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Abstract 

Nicotine addiction is a leading cause of preventable death worldwide and leads to high costs for 

health systems. Unfortunately, relapse rates after smoking cessation are high, which calls for 

improved treatment options. To deliver new effective treatments, a better understanding of the 

neural and behavioral mechanisms underlying nicotine dependence is needed. Regarding the 

neural underpinnings of nicotine addiction, a recent study found that activity in the anterior 

cingulate cortex may be primarily related to cue-driven craving, while amygdala activity is 

associated with valence aspects of nicotine cues. This work examined possible confounding of 

valence with craving using a cue-reactivity paradigm. 32 nicotine dependent subjects underwent a 

functional magnetic resonance imaging session while viewing craving-inducing images and 

subsequently rated these on a continuous scale regarding urge-to-smoke and emotional valence. 

A machine learning model (LASSO-PCR) was applied to predict single-trial ratings from 

neuronal activity in the anterior cingulate cortex. We hypothesized successful predictions only for 

the craving ratings, but it was not possible to accurately predict craving nor valence. The results 

can be attributed to various factors: quality of the ratings, unsuitable inter-stimulus interval, and 

the model itself. Overall, optimizing experimental designs for multivariate regression methods is 

highly relevant to enhance research on cue-related craving in smokers and thus to develop better 

treatment options for smoking cessation. 

 Keywords: craving, cue-reactivity, nicotine dependence, functional magnetic resonance 

imaging, machine learning  
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Introduction 

With more than 8 million deaths per year worldwide (World Health Organization, 2021), 

tobacco use disorder is one of the main preventable diseases (Samet, 2013). The cost on the 

global health system has been estimated to $1.4 trillion per year (World Health Organization, 

2021), which makes cigarette smoking not only a major threat to public health, but also a huge 

burden to socioeconomic systems. It is not surprising that nearly 70% of smokers want to quit 

(Babb et al., 2017), but they often fail to stay abstinent, as illustrated by relapse rates of around 

50% in the first year of smoking cessation (García-Rodríguez et al., 2013). Several treatments are 

available, such as cognitive behavioral therapy, medication, or nicotine replacement products like 

nicotine patches, nicotine gum, and sprays. However, these treatments show poor efficacy 

(Quednow & Herdener, 2016). For example, nicotine replacement therapy and individual 

behavioral counseling increase the success of smoking cessation in the first six months by only 

3% (Hartmann-Boyce et al., 2018; Lancaster & Stead, 2017). Consequently, it is urgently needed 

to improve existing treatment options and develop new approaches. 

Understanding the associated behaviors and underlying mechanisms involved in the 

development and maintenance of nicotine addiction is essential to achieve this goal. Here, several 

psychological factors for smoking relapse have been identified, including impulsivity (Powell et 

al., 2010), sociability (Nieva et al., 2011), perceived stress (Nakajima & Al’Absi, 2012), and low 

self-efficacy (Elfeddali et al., 2012). 

Craving also appears to be a key factor for relapse (Bagot et al., 2007; Killen & Fortmann, 

1997; Nakajima & Al’Absi, 2012). Defined as “persistent urges, thoughts or desires to smoke a 

cigarette” (Potvin et al., 2015), craving is one core diagnostic criterion for tobacco use disorder 

according to the Diagnostic and Statistical Manual of Mental Disorders 5th Edition (DSM-V; 

American Psychiatric Association, 2013). Different theories on addiction, based on basic learning 

models, have attempted to explain why craving arises. 

Models of addiction 

Addiction models based on classical conditioning (Pavlov, 1927) postulate that the 

repeated pairing of certain stimuli (environmental context or drug paraphernalia) with drug use 

leads to craving being triggered by the stimuli alone, as a pleasant state is expected, but not yet 

achieved (Tiffany, 1995). For example, if a smoker has always smoked a cigarette when drinking 

coffee in the morning, a coffee cup may trigger craving.  
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In contrast, withdrawal-based negative reinforcement models focus on physical 

dependence and instrumental conditioning (Skinner, 1963), and propose that the frequency of a 

particular behavior increases if it prevents an undesirable consequence. Here, addiction is 

explained as maintaining drug use to avoid unpleasant withdrawal symptoms, like anxiety or 

restlessness in smoking cessation (Eissenberg, 2004; Tiffany, 1990). Thus, certain cues may lead 

to craving because they are associated with the aversive situation of withdrawal (Betts et al., 

2021). 

The incentive sensitization theory (Robinson & Berridge, 1993) attempts to explain 

craving at the neurobiological level. The core assumption is that repeated exposure to addictive 

substances induces permanent changes in brain circuits that are typically responsible for 

associating incentives with stimuli. Consequently, the substance user becomes hypersensitive to 

drug cues, which influences motivation (wanting) and leads to explicitly observable behavior 

such as craving. 

