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Abstract

This study analyzes the effect of the Regional Greenhouse Gas initiative (RGGI),
a carbon pricing system in the northeast of the United States, on CO2 emissions.
To estimate the effect, several econometric methods are used, including the
synthetic control method. For the state of Maryland, the estimated causal effect
is a reduction in CO2 emissions of 1.27 tons per capita in the year 2019 compared
to a scenario in the absence of the RGGI. This result is robust to a number of
placebo tests.



Zusammenfassung

Diese Studie analysiert die Auswirkungen der Regional Greenhouse Gas In-
itiative (RGGI), eines Kohlenstoffpreissystems im Nordosten der Vereinigten
Staaten, auf CO2 Emissionen. Um den Effekt abzuschätzen werden mehrere
ökonometrische Methoden verwendet, einschließlich der Synthetic Control Me-
thod. Für den Bundesstaat Maryland ist der geschätzte kausale Effekt eine Re-
duzierung der CO2-Emissionen um 1,27 Tonnen pro Kopf im Jahr 2019 im
Vergleich zu einem Szenario ohne RGGI. Dieses Ergebnis ist robust gegenüber
einer Reihe von Placebo-Tests.
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Chapter 1

Introduction

Climate emergency is a race we
are losing, but it is a race we can
win.1

António Guterres
UN Secretary-General

In order to win the race to halt global warming and prevent the most devastating
damages, it is necessary to bring net carbon dioxide emissions of the world
economy to zero (Pierrehumbert 2019). Countless policy instruments have been
proposed to achieve this goal. Probably the most appealing instrument for
economists is carbon pricing. This means introducing a price on CO2 emissions
to internalize the external costs of greenhouse gas (GHG) emissions. Increasing
the price on activities that result in higher GHG emissions means creating an
economic signal for polluters who then have an incentive to shift consumption
or invest in technologies that avoid GHG emissions (The World Bank 2014).
This would be an ideal tool to reduce GHG emissions sharply in a cost-effective
way, based on the principle ”polluter pays” (Bowen 2011).

Carbon pricing is an increasingly popular policy tool to combat climate
change. The first country that introduced a CO2 tax was Finland in the 1990s
(Vourc’h and Jimenez 2000). Today, there are more than 40 countries and sev-
eral cities, states and provinces that use some kind of carbon pricing mechanism,
and there are more which plan to implement them in the future (The World
Bank 2014). Broadly speaking, there are three different approaches how to
put a price on GHG emissions: Introducing a carbon tax like in Finland, imple-
menting a cap-and-trade system (C&T) like e. g. the European Trading System,
that was introduced in 2005 in the European Union, or a hybrid form (European
Commission 2015). In a C&T system, emitters have to buy allowances for GHG
emissions and therefore pay a higher price. The two systems have the same
goals and could theoretically lead to the same effects. In this thesis, the term

1United Nations 2021.
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carbon pricing is used to sum up different ways a jurisdiction could implement
a price on GHG emissions.

Carbon pricing can internalize the externalities associated with CO2 emis-
sions and subsequently promote cost-effective abatement (Aldy and Stavins
2012). It is clear that there is a negative effect from a carbon pricing policy
on GHG emissions, but the magnitude of the effect can be difficult to measure.
There are too many other factors that might influence GHG emissions in a given
region to control for in a regression analysis. For a well-designed policy to com-
bat climate change it is necessary to be able to predict the effect of a carbon
price. In this thesis, the effect of a carbon pricing policy is analyzed empirically.

Regional Greenhouse Gas Initiative. The Regional Greenhouse Gas Ini-
tiative (RGGI) is a mandatory C&T program on GHG emissions in participating
states in the United States. It was established in 2005 and started to auction
emission allowances in 2008. The cap has been decreased each year, and the
auction proceeds are reinvested in the states to improve energy efficiency and
renewable energy. The participating states are Connecticut, Delaware, Maine,
Maryland, Massachusetts, New Hampshire, New Jersey, New York, Rhode Is-
land, Vermont and Virginia which are all located in the northeast of the US
(Regional Greenhouse Gas Initiative 2021b). California is the only other US
state that has implemented a Carbon pricing system (Center for Climate and
Energy Solutions 2021). The most populated US state has commenced a C&T
program in 2012 (Woo et al. 2017).

Chapter 2 summarizes literature that has been published regarding the topic
in recent years, chapter 3 discusses the methods that are used in this thesis,
chapter 4 describes the data used for the empirical analysis, Chapter 5 presents
the results, chapter 6 discusses the results and 7 concludes.
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Chapter 2

Literature Review

In recent years, a lot of studies have investigated the efficacy of Carbon Pricing
mechanisms. Broadly speaking, there are three different categories of Carbon
pricing programs that were analyzed theoretically by Goulder and Schein (2013).
A jurisdiction can implement a tax on carbon emissions, it can introduce a C&T
system or it can adopt a hybrid form, which would be a C&T with a minimum
price and/or a price ceiling. The main difference is that a carbon Tax fixes the
price of carbon, but leaves the amount of emissions that are emitted eventually
uncertain, and an C&T fixes the amount of emissions that are allowed and leaves
the price of emissions uncertain.

Regarding the main goal of a carbon pricing system, which is creating in-
centives to reducing allocation, they are equivalent. Regarding distributional
effects or international competitiveness concerns due to additional costs of do-
mestic firms, these systems can also be used equivalently. The differences are
in the details, for example: Uncertainty in the price dimension (C&T) might
be harmful for businesses, while uncertainty in the amount of emissions (carbon
tax) is problematic when the goal is to reach certain emission targets. This can
be somewhat mitigated by a hybrid system.

One recent study that investigates the efficacy of carbon pricing was done
by Best, Burke, and Jotzo (2020). The authors published a cross-country em-
pirical study where they estimated the contribution of carbon pricing to reduce
CO2 emissions in 142 countries over a period of 20 years. In their sample, 43
countries had a carbon price in place at the end of their study period. They
find that an additional Euro per ton of CO2 is associated with a 0.3 percent-
age points lower emission growth in the subsequent period, while controlling
for a lot of different policy variable that could play a role. However, they still
compared very different jurisdictions, and a lot of relevant policy variables that
could have an influence of the difficulty to implement carbon pricing policies
(e. g. support for environmentally protecting policy in the population) were not
taken into account due to the lack of data. Also, different abatement costs due
to the availability of natural resources (wind or solar energy versus coal or gas
deposits), or different economic structures (industrial sector versus service sec-
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tor) were not taken into account. While their analysis is insightful, they could
therefore only capture correlation, and not causation.

