146 #axs [0][0]. text (0.05, 0.08, r’$10 ^{11} M_\odot$ ’, transform=axs [0][0].

transAxes , fontsize =14)
147 axs [0][0]. legend(loc=’lower right ’, frameon=False)
148

149 axs2 = axs [0][0]. twiny()
150 axs2.set_xlim (1e-2, 1e2)
151 axs2.set_xlabel(’$r/R_{\ mathrm{TF}}$’)
152 axs2.set_xscale(’log’)
153

154 if R_TF == 0.1:
155 axs2.set_xticks ([0.1* R_TF , R_TF , 10*R_TF , 100*R_TF , 1000* R_TF])
156 axs2.set_xticklabels ([’0.1’, ’1’, ’10’, ’100’, ’1000’])
157 elif R_TF == 0.5:
158 axs2.set_xticks ([0.1* R_TF , R_TF , 10*R_TF , 100* R_TF])
159 axs2.set_xticklabels ([’0.1’, ’1’, ’10’, ’100’])
160 else:
161 axs2.set_xticks ([0.01* R_TF , 0.1*R_TF , 1*R_TF , 10* R_TF])
162 axs2.set_xticklabels ([’0.01’,’0.1’, ’1’, ’10’])
163

164 axs [1][0]. plot(ri , densinit *1e-1, ’k:’, label = ’f = 0, initial curve’)
165 # dens*1e-1 for Mocz comparison
166 axs [1][0]. axvline(R_TF , 0, 1, color = ’k’, linestyle = ’:’, linewidth = ’0.7’)
167 #axs [1][0]. set_title(’Density curves for scale length $b = %.2f$’ %b)
168 axs [1][0]. set_xlabel(r’$\log r$ [kpc]’), axs [1][0]. set_ylabel(r’$\log \rho$ [

$10 ^{10} M_\odot$ kpc$ ^{-3}$]’)
169 axs [1][0]. set_xscale(’log’), axs [1][0]. set_yscale(’log’)
170 axs [1][0]. set_xlim (1e-2, 1e2), axs [1][0]. set_ylim (1e-7, 1e4)
171 #axs [1][0]. legend(loc=’best ’, frameon=False)
172

173 axs3 = axs [1][0]. twiny()
174 axs3.set_xlim (1e-2, 1e2)
175 axs3.set_xlabel(’$r/R_{\ mathrm{TF}}$’)
176 axs3.set_xscale(’log’)
177
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178 if R_TF == 0.1:
179 axs3.set_xticks ([0.1* R_TF , R_TF , 10*R_TF , 100*R_TF , 1000* R_TF])
180 axs3.set_xticklabels ([’0.1’, ’1’, ’10’, ’100’, ’1000’])
181 elif R_TF == 0.5:
182 axs3.set_xticks ([0.1* R_TF , R_TF , 10*R_TF , 100* R_TF])
183 axs3.set_xticklabels ([’0.1’, ’1’, ’10’, ’100’])
184 else:
185 axs3.set_xticks ([0.01* R_TF , 0.1*R_TF , R_TF , 10* R_TF])
186 axs3.set_xticklabels ([’0.01’,’0.1’, ’1’, ’10’])
187

188 plt.tight_layout ()
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