All these models share the assumption that craving can be triggered because of newly 

learned associations. Thus, craving is highly driven by the environment and external stimuli 

frequently associated with drug use, or in other words, by drug cues (Betts et al., 2021). Since 

smokers constantly encounter such craving-inducing situations that might prevent smoking 

cessation, it is important to further examine this mechanism in detail. One approach to study cue-

driven craving is the cue-reactivity paradigm (Carter & Tiffany, 1999; Drummond et al., 1995). 

Cue-reactivity paradigm 

The cue-reactivity paradigm is a method used in laboratory settings to examine 

physiological responses to certain stimuli in contrast to neutral cues. In studies on nicotine 

addiction, subjects are shown smoking cues, for example images of cigarettes (Carter & Tiffany, 

1999; Ferguson & Shiffman, 2009), and the response of interest is measured simultaneously or 

subsequently. Here, craving assessment can be done with visual analog scales (Hughes, 1992), 

while physiological proxies for craving can include measurements of heart rate and skin 

conductance (Tong et al., 2007). 

However, combining the cue-reactivity paradigm with functional magnetic resonance 

imaging (fMRI) allows to identify neural correlates of craving (Chase et al., 2011; Kühn & 

Gallinat, 2011; Tang et al., 2012). Interestingly, it was found that brain activity during exposure 

to smoking cues was predictive of smoking cessation and relapse (Allenby et al., 2020; Janes et 



7 
 

al., 2010). These findings highlight that understanding the underlying neural mechanisms of 

nicotine dependence and craving is highly relevant for improved treatments. 

Neural underpinnings of addiction 

The following brain regions have been consistently identified in meta-analyses to be 

active during cue exposure in individuals with drug addiction: ventral striatum, amygdala, 

anterior cingulate cortex (ACC), posterior cingulate cortex, and orbitofrontal cortex (Chase et al., 

2011; Kühn & Gallinat, 2011; Tang et al., 2012).  

For example, the ventral striatum, which includes the nucleus accumbens, is highly 

involved in reward-based processing and learning (Daniel & Pollmann, 2014) and therefore plays 

an important role in substance dependence. Although the amygdala is known primarily for 

processing emotions (Gallagher & Chiba, 1996), it is also active in learning associations between 

cues and rewards (Baxter & Murray, 2002), thus promoting drug seeking and cue-induced relapse 

(See et al., 2006). In addition, the orbitofrontal cortex, which is connected to the amygdala and 

the nucleus accumbens, appears to be particularly involved in evaluating the incentive value of 

stimuli and is consequently also a key region for reward processing in addiction (Gottfried et al., 

2003; Schoenbaum et al., 2006). 

Regarding cue-driven craving, several studies found a strong involvement of the ACC 

(Brody et al., 2007; Canterberry et al., 2013; Kühn & Gallinat, 2011; Li et al., 2013). This region 

is part of higher-level executive functions such as reward-based decision-making (Bush et al., 

2002) and impulse control (Simmonds et al., 2008). Here, for example, top-down control is 

exerted on the ventral striatum (Kalivas & Volkow, 2005). In contrast, the posterior cingulate 

cortex, as part of the default mode network, has a more indirect role and was found to be active in 

resisting cue-driven craving (Brody et al., 2007). 

However, recent studies on nicotine dependence suggested that distinct psychological 

aspects of the stimuli were supported by different neural substrates. For instance, ACC activity 

was found to be correlated with craving but not with valence of presented smoking images 

(Haugg et al., 2021). Additionally, the amygdala has been associated with the processing of 

affective stimuli (Costafreda et al., 2008), while also found to be substantially involved in cue-

reactivity studies on addiction (Kühn & Gallinat, 2011). These findings indicate that other 

dimensions like the emotional aspect may confound with results on craving-associated brain 

activity. This particularly concerns studies using the cue-reactivity paradigm to examine craving 
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at the neural level, since it cannot be ruled out that observed brain response was induced by 

psychological aspects of the cues other than craving.  

In addition, this issue is critical for specific treatments for smoking cessation such as cue-

exposure therapy (Conklin & Tiffany, 2002; Drummond et al., 1990) and real-time fMRI 

neurofeedback (Cox et al., 1995; Sulzer et al., 2013). In these treatments, clinicians aim to 

reliably induce craving rather than valence using smoking cues. Furthermore, in real-time fMRI 

neurofeedback, it is essential to target the right brain region responsible for craving to provide 

accurate feedback. 