To compare different carbon pricing programs, they used the concept of an
effective carbon price, which was published in OECD 2015 and described in
detail in Dolphin, Pollitt, and Newbery 2019. Different pricing regimes have
different prices in place in different sectors in the economy. For example, in a
lot of jurisdictions that have a carbon price in place there are exemptions for
exporting sectors to avoid competitive disadvantages. The effective carbon price
is computed from the carbon price and the percentage of the economy that faces
the price, which makes it possible to compare those over different jurisdictions.

One quasi experimental study that finds a causal effect of a carbon tax and
a value-added tax on transport fuel in Sweden was done by Andersson (2019).
The author used the synthetic control method that was introduced by Abadie,
Diamond, and Hainmueller (2010) to estimate the causal effect of the Swedish
carbon tax. He finds that CO2 emissions declined almost 11 % per year after
the implementation of both taxes, where 6 % is attributed to the carbon tax.
According to this study, carbon pricing has a strong effect on CO2 emissions.

Other studies that investigated different European countries could only find
a very small or insignificant effect of carbon taxes on CO2 emissions. Bruvoll
and Larsen (2004) study the effect of the relatively high carbon tax in Norway
that is in place since 1991. They find that the reduction in CO2 emissions was
largely due to other reasons and only to a small extent due to the carbon tax.
Another study used Difference in Difference estimation to investigate the effect
of carbon taxes in northern Europe (Lin and Li 2011). The authors found that
the carbon tax in Finland had a negative and significant effect on CO2 emissions,
but the taxes in Denmark, Sweden and the Netherlands were insignificant.

In recent years, a few studies were published that investigate the RGGI
program. Murray and Maniloff (2015) did an empirical estimation of the con-
tribution of different factors to the decline in CO2 emissions in the electricity
sector in RGGI states. Their analysis shows that by 2012 about half of the
emission reduction is due to the RGGI program. The rest of the effect is due to
lower natural gas prices and other environmental policies. Hibbard et al. (2018)
write that the RGGI program has not only reduced CO2 emissions, but also
yielded $ 5 billion in economic benefits and tens of thousands of jobs. Abt As-
sociates (2017) analyze the health impacts of the RGGI program and conclude
that hundreds of lives were saved and monetary value of $ 5.7 billion in form
of health saving and other benefits was generated. Huber (2013) analyzed the
auctioning process of the RGGI.
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Chapter 3

Methods

3.1 Ordinary Least Squares

One simple way to estimate the effect of carbon pricing on GHG emissions is
regression analysis. Using per capita CO2 emissions as the dependent variable
and the price of CO2 emissions as an explanatory variable yields the following
model:

Y = β0 +Xβ + ε

where Y is a n×1 vector of the CO2 emissions per capita, β0 is an intercept,
X is a n×1 vector of the price of emitting CO2 emissions and ε is an error term
vector. n is the sample size. Estimating this model yields

Y = β̂0 +Xβ̂ + e

where β̂0 and β̂ are estimators for β0 and β and e is the residual. β̂ is
estimated with Ordinary Least Squares (OLS), which minimizes the sum of
squared differences between the observed and predicted variables.

The simplest regression to estimate is with only one explanatory variable.
Including more variables might improve the fit of the model.

Under the Gauss-Markov conditions, the OLS estimator is the most efficient
linear unbiased estimator. Those conditions include strict exogeneity. Exogene-
ity implies that the explanatory variables are uncorrelated with the error term.
If this is violated, the estimator is biased. (Wooldridge 2012) p. 351f

3.2 Difference in Differences

A different method that is used in this thesis is Difference in Differences. This is
a method for policy evaluation that estimates the treatment effect on the treated
object(s). It allows to exclude other confunding factors that might affect the
variable of interest.

6



Assume there are n observed units, with the variable of interest x1 to xn,
over t time periods. There are m treated units and (m − n) non-treated units
(m < n). The first m units are treated, so x1 to xt are exposed to a certain
policy, and the xt+1 to xm units are non exposed to it. The former is called
the treatment group, the latter is called the control group. The treatment takes
place at time t0. The goal is to find the causal effect of the treatment, but the
treated group can only be observed before the treatment without the treatment
(xN1 to xNm before t0) of after the treatment with the treatment (xT1 to xTm after
t0). The causal effect of the treatment on the first unit would be xT1 − xN1 after
t0, but xN1 is only observable before t0, not after t0.

The idea of Difference in Differences is to compare the treated units (xT1
to xTm after t0) with the non-treated units (xNm+1 to xNn after t0). Taking the
Differences between the average treated units and the average non-treated units
( 1
m

∑m
i=1 xi −

1
n−m

∑n
i=m+1 xi) yields an unbiased estimator for the average

treatment effect on the treated units, if the parallel trend assumption holds.
The parallel trend assumption is the identifying assumption for the Differ-

ence in Differences estimation. It holds if the variable of interest would behave
(increase, decrease or remain the same) in the treatment group and the control
group after t0 in the absence of the treatment. Unfortunately, the treatment
group is not observable in the absence of the treatment, so this assumption
is untestable. If the treatment is not randomly assigned, the treatment group
and the control group might differ in some key characteristics and might face
different shocks after t0. If there is reason to believe that such differences are
prevalent in the data, the control group might not be the best counterfactual
to the control group (Angrist and Pischke 2008) p. 169ff.

3.3 Synthetic control method

The synthetic control method (SCM) was originally proposed by Abadie et al.
(2010) and has been applied in many different areas of economic research since.
Athey and Imbens (2017) wrote in a much cited sentence that ”the synthetic
control approach [...] is arguably the most important innovation in the policy
evaluation literature in the last 15 years.”

The SCM can be interpreted as an expansion of the Difference in Differences
estimation method. It relaxes the parallel trend assumption which is the main
drawback of the Difference in Differences method because it is violated in many
empirical contexts. The main idea is that instead of comparing the treatment
group with an average (or a single unit) of a control group, a counterfactual
is constructed as a weighted average of the control group. The weights are
chosen such that the synthetic counterfactual resembles the characteristics of
the treated unit as closely as possible. These characteristics are defined by
a set of predictors, which are suited for predicting the variable of interest in
the sample. A more convincing counterfactual than the simple average can be
constructed like that.

The time period before the treatment is used to decide on the weights and
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to test if the synthetic unit and the observed data match. When comparing
those two, the credibility of the synthetic control method can be checked. If the
variable of interest of the treated unit and the synthetic control do not match
up reasonably well in the time span before the intervention, the method should
not be used with the given data set.