Consequently, it is highly relevant to determine precisely which brain regions respond to 

the craving- or valence-related component of images shown to further improve studies using the 

cue-reactivity paradigm as well as treatments for smoking cessation. 

Approach in this study 

This work consists in re-analyzing an in-house fMRI data set, which was published in the 

paper by Haugg et al. (2021) on disentangling different psychological dimensions of craving-

inducing cues at the brain level.  

For this purpose, 32 smokers were exposed to a cue-reactivity paradigm while undergoing 

fMRI scanning. Afterwards, the participants rated the images regarding urge-to-smoke (craving) 

and emotional perception (valence) on a visual 0-100 analog scale. 

We attempt to verify the findings of Haugg et al. (2021) on the association of ACC 

activity with the craving rather than the valence aspect of stimuli. More precisely, while Haugg et 

al. (2021) used a classical univariate model with ratings as parametric modulator, we chose to 

apply a cross-validated multivariate approach at the single-trial level. Classical methods often 

underestimate the amount of information that can be extracted from neuroimaging data (Haynes 

& Rees, 2006). The reason is that the difference in activity of distinct neuronal processes can be 

very small and only be detected by combining several voxels instead of one to find patterns of 

activation. Furthermore, cross-validation (Kohavi, 1995) provides information on whether a 

model can be generalized beyond the data set used for the analysis. This is particularly important 

for real-time fMRI neurofeedback, where feedback must be given on unseen cases.  

We expect to find a machine learning model that accurately predicts craving ratings from 

BOLD activity in the ACC. Furthermore, we expect that it is not possible to accurately predict 

the valence ratings from this region. 
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Methods 

The data was acquired at the University of Zurich and taken from Haugg et al. (2021) to 

be reanalyzed for this thesis. 

Participants 

The sample consisted of 32 participants (female = 16, male = 15, non-binary = 1; age: M 

= 25.93, SD = 5.30; average daily cigarette consumption in number of cigarettes: M = 11.47, SD 

= 5.57; smoking duration in years: M = 7.41, SD = 4.76). All subjects provided written consent 

and received compensation for their participation in the form of 25 Swiss francs per hour. Only 

individuals with tobacco use disorder as defined in the DSM-V (American Psychiatric 

Association, 2013) were included. In addition, these exclusion criteria applied: mental or 

neurological disorders, contraindications for an MRI examination (metal implants, present 

pregnancy, pacemaker, etc.), and use of non-cigarette tobacco substitutes (e.g., nicotine patches, 

chewing gums, electronic cigarettes). 

Experimental procedure and design 

Before the MRI scan, subjects had to complete the following questionnaires: anamnesis 

questionnaire of current and past drug use (described in Quednow et al., 2004), Fagerström Test 

for Nicotine Dependence (Heatherton et al., 1991), and Brief Questionnaire of Smoking Urges 

(QSU; Sanderson Cox et al., 2001). The QSU had to be filled out again after the MRI. In 

addition, we instructed the participants not to smoke for at least one hour prior to the 

appointment. 

An event-related parametric design was employed for the MRI session, in which 

participants were asked to view a total of 330 nicotine-related and neutral images passively. 

There were five runs, each lasting five minutes. 68 images were shown randomly for 2.3 seconds 

each during one run, followed by a 1-second fixation point to set the baseline. Additionally, a 15-

second fixation point baseline was displayed at the beginning of each run. Furthermore, to ensure 

that participants were attentive to the images, we included ten catch trial images in random order. 

These were indicated by an exclamation mark, and subjects were asked to press a button each 

time it appeared. Before and after the cue-reactivity task, we collected resting state scans, which 

required the subjects to fixate a white dot on a black background for seven minutes each. At the 

end of the session, we acquired an anatomical image in addition to the functional images. One 

session lasted about 50 minutes in total. 
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The images (examples shown in Figure 1) induced very mild to very intense nicotine-

craving, which was validated in another study (Manoliu et al., 2021). They were taken from the 

following databases: Smoking Cue Database (SmoCuDa; Manoliu et al., 2021), International 

Smoking Image Series (ISIS; Gilbert & Rabinovich, 1999), and International Affective Picture 

System (IAPS; Lang et al., 1997).  

Following the scan, participants rated the total of 330 images shown using a 100-point 

visual analog scale. These were displayed randomly and had to be rated regarding the urge to 

smoke when viewed (craving) and how positively or negatively they were perceived (valence). 

 

Figure 1  

Examples of Different Types of Craving-Inducing Images Used  

in the Study 

 

 

Image acquisition 

Imaging was performed at the MR Center of the Psychiatric University Hospital in 

Zurich, Switzerland, using a 3 Tesla Philips Achieva scanner (Philips Healthcare, The 

Netherlands) with a 32-channel head coil. The passive viewing runs lasted 4:18 minutes, during 

which five dummy scans and 122 functional images were acquired with the following setup: T2*-

weighted gradient-echo planar imaging (EPI) sequence with echo time (TE) = 35 ms, repetition 

time (RT) = 2000ms, 27 slices in ascending order, interslice gap = 1mm, flip angle (FA) = 82°, 
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voxel size = 2 x 2 x 3 mm3, and field of view (FoV) = 220 x 220 x 109 mm3. The subsequent 

anatomical scan lasted 8:26 minutes and was performed using this setup: T1-weighted sequence, 

FA = 8°, 237 sagittal slices in ascending order, no slice gap, voxel size = 0.76 x 0.76 x 0.76, and 

FoV = 255 x 255 x 180 mm3. 

fMRI analysis 

Overview 

The fMRI analysis consisted of the following steps: (1) Preprocessing; (2) Trial-by-trial 

deconvolution: Generation of single-trial brain activity maps for each subject; (3) Feature 

selection: Application of an a priori mask (4) Implementation of a cross-validated machine 

learning model to predict craving ratings; (5) Permutation for model performance assessment; (6) 

Bootstrapping to threshold most reliable voxel weights for visualization and interpretation. Steps 

(4) to (6) were repeated using the valence ratings as a predictor. For an overview of the analysis 

process see Figure 2. 

MRI processing and analyses were conducted with MATLAB R2021a (The MathWorks, 

Natick, USA) and Statistical Parametric Mapping (SPM12; Wellcome Trust Centre for 

Neuroimaging, London, United Kingdom). For preprocessing, we used the SPM12-based CONN 

toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) and applied their default preprocessing 

pipeline. The deconvolution was based on SPM12 using a custom script. Machine learning 

analysis, model performance assessments, and visualizations were performed with the 

CanlabCore toolbox (Wager, 2021).  
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Figure 2  

Visualization of the Whole Analysis Process 

 

 

Note. Partially adapted from Wager et al. (2011; 2013).  
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Preprocessing 

The following preprocessing steps were performed on the MRI images: realignment (six-

parameter, rigid-body transformation), co-registration (of functional images to the anatomical 

image), slice-timing-correction (to account for inter slice differences in acquisition time), outlier 

detection (labeling images with frame-related shifts above 0.9 millimeter or global BOLD signal 

changes above five standard deviations), segmentation, normalization into Montreal Neurological 

Institute (MNI) space, smoothing with a 6 mm full-width-at-half-maximum (FWHM) Gaussian 

kernel. 

Trial-by-trial deconvolution 

A classical general linear model (GLM) was specified to generate contrast images of brain 

activity for every single subject, which were later taken as input for the machine learning 

analysis. For deconvolution of BOLD activity, we used the Least Squares-Separate approach 

(LS-S; Mumford et al., 2012). Here, the trial-by-trial beta values (regression slopes) for every 

voxel were estimated by treating one trial as the regressor of interest, while all others were 

included as one single nuisance regressor. Through this procedure, contrast images were obtained 

for every participant, which contained beta values for each voxel. The LS-S method has been 

shown to provide the best estimate of the true activity magnitude in event-related designs for 

multivoxel pattern analysis, for example regarding the signal-to-noise ratio (Mumford et al., 

2012).  

Additionally, the following covariates were modeled as regressors of no interest in the 

GLM: catch-trials, six motion parameters (based on estimated movement during realignment), 

and estimated outlier images. 

Furthermore, the dataset was randomly downsampled to 180 trials per subject (5760 in 

total) for computational efficiency. 

Feature selection 

An anatomical mask of the ACC (see Figure 3) from the Harvard-Oxford atlas was 

applied to the brain images, which contained a total of 2500 2 mm³ voxels for the analysis. The 

selection was based on previous studies that associated this region with cue-driven craving in 

smokers (Chase et al., 2011; Haugg et al., 2021; Kühn & Gallinat, 2011; Tang et al., 2012). 
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Figure 3  

Illustration of the Anterior Cingulate Cortex 

 

Note. Horizontal, coronal, and sagittal view of the brain with the anterior  

cingulate cortex marked in pink. 

 

Machine learning algorithm 

The term machine learning (ML) in fMRI data analysis refers to methods that use 

algorithms to infer mental states from patterns of neural responses (Haxby, 2012; Haynes & 

Rees, 2006). For this work, ML was applied to decode the participants' urge to smoke (craving) 

from their BOLD activity. A model based on least absolute shrinkage and selection operator-

regularized principal component regression (LASSO-PCR; Wager et al., 2011) was chosen. The 

previously generated contrast maps were converted into a single vector and served as predictors, 

while the average craving ratings were specified as the outcome variable.  