This is also the main drawback of the synthetic control method. The pre-
dictor variables together must be able to predict the variable of interest of the
treated unit in order for the synthetic control method to be viable. In order to
construct a convincing counterfactual, much data is needed to get such predic-
tors that can be used to closely match the treated unit from a weighted average
from the control group. These data requirements cannot be met in all contexts.
It might also be impossible if the treated unit is too different from the control
group to construct a convincing counterfactual. However, since it is easy to
check if the identifying assumption holds, this can be applied in many contexts
if enough data can be collected.

The predictors should be chosen such that they are able to predict the out-
come variable. They should also be unaffected by the treatment. In-time and
in-space spillover effects create biases for the estimator.

Also, as Lu (2021) wrote, if the outcome variable follows a non-stationary
autoregressive process, the synthetic control estimator would be biased. In this
case, Lu suggests using first differences of the outcome variable.

3.3.1 Formalization

The presented model here follows what Abadie, Diamond, and Hainmueller
(2010) published in their original paper and what Cunningham (2021) wrote in
an article about the synthetic control method.

In the context of this work, we think of treated units as regions. There are
j+1 observed regions. For simplification, the first of those regions is exposed to
the treatment. Let Y N

it be the variable of interest that is observed in region i =
1, ....., j at time t = 1, ......., T . At time T0 + 1 intervention is implemented. We
assume that there are no in-time and in-space spillover effects, so the outcomes of
the untreated regions and the outcomes of the treated unit before the treatment
are not affected by the treatment. Y11, ...., Y1T0

and any Yit where i > 1 are
unaffected by the treatment, and Y1T0+1, ...., Y1T are subject to the treatment.
These assumptions are discussed in the context of this work in Section 6.

Let Y I
it be the outcome that would be observed for unit i at time t if unit

i would be exposed to the treatment (I for intervention). Let αit = Y I
it − Y N

it

be the treatment effect for unit i at time t, and let Dit be a dummy indicator
that is 1 if unit i is exposed to the treatment at time t and 0 otherwise. It is
therefore 1 only for unit i = 1 at time t > T0 and 0 for all others. The observed
outcome for unit i at time t is Yit = Y N

it + αitDit.
The estimator for used α1t is

α̂1t = Y1t −
j+1∑
i=2

w∗i Yit

8



where w∗i is a vector of weights that are optimally chosen to construct the best
fitting counterfactual.

W contains the weights: W = (w2, ....., wj+1). W is chosen to minimize
||X1 − X0W ||, where X1 and X0 are the chosen predictors of the outcome
variable after the intervention. All weights are restricted to be non-negative
and they sum up to 1. wj ≥ 0 and

∑j+1
i=2 wi = 1.

Abadie, Diamond, and Hainmueller (2010) use

||X1 −X0W || =
√

(X1 −X0W )′V (X1 −X0W )

where V is some (k × k) symmetric and positive semidefinite matrix. They
choose a V that minimizes the mean squared prediction error:

T0∑
t=1

(Y1t −
j+1∑
i=2

w∗i (V )Yit)

2
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Chapter 4

Data

For the empirical estimation of the effect of the RGGI program, the author
uses annual panel data from 1990–2019 on CO2 emissions in the electricity
sector for each US state. The data comes from the U.S. Energy Information
Administration (2021a).

The data for the price of CO2 emissions from the RGGI states comes from
Regional Greenhouse Gas Initiative (2021a). For each auction, the quantity of
emission allowances that were offered and sold and the clearing price is pub-
licized. The auction takes place 4 times a year (March, June, September and
December). The other data is only available annually, so the author adjusted
the clearing price for the auction to annual data. For that, each December auc-
tion gets assigned to the following year and weighted the clearing price from
each auction according to the amount of emissions that were sold to compute a
properly weighted average annual price on CO2 emissions. For the CO2 price in
California, data from California Air Resource Board (2021) is used, which is an
agency in the government of California that is subordinate to the Californian
Environmental Protection Agency. This dataset contains the auction results
of the Californian Cap and Trade program. Auctions take place in February,
May, August and November. Results that are reported are the total allowances
offered, sold, and the clearing price. A weighted average annual price on CO2

emissions from that data is used.
As one of the predictor variables for the synthetic control method the author

uses net electricity imports. Annual data is from U.S. Energy Information
Administration (2021c). The net interstate flow of electricity is combined with
the electricity trade with Mexico and Canada. The data for annual GDP for
each state is from Bureau of Economic Analysis (2021). Unfortunately, this
data was only available from 1997 onward. The population data to compute
the per capita values is from Federal Reserve Bank of St. Louis (2021). For the
computation of the population density, data for the area of each US state is used
from U.S. Department of Commerce (2010). The data for the total amount of
electricity produced as well as for the contribution of each energy source is from
U.S. Energy Information Administration (2021b).
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Chapter 5

Results

5.1 Graphical Analysis

First of all, we will have a look at the time trend of the CO2-emission from
the electricity generation sector per capita in different states to see if there is
indication that there is a correlation with the introduction of a price on CO2

emissions.

Figure 5.1: CO2 per capita of RGGI states

Figure 5.1 shows the per capita CO2 emissions from the electricity generating
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sector of all states that are part of the RGGI from 1990–2019. The vertical line
marks the year 2009, the year in which the cap and therefore a price on CO2

emissions took effect. For better visibility, Delaware is excluded in the next
graph, which has much higher levels of emissions per capita than all the other
RGGI states.

Figure 5.2: CO2 per capita of RGGI states without Delaware

Figure 5.2 shows a clear downward trend in per capita emissions since the
beginning of the century in most RGGI states. This trend does not begin with
the introduction of the RGGI, but rather a few years before, and it is also not
at the same time in all states. The discussion about implementing a regional
C&T program already begun in 2003 (Regional Greenhousegas Initiative 2021),
and at the end of 2005 Connecticut, Delaware, Maine, New Hampshire, New
Jersey, New York and Vermont agreed on a Memorandum of Understanding to
implement the RGGI. Therefore, it was commonly known that there will be
a cap and subsequently a price on CO2 emissions from the electricity sector
several years before the actual implementation. It is therefore reasonable to
believe that forward looking agents in the economies reacted to the C&T in
advance to avoid paying higher prices once it is implemented since adjusting
the electricity portfolio takes some time.

A different possibility is that there was some common shock that caused the
CO2 emissions from electricity production to decline across states.

12



Figure 5.3: CO2 per capita of some non-RGGI states

Figure 5.3 shows the same plot for a selection of other US states in the north
and east that are not under and C&T for comparison. In this sample, we can
also see a downward trend since the beginning of the 2000s, but it seems to be
smaller than what we saw before from the RGGI states. This supports the idea
that there is some downward effect from the carbon price on CO2 emissions.

5.2 Empirical Estimation

In this section different empirical methods are used to formally analyze the effect
from the RGGI C&T on CO2 emissions.

5.2.1 Ordinary Least Squares

The OLS model

Y = β̂0 +Xβ̂ + e

is estimated, where the variable of interest Y is the CO2 emissions per capita
from the electricity sector and X is a vector of the control variables. Model 1
in table 5.1 uses only the price of CO2 emissions in the energy sector as a
control variable. Model 2 uses uses data on GDP per capita, the total electricity
production and the net electricity imports as additional control variables.

In table 5.1 we can see the regression results. Model 1 associates a decrease
of 1.571 tons of CO2 emissions per capita with an additional dollar per ton of

13



Dependent variable:

CO2 emissions

(1) (2)

CO2 price −1.571∗∗∗ −0.466∗∗

(0.242) (0.236)

GDP per capita −0.00000∗

(0.00000)

total electricity production −0.000
(0.000)

Net electricity import −0.024∗∗∗

(0.002)

Constant 11.443∗∗∗ 11.872∗∗∗

(0.358) (0.576)

Observations 1,530 1,172
R2 0.027 0.197
Adjusted R2 0.026 0.195
Residual Std. Error 13.553 (df = 1528) 12.228 (df = 1167)
F Statistic 42.056∗∗∗ (df = 1; 1528) 71.745∗∗∗ (df = 4; 1167)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.1: OLS estimation
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CO2 emissions in the electricity sector. This is significant at the 1 % level. This
would mean a decrease of 8.42 tons of CO2 emissions per capita in the year 2019
in RGGI states. This corresponds to a reduction of more than 50 million tons of
CO2 in total in the state of Maryland alone, which would be very high since the
electricity sector of Maryland in total emitted about 13 million tons of CO2 in
the year 2019. However, we can see that the R2 is rather low, which means that
only 2.6 % of the variation in the data can be explained by the model. This was
to be expected however, because large variations of the CO2 price come from
other factors, as many states are not subject to a CO2 price at all and they still
have a very different electricity generating portfolio and therefore very different
CO2 emissions per capita.

The second model associates a decrease of -0.47 tons of CO2 emissions per
capita with an additional dollar per ton of CO2 emissions in the electricity
sector. This is significant at the 5 % level. The introduction of the control
variables reduced the effect because some part of the reduction in the CO2 price
comes from the controlling variables. The R2 is higher, model 2 can explain
about almost 20 % of the total variation in the data.

5.2.2 Difference in Differences

The Difference in Differences method is used to estimate the effect of the RGGI
on CO2 emissions in the electricity sector. The treatment group are all RGGI
states, and the control group are all other US states except California. California
is excluded because it is part of a different C&T that was implemented at
a different time and can therefore not be included in the same Difference in
Differences estimation. The average of the treatment group is compared to the
average of the control group. As the dependent variable, CO2 emissions per
capita is used.

Table 5.2 shows in column 1 the results of the Difference in Difference es-
timation with all RGGI states as treatment group and all states that are not
subject to a C&T as control, with 2009 as the treatment year. The Difference
in Difference estimation does not yield a significant effect from the RGGI on
CO2 emissions. The effect estimated is actually positive, which goes against
what was to be expected, since the RGGI put a cap on CO2 emissions from
the electricity sector which should have reduced CO2 emissions. It might be the
case that a part of the effect already started before 2009, as was discussed in the
graphical analysis, because agents are forward-looking and may have adapted
to the RGGI before its actual implementation. If the dummy-variable time,
which indicates when the treatment came into effect, is moved to an earlier
time-point, the interaction term becomes smaller and eventually becomes neg-
ative if the year 2003 is used. But this was even before the first commitment
was signed, and the effect is still insignificant. Column 2 shows the results from
the estimation when 2005 is used as an intervention year, which is the year in
which the first agreement was signed to implement the RGGI.

Another Difference in Differences estimation can be done by using only one
treated RGGI state and the states that are not subject to a C&T as controls.

Table 5.3 column 1 shows the results of the Difference in Differences estima-
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Dependent variable:

CO2pc

(1) (2)

treated −9.351∗∗∗ −9.220∗∗∗

(1.077) (1.214)

time −2.261∗∗∗ −1.520∗∗

(0.796) (0.768)

treated:time 0.434 0.057
(1.779) (1.717)

Constant 13.703∗∗∗ 13.634∗∗∗

(0.482) (0.543)

Observations 1,500 1,500
R2 0.077 0.074
Adjusted R2 0.075 0.072
Residual Std. Error (df = 1496) 13.280 13.300
F Statistic (df = 3; 1496) 41.461∗∗∗ 39.823∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.2: Difference in Difference estimation
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Dependent variable:

CO2pc

(1) (2)

treated −8.200∗∗ −8.067∗∗

(3.420) (3.855)

time −2.327∗∗∗ −1.566∗

(0.893) (0.862)

treated:time −0.120 −0.355
(5.648) (5.452)

Constant 13.988∗∗∗ 13.918∗∗∗

(0.541) (0.610)

Observations 1,200 1,200
R2 0.013 0.010
Adjusted R2 0.011 0.008
Residual Std. Error (df = 1196) 14.721 14.743
F Statistic (df = 3; 1196) 5.385∗∗∗ 4.191∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.3: Difference in Difference estimation Maryland
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tion with only Maryland as a treated state and all states that are not subject
to an C&T as controls. The estimator is negative but insignificant. If the in-
tervention is moved to an earlier time, the estimator becomes smaller, so the
negative effect becomes stronger. However, it still stays insignificant. Column
2 shows the results for a intervention year of 2005.

Dependent variable:

CO2pc

(1) (2)

treated −8.074∗∗ −8.067∗∗

(3.515) (3.855)

time −2.127∗∗ −1.566∗

(0.879) (0.862)

treated:time 0.406 −0.355
(5.558) (5.452)

Constant 13.986∗∗∗ 13.918∗∗∗

(0.556) (0.610)

Observations 1,200 1,200
R2 0.012 0.010
Adjusted R2 0.009 0.008
Residual Std. Error (df = 1196) 14.726 14.743
F Statistic (df = 3; 1196) 4.800∗∗∗ 4.191∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.4: Difference in Difference estimation Virginia

Table 5.4 column 1 shows the results of the Difference in Difference estima-
tion with only Virginia as a treated state and all states that are not subject to a
C&T as controls. The estimator is positive and insignificant. If the intervention
is moved to an earlier time, the estimator becomes negative. However, it still
stays insignificant. Column 2 shows the results for a intervention year of 2005.