LASSO-PCR is a technique combining LASSO (Hastie et al., 2009; Tibshirani, 1996) 

regression with principal component analysis (PCA). Thereby, PCA was used as a first step. 

Here, we decided to retain the size of observations (N = 32) as number of components, in 

accordance with Chang et al. (2015). Afterwards, LASSO regression was applied to the resulting 

component scores to predict the ratings. More precisely, LASSO shrinks beta values (regression 

slopes) towards zero using a regularization term with a weight parameter (λ, lambda) that 

penalizes high coefficients and eliminates them. Lambda is a so-called hyperparameter and must 

be tuned (see section on cross-validation). The whole procedure resulted in a pattern of regression 

weights that were used for the prediction and visualization. 

LASSO combined with PCA offers several advantages (Wager et al., 2011). First, in 

fMRI analysis we are dealing with very high dimensional data and thus with the curse of 

dimensionality (Bellman, 2015). This means that a high number of features (here: every single 
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voxel) in relation to the sample size reduces the prediction accuracy. Additionally, voxels are 

interdependent because they function in networks and should therefore not be treated separately. 

PCA addresses both issues because it reduces the amount of data by identifying and grouping of 

networks that are highly correlated with each other while preserving statistically relevant 

information. The LASSO algorithm then further removes components that are unstable and do 

not contribute to the prediction, leaving only the most useful ones. Overall, this combination 

provides a simplified model and facilitates the interpretation as well as visualization of the results 

(Hastie et al., 2009; Wager et al., 2011). 

Cross-validation 

One problem of ML methods is that they base their prediction on both true effects and 

noise of the data collected. The model therefore knows the learned data very well and shows 

good predictive performance, but cannot be applied to new, unseen cases – it suffers from 

overfitting (James et al., 2013). The common solution to overcome this problem is cross-

validation (CV; Kohavi, 1995). In our case a special form of k-fold-CV was used, where the 

number of folds equals the number of observations (k = N = 32), referred to as CV1. 

Furthermore, the optimal lambda (regularization parameter of LASSO regression) that minimizes 

the prediction error (PE) was estimated in an additional k-1-fold CV, referred to as CV2.  

The implementation of this so-called nested CV prevents data leakage when training the 

model and choosing the hyperparameter, otherwise information from the hold-out set would 

already be present in the training sets, thus leading to overfitting (James et al., 2013) . 

The procedure for one iteration was as follows: The data was divided into a training (data 

of all participants except of one) and test set (just the left-out participant). All data from the 

training set went into CV2, where the data was split again in training and test sets in the same 

way. The algorithm learns the data structure from the training data, which means that the 

regression weights were estimated here. Afterwards, the prediction was performed on the left-out 

participant. In CV2 different possible lambdas were used in a randomized search to find the 

model with the smallest PE. The optimal lambda was then used in the LASSO PCR of CV1, 

which again involved model training and testing for the hold-out set. This whole procedure was 

repeated 32 times until each participant was in the test set of CV1 once. In the end, the PE was 

calculated based on the accuracy of all predictions in CV1. 
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Model performance 

Two different criteria were used to assess model performance: the correlation of predicted 

and actual craving ratings and the PE (mean absolute deviation of predicted from observed 

craving ratings). 

For validation of the model performance, a nonparametric permutation test (Nichols & 

Holmes, 2002) was applied. Here, craving ratings were permuted 1000 times and the cross-

validated LASSO-PCR was repeated for each permuted dataset to obtain a distribution of the 

predicted and observed craving correlation. The mean of the permuted correlations should be 

symmetrically distributed around zero if the prediction is unbiased. In addition, the permuted PE 

and predicted-observed craving correlation should be significantly higher or respectively lower 

than the corresponding values of the correct data if the prediction is better than chance. 

Visualization and interpretation 

A bootstrap test (Efron & Tibshirani, 1993) was performed to threshold and visualize 

reliable voxels for interpretation of the prediction. 5000 bootstrap samples (with replacement) of 

paired contrast maps and craving ratings were collected, and the LASSO-PCR procedure was 

repeated for each one. Subsequently, two-tailed uncorrected p-values were computed for every 

voxel and False Discovery Rate correction (Benjamini & Hochberg, 1995) was applied. The test 

was based on the proportion of weights below or above zero in one voxel. This procedure allows 

to identify voxels that provide the most reliable contribution to the prediction (Wager et al., 

2011). For visualization the regression weights were back-projected into voxel space to generate 

a 3D image of the brain. 

Statistical analysis of behavioral ratings 

Pearson’s correlation coefficient was employed to assess the association of behavioral 

craving and valence ratings. 
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Results 

fMRI analysis 

Cross-validated prediction of craving 

The correlation of predicted and observed craving ratings was r = .01 (Figure 4). The 

average PE of the cross-validated LASSO-PCR was 13.00 (SD = 15.58; 100-point visual analog 

scale). The variance in craving ratings (outcome) explained by the weights (predictor) was less 

than 1% (R² < .001). 

 

Figure 4  

Scatterplot Showing Correlation of Predicted and Observed Craving 

 

 

Model performance craving 

Permuting the craving ratings 1000 times and repeating the cross-validated LASSO-PCR 

on each permuted dataset gave us a distribution of the correlation of predicted and observed 

ratings (Figure 5) and the PE (Figure 6). The procedure revealed that the mean of the permuted 

correlations, although symmetrically distributed around zero, was not significantly different from 

the true correlation (p = .83). Additionally, the permuted PE and the actual PE did not differ 

significantly (p = .66). Therefore, the ML model for predicting craving does not perform better 

than chance.  
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Figure 5  

Distribution of Predicted and Observed Craving Correlation from Non- 

Parametric Permutation Test 

 

 

Figure 6  

Distribution of Prediction Error for Craving from Non-Parametric  

Permutation Test 

 

 

Bootstrapping & visualization craving 

No predictive regression weights were found before and after thresholding via 5000 

bootstrap samples in the cross-validated LASSO-PCR for craving, therefore no visualization was 

performed. The bootstrapped p-values for each voxel ranged between .76 and 1 (M = .88, SD = 

.08). 
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Cross-validated prediction of valence 

The correlation of predicted and observed valence ratings was r < .01 (Figure 7). The 

average PE of the cross-validated LASSO-PCR was 7.02 (SD = 9.01; 100-point visual analog 

scale). The variance in valence ratings (outcome) explained by the weights (predictor) was less 

than 1% (R² < .001). 

 

Figure 7  

Scatterplot Showing Correlation of Predicted and Observed Valence 

 

 

Model performance valence 

Permuting the valence ratings 1000 times and repeating the cross-validated LASSO-PCR 

on each permuted dataset gave us a distribution of the correlation of predicted and observed 

ratings (Figure 8) and the PE (Figure 9). The procedure revealed that the mean of the permuted 

correlations, although symmetrically distributed around zero, was not significantly different from 

the true correlation (p = .68). Additionally, the permuted PE and the actual PE did not differ 

significantly (p = .51). Therefore, the ML model for predicting valence does not perform better 

than chance. 
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Figure 8  

Distribution of Predicted and Observed Valence Correlation from Non- 

Parametric Permutation Test 

 

 

Figure 9  

Distribution of Prediction Error for Valence from Non-Parametric  

Permutation Test 
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Bootstrapping & visualization valence 

Low predictive regression weights near zero (> 0.001) were obtained in the cross-

validated LASSO-PCR for valence, these were not found to be reliable after thresholding for 

interpretation via 5000 bootstrap samples (see Figure 10). The bootstrapped p-values for each 

voxel ranged between .63 and 1 (M = .84, SD = .09). 

 

Figure 10  

Predictive Voxel Weights for Valence Before and After Bootstrapping 

 

 

  

 

Note. Above: Unthresholded voxel weights obtained with LASSO-PCR for predicting valence. 

Below: No voxel weights remained significant after thresholding with bootstrap. Blue indicates 

negative predictive weights and yellow indicates positive predictive weights.  

 

Behavioral craving and valence ratings 

The ratings of craving (M = 45.10, SD = 15.78, Median = 46.99) and valence (M = 51.20, 

SD = 8.97, Median = 52.13) were significantly correlated (r = .72, p < .001; see Figure 11). The 

ratings were normally distributed around their respective means, this is shown in Figure 12 

(craving) and Figure 13 (valence). 
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Figure 11  

Scatterplot Showing Correlation of Behavioral Craving and Valence  

Ratings 

 

 

Figure 12  

Distribution of Behavioral Craving Ratings in the Study (N = 32) 
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Figure 13  

Distribution of Behavioral Valence Ratings in the Study (N = 32) 
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Discussion 

The purpose of this study was to predict nicotine-related craving ratings in smokers from 

the ACC with a ML approach. In contrast, we hypothesized that the ML model would not predict 

valence ratings from the ACC. While previous studies mainly focused on spatial localization of 

brain regions involved in cigarette craving processing, we aimed to achieve a higher degree of 

brain activity quantification by predicting single-trial ratings. However, we found that the 

LASSO-PCR method we chose could not predict craving nor valence from BOLD activity in the 

ACC. 