5.2.3 Synthetic Control Method

The synthetic control method is used to construct a counterfactual that is more
convincing than the unweighted average of all the control states. The con-
structed counterfacual is called the synthetic state. The method is performed
on each state that is subject to a C&T with all other US states that are not
subject to a C&T as potential donors. The variable of interest is CO2 emissions
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per capita from the electricity sector. The predictors used are:

• CO2 emissions from the electricity sector

• net electricity imports

• GDP per capita (only available from 1997–2019)

• total electricity production

• population density

• the percentage of electricity that is produced from each source:

– coal

– natural gas

– petroleum

– nuclear power

– wind

– solar

– hydroelectric power

– geothermal

– biomass

For most RGGI states, the synthetic control method is unable to reproduce
the pre-intervention values of the CO2 emissions per capita. The states are
so different from the control states that even the optimal weights (given the
restriction from chapter 3) fail to construct a convincing counterfactual. The
state with the best fit is Maryland. As an indicator for best fit the sum of the
absolute values of the gaps between the synthetic Maryland and the observed
data until the intervention is computed, which is 2.78.
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Maryland

Figure 5.4: SCM Maryland

Figure 5.4 shows the time trend of CO2 emissions from the electricity sector per
capita from 1990–2019. The vertical line represents the observed data, and the
dotted line shows the synthetic Maryland that is constructed by the weighted
average of the donor states. The vertical line indicates the year of intervention,
2009. As we can see, the lines are reasonably close to each other most of the
time until 2009, which is the time the RGGI came into effect. The only pre-
intervention years with a larger divergence between the synthetic Maryland and
the observed data is 1998 and 1999, where there was an unusually large spike in
electricity production from petroleum power plants. The amount of electricity
production and subsequently CO2 emissions from those was doubled from 1997
to 1998 and increased even more in 1999, before it went down again. Still, the
synthetic Maryland is able to track the path of CO2 emissions from the observed
data from Maryland reasonably well until the treatment, which indicates that it
is a more convincing counterfactual than the average of the donor pool, which
was used for the Difference in Differences method. It is also easy to see that
the CO2 emissions from the electricity sector would have decreased even in the
absence of the RGGI program, but not as much as they actually did.

The effect of the introduction of the RGGI on CO2 emissions from the elec-
tricity sector is the gap between the synthetic path and the actual path. Figure
5.5 plots those gaps.
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Figure 5.5: SCM Maryland gaps

There are only small divergences from the gap until 2009. Then, the gap
increases over time until 2019, with a small outlier in 2018. In 2019 the gap
was -1.27, which means that due to the introduction of the RGGI program,
the emissions from the electricity sector were 1.27 tons of CO2 per capita lower
compared to the scenario without the RGGI.

The weights assigned to the different states from the donor pool are zero
for most states, except for District of Columbia, Florida, Idaho, Minnesota,
Mississippi, Nebraska, North Carolina and Tennessee. All weights add up to 1
due to a restriction imposed in chapter 3. They are reported in Table 5.5.

state weights

District of Columbia 0.054
Florida 0.077
Idaho 0.248

Minnesota 0.474
Mississippi 0.005
Nebraska 0.001

North Carolina 0.026
Tennessee 0.115

Table 5.5: Weights synthetic Maryland
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Virginia

For Virginia, the synthetic control method constructs a counterfactual that is
somewhat close to the observed data of CO2 emissions per capita. The sum of
the absolute values of the gaps between the synthetic Virginia and the observed
data until the intervention is 4.31.

Figure 5.6: SCM Virginia

Figure 5.6 shows the time trend of CO2 emissions from the electricity sector
per capita from 1990–2019 for Virginia. The fit is not as good as with Maryland,
but is is still close enough to be worth analyzing.
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Figure 5.7: SCM Virginia gaps

Figure 5.7 shows the gaps between the synthetic Virginia and the observed
data, which is the effect of the RGGI program on CO2 emissions. The gap
in 2019 was -0.78, which means that in 2019, the electricity sector of Virginia
emitted 0.78 tons CO2 per capita less than what would have been emitted in
absence of the RGGI program.

The non-zero weights assigned to the different states to construct the syn-
thetic Virginia are reported in table 5.6.

state weights

Florida 0.255
Hawaii 0.049
Idaho 0.288

Mississippi 0.109
North Carolina 0.156

Wisconsin 0.142

Table 5.6: Weights synthetic Virginia
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Chapter 6

Discussion

6.1 Carbon Leakage

The introduction of a tax on a good in a region might have unintended conse-
quences. In the case of a price on CO2 emissions in the electricity sector, these
consequences could be a shift from producing electricity locally to importing
it from another area, where there is no price on CO2. If this is the case, we
would need to interpret the results accordingly. The intended effect of a policy
like the RGGI is a shift from CO2 intensive energy production (e. g. fossil fuels
like coal) to a more environmentally friendly production technology (renewable
energies). Also, a shift from coal to gas could be expected and intended, since
producing electricity from gas emits less CO2 than from coal. An unintended
effect would be if, instead of producing more environmentally friendly energy,
electricity would be imported from other places where there is no (or a lower)
price on CO2 emissions to avoid the cost of the tax. This unintended effect
from climate policy in general is called the Carbon Leakage effect and can be
applied to different industries that are regulated to some extent (Babiker 2005).
An analysis of this issue regarding the RGGI can be found in Chen (2009).

In case of electricity production, this should not be as big of an issue as
in other industries, since transporting electricity over longer distances leads
to losses, so it can be regarded as more costly than importing other goods.
Transporting electricity over larger distances causes transmission costs in the
form of necessary infrastructure and loss in electricity over distance. These
transmission costs depend on the infrastructure and technology that is used
(Csanyi 2014). The main concern in the context of this study regarding this
carbon leakage effect is therefore electricity imports from neighboring states.

To test if this is an issue in the case of the empirical estimation of the effect
of the RGGI program on CO2 emissions, the author performs correlation tests
between the price on CO2 and the amount of electricity that is traded between
states and with Canada and Mexico. The overall correlation coefficient over all
states is 0.2669 and is significant at the 1 % level. The correlation of only the
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states that are subject to a CO2 price is 0.1906 and is significant on the 1 %
level. The correlation of only Maryland is 0.5974 and is significant on the 1 %
level. The correlation of only Virginia is 0.1022 and is not significant. This
means there is significant correlation between the price of CO2 and the imports
and should be further investigated.