Predicting craving and valence 

The outcome of the LASSO-PCR on craving ratings was not in line with results of 

standard GLM methods. Using GLM-based approaches, activity in the ACC has been found to be 

involved in cigarette craving in numerous studies (Brody et al., 2007; Canterberry et al., 2013; 

Kühn & Gallinat, 2011; Li et al., 2013). In contrast, the results on valence were as expected, as 

valence ratings seem to explain more variance of the activity in the amygdala, but not in the 

ACC, compared to arousal (Anders et al., 2008) or craving ratings (Haugg et al., 2021). 

These previous approaches are fundamentally different from our method, in which we 

employed the LS-S approach (Mumford et al., 2012) for trial-by-trial deconvolution to generate 

contrast maps of brain activity that were used as input for the ML model. The LS-S approach is 

seen as the best method for estimating true neural activity in rapid event-related designs for 

multivariate fMRI analyses. However, its usefulness has only been tested for classification 

algorithms (Mumford et al., 2012) and not for regression models, as in the case of our study. 

Additionally, it was found that the benefit of LS-S decreases the shorter the inter-stimulus 

interval (ISI) is (Mumford et al., 2012). It appears that with smaller ISI the regressors (here the 

individual trials) correlate more strongly with each other, which negatively affects the model 

performance. Thereby, it was established that an ISI of 3 s is suitable for the application of LS-S 

without losing predictive accuracy (Mumford et al., 2014). However, an ISI of 2.3 was used in 

our study, as it was initially planned only for univariate analysis with a parametric modulator, for 

which it appeared to be appropriate (Haugg et al., 2021). 

These findings on deconvolution methods only refer to multivariate analyses with 

classification models. Thus, there seems to be a literature gap regarding data preparation for 

regression algorithms and optimization of fMRI designs for this type of analysis. While 

classification models usually distinguish between two outcomes (classes), regression methods try 
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to predict continuous values. There are indeed examples of studies that successfully predicted 

continuous outcomes like arousal (Chu et al., 2011), placebo analgesia score (Wager et al., 2011), 

subjective physical pain (Wager et al., 2013), negative affect (Chang et al., 2015), or subjective 

fear (Taschereau-Dumouchel et al., 2020). However, some used other ML methods such as kernel 

ridge regression (Chu et al., 2011) or support vector regression (Taschereau-Dumouchel et al., 

2020). Furthermore, all these studies examined whole-brain decoders, while we chose the ACC 

as region of interest. Most notably, all psychological ratings were acquired on a Likert scale with 

only five (Chang et al., 2015; Chu et al., 2011; Taschereau-Dumouchel et al., 2020; Wager et al., 

2011) or nine (Wager et al., 2013) rating levels, while we tried to predict ratings acquired from a 

0-100 scale. Although this is highly debated, differences in psychological scales could have 

introduced more uncertainty on the psychological dimension, which equates to more uncertainty 

on the ML target. This provides an additional explanation for the unexpected results. 

Consequently, the general ability to predict subjective ratings with a high number of levels should 

be explored in future studies.  

Furthermore, we noted that the pattern of individual ratings in the first half of a rating 

session was different from the second half (for example images of the second half tended to be 

rated with equal urge and valence), which we interpreted as a decrease of the participant´s 

engagement in the rating task. We therefore capitalized on shared effects instead of individual 

effects by averaging the rating of each image across participants and used the averaged values as 

ML targets instead of individual ones. The use of averaged ratings seemed suitable for a classical 

GLM with ratings as parametric modulators (Haugg et al., 2021), but this may not be the case for 

single-trial analyses, where every trial matters individually. Hence, the quality of the ratings 

could further explain why our analysis was not successful. Moreover, craving and valence ratings 

were highly correlated with each other (r = .72), making it unlikely that they can be distinguished 

easily based on brain activity of a single region. 

Another critical point is the relatively small sample size with 32 subjects. Classical power 

analyses for fMRI in combination with ML analyses appear to be not robust (Mumford, 2012). 

However, other studies using LASSO-PCR to predict continuous outcomes collected far more 

data with 70 (Wager et al., 2011) and 113 (Wager et al., 2013) subjects, for example. This 

indicates that our sample size was too small to successfully apply a ML method. 

In summary, our unexpected outcome could be equally explained by unsuitable 

experimental design (low ISI), insufficient quality of the ML target (averaged versus individual 
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ratings) and type of the ML model itself. For this reason, it is important to mention that our study 

does not rule out the role of ACC activation in nicotine-related craving or valence in smokers but 

suggests that overall noise levels in our data were too high for the analysis to be successful. 