When looking at Maryland’s electricity production the data shows that it
decreased electricity production from 2009–2019 from 43.7 million Megawatt-
hours (MWh) to 39.3 million MWh. The net-imports of Maryland however
stayed almost the same (+257.3 British Thermal units (Btu)1 in 2009, +253.8
Btu in 2019). It is therefore unlikely that Maryland decreased electricity pro-
duction and increased imports from states that are not subject to a price on
CO2 emissions. Maryland’s neighbor state that it shares the largest border,
Pennsylvania, also had stable net-imports (-658.8 Btu in 2009 and -669.1 Btu
in 2019). The second state that shares a border that is not part of the RGGI
is Washington D.C., which also had stable net-imports (128.7 and 114.1 Btu).
The last state that Maryland shares a border that does not have a price on
CO2 emissions, West Virginia, even increased their net-imports (from -398.1 to
-291.5 Btu). This does not support the carbon leakage hypothesis, the correla-
tion reported seems to be caused by other factors. Nevertheless, this is not a
thorough analysis and part of the measured effect from the RGGI might be due
to carbon leakage.

6.2 OLS Estimation

The OLS estimation of Maryland reported a very strong association of a price
of CO2 on CO2 emissions. While this is evidence that there is a negative effect
of the RGGI program on CO2 emissions, the magnitude of the effect reported
by the OLS estimation should be interpreted with care.

One potential issue might be selection bias: The states chose to be part of
the RGGI program or not. The states might have chosen to participate based
on their electricity production portfolio. The more dependent their electricity
production is on CO2 intensive fossil fuels (like coal and petroleum) and the
less renewable energy the states produce, the more costly it is for the state to
participate in the RGGI. Also, the availability of natural resources that allows
for using renewable energy (e. g. coast for efficient offshore wind power plants
and tidal power, rivers for hydroelectric power plants) or for using of fossil fuels
(natural gas or oil reserves) affects the costs associated with participating in the
RGGI program. If it is cheap to produce electricity in a state from renewable
sources, or from producing electricity from natural gas which emits less CO2

than e. g. coal power plants, the costs of participating is lower and it is more
likely that they participate in the RGGI. If that is the case, the effect of the
RGGI program on other states would be lower because it would require a lower
cap and subsequently a higher price on CO2 emissions for firms to switch to

1A British thermal unit (Btu) is a measure of the heat content of fuels or energy sources
(U.S. Energy Information Administration 2021d).
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a less CO2 intensive electricity production technology. Also, other additional
policies that encourage the use of renewable energy production plants (e. g.
subsidies for solar panels) makes it cheaper for a state’s economy to participate
in the RGGI program. The RGGI states have some common features that
give reason to believe that such a selection bias is an issue here: All of them
are located in the northeast of the USA, which gives them similar geographic
prerequisites. All of them except Vermont have access to the Atlantic ocean.
To analyze the effect of other environmental policies of the states, it is useful
to compare the political landscape of the states. In all of the RGGI state’s a
majority of the population have voted for the Democratic candidate in the last
4 presidential elections, and all of them except Maryland, Massachusetts and
New Hampshire have Democratic governors, which makes it more likely that
there are additional environmental policies in place. All of these similarities
makes it likely that there is some kind of selection bias which means that the
OLS estimation results should not be interpreted as the true effect.

6.3 Difference in Difference Estimation

The Difference in Difference estimation did not yield significant results for all
states and for the specification with only Maryland and only Virginia as the
treated units. The identifying assumption is the parallel trend assumption,
which means that the treated units would have behaved the same as the average
of the control group in the absence of the treatment (World Bank 2013). To
check if this assumption holds, we can have a look at the time trend of the
control states and of Maryland and Virginia.
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Figure 6.1: Difference in Difference parallel trend assumption

Figure 6.1 shows the trend of CO2 emissions per capita from electricity
production. It compares the average of all control states with the average of
all RGGI states and Maryland and Virginia. It is easy to see that the average
CO2 emissions per capita of all control variables is a lot higher than the other
plots. Also, the trends are not moving parallel. This is strong evidence that
the parallel trend assumption is violated and that the Difference in Difference
estimation results should not be interpreted as the true effect.

6.4 Synthetic Control Method

As mentioned in section 3.3, it is necessary that the variable of interest is sta-
tionary for the Synthetic Control Method to return an unbiased estimator. To
test this, the author performed an augmented Dickey Fuller test (Cheung and
Lai 1995). The p-value is below 0.01, so the Null of a Unit root can be rejected,
which is evidence in favor of stationarity.

For the state of Maryland, there was evidence for a significant negative effect
from the RGGI program on CO2 emission per capita in the electricity sector. To
test the validity of this estimation the author performed the following placebo
test, following what Andersson (2019) did in his analysis of the Swedish carbon
tax: ”in-time”, ”in-space” and leave-one-out”.
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(a) time-trend (b) gaps

Figure 6.2: in-time shift 2005 Maryland

(a) time-trend (b) gaps

Figure 6.3: in-time shift 2000 Maryland

6.4.1 In-time Shift

For the in-time test, the author shifted the year of the treatment to check if there
are some other factors from earlier periods that might have caused the estimated
effect. Also, there might be some anticipation effects from before 2009 that can
be accounted for in an in-time-shift test. In-time tests were performed for an
intervention period in 2005 and in 2000.

Figure 6.2 shows the time trend and the gaps of synthetic Maryland with
a shifted intervention in 2005. The red vertical line depicts the time of the
intervention that was chosen to construct the plots. Figure 6.3 shows the same
for a shifted intervention in 2000. The effect of the RGGI increases with the
in-time shift moving more into the past, which indicates that some of the effect
of the RGGI was happening even before the intervention in 2009.

Figures 6.4 and 6.5 show the same graphs for Virginia. Here, the effect of
the intervention decreased when moved further into the past, but the negative
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(a) time-trend (b) gaps

Figure 6.4: in-time shift 2005 Virginia

(a) time-trend (b) gaps

Figure 6.5: in-time shift 2000 Virginia
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(a) all states (b) high mspn excluded

Figure 6.6: in-space placebo test gaps

effect of the RGGI is still captured. The magnitude of the effect changes quite
a bit due to the time-shift, so the true causal effect of the RGGI program on
CO2 emissions in the electricity sector in Virginia might be lower than what the
estimation from the synthetic control method indicates.

6.4.2 In-space Shift

The in-space placebo test is performed by iteratively treating every state in
the control group with the treatment and use the synthetic control method
to construct synthetic counterfactuals. With this test, the magnitude of the
treatment effect on the treated state can be compared to the potential magnitude
of the effect on other states. This is to check if the effect estimated on the treated
unit is larger than on other states.

Figure 6.6 shows the results of the in-space placebo test. The black line
represents the gaps of Maryland, the light gray lines are the gaps from the
other states. Figure 6.6a shows the gaps of all states. Not all states’ paths
can be tracked well by a synthetic control. In Figure 6.6b the states with a
pretreatment mspe (mean squared prediction error) that is larger than 20 times
the mspe of Maryland are excluded. 17 of the 50 control states are excluded,
which leaves 33.

We can see that the effect of the RGGI on CO2 emissions in Maryland is
larger than it would be in most states, but it is not the largest. By far the largest
negative gap would have a synthetic Kansas with -3.67, followed by Tennessee
and South Carolina with -2.23 and -2.22.

6.4.3 Leave-one-out

The leave-one-out placebo test is performed by iteratively leaving one state from
the donor pool out to check if the results are driven by a single control unit. The
donor states are District of Columbia, Florida, Idaho, Minnesota, Mississippi,
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Nebraska, North Carolina and Tennessee, so there are 8 sample variations where
each sample left one donor state out of the potential donor pool.

Figures 6.7 and 6.8 show the time trends and the gaps of all sample variations
of Maryland.

sample variation gaps in 2019 cumulated gap

without DC -1.53 4.21
without Florida -1.25 3.24
without Idaho -1.17 2.50

without Minnesota -1.24 2.55
without Mississippi -1.17 2.34
without Nebraska -1.06 2.78

without North Carolina -1.25 2.61
without Tennessee -1.49 3.33

Table 6.1: leave-1-out sample variations gaps Maryland

Table 6.1 reports in the third column the sum of the absolute values of the
gaps between the synthetic Maryland without the respective state in the donor
pool and the observed data until the intervention as an indicator of how well
the synthetic Maryland fits the data. While some are better than others all
are reasonably low. In the second column it reports the gap in the year 2019,
which is the effect of the RGGI program on the CO2 emissions per capita as an
indicator of how much the sample variation changes the result compared with
the result with the full potential donor pool which was -1.27. All of them are
close to the result which indicates that no single donor state drives the results.
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(a) without District of Columbia (b) without District of Columbia gaps

(c) without Florida (d) without Florida gaps

(e) without Idaho (f) without Idaho gaps

(g) without Minnesota (h) without Minnesota gaps

Figure 6.7: leave-1-out sample variations Maryland 1
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(a) without Mississippi (b) without Mississippi gaps

(c) without Nebraska (d) without Nebraska gaps

(e) without North Carolina (f) without North Carolina gaps

(g) without Tennessee (h) without Tennessee gaps

Figure 6.8: leave-1-out sample variations Maryland 2
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Chapter 7

Conclusion

The Regional Greenhouse Gas Initiative is a Cap and Trade program that sets an
upper limit on CO2 emissions in the electricity sector by auctioning allowances
and therefore makes emissions costly. This higher price gives an incentive for
economic agents to reduce CO2 emissions. The OLS regression analysis shows
evidence for a negative effect, but should not be interpreted as causal due to
the expected selection bias. The Difference in Differences estimation does not
show a significant effect of the RGGI program on CO2 emissions, but the parallel
trend assumption is violated in this context. With the synthetic control method
the author estimates a causal negative effect from the RGGI program on CO2

emissions in the electricity sector in the state of Maryland, which is robust to
a number of placebo tests. The results for the electricity sector in Virginia are
similar to those in Maryland, but less robust. Carbon leakage might cause some
of the estimated effect in both states.

Carbon pricing can reduce emissions, but the magnitude depends on the
context and is difficult to measure. The synthetic control method makes it
possible to analyse this issue in different contexts. Recent publications have in-
troduced new modifications of the synthetic control method that might improve
estimation results and reduce biases (Ben-Michael, Feller, and Rothstein 2021).
To further investigate the effect of carbon pricing on emissions and improve re-
sults, these new methods can be applied to the RGGI and other carbon pricing
regimes.

34



Bibliography

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller (2010). “Synthetic Con-
trol Methods for Comparative Case Studies: Estimating the Effect of Cali-
fornia’s Tobacco Control Program”. In: Journal of the American Statistical
Association 105.490, pp. 493–505. doi: 10.1198/jasa.2009.ap08746.

Abt Associates (2017). Analysis of the Public Health Impacts of the Regional
Greenhouse Gas Initiative. url: https://www.abtassociates.com/insights/
publications/report/analysis-of-the-public-health-impacts-of-

the-regional-greenhouse-gas.
Aldy, Joseph E. and Robert N. Stavins (2012). “The Promise and Problems of

Pricing Carbon: Theory and Experience”. In: The Journal of Environment
& Development 21.2, pp. 152–180. url: https : / / doi . org / 10 . 1177 /

1070496512442508.
Andersson, Julius J. (2019). “Carbon Taxes and CO2 Emissions: Sweden as a

Case Study”. In: American Economic Journal: Economic Policy 11.4, pp. 1–
30. url: https://www.aeaweb.org/articles?id=10.1257/pol.20170144.

Angrist, Joshua D. and Jörn-Steffen Pischke (2008). Mostly Harmless Econo-
metrics: An Empiricits’s Companion.

Athey, Susan and Guido W. Imbens (2017). “The State of Applied Econometrics:
Causality and Policy Evaluation”. In: Journal of Economic Perspectives 31.2,
pp. 3–32. doi: 10.1257/jep.31.2.3. url: https://www.aeaweb.org/
articles?id=10.1257/jep.31.2.3.

Babiker, Mustafa H. (2005). “Climate change policy, market structure, and car-
bon leakage”. In: Journal of International Economics 65.2, pp. 421–445.
issn: 0022-1996. doi: https://doi.org/10.1016/j.jinteco.2004.01.
003.

Ben-Michael, Eli, Avi Feller, and Jesse Rothstein (2021). “The Augmented Syn-
thetic Control Method”. In: Journal of the American Statistical Association
0.0, pp. 1–27. url: https://doi.org/10.1080/01621459.2021.1929245.

Best, R., P.J. Burke, and F. Jotzo (2020). “Carbon Pricing Efficacy: Cross-
Country Evidence”. In: Resource Econ 77, pp. 69–94. url: https://doi.
org/10.1007/s10640-020-00436-x.

Bowen, Alex (2011). “The case for carbon pricing”. In: url: https://www.lse.
ac.uk/GranthamInstitute/wp-content/uploads/2014/02/PB_case-

carbon-pricing_Bowen.pdf.