Future directions 

In our analysis, we attempted to find not only mere correlations between brain activity 

and cue-induced craving, but a more precise pattern at the level of single-trial predictions. There 

are treatments specifically designed to reduce craving in smokers to support smoking cessation, 

such as cue exposure therapy (Conklin & Tiffany, 2002; Drummond et al., 1990) and real-time 

fMRI neurofeedback (Cox et al., 1995; Sulzer et al., 2013). In cue exposure therapy, the patient is 

exposed to drug stimuli, which is intended to extinguish conditioned responses such as craving. 

Real-time neurofeedback in the context of nicotine addiction is designed to reduce cue-induced 

craving by helping individuals to voluntarily regulate the brain activity that is responsible for it. 

However, the efficacy of these treatments for smoking cessation remains unclear. There are 

empirical findings suggesting low efficacy of cue exposure therapy (Pericot-Valverde et al., 

2019) and equality to treatments like cognitive behavioral therapy (Park et al., 2014), or 

providing contradictory results (Unrod et al., 2014). Similarly, with real-time fMRI 

neurofeedback, there are studies supporting the efficacy of this method (Hartwell et al., 2016; Li 

et al., 2013) or providing mixed results (Canterberry et al., 2013; Pandria et al., 2020). Thus, 

there remains room for improvement in these treatment options. Future research on cue-driven 

craving on a neurological level with multivariate approaches can increase the psychological 

specificity and overall accuracy of both interventions. For example, in targeting the specific 

craving component with smoking cues or in shaping the stimuli depending on the patients 

individual craving level. 
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Conclusion 

This work aimed to predict behavioral craving ratings from fMRI BOLD activity, which 

was not possible with the chosen LASSO-PCR model. These results can be attributed to different 

factors: quality of the behavioral ratings, the chosen ML model, and an unsuitable experimental 

design (short ISI), indicating that event-related designs need to be adapted when this ML 

regression algorithm is used for single-trial prediction. However, studying cue-induced craving 

with multivariate methods is further important to improve treatments for smoking cessation. 

Overall, we hope to contribute to the optimization of experimental methods for this purpose.  
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Deutsche Zusammenfassung 

Nikotinabhängigkeit ist weltweit eine der Hauptursachen für vermeidbare Todesfälle und 

verursacht hohe Kosten für die Gesundheitssysteme. Leider sind die Rückfallquoten nach der 

Raucherentwöhnung hoch, so dass verbesserte Behandlungsmöglichkeiten erforderlich sind. Um 

neue wirksame Behandlungen anbieten zu können, ist ein tieferes Verständnis der zugrunde 

liegenden neuronalen und verhaltensbezogenen Mechanismen von Nikotinabhängigkeit 

erforderlich. Was die neuronalen Grundlagen der Nikotinsucht betrifft, so fand eine aktuelle 

Studie, dass die Aktivität im anterioren cingulären Kortex in erster Linie mit dem von externen 

Reizen ausgelösten Nikotinverlangen (Craving) zusammenhängt, während die Amygdala-

Aktivität mit Valenzaspekten von Nikotinreizen in Verbindung gebracht wird. Diese Arbeit 

untersuchte eine mögliche Konfundierung von Valenz und Craving mit Hilfe eines Reiz-

Reaktivitäts-Paradigmas. 32 nikotinabhängige Probanden unterzogen sich einer funktionellen 

Magnetresonanztomographie, während sie Craving-auslösende Bilder sahen, und bewerteten 

diese anschließend auf einer kontinuierlichen Skala in Bezug auf Craving und emotionale Valenz. 

Ein Modell des maschinellen Lernens (LASSO-PCR) wurde angewandt, um aus der neuronalen 

Aktivität im anterioren cingulären Kortex die Bewertungen der einzelnen Bildpräsentationen 

vorherzusagen. Wir gingen davon aus, dass nur die Craving-Bewertungen erfolgreich 

vorhergesagt werden können, aber es war weder möglich Craving noch Valenz korrekt 

vorherzusagen. Diese Ergebnisse können auf verschiedene Faktoren zurückgeführt werden: 

Qualität der Bewertungen, ungeeignete Interstimulus-Intervalle und das Modell selbst. Insgesamt 

ist die Optimierung von experimentellen Designs für multivariate Regressionsmethoden von 

großer Bedeutung, um die Forschung zum Reiz-bezogenen Craving bei Rauchern zu verbessern 

und damit gezieltere Behandlungsmöglichkeiten für die Raucherentwöhnung zu entwickeln. 

Keywords: Craving, Reiz-Reaktivität, Nikotinabhängigkeit, funktionelle 

Magnetresonanztomographie, maschinelles Lernen 
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