35



Bruvoll, Annegrete and Bodil Merethe Larsen (2004). “Greenhouse gas emis-
sions in Norway: do carbon taxes work?” In: Energy Policy 32.4. An eco-
nomic analysis of climate policy: essays in honour of Andries Nentjes, pp. 493–
505. doi: https://doi.org/10.1016/S0301-4215(03)00151-4.

Bureau of Economic Analysis (2021). SAGDP tables: Annual GDP by state.
url: https://apps.bea.gov/regional/downloadzip.cfm.

California Air Resource Board (2021). CALIFORNIA CAP-AND-TRADE PRO-
GRAM. url: https://ww2.arb.ca.gov/sites/default/files/2020-
08/results_summary.pdf.

Center for Climate and Energy Solutions (2021). U.S. State Carbon Pricing
Policies. url: https://www.c2es.org/document/us- state- carbon-

pricing-policies/.
Chen, Yihsu (2009). “Does a regional greenhouse gas policy make sense? A case

study of carbon leakage and emissions spillover”. In: Energy Economics 31.5,
pp. 667–675. doi: https://doi.org/10.1016/j.eneco.2009.02.003.

Cheung, Yin-Wong and Kon S Lai (1995). “Lag order and critical values of
the augmented Dickey–Fuller test”. In: Journal of Business & Economic
Statistics 13.3, pp. 277–280.

Csanyi, Edvard (2014). Analysing the costs of high voltage direct current hvdc
transmission. url: https : / / electrical - engineering - portal . com /

analysing - the - costs - of - high - voltage - direct - current - hvdc -

transmission.
Cunningham, Scott (2021). Causal Inference: The Mixtape, 10 Synthetic Con-

trol. https://mixtape.scunning.com/synthetic-control.html.
Dolphin, Geoffroy, Michael Pollitt, and David Newbery (July 2019). “The po-

litical economy of carbon pricing: a panel analysis”. In: Oxford Economic
Papers 72.2, pp. 472–500. url: https://doi.org/10.1093/oep/gpz042.

European Commission (2015). EU Emissions Trading System (EU ETS). url:
https://ec.europa.eu/clima/policies/ets_en.

Federal Reserve Bank of St. Louis (2021). Resident Population by State, Annual.
url: https://fred.stlouisfed.org/release/tables?rid=118&eid=
259194&od=2017-01-01.

Goulder, H. Lawrence and Andrew Schein (2013). “Carbon Taxes versus Cap
and Trade: A critical Review”. In: NBER working paper series. url: http:
//www.nber.org/papers/w19338.

Hibbard, Paul J. et al. (2018). “An expanding carbon cap-and-trade regime? A
decade of experience with RGGI charts a path forward”. In: The Electricity
Journal 31.5, pp. 1–8. doi: https://doi.org/10.1016/j.tej.2018.05.
015.

Huber, Bruce R. (2013). “How Did RGGI Do It: Political Economy and Emis-
sions Auctions”. In: Ecology Law Quarterly 40.1, pp. 59–106. url: https:
//heinonline.org/HOL/P?h=hein.journals/eclawq40&i=67.

Lin, Boqiang and Xuehui Li (2011). “The effect of carbon tax on per capita
CO2 emissions”. In: Energy Policy 39.9, pp. 5137–5146. url: https://www.
sciencedirect.com/science/article/pii/S0301421511004502.

36



Lu, Jiaxuan (2021). “Synthetic Control Method, Stationarity and Pointwise Sta-
tistical Inference”. In: SSRN. url: https://ssrn.com/abstract=3779281%
20or%20http://dx.doi.org/10.2139/ssrn.3779281.

Murray, Brian C. and Peter T. Maniloff (2015). “Why have greenhouse emissions
in RGGI states declined? An econometric attribution to economic, energy
market, and policy factors”. In: Energy Economics 51, pp. 581–589. issn:
0140-9883. doi: https://doi.org/10.1016/j.eneco.2015.07.013.

OECD (2015). Effective Carbon Rates on Energy in OECD & Selected Partner
Economies. url: %7Bhttps://www.oecd.org/tax/effective-carbon-
rates-on-energy.htm%7D.

Pierrehumbert, Raymond (2019). “There is no Plan B for dealing with the cli-
mate crisis”. In: Bulletin of the Atomic Scientists 75.5, pp. 215–221. url:
https://doi.org/10.1080/00963402.2019.1654255.

Regional Greenhouse Gas Initiative (2021a). Allowance Prices and Volumes.
url: https://www.rggi.org/Auctions/Auction- Results/Prices-

Volumes.
— (2021b). Elements of RGGI. url: https : / / www . rggi . org / program -

overview-and-design/elements.
Regional Greenhousegas Initiative (2021). A brief history of RGGI. url: https:

//www.rggi.org/program-overview-and-design/design-archive.
The World Bank (2014). Pricing Carbon. url: https://www.worldbank.org/

en/programs/pricing-carbon.
U.S. Department of Commerce (2010). United States Summary. url: https:

//www.census.gov/prod/cen2010/cph-2-1.pdf.
U.S. Energy Information Administration (2021a). Net Generation by State by

Type of Producer by Energy Source. url: https://www.eia.gov/electricity/
data/state/emission_annual.xls.

— (2021b). Net Generation by State by Type of Producer by Energy Source. url:
https://www.eia.gov/electricity/data/state/annual_generation_

state.xls.
— (2021c). Primary Energy Consumption Estimates. url: https://www.eia.

gov/state/seds/data.php?incfile=/state/seds/sep_use/total/use_

tot_UScb.html&sid=US.
— (2021d). Units and calculators explained. url: https://www.eia.gov/

energyexplained/units-and-calculators/british-thermal-units.

php.
United Nations (2021). The Climate Crisis – A Race We Can Win. url: https:

//www.un.org/en/un75/climate-crisis-race-we-can-win.
Vourc’h, Ann and Miguel Jimenez (2000). Enhancing Environmentally Sustain-

able Growth in Finland. OECD Economics Department Working Papers 229.
OECD Publishing.

Woo, C.K. et al. (Nov. 2017). “Does California’s CO 2 price affect wholesale
electricity prices in the Western U.S.A.?” In: Energy Policy 110, pp. 9–19.
url: https://doi.org/10.1016/j.enpol.2017.07.059.

Wooldridge, Jefferey M. (2012). Introductory Econometrics, A Modern Approach.
Fifth Edition.

37



World Bank (2013). The often (unspoken) assumptions behind the difference-
in-difference estimator in practice. url: https://blogs.worldbank.org/
impactevaluations/often-unspoken-assumptions-behind-difference-

difference-estimator-practice.

